

Mastering
TensorFlow 2.x

Learn How to Use TensorFlow Library to
Solve

Problems Involving Structured and
Unstructured Data

Rajdeep Dua

www.bpbonline.com

http://www.bpbonline.com/

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-91392-222

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My beloved Parents

Wife Manju and Sons Navtej and Kairav

About the Author
Rajdeep Dua is a Senior Director at one of the leading SAAS software
vendors leading teams working on Machine Learning and Deep Learning
use cases. He has been tracking the TensorFlow library for the last 3-4
years. He has written multiple books in the areas focussing on TensorFlow,
Neural Networks, and Apache Spark. Rajdeep’s mainstream job is focused
on getting AI to solve industry-specific problems and is quite familiar with
the challenges faced. He has been in the industry for over 20 years working
in areas like Cloud computing, Big Data, and Machine Learning.

About the Reviewer
Anitha Vijayakumar is the Director for ML Infrastructure on the
TensorFlow team. She got her engineering degree from Bengaluru, India,
and a Master’s in Computer Engineering from UCLA. She has spent the last
decade at Google working on infrastructure projects across data center
deployments and machine learning. She has worked in multiple companies
like Ericsson, Alcatel building software infrastructure in these
organizations.

Acknowledgement
First and foremost I would like to thank my mother, wife for their
continuous support and encouragement. Also, I would like to thank my two
sons who are quite accommodating in the times I am not available.
I am also grateful to the wider TensorFlow community and the tech writers
of the TensorFlow site which was a great source of getting started on a
particular topic. I also took a lot of inputs from courses on Coursera, and
some Reinforcement Learning content online learning (@Coursera by
deeplearning.ai; @Udacity by Google)
My gratitude also goes to the team at BPB Publications for being supportive
and providing me quite a long time to finish the book where the underlying
stack version is changing every three months. When I started writing the
book we were at TensorFlow 2.1 and by the time I finished, we are at 2.7.

Preface
This book covers many parts of deep learning concepts with an
implementation based on TensorFlow. We will start with the basics and then
delve into advanced topics and model tuning as well. The key focus of the
book is to introduce a concept, the math behind it, and how the concepts
can be used in the TensorFlow library. Most of the samples are based on
Jupyter with some of them also based on the Google Colab environment.
Book is a healthy combination of theory as well as samples to get you
started. Some chapters have taken real-world examples from Kaggle – for
example using the PCAM dataset for image classification as well as transfer
learning. In some cases, we have also shown how to generate a synthetic
dataset for a problem, for example for a time series dataset. While sufficient
effort has been made to explain the topics it is almost impossible to do deep
dive on each topic. Considering the trade-off between the vast majority of
topics to be covered in the book and keeping the volume manageable, we
have focused on applications in some cases.
The primary target of the books is to give an overview to developers and
data scientists starting on TensorFlow. It also covers advanced topics on
TensorFlow like Distributed TensorFlow and optimization techniques.
The reader should have some knowledge of Python as a programming
language and better have some programming experience. Also, it will be
good for the reader to have some basic knowledge about machine learning
and some basic math background to get the most out of the book.
This is the first part of the book, and it will consist of the following four
chapters, in which you will learn the following:
Chapter 1 will cover the introduction to TensorFlow. It will show how to
install TensorFlow, then look at some of the building blocks of TensorFlow
high-level APIs which are based on Keras. Then the chapter will help users
write their first sample on TensorFlow. The chapter will also cover low-
level APIs as well as image classification examples.
Chapter 2 will show how to classify structured and unstructured text as
well as non-textual data using Tensorflow 2.x Keras APIs. You will also get

to learn to handle the overfitting and underfitting of models.
Chapter 3 introduces Keras APIs in-depth and their application with
examples. We will compare how these APIs are exposed -- for example
optimizers, loss functions, and the underlying deep learning theory.
Chapter 4 will cover Convolutional networks and how we can build these
kinds of neural networks to classification images with Tensorflow 2.x. It
will also cover what is TFHub and how it can be used for text and image
processing.
Chapter 5 will introduce the concepts of Recurrent Neural Network
(RNN), Gated Recurrent Unit (GRU), Long-Term Short-Term Memory
(LSTM), and bi-directional LSTM.
Chapter 6 will focus on time series forecasting using Recurrent Neural
Networks (RNN) and Long Term Short Term Memory (LSTM).
Chapter 7 will provide details on how to distribute training over multiple
CPUs, GPUs, and machines, it also covers building data pipelines using
tf.data. We will look at how to create a Dataset from tensors. It will provide
details on iteration mechanisms available to access data in tf.data.Dataset.
Chapter 8 focuses on reinforcement learning and its implementation which
is specific to Tensorflow 2.0 Keras APIs. You will implement a sample
where the network learns how to play Cartpole and Atari games. You will
also look at various architectures like DQN and DDQN.
Chapter 9 will provide details on how to optimize the models built using
various techniques like weight pruning, quantization. It will also show how
to convert the Tensorflow 2.0 model to TFLite.
Chapter 10 will provide details on how to implement Generative
Adversarial Networks (Simple GAN, DCGAN, and WGAN using
TensorFlow 2.x.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/82a809
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Mastering-TensorFlow-2.x. In case
there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/82a809
https://github.com/bpbpublications/Mastering-TensorFlow-2.x
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Getting Started with TensorFlow 2.x

Introduction
Structure
Objective
Installing TensorFlow 2.x

Installation on Ubuntu
Installing TensorFlow 2.x with GPU support

Keras high-level APIs integration into TensorFlow
Python binding
Functional Spec
Layer
Keras graph

Writing the first sample using TensorFlow 2.x
Preprocess the data

Build the model
Compile the model
Train the model
Verifying predictions

Low-level APIs
Dataflow
tf.Graph structure
tf.Operation and tf.Tensor

Image classification with CNN
Conclusion
Questions
References

2. Machine Learning with TensorFlow 2.x
Introduction
Structure
Objectives
Basic classification with TensorFlow 2.x

Clean the dataset
Model creation and training

Regression examples with TensorFlow 2.x
The Boston Housing Price dataset
Preparing the data

Building the neural network
Validating our approach using K-fold validation
Overfitting and underfitting

Sonar dataset
Saving and restoring models
Conclusion
Question

3. Keras Based APIs
Introduction
Structure
Objective
Keras functional API

Training, evaluation, and prediction using TensorFlow and Keras
Using training and evaluation loops

Loss, metrics, and an optimizer
Regression problem
Binary classification problem
Implementation of loss functions in TensorFlow 2.x
Mean Square Error (MSE)
Sparse cross categorical entropy
Cross categorical entropy

Layers and models using Keras functional APIs
Effective TensorFlow 2.x

Reorganization of namespaces
Deprecated APIs
Eager execution
Functions replace sessions
Removing globals
Control flow
Combine tf.data.Dataset and tf.function

Conclusion

Questions
Code listing
References

4. Convolutional Neural Networks
Introduction
Structure
Objective
Introduction to convolutional networks

Short comings of fully-connected networks
Convolution in TensorFlow 2.7
Simple convolutional network with TensorFlow
Building ResNet with TensorFlow

ResNet
Advanced computer vision techniques

VGG architecture
Learning from the VGG network
Increased depth of feature maps
VGG in TensorFlow
Area under the curve for VGG16
VGG19
Inception V3
InceptionV3 architecture

TensorFlow Hub
Summary
Questions
References
Code listing

5. Recurrent Neural Networks
Introduction
Structure
Objectives
Basic concepts
Simple recurrent neural network

Building your first SimpleRNN network
Weight constraints

Gated recurrent unit
Building your first GRU-based model

Long-Term Short-Term Memory (LSTM)
LSTM cell operations

Text processing with LSTM
Bidirectional LSTM

Text processing with bidirectional LSTM
Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

6. Time Series Forecasting with TensorFlow
Introduction
Structure
Objectives
Background

Machine learning and time series
Common patterns in time series
First time series notebook with synthetic data
Synthetic dataset

Single layer model to predict time series
Multiple layer model for predicting the value

RNN for predicting the time series data
Applying Lambda function
Adjusting the learning rate dynamically
LSTM and time series
Process synthetic dataset with LSTM

Conclusion
References
Points to remember
Multiple choice questions

Answers
Questions
Key terms

7. Distributed Training
Introduction
Structure
Objectives
Introduction to distributed TensorFlow
Types of strategies

Mirror strategy
Multi-worker mirrored strategy

Collective communication in a multi-worker mirrored strategy
Code walk-through of MirroredStrategy

Running MirroredStrategy on multi CPU AWS virtual machine
Multi-worker training with Keras with two processes
MNIST dataset and model definition
Multi-worker configuration with two workers
Environment variables and subprocesses in notebooks

Strategy to be chosen
Train the model

Conclusion
Questions
References

8. Reinforcement Learning
Introduction
Structure
Objective
Sequential decision process: agent and the world
Markov decision process
Model free policy
DQN networks
Atari game with deep reinforcement learning - DQN
Actor critic network
Introducing TF-agents
TF-agent
DQN based agent for CartPole game
SAC agent’s support in TF-agents
Conclusion
Questions

Code listing
References
Appendix

Policy evaluation
Policy iteration

9. Techniques to do Model Optimization
Introduction
Structure
Objective
Background
Extension to neural networks
Tools available
Advantages of model optimization
Quantization

Post-training quantization
Overview
Build a Fashion MNIST model
Convert to a TensorFlow Lite model
Run the TFLite models
Evaluate the models

Weight pruning
Pruning some of the layers
Pruning using sequential APIs

Weight clustering
Enabling Cluster weights

Serializing the clustered model
Weight clustering MNIST classification model
Conclusion
Questions

Answers
References

10. Generative Adversarial Networks
Introduction
Structure
Objective

Introducing GANs
Discriminator
Generator
BCE cost function

GAN for FASHION MNIST images
DCGAN

Generate and save images
Problem with the loss function
Earth mover’s distance
WGAN

Implementing WGAN
Pix2Pix with Maps dataset
Conclusion
Multiple choice questions

Answers
Code listing
References

Index

CHAPTER 1
Getting Started with TensorFlow 2.x

Introduction
TensorFlow has released version 2.7 (in the 2.x series) of the API. In the
first chapter, we will understand the thought process and get started with
this API.
Keras is a popular deep learning API for building and training models. It is
mostly used for proto-typing as well as research. The TensorFlow team has
officially adopted Keras as a first-class citizen with some small
modifications. The goal is to reduce confusion for developers who want to
use Keras. The TensorFlow team wanted to focus on expanding the
advanced capabilities for researchers.

Structure
In this chapter, we will cover the following topics:

Installing TensorFlow 2.x
Keras and high-level APIs integration into TensorFlow
Writing the first sample using TensorFlow 2.x
Low-level APIs
Image classification with CNN

Objective
In this chapter, we will learn how to get started with TensorFlow 2.x (x
means version 6 at the time of writing this book).

Installing TensorFlow 2.x

TensorFlow 2.x can be installed in multiple ways; but the easiest way is to
install using pip. It can be run on Ubuntu/MacOS or Windows.

Installation on Ubuntu
Assuming you have CIT pip>= 0.19 and Python 2.7 installed on your
devices, follow the given procedures. We will assume Ubuntu OS.
pip install —upgrade tensorflow

Notice how TensorFlow 2.6 is installed by default.
Testing the TensorFlow installation: Run the following command to check
whether it is installed as expected:
python -c "import tensorflow;print(tensorflow.__version__)"

The response should be:
2.7.0

For Python 3.4 or above, the command is similar to the following:
pip install —upgrade tensorflow

Installing TensorFlow 2.x with GPU support
In case you want to install TensorFlow with GPU support, use the following
command :
pip install tensorflow-gpu

Given that our environment setup is complete, let us look at high-level
Keras APIs before delving deeper into TensorFlow components.

Keras high-level APIs integration into TensorFlow
Keras high-level APIs has the following advantages over traditional
TensorFlow 1.x based flow:

User-friendly: API is developer-friendly and easy to understand. This
allows easier composition of neural networks.
Easily composable: This is enabled with the concept of sequential
models for beginners as well as for experts. APIs are not only simple
enough to be used by the beginners but are also flexible with low-level
functional APIs to create more complex flows.

Difference between Keras and TensorFlow 2.x: Keras is a high-level
API from a built-in sequential model perspective. It has the ability to
define customs. Figure 1.1 compares TensorFlow and Keras on two
dimensions: architectural and training APIs:

Figure 1.1: Comparing TensorFlow and Keras from an architecture and training APIs perspective

Keras’ network topology uses custom layers, but it is not as sophisticated as
TensorFlow’s graph creation low-level APIs.

Python binding
Python is the most complete language binding in TensorFlow, and we will
use it as our primary language.
All the tensors are statically typed since the underlying implementation in
TensorFlow is in C++. Python bindings are able to inspect and show the
underlying data type.

Functional Spec
Keras has three main objects:

Keras tensor: This is an augmented version of TensorFlow tensor.
Layer: This helps to perform transformation on tensors.
Model: This is a specification of a neural network and associated loss
functions, optimizers, and so on.

Keras tensor
Keras tensor is generated by the Input function as follows:

from tensorflow.keras.layers import Input

x = Input(batch_shape=(100, 100))

A Keras tensor is a tensor object from the underlying backend
(TensorFlow), which is augmented with attributes that allow us to build a
Keras model just by knowing the inputs and outputs of the model:

x

<tf.Tensor 'input_1:0' shape=(100, 100) dtype=float32>

type(x)

tensorflow.python.framework.ops.Tensor

vars(x)

{'_op': <tf.Operation 'input_1' type=Placeholder>,

'_value_index': 0,

'_dtype': tf.float32,

'_tf_output':

<tensorflow.python.pywrap_tensorflow_internal.TF_Output;

proxy of <Swig Object of type 'TF_Output *' at

0x7feab8370690> >,

'_shape_val': TensorShape([100, 100]),

'_consumers': [],

'_id': 2,

'_name': 'input_1:0',

'_keras_history': KerasHistory(layer=

<tensorflow.python.keras.engine.input_layer.InputLayer object

at 0x7feb09827fd0>, node_index=0, tensor_index=0),

'_keras_mask': None}

A Keras tensor x has the same type as a TensorFlow tensor, as we can see
below. However, what makes x a Keras tensor is the existence of Keras-
specific attributes, such as, _keras_history.

Layer

A layer defines a transformation in the network. The layer accepts
tf.keras tensor(s) as input, transforms the input(s), and outputs Keras
tensor(s). Layers can do a wide variety of transformations. Dense,
activation, reshape, Conv2D, and LSTM are all layers derived from the
abstract layer class. The following figure shows the relationship between
Tensor and a

Layer:

Figure 1.2: Layer’s input and output parameters

Let us see how to create a simple dense layer in TensorFlow 2.x:

from tensorflow.keras.layers import Dense

dense_layer = Dense(units=10, activation='relu')

dense_layer

<tensorflow.python.keras.layers.core.Dense at 0x7feaa9f19150>

Let us look at the underlying type:

tensorflow.python.keras.layers.core.Dense

In the preceding code snippet, dense_layer is an object of the class Dense.
The Layer objects are callable because of the __call__ method. The
__call__ method accepts a tensor or a list/tuple of tensors and returns
them. The __call__ method can only accept tensors of shapes which are
compatible with its object.
A layer may or may not have weights associated with it; it depends on what
it does. A Dense layer (a subclass of layer) does have weights associated
with it. When using the functional API, the weights are not instantiated
until the dense_layer.__call__() method is called.

Keras graph

While using the backend, a graph is built to describe the computations
intended to be performed. This graph can be implicitly created when doing
eager execution, or explicitly (in TensorFlow 1.x using session.run()).
Though the graph creation is hidden in Keras, it still relies on it for
computations. Graph creation can be fine-tuned by using Keras functional
APIs.

Writing the first sample using TensorFlow 2.x
In this section, we look at how to write a simple model to enable image
classification based on cifar-10 datasets.
This is a fast-paced overview of the complete TensorFlow program with the
details explained as you go. We will use the tf.keras to build and train
models in TensorFlow.
Here, 50,000 images are used to train the network and 10,000 images to
evaluate how accurately the network learned to classify images. You can
access the cifar-10 directly from TensorFlow. import and load the cifar-10
dataset directly from TensorFlow:

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

Loading the dataset returns for NumPy arrays: the train_images and
train_labels arrays are the training set—the data the model uses to learn.
The model is tested against the test set, the test_images, and test_labels
arrays.
The images are 32x32x3 NumPy arrays, with pixel values ranging from 0 to
255. The labels are an array of integers, ranging from 0 to 9. These
correspond to the class the image represents.

Preprocess the data
The data must be preprocessed before training the network. If you inspect
the first image in the training set, you will see that the pixel values fall in
the range of 0 to 255 as shown in Figure 1.3:

Figure 1.3: Image with actual pixel values

First, we will normalize the images by dividing them by 255:

Normalize pixel values to be between 0 and 1

train_images, test_images = train_images / 255.0, test_images

/ 255.0

Figure 1.4 shows how the pixel values get transformed:

Figure 1.4: Normalized pixel values

Each image is mapped to a single label. Since the class names are not
included with the dataset, store them here to use later when plotting the
images:

class_names = ['airplane', 'automobile', 'bird', 'cat',

'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

Let us plot the images with the labels in a 3x3 grid:

plt.figure(figsize=(5,5))

for i in range(9):

plt.subplot(3,3,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(train_images[i], cmap=plt.cm.binary)

The CIFAR labels happen to be arrays,

which is why you need the extra index

plt.xlabel(class_names[train_labels[i][0]])

plt.show()

The output of the preceding plot is a 3x3 grid with labels as shown in
Figure 1.5:

Figure 1.5: 3x3 matrix of training images with labels

We have normalized the data and seen how it looks. Now, we need to work
on creating the model using layers.

Build the model
To build the model, we will first configure the layers of the model and then
compile it.

Setting up the layers
The layer is the basic building block and neural network. Layers extract
representations from data that is fed to them. Most of the deep learning
model’s creation consists of chaining together simple layers. Layers, like

tf.keras.layers.Dense, have hyper-parameters that are learned during
training.
We created a basic sequential model and added three layers to it:

The first layer flattens the input from (?, 32x32x3) to (?, 3072), a
two dimensional tensor. After the data is the flattened, the network has
two dense layers. These are fully connected neural layers.
The first layer has 64 nodes and the second layer has 10 node
softmax layers, which returns an array of 10 probability scores that
add up to 1.
Each node indicates a probability that the current images belong to
one of the 10 classes:
model = models.Sequential()

model.add(layers.Flatten(input_shape=(32, 32, 3)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

model.summary()

Once the model is created, we need to compile and train the model.

Compile the model
Before the model is ready, it needs to be compiled keeping in mind the
following information:

Loss function: It calculates how accurate the model is during training,
for example, sparse_categorical_crossentropy.
The formula for categorical cross entropy is as follows:

S: Samples.
C: Classes.
s∈c: Sample belongs to class c.
For cases when classes are exclusive, no need to sum over them.
For each sample, only non-zero value is −𝑙𝑜𝑔(𝑠∈𝑐)−logp(s∈c)
for true class c.

Optimizer: It defines how models are updated based on the data it
sees and its loss functions. Examples are Adam, AdaDelta, Adagrad,
and so on. In the upcoming chapters, we will learn more about these
optimization techniques.
Metrics: It is used to monitor training and validation/testing steps. In
our example, we will use accuracy. Accuracy is the fraction of images
correctly classified:
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

After having compiled the model, it is ready for training using the training
data.

Train the model
Training the model is done using the following steps:

The model is fed the training data, which is train_images and
train_labels arrays.
The model learns from images and labels.
The model is used to make predictions on test set.
Verify that the predictions made by the model match the labels.

Feed the model
1. To start the training, a call is made to the model.fit method—it fits

the model to the training data:
EPOCHS = 10

history = model.fit(train_images, train_labels,

epochs=EPOCHS, validation_data=(test_images, test_labels))

The output will show a combination of accuracies and losses for 10
epochs:
Train on 50000 samples, validate on 10000 samples

Epoch 1/10

50000/50000 [==============================] - 4s

77us/sample - loss: 1.9230 - accuracy: 0.3086 - val_loss:

1.8549 - val_accuracy: 0.3165

Epoch 2/10

50000/50000 [==============================] - 3s

65us/sample - loss: 1.8041 - accuracy: 0.3568 - val_loss:

1.7702 - val_accuracy: 0.3636

Epoch 3/10

50000/50000 [==============================] - 3s

64us/sample - loss: 1.7532 - accuracy: 0.3771 - val_loss:

1.7386 - val_accuracy: 0.3860

Epoch 4/10

Epoch 8/10

50000/50000 [==============================] - 3s

65us/sample - loss: 1.6767 - accuracy: 0.4038 - val_loss:

1.6715 - val_accuracy: 0.4037

Epoch 9/10

50000/50000 [==============================] - 3s

64us/sample - loss: 1.6679 - accuracy: 0.4050 - val_loss:

1.6598 - val_accuracy: 0.4041

Epoch 10/10

50000/50000 [==============================] - 3s

67us/sample - loss: 1.6585 - accuracy: 0.4097 - val_loss:

1.6474 - val_accuracy: 0.4080

2. Let us plot these values in a plot for accuracy and validation loss:
import sys; sys.path.append('..')

from common.plot_util import eval_metric

import matplotlib.pyplot as plt

def eval_metric(model, history, metric_name, EPOCHS):

'''

Function to evaluate a trained model on a chosen metric.

Training and validation metric are plotted in a

line chart for each epoch.

Parameters:

history : model training history

metric_name : loss or accuracy

Output:

line chart with epochs of x-axis and metric on

y-axis

'''

metric = history.history[metric_name]

val_metric = history.history['val_' + metric_name]

e = range(1, EPOCHS + 1)

plt.plot(e, metric, 'bo', label='Train ' + metric_name)

plt.plot(e, val_metric, 'b', label='Validation ' +

metric_name)

plt.xlabel('Epoch number')

plt.ylabel(metric_name)

plt.title('Comparing training and validation ' +

metric_name + ' for '

+ model.name)

plt.legend()

plt.show()

3. Calling this function on the history object will show how the training
loss and validation loss varies with each epoch:
import sys; sys.path.append('..')

from common.plot_util import eval_metric

eval_metric(model,history, 'loss',EPOCHS)

Figure 1.6 is the result of executing the preceding code:

Figure 1.6: Training loss and validation loss as a function of epochs

While the training loss comes down gradually, the validation loss
graph is not very smooth.

4. Next, let us also look at the training and validation accuracy as shown
in Figure 1.7:

Figure 1.7: Training accuracy and validation accuracy as a function of epochs

While the training accuracy comes down gradually, the validation accuracy
graph is not very smooth; the model’s prediction varies quite a bit.

Verifying predictions
After training the model, you can make predictions on the same images. Let
us look at the first image, predictions, and prediction array. Correct
prediction labels are green, and incorrect predictions are red. The following
number gives a percentage for the predicted label:
predictions = model.predict(test_images)

predictions[0]

Output array will be an array with 10 elements that are probabilities of
images belonging to a label:
array([0.05454378, 0.03618221, 0.11336125, 0.27892277,
0.06117007,
0.17112778, 0.14862633, 0.01250532, 0.11612879, 0.00743172],
dtype=float32)

You can see which label has the highest confidence value:
import numpy as np

np.argmax(predictions[0])

It will print output of 3, which is the label of the image.
Let us draw the image and plot the value array. We will define two
functions:

The first one is plot_image(..), which will show the image with the
label printed following the image. The color of the label will be green
if it is accurate, else it will be red.
In the second function, plt.xlabel(…), we will plot the array with the
‘true’ label as green and the ‘predicted’ label as red. If both are the
same, only the green bar will show up:
def plot_image(i, predictions_array, true_label, img):

predictions_array, img = predictions_array, img[i]

true_label_local = true_label[i][0]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img, cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label_local:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}%

({})".format(class_names[predicted_label],

100*np.max(predictions_array)

,

class_names[true_label_local]

),

color=color)

def plot_value_array(i, predictions_array, true_label):

true_label2 = true_label[i][0]

plt.grid(False)

plt.xticks(range(10))

plt.yticks([])

thisplot = plt.bar(range(10), predictions_array,

color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label2].set_color('green')

Calling these functions on predictions [0]:
i = 0

plt.figure(figsize=(6,3))

plt.subplot(1,2,1)

plot_image(i, predictions[i], test_labels, test_images)

plt.subplot(1,2,2)

plot_value_array(i, predictions[i], test_labels)

plt.show()

Figure 1.8 shows the plot output for predictions[0]:

Figure 1.8: Prediction versus actual for i=0 test image

As you can see, the predicted label is ship, whereas the actual label is cat.
Next, let us look at the i=5 test image:
i = 5

plt.figure(figsize=(6,3))

plt.subplot(1,2,1)

plot_image(i, predictions[i], test_labels, test_images)

plt.subplot(1,2,2)

plot_value_array(i, predictions[i], test_labels)

plt.show()

Figure 1.9 shows the plot output for predictions[5]:

Figure 1.9: Prediction versus actual for i=5 test image

Low-level APIs
In this section, let us look at the low-level APIs and where they are they
used. We will specifically look at the TensorFlow graph concept, and how it
is leveraged.

Dataflow
Dataflow is a programming model used in parallel computing. The node
represents units of computation in a dataflow graph. The edges are the data
consumed or produced by the node. By representing computation using
graphs, we have the ability to run forward or backward passes for training
parameters of an ML model using algorithms like gradient descent, and
applying chain rule to calculate the gradient at each node.

Advantages are as follows:

parallelism

computation optimization
serialization using language neutral model
distributed execution

Let us look at an example of a default graph:
The function to be traced.

from datetime import datetime

@tf.function

def my_func(A,x,b):

y = tf.add(tf.matmul(A, x), b, name="result")

return y

Set up logging.

stamp = datetime.now().strftime("%Y%m%d-%H%M%S")

logdir = './logs/func/%s' % stamp

writer = tf.summary.create_file_writer(logdir)

A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.constant([[0, 10], [0, 0.5]])

b = tf.constant([[1, -1]], dtype=tf.float32)

Bracket the function call with

tf.summary.trace_on() and tf.summary.trace_export().

tf.summary.trace_on(graph=True, profiler=True)

Call only one tf.function when tracing.

y = my_func(A,x,b)

with writer.as_default():

tf.summary.trace_export(

name="my_func_trace",

step=0,

profiler_outdir=logdir)

In these lines, there are a lot of details of TensorFlow, and its way of
building a computational graph. This graph represents the matrix product
between the constant tensor identified by the python variable and the
constant tensor identified by the x Python variable, and the sum of the
resulting matrix with the tensor identified by the b Python variable.
The result of the computation is represented by the y Python variable, also
known as the output of the tf.add node, named result in the graph.

There is a separation between the concept of a Python variable and a node
in the graph: we're using Python only to describe the graph; the name of the
Python variable means nothing in the definition of the graph.
Moreover, we created writer =
tf.summary.create_file_writer(logdir) to save a graphical
representation of the graph we've built. The writer object has been created,
specifying the path to store the representation (./log/matmul), and a trace
on tf.Graph object obtained using the tf.summary.trace_on(graph=True,
profiler=True) function call and then execute with
writer.as_default(): tf.summary.trace_export(..). Figure 1.10
shows the Dataflow graph plotted using TensorBoard:

Figure 1.10: Dataflow graph created by the TensorFlow sample

Figure 1.11 shows the details of the result operation with attributes, input,
and output tensors:

Figure 1.11: Dataflow graph created by the TensorFlow sample

This is the computational graph that describes the operation y = Ax +b. The
result node is highlighted in red in the preceding image and its details are
shown in the right-hand column.
We are just creating and describing the graph—the calls to the TensorFlow
API are just adding operations (nodes) and connections (edges) among
them; there is no computation performed in this phase. In TensorFlow 1.x,
the following approach needs to be followed—static graph definition and
execution, while this is no longer mandatory in 2.x.
Since the computational graph is the fundamental building block of the
framework (in every version), it is important to understand it in depth, since
even after transitioning to 2.x, having an understanding of what's going on
under the hood will help.

tf.Graph structure
As stated previously, there's no relation between the Python variables'
names and the names of the nodes. TensorFlow is a C++ library, and we
have used Python to build a graph in an easier way. The Python APIs in the

2.x version simplify the graph description phase, since they even create a
graph implicitly, without the need to explicitly define it. There are two ways
to define a graph:

Implicit: It will define a graph using the tf.* methods. TensorFlow
defines a default tf.Graph, accessible by calling
tf.get_default_graph, if the graph is not explicitly defined. If the
implicit definition is used, it limits the expressive power of a
TensorFlow application, since it is constrained to using a single graph.
Explicit: It is possible to define a computational graph explicitly and
have more than one graph per application. This option has more
expressive power, but is usually not needed since applications that
need more than one graph are not common.

In order to explicitly define a graph, TensorFlow allows the creation of
tf.Graph objects that, through the as_default method, create a context
manager; every operation defined inside the context is placed inside the
associated graph. A tf.Graph object defines a namespace for the
tf.Operation objects it contains:
g = tf.Graph()

with g.as_default():

Define operations and tensors in `g`.

c = tf.constant(30.0)

assert c.graph is g

tf.Graph uses the collection mechanism to store metadata associated with
the graph structure. A collection is uniquely identified by a key, and its
content is a list of objects/operations. The user does not need to worry about
the existence of a collection since they are used by TensorFlow itself to
correctly define a graph.
You can use following the API to add a collection to the graph:
add_to_collection(

name,

value

)

When defining a parametric machine learning model, the graph must know
which tf.Variable objects are the variables to update during the learning
phase, and which other variables are not part of the model but are

something else (such as moving the mean/variance computed during the
training process—these are variables but not trainable). In this case, when,
as we will see in the following section, a tf.Variable is created, it is added
by default to two collections: the global variable and trainable variable
collections.

tf.Operation and tf.Tensor
A Dataflow graph is a representation of computation, and nodes are units of
computation. Each node is represented by tf.Operation and it has data
flowing in and out through edges and is represented by tf.Tensor.
Referring to our example, when we call tf.constant([[1, 2], [3, 4]],
dtype=tf.float32): a new node, (tf.Operation) named Const, is added to
the default tf.Graph. This node returns a tf.Tensor (edge) named
Const:0.
Each node in the TF graph is unique, in case there is a node already named
Const in the graph (which is the default name given to all the constants),
TensorFlow makes the node name unique by appending the suffix _1, _2. If
a name is not provided, TensorFlow runtime gives a default name to each of
the operation added, it also adds the suffix to make them unique in this case
too.
Let us define two graphs and change the scope using tf.name_scope and
print the variables:
import tensorflow as tf

graph1 = tf.Graph()

graph2 = tf.Graph()

with graph1.as_default():

A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.constant([[0, 10], [0, 0.5]])

b = tf.constant([[1, -1]], dtype=tf.float32)

y = tf.add(tf.matmul(A, x), b, name="result")

with graph2.as_default():

with tf.name_scope("scope_a"):

x = tf.constant(1, name="x")

print(x)

with tf.name_scope("scope_b"):

x = tf.constant(10, name="x")

print(x)

y = tf.constant(12)

z = x * y

Output will show name scope specific variables:
Tensor("scope_a/x:0", shape=(), dtype=int32)

Tensor("scope_b/x:0", shape=(), dtype=int32)

In the last section of this chapter, let us focus on how TensorFlow 2.x does
image classification.

Image classification with CNN
In this section, we look at how TensorFlow 2.x supports Convolutional
Neural Networking (CNN) technique for image classification. We will
look at CNNs in more detail in the later part of the book.

CNN overview
The bread and butter of neural networks are affine transformations: a vector
is received as input. It is multiplied with a matrix to produce an output, and
then, a bias vector is added before passing the result through a nonlinearity.
This applies to any input: an image, a sound clip, or an unordered collection
of features; whatever their dimensionality, their representation can always
be flattened into a vector before the transformation.
Data like images, sound clips, and many other similar kinds of data have an
intrinsic structure. More formally, they share these essential properties:

These are stored as multi-dimensional arrays.
The data features one or more axes, for which ordering matters (for
example, width and height axes for an image, time axis for a sound
clip, etc.).
One axis, called the channel axis, is used to access different views of
the data (for example, the red, green, and blue channels of a color
image, or the left and right channels of a stereo audio track).

Properties listed previously are not exploited when an affine transformation
(affine transformation is a linear mapping method that preserves points,
straight lines, and planes) is applied. All the axes of the data elements are

treated in the same way, and the topological information is not considered.
Implicit structure of the data can be useful in solving some use cases, like,
computer vision and speech recognition, and in these cases, it should be
preserved.
Discrete convolutions come to the rescue there. A discrete convolution is a
linear transformation that preserves this ordered information. It is sparse (a
few input units contribute to an output unit) and heavily reuses parameters
(same weights (kernel) is applied to multiple locations in the input). Figure
1.x illustrates an example of a discrete convolution. The light blue grid is
the input feature map. For simplicity, a single input feature map is
represented, but it is not uncommon to have multiple feature maps stacked
onto one another. A kernel (shaded area) of value:

Figure 1.12: Convolution filter

Next, the figure shows the step-by-step process of applying this convolution
to a 5x5 matrix:

Figure 1.13: Convolution filter applied to a 5 x 5 matrix resulting in a 3x3 matrix output

Let us use the cifar-10 dataset we used earlier. Since the cifar dataset
comes pre-packaged with TensorFlow, we will load the dataset:
import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) =

datasets.cifar10.load_data()

The original dataset image is as follows, shown in figure 1.14 for
convenience:

Figure 1.14: Training image

As we discussed earlier, the default images have pixel values ranging from
0 to 255, these need to be normalized from 0 to 1:
Normalize pixel values to be between 0 and 1

train_images, test_images = train_a

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()

On execution of the normalized samples, you will see the plot similar to
figure 1.15:

Figure 1.15: Normalized training image

We will create a sequential model with one convolutional layer. This layer
is followed by a layer that flattens the tensor. Then, we will have two dense
layers reducing the number of neurons to 64 and 10 respectively:
model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(32, 32, 3)))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

layers.Conv2D: This layer creates a kernel which convolves with the layer
input to produce the output tensor. We are using relu activation, which is
applied to the outputs.
Once the model has been created, let us train it:
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=1,

validation_data=(test_images, test_labels))

Train on 50000 samples, validate on 10000 samples
Epoch 1/10
50000/50000 [==============================] - 31s
612us/sample - loss: 1.6224 - accuracy: 0.4025 - val_loss:
1.4015 - val_accuracy: 0.4867
Epoch 2/10
50000/50000 [==============================] - 33s
653us/sample - loss: 1.3586 - accuracy: 0.5032 - val_loss:
1.3817 - val_accuracy: 0.4926
...
50000/50000 [==============================] - 44s
876us/sample - loss: 0.9779 - accuracy: 0.6505 - val_loss:
1.2214 - val_accuracy: 0.5756
Epoch 9/10
50000/50000 [==============================] - 43s
863us/sample - loss: 0.9238 - accuracy: 0.6693 - val_loss:
1.2404 - val_accuracy: 0.5756
Epoch 10/10

50000/50000 [==============================] - 43s
860us/sample - loss: 0.8740 - accuracy: 0.6895 - val_loss:
1.3040 - val_accuracy: 0.5658

As you can see, the validation accuracy of 0.56 is much better than the
fully connected dense network we looked at earlier. Let us plot the training
and validation loss as shown in the following figure:

Figure 1.16: Training and validation loss for a very basic CNN model

The following figure shows the training and validation accuracy. Validation
accuracy tapers off after reaching 0.56, but the training accuracy is much
better:

Figure 1.17: Training and validation accuracy for a very basic CNN model

The model is overfitting. We will look at techniques on how to fix this in
the later chapters.
Clearly, the model is suboptimal and is not able to do a good job, since the
accuracy tapers off after 10 epochs.

Conclusion
In this chapter, we learnt how to get started with TensorFlow 2.x; from
installation to writing your first program. We also looked at the building
blocks like tensors, layers, and graphs with simple examples. We used
cifar-10 dataset to do image classification using fully connected and
Convoluted Neural Network topologies. These are some of the topics that
we covered; we will go into more details in the subsequent chapters.

Questions
Use TensorFlow 2.x to predict admission to a graduate program. The
dataset can be found clicking on the following link:
https://www.kaggle.com/mohansacharya/graduate-admissions.

References
All symbols in TensorFlow 2:
https://www.tensorflow.org/api_docs/python.
A guide to Keras functional API:
https://www.perfectlyrandom.org/2019/06/24/a-guide-to-keras-
functional-api/.
A guide to convolution arithmetic for deep learning:
https://arxiv.org/pdf/1603.07285.pdf.

https://www.kaggle.com/mohansacharya/graduate-admissions
https://www.tensorflow.org/api_docs/python
https://www.perfectlyrandom.org/2019/06/24/a-guide-to-keras-functional-api/
https://arxiv.org/pdf/1603.07285.pdf

CHAPTER 2
Machine Learning with TensorFlow 2.x

Introduction
In this chapter, we are going to start by solving a regression problem with
TensorFlow 2.x (Housing Prices dataset). We will explain the basics of
regression; we will follow this with the first sample of predicting housing
prices based on the features of the house being sold. Next, we will implement
classification using the Pima Indians dataset to classify whether a person has
diabetes or not. This dataset is explained in more detail in the section on
classification. Then, we will cover the topic of handling underfitting and
overfitting while training models. Last but not least, we will look at persisting
and reloading the persisted models using stock TensorFlow 2.x APIs.

Structure
In this chapter, we will cover the following topics:

Basic classification with TensorFlow 2.x

Clean the dataset
Model creation and training

Regression examples with TensorFlow 2.x

The Boston Housing Price dataset
Preparing the data
Validating our approach using K-fold validation

Overfitting and underfitting
Saving and restoring models

Objectives
In this chapter, we will learn how to use TensorFlow 2.x to solve regression
and classification problems. We will be using fully connected neural networks

to solve these problems, instead of traditional machine learning algorithms. We
will tackle the issue of underfitting and overfitting using techniques like L1
and L2 norm as well as applying dropout. We will also look at saving and
restoring the models using the new APIs in version 2.x.

Basic classification with TensorFlow 2.x
Let us start by exploring the Pima Indians dataset for diabetes detection. This
dataset was sourced from National Institute of Diabetes and Digestive and
Kidney Diseases.
It is aimed at providing data to diagnostically predict whether a patient has
diabetes or not. Constraints were placed on selection of the dataset from the
larger database. All the patients were females, 21 years of age, and of Pima
Indian heritage.
In our sample, we will create a three-layer neural network and learn about
model check-pointing and saving. In the end, we will plot the training history.
Let us start by importing the relevant classes from numpy, pandas, and
TensorFlow:
import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g.

pd.read_csv)

from subprocess import check_output

import matplotlib.pyplot as plt

%matplotlib inline

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import ModelCheckpoint

seed = 42

np.random.seed(seed)

Next, we will load the dataset from a csv file using pandas:
pdata = pd.read_csv('../data/diabetes.csv')

#the dataset can be analyzed using the standard head() command

pdata.head()

Figure 2.1 shows the first five sample lines using the head() command on
pandas data frame:

Figure 2.1: Diabetes dataset sample lines

Let us also look at the overall structure of the dataset using describe()
function as shown in figure 2.2:

Figure 2.2: Summary table shows how various features vary

This is a good way to summarize data in a tabular format for the dataset. Let us
look at how some variables interplay with each other.
We will use the seaborn library for plotting this data:
import seaborn as sns

import pandas as pd

sns.set()

diabetes = pd.read_csv('../data/diabetes.csv')

g = sns.pairplot(diabetes,height=3,

vars=["Age", "BMI", "Pregnancies"],hue = 'Outcome')

The output of the preceding code will be a 3x3 plot with three variables (Age,
BMI, Pregnancies) in pairs, and differentiated by whether the outcome was
Pregnancies(1) or not (0), as shown in the figure 2.3:

Figure 2.3: Pair-plot between three variables for Pima Indian dataset

Interpretation: If the BMI is higher, the probability or outcome is higher
as well. There is little correlation between Age and BMI. Let us plot the
regression plots to understand more:
g = sns.pairplot(diabetes,height=3,

plot_kws={ 'scatter_kws': {'alpha': 0.1}},

vars=["Age", "BMI","Pregnancies"],kind="reg",hue =

'Outcome')

The output will again be a 3x3 pair-plot, but with regression lines as
shown in the figure 2.4:

Figure 2.4: Pair-plot with regression lines

Age and BMI: There is negative correlation between Age and BMI for
Outcome of 1 and positive for Outcome of 0.
Age and Pregnancies: There is a higher positive correlation if the
Outcome is 0.

Clean the dataset
Before moving forward, we need to inspect and clean the dataset.

1. Let's remove the 0-entries for these fields listed previously.
This is an optional step which is needed to make sure the dataset is
clean.

zero_fields = ['Glucose', 'BloodPressure', 'SkinThickness',

'Insulin', 'BMI']

def check_zero_entries(data, fields):

for field in fields:

print('field %s: num 0-entries: %d' % (field,

len(data.loc[data[field] == 0,

field])))

The preceding code will help find the 0-entries in the dataset:
field Glucose: num 0-entries: 5

field BloodPressure: num 0-entries: 35

field SkinThickness: num 0-entries: 227

field Insulin: num 0-entries: 374

field BMI: num 0-entries: 11

2. Next, split into train and test using
sklearn.model_selection.train_test_split:
from sklearn.model_selection import train_test_split

features = list(pdata.columns.values)

features.remove('Outcome')

print(features)

X = pdata[features]

y = pdata['Outcome']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.25, random_state=0)

print(X_train.shape)

The following output shows a list of features and train and test data-
shape:
['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction',

'Age']
(576, 8)
(192, 8)

3. Create a function to impute zero fields to mean value:
def impute_zero_field(data, field):

nonzero_vals = data.loc[data[field] != 0, field]

avg = np.sum(nonzero_vals) / len(nonzero_vals)

k = len(data.loc[data[field] == 0, field]) # num of 0-

entries

data.loc[data[field] == 0, field] = avg

print('Field: %s; fixed %d entries with value: %.3f' %

(field, k, avg))

4. Next, apply this function and fix the training set:
for field in zero_fields:

impute_zero_field(X_train, field)

Fix for Test dataset

for field in zero_fields:

impute_zero_field(X_test, field)

5. Remove the field-name labels:
X_train = X_train.values

y_train = y_train.values

X_test = X_test.values

y_test = y_test.values

Now, our training and test data is ready for model creation and training.

Model creation and training
Next, we will create the neural network. We will create a neural network with
three layers. We are choosing three layers more as a starting point to keep it
simple. Notice that the input_dim is 8 which is equal to the number of features
in the dataset.
We are using Rectified Linear Unit (ReLU) activation in the first two layers
and sigmoid in the last layer.

Note: ReLU () activation function: ReLU is the most popular activation
function right now. This function is used in almost all the convolutional
neural networks implementations.As you can see in the figure 2.5, the ReLU
is half rectified (from bottom). f(x) is zero when x is less than zero and f(x) is
equal to x when x is above or equal to zero.
Range of this function: [0 to infinity):

Figure 2.5: Sigmoid versus ReLU activation function

The ReLU function and its derivative both are monotonic (function and its
first derivative (which need not be continuous) does not change sign.

Our model is a sequential model with three dense layers. A sequential model is
a linear stack of layers and extends training.model.
The figure 2.6 shows the class hierarchy followed by the sequential model:

Figure 2.6: Class hierarchy followed by the sequential

It is a subclass of the tf.keras.Model class which subclasses
tf.keras.layers.Layer.
All the models track input and output nodes, losses, and metrics. It also keeps
track of whether the model is trainable and has been built already:
EPOCHS = 1000 # num of epochs to test for

BATCH_SIZE = 16

Create our model

model = Sequential()

1st layer: input_dim=8, 12 nodes, RELU

#model.add(Dense(12, input_dim=8, init='uniform',

activation='relu'))

model.add(Dense(12, input_dim=8, activation='relu'))

2nd layer: 8 nodes, RELU

model.add(Dense(8, activation='relu'))

output layer: dim=1, activation sigmoid

model.add(Dense(1, activation='sigmoid'))

Note: Creating a sequential model: There are two ways of creating a
sequential model:
from tensorflow. keras.models import Sequential

from keras.layers import Dense, Activation

model = Sequential([

Dense(32, input_shape=(784,)),

])

You can also simply add layers via the .add() method:
model = Sequential()

model.add(Dense(32, input_dim=784))

We are using the second technique here.

Next, we compile the model and create a checkpoint:
Compile the model

model.compile(loss='binary_crossentropy',

since we are predicting 0/1

optimizer='adam',

metrics=['accuracy'])

checkpoint: store the best model

ckpt_model = 'pima-weights.best.hdf5'

checkpoint = ModelCheckpoint(ckpt_model,

monitor='val_accuracy',

verbose=1,

save_best_only=True,

mode='max')

callbacks_list = [checkpoint]

Train the model and store the training iteration values in the history
object.fit(). The function in tf.keras.train has the following signature:
fit(

x=None,

y=None,

batch_size=None,

epochs=1,

verbose=1,

callbacks=None,

validation_split=0.0,

validation_data=None,

shuffle=True,

class_weight=None,

sample_weight=None,

initial_epoch=0,

steps_per_epoch=None,

validation_steps=None,

validation_freq=1,

max_queue_size=10,

workers=1,

use_multiprocessing=False,

**kwargs

)

We will set some of the parameters as default, but set the following ones from
the dataset as well as a few others hyper parameters:

x: X_train
y: y_train
validation_data=(X_test, y_test)

epochs=epochs variable we defined at the beginning to 1000
batch_size=16
callbacks=callbacks_list

The preceding figure shows what happens when the model.fit call occurs.
Behind the scene, a training loop is started depending on the configuration
chosen.
Let us focus on getting the model trained:
history = model.fit(X_train,

y_train,

validation_data=(X_test, y_test),

epochs=EPOCHS,

batch_size=BATCH_SIZE,

callbacks=callbacks_list,

verbose=0)

Output of the model.fit will be similar to the following:
Starting training:
Epoch 00001: val_accuracy improved from -inf to 0.67708
...
Epoch 00999: val_accuracy did not improve from 0.79688
Epoch 01000: val_accuracy did not improve from 0.79688

Let us plot the accuracy and loss metrics for the training and validation data
using matplotlib:
plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Model Accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'])

plt.show()

Now, let us plot the loss and validation loss:
plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model Loss')

plt.ylabel('Loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'])

plt.show()

The output of the preceding code will produce a graph with accuracy and
validation accuracy: val_accuracy, as a function of epochs, as shown in
figure 2.7:

Figure 2.7: Model accuracy and loss of the model

Validation accuracy is lower than training accuracy, but by a lower margin.
Losses for the test don't taper at the same rate as for training. This typically
happens because of overfitting. Let us look at the model loss a little more
carefully by ignoring the first 10 entries. Figure 2.8 provides a plot of epoch
versus loss from 10 to 1000 epochs:

Figure 2.8: Model loss for epochs 10 to 1000

Overfitting is substantially more evident in this plot. The loss starts increasing
after 800 epochs. Later in the book, we will look at some of the techniques on
how this can be improved.
In the next section, we will look at a simple regression example with the
TensorFlow 2.x stack.

Regression examples with TensorFlow 2.x
In the previous examples, we have considered classification problems where
we want to predict a single discrete label for input data points. There is another
category, of machine learning problem, called regression, where we predict a
continuous value. For example, we can predict stock prices or insulin levels in
a body from past data.

The Boston Housing Price dataset
We will be predicting the median price of homes in a given suburb of Boston
in the mid-1970s based on data points like crime rate, local property tax, and
so on. The dataset has very few data points: 506 plots into training samples of
404 and test samples of 102. Also, each feature has a different scale. Some
values are between 0 and 1, while others vary between 0 and 100 or 1 and 12.
Let's take a look at the data:
from tensorflow.keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =

boston_housing.load_data()

If we analyze the shape, you can see we have 13 features. The training data
shape is:
train_data.shape

(404, 13)

The test data shape is:
test_data.shape

(102, 13)

There are 404 training samples and 102 test samples. The data is made up of 13
features. The 13 features in the input data are described as follows:

per capita crime rate
proportion of residential land zoned for lots over 25,000 square feet
proportion of non-retail business acres per town
Charles river variable (1 if tract bounds river; 0 otherwise)
nitric oxides concentration (parts per 10 million)
average number of rooms per dwelling
proportion of owner-occupied units built before 1940
weighted distances to five Boston employment centers

index of accessibility to radial highways
full-value property-tax rate per $10,000
pupil-teacher ratio by town (1000 * (B - 0.63) ** 2 where B is the
proportion of Black people by town. % lower status of the population)

The targets are the median values of owner-occupied homes, in thousands of
dollars:
train_targets array([15.2, 42.3, 50. , 21.1, 17.7, 18.5, 11.3,
15.6, 15.6, 14.4, 12.1, 17.9, 23.1, 19.9, 15.7, 8.8, 50. , 22.5,
24.1, 27.5, 10.9, 30.8, 32.9, 24. , 18.5, 13.3, 22.9, 34.7, 16.6,
17.5, 22.3, 16.1, 14.9,, 28.7, 37.2, 22.6, 16.4, 25. ,
29.8, 22.1, 17.4, 18.1, 30.3, 17.5, 24.7, 12.6, 26.5, 28.7, 13.3,
10.4, 24.4, 23. , 20. , 17.8, 7. , 11.8, 24.4, 13.8, 19.4, 25.2,
19.4, 19.4, 29.1])

Output has been truncated.
Let us plot the training target to get a better idea of how the prices are varying
across the training target:
%matplotlib inline

import matplotlib.pyplot as plt

plt.plot(train_targets)

plt.title('Housing Prices Training Target')

plt.xlabel('Sample No')

plt.ylabel('Price')

The following plot makes it very clear that housing prices are varying quite a
bit for 400+ samples:

Figure 2.9: Housing prices training target

Preparing the data
It will be difficult to feed the neural network values that take different ranges.
The best practice is to do feature-wise normalization. This can be easily done
in NumPy:
mean = train_data.mean(axis=0)

train_data -= mean

std = train_data.std(axis=0)

train_data /= std

test_data -= mean

test_data /= std

Please note the quantities (mean and standard deviation) we use for
normalizing the test data from training data. We should never use any quantity
computed on test data even for normalization.

Building the neural network

Since very few samples are available, we will use a small network with two
hidden layers of 64 units each. Generally, if the training data is small, there
will be overfitting. A smaller network is one way to mitigate this:
from tensorFlow.keras import models

from tensorFlow.keras import layers

def build_model():

Because we will need to instantiate

the same model multiple times,

we use a function to construct it.

model = models.Sequential()

model.add(layers.Dense(64, activation='relu',

input_shape=(train_data.shape[1],)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(1))

model.compile(optimizer='rmsprop', loss='mse', metrics=

['mae'])

return model

Our network's last layer is a single unit with no activation. This is required
since it is a setup for scalar regression. Applying activation would constrain
the range the output can take. If we apply a sigmoid activation, the network
will learn to predict values between 0 and 1, which is not what we want in this
case.
Note that we have compiled the network with the MSE loss function: Mean
Squared Error. It is calculated using the square of the difference between the
predictions and the targets, a well-known loss function for regression
problems.
We are also monitoring a metric during training called MAE. It stands for
Mean Absolute Error. It is the absolute value of the difference between the
predictions and the targets. For example, an MAE of 0.5 on this problem
would mean that our predictions are off by $500 on average.

Validating our approach using K-fold validation
To evaluate the network while we adjust the parameters, we could have split
the dataset into training and validation set, as done in previous examples. But
with such a small dataset, validation set work is very small. Validation scores
would change a lot depending on the values that end up in the training or
validation dataset. This will prevent us from reliable evaluation of the model.

In such cases, the best practice is to use K-fold cross-validation. It splits the
available data into K partitions and then, instantiates K-identical models. These
models are trained on k-1 partitions while evaluating them on the remaining
partition. The validation score is calculated as an average of K-validation
scores:
import numpy as np

k = 4

num_val_samples = len(train_data) // k

num_epochs = 100

all_scores = []

for i in range(k):

print('processing fold #', i)

Prepare the validation data: data from partition # k

val_data = train_data[i * num_val_samples: (i + 1) *

num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) *

num_val_samples]

Prepare the training data: data from all other partitions

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

train_data[(i + 1) * num_val_samples:]],

axis=0)

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

train_targets[(i + 1) * num_val_samples:]],

axis=0)

Build the Keras model (already compiled)

model = build_model()

Train the model (in silent mode, verbose=0)

model.fit(partial_train_data, partial_train_targets,

epochs=num_epochs, batch_size=1, verbose=0)

Evaluate the model on the validation data

val_mse, val_mae = model.evaluate(val_data, val_targets,

verbose=0)

all_scores.append(val_mae)

If you print all_scores, you will get a much better handle:
[2.3030572, 2.2186685, 2.6573195, 2.455313]

Let us calculate the mean np.mean(all_scores) which comes to 2.4085896.

Different runs show rather different validation scores, from 2.1 to 2.9. The
average score of 2.4 is a much more reliable metric than any single of these
scores--that is the thought process behind the K-fold cross-validation. In this
use case, we are off by 2,400 on the average, which is still significant given
that prices range from $10,000 to $50,000.
Let us train the neural network for 500 epochs. We will modify the training
loop to save the per-epoch validation score log to keep record of model
performance at each epoch:
num_epochs = 500

all_mae_histories = []

for i in range(k):

print('processing fold #', i)

Prepare the validation data: data from partition # k

val_data = train_data[i * num_val_samples: (i + 1) *

num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) *

num_val_ samples]

Prepare the training data: data from all other partitions

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

train_data[(i + 1) * num_val_samples:]],

axis=0)

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

train_targets[(i + 1) * num_val_samples:]],

axis=0)

Build the Keras model (already compiled)

model = build_model()

Train the model (in silent mode, verbose=0)

history = model.fit(partial_train_data, partial_train_targets,

validation_data=(val_data, val_targets),

epochs=num_epochs, batch_size=1, verbose=0)

#print(history.history)

mae_history = history.history['val_mae']

all_mae_histories.append(mae_history)

Let us first create predictions on test_data and compare with test_features:
predictions = model.predict(test_data)

And then, plot these predictions against the test targets:

import numpy as np

import matplotlib.pyplot as plt

Create plots with pre-defined labels.

fig, ax = plt.subplots()

ax.plot(predictions, label='Predictions')

ax.plot(test_targets, label='Test Targets')

#legend = ax.legend(loc='upper center', shadow=False,

fontsize='x-large')

legend = ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left',

borderaxespad=0.)

plt.show()

The output of the plot will be similar to figure 2.10, showing predictions versus
actual values from test targets:

Figure 2.10: Predictions versus test targets

The plot shows that predictions are quite close to the actual value.
The next step is to check the MAE scores. We can then compute the average of
the per-epoch MAE scores for all folds:
average_mae_history = [

np.mean([x[i] for x in all_mae_histories]) for i in

range(num_epochs)]

Let us plot the average_mae_history calculated previously:
%matplotlib inline

import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1),

average_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

Once the plot is created (refer to figure 2.11), you will notice how the MAE
reduces at around 50 epochs and rises again:

Figure 2.11: Average MAE as a function of epochs

It may be hard to see the plot due to scaling issues and relatively high variance.
Let's omit the first 10 data points, which are on a different scale from the
curve. We will replace each point with an exponential moving average of the
previous points, to obtain a smooth plot.
plt.plot(range(1, len(average_mae_history[10:]) + 1),

average_mae_history[10:])

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

def smooth_curve(points, factor=0.9):

smoothed_points = []

for point in points:

if smoothed_points:

previous = smoothed_points[-1]

smoothed_points.append(previous * factor + point * (1 -

factor))

else:

smoothed_points.append(point)

return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1),

smooth_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

The validation MAE calculated previously is plotted as a function of epochs in
figure 2.12:

Figure 2.12: Average MAE as a function of epochs after removing the first 10 items

According to the preceding plot, validation MAE stops improving significantly
after 80 epochs. After that, it starts overfitting. Once we have tuned other

parameters of our model (besides the number of epochs, we can also adjust the
size of the hidden layers), we can train a production model on the training data,
with the best parameters, and look at its performance on the test data:
model = build_model()

Train it on the entirety of the data.

model.fit(train_data, train_targets,

epochs=80, batch_size=16, verbose=0)

test_mse_score, test_mae_score = model.evaluate(test_data,

test_targets)

The test_mae_score value we got is 2.6080945. Looking at the
test_mae_score, it is still quite high.

Overfitting and underfitting
In the previous section, we saw that the accuracy of the model on the
validation data peaks after training for a number of epochs, and would then
stagnate or start decreasing. This meant, our model would overfit on the
training data. It is important to know how to deal with overfitting. It is often
possible to achieve high accuracy on the training set, what we want is to
develop models that generalize to a testing data set (data model hasn't been
seen before). The opposite of overfitting is called underfitting. It occurs when
there is room for improvement on the test data. It can happen for reasons like:
if the model is not powerful enough, is over-regularized, or has simply not
been trained long enough. It means the network has not learned the relevant
patterns in the training data. If you train for too long, the model starts to
overfit, and will learn patterns from the training data that might not generalize
to the test data. We will strike a balance. Being able to understand how to train
for an appropriate number of epochs, as we'll explore in the following section,
is an important skill. The best solution to prevent overfitting is to use a more
complete training dataset. The training dataset should cover the full range of
inputs that the model is expected to handle. Getting additional data is useful if
it covers new cases.
A model that is trained on more complete data will generalize better. The next
best solution available is to use techniques like regularization. This places
constraints on the information (quantity and type) your model can store. When
a network can only memorize a small number of patterns, the optimization
process will force it to focus on the most prominent and generalized patterns.

In this section, we'll explore several common regularization techniques, and
use them to improve on a classification model.

Sonar dataset
This dataset consists of 208 rows and 60 features for sonar readings to classify
an object to be a Rock (R) or Metal (M). The features are a number between
0.0 and 1.0 and represent energy within a particular frequency band.

Reference:
Let us first load the dataset using pandas:
dataframe = read_csv("../data/sonar.all-data", header=None)

dataset = dataframe.values

dataset

The dataset will contain all the values loaded:
array([[0.02, 0.0371, 0.0428, ..., 0.009, 0.0032, 'R'],

[0.0453, 0.0523, 0.0843, ..., 0.0052, 0.0044, 'R'],
[0.0262, 0.0582, 0.1099, ..., 0.0095, 0.0078, 'R'],
...,
[0.0522, 0.0437, 0.018, ..., 0.0077, 0.0031, 'M'],
[0.0303, 0.0353, 0.049, ..., 0.0036, 0.0048, 'M'],
[0.026, 0.0363, 0.0136, ..., 0.0061, 0.0115, 'M']],
dtype=object)

Let us look at the shape of the dataset using dataset.shape. It gives an output
of (208, 61) which is what we were expecting. The last column is the label,
which we can check using dataset[:60], you will get a NumPy array with
values array(['R', 'R', 'R',', 'M',', 'M', 'M'],dtype=object).
Next, we will split the dataset into input (X) and output (Y) variables and
encode the label Y using sklearn.preprocessing.LabelEncoder:
from sklearn.preprocessing import LabelEncoder

X = dataset[:,0:60].astype(float)

Y = dataset[:,60]

encode class values as integers

encoder = LabelEncoder()

encoder.fit(Y)

encoded_Y = encoder.transform(Y)

encoded_Y

encoded_Y will look like array([1, 1, 1, 1, ...0, 0]).

LabelEncoder (https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.h
tml#sklearn.preprocessing.LabelEncoder) is a utility class which normalizes
labels so that they contain only values between 0 and n_classes. LabelEncoder
can be used as follows:
from sklearn import preprocessing

le = preprocessing.LabelEncoder()

le.fit([1, 2, 2, 3,3,3])

le.classes_

Output of the classes:

array([1, 2, 3])

le.transform([1, 1, 2, 3,3,3])

The output, after transforming the input, shows how it has been encoded into 0,
1, and 2:
array([0, 0, 1, 2, 2, 2]).

Let us split the X and encoded_Y into train and test dataset:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, encoded_Y,

test_size=0.25, random_state=0)

First, we will create a sequential model with no hidden layer. We have an input
layer of 10 neurons, with dimension of 60 (matching the number of features).
It has an activation of ReLU applied to it. This layer feeds into a dense layer
which is the output layer with 1 neuron and activation function Sigmoid. We
will use a basic SGD optimizer and use accuracy as the metrics.
SGD calculates the gradient descent using local gradient:

Where J(θ) is the objective function and θ is the input parameter to the cost
function:
def create_tiny_model():

create model

model = Sequential()

model.add(Dense(10, input_dim=60, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

Compile model

sgd = SGD(lr=0.01, momentum=0.8)

model.compile(loss='binary_crossentropy', optimizer=sgd,

metrics=['accuracy'])

return model

Let us now train the model by calling model.fit and capture the history:
ckpt_tiny_model = 'sonar_tiny.best.hdf5'

tiny_model_checkpoint = ModelCheckpoint(ckpt_tiny_model,

monitor='val_accuracy',

verbose=1,

save_best_only=True,

mode='max')

callbacks_list = [tiny_model_checkpoint]

tiny_model = create_tiny_model()

print('Starting training:')

train the model, store the results for plotting

tiny_model_history = tiny_model.fit(X_train,

y_train,

validation_data=(X_test, y_test),

epochs=EPOCHS,

batch_size=BATCH_SIZE,

callbacks=callbacks_list,

verbose=0)

Let us plot the history obtained from the preceding model. We will define a
generic function plot_history(history) as listed:
%matplotlib inline

import matplotlib.pyplot as plt

def plot_history(history):

print(history.history.keys())

summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

plot_history(tiny_model_history)

As can be seen from the following figure 2.13, the accuracy stops at around
0.86:

Figure 2.13: Tiny model accuracy for training and test dataset

Validation loss on the other hand bottoms out and again increases, which
means the model is overfitting (refer to figure 2.14, which plots model loss for
train and test data):

Figure 2.14: Tiny model loss for training and test dataset

Next, let us create a baseline model with one hidden layer with 30 neurons and
ReLU activation:
def create_baseline():

create model

model = Sequential()

model.add(Dense(60, input_dim=60, activation='relu'))

model.add(Dense(30, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

Compile model

sgd = SGD(lr=0.01, momentum=0.8)

model.compile(loss='binary_crossentropy', optimizer=sgd,

metrics=['accuracy'])

return model

Let us look at the model validation accuracy and loss for base line model. It is
plotted in figure 2.15:

Figure 2.15: Base model accuracy for training and test dataset

Comparing this graph with the previous one, it is clear that while training
accuracy tends to get much better validation, accuracy is almost the same.
Figure 2.16 shows the loss for the preceding model:

Figure 2.16: Base model loss for training and test dataset

Next, we are going to create a model with L2 regularization. The following
note provides more details on L2 regularization.

Note: Regularization is an important technique in machine learning to
prevent overfitting. Mathematically speaking, it adds a regularization term in
order to prevent the coefficients from overfitting. The difference between the
L1 and L2 is just that L2 is the sum of the squares of the weights, while L1 is
just the sum of the weights.L1 and L2 regularization owe their names to the
L1 and L2 norms of a vector, as shown in the following equation:

1-norm (also known as L1 norm)

1-2norm (also known as L2 norm)
If we define our predicted value using the following equation:

Loss function can be defined as:

Loss function with L1 regularization can be defined as:

Then, loss function with L2 regularization will be:

The value of is calculated manually, if it is greater than 0.

The model with L2 regularization will be composed as shown by using
tensorflow.keras.regularizers.l2:
from tensorFlow.keras import regularizers

def create_l2_model():

create model

model = Sequential()

model.add(Dense(60, input_dim=60, activation='relu',

kernel_regularizer=regularizers.l2(0.001)))

model.add(Dense(30, activation='relu',

kernel_regularizer=regularizers.l2(0.001)))

model.add(Dense(1, activation='sigmoid'))

Compile model sgd = SGD(lr=0.01, momentum=0.8)

model.compile(loss='binary_crossentropy',

optimizer=sgd,

metrics=['accuracy'])

return model

After 30 epochs, the model gave the following validation accuracy:
Epoch 00300: val_accuracy did not improve from 0.86538

Next, we will implement dropout and L2 regularization together. Notice how
tensorFlow.keras.layers.Dropout is being used as a new layer:
from tensorFlow.keras.layers import Dropout

def create_dropout_model():

create model

model = Sequential()

model.add(Dense(60, input_dim=60, activation='relu',

kernel_regularizer=regularizers.l2(0.001)))

model.add(Dropout(0.7))

model.add(Dense(30, activation='relu',

kernel_regularizer=regularizers.l2(0.001)))

model.add(Dropout(0.8))

model.add(Dense(1, activation='sigmoid'))

Compile model

sgd = SGD(lr=0.01, momentum=0.8)

model.compile(loss='binary_crossentropy', optimizer=sgd,

metrics=['accuracy'])

return model

Dropout is a regularization method which approximates training a large
number of neural networks with different architectures in parallel.
During training, some of the outputs are randomly ignored or dropped
out. This has an effect of making the layer look like and be treated like a
layer with a different number of nodes and connections to the previous
layer. Each update to a layer during training is performed with a
different view of the configured layer.

Let us look at the validation accuracy for the model with drop out, refer to
figure 2.17:

Figure 2.17: Dropout model accuracy for training and test dataset

Interestingly, the final number matches the preceding approaches after 300
epochs:
Epoch 00300: val_accuracy did not improve from 0.86538

Let us look at the loss for this model configuration, which is plotted in figure
2.18:

Figure 2.18: Dropout model loss for training and test dataset

As can be seen from the preceding diagram, while the validation accuracy is
similar the validation loss is much closer to the training loss if we apply
dropout to the model.

Saving and restoring models
Let us look at how to save and restore models:
from __future__ import absolute_import, division, print_function,

unicode_literals

import TensorFlow as tf

tf.keras.backend.clear_session()

1. First, let us create a basic model for processing MNIST dataset:
from tensorFlow import keras

from tensorFlow.keras import layers

inputs = keras.Input(shape=(784,), name='digits')

x = layers.Dense(64, activation='relu', name='dense_1')

(inputs)

x = layers.Dense(64, activation='relu', name='dense_2')(x)

outputs = layers.Dense(10, activation='softmax',

name='predictions')(x)

model = keras.Model(inputs=inputs, outputs=outputs,

name='3_layer_mlp')

model.summary()

2. Let us compile the model using model.compile(..) and then train the
model using model.fit(..):
(x_train, y_train), (x_test, y_test) =

keras.datasets.mnist.load_data()

x_train = x_train.reshape(60000, 784).astype('float32') /

255

x_test = x_test.reshape(10000, 784).astype('float32') / 255

model.compile(loss='sparse_categorical_crossentropy',

optimizer=keras.optimizers.RMSprop())

history = model.fit(x_train, y_train,

batch_size=64,

epochs=1)

3. Next, we will call model.predict(..) to get predictions. We will use
these predictions to compare with the saved and loaded model:
predictions = model.predict(x_test)

4. Finally, let us save this model:
model.save('sample_model.h5')

Let us look at the API in more detail:
save(

filepath,

overwrite=True,

include_optimizer=True,

save_format=None,

signatures=None,

options=None

)

This function saves the model to TensorFlow, saved as a model or a single
HDF5 file.
The saved file includes:

the model architecture, allowing to re-instantiate the model.
the model weights.

the state of the optimizer, allowing it to resume training exactly where it
was left off.

Let us look at the parameters in more detail:

filepath: String, path to saved model or H5 file to save the model.
overwrite: Whether to silently overwrite any existing file at the target
location, or provide the user with a manual prompt.
include_optimizer: If True, save optimizer's state together.
save_format: Either tf or h5, indicating whether to save the model to
TensorFlow saved model or HDF5.
The default for TensorFlow 1.0 was h5, but will switch to tf in
TensorFlow 2.0/2.1. Now, let us try to recreate the model from the
preceding file:
Recreate the exact same model purely from the file

new_model = keras.models.load_model('sample_model.h5')

Let us check the state and compare with older predictions:
import numpy as np

Check that the state is preserved

new_predictions = new_model.predict(x_test)

np.testing.assert_allclose(predictions, new_predictions, rtol=1e-

6, atol=1e-6)

Note that the optimizer state is preserved as well: you can resume training
where you left off.
Let us also try to compare visually:
prediction[:1] array([[2.0078852e-04, 3.8760394e-08, 2.0996991e-

03, 2.3580731e-03, 1.7406029e-07, 4.1207833e-05, 4.5558304e-09,

9.9482697e-01, 2.5986974e-05, 4.4698527e-04]], dtype=float32)

new_predictions[:1] array([[2.0078852e-04, 3.8760394e-08,

2.0996991e-03, 2.3580731e-03, 1.7406029e-07, 4.1207833e-05,

4.5558304e-09, 9.9482697e-01, 2.5986974e-05, 4.4698527e-04]],

dtype=float32)

As you can see, the values match. Hence, the model has been persisted and
recreated successfully.
Similarly, there are more advanced APIs for saving the weights or the
configuration alone.

If you are only interested in the architecture of the model, and don't need to
save the weight values or the optimizer, you can retrieve the config of the
model via the get_config() method. The config is a Python dictionary (dict)
that enables you to recreate the same model: initialized, without any of the
information/weights learned previously during training:
save and reload architecture

config = model.get_config()

reinitialized_model = keras.Model.from_config(config)

With this, we come towards the end of the chapter.

Conclusion
We learnt how to use TensorFlow 2.x for classification and regression, using
basic structured text examples. We also learnt how to deal with underfitting
and overfitting by using techniques like L2 regularization and dropout. We also
learnt persisting and re-loading persisted models, and various formats
supported.
In the next chapter, we will learn more about the Keras functional APIs, which
have been inducted into TensorFlow 2.x. We will also dive deep into
optimizers and losses supported.

Question
Use TensorFlow 2.x to do sentiment detection using supervised learning,
please refer to dataset at the following link:
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
and some examples and articles on older Keras based APIs in the following
link:
https://realpython.com/python-keras-text-classification/

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://realpython.com/python-keras-text-classification/

CHAPTER 3
Keras Based

Introduction
In this chapter, we are going to do a deep dive on Keras’ functional APIs, as
implemented on TensorFlow 2.x. Keras’ functional API’s ease of use is one of
the main reasons why Keras became successful. We look at the convergence of
two libraries in this chapter, which aims to be a foundation for the rest of the
book. We will start the chapter with training evaluation and prediction APIs.
We will then look at loss, metrics, and optimizer implementations in this
higher-level API. In the end, we will look at some of the changes made with
2.x like namespaces.

Structure
In this chapter, we will cover the following topics:

Keras functional API overview

The relation between Keras and TensorFlow
How Keras initializes the TensorFlow graph?
How the session is linked to the Keras backend?
Sequential models and their parents
(tensorflow.python.keras.engine.training.model)
Keras layers: base layer

Training evaluation and prediction using Keras APIs
Loss functions
Optimizers
Training, evaluation, and prediction using TensorFlow and Keras

Here we will cover using built-in evaluation loops
model.compile and model.fit

Layers and models using Keras functional APIs
Deep dive into optimizers, loss functions, and metrics supported by Keras
functional APIs
Effective TensorFlow 2.x

Objective
The objective of this chapter is to make the readers familiar with the key Keras
functional API concepts like layers and how training evaluation and prediction
are exposed, and used. We will also look at loss, metrics, and optimizers
supported by TensorFlow 2.x. In the end, we will look at effectively using
TensorFlow 2.x APIs, and how some of the concepts like global variables,
sessions, and so on have been done away with.

Keras functional API
Keras’ sequential API is a popular mechanism for creating deep learning
models. However, the programming model comes with the assumption that it
takes one input and will have only one output. Models with this type of
structure are of no use when more than one input and output is required. Some
deep learning networks might have multiple internal branches (for example,
inception module), which is quite different from the traditional sequential
model. To deal with such architectures, the functional API of Keras is quite
handy. This functional API paradigm is natively supported by TensorFlow 2.x.

Training, evaluation, and prediction using
TensorFlow and Keras
This section covers training, evaluation, and prediction (inference) models in
TensorFlow 2.x in two broad situations:

when using built-in APIs for training and validation (such as
model.fit(), model.evaluate(), model.predict())
when writing custom loops from scratch using eager execution and the
GradientTape object

Whether you are using built-in loops or writing your own, model training, and
evaluation works in the same way across every kind of Keras model -

sequential models, models built with the functional API, and models
written from scratch via model subclassing.

Using training and evaluation loops
While passing data to the built-in training loops of a TensorFlow 2.x model,
you use NumPy arrays (if your data is small and can fit in memory) or tf.data
dataset objects. In the next few sections, we'll use the Fashion MNIST dataset
as NumPy arrays, to demonstrate how to use optimizers, losses, and metrics:

1. We will be using wandb to collect and display the metrics as well as the
TensorBoard:
from tensorflow import keras

from tensorflow.keras import layers

import wandb

from wandb import magic

wandb.init(project="tf_book_ch3_training_eval_fashion_mnist"

)

inputs = keras.Input(shape=(784,), name='digits')

x = layers.Dense(64, activation='relu', name='dense_1')

(inputs)

x = layers.Dense(64, activation='relu', name='dense_2')(x)

outputs = layers.Dense(10, name='predictions')(x)

model = keras.Model(inputs=inputs, outputs=outputs)

Here is what the typical end-to-end workflow looks like, consisting of
training, validation on a training sub-set generated from the original
training data, and evaluation on the test data.

2. Load a sample dataset for the sake of this example:
(x_train, y_train), (x_test, y_test) =

keras.datasets.fashion_mnist.load_data()

Preprocess the data (these are Numpy arrays)

x_train = x_train.reshape(60000, 784).astype('float32') /

255

x_test = x_test.reshape(10000, 784).astype('float32') / 255

y_train = y_train.astype('float32')

y_test = y_test.astype('float32')

Reserve 10,000 samples for validation

x_val = x_train[-10000:]

y_val = y_train[-10000:]

x_train = x_train[:-10000]

y_train = y_train[:-10000]

3. Specify the training configuration (optimizer, loss, metrics):
model.compile(optimizer=keras.optimizers.RMSprop(), #

Optimizer

Loss function to minimize

loss=keras.losses.SparseCategoricalCrossentropy(

from_logits=True),

List of metrics to monitor

metrics=['sparse_categorical_accuracy'])

4. Slice the data into batches of size batch_size, and iterate over the entire
dataset for a specified number of epochs to train the model:
print('# Fit model on training data')

history = model.fit(x_train, y_train,

batch_size=64,

epochs=3,

We pass some validation for

monitoring validation loss and metrics

at the end of each epoch

validation_data=(x_val, y_val))

print('\nhistory dict:', history.history)

history dict: {'loss': [0.5624035213088989,

0.3971926462173462, 0.3580621465587616],

'sparse_categorical_accuracy': [0.8013, 0.85456, 0.87052],

'val_loss': [0.5479889378070831, 0.43700868356227873,

0.4053771690368652], 'val_sparse_categorical_accuracy':

[0.7936, 0.843, 0.8553]}

We can see the graph in the TensorBoard at the following location:
The following figure 3.1 shows inputs specified by digits, digits_1, digits_2,
and the associated TensorFlow graph:

Figure 3.1: TensorBoard showing the TensorFlow graph with two hidden layers and three runs specified
by inputs with digits, digits_1, and digits_2

Let us look at the training and evaluation graphs as a function of epochs as
shown in figure 3.2:

Figure 3.2: TensorBoard scalar graph showing the training and validation loss and accuracy

(You can find more details at the link specified previously.)

Loss, metrics, and an optimizer
To train a TensorFlow model with fit, you need to specify a loss function, an
optimizer, and one or more metrics to monitor.
These parameters are passed to the model as arguments to the compile()
method:
model.compile(optimizer=…, # Optimizer

Loss function to minimize

loss=…

List of metrics to monitor

Metrics=..)

The metrics argument is a list—the model can have any number of metrics.
If the model has multiple outputs, different losses and metrics can be specified
for each output. You can also modulate the contribution of each output to the
total loss of the model.

Loss: For optimization algorithms, the function used to evaluate a set of
weights is called the objective function.
We may want to maximize or minimize the objective function, that we
are searching for a set of weights that gives the highest or lowest score
respectively.
With neural networks, we want to minimize the error. The objective
function is referred to as a cost function or a loss function. The value
which is calculated by the loss function is called simply a loss.
The function to be minimized or maximized is called the objective
function. When we are minimizing it, we also call it the cost function, loss
function, or error function.

— Page 82,
Deep Learning (Adaptive Computation and Machine Learning series)
Illustrated Edition, 2016

by Ian Goodfellow , Yoshua Bengio, Aaron Courville
The cost or loss function must distill all aspects of the model down into a
single number in a way that improvements in that value is a sign of a
better model.
The cost function reduces all the aspects of a complex system down to a
single number: a scalar value, which allows models (also referred to as
candidate solutions) to be ranked and compared.

— Page 155,
Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks, 1999.
To calculate the error of the model during the optimization process, a
loss function is chosen.
This is a challenging problem as the function must capture the properties
of the problem and take stock of the concerns important to the project
and stakeholders.

The function has to represent our design goals in a faithful manner. If we
have chosen a poor error function and get unsatisfactory results, the fault
is ours.

— Page 155,
Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks, 1999.
Given that we are familiar with the loss function and loss, we need to
know what functions to use. This is the same problem we are trying to
solve with the neural network.
Given a training dataset with one or more input variables, we want a
model to estimate weight parameters that best map examples of the
inputs to the output or target variable.
Given an input dataset, the model tries to make predictions that match the
data distribution of the target variable. Using maximum likelihood, a loss
function estimates how closely the distribution of predictions made by a
model matches the actual distribution of target variables in the training
data.
The benefit of using maximum likelihood as a framework to estimate the
model parameters (weights), for neural networks and in machine
learning, is that as the number of training examples is increased, the
estimate of the model parameters also improves. This property is called
the property of consistency.
Maximum likelihood and cross-entropy: With the framework of
maximum likelihood, the error between two probability distributions is
measured using cross-entropy.
For a classification problem, we are interested in mapping input variables
to a class label. The problem is to predict the probability of an example
belonging to each class. In a binary classification, there would be two
classes, so we can predict the probability of the example belonging to the
first class. In case of multiple-class classification, we can predict
probability for the example data belonging to each of the classes.
The probability of an example belonging to a given class is 1 or 0 in the
training dataset, as each sample is a known example, and labelled.
Therefore, under maximum likelihood estimation, we want to determine
model weights that minimize the difference between the model’s
predicted probability distribution for the given dataset and the

distribution of probabilities in the training dataset. This is called the
cross-entropy.
Cross-entropy comes from information theory and has the unit of bits. It
has been used to estimate the difference between estimated and predicted
probability distributions.
In the case of regression problems, a number is predicted. Hence, it is
common to use mean squared error (MSE) loss function instead of
cross-entropy.
The MSE is populist for function approximation (regression) problems.
The cross-entropy error function is selected for classification problems
where predictions are defined as probabilities of data belonging to a
specific class.

— Page 155-156,
Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks, 1999.
Under maximum likelihood estimation and assuming a Gaussian
distribution for the target variable, MSE can be assumed to be the cross-
entropy between the distribution of the model predictions and the
distribution of the actual target variable.
Any loss derived from negative log-likelihood is a cross-entropy between
the empirical distribution of the training set and the probability
distribution predicted by model. As an example, MSE is the cross-entropy
between the empirical distribution and a Gaussian model.

— Page 132, Deep Learning (Adaptive Computation and Machine
Learning series) Illustrated Edition, 2016

by Ian Goodfellow , Yoshua Bengio, Aaron Courville
When using maximum likelihood estimation, we will implement a cross-
entropy loss function, which means we will use a cross-entropy loss
function for classification problems and a MSE loss function for
regression problems.
Deep learning neural networks are usually trained under the framework
of maximum likelihood using cross-entropy as the loss function.
Which loss function to use: We can summarize the previous section, and
suggest the loss functions that should be used under a framework of
maximum likelihood.

The choice of the loss function is related to the activation function used
in the output layer of the neural network. These two elements are
connected.
Configuration of the output layer is a choice of framing the prediction
problem, the choice of the loss function as a means to calculate the error
for a given framed problem.
The choice of a cost function is closely coupled with the choice of output
unit. We generally use the cross-entropy between the training data
distribution and the model distribution as a determinant. The choice of
output representation determines the form of the cross-entropy function.

— Page 181, Deep Learning (Adaptive Computation and Machine
Learning series) Illustrated Edition, 2016

by Ian Goodfellow , Yoshua Bengio, Aaron Courville
We will review the best practice/default values for each problem type
with regard to the output layer and loss function, and also look at the
corresponding implementations in TensorFlow 2.x.

Regression problem
A use case where we predict a real value:

Output layer: one node with a linear activation unit.
Loss function: Mean Squared Error (MSE).

Binary classification problem
A use case where we classify an example as belonging to one of two classes.
The problem is to predict the likelihood of an example belonging to class one,
for example, the class that is assigned the integer value 1, while the other class
is assigned the value 0:

Output layer: one node with a sigmoid activation unit.
Loss function: cross-entropy, also referred to as logarithmic loss.

Multi-class classification problem
A problem where we have to classify an example to belong to one of the
classes.

This problem is framed as predicting the likelihood of an example belonging to
each class:

Output layer configuration: one node for each class using the Softmax
activation function.
Loss function: cross-entropy, also referred to as logarithmic loss.

Implementation of loss functions in TensorFlow 2.x
Let us look at implementation of supported loss functions in TensorFlow 2.x
with simple examples.

Mean Square Error (MSE)
In statistics, the MSE or mean squared deviation (MSD) of an estimator (of a
procedure for estimating an unobserved quantity) measures the average of the
squares of the errors—that is, the average squared difference between the
estimated values and the actual value. MSE is a risk function, corresponding to
the expected value of the squared error loss. The fact that MSE is almost
always strictly positive (and not zero) is because of randomness or because the
estimator does not account for information that could produce a more accurate
estimate.
The MSE is a measure of the quality of an estimator—it is always non-
negative, and values closer to zero are better.
The MSE is the second moment of the error, and incorporates both the variance
of the estimator (how widely spread the estimates are from one data sample to
another) and its bias (how far off the average estimated value is from the truth).
For an unbiased estimator, the MSE is the variance of the estimator. Like the
variance, MSE has the same units of measurement as the square of the quantity
being estimated.
MSE in TensorFlow is implemented using
tf.keras.losses.MeanSquaredError:
mse_obj = losses.MeanSquaredError()

true = [1, 9, 2, -5, -2, 6]

pred = [4, 8, 12, 8, 1, 3]

y_true = constant_op.constant(true, shape=(2, 3))

y_pred = constant_op.constant(pred, shape=(2, 3),

dtype=dtypes.float32)

loss = mse_obj(y_true, y_pred)

print(loss)

Output will be tf.Tensor(49.5, shape=(), dtype=float32).

Sparse cross categorical entropy
Use this cross-entropy loss function when there are two or more label classes.
Labels should be provided as integers. For one-hot representation, categorical
cross-entropy loss should be used. There should be # classes floating point
values per feature for y_pred and a single floating-point value per feature for
y_true.
In the following code snippet, there is a single floating-point value per
example for y_true and # classes floating pointing values per example for
y_pred. The shape of y_true is [batch_size] and the shape of y_pred is
[batch_size, num_classes]:
t = backend.placeholder()

p = backend.placeholder()

cce = losses.sparse_categorical_crossentropy(t, p)

t_val = ops.convert_to_tensor_v2([0, 1, 2, 3])

p_val = ops.convert_to_tensor_v2([

[.9, .05, .025,0.025],[.05, .89, .03,0.03],

[.04, .01, .94,0.01],

[.02, .02, .01,0.95]])

f = backend.function([t, p], cce)

result = f([t_val, p_val])

Let us look at cross categorical entropy next, where labels are provided as one-
host representation.

Cross categorical entropy
You should use this cross-entropy loss function when there are two or more
label classes. Labels need to be provided in a one-hot representation. There
should be # classes floating point values per feature.
In the following snippet, there are # classes floating pointing values per
example. The shape of both y_pred and y_true are [batch_size,
num_classes]:
import tensorflow as tf

cce = tf.keras.losses.CategoricalCrossentropy()

loss = cce(

[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],

[[.9, .05, .05], [.05, .89, .06], [.05, .01, .94]])

print('Loss: ', loss.numpy())

Output will print the categorical cross-entropy value:
Loss: 0.09458993

Optimizers
Optimization algorithms help to minimize or maximize an objective function,
which is a mathematical function dependent on models’ parameters (which are
learnable), and are used to compute target values (y) from predictors (x) used
in the model.
As an example, we call weights and biases in a neural network as its internal
learnable parameters.
Optimization algorithm falls in two major categories:

1. First order optimization algorithms: These algorithms minimize or
maximize the loss function using the gradient value based on the
parameters. Gradient descent is the most popular first order derivative
that tells us whether the function is decreasing or increasing at a
particular point. It gives us a tangential line to the point on error surface.

2. Gradient function: Gradient is a vector representing derivate () that

is instantaneous rate of change of y with respect to x. Gradient replaces a
derivate if more than one variable is involved. It is calculated using
partial derivatives. Gradient produces a vector field and is represented
as a Jacobian Matrix.

Gradient descent
Gradient descent is the most popular optimization technique used for training
machine learning and deep learning models. It tries to find the minima,
controls the variance, and updates the model's parameters that lead to
convergence.

 is the formula used to update the parameter where is learning
rate.

 is the gradient of loss function - for parameters

Neural networks train using back propagation where we propagate forward by
calculating dot product of input signals and their weights, and then apply
activation function to those sums of products. After the calculation, we
propagate backwards in the network, carry error terms, and update weights
using gradient descent -we calculate gradient of error (E) with respect to
weights (W) or the parameters and update the parameters(weights) in the
opposite direction of gradient of the loss function. Figure 3.3 shows the shape
of gradient – a plot between error E and weights W:

Figure 3.3: The image shows process of updating the weights in opposite direction of gradient of error
.

U-shaped curve is the gradient. We update and optimize weights so that we
reach local minima.

Batch gradient descent: It calculates gradient of the whole dataset but
performs one update. It is slow and hard to calculate for datasets that are
large. Learning rate (n) determines how much update is required. This
problem in standard gradient descent is rectified by using stochastic
gradient descent.
Stochastic gradient descent (SGD): SGD performs parameter updates
for each training example, making it a much faster technique, even
though the variations are much higher:

where are training
parameters.

SGD applied to Fashion MNIST dataset using TensorFlow 2.x based
APIs:
model_sgd = get_model()

model_sgd.compile(optimizer='sgd',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

EPOCHS = 5

history_sgd = model_sgd.fit(X_train, y_train, epochs=EPOCHS,

validation_data=(X_test, y_test))

If we plot the loss and validation loss, you can see the variations. Refer to
the following figure 3.4 where we show the training and validation loss
for 20 epocs:

Figure 3.4: Loss on training and validation dataset for SGD based optimizer on Fashion MNIST

Next, let us look at techniques that improve upon basic SGD based approach:

Momentum based gradient descent: Momentum based technique was
invented to accelerate SGD by navigation along relevant direction and
softening oscillations. This technique adds a fraction γ of the update
vector of the last step to the current update vector: V(t)=γV(t−1)+η∇J(θ).
And we update parameters to θ=θ−V(t). Momentum is usually set to 0.9.
Let us see how momentum-based SGD compares to the normal SGD for
Fashion MNIST dataset.
The following figure 3.5 shows that clearly the momentum-based SGD
has lower training loss as compared to normal SGD, and also the training
time is lower and faster:

Figure 3.5: Comparing training and validation loss for SGD and SGD with momentum

Next, let us look at the Nesterov based gradient descent which is another
variation of SGD, and supported by TensorFlow 2.x out of the box.
Nesterov based gradient descent: Problem with momentum-based SGD
is that when the local minima is reached, momentum is pretty high, hence
the minima could be missed. This was noticed by a researcher called Yuri
Nesterov. He proposed a research paper in 1983, which is now called
Nesterov Accelerated Gradient.
Nesterov Accelerated Gradient (NAG) provides a way to give the
momentum term this kind of prescience. We know that we will use the
momentum term to move the parameters . Computing

 gives us an approximation of the next position of the
parameters, which gives us a rough idea where the parameters are going
to be. We can effectively look ahead by calculating the gradient not with
respect to our current parameters but with respect to the approximate
future position of our parameters:
The following equation explains how parameters are calculated based
on

Let us apply Nesterov accelerated gradient to Fashion MNIST:
model_sgd_m_n = get_model()

optimizer_sgd_m_nestrov=

tf.keras.optimizers.SGD(momentum=0.9,

nesterov=True)

model_sgd_m_n.compile(optimizer=optimizer_sgd_m_nestrov ,

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

Plot the loss and validation loss, comparing it with momentum-based
optimization. We have plotted this in the following figure 3.6, where you
can see that Nesterov based loss is lower than normal loss:

Figure 3.6: SGD momentum versus SGD momentum with Nesterov

As you can see, the loss is reduced for Nesterov-based technique, but the
change is not significant. Let us compare the validation loss for both the
techniques as well.
Adam optimizer: Adam (which stands for Adaptive Moment
Estimation) is another technique that computes adaptive learning rates
for parameters. In addition to storing an average of past squared gradients

(like adadelta which we explored earlier), it also keeps track of
exponentially decaying average of past gradients - very similar to
momentum:

The formula for the first moment is () and the second moment is (the
variance -) of the gradients.
Let us look at how the loss and validation loss for Adam based
optimizer compare to SGD momentum-based optimizer. Figure 3.7
shows the training and validation loss for SGD and Adam-based
optimizer:

Figure 3.7: SGD momentum versus Adam based training and validation loss

There is minimal difference in the training loss, but the validation loss for
Adam is quite low as compared to SGD–momentum based.
Adagrad: Adagrad updates the learning rate based on parameters. It
makes large updates on infrequent parameters and smaller changes to
more frequently changing parameters. This optimizer uses a different
learning rate for every parameter () at a time based on previous
gradients for that parameter. Adagrad uses different learning rate for each
parameter for time step t. is defined as a gradient of loss
function for parameter at time step t. The following equation
explains how each parameter is updated as a function of learning rate :

The key of this algorithm is in the matrix G𝑡, which is the sum of the
outer product of the gradients until time-step t, which is defined as
follows:

Adagrad in TensorFlow 2.x is implemented using the following function:
tf.keras.optimizers.Adagrad(

learning_rate=0.001, initial_accumulator_value=0.1,

epsilon=1e-07,

name='Adagrad', **kwargs

)

Let us use it in Fashion MNIST classification use case:

model_adagrad = get_model()

model_adagrad.compile(optimizer='adagrad',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

EPOCHS = 20

history_adagrad = model_adagrad.fit(X_train, y_train,

epochs=EPOCHS,

validation_data=(X_test, y_test))

On plotting the training and validation loss for Adagrad, compared to
Adam, we get the following plots as shown in the figure 3.8:

Figure 3.8: Adam versus Adagrad loss

The preceding plots clearly state that Adagrad is not a better choice as
compared to Adam.
Adadelta: Next, look at another variation called Adadelta. Adadelta is
the extension of Adagrad to remove the decaying learning rate. Adadelta
limits the window of past gradients to fixed size w. It stores the sum or
gradients by recursively defining it as a decaying mean of all past
squared gradients instead of storing all the previous gradients. The
average at time step t depends on previous average and
current gradient:

Where to a similar value as the momentum term, around 0.9.
So, the gradient t+1 is calculated as follows:

In TensorFlow, Adadelta is implemented by the following function:
tf.keras.optimizers.Adadelta(

learning_rate=0.001, rho=0.95, epsilon=1e-07,

name='Adadelta', **kwargs

)

Let us compare Adadelta’s training and validation loss as compared to
Adam, as shown in the figure 3.9:

Figure 3.9: Comparing Adam and Adadelta’s training and validation loss

We covered a few optimizers, but TensorFlow has support for others which we
might not have covered here. Please refer to the following section.

Other optimizers
There are other optimizers that are supported by TensorFlow, which you can
explore on your own.
This complete list of optimizers is supported by TensorFlow 2.x APIs:

class Adadelta: Optimizer that implements the Adadelta algorithm. For
more information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ada
delta
class Adagrad: Optimizer that implements the Adagrad algorithm. For
more information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ada
grad
class Adam: Optimizer that implements the Adam algorithm. For more
information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ada
m
class Adamax: Optimizer that implements the Adamax algorithm. For
more information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ada
max
class Ftrl: Optimizer that implements the FTRL algorithm. For more
information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl
class Nadam: Optimizer that implements the Nadam algorithm. For more
information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nad
am
class Optimizer: Updated base class for optimizers. For more
information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Opti
mizer

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adadelta
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adagrad
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adamax
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer

class RMSprop: Optimizer that implements the RMSprop algorithm. For
more information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RM
Sprop
class SGD: Stochastic gradient descent and momentum optimizer. For
more information, please visit the following link:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD

Now that we have a good idea about losses and optimizers, let us look at layers
and models in more detail in the next section.

Layers and models using Keras functional APIs
Sequential APIs allow you to create basic models with layers in a sequence. If
you want to create a more complex topology, TensorFlow 2.x supports Keras
functional APIs that can be used to create multi-input, multi-output, and
sharing of layers. Layer is considered a callable object, and passed on as a
function.
The following code snippet shows how we can define a Keras model using the
functional interface: the model is a fully connected neural network that accepts
a 100-dimensional input and produces a single number as output:
import tensorflow as tf

input_shape = (100,)

inputs = tf.keras.layers.Input(input_shape)

net = tf.keras.layers.Dense(units=64, activation=tf.nn.elu,

name="fc1")

(inputs)

net = tf.keras.layers.Dense(units=64, activation=tf.nn.elu,

name="fc2")

(net)

net = tf.keras.layers.Dense(units=1, name="G")(net)

model = tf.keras.Model(inputs=inputs, outputs=net)

Let us look at a full-fledged sample that regenerates MNIST images using a
functional model.
Full code listing can be found at
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/
functional_apis_basic_1.ipynb

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/functional_apis_basic_1.ipynb

1. Start by importing the relevant functions:
from tensorflow.keras import layers

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.keras.layers import UpSampling2D

from tensorflow.keras import Model

from tensorflow.keras.datasets import mnist

from tensorflow import keras

from tensorflow.keras import utils

import matplotlib.pyplot as plt

%matplotlib inline

2. Let us first load the data and normalize:
nb_classes = 10

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.astype("float32")/255.

X_test = X_test.astype("float32")/255.

print('X_train shape:', X_train.shape)

print(X_train.shape[0], 'train samples')

print(X_test.shape[0], 'test samples')

print(y_train.shape)

3. Categorical variables need to be converted to bin:
from tensorflow.keras, import utils.
utils.to_categorical: Converts a class vector (integers) to binary class
matrix. API signature is listed as follows:
keras.utils.to_categorical(y, num_classes=None, dtype='float32')
Converts a class vector (integers) to a binary class matrix:
y_train = utils.to_categorical(y_train, nb_classes)
y_test = utils.to_categorical(y_test, nb_classes)

4. Reshape X_train and X_test:
import numpy as np

X_train = X_train.reshape((len(X_train),

np.prod(X_train.shape[1:])))

X_test = X_test.reshape((len(X_test),

np.prod(X_test.shape[1:])))

#len(X_train)

print(X_train.shape)

print(X_test.shape)

Print output will show the shapes:
(60000, 784)

(10000, 784)

Let us define a model, call it autoencoder using Keras functional APIs.
It takes input, fed into 64 neuron hidden layer. Output layer is of the same
dimension as input layer 784:
input_size = 784

hidden_size = 64

output_size = 784

x = Input(shape=(input_size,))

h = Dense(hidden_size, activation='relu')(x)

r = Dense(output_size, activation='sigmoid')(h)

autoencoder = Model(inputs=x, outputs=r)

autoencoder.compile(optimizer='adam', loss='mse')

5. Let us train the model:
epochs = 5

batch_size = 128

history = autoencoder.fit(X_train, X_train,

batch_size=batch_size, epochs=epochs, verbose=1,

validation_data=(X_test, X_test))

Output will show the loss for each of the five iterations:
Train on 60000 samples, validate on 10000 samples

Epoch 1/5

60000/60000 [==============================] - 2s

28us/sample - loss: 0.0454 - val_loss: 0.0231

Epoch 2/5

60000/60000 [==============================] - 1s

20us/sample - loss: 0.0177 - val_loss: 0.0131

Epoch 3/5

60000/60000 [==============================] - 1s

19us/sample - loss: 0.0111 - val_loss: 0.0090

Epoch 4/5

60000/60000 [==============================] - 1s

19us/sample - loss: 0.0080 - val_loss: 0.0068

Epoch 5/5

60000/60000 [==============================] - 1s

20us/sample - loss: 0.0064 - val_loss: 0.0057

6. We create another model, which has no hidden layer, by reusing the x and
h layers defined and populated by training call:
conv_encoder = Model(x, h)

Predict the encoded images:
encoded_imgs = conv_encoder.predict(X_test)

7. Let us plot the encoded images:
n = 10

plt.figure(figsize=(20, 8))

for i in range(n):
ax = plt.subplot(1, n, i+1)

plt.imshow(encoded_imgs[i].reshape(4, 16).T)

plt.gray()

ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

plt.show()

Output will be a 10x10 grid of encoded images as shown in figure 3.10:

Figure 3.10: Encoded images created by conv_encoder

Next, let us use the autoencoder to recreate the images and plot them:
decoded_imgs = autoencoder.predict(X_test)

n = 10

plt.figure(figsize=(20, 6))

for i in range(n):
display original

ax = plt.subplot(3, n, i+1)

plt.imshow(X_test[i].reshape(28, 28))

plt.gray()

ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

display reconstruction

ax = plt.subplot(3, n, i+n+1)

plt.imshow(decoded_imgs[i].reshape(28, 28))

plt.gray()

ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

plt.show()

Output of the plot will show the reconstructed images alongside the
original ones as shown in figure 3.10.1:

Figure 3.10.1: Reconstructed versus original images

As can be seen, the reconstruction is quite close to the original images.
Let us look at the training and validation loss as shown in figure 3.11:

Figure 3.11: Training and validation loss for autoencoder

The validation and training losses converge very well giving the visually
accurate reconstructed images.

Effective TensorFlow 2.x
In this section, we look at how to work more effectively with TensorFlow,
using concepts like namespaces. We will also look at the changes made in
TensorFlow 2.x in more detail.

Reorganization of namespaces
TensorFlow symbols are defined in terms of logical namespaces. These
namespaces have been reorganized in the new library. Endpoint in TensorFlow
is defined as a full name to access the resource. For example, tf.name_scope
has two endpoints.
tf.name_scope and tf.keras.backend.name_scope.

The goal of TensorFlow 2.x is to re-organize the namespaces to fewer ones,
and club logical endpoints together. New namespaces that have been added are
listed as follows:

tf.random: contains random sampling ops
tf.keras.layers: contains all symbols that are currently under
tf.layers

tf.keras.losses: contains all symbols previously under tf.losses
tf.keras.metrics: contains all symbols previously under tf.metrics
tf.debugging: ops for debugging, such as asserts. TensorFlow debugger
also has been moved under tf.debugging namespace
tf.dtypes: data types
tf.io: ops for reading and writing
tf.quantization: ops related to quantization

New symbols have been migrated from tf.layers, tf.losses, tf.metrics to
tf.keras.layers, tf.keras.losses, and tf.keras.metrics.
There are also additional endpoints added as listed in Reference [3.1].

Deprecated APIs
These endpoints have been removed:

tf.logging: Python logging module to be used instead.
tf.manip: We will keep endpoints in root for symbols in t.

Eager execution
As we learnt in The Sequential API section, eager execution allows you to use
TensorFlow as a standard Python library that is executed immediately by the
Python interpreter.
Baseline example:
import tensorflow.compat.v1 as tf tf.disable_v2_behavior()

A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.constant([[0, 10], [0, 0.5]])

b = tf.constant([[1, -1]], dtype=tf.float32)

y = tf.add(tf.matmul(A, x), b, name="result") #y = Ax + b

with tf.compat.v1.Session() as sess:

print(sess.run(y))
Same code with TensorFlow 2.x is:
import tensorflow as tf

A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

x = tf.constant([[0, 10], [0, 0.5]])

b = tf.constant([[1, -1]], dtype=tf.float32)

y = tf.add(tf.matmul(A, x), b, name="result")

print(y)

No need to worry about the graph and session.
In TensorFlow 1.x, a tf.Tensor object was only a symbolic representation of
the output of a tf.Operation; in 2.x, this is not the case.
Since the operations are executed as soon as the Python interpreter evaluates
them, every tf.Tensor object is not only a symbolic representation of the
output of a tf.Operation, but also a concrete Python object that contains the
result of the operation.
Since a tf.Tensor object is still a symbolic representation of the output of a
tf.Operation, it allows it to support and use 1.x features in order to
manipulate tf.Tensor objects. Thereby, building graphs of tf.Operation that
produce tf.Tensor.
The graph is still present and the tf.Tensor objects are returned as a result of
every TensorFlow method.
TensorFlow 2.x, with eager execution, allows the user to design better-
engineered software. In 1.x version, TensorFlow had the omnipresent concepts
of global variables, collections, and sessions.

Variables and collections could be accessed from everywhere in the source
code since a default graph was always present.
The session is required in order to organize the complete project structure,
since it knows that only a single session can be present. Every time a node had
to be evaluated, the session object had to be instantiated and accessible in the
current scope.
TensorFlow 2.x changed all of these aspects, increasing the overall quality of
code that can be written using it. In practice, before 2.x, using TensorFlow to
design a complex software system was tough, and many users just gave up and
defined huge single file projects that had everything inside them. Now, it is
possible to design software in a better and cleaner way by following all the
software engineering’s good practices.

Functions replace sessions
The tf.Session object has been removed from the TensorFlow API. By using
eager execution, you no longer need the session because the execution of the
operation is immediate—we don't need to build a computational graph before
running the computation.
This means the source code can be organized better. In TensorFlow 1.x, it was
difficult to design software by following object-oriented principles, or to create
modular code that used Python functions. In TensorFlow 2.x, this is easier and
highly recommended.

Removing globals
API implementation of TensorFlow variables had the following drawbacks:
difficult to understand semantics and reliance on global scopes and global
collections. TensorFlow 2.x API is moving towards becoming more pythonic
and object-oriented the more infrastructure for global variables is being
deprecated.
The main changes in the variables are as follows:

tf.Variable has become an abstract base class with an interface and a
scoped factory method for creating instances.
Users can create their own instances of tf.Variable by sub classing.
If a variable can be shared across sessions, processes will be controlled
by a constructor argument to tf.Variable. No other type of scope reuse

has been done in the framework.
Libraries and users are being encouraged to reuse variables by reusing
their objects, like Keras layers implementation does.

Let us look at a simple example of how globals used to work in 1.x. First, we
will define a program that calculates y from A, x, b and z:
import tensorflow as tf
def get_y():
A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32, name="A")

x = tf.constant([[0, 10], [0, 0.5]], name="x")

b = tf.constant([[1, -1]], dtype=tf.float32, name="b")

I don't know what z is: if is a constant or a variable

z = tf.get_default_graph().get_tensor_by_name("z:0")

y = A @ x + b - z

return y

#test = tf.Variable(10., name="z")

#del test

#test = tf.constant(10, name="z")

#del test

y = get_y()

with tf.Session() as sess:

init = tf.global_variables_initializer()

sess.run(init)

print(sess.run(y))

Since we never defined z, we get an error.
KeyError: "The name 'z:0' refers to a Tensor which does not exist. The
operation, 'z', does not exist in the graph".
Let us create a variable z, and rerun the function:
import tensorflow as tf

def get_y():

A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32, name="A")

x = tf.constant([[0, 10], [0, 0.5]], name="x")

b = tf.constant([[1, -1]], dtype=tf.float32, name="b")

I don't know what z is: if is a constant or a variable

z = tf.get_default_graph().get_tensor_by_name("z:0")

y = A @ x + b - z

return y

test = tf.Variable(10., name="z")

y = get_y()

with tf.Session() as sess:

init = tf.global_variables_initializer()

sess.run(init)

print(sess.run(y))

We get the output:

[[-9. 0.]

[-9. 21.]]

Even if we add or delete after variable definition, and rerun the cell without
restarting the Jupyter kernel, the program will still work since z is already
initialized in the TensorFlow graph and is a global:
import tensorflow as tf
def get_y():
A = tf.constant([[1, 2], [3, 4]], dtype=tf.float32, name="A")

x = tf.constant([[0, 10], [0, 0.5]], name="x")

b = tf.constant([[1, -1]], dtype=tf.float32, name="b")

I don't know what z is: if is a constant or a variable

z = tf.get_default_graph().get_tensor_by_name("z:0")

y = A @ x + b - z

return y

y = get_y()

with tf.Session() as sess:

init = tf.global_variables_initializer()

sess.run(init)

print(sess.run(y))

These are some of the problems that TensorFlow 2.x tries to remove by
removing global.

Control flow
Executing sequential operations in TensorFlow 1.x is not an easy task if the
operations had no explicit order of execution constraints. For example, if we
want to use TensorFlow to do the following:

1. Declare and initialize two variables: x and y.
2. Increase the value of y by 1.
3. Compute x*y.
4. Repeat this five times.

The first non-working attempt in TensorFlow 1.x is to just declare the code by
following the preceding steps:
import tensorflow as tf
x = tf.Variable(1, dtype=tf.int32)

y = tf.Variable(2, dtype=tf.int32)

assign_op = tf.assign_add(y, 1)

out = x * y

init = tf.global_variables_initializer()

with tf.Session() as sess:
sess.run(init)

for _ in range(5):

print(sess.run(out))
1
1
1
1
1

Output will be only 2 since out is never reevaluated. To fix it we have to use:
with tf.control_dependencies([assign_op]):

out = x * y

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

for _ in range(5):

print(sess.run(out))

This fixes the problem as can be seen in the output as follows:
2

3

4

5

6

TensorFlow 2.x, with its eager execution, makes it possible to use the Python
interpreter to control the flow of execution:
import tensorflow as tf
print(tf.__version__)

x = tf.Variable(1, dtype=tf.int32)

y = tf.Variable(1, dtype=tf.int32)

for _ in range(5):

.

y.assign_add(1)

out = x * y

print(out)

Combine tf.data.Dataset and tf.function
When iterating over training data that fits into memory, you can use regular
Python iteration, else tf.data.Dataset
(https://www.tensorflow.org/api_docs/python/tf/data/Dataset) is the most
effective way to stream training data from disk. Datasets are iterables, and
work just like other Python iterables in the Eager mode. You can utilize dataset
async prefetching/streaming features by wrapping your code in
tf.function(), which will replace Python iteration with the equivalent graph
operations using AutoGraph.

1. Let us look at a simple example of how this can be implemented.
Code reference:
tensorflow_2.x_book_code/ch03/custom_TF_training_loops.ipynb.
import tensorflow as tf

import numpy as np

(X_train, y_train), (X_test, y_test) =

tf.keras.datasets.fashion_mnist.load_data()

X_train = X_train/255.

X_test = X_test/255.

X_train.shape, X_test.shape, y_train.shape, y_test.shape

Define the labels of the dataset CLASSES=["T

shirt/top","Trouser","Pullover","Dress","Coat","Sandal","Shi

rt","Sneaker","Bag","Ankle boot"]

Change the pixel values to float32 and reshape input data

X_train = X_train.astype("float32").reshape(-1, 28, 28, 1)

X_test = X_test.astype("float32").reshape(-1, 28, 28, 1)

2. Create a sequential training model:
TensorFlow imports

from tensorflow.keras.models import *

from tensorflow.keras.layers import *

Define utility function for building a basic shallow

Convnet

def get_training_model():

model = Sequential()

https://www.tensorflow.org/api_docs/python/tf/data/Dataset

model.add(Conv2D(16, (5, 5), activation="relu",

input_shape=(28, 28,1)))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (5, 5), activation="relu"))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation="relu"))

model.add(Dense(len(CLASSES), activation="softmax"))

return model

3. Define loss function and optimizer:
Define loss function and optimizer

loss_func = tf.keras.losses.SparseCategoricalCrossentropy()

optimizer = tf.keras.optimizers.Adam()

Calculate the average loss across the batch size within an epoch and
specify the performance metric.
Average the loss across the batch size within an epoch

train_loss = tf.keras.metrics.Mean(name="train_loss")

valid_loss = tf.keras.metrics.Mean(name="test_loss") #

Specify the performance metric train_acc =

tf.keras.metrics.SparseCategoricalAccuracy(name="train_acc")

valid_acc =

tf.keras.metrics.SparseCategoricalAccuracy(name="valid_acc")

4. Train the model by calculating the gradient tape in a callable function.
Notice how this is annotated with tf.function:
@tf.function
def model_train(features, labels):

Define the GradientTape context

with tf.GradientTape() as tape:
Get the probabilities

predictions = model(features)

Calculate the loss

loss = loss_func(labels, predictions)

Get the gradients

gradients = tape.gradient(loss, model.trainable_variables)

Update the weights

optimizer.apply_gradients(zip(gradients,

model.trainable_variables))

Update the loss and accuracy

train_loss(loss)

train_acc(labels, predictions)

5. Create a callable function to validate the model:
@tf.function

def model_validate(features, labels):
predictions = model(features)

v_loss = loss_func(labels, predictions)

valid_loss(v_loss)

valid_acc(labels, predictions)

6. Instantiate the model by calling get_training_model():
model = get_training_model()

7. Grab random images from the test and make predictions using the model
while it is training and log them:
def get_sample_predictions():

predictions = []

images = []

random_indices = np.random.choice(X_test.shape[0], 25)

for index in random_indices:

image = X_test[index].reshape(1, 28, 28, 1)

prediction = np.argmax(model(image).numpy(), axis=1)

prediction = CLASSES[int(prediction)]

images.append(image)

predictions.append(prediction)

Putting it all together:
for epoch in range(5):

Run the model through train and test sets respectively

for (features, labels) in train_ds:
model_train(features, labels)

for test_features, test_labels in test_ds:
model_validate(test_features, test_labels)

Grab the results

(loss, acc) = train_loss.result(), train_acc.result()

(val_loss, val_acc) = valid_loss.result(),

valid_acc.result()

Clear the current state of the metrics

train_loss.reset_states(), train_acc.reset_states()

valid_loss.reset_states(), valid_acc.reset_states()

Local logging

template = "Epoch {}, loss: {:.3f}, acc: {:.3f}, val_loss:

{:.3f}, val_acc: {:.3f}"

print (template.format(epoch+1,
loss,

acc,

val_loss,

val_acc))

get_sample_predictions()

You will see the output that shows the loss and accuracy of 5 epochs:
Epoch 1, loss: 0.558, acc: 0.797, val_loss: 0.435, val_acc:
0.844
Epoch 2, loss: 0.361, acc: 0.869, val_loss: 0.361, val_acc:
0.872
Epoch 3, loss: 0.309, acc: 0.888, val_loss: 0.344, val_acc:
0.874
Epoch 4, loss: 0.278, acc: 0.899, val_loss: 0.334, val_acc:
0.876
Epoch 5, loss: 0.254, acc: 0.907, val_loss: 0.306, val_acc:
0.887

Notice how difficult it is to implement as compared to model.fit, which does
this behind the scene.

Conclusion
In this chapter, we did a deep dive into Keras functional APIs, and learnt why
it became so popular. We learnt how loss functions and optimizers are
implemented in these APIs. We learnt how to write effective TensorFlow
applications with 2.x based functional APIs and the APIs which have been
deprecated. We also learnt about how various optimizers in Keras fare against
Fashion MNIST. In the end, we learnt how Keras overcomes problems in
programming against TensorFlow 1.x APIs. In the next chapter, we look at a
special type of neural network called convolutional neural network, which
utilizes spatial information to extract features from an image, video, or text.

Questions
1. What has replaced Sessions in 2.x?

a. functions
b. not replaceable
c. none of the above

2. Are global scopes supported in TensorFlow 2.x?

a. true
b. false

3. Which of the following APIs are deprecated in TensorFlow 2.x?

a. tf.logging and tf.manip.
b. tf.logging.
c. tf.manip.

Code listing
Using training and evaluation loop:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch03/training_and_evaluation_fashionmnist.ipynb
Loss, metrics, and an optimizer:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch03/losses.ipynb
Optimizers:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch03/multiple_optimizers.ipynb
Layers and models using Keras functional APIs:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch03/functional_apis_basic_1.ipynb

References
1. https://github.com/tensorflow/community/blob/master/rfcs/20180827

-api-names.md.
2. https://github.com/tensorflow/community/pull/11.
3. https://www.tensorflow.org/beta/guide/effective_tf2.

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/training_and_evaluation_fashionmnist.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/losses.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/multiple_optimizers.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch03/functional_apis_basic_1.ipynb
https://github.com/tensorflow/community/blob/master/rfcs/20180827-api-names.md
https://github.com/tensorflow/community/pull/11
https://www.tensorflow.org/beta/guide/effective_tf2

CHAPTER 4
Convolutional Neural Networks

Introduction
Convolutional Neural Network (CNN) are a type of neural networks that
specialize in processing images, videos, and texts. They provide tools for
leveraging spatial information. For example, in an image, pixels which are
close together also vary in the same way. Convolutional networks learn to
exploit the covariance between pixels to learn more effectively and efficiently.
In the following sections, we go into more details on using TensorFlow 2.6.

Structure
In this chapter, we will cover the following topics:

Introduction of convolutional networks
Building your first ConvNet
Transfer learning with TensorFlow 2.6
VGG16, VGG19, Inception V3
Introducing TensorFlow Hub (TFHub)
Leveraging TFHub for text processing

Objective
This chapter will introduce you to convolutional networks, its concept, and its
implementation in TensorFlow. We start with a basic sample, and then move on
to advanced concepts like transfer learning.

Introduction to convolutional networks
Convolutional networks are also known as Convolutional Neural Networks
or CNNs. CNNs are a specific type of neural networks that process data in a
grid-like topology. CNNs are used in many operations such as image retrieval,

object detection, self-driving cars, semantic segmentation, text processing, face
recognition, analyzing satellite data, image classification, and so on.
CNNs are made up of nodes (also called neurons) that have learnable weights
and biases. CNN is a sequence of layers. In ConvNet, there are four main
layers:

Convolutional layer
Flatten layer
Pooling layer
Fully-connected layer

ConvNets are very useful in image recognition and classification. ConvNet can
be explained by using computer vision.
In image classification, let’s consider an input image of size 128×128, and try
to identify the object which is present in the picture, that is, 128×128×3,
because here, 3 denotes three channels of an RGB image. If we multiply the
128×128×3 then, we get 49152 (dimensions). But here, 128 by 128 is a very
small image. So now, let’s consider an image of size 1000×1000×3, and if we
multiply this product, then we get 3000000 (dimensions). That means, here we
have three million input features. In the first layer of ConvNet, the output of
neurons is connected to the local input region and performs dot product. In this
layer, if we have 1000 hidden units, then the total number of weights of
neurons is denoted by W1 (matrix). This matrix in a standard, fully-connected
network may be of size 1000 by 3 million. Then, the total dimension of the
matrix may be up to 3 billion, which is very large and therefore it is
complicated to get the data to prevent the neural network from overfitting.
Training the neural network with these parameters is not possible.
There are four main operations in the ConvNet:

Convolution
Flattening
Non-linearity
Pooling or sub-sampling
Classification

These are the basic building blocks of every convolutional neural network. The
name convolutional neural network means that the network topology contains
nodes, which employs a mathematical operation called convolution. It is a

specific kind of linear operation. Convolutional networks are neural networks
that use convolution - a mathematical operation, in place of general matrix
multiplication in at least one of their layers. Let us describe the mathematical
operation of convolution. Then, we will discuss the concept of pooling and
how it helps CNN.

Short comings of fully-connected networks
Fully connected networks have some inherent limitations in processing large
tensors generated from datasets containing images. This leads to a very high
training time and huge amount of in-memory footprint to run these networks.
CNNs offer a solution to the shortcomings discussed previously, though they
work in a similar way like fully connected networks, except being more
efficient.
CNNs handle multidimensional data (for example, images with RGB values
have height, width, and depth in their tensor). CNN outputs are also three
dimensional. Each neuron in CNN has access to only some neurons from the
previous layer, referred to as a receptive field or filter size:

Figure 4.1: Convolution filters being applied to a three-dimensional image tensor

By linking neurons only to their neighboring ones in the previous layer, CNNs
reduce the number of parameters to train while preserving the localization of
image features.

Concepts

These neurons with shared weights and bias can also be considered as a single
neuron sliding over the input matrix with spatially limited connectivity
(limiting how neurons affect each other). At each step, this neuron is only
spatially connected to the local region in the input volume (H × W × D) it is
currently sliding over. Given this limited input of dimensions,
for a neuron with a filter size (or kernel size) (), the neuron still works
like the one we talked about earlier. It linearly combines the input values (

 values) before applying an activation function to the sum (a
linear or non-linear function). Mathematically, the response, , of the neuron
when presented with the input patch starting at position (i, j) can be expressed
as follows:

where are the weights with dimension ,
 is the bias and is the activation function.

By repeating this operation for each position, we obtain the complete response
matrix z of dimensions Ho × Wo, Ho and Wo being the number of times a
neuron can slide vertically and horizontally over the input tensor.

‘Padding’ in convolutional neural network is referred to the number of
pixels added to an image before processing. As an example, if padding is
set to zero, every pixel value added will be zero. If it is set to one, there
will be one pixel added to the border of the image.
Padding extends the area that the convolutional neural network
processes. It is a filter which moves across image, scanning pixels, and
converting data into a smaller or larger format. Padding is added to the
frame to assist kernel in processing the image. It allows more space for
kernel to cover and a more accurate analysis of the image.

Let us look at an example of a convolution where a 3x3 filter is applied to an
input of 3x3. Notice the padding of 0 around the input x:

Figure 4.2: Convolution of 3x3 filter on 3x3 matrix

Convolutional operation is explained mathematically as follows:

Convolution in TensorFlow 2.7
Available in the low-level API, tf.nn.conv2d() or tf.keras.layers.Conv2D
are the default choices for image convolution. Some of the parameters are as
follows:

input: It is the batch of input images, of shape (B, H, W, D), with B being
the batch size.
filter: It is the N filters stacked into a tensor of shape (kH, kW, D, N).
strides: It is a list of four integers representing the stride for each
dimension of the batched input. Typically, you would use [1, sH, sW, 1]
(that is, applying a custom stride only for the two spatial dimensions of
the image).
padding: It is either a list of 4 × 2 integers representing the padding
before and after each dimension of the batched input, or a string defining
which predefined padding case to use; that is, either VALID or SAME
(explanation follows).
name: It is the name to identify this operation (useful for creating clear,
readable graphs).

Note that tf.nn.conv2d() accepts some other parameters, which we have not
covered yet (refer to the documentation).

Sample code available at the following link:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch0
4/discover_cnns_basic_ops.ipynb.

Let us look at the sample code, starting with reading the image. Sample takes
care of both the scenarios -> running the code locally on Jupyter or Google
Colab:
if IN_COLAB:

image o char-style-override-39

io.imread("https://github.com/rajdeepd/tensorflow_2.0_book_code/

raw/master/ch04/res/peacock-in-black-and-white.jpg")

else:

image o char-style-override-39 io.imread("./res/peacock-in-

black-and-white.jpg")

The following figure shows how a simple convolution can be applied to an
image:

Figure 4.3: Loaded image

Raw image is loaded from GitHub or local directory. We converted it into a
tensor and expanded the dimensions:
image o char-style-override-39 tf.convert_to_tensor(image,

tf.float32, nameo char-style-override-39"input_image")

image o char-style-override-39 tf.expand_dims(image, axiso char-

style-override-390) # we expand our tensor, adding a dimension at

position 0

print("Tensor shape: {}".format(image.shape))

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/discover_cnns_basic_ops.ipynb

expand_dims does not add or reduce elements in a tensor. This operation
changes the shape by adding 1 to the dimensions. For example, a vector
with 10 elements could be treated as a 10x1 matrix.
The use case to use expand_dims is when we have to build a ConvNet to
classify grayscale images. The grayscale images are loaded as a matrix of
size (as an example) [320, 320]. However, tf.nn.conv2d requires input to
be [batch, in_height, in_width, in_channels], where the in_channels
dimension is missing in the data which, in this case, should be 1. So, we
have to use expand_dims to add one more dimension.

Notice how the shape changes from tensor shape (1, 861, 1300) to (1, 861,
1300, 1).
Let us define the convolution we are going to run on the preceding figure 4.3.
It uses a 3x3 matrix and called a Gaussian Blur:
kernel o char-style-override-39 tf.constant([[1 / 16, 2 / 16, 1 /

16],

[2 / 16, 4 / 16, 2 / 16],

[1 / 16, 2 / 16, 1 / 16]], tf.float32,

nameo char-style-override-39"gaussian_kernel")

kernel o char-style-override-39

tf.expand_dims(tf.expand_dims(kernel, axis=-1), axis=-1)

Apply the filter using tf.nn.conv2d:
blurred_image = tf.nn.conv2d(image, kernel, strideso =[1, 1, 1,

1], paddingo ="SAME")

Let us plot the image:
blurred_res = blurred_image.numpy()

We "unbatch" our result by selecting the first (and only)

image; we also remove the depth dimension:

blurred_res = blurred_res[0, ..., 0]

plt.imshow(blurred_res, cmapo =plt.cm.gray)

Output of the plot is displayed in the following figure 4.4:

Figure 4.4: Blur filter applied to the original image

Next, let us apply the contour detection kernel:
kernel = tf.constant([[-1, -1, -1],

[-1, 8, -1],
[-1, -1, -1]], tf.float32, name="edge_kernel")

kernel = tf.expand_dims(tf.expand_dims(kernel, axis=-1), axis=-1)

edge_image = tf.nn.conv2d(image, kernel, strides=[1, 2, 2, 1],

padding="SAME")

edge_res = edge_image.numpy()[0, ..., 0]

plt.imshow(edge_res, cmap=plt.cm.gray)

Output will be as shown in the following figure 4.5. Notice that the contours or
edges are quite hazy:

Figure 4.5: Edge detection filter applied to the original image

Let us look at another approach of down sampling, in the next section, to
improve performance of the network.

Pooling
Convolutional layers apply learned filters to create feature maps. By stacking
these layers, they learn low level features when they are closer to input layer,
and more abstract features deeper into the model. Feature maps record precise
location, which is quite sensitive to small movements in position of a feature.
A common approach to address this problem is down sampling. Lower
resolution of the image is created while retaining important elements. Pooling
is a more robust approach to achieve the same result.
Down sampling can also be achieved by increasing the stride.

Stride is how far the filter moves at every step along one direction.

A pooling layer is generally added after one or more convolutional layers. A
pooling layer operates on each feature map separately to create pooled feature
maps.
It involves selecting a pooling operation or filter. Filter size is generally
smaller than the feature map.
There are two types of pooling that are generally used:

Average pooling: calculates the average value of each path in the feature
map.

Max pooling: calculates the maximum value for each patch in the feature
map.

Using global pooling, instead of down sampling, reduces the pooling to a
single value. In this case, the pool_size is sampled as the input feature map.
Both global.average and global.max pooling are supported by TensorFlow
2.x with the classes tf.keras.layers.GlobalAveragePooling2D and
tf.keras.layers.GlobalMaxPooling2D.
For max-pooling and average-pooling, the values in each window are
aggregated into a single output, applying respectively the max or averaging
operation. Once again, we use the low-level TensorFlow API to reproduce the
results:
avg_pooled_image = tf.nn.avg_pool(image, ksize=[1, 2, 2, 1],

strides=[1, 2, 2, 1], padding="SAME")

avg_res = avg_pooled_image.numpy()[0, ..., 0]

plt.imshow(avg_res, cmap=plt.cm.gray)

The following figure shows the output after average_pooling has been
applied to the image:

Figure 4.6: Average pooling applied to the image

With these hyper-parameters, the average pooling divided each dimension of
the input image by 2.
Let us perform max pooling next:
max_pooled_image = tf.nn.max_pool(image, ksize=[1, 10, 10, 1],

strides=[1, 2, 2, 1], padding="SAME")

max_res = max_pooled_image.numpy()[0, ..., 0]

plt.imshow(max_res, cmap=plt.cm.gray)

Output of the plt.imshow command will be as shown in the following figure
4.7:

Figure 4.7: Max pooling applied to the image

As you can see, the picture is assigned the largest value for each window.

Simple convolutional network with TensorFlow
Let us start by building a simple CNN network with TensorFlow. Let us start
with a classic example of computer vision—digit recognition, with the
Modified National Institute of Standards and Technology (MNIST)
dataset.

Preparing the data
Follow these steps:

1. First, we will import the data. It consists of 60,000 images for the training
set and 10,000 images for the test set.
It is easier to import TensorFlow with the alias tf for faster reading and
typing. Here, x is used to denote the input data, and y to represent labels:

import tensorflow as tf

num_classes = 10

img_rows, img_cols = 28, 28

num_channels = 1

input_shape = (img_rows, img_cols, num_channels)

(x_train, y_train),(x_test, y_test) =

tf.keras.datasets.mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.reshape((x_train.shape[0], 28, 28, 1))

x_test = x_test.reshape((x_test.shape[0], 28, 28, 1))

2. The tf.keras.datasets module provides access to download and
instantiate a number of classic datasets. After importing the data using
load_data, notice that we divide the array by 255.0 to get a number in
the range [0, 1] instead of [0, 255]. We will normalize data, either in the
[0, 1] range or in the [-1, 1] range. If everything goes as expected, you
will get an output similar to the following:
Downloading data from
https://storage.googleapis.com/tensorflow/tf-keras-
datasets/mnist.npz
11493376/11490434 [==============================] - 0s

0us/step

Why normalization?
If we have two dimensions in our data and if one dimension (a) is
much larger than the other dimension (b), the gradient of the loss in
terms of the weight of a will be larger than the gradient of the loss
with respect to weight of b. The loss function is explained as follows:
A change in one weight, from the smaller dimension b, will lead to a
small change in the loss. However, a small change in the other
weight might lead to a very large change in the loss. This means
gradient descent might take many small steps, with a very small
learning rate, and zig-zag very slowly to the minimum.

3. We will run this sample in Google Colab. Let us make sure GPU is
selected:
device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

4. Assuming you have GPU as the device configured, let us hook the
TensorBoard:
import datetime, os

logs_base_dir = "./logs_first_cnn"

%load_ext tensorboard

os.makedirs(logs_base_dir, exist_ok=True)

%tensorboard --logdir {logs_base_dir}

The TensorBoard home page will show up, as displayed in the following
figure 4.8:

Figure 4.8: TensorBoard loaded

5. Let us create a model:
model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(32, (3, 3),

activation='relu', kernel_initializer='he_uniform',

input_shape=(28, 28, 1)))

model.add(tf.keras.layers.MaxPooling2D((2, 2)))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(128, activation='relu'))

model.add(tf.keras.layers.Dense(num_classes,

activation='softmax'))

Flattening a tensor means to remove all of the dimensions except
for one.

6. Compile it, and run it:
model.compile(optimizer='sgd',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

logdir = os.path.join(logs_base_dir,

datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

tensorboard_callback =

tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)

model.fit(x_train, y_train, epochs=5, verbose=1,

validation_data=(x_test, y_test), callbacks=

[tensorboard_callback])

The output of the model training can be seen on the console as well as the
attached TensorBoard:
Epoch 1/5

1875/1875 [==============================] - 6s 3ms/step -

loss: 0.2821 - accuracy: 0.9170 - val_loss: 0.1587 -

val_accuracy: 0.9530

Epoch 2/5

1875/1875 [==============================] - 6s 3ms/step -

loss: 0.1453 - accuracy: 0.9580 - val_loss: 0.1169 -

val_accuracy: 0.9638

Epoch 3/5

1875/1875 [==============================] - 6s 3ms/step -

loss: 0.1089 - accuracy: 0.9684 - val_loss: 0.1015 -

val_accuracy: 0.9673

Epoch 4/5

1875/1875 [==============================] - 6s 3ms/step -

loss: 0.0881 - accuracy: 0.9747 - val_loss: 0.0846 -

val_accuracy: 0.9748

Epoch 5/5

1875/1875 [==============================] - 6s 3ms/step -
loss: 0.0740 - accuracy: 0.9784 - val_loss: 0.0761 -
val_accuracy: 0.9755

The TensorBoard shows the accuracy and loss over five epochs, as shown
in the following figure 4.9:

Figure 4.9: Training and validation accuracy and loss for MNIST dataset

Next, we will look at a more sophisticated CNN like ResNet.

Building ResNet with TensorFlow
Vanishing gradient was the problem with deeper networks. This was solved
with ReLU activations and batch normalizations. ResNet has 152 layers, but it
still leads to a degradation problem which leads to higher classification errors.
Image degradation can be of various types. The examples of images after
different image degradations are:

a. Gaussian white noise

b. Colored Gaussian noise
c. Salt and pepper noise
d. Motion blur
e. Gaussian blur
f. Degradation due to JPEG compression (JPEG quality)

It is a different problem as compared to overfitting because you see these
issues in training accuracy graphs as well. Look at the following graphs:

Figure 4.10: Graphs depicting overfitting due to adding more layers to a CNN network

56-layer network has higher training and validation error. Neural networks are
not very good at learning identity function, and beyond a few layers, the
performance degrades as compared to shallower implementations. This is
where ResNet comes into picture.

ResNet
ResNet makes the identity function explicit in the architecture. It consists of
the following CNN blocks.
An identity function (or identity relation) is a function which returns the
same value used as its argument. For f being an identity function:

f(x) = x
This equation holds true for all x.

Figure 4.11: Basic concept behind ResNet – adding identity matrix to the output of the convolution

Let us implement ResNet for classifying Cifar-10 dataset. We used Google
Colab as we wanted to leverage GPUs in that environment. You can find the
notebook at the following link:
https://colab.research.google.com/github/rajdeepd/tensorflow_2.0_book_code/
blob/master/ch04/tensorflow2_resnet.ipynb#scrollTo=FJDZGKfH85Oj

1. Let us start by importing the packages needed from TensorFlow to build
the model:
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import numpy as np

import datetime as dt

2. Test for the availability of the GPU device:
device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

If the GPU is available, you will get output like this: Found GPU at:
/device:GPU:0.

3. Launch the TensorBoard with the following commands:
import datetime, os

LOG_DIR = './log'

logs_base_dir = "./logs"

%load_ext tensorboard

os.makedirs(logs_base_dir, exist_ok=True)

%tensorboard --logdir {logs_base_dir}

4. It will show up the next cell:
(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.cifar10.load_data()

train_dataset = tf.data.Dataset.from_tensor_slices((x_train,

y_train)).batch(64).shuffle(10000)

train_dataset = train_dataset.map(lambda x, y: (tf.cast(x,

tf.float32) / 255.0, y))

train_dataset = train_dataset.map(lambda x, y:

(tf.image.central_crop(x, 0.75), y))

train_dataset = train_dataset.map(lambda x, y:

(tf.image.random_flip_left_right(x), y))

train_dataset = train_dataset.repeat()

5. Let us create a function to return the ResNet block. ResNet block is made
of the following:

Conv2D layer which takes input_data
BatchNormalization on previous layer (helps reduce time taken to
process the input data)
Another Conv2D layer with input from previous layer
Another BatchNormalization with input from previous layer
output of layer above and the input_data.
Apply ReLU activation on output of the previous layer:
def res_net_block(input_data, filters, conv_size):

x = layers.Conv2D(filters, conv_size,

activation='relu',

padding='same')(input_data)

x = layers.BatchNormalization()(x)

x = layers.Conv2D(filters, conv_size, activation=None,

padding='same')(x)

x = layers.BatchNormalization()(x)

x = layers.Add()([x, input_data])

x = layers.Activation('relu')(x)

return x

6. Also, we will use the non res block to compare with the accuracy of
ResNet based model. Notice the Add() layer is missing here:
def non_res_block(input_data, filters, conv_size):

x = layers.Conv2D(filters, conv_size, activation='relu',

padding='same')(input_data)

x = layers.BatchNormalization()(x)

x = layers.Conv2D(filters, conv_size, activation='relu',

padding='same')(x)

x = layers.BatchNormalization()(x)

return x

7. Create the model using combination of Conv2D layers and 10 ResNet
blocks defined earlier:
Inputs = keras.Input(shape=(24, 24, 3))

x = layers.Conv2D(32, 3, activation=’relu’)(inputs)

x = layers.Conv2D(64, 3, activation=’relu’)(x)

x = layers.MaxPooling2D(3)(x)

num_res_net_blocks = 10

for I in range(num_res_net_blocks):
x = res_net_block(x, 64, 3)

x = layers.Conv2D(64, 3, activation’'rel’')(x)

x = layers.GlobalAveragePooling2D()(x)

x = layers.Dense(256, activation’'rel’')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation’'softma’')(x)

res_net_model = keras.Model(inputs, outputs)

8. Let us compile the model with callback tied to TensorBoard and call
res_net_model.fit(..):
res_net_model.compile(optimizer=keras.optimizers.Adam(),

loss='sparse_categorical_crossentropy',

metrics=['acc'])

logdir = os.path.join(logs_base_dir,

datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

tensorboard_callback =

tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)

res_net_model.fit(train_dataset, epochs=30,

steps_per_epoch=195,

validation_data=valid_dataset,

validation_steps=3, callbacks=[tensorboard_callback])

You will see the output in TensorBoard with the text log showing up in
Colab:
Epoch 28/30

195/195 [==============================] - 3s 14ms/step -

loss: 0.7910 - acc: 0.7304 - val_loss: 0.8671 - val_acc:

0.6981

Epoch 29/30

195/195 [==============================] - 3s 15ms/step -

loss: 0.7533 - acc: 0.7423 - val_loss: 0.9251 - val_acc:

0.6737

Epoch 30/30

195/195 [==============================] - 3s 14ms/step -

loss: 0.7508 - acc: 0.7433 - val_loss: 0.9072 - val_acc:

0.6941

<tensorflow.python.keras.callbacks.History at
0x7f09de141b00>

9. Next, let us run the same data on non_res_net:
inputs = keras.Input(shape=(24, 24, 3))

x = layers.Conv2D(32, 3, activation='relu')(inputs)

x = layers.Conv2D(64, 3, activation='relu')(x)

x = layers.MaxPooling2D(3)(x)

num_res_net_blocks = 10

for i in range(num_res_net_blocks):
x = non_res_block(x, 64, 3)

x = layers.Conv2D(64, 3, activation='relu')(x)

x = layers.GlobalAveragePooling2D()(x)

x = layers.Dense(256, activation='relu')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation='softmax')(x)

non_res_model = keras.Model(inputs, outputs)

callbacks = [

Write TensorBoard logs to `./logs` directory

keras.callbacks.TensorBoard(log_dir='./log/{}'.format(dt.da

tetime.now().strftime("%Y-%m-%d-%H-%M-%S")),

write_images=True),
]

The following figure 4.12 shows the output plotted on TensorBoard:

Figure 4.12: Training and validation accuracy and loss for ResNet based model

non_res_model.compile(optimizer=keras.optimizers.Adam(),

loss='sparse_categorical_crossentropy',

metrics=['acc'])

non_res_model.fit(train_dataset, epochs=30,

steps_per_epoch=195,

validation_data=valid_dataset,

validation_steps=3, callbacks=[tensorboard_callback])

The output will show up on the Colab cell as well as TensorBoard, as
shown in the following listing and figure 4.13:
Epoch 28/30

195/195 [==============================] - 4s 19ms/step -

loss: 0.9399 - acc: 0.6823 - val_loss: 1.0587 - val_acc:

0.6485

Epoch 29/30

195/195 [==============================] - 4s 20ms/step -

loss: 0.9440 - acc: 0.6756 - val_loss: 1.0689 - val_acc:

0.6533

Epoch 30/30

195/195 [==============================] - 4s 19ms/step -

loss: 0.8970 - acc: 0.6976 - val_loss: 1.0955 - val_acc:

0.6397

Figure 4.13: Training and validation accuracy and loss for not_res_net model

The accuracy of ResNet is higher than the non ResNet model, as seen in
the preceding numbers. Let us compare the ResNet and non ResNet plots:

Figure 4.14: ResNet and non ResNet plots

In the next section, we will talk about some of the other advanced models for
computer vision.

Advanced computer vision techniques
Research in computer vision has been moving forward both through
incremental contributions and large innovative leaps. Challenges organized by
researchers and companies, inviting experts to submit new solutions in order to

best solve a predefined task, have been playing a key role in triggering such
instrumental contributions. The ImageNet classification contest [ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)] is a perfect example.
With its millions of images split into 1000 fine-grained classes, it still
represents a great challenge for daring researchers, even after the significant
and symbolic victory of AlexNet in 2012.
In this section, we will discuss some of the classic deep learning methods that
followed AlexNet in tackling ILSVRC, covering the reasons leading to their
development, and the contributions they made.

VGG architecture
VGG16 is a convolutional neural network model proposed by K. Simonyan
and A. Zisserman from the University of Oxford in the paper Very Deep
Convolutional Networks for Large-Scale Image Recognition [1]. The model
achieves 92.7% top five test accuracy in ImageNet, which is a dataset of over
14 million images belonging to 1000 classes. It was one of the most famous
models submitted to ILSVRC-2014 (http://www.image-
net.org/challenges/LSVRC/2014/results). It makes an improvement over
AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second
convolutional layer, respectively) with multiple 3×3 kernel-sized filters one
after another. VGG16 was trained for weeks and was using NVIDIA Titan
Black GPU’s.

Motivation behind VGG
AlexNet is the name of a CNN designed by Alex Krizhevsky, and published
with Ilya Sutskever and Geoffrey Hinton.
AlexNet competed in the ImageNet Large Scale Visual Recognition Challenge
(https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition
_Challenge) in September 2012. The network was able to achieve a top five
error of 15.3%, this was 10.8 percentage points lower than the runner up which
had it as 26.1%. The original paper's primary conclusion was that the depth in
terms of number of layers of the model was required for its high performance.
This was computationally expensive, but made feasible due to the utilization of
graphics processing units (GPUs) during the model's training.
Some of the innovations introduced by AlexNet were as follows:

http://www.image-net.org/challenges/LSVRC/2014/results
https://en.wikipedia.org/wiki/ImageNet_Large_Scale_Visual_Recognition_Challenge

the use of a rectified linear unit (ReLU) as an activation function, which
prevents the vanishing gradient problem (explained later in this chapter),
and thus improving training (compared to using sigmoid or tanh)
the application of dropout to CNNs.
the typical CNN architecture combining blocks of convolution and
pooling layers with dense layers afterwards for the final prediction
the application of random transformations (image translation, horizontal
flipping, and more) to synthetically augment the dataset (that is,
augmenting the number of different training images by randomly editing
the original samples)

It was clear that this prototype architecture had room for improvement. The
main motivation of many researchers was to try to go deeper (that is, building
a network composed of a larger number of stacked layers), despite the
challenges arising from this. Indeed, more layers typically means more
parameters to train, making the learning process more complex. However,
Karen Simonyan and Andrew Zisserman from Oxford's VGG group tackled this
challenge with success. The method they submitted to ILSVRC 2014 reached
the top five errors of 7.3%, dividing the 16.4% error of AlexNet by more than
50%.
The top five accuracy is one of the main classification metrics of ILSVRC. It
considers that a method has predicted properly if the correct class is among its
five first guesses. Indeed, for many applications, it is fine to have a method
that’s able to reduce a large number of class candidates to a lower number (for
instance, to leave the final choice between the remaining candidates to an
expert user). The top five metrics are a specific case of the more generic top-k
metrics.
Simonyan and Zisserman, in their paper Very Deep Convolutional Networks for
Large-Scale Image Recognition, ArXiv, 2014 [1], presented how they
developed their network to be deeper than most previous ones. They
introduced six different CNN architectures, from 11 to 25 layers deep. Each
network is composed of five blocks of several consecutive convolutions
followed by a max-pooling layer and three final dense layers (with dropout for
training).
All the convolutional and max-pooling layers have SAME for padding. The
convolutions have s = 1 for stride, and are using the ReLU function for
activation.

SAME and VALID padding are some of the most common types of
padding used in Convolution Neural Network (CNN) models. These
padding types are mainly used in TensorFlow.
The general meaning of SAME and VALID padding are as follows:

SAME: The padding is such that the input and the output is of the
same size (provided stride=1) (pad value = kernel size).
VALID: The padding value is set to 0.

SAME padding implementation is different depending on the framework
being considered.
VGG network is represented in the figure 4.16: VGG16 architecture.
The two most performant architectures, still commonly used nowadays, are
called VGG16 and VGG19. The numbers (16 and 19) represent the depth of
these CNN architectures; that is, the number of trainable layers stacked
together as shown in the following figure 4.15:

Figure 4.15: VGG16 architecture

VGG16 has approximately 138 million parameters and VGG19 have 144
million parameters. These numbers of parameters are quite high, although, we
will explore how the VGG researchers took a new approach to keep these
values in check, despite the depth of their architecture.

Learning from the VGG network
Authors observed that a convolution with a stack of two 3x3 kernels have the
same effective receptive field as a convolution with single 5x5 kernel.
Therefore, VGG network had more but smaller convolutions. This led to:

decrease in parameters.
increased nonlinearity. (Larger number of convolutional layers with
nonlinear activation function led the network to learn more complex

features.)

Increased depth of feature maps
VGG authors doubled the depth of feature maps for each block from 64
convolution to 512 convolutions. Max-pooling was used to reduce the spatial
dimensions. This allowed encoding of spatial information into more and more
complex and discriminate features.

VGG in TensorFlow
TensorFlow supports both VGG16 and VGG19. We will be using the
following sample dataset to show how to use these pre-built models.
We will use a transfer learning to classify medical imaging data PCam to detect
cancer.

Dataset
We will use the data for this PatchCamelyon (PCam) benchmark dataset
(https://github.com/basveeling/pcam).
PCam is highly interesting for its size, simplicity to get started on, and
approachability.

Why PCam?
Fundamental machine learning advancements are predominantly evaluated on
straight-forward natural-image classification datasets. Medical imaging is
becoming one of the major applications of ML, and we believe it deserves a
spot on the list of go-to ML datasets both to challenge future work and to steer
developments into directions that are beneficial for this domain.

Approach
We will be using pre-built model weights (from various architectures like
VGG16, inception V3), translate the models to work with new dataset, and add
additional tuning in the form of dropout rate, loss function to come up with the
optimized model with an accuracy of 79% or above.
Dataset shape - 360 images with binary labels
We will load 360 images and prepare them for consumption by various
models:

https://github.com/basveeling/pcam

1. First, we need to extract the ID of the image from the path. We have
prepared the notebook to run both locally as well as on Google Colab:
if IN_COLAB:

BASE = '/content/gdrive/My

Drive/cancer_detection/metastatic_cancer'

else:

BASE = '.'

Set the directories for storing various outputs:
import tensorflow

tensorflow.__version__

VERSION = tensorflow.__version__

Output files

model_type='vgg16'

no_of_images = 'all'

EPOCHS = 25

if IN_COLAB:

PLOTS = 'plots_2.6.0_google_collab'

else:

PLOTS = 'plots_2.6.0'

APPEND = '' + model_type + '_' + str(no_of_images) + '_' +

str(EPOCHS)

APPEND = _APPEND + ".png"

if IN_COLAB:

if not os.path.exists(BASE + "/training_logs_" + VERSION):
os.mkdir(BASE + "/training_logs_" + VERSION)

if not os.path.exists(BASE + "/model_summary/"):
os.mkdir(BASE + "/model_summary/")

if not os.path.exists(BASE + "/model_summary/" +
"model_summary_" + VERSION):

os.mkdir(BASE + "/model_summary/" + "model_summary_" +

VERSION)

if not os.path.exists(BASE + '/' + PLOTS):
os.mkdir(BASE + '/' + PLOTS)

if IN_COLAB:

TRAINING_LOGS_FILE = BASE + "/training_logs_" + VERSION +

'/training_logs' + _APPEND + '.csv'

MODEL_SUMMARY_FILE = BASE + "/model_summary/"

"model_summary_" + VERSION + "/model_summary" + _APPEND +

".txt"

MODEL_PLOT_FILE = BASE + '/' + PLOTS + "/model_plot_" +

APPEND

MODEL_FILE = "model_" + VERSION +

"/model_vgg16_all_collab.h5"

TRAINING_PLOT_FILE = BASE + '/'+ PLOTS + "/training" +

APPEND

VALIDATION_PLOT_FILE = BASE + '/'+ PLOTS + "/validation" +

APPEND

ROC_PLOT_FILE = BASE + '/'+ PLOTS + "/roc" + APPEND

else:

TRAINING_LOGS_FILE = "training_logs_" + VERSION +

'/training_logs' + _APPEND + '.csv'

MODEL_SUMMARY_FILE = "model_summary_" + VERSION +

"/model_summary" + _APPEND + ".txt"

MODEL_PLOT_FILE = PLOTS + "/model_plot_" + APPEND

MODEL_FILE = "model_" + VERSION +

"/model_vgg16_all_collab.h5"

TRAINING_PLOT_FILE = PLOTS + "/training" + APPEND

VALIDATION_PLOT_FILE = PLOTS + "/validation" + APPEND

ROC_PLOT_FILE = PLOTS + "/roc" + APPEND

data_dir_training = pathlib.Path(BASE + '/training')

2. Let us plot the images from two classes, 0 and 1:
import PIL

import PIL.Image

zeros = list(data_dir_training.glob('0/*'))

PIL.llImage.open(str(zeros[0]))

The following figure 4.16 shows the first image from class 0:

Figure 4.16: First image from class 0

Next, we look at class 1:
one = list(data_dir_training.glob('1/*'))

PIL.Image.open(str(one[0]))

Output will be like the following figure 4.17. You will notice even
visually that the image looks quite different:

Figure 4.17: First image from class 1

3. We will use ImageDataGenerator to create random variations of the
dataset for better accuracy:
training_generator =

training_data_generator.flow_from_directory(

training_path,

target_size=(IMAGE_SIZE2,IMAGE_SIZE2),

batch_size=BATCH_SIZE,

lass_mode='binary')

The ImageDataGenerator class in Tensorflow Keras is used for implementing
image augmentation. The major advantage is its ability to produce real-time
image augmentation. This means it can generate augmented images
dynamically during the training of the model making the overall mode more
robust and accurate.
If this class was not present, user would have to manually generate the
augmented image as a pre-processing step, and include them in our training
dataset. But in TensorFlow, ImageDataGenerator takes care of this
automatically during the training phase. And it does all this with efficient
memory management so that the user can train a huge dataset efficiently with
lesser memory consumption.

There are five techniques for applying image augmentation:

Random rotation
Random shift
Vertical shift
Random flips
Random brightness
Random zoom

Use this to generate data for validation and testing
We will use this technique to generate training, validation, and testing data:
Data generation

training_generator = training_data_generator.flow_from_directory(

training_path,

target_size=(IMAGE_SIZE2,IMAGE_SIZE2),

batch_size=BATCH_SIZE,

class_mode='binary')

validation_generator =

ImageDataGenerator(rescale=1./255).flow_from_directory(

validation_path,

target_size=(IMAGE_SIZE2,IMAGE_SIZE2),

batch_size=BATCH_SIZE,

class_mode='binary')

testing_generator =

ImageDataGenerator(rescale=1./255).flow_from_directory(

validation_path,

training_path,

target_size=(IMAGE_SIZE2,IMAGE_SIZE2),

batch_size=BATCH_SIZE,

class_mode='binary')

shuffle=False)

The preceding datasets generated will be used for VGG16, VGG19, and
Inception_v3.

VGG16

The topology of the convolution network using VGG16, which we will use in
our experiment, is shown in the following figure 4.18:

Figure 4.18: VGG16 based model topology

Details of each layer are described as follows:

Input layer will be rescaled images from 96x96x3 to 224x224x3, which is
the standard input shape by VGG.
The output of the VGG16 model will be (None, 1000), where None will be
replaced by the batch size being processed.
We will apply a dropout of 0.5.
The last layer will be the dense layer with the output shape of (None, 1) –
1 being either 0 or 1 binary classification output label:
Model

input_shape = (IMAGE_SIZE2, IMAGE_SIZE2, 3)

inputs = Input(input_shape)

vgg16 = VGG16(include_top=False, input_shape=(224, 224, 3))

(inputs)

outputs = GlobalAveragePooling2D()(vgg16)

outputs = Dropout(0.5)(outputs)

outputs = Dense(1, activation='sigmoid')(outputs)

model = Model(inputs, outputs)

model.compile(optimizer=Adam(lr=0.0001, decay=0.00001),

loss='binary_crossentropy',

metrics=['accuracy'])

model.summary()

plot_model(model,

to_file=MODEL_PLOT_FILE,

show_shapes=True,

show_layer_names=True)

Other parameters used are listed as follows. They help define the batch
size for training, verbosity of the output, total sample count, and testing
the sample count:
Hyperparams

IMAGE_SIZE2 = 224

BATCH_SIZE = 192

VERBOSITY = 1

TESTING_BATCH_SIZE = 50

The output of the program once run will show training and validation loss
and accuracy:
Epoch 00024: val_accuracy improved from 0.72500 to 0.75000,
saving model to model_2.6.0/model_vgg16_all_collab.h5
Epoch 25/25
2/2 [==============================] - 6s 2s/step - loss:
0.4610 - accuracy: 0.8278 - val_loss: 0.6795 - val_accuracy:
0.6750
Epoch 00025: val_accuracy did not improve from 0.75000

Next, we will plot the graph for training and validation accuracy:

Figure 4.19: Test and validation accuracy for VGG16 based model

The training and validation accuracy are 0.8278 and 0.7500 (epoch 24). Next,
we will look at the ROC curve.

Area under the curve for VGG16
AUC for this model is coming to around 0.807 as shown in the figure 4.20,
which is considered quite decent:

Figure 4.20: ROC curve for VGG16 based model

VGG16 is able to give an accuracy of about 74% but is a very expensive
network to load and train on, from memory and speed perspective.
Let us look at VGG19 and inception V3 as an alternative for transfer learning.

VGG19
VGG19 is a convolutional neural network trained on ImageNet dataset. It has
19 layers and can classify images into up to 1000 categories. This network is
slightly newer than VGG16 but has three additional layers. Let us plot the
training and validation accuracy:

Figure 4.21: Test and validation accuracy for VGG19 based model

Final metrics are listed as follows.
Validation accuracy is worse than VGG16:

loss: 0.4062
accuracy: 0.8333
val_loss: 0.9118
val_accuracy: 0.8000

Let us plot the ROC curve now as shown in the figure 4.22:

Figure 4.22: ROC curve for VGG19 based model

Area under the curve for VGG19 is higher than VGG16, though it takes more
time to train and will take more space (memory). This means, for the ImageNet
sample, deeper network helped in TF 2.6.0.

Inception V3
The inception micro-architecture was introduced by the team at Google,
Szegedy et al. in the 2014 paper, Going Deeper with Convolutions.
The inception module acts as a multi-level feature extractor by using 1×1,
3×3, and 5×5 convolutions in the same module of the network. The output of
these filters is stacked along the channel dimension before being fed into the
next layer in the network.
The original manifestation of this architecture was called GoogleNet.
Subsequent manifestations have been called Inception vN, where N refers to
the version number put out by Google.
The Inception V3 architecture is from the new publication by Szegedy et al.
Rethinking the Inception Architecture for Computer Vision (2015)
(https://arxiv.org/abs/1512.00567), it proposed updates to the inception
module to further boost the ImageNet classification accuracy.
The weights for InceptionV3 are smaller than other networks like VGG and
ResNet, coming in at 96 MB.

InceptionV3 architecture

https://arxiv.org/abs/1512.00567

We are planning to load the model from a pre-trained file that has an input
dimension of (None, 96, 96, 1). Let us look at the following implementation.
InceptionV3 is a part of tf.keras.applications:
Model

input_shape = (IMAGE_SIZE2, IMAGE_SIZE2, 3)

inputs = Input(input_shape)

inceptionv3 = InceptionV3(include_top=False, input_shape=(224,

224, 3))(inputs)

outputs = GlobalAveragePooling2D()(inceptionv3)

outputs = Dropout(0.5)(outputs)

outputs = Dense(1, activation='sigmoid')(outputs)

model = Model(inputs, outputs)

model.compile(optimizer=Adam(lr=0.0001, decay=0.00001),

loss='binary_crossentropy',

metrics=['accuracy'])

model.summary()

plot_model(model,

to_file=MODEL_PLOT_FILE,

show_shapes=True,

show_layer_names=True)

The Inception_v3 model has the output of (None, 1, 1, 2048), on which global
average pooling is applied.

The purpose of global average pooling is different than that of ordinary
pooling. The goal of this technique is to not make a network invariant to
small translations or perturbations of an image. It also doesn't make a
relatively small reduction in the size of an array of pixels, as the common
2×2 max-pooling mechanism does.

The following figure 4.23 shows the summary on input and input layer for
each layer:

Figure 4.23: Plot of model created of model InceptionV3

Let us fit the model:
history = model.fit(training_generator,

steps_per_epoch=len(training_generator),

validation_data=validation_generator,

validation_steps=len(validation_generator),

epochs=EPOCHS,

verbose=VERBOSITY,

callbacks=[#PlotLossesKeras(),

ModelCheckpoint(MODEL_FILE,

monitor='val_accuracy',

verbose=VERBOSITY,

save_best_only=True,

mode='max'),

CSVLogger(TRAINING_LOGS_FILE,

append=True,

separator=';')

])

Output of the training is as follows:
Epoch 00023: val_accuracy did not improve from 0.87500

Epoch 24/25

2/2 [==============================] - 20s 9s/step - loss: 0.2424

- accuracy: 0.9056 - val_loss: 0.4493 - val_accuracy: 0.8750

Epoch 00024: val_accuracy did not improve from 0.87500

Epoch 25/25

2/2 [==============================] - 21s 10s/step - loss:

0.2211 - accuracy: 0.9222 - val_loss: 0.4536 - val_accuracy:

0.8750

Validation accuracy is much higher than VGG16 and 19. Let us also look at the
training and validation accuracy and the ROC curve:

Figure 4.24: Training and validation accuracy for InceptionV3 based model

Next, let us look at the ROC curve for this model. It gives an AUC value of
about 0.923 as shown in the figure 4.25:

Figure 4.25: ROC curve for Inception_V3 based model

With this, we come to the end of the section on advanced image classification
techniques. We learnt how to leverage pre-trained models and some of the
concepts they apply to achieve those generic models which are or were state of
the art.

TensorFlow Hub
Google offers several scripts and tutorials explaining how to directly use its
inception networks or how to retrain them for new applications.
The directory dedicated to this architecture in the tensorflow/models Git
repository https://github.com/tensorflow/hub is quite well documented.
A pre-trained version of Inception V3 is available on TensorFlow Hub, which
gives us the opportunity to introduce this platform. TensorFlow Hub is a
repository of pre-trained models.
TensorFlow Hub gives access to pre-trained models so that people do not have
to spend time and resources reimplementing and retraining. It combines a
website (https://tfhub.dev) where developers can search for specific models
(depending, for example, on the target recognition task) and a Python package
to easily download and start using these models. For example, we can fetch
and set up an InceptionV3 network as follows:
import tensorflow as tf

import tensorflow as tf

try:

import tensorflow_hub as hub

https://github.com/tensorflow/hub
https://tfhub.dev/

except ModuleNotFoundError:

print('tensorflow_hub not installed')

url = "https://tfhub.dev/google/tf2-

preview/inception_v3/feature_vector/2"

num_classes = 10

hub_feature_extractor = hub.KerasLayer(# TF-Hub model as Layer

url, # URL of the TF-Hub model (here, an InceptionV3

extractor)

trainable=False, # Flag to set the layers as trainable or not

input_shape=(299, 299, 3), # Expected input shape (found on

tfhub. dev)

output_shape=(2048,), # Output shape (same, found on the

model's page)

dtype=tf.float32) # Expected dtype

inception_model = tf.keras.models.Sequential(

[hub_feature_extractor, tf.keras.layers.Dense(num_classes,

activation='softmax')],

name="inception_tf_hub")

inception_model

In the preceding example, we create a Keras layer from prebuilt TF Hub
model and use it in a sequential model.
Next, let us look at a more complete example where we are going to convert a
word, a sentence, and a paragraph into a word embedding:
Install the latest Tensorflow version.

!pip3 install --quiet "tensorflow>=2.2"

Install TF-Hub.

!pip3 install --quiet tensorflow-hub

!pip3 install --quiet seaborn

from absl import logging

import tensorflow as tf

import tensorflow_hub as hub

import matplotlib.pyplot as plt

import numpy as np

import os

import pandas as pd

import re

import seaborn as sns

Load the embeddings file compatible for TensorFlow 2.x. An embedding is a
relatively low-dimensional space into which you can translate high-
dimensional vectors:
embedding_fn = hub.load("https://tfhub.dev/google/universal-

sentence-encoder/4")

word = "peacock"

sentence = "I am a sentence for which I would like to get its

embedding."

paragraph = (

"Universal Sentence Encoder embeddings also support short

paragraphs. "

"There is no hard limit on how long the paragraph is. Roughly,

the longer "

"the more 'diluted' the embedding will be.")

messages = [word, sentence, paragraph]

message_embeddings = embedding_fn(messages)

for i, message_embedding in

enumerate(np.array(message_embeddings).tolist()):

print("Message: {}".format(messages[i]))

print("Embedding size: {}".format(len(message_embedding)))

message_embedding_snippet = ", ".join(

(str(x) for x in message_embedding[:3]))

print("Embedding: [{},

...]\n".format(message_embedding_snippet))

The following output will show the vectors associated with each input:
Message: peacock
Embedding size: 512
Embedding: [-0.00719849020242691, -0.004821529611945152,
0.07689614593982697, ...]
Message: I am a sentence for which I would like to get its
embedding.
Embedding size: 512
Embedding: [0.05080859735608101, -0.016524333506822586,
0.01573782041668892, ...]
Message: Universal Sentence Encoder embeddings also support short
paragraphs. There is no hard limit on how long the paragraph is.
Roughly, the longer the more 'diluted' the embedding will be.
Embedding size: 512

Embedding: [-0.02833269163966179, -0.0558621920645237,
-0.012941512279212475, ...]

You can do more interesting things, like comparing sentence similarity, which
we will skip in this example.

Summary
In this chapter, we learnt how to handle machine learning problems using
techniques which have been researched like CNN, transfer learning, and so on.
We also learnt how to load pre-built models from the TFHub, and use them in
sequential models. In transfer learning, we looked at algorithms like VGG16,
VGG19, and InceptionV3. You should be able to use TensorFlow to create
CNN based models for your own dataset for basic image classification. In the
next chapter, we will explore neural network topologies like RNN, LSTM
which help in processing sequential data.

Questions
1. What are the advantages of using transfer learning?
2. Why does InceptionV3 have more accuracy network than VGG16?
3. Use TFHub’s universal sentence encoder to find similarity between

sentences.

References
Very Deep Convolutional Networks for Large-Scale Image Recognition:
https://arxiv.org/abs/1409.1556v4

Code listing
All the examples can be found at the following links:

First CNN:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/first_cnn.ipynb
CNN basic ops:

https://arxiv.org/abs/1409.1556v4
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/first_cnn.ipynb

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/discover_cnns_basic_ops.ipynb
TensorFlow 2 ResNet:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/tensorflow2_resnet.ipynb
Transfer learning VGG16:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/histopathologic_cancer_detector_vgg16_1000_images.ipynb
Transfer learning VGG19:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/histopathologic_cancer_detector_vgg19_1000_images.ipynb
Transfer learning inception V3:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/histopathologic_cancer_detector_inceptionv3_1000_images.ipy
nb
TFHub Inception v3:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch04/tfhub_inceptionv3.ipynb
TF Hub universal sentence encoder:

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/ma
ster/ch04/TF_Hub_Universal_Encoder.ipynb
https://towardsdatascience.com/illustrated-10-cnn-
architectures-95d78ace614d

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/discover_cnns_basic_ops.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/tensorflow2_resnet.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/histopathologic_cancer_detector_vgg16_1000_images.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/histopathologic_cancer_detector_vgg19_1000_images.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/histopathologic_cancer_detector_inceptionv3_1000_images.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/tfhub_inceptionv3.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch04/TF_Hub_Universal_Encoder.ipynb
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

CHAPTER 5
Recurrent Neural Networks

Introduction
RNNs are neural networks suited for sequential data. Sequences of words and
time series are some examples of sequence. In these datasets, each time step is
related to the previous one. RNNs can also be applied to problems related to
computer vision.
We will first start by discussing the basic concepts, and then look at how the
weights are learnt.

Structure
In this chapter, we will cover the following topics:

Basic concepts
SimpleRNN

Building your first SimpleRNN network
Weight constraints
Text processing with SimpleRNN

GRU

Concepts

Building your first GRU based model
Text processing with GRU

LSTM

Concepts
Text processing with LSTM

Bidirectional LSTM

Concept

Text processing with bidirectional LSTM

Objectives
In this chapter, the readers will be introduced to the concepts of Recurrent
Neural Network (RNN), Gated Recurrent Unit (GRU), Long-Term Short-
Term Memory (LSTM), and bi-directional LSTM.

Basic concepts
The Markov chain model is a fundamental mathematical construct in
statistics and probability, which is used as a building block for modeling
sequential patterns via machine learning. We can view our data sequences as
chains, with each node in the chain dependent in some way on the previous
node, so that, history is not erased but carried on.
RNN models are also based on this concept of chain structure and vary in how
exactly they maintain and update information. Recurrent neural nets apply
some form of loop. As seen in figure 5.1, at some point in time t, the network
observes an input x1 (a word in a sentence) and updates its state vector to h1,
from the previous vector h1-1. When we process new input (the next word), it
will be done in some manner that is dependent on ht, and thus, on the history of
the sequence (the previous words we’ve seen affect our understanding of the
current word). As seen in figure 5.1, this recurrent structure can be viewed as
one long unrolled chain, with each node in the chain performing the same kind
of processing step based on the message it obtains from the output of the
previous node. This, of course, is very related to the Markov chain models and
their Hidden Markov Model (HMM) extensions, which are not discussed
here:

Figure 5.1: Unfolding of the RNN

Simple recurrent neural network
It is a type of RNN implemented with the classtf.keras.layers.SimpleRNN
where the output is fed back into the input. It inherits from RNN class:
tf.keras.layers.RNN.

Building your first SimpleRNN network
We will build a simple neural network with a single simple RNN layer with
units and input shape as parameters. Units passed to the constructor define the
dimensionality of the outer space:
import numpy as np

num_samples = 2

timesteps = 3

embedding_dim = 4

units = 2

layer = keras.layers.SimpleRNN(units, input_shape=(None,

embedding_dim))

model = keras.models.Sequential()

model.add(layer)

model.compile('rmsprop', 'mse')

x = np.random.random((num_samples, timesteps, embedding_dim))

y = np.random.random((num_samples, units))

model.train_on_batch(x, y)

We created a sequential model with a single RNN layer followed by model
compilation and training.
Next, we will look at how to apply constraints to weights and biases; these are
useful for overfitting model

Weight constraints
The tf.keras.constraints module classes allow setting constraints (for
example, non-negativity) on model parameters during training. They are per-
variable projection functions applied to the target variable after each gradient
update when using fit(). In the following example, we create three different
constraints using max_norm, and apply them as kernel constraints, bias

constraints, and recurrent constraints. Detailed explanation for these concepts
might be outside the scope of this book:
embedding_dim = 4

layer_class = keras.layers.SimpleRNN

k_constraint = keras.constraints.max_norm(0.01)

r_constraint = keras.constraints.max_norm(0.01)

b_constraint = keras.constraints.max_norm(0.01)

layer = layer_class(

5,

return_sequences=False,

weights=None,

input_shape=(None, embedding_dim),

kernel_constraint=k_constraint,

recurrent_constraint=r_constraint,

bias_constraint=b_constraint)

layer.build((None, None, embedding_dim))

max_norm is the implementation used for generating these constraints.

Masking
Masking allows us to handle variable-length inputs in RNNs. Although RNNs
can handle variable length inputs, they still need fixed length inputs. Therefore,
what we do is create a mask per sample, initialized with 0 with a length equal
to the longest sequence in the dataset. Then, we fill the mask with 1s for all the
positions where the sample has values. Keras implements a masking class
keras.layers.Masking. The following example shows how masking can be
used in a sequential model:
layer_class = keras.layers.SimpleRNN

inputs = np.random.random((2, 3, 4))

targets = np.abs(np.random.random((2, 3, 5)))

targets /= targets.sum(axis=-1, keepdims=True)

model = keras.models.Sequential()

model.add(keras.layers.Masking(input_shape=(3, 4)))

model.add(layer_class(units=5, return_sequences=True,

unroll=False))

model.compile(loss='categorical_crossentropy',

optimizer='rmsprop')

model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1)

In the later sections, we will look at more real-world applications of masking.

Text processing with SimpleRNN
We are going to use the Amazon Reviews dataset for creating a model using
RNN to detect sentiment.
This dataset consists of millions of Amazon customer reviews (in the format of
input text) and star ratings (as output labels) for learning how to train the
model for sentiment analysis.
The idea is to start with a dataset that is more than a toy—real business data on
a reasonable scale—but can be trained in minutes on a modest laptop.
We will be using 1000 reviews to make it an even smaller dataset, so that we
can focus on the concepts rather than the accuracy of the model.

Preparing the dataset
Download the dataset from the following link:
https://www.kaggle.com/bittlingmayer/amazonreviews
We have trimmed the dataset to include 1000 reviews.
Since our code base is in Ch05, we have defined a few utility methods in
common_code/util.py which we are planning to use. Follow these steps:

1. Import the appropriate files and define the base variable:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.python.keras import models, layers,

optimizers

import tensorflow

from tensorflow.keras.preprocessing.text import Tokenizer,

text_to_word_sequence

from tensorflow.keras.preprocessing.sequence import

pad_sequences

import bz2

from sklearn.metrics import f1_score, roc_auc_score,

accuracy_score

import re

import os

https://www.kaggle.com/bittlingmayer/amazonreviews

print(os.listdir("../data/amazon_reviews"))

base = "../data/amazon_reviews"

2. Define a method to get the first 1000 labels, and text from the file
specified. It will return a NumPy array of labels and text:
def get_labels_and_texts(file):

labels = []

texts = []

count = 0

with open(base + '/train.ft.txt', "r") as a_file:

for line in a_file:

if count < 10000:

#stripped_line = line.strip()

#x = line.decode("utf-8")

x = line

labels.append(int(x[9]) - 1)

texts.append(x[10:].strip())

count = count+1

else:

return np.array(labels), texts

3. Apply it to train.ft.tx and test.ft.txt files:
train_labels, train_texts = get_labels_and_texts(base +

'/train.ft.txt')

test_labels, test_texts = get_labels_and_texts(base +

'/test.ft.txt')

Let us inspect the test_labels and test_textstrain_labels[0:2].
Returns array([1, 1])and train_texts[0:1] will return the first value
of the text.

Text processing
1. The first thing we need to do to process the text is to write everything in

lowercase, and then remove non-word characters. Replace these with
spaces, since most of them are going to be punctuation marks. Then,
remove any other characters (like letters with accents). It could be better
to replace some of these with regular ascii characters, but we are going to
ignore that here. If you look at the counts of the different characters, it
turns out that there are very few unusual characters in this corpus:
from common.util import normalize_texts

train_texts = normalize_texts(train_texts)

test_texts = normalize_texts(test_texts)

Now, we are going to set aside 20% of the training set for validation:
from sklearn.model_selection import train_test_split

train_texts, val_texts, train_labels, val_labels =

train_test_split(

train_texts, train_labels, random_state=57643892,

test_size=0.2)

2. Keras provides some tools for converting texts to formats that are useful
in deep learning models. We have already done some processing, so now
I will just run a Tokenizer using the top 12000 words as features:
MAX_FEATURES = 12000

tokenizer = Tokenizer(num_words=MAX_FEATURES)

tokenizer.fit_on_texts(train_texts)

train_texts = tokenizer.texts_to_sequences(train_texts)

val_texts = tokenizer.texts_to_sequences(val_texts)

test_texts = tokenizer.texts_to_sequences(test_texts)

3. In order to use batches effectively, we will need to take the sequences and
turn them into sequences of the same length. We are going to make
everything here the length of the longest sentence in the training set.
There are also different padding modes that might be useful for different
models:
MAX_LENGTH = max(len(train_ex) for train_ex in train_texts)

train_texts = pad_sequences(train_texts, maxlen=MAX_LENGTH)

val_texts = pad_sequences(val_texts, maxlen=MAX_LENGTH)

test_texts = pad_sequences(test_texts, maxlen=MAX_LENGTH)

4. We will be creating a simple RNN model, which takes in the training data
we created earlier and passes it to layers.SimpleRNN:
def build_rnn_model():

sequences = layers.Input(shape=(MAX_LENGTH,))

embedded = layers.Embedding(MAX_FEATURES, 64)(sequences)

x = layers.SimpleRNN(128)(embedded)

x = layers.Dense(32, activation='relu')(x)

x = layers.Dense(100, activation='relu')(x)

predictions = layers.Dense(1, activation='sigmoid')(x)

model = models.Model(inputs=sequences, outputs=predictions)

model.compile(

optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['binary_accuracy']

)

return model

rnn_model = build_rnn_model()

5. We will now train the model on the training text and labels and validate
on validation text and labels:
history = rnn_model.fit(

train_texts,

train_labels,

batch_size=128,

epochs=10,

validation_data=(val_texts, val_labels),)

6. We are able to achieve a validation accuracy of 0.81, which is quite
decent for a simple RNN based model:
Epoch 10/10

8000/8000 [==============================] - 19s 2ms/sample

- loss: 0.1437 - binary_accuracy: 0.9489 - val_loss: 0.6114

- val_binary_accuracy: 0.8100

7. Let us plot the accuracy and loss:
from common.plot_util import eval_metric

eval_metric(rnn_model, history, 'loss', 10)

Validation loss goes up again after a few epochs giving an indication that
the model is overfitted, as shown in figure 5.2:

Figure 5.2: Training and validation loss for simple RNN based model to predict sentiment of
Amazon reviews

8. Let us plot the accuracy for training and validation data. Validation
accuracy tapers off at 0.8 after epoch 3, as illustrated in figure 5.3:

Figure 5.3: Training and validation accuracies for simple RNN based model to predict sentiment
of Amazon reviews

We learnt how to implement a basic RNN model in TensorFlow. Next, we will
look at a more sophisticated model. Notice how the validation loss actually
increases, which is a clear sign of overfitting. We will look at the next section
and how this can be handled.

Gated recurrent unit
Gated Recurrent Unit (GRU), introduced by Cho, et al. in 2014, solves the
vanishing gradient problem found in a standard recurrent neural network. GRU
is a variation on the LSTM because both are designed similarly.
GRUs are an improved version of standard recurrent neural network.
To solve the vanishing gradient problem of a standard RNN, GRU uses the so-
called update gate and reset gate. These are the two vectors that decide what
information should be passed to the output. The special thing about them is
that they can be trained to save information from long ago. Figure 5.4
illustrates the input and outputs of GRU cells in a sequence:

Figure 5.4: GRU based cells with inputs and outputs in a sequence

To explain the mathematics behind it, we will examine a single unit from the
following recurrent neural network, shown in figure 5.5:

Figure 5.5: GRU cell

Let us first introduce the notations as shown in figure 5.6:

Figure 5.6: GRU based cells notation

Update gate
We will start by explaining the update. We will first calculate the update gate zt
for time step t using the following formula:

Zt = S(W(z) xt + U(z) ht-1)

Equation explaining the output of update gate
When xt is plugged into the network unit, it is multiplied by its own weight
W(z). The same happens for ht-1, which holds the information about the
previous t-1 units. It is multiplied by its own weight U(z). Both the results are
added together, and a sigmoid activation function is applied to obtain values
between 0 and 1. Following the preceding schema, we have the given
illustration:

Figure 5.7: GRU: elements of update gate

Reset gate
Primarily, this gate is used by the model to decide how much of the past
information to forget. To calculate it, we use the following formula:

rt = S(W(r) xt + U(r) ht-1)

This formula is the same as the one for the update gate. The difference comes
in the weights and the gate’s usage. The following schema shows where the
reset gate is:

Figure 5.8: GRU: elements of reset gate

Current memory content
Next, we will explore how the gates affect the final output. We will start with
exploring how the reset gate is used. A new memory content is introduced,
which will use the reset gate to store the relevant information from the past. It
is calculated as follows:

1. Multiply the input xt with a weight W and ht-1 with a weight U.
2. Calculate the Hadamard (elementwise) product between the reset gate rt

and Uht-1. This will determine the data to be removed from the previous
time steps. Say, we want to do a sentiment analysis on a review and the
negative sentiment is only the last few words of the review. To determine
the overall level of the sentiment from the book, we will only need the
last part of the review. As the neural network goes to the end of the text,
it will learn to assign rt vector, close to 0, ignoring the past and focusing
only on the last sentences.

3. Next, we will sum up the results of Step 1 and Step 2.
4. In the end, apply the nonlinear activation function tanh.

Figure 5.9 illustrates various elements on the memory unit in GRU:

Figure 5.9: Elements of memory unit

We looked at the various elements of a GRU network. Next, let us look at the
implementation in TensorFlow 2.7.

GRU implementation in TensorFlow 2.7
In TensorFlow 2.7, GRU is implemented under the API
tf.layers.keras.GRU. It is a subclass of RNN and an earlier version of GRU.
Figure 5.10 illustrates the GRU implementation in TensorFlow:

Figure 5.10: GRU implementation in TensorFlow

In the next section, we will build a GRU-based model for test data using
TensorFlow APIs.

Building your first GRU-based model
We will be building the first GRU-based model and comparing the accuracy
with the simple RNN:

1. Make the relevant import and define constants:
from tensorflow.python.keras import testing_utils

import warnings

warnings.filterwarnings('ignore')

from tensorflow.python import keras

import numpy as np

from tensorflow.python.keras.utils import np_utils

from tensorflow.python.keras.layers import recurrent_v2 as

rnn

from tensorflow.python.framework import dtypes

2. Notice the rnn_state_size:
batch = 100

timestep = 4

input_shape = 10

output_shape = 8

rnn_state_size = 8

epoch = 10

3. Create input and output layers with GRU with appropriate state_size:
(x_train, y_train), _ = testing_utils.get_test_data(

train_samples=batch,

test_samples=0,

input_shape=(timestep, input_shape),

num_classes=output_shape)

y_train = np_utils.to_categorical(y_train, output_shape)

layer = rnn.GRU(rnn_state_size)

inputs = keras.layers.Input(

shape=[timestep, input_shape], dtype=dtypes.float32)

outputs = layer(inputs)

4. Let us create a model with a single GRU layer as the output layer:
model = keras.models.Model(inputs, outputs)

model.summary()

5. Compile and train the model:
model.compile('rmsprop', loss='mse')

model.fit(x_train, y_train, epochs=epoch)

model.evaluate(x_train, y_train)

predictions = model.predict(x_train)

We got a basic idea of the APIs exposed for GRU implementation. Let us look
at a more real-life example in the next section.

Text processing with GRU
We will be using the same dataset we created earlier, and use GRU instead of
SimpleRNN.
The dataset is the Amazon reviews’ dataset found at the following link:
https://www.kaggle.com/muonneutrino/sentiment-analysis-with-amazon-
reviews
Please refer to the previous sections on how to load the dataset. We will create
a model that uses two layers of tf.keras.layers.GRU after the input layers
and the embedded layer:
def build_rnn_model():

sequences = layers.Input(shape=(MAX_LENGTH,))

embedded = layers.Embedding(MAX_FEATURES, 64)(sequences)

x = layers.GRU(128, return_sequences=True)(embedded)

x = layers.GRU(128)(x)

x = layers.Dense(32, activation='relu')(x)

x = layers.Dense(100, activation='relu')(x)

predictions = layers.Dense(1, activation='sigmoid')(x)

model = models.Model(inputs=sequences, outputs=predictions)

model.compile(

optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['binary_accuracy']

)

return model

rnn_model = build_rnn_model()

Next let us train this model:

history = rnn_model.fit(

train_texts,

train_labels,

batch_size=128,

epochs=10,

https://www.kaggle.com/muonneutrino/sentiment-analysis-with-amazon-reviews

validation_data=(val_texts, val_labels),)

It will give a validation accuracy of around 0.834, which is better than what
we achieved with simple RNN (0.81):
Epoch 10/10
8000/8000 [==============================] - 125s 16ms/sample -
loss: 0.0748 - binary_accuracy: 0.9786 - val_loss: 0.7409 -
val_binary_accuracy: 0.8430

Let us look at the plots as a function of epochs (refer to figure 5.11):

Figure 5.11: Training and validation loss for GRU based model to predict sentiment of the Amazon
reviews

Training and validation accuracy for text processing with the GRU model is
shown in figure 5.12:

Figure 5.12: Training and validation accuracy for GRU based model to predict sentiment of Amazon
reviews

GRU gives a binary accuracy of 0.843, as compared to 0.81 by simple RNN.
In the next section, we will look at another technique to capture the patterns in
memory as data moves through the RNN network.

Long-Term Short-Term Memory (LSTM)
A Long-Term Short-Term Memory (LSTM) has a controlled flow like a
recurrent neural network. It processes data by passing on the information as the
data propagates forward. The differences are in the operations within the
LSTM’s cells.

LSTM cell operations
These operations are used to allow the LSTM to keep or forget information.
We will go over this step-by-step.
Let us first look at a LSTM cell and its components, refer to figure 5.13:

Figure 5.13: LSTM cell

LSTM is made up of three gates–forget gate, input gate, and output gate.
Figure 5.14 illustrates the elements of a forget gate:

Figure 5.14: LSTM cell forget gate

First, sigmoid function in a LSTM cell has a forget gate. This gate is
used to decide what information should be thrown away or kept.
Information from the previous hidden state and information from the
current input is passed through the sigmoid function. Values come out
between 0 and 1. The closer to 0 means to forget, and the closer to 1
means to keep.
Next, the sigmoid and tanh functions are referred to as the input gate, as
shown in figure 5.15:

Figure 5.15: LSTM cell input gate

The last sigmoid function is the output gate, and it highlights which
information should be going to the next hidden state, refer to figure 5.16
for illustration:

Figure 5.16: LSTM cell output gate

The hidden state has information on previous inputs. The hidden state is also
used to make predictions. First, we pass the previous hidden state and ht-1 the
current input into a sigmoid function. Next, we pass the newly modified cell
state ct to the tanh function. The tanh output is multiplied with the sigmoid
output to decide what information the hidden state ht should carry. The output
is the hidden state ht. The new cell state ct and the new hidden ht is then carried
over to the next time step.

Text processing with LSTM
TensorFlow provides class layers. LSTM can be used to create an LSTM layer
as part of the sequence model or function model.
Let us look at the same Amazon reviews’ dataset, and process it using the
LSTM based model:

1. First, we will build the LSTM model with two layers:
def build_rnn_model():

sequences = layers.Input(shape=(MAX_LENGTH,))

embedded = layers.Embedding(MAX_FEATURES, 64)(sequences)

#x = layers.CuDNNGRU(128, return_sequences=True)(embedded)

#x = layers.CuDNNGRU(128)(x)

x = layers.LSTM(128, return_sequences=True)(embedded)

x = layers.LSTM(128)(x)

x = layers.Dense(32, activation='relu')(x)

x = layers.Dense(100, activation='relu')(x)

predictions = layers.Dense(1, activation='sigmoid')(x)

model = models.Model(inputs=sequences, outputs=predictions)

model.compile(

optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['binary_accuracy']

)

return model

rnn_model = build_rnn_model()

2. Train the model and observe the accuracy and loss values:
history = rnn_model.fit(

train_texts,

train_labels,

batch_size=128,

epochs=10,

validation_data=(val_texts, val_labels),)

3. Training output will give the final accuracies and losses:
Epoch 10/10

8000/8000 [==============================] - 126s

16ms/sample - loss: 0.0382 - binary_accuracy: 0.9884 -

val_loss: 0.7318 - val_binary_accuracy: 0.8430

Let us plot the losses and accuracies. Notice how the validation loss still keeps
going up in the figure 5.17:

Figure 5.17: Training and validation accuracy for Amazon review sentiment prediction with LSTM-based
network

On the other hand, validation accuracy tapers off after three iterations as shown
in figure 5.18:

Figure 5.18: Training and validation loss for Amazon review sentiment prediction with LSTM based
network

The model is clearly overfitting, which can be handled by various techniques.
While the accuracy is higher than SimpleRNN or GRU based network, there
is still scope for improving this further.

Bidirectional LSTM
Bidirectional Recurrent Neural Networks (BRNN) are a type of network
which connect two hidden layers of opposite directions to the same output. The
output layer can get information from past (backwards) and future (forward)
states, simultaneously. Invented in 1997 by Schuster and Paliwal
(https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks#c
ite_note-Schuster-1) [1], BRNNs were introduced to increase the input data
available to the network.

Text processing with bidirectional LSTM
Next, we will use a variation of LSTM called bidirectional LSTM:
def build_rnn_model():

sequences = layers.Input(shape=(MAX_LENGTH,))

embedded = layers.Embedding(MAX_FEATURES, 64)(sequences)

#x = layers.CuDNNGRU(128, return_sequences=True)(embedded)

#x = layers.CuDNNGRU(128)(x)

x = layers.Bidirectional(layers.LSTM(128))(embedded)

#x = layers.LSTM(128, return_sequences=True)(embedded)

#x = layers.LSTM(128)(x)

https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks#cite_note-Schuster-1

x = layers.Dense(32, activation='relu')(x)

x = layers.Dense(100, activation='relu')(x)

predictions = layers.Dense(1, activation='sigmoid')(x)

model = models.Model(inputs=sequences, outputs=predictions)

model.compile(

optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['binary_accuracy']

)

return model

rnn_model = build_rnn_model()

Output from the model training:
Epoch 10/10
8000/8000 [==============================] - 108s 14ms/sample -
loss: 0.0426 - binary_accuracy: 0.9864 - val_loss: 1.2382 -
val_binary_accuracy: 0.8040

Let us look at the plots for accuracy, and loss for training and validation set as
illustrated in figure 5.19:

Figure 5.19: Training and validation loss for Amazon review sentiment prediction with bidirectional
LSTM based network

Final validation accuracy of 0.8040 is actually lower than plain LSTM-based
model.
Next, we will look at the loss for the model, refer to figure 5.20, where training
and validation loss for the LSTM model is plotted:

Figure 5.20: Training and validation loss for Amazon review sentiment prediction with bidirectional
LSTM-based network

As can be seen with 128 units, the network is clearly overfitting for
bidirectional LSTM as well.

Conclusion
In this chapter, we learnt the concept of recurrent neural network and how it is
used to process sequence-based datasets. We started with the basic concept of
chain structure behind RNN. We looked at how TensorFlow exposes various
flavors of RNN– SimpleRNN, GRU, and LSTM. We applied these specific
flavors to the Amazon reviews’ dataset, and compared the results.
This forms the basis from which the reader can expand and apply RNN to
more varied problems in this domain.

Points to remember
RNN is used for processing input which has a sequence of steps.
SimpleRNN is the simplest form of RNN supported by TensorFlow.
GRU has reset gate, update gate, and memory cell.
LSTM has three gates–forget, input, and output gate.
LSTM uses Sigmoid function for the forget gate.

Multiple choice questions

1. SimpleRNN has the following gate/s:

a. Tanh function
b. Sigmoid function
c. none of these
d. a and b

2. GRU has a forget gate:

a. true
b. false

3. LSTM is considered a better performant gate because:

a. it can perform unbounded operations.
b. It doesn’t have a forget gate.
c. none of the above

Answers
1. d
2. b
3. c

Questions
1. How is GRU different from SimpleRNN?
2. What are the pre-processing steps for a text sequence to be processed by

RNN?

Key terms
RNN: Recurrent Neural Networks
LSTM: Long-Term Short-Term Memory
GRU: Gated Recurrent Unit
Sigmoid function

CHAPTER 6
Time Series Forecasting with

TensorFlow

Introduction
We have learnt in the preceding chapters how TensorFlow can be used to
process various kinds of datasets. Topology of the networks varies based on the
type of dataset and the use case. We have not covered the time series data, and
how to handle. This chapter focusses on this special kind of dataset.

Structure
In this chapter, we will discuss the following topics:

Machine learning and time series
Types of time series
Generating synthetic time series dataset
Using basic deep neural network to predict a time series dataset
RNN and how it can be used to predict a time series dataset
LSTM and time series

Objectives
After studying this chapter, you will be able to generate a time series dataset.
You will also be able to create various types of models to be able to predict
next value in the series based on the generated synthetic dataset. We will start
with the different types of time series data. This will be followed by sections
explaining the generation of time series data using TensorFlow utilities. Then,
we will look at using single and multi-layer feedforward network on the
generated dataset. In the end, we will look at how network types like RNN and
LSTM help improve accuracy of predictions.

Background
Time series datasets are everywhere. They are part of our everyday life. Let us
take an example of daily sugar levels of diabetes patients or weekly readings of
blood pressure. Figure 6.1 plots Date versus Pre-Breakfast Sugar Levels,
which is a perfect time series data example:

Figure 6.1: Example of a time series data – sugar level of a diabetes patient as a function of time

Reference link is as follows:
https://www.joeniekrofoundation.com/stroke-2/3685/attachment/diabetes-
blood-sugar-chart/
Time series could also be multi-variate, where the target variable is more than
one. This can help understand how two dependent variables change as a
function of time. Let us plot a multi-variate analysis of per capita income of
various countries. Figure 6.2 provides an example of multi-variate time series.
In this case, per capita income of various countries has been plotted as a
function of year:

https://www.joeniekrofoundation.com/stroke-2/3685/attachment/diabetes-blood-sugar-chart/

Figure 6.2: Example of a time series data-per capita income for various countries over a period of 15
years

Image (https://en.wikipedia.org/wiki/File:International_depression.png)
available under https://creativecommons.org/licenses/by-sa/3.0/ on
Wikipedia.

Machine learning and time series
The most obvious application of machine learning for the time series dataset is
forecasting a value in the future. It can be used to predict value in the past, or
impute a missing value between two data points in an existing dataset. It can
also be used to detect anomalies in a dataset. It can be used to analyze patterns
in speech and detect words from that.

Common patterns in time series
Some common patterns found in time series data are:

Trend: have a specific direction, it moves in for example Moore’s law.

https://en.wikipedia.org/wiki/File:International_depression.jpg
https://creativecommons.org/licenses/by-sa/3.0/

Seasonality: recurring patterns in predictable interval, for example,
shopping sites sales peaking on weekends.
White noise: totally random instance in an otherwise predictable time
series dataset.
Non-stationary time series: time series that changes its direction
because of a single event.

First time series notebook with synthetic data
Let us look at the features of tf.dataset, which we are going to use to create
a synthetic dataset:

1. We will start by making the imports of tensorflow and numpy libraries:
import tensorflow as tf

import numpy as np

2. We will the create a dataset with range 10:
dataset = tf.data.Dataset.range(10)

for val in dataset:

print(val.numpy())

Output will produce a range:
0

1

2

3

4

5

6

7

8

9

3. Next, we will create a dataset with window of 5 and shifted by 1:
dataset = tf.data.Dataset.range(10)

dataset = dataset.window(5, shift=1)

for window_dataset in dataset:

for val in window_dataset:

print(val.numpy(), end=" ")

print()

With the following output, you can see that the outputs are not complete
for iterations:
0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9

7 8 9

8 9

9

Drop outputs which are not complete:
dataset = tf.data.Dataset.range(10)

dataset = dataset.window(5, shift=1, drop_remainder=True)

for window_dataset in dataset:

for val in window_dataset:

print(val.numpy(), end=" ")

print()

This gives the truncated outputs as follows:
0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

4. Next, we will create dependent and independent variables:
dataset = tf.data.Dataset.range(10)

dataset = dataset.window(5, shift=1, drop_remainder=True)

dataset = dataset.flat_map(lambda window: window.batch(5))

dataset = dataset.map(lambda window: (window[:-1],

window[-1:]))

for x,y in dataset:

print(x.numpy(), y.numpy())

[0 1 2 3] [4]

[1 2 3 4] [5]

[2 3 4 5] [6]

[3 4 5 6] [7]

[4 5 6 7] [8]

[5 6 7 8] [9]

5. We want to shuffle the sequences to make it more realistic:
dataset = tf.data.Dataset.range(10)

dataset = dataset.window(5, shift=1, drop_remainder=True)

dataset = dataset.flat_map(lambda window: window.batch(5))

dataset = dataset.map(lambda window: (window[:-1],

window[-1:]))

dataset = dataset.shuffle(buffer_size=10)

for x,y in dataset:

print(x.numpy(), y.numpy())

print("y = ", y.numpy())

[3 4 5 6] [7]

[5 6 7 8] [9]

[2 3 4 5] [6]

[4 5 6 7] [8]

[0 1 2 3] [4]

[1 2 3 4] [5]

6. We will create batches as follows:
dataset = dataset.shuffle(buffer_size=10)

dataset = dataset.batch(2).prefetch(1)

for x,y in dataset:

print("x = ", x.numpy())

x = [[0 1 2 3]
[1 2 3 4]]
y = [[4]
[5]]
x = [[4 5 6 7]
[2 3 4 5]]
y = [[8]
[6]]
x = [[3 4 5 6]
[5 6 7 8]]
y = [[7]
[9]]

7. Next, we will learn these techniques to create a synthetic dataset.

Synthetic dataset
Let us create a dataset with seasonality, noise, and gradient that can be used for
our analysis:

1. Let us first create plain linear series:
time = np.arange(4 * 365 + 1, dtype="float32")

baseline = 10

series = trend(time, 0.1)

series

2. Then, plot to help us visualize:
def plot_series(time, series, format="-", start=0,

end=None):

plt.plot(time[start:end], series[start:end], format)

plt.xlabel("Time")

plt.ylabel("Value")

plt.grid(True)

Figure 6.3 shows a basic series plot output:

Figure 6.3: Basic series plot generated

3. Add baseline and seasonality:
amplitude = 50

slope = 0.05

noise_level = 10

def trend(time, slope=0):

return slope * time

def seasonal_pattern(season_time):

return np.where(season_time < 0.4,

np.sin(season_time * 2),

np.cos(season_time * 2 * np.pi),

1 / np.exp(3 * season_time))

def seasonality(time, period, amplitude=1, phase=0):

season_time = ((time + phase) % period) / period

return amplitude * seasonal_pattern(season_time)

def noise(time, noise_level=1, seed=None):

rnd = np.random.RandomState(seed)

return rnd.randn(len(time)) * noise_level

series = baseline + trend(time, slope) + seasonality(time,

period=365, amplitude=amplitude)

plot_series(time,series)

Plotting the series will give you a better idea. Note that the seasonal
pattern is a random function, which has been applied a couple of times.
Plot with the seasonality added is shown in figure 6.4:

Figure 6.4: Series plot with trend and seasonality

4. Let us now apply some noise to the series, and plot it again:
series += noise(time, noise_level, seed=42)

plot_series(time,series)

Plot with noise added to the series can be seen in figure 6.5:

Figure 6.5: Series plot with trend, seasonality and noise

5. Create a split in the dataset for training and validation:
split_time = 1000

time_train = time[:split_time]

x_train = series[:split_time]

time_valid = time[split_time:]

x_valid = series[split_time:]

window_size = 20

batch_size = 32

shuffle_buffer_size = 1000

6. Create a windowed dataset:
def windowed_dataset(series, window_size, batch_size,

shuffle_buffer):

dataset = tf.data.Dataset.from_tensor_slices(series)

dataset = dataset.window(window_size + 1, shift=1,

drop_remainder=True)

dataset = dataset.flat_map(lambda window: window.batch(

window_size + 1))

dataset = dataset.shuffle(shuffle_buffer).map(lambda

window: (window[:-1], window[-1]))

dataset = dataset.batch(batch_size).prefetch(1)

return dataset

dataset = windowed_dataset(x_train, window_size, batch_size,

shuffle_buffer_size)

print(dataset)

Single layer model to predict time series
Follow these steps:

1. Let us create a single layer Keras model:
layer1 = tf.keras.layers.Dense(1, input_shape=[window_size])

model = tf.keras.models.Sequential([layer1])

model.compile(loss="mse",

optimizer=tf.keras.optimizers.SGD(lr=1e-6, momentum=0.9))

model.fit(dataset,epochs=100,verbose=0)

print("Layer weights {}".format(l0.get_weights()))

Let us create a forecast and print against the original values:
forecast = []

for time in range(len(series) - window_size):

forecast.append(model.predict(

series[time:time + window_size][np.newaxis]))

forecast = forecast[split_time-window_size:]

results = np.array(forecast)[:, 0, 0]

plt.figure(figsize=(10, 6))

plot_series(time_valid, x_valid)

plot_series(time_valid, results)

2. Let us plot the forecasted results and the actual ones, refer to figure 6.6.
Notice how close the predictions are:

Figure 6.6: Single layer DNN – predicted versus actual values

3. Next, let us calculate some of the metrics to determine the effectiveness
of the model:
tf.keras.metrics.mean_absolute_error(x_valid,

results).numpy()

The value of MAE after executing the preceding statement will be about
8.558071.

Multiple layer model for predicting the value
Follow these steps:

1. Next, let us modify the model and include multiple layers:

dataset = windowed_dataset(x_train, window_size, batch_size,

shuffle_buffer_size)

print(dataset)

layer1 = tf.keras.layers.Dense(10, input_shape=

[window_size],activation="relu")

layer2 = tf.keras.layers.Dense(10, activation="relu")

output_layer = tf.keras.layers.Dense(1)

model = tf.keras.models.Sequential([layer1,layer2,

output_layer])

model.compile(loss="mse",

optimizer=tf.keras.optimizers.SGD(lr=1e-6, momentum=0.9))

model.fit(dataset,epochs=100,verbose=0)

2. With this model, the predicted result is similar to the following output:
forecast = []

for time in range(len(series) - window_size):

forecast.append(model.predict(series[time:time +

window_size][np.newaxis]))

forecast = forecast[split_time-window_size:]

results = np.array(forecast)[:, 0, 0]

plt.figure(figsize=(10, 6))

plot_series(time_valid, x_valid)

plot_series(time_valid, results)

3. The output is very similar to the single layer above, albeit with lower
MAE. Figure 6.7 shows the output of multi-layer DNN and the predicted
line:

Figure 6.7: Multi-layer DNN – predicted versus actual values

4. On calculating the MAE loss using
tf.keras.metrics.mean_absolute_error(x_valid,
results).numpy(), we got a value of 8.635604.

5. Let us also calculate the loss as a function of learning rate. We will be
using the learning rate scheduler:
lr_scheduler = tf.keras.callbacks.LearningRateScheduler(

lambda epoch: 1e-8 * 10**(epoch / 20))

model.compile(loss="mse",

optimizer=tf.keras.optimizers.SGD(lr=1e-6,

momentum=0.9))

history = model.fit(dataset,epochs=100,

verbose=0,

callbacks=[lr_scheduler])

6. Once we have the history of loss values for each epoch, let us plot them
on a semilogx scale:
lrs = 1e-8 * (10 ** (np.arange(100) / 20))

plt.semilogx(lrs, history.history["loss"])

plt.axis([1e-8, 1e-3, 0, 300])

Figure 6.8 is the output which shows that the loss remains almost flat,
and after 1e-5 climbs up again:

Figure 6.8: Multi-layer DNN – predicted versus actual values

7. Let us change the learning rate to 1e-5, and see the output:
model.compile(loss="mse",

optimizer=tf.keras.optimizers.SGD(lr= 1e-5, momentum=0.9))

history = model.fit(dataset,epochs=100,verbose=0)

Plotting the history will show the graph:
loss = history.history['loss']

epochs = range(len(loss))

plt.plot(epochs,loss,'b')

As you can see in figure 6.9, the loss remains more or less fluctuating in
the same range without any improvement:

Figure 6.9: Loss as a function of epochs for learning rate of 1e-5

8. Let us look at loss as a function of epochs for various learning rates:
lr_array = [1e-4,1e-5,1e-6,8e-6,1e-7,1e-8]

history_array = []

for _lr in lr_array:

model.compile(loss="mse", optimizer=tf.keras.optimizers.

SGD(lr=_lr,

momentum=0.9))

_history = model.fit(dataset,epochs=100,verbose=0)

_loss = _history.history['loss']

history_array.append(_loss)

for i in range(0,5):

plt.plot(epochs,history_array[i],label=lr_array[i])

plt.legend(bbox_to_anchor=(1.05, 1))

plt.title('Loss vs Epochs for various Learning Rates')

Figure 6.10 shows how the loss varies as a function of various learning
rates, it settles down and around 0.0765 for 1e-07 and 1e-08:

Figure 6.10: Loss as a function of epochs for various learning rates

In the next section, we will look at how to process the time series dataset using
more sophisticated networks like Recurrent Neural Networks (RNN).

RNN for predicting the time series data
A Recurrent Neural Network, also known as RNN, is a neural network that
contains recurrent layers. These are designed to sequentially process a
sequence of inputs. RNNs are quite flexible, able to process all kinds of
sequences. They can be used for predicting texts, as we saw earlier. In this
section, we'll use them to process the time series dataset we created.
This example will build an RNN which contains two recurrent layers and a
dense layer, which will serve as the output layer. An RNN can be fed batches

of sequences, and the network will output a batch of forecasts. One difference
from DNNs, that we saw earlier, is that the full input shape is three-
dimensional. The first dimension is the batch size, the second is timestamp,
and the third is the dimensionality of the inputs for each time step. In case of a
univariate time series, this value will be one; for multivariate, it'll be more.
Figure 6.11 illustrates a simple three layered RNN:

Figure 6.11: Recurrent layers in a three layer RNN

Figure 6.12 illustrates how multiple recurrent layers form an RNN:

Figure 6.12: Multiple recurrent layers in an RNN

Even though it looks like it has a lot of cells, it is actually one cell that is used
repeatedly. At each step, the input is fed into the cell. There are two outputs
that will come out the state output and the actual output .
The RNN network, as shown, starts with 0 state, input of, and output of first
cell and state of . This continues for each time step, till we reach the end of the
time step.
The inputs which go into an RNN are three dimensional. For example, if we
have a window size of 30 timestamps and we create a batch of four, the shape
will be 4 x 30 x1, and each timestamp, the memory cell input will be a four by
one matrix.
The cell will also take the input of the state matrix from the previous step. In
the first step, the state matrix will be zero. For subsequent ones, it will be the
output from the memory cell. But other than the state vector, the cell will
output a Y value. Figure 6.13 illustrates the data in batch mode, where each
time is step being fed into recurrent layers in a RNN:

Figure 6.13: Multiple recurrent layers in an RNN

In the next section, we will look at how RNN can be used for time series
prediction of synthetic dataset.

Return sequences in RNN, and application to time series
Simple RNN layers in TensorFlow can either return a single output or
sequence of outputs depending on the parameter return_sequence:
tf.keras.layers.SimpleRNN(40, return_sequences=True),

tf.keras.layers.SimpleRNN(40),

In the first line of code, the layer’s output will be a sequence as shown in the
following figure 6.14:

Figure 6.14: RNN layer with multiple outputs going into same dense layer at each time stamp

If parameter input_sequence=false, there will be only one output coming out
of the final step in the RNN network.
Keras handles this feature by using the same dense layer at each time stamp.
It might look like multiple dense layers, but it's the same one that is being
reused at each time step. This gives the topology called a sequence-to-
sequence RNN. It's fed a batch of sequences, and it returns a batch of
sequences of the same length:

Figure: 6.15: Multi-layer feedforward network on the generated dataset: RNN layer which has a single
output

Figure 6.15 is an example of a recurrent layer being fed the output from the
previous layer only. There is only one output coming out of the RNN, and
going into the dense layer.

Applying Lambda function
We also want to learn how to apply Lambda function to the output of a RNN
layer. This will help apply simple RNN to the synthetic dataset. When we
implemented the window dataset helper function earlier, it returned two-
dimensional batches of windows on the data. First parameter being the batch
size, and the second, the number of timestamps.
An RNN, on the other hand, expects three-dimensions: batch size, the number
of timestamps, and the series dimensionality.
This can be fixed without rewriting our window dataset helper function by
using Lambda layer.
We expand the array by one dimension using the lambda function. Setting
input shape to None, means that the model can take sequences of any length.
We can help training by scaling up the outputs by 100. The default activation
function of the RNN layers is tanh – this is a hyperbolic tangent activation.

This function outputs values between negative one and one:
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),

input_shape=[None]),

tf.keras.layers.SimpleRNN(40, return_sequences=True),

tf.keras.layers.SimpleRNN(40),

tf.keras.layers.Dense(1),

tf.keras.layers.Lambda(lambda x: x * 100.0)

The preceding code listing shows how the Lambda functions can be used as
the first layer, and the last layer.

Adjusting the learning rate dynamically
Instead of having a fixed learning rate, we can have a dynamic learning rate
that is controlled by a learning rate scheduler:
optimizer = tf.keras.optimizers.SGD(lr=5e-5, momentum=0.9)

model.compile(loss=tf.keras.losses.Huber(),

optimizer=optimizer,

metrics=["mae"])

We are using a different loss function called Huber, it is less sensitive to
outliers. In the following example, it varies between 1e-8 and 1e-4. The
following figure shows how the loss is minimized for a learning rate of about
1e-5:

Figure 6.16: Loss versus learning rate for RNN

Putting it all together, and compiling the model leads to the following output:
model = tf.keras.models.Sequential([

tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),

input_shape=[None]),

tf.keras.layers.SimpleRNN(40, return_sequences=True),

tf.keras.layers.SimpleRNN(40),

tf.keras.layers.Dense(1),

tf.keras.layers.Lambda(lambda x: x * 100.0)

])

optimizer = tf.keras.optimizers.SGD(lr=5e-5, momentum=0.9)

model.compile(loss=tf.keras.losses.Huber(),

optimizer=optimizer,

metrics=["mae"])

history = model.fit(dataset,epochs=400)

Let us plot the actual value versus prediction:

forecast=[]

for time in range(len(series) - window_size):

forecast.append(model.predict(series[time:time + window_size]

[np.newaxis]))

forecast = forecast[split_time-window_size:]

results = np.array(forecast)[:, 0, 0]

plt.figure(figsize=(10, 6))

plt.title('Actual vs Predicted value for SimpleRNN Network')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plot_series(time_valid, x_valid)

plot_series(time_valid, results)

Output of the plot is shown in the following figure:

Figure 6.17: Prediction versus actual for RNN

We will also calculate the value of MAE using
tf.keras.metrics.mean_absolute_error(x_valid, results).numpy().
We got a value of 7.3184185, which is much lower than a single DNN
9.342689.
Plot the loss

1. Let us plot the mae and loss as a function of epochs:
import matplotlib.image as mpimg

import matplotlib.pyplot as plt

#---

Retrieve a list of list results on training and test data

sets for each training epoch

#---

mae=history.history['mae']

loss=history.history['loss']

epochs=range(len(loss)) # Get number of epochs

#--

Plot MAE and Loss

#--

plt.plot(epochs, mae, 'r')

plt.plot(epochs, loss, 'b')

plt.title('MAE and Loss')

plt.xlabel("Epochs")

plt.ylabel("Accuracy")

plt.legend(["MAE", "Loss"])

plt.figure()

epochs_zoom = epochs[200:]

mae_zoom = mae[200:]

loss_zoom = loss[200:]

#--

Plot Zoomed MAE and Loss

#--

plt.plot(epochs_zoom, mae_zoom, 'r')

plt.plot(epochs_zoom, loss_zoom, 'b')

plt.title('MAE and Loss')

plt.xlabel("Epochs")

plt.ylabel("Accuracy")

plt.legend(["MAE", "Loss"])

plt.figure()

Output of the preceding code in figure 6.18 shows how the loss
minimizes by about 400 epochs:

Figure 6.18: Loss for simple RNN as a function of epochs, right plot shows plot from 200 to 400
epochs

We can also see that MAE and loss is on its way of converging to 6.6. In the
next section, we look at how LSTMs can be used in handling the time series
data.

LSTM and time series

We have learnt that RNN provides improvements over deep neural fully
connected networks. We learnt that RNN processes the input from subsequent
time stamps in a batch, and gives output Yt and cell state Ht. Figure 6.19
illustrates how state Ht is copied:

Figure 6.19: RNN network with cell state H copied from one cell to another

While the cell state is carried forward, its effect is diminished. In LSTM, cell
state is carried over right through the cells. This state can move in one
direction, where the LSTM is called unidirectional as shown in figure 6.20:

Figure 6.20: Unidirectional LSTM network

In case of bidirectional LSTM network, it moves forward as well as
backwards between cells (refer to figure 6.21):

Figure 6.21: Bidirectional LSTM network

Process synthetic dataset with LSTM
Let us apply LSTM to the synthetic dataset we created earlier. TensorFlow
comes with an inbuilt implementation of LSTM layer, which we are planning

to use:

from synthetic_dataset_util import get_series

from synthetic_dataset_util import get_x_train_x_valid

series = get_series()

split_time = 1000

x_train, x_valid = get_x_train_x_valid()

window_size = 20

batch_size = 32

shuffle_buffer_size = 1000

tf.keras.backend.clear_session()

tf.random.set_seed(51)

np.random.seed(51)

from synthetic_dataset_util import windowed_dataset

tf.keras.backend.clear_session()

dataset = windowed_dataset(x_train, window_size, batch_size,

shuffle_buffer_size)

Let us create our LSTM based sequence model:

model = tf.keras.models.Sequential([

tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1),

input_shape=[None]),

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32,

return_sequences=True)),

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),

tf.keras.layers.Dense(1),

tf.keras.layers.Lambda(lambda x: x * 100.0)])

We have bidirectional LSTM layers with 32 cells. The first one returns
sequences, while the second one gives a single output from the last layer:
lr_schedule = tf.keras.callbacks.LearningRateScheduler(

lambda epoch: 1e-8 * 10**(epoch / 20))

optimizer = tf.keras.optimizers.SGD(lr=1e-8, momentum=0.9)

model.compile(loss=tf.keras.losses.Huber(),

optimizer=optimizer,

metrics=["mae"])

history = model.fit(dataset, epochs=100, callbacks=[lr_schedule])

Let us plot the loss for various learning rates:
plt.semilogx(history.history["lr"], history.history["loss"])

plt.axis([1e-8, 1e-4, 0, 30])

We can see that the loss minimizes around 1e-5. Figure 6.22 shows the plot of
loss versus learning rate for RNN:

Figure 6.22: Semilogx plot for loss versus learning rate for RNN

For this network, the plot of forecast versus actual looks very similar with a
lower MAE:
forecast = []

results = []

for time in range(len(series) – window_size):

forecast.append(model.predict(series[time:time + window_size]

[np.newaxis]))

forecast = forecast[split_time-window_size:]

results = np.array(forecast)[:, 0, 0]

plt.figure(figsize=(10, 6))

plot_series(time_valid, x_valid)

plot_series(time_valid, results)

The output of the two plots is as shown in the following figure:

Figure 6.23: Real versus predicted plot for the dataset

Next, let us look at the MAE:
tf.keras.metrics.mean_absolute_error(x_valid, results).numpy().
This is coming to around 5.8380394. We will also plot MAE and loss as a
function of iterations:

Figure 6.24: MAE and loss as a function of epochs for bidirectional LSTM

With this analysis, we can conclude that LSTM provides the most state or the
art accuracy for this simple time series synthetic data we analyzed.

Conclusion

In this chapter, we learnt how to use various techniques in TensorFlow, like
RNN and LSTM, to predict values for a time series dataset. We learnt how to
leverage tf.dataset to create a windowed dataset, and processed it with
various topologies and compared the results.

References
Time series: https://en.wikipedia.org/wiki/Time_series.
tf.keras.layers.LSTM:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM.
Recurrent Neural Networks (RNN) with Keras:
https://www.tensorflow.org/guide/keras/rnn.
Sequences, Time Series and Prediction:
https://www.coursera.org/learn/tensorflow-sequences-time-series-
and-prediction/home/welcome.

Points to remember
A time series data needs a special kind of network which can retain state.
RNN and LSTM are such networks that maintain state across
timestamps.

Multiple choice questions
1. LSTM is the most effective to predict time series:

a. true
b. false

2. Simple RNN always returns sequences:

a. true
b. false

3. If X is the standard notation for the input to an RNN, what are the
standard notations for the outputs?

a.

b. H

https://en.wikipedia.org/wiki/Time_series
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/guide/keras/rnn
https://www.coursera.org/learn/tensorflow-sequences-time-series-and-prediction/home/welcome

c. and H

4. The function of a Lambda layer in a neural network is:

a. to execute arbitrary code during training
b. to change the shape of the input
c. to allow pausing the operation
d. none of the above

5. How do you clear temporary variables created in a TensorFlow
session?

a. tf.clear_session()
b. tf.keras.clear_session()
c. tf.cache.clear_session()

Answers
1. b
2. b
3. c
4. a
5. b

Questions
1. What are the various techniques to handle a time series data in

TensorFlow?
2. Does adding more RNN layers increase the accuracy of the output for the

time series data?
3. What is a windowed dataset?
4. What is a bidirectional layer?

Key terms
RNN: Recurrent Neural Networks
LSTM: Long-Term Short-Term Memory

CHAPTER 7
Distributed Training

Introduction
In this chapter you will learn how TensorFlow supports multiple GPUs and CPUs
on same or multiple devices to parallelize training. You will learn about the
implementation of Mirrored Strategy as well as an example of distributed training
with TensorFlow using MNIST dataset as an example. You will also learn about
training with multiple workers using high level Keras based APIs.

Structure
In this chapter, will discuss the following topics:

Overview of distributed training support in TensorFlow
Implementation specifics
How the implementation handles single and multi-device distributed training
Code walk-through of the underlying implementation of MirroredStrategy
Using distributed training for MNIST classification on AWS
Multiple-worker training with Keras

Objectives
After studying this unit, you should be able to understand how TensorFlow
distributed implementation works. You will learn about the various strategies like
mirror strategy and TPU strategy available under the TensorFlow distributed. You
will also understand the implementation details, and use a strategy with a well-
known use case like MNIST classification.

Introduction to distributed TensorFlow
To overcome the limitation posed by training a large dataset on a single GPU or
TPU, TensorFlow supports distributed training through standard APIs. There is a
standard class tf.distribute.Strategy entry point for all distributed training
implementations. It helps in distributing data across GPUs/TPUs for training. TPU

stands for Tensor Processing Unit. It is an AI accelerator application specific
integrated unit developed by Google for neural network machine learning use cases.
It is available through Google Cloud: Compute Engine, Kaggle, and Google
Colab based notebooks.

Types of strategies
There are two common patterns in distributed training—sync and async. In sync
training, all workers train over different input data slides in sync and aggregate
gradients at each step. In async training, all workers train asynchronously and
update variables. Sync training is supported using all-reduce, and async with
parameter server architecture.
There are six strategies available:

Training API Mirrored
strategy

TPU
strategy

Multi-worker
mirrored
strategy

Central storage
strategy

Parameter
server

strategy

Keras API Supported Supported Experimental
support

Experimental
support

Supported in
2.3

Custom training
loop

Supported Supported Experimental
support

Experimental
support

Supported in
2.3

Estimator API Limited
support

Not
supported

Limited support

Table 7.1: Six strategies and the support in various training APIs

Let us go through each one of them in more detail in the next few sections.

Mirror strategy
Mirror strategy is the base strategy object to be used while distributing variable
updates across GPUs, all within a single machine. Most of the cloud VMs have a
limitation of 8 GPUs per machine; the reference link is as follows:
https://cloud.google.com/compute/docs/gpus/
The following figure 7.1 illustrates the basic building blocks of mirror strategy:

https://cloud.google.com/compute/docs/gpus/

Figure 7.1: Building blocks of mirror strategy

Implemented in class tf.distribute.MirroredStrategy, it extends the base class
tf.distribute.Strategy.
This strategy is typically used for training on one machine with multiple GPUs.
For TPUs, use tf.distribute.TPUStrategy. To use MirroredStrategy with
multiple workers, we will look at
tf.distribute.experimental.MultiWorkerMirroredStrategy.
For example, a variable created under a MirroredStrategy is a MirroredVariable.
If no devices are specified in the constructor argument of the strategy, it will use all
the available GPUs. If no GPUs are found, it will use the available CPUs. Note that
TensorFlow treats all CPUs on a machine as a single device and uses threads
internally for parallelism. The following code shows how to initialize the
MirroredStrategy:
mirrored_strategy = tf.dis tribute.MirroredStrategy()

Figure 7.2 illustrates the distribution strategy followed depending on the
distribution strategy flag, number of workers, and number of GPUs available:

Figure 7.2: Choosing the right strategy for distributed training

In MirroredStrategy, there is one worker responsible for updating the
MirroredVariable based on part of the dataset passed to that GPU.
This implementation of MirroredStrategy reduces to one GPU along edges in a
hierarchy. Results are broadcast back to each GPU along the same path. Tensors are
repacked or aggregated for more efficient cross-device transportation before
performing all-reduce:
tf.distribute.HierarchicalCopyAllReduce(

num_packs=1

)

Single-worker strategy with MirroredVariable is illustrated in the figure 7.3:

Figure 7.3: Single worker updating MirroredVariable across multiple GPUs

In the next section, we look at multi-worker mirrored strategy.

Multi-worker mirrored strategy
This is a distribution strategy for synchronous training on multiple workers. It
inherits from tf.distribute.Strategy. The following figure 7.4 shows pre-
conditions for a multi-worker strategy:

multiple GPUs
multiple workers

Figure 7.4: Choosing the multi-worker strategy and TPU strategy

Next, let us look at various techniques to implement sharing of variables in a multi-
worker scenario.

Collective communication in a multi-worker mirrored strategy
It is a parameter implemented in class.
tf.distribute.experimental.CollectiveCommunication, and used as part of

MultiWorkerMirroredStrategy to communicate between GPUs. The following
three strategies are available:

AUTO: Automatic runtime choices
NCCL: ncclAllReduce for reducing the values and ring algorithm for all
gather (gathering all values)
RING: rng all reduce (reducing all values) and ring all gather (collating all
values) algorithm

Collective communication routines are common patterns of data transfer among
multi-processor setups, especially GPUs. If you have experience with Message
Passing Interface (MPI), then you are already familiar with several collective
operations. As an example, the all-reduce routine starts with independent arrays of
N values on each of K processors, and it ends with identical arrays S of N values, for
each processor k. Refer to the following figure 7.5:

Figure 7.5: All-reduce routine

Another common collective routine is all-gather. In this routine, each of K
processors begins with an independent array of N values, and collects data from all
other processors, and forms a result of dimension N*K, as shown in the figure 7.6:

Figure 7.6: All-gather routine

In the next section, we will look at all-reduce algorithm in more detail.

Ring all reduce algorithm
There are four workers A, B, C, and D passing data a0...a3, b0...b3, c0...c3, and
d0...d3:

Figure 7.7: Communication between various works in a ring all reduce algorithm

Let us look at each step individually.
The first share-reduce step would have process A sending a0 to process B, process
B sending b1 to process C, and so on. Refer to the following figure 7.8:

Figure 7.8: Communication between various works in a ring of all-reduce algorithm, step 1

After each process receives the data from the previous process, it applies the reduce
operator, and then proceeds to send it again to the next process in the ring.
Remember that in our sample, the reduce operator is a sum, as shown in the figure
7.9:

Figure 7.9: Communication between various works in a ring of all-reduce algorithm, step 2

Each process sends an intermediate result of the reduce operation.
It is important that our reduce operator is associative
(https://en.wikipedia.org/wiki/Associative_property) and commutative
(https://en.wikipedia.org/wiki/Commutative_property) otherwise, you cannot
carry along the intermediate result from process to process. The share-reduce
phase finishes when each process holds the complete reduction of chunk i. At this
point, each process holds a part of the end result. It visually looks something like
this:

Figure 7.10: Communication between various works in a ring of all-reduce algorithm, step 3

The next step is to share the reduced values across four workers as shown in the
figure 7.11:

https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Commutative_property

Figure 7.11: Communication between various works in a ring of all-reduce algorithm, step 4

Implementation of multi-worker strategy in TensorFlow described previously is
implemented using the following class:
multiworker_strategy =

tf.distribute.experimental.MultiWorkerMirroredStrategy(

tf.distribute.experimental.CollectiveCommunication.NCCL)

You can also optionally pass the collective communication strategy. We passed
NCCL in the case.

Code walk-through of MirroredStrategy
Let us do a code walkthrough of the MirroredStrategy implementation

MirroredStrategy initialization: Initialize constructor with a list of GPUs:
tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]).
Figure 7.12 shows the sequence of initializing MirroredStrategy.
MirroredStrategy constructor calls MirroredExtended which calls
StrategyExtendedV1:

Figure 7.12: Initialization of mirror strategy

Both of these are internal classes and not exposed.
Also, a check is made if the graph is eagerly executing. In an eagerly
executing graph, only local devices are allowed. Figure 7.13 illustrates the
initialization for mirror strategy:

Figure 7.13: Initialization of mirror strategy: device resolution

In the next step, we resolve the devices to the full spec as needed by
TensorFlow: hosts, replica, and tasks. Figure 7.14 illustrates initialization
strategy to be followed depending on the number of workers:

Figure 7.14: Initialization of mirror strategy: device resolution and worker initialization

A check is made to see if the device list has single or more workers. Next, let
us look at the logic behind the initialization of a single worker.
To initialize single worker, a list of devices is passed to it, and it initializes the
following variables:
self._devices

self._input_workers

self._indferred_cross_device_ops

self._host_input_device

In our case, we passed the following devices:

('/job:localhost/replica:0/task:0/device:GPU:0',

'/job:localhost/replica:0/task:0/device:GPU:1')

job:localhost decides that all devices are local. In our case, both the devices
are mapped to one worker device
/job:localhost/replica:0/task:0/device:GPU:0.
Figure 7.15 shows how single worked initialization happens:

Figure 7.15: Initialization of mirror strategy: single worker initialization

Inferred cross device ops is inferred as NcclAllReduce and is stored in the
variable self._indferred_cross_device_ops.
Set the mirror strategy in the gauge cell: This value is also set in the gauge
cell of the distribution_strategy_gauge. Sequence diagram explaining
MirroredStrategy gauge cell interaction is shown in the figure 7.16:

Figure 7.16: Initialization of mirror strategy: Set mirror strategy in the gauge cell

With this, we come to the end of how TensorFlow MirroredStrategy gets
initialized. Most of these inner workings are opaque to the user of the library.

Running MirroredStrategy on multi CPU AWS virtual
machine
Let us create a virtual machine with multiple virtual machines, install TensorFlow
and Jupyter, and run MNIST classification with multi-device mirror strategy.

Launching a VM: Follow these steps:

1. We chose Ubuntu 18.04 Deep Learning AMI as shown in the figure
7.17:

Figure 7.17: AMI machine in AWS

2. After choosing the AMI, choose the instance type as shown in figure
7.18:

Figure 7.18: Choose the instance type for the VM, we chose t2.micro

3. Keep Steps 3, 4, 5, and 6 default, and go to Step 7. Review and launch as
shown in figure 7.19:

Figure 7.19: Summary panel before launching the VM on EC2

4. Once the VM has been launched, SSH into it using the .pem file:
ssh -i rd_app.pem ubuntu@xx.xxx.xxx.xx

5. Make sure Conda is downloaded and installed from the following link:
https://docs.anaconda.com/anaconda/install/linux/

6. Set password for Jupyter. Jupyter will be in ~/anaconda3/bin directory:
jupyter config password

7. Launch Jupyter as a background process:
jupyter notebook&

8. Redirect the output of Jupyter and TensorBoard to the local browser:
ssh -i rd_app.pem ubuntu@xx.xxx.xxx.xx -L

8889:127.0.0.1:8888

ssh -i rd_app.pem ubuntu@ xx.xxx.xxx.xx -L

6006:127.0.0.1:6006

Let us execute the following commands in the Jupyter notebook, in the next section.

Define the imports: Start with defining the imports:
import tensorflow_datasets as tfds

https://docs.anaconda.com/anaconda/install/linux/

import tensorflow as tf

import os

First, let us load the dataset using tensorflow_dataset.
Download the dataset: We will use tensorflow_datasets to load the dataset
in tf.data format. Loading along with the data is metadata as well. In our
case, we had to install first:
datasets, info = tfds.load(name='mnist', with_info=True,

as_supervised=True)

mnist_train, mnist_test = datasets['train'], datasets['test']

Define MirrorStrategy: Define a MirrorStrategy with two devices:
strategy = tf.distribute.MirroredStrategy(devices=["/CPU:0",

"/CPU:1"])

Output will show the fully qualified names of the devices with the IP address
and the replica name and task:
INFO:tensorflow:Using MirroredStrategy with devices

(‘/job:localhost/replica:0/task:0/device:CPU:0’,

‘/job:localhost/replica:0/task:0/device:CPU:1’)

Let us print the devices. You can see the output is 2, in this case for our
setup:
print('Number of devices:

{}'.format(strategy.num_replicas_in_sync))

Number of devices: 2

Define the number of training and test examples, buffer size, and batch size,
per replica:
num_train_examples = info.splits['train'].num_examples

num_test_examples = info.splits['test'].num_examples

BUFFER_SIZE = 10000

BATCH_SIZE_PER_REPLICA = 64

BATCH_SIZE = BATCH_SIZE_PER_REPLICA *

strategy.num_replicas_in_sync

Scale function to scale down the image:
def scale(image, label):

image = tf.cast(image, tf.float32)

image /= 255

return image, label

This will help us define the final training and test dataset, which is used for
model training:
train_dataset =

mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_

SIZE)

eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)

Define the model with strategy in scope: The next step is what differentiates
distributed training from regular singe device training. Model creation and
compilation is done within the strategy.scope():
with strategy.scope():

model = tf.keras.Sequential([

tf.keras.layers.Conv2D(32, 3, activation='relu',

input_shape=(28, 28, 1)),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(64, activation='relu'),

tf.keras.layers.Dense(10)

])

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentrop

y(from_logits=True),

optimizer=tf.keras.optimizers.Adam(),

metrics=['accuracy'])

def decay(epoch):

if epoch < 3:

return 1e-3

elif epoch >= 3 and epoch < 7:

return 1e-4

else:

return 1e-5

class Print_LR(tf.keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs=None):

print('\nLearning rate for epoch {} is {}'.format(epoch + 1,

model.optimizer.lr.numpy()))

checkpoint_dir = './training_checkpoints'

Name of the checkpoint files

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

callbacks = [

tf.keras.callbacks.TensorBoard(log_dir='./logs'),

tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,

save_weights_only=True),

tf.keras.callbacks.LearningRateScheduler(decay),

Print_LR()

]

With all the callbacks defined, let us get down the training of the model.

Train the model: We will call model.fit to train the model, passing the
callbacks defined in the previous section:
model.fit(train_dataset, epochs=12, callbacks=callbacks)

The output of the various epochs has been shown as follows:
Epoch 1/12
469/Unknown - 24s 51ms/step - accuracy: 0.9259 - loss: 0.2662
Learning rate for epoch 1 is 0.0010000000474974513
469/469 [==============================] - 24s 51ms/step -
accuracy: 0.9259 - loss: 0.2662 - lr: 0.0010
Epoch 2/12
469/469 [==============================] - ETA: 0s - accuracy:
0.9753 - loss: 0.0843
Learning rate for epoch 2 is 0.0010000000474974513
469/469 [==============================] - 14s 31ms/step -
accuracy: 0.9753 - loss: 0.0843 - lr: 0.0010
469/469 [==============================] - 18s 38ms/step -
accuracy: 0.9927 - loss: 0.0278 - lr: 1.0000e-05
Epoch 12/12
468/469 [============================>.] - ETA: 0s - accuracy:
0.9929 - loss: 0.0277
Learning rate for epoch 12 is 9.999999747378752e-06
469/469 [==============================] - 13s 29ms/step -
accuracy: 0.9929 - loss: 0.0277 - lr: 1.0000e-05

We are able to get an accuracy of 0.9929. Let us look at the training and
accuracy as a function of epochs with TensorBoard:
!tensorboard --logdir='./logs'

The TensorBoard output is shown in the following figure 7.20:

Figure 7.20: TensorBoard showing accuracy and loss as a function of epochs

Multi-worker training with Keras with two processes
Overview: This section demonstrates multi-worker distributed training with
Keras model using tf.distribute.Strategy API,
tf.distribute.experimental.MultiWorkerMirroredStrategy. Using this
strategy, a Keras model that has been designed to run on single-worker can
seamlessly work on multiple-workers with a very minimal code change. We
have modified the original sample available at the following link:
https://www.tensorflow.org/guide/distributed_training
Setup: First, let us make the necessary imports:
import json

https://www.tensorflow.org/guide/distributed_training

import os

import sys

Before importing TensorFlow, let us make a few changes to the environment.
We will have to disable all GPUs. This will prevent errors caused by the
workers, all trying to use the same GPU. For an actual application, each
worker would be on a different machine:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

Reset the TF_CONFIG environment variable. We will use this later to configure
the runtime:
os.environ.pop('TF_CONFIG', None)

Make sure that the current directory is on Python's path. This will allow the
notebook to import the files written by %%writefile later:
if '.' not in sys.path:

sys.path.insert(0, '.')

Import TensorFlow and check the version:
import tensorflow as tf

tf.__version__

'2.7.0'

MNIST dataset and model definition
Create an mnist.py file with a simple CNN model and dataset loaded using
tf.keras.datasets.mnist.load_data(). This file will be used by the worker-
processes in this example:
%%writefile mnist.py

import os

import tensorflow as tf

import numpy as np

def mnist_dataset(batch_size):

(x_train, y_train), _ = tf.keras.datasets.mnist.load_data()

The `x` arrays are in uint8 and have values in the range [0, 255].
You need to convert them to float32 with values in the range [0,
1]
x_train = x_train / np.float32(255)

y_train = y_train.astype(np.int64)

train_dataset = tf.data.Dataset.from_tensor_slices(

(x_train, y_train)).shuffle(60000).repeat().batch(batch_size)

return train_dataset

def build_and_compile_cnn_model():

model = tf.keras.Sequential([

tf.keras.Input(shape=(28, 28)),

tf.keras.layers.Reshape(target_shape=(28, 28, 1)),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10)

])

model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Tru

e),

optimizer=tf.keras.optimizers.SGD(learning_rate=0.001),

metrics=['accuracy'])

return model

It will create a file mnist.py:
Writing mnist.py

Train the model for a small number of epochs and observe the results of a single
worker for verification. With each epoch, the loss drops, and the accuracy increases:
import mnist

batch_size = 64

single_worker_dataset = mnist.mnist_dataset(batch_size)

single_worker_model = mnist.build_and_compile_cnn_model()

single_worker_model.fit(single_worker_dataset, epochs=3,

steps_per_epoch=10)

Epoch 1/3
10/10 [==============================] - 0s 39ms/step - loss: 2.2927
- accuracy: 0.1359
Epoch 2/3
10/10 [==============================] - 0s 39ms/step - loss: 2.2841
- accuracy: 0.1781
Epoch 3/3
10/10 [==============================] - 0s 38ms/step - loss: 2.2771
- accuracy: 0.2234

Multi-worker configuration with two workers
Let us enter the world of multi-worker training. In TensorFlow, the TF_CONFIG
environment variable is required for training on multiple machines, each of which
possibly has a different role. TF_CONFIG is a JSON string used to specify the cluster
configuration on each worker that is part of the cluster. Example configuration:
tf_config = {

'cluster': {

'worker': ['localhost:11111', 'localhost:22222']

},

'task': {'type': 'worker', 'index': 0}

}

TF_CONFIG serialized as a JSON string:
json.dumps(tf_config)

'{"cluster": {"worker": ["localhost:11111", "localhost:22222"]},

"task": {"type": "worker", "index": 0}}'

There are two components of TF_CONFIG: cluster and task

cluster is the same for all workers and provides information about the training
cluster, which is a dict consisting of different types of jobs, such as worker. In
multi-worker training with MultiWorkerMirroredStrategy, there is usually
one worker that takes on a little more responsibility like saving checkpoint
and writing summary file for TensorBoard in addition to what a regular
worker does. Such a worker is referred to as the chief worker, and it is
customary that the worker with index 0 is appointed as the chief worker (in
fact, this is how tf.distribute.Strategy is implemented).
task provides information of the current task and is different on each worker.
It specifies the type and index of that worker.

In this example, we will set the task type to worker and the task index to 0. This
machine is the first worker. It will be appointed as the chief worker and does more
work than the others.
Note that other machines will need to have the TF_CONFIG environment variable set
as well, and it should have the same cluster dict, but different task type or task
index, depending on what the roles of those machines are.
For illustration purposes, this sample shows how one may set a TF_CONFIG with two
workers on localhost. In practice, users would create multiple workers on external
IP addresses/ports and set TF_CONFIG on each worker appropriately.
In this example, you will use two workers, the first worker's TF_CONFIG is shown
earlier. For the second worker, you would set tf_config['task']['index']=1.
The preceding tf_config is just a local variable in Python. To use it to configure
training, this dictionary needs to be serialized as JSON, and placed in the TF_CONFIG
environment variable.

Environment variables and subprocesses in notebooks
Subprocesses inherit environment variables from their parents. So, if you set an
environment variable in this Jupyter notebook process:

os.environ['GREETINGS'] = 'Hello TensorFlow!'

You can access the environment variable from a subprocess:
%%bash

echo ${GREETINGS}

Hello TensorFlow!

In the next section, you'll use this to pass the TF_CONFIG to the worker subprocesses.
You would never really launch your jobs this way, but it's sufficient for the purposes
of this tutorial, to demonstrate a minimal multi-worker example.

Strategy to be chosen
In TensorFlow, there are two main forms of distributed training as we saw earlier in
the chapter:

Synchronous training, where the steps of training are synced across the
workers and replicas.
Asynchronous training, where the training steps are not strictly synced.

MultiWorkerMirroredStrategy, which is the recommended strategy for
synchronous multi-worker training, will be demonstrated in this guide. To train the
model, use an instance of
tf.distribute.experimental.MultiWorkerMirroredStrategy.
MultiWorkerMirroredStrategy creates copies of all variables in the model's layers
on each device across all workers. It uses CollectiveOps, a TensorFlow operation
for collective communication, to aggregate gradients, and keep the variables in
sync.

TF_CONFIG is parsed and TensorFlow's GRPC servers are started at the time
MultiWorkerMirroredStrategy() is called, so the TF_CONFIG environment
variable must be set before a tf.distribute.Strategy instance is created.
Since TF_CONFIG is not set yet, this strategy is effectively single-worker
training.

Train the model
With the integration of tf.distribute.Strategy API into tf.keras, the only
change you will make to distribute the training to multiple-workers is enclosing the
model building and model.compile() call inside strategy.scope(). The
distribution strategy's scope dictates how and where the variables are created. In the
case of MultiWorkerMirroredStrategy, the variables created are
MirroredVariables, and they are replicated on each of the workers.

Currently, there is a limitation in MultiWorkerMirroredStrategy where
TensorFlow ops need to be created after the instance of strategy is created. If
you see RuntimeError: collective ops must be configured at program startup,
try creating the instance of MultiWorkerMirroredStrategy at the beginning of
the program and put the code that may create ops after the strategy is
instantiated.

To run with MultiWorkerMirroredStrategy, you'll need to run worker processes
and pass a TF_CONFIG to them.
Like the mnist.py file written earlier, here is the main.py that each of the workers
will run:
%%writefile main.py

import os

import json

import tensorflow as tf

import mnist

per_worker_batch_size = 64

tf_config = json.loads(os.environ['TF_CONFIG'])

num_workers = len(tf_config['cluster']['worker'])

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

global_batch_size = per_worker_batch_size * num_workers

multi_worker_dataset = mnist.mnist_dataset(global_batch_size)

with strategy.scope():

Model building/compiling need to be within `strategy.scope()`.

multi_worker_model = mnist.build_and_compile_cnn_model()

multi_worker_model.fit(multi_worker_dataset, epochs=3,

steps_per_epoch=70)

In the preceding code snippet, note that the global_batch_size, which gets passed
to dataset.batch, is set to per_worker_batch_size * num_workers. This ensures
that each worker processes batches of per_worker_batch_size examples regardless
of the number of workers.
The current directory now contains both Python files:
%%bash

ls *.py

You will see the list of Python files generated:
main.py

mnist.py

JSON serializes the TF_CONFIG and adds it to the environment variables:
os.environ['TF_CONFIG'] = json.dumps(tf_config)

Now, launch a worker process that will run the main.py and use the TF_CONFIG:
first kill any previous runs

%killbgscripts

All background processes were killed:
%%bash --bg

python main.py &> job_0.log

Starting job # 0 in a separate thread.

There are a few things to note about the preceding command:

It uses the %%bash which is a notebook magic
(https://ipython.readthedocs.io/en/stable/interactive/magics.html) to run
the bash commands.
It uses the --bg flag to run the bash process in the background, because this
worker will not terminate. It waits for all the workers before it starts.

The backgrounded worker process won't print output to this notebook. So, the &>
redirects its output to a file, and you can see what happened.
We will wait a few seconds for the process to start up:
import time

time.sleep(5)

Worker's logfile so far:
%%bash
cat job_0.log
2020-11-07 03:07:49.970694: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libcudart.so.10.1
..
2020-11-07 03:07:51.690832: I
tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:301]
Initialize GrpcChannelCache for job worker -> {0 -> localhost:12345,
1 -> localhost:23456}
2020-11-07 03:07:51.691186: I
tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:405]
Started server with target: grpc://localhost:12345

The last line of the log file should say: Started server with target:
grpc://localhost:12345.

The first worker is now ready and is waiting for all the other worker(s) to be
ready to proceed.
Update the tf_config for the second worker›s process to pick up:

https://ipython.readthedocs.io/en/stable/interactive/magics.html

tf_config['task']['index'] = 1

os.environ['TF_CONFIG'] = json.dumps(tf_config)

Now, launch the second worker. This will start the training since all the
workers are active (so there's no need to background this process):
%%bash

python main.py

Epoch 1/3

70/70 [==============================] - 10s 142ms/step - loss:

2.2582 - accuracy: 0.1652

Epoch 2/3

70/70 [==============================] - 11s 153ms/step - loss:

2.1708 - accuracy: 0.2890

Epoch 3/3

70/70 [==============================] - 10s 148ms/step - loss:

2.0728 - accuracy: 0.4189

..

2020-11-07 03:08:22.942543: I

tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:301]

Initialize GrpcChannelCache for job worker -> {0 ->

localhost:12345, 1 -> localhost:23456}

2020-11-07 03:08:22.942831: I

tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:405]

Started server with target: grpc://localhost:23456

input: "Placeholder/_0"

input: "Placeholder/_1"

attr {

key: "Toutput_types"

value {

list {

type: DT_FLOAT

type: DT_INT64

}

}

}

attr {

key: "output_shapes"

value {

list {

shape {

dim {

size: 28

}

dim {

size: 28

}

}

shape {

}

}

}

}

Now, if you recheck the logs written by the first worker, you'll see that it
participated in training that model:
%%bash

cat job_0.log

2020-11-07 03:07:49.970694: I

tensorflow/stream_executor/platform/default/dso_loader.cc:48]

Successfully opened dynamic library libcudart.so.10.1

…

2020-11-07 03:07:51.690832: I

tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:301]

Initialize GrpcChannelCache for job worker -> {0 ->

localhost:12345, 1 -> localhost:23456}

2020-11-07 03:07:51.691186: I

tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:405]

Started server with target: grpc://localhost:12345

input: "Placeholder/_0"

input: "Placeholder/_1"

attr {

key: "Toutput_types"

value {

list {

type: DT_FLOAT

type: DT_INT64

}

}

}

attr {

key: "output_shapes"

value {

list {

shape {

dim {

size: 28

}

dim {

size: 28

}

}

shape {

}

}

}

}

Epoch 1/3

70/70 [==============================] - 10s 142ms/step - loss:

2.2582 - accuracy: 0.1652

Epoch 2/3

70/70 [==============================] - 11s 153ms/step - loss:

2.1708 - accuracy: 0.2890

Epoch 3/3

70/70 [==============================] - 10s 148ms/step - loss:

2.0728 - accuracy: 0.4189

Unsurprisingly, this ran slower than the test run at the beginning of this tutorial.
Running multiple workers on a single machine only adds overhead. The goal here
was not to improve the training time, but only to give an example of multi-worker
training.
Delete the `TF_CONFIG` and kill any background tasks so they don't

affect the next section.

os.environ.pop('TF_CONFIG', None)

%killbgscripts

All background processes stopped

As can be seen here, multiple processes as part of MultipleWorkerStrategy
coordinate the training through GRPC communication.

Conclusion
In this chapter, we did a deep dive on distributed training with TensorFlow. We
started with understanding the classes like MirrorStrategy and
MultiWorkerMirrorStrategy. We looked at the inner workings of
MirrorStrategy, for example, decision on whether it will be single or
MultiWorkerMirrorStrategy. We also looked at multi-CPU AWS VM with two

CPU devices for a MirrorStrategy. In the end, we looked at distributed training
coordinated using GRPC and TF_CONFIG playing a vital role in helping workers
discover each other.

Questions
1. What is the difference between MirrorStrategy and

MultiWorkerMirrorStrategy?
2. How many GPUs can a machine have?
3. Where do you specify the host and port of workers?
4. What are the three strategies available in MultiWorkerMirroredStrategy to

communicate between GPUs?

References
TensorFlow Core: https://www.tensorflow.org/guide/.
Fast Multi-GPU collectives with NCCL:
https://developer.nvidia.com/blog/fast-multi-gpu-collectives-nccl/.
NVIDIA Collective Communication Library (NCCL) Documentation:
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html.

https://www.tensorflow.org/guide/
https://developer.nvidia.com/blog/fast-multi-gpu-collectives-nccl/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html

CHAPTER 8
Reinforcement Learning

Introduction
Reinforcement learning is a field of machine learning that deals with the problem of
how an intelligent agent can learn how to make a good sequence of decisions. This
is different from the other agents as we are talking about not one decision but a
sequence of decisions.

An example of reinforcement is when an agent is learning to play a breakout game
from Atari, using the pixels as inputs. Figure 8.1 helps understand the interactions
of action, observation, and reward between an agent and the environment in a
reinforcement learning setup:

Figure 8.1: Interactions in a reinforced learning

Image sourced from tensorflow.org under creative commons license:
https://www.tensorflow.org/agents/tutorials/0_intro_rl
The four key concepts of reinforcement learning are as follows:

Optimization: The goal is to find an optimal way to make decisions.
Delayed consequences: The decisions taken now can affect much later.
Decisions have long term ramifications in addition to short term benefits. This
leads to delayed credit assignment.

https://www.tensorflow.org/agents/tutorials/0_intro_rl

Exploration: An agent explores its environment and tries to learn from it,
where it learns only if it tries.
Generalization: Policy is mapping from the past experiences to actions.
Generalization provides a higher level understanding of the task and helps
learn from the past behavior.

Let us compare reinforcement learning to other types in machine learning:

AI planning: Automated planning and scheduling, also denoted as simply AI
planning, is a branch of artificial intelligence that is concerned with the
realization of strategies or action sequences, usually for execution by
intelligent agents, autonomous robots, and unmanned vehicles. Planning is
also related to decision theory. Table 8.1 shows properties of AI planning, that
is, which of the areas listed in rows does it support:

AI planning SL UL RL

Optimization X

Learns from experience

Generalization X

Delayed consequences X

Exploration

Table 8.1: Properties of AI planning

Supervised learning and unsupervised learning versus reinforcement
learning: In supervised learning, we do optimization and generalization but
the labels are predefined unlike reinforcement learning. RL is provided the
censored labels. Table 8.2 illustrates comparison between AI planning,
supervised learning, unsupervised learning, and reinforcement learning:

AI planning SL UL RL

Optimization X x

Learns from experience X x x

Generalization x X x x

Delayed consequences x x

Exploration x

Table 8.2: Properties of various machine learning techniques compared

SL – Supervised learning
UL – Unsupervised learning

RL – Reinforcement learning
IL – Imitation learning

Imitation learning involves optimization, generalization, and delayed
consequences. Learn from the experiences of others.
Unsupervised learning versus reinforcement learning: In unsupervised
learning, the model involves optimization and generalization, but does not
involve exploration or delayed consequences. There are no labels from the
real world.

Structure
In this chapter, we will cover the following topics:

Sequential decision process
Markov decision process
Model free policy
Monte Carlo method
DQN networks
Atari game with DQN network
Introducing TF-agents
CartPole game with DQN networking using TF-agents
SAC agent support in TF-agents

Objective
The objective of this chapter is to introduce the basics of reinforcement learning,
and compare it with other deep learning approaches. This will be followed by
concepts like policy evaluation, policy iteration, Markov decision process, and
model free learning. We will also look at the sample implementations in Python.
Then, we will move to Q learning with the DQN networks and SAC agent
algorithm. Towards the latter half of the chapter, we will look at the new library on
reinforcement learning called TF-agents.

Sequential decision process: agent and the world
In sequential decision processing, at each time step, the agent makes a decision
based on a decision and gets a reward and observation from the environment.

Figure 8.2 shows flow of observation, action, and reward between Agent and
Environment:

Figure 8.2: Environment and agent interaction in reinforcement learning

History is a past sequence of actions, rewards, and observations used by the agent to
make decisions into the future:

State is a function of history . There is also a world state which might be
hidden from the agent. Assuming that all the RL algorithms make is the current
state , has sufficient information about history, and it is alone sufficient to make
prediction into the future state . We call the state Markov:

Future is dependent on the present and not the past. To reduce complexity, and
instead of state being history, it is assumed that state is equal to observation at that
time:

Full observable Markov Decision Process (MDP): If the preceding statement is
true, that is, observability is the environment and agent state, then the process is
referred to as Markov Decision Process.
Partially Observable Markov Decision Process (POMDP): A partially
observable Markov decision process (POMDP) is a generalization of a MDP
(https://en.wikipedia.org/wiki/Markov_decision_process). A POMDP models an
agent-based decision process where it is assumed that the system dynamics are
determined by an MDP, but the agent cannot directly observe the state of the

https://en.wikipedia.org/wiki/Markov_decision_process

environment. Instead, it must maintain a model (the probability distribution of
different observations given the underlying state) and the underlying MDP. Unlike
the policy function in MDP, which maps the states to the actions, POMDP's policy
is a mapping from the observations (or belief states) to the actions.
If the agent does not consider , then we use history or other sources like
RNN to create state .

Types of Markov Decision Process
First decision process is referred to as bandits, where it is assumed that actions have
no influence over the observations.
In MDP and POMDP described earlier, the actions affect future observations. World
changes in two ways depending on the history and actions:

Deterministic: Given the history and action, there is a single reward and
observation.
Stochastic: Given the history and action, there are many different rewards and
observations possible.

Model in reinforcement learning
Model predicts the next state and rewards from that potential state. Transition model
predicts the next state given st = s, a1 = a:

Reward model predicts reward rt given st = s, a1 = a:

Policy in reinforcement learning
Policy determines the action selected given a state . There are two types of
policies as follows:

Deterministic policy: It means there is one action per state:

Stochastic policy: It means distribution of actions given a state:

Next, we look at the value function.

Value function
Value function is the expected sum of discounted future rewards for a given
policy :

The preceding equation shows the value function equation. Discounted factor
determines the immediate versus future rewards .

Types of RL agents
RL agents can be policy based, value function based, or model based. They have a
model or an explicit policy or a value function. Some RL agents could be a
combination of value function or policy based or as shown in figure 8.3:

Figure 8.3: Different types of reinforcement learning techniques

Source: David Sliver’s RL course: https://deepmind.com/learning-resources/-introduction-reinforcement-
learning-david-silver

A lot of algorithms are at intersection of these types, for example, Actor Critic is a
combination of value and policy-based model.

Markov decision process
Markov decision process can be defined as a finite set of states , where P is the
transition model that specifies .
Finite number of states can be presented as the following matrix:

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Model free policy
Initialize policy , calculate the , update the value and iterate.
Monte Carlo on policy Q evaluation

Initialize
:

N is a count of state actions.
G is the sum of all rewards in the past across all episodes.
Q is the q value.

Loop for evaluating:

Using policy sample episode

Suppose, both the environment transitions and policy are stochastic. In
this case, the probability of a step trajectory is for first or every time that
is visited in episode.

N(s,a) = N(s,a) + 1, G (s,a) = G(s,a) + G(i,t)

Update estimate Qπ (s,a)=G(s,a) / N(s,a)
Given an estimate Q(πi) (s,a) ∀ s,a
Update new policy:

π(i+1) (s) = arg (max) Q(πi) (s,a)

Till now, we have dealt only with deterministic policies, where states map to
actions. We need to add stochasticity to the policy else the policy will map to only
one action.
The idea is to balance exploration and exploitation by being random.

Let be the number of actions. Then, an -greedy policy with respect to a state-action
value Qπ (s, a) is:

Pseudo code for the same is:
random ()

if :

pull random action else:

else:

pull current-best action

Let us implement this algorithm in Python to get a better understanding:

1. First, we implement the Actions class. It has three class level variables – m,
mean, and N (number of iterations):
class Actions:

def __init__(self, m):

self.m = m

self.mean = 0

self.N = 0

Choose a random action

def choose(self):
return np.random.randn() + self.m

Update the action-value estimate

def update(self, x):
self.N += 1

self.mean = (1 - 1.0 / self.N)*self.mean + 1.0 / self.N * x

2. Let us define a method which takes three values for m, a value for epsilon, and
number of iterations N:
def run_experiment(m1, m2, m3, eps, N):

actions = [Actions(m1), Actions(m2), Actions(m3)]

data = np.empty(N)

for i in range(N):
epsilon greedy

p = np.random.random()

if p < eps:

j = np.random.choice(3)

else:

j = np.argmax([a.mean for a in actions])

x = actions[j].choose()

actions[j].update(x)

for the plot

data[i] = x

cumulative_average = np.cumsum(data) / (np.arange(N) + 1)

plot moving average ctr

plt.plot(cumulative_average)

plt.plot(np.ones(N)*m1)

plt.plot(np.ones(N)*m2)

plt.plot(np.ones(N)*m3)

plt.xscale('log')

plt.show()

for a in actions:

print(a.mean)

return cumulative_average

3. Let us run the experiment with the following values:
c_1 = run_experiment(1.0, 2.0, 3.0, 0.1, 100000)

Let us look at p versus x value as shown in the figure 8.4:

Figure 8.4: Action value versus p

As can be seen, the action value varies between -2 and 6, and p varies
between 0 and 1 as shown in the figure 8.5:

Figure 8.5: Cumulate average of reward versus the episode number N

Our algorithm tries to converge cumulative average towards 3, which is the action
with highest value.

Monotonic greedy policy improvement
For any -greedy policy , the -greedy policy with respect to is a monotonic
improvement :

Where represents random with probability and ,

represents greedy policy:

Putting it all together:

Before moving towards more advanced algorithms, let us look at TF-agents and the
RL library from TensorFlow.
Let us look at the core papers and concepts which form the base for deep learning
applied to reinforcement learning.

DQN networks
Controlling agents through high dimensional sensory inputs like vision and speech
is a challenge in reinforcement learning. Most of the RL applications in the past
relied on hand crafted features. Recent advances in deep learning have made it
possible to extract high level features from sensory data of vision and speech. They
rely on complex neural network architectures like CNN, perceptron’s, restricted
Boltzmann machines, and recurrent neural networks using supervised and
unsupervised learning. Applying deep learning to reinforcement learning requires a
large amount of hand labelled data.
RL applications must be able to learn from sparse scalar data. Deep learning data
assumes static distribution of data whereas in reinforcement learning, data
distribution changes as an algorithm learns new behavior.
DQN paper demonstrates that a convolutional neural network can overcome
challenges listed earlier to learn successful control policies from raw video data in
complex reinforcement learning environments. The network is trained on a variant
of the Q-learning algorithm, with stochastic gradient descent to update the weights.

Modelling the reinforcement learning
Authors consider tasks in which an agent interacts with an environment , in the
case of an Atari emulator, in a sequence of actions, observations, and rewards. At
every time-step, the agent selects an action from the set of legal game actions,

. The action is passed to the emulator. It modifies its internal state and
game score. E may be stochastic in distribution. The agent does not observe internal
state of the emulator; instead, it observes an image from the emulator,
which is a vector of raw pixel values representing the current screen. In addition, it
receives a reward , which is the change in game score. The game score depends

on the whole prior sequence of actions and observations; feedback about an action
is received after many thousands of time-steps have elapsed.
Neural networks are used to approximate the following function:

Where rt refers to rewards, which is the maximum sum of rewards discounted by
 at each timestamp t, achievable by a behavior policy after making an

observation (s) and taking an action (a).
Reinforcement learning is unstable or can even diverge when a non-linear function
approximator like a neural network is used to represent the action-value (also called
Q) function. This instability has several causes. First one is that the correlations
present in the sequence of observations, small updates to Q may significantly
change the policy - pie and hence change the data distribution and also the
correlations between the action-values (Q) and the target values r. Authors address
these instabilities with a novel variant of Q-learning, which uses two key ideas:

First is to use a biologically inspired mechanism termed as experience replay
that randomizes over the data, hence removing correlations in the observation
sequence and smoothing changes in the data distribution.
Second is to iteratively update and adjust the action-values (Q) towards target
values that are periodically updated, thereby, reducing correlations with the
target. In the sections later, we will look at how to use DQN agent
implemented in TF-agent library.

Atari game with deep reinforcement learning - DQN
This paper uses OFF-policy / temporal difference / model free for training a
model which generates action from the state.
It consists of the following three ideas:

Idea 1: Approximate Q-function using neural network:
def create_model(self):

model = tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(self.action_dim)

])

model.compile(loss='mse', optimizer=Adam(args.lr))

return model

Idea 2: Use target network:
self.target_model = ActionStateModel(self.state_dim, self.action_dim)

Idea 3: Use ReplayBuffer to increase data efficiency:
class ReplayBuffer:

def __init__(self, capacity=10000):

self.buffer = deque(maxlen=capacity)

def put(self, state, action, reward, next_state, done):

self.buffer.append([state, action, reward, next_state,

done])

def sample(self):

sample = random.sample(self.buffer, args.batch_size)

states, actions, rewards, next_states,

done = map(np.asarray, zip(*sample))

states = np.array(states).reshape(args.batch_size, -1)

next_states = np.array(next_states).reshape(args.batch_size,

-1)

return states, actions, rewards, next_states, done

def size(self):

return len(self.buffer)

Let us look at the full code listing:

1. Start with importing all the packages relevant to this sample:
import tensorflow as tf

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.optimizers import Adam

import gym

import argparse

import numpy as np

from collections import deque

import random

tf.keras.backend.set_floatx('float64')

2. Create a replay buffer to store the state, action reward, and next state:
class ReplayBuffer:

def __init__(self, capacity=10000):

self.buffer = deque(maxlen=capacity)

self.batch_size = 32

def put(self, state, action, reward, next_state, done):

self.buffer.append([state, action, reward, next_state,

done])

def sample(self):

sample = random.sample(self.buffer, self.batch_size)

states, actions, rewards, next_states, done

= map(np.asarray, zip(*sample))

states = np.array(states).reshape(self.batch_size, -1)

next_states = np.array(next_states).reshape(

self.batch_size, -1)

return states, actions, rewards, next_states, done

def size(self):

return len(self.buffer)

3. Next, create a ActionStateModel which is the Q-model approximation. It
implements the model to predict the next action, given a current state. The
model is a sequential model with four layers:
tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(self.action_dim)

])

4. The model is trained and used for prediction in get_action(self, state)
method:
class ActionStateModel:

def __init__(self, state_dim, action_dim):

self.state_dim = state_dim

self.action_dim = aciton_dim

self.epsilon = 1.0 #args.eps

self.lr = 0.005

self.eps_min = 0.01

self.eps_decay = 0.995

self.model = self.create_model()

def create_model(self):

model = tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(self.action_dim)

])

model.compile(loss='mse', optimizer=Adam(self.lr))

return model

def predict(self, state):

return self.model.predict(state)

def get_action(self, state):

state = np.reshape(state, [1, self.state_dim])

self.epsilon *= self.eps_decay

self.epsilon = max(self.epsilon, self.eps_min)

q_value = self.predict(state)[0]

if np.random.random() < self.epsilon:

return random.randint(0, self.action_dim-1)

return np.argmax(q_value)

def train(self, states, targets):

self.model.fit(states, targets, epochs=1, verbose=0)

5. Agent class is the one which triggers the training and takes the Gym
environment. We initialize the agent with the environment, state, and action
dimensions. The two models are model and target_model:
class Agent:

def __init__(self, env):

self.env = env

self.state_dim = self.env.observation_space.shape[0]

self.action_dim = self.env.action_space.n

self.model = ActionStateModel(self.state_dim,

self.action_dim)

self.target_model = ActionStateModel(self.state_dim,

self.action_dim)

self.target_update()

self.batch_size = 32

self.gamma = 0.95

self.buffer = ReplayBuffer()

def target_update(self):

weights = self.model.model.get_weights()

self.target_model.model.set_weights(weights)

def replay(self):

for _in range(10):

states, actions, rewards, next_states, done

= self.buffer.sample()
targets = self.target_model.predict(states)
next_q_values = self.target_model.predict(
next_states).max(axis=1)

targets[range(self.batch_size), actions]
= rewards + (1-done) * next_q_values * self.gamma
self.model.train(states, targets)

def train(self, max_episodes=1000):
for ep in range(max_episodes):

done, total_reward = False, 0
state = self.env.reset()
while not done:

action = self.model.get_action(state)
next_state, reward, done, _ = self.env.step(action)
self.buffer.put(state, action, reward*0.01,

next_state, done)

total_reward += reward

state = next_state

if self.buffer.size() >= self.batch_size:
self.replay()

self.target_update()
print('EP{} EpisodeReward={}'.format(ep, total_ reward))

Main method is train(..) which calls the model to get action and update the
buffer. Replay uses two models:

target_models is used to predict targets.
next_q_values which are then called to train the model.

6. Let us instantiate the agent with CartPole environment and run it for 100
episodes:
env = gym.make('CartPole-v1')

agent = Agent(env)

agent.train(max_episodes=100)

Output
EP0

EpisodeReward=21.0

EP1 EpisodeReward=26.0

EP2 EpisodeReward=13.0

EP3 EpisodeReward=23.0

...

EP97 EpisodeReward=137.0

EP98 EpisodeReward=200.0

EP99 EpisodeReward=187.0

In the next section, we will look at dueling DQN which is an advanced form of
DQN network.
The reference paper is as follows:
Playing Atari with Deep Reinforcement Learning
(https://arxiv.org/abs/1312.5602).

https://arxiv.org/abs/1312.5602

Double DQN network
We have learnt that parameters for the network to find the Q function are:

where (alpha) is a scalar step size and the target is defined as follows:

The max operator in standard Q-learning and DQN in the preceding equations uses
the same values both to select and evaluate an action. This makes it more likely to
select overestimated values, resulting in over-optimistic value estimates. To prevent
this, we can decouple the selection from the evaluation. This is the idea behind
double Q-learning.
In the double Q-learning algorithm, two value functions are learned by assigning
each experience randomly to update one of the two value functions, such that there
are two sets of weights, and . For each update, one set of weights is used to
determine the greedy policy and the other to determine its value. Let us rewrite the
preceding equation by replacing a with the parameterized value function

Then, the double DQN network can be written as:

The selection of the action in the argmax is still using the online weights . This
means that, as in Q learning, we are estimating the value of the greedy policy
according to the current values, as defined by . A second set of weights is
used to evaluate the value of this policy. The second set of weights can be updated
symmetrically by switching the roles of and .

Implementation of double DQN using TensorFlow
Most of the implementations are the same as the one we implemented on DQN:

1. Create a replay buffer to the store state, action reward, and next state:

class ReplayBuffer:

def __init__(self, capacity=10000):

self.buffer = deque(maxlen=capacity)

self.batch_size = 32

def put(self, state, action, reward, next_state, done):

self.buffer.append([state, action, reward, next_state,

done])

def sample(self):

sample = random.sample(self.buffer, self.batch_size)

states, actions, rewards, next_states, done

= map(np.asarray, zip(*sample))

states = np.array(states).reshape(self.batch_size, -1)

next_states = np.array(next_states).reshape(

self.batch_size, -1)

return states, actions, rewards, next_states, done

def size(self):

return len(self.buffer)

2. Next, create an ActionStateModel which is the Q-model approximation. It
implements the model to predict the next action given a current state. The
model is a sequential model with four layers:
tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(self.action_dim)

])

3. The model is trained and used for prediction in get_action(self, state)
method:
class ActionStateModel:

def __init__(self, state_dim, action_dim):

self.state_dim = state_dim

self.action_dim = action_dim

self.epsilon = 1.0 #args.eps

self.lr = 0.005

self.eps_min = 0.01

self.eps_decay = 0.995

self.model = self.create_model()

def create_model(self):

model = tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(self.action_dim)

])

model.compile(loss='mse', optimizer=Adam(self.lr))

return model

def predict(self, state):

return self.model.predict(state)

def get_action(self, state):

state = np.reshape(state, [1, self.state_dim])

self.epsilon *= self.eps_decay

self.epsilon = max(self.epsilon, self.eps_min)

q_value = self.predict(state)[0]

if np.random.random() < self.epsilon:

return random.randint(0, self.action_dim-1)

return np.argmax(q_value)

def train(self, states, targets):

self.model.fit(states, targets, epochs=1, verbose=0)

4. Agent class is the one which triggers the training and takes Gym environment.
We initialize the Agent with the environment, state, and action dimensions.
The two models are model and target_model:
class Agent:

def __init__(self, env):
self.env = env
self.state_dim = self.env.observation_space.shape[0]
self.action_dim = self.env.action_space.n
self.model = ActionStateModel(self.>state_dim,

self.action_dim)

self.target_model = ActionStateModel(self.state_dim,
self.action_dim)

self.target_update()
self.batch_size = 32
self.gamma = 0.95
self.buffer = ReplayBuffer()

def target_update(self):
weights = self.model.model.get_weights()
self.target_model.model.set_weights(weights)

def replay(self):
for_ in range(10):

states, actions, rewards, next_states, done

= self.buffer.sample()
targets = self.target_model.predict(states)
next_q_values = self.target_model.predict(next_states)[

range(self.batch_size),
np.argmax(self.model.predict(next_states), axis=1)]
targets[range(self.batch_size), actions]

= rewards + (1-done) * next_q_values * self.gamma
self.model.train(states, targets)

def train(self, max_episodes=1000):
for ep in range(max_episodes):

done, total_reward = False, 0
state = self.env.reset()
while not done:
action = self.model.get_action(state)
next_state, reward, done, _ = self.env. step(action)
self.buffer.put(state, action, reward*0.01,

next_state, done)

total_reward += reward

state = next_state

if self.buffer.size() >= self.batch_size:
self.replay()
self.target_update()
print('EP{} EpisodeReward={}'.format(ep, total_ reward))

5. Notice in replay that the code in bold is the one which has changed:
next_q_values = self.target_model.predict(

next_states).max(axis=1)

next_q_values char-style-override-107

self.target_model.predict(next_states)[

range(self.batch_size),

np.argmax(self.model.predict(next_states), axis=1)]

6. Let us run the agent:
env = gym.make('CartPole-v1')
agent = Agent(env)

agent.train(max_episodes=100)
EP96 EpisodeReward=484.0
EP97 EpisodeReward=209.0
EP98 EpisodeReward=349.0
EP99 EpisodeReward=327.0

In the next section, we look at the evolution of actor critic network.

Value-based versus policy-based RL
Value-based RL has a learnt value function but implicit policy, for example, -
greedy. Policy-based RL has no value function but learnt policy. Actor critic has
learnt value and policy. Figure 8.7 shows value-based versus policy-based
reinforcement learning techniques:

Figure 8.7: Value based versus policy based RL

Next, let us look at the actor critic network which is at the intersection of value-
based and policy-based RL.

Actor critic network
Actor-only methods use parameterized family of policies. The gradient of the
performance with respect to the actor parameters is estimated by simulation. The
parameters are updated in the direction of improvement. A potential drawback of
such methods is that the gradient estimators have a larger variance.
Critic-only methods rely only on value function approximation and aim at learning
an approximate solution to the Bellman equation, which then hopefully prescribes a
near-optimal policy.
Actor-critic methods combine the strong points of actor-only and critic only
methods. The critic uses an approximation architecture and simulation to learn a
value function, which is used to update the actor's policy parameters Actor critic
algorithms combine the strong points of actor-only and critic-only methods. Critic
based methods used approximation and simulation to help come up with a value
function which is then used to improve the actor. Such methods, if they are gradient
based, potentially have desirable convergence properties, in contrast to critic-only
methods where convergence is guaranteed in very limited settings. These algorithms

hold the promise of delivering faster convergence (due to variance reduction), when
compared to actor-only methods:
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
import gym
import argparse
import numpy as np
gamma = 0.99

update_interval = 5

actor_lr = 0.0005

critic_lr = 0.001

1. Create Actor class which encapsulates a fully connected model, optimizer and
state, and action dimensions. It implements the following methods:

create_model(..)

compute_loss(..)

train(..)

2. Model takes state_dim and outputs action_dim:
class Actor:

def __init__(self, state_dim, action_dim):

self.state_dim = state_dim
self.action_dim = action_dim
self.model = self.create_model()
self.opt = tf.keras.optimizers.Adam(actor_lr)

def create_model(self):

return tf.keras.Sequential([
Input((self.state_dim,)),
Dense(32, activation='relu'),
Dense(16, activation='relu'),
Dense(self.action_dim, activation='softmax')

])

def compute_loss(self, actions, logits, advantages):

ce_loss = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True)

actions = tf.cast(actions, tf.int32)
policy_loss = ce_loss(
actions, logits,

sample_weight=tf.stop_gradient(advantages))
return policy_loss

def train(self, states, actions, advantages):

with tf.GradientTape() as tape:
logits = self.model(states, training=True)
loss = self.compute_loss(

actions, logits, advantages)

grads = tape.gradient(loss, self.model.trainable_ variables)
self.opt.apply_gradients(zip(grads,

self.model.trainable_variables))
return loss

3. Critic class is implemented which encapsulates a fully connected model with
four layers. The last layer has a single neuron:
class Critic:

def __init__(self, state_dim):

self.state_dim = state_dim

self.model = self.create_model()

self.opt = tf.keras.optimizers.Adam(critic_lr)

def create_model(self):

return tf.keras.Sequential([

Input((self.state_dim,)),

Dense(32, activation='relu'),

Dense(16, activation='relu'),

Dense(16, activation='relu'),

Dense(1, activation='linear')

])

def compute_loss(self, v_pred, td_targets):

mse = tf.keras.losses.MeanSquaredError()

return mse(td_targets, v_pred)

def train(self, states, td_targets):

with tf.GradientTape() as tape:

v_pred = self.model(states, training=True)

assert v_pred.shape == td_targets.shape

loss = self.compute_loss(v_pred,

tf.stop_gradient(td_targets))

grads = tape.gradient(loss, self.model.trainable_variables)

self.opt.apply_gradients(zip(grads,

self.model.trainable_variables))

return loss

4. Bring it all together with the Agent. It captures the Gym environment, actor
critic, and the rewards. The train method steps are described as follows:
class Agent:

def __init__(self, env):

self.env = env

self.state_dim = self.env.observation_space.shape[0]

self.action_dim = self.env.action_space.n

self.actor = Actor(self.state_dim, self.action_dim)

self.critic = Critic(self.state_dim)

self.rewards = []

def td_target(self, reward, next_state, done):

if done:

return reward

v_value = self.critic.model.predict(

np.reshape(next_state, [1, self.state_dim]))

return np.reshape(reward + gamma * v_value[0], [1, 1])

def advantage(self, td_targets, baselines):

return td_targets - baselines

def list_to_batch(self, list):

batch = list[0]

for elem in list[1:]:
batch = np.append(batch, elem, axis=0)

return batch

def train(self, max_episodes=1000):

for ep in range(max_episodes):
state_batch = []

action_batch = []

td_target_batch = []

advatnage_batch = []

episode_reward, done = 0, False

state = self.env.reset()

while not done:
self.env.render()

probs = self.actor.model.predict(

np.reshape(state, [1, self.state_dim]))

action = np.random.choice(self.action_dim, p=probs[0])

next_state, reward, done, _ = self.env. step(action)

state = np.reshape(state, [1, self.state_dim])

action = np.reshape(action, [1, 1])

next_state = np.reshape(next_state,

[1, self.state_dim])

reward = np.reshape(reward, [1, 1])

td_target = self.td_target(reward * 0.01, next_state,

done)

advantage = self.advantage(

td_target, self.critic.model.predict(state))

state_batch.append(state)

action_batch.append(action)

td_target_batch.append(td_target)

advatnage_batch.appendf(advantage)

if len(state_batch) >= update_interval or done:

states = self.list_to_batch(state_batch)

actions = self.list_to_batch(action_batch)

td_targets = self.list_to_batch(td_target_batch)

advantages = self.list_to_batch(advatnage_batch)

actor_loss = self.actor.train(states, actions,

advantages)

critic_loss = self.critic.train(states, td_ targets)

state_batch = []

action_batch = []

td_target_batch = []

advatnage_batch = []

episode_reward += reward[0][0]

self.rewards.append(episode_reward)

state = next_state[0]

print('EP{} EpisodeReward={}'.format(ep, episode_reward))

5. Running the agent:
env_name = 'CartPole-v1'

env = gym.make(env_name)

agent = Agent(env)

agent.train()

Output will take some time to appear:

EP0 EpisodeReward=14.0
EP1 EpisodeReward=23.0
EP2 EpisodeReward=17.0
…
EP997 EpisodeReward=226.0
EP998 EpisodeReward=188.0
EP999 EpisodeReward=187.0

You will notice from the following graph that the rewards maximize to 500:

Figure 8.8: Actor critic reward versus episodes plot

Till now, we focused on the basics of RL. Now, let us look at a new library
introduced by TensorFlow team.

Introducing TF-agents
TF-agents (https://github.com/tensorflow/agents) make implementing, deploying,
and testing RL algorithms easier. It provides well-tested and modular components
that can be modified and extended. It enables faster code iteration with good test
integration and benchmarking.
To get started, it provides Colab based tutorials. We will start with DQN tutorial to
get an agent up and running in the CartPole environment.
TF-agents are under active development and the interfaces change frequently. It can
be found at the following link:
https://github.com/tensorflow/agents

TF-agent
Reinforcement learning library written on top of TensorFlow makes
experimentation easier and the following components are implemented out of the
box. Figure 8.9 illustrates basic components of the TF-agent implementation:

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

Figure 8.9: Components of tf-agent library

Let us look at how some of the basic things can be used using TF agents. Actor and
critic are two key players in reinforcement learning. Using TF agents, these can be
implemented using the following code snippets:

ActorDistributionNetwork: This creates an actor producing either normal or
categorical distribution. It inherits from DistributionNetwork
(https://www.tensorflow.org/agents/api_docs/python/tf_agents/networks/n
etwork/DistributionNetwork), Network
(https://www.tensorflow.org/agents/api_docs/python/tf_agents/networks/
Network). Network is a class used to represent networks used by TF-agents’
policies and agents:
actor_net = actor_distribution_network.ActorDistributionNetwork(

train_env.observation_spec(), train_env.action_spec(),

fc_layer_params=fc_layer_params)

CriticNetwork: This creates a critic network, inherited from the Network
class explained earlier:
tf_agents.agents.ddpg.critic_network.CriticNetwork(

input_tensor_spec, .., name='CriticNetwork')

SacAgent: Soft Actor Critic (SAC) is an algorithm that optimizes a
stochastic policy in an off-policy way (An off-policy is independent of the
agent's actions. It figures out the optimal policy regardless of the agent's
motivation.), forming a bridge between stochastic policy optimization and
Deep Deterministic Policy Gradient (DDPG)-style approaches. It is not a

https://www.tensorflow.org/agents/api_docs/python/tf_agents/networks/network/DistributionNetwork
https://www.tensorflow.org/agents/api_docs/python/tf_agents/networks/Network

direct successor to twin delayed DDPG-TD3. It incorporates the clipped
double-Q trick and due to the inherent stochasticity (the quality of lacking any
predictable order or plan) of the policy in SAC, it also helps benefiting from
target policy smoothing.
An important feature of SAC is entropy regularization. The policy is trained
for maximizing a trade-off between expected return and entropy, a measure of
randomness in the policy
(https://en.wikipedia.org/wiki/Entropy_(information_theory)). It has a
close connection to the exploration-exploitation trade-off. In this trade-off,
increasing entropy results in more exploration can accelerate learning
subsequently. SAC can also prevent the policy from prematurely converging
to a local optimum.
SAC in TensorFlow agents is implemented using the following method:
tf_agents.agents.SacAgent(

time_step_spec: tf_agents.trajectories.time_step.TimeStep,

action_spec: tf_agents.typing.types.NestedTensorSpec,

critic_network: tf_agents.networks.Network, actor_network:

tf_agents.networks.Network,

…)

Next, let us look at replay buffers.

Replay buffers
Reinforcement learning algorithms use replay buffers to store trajectories of
experience while executing a policy in an environment. Replay buffers can be
queried for a subset of trajectories (either a sequential subset or a sample) to replay
the agent's experience during training.
In this book, we will explore two types of replay buffers: Python-backed and
TensorFlow-backed, sharing a common API.
We describe the API and implementation, each of the buffer implementations, and
see how to use them during data collection training.
TFUniformReplayBuffer is the most commonly used replay buffer in TF-agents.
Hence, we are using it in our example here. In TFUniformReplayBuffer, the
backing buffer storage is done by TensorFlow variables and hence, is a part of the
compute graph.
The buffer stores batches of elements and has a maximum capacity max_length
elements per batch segment. Thus, the total buffer capacity is batch_size x
max_length elements. The elements stored in the buffer must all have a matching

https://en.wikipedia.org/wiki/Entropy_(information_theory)

data spec. When the replay buffer is used for data collection, the spec is the agent's
collect data spec:
data_spec = (

tf.TensorSpec([3], tf.float32, 'action'),

(

tf.TensorSpec([5], tf.float32, 'lidar'),

tf.TensorSpec([3, 2], tf.float32, 'camera')

)

)

batch_size = 32

max_length = 1000

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(

data_spec,

batch_size=batch_size,

max_length=max_length)

Writing to the replay buffer: Writing is done using the add_batch method:
action = tf.constant(1 * np.ones(

data_spec[0].shape.as_list(), dtype=np.float32))

lidar = tf.constant(

2 * np.ones(data_spec[1][0].shape.as_list(), dtype=np.float32))
camera = tf.constant(

3 * np.ones(data_spec[1][1].shape.as_list(), dtype=np.float32))
values = (action, (lidar, camera))

values_batched = tf.nest.map_structure(lambda t: tf.stack([t] *

batch_size),

values)

replay_buffer.add_batch(values_batched)

Next, let us look at reading from the buffer.
Reading from buffer: Once we have written to the buffer, reading can be
done in multiple ways:
for _ in range(5):

replay_buffer.add_batch(values_batched)

sample = replay_buffer.get_next(sample_batch_size=10,

num_steps=1)

print(len(sample))

Convert the replay buffer: Convert the replay buffer to a tf.data.Dataset
and iterate through it:
dataset = replay_buffer.as_dataset(

sample_batch_size=4,
num_steps=2)

iterator = iter(dataset)

print("Iterator trajectories:")

trajectories = []

for _ in range (3):
t, _ = next(iterator)

trajectories.append(t)

print(tf.nest.map_structure(lambda t: t.shape, trajectories))

Read all elements in the replay buffer:
trajectories = replay_buffer.gather_all()

print("Trajectories from gather all:")

print(tf.nest.map_structure(lambda t: t.shape, trajectories))

Output will be:
2
Iterator trajectories:

[(TensorShape([4, 2, 3]), (TensorShape([4, 2, 5]),

TensorShape([4, 2, 3, 2]))), (TensorShape([4, 2, 3]),

(TensorShape([4, 2, 5]), TensorShape([4, 2, 3, 2]))),

(TensorShape([4, 2, 3]), (TensorShape([4, 2, 5]),

TensorShape([4, 2, 3, 2])))]

Trajectories from gather all:

(TensorShape([32, 46, 3]), (TensorShape([32, 46, 5]),
TensorShape([32, 46, 3, 2])))

Environments
The following environments are supported by the tf-agent library:

Open AI gym
Atari
Mujoco
PyBullet
DM control

These are explained as follows:

Loading Open AI gym
environment = suite_gym.load('CartPole-v0')

print('action_spec:', environment.action_spec())
print('time_step_spec.observation:',
environment.time_step_spec().observation)
print('time_step_spec.step_type:', environment.time_step_spec().step_type)

print('time_step_spec.discount:', environment.time_step_spec().discount)
print('time_step_spec.reward:', environment.time_step_spec().reward)

Output shows the variable values:
action_spec: BoundedArraySpec(shape=(), dtype=dtype('int64'),

name='action', minimum=0, maximum=1)

time_step_spec.observation: BoundedArraySpec(shape=(4,),

dtype=dtype('float32'), name='observation', minimum=

[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38],

maximum=[4.8000002e+00 3.4028235e+38 4.1887903e-01

3.4028235e+38])

time_step_spec.step_type: ArraySpec(shape=(),

dtype=dtype('int32'), name='step_type')

time_step_spec.discount: BoundedArraySpec(shape=(),

dtype=dtype('float32'), name='discount', minimum=0.0,

maximum=1.0)

time_step_spec.reward: ArraySpec(shape=(),

dtype=dtype('float32'), name='reward')

Similarly, we can load other environments like Atari.
Loading Atari:
from tf_agents.environments import suite_atari
env_atari = suite_atari.load('Pong-v0')

env_atari.action_spec()

Let us look at the agents available:
The following agents are implemented in the tf-agents library:

A DQN, or Deep Q-Network, approximates a state-value function in a Q-
Learning framework with a neural network. In the Atari Games case, they
take in several frames of the game as an input, and output state values for
each action as an output.
DDPG is used in continuous action setting. In DDPG, actor computes the
action directly instead of a probability distribution over actions.
Reference: Continuous control with deep reinforcement learning - Lilicrap et
al
A PPO agent implements the PPO algorithm from (Schulman, 2017):
https://arxiv.org/abs/1707.06347 PPO is a simplification of the TRPO
algorithm (described as follows), both these algorithms add stability to policy
gradient RL, they allow multiple updates per batch of on-policy data, by
limiting the KL divergence between the policy that sampled the data and the
updated policy.

https://arxiv.org/abs/1707.06347

TD3 is also supported. It extends DDPG by adding an extra critic network and
using the minimum of the two critic values to reduce overestimation bias.
TRPO enforces a hard optimization constraint, but is a complex algorithm,
which makes it harder to use. PPO approximates the effect of TRPO by using
a soft constraint. There are two methods presented in the paper for
implementing the soft constraint:

an adaptive KL loss penalty
limiting the objective value based on a clipped version of the policy
importance ratio. (This implementation handles both and allows the user
to use either method.)

A reinforce agent implements the reinforce algorithm from (Williams, 1992)
https://www-
anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
A soft actor-critic agent implements the Soft Actor-Critic (SAC) algorithm
from Soft Actor-Critic Algorithms and Applications by Haarnoja et al (2019).

Q-learning is a basic form of reinforcement learning which uses Q-values
(also called action values) to iteratively improve the behavior of the learning
agent.
Q-values or action-values: Q-values are defined for states and actions.
Policy gradient methods are reinforcement learning techniques that rely
upon optimizing parametrized policies with respect to the expected return
(long-term cumulative reward) by gradient descent.

Mechanics of reinforcement learning
Let us look at the key components and their interaction in reinforcement learning.
On the left side, we have collection aspects. We have a policy which is going to
interact with the environment. We have replay buffer feeding from the collection
into training to make the agent better.

Components of reinforcement learning
We have two main pipelines – collection and training. Collection pipeline collects
experience from the environment and sends it to the replay buffers. These buffers
are used for training dataset. Agent uses this dataset to improve the policy using
neural network. These pipelines are illustrated in figure 8.10:

https://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

Figure 8.10: Interaction between various components of tf-agents library

Let us focus on the environment and its definition:

1. Environments can be created by extending py_environment.PyEnvironment.
It has the following methods:

def td_target(self, reward, next_state, done):
if done:
return reward

class BreakoutEnv(py_environment.PyEnvironment):
def observation_spec(self):

defines the observations

pass

def action_spec(self):
defines the action

pass

def _reset(self):
reset the state

pass

def _apply_action(self, action):
apply action

pass

def _step(self, action):
apply action and return observation and reward

observation, reward = self._apply_action(action)

return TimeStep(observation, reward)

_observation_spec(..): defines the kind of observations this
environment provides
_action_spec(..): actions supported
_reset(..): resetting the state of the breakout environment
_apply_action(..): apply action to the environment
_step(..): given an action, gives us a new observation and reward

2. Defining the policy and the environment:
env = BreakoutEnv(…)

policy =. MyPolicy(..)

time_step = env.reset()

episode_return = 0.0

while not time_step.is_last():
policy_step = policy.action(time_step)

time_step = env.step(policy_step.action)

episode_return = += time_step.reward

Policies take observations and emit parameters of distribution of actions. In
case of breakout, observations are images. The following figure 8.11
illustrates the logical flow between various components:

Figure 8.11: Relation between observations, policy, and actions

Let us define a custom network using the parent class of
tf_agents.networks.Network.

3. Defining a custom network: Network used for deep Q-learning is essentially a
container for Keras sequential network:
class MyQNetwork(tf_agents.networks.Network):

def __init__(self, no_of_actions):

self._forward = tf.keras.Sequential(

[tf.keras.layers.Conv2D(32,(8,8),4,activation='relu'),

tf.keras.layers.Dense(number_of_actions)])

Input goes through a couple of convolutional layers and finally emits the
no_of_actions. call is the most important method in the preceding Network
class. It takes observations and state, and emits the logits:
def call(self, state=(), observations):

logits = self._forward(observations)

return logits, state

Policies
tf-agent comes with prebuilt policies, but you can also build your own policy. It
takes a network for initialization. Fundamental method is _distribution(..):
from tf_agents.policies import tf_policy
class MyPolicy(tf_policy.TFPolicy):

def __init__(self, network):
pass

def _distribution(self, time_step, policy_state):
logits, next_state = self._network(time_step.observation,

policy_state,)

return PolicyStep(tfp.distribution.Categorical(logits),
next_state, info={"logits:",logits})

_distribution(..) method takes time_step and policy state as the input, passes it
through the network, and emits the PolicyStep, which is a tuple of three things –
distribution of logits, next_state, and logits.

Training pipeline
Agent class encompasses main RL algorithm. It reads batches of data (trajectories)
and updating the neural network:

1. To create an agent, there are standard implementations. It takes q_network
and optimizer:
agent = DqnAgent(q_network=.., optimizer=...)

2. Then, we collect policy from the agent:
policy = agent.collect_policy()

3. The main method on the agent is train. Here, we train from a batch of
experience:
loss_info = agent.train(trajectories = projection)

4. Create a network:
q_net = q_network.QNetwork(observation_spec, action_spec)

Figure 8.12 shows the steps involved in training the network by capturing the
dataset from observations and feeding it back into the pipeline:

Figure 8.12: Training the underlying network from collected data

5. Build an agent with that network:
dqn_agent = DqnAgent(

q_network = q_net,

optimizer = AdamOptimizer(learning_rate = learning_rate))

6. Get experience from tf.data.Dataset and train the agent:
dataset = replay_buffer.as_dataset().step(num_steps = 2).fetch(3

for batched_experience in dataset:
agent.train(batched_experience)

Next, we look at the collect experience which feeds into the replay buffer.

Collect experience

1. First, create a TensorFlow environment, create a replay buffer, and then the
driver:
tf_env = TFPyEnvironment([..])

replace_buffer = TFUniformReplayBuffer(agent.collect_dataset)

driver = DynmaicStepDriver(tf_env, agent.collect_policy,

observers=[replay_buffer.add_batch], num_step=100)

2. The driver accepts environment, collect_policy and a number of call backs
(observers). When you call driver.run(), it populates the replay_buffer
with 100 more steps.
The following figure summarizes the collect and train flow with actual
classes and method:

Figure 8.13: Collect and train sequence with implementation classes and methods

We have looked at the mechanics of collection and training pipelines. Let us look at
an SQN agent using TF-agents in the next section.

Simple DQN agent
Let us build a very simple DQN agent with two observations and actions:

1. Create a dummy network that extends network.Network. It has a dummy
dense layer:
class DummyNet(network.Network):

def __init__(self,

observation_spec,

action_spec,

l2_regularization_weight=0.0,

name=None):

super(DummyNet, self).__init__(

observation_spec, state_spec=(), name=name)

num_actions = action_spec.maximum - action_spec.minimum + 1

Store custom layers that can be serialized through the

Checkpointable API.

self._dummy_layers = [

tf.keras.layers.Dense(

num_actions,

kernel_regularizer=tf.keras.regularizers.l2(

l2_regularization_weight),

kernel_initializer=tf.constant_initializer([[num_ actions,

1],

[1, 1]]),

bias_initializer=tf.constant_initializer([[1], [1]]))

]

def call(self, inputs, step_type=None, network_state=()):

del step_type

inputs = tf.cast(inputs, tf.float32)

for layer in self._dummy_layers:
inputs = layer(inputs)

return inputs, network_state

2. Create a base class. It inherits from tf.test.TestCase and
parameterized.TestCase some infrastructure elements:
class DqnAgentBase(tf.test.TestCase, parameterized.TestCase):

def setUp(self):

super(DqnAgentBase, self).setUp()

self._observation_spec = tensor_spec.TensorSpec([2],

tf.float32)

self._time_step_spec =

ts.time_step_spec(self._observation_spec)

self._action_spec = tensor_spec.BoundedTensorSpec((),

tf.int32, 0, 1)

3. Next, we implement the implementation class. Using the kernel initializer [[2,
1], [1, 1]] and bias initializer [[1], [1]] from DummyNet, we can calculate the
following values:

Q-value for first observation/action pair: 2 * 1 + 1 * 2 + 1 = 5

Q-value for second observation/action pair: 1 * 3 + 1 * 4 + 1 =

8

(Here we use the second row of the kernel initializer above,

since the

chosen action is now 1 instead of 0.)

For the target Q-values here, note that since we've replaced 5 and 7 with -5
and -7, it is better to use action 1 with a kernel of [1, 1] instead of action 0
with a kernel of [2, 1]:
Target Q-value for first next_observation: 1 * -5 + 1 * 6 + 1 =

2

Target Q-value for second next_observation: 1 * -7 + 1 * 8 + 1 =

2

TD targets: 10 + 0.9 * 2 = 11.8 and 20 + 0.9 * 2 = 21.8

TD errors: 11.8 - 5 = 6.8 and 21.8 - 8 = 13.8

TD loss: 6.3 and 13.3 (Huber loss subtracts 0.5)

Overall loss: (6.3 + 13.3) / 2 = 9.8

Refer to the following code listing:
class DqnAgentSampleOne(DqnAgentBase):

def setUp(self):

super(DqnAgentSampleOne, self).setUp()

def runLossWithChangedOptimalActions(self):

q_net = DummyNet(self._observation_spec, self._action_spec)

agent = tf_agents.agents.dqn.dqn_agent.DdqnAgent(

self._time_step_spec,

self._action_spec,

q_network=q_net,

optimizer=None)

observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)

time_steps = ts.restart(observations, batch_size=2)

actions = tf.constant([0, 1], dtype=tf.int32)

action_steps = policy_step.PolicyStep(actions)

rewards = tf.constant([10, 20], dtype=tf.float32)

discounts = tf.constant([0.9, 0.9], dtype=tf.float32)

Note that instead of [[5, 6], [7, 8]] as before, we now have

-5 and -7.

next_observations = tf.constant([[-5, 6], [-7, 8]], dtype=tf.

float32)

next_time_steps = ts.transition(next_observations, rewards,

discounts)

experience = trajectories_test_utils.stacked_trajectory_from_

transition(

time_steps, action_steps, next_time_steps)

loss, _ = agent._loss(experience)

self.evaluate(tf.compat.v1.global_variables_initializer())

loss_evaluate = self.evaluate(loss)

tf.print("loss:", loss, output_stream=sys.stdout)

DQN based agent for CartPole game
Let us use the tf-agent library with the CartPole game using OpenAI gym
environment, to create a DQN based agent which plays the CartPole game:
!sudo apt-get install -y xvfb ffmpeg
!pip install -q 'imageio==2.4.0'
!pip install -q pyvirtualdisplay
!pip install -q tf-agents

Hyperparameters: Set the hyperparameters:
num_iterations = 2000 # @param {type:"integer"}

initial_collect_steps = 100 # @param {type:"integer"}

collect_steps_per_iteration = 1 # @param {type:"integer"}

replay_buffer_max_length = 100000 # @param {type:"integer"}

batch_size = 64 # @param {type:"integer"}

learning_rate = 1e-3 # @param {type:"number"}

log_interval = 200 # @param {type:"integer"}

num_eval_episodes = 10 # @param {type:"integer"}

eval_interval = 1000 # @param {type:"integer"

Environment: Load the CartPole environment from the OpenAI gym suite:
env_name = 'CartPole-v0'

env = suite_gym.load(env_name)

Let us render this environment using PIL library to see how it looks. A free-
swinging pole is attached to a cart. The goal is to move the cart right or left in
order to keep the pole pointing up. Once the environment is loaded, you can
see a figure similar to figure 8.14:

Figure 8.14: CartPole environment loaded

The action_spec() method returns the shape, data types, and allowed values
of valid actions:
print('Action Spec:')
print(env.action_spec())
Action Spec:

BoundedArraySpec(shape=(), dtype=dtype('int64'), name='action',

minimum=0, maximum=1)

Let us look at the details of the CartPole environment:

observation is an array of four floats:

the position and velocity of the cart
the angular position and velocity of the pole

reward is a scalar float value.
action is a scalar integer with only two possible values:

0: move left
1: move right

Two environments - one for training other for testing:
train_py_env = suite_gym.load(env_name)

eval_py_env = suite_gym.load(env_name)

Convert the environments from Python to TensorFlow:
train_env = tf_py_environment.TFPyEnvironment(train_py_env)

eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

Agent
An agent represents the algorithm used to solve an RL problem. TF-agents provide
standard implementations for the following agents:

DQN (https://storage.googleapis.com/deepmind-
media/dqn/DQNNaturePaper.pdf)
REINFORCE (https://www-
anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf)
DDPG (https://arxiv.org/pdf/1509.02971.pdf)
TD3 (https://arxiv.org/pdf/1802.09477.pdf)
PPO (https://arxiv.org/abs/1707.06347)
SAC (https://arxiv.org/abs/1801.01290)

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1801.01290

The DQN agent can be used in an environment which has a discrete action space.
DQN agent contains a QNetwork, a neural network model that can learn to predict
QValues (expected returns) for all actions, given an observation from the
environment.
We will be using tf_agents.networks to create a QNetwork. The network consists
of a sequence of tf.keras.layers.Dense layers, where the final layer will have
one output for each possible action:
fc_layer_params = (100, 50)

action_tensor_spec = tensor_spec.from_spec(env.action_spec())

num_actions = action_tensor_spec.maximum - action_tensor_spec.minimum

+ 1

Define a helper function to create Dense layers configured with the

right

activation and kernel initializer.

def dense_layer(num_units):

return tf.keras.layers.Dense(

num_units,

activation=tf.keras.activations.relu,

kernel_initializer=tf.keras.initializers.VarianceScaling(

scale=2.0, mode='fan_in', distribution='truncated_normal'))

QNetwork consists of a sequence of Dense layers followed by a dense

layer

with `num_actions` units to generate one q_value per available

action as

its output.

dense_layers = [dense_layer(num_units) for num_units in

fc_layer_params]

q_values_layer = tf.keras.layers.Dense(

num_actions,

activation=None,

kernel_initializer=tf.keras.initializers.RandomUniform(

minval=-0.03, maxval=0.03),

bias_initializer=tf.keras.initializers.Constant(-0.2))

q_net = sequential.Sequential(dense_layers + [q_values_layer])

Note that variance scaling helps network learn the weights better.
DqnAgent is initialized using tf_agents.agents.dqn.dqn_agent. It takes
time_step_spec, action_spec, QNetwork, and optimizer (AdamOptimizer) in this
case:
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

train_step_counter = tf.Variable(0)

agent = dqn_agent.DqnAgent(

train_env.time_step_spec(),

train_env.action_spec(),

q_network=q_net,

optimizer=optimizer,

td_errors_loss_fn=common.element_wise_squared_loss,

train_step_counter=train_step_counter)

agent.initialize()

Next, let us look at the policy.

Policy
A policy is used to define the way an agent acts in an environment. The goal of
reinforcement learning is to train the model so that the policy produces the desired
outcome.
In this example:

The desired outcome is keeping the pole balanced upright over the cart.
The policy returns an action (left or right) for each time_step observation.

Agents contain two policies:

agent.policy: the main policy that is used for evaluation and deployment
agent.collect_policy: a second policy that is used for data collection:

eval_policy = agent.policy

collect_policy = agent.collect_policy

Policies can be created independent of the agent:
random_policy =

random_tf_policy.RandomTFPolicy(train_env.time_step_spec(),

train_env.action_spec())

example_environment = tf_py_environment.TFPyEnvironment(

suite_gym.load('CartPole-v0'))

time_step = example_environment.reset()

random_policy.action(time_step)

Next, we will look at how to evaluate effectiveness of the policy.

Measures and metrics
Average return is used to evaluate policy. It is the sum of rewards obtained by
running a policy in an environment for an episode. Several episodes lead to an

average return.
The following function computes average return of policy for a given policy,
environment, and number of episodes:
#@test {"skip": true}

def compute_avg_return(environment, policy, num_episodes=10):

total_return = 0.0

for _ in range(num_episodes):

time_step = environment.reset()

episode_return = 0.0

while not time_step.is_last():

action_step = policy.action(time_step)

time_step = environment.step(action_step.action)

episode_return += time_step.reward

total_return += episode_return

avg_return = total_return / num_episodes

return avg_return.numpy()[0]

Replay buffer
The replay buffer is used to keep track of data collected from the environment.
This example uses
tf_agents.replay_buffers.tf_uniform_replay_buffer.TFUniformReplayBuffe
r.
The constructor of the class requires the specs for the data it will be collecting. This
is available from the agent using the collect_data_spec method. The batch size
and maximum buffer length are also required:
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(

data_spec=agent.collect_data_spec,

batch_size=train_env.batch_size,

max_length=replay_buffer_max_length)

Data collection
Accessing replay_buffer as a dataset:
dataset = replay_buffer.as_dataset(

num_parallel_calls=3,

sample_batch_size=batch_size,

num_steps=2).prefetch(3)

dataset has the following runtime attributes:
<PrefetchDataset shapes: (Trajectory(step_type=(64, 2), observation=

(64, 2, 4), action=(64, 2), policy_info=(), next_step_type=(64, 2),

reward=(64, 2), discount=(64, 2)), BufferInfo(ids=(64, 2),

probabilities=(64,))), types: (Trajectory(step_type=tf.int32,

observation=tf.float32, action=tf.int64, policy_info=(),

next_step_type=tf.int32, reward=tf.float32, discount=tf.float32),

BufferInfo(ids=tf.int64, probabilities=tf.float32))>

Training the agent
During the training loop, two things happen:

collecting data from the environment
using the data to train the agent's neural network(s)

The following code also periodically evaluates the policy and prints the current
score. The code sample will take ~5 minutes to run:
try:

%%time

except:

pass

(Optional) Optimize by wrapping some of the code in a graph using

TF function.

agent.train = common.function(agent.train)

Reset the train step.

agent.train_step_counter.assign(0)

Evaluate the agent's policy once before training.

avg_return = compute_avg_return(eval_env, agent.policy,

num_eval_episodes)

returns = [avg_return]

for _ in range(num_iterations):

Collect a few steps using collect_policy and save to the replay

buffer.

collect_data(train_env, agent.collect_policy, replay_buffer,

collect_steps_per_iteration)

Sample a batch of data from the buffer and update the agent's

network.

experience, unused_info = next(iterator)

train_loss = agent.train(experience).loss

step = agent.train_step_counter.numpy()

if step % log_interval == 0:

print('step = {0}: loss = {1}'.format(step, train_loss))

if step % eval_interval == 0:

avg_return = compute_avg_return(eval_env, agent.policy,

num_eval_episodes)

print('step = {0}: Average Return = {1}'.format(step, avg_return))

returns.append(avg_return)

The output shows the average return as a function of time:
step = 200: loss = 24.947084426879883
step = 400: loss = 15.076136589050293
step = 600: loss = 20.803768157958984
step = 800: loss = 153.6983184814453
step = 1000: loss = 38.69990921020508
step = 1000: Average Return = 153.10000610351562
step = 1200: loss = 36.78254699707031
…
step = 18000: loss = 75024480.0
step = 18000: Average Return = 178.39999389648438
step = 18200: loss = 95447344.0
step = 18400: loss = 102358096.0
step = 18600: loss = 283645856.0
step = 18800: loss = 107610192.0
step = 19000: loss = 57826464.0
step = 19000: Average Return = 193.60000610351562
step = 19200: loss = 166127808.0
step = 19400: loss = 140119344.0
step = 19600: loss = 315532032.0
step = 19800: loss = 155458912.0
step = 20000: loss = 138126432.0
step = 20000: Average Return = 187.6999969482422

Plotting the output:
#@test {"skip": true}

iterations = range(0, num_iterations + 1, eval_interval)

plt.plot(iterations, returns)

plt.ylabel('Average Return')

plt.xlabel('Iterations')

plt.ylim(top=250)

Output will be similar to figure 8.15 for average return as a function of iterations:

Figure 8.15: Average return versus iterations for CartPole-v0 with DQN network using TF-agents

Removing variance scaling from the model
Let us remove the variation scaling from the dense layer and see the output:
fc_layer_params = (100, 50)

action_tensor_spec = tensor_spec.from_spec(env.action_spec())

num_actions = action_tensor_spec.maximum - action_tensor_spec.minimum

+ 1

Define a helper function to create Dense layers configured with the

right

activation and kernel initializer.

def dense_layer(num_units):

tf.keras.layers.Dense(

num_units,

activation=tf.keras.activations.relu

)

QNetwork consists of a sequence of Dense layers followed by a dense

layer

with `num_actions` units to generate one q_value per available

action as

Its output.

dense_layers = [dense_layer(num_units) for num_units in

fc_layer_params]

q_values_layer = tf.keras.layers.Dense(

num_actions,

activation=None,

kernel_initializer=tf.keras.initializers.RandomUniform(

minval=-0.03, maxval=0.03),

bias_initializer=tf.keras.initializers.Constant(-0.2))

q_net = sequential.Sequential(dense_layers + [q_values_layer])

The following plot shows that not having variance scaling leads to average return
reaching 200 very soon:

Figure 8.16: Average return versus iterations for CartPole-v0 with no variance scaling, using DQN network,
and TF-agents

In the next section, we will look at the SAC agents supported in the TF-agents’
library.

SAC agent’s support in TF-agents
In this section, we will look at how to create a basic actor critic agent, and then how
to use a trajectory to train it. This is the same agent type that we built earlier without
using TF-Agent library.
TF-agent provides out-of-box support, as we learnt in the earlier sections:

class MyActorPolicy(object):
def __init__(self,
time_step_spec,
action_spec,
actor_network,
training=False):

del time_step_spec

del actor_network

del training

single_action_spec = tf.nest.flatten(action_spec)[0]
Action is maximum of action range.

self._action = single_action_spec.maximum
self._action_spec = action_spec
self.info_spec = ()

def action(self, time_step):
observation = time_step.observation

batch_size = observation.shape[0]
action = tf.constant(self._action, dtype=tf.float32,

shape=[batch_size, 1])
return policy_step.PolicyStep(action=action)

def distribution(self, time_step, policy_state=()):
del policy_state
action = self.action(time_step).action

return policy_step.PolicyStep(action=_MockDistribution(action))
def get_initial_state(self, batch_size):

del batch_size
return ()

Create a critic network and implement __init__(), copy(), and call() methods.
In __init__(), we initiate a input_tensor_spec, state_spec, and
_l2_regularization_weight.
We implement the following three layers:

_value_layer

_shared_layer

_action_layer

self._value_layer = tf.keras.layers.Dense(
1,
kernel_regularizer=tf.keras.regularizers.l2(l2_regularization_wei

ght),

kernel_initializer=tf.constant_initializer([[0], [1]]),

bias_initializer=tf.constant_initializer([[0]]))

self._shared_layer = shared_layer
self._action_layer = tf.keras.layers.Dense(

1,
kernel_regularizer=

tf.keras.regularizers.l2(l2_regularization_weight),

kernel_initializer=tf.constant_initializer([[1]]),

bias_initializer=tf.constant_initializer([[0]]))

The call function
Calculate the s_value (state), a_value (actions), and q_value based on the
previous actions and values passed as inputs:

def call(self, inputs, step_type, network_state=()):
del step_type
observation, actions = inputs

actions = tf.cast(tf.nest.flatten(actions)[0], tf.float32)

states = tf.cast(tf.nest.flatten(observation)[0], tf.float32)

s_value = self._value_layer(states)

if self._shared_layer:
s_value = self._shared_layer(s_value)

a_value = self._action_layer(actions)

Biggest state is best state.

q_value = tf.reshape(s_value + a_value, [-1])
return q_value, network_state

The complete code listing is as follows:
class DummyCriticNet(network.Network):
def __init__(self, l2_regularization_weight=0.0, shared_layer=None):
super(DummyCriticNet, self).__init__(
input_tensor_spec=(tensor_spec.TensorSpec([2], tf.float32),

tensor_spec.TensorSpec([1], tf.float32)),

state_spec=(),

name=None)
self._l2_regularization_weight = l2_regularization_weight
self._value_layer = tf.keras.layers.Dense(
1,

kernel_regularizer=

tf.keras.regularizers.l2(l2_regularization_weight),

kernel_initializer=tf.constant_initializer([[0], [1]]),

bias_initializer=tf.constant_initializer([[0]]))

self._shared_layer = shared_layer

self._action_layer = tf.keras.layers.Dense(
1,
kernel_regularizer=

tf.keras.regularizers.l2(l2_regularization_weight),

kernel_initializer=tf.constant_initializer([[1]]),

bias_initializer=tf.constant_initializer([[0]]))

def copy(self, name=''):
del name
return DummyCriticNet(
l2_regularization_weight=self._l2_regularization_weight,

shared_layer=self._shared_layer)

def call(self, inputs, step_type, network_state=()):
del step_type
observation, actions = inputs

actions = tf.cast(tf.nest.flatten(actions)[0], tf.float32)

states = tf.cast(tf.nest.flatten(observation)[0], tf.float32)

s_value = self._value_layer(states)

if self._shared_layer:
s_value = self._shared_layer(s_value)

a_value = self._action_layer(actions)

Biggest state is best state.

q_value = tf.reshape(s_value + a_value, [-1])

return q_value, network_state

Create SAC agent sample
In the following sample, we create a simple SAC agent with _time_step_spec, -
_action_spec, critic_network, and ActorPolicy being passed in the constructor:

_time_step_spec is based on _obs_spec, which varies between 0 and 1
._action_spec varies between -1 and 1

All the optimizers are of the type tf.compat.v1.train.AdamOptimizer(0.001):
class SacAgentSample(test_utils.TestCase):
def setUp(self):
super(SacAgentSample, self).setUp()

self._obs_spec = tensor_spec.BoundedTensorSpec([2],
tf.float32,

minimum=0,

maximum=1)

self._time_step_spec = ts.time_step_spec(self._obs_spec)

self._action_spec = tensor_spec.BoundedTensorSpec([1], tf.float32,

-1,

1)
def runCreateAgent(self, create_critic_net_fn, skip_in_tf1):
critic_network = create_critic_net_fn()

SacAgent(

self._time_step_spec,
self._action_spec,
critic_network=critic_network,

actor_network=None,

actor_optimizer=

tf.compat.v1.train.AdamOptimizer(0.001),

critic_optimizer=

tf.compat.v1.train.AdamOptimizer(0.001),

alpha_optimizer=

tf.compat.v1.train.AdamOptimizer(0.001))

actor_policy_ctor=MyActorPolicy)

Create an agent and train on trajectory
Create a trajectory_spec from trajectory.Trajectory. This is used to create a
sample_trajectory which is passed to the agent.train():
def runAgentTrajectoryTrain(self):

actor_net = actor_distribution_network.ActorDistributionNetwork(

self._obs_spec,
self._action_spec,
fc_layer_params=(10,),

continuous_projection_net=tanh_normal_projection_network

.TanhNormalProjectionNetwork)

agent = SacAgent(

self._time_step_spec,
self._action_spec,
critic_network=MyCriticNet(),

actor_network=actor_net,

actor_optimizer=tf.compat.v1.train.AdamOptimizer(0.001),

critic_optimizer=tf.compat.v1.train.AdamOptimizer(0.001),

alpha_optimizer=tf.compat.v1.train.AdamOptimizer(0.001))

trajectory_spec = trajectory.Trajectory(

step_type=self._time_step_spec.step_type,

observation=self._time_step_spec.observation,

action=self._action_spec,

policy_info=(),

next_step_type=self._time_step_spec.step_type,

reward=tensor_spec.BoundedTensorSpec(

[], tf.float32, minimum=0.0, maximum=1.0, name='reward'),

discount=self._time_step_spec.discount)

sample_trajectory_experience = tensor_spec.sample_spec_nest(

trajectory_spec, outer_dims=(3, 2))

loss_info = agent.train(sample_trajectory_experience)

tf.print(loss_info)

Output of the preceding tf.print will give the loss, critic_loss, actor_loss, and
alpha_loss:
LossInfo(loss=3.35792017, extra=SacLossInfo(critic_loss=2.24238253,

actor_loss=1.11553776, alpha_loss=0))

Reinforce agent
In this section, we look at how to use reinforce agent using tf-agents framework.
Most of the steps are same as the preceding example for CartPole-v0:

1. We define an ActorDistributionNetwork:
actor_net = actor_distribution_network.ActorDistributionNetwork(

train_env.observation_spec(),

train_env.action_spec(),

fc_layer_params=fc_layer_params)

2. Define a reinforce agent:
optimizer =

tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

train_step_counter = tf.compat.v2.Variable(0)

tf_agent = reinforce_agent.ReinforceAgent(

train_env.time_step_spec(),

train_env.action_spec(),

actor_network=actor_net,

optimizer=optimizer,

normalize_returns=True,

train_step_counter=train_step_counter)

tf_agent.initialize()

Training the agent

Let us look at the step where we train the target:

#@test {"skip": true}

try:
%%time

except:
pass

(Optional) Optimize by wrapping some of the code in a graph

using TF function.

tf_agent.train = common.function(tf_agent.train)

Reset the train step

tf_agent.train_step_counter.assign(0)

Evaluate the agent's policy once before training.

avg_return = compute_avg_return(eval_env, tf_agent.policy,

num_eval_episodes)

returns = [avg_return]

for _ in range(num_iterations):
Collect a few episodes using collect_policy and save to the

replay buffer.

collect_episode(

train_env, tf_agent.collect_policy, collect_episodes_per_

iteration)

Use data from the buffer and update the agent's network.

experience = replay_buffer.gather_all()

train_loss = tf_agent.train(experience)

replay_buffer.clear()

step = tf_agent.train_step_counter.numpy()

if step % log_interval == 0:
print('step = {0}: loss = {1}'.format(step, train_loss.loss))
if step % eval_interval == 0:
avg_return = compute_avg_return(eval_env, tf_agent.policy,

num_eval_episodes)

print('step = {0}: Average Return = {1}'.format(step, avg_
return))

returns.append(avg_return)

Output of the preceding training step:
CPU times: user 0 ns, sys: 2 µs, total: 2 µs
Wall time: 4.77 µs
step = 25: loss = 0.006921291351318359
step = 50: loss = 0.03737598657608032
step = 50: Average Return = 84.9000015258789
step = 75: loss = 0.11638593673706055
step = 100: loss = -0.6089606285095215
step = 100: Average Return = 130.3000030517578
step = 125: loss = 0.6521391868591309
step = 150: loss = -1.0057716369628906

step = 150: Average Return = 198.8000030517578
step = 175: loss = -3.2779808044433594
step = 200: loss = -3.663456916809082
step = 200: Average Return = 200.0
step = 225: loss = -2.1488280296325684
step = 250: loss = 1.3752391338348389
step = 250: Average Return = 197.89999389648438

Plotting the output
Let us plot the preceding output generated and stored in returns:
steps = range(0, num_iterations + 1, eval_interval)

plt.plot(steps, returns)

plt.ylabel('Average Return')

plt.xlabel('Step')

plt.ylim(top=250)

The average return reaches 200 in about 130 steps, as shown in the figure 8.17:

Figure 8.17: Average return for SAC agent as a function of steps

Conclusion
In this chapter, we learnt the basics of reinforcement learning. We started with
defining the policy value. This was followed by concepts like policy evaluation and

policy iterations. We defined the function Q and its approximation using neural
network – DQN. This was followed by more advanced concepts like double DQN.
We looked at actor-critic network which is a combination of policy and value-based
learning. We looked at TF-agent library, which makes it easier to write RL
algorithms using TensorFlow.

Questions
1. Reinforcement learning is:

a. unsupervised learning
b. supervised learning
c. award-based learning
d. none of the above

2. Which of the following is true about reinforcement learning?

a. The agent gets rewards or penalty according to the action.
b. It’s online learning.
c. The target of an agent is to maximize the rewards.
d. all of the above

3. Hidden Markov Model is used in:

a. supervised learning
b. unsupervised learning
c. reinforcement learning
d. all of the above

Code listing

Base directory is as follows:
https://github.com/rajdeepd/tensorflow_2.0_book_code/tree/master/ch09

References
Understanding Stabilizing Experience Replay for Deep Multi-Agent
Reinforcement Learning:
https://medium.com/@parnianbrk/understanding-stabilising-experience-
replay-for-deep-multi-agent-reinforcement-learning-84b4c04886b5.
REINFORCE algorithm from (Williams, 1992): https://www-
anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf.
Soft Actor-Critic Algorithms and Applications:
https://arxiv.org/abs/1812.05905.
Addressing Function Approximation Error in Actor-Critic Methods by
Fujimoto et al: https://arxiv.org/abs/1802.09477.
DQN C51/Rainbow:
https://www.tensorflow.org/agents/tutorials/9_c51_tutorial.
Human-level control through deep reinforcement learning:
https://storage.googleapis.com/deepmind-
media/dqn/DQNNaturePaper.pdf.

https://github.com/rajdeepd/tensorflow_2.0_book_code/tree/master/ch09
https://medium.com/@parnianbrk/understanding-stabilising-experience-replay-for-deep-multi-agent-reinforcement-learning-84b4c04886b5
https://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1802.09477
https://www.tensorflow.org/agents/tutorials/9_c51_tutorial
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Lecture 1: Introduction to RL:
https://web.stanford.edu/class/cs234/slides/lecture1.pdf.
Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 1 –
Introduction: https://www.youtube.com/watch?
v=FgzM3zpZ55o&list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u.
Epsilon-Greedy Algorithm in Reinforcement Learning:
https://www.geeksforgeeks.org/epsilon-greedy-algorithm-in-
reinforcement-learning/.
Automate your workflow from idea to production:
https://github.com/marload/DeepRL-TensorFlow2.
David-Silver-Reinforcement-learning: https://github.com/dalmia/David-
Silver-Reinforcement-learning.

Appendix

Policy evaluation
Policy evaluation to achieve optimal policy is based on the following steps:
Iterative application of Bellman expectation backup:

v1 ---> v2 ---> ... vπ
Using synchronous backups:

At each iteration k + 1, for all states s ∈ S
Update from vk(s') where s' is a successor state of

1. Let us look at the implementation in Python:
from IPython.core.debugger import set_trace

import numpy as np

import pprint

import sys

if "../" not in sys.path:
sys.path.append("../")

from lib.envs.gridworld import GridworldEnv

2. Instantiate the environment:
pp = pprint.PrettyPrinter(indent=2)

env = GridworldEnv()

3. Define policy eval function:

https://web.stanford.edu/class/cs234/slides/lecture1.pdf
https://www.youtube.com/watch?v=FgzM3zpZ55o&list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u
https://www.geeksforgeeks.org/epsilon-greedy-algorithm-in-reinforcement-learning/
https://github.com/marload/DeepRL-TensorFlow2
https://github.com/dalmia/David-Silver-Reinforcement-learning

def policy_eval(policy, env, discount_factor=1.0,

theta=0.00001):

Start with a random (all 0) value function

V = np.zeros(env.nS)

while True:

delta = 0

For each state, perform a "full backup"

for s in range(env.nS): v = 0

Look at the possible next actions

for a, action_prob in enumerate(policy[s]):

For each action, look at the possible next states...

for prob, next_state, reward, done in env.P[s][a]:

Calculate the expected value. Ref: Sutton book eq. 4.6.

v += action_prob * prob * (reward + discount_factor \

* V[next_state])

How much our value function changed (across any states)

delta = max(delta, np.abs(v - V[s])) V[s] = v

Stop evaluating once our value function change is below

a threshold

if delta < theta:

break return np.array(V)

4. Create a random policy, and find the value function:
random_policy = np.ones([env.nS, env.nA]) / env.nA

v = policy_eval(random_policy, env)

5. Let us print the values we get for v:
Value Function:

[0. -13.99993529 -19.99990698 -21.99989761 -13.99993529

-17.9999206 -19.99991379 -19.99991477 -19.99990698 -19.99991379

-17.99992725 -13.99994569 -21.99989761 -19.99991477

-13.99994569

0.]

6. Reshaped grid value function:
[[0. -13.99993529 -19.99990698 -21.99989761]

[-13.99993529 -17.9999206 -19.99991379 -19.99991477]

[-19.99990698 -19.99991379 -17.99992725 -13.99994569]

[-21.99989761 -19.99991477 -13.99994569 0.]]

Policy iteration

Evaluate a policy given an environment and a full description of the environment's
dynamics:
def policy_eval(policy, env, discount_factor=1.0, theta=0.00001):
Start with a random (all 0) value function

V = np.zeros(env.nS)

while True:
delta = 0

For each state, perform a "full backup"

for s in range(env.nS):
v = 0

Look at the possible next actions

for a, action_prob in enumerate(policy[s]):
For each action, look at the possible next states...

for prob, next_state, reward, done in env.P[s][a]:

Calculate the expected value

v += action_prob * prob * \

(reward + discount_factor * V[next_state])

How much our value function changed (across any states)

delta = max(delta, np.abs(v - V[s]))

V[s] = v

Stop evaluating once our value function change is below a

threshold

if delta < theta:
break

return np.array(V)
Policy improvement algorithm iteratively evaluates and improves a policy until an
optimal policy is found:
def one_step_lookahead(env, discount_factor,state, V):

"""

Helper function to calculate the value for all action

in a given state.

Args:

state: The state to consider (int)

V: The value to use as an estimator, Vector of

length env.nS

Returns:

A vector of length env.nA containing the expected value

of each action.

"""

A = np.zeros(env.nA)

for a in range(env.nA):

for prob, next_state, reward, done in env.P[state][a]:

A[a] +=

prob * (reward + discount_factor * V[next_state])

return A

def policy_improvement(env, policy_eval_fn=policy_eval,

discount_factor=1.0):

"""

"""

Start with a random policy

policy = np.ones([env.nS, env.nA]) / env.nA

V = None

while True:

V = policy_eval_fn(policy, env, discount_factor=1.0,

theta=0.00001)

Implement this!

For each state, perform a "full backup"

V = policy_eval_fn(policy, env, discount_factor)

Will be set to false if we make any changes to the policy

policy_stable = True

for s in range(env.nS):
chosen_a = np.argmax(policy[s])

action_values = one_step_lookahead(env,

discount_factor,s, V)

best_a = np.argmax(action_values)

if chosen_a != best_a:

policy_stable = False

policy[s] = np.eye(env.nA)[best_a]

if policy_stable:

return policy, V

policy, v = policy_improvement(env)

print("Policy Probability Distribution:")

print(policy)

print("")

Output of the probability distribution:
Policy Probability Distribution: [[1. 0. 0. 0.] [0. 0. 0. 1.] [0. 0.
0. 1.] [0. 0. 1. 0.] [1. 0. 0. 0.] [1. 0. 0. 0.] [1. 0. 0. 0.] [0. 0.
1. 0.] [1. 0. 0. 0.] [1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [1. 0.
0. 0.] [0. 1. 0. 0.] [0. 1. 0. 0.] [1. 0. 0. 0.]]

Reshape the grid policy and value function:
print("Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):")

print(np.reshape(np.argmax(policy, axis=1), env.shape))

print("")

print("Value Function:")

print(v)

print("")

print("Reshaped Grid Value Function:")

print(v.reshape(env.shape))

print("")

Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):
[[0 3 3 2]
[0 0 0 2]
[0 0 1 2]
[0 1 1 0]]
Value Function:
[0. -1. -2. -3. -1. -2. -3. -2. -2. -3. -2. -1. -3. -2. -1. 0.]
Reshaped Grid Value Function:
[[0. -1. -2. -3.]
[-1. -2. -3. -2.]
[-2. -3. -2. -1.]
[-3. -2. -1. 0.]]

CHAPTER 9
Techniques to do Model Optimization

Introduction
The TensorFlow model optimization toolkit provides a set of tools for users,
both beginners and advanced. It can be used to optimize machine learning
models for deployment as well as execution.
It includes techniques like quantization and pruning for sparse weights.
There are APIs built specifically for Keras based APIs.
For an overview of this project and individual tools, the optimization gains,
and roadmap you can refer to the link:
https://www.tensorflow.org/model_optimization

Structure
In this chapter, we will cover the following topics:

Background
Extension to neural networks
Quantization
Post-training quantization
Weight pruning

Objective
After going through this chapter, you will be able to understand how
models can be compressed to make them more efficient without affecting
the performance drastically.

Background

https://www.tensorflow.org/model_optimization

Neural networks are considered function approximators. They are trained to
learn functions that capture underlying representations formulating the
input data points/dataset. The neural network's weights and biases are
referred to as models’ learnable parameters. The weights are referred to as
coefficients of the function being learned.
Let us consider the following function:

In the preceding function, we have two terms on the right-hand side: x and
x². The coefficients are 1 and 10 respectively. In the following plot, we can
see that the behavior of the function does not change much when the first
coefficient is nudged:

Figure 9.1: Plot variations on changing multiplier for x in the quadratic equation

This plot can be found at the following location:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch
09/pruning_example.ipynb.

Extension to neural networks
The preceding concept can be applied to neural networks as well. Consider
the weights of a trained network. How can we make sense of the weights
that are non-significant?
Let us look at the optimization process with a gradient descent. Weights are
updated using different gradient magnitudes. The gradients of a given loss

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch09/pruning_example.ipynb

function are taken with respect to the weights and biases. Some of the
weights get updated with larger gradient magnitudes (both positive and
negative) than the others during optimization. These weights are considered
significant by the optimizer to minimize the training objective. The weights
that receive relatively smaller gradients are considered as non-significant.
After the training is complete, the weight magnitudes of a network are
inspected layer by layer to find the weights that are significant. This
decision can be made using several heuristics as listed below:

Weight magnitudes are sorted in a descending manner to pick up the
significant ones. This is combined with a sparsity level (percentage of
weights to be pruned) one would want to achieve.
We can also specify a threshold, and all the weights where magnitudes
lie above that threshold will be considered as significant. This scheme
can have several flavors:

The threshold can be a value that is the lowest for the entire
network.
The threshold can be a value local to each of the layers inside a
network. The significant weights are filtered out for each layer
separately in this case.

Tools available
TensorFlow has been recently shipped with the model optimization tool:
TensorFlow-Model-Optimization.

Advantages of model optimization
Model optimization helps to improve throughout and reduce the size of the
model, which is especially useful in edge computing use cases.
As an example, if we take two 32-bit floating-point matrices A and B and do
a matrix multiplication, the resulting matrix is also a 32-bit floating-point
matrix:

Figure 9.2: Data types for two matrices before and after multiplication

Operands are f32 and the product is also f32, as shown in figure 9.2 and
figure 9.3:

Figure 9.3: Data types for two matrices before and after multiplication of each element a and b

We can make the model more efficient by either reducing the precision of
float from 32 to 8 or converting float 32 to integer. Advantages of lower
precision from f32 to f8 are as follows:

4x smaller model
faster integer operations
less power consumed
lower bandwidth

Quantization

Let us first define quantization. It is a process of model approximated
representation using operators of lower precision.
Quantization is made up of techniques for performing computations and
storing tensors at lower bit widths—floating point 8 bit or integer than
floating point precision of 32 bits. A quantized model executes some or all
the operations on tensors with integers instead of floating-point values. This
technique allows for a more compact model and the use of high
performance vectorized operations on many hardware platforms.
Deep learning frameworks, such as TensorFlow, have supported
quantization natively using the toolkit described previously. The developers
and data scientists have been using the built-in quantization modules
successfully without knowing the inner workings of the technique. In this
chapter, we will describe the mathematics of quantization for neural
networks so that the readers would have some ideas about the quantization
mechanisms.
Simple sample on quantization on inception V3 network using the
TensorFlow:
import numpy as np

import tensorflow as tf

import inspect

tf.__version__

Create a utility method _get_model() to create an InceptionV3 model
with input shape of (75,75,3):
model_type = 'InceptionV3'

_MODEL_INPUT_SHAPES = {

'InceptionV3': (75, 75, 3)

}

def _get_model(model_type):

model_fn = [

y for x, y in inspect.getmembers(tf.keras.applications)

if x == model_type

][0]

input_shape = _MODEL_INPUT_SHAPES.get(

model_type, (32, 32, 3))

return model_fn(weights=None, input_shape=input_shape)

model = _get_model(model_type)

def _batch(dims, batch_size):

if dims[0] is None:

dims[0] = batch_size

return dims

x_train = np.random.randn(

*_batch(model.input.get_shape().as_list(),

2)).astype('float32')

y_train = tf.keras.utils.to_categorical(

np.random.randint(1000, size=(2, 1)), 1000)

Create a quantized-aware model from the normal model using
quantize_model(model) method of

tensorflow_model_optimization.quantization.keras.quantize_m
odel:
from tensorflow.python.keras import keras_parameterized

import tensorflow_model_optimization as tfmot

quantize_model = tfmot.quantization.keras.quantize_model

q_aware stands for quantization aware.

q_aware_model = quantize_model(model)

In the next section, we explore how quantization can be done after training
as well.

Post-training quantization
Post-training quantization is a set of general techniques to reduce CPU and
hardware accelerator latency, processing, power, and model size with
minimal degradation in model accuracy. These set of techniques can be
performed on an already-trained float TensorFlow model, and applied
during TensorFlow lite conversion as well.

Overview
TensorFlow Lite converts weights to 8-bit floating point as it converts
TensorFlow graphdefs (https://haosdent.gitbooks.io/tensorflow-
document/content/resources/data_versions.html) to TensorFlow Lite flat
buffer format. Dynamic range quantization (also called post-training
quantization) is able to achieve 4x reduction in model size. TFLite also
supports using quantized kernels for faster implementation and mixing

https://haosdent.gitbooks.io/tensorflow-document/content/resources/data_versions.html

floating point kernels with quantized kernels in the same graph. Activations
stored in floating point are quantized to 8-bits of precision, and then are de-
quantized to floating point precision after processing.
In this technique, the weights are quantized post training. Model weights
are not retrained to compensate for quantization; so make sure you test the
model for accuracy.

Build a Fashion MNIST model
We will be creating a Fashion MNIST classification model and persist it.

Setup

1. Let us start by importing the relevant packages:
import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)

import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib

2. Train a TensorFlow model:
Load Fashion MNIST dataset

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) =

fashion_mnist.load_data()

Normalize the input image so that each pixel value is

between 0 to 1.

train_images = train_images / 255.0

test_images = test_images / 255.0

Define the model architecture

model = keras.Sequential([

keras.layers.InputLayer(input_shape=(28, 28)),

keras.layers.Reshape(target_shape=(28, 28, 1)),

keras.layers.Conv2D(filters=12, kernel_size=(3, 3),

activation=tf.nn.relu),

keras.layers.MaxPooling2D(pool_size=(2, 2)),

keras.layers.Flatten(),

keras.layers.Dense(10)

])

Train the digit classification model

model.compile(optimizer='ada

tfmot.sparsity.keras.prune_low_magnitude(m',

loss=keras.losses.SparseCategoricalCrossentropy(

from_logits=True),

metrics=['accuracy'])

model.fit(

train_images,

train_labels,

epochs=1,

validation_data=(test_images, test_labels)

)

Downloading data from
https://storage.googleapis.com/tensorflow/tf-keras-
datasets/train-labels-idx1-ubyte.gz
1875/1875 [==============================] - 23s 12ms/step
- loss: 0.5152 - accuracy: 0.8193 - val_loss: 0.4285 -
val_accuracy: 0.8513

For example, since you trained the model for just a single epoch, it only
trains to ~81% to 83% accuracy.

Convert to a TensorFlow Lite model
Using the Python TFLiteConverter
(https://www.tensorflow.org/lite/convert/python_api), you can now
convert the trained model into a TensorFlow Lite model:

1. Now, load the model using the TFLiteConverter:
converter =

tf.lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert()

INFO:tensorflow:Assets written to: /tmp/tmptdmqwtpq/assets

2. Write it out to a tflite file:
tflite_models_dir =

pathlib.Path("/tmp/fashion_mnist_tflite_models/")

https://www.tensorflow.org/lite/convert/python_api

tflite_models_dir.mkdir(exist_ok=True, parents=True)

tflite_model_file =

tflite_models_dir/"fashion_mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)

3. To quantize the model on export, set the optimizations flag to optimize
for size.

tf.lite.Optimize.DEFAULT: Default optimization strategy that
quantizes model weights. Enhanced optimizations are gained by
providing a representative dataset that quantizes biases and
activations as well. Converter will do its best to reduce size and
latency, while minimizing the loss in accuracy.

converter.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_quant_model = converter.convert()

tflite_model_quant_file =

tflite_models_dir/"fashion_mnist_model.tflite"

tflite_model_quant_file.write_bytes(tflite_quant_model)

INFO:tensorflow:Assets written to: /tmp/tmpzqj403v1/assets

23904

4. Let us look at the size of the model:
!ls -lh {tflite_models_dir}

total 24K

-rw-r--r-- 1 root root 24K Sep 19 04:10

fashion_mnist_model.tflite

Notice how the resulting file is approximately 1/4 the size.

Run the TFLite models
Run the TensorFlow Lite model using the Python TensorFlow Lite
Interpreter.

1. Load the model into an interpreter:
interpreter =

tf.lite.Interpreter(model_path=str(tflite_model_file))

interpreter.allocate_tensors()

interpreter_quant = tf.lite.Interpreter(model_path=str(

tflite_model_quant_file))

interpreter_quant.allocate_tensors()

2. Test the model on one image:
test_image = np.expand_dims(test_images[1],

axis=0).astype(np.float32)

input_index = interpreter.get_input_details()[0]["index"]

output_index = interpreter.get_output_details()[0]

["index"]

interpreter.set_tensor(input_index, test_image)

interpreter.invoke()

predictions = interpreter.get_tensor(output_index)

3. Plot the true and predicted label:
import matplotlib.pylab as plt

plt.imshow(test_images[1])

template = "True:{true}, predicted:{predict}"

_ = plt.title(template.format(true= str(test_labels[1]),

predict=str(np.argmax(predictions[0]))))

plt.grid(False)

Plot in figure 9. 4 shows the output of the preceding code as a grid
with single image from test_images:

Figure 9.4: Output of test_images[1] on executing the code

Evaluate the models
We will evaluate the models for accuracy:

1. First, define a helper function evaluate_model(interpreter), which
takes model (called interpreter) in this case:
A helper function to evaluate the TF Lite model using

"test" dataset.

def evaluate_model(interpreter):

input_index = interpreter.get_input_details()[0]["index"]

output_index = interpreter.get_output_details()[0]

["index"]

Run predictions on every image in the "test" dataset.

prediction_digits = []

for test_image in test_images:

Pre-processing: add batch dimension and convert to

float32

to match with

the model's input data format.

test_image = np.expand_dims(test_image,

axis=0).astype(np. float32)

interpreter.set_tensor(input_index, test_image)

Run inference.

interpreter.invoke()

Post-processing: remove batch dimension and find the

digit with

highest

probability.

output = interpreter.tensor(output_index)

digit = np.argmax(output()[0])

prediction_digits.append(digit)

accurate_count = 0

for index in range(len(prediction_digits)):
if prediction_digits[index] == test_labels[index]:

accurate_count += 1

accuracy = accurate_count * 1.0 / len(prediction_digits)

return accuracy

2. Next, we will compare prediction results with ground truth labels to
calculate accuracy by calling the evaluate_model(..) function
defined previously:
print(evaluate_model(interpreter))

0.8499

3. Repeat the evaluation on the dynamic range quantized model to
obtain:
print(evaluate_model(interpreter_quant))
0.8499

In this example, the compressed model has no difference at all in the
accuracy.

Weight pruning
In magnitude-based weight pruning model, sparsity is achieved by
gradually zeroing out model weights without compromising accuracy. It
helps improve model compression by a factor of 3. Let us look at a basic
sample using the API:

1. Install and setup:
import tensorflow as tf

import numpy as np

import tensorflow_model_optimization as tfmot

2. We are going to use MNIST dataset:
mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) =

mnist.load_data()

Normalize the input image so that each pixel value is

between 0 and 1.

train_images = train_images / 255.0

test_images = test_images / 255.0

3. Define the model architecture:
Define the model architecture.

model_mnist = keras.Sequential([

keras.layers.InputLayer(input_shape=(28, 28)),

keras.layers.Reshape(target_shape=(28, 28, 1)),

keras.layers.Conv2D(filters=12, kernel_size=(3, 3),

activation='relu'),

keras.layers.MaxPooling2D(pool_size=(2, 2)),

keras.layers.Flatten(),

keras.layers.Dense(10)

])

4. Train the model:
Train the digit classification model

model_mnist.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=True),

metrics=['accuracy'])

model_mnist.fit(

train_images,

train_labels,

epochs=4, validation_split=0.1,

)

It will give accuracy of up to 0.983:
Epoch 1/4
1688/1688 [==============================] - 19s 11ms/step
- loss: 0.3288 - accuracy: 0.9063 - val_loss: 0.1459 -
val_accuracy: 0.9608
…
Epoch 4/4
1688/1688 [==============================] - 18s 11ms/step
- loss: 0.0745 - accuracy: 0.9782 - val_loss: 0.0672 -
val_accuracy: 0.9833

5. Prune all the weights using
tfmot.sparsity.keras.prune_low_magnitude:
_, pretrained_weights = tempfile.mkstemp('.tf')

model_mnist.save_weights(pretrained_weights)

model_for_pruning =

tfmot.sparsity.keras.prune_low_magnitude(model_mnist)

model_for_pruning.summary()

_, pretrained_weights = tempfile.mkstemp('.tf')

model_mnist.save_weights(pretrained_weights)

model_for_pruning =

tfmot.sparsity.keras.prune_low_magnitude(model_mnist)

model_for_pruning.summary()

6. This function first identifies the weights to be pruned, and then turns
them to zero:

Model: "sequential_3"
__

Layer (type) Output Shape Param #
==
=======
prune_low_magnitude_reshape_ (None, 28, 28, 1) 1
__

prune_low_magnitude_conv2d_3 (None, 26, 26, 12) 230
__

prune_low_magnitude_max_pool (None, 13, 13, 12) 1
__

prune_low_magnitude_flatten_ (None, 2028) 1
__

prune_low_magnitude_dense_3 (None, 10) 40572
==
=======
Total params: 40,805
Trainable params: 20,410
Non-trainable params: 20,395

Notice that all the layers have prune_low_magnitude prefixed.

Pruning some of the layers
Let us look at an example where we prune only dense layers.
It is generally better to fine-tune with pruning as opposed to training from
scratch. Try pruning the later layers instead of the first layers. Avoid
pruning critical layers (for example, attention mechanism).
The tfmot.sparsity.keras.prune_low_magnitude API docs provide
details on how to vary the pruning configuration per layer:
Helper function uses `prune_low_magnitude` to make only the

Dense layers train with pruning.

def apply_pruning_to_dense(layer):

if isinstance(layer, tf.keras.layers.Dense):

return tfmot.sparsity.keras.prune_low_magnitude(layer)

return layer

Use `tf.keras.models.clone_model` to apply

`apply_pruning_to_dense`

to the layers of the model.

model_for_pruning = tf.keras.models.clone_model(

model_mnist,

clone_function=apply_pruning_to_dense,

)

model_for_pruning.summary()

The following output shows that only dense_3 layer is pruned:
Model: "sequential_3"
__

Layer (type) Output Shape Param #
==
===
reshape_3 (Reshape) (None, 28, 28, 1) 0
__

conv2d_3 (Conv2D) (None, 26, 26, 12) 120
__

max_pooling2d_3 (MaxPooling2 (None, 13, 13, 12) 0
__

flatten_3 (Flatten) (None, 2028) 0
__

prune_low_magnitude_dense_3 (None, 10) 40572
==
===
Total params: 40,692
Trainable params: 20,410
Non-trainable params: 20,282

Pruning using sequential APIs
Next, we look at the sequential API example for pruning example. In the
following example, we will wrap the dense layer in
tfmot.sparsity.keras.prune_low_magnitude(..) function:
Use `prune_low_magnitude` to make the `Dense` layer train

with pruning.

Input_shape = [10]

model_for_pruning = tf.keras.Sequential([

keras.layers.InputLayer(input_shape=(28, 28)),

keras.layers.Reshape(target_shape=(28, 28, 1)),

keras.layers.Conv2D(filters=12, kernel_size=(3, 3),

activation=’relu’),

keras.layers.MaxPooling2D(pool_size=(2, 2)),

keras.layers.Flatten(),

tfmot.sparsity.keras.prune_low_magnitude(keras.layers.Dense(1

0))

])

model_for_pruning.summary()

With this, we come to the end of this section on pruning the weights.
Sample can be found at
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch
09/post_training_quant_fashion_mnist.ipynb

Weight clustering
Since weights are represented numerically using floating points, clustering
(https://www.machinecurve.com/index.php/2020/04/23/how-to-
perform-mean-shift-clustering-with-python-in-scikit/) techniques can be
applied to them in order to identify groups/clusters of similar weights. This
is how weight clustering for model optimization works. By applying a
clustering technique, the number of unique weights that are present in a
machine learning model are reduced.
First, we need a trained model. Applying weight clustering-based
optimization to the model involves grouping the weights of layers into 𝑁
clusters, where 𝑁 is configurable. This is performed using some clustering
algorithm like KMeans.

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch09/post_training_quant_fashion_mnist.ipynb
https://www.machinecurve.com/index.php/2020/04/23/how-to-perform-mean-shift-clustering-with-python-in-scikit/

Once clusters have been computed, all weights in the cluster become the
cluster’s centroid value. This helps in model compression: values that are
equal can be compressed better. TensorFlow team can get 5X model
compression without losing predictive performance in the machine learning
model.
Applying weight clustering-based optimization can therefore be a great
addition to a machine learning engineer’s toolkit, which should include
quantization and pruning
(https://www.machinecurve.com/index.php/2020/09/23/tensorflow-
model-optimization-an-introduction-to-pruning/).
Let us look at how weight clustering-based model optimization is
implemented in TensorFlow.

Weight clustering in TensorFlow

In this section, we’ll look at four components of weight clustering in
TFMOT:

cluster_weights(…): used for wrapping regular Keras model with
weight clustering wrappers, so that clustering can be done.
centroidInitialization: used for computation of the initial values
of the cluster centroids which are then used in weight clustering.
strip_clustering(…): used for stripping the wrappers off clustering-
ready Keras model, to get back to normal un-clustered model.
cluster_scope(…): used when deserializing weight clustered neural
network.

Enabling Cluster weights
A Keras model cannot be weight clustered as it lacks certain functionality
for doing so. That is why we will need to wrap the model with the
functionality, which clusters weights during training. It is the way to
configure weight clustering for the Keras model.

One should only cluster a model that already shows acceptable
accuracy or other relevant metrics.

https://www.machinecurve.com/index.php/2020/09/23/tensorflow-model-optimization-an-introduction-to-pruning/

Applying cluster_weights(...) works shown as follows (source:
TensorFlow license
(https://www.tensorflow.org/model_optimization/api_docs/python/tfmo
t/clustering/keras/cluster_weights): Creative Commons Attribution 4.0
License (https://creativecommons.org/licenses/by/4.0/):
clustering_params = {

'number_of_clusters': 8,

'cluster_centroids_init':

CentroidInitialization.DENSITY_BASED

}

clustered_model = cluster_weights(original_model,

**clustering_params)

In this code, we define the number of clusters we want (we will compare 4
versus 8 clusters in a sample later), as well as how the centroids are
initialized – a configuration option that we will look at in more detail next.
Subsequently, we are passing the clustering parameters into
cluster_weights(...) without the original model. The clustered_model
that is returned can then be used for clustering.

Determining centroid initialization: CentroidInitialization
From the previous section, we know that weight clustering involves
clustering the weights but also replacing the weights that are part of a
cluster with the centroids of that cluster. This achieves the benefits in terms
of compression that we discussed.
Let us explore the clustering techniques supported by TFMOT.

Stripping clustering wrappers
Using strip_clustering(…) to remove special wrapper created by
cluster_weights:
model = tensorflow.keras.Model(...)

wrapped_model = cluster_weights(model)

stripped_model = strip_clustering(wrapped_model)

Serializing the clustered model
In case you need to save the wrapped model:

https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering/keras/cluster_weights

model = tf.Keras.Model(...)

wrapped_model = cluster_weights(model)

tensorflow.keras.models.save_model(wrapped_model,

'./some_path')

This becomes tricky as clustered model cannot be loaded directly.
TFMOT provides a technique:
tfmot.clustering.keras.cluster_scope(): as follows:
model = tf.Keras.Model(...)

wrapped_model = cluster_weights(model)

file_path = './some_path'

tensorflow.keras.models.save_model(wrapped_model,

file_path)

with tfmot.clustering.keras.cluster_scope():

loaded_model =

tensorflow.keras.models.load_model(file_path)

Weight clustering MNIST classification model
Let us use weight clustering to look at the accuracy of the model. We will
look at the end to end sample code for the same. Assuming the TensorFlow
quantization toolkit is already installed:
import tensorflowas tf

import numpy as np

import tempfile

import zipfile

import os

Let us first train the model without clustering:

1. Load the dataset.
2. Train and test images and normalize.
3. Create sequential model.
4. Compile the model with following parameters:

a. Use adam optimizer.
b. SparseCategoricalCrossentropy
c. Optimize for accuracy metrics.

5. Run model.fit(..) with train_images and train_labels for 10
epochs and validation split of 0.1:
Load MNIST dataset

mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) =

mnist.load_data()

Normalize the input image so that each pixel value is

between 0 to 1.

train_images = train_images / 255.0

test_images = test_images / 255.0

model = tf.keras.Sequential([

tf.keras.layers.InputLayer(input_shape=(28, 28)),

tf.keras.layers.Reshape(target_shape=(28, 28, 1)),

tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3),

activation=tf.nn.relu),

tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(10)

])

Train the digit classification model

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_lo

gits=True), metrics=['accuracy'])

model.fit(

train_images,

train_labels,

validation_split=0.1,

epochs=10

)

The output will show the accuracy and loss for training and validation
set. We will compare the validation accuracy we got, as follows
(0.9842), which we will compare later:
Epoch 1/10
1688/1688 [==============================] - 18s 10ms/step
- loss: 0.3037 - accuracy: 0.9137 - val_loss: 0.1267 -
val_accuracy: 0.9680
..

Epoch 10/10
1688/1688 [==============================] - 17s 10ms/step
- loss: 0.0355 - accuracy: 0.9896 - val_loss: 0.0634 -
val_accuracy: 0.9842

Baseline accuracy:
_, baseline_model_accuracy = model.evaluate(

test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')

print('Saving model to: ', keras_file)

tf.keras.models.save_model(model, keras_file,

include_optimizer=False)

Baseline test accuracy: 0.9824000000953674
Saving model to: /tmp/tmp6feo6no6.h5

Cluster the weight with 8 clusters
Apply the cluster_weights() API to cluster the whole pre-trained model
to demonstrate and observe its effectiveness in reducing the model size
when applying ZIP, while maintaining accuracy. For more details refer to
the clustering comprehensive guide
(https://www.tensorflow.org/model_optimization/guide/clustering/cluste
ring_comprehensive_guide).

Define the model and apply the clustering API
The model needs to be pre-trained before using the clustering API:

1. This function wraps a Keras model or layer with clustering
functionality, which clusters the layer's weights during training. For
example, using this with number_of_clusters equals to 8 will ensure
that each weight tensor has no more than 8 unique values:
import tensorflow_model_optimization as tfmot

cluster_weights = tfmot.clustering.keras.cluster_weights

CentroidInitialization =

tfmot.clustering.keras.CentroidInitialization

clustering_params = {

'number_of_clusters': 8,

https://www.tensorflow.org/model_optimization/guide/clustering/clustering_comprehensive_guide

'cluster_centroids_init':

CentroidInitialization.KMEANS_PLUS_PLUS

}

clustered_model = cluster_weights(model,

**clustering_params)

Use smaller learning rate for fine-tuning

opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

clustered_model.compile(

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_l

ogits=True),

optimizer=opt,

metrics=['accuracy'])

clustered_model.summary()

Summary output will show the clustered layers:
Model: "sequential"
__

Layer (type) Output Shape Param #
==
=======
cluster_reshape (ClusterWeight (None, 28, 28, 1) 0
__

cluster_conv2d (ClusterWeight (None, 26, 26, 12) 236
__

cluster_max_pooling2d (Clust.. (None, 13, 13, 12) 0
__

cluster_flatten (ClusterWeig.. (None, 2028) 0
__

cluster_dense (ClusterWeight.. (None, 10) 40578
==
=======
Total params: 40,814
Trainable params: 20,426

Non-trainable params: 20,388
__

2. Fine-tune the clustered model:
Fine-tune model

clustered_model.fit(train_images, train_labels, epochs=3,

validation_split=0.1)

Epoch 1/3 1688/1688 [==============================] - 22s
13ms/step - loss: 0.0494 - accuracy: 0.9843 - val_loss:
0.0648 - val_accuracy: 0.9837 Epoch 2/3 1688/1688
[==============================] - 21s 13ms/step - loss:
0.0361 - accuracy: 0.9887 - val_loss: 0.0614 -
val_accuracy: 0.9843 Epoch 3/3 1688/1688
[==============================] - 21s 12ms/step - loss:
0.0340 - accuracy: 0.9895 - val_loss: 0.0595 -
val_accuracy: 0.9848

3. Next, let us find the number of clusters by defining a helper function:
def print_model_weight_clusters(model):

for layer in model.layers:
if isinstance(layer, tf.keras.layers.Wrapper):

weights = layer.trainable_weights

else:

weights = layer.weights

for weight in weights:
ignore auxiliary quantization weights

if "quantize_layer" in weight.name:
continue

if "kernel" in weight.name:
unique_count = len(np.unique(weight))

print(

f"{layer.name}/{weight.name}: {unique_count}

clusters "

)

stripped_clustered_model =

tfmot.clustering.keras.strip_clustering(clustered_model)

print_model_weight_clusters(stripped_clustered_model)

Print output is listed as follows, which shows clusters for conv2d and
dense layers:
conv2d/kernel:0: 8 clusters
dense/kernel:0: 8 clusters

4. Evaluate the clustering model with the baseline model on validation
accuracy:
_, clustered_model_accuracy = clustered_model.evaluate(

test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

print('Clustered test accuracy:',

clustered_model_accuracy)

Baseline test accuracy: 0.9824000000953674

Clustered test accuracy: 0.9797000288963318

As can be seen, the model accuracy is not reduced significantly.

Compare the size of a normal model, a clustered model, and a
clustered TFLite model
Let us compare the clustered model with normal model, in terms of its size:
final_model =

tfmot.clustering.keras.strip_clustering(clustered_model)

_, clustered_keras_file = tempfile.mkstemp('.h5')

print('Saving clustered model to: ', clustered_keras_file)

tf.keras.models.save_model(final_model, clustered_keras_file,

include_optimizer=False)

Create and save TFLite model from clustered model:
clustered_tflite_file = '/tmp/clustered_mnist.tflite'

converter =

tf.lite.TFLiteConverter.from_keras_model(final_model)

tflite_clustered_model = converter.convert()

with open(clustered_tflite_file, 'wb') as f:

f.write(tflite_clustered_model)

print('Saved clustered TFLite model to:',

clustered_tflite_file)

INFO:tensorflow:Assets written to: /tmp/tmpfmsd8iy5/assets
INFO:tensorflow:Assets written to: /tmp/tmpfmsd8iy5/assets
Saved clustered TFLite model to: /tmp/clustered_mnist.tflite

Helper function to ZIP the file:
def get_gzipped_model_size(file):

It returns the size of the gzipped model in bytes.

import os

import zipfile

_, zipped_file = tempfile.mkstemp('.zip')

with zipfile.ZipFile(zipped_file, 'w',

compression=zipfile.ZIP_DEFLATED) as f:

f.write(file)

return os.path.getsize(zipped_file)

Compare the models: normal baseline model, clustered model, and
clustered TFLite model:
print("Size of gzipped baseline Keras model: %.2f bytes" %

(get_gzipped_model_size(keras_file)))

print("Size of gzipped clustered Keras model: %.2f bytes" %

(get_gzipped_model_size(clustered_keras_file)))

print("Size of gzipped clustered TFlite model: %.2f bytes" %

(get_gzipped_model_size(clustered_tflite_file)))

Size of gzipped baseline Keras model: 78280.00 bytes
Size of gzipped clustered Keras model: 13414.00 bytes
Size of gzipped clustered TFlite model: 12969.00 bytes

As you can see, the clustered model is compressed by 83%, and is almost
17% of the original model in size.

Conclusion
In this chapter, we learnt the concept of model optimization in neural
networks, and how it has been implemented in TensorFlow. We explored
techniques like quantization, both while training and post training. We
looked at an end-to-end usecase with Fashion MNIST dataset. We also
looked at weight clustering technique to reduce the model size.

Questions
1. Pruning can be applied to some of the layers or all the layers in

the model:

a. true
b. false

2. Quantization is part core TensorFlow installation.

a. true
b. false

3. Weight clustering can help reduce the model size up to:

a. 0x
b. 2x
c. 100x
d. 8x

Answers
1. a
2. b
3. d

References
TensorFlow model optimization: quantization and pruning (TF
World '19): https://www.youtube.com/watch?v=3JWRVx1OKQQ.
Quantization for neural networks:
https://leimao.github.io/article/Neural-Networks-Quantization/.
TensorFlow model optimization: an introduction to quantization:
https://www.machinecurve.com/index.php/2020/09/16/tensorflow-
model-optimization-an-introduction-to-quantization/.
Weight clustering comprehensive guide:
https://www.tensorflow.org/model_optimization/guide/clustering/c
lustering_comprehensive_guide.

https://www.youtube.com/watch?v=3JWRVx1OKQQ
https://leimao.github.io/article/Neural-Networks-Quantization/
https://www.machinecurve.com/index.php/2020/09/16/tensorflow-model-optimization-an-introduction-to-quantization/
https://www.tensorflow.org/model_optimization/guide/clustering/clustering_comprehensive_guide

CHAPTER 10
Generative Adversarial Networks

Introduction
In this chapter, we will understand the concept behind GANs, also called
General Adversarial Networks. A generative adversarial network design by
Ian Goodfellow and his colleagues, it is made up of two neural networks in a
contest with each other in the form of a zero-sum game, where one agent's gain
becomes another agent's loss.
For a data set, this technique learns to generate new data with the same
statistics as the training set. It could be used to generate new photographs from
the existing dataset of photographs. It has proved useful for semi-supervised,
fully supervised, and reinforcement learning.
The idea behind GAN is of indirect training through discriminator, which is
itself being updated dynamically. The generator is being trained to fool the
discriminator. This enables the model to learn using an unsupervised
technique.
We look at the various approaches to make the generators more effective at
creating more realistic images. We will explore the three GAN topologies:
simple GAN, DCGAN, and WGAN.

Structure
In this chapter, we will cover the following topics:

Discriminator
Generator
Loss function
Simple GAN
DCGAN
WGAN

Objective
In this chapter, we will learn the basics of GAN and its variations, like
DCGAN and WGAN. We will use them to generate fake images for
FASHION MNIST dataset.

Introducing GANs
There are two types of machine learning techniques: discriminative models
and generative models. In the last few chapters, we have covered
discriminative models that use deep learning to classify into two or more
classes or predict a continuous variable.
In discriminative models, if given X, we predict Y:
X � Y
P(X|Y)
In this chapter, we are going to learn generative models. In generative models,
if given Y + some noise, the model predicts a vector of features in a latent
space:
x, Y � X
Here, noise plays an important role in generating different kinds of realistic
pictures, given the class label. Generative models capture probabilistic
distribution of features of X.
Generative models are of two types: variational auto encoders and generative
adversarial networks. In variational autoencoders, the input is mapped to a
latent space by an encoder, and then decoded back by the decoder as shown in
figure 10.1:

Figure 10.1: Variational autoencoders

The encoder takes in a realistic image and the decoder outputs an image from
the input of vectors. The variation part in the variation encoders adds some
noise to the input.
In generative adversarial networks or GANs, there is a generator instead of a
decoder. It takes a random vector and generates a fake image. This fake image
and real image are fed into the discriminator to compare and provide feedback
into the generator as shown in figure 10.2:

Figure 10.2: Various components of a GAN – generator and discriminator

Once the generator is smart enough, it can start producing realistic real-life
images from random inputs. Figure 10.3 shows the nomenclature for the inputs
and outputs of generator and discriminator:

Figure 10.3: Generator’s input, output and parameters

Generator takes noise and output features . These are tested by
discriminator and the output is . These are fed into a cost function and the
parameters are adjusted.

Discriminator
Let us start by looking at the function or classifier. For example, an image
classifier helps determine the label of an image with a probability. The
following figure 10.4 shows a classifier classifying fruits.
Classifiers work on features that are fed as vectors in the neural network:

Figure 10.4: Neural network input layer

In the following figure 10.5, x0 to x4 are fed into the input layer:

Figure 10.5: Neural network input layer

Neural networks then capture these non-linearities and outputs the probabilities
as shown in figure 10.6:

Figure 10.6: Neural network output layer: predicting labels and their probabilities

The last layer outputs the class label and probabilities. Given X, the feature
model predicts probability of Y.
Model is parameter P(Y|X) �Θ. Predicted values are compared to in order
to fine-tune the hyperparameters Θ. Figure 10.7 shows the schematics of a
discriminator. It takes an image as an input and provides an output whether it is
fake with a probability:

Figure 10.7: Neural network output layer: predicting labels and their probabilities

Discriminator is a type of classifier which calculates probability of an
image being a fake. These probabilities are then fed to the generator.

Generator
The generator is the model that generates the examples as shown in the figure
10.8. We try to make it better by training:

Figure 10.8: Generator – input and output

We will explore how the generator improves its performance. If the generator
is trained to produce cats after each run, it will do so, and should ideally
produce a different cat every time. To make sure this happens, a different noise
vector must be input as shown in figure 10.9:

Figure 10.9: Different noise vector inputs to generator outputs different generated images

We looked at the basics of generator. Now, let us look at the cost function that
helps improve its accuracy.

BCE cost function

Let us look at the cost function, which we are trying to reduce to a minimum.
The following equation is the cost function with all the relevant terms:

Equation 10.1: Cost function of the generator

m: batch size
J(θ): average loss of the whole batch
h : predictions made by the model
y(i): true labels
x(i): features passed through predictions
θ: parameters of the generator

Let us break down the cost function into subsets:

 is a multiplication of true labels and log of prediction labels
given x(i) and θ.
Table 10.1 describes the interpretation of the first part of the equation:

A B C

h(x(i), θ)

0 Any 0

1 ~0.99 0

1 ~0 -infinity

Table 10.1: Interpreting first part of the BCE cost function

If y is 0, irrespective of the predicted value, column C is always 0. If both y
and the predicted value is near 1, column C becomes approaching 0. If y is 1
and the predicted value nears 0, then it means the error is large and the third
column C becomes a very large negative number (approaching infinity as h
approaches 0).
(1-y(i)) log(1-h(x(i)θ)) is a multiplication of wrong value and log of predicted
wrong value.

The following table 10.2 shows how this new value fares with different values
of A and B:

A B C

h(x(i), θ)

1 Any 0

0 ~0.99 -infinity

0 ~0 0

Table 10.2: Interpretation of second part of the equation

The term in column B seems to become relevant when y is 0, and column C
must highlight values which are far away from prediction, for example, with a
value of 0.99 the predicted value column C is -infinity.
Let us plot the two terms as shown in the figure 10.10:

Figure 10.10: Cost function as a function of prediction if y is 0.0, that is, image is fake

Let us plot the cost function J(θ) as a prediction h, if y = 1.0 as shown in the
figure 10.11.

Figure 10.11: Cost function as a function of prediction if y is 1.0, that is, image is real

To summarize, BCE cost function has two parts. It is close to zero when the
prediction is close to one the other part.

GAN for FASHION MNIST images
In this section, we are going to look at a GAN which generates new images
looking at the MNIST images:

1. Import the classes and packages:
import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow import keras

BATCH_SIZE = 256

BUFFER_SIZE = 60000

EPOCHES = 300

OUTPUT_DIR = "img_fashionmnist"

2. Load the dataset:
fmnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) =

fmnist.load_data()

Downloading data from
https://storage.googleapis.com/tensorflow/tf-keras-
datasets/train-labels-idx1-ubyte.gz

32768/29515 [=================================] - 0s

0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-

datasets/train-images-idx3-ubyte.gz

26427392/26421880 [==============================] - 0s

0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-

datasets/t10k-labels-idx1-ubyte.gz

8192/5148

[===] - 0s

0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-

datasets/t10k-images-idx3-ubyte.gz

4423680/4422102 [==============================] - 0s
0us/step

3. Let us look at the shape of the training data:
(train_images[0].shape)

The output will be (28,28). Let us plot the first image from the training
dataset:
plt.imshow(train_images[1], cmap = "gray")

We will get the output as shown in figure 10.12:

Figure 10.12: Real image sample

4. Convert the datatype for training images and normalize it:
train_images = train_images.astype(“float32”)

train_images = (train_images – 127.5) / 127.5

5. Reshape the data set to (60000, 784):
train_dataset =

tf.data.Dataset.from_tensor_slices(train_images.reshape(trai

n_images.shape[0],784)).shuffle(BUFFER_SIZE).batch(BATCH_SIZ

E)

Next, let us create a basic generator.

Generator
Subclass of keras.Model, it is initialized with the various dense and activation
functions. In the call method, it takes random noise and converts it into a dense
layer of 784 units using three dense layers and LeakyReLU:
class Generator(keras.Model):

def __init__(self, random_noise_size = 100):

super().__init__(name='generator')

#layers

self.input_layer = keras.layers.Dense(units =

random_noise_size)

self.dense_1 = keras.layers.Dense(units = 128)

self.leaky_1 = keras.layers.LeakyReLU(alpha = 0.01)
self.dense_2 = keras.layers.Dense(units = 128)

self.leaky_2 = keras.layers.LeakyReLU(alpha = 0.01)

self.dense_3 = keras.layers.Dense(units = 256)

self.leaky_3 = keras.layers.LeakyReLU(alpha = 0.01)

self.output_layer = keras.layers.Dense(units=784,

activation = "tanh")

def call(self, input_tensor):

Definition of Forward Pass

x = self.input_layer(input_tensor)

x = self.dense_1(x)

x = self.leaky_1(x)

x = self.dense_2(x)

x = self.leaky_2(x)

x = self.dense_3(x)

x = self.leaky_3(x)

return self.output_layer(x)
def generate_noise(self,batch_size, random_noise_size):

return np.random.uniform(-1,1, size = (batch_size,

random_noise_size))

Objective function
We will use BinaryCrossEntropy as the activation function:
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits =

True)

The following equation describes the cross-entropy equation in more detail:

Where,

J(θ): loss function
y(i) : predicted labels
x(i): features
θ: parameter

Let us define the generator objective function:
def generator_objective(dx_of_gx):

Labels are true here because generator thinks

he produces real images.

return cross_entropy(tf.ones_like(dx_of_gx), dx_of_gx)

Let us plot the fake image created by the generator by create a fake image and
name it fake_image from the generator:
generator = Generator()
fake_image = generator(np.random.uniform(-1,1, size =(1,100)))
fake_image = tf.reshape(fake_image, shape = (28,28))
plt.imshow(fake_image, cmap = "gray")

Notice that the image is totally random with 28x28 pixel and one channel (that
is, it is grey scale) as shown in figure 10.13:

Figure 10.13: Fake image plotted

Next, let us look at the discriminator and its implementation using TensorFlow
2.x.

Discriminator
Discriminator takes input of reshaped image 28x28 pixel into 784 and takes it
through a combination of three dense and LeakyReLU layers before the final
dense layer which outputs the shape of one-dimensional tensor:
class Discriminator(keras.Model):
def __init__(self):
super().__init__(name = "discriminator")

#Layers

self.input_layer = keras.layers.Dense(units = 784)
self.dense_1 = keras.layers.Dense(units = 128)
self.leaky_1 = keras.layers.LeakyReLU(alpha = 0.01)
self.dense_2 = keras.layers.Dense(units = 128)
self.leaky_2 = keras.layers.LeakyReLU(alpha = 0.01)
self.dense_3 = keras.layers.Dense(units = 128)
self.leaky_3 = keras.layers.LeakyReLU(alpha = 0.01)
self.logits = keras.layers.Dense(units = 1) # This neuron tells us if
the input is fake or real

def call(self, input_tensor):
Definition of Forward Pass

x = self.input_layer(input_tensor)

x = self.dense_1(x)

x = self.leaky_1(x)

x = self.leaky_2(x)

x = self.leaky_3(x)

x = self.leaky_3(x)

x = self.logits(x)

return x

We will initialize the discriminator created earlier:
discriminator = Discriminator()

Our objective function is a combination of real and fake loss as we saw earlier:
def discriminator_objective(d_x, g_z, smoothing_factor = 0.9):
"""

d_x = real output

g_z = fake output

"""

real_loss = cross_entropy(tf.ones_like(d_x) *

smoothing_factor, d_x)

If we feed the discriminator with real images, we assume they

all are

the right pictures --> Because of that label == 1

fake_loss = cross_entropy(tf.zeros_like(g_z), g_z)

Each noise we feed in are fakes image -->

Because of that labels are 0

total_loss = real_loss + fake_loss

return total_loss
Next, we define the optimizer:
generator_optimizer = keras.optimizers.RMSprop()

discriminator_optimizer = keras.optimizers.RMSprop()

We are using RMSprop as an optimization algorithm.

RMSprop is an unpublished optimization algorithm designed for neural
networks. It was first proposed by Geoff Hinton in Lecture 6 of the online
course Neural Networks for Machine Learning
(https://www.coursera.org/learn/neural-networks/home/welcome).
RMSprop is an adaptive learning rate method, which has been growing
in popularity in the recent years. It is famous for not being published, yet
being very well-known; most deep learning frameworks include the
implementation of it out of the box.

https://www.coursera.org/learn/neural-networks/home/welcome

Training function
We have defined a tf.function which takes discriminator and generator for each
batch and calculates the loss:
@tf.function()

def training_step(generator: Discriminator, discriminator:

Discriminator, images:np.ndarray , k:int =1, batch_size = 32):

for _ in range(k):
with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

noise = generator.generate_noise(batch_size, 100)

g_z = generator(noise)

d_x_true = discriminator(images) # Trainable?

d_x_fake = discriminator(g_z) # dx_of_gx

discriminator_loss = discriminator_objective(d_x_true,

d_x_fake)

Adjusting Gradient of Discriminator

gradients_of_discriminator = disc_tape.gradient(

discriminator_loss, discriminator.trainable_variables)

discriminator_optimizer.apply_gradients(zip(

gradients_of_discriminator,

discriminator.trainable_variables))

Takes a list of gradient and variables pairs

generator_loss = generator_objective(d_x_fake)

Adjusting Gradient of Generator

gradients_of_generator = gen_tape.gradient(generator_loss,

generator.trainable_variables)

generator_optimizer.apply_gradients(zip(

gradients_of_generator, generator.trainable_variables))

Next, we define the training function which uses the training step:
def training(dataset, epoches):

for epoch in range(epoches):
for batch in dataset:

training_step(generator, discriminator, batch ,

batch_size = BATCH_SIZE, k = 1)

After ith epoch plot image

if (epoch % 50) == 0:

fake_image = tf.reshape(generator(seed), shape = (28,28))

print("{}/{} epoches".format(epoch, epoches))

plt.imsave("{}/{}.png".format(OUTPUT_DIR,epoch),fake_image,

cmap = "gray")

Call the training function at 300 epoches:
%%time

training(train_dataset, EPOCHES)

It will take around 1 and half hours, approximately.
0/300 epoches

50/300 epoches

100/300 epoches

150/300 epoches

200/300 epoches

250/300 epoches

CPU times: user 1h 38min 25s, sys: 3min 3s, total: 1h 41min 28s

Let us plot the generated image as shown in figure 10.14:
fake_image = generator(np.random.uniform(-1,1, size = (1, 100)))

plt.imshow(tf.reshape(fake_image, shape = (28,28)), cmap="gray")

Figure 10.14: Fake image generated using simple GAN

In the next section, we look at another technique for generator and
discriminator to improve the efficiency and performance of the networks called
Dynamic Convolutional GAN or DCGAN.

DCGAN
Attempts to scale up GANs using CNNs to model images have been
unsuccessful. This motivated the authors of LAPGAN (Denton et al., 2015) to
develop an approach to iteratively upscale low resolution generated images

that can be modeled more reliably. They encountered difficulties attempting to
scale GANs using CNN architectures used in the supervised literature.
However, after extensive model exploration, they identified a family of
architecture that resulted in stable training across a range of datasets and it also
allowed for training higher resolution and deeper generative models. Core to
this approach is adopting and modifying three changes to CNN architectures:

The first approach is all convolutional net (Springenberg et al., 2014)
which replaces deterministic spatial pooling functions (max pooling) with
strided convolutions, allowing the network to learn its own spatial down
sampling. This approach is used by DCGAN in the generator, allowing it
to learn its own spatial up sampling and discriminator.
Second is to eliminate fully connected layers on top of convolutional
features. The strongest example of this is global average pooling which
has been utilized in state-of-the-art image classification models
(Mordvintsev et al.). Authors found global average pooling increased
model stability but hurt the convergence speed.
Third approach is batch normalization (Ioffe & Szegedy, 2015), which
helps stabilize learning by normalizing the input to each unit to have zero
mean and unit variance. It helps in dealing with training problems that
arise due to poor initialization and helps gradient flow in deeper models.
This proved critical to help generators to begin learning and preventing
the generator from collapsing all samples to a single point which is a
common failure mode observed in GANs. Applying batch normalization
to all layers however, resulted in sample oscillation and model instability.
This has been avoided by not applying the batch norm to the generator
output layer and the discriminator input layer.
The ReLU activation (Nair & Hinton, 2010) has been used in the
generator except the output layer which uses the tanh function. Authors
observed that using a bounded activation allows the model to learn more
quickly to saturate. It also helped cover the color space of the training
distribution. Within the discriminator, the authors found the leaky
rectified activation (Maas et al., 2013) (Xu et al., 2015) to work well.
This was in contrast to the original GAN paper, which used the maxout
activation (Goodfellow et al., 2013).

To summarize, the following steps are implemented in DCGAN:

1. CNN replaces max pooling with strided convolutions.

2. It eliminates fully connected layers on top of convoluted features.
3. It uses batch normalization.
4. ReLU activation is used in the generator except the last layer.
5. The last layer of the generator uses tanh activation function.

Generator
The generator uses tf.keras.layers.Conv2DTranspose (up sampling) layers to
produce an image from a seed (random noise). Start with a dense layer that
takes this seed as input, then up sample several times until you reach the
desired image size of 28x28x1. Notice the tf.keras.layers.LeakyReLU
activation for each layer, except the output layer which uses tanh:
def make_generator_model():

model = tf.keras.Sequential()

model.add(layers.Dense(7*7*256, use_bias=False, input_shape=

(100,)))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Reshape((7, 7, 256)))

assert model.output_shape == (None, 7, 7, 256) # Note: None is

the batch size

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1),

padding='same', use_bias=False))

assert model.output_shape == (None, 7, 7, 128)

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2),

padding='same', use_bias=False))

assert model.output_shape == (None, 14, 14, 64)

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),

padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 28, 28, 1)

return model

After creating a generator, let us initialize it, and use it to generate an image
from noise. Use the generator to create an image:
generator = make_generator_model()

noise = tf.random.normal([1, 100])

generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')

The output is as shown in the figure 10.15:

Figure 10.15: Generated image

Next, let us look at the discriminator for DCGAN based technique.

Discriminator
Discriminator for DCGAN is a CNN based classifier with LeakyReLU
between each Conv2D layer and dropout layer. The last layer is a dense layer
with tensor for dimension 1:
def make_discriminator_model():

model = tf.keras.Sequential()

model.add(layers.Conv2D(64, (5, 5), strides=(2, 2),

padding='same',

input_shape=[28, 28, 1]))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),

padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Flatten())

model.add(layers.Dense(1))

return model

Discriminators classify images as fake or real:
discriminator = make_discriminator_model()

decision = discriminator(generated_image)

print (decision)

Define the loss function and discriminator and generator loss:
This method returns a helper function to compute cross

entropy loss cross_entropy =

tf.keras.losses.BinaryCrossentropy(from_logits=True)

This method quantifies how well the discriminator is able to distinguish
real images from fakes. It compares the discriminator's predictions on
real images to an array of 1s, and the discriminator's predictions on fake
(generated) images to an array of 0s:
def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output),

real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output),

fake_output)

total_loss = real_loss + fake_loss

return total_loss

The discriminator and generator optimizers are different since we train
the two networks separately:
def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output),

fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

Define the training loop:
EPOCHS = 50

noise_dim = 100

num_examples_to_generate = 16

We will reuse this seed overtime (so it's easier)

to visualize progress in the animated GIF)

seed = tf.random.normal([num_examples_to_generate,

noise_dim])

The following train_step is defined as a trainable function which is
compiled into a TensorFlow graph.
The training loop begins with generator receiving a random seed as input.

This seed is used to produce an image called generated_image.
The discriminator is then used to classify real images (drawn from the
training set) and fakes images (produced by the generator).
The loss is calculated for each of these models: gen_loss and disc_loss,
and the gradients (gradients_of_generator and gradients_of
discriminator) are used to update the generator and discriminator:
generator.trainable_variables,
discriminator.trainable_variables:
Notice the use of `tf.function`

This annotation causes the function to be "compiled".

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images,

training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss,

generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_gener

ator,

generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_d

iscriminator,

discriminator.trainable_variables))

In the following train function, train_step is called for each epoch. Save
the model every 15 epochs using checkpoint and final images are shown
after the final epoch:
def train(dataset, epochs):

for epoch in range(epochs):

start = time.time()

for image_batch in dataset:

train_step(image_batch)

Produce images for the GIF as we go

display.clear_output(wait=True)

generate_and_save_images(generator,

epoch + 1,

seed)

Save the model every 15 epochs

if (epoch + 1) % 15 == 0:

checkpoint.save(file_prefix = checkpoint_prefix)

print ('Time for epoch {} is {} sec'.format(epoch + 1,

time.time()-start))

Generate after the final epoch

display.clear_output(wait=True)

generate_and_save_images(generator,

epochs,

seed)

Complete source code of the preceding sample can be found at the following
link:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch10/
dcgan_fashion_mnist.ipynb.
The next two sections focus on defining functions to generate and save images,
as well as the actual training step.

Generate and save images
Let us define a function to generate and save intermediate images created
during images with input as the epoch, model, and test_input:
def generate_and_save_images(model, epoch, test_input):

Notice `training` is set to False.

This is so all layers run in inference mode (batchnorm).

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4,4))

for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)

plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5,

cmap='gray')

plt.axis('off')

plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch10/dcgan_fashion_mnist.ipynb

plt.show()

The next step is to train the model.

Train the model
Call the train() method defined earlier to train the generator and
discriminator simultaneously. Note that training GANs can be tricky. It is
important that the generator and discriminator do not overpower each other
(for example, that they train at a similar rate).
At the beginning of the training, the generated images look like random noise.
As the training progresses, the generated digits will look increasingly real.
After about 50 epochs, they resemble MNIST digits. This may take about one
minute/epoch with the default settings on Colab:
train(train_dataset, EPOCHS)

Training output after 50 epochs is shown in the following figure 10.16:

Figure 10.16: Image generated while training

Show the images
We will define a function to show the generated images:
Display a single image using the epoch number

def display_image(epoch_no):

return

PIL.Image.open(‘image_at_epoch_{:04d}.png’.format(epoch_no))

display_image(EPOCHS)

anim_file = ‘dcgan.gif’

with imageio.get_writer(anim_file, mode=’I’) as writer:

filenames = glob.glob(‘image*.png’)

filenames = sorted(filenames)

for filename in filenames:
image = imageio.imread(filename)

writer.append_data(image)

image = imageio.imread(filename)

writer.append_data(image)

The following grid shows the generated output at 10 epochs:

Figure 10.17: Generated output at 10 epochs

Notice how the features have become more prominent as compared to the
image in figure 10.17, when the generated output is at 50 epochs:

Figure 10.18: Generated output at 50 epochs

In the next few sections, we will look at the problem faced with the loss
function being used in the DCGAN based network.

Problem with the loss function

We saw earlier the Binary Cross Entropy function, where the first part refers to
the cost associated with the generator while the second part refers to the cost
associated with the discriminator.
Equation for Binary Cross Entropy function:

Higher the value of J(θ), worse is the discriminator’s performance. Equation in
the figure 10.19 shows two parts of the cost function which are affected by
what the discriminator wants to minimize and what the generator wants to
maximize:

Figure: 10.19: Explaining two parts of the BCE loss function

The generator wants to maximize this cost so that it can fool the discriminator
to think that the fake images are real.
Since the generator has a more difficult task of generating an actual image
because of BCE, after some time the cost function reaches a flat gradient as
shown in the figure 10.20.
The goal of a GAN model is to get feature distribution of generator as close to
the discriminator as possible:

Figure 10.20: Difference in generated versus real distribution

Distributions in figure 10.20 show that the loss function’s gradient vanishes as
two distributions move closer. As can be seen in figure 10.21, the gradient of
the cost function tends to zero after a few iterations:

Figure 10.21: Vanishing gradient as generator is not able to improve beyond certain epochs

With training, the generated distribution is centered around 0, and real
distribution is centered around 1.
As the discriminator improves during training and improves more quickly than
the generator, the underlying cost function will have flat regions when the
distributions are very different from one another. The discriminator will be
able to distinguish between the real and the fake ones more easily. All of this
will result in vanishing gradient problems.

Earth mover’s distance
In traditional GAN, the generator ‘s probability distribution tends to move
towards 0 and that of discriminator tends to move towards 1. This distance
between the two dist ributions is referred to as Earth mover’s distance. Figure
10.22 shows the difference between these two distributions:

Figure 10.22: Difference between generated and real distribution

An effort is made to make the generated distribution as close to the actual
distribution. With Earth mover’s distance, there is no ceiling on how close the
generated values can get to the real values, so that the cost function continues
to grow. Figure 10.23 shows the difference in distributions (real versus
generated) as a function of loss function J:

Figure: 10.23: Difference between generator and discriminator distributions by using Earth mover’s
distance as a loss function.

WGAN
This is an extension of GAN which provides an alternate way for training the
generator to help with better training dataset approximation.
WGAN replaces the discriminator with a critic, which scores if image is real or
fake. It is motivated by the fact that the training of generator should lead to
minimization of distance between distribution of observed and training dataset.
Papers talk about different distance measure distributions like Kullback-
Leibler (KL) divergence, Jensen-Shannon (JS) divergence, and the Earthmover
(EM) distance.
These distance measure distributions lead to impact on convergence.
Papers demonstrate that critic can be trained to approximate the Wasserstein
distance which leads to effective generator model. Wasserstein distance
provides linear gradient even after a critic is well trained.
This is quite different from the discriminator model which might fail to
provide useful gradient information. Discriminator learns very quickly how to
differentiate real versus fake, and does not provide reliable gradient
information beyond a point.
There is a direct correlation between lower loss of critical and higher quality of
generated images.

Implementing WGAN
Let us look at the changes required in DCGAN to make it a WGAN. The
changes are as follows:

linear activation function in the output layer of critic instead of sigmoid
use of Wasserstein loss to train
constrain critic model weights to a limited range after every mini batch
update
update critic more often than generator
use of RMSProp version of gradient descent with smaller learning rate
and no momentum

Loss function
Loss function can be summarized as:
Critic Loss = [avg critic score on real images] – [avg critic score on fake
images]
Generator Loss = -[avg critic score on fake images]
Where, avg: average.

In the case of critic, larger score from critic means a lower loss, and
lower score from critic means a larger loss.
In the case of generator, larger score on fake images is lower loss, and
lower score on fake images is higher loss.

Code reference:
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch1
0/WGAN_mnist_generator_critic.ipynb.

The following class clips weights between constraints specified:
class ClipConstraint(Constraint):

set clip value when initialized

def __init__(self, clip_value):

self.clip_value = clip_value

clip model weights to hypercube

def __call__(self, weights):

return backend.clip(weights, -self.clip_value,

self.clip_value)

get the config

def get_config(self):

return {'clip_value': self.clip_value}

Implement the Wasserstein loss using the following function:
def wasserstein_loss(y_true, y_pred):

return backend.mean(y_true * y_pred)

Critic implementation:
def make_critic(in_shape=(28,28,1)):

weight initialization

init = RandomNormal(stddev=0.02)

weight constraint

const = ClipConstraint(0.01)

https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch10/WGAN_mnist_generator_critic.ipynb

define model

model = Sequential()

downsample to 14x14

model.add(Conv2D(64, (4,4), strides=(2,2), padding='same',

kernel_initializer=init, kernel_constraint=const,

input_shape=in_shape))

model.add(BatchNormalization())

model.add(LeakyReLU(alpha=0.2))

downsample to 7x7

model.add(Conv2D(64, (4,4), strides=(2,2), padding='same',

kernel_initializer=init, kernel_constraint=const))

model.add(BatchNormalization())

model.add(LeakyReLU(alpha=0.2))

scoring, linear activation

model.add(Flatten())

model.add(Dense(1))

compile model

opt = RMSprop(lr=0.00005)

model.compile(loss=wasserstein_loss, optimizer=opt)

model.summary()

return model

Model: "sequential_10"

Layer (type) Output Shape Param #
===
conv2d_11 (Conv2D) (None, 14, 14, 64) 1088

batch_normalization_14 (None, 14, 14, 64) 256

leaky_re_lu_17 (LeakyReLU) (None, 14, 14, 64) 0

conv2d_12 (Conv2D) (None, 7, 7, 64) 65600

batch_normalization_15 (None, 7, 7, 64) 256

leaky_re_lu_18 (LeakyReLU) (None, 7, 7, 64) 0

flatten_4 (Flatten) (None, 3136) 0

dense_7 (Dense) (None, 1) 3137
===
Total params: 70,337
Trainable params: 70,081
Non-trainable params: 256

Notice the RMSProp optimizer, with a learning rate of 0.00005. Generator
implementation is defined with the following method:
def make_generator(latent_dim):

weight initialization

init = RandomNormal(stddev=0.02)

define model

model = Sequential()

foundation for 7x7 image

n_nodes = 128 * 7 * 7

model.add(Dense(n_nodes, kernel_initializer=init,

input_dim=latent_dim))

model.add(LeakyReLU(alpha=0.2))

model.add(Reshape((7, 7, 128)))

upsample to 14x14

model.add(Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same',

kernel_initializer=init))

model.add(BatchNormalization())

model.add(LeakyReLU(alpha=0.2))

upsample to 28x28

model.add(Conv2DTranspose(128, (4,4), strides=(2,2),

padding='same',

kernel_initializer=init))

model.add(BatchNormalization())

model.add(LeakyReLU(alpha=0.2))

output 28x28x1

model.add(Conv2D(1, (7,7), activation='tanh', padding='same',

kernel_initializer=init))

model.summary()

return model

This model has the first layer as dense, which is followed by LeakyReLU. It is
reshaped, and Conv2DTranspose, batch norm, and LeakyReLU are applied for
up sampling twice followed by Conv2D in the end.

Summary of the model is described as follows:
Model: “sequential_11”

Layer (type) Output Shape Param #

dense_8 (Dense) (None, 6272) 319872

leaky_re_lu_19 (LeakyReLU) (None, 6272) 0

reshape_3 (Reshape) (None, 7, 7, 128) 0

conv2d_transpose_6 (Conv2DTr (None, 14, 14, 128) 262272

batch_normalization_16 (None, 14, 14, 128) 512

leaky_re_lu_20 (LeakyReLU) (None, 14, 14, 128) 0

conv2d_transpose_7 (Conv2DTr (None, 28, 28, 128) 262272

batch_normalization_17 (None, 28, 28, 128) 512

leaky_re_lu_21 (LeakyReLU) (None, 28, 28, 128) 0

conv2d_13 (Conv2D) (None, 28, 28, 1) 6273

Total params: 851,713
Trainable params: 851,201
Non-trainable params: 512

(6265, 28, 28, 1)

Next, we will create the end-to-end GAN network.

Make the GAN network
1. Create a GAN network with generator, critic, and optimizer as

RMSprop. Loss used is wasserstein_loss:
def make_gan(generator, critic):

make weights in the critic not trainable

critic.trainable = False

connect them

model = Sequential()

add generator

model.add(generator)

add the critic

model.add(critic)

compile model

opt = RMSprop(lr=0.00005)

model.compile(loss=wasserstein_loss, optimizer=opt)

return model

2. Load real samples. We will load the samples from
tensorflow.keras.datasets.mnist and normalize before returning
(scale from [0,255] to [-1,1]):
def load_real_samples():

load dataset

(trainX, trainy), (_, _) = load_data()

select all of the examples for a given class

selected_ix = trainy == 7

X = trainX[selected_ix]

expand to 3d, e.g. add channels

X = expand dims(X, axis=-1)

convert from ints to floats

X = X.astype('float32')

scale from [0,255] to [-1,1]

X = (X - 127.5) / 127.5

return X

3. Next, we define the function to generate real samples from the dataset
given in the number of samples:
def generate_real_samples(dataset, n_samples):

choose random instances

ix = randint(0, dataset.shape[0], n_samples)

select images

X = dataset[ix]

generate class labels, -1 for 'real'

y = -ones((n_samples, 1))

return X, y

4. Define the function to generate points in latent space as input for the
generator:
def generate_latent_points(latent_dim, n_samples):

generate points in the latent space

x_input = randn(latent_dim * n_samples)

reshape into a batch of inputs for the network

x_input = x_input.reshape(n_samples, latent_dim)

return x_input

5. Use the generator to generate n fake examples with class labels:
def generate_fake_samples(generator, latent_dim, n_samples):

generate points in latent space

x_input = generate_latent_points(latent_dim, n_samples)

predict outputs

X = generator.predict(x_input)

create class labels with 1.0 for 'fake'

y = ones((n_samples, 1))

return X, y

6. Generate samples and save as a plot, and save the model:
def summarize_performance(step, g_model, latent_dim,

n_samples=100):

prepare fake examples

X, _ = generate_fake_samples(g_model, latent_dim,

n_samples)

scale from [-1,1] to [0,1]

X = (X + 1) / 2.0

plot images

for i in range(10 * 10):
define subplot

pyplot.subplot(10, 10, 1 + i)

turn off axis

pyplot.axis('off')

plot raw pixel data

pyplot.imshow(X[i, :, :, 0], cmap='gray_r')

save plot to file

filename1 = 'generated_plot_%04d.png' % (step+1)

pyplot.savefig(filename1)

pyplot.close()

save the generator model

filename2 = 'model_%04d.h5' % (step+1)

g_model.save(filename2)

print('>Saved: %s and %s' % (filename1, filename2))

7. Define the train function:
from datetime import datetime

now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

print(now)

filename = 'wgan_losses_' + now + '.csv'

print(filename)

file = open(filename, 'w+', newline ='\n')

def train(g_model, c_model, gan_model, dataset, latent_dim,

n_epochs=1,

n_batch=64, n_critic=5):

calculate the number of batches per training epoch

bat_per_epo = int(dataset.shape[0] / n_batch)

calculate the nufile = open('g4g.csv', 'w+', newline

='') mber of training iterations

n_steps = bat_per_epo * n_epochs

calculate the size of half a batch of samples

half_batch = int(n_batch / 2)

lists for keeping track of loss

c1_hist, c2_hist, g_hist = list(), list(), list()

manually enumerate epochs

for i in range(n_steps):
update the critic more than the generator

c1_tmp, c2_tmp = list(), list()

for _ in range(n_critic):
get randomly selected 'real' samples

X_real, y_real = generate_real_samples(dataset,

half_batch)

update critic model weights

c_loss1 = c_model.train_on_batch(X_real, y_real)

c1_tmp.append(c_loss1)

generate 'fake' examples

X_fake, y_fake = generate_fake_samples(g_model,

latent_dim,

half_batch)

update critic model weights

c_loss2 = c_model.train_on_batch(X_fake, y_fake)

c2_tmp.append(c_loss2)

store critic loss

c1_hist.append(mean(c1_tmp))

c2_hist.append(mean(c2_tmp))

prepare points in latent space as input for the

generator

X_gan = generate_latent_points(latent_dim, n_batch)

create inverted labels for the fake samples

y_gan = -ones((n_batch, 1))

update the generator via the critic's error

g_loss = gan_model.train_on_batch(X_gan, y_gan)

g_hist.append(g_loss)

summarize loss on this batch

print('>%d, c1=%.3f, c2=%.3f g=%.3f' % (i+1, c1_hist[-1],

c2_hist[-1], g_loss))

file.write(str(i+1) + ", " + str(c1_hist[-1]) + ", " +

str(c2_hist[-1]) + ", " + str(g_loss) + "\n")

file.flush()

evaluate the model performance every 'epoch'

if (i+1) % bat_per_epo == 0:

summarize_performance(i, g_model, latent_dim)

return c1_hist, c2_hist, g_hist

8. Call the train function:
train(generator, critic, gan_model, dataset, latent_dim)

This will output the performance for each batch and plot the chart. The
output will print losses for each iteration and save the model finally:
print('>%d, c1=%.3f, c2=%.3f g=%.3f' % (i+1, c1_hist[-1],
c2_hist[-1], g_loss))
>1, c1=-1.713, c2=-0.043 g=0.002
>2, c1=-6.165, c2=0.003 g=-0.008
>3, c1=-9.015, c2=0.027 g=-0.015
...
>95, c1=-71.196, c2=-64.475 g=-123.603
>96, c1=-70.998, c2=-65.188 g=-127.017
>97, c1=-72.178, c2=-66.080 g=-129.777
>Saved: generated_plot_0097.png and model_0097.h5

9. Lastly, we would plot these losses:

plot_history(c1_hist, c2_hist, g_hist)

The following figure 10.24 will be plotted as the output. It shows how the
generator loss keeps on going down:

Figure 10.24: Losses for WGAN generator and critic on real and fake images

Let us look at the variation of WGAN. If we don’t clip the gradients, the
generator loss comes down almost the same, but critic losses taper off.
If we apply ReLU, instead of WGAN, notice how the losses don’t come down
by the same level as shown in the figure 10.25:

Figure 10.25: Losses for WGAN generator and critic on real and fake images with ReLU loss function
for generator

Figure-Caption--BPB-HEB para-style-override-112

If we don’t clip the gradients, let us look at how the graph changes, as shown
in figure 10.26:

Figure 10.26: Losses for WGAN generator and critic on real and fake images with no clipping

Notice how the generator losses taper off and critic losses keep going down.
With this, we come to the end of this section.

Pix2Pix with Maps dataset
This section and the sample will show how to build and train a conditional
generative adversarial network (cGAN) also known as pix2pix. It learns
mapping from input images to output images, as described in image-to-image
translation with conditional adversarial networks
(https://arxiv.org/abs/1611.07004) by Isola et al. (2017). Pix2pix is not
application specific. It can be applied to a wide range of tasks, including
synthesizing photos from label maps, getting colorized photos from black and
white images, turning Google Maps photos into aerial images, and so on. It can
even transform sketches into photos. In this example, your network will
generate images of building maps using the Maps database provided by the
Electrical Engineering department at University of Berkley
(https://arxiv.org/abs/1611.07004). In the pix2pix cGAN, we condition on
input images and generate corresponding output images. cGANs were first
proposed in Conditional Generative Adversarial Nets
(https://arxiv.org/abs/1411.1784) (Mirza and Osindero, 2014). The
architecture of this network will contain:

a generator with a U-Net-based architecture.
a discriminator represented by a convolutional PatchGAN classifier
(proposed in the pix2pix paper (https://arxiv.org/abs/1611.07004). Each
epoch can take around 15 seconds depending on the GPU used. The

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1611.07004

following figure 10.27 shows some examples of the output generated by
the pix2pix cGAN after training for 200 epochs on the Maps dataset (4K
steps):

Figure 10.27: Example of input image, ground truth, and predicted image

Let us process the dataset by importing the relevant packages from tensorflow,
os, time, matplotlib, and so on:

1. Import TensorFlow libraries:
import tensorflow as tf

import os

import pathlib

import time

import datetime

from matplotlib import pyplot as plt

from IPython import display

2. Next, load the dataset:
dataset_name = "maps"

_URL =

f'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/{datas

et_name}.tar.gz'

path_to_zip = tf.keras.utils.get_file (

fname=f"{dataset_name}.tar.gz",

origin=_URL,

extract=True)

path_to_zip = pathlib.Path(path_to_zip)
PATH = path_to_zip.parent/dataset_name

list(PATH.parent.iterdir())

3. Each original image is of size 600 x 1200 containing two 600 x 600
images:

sample_image = tf.io.read_file(str(PATH / 'train/1.jpg'))

sample_image = tf.io.decode_jpeg(sample_image)

print(sample_image.shape)

sample_image_2 = tf.io.read_file(str(PATH / 'train/2.jpg'))

sample_image_2 = tf.io.decode_jpeg(sample_image_2)

plt.figure()

plt.imshow(sample_image)

The output of the imshow(..) command is shown in figure 10.28:

Figure 10.28: Output of dataset image 1.jpg

Let us look at another image, as shown in figure 10.29:
plt.figure()

plt.imshow(sample_image_2)

Figure 10.29: Output of dataset image 2.jpg

4. We will need to separate real map images from the annotated map images
—all of which will be of size 600 x 600.

5. Let us define a function that loads image files and outputs two image
tensors:
def load(image_file):

Read and decode an image file to a uint8 tensor

image = tf.io.read_file(image_file)

image = tf.image.decode_jpeg(image)

Split each image tensor into two tensors:

- one with a real building facade image

- one with an architecture label image

w = tf.shape(image)[1]

w = w // 2

input_image = image[:, w:, :]

real_image = image[:, :w, :]

Convert both images to float32 tensors

input_image = tf.cast(input_image, tf.float32)

real_image = tf.cast(real_image, tf.float32)

return input_image, real_image

6. Plot a sample of the input (architecture label image) and real (map)
images:
inp, re = load(str(PATH / 'train/100.jpg'))

Casting to int for matplotlib to display the images

plt.figure()

plt.imshow(inp / 255.0)

plt.figure()

plt.imshow(re / 255.0)

Figure 10.30 shows the architecture labeled image and real image.

Figure 10.30: Output of sample and real image after splitting

As described in the pix2pix paper (https://arxiv.org/abs/1611.07004),
we will apply random jittering and mirroring to preprocess the training
set:
Define several functions that:

resize each 600 x 600 image to a larger height and width—800 x
800.
randomly crop it back to 600 x 600.
randomly flip the image horizontally, that is, left to right (random
mirroring).
normalize the images to the [-1, 1] range:
The map training set consist of x images

BUFFER_SIZE = 400

The batch size of 1 produced better results for the U-

Net in the original pix2pix experiment

BATCH_SIZE = 1

Each image is 600x600 in size

IMG_WIDTH = 600

IMG_HEIGHT = 600

7. Resize function as follows:
def resize(input_image, real_image, height, width):

input_image = tf.image.resize(input_image, [height, width],

method=tf.image.ResizeMethod.NEAREST_ NEIGHBOR)

real_image = tf.image.resize(real_image, [height, width],

method=tf.image.ResizeMethod.NEAREST_ NEIGHBOR)

return input_image, real_image

8. Randomly crop as follows:
def random_crop(input_image, real_image):

stacked_image = tf.stack([input_image, real_image],

axis=0)

cropped_image = tf.image.random_crop(

stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])

return cropped_image[0], cropped_image[1]

9. Normalize the images between -1 and 1:
def normalize(input_image, real_image):

input_image = (input_image / 127.5) – 1

real_image = (real_image / 127.5) – 1

https://arxiv.org/abs/1611.07004

return input_image, real_image

10. Define a function to apply random jitter:
@tf.function()

def random_jitter(input_image, real_image):

Resizing to 800x800

input_image, real_image = resize(input_image, real_image,

800, 800)

Random cropping back to 600x600

input_image, real_image = random_crop(input_image,

real_image)

if tf.random.uniform(()) > 0.5:

Random mirroring

input_image = tf.image.flip_left_right(input_image)

real_image = tf.image.flip_left_right(real_image)

return input_image, real_image

All the preceding steps help improve the size of the dataset. Let us plot
the output of the random jitter function:
plt.figure(figsize=(6, 6))

for I in range(4):
rj_inp, rj_re = random_jitter(inp, re)

plt.subplot(2, 2, i + 1)

plt.imshow(rj_inp / 255.0)

plt.axis‘'of’')

plt.show()

The plot output is shown in figure 10.31:

Figure 10.31: Output of sample image after rotating and cropping

Having checked that the loading and preprocessing works, let’s define a couple
of helper functions that load and preprocess the training and test sets:
def load_image_train(image_file):

input_image, real_image = load(image_file)

input_image, real_u

Build the generator

The generator of the pix2pix cGAN is a modified U-Net
(https://arxiv.org/abs/1505.04597). A U-Net consists of an encoder (down

https://arxiv.org/abs/1505.04597

sampler) and decoder (up sampler). (Please find more about it in the image
segmentation tutorial in the following link:
https://www.tensorflow.org/tutorials/images/segmentation

and on the U-Net project website in the following link:
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/)

Each block in the encoder is: Convolution -> Batch normalization ->
Leaky ReLU.
Each block in the decoder is: Transposed convolution -> Batch
normalization -> Dropout (applied to the first three blocks) -> ReLU.

There are skip connections between the encoder and the decoder (as in the U-
Net):
OUTPUT_CHANNELS = 3

def downsample(filters, size, apply_batchnorm=True):

initializer = tf.random_normal_initializer(0., 0.02)

result = tf.keras.Sequential()

result.add(

tf.keras.layers.Conv2D(filters, size, strides=2,

padding='same', kernel_initializer=initializer,

use_bias=False))

if apply_batchnorm:

result.add(tf.keras.layers.BatchNormalization())

result.add(tf.keras.layers.LeakyReLU())

return result

down_model = downsample(3, 4)

down_result = down_model(tf.expand_dims(inp, 0))

print (down_result.shape)

Output
(1, 300, 300, 3)

Next, let us look at the up sampler
def upsample(filters, size, apply_dropout=False):

initializer = tf.random_normal_initializer(0., 0.02)

result = tf.keras.Sequential()

result.add(

tf.keras.layers.Conv2DTranspose(filters, size, strides=2,

padding='same',

https://www.tensorflow.org/tutorials/images/segmentation
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

kernel_initializer=initializer,

use_bias=False))

result.add(tf.keras.layers.BatchNormalization())

if apply_dropout:

result.add(tf.keras.layers.Dropout(0.5))

result.add(tf.keras.layers.ReLU())

return result

up_model = upsample(3, 4)

up_result = up_model(down_result)

print (up_result.shape)

(1, 600, 600, 3)

Define a generator where we output a model with up_stack and down_stack
layers combined together:
def Generator():

inputs = tf.keras.layers.Input(shape=[600, 600, 3])

down_stack = [

downsample(150, 4, apply_batchnorm=False),# (batch_size, 128,

128, 64)

downsample(300, 4, apply_batchnorm=False),# (batch_size, 128,

128, 64)

downsample(600, 4, apply_batchnorm=False),

]

up_stack = [

upsample(600, 4),

upsample(300, 4),

upsample(150, 4),

]

initializer = tf.random_normal_initializer(0., 0.02)

last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,

strides=2,

padding='same',

kernel_initializer=initializer,

activation='tanh')

(batch_size, 600, 600, 3)

x = inputs

Downsampling through the model

skips = []

for down in down_stack:

x = down(x)

skips.append(x)

skips = reversed(skips[:-1])

Upsampling and establishing the skip connections

for up, skip in zip(up_stack, skips):
x = up(x)

x = tf.keras.layers.Concatenate()([x, skip])

x = last(x)

return tf.keras.Model(inputs=inputs, outputs=x)

Visualize the generator as follows:
generator = Generator()

tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)

The output shown in figure 10.32 shows how down sampling and up sampling
layers are stacked next to each other:

Figure 10.32: Generator model topology

Next, we look at the generator loss.
GANs learn a loss that adapts to the data, while cGANs learn a structured loss
that penalizes a possible structure that differs from the network output and the
target image, as described in the pix2pix paper
(https://arxiv.org/abs/1611.07004).
The generator loss is a sigmoid cross-entropy loss of the generated images and
an array of ones.

https://arxiv.org/abs/1611.07004

The pix2pix paper also mentions the L1 loss, which is a mean absolute error
(MAE) between the generated image and the target image.
This allows the generated image to become structurally similar to the target
image.
The formula to calculate the total generator loss is gan_loss + LAMBDA *
l1_loss, where LAMBDA = 100. This value was decided by the authors of the
paper.
LAMBDA = 100

loss_object =

tf.keras.losses.BinaryCrossentropy(from_logits=True)

def generator_loss(disc_generated_output, gen_output, target):

gan_loss = loss_object(tf.ones_like(disc_generated_output),

disc_generated_output)

Mean absolute error

l1_loss = tf.reduce_mean(tf.abs(target – gen_output))

total_gen_loss = gan_loss + (LAMBDA * l1_loss)

return total_gen_loss, gan_loss, l1_loss

The training procedure for the generator is shown in figure 10.32.
The discriminator in the pix2pix cGAN is a convolutional PatchGAN
classifier. It tries to classify if each image patch is real or not real, as described
in the pix2pix paper (https://arxiv.org/abs/1611.07004).

Each block in the discriminator is: Convolution -> Batch normalization
-> Leaky ReLU.
The shape of the output after the last layer is (batch_size, 30, 30, 1).
Each 30 x 30 image patch of the output classifies a 70 x 70 portion of the
input image.
The discriminator receives two inputs:

The input image and the target image, which it should classify as
real.
The input image and the generated image (the output of the
generator), which it should classify as fake.
Use tf.concat([inp, tar], axis=-1) to concatenate these two
inputs together.

Let us look at the sequence of schematics of finding the loss and using it to
update the gradients:

https://arxiv.org/abs/1611.07004

Figure 10.33: Generator loss logic

Discriminator:
def Discriminator():

initializer = tf.random_normal_initializer(0., 0.02)

inp = tf.keras.layers.Input(shape=[600, 600, 3],

name='input_image')

tar = tf.keras.layers.Input(shape=[600, 600, 3],

name='target_image')

x = tf.keras.layers.concatenate([inp, tar]) # (batch_size, 256,

256, channels*2)

down1 = downsample(150, 4, False)(x) # (batch_size, 128, 128,

64)

down2 = downsample(300, 4)(down1) # (batch_size, 64, 64, 128)

down3 = downsample(600, 4)(down2) # (batch_size, 32, 32, 256)

zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3)

(batch_size, 34, 34, 256)

conv = tf.keras.layers.Conv2D(512, 4, strides=1,

kernel_initializer=initializer,

use_bias=False)(zero_pad1)

(batch_size, 31, 31, 512)

batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu)

(batch_size, 33, 33, 512)

last = tf.keras.layers.Conv2D(1, 4, strides=1,

kernel_initializer=initializer)(zero_pad2) # (batch_size, 30,

30, 1)

return tf.keras.Model(inputs=[inp, tar], outputs=last)

Let us look at the topology as displayed in figure 10.34:
discriminator = Discriminator()

tf.keras.utils.plot_model(discriminator, show_shapes=True,

dpi=64)

Figure 10.34: Topology of the generator

Next, let us define the discriminator loss:

The discriminator_loss function takes two inputs: real images and
generated images.
real_loss is a sigmoid cross-entropy loss of the real images and an array
of ones (since these are the real images).

generated_loss is a sigmoid cross-entropy loss of the generated images
and an array of zeros (since these are the fake images).
The total_loss is the sum of real_loss and generated_loss:
def discriminator_loss(disc_real_output,

disc_generated_output):

real_loss = loss_object(tf.ones_like(disc_real_output),

disc_ real_output)

generated_loss =

loss_object(tf.zeros_like(disc_generated_ output),

disc_generated_output)

total_disc_loss = real_loss + generated_loss

return total_disc_loss

Optimizers and checkpoints
Next, we will define optimizers for the generator and the discriminator:
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

discriminator_optimizer = tf.keras.optimizers.Adam(2e-4,

beta_1=0.5)

checkpoint_dir = './training_checkpoints'

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

checkpoint =

tf.train.Checkpoint(generator_optimizer=generator_optimizer,

discriminator_optimizer=

discriminator_optimizer, generator=generator,

discriminator=discriminator)

We will be using Adam Optimizer for both the generator and the discriminator.

Plot images during training
Let us first create a function to plot generated images during training:

Write a function to plot some images during training.
Pass images from the test set to the generator.
The generator will then translate the input image into the output.
The last step is to plot the predictions and inspect the images.

The training=True is intentional here since we want the batch statistics
while running the model on the test dataset. If we use training=False,

we will get the accumulated statistics learned from the training dataset
(which we don't want).

def generate_images(model, test_input, tar):

prediction = model(test_input, training=True)

plt.figure(figsize=(15, 15))

display_list = [test_input[0], tar[0], prediction[0]]

title = ['Input Image', 'Ground Truth', 'Predicted Image']

for i in range(3):
plt.subplot(1, 3, i+1)

plt.title(title[i])

Getting the pixel values in the [0, 1] range to plot.

plt.imshow(display_list[i] * 0.5 + 0.5)

plt.axis('off')

plt.show()

Let us test the function by executing it:
for example_input, example_target in test_dataset.take(1):

generate_images(generator, example_input, example_target)

Figure 10.35: Comparing the input image, ground truth and predicted image

Let us put everything together by defining tf function for the training loop.

Training
The steps in each training step called train_step(..) are defined as follows:

For each example, input generates an output.
The discriminator receives the input_image and the generated image as
the first input. The second input is the input_image and the
target_image.

Next, calculate the generator and discriminator loss.
Then, calculate the gradients of loss with respect to both the generator
and discriminator variables (inputs), and apply those to the optimizer.
Finally, log the losses to TensorBoard:
log_dir="logs/" summary_writer =

tf.summary.create_file_writer(log_dir + "fit/" +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

@tf.function

def train_step(input_image, target, step):

with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_ tape:

gen_output = generator(input_image, training=True)

disc_real_output = discriminator([input_image, target],

training=True)

disc_generated_output = discriminator([input_image, gen_
output],

training=True)

gen_total_loss, gen_gan_loss, gen_l1_loss =

generator_loss(

disc_generated_output, gen_output, target)

disc_loss = discriminator_loss(disc_real_output, disc_
generated_output)

generator_gradients = gen_tape.gradient(gen_total_loss,

generator.trainable_variables)

discriminator_gradients = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(generator_gradients,

generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(discriminator_gr

adients,

discriminator.trainable_variables))

with summary_writer.as_default():

tf.summary.scalar('gen_total_loss', gen_total_loss,

step=step//1000)

tf.summary.scalar('gen_gan_loss', gen_gan_loss,

step=step//1000)

tf.summary.scalar('gen_l1_loss', gen_l1_loss,

step=step//1000)

tf.summary.scalar('disc_loss', disc_loss, step=step//1000)

The actual training loop
Since these samples can run on more than one dataset, and the datasets vary
greatly in size, the training loop is setup to work in steps instead of epochs.
Let us first define a function to train based on the training data: train_dataset
and test it against test_dataset and run it for n steps:

Iterate over the number of steps.
At every 10 steps, print a dot (.).
At every 1k steps, clear the display and run generate_images to show
the progress.
At every 5k steps, save a checkpoint:
def fit(train_ds, test_ds, steps):

example_input, example_target = next(iter(test_ds.take(1)))

start = time.time()

for step, (input_image, target) in
train_ds.repeat().take(steps).enumerate():

if (step) % 1000 == 0:

display.clear_output(wait=True)

if step != 0:

print(f'Time taken for 1000 steps: {time.time()-

start:.2f} sec\n')

start = time.time()

generate_images(generator, example_input, example_target)

print(f"Step: {step//1000}k")

train_step(input_image, target, step)

Training step

if (step+1) % 10 == 0:

print('.', end='', flush=True)

Save (checkpoint) the model every 5k steps

if (step + 1) % 5000 == 0:

checkpoint.save(file_prefix=checkpoint_prefix)

Run the training loop:
fit(train_dataset, test_dataset, steps=4000)

The final output is as shown in the figure 10.36:

Figure 10.36: Final predicted image after 4000 iterations

With this, we come to the end of the section on pix2pix conditional GAN. We
also created a sample that generated a real map based on.

Conclusion
In this chapter, we learnt the basics of GAN and the role of generator and
discriminator. We delved into the cost function, looked at the DCGAN
architecture, and how various steps like strided convolutions, batch
normalization, and using ReLU as the activation function helped improve
accuracy. Then, we looked at the concept of Earth movers’ distance and its
implementation in WGAN.

Multiple choice questions
1. DCGAN uses Conv2D transpose.

a. true
b. false

2. Which of the following activation function is used in WGAN
discriminator?

a. Sigmoid
b. LeakyReLU

3. In WGAN, the generator loss function is better than DCGAN.

a. true
b. false

Answers
1. a
2. b
3. a

Code listing
https://github.com/rajdeepd/tensorflow_2.0_book_code/tree/master/c
h10
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch10/dcgan_fashion_mnist.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/
ch10/pix2pix_maps_v1.ipynb

References
Build-basic-generative-adversarial-networks-gans:
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/home
DCGAN: https://arxiv.org/pdf/1511.06434.pdf
WGAN-GP: https://arxiv.org/abs/1701.07875
How to Implement Wasserstein Loss for Generative Adversarial
Networks: https://machinelearningmastery.com/how-to-implement-
wasserstein-loss-for-generative-adversarial-networks/
pix2pix: https://www.tensorflow.org/tutorials/generative/pix2pix
Image-to-image translation with conditional adversarial networks by
Isola et al. (2017): https://arxiv.org/abs/1611.07004

https://github.com/rajdeepd/tensorflow_2.0_book_code/tree/master/ch10
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch10/dcgan_fashion_mnist.ipynb
https://github.com/rajdeepd/tensorflow_2.0_book_code/blob/master/ch10/pix2pix_maps_v1.ipynb
https://www.coursera.org/learn/build-basic-generative-adversarial-networks-gans/home
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/abs/1701.07875
https://machinelearningmastery.com/how-to-implement-wasserstein-loss-for-generative-adversarial-networks/
https://www.tensorflow.org/tutorials/generative/pix2pix
https://arxiv.org/abs/1611.07004

Index
Symbols
32-bit floating-point matrix 308

A
accuracy 9
actor critic network

evolution 257-263
ActorDistributionNetwork 265
Adadelta 9, 83, 84
Adagrad 9, 81, 82
Adam 9

versus, Adagrad loss 83
Adam optimizer 80, 81
advanced computer vision

techniques 126, 127
AlexNet 127

innovations 127
all-gather 209
all-reduce algorithm 209, 210
asynchronous training 226
async training 204
Atari game

with deep reinforcement
learning 247-252

AutoGraph 98
average pooling 113

applying 113

B
basic classification, with

TensorFlow 2.x 30-33
dataset, cleaning 33-35
model, creating 35-41

model, training 35-41
batch size 187
BCE cost function 337, 338
bidirectional LSTM 169, 197

text processing with 169, 170
Bidirectional Recurrent Neural

Networks (BRNN) 169
binary classification problem 73

Boston Housing Price dataset 42, 43

C
callable object 86
CartPole game

DQN based agent 279
channel axis 22
cifar-10 dataset 23
clustered model

serializing 322
clustering 320
cluster weights

centroid initialization,
determining 322

clustering wrappers,
stripping 322

enabling 321
collect experience 275, 276
collection pipeline 270
collective communication, multi-worker mirrored strategy

AUTO 208
NCCL 208
RING 208

components, weight clustering
centroidInitialization 321
cluster_scope(...) 321
cluster_weights(...) 321
strip_clustering(...) 321

Compute Engine 204
conditional generative adversarial

network (cGAN) 370
ConvNet 106
convolution 107
Convolutional Neural Network

(CNN) 22, 105, 106
concepts 108
dataset image 24
example 108, 109
layers 106
normalized training image 24-27
operations 106, 107
overview 22
padding 108

convolution filter 23
convolution, in TensorFlow 2.7

applying, to image 110
contour detection kernel, applying 112
defining 111
parameters 109

pooling 112, 113
cost function 70
CriticNetwork 265
cross categorical entropy 75

gradient descent 76
optimizers 76

cross-entropy 72

D
dataflow 16-19
data preprocessing 6-8

model, building 8
model, compiling 9
model, feeding 10-13
model, training 10
predictions, verifying 13-16

dataset shape
360 images, with binary labels 130-132

Deep Deterministic Policy Gradient
(DDPG)-style approaches 265

depth of feature maps 129
dimensionality 187
discrete convolution 22
discriminator 334, 335
distributed training 204

async 204
strategies 204
strategy, selecting 226
sync 204

double DQN network 252, 253
implementing, with TensorFlow 253-257

DQN based agent, for CartPole game 279
agent.collect_policy 283
agent.policy 283
data collection 285
environment 280-282
hyperparameters 280
measures 284
metrics 284
policy 283
replay buffer 284
training 285-287
variance scaling, removing from

model 288, 289
DQN networks 245, 246
dropout

implementing 58, 59
Dynamic Convolutional GAN

(DCGAN) 347

discriminator 349-352
generator 348, 349
images, displaying 354, 355
images, generating 353
images, saving 353
implementing 347, 348
model, training 353, 354

dynamic learning rate
adjusting 192-195

E
eager execution 92
Earth mover's distance 357, 358
entropy regularization 265
environment

definition 271-273
environments, supported by

tf-agent library
Atari 269
Open AI gym 268

environment variables
accessing, from subprocesses

in notebooks 225
error (E) 76
evaluation 66
evaluation loops

using 67-69

F
forget gate 165
full observable MDP 239
fully-connected networks

limitations 107
function 86

G
GAN, for FASHION MNIST

images 339, 340
discriminator 343, 344
generator 341
objective function 342

GAN network
creating 363-369

Gated Recurrent Unit (GRU) 156
current memory content 158
implementing, in TensorFlow 2.7 159
reset gate 156, 158

text processing with 161-163
update gate 156, 157

Gaussian Blur 111
generative adversarial networks

(GANs) 331, 332
components 333
for FASHION MNIST images 339, 340

generator 336
global variable 20
Google Colab 204
GoogleNet 138
GPU support

TensorFlow 2.x, installing with 2
gradient descent 16, 76

advantages 16, 17
batch gradient descent 77
Stochastic gradient descent (SGD) 77, 78

graphdefs 310
graphics processing units (GPUs) 127
GRU-based model

building 160, 161

H
Hadamard (elementwise) product 158, 159
Hidden Markov Model (HMM)

extensions 148
hidden state 166
Huber 192

I
identity function 119
image augmentation techniques 133

data, generating for validation
and testing 133, 134

image classification, with CNN 22
image convolution

parameters 109
ImageDataGenerator class 133
ImageNet classification 127
inception module 66, 138
Inception V3 138

architecture 139-142
Inception vN 138
input gate 165
interpretation 32

J

Jupyter notebook
dataset, downloading 218
imports, defining 218
MirrorStrategy, defining 218, 219
model, training 220, 221
model, with strategy in scope 219, 220

K
Kaggle 204
Keras 1

Keras tensor 3
layer 4
model 4
multi-worker training, with two

processes 222
Keras functional API 66

model, creating with layer 86-91
Keras graph 5
Keras high-level APIs

advantages 2
advantages, over TensorFlow 1.x 3

Keras high-level APIs integration 2, 3
functional spec 3
Keras graph 5
layer 5
Python binding 3

Keras' sequential API 66
Keras tensor 4
K-fold cross-validation

using 45-51

L
L1 regularization 57
L2 regularization 57, 58
Lambda function

applying 191, 192
layers 66
logarithmic loss 73
Long-Term Short-Term Memory

(LSTM) 164
text processing with 166-168

loss function 9, 70
issues 356, 357

loss functions, in TensorFlow 2.x
cross categorical entropy 75
mean squared deviation (MSD) 74
Sparse cross categorical entropy 74, 75

low-level APIs 16

dataflow 16-19
tf.Graph structure 19, 20
tf.Operation 20
tf.Tensor 20, 21

LSTM cell operations 164
forget gate 165
hidden state 166
input gate 165
output stage 166

LSTM, for time series 196
synthetic dataset, processing 197-200

M
machine learning

for time series dataset 175
Markov chain model 148
Markov Decision Process

(MDP) 239, 241
types 239

max operator 252
max pooling 113

performing 114
mean absolute error (MAE) 380
mean squared deviation (MSD) 74
mean squared error (MSE) 72
Message Passing Interface (MPI) 208
Metal (M) 51
metrics 9, 70
MirroredStrategy 206

code walk-through 212-215
running, on multi CPU AWS

virtual machine 215-218
MirroredVariable 206
mirror strategy 205

building blocks 205, 206
MNIST dataset 114

and model definition 222, 223
model

compiling 9
creating with layers, Keras

functional APIs used 86-91
layers, setting up 8, 9
restoring 60-63
saving 60-63
training 226-232

model free policy 241
monotonic greedy policy

improvement 245
Monte Carlo on policy Q

evaluation 241-244
model optimization 305

advantages 307, 308
background 306
neural networks extension 307
tools 307

momentum-based SGD 78
monotonic derivative 36
Monte Carlo

on policy Q evaluation 241-244
multi-class classification problem 73
multidimensional data 107
multivariate 188
multi-worker configuration

cluster 225
task 225
with two workers 224, 225

multi-worker mirrored strategy 207
collective communication 208, 209

multi-worker training
with Keras 222

N
namespaces 91

reorganization 91, 92
reorganizing 91

Nesterov Accelerated Gradient (NAG) 79
Nesterov based gradient descent 79, 80
neural network

building 44, 45
neurons 106
notebooks

environment variables, from
subprocess 225

NumPy 44

O
objective function 70
optimization algorithm

first order optimization algorithms 76
gradient function 76

optimizers 9, 70
class Adadelta 84
class Adagrad 85
class Adam 85
class Adamax 85
class Ftrl 85
class Nadam 85

class Optimizer 85
class RMSprop 85
class SGD 85

output stage 166
overfitting 51

P
padding 108
parameters, image convolution

filter 109
input 109
name 109
padding 109
strides 109

partial derivatives 76
partially observable Markov decision

process (POMDP) 239
PatchCamelyon (PCam) 130
PatchGAN classifier 370
Pima Indians dataset 29, 30
pix2pix 370

with maps dataset 370-376
pix2pix cGAN 370

actual training loop 387, 388
checkpoints 384
discriminator 380-382
discriminator loss 383, 384
generator, building 376-380
optimizers 384
plot images, during training 384, 385
training 386

pix2pix paper 374
policy evaluation 299-304
policy, reinforcement learning

deterministic policy 239
stochastic policy 240
value function 240

pooling 112
average pooling 113
max pooling 113

pooling layer 113
post-training quantization 310
prediction 66

verifying 13-16
property of consistency 71
pruning 320
Python 3

Q
Q-learning 270
quantization

defining 308, 309
Fashion MNIST model,

building 311, 312
model, converting to TensorFlow

Lite model 312, 313
overview 310
post-training quantization 310
sample 309, 310

R
Rectified Linear Unit (ReLU) 35
recurrent neural network (RNN) 147

for predicting time series
data 187-189

return sequences 190, 191
reduce operator 210, 211
regression 42
regression examples, with

TensorFlow 2.x 41
Boston Housing Price dataset 42, 43
data preparing 44

regression problem 73
regularization 57
reinforcement

example 235
reinforcement learning 235

components 270
key concepts 236
mechanics 270
model 239
modelling 246
policy 239
versus, AI planning 236
versus, machine learning 236
versus, supervised learning 236
versus, unsupervised learning 237

replay buffers 266
all elements, reading 268
converting 267
Python-backed 266
reading from 267
TensorFlow-backed 266
TFUniformReplayBuffer 266
writing to 266, 267

reset gate 156, 158

ResNet 119
implementing 120-126

ResNet block 121, 122
ResNet, with TensorFlow

building 118, 119
RL agents

types 240
RMSprop 344
RNN, for time series data prediction

dynamic learning rate,
adjusting 192-195

Lambda function, applying 191, 192
Rock (R) 51

S
SacAgent 265
SAC agent's support, in

TF-agents 289, 290
agent, creating on trajectory 294
agent, training on trajectory 294
call function 291
output, plotting 297
reinforce agent 295, 296
SAC agent sample, creating 293

SAME padding 128
sample

writing, with TensorFlow 2.x 6
seaborn library 31
sequence-to-sequence RNN 190, 191
sequential decision processing

agent and environment interaction 238
series dimensionality 191
SGD optimizer 53
share-reduce phase 211
Sigmoid 53
simple CNN network, with TensorFlow

building 114
data, preparing 114-118

simple dense layer
creating 5

simple DQN agent 276-278
simple recurrent neural network

(RNN) 149
building 149
dataset, preparing 151, 152
masking 150
text processing 151-156
weight constraints 150

Soft Actor Critic (SAC) 265, 270

Softmax activation function 73
Sonar dataset 51-60
Sparse cross categorical entropy 74, 75
Stochastic gradient descent (SGD)

momentum gradient descent 78
Nesterov based gradient descent 79, 80

stride 113
synchronous training 226
sync training 204
synthetic dataset

creating 179-181
multiple layer model, for

predicting value 183-187
single layer model, for predicting

time series 182, 183

T
TensorFlow 2.7

convolution 109-112
GRU implementation 159

TensorFlow 2.x
basic classification 30-33
control flow 96, 97
data, preprocessing 6-8
deprecated APIs 92
eager execution 92, 93
functions replace sessions 93, 94
globals, removing 94-96
installing 2
installing, on Ubuntu 2
installing, with GPU support 2
namespaces 91, 92
regression examples 41
sample, writing with 6
simple dense layer, creating 5
tf.data.Dataset, combining

with tf.function 98-102
TensorFlow Hub 142-145
TensorFlow Lite model

converting to 312, 313
evaluating 314-316
running 313, 314

Tensor Processing Unit 204
TF-agents 238, 264

components 264
policies 273, 274
SAC agent's support 289

tf-agents library
agents, implementing 269, 270

tf.data.Dataset
combining,

with tf.function 98-102
tf.debugging 92
tf.dtypes 92
tf.Graph structure

explicit 20
implicit 19

tf.io 92
tf.keras.layers 91
tf.keras.losses 91
tf.keras.metrics 92
TFLite 310
tf.logging 92
tf.manip 92
tf.Operation 20, 21, 93
tf.quantization 92
tf.random 91
tf.Session object 93
tf.Tensor 21
tf.Tensor object 93
TFUniformReplayBuffer 266
tf.Variable 94
time series, common patterns

non-stationary time series 176
seasonality 175
trend 175
white noise 176

time series dataset 174
predicting, with RNN 187-191
return sequences, in RNN 190

time series notebook
creating, with synthetic data 176-179

timestamp 187
trainable variable 20
training 66
training function 344-346
training loops

using 67-69
training pipeline 274, 275

U
Ubuntu

TensorFlow 2.x, installing 2
underfitting 51
U-Net-based architecture 370
unidirectional LSTM 196
update gate 156, 157

V
validation accuracy 41
VALID padding 128
value-based RL

versus policy-based RL 257
value function 240
VGG

architecture 127, 128
learning from 129
motivation 127

VGG16 127, 134
architecture 128, 129, 136
area under curve 136
layers 135
ROC curve 137

VGG19 137, 138
VGG, in TensorFlow 129

approach 130
PCam datatset 130

W
weight clustering 320

in TensorFlow 321
weight clustering MNIST

classification model 322
clustering API, applying 325-327
defining 325
normal model, versus

clustered model 328
normal model, versus

clustered TFLite model 328
training 323, 324
weight clustering, with 8 clusters 325

weight pruning 316-318
layers, pruning 318, 319
sequential APIs, using 319, 320

weights (W) 76
WGAN 358

implementing 359
loss function 359-363

window dataset helper function 191

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Getting Started with TensorFlow 2.x
	Introduction
	Structure
	Objective
	Installing TensorFlow 2.x
	Installation on Ubuntu
	Installing TensorFlow 2.x with GPU support

	Keras high-level APIs integration into TensorFlow
	Python binding
	Functional Spec
	Layer
	Keras graph

	Writing the first sample using TensorFlow 2.x
	Preprocess the data
	Build the model
	Compile the model
	Train the model
	Verifying predictions

	Low-level APIs
	Dataflow
	tf.Graph structure
	tf.Operation and tf.Tensor

	Image classification with CNN
	Conclusion
	Questions
	References

	2. Machine Learning with TensorFlow 2.x
	Introduction
	Structure
	Objectives
	Basic classification with TensorFlow 2.x
	Clean the dataset
	Model creation and training

	Regression examples with TensorFlow 2.x
	The Boston Housing Price dataset
	Preparing the data
	Building the neural network

	Validating our approach using K-fold validation
	Overfitting and underfitting
	Sonar dataset

	Saving and restoring models
	Conclusion
	Question

	3. Keras Based APIs
	Introduction
	Structure
	Objective
	Keras functional API
	Training, evaluation, and prediction using TensorFlow and Keras
	Using training and evaluation loops

	Loss, metrics, and an optimizer
	Regression problem
	Binary classification problem
	Implementation of loss functions in TensorFlow 2.x
	Mean Square Error (MSE)
	Sparse cross categorical entropy
	Cross categorical entropy

	Layers and models using Keras functional APIs
	Effective TensorFlow 2.x
	Reorganization of namespaces
	Deprecated APIs
	Eager execution
	Functions replace sessions
	Removing globals
	Control flow
	Combine tf.data.Dataset and tf.function

	Conclusion
	Questions
	Code listing
	References

	4. Convolutional Neural Networks
	Introduction
	Structure
	Objective
	Introduction to convolutional networks
	Short comings of fully-connected networks

	Convolution in TensorFlow 2.7
	Simple convolutional network with TensorFlow
	Building ResNet with TensorFlow
	ResNet

	Advanced computer vision techniques
	VGG architecture
	Learning from the VGG network
	Increased depth of feature maps
	VGG in TensorFlow
	Area under the curve for VGG16
	VGG19
	Inception V3
	InceptionV3 architecture

	TensorFlow Hub
	Summary
	Questions
	References
	Code listing

	5. Recurrent Neural Networks
	Introduction
	Structure
	Objectives
	Basic concepts
	Simple recurrent neural network
	Building your first SimpleRNN network
	Weight constraints

	Gated recurrent unit
	Building your first GRU-based model

	Long-Term Short-Term Memory (LSTM)
	LSTM cell operations
	Text processing with LSTM

	Bidirectional LSTM
	Text processing with bidirectional LSTM

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	6. Time Series Forecasting with TensorFlow
	Introduction
	Structure
	Objectives
	Background
	Machine learning and time series

	Common patterns in time series
	First time series notebook with synthetic data
	Synthetic dataset
	Single layer model to predict time series
	Multiple layer model for predicting the value

	RNN for predicting the time series data
	Applying Lambda function
	Adjusting the learning rate dynamically
	LSTM and time series
	Process synthetic dataset with LSTM

	Conclusion
	References
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	7. Distributed Training
	Introduction
	Structure
	Objectives
	Introduction to distributed TensorFlow
	Types of strategies
	Mirror strategy
	Multi-worker mirrored strategy
	Collective communication in a multi-worker mirrored strategy
	Code walk-through of MirroredStrategy

	Running MirroredStrategy on multi CPU AWS virtual machine
	Multi-worker training with Keras with two processes
	MNIST dataset and model definition
	Multi-worker configuration with two workers
	Environment variables and subprocesses in notebooks
	Strategy to be chosen
	Train the model

	Conclusion
	Questions
	References

	8. Reinforcement Learning
	Introduction
	Structure
	Objective
	Sequential decision process: agent and the world
	Markov decision process
	Model free policy
	DQN networks
	Atari game with deep reinforcement learning - DQN
	Actor critic network
	Introducing TF-agents
	TF-agent
	DQN based agent for CartPole game
	SAC agent’s support in TF-agents
	Conclusion
	Questions
	Code listing
	References
	Appendix
	Policy evaluation
	Policy iteration

	9. Techniques to do Model Optimization
	Introduction
	Structure
	Objective
	Background
	Extension to neural networks
	Tools available
	Advantages of model optimization
	Quantization
	Post-training quantization
	Overview
	Build a Fashion MNIST model
	Convert to a TensorFlow Lite model
	Run the TFLite models
	Evaluate the models

	Weight pruning
	Pruning some of the layers
	Pruning using sequential APIs

	Weight clustering
	Enabling Cluster weights

	Serializing the clustered model
	Weight clustering MNIST classification model
	Conclusion
	Questions
	Answers

	References

	10. Generative Adversarial Networks
	Introduction
	Structure
	Objective
	Introducing GANs
	Discriminator
	Generator
	BCE cost function
	GAN for FASHION MNIST images

	DCGAN
	Generate and save images

	Problem with the loss function
	Earth mover’s distance
	WGAN
	Implementing WGAN

	Pix2Pix with Maps dataset
	Conclusion
	Multiple choice questions
	Answers

	Code listing
	References

	Index

