

ffi rs.indd 08:34:33:AM 07/25/2013 Page vi

ffi rs.indd 08:34:33:AM 07/25/2013 Page i

Mastering
VBA for Microsoft®
Offi ce 2013

Richard Mansfi eld

ffi rs.indd 08:34:33:AM 07/25/2013 Page ii

Acquisitions Editor: Mariann Barsolo

Development Editor: David Clark

Technical Editor: Russ Mullen

Production Editor: Eric Charbonneau

Copy Editor: Judy Flynn

Editorial Manager: Pete Gaughan

Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley

Vice President and Publisher: Neil Edde

Book Designers: Maureen Forys and Judy Fung

Proofreader: Candace Cunningham

Indexer: Ted Laux

Project Coordinator, Cover: Katherine Crocker

Cover Designer: Ryan Sneed

Cover Image: ©iStockphoto.com/pic4you

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-69512-8
ISBN: 978-1-118-75022-3 (ebk.)
ISBN: 978-1-118-78630-7 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan-
ical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifi cally disclaim all warranties, including without limitation warranties of fi tness for a
particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions
of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2013945361

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affi liates, in the United States and other countries, and may not be used without written permission. Microsoft is a registered trademark of
Microsoft Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 08:34:33:AM 07/25/2013 Page iii

Dear Reader,

Thank you for choosing Mastering VBA for Microsoft Offi ce 2013. This book is part of a family of

premium-quality Sybex books, all of which are written by outstanding authors who combine

practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing consis-

tently exceptional books. With each of our titles, we’re working hard to set a new standard

for the industry. From the paper we print on to the authors we work with, our goal is to bring

you the best books available.

I hope you see all that refl ected in these pages. I’d be very interested to hear your comments and

get your feedback on how we’re doing. Feel free to let me know what you think about this or

any other Sybex book by sending me an email at nedde@wiley.com. If you think you’ve found

a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is

critical to our efforts at Sybex.

 Best regards,

 Neil Edde

 Vice President and Publisher

 Sybex, an Imprint of Wiley

mailto:nedde@wiley.com
http://sybex.custhelp.com

ffi rs.indd 08:34:33:AM 07/25/2013 Page iv

I dedicate this book to my good friend

Leroy Fincham.

ffi rs.indd 08:34:33:AM 07/25/2013 Page v

Acknowledgments
I’d like to thank all the good people at Sybex who contributed to this book. Mariann Barsolo’s

encouragement made this book possible in the fi rst place, and Pete Gaughan provided thought-

ful guidance while launching the project. I am also indebted to development editor David Clark,

whose valuable suggestions contributed to this book’s tone and organization. Technical editor

Russ Mullen carefully checked the book for accuracy and ensured that all the code examples

work without any errors. Finally, thanks to Eric Charbonneau, production editor, the book went

smoothly through its fi nal stages—author review, design, and assembly. My gratitude also goes

to copyeditor Judy Flynn, who, via a very close read, polished this book in many ways; she is

truly an exceptional copy editor. Candace Cunningham is also great at her job, and she fl agged

important issues during her proofreading.

ffi rs.indd 08:34:33:AM 07/25/2013 Page vi

ffi rs.indd 08:34:33:AM 07/25/2013 Page vii

About the Author
Mastering VBA for Microsoft Offi ce 2013 is Richard Mansfi eld’s 45th book. His recent titles

include CSS Web Design for Dummies (Wiley), Offi ce Application Development All-in-One Desk

Reference for Dummies (Wiley), How to Do Everything with Second Life (McGraw-Hill), and

Programming: A Beginner’s Guide (McGraw-Hill). Overall, his books have sold more than 500,000

copies worldwide and have been translated into 12 languages.

ffi rs.indd 08:34:33:AM 07/25/2013 Page viii

ffi rs.indd 08:34:33:AM 07/25/2013 Page ix

Contents at a Glance

Introduction .xxix

Part 1 • Recording Macros and Getting Started with VBA 1

Chapter 1 • Recording and Running Macros in the Offi ce Applications 3

Chapter 2 • Getting Started with the Visual Basic Editor. 31

Chapter 3 • Editing Recorded Macros . 65

Chapter 4 • Creating Code from Scratch in the Visual Basic Editor 87

Part 2 • Learning How to Work with VBA . 107

Chapter 5 • Understanding the Essentials of VBA Syntax . 109

Chapter 6 • Working with Variables, Constants, and Enumerations 125

Chapter 7 • Using Array Variables . 147

Chapter 8 • Finding the Objects, Methods, and Properties You Need 171

Part 3 • Making Decisions and Using Loops and Functions 197

Chapter 9 • Using Built-in Functions . 199

Chapter 10 • Creating Your Own Functions . 235

Chapter 11 • Making Decisions in Your Code . 255

Chapter 12 • Using Loops to Repeat Actions . 277

Part 4 • Using Message Boxes, Input Boxes, and Dialog Boxes 305

Chapter 13 • Getting User Input with Message Boxes and Input Boxes 307

Chapter 14 • Creating Simple Custom Dialog Boxes . 329

Chapter 15 • Creating Complex Forms . 399

X | CONTENTS AT A GLANCE

ffi rs.indd 08:34:33:AM 07/25/2013 Page x

Part 5 • Creating Eff ective Code . 449

Chapter 16 • Building Modular Code and Using Classes . 451

Chapter 17 • Debugging Your Code and Handling Errors . 481

Chapter 18 • Building Well-Behaved Code . 511

Chapter 19 • Securing Your Code with VBA’s Security Features 525

Part 6 • Programming the Offi ce Applications . 547

Chapter 20 • Understanding the Word Object Model and Key Objects 549

Chapter 21 • Working with Widely Used Objects in Word . 583

Chapter 22 • Understanding the Excel Object Model and Key Objects. 615

Chapter 23 • Working with Widely Used Objects in Excel . 641

Chapter 24 • Understanding the PowerPoint Object Model and Key Objects 655

Chapter 25 • Working with Shapes and Running Slide Shows. 677

Chapter 26 • Understanding the Outlook Object Model and Key Objects 697

Chapter 27 • Working with Events in Outlook . 719

Chapter 28 • Understanding the Access Object Model and Key Objects 739

Chapter 29 • Manipulating the Data in an Access Database via VBA 763

Chapter 30 • Accessing One Application from Another Application 785

Chapter 31 • Programming the Offi ce 2013 Ribbon . 813

Appendix • Th e Bottom Line . 847

Index . 889

ftoc.indd 07:28:45:PM 07/26/2013 Page xi

Contents

Introduction .xxix

Part 1 • Recording Macros and Getting Started with VBA. .1

Chapter 1 • Recording and Running Macros in the Offi ce Applications . . . 3

What Is VBA and What Can You Do with It? . 3

The Difference between Visual Basic and Visual Basic for Applications 4

Understanding Macro Basics . 5

Recording a Macro . 6

Displaying the Developer Tab on the Ribbon . 6

Planning the Macro . 7

Starting the Macro Recorder . 8

Naming the Macro . 11

Choosing How to Run a New Macro. 15

Running a Macro . 21

Recording a Sample Word Macro . 22

Recording a Sample Excel Macro. 25

Create a Personal Macro Workbook If You Don’t Have One Yet. 25

Record the Macro . 25

Specifying How to Trigger an Existing Macro . 27

Assigning a Macro to a Quick Access Toolbar Button in Word 27

Assigning a Macro to a Shortcut Key Combination . 27

Deleting a Macro . 27

The Bottom Line . 29

Chapter 2 • Getting Started with the Visual Basic Editor 31

Opening the Visual Basic Editor . 31

Opening the Visual Basic Editor with a Macro Selected . 32

Opening the Visual Basic Editor Directly. 32

Navigating to a Macro . 33

Using the Visual Basic Editor’s Main Windows . 34

The Project Explorer . 34

The Object Browser. 38

The Code Window . 39

The Properties Window. 43

The Immediate Window . 45

Setting Properties for a Project . 46

Customizing the Visual Basic Editor . 48

Choosing Editor and View Preferences. 49

Choosing and Laying Out the Editor Windows . 56

XII | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xii

Customizing the Toolbar and Menu Bar. 56

Customizing the Toolbox. 59

The Bottom Line . 63

Chapter 3 • Editing Recorded Macros . 65

Testing a Macro in the Visual Basic Editor. 66

Stepping through a Macro. 67

Setting Breakpoints . 68

Commenting Out Lines . 69

Stepping Out of a Macro . 70

Editing the Word Macro . 71

Stepping Through the Transpose_Word_Right Macro . 72

Running the Transpose_Word_Right Macro . 72

Creating a Transpose_Word_Left Macro. 72

Save Your Work . 74

Editing the Excel Macro . 74

Unhiding the Personal Macro Workbook . 74

Opening the Macro for Editing . 75

Editing the Macro . 76

Save Your Work . 79

Editing a PowerPoint Macro. 79

Save Your Work . 84

The Bottom Line . 85

Chapter 4 • Creating Code from Scratch in the Visual Basic Editor 87

Setting Up the Visual Basic Editor for Creating the Procedures 87

Creating a Procedure for Word . 89

Creating a Procedure for Excel. 94

Creating a Procedure for PowerPoint . 99

Creating a Procedure for Access . 105

The Bottom Line . 106

Part 2 • Learning How to Work with VBA . 107

Chapter 5 • Understanding the Essentials of VBA Syntax 109

Getting Ready . 109

Procedures. 110

Functions . 111

Subprocedures. 111

Statements . 112

Keywords. 115

Expressions . 116

Operators . 116

Variables . 116

Constants . 117

CONTENTS | XIII

ftoc.indd 07:28:45:PM 07/26/2013 Page xiii

Arguments . 118

Specifying Argument Names vs. Omitting Argument Names 119

When to Include the Parentheses around the Argument List. 120

Objects . 120

Collections. 120

Properties . 121

Methods . 121

Events . 121

The Bottom Line . 123

Chapter 6 • Working with Variables, Constants, and Enumerations . . . 125

Working with Variables. 126

Choosing Names for Variables . 126

Declaring a Variable . 127

Choosing the Scope and Lifetime of a Variable . 130

Specifying the Data Type for a Variable . 137

Working with Constants . 143

Declaring Your Own Constants . 143

Choosing the Scope and Lifetime for Your Constants . 144

Working with Enumerations . 144

The Bottom Line . 145

Chapter 7 • Using Array Variables . 147

What Is an Array? . 147

Declaring an Array . 149

Storing Values in an Array . 151

Multidimensional Arrays . 152

Declaring a Dynamic Array . 152

Redimensioning an Array . 153

Returning Information from an Array . 153

Erasing an Array . 154

Finding Out Whether a Variable Is an Array. 154

Finding the Bounds of an Array . 154

Sorting an Array. 154

Searching through an Array . 158

Performing a Linear Search through an Array . 158

Performing a Binary Search through an Array . 163

The Bottom Line . 168

Chapter 8 • Finding the Objects, Methods, and Properties You Need . . 171

What Is an Object? . 171

The Benefi ts of OOP . 171

Understanding Creatable Objects . 173

Properties . 173

Methods . 174

XIV | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xiv

Working with Collections . 176

Working with an Object in a Collection . 177

Adding an Object to a Collection . 177

Finding the Objects You Need . 177

Using the Macro Recorder to Add Code for the Objects You Need 178

Using the Object Browser . 180

Using Help to fi nd the Object You Need. 186

Using the Auto List Members Feature. 189

Using Object Variables to Represent Objects. 191

Team Programming and OOP . 194

The Bottom Line . 195

Part 3 • Making Decisions and Using Loops and Functions 197

Chapter 9 • Using Built-in Functions . 199

What Is a Function? . 199

Using Functions . 200

Passing Arguments to a Function . 202

Using Functions to Convert Data . 203

Using the Asc Function to Return a Character Code . 205

Using the Val Function to Extract a Number from the Start of a String 206

Using the Str Function to Convert a Number into a String . 207

Using the Format Function to Format an Expression . 208

Using the Chr Function and Constants to Enter Special Characters in a String. . . 212

Using Functions to Manipulate Strings . 214

Using the Left, Right, and Mid Functions to Return Part of a String. 215

Using InStr and InStrRev to Find a String within Another String 219

Using LTrim, RTrim, and Trim to Remove Spaces from a String 221

Using Len to Check the Length of a String . 222

Using StrConv, LCase, and UCase to Change the Case of a String. 224

Using the StrComp Function to Compare Apples to Apples 225

Using VBA’s Mathematical Functions. 226

Using VBA’s Date and Time Functions . 227

Using the DatePart Function to Parse Dates . 228

Using the DateDiff Function to Figure Out a Time Interval. 229

Using the DateAdd Function to Add or Subtract Time from a Date 230

Using File-Management Functions . 230

Using the Dir Function to Check Whether a File Exists . 230

Returning the Current Path . 232

The Bottom Line . 232

Chapter 10 • Creating Your Own Functions . 235

Components of a Function . 236

Creating a Function . 238

Starting a Function Manually. 238

Starting a Function by Using the Add Procedure Dialog Box. 239

CONTENTS | XV

ftoc.indd 07:28:45:PM 07/26/2013 Page xv

Passing Arguments to a Function . 239

Declaring the Data Types of Arguments . 240

Specifying an Optional Argument . 240

Controlling the Scope of a Function . 241

Examples of Functions for Any VBA-Enabled Offi ce Application 241

How Functions Return Information . 243

Returning Text Data from a Function . 243

Creating a Function for Word . 246

Creating a Function for Excel . 248

Creating a Function for PowerPoint . 249

Creating a Function for Access . 251

The Bottom Line . 252

Chapter 11 • Making Decisions in Your Code . 255

How Do You Compare Things in VBA? . 255

Testing Multiple Conditions by Using Logical Operators. 257

If Blocks. 259

If… Then . 260
If… Then… Else Statements . 262

If… Then… ElseIf… Else Statements . 264

Creating Loops with If and GoTo . 268
Nesting If Blocks . 269

Select Case Blocks . 272

Syntax . 272

Example . 272

When Order Matters . 274

The Bottom Line . 275

Chapter 12 • Using Loops to Repeat Actions . 277

When Should You Use a Loop? . 277

Understanding the Basics of Loops. 278

Using For… Loops for Fixed Repetitions . 279

For… Next Loops . 279

For Each… Next Loops . 287

Using an Exit For Statement. 288

Using Do… Loops for Variable Numbers of Repetitions . 288

Do While… Loop Loops . 289

Do… Loop While Loops . 293

Do Until… Loop Loops . 294

Do… Loop Until Loops . 297

Using an Exit Do Statement . 298

Is the Exit Do Statement Bad Practice?. 299

While… Wend Loops. 300

Nesting Loops. 301

Avoiding Infi nite Loops . 303

The Bottom Line . 304

XVI | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xvi

Part 4 • Using Message Boxes, Input Boxes, and Dialog Boxes 305

Chapter 13 • Getting User Input with Message Boxes and Input Boxes 307

Opening a Procedure to Work On. 308

Displaying Status Bar Messages in Word and Excel . 309

Message Boxes . 311

The Pros and Cons of Message Boxes . 311

Message-Box Syntax . 312

Displaying a Simple Message Box . 313

Displaying a Multiline Message Box . 314

Choosing Buttons for a Message Box. 315

Choosing an Icon for a Message Box . 316

Setting a Default Button for a Message Box . 317

Controlling the Modality of a Message Box . 318

Specifying a Title for a Message Box . 319

Title Bars Can Provide Useful Information . 320

Adding a Help Button to a Message Box. 320

Specifying a Help File for a Message Box . 321

Using Some Arguments without Others. 322

Retrieving a Value from a Message Box . 322

Input Boxes . 323

Input-Box Syntax. 324

Retrieving Input from an Input Box . 325

Forms: When Message Boxes and Input Boxes Won’t Suffi ce . 326

The Bottom Line . 326

Chapter 14 • Creating Simple Custom Dialog Boxes 329

When Should You Use a Custom Dialog Box?. 329

Creating a Custom Dialog Box. 330

Designing a Dialog Box . 332

Inserting a User Form . 332

Renaming a User Form . 335

Adding Controls to the User Form . 337

Grouping Controls . 342

Renaming Controls. 342

Moving a Control . 343

Changing the Caption on a Control. 345

Key Properties of the Toolbox Controls. 347

Working with Groups of Controls . 363

Aligning Controls . 366

Placing Controls . 366

Adjusting the Tab Order of a Form . 367

CONTENTS | XVII

ftoc.indd 07:28:45:PM 07/26/2013 Page xvii

Linking a Form to a Procedure . 368

Loading and Unloading a Form . 369

Displaying and Hiding a Form. 370

Setting a Default Command Button. 370

Retrieving the User’s Choices from a Dialog Box . 371

Returning a String from a Text Box . 371

Returning a Value from an Option Button . 371

Returning a Value from a Check Box . 372

Returning a Value from a List Box. 372

Returning a Value from a Combo Box. 374

Examples of Connecting Forms to Procedures . 374

Word Example: The Move-Paragraph Procedure . 374

General Example: Opening a File from a List Box. 385

Creating the Code for the User Form . 388

Using an Application’s Built-in Dialog Boxes from VBA. 391

Displaying a Built-in Dialog Box . 391

Setting and Restoring Options in a Built-in Dialog Box. 395

Which Button Did the User Choose in a Dialog Box?. 395

Specifying a Time-Out for a Dialog Box . 396

The Bottom Line . 396

Chapter 15 • Creating Complex Forms . 399

Creating and Working with Complex Dialog Boxes . 400

Updating a Dialog Box to Refl ect the User’s Choices . 400

Revealing a Hidden Part of a Form . 400

Tracking a Procedure in a Form . 405

Using Multipage Dialog Boxes and Tab Strip Controls . 408

Creating a Modeless Dialog Box. 418

Specifying a Form’s Location on Screen . 419

Using Events to Control Forms . 420

Events Unique to the UserForm Object . 423

Events That Apply to Both UserForms and Container Controls 428

Events That Apply to Many or Most Controls . 433

Events That Apply Only to a Few Controls . 446

The Bottom Line . 447

Part 5 • Creating Eff ective Code . 449

Chapter 16 • Building Modular Code and Using Classes 451

Creating Modular Code . 451

What Is Modular Code? . 451

Advantages of Using Modular Code . 452

How to Approach Creating Modular Code . 452

Arranging Your Code in Modules . 453

XVIII | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xviii

Calling a Procedure . 453

Making Logical Improvements to Your Code . 455

Making Visual Improvements to Your Code . 462

Creating and Using Classes . 468

What Can You Do with Class Modules? . 468

A Brief Overview of Classes . 469

Planning Your Class . 469

Creating a Class Module . 470

Naming the Class . 470

Setting the Instancing Property. 470

Declaring Variables and Constants for the Class . 471

Adding Properties to the Class. 471

Adding Methods to a Class. 476

Using Your Class. 477

The Bottom Line . 478

Chapter 17 • Debugging Your Code and Handling Errors 481

Principles of Debugging . 481

The Different Types of Errors. 483

Language Errors . 483

Compile Errors . 483

Runtime Errors . 486

Program Logic Errors. 487

VBA’s Debugging Tools . 487

Break Mode . 488

The Step Over and Step Out Commands . 490

The Locals Window . 491

The Watch Window . 492

The Immediate Window . 495

The Call Stack Dialog Box . 497

Dealing with Infi nite Loops . 498

Dealing with Runtime Errors. 498

When Should You Write an Error Handler?. 498

Trapping an Error . 499

Disabling an Error Trap . 501

Resuming after an Error . 501

Getting a Description of an Error. 504

Raising Your Own Errors . 505

Suppressing Alerts. 505

Handling User Interrupts in Word, Excel, and Project . 505

Disabling User Input While a Procedure Is Running. 506

Disabling User Input While Part of a Procedure Is Running 506

Documenting Your Code . 507

The Bottom Line . 508

CONTENTS | XIX

ftoc.indd 07:28:45:PM 07/26/2013 Page xix

Chapter 18 • Building Well-Behaved Code . 511

What Is a Well-Behaved Procedure? . 511

Retaining or Restoring the User Environment . 512

Leaving the User in the Best Position to Continue Working. 513

Keeping the User Informed during the Procedure. 514

Manipulating the Cursor. 517

Displaying Information at the Beginning of a Procedure . 517

Communicating with the User via a Message Box or Dialog Box at the End of a

Procedure . 518

Creating a Log File . 518

Making Sure a Procedure Is Running under Suitable Conditions. 522

Cleaning Up after a Procedure . 522

Undoing Changes the Procedure Has Made . 522

Removing Scratch Files and Folders . 523

The Bottom Line . 524

Chapter 19 • Securing Your Code with VBA’s Security Features 525

Understanding How VBA Implements Security. 525

Signing Your Macro Projects with Digital Signatures . 529

What Is a Digital Certifi cate? . 529

Getting a Digital Certifi cate . 530

Choosing a Suitable Level of Security . 539

Understanding the Security Threats Posed by VBA. 539

Protecting against Macro Viruses . 540

Specifying a Suitable Security Setting . 540

Additional Trust Center Settings . 541

Locking Your Code . 544

The Bottom Line . 546

Part 6 • Programming the Offi ce Applications . 547

Chapter 20 • Understanding the Word Object Model and Key Objects . 549

Examining the Word Object Model . 549

Working with the Documents Collection and the Document Object 552

Creating a Document . 552

Creating a Template . 553

Saving a Document. 554

Opening a Document. 559

Closing a Document . 562

Changing a Document’s Template . 563

Printing a Document . 563

Working with the ActiveDocument Object. 565

XX | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xx

Working with the Selection Object . 566

Checking the Type of Selection . 566

Checking the Story Type of the Selection . 567

Getting Other Information about the Current Selection . 569

Inserting Text at, after, or before the Selection. 572

Inserting a Paragraph in a Selection . 573

Applying a Style . 573

Extending a Selection. 573

Collapsing a Selection . 574

Creating and Using Ranges . 575

Defi ning a Named Range . 575

Redefi ning a Range. 576

Using the Duplicate Property to Store or Copy Formatting . 576

Manipulating Options. 577

Making Sure Hyperlinks Require Ctrl+Clicking. 577

Turning Off Overtype . 577

Setting a Default File Path . 577

Turning Off Track Changes. 578

Accessing OneNote. 579

The Bottom Line . 580

Chapter 21 • Working with Widely Used

Objects in Word . . . 583

Using Find and Replace via VBA. 583

Understanding the Syntax for the Execute Method . 585

Putting Find and Replace to Work . 588

Working with Headers, Footers, and Page Numbers . 589

Understanding How VBA Implements Headers and Footers 589

Getting to a Header or Footer . 590

Checking to See If a Header or Footer Exists . 590

Linking to the Header or Footer in the Previous Section. 590

Creating a Different First-Page Header . 591

Creating Different Odd- and Even-Page Headers . 591

Adding Page Numbers to Your Headers and Footers. 591

Working with Sections, Page Setup, Windows, and Views. 595

Adding a Section to a Document . 595

Changing the Page Setup . 596

Opening a New Window Containing an Open Document . 597

Closing All Windows for a Document Except the First . 597

Splitting a Window. 597

Displaying the Document Map for a Window. 598

Scrolling a Window . 598

Arranging Windows . 599

Positioning and Sizing a Window . 599

Making Sure an Item Is Displayed in the Window . 599

Changing a Document’s View . 600

CONTENTS | XXI

ftoc.indd 07:28:45:PM 07/26/2013 Page xxi

Switching to Read Mode . 600

Zooming the View to Display Multiple Pages . 600

Working with Tables . 601

Creating a Table. 601

Selecting a Table . 602

Converting Text to a Table. 602

Ensuring That a Selection Is within a Table . 604

Finding Out Where a Selection Is within a Table . 604

Sorting a Table. 606

Adding a Column to a Table . 606

Deleting a Column from a Table . 607

Setting the Width of a Column. 607

Selecting a Column. 608

Adding a Row to a Table . 608

Deleting a Row from a Table. 608

Setting the Height of One or More Rows . 609

Selecting a Row . 609

Inserting a Cell . 609

Returning the Text in a Cell . 610

Entering Text in a Cell . 610

Deleting Cells . 610

Selecting a Range of Cells . 611

Converting a Table or Rows to Text . 612

The Bottom Line . 613

Chapter 22 • Understanding the Excel Object Model and Key Objects . .615

Getting an Overview of the Excel Object Model. 615

Understanding Excel’s Creatable Objects. 616

Managing Workbooks . 617

Creating a Workbook . 617

Saving a Workbook. 618

Accessing Cloud Storage . 621

Opening a Workbook . 622

Closing a Workbook . 624

Sharing a Workbook. 625

Protecting a Workbook . 625

Working with the ActiveWorkbook Object . 626

Working with Worksheets . 626

Inserting a Worksheet . 626

Deleting a Worksheet . 627

Copying or Moving a Worksheet . 628

Printing a Worksheet . 628

Protecting a Worksheet . 630

Working with the ActiveSheet Object . 631

Working with the Active Cell or Selection. 631

XXII | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xxii

Working with the Active Cell . 631

Working with the User’s Selection . 633

Working with Ranges . 633

Working with a Range of Cells . 633

Creating a Named Range . 633

Deleting a Named Range. 635

Working with a Named Range . 635

Working with the Used Range . 635

Working with the Special Cells . 635

Entering a Formula in a Cell . 636

Setting Options. 637

Setting Options in the Application Object . 637

Setting Options in a Workbook . 638

Accessing OneNote. 638

The Bottom Line . 639

Chapter 23 • Working with Widely Used Objects in Excel 641

Working with Charts . 641

Creating a Chart . 641

Specifying the Source Data for the Chart . 643

Specifying the Chart Type. 643

Working with Series in the Chart. 643

Adding a Legend to the Chart . 646

Adding a Chart Title. 646

Working with a Chart Axis . 647

Formatting Headers and Footers . 647

Working with Windows . 647

Opening a New Window on a Workbook. 648

Closing a Window . 648

Activating a Window . 648

Arranging and Resizing Windows . 648

Zooming a Window and Setting Display Options . 650

Working with Find and Replace . 650

Searching with the Find Method . 650

Continuing a Search with the FindNext and FindPrevious Methods 652

Replacing with the Replace Method . 652

Searching for and Replacing Formatting . 653

Adding Shapes . 653

The Bottom Line . 654

Chapter 24 • Understanding the PowerPoint Object

Model and Key Objects . 655

Getting an Overview of the PowerPoint Object Model . 655

Understanding PowerPoint’s Creatable Objects . 656

Working with Presentations. 657

CONTENTS | XXIII

ftoc.indd 07:28:45:PM 07/26/2013 Page xxiii

Creating a New Presentation Based on the Default Template. 657

Creating a New Presentation Based on a Template. 658

Opening an Existing Presentation . 659

Opening a Presentation from the Cloud. 659

Saving a Presentation. 659

Closing a Presentation . 662

Exporting a Presentation or Some Slides to Graphics. 662

Printing a Presentation . 663

Applying a Template to a Presentation, to a Slide, or to a Range of Slides 663

Working with the Active Presentation . 664

Working with Windows and Views . 664

Working with the Active Window . 665

Opening a New Window on a Presentation. 665

Closing a Window . 665

Activating a Window . 666

Arranging and Resizing Windows . 666

Changing the View. 666

Working with Panes . 667

Working with Slides . 667

Adding a Slide to a Presentation . 668

Inserting Slides from an Existing Presentation . 668

Finding a Slide by Its ID Number . 669

Changing the Layout of an Existing Slide . 670

Deleting an Existing Slide . 670

Copying and Pasting a Slide . 670

Duplicating a Slide . 670

Moving a Slide. 670

Accessing a Slide by Name . 671

Working with a Range of Slides . 671

Formatting a Slide. 671

Setting a Transition for a Slide, a Range of Slides, or a Master 672

Working with Masters. 674

Working with the Slide Master. 674

Working with the Title Master . 674

Working with the Handout Master . 675

Working with the Notes Master . 675

Deleting a Master . 675

The Bottom Line . 675

Chapter 25 • Working with Shapes and Running Slide Shows 677

Working with Shapes . 677

Adding Shapes to Slides . 677

Deleting a Shape . 683

Selecting All Shapes . 683

Repositioning and Resizing a Shape . 683

XXIV | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xxiv

Copying Formatting from One Shape to Another . 684

Working with Text in a Shape. 684

Animating a Shape or a Range of Shapes . 688

Working with Headers and Footers . 690

Returning the Header or Footer Object You Want . 690

Displaying or Hiding a Header or Footer Object . 690

Setting the Text in a Header or Footer. 691

Setting the Format for Date and Time Headers and Footers 691

Setting Up and Running a Slide Show . 692

Controlling the Show Type . 692

Creating a Custom Show . 693

Deleting a Custom Show . 694

Starting a Slide Show . 694

Changing the Size and Position of a Slide Show . 695

Moving from Slide to Slide . 695

Pausing the Show and Using White and Black Screens . 695

Starting and Stopping Custom Shows. 696

Exiting a Slide Show. 696

The Bottom Line . 696

Chapter 26 • Understanding the Outlook Object Model

and Key Objects . 697

Getting an Overview of the Outlook Object Model . 697

Understanding Where Outlook Stores VBA Macros. 698

Understanding Outlook’s Most Common Creatable Objects 698

Working with the Application Object. 699

Working with the NameSpace Object . 699

Working with Inspectors and Explorers . 700

Understanding Inspectors and Explorers. 703

Creating Items . 704

Quitting Outlook . 706

Understanding General Methods for Working with Outlook Objects 706

Using the Display Method . 706

Using the Close Method . 706

Using the Delete Method . 706

Using the PrintOut Method. 708

Using the Save Method. 708

Using the SaveAs Method . 708

Working with Messages . 709

Creating a New Message . 710

Working with the Contents of a Message . 710

Adding an Attachment to a Message . 711

Sending a Message . 712

Working with Calendar Items . 712

Creating a New Calendar Item. 712

CONTENTS | XXV

ftoc.indd 07:28:45:PM 07/26/2013 Page xxv

Working with the Contents of a Calendar Item . 712

Working with Tasks and Task Requests . 713

Creating a Task . 713

Working with the Contents of a Task Item . 714

Assigning a Task to a Colleague. 715

Searching for Items . 715

The Bottom Line . 717

Chapter 27 • Working with Events in Outlook . 719

Working with Application-Level Events . 720

Using the Startup Event . 721

Using the Quit Event. 722

Using the ItemSend Event. 723

Using the NewMail and NewMailEx Events . 723

Using the AdvancedSearchComplete and the

AdvancedSearchStopped Events . 724

Using the MAPILogonComplete Event . 725

Using the Reminder Event . 726

Using the OptionsPagesAdd Event. 726

Working with Item-Level Events . 726

Declaring an Object Variable and Initializing an Event. 727

Understanding the Events That Apply to All Message Items 728

Understanding the Events That Apply to Explorers, Inspectors, and Views 730

Understanding the Events That Apply to Folders . 734

Understanding the Events That Apply to Items and Results. 734

Understanding the Events That Apply to Reminders. 734

Understanding the Events That Apply to Synchronization. 735

Understanding Quick Steps . 736

The Bottom Line . 737

Chapter 28 • Understanding the Access Object Model

and Key Objects . 739

Getting Started with VBA in Access . 739

Creating a Module in the VBA Editor . 741

Creating a Function . 741

Using the Macro Builder . 741

Creating an Access-Style Macro to Run a Function . 741

Translating an Access-Style Macro into a VBA Macro . 743

Using an AutoExec Macro to Initialize an Access Session . 744

Running a Subprocedure. 745

Understanding the Option Compare Database Statement . 745

Getting an Overview of the Access Object Model . 746

Understanding Creatable Objects in Access . 747

Opening and Closing Databases . 748

XXVI | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xxvi

Using the CurrentDb Method to Return the Current Database 748

Closing the Current Database and Opening a Different Database. 748

Opening Multiple Databases at Once . 750

Closing a Database . 752

Creating and Removing Workspaces . 753

Working with the Screen Object . 753

Using the DoCmd Object to Run Access Commands . 755

Using the OpenForm Method to Open a Form . 759

Using the PrintOut Method to Print an Object. 759

Using the RunMacro Method to Run an Access-Style Macro. 760

The Bottom Line . 761

Chapter 29 • Manipulating the Data in an Access Database via VBA . . . 763

Understanding How to Proceed . 763

Preparing to Manage the Data in a Database . 764

Adding a Reference to the Appropriate Object Library . 764

Establishing a Connection to the Database . 764

Opening a Recordset . 765

Opening a Recordset Using ADO . 765

Choosing How to Access the Data in an ADO Recordset . 767

Accessing a Particular Record in a Recordset . 775

Using the MoveFirst, MoveNext, MovePrevious, and MoveLast Methods 775

Using the Move Method to Move by Multiple Records. 776

Searching for a Record . 777

Searching for a Record in an ADO Recordset . 777

Searching for a Record in a DAO Recordset. 778

Returning the Fields in a Record. 779

Editing a Record. 780

Inserting and Deleting Records. 780

Closing a Recordset . 781

Saving a Recordset to the Cloud . 781

The Bottom Line . 782

Chapter 30 • Accessing One Application from Another Application . . . 785

Understanding the Tools Used to Communicate

between Applications . 785

Using Automation to Transfer Information. 786

Understanding Early and Late Binding . 787

Creating an Object with the CreateObject Function . 788

Returning an Object with the GetObject Function. 788

Examples of Using Automation with the Offi ce Applications. 789

Using the Shell Function to Run an Application . 798

Using Data Objects to Store and Retrieve Information . 799

Creating a Data Object . 800

CONTENTS | XXVII

ftoc.indd 07:28:45:PM 07/26/2013 Page xxvii

Storing Information in a Data Object . 800

Returning Information from a Data Object . 801

Assigning Information to the Clipboard . 801

Returning Information from the Clipboard to a Data Object 802

Finding Out Whether a Data Object Contains a Given Format. 802

Communicating via DDE . 803

Using DDEInitiate to Start a DDE Connection . 803

Using DDERequest to Return Text from Another Application 804

Using DDEPoke to Send Text to Another Application. 805

Using DDEExecute to Have One Application Execute a Command

in Another . 805

Using DDETerminate to Close a DDE Channel. 806

Using DDETerminateAll to Close All Open DDE Channels . 806

Communicating via SendKeys . 806

Going beyond VBA . 811

The Bottom Line . 811

Chapter 31 • Programming the Offi ce 2013 Ribbon 813

What Is XML? . 814

Hiding the Editing Group on the Word Ribbon . 814

A Word of Warning . 819

XML Terminology. 820

Using Built-In Icons . 821

Working with Excel and PowerPoint . 821

Undoing Ribbon Modifi cations . 822

Selecting the Scope of Your Ribbon Customization . 822

Adding a New Group . 823

Cautions about Customizing . 823

Two Ways to Find the Correct idMso . 825
Adding Callbacks. 826

Adding Attributes . 828

Using Built-In Icons and ScreenTips . 828

Creating Your Own Icons . 829

Using Menus and Lists . 830

Adding Menus. 830

Adding a DropDown List Control . 832

Using a DialogBoxLauncher . 834

Toggling with a Toggle-Button Control . 835

Modifying the Ribbon in Access . 836

Testing Your New Ribbon . 839

Adding a Callback in Access . 840

What to Look For If Things Go Wrong. 841

Employ Error-Message Tools . 841

Cure Common User-Interface Programming Problems. 842

Where to Go from Here. 844

The Bottom Line . 845

XXVIII | CONTENTS

ftoc.indd 07:28:45:PM 07/26/2013 Page xxviii

Appendix • Th e Bottom Line . 847

Chapter 1: Recording and Running Macros in the Offi ce Applications 847

Chapter 2: Getting Started with the Visual Basic Editor . 848

Chapter 3: Editing Recorded Macros . 849

Chapter 4: Creating Code from Scratch in the Visual Basic Editor 850

Chapter 5: Understanding the Essentials of VBA Syntax . 853

Chapter 6: Working with Variables, Constants, and Enumerations. 854

Chapter 7: Using Array Variables . 856

Chapter 8: Finding the Objects, Methods, and Properties You Need 857

Chapter 9: Using Built-in Functions . 858

Chapter 10: Creating Your Own Functions . 859

Chapter 11: Making Decisions in Your Code. 861

Chapter 12: Using Loops to Repeat Actions. 862

Chapter 13: Getting User Input with Message Boxes and Input Boxes 863

Chapter 14: Creating Simple Custom Dialog Boxes . 864

Chapter 15: Creating Complex Forms. 868

Chapter 16: Building Modular Code and Using Classes . 869

Chapter 17: Debugging Your Code and Handling Errors . 871

Chapter 18: Building Well-Behaved Code . 872

Chapter 19: Securing Your Code with VBA’s Security Features 874

Chapter 20: Understanding the Word Object Model and Key Objects 875

Chapter 21: Working with Widely Used Objects in Word . 877

Chapter 22: Understanding the Excel Object Model and Key Objects 878

Chapter 23: Working with Widely Used Objects in Excel . 879

Chapter 24: Understanding the PowerPoint Object Model and Key Objects 879

Chapter 25: Working with Shapes and Running Slide Shows . 881

Chapter 26: Understanding the Outlook Object Model and Key Objects 881

Chapter 27: Working with Events in Outlook . 882

Chapter 28: Understanding the Access Object Model and Key Objects 883

Chapter 29: Manipulating the Data in an Access Database via VBA. 884

Chapter 30: Accessing One Application from Another Application 885

Chapter 31: Programming the Offi ce 2013 Ribbon . 886

Index . 889

fl ast.indd 11:0:49:AM 07/26/2013 Page xxix

Introduction

Visual Basic for Applications (VBA) is a powerful tool that enables you to automate tasks in

Microsoft Offi ce applications.

Automating can save you and your colleagues considerable time and effort. Getting more

work done in less time is usually good for your self-esteem, and it can do wonderful things for

your job security and your career.

Where to Get Th is Book’s Example Code
Throughout this book you’ll fi nd many code (programming) examples. Rather than type in the

code, you’ll save yourself time (and typo-debugging headaches) if you just copy the code from

this book’s web page, then paste it into the Visual Basic Editor. You can fi nd all the code from this

book—accurate, fully tested, and bug-free—at this book’s web page:

www.sybex.com/go/masteringvbaoffice2013

If You Have Questions
I’m happy to hear from readers, so if you have any diffi culty while using this book, write me at

earth@triad.rr.com.

I’ll try to respond the same day. We’ve all been beginners at some point, so don’t feel your

question is silly. If you’re embarrassed, sign your email Connie and I’ll think you’re Connie.

What Can I Do with VBA?
You can use VBA to automate almost any action that you can perform interactively (manually)

with an Offi ce 2013 application. For example, in Word, VBA can create a document, add text to it,

format it, edit it, and save it.

In Excel, you can automatically integrate data from multiple workbooks into a single work-

book. PowerPoint’s VBA can create a custom presentation, including the latest data drawn from

a variety of sources with no human intervention. And in Access you can create new tables,

populate them with data, and send the table up to the cloud.

VBA performs actions faster, more accurately, more reliably, and far more cheaply than any

human. You can specify conditions for making a decision, then let VBA make those decisions

for you in the future. By adding decision-making structures and loops (repetitions) to your code,

you can go far beyond the range of actions that any human user can perform and fi nish the job

in less than a second.

http://www.sybex.com/go/masteringvbaoffice2013
mailto:earth@triad.rr.com

XXX | INTRODUCTION

fl ast.indd 11:0:49:AM 07/26/2013 Page xxx

Beyond automating actions you would otherwise perform manually, VBA gives you the tools

to create user interfaces for your code—message boxes, input boxes, and user forms—windows

containing graphical objects that you can use to create forms and custom dialog boxes to display

to the user.

Using VBA, you can also create custom applications that run within the host application. For

example, you could build within PowerPoint a custom application that automatically creates

presentations for you.

VBA can also communicate between applications. For example, Word can’t do much in the

way of mathematical calculations on sets of data: that’s Excel’s specialty. So, you can make Word

start Excel running, perform some calculations, and then put the results into a Word document.

Similarly, you could send graphs from Excel to PowerPoint or Outlook. You get the picture.

Because VBA provides a standard set of tools that differ only in the specializations of the

host applications, once you’ve learned to use VBA in one application, you’ll be able to apply that

knowledge quickly to using VBA in another application. For example, you might start by learn-

ing VBA in order to manipulate Excel and then move on to using your VBA skills with Outlook.

You’ll need to learn the components particular to Outlook, because they’re different from Excel’s

features, but you’ll be up to speed rapidly. It’s like shopping. Once you understand the basics,

going to a hardware store differs from going to a bookstore only in the particulars.

As with any programming language, getting started with VBA involves a learning curve—but

you’ll be surprised how many tools VBA provides to help you quickly learn the fundamentals.

The VBA Editor is among the best programming environments available. It includes help fea-

tures that list programming options while you’re typing, that instantly point out problems (and

suggest solutions), that prevent you from making some kinds of mistakes, that offer context-

sensitive help (with example programming), that even automatically complete your lines

(sentences) of programming code.

What’s more, you can create some kinds of VBA programs without even writing a single line

of code! You use the Macro Recorder tool built into Word and Excel—a great way to learn VBA

more quickly. You turn on the Recorder and do what you want with Word or Excel manually via

keyboard and mouse while the Recorder translates all your actions into programming code for

you. Can’t remember the programming code for saving a document? Just turn on the Recorder

(click the icon on the lower left of Word’s or Excel’s status bar), save a document, then you’ve got

the code it recorded:

 ActiveDocument.Save

Another truly cool thing about VBA: Its words—most of the programming commands that make

the language do what you want—are English words. Unlike less effi cient programming languages,

Basic strives to be human-friendly, understandable, readable. The programming code that saves

Word’s current document is ActiveDocument Save. For Excel, you use ActiveWorkbook Save.

For fun, search “save a document in c++” in Google, and you’ll fi nd lots of puzzling explana-

tions attempting to accomplish this straightforward task in unfortunately unstraightforward

ways, using often-puzzling diction. If you’ve tried programming in other languages, you’ll fi nd

the simplicity and plain English of VBA a great relief. It’s easy to learn, easy to use, yet no less

powerful than any other programming language.

This book uses the Macro Recorder as the jumping-off point for you to start creating code.

You fi rst explore how to record macros (small programs) and then learn to edit this recorded

code to make it do other things. After that easy introduction, you go on to explore the essentials

of VBA diction and syntax. The book concludes with ambitious topics.

Word, because it’s the most popular Offi ce application and because it has the most sophisti-

cated and effi cient programming tools, is used for many of the examples in this book. But there

INTRODUCTION | XXXI

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxi

are plenty of examples showing how to program Excel, PowerPoint, Outlook, and even Access.

And code that works in one Offi ce 2013 application will generally work with other applications

in the suite—with little or sometimes no modifi cation.

What’s in Th is Book?
This book teaches you how to use VBA to automate your work in Offi ce 2013 applications. For

its general examples, the book focuses on Word, Excel, Outlook, and PowerPoint, because those

are the Microsoft Offi ce applications that you’re most likely to have, and because they have less

eccentric programming tools and strategies than Access. The last part of the book continues the

discussion of how to program these four applications, but also increases coverage of Access.

Part 1 of the book, “Recording Macros and Getting Started with VBA,” comprises the follow-

ing chapters:

 ◆ Chapter 1 shows you how to record a macro using the Macro Recorder in Word and Excel.

You also learn several ways to run macros and how to delete them.

 ◆ Chapter 2 introduces you to the powerful VBA Editor, the application in which you create

VBA code (either by editing recorded code or by writing code from scratch) and user forms.

The second half of this chapter discusses how you can customize the Visual Basic Editor so

that you can work in it more effi ciently.

 ◆ Chapter 3 shows you how to edit recorded macros, using the macros you recorded in

Chapter 1. You learn how to step through and test a macro in the Visual Basic Editor.

 ◆ Chapter 4 teaches you how to start writing code from scratch in the Visual Basic Editor. You

create a procedure (a small program called a macro) for Word, one for Excel, and a third for

PowerPoint.

Part 2, “Learning How to Work with VBA,” contains the following chapters:

 ◆ Chapter 5 explains the essentials of VBA syntax, giving you a brief overview of the con-

cepts you need to know. You also practice creating statements in the Visual Basic Editor.

 ◆ Chapter 6 shows you how to work with variables and constants, which are used to store

information for your procedures to work on.

 ◆ Chapter 7 discusses how to use arrays. Arrays are like super-variables that can store mul-

tiple pieces of information at the same time.

 ◆ Chapter 8 teaches you how to fi nd the objects you need to create your procedures. You

learn how to correctly write code involving objects by employing the Macro Recorder, the

Object Browser, and the Help system. And you see how to use object variables to represent

objects. Finally, you explore the uses of object models.

Part 3, “Making Decisions and Using Loops and Functions,” consists of the following

chapters:

 ◆ Chapter 9 describes how to use VBA’s built-in functions—everything from string-conversion

functions through mathematical and date functions to fi le-management functions.

 ◆ Chapter 10 shows you how to create functions of your own to supplement the built-in

libraries of functions. You create functions that work in any VBA-enabled application,

together with application-specifi c functions for Word, Excel, and PowerPoint.

XXXII | INTRODUCTION

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxii

 ◆ Chapter 11 shows you how to use conditional statements (such as If statements) to make

decisions in your code. Conditional statements are key to making your code fl exible and

intelligent.

 ◆ Chapter 12 covers how you can use loops to repeat actions in your procedures: fi xed-

iteration loops for fi xed numbers of repetitions, and indefi nite loops that repeat until they

satisfy a condition you specify. You also learn how to avoid creating infi nite loops, which

can cause your code to run either forever or until your computer crashes.

Part 4, “Using Message Boxes, Input Boxes, and Dialog Boxes,” has the following chapters:

 ◆ Chapter 13 shows you how to use message boxes to communicate with the users of your

procedures and let them make simple decisions about how the procedures run. You also

explore input boxes, which are dialog boxes that give the users a way to supply informa-

tion the procedures need.

 ◆ Chapter 14 discusses how to employ VBA’s user forms to create custom dialog boxes that

enable the users to supply information, make choices, and otherwise interact with your

macros.

 ◆ Chapter 15 discusses how to build more-complex dialog boxes. These include dynamic

dialog boxes that update themselves when the user clicks a button, dialog boxes with hid-

den zones that the user can reveal to access infrequently used options, dialog boxes with

multiple pages of information, and dialog boxes with controls that respond to actions the

user takes.

Part 5, “Creating Effective Code,” contains the following chapters:

 ◆ Chapter 16 illustrates the benefi ts of reusable modular code rather than single-purpose

procedures and then shows you how to write this reusable code.

 ◆ Chapter 17 explains the principles of debugging VBA code, examines the different kinds of

errors that occur, and discusses how to deal with them.

 ◆ Chapter 18 explores how to build well-behaved code that’s stable enough to withstand

being run under the wrong circumstances and civilized enough to leave the user in the

best possible state to continue their work after it fi nishes running.

 ◆ Chapter 19 discusses the security mechanisms that Windows and VBA provide for safe-

guarding VBA code and ensuring that you or your users do not run malevolent code

(viruses, trojans, worms, and so on). The chapter discusses digital certifi cates and digital

signatures, how to choose an appropriate security setting for the application you’re using,

and how to manage passwords.

Part 6, “Programming the Offi ce Applications,” consists of these 12 chapters:

 ◆ Chapter 20 explains the Word object model and shows you how to work with key objects

in Word, including the Document object, the Selection object, and Range objects. You also

learn how to set options in Word and manage cloud storage via such systems as Dropbox

or Microsoft’s SkyDrive.

 ◆ Chapter 21 discusses how to work with widely used objects in Word, including the objects

for Find and Replace; headers, footers, and page numbers; sections, page setup, windows,

and views; and tables.

INTRODUCTION | XXXIII

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxiii

 ◆ Chapter 22 introduces you to the Excel object model and shows you how to work with

key objects in Excel, including the Workbook object, the Worksheet object, the ActiveCell

object, and Range objects. You also learn how to set options in Excel.

 ◆ Chapter 23 shows you how to work with charts, windows, and Find and Replace in Excel

via VBA.

 ◆ Chapter 24 gets you started working with the PowerPoint object model and the key objects

that it contains. You work with Presentation objects, Window objects, Slide objects, and

Master objects.

 ◆ Chapter 25 teaches you how to go further with VBA in PowerPoint by working with shapes,

headers and footers, and the VBA objects that enable you to set up and run a slide show

automatically.

 ◆ Chapter 26 introduces you to Outlook’s object model and the key objects that it contains.

You meet Outlook’s creatable objects and main interface items; learn general methods for

working with Outlook objects; and work with messages, calendar items, tasks and task

requests, and searches.

 ◆ Chapter 27 shows you how to work with events in Outlook. There are two types of events,

application-level events and item-level events, which you can program to respond to both

Outlook actions (such as new mail arriving) and user actions (such as creating a new

contact).

 ◆ Chapter 28 familiarizes you with the Access object model and demonstrates how to per-

form key tasks with some of its main objects.

 ◆ Chapter 29 shows you how to manipulate the data in an Access database via VBA.

 ◆ Chapter 30 shows you how to communicate between applications via VBA. You learn

which tools are available, how to use Automation, how to work with the Shell function,

and how to use data objects, DDE, and SendKeys.

 ◆ Chapter 31 explores the various ways you can customize the Ribbon programmatically.

It’s not possible to customize it by VBA code alone. Instead, you must write XML code to

modify what the user sees on the Ribbon and write callbacks (event-handler procedures in

VBA) to respond when the user clicks one of the buttons or other controls you’ve added

to the Ribbon. You see how to modify tabs, groups, and individual controls—in Word,

PowerPoint, Excel, and, using different techniques, in Access.

How Should I Use Th is Book?
This book tries to present material in a sensible and logical way. To avoid repeating informa-

tion unnecessarily, the chapters build on each other, so the later chapters generally assume that

you’ve read the earlier chapters.

The fi rst fi ve parts of the book offer a variety of code samples using Word, Excel, PowerPoint,

and, to a lesser extent, Access. If you have these applications (or some of them), work through

these examples as far as possible to get the most benefi t from them. While you may be able to

XXXIV | INTRODUCTION

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxiv

apply some of the examples directly to your work, mostly you’ll fi nd them illustrative of general

VBA techniques and principles, and you’ll need to customize them to suit your own needs.

The sixth and last part of this book shows you some more-advanced techniques that are use-

ful when using VBA to program Word, Excel, PowerPoint, Outlook, and Access. Work through

the chapters that cover the application or applications that you want to program with VBA.

Chapters 30 and 31 are specialized, but quite useful. Chapter 30 shows you how to use one

application to control another application; for example, you might use Word to contact Excel and

exploit its special mathematic or graphing capabilities. And Chapter 31 shows you many differ-

ent ways to program the Ribbon—the primary user interface in Offi ce 2013 applications.

Is Th is Book Suitable for Me?
Yes.

This book is for anyone who wants to learn to use VBA to automate their work in a VBA-

enabled application. Automating your work could involve anything from creating a few simple

procedures that would enable you to perform some complex and tedious operations via a single

keystroke to building a custom application with a complete interface that looks nothing like the

host application’s regular interface.

This book attempts to present theoretical material in as practical a context as possible by

including lots of examples of the theory in action. For example, when you learn about loops, you

execute short procedures that illustrate the use of each kind of loop so that you can see how and

why they work and when to use them. And you’ll also fi nd many step-throughs—numbered

lists that take you through a task, one step at a time. Above all, I’ve tried to make this book clear

and understandable, even to readers who’ve never written any programming in their life.

Conventions Used in Th is Book
This book uses several conventions to convey information succinctly:

 ◆ ➢ designates choosing a command from a menu. For example, “choose File ➢ Open” means

that you should pull down the File menu and choose the Open command from it.

 ◆ + signs indicate key combinations. For example, “press Ctrl+Shift+F9” means that you

should simultaneously hold down the Ctrl, Shift, and F9 keys. Also, you’ll sometimes see

this: Press Ctrl+F, I. That means simultaneously press Ctrl and F, then release them and

press I.

Some of these key combinations can be confusing at fi rst (for example, “Ctrl++” means that

you hold down Ctrl and press the + key—in other words, hold down Ctrl and Shift together

and press the = key, because the + key is the shifted =.).

 ◆ Likewise, “Shift+click” means that you should hold down the Shift key as you click with

the mouse, and “Ctrl+click” means that you should hold down the Ctrl key as you click.

 ◆ ↑→↓← represent the arrow keys on your keyboard. These arrows are also represented in

the text as “up-arrow,” “down-arrow,” etc. The important thing to note is that ← does not

mean the Backspace key (which on many keyboards bears a similar arrow). The Backspace

key is indicated simply by the words “Backspace” or “the Backspace key.”

INTRODUCTION | XXXV

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxv

 ◆ Boldface indicates that you are to type something.

 ◆ Program font indicates program items, or text derived from program lines. Complete

program lines appear offset in separate paragraphs like the example below, while shorter

expressions appear as part of the main text.

Sub Sample_Listing()

 ‘lines of program code look like this.

End Sub

 ◆ Italics usually indicate either new terms being introduced or variable information (such as

a drive letter that will vary from computer to computer and that you’ll need to substitute

for your own).

 ◆ _ (a continuation underline character) indicates that a single line of code has been broken

onto a second or subsequent line in the book (because of the limitations of page size). In the

VBA Editor, you should enter these “broken” lines of code as a single line. For example, in

this code sample, a single line of VBA Editor code has been broken into three lines when

printed in this book:

MsgBox System.PrivateProfileString(““, _

”HKEY_CURRENT_USER\Software\Microsoft\ _

Office\11.0\Common\AutoCorrect”, “Path”)

 ◆ You’ll also see sidebars throughout the book. These include asides, notes, tips, and warn-

ings. They’re a bit like footnotes, though less tedious. Each sidebar, no matter how small,

has a headline—so you can quickly see if you want to read it.

 ◆ Finally, each chapter includes one, longer, Real World Scenario sidebar: a case study, an

important practical technique, or some other useful advice.

Th e Mastering Series
The Mastering series from Sybex provides outstanding instruction for readers with intermediate

and advanced skills in the form of top-notch training and development for those already work-

ing in their fi eld and clear, serious education for those aspiring to become pros. Every Mastering

book includes the following:

 ◆ Real World Scenarios, ranging from case studies to interviews, that show how the tool,

technique, or knowledge presented is applied in actual practice

 ◆ Skill-based instruction with chapters organized around real tasks rather than abstract con-

cepts or subjects

 ◆ Self-review test questions so you can be certain you’re equipped to do the job right

For More Information
Sybex strives to keep you supplied with the latest tools and information you need for your work.

Please check the website at www.sybex.com/go/masteringvbaoffice2013, where we’ll post

additional content and updates that supplement this book if the need arises.

http://www.sybex.com/go/masteringvbaoffice2013

fl ast.indd 11:0:49:AM 07/26/2013 Page xxxvi

c01.indd 01:22:30:PM 06/25/2013 Page 1

Part 1

Recording Macros
and Getting Started
with VBA
◆ Chapter 1: Recording and Running Macros in the Offi ce Applications

◆ Chapter 2: Getting Started with the Visual Basic Editor

◆ Chapter 3: Editing Recorded Macros

◆ Chapter 4: Creating Code from Scratch in the Visual Basic Editor

c01.indd 01:22:30:PM 06/25/2013 Page 2

c01.indd 01:22:30:PM 06/25/2013 Page 3

Chapter 1

Recording and Running Macros
in the Offi ce Applications

In this chapter, you’ll learn the easiest way to get started with Visual Basic for Applications

(VBA): recording simple macros using a Macro Recorder that is built into the Offi ce applications.

Then you’ll see how to run your macros to perform useful tasks.

I’ll defi ne the term macro in a moment. For now, just note that by recording macros, you can

automate straightforward but tediously repetitive tasks and speed up your regular work. You

can also use the Macro Recorder to create VBA code that performs the actions you need and

then edit the code to customize it—adding fl exibility and power. In fact, VBA is a real power-

house if you know how to use it. This book shows you how to tap into that power.

In this chapter you will learn to do the following:

 ◆ Record a macro

 ◆ Assign a macro to a button or keyboard shortcut

 ◆ Run a macro

 ◆ Delete a macro

What Is VBA and What Can You Do with It?
Visual Basic for Applications is a programming language created by Microsoft that can be built

into applications. You use VBA to automate operations in applications that support it. All the

main Offi ce applications—Word, Excel, Outlook, Access, and PowerPoint—include VBA, so you

can automate operations through most Offi ce applications.

And please don’t be put off by the notion that you’ll be programming: As you’ll see shortly,

working with VBA is nearly always quite easy. In fact, quite often you need not actually write

any VBA yourself; you can merely record it—letting the Offi ce application write all the VBA

“code.” The phrase automate operations in applications is perhaps a bit abstract. VBA allows you

to streamline many tasks, avoid burdensome repetition, and improve your effi ciency. Here are

some examples:

 ◆ You can record a macro that automatically carries out a series of actions that you frequently

perform. Let’s say that you often edit Word documents written by a co-worker, but she sets

the zoom level to 100. You prefer a zoom level of 150. All you need to automatically fi x this

is this VBA code:

 ActiveWindow.ActivePane.View.Zoom.Percentage = 150

4 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 4

And don’t worry, you need not even know these programming terms like ActiveWindow

or View.Zoom. When you turn on the Macro Recorder, then perform these actions (click-

ing View, then clicking Zoom, then setting the percentage), all your actions are translated

into the necessary VBA code. You write no code at all.

 ◆ You can write code that performs actions a certain number of times and that makes deci-

sions depending on the situation in which it is running. For example, you could write code

that takes a series of actions on every presentation that’s open in PowerPoint.

 ◆ You can have your macros interact with the user by displaying forms, or custom dialog

boxes, that enable the user to make choices and specify settings while the macro is

running. For example, you might display a set of formatting options—showing captioned

controls such as check boxes and option buttons—that the user can select. Then when

the user closes the dialog box, your macro takes appropriate actions based on the user’s

input.

 ◆ You can take actions via VBA that you can’t take (or take easily) by directly manipulating

the user interface. For example, when you’re working interactively in most applications,

you’re limited to working with the active fi le—the active document in Word, the active

workbook in Excel, and so on. By using VBA, you can manipulate fi les that aren’t active.

 ◆ You can make one application manipulate another application. For example, you can make

Word place a table from a Word document into an Excel worksheet.

Th e Diff erence between Visual Basic and Visual Basic for Applications
VBA is based on Visual Basic, a programming language derived from BASIC. BASIC stands

for Beginner’s All-Purpose Symbolic Instruction Code. BASIC is designed to be user-friendly

because it employs recognizable English words (or variations on them) rather than the abstruse

and incomprehensible programming terms found in languages like COBOL. In addition to its

English-like diction, BASIC’s designers endeavored to keep its punctuation and syntax as simple

and familiar as possible.

Visual Basic is visual in that it offers effi cient shortcuts such as drag-and-drop programming

techniques and many graphical elements.

Visual Basic for Applications is a version of Visual Basic tailored to Microsoft Offi ce applica-

tions. The set of objects (features and behaviors) available in each application differs because no

two applications share the same features and commands.

For example, some VBA objects available in Word are not available in Excel (and vice versa)

because some of Word’s features, like the Table of Contents generator, are not appropriate in

Excel.

However, the large set of primary commands, fundamental structure, and core program-

ming techniques of VBA in Word and VBA in Excel are the same. So you’ll fi nd that it’s often

quite easy to translate your knowledge of VBA in Word to VBA in Excel (or indeed in any

VBA-enabled application).

For example, you’d use the Save method (a method is essentially an action that can be car-

ried out) to save a fi le in Excel VBA, Word VBA, or PowerPoint VBA. What differs is the object
involved. In Excel VBA, the command would be ActiveWorkbook.Save, whereas in Word VBA

it would be ActiveDocument.Save and in PowerPoint it would be ActivePresentation.Save.

UNDERSTANDING MACRO BASICS | 5

c01.indd 01:22:30:PM 06/25/2013 Page 5

VBA always works with a host application (such as Access or Word). With the exception of

some stand-alone programs that are usually best created with Visual Studio Tools for Offi ce, a

host application always needs to be open for VBA to run. This means that you can’t build stand-

alone applications with VBA the way you can with Visual Basic .NET or Visual Studio Tools for

Offi ce (VSTO). If you wish, you can hide the host application from the user so that all they see is

the interface (typically user forms) that you give to your VBA procedures. By doing this, you can

create the illusion of a stand-alone application. Whether you need to employ this technique will

depend on the type of programming you do.

What Are Visual Basic .NET and Visual Basic Express?

Visual Basic .NET (VB .NET) is just one version of Microsoft’s long history of BASIC language

implementations. BASIC contains a vast set of libraries of prewritten code that allow you to do

pretty much anything that Windows is capable of. Although VB .NET is generally employed to write

stand-alone applications, you can tap into its libraries from within a VBA macro. Just remember,

each Offi ce application has its own object library, but the .NET libraries themselves contain many

additional capabilities (often to manipulate the Windows operating system). So, if you need a

capability that you can’t fi nd within VBA or an Offi ce application’s object library, the resources of

the entire .NET library are also available to you. Visual Basic Express is a free version of VB .NET.

After you’ve worked with VBA in this book, you might want to explore VB .NET at

www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

You’ll fi nd versions for both traditional desktop Windows as well as Windows 8.

Understanding Macro Basics
A macro is a sequence of commands you or a user can repeat at will. That’s exactly the defi nition

of a computer program. Macros, however, are generally short programs—dedicated to a single

task. Think of it like this: A normal computer program, such as Photoshop or Internet Explorer

(IE), has many capabilities. IE can prevent pop-up ads, block websites, display full-screen when

you press F11, and so on. A macro is smaller, dedicated to accomplishing just one of these tasks,

such as displaying full-screen.

In some applications, you can set a macro to run itself automatically. For instance, you might

create a macro in Word to automate basic formatting tasks on a type of document you regularly

receive incorrectly formatted. As you’ll see in Chapter 6, “Working with Variables, Constants,

and Enumerations,” in a discussion of the AutoExec feature, you can specify that a macro run

automatically upon opening a document of that type.

A macro is a type of subroutine (sometimes also called a subprocedure). Generally, people tend

to use the shorter, more informal terms sub, procedure, and routine. In the Visual Basic Editor,

each of your macros starts with the word Sub. Note that a macro is a single procedure, whereas a

computer program like IE is a collection of many procedures.

A macro used to be defi ned as recorded code rather than written code, but most people today

use the word in its wider sense, so it can include written code as well. For example, if you record

a macro and then edit it to make it more effi cient, or to add commands to make it take further

actions, most people still consider it a macro.

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

6 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 6

In an Offi ce application that supports the VBA Macro Recorder (such as Word or Excel), you

can create macros in two ways:

 ◆ Turn on the Macro Recorder and just perform the sequence of actions you want the macro

to perform. Clicks, typing, dragging, dropping—whatever you do is recorded.

 ◆ Open the Visual Basic Editor and type the VBA commands into it.

There’s also a useful hybrid approach that combines recording with editing. First record

the sequence of actions, and then later, in the Visual Basic Editor, you can view and edit your

macro. You could delete any unneeded commands. Or type in new commands. Or use the

editor’s Toolbox feature to drag and drop user-interface elements (such as message boxes and

dialog boxes) into your macro so users can make decisions and choose options for how to run it.

Macros are marvelously fl exible, and the VBA Editor is famously powerful yet easy to use.

Once you’ve created a macro, you specify how you want the user to trigger it. In most appli-

cations, you can assign a macro to the Ribbon, to the Quick Access Toolbar, or to a shortcut key

combination. This makes it very easy to run the macro by merely clicking an icon or pressing

a shortcut key (such as Alt+R). You can also optionally assign your macro to a Quick Access

Toolbar button or keyboard shortcut when you fi rst record the macro, via a dialog box that

automatically appears when you begin a recording. You’ll see how all this works shortly. It’s

simple. (To assign a macro to the Ribbon, fi rst record it, then right-click the Ribbon and choose

Customize The Ribbon. Locate and click the Choose Commands From drop-down box, then

click the Macros entry to display all your macros.)

Recording a Macro
The easiest way to create VBA code is to record a macro using the Macro Recorder. Only Word

and Excel include a Macro Recorder.

You switch on the Macro Recorder, optionally assign a trigger that will later run the macro (a

toolbar button or a shortcut key combination), perform the actions you want in the macro, and

then switch off the Macro Recorder. As you perform the actions, the Macro Recorder translates

them into commands—code—in the VBA programming language.

Once you fi nish recording the macro, you can view the code in the Visual Basic Editor and

change it if you wish. If the code works perfectly as you recorded it, you never have to look at

it—you can just run the macro at any time by clicking the toolbar button or key combination you

assigned to the macro.

Displaying the Developer Tab on the Ribbon
Before going any further, ensure that the Developer (programmer) tab is visible in your Ribbon.

This tab is your gateway to macros, VBA, and the VBA Editor. By default, the Offi ce applications

do not display this tab. (Access doesn’t even have this tab. Word, Excel, PowerPoint, and Outlook

do.) To add this tab to your Ribbon, click the File tab, and then click Options. Click Customize

Ribbon. In the list box on the right, click Developer to select it. Click the OK button to close the

Options dialog box.

In the following sections, you’ll look at the stages involved in recording a macro. The pro-

cess is easy, but you need to be familiar with some background if you haven’t recorded macros

before. After the general explanations, you’ll record example macros in Word and Excel. (Later

in the book you’ll examine and modify those macros, after you learn how to use the Visual Basic

Editor. So don’t delete them.)

RECORDING A MACRO | 7

c01.indd 01:22:30:PM 06/25/2013 Page 7

Planning the Macro
Before you even start the Macro Recorder, it’s sometimes a good idea to do a little planning.

Think about what you will do in the macro. In most cases, you can just record a macro and not

worry about the context. You can just record it with a document open and some text visible.

But in some situations you need to ensure that a special context is set up before you start the

recording. For example, you might want to create a macro in Word that does some kind of edit-

ing, such as italicizing and underlining a word. To do this, you’ll want to fi rst have the blinking

“insertion” cursor on a word that’s not italicized or underlined. You don’t want to record the actions

of moving the insertion cursor to a particular word. That would make your macro specifi c to

this document and this word in that document. You usually want a macro to work well with

more than just one particular document.

Your macro is intended to just italicize and underline whatever word is currently under the

blinking cursor in any document. Nevertheless, most simple macros can be recorded without

any special planning. Just record whatever you want the macro to do.

Pausing a Macro

Word (but not Excel) lets you pause the Macro Recorder if you need to stop while recording to do

something that you do not want to record. Th is capability allows you to deal with problems you

hadn’t anticipated when planning the macro—for example, having to open a document that should

have been open before you started recording the macro.

Some macros should perform any necessary setup themselves. The setup will be part of the

macro. In these cases, you should make sure the application is in the state that the macro expects

before you start recording the macro. For example, if, to do its job, a macro needs a blank active

workbook in Excel, the macro itself should create that blank workbook rather than using which-

ever workbook happens to be active at the time. This saves a step when the macro runs. So to do

this, start recording before launching a blank active workbook.

A Warning about Security

Macros are computer programs, albeit usually small. You can even tap into all the features in the

Windows operating system itself from within a macro. Th e result is that viruses and other harm-

ful code can be contained within macros (and such code can execute automatically merely by the

user opening an infected document via the AutoExec feature discussed in Chapter 6 and via other

techniques, such as employing the application’s Startup folder). For example, a virus embedded in

a macro could delete fi les on the hard drive if the user opened an infected Word document. Th is is

obviously dangerous.

Offi ce 2013 applications, not to mention the Windows operating systems, contain multiple layers

of security to protect against such viruses and harmful code. Specifi c to macros is a macro “trust”

technology that’s built into Offi ce applications. To see or modify these trust settings, open the

Trust Center dialog box by clicking the Developer tab on the Ribbon, and then click the Macro

Security icon (in the Code section of the Ribbon) in Word, Excel, Outlook, or PowerPoint. (Access,

as is often the case, does things a bit diff erently than the other Offi ce applications. Access has no

Developer tab. To manage macro security in Access you click the File tab, click the Options link on

the left side, click Trust Center, click the Trust Center Settings button, then click Macro Settings.)

8 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 8

Th e main point here is that you might have to make some adjustments if you can’t run macros or if

you get mysterious error messages such as “Th e Macro Could Not Be Created” or “Access is denied.”

If this happens, your fi rst step should be to look at the Trust Center and choose Disable All Macros

With Notifi cation. Th is setting asks the user for permission to run macros. Or, while you’re work-

ing with macros in this book, you might want to just select Enable All Macros in the Trust Center.

Th en deselect this option before closing a document that you worked on in this book. Th e idea is

that you can trust your own macros but you don’t want to trust all macros from all documents you

might get from outside sources.

If you are working on a document that you created and it contains macros that you wrote, you

can trust that document and agree to activate the macros. However, if you open a document from

someone else, you have to be careful.

Additional security issues can be solved by managing the various strata of security that now,

out of necessity, are embedded within operating systems and applications. One way to deal with

security issues is to explore security topics in Windows 7 or 8 applications’ Help features. You can

also sometimes get good answers by posting questions in online user groups or searching expert

websites such as Wikipedia. Also, you can fi nd a good overview of Offi ce 2013 security here:

http://technet.microsoft.com/en-us/library/ee857085(v=office.15).aspx

Chapter 19, “Securing Your Code with VBA’s Security Features,” covers Offi ce 2013 security issues

in depth.

Starting the Macro Recorder
Start the Macro Recorder by clicking the Developer tab on the Ribbon and then clicking the

Record Macro button. You can also click the Macro Record button on the status bar at the bot-

tom of the application. (With this approach, you don’t have to open the Developer tab. Just click

the button on the status bar.)

As soon as you start the Macro Recorder, the Record Macro dialog box opens. You see that

this new macro has been given a default macro name (Macro1, Macro2, and so on). You can

accept that default name or change it. There’s also an optional description to fi ll in if you wish.

To stop the Macro Recorder, you can click the Stop Recording button in the Developer tab.

You can alternatively stop the recording by clicking the square button that appears during

recording on the status bar, down on the bottom left of the application’s window. Once the

Recorder is stopped, the square button is replaced with an icon that you can click to start record-

ing a new macro. In Word for the Mac, click the REC indicator rather than double-clicking it.

The appearance of the Record Macro dialog box varies somewhat from one application to

another because the dialog box must offer suitable options to accommodate the varying capabilities

particular to each application. In each case, you get to name the macro and add a description of it.

In most cases, you can also specify where to save the macro—for example, Word offers two options.

For global use (making the macro available to all Word documents), store it in the fi le named

normal.dotm. Or, if it is merely to be used in the currently active document, choose to store it in a

fi le with the document’s name and the .dotm fi lename extension. An ordinary Word template has a

.dotx fi lename extension, but macros are stored in a fi le with the fi lename extension .dotm.
Other applications differ somewhat in how the dialog works when you begin recording a

macro. For example, Excel allows you three options: to store macros in the current workbook, or

in a new workbook, or for use with all Excel workbooks, in the Personal Macro Workbook. That’s

http://technet.microsoft.com/en-us/library/ee857085 (v=office.15).aspx

RECORDING A MACRO | 9

c01.indd 01:22:30:PM 06/25/2013 Page 9

the equivalent of Word’s Normal.dotm fi le, and Excel’s Personal Macro workbook is saved in a

fi le named Personal.xlsb.

Where to Store Macros in PowerPoint

You can’t record macros in the 2013 version of PowerPoint, but you can create them by writing

programming code using the Visual Basic Editor. Th en you can store macros in the currently active

presentation or in any other open presentation or template. PowerPoint also provides a global

macro storage container (similar to Word’s Normal.dotm fi le). In PowerPoint, choose the All Open

Presentations option in the Macro list box, which is found by clicking the Macros icon in the Code

section of the Ribbon’s Developer tab.

The Record Macro dialog box also lets you specify how you want the macro triggered. Word

displays buttons you can click to either open a dialog for entering a shortcut key combination

or open the Word Options dialog where you can create a button for this macro that will appear

on the Quick Access Toolbar. Excel limits you to Ctrl+ shortcut key combinations as a way of

launching macros, so there is no button to display a full keyboard shortcut dialog like the one in

Word. Excel has only a small text box where you can enter the key that will be paired with Ctrl

as the shortcut.

Most of the Microsoft applications that host VBA have the Developer tab from which you

control macro recording, launch the Visual Basic Editor, and otherwise manage macros. Access,

however, groups several of its macro-related tools in a Database Tools tab (which is visible by

default) and also has a Macro option on its Create tab.

Figure 1.1 shows the Record Macro dialog box for Word with a custom name and description

entered. Figure 1.2 shows Word’s version of the Developer tab on the Ribbon.

Figure 1.1

In the Record

Macro dialog box,

enter a name for the

macro you’re about

to record. Type a

concise but helpful

description in the

Description box.

Th is is the Record

Macro dialog box

for Word.

Figure 1.2

You can use the

Developer tab on

the Ribbon to work

with macros.

10 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 10

Here’s what the primary Visual Basic features on the Ribbon’s Developer tab (or Access’s

Database Tools tab) do:

Run Macro button Only Access has this Ribbon button. It displays a Run Macro dialog box,

in which you can choose the macro to run. Many aspects of VBA in Access are unique only to

Access, and Chapter 28, “Understanding the Access Object Model and Key Objects,” covers

this topic in depth.

Record Macro button Displays the Record Macro dialog box in Word or Excel.

Macro Security button Displays the Trust Center macro settings dialog. You’ll examine

this in detail in Chapter 19. This button allows you to specify whether and how you want

macros enabled.

Visual Basic button Starts or switches to the Visual Basic Editor. You’ll begin working

in the Visual Basic Editor in Chapter 2, “Getting Started with the Visual Basic Editor” (and

you’ll spend most of the rest of the book employing it).

Macros button Opens the classic Macros dialog from which you can run, step into (start

the Visual Basic Editor in Break mode, more about this in Chapter 3, “Editing Recorded

Macros”), edit, create, delete, or open the macro project organizer dialog. (Not all of these

options are available in all applications. For example, PowerPoint has no organizer.) Word

and Excel have a similar Macros button in the Ribbon’s View tab. This button has the ability

to open the Macros dialog but can also start recording a macro. Note that Break mode is also

referred to as Step mode.

Add-Ins This is where you can access templates, styles, and specialized code libraries.

Controls A set of control buttons that, when clicked, insert user-interface

components—such as a drop-down list box—into an open document. Similar components

can also be added to macros that you create in the VBA Editor. Chapters 14 and 15 explore

this user-interface topic.

Design Mode button Toggles between Design mode and Regular mode. When Design mode

you can add or edit embedded controls in documents. In Regular mode you can

interact normally with controls (controls can accept information from the user via typing

or mouse clicks).

Properties button This button is enabled only if you’re in Design mode. It allows you to

edit the properties of the document (such as removing personal information).

The Emergence of XML

XML has become an industry standard for storing and transmitting data. With Offi ce 2007, the

Offi ce applications’ documents began to employ XML extensively. Th is switch to XML is the pri-

mary reason that documents created in versions of Offi ce 2007, 2010, and 2013 are not compatible

with earlier versions of Offi ce, such as Offi ce 2003 documents. Th us, you must convert old Offi ce

documents to the newer Offi ce formats. And people still using older versions of Offi ce must install

the Microsoft Offi ce Compatibility Pack for Word, Excel, and PowerPoint File Formats. Note that

Word 2010 and 2013 document fi les are saved with a .docx fi lename extension, the x refl ecting

the underlying XML format on which Offi ce 2007, 2010, and 2013 rest.

RECORDING A MACRO | 11

c01.indd 01:22:30:PM 06/25/2013 Page 11

Naming the Macro
Next, enter a name for the new macro in the Macro Name text box in the Record Macro dialog

box. The name must comply with the following conventions:

 ◆ It must start with a letter; after that, it can contain both letters and numbers.

 ◆ It can be up to 80 characters long.

 ◆ It can contain underscores, which are useful for separating words, such as File_Save.

 ◆ It cannot contain spaces, punctuation, or special characters, such as ! or *.

Name and Describe Your Macros

Some people insist that to properly manage your set of macros, you must follow some clerical

procedures that involve giving your macros descriptive names and also typing in a narrative

description of each macro’s purpose. Th ey claim that if you create many macros, you should

organize them carefully. Recording macros is so easy; you can create code so quickly that you

can end up with a pile of macros—as Southerners say—making it easy to get confused about

which macro does what.

You may be tempted not to assign a macro description when you’re in a hurry or when you’re playing

with diff erent ways to approach a problem and you’re not sure which (if any) of your test macros

you’ll keep. And for simple, obvious code, perhaps using the Macro12, Macro13 default names and

not typing in a description isn’t a problem. If you fi nd it easy to read VBA code, you can usually just

look at a macro and read what it does.

Even so, for more complex macros, and for people who fi nd code hard to read—go ahead and enter

a few notes for each macro that you record. Otherwise, you can end up with that pile of recorded

macros that have the cryptic default names and no descriptions. To fi gure out what each macro

does and which ones you can safely delete, you’ll have to plow through the code—and a recorded

macro’s code can be surprisingly long, even if the macro does nothing more than adjust a few

options in a couple of dialog boxes.

You might also want to employ a macro-naming convention to indicate which are test macros that

you can delete without remorse. Start the name with a word like Temp, then add numeric values

sequentially to keep track of the versions—for example, Scratch (Scratch01, Scratch02, and so on)

and Temp (Temp01, Temp02, and so on).

Each new macro you record is by default placed at the bottom of the set of macros in the VBA Editor.

You can, however, always open the Visual Basic Editor and rename or add a description anytime

you want because macros are fully editable.

Personally, I like to put a little descriptive note inside more complicated macros’ code, right at the

top, under the Sub line. It looks like this:

Sub AltH()

‘ Applies Heading 1 style

 Selection.Style = ActiveDocument.Styles(“Title1”)

End Sub

12 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 12

Any text following a single-quote symbol (‘) on a line of code is ignored by VBA. Th e single quote

indicates that what follows is a comment to assist the programmer in understanding the code

rather than actual code that should be executed. (VBA would not know what to make of the words

Applies Heading 1 style. Th ey are not part of VBA’s dictionary.)

Note that if you type a description in the Description fi eld of the Record Macro dialog when you

fi rst start recording, that comment is automatically inserted into your code—complete with the

single-quote symbol.

Also, my preferred way to name any macros that are triggered by keyboard shortcuts is to use the

name of the keyboard shortcut itself. Th us, Sub AltH tells me that this macro is triggered by the

Alt+H keyboard shortcut.

But whatever system you adopt, it’s generally better to err on the side of greater description or

commenting within the code rather than too little. It only takes a moment to provide an expressive,

meaningful name and a clear description of the purpose of the macro.

Invalid Macro Names

Word and Excel, the two Offi ce applications that permit macro recording, raise objections to

invalid macro names when you click the OK button to start recording the macro. If you enter

an invalid macro name in the Record Macro dialog box, these applications let you know—in their

own way. Word displays a brief, rather cursory message, while Excel gives more helpful info.

Figure 1.3 shows how these applications respond to an invalid macro name once it’s entered.

Figure 1.3

Th e dialog boxes

supplied by Word

and Excel show-

ing invalid macro

names.

Describing Your Macros

Type a description for the macro in the Description text box. Recall that this description is to

help you (and anyone you share the macro with) identify the macro and understand when to use

it. If the macro runs successfully only under particular conditions, you can note them briefl y in

the Description text box. For example, if the user must make a selection in the document before

running the macro in Word, mention that.

RECORDING A MACRO | 13

c01.indd 01:22:30:PM 06/25/2013 Page 13

You now need to choose where to store the macro. Your choices with Word and Excel are as

follows:

Word Recall that in Word, if you want to restrict availability of the macro to just the cur-

rent template (.dotm fi le) or document (.docm fi le), choose that template or document from

the Store Macro In drop-down list in the Record Macro dialog box shown in Figure 1.1. If

you want the macro to be available no matter which template you’re working in, make sure

the default setting—All Documents (Normal.dotm)—appears in the Store Macro In combo

box. (If you’re not clear on what Word’s templates are and what they do, see the sidebar

“Understanding Word’s Normal.dotm, Templates, and Documents” later in this chapter).

Excel In Excel, you can choose to store the macro in This Workbook (the active workbook),

a new workbook, or Personal Macro Workbook. The Personal Macro Workbook is a special

workbook named Personal.xlsb. Excel creates this Personal Macro Workbook the fi rst time

you choose to store a macro in the Personal Macro Workbook. By keeping your macros and

other customizations in the Personal Macro Workbook, you can make them available to any

of your procedures. Recall that the Personal Macro Workbook is similar to Word’s global

macros storage fi le named Normal.dotm. If you choose New Workbook, Excel creates a new

workbook for you and creates the macro in it.

Storing Your Macros

Word and Excel automatically store recorded macros in a default location in the specifi ed docu-

ment, template, workbook, or presentation:

Word Word stores each recorded macro in a module named NewMacros in the selected

template or document, so you’ll always know where to fi nd a macro after you’ve recorded

it. This can be a bit confusing because there can be multiple NewMacros folders visible in

the Project Explorer pane in the Visual Basic Editor. (This happens because there can be

more than one project open—such as several documents open simultaneously, each with

its own NewMacros folder holding the macros embedded within each document.) Think of

NewMacros as merely a holding area for macros—until you move them to another module

with a more descriptive name. (Of course, if you create only a handful of macros, you don’t

need to go to the trouble of creating various special modules to subdivide them into catego-

ries. You can just leave everything in a NewMacros module. As always, how clerical you need

to be depends on how organized your mind and memory are.)

If a NewMacros module doesn’t yet exist, the Macro Recorder creates it. Because it receives each

macro recorded into its document or template, a NewMacros module can soon grow large if you

record many macros. The NewMacros module in the default global template, Normal.dotm, is

especially likely to grow bloated, because it receives each macro you record unless you specify

another document or template prior to recording. Some people like to clear out the NewMacros

module from time to time, putting recorded macros you want to keep into other modules and

disposing of any useless or temp recorded macros. I don’t have that many macros, so I fi nd no

problem simply leaving them within the NewMacros module.

Excel Excel stores each recorded macro for any given session in a new module named Module

n, where n is the lowest unused number in ascending sequence (Module1, Module2, and so

on). Any macros you create in the next session go into a new module with the next available

number. If you record macros frequently with Excel, you’ll most likely need to consolidate the

macros you want to keep so that they’re not scattered across many modules like this.

14 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 14

Understanding Word’s Normal.dotm, Templates, and Documents

Word 2007, 2010, and 2013 store data diff erently than previous versions of Word. For one thing,

in Word 2003 you could create custom menus and toolbars that you stored in templates. Later ver-

sions of Word do not permit menus, nor do they permit any toolbars other than the Quick Access

Toolbar. What’s more, customizing that toolbar has a global impact. Custom toolbar buttons are

not stored in templates. In other words, any modifi cations you make to the Quick Access Toolbar

will be visible in any Word document, no matter which template(s) is currently active.

Word 2007, 2010, and 2013 feature three kinds of templates:

 ◆ Legacy templates from Word 2003 and earlier versions. Th ese have a .dot fi lename extension.

If you are working with one of these templates, [Compatibility Mode] appears on the Word

title bar.

 ◆ Word 2010 templates that contain no macros (.dotx fi lename extension). You can save mac-

ros in a document that employs a .dotx template, but the macro will not be saved within the

template.

 ◆ Templates with a .dotm fi lename extension contain macros. Recall that because macros writ-

ten by malicious people can do damage just like a virus, recent versions of Word segregate

macros into this special kind of template with a .dotm fi lename extension. A .dotm template

can do anything that a .dotx template can do, but the .dotm template features the additional

capability of hosting macros.

Word has a four-layer architecture. Starting from the bottom, these layers are the application

itself, the global template (Normal.dotm), the active document’s template, and fi nally, the active

document itself (the text and formatting). Each of the four layers can aff ect how Word appears and

how it behaves, but all four layers are not necessarily active at any given time.

Th e bottom layer, which is always active, is the Word application itself. Th is layer contains all the

Word objects and built-in commands, such as Open. Also always active are objects such as Word’s

Quick Access Toolbar, the Ribbon, and so on. Th is layer is the most diffi cult to picture because

usually you don’t see it directly. Normal.dotm, the global template, forms the second layer and is

also always active.

When you start Word, it loads Normal.dotm automatically, and Normal.dotm stays loaded until

you exit Word. (Th ere’s a special switch you can use—winword /n—to prevent the macros in

Normal.dotm from being active if you need to troubleshoot it. Press the Start key [the Windows

key] in Windows 8, and type Run to launch Word in this special way.)

Normal.dotm contains styles (such as the default paragraph style), AutoText entries, formatted

AutoCorrect entries, and customizations. Th ese customizations show up in the other layers unless

specifi cally excluded.

Default blank documents (such as the document that Word normally creates when you start it and

any document you create by clicking Ctrl+N or by clicking the Ribbon’s File tab and then choosing

New and Blank Document) are based on Normal.dotm. So when you’re working in a default blank

document, you see the Word interface as it is specifi ed in Normal.dotm.

Th e currently active template sits on top of the Word application and Normal.dotm. Th is tem-

plate can contain styles, macro modules (if it is a macro-enabled .dotm fi le type), and settings for

the template, along with any boilerplate text needed for this particular type of document. Th is is the

RECORDING A MACRO | 15

c01.indd 01:22:30:PM 06/25/2013 Page 15

third layer, but it is used only if the current document (or active document) is attached to a template

other than Normal.dotm.

On top of the current template sits the current document, which contains the text and graphics

in the document, its formatting, and its layout. Documents can also contain macro modules and

custom keyboard shortcuts, so the document itself can act as a fourth layer. Th is layer is always

present when a document is open, but it has no eff ect on Word’s interface or behavior unless the

document contains customizations.

Because these layers might contain confl icting information (such as two diff erent font styles with

the same name), there has to be an order of precedence that defi nes which layer “wins” in any

such confl ict. Customized settings work from the top layer downward. So customized settings in

the active document take precedence over those in the active template. Likewise, any settings

in the current template take precedence over any global templates (templates that automatically

apply to all Word documents) or add-ins other than Normal.dotm. Customized settings in those

global templates or add-ins take precedence over those in Normal.dotm.

As another example, say you have the key combination Ctrl+Shift+K assigned to diff erent actions

in Normal.dotm, in a loaded global template, in a document’s template, and in the document itself.

When you press that key combination, only the procedure assigned in the document runs because

that is the topmost layer. If you remove the key-combination assignment from the document, the

template then becomes the topmost layer containing a defi nition of this key combination, so

the procedure assigned in the template runs. If you remove the key combination from the template

as well, the procedure in the loaded global template runs. Finally, if you remove that template’s key

combination too, the procedure in Normal.dotm runs.

Choosing How to Run a New Macro
Continuing our exploration of the Record Macro dialog box shown in Figure 1.1, at this point,

after you’ve named the macro, typed a description, and chosen where to store it, it’s time to

choose how to trigger the macro. In other words, which way do you want to run the macro: via

a shortcut key or the Quick Access Toolbar button? Good typists generally prefer shortcut keys,

but buttons provide at least a visual hint of the macro’s purpose, and hovering your mouse on

the button also displays the name of the macro.

Shortcut keys and buttons are handy for people who record a moderate number of macros

and don’t organize them in complex ways—moving them from one module to another. If you

create a great number of macros and feel the need to move them into other modules, assigning

a shortcut key or button prior to recording becomes less useful. This is because moving a macro

from one module to another disconnects any way you’ve assigned for running the macro.

This limitation means that it makes sense to assign a way of running a macro—prior to

recording—only if you’re planning to use the macro in its recorded form (as opposed to, say,

using part of it to create another macro) and from its default location. If you plan to move the

macro or rename it, don’t assign a way of running it now. Instead, wait until the macro is in

its fi nal form and location, and then assign the means of running it. See “Specifying How to

Trigger an Existing Macro,” later in this chapter, for details.

Personally, I don’t have more than a couple dozen macros that I use all the time, so I avoid

the complications described in the previous paragraph and the sidebar on managing your mac-

ros. Instead, I just add shortcut keys when I fi rst create the macro, and leave them all in a single

16 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 16

version of Normal.dotm. However, if you face more complicated situations—such as managing a

big set of macros for a company—you might want to manage your macros with modules.

Manage Your Macros with Modules

By moving your recorded macros into diff erent modules, you can group related macros so you can

compare the code, adjust them, or distribute them easily.

To assign a way to run the macro, follow the instructions in the next sections.

You don’t have to assign a button or keyboard shortcut prior to recording a macro. You can

do it later, or at any time. In Word, Access, Excel, and other Offi ce 2013 applications, you use the

Options dialog box to assign a button on the Quick Access Toolbar to a macro. PowerPoint and

Access do not permit you to assign keyboard shortcuts to macros, but for applications that do

permit this—such as Word and Excel—you use the Customize Keyboard dialog box to assign a

shortcut key to a macro. Excel limits you to Ctrl+ or Ctrl+Shift key combinations.

Running a Macro from the Ribbon

Although it’s not available in the Record Macro dialog box, you can add a macro to the Ribbon,

like this:

 1. Right-click anywhere on the Ribbon.

 2. Click Customize The Ribbon on the menu. The Word Options dialog box appears.

 3. In the Choose Commands From drop-down list, select Macros.

 4. Click a macro’s name to select it in the list.

 5. Click an existing tab in the list of tabs in the right dialog box where you want to locate

your macro.

 6. Then click the New Group button and specify the name of your custom group.

 7. Click the rename button to give your new group a name.

 8. Click OK to close the Rename dialog box.

 9. Click the Add button to add your macro.

 10. Click the rename button to give your macro an easily understood name, and optionally

an icon.

 11. Click OK to close the Rename dialog box.

 12. Click OK to close the Word Options dialog box.

Running a Macro from the Quick Access Toolbar

Here’s how to use the Word Options dialog box to assign a macro to a button on the Quick

Access Toolbar:

 1. Right-click anywhere on the Quick Access Toolbar (it’s the set of icons in the upper-left

corner, above the Ribbon), and a menu will appear. (This toolbar will be just below the

RECORDING A MACRO | 17

c01.indd 01:22:30:PM 06/25/2013 Page 17

Ribbon if you’ve previously selected the Show Quick Access Toolbar Below The Ribbon

option from this menu.)

 2. Click Customize Quick Access Toolbar on the menu. The Word Options dialog box

appears.

 3. In the Choose Commands From drop-down list, select Macros.

 4. Click a macro’s name to select it in the list, as shown in Figure 1.4.

 5. Click the Add button to insert this macro’s name in the Customize Quick Access Toolbar

list, as shown in Figure 1.4.

Figure 1.4

Choose a way to run

the macro in Word’s

Options dialog box.

 6. Word adds a button to the toolbar for the macro, giving it the macro’s fully qualifi ed

name (its location plus its name), such as Normal.NewMacros.CreateDailyReport.

This name consists of the name of the template or document in which the macro is

stored, the name of the module that contains the macro, and the macro’s name, respec-

tively. You don’t need all this information displayed when you hover your mouse

pointer over the button.

 7. So rename the button or menu item: Click the Modify button at the bottom of the

Customize Quick Access Toolbar list (see Figure 1.5). Whatever macro is highlighted (cur-

rently selected) in the list of toolbar items will be the one you’re modifying.

Macro Button Labels Need Not Match Their Official Names

Notice that a macro’s button name (displayed as its tooltip caption when you hover your mouse

over it) doesn’t have to bear any relation to the macro’s actual name as it appears in the Visual

Basic Editor or the Macro dialog.

18 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 18

Figure 1.5

Word gives the

menu item or tool-

bar button the full

name of the macro.

Use this Modify

Button dialog to

change the name to

something shorter

and better.

 8. While you’re modifying the macro’s name, you might also want to choose a different but-

ton icon that visually cues you about the macro’s purpose. To do that, just double-click

whatever icon you want to use, then click OK.

Running a Macro via a Shortcut Key Combination

To assign the macro to a key combination, follow these steps:

 1. Right-click the Ribbon and choose Customize The Ribbon from the menu that appears.

This opens the Word Options dialog.

 2. Click the Customize button next to Keyboard Shortcuts in the bottom left of the Word

Options dialog box.

 3. Scroll down the Categories list box until you see Macros, then click Macros to select it.

 4. Click to select the name of the macro you want to assign a shortcut key combination to.

 5. Check the Current Keys list box to see if a key combination is already assigned. If it is,

you can press the Backspace key to clear the key combination if you wish, or you can

employ multiple key combinations to launch the macro.

 6. In the Press New Shortcut Key fi eld, type the key combination you want to use to trigger

the macro (see Figure 1.6).

 7. Check to see if this key combination is already used for another purpose. If so, you can

reassign it, or you can choose a different combination by pressing the Backspace key in

the Press New Shortcut Key fi eld.

 8. Be sure to click the Assign button when you’re fi nished. Just closing this dialog does not
assign the key combination.

RECORDING A MACRO | 19

c01.indd 01:22:30:PM 06/25/2013 Page 19

Figure 1.6

Set a shortcut

key combination

for the macro in

the Customize

Keyboard

dialog box.

You Can Postpone Assigning a Shortcut Key Combination

Remember that, as with the other ways of running a macro, you can assign a key combination to

run a macro either at the time you record the macro or at any point after you fi nish recording it.

If you intend to move the macro from the NewMacros module to another module, remember that

you need not assign the key combination until the macro has reached its ultimate destination.

A key combination in Word can be any of the following:

 ◆ Alt plus either a function key or a regular key not used as a menu-access key.

 ◆ Ctrl plus a function key or a regular key.

 ◆ Shift plus a function key.

 ◆ Ctrl+Alt, Ctrl+Shift, Alt+Shift, or even Ctrl+Alt+Shift plus a regular key or function key.

Pressing Ctrl+Alt+Shift and another key tends to be too awkward for practical use.

Specify Two-Step Key Combinations

You can set up shortcut keys that have two steps—for example, Ctrl+Alt+F, 1 and Ctrl+Alt+F, 2—by

pressing the second key (in this case, the 1 or the 2) after pressing the key combination. However,

these shortcuts tend to be more trouble than they’re worth, unless you’re assigning literally hun-

dreds of extra shortcut keys.

20 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 20

Running a Macro the Old-Fashion Way

A clumsy, rarely used way to run a macro is to click the Developer tab in the Ribbon. To see how

this works, follow these steps:

 1. Click the Macros icon.

 2. Click the name of the macro in a displayed list.

 3. Finally, click the Run button.

By the way, you can also run a macro from within the Visual Basic Editor by pressing F5.

This is how you test macros while you’re editing them.

Assigning a Way to Run a Macro in Excel

When you’re recording a macro, Excel allows you to assign only a Ctrl shortcut key, not a button,

to run it. If you want to assign a Quick Access Toolbar button to the macro, you need to do so

after recording the macro (using the Customize feature as described shortly).

To assign a Ctrl shortcut key to run the macro you’re recording, follow these steps:

 1. Start recording the macro, then click the Shortcut Key text box to display the blinking

insertion cursor. Press the shortcut key you want to use. (Press the Shift key at the same

time if you want to include Shift in the shortcut.)

 2. In the Store Macro In drop-down list, specify where you want the Macro Recorder to

store the macro. Your choices are as follows:

 ◆ This Workbook stores the macro in the active workbook. This option is useful for mac-

ros that belong to a particular workbook and do not need to be used elsewhere.

 ◆ New Workbook causes Excel to create a new workbook for you and store the macro in it.

This option is useful for experimental macros that you’ll need to edit before unleash-

ing them on actual work.

 ◆ Personal Macro Workbook stores the macro in the Personal Macro Workbook, a

special workbook named PERSONAL.XLSB. By keeping your macros and other cus-

tomizations in the Personal Macro Workbook, you can make them available to

any of your procedures—in that way, the Personal Macro Workbook is similar to

Word’s Normal.dotm. If the Personal Macro Workbook does not exist yet, the Macro

Recorder creates it automatically.

 3. Click the OK button to start recording the macro.

Assigning a Way to Run a Macro in PowerPoint

PowerPoint does not let you record macros, but you can assign a way to run macros written

in the Visual Basic Editor, as discussed in the section “Specifying How to Trigger an Existing

Macro” later in this chapter.

Assigning a Way to Run a Macro in Outlook

Outlook doesn’t let you record macros, and by default macros are disabled. To enable macros

in Outlook, click the Developer tab on the Ribbon, then click the Macro Security icon (it’s on the

RUNNING A MACRO | 21

c01.indd 01:22:30:PM 06/25/2013 Page 21

left in the Code section of the Ribbon). The Trust Center dialog box opens. Click the Notifi cation

For All Macros option or the Enable All Macros option. To see how to assign a way to run mac-

ros, see the section “Specifying How to Trigger an Existing Macro” later in this chapter.

Recording the Actions in a Macro

When you close the Record Macro dialog box, the Macro Recorder begins recording the macro.

The Macro Recorder displays the Stop Recording icon (a white square) in the status bar at the

bottom left of the screen (and a Stop Recording button in the Developer tab on the Ribbon). In

addition, a small symbol of a cassette tape appears in the mouse pointer (these tapes were used

in the old days, prior to the invention of the CD).

Now you should perform the sequence of actions you want to record. What exactly you can

do varies from application to application, but in general, you can use the mouse to select items,

make choices in dialog boxes, and select defi ned items in documents (such as cells in spread-

sheets). You’ll fi nd a number of things that you can’t do with the mouse, such as select items

within a document window in Word. To select items in a Word document window, you have to

use the keyboard (Shift+arrow keys, for example). You can select cells with the mouse in Excel

during recording.

The Macro Recorder Records Everything—The Complete

Current Status

When you make choices in a dialog box and click the OK button, the Macro Recorder records

the current settings for all the options on that page of the dialog box. So, for example, when you

change the left indentation of a paragraph in the Paragraph dialog box in Word, the Macro Recorder

records all the other settings on the Indents And Spacing page as well (Alignment, Before and After

spacing, and so forth).

In Word, if you need to perform any actions that you don’t want recorded, pause the Macro

Recorder by clicking the Pause Recording button on the Ribbon. The button changes to Resume

Recording. Click the button again to start recording again.

To stop recording, click either the Stop Recording button on the Ribbon, or the other one on

the status bar.

The Macro Recorder has now recorded your macro and assigned it to a key combination or

button, if you made that choice.

Running a Macro
To run a macro you’ve recorded, you can use four methods to run it within the application:

 ◆ If you assigned a Quick Access Toolbar button, use that.

 ◆ If you added your macro to the Ribbon, you can use that.

 ◆ If you specifi ed a shortcut-key-combination macro, use it.

 ◆ A less convenient approach is to press Alt+F8 to display the Macros dialog box, select the

macro, and then click the Run button. (Alternatively, you could double-click the macro

name in the list box.)

22 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 22

Running in the Editor

You can also run a macro from the Visual Basic Editor, which is useful when you’re working in the

Editor. Just press F5.

The macro runs, performing the actions in the sequence in which you recorded them. For

example, suppose you create a macro in Excel that selects cell A2 in the current worksheet, bold-

faces that cell, enters the text Yearly Sales, selects cell B2, and enters the number 100000 in it.

The Macro Recorder recognizes and saves those fi ve actions. VBA then performs all fi ve actions,

step-by-step, each time you run the macro—albeit quite rapidly.

How to Stop an Executing Macro

To stop a running macro, press Ctrl+Break (Break is usually the unshifted Pause key on the key-

board). VBA stops running the code and displays a dialog box telling you that code execution has

been interrupted. Click the End button to dismiss this dialog box.

Some applications (such as Word) let you undo most actions executed via VBA after the

macro stops running (by pressing Ctrl+Z or clicking the Undo button on the Quick Access

Toolbar, undoing one command at a time); other applications do not.

Macro Errors Are Often Caused by Incorrect Contexts

If running the macro results in an error, often this means that the macro is trying to do something

to a fi le or an object that isn’t available. For example, if you record a macro in Excel that works on

the active workbook, the macro causes an error if you run it when no workbook is open (thus there

is no such thing as an active workbook). Likewise, if you write a macro in PowerPoint that works

with the third shape on the active slide, that macro fails if you run it on a slide that has no third

shape. To get the macro to run properly, re-create the conditions it needs, and then try it again.

Recording a Sample Word Macro
In this section, you’ll record a sample macro in Word that you can work with later in the book.

This macro selects the current word, cuts it, moves the insertion point one word to the right, and

pastes the word back in. This is a straightforward sequence of actions that you’ll later view and

edit in the Visual Basic Editor.

Follow these steps to record the macro:

 1. Create a new document by pressing Ctrl+N.

 2. Start the Macro Recorder by clicking the Developer tab on the Ribbon, then clicking the

Record Macro button. Or click the Macro Record button on the status bar at the bottom of

the application. (With this approach, you don’t have to open the Developer tab. Just click

the button on the status bar.)

RECORDING A SAMPLE WORD MACRO | 23

c01.indd 01:22:30:PM 06/25/2013 Page 23

 3. In the Macro Name text box, enter Transpose_Word_Right.

 4. In the Store Macro In drop-down list, make sure All Documents (Normal.dotm) is

selected, unless you want to assign the macro to a different template. (This and future

examples in this book assume this macro is located in Normal.dotm, so do store it there.)

 5. In the Description box, enter a description for the macro (see Figure 1.7). Be fairly explicit

and enter a description such as Transposes the current word with the word to its right.
Created 5/5/13 by Nanci Selest-Gomes.

Figure 1.7

Creating the sample

macro in Word

 6. Assign a method of running the macro, as described in the previous section, if you want

to. Create a toolbar button or assign a keyboard shortcut. (The method or methods you

choose is strictly a matter of personal preference.) If you’ll need to move the macro to a

different module (or a different template or document) later, don’t assign a method of

running the macro at this point.

 7. Click the OK button to dismiss the Word Options dialog box or the Customize Keyboard

dialog box (or just click the OK button to dismiss the Record Macro dialog box if you

chose not to assign a way of running the macro). Now you’re ready to record the macro.

The Stop Recording option appears on the Ribbon and on the status bar, and the mouse

pointer has a cassette-tape icon attached to it.

 8. As a quick demonstration of how you can pause recording, click the Pause Recording

button on the Ribbon. The cassette-tape icon disappears from the mouse pointer, and the

Pause Recording button changes into a Resume Recording button. Enter a line of text in

the document: The quick brown fox jumped over the lazy dog. Position the insertion

point anywhere in the word quick, and then click the Resume Recording button on the

Ribbon to reactivate the macro recorder.

24 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 24

 9. Record the actions for the macro as follows:

 a. Use Word’s extend selection feature to select the word quick by pressing the F8 key

twice.

 b. Press the Esc key to cancel Extend mode.

 c. Press Shift+Delete to cut the selected word to the Clipboard.

 d. The insertion point is now at the beginning of the word brown. Press Ctrl+right

arrow to move the insertion point right by one word so that it’s at the beginning of

the word dog.

 e. Press Shift+Insert to paste in the cut word from the Clipboard.

 f. Press Ctrl+left arrow to move the insertion point one word to the left. This restores the

cursor to its original position.

 10. Click the Stop Recording button on the Ribbon or status bar. Your sentence now reads,

“The brown quick fox jumped over the lazy dog.”

Finding Built-In Keyboard Shortcuts

You can fi nd a complete list of the built-in keyboard shortcuts (such as Ctrl+left arrow) by searching

an application’s Help system for “Keyboard Shortcuts.” If available, click the Show All option to

expand the complete list, then use Ctrl+F to search for whatever you’re interested in.

You can now run this macro by using the toolbar button or keyboard shortcut that you

assigned (if you chose to assign one). Alternatively, click the Macros button in the Developer tab

and run the macro from the Macros dialog box. Try positioning the insertion point in the word

brown and running the macro to restore the words in the sentence to their original order.

At this point, Word has stored the macro in Normal.dot. If you don’t save macros until

you exit Word (or until an automated backup takes place), Word doesn’t, by default, prompt

you to save them then. It just does so automatically. But it’s best to click the Save button in the

File tab to store Normal now. That way, if Word or Windows crashes, you will avoid losing

the macro.

You Can Force Word to Prompt You to Save the Normal Template

Word, by default, automatically saves new macros added to the Normal template. But if you prefer to

have Word prompt you to save any changes to the Normal template, choose Options on the File tab,

then click the Advanced button and scroll down until you see the section of Save options. Select the

Prompt Before Saving Normal Template check box, and then click the OK button. Th is option was

selected by default in early versions of Offi ce, but ever since Offi ce 2007 it is turned off by default.

RECORDING A SAMPLE EXCEL MACRO | 25

c01.indd 01:22:30:PM 06/25/2013 Page 25

Recording a Sample Excel Macro
In the following sections, you’ll record a sample Excel macro. This macro creates a new work-

book, enters a sequence of months into it, and then saves it. You’ll work with this macro again in

Chapter 3, so don’t delete it.

Create a Personal Macro Workbook If You Don’t Have One Yet
If you don’t already have a Personal Macro Workbook in Excel, you’ll need to create one before

you can create this procedure. (If you do have a Personal Macro Workbook, skip to the next

section.) Follow these steps:

 1. Click the Developer tab in the Ribbon, then click the Record Macro button on the Ribbon

(or just click the Record Macro button on the status bar) to display the Record Macro

dialog box.

 2. Accept the default name for the macro because you’ll be deleting it momentarily.

 3. In the Store Macro In drop-down list, choose Personal Macro Workbook.

 4. Click the OK button to close the Record Macro dialog box and start recording the macro.

 5. Type a single character in whichever cell is active, and press the Enter key.

 6. Click the Stop Recording button on the Ribbon or status bar to stop recording the macro.

 7. Click the Unhide button on the View tab to display the Unhide dialog box. Select

PERSONAL.XLSB and click the OK button.

 8. Click the Developer tab in the Ribbon, then click the Macros button on the Ribbon to dis-

play the Macros dialog box.

 9. Select the macro you recorded and click the Delete button to delete it. Click the Yes but-

ton in the confi rmation message box.

You now have caused Excel to generate a Personal Macro Workbook that you can use from

now on to hold your global macros.

Record the Macro
To create this macro, start Excel and follow these steps:

 1. Click the Developer tab in the Ribbon, then click the Record Macro button on the Ribbon

(or just click the Record Macro button on the status bar). This displays the Record Macro

dialog box, shown in Figure 1.8, with information entered.

 2. Enter the name for the macro in the Macro Name text box: New_Workbook_with_Months.

 3. In the Shortcut Key text box, enter a shortcut key if you want to. (Remember that you can

always change the shortcut key later, so you’re not forced to enter one at this point.)

 4. In the Store Macro In drop-down list, choose whether to store the macro in your Personal

Macro Workbook, in a new workbook, or in this active workbook. As discussed a little

earlier in this chapter, storing the macro in the Personal Macro Workbook gives you the

26 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 26

most fl exibility because it is Excel’s global macro container. For this example, don’t store

the macro in the active workbook, because you’re going to delete the active workbook

almost immediately. Instead, store it in your Personal Macro Workbook. Remember, we’ll

use this macro in future examples.

Figure 1.8

Display the Record

Macro dialog box

for Excel and make

your choices in it.

 5. Type a description for the macro in the Description text box.

 6. Click the OK button to dismiss the Record Macro dialog box and start recording the

macro.

 7. Click the File tab on the Ribbon and click New to display the available templates for a

new workbook.

 8. Double-click the Blank workbook icon. Excel creates a new workbook and selects the fi rst

sheet on it.

 9. Click cell A1 to select it. (It may already be selected; click it anyway because you need to

record this click instruction.)

 10. Enter January 2014 and press the right arrow key to select cell B1. Excel automatically

changes the date to your default date format. That’s fi ne.

 11. Enter February 2014 and press the left arrow key to select cell A1 again.

 12. Drag from cell A1 to cell B1 so that the two cells are selected.

 13. Drag the fi ll handle from cell B1 to cell L1 so that Excel’s AutoFill feature enters the

months March 2014 through December 2014 in the cells. (The fi ll handle is the small black

dot in the lower-right corner of the selection frame. You’ll know you’re on it when the

cursor changes from a white to a black cross.)

 14. Click the File tab on the Ribbon, then click the Save As option to display the Save As

dialog box. Save the workbook in a convenient folder (for example, the My Documents

folder) under a name such as Sample Workbook.xlsx.

 15. Click the Stop Recording button on the Ribbon or status bar to stop recording the macro.

DELETING A MACRO | 27

c01.indd 01:22:30:PM 06/25/2013 Page 27

Close the sample workbook, and use Windows Explorer to navigate to the new .xlsx fi le you

just saved, and delete the fi le. Then run the macro and watch what happens. (If you don’t delete

the existing workbook, Excel prompts you to decide whether to overwrite it when in step 14 it

tries to save the new workbook using the same name as the existing workbook.)

Specifying How to Trigger an Existing Macro
If you didn’t assign a way of running the macro when you recorded it, you can assign a way of

running it as described here.

Assigning a Macro to a Quick Access Toolbar Button in Word
To assign a macro to the Quick Access Toolbar, follow these steps:

 1. Right-click anywhere on the Quick Access Toolbar (it’s the set of icons in the upper-left

corner, above the Ribbon). A menu appears.

 2. Click Customize Quick Access Toolbar on the menu. The Word Options dialog box

appears.

 3. In the Choose Commands From drop-down list, select Macros.

 4. Click the name of the macro you want to assign a button to.

 5. Click the Add button to copy the macro name into the list of buttons on the right.

 6. Click the Modify button if you want to assign a different icon or modify the button’s

name.

 7. Click OK to close the dialog.

Assigning a Macro to a Shortcut Key Combination
The section “Running a Macro via a Shortcut Key Combination,” earlier in this chapter,

explained how to do this in Word. PowerPoint and Access do not let you assign a macro to a

key combination. Excel uses a slightly different approach than Word, limiting you to Ctrl and

Shift combinations, as described earlier in this chapter in the section “Assigning a Way to Run a

Macro in Excel.”

Deleting a Macro
To delete a macro you no longer need, follow these steps:

 1. Press Alt+F8 to display the Macros dialog box.

 2. Choose the macro in the Macro Name list box.

 3. Click the Delete button.

 4. In the warning message box that appears, click the Yes button. Figure 1.9 shows Excel’s

variation of this warning message box.

28 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 28

Figure 1.9

When you delete a

macro, the applica-

tion checks to make

sure you mean to

do so.

 5. Click the Close button or the Cancel button to close the Macros dialog box.

Organizing Macros in Word with the Organizer Dialog Box

Most VBA-enabled applications require you to use the Visual Basic Editor (which is discussed in

the next chapter) to move code modules, user forms, and other code items from one fi le to another

fi le. (A code module is a virtual container used for storing macros. A user form is a custom dialog box

displayed to the user for input.) But Word provides a useful tool called the Organizer

dialog box that you can use to copy, move, rename, and delete code modules, user forms, and other

code items directly in the Word interface without opening the Visual Basic Editor.

To use the Organizer dialog box, follow these steps:

 1. In Word, press Alt+F8.

 2. Click the Organizer button to display the Organizer dialog box, and click the Macro Project Items

tab if the Macro Project Items page (shown here) isn’t automatically displayed.

 3. Look at the two documents or templates listed in the readouts above the two list boxes. Usually,

the left list box shows the active document, and the right one shows Normal.dotm. Change

these so that one list box shows the document or template that contains the code you want to

copy or move and the other list box shows the destination document or template. (If you want

only to delete or rename code items, you need only make the Organizer dialog box list the

document or template that contains the items.) To change the document or template listed,

click the Close File

THE BOTTOM LINE | 29

c01.indd 01:22:30:PM 06/25/2013 Page 29

 button underneath the list box on the corresponding side. Th e Close File button changes to an Open

File button. Click this button to display the Open dialog box, navigate to and select the document

or template you want, and then click the Open button. Th e Open dialog will automatically default

to displaying the Templates folder.

 4. You can then delete, rename, copy, and move macro project items. Th e following list details how

to do this:

 ◆ To delete one or more macro project items from a template, choose the item or items from

either panel of the Organizer dialog box and click the Delete button. Click the Yes button

in the confi rmation message box. Any copies of the items in other templates are unaff ected.

 ◆ To rename a macro project item, select it from either panel and click the Rename button

to open the Rename dialog box. Enter the new name and click the OK button. Any copies

of the same item in other templates are unaff ected.

 ◆ To copy one or more macro project items from one template to another, open the templates

in the Organizer dialog box. Select the item or items to copy in either panel of the dialog box

(the arrows on the Copy button change direction to point to the other panel). Th en click the

Copy button. If the recipient template contains a macro project item of the same name as

one you’re copying, Word displays a warning message box telling you that it can’t copy the

item. If you still want to copy the item, rename either the item you’re copying or the item

with the same name in the destination template, and then perform the copy operation.

 ◆ To move a macro project item from one template to another, copy it as described in the

previous paragraph, and then delete the macro project item from the source template.

 5. Once you’ve deleted, renamed, copied, or moved macro project items, click the Close button to

close the Organizer dialog box. If Word prompts you to save any changes to aff ected documents

or templates that aren’t open in your Word session, click the Yes button.

Th e Bottom Line

Record a macro. The easiest way to create a macro is to simply record it. Whatever you type

or click—all your behaviors—are translated into VBA automatically and saved as a macro.

Master It Turn on the macro recorder in Word and create a macro that moves the in-

sertion cursor up three lines. Then turn off the macro recorder and view the code in the

Visual Basic Editor.

Assign a macro to a button or keyboard shortcut. You can trigger a macro using three

convenient methods: clicking an entry on the Ribbon, clicking a button in the Quick Access

Toolbar, or using a keyboard shortcut. You are responsible for assigning a macro to any or all

of these methods.

Master It Assign an existing macro to a new Quick Access Toolbar button.

Run a macro. Macros are most effi ciently triggered via a Ribbon entry, by clicking a but-

ton on the Quick Access Toolbar, or by pressing a shortcut key combination such as Alt+N

or Ctrl+Alt+F. When you begin recording a macro, the Record Macro dialog has buttons that

30 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

c01.indd 01:22:30:PM 06/25/2013 Page 30

allow you to assign the new macro to a shortcut key or toolbar button. However, if you are

using the Visual Basic Editor, you can run a macro by simply pressing F5.

Master It Execute a macro from within the Visual Basic Editor.

Delete a macro. It’s useful to keep your collection of macros current and manageable. If

you no longer need a macro, remove it. Macros can be directly deleted from the Visual Basic

Editor or by clicking the Delete button in the Macros dialog (opened by pressing Alt+F8).

Master It Temporarily remove a macro, then restore it, using the Visual Basic Editor.

Chapter 2

Getting Started with the Visual
Basic Editor

In this chapter, you’ll start learning how to use the Visual Basic Editor, a powerful tool bundled

with Offi ce 2013 for working with VBA. This programming editor is the culmination of more

than 18 years of modifi cations and improvements. It is highly effective.

All applications that host VBA use the Visual Basic Editor, so the environment looks much

the same no matter which application you’re using.

This chapter covers the fundamentals of the Visual Basic Editor: its components, what they

do, and how you use them. You’ll learn more advanced maneuvers as you work with VBA

later in this book.

This chapter also shows you how to customize the Visual Basic Editor to make it more com-

fortable, more in tune with your preferences. This customization doesn’t take long, and you’ll

fi nd the resulting ease of use more than worth the amount of time you invest.

In this chapter you will learn to do the following:

 ◆ Open the Visual Basic Editor

 ◆ Open a macro in the Visual Basic Editor

 ◆ Understand the Visual Basic Editor’s main windows

 ◆ Set properties for a project

 ◆ Customize the Visual Basic Editor

Opening the Visual Basic Editor
You open the Visual Basic Editor from the host application you’re using. For example, if you’re

working in Word, you open the Visual Basic Editor from Word. The instance of the Visual Basic

Editor that you open is then associated with Word.

However, you can open two or more instances of the Visual Basic Editor. For example, if

you’ve already opened an instance of the Visual Basic Editor in Word, you could open another

instance in Excel, and then another in Access.

You can open the Visual Basic Editor in two ways:

 ◆ Select a macro that you want to edit. The host application then opens the Visual Basic

Editor and displays that macro so that you’re ready to work with it.

 ◆ Open the editor directly, and then locate the macro code you want to work with.

32 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

The next two sections demonstrate the two ways of opening the Visual Basic Editor, and the

third section shows you how to navigate to a macro.

Opening the Visual Basic Editor with a Macro Selected
If you know the name of the macro you want to work with, use this method to open the Visual

Basic Editor and the macro at the same time. This example uses Word to open the Transpose_

Word_Right macro that you recorded in Chapter 1, “Recording and Running Macros in the

Offi ce Applications”:

 1. Open Word if it’s not already running.

 2. Press Alt+F8 to display the Macros dialog box.

 3. Select the Transpose_Word_Right macro and click the Edit button. Word opens the

Visual Basic Editor with the macro displayed and ready for editing, as shown in

Figure 2.1.

Figure 2.1

Th e Visual Basic

Editor with the

Transpose_Word_

Right macro open

in the Code window

Project Explorer Code window

Properties window

 4. Choose File ➢ Close and return to Microsoft Word to close the Visual Basic Editor for the

moment so that you can open it using the method described in the next section.

Opening the Visual Basic Editor Directly
To open the Visual Basic Editor directly, follow these steps:

 1. Open or activate the host application. In this case, open or switch to Word.

 2. Press Alt+F11. The Visual Basic Editor opens.

OPENING THE VISUAL BASIC EDITOR | 33

The Visual Basic Editor Remembers Its Code Window

Depending on the state of the Visual Basic Editor the last time it was closed, you may see one or

more Code windows open. For example, if you left the Code window for the NewMacros module

open in the previous section, the Visual Basic Editor will display this Code window again.

If you don’t see the Properties window (see Figure 2.1), press F4. More on this important

window shortly.

Navigating to a Macro
After opening the Visual Basic Editor directly, use the Project Explorer pane (shown on the

left side in Figure 2.1) to navigate to your macro. You also use the Project Explorer to navigate

among open projects and modules when you’re working in the Visual Basic Editor.

The Project Explorer Resembles Windows Explorer Folder View

Th e Project Explorer pane works like a standard Windows Explorer tree when you’re viewing folders

and subfolders. Depending on the application you’re using, you’ll see diff erent projects displayed

in the tree (more on this later in the chapter).

To navigate to the Transpose_Word_Right macro, follow these steps:

 1. In the Project Explorer pane in the upper-left corner of the Visual Basic Editor, expand the

entry for Normal (which represents Normal.dotm, the Normal template) by clicking the +

sign to the left of its name. (If the Normal entry is already expanded, skip this step.)

 2. Double-click the Modules entry to expand it.

 3. Double-click the NewMacros module. (This is the global module in which Word automati-

cally stores the macros you record unless you specify a different location in the Record

Macro dialog box.) The Visual Basic Editor displays the contents of the module in the

Code window on the right side, as you can see in Figure 2.1.

If the module contains more than one macro, you’ll also need to select the macro you want

to work with—in this case, the Transpose_Word_Right macro. (If you’ve recorded only the

Transpose_Word_Right macro, only this macro appears in the Code window.) To select a macro,

use one of these methods:

 ◆ In the Code window, select the macro from the Procedure drop-down list, as shown in

Figure 2.2. (If you hover the mouse pointer over the list before dropping it down, you’ll see

a tooltip that gives its name: Procedure.)

 ◆ Use the scroll bar to scroll to the macro you want to edit, which is identifi ed by

the word Sub, the name you gave it, and a pair of parentheses—in this case, Sub

Transpose_Word_Right().

34 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Figure 2.2

If the module con-

tains two or more

macros, scroll to

the macro you want

to edit, or select it

from this Procedure

drop-down list.

Maximize Your Code Window

Eagle-eyed readers will notice a diff erence between Figures 2.1 and 2.2. By default, the Code window

is displayed in “normal” window size. In other words, there is a gray background around it, as you

can see in Figure 2.1. Th is allows you to open other code windows in the same area. However, that’s

a bit too much micro-multitasking for me, so from now on, I’ll display the Code window maximized,

as shown in Figure 2.2. Th is makes it easier to see your code. To do this, click the Code window’s

Maximize button, just to the left of the red X button that closes the window.

Using the Visual Basic Editor’s Main Windows
In the following sections, you’ll learn how to use the main windows of the Visual Basic Editor to

get your work done.

Th e Project Explorer
The Project Explorer is the tool for navigating among the various objects in the Visual Basic

Editor. Figure 2.3 shows the Project Explorer for a Visual Basic Editor session with Word as the

host application.

Depending on the host application and its capabilities, each project can contain some or all of

the following elements. (But don’t worry about such items as class modules, link libraries, and

so on—we’ll explore them in later chapters.)

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 35

Figure 2.3

Use the Project

Explorer to navi-

gate to the module

you want to work

with.

View Code

Toggle Folders

View Object

 ◆ User forms (windows that make up part of the macro’s user interface, such as a custom dia-

log box that accepts user input).

 ◆ Modules containing macros, procedures, and functions.

 ◆ Class modules (modules that defi ne objects, their properties, and their values).

 ◆ References to other projects or to library fi les (such as DLLs—Dynamic Link Libraries).

 ◆ Objects related to the application. For example, each Word document and template con-

tains a Microsoft Word Objects folder that holds a class object named ThisDocument.

ThisDocument gives you access to the properties and events (actions the object can react

to, such as a click event) for the document or template. Each Excel workbook contains a

class object named ThisWorkbook that gives you access to the properties and events for the

workbook and a Sheet object (named Sheet1, Sheet2, and so on) for each worksheet.

For most host applications, each open document and template is considered a separate proj-

ect and is displayed as a root in the project tree. The project tree also contains any global macro

storage container—such as the Normal.dotm template in Word or the Personal Macro Workbook

in Excel—and any add-ins that are loaded.

As an example, in Figure 2.3, Normal.dotm is identifi ed as Normal, and the active document

is identifi ed as Project (C02): a document named C02.

Change a Project’s Name at Any Time

You can change the name of a project by using the Project Properties dialog box (discussed later in

this chapter) or by selecting the project and entering a new name in the Properties pane, shown

directly below the Project Explorer pane (as seen earlier in Figure 2.1).

Once you change the name, the project is identifi ed by that name in the Project Explorer, followed

by the name of the document or template. For example, if you change the project name of docu-

ment 2 to Testing, the document project is identifi ed as Testing(2) in the Project Explorer rather

than Project(2).

36 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

You navigate the Project Explorer in the same way that you navigate the Windows Explorer

folder tree: Click the boxed plus sign to the left of a project item to expand the view and dis-

play the items contained in the project, and click the resulting boxed minus sign to collapse the

view and hide the items again. Double-click a module to display its code in the Code window.

Double-click a user form to display it in the Code window.

The Visual Basic Editor displays the Project Explorer by default, and because the Project

Explorer provides fast and effi cient navigation among the various elements of your VBA proj-

ects, it’s usually easiest to keep it displayed unless you’re short on screen space or you’re work-

ing for long periods in the Code window and don’t need to switch to other elements. However,

most people don’t create document-specifi c macros or large, complicated programs spanning

multiple projects. As a result, they just leave all their macros in the NewMacros module.

To close the Project Explorer, click its close button (the x button in its title bar). To display the

Project Explorer again, press Ctrl+R or choose View ➢ Project Explorer. As you’ll see later in this

chapter, you can also undock the Project Explorer. This lets you push it aside when you need

more room. But it doesn’t take up much room, so, again, many people just leave it tucked up

there in the upper left.

In Figure 2.3, three buttons appear on a toolbar at the top of the Project Explorer:

View Code Displays the Code window for the selected object. For example, if you select a

user form in the Project Explorer and click the View Code button, the Visual Basic Editor dis-

plays a Code window containing any code attached to the user form. If you select a module

or a class module in the Project Explorer and click the View Code button, the Visual Basic

Editor displays a Code window containing the code in the module. You can also right-click

an item in the Project Explorer and choose View Code from the context menu.

Code is merely a synonym for programming — the series of commands you type in (or

record) to make the computer behave a certain way. Code is sometimes called programming

code or source code.

Note that the words used in programming—the terms such as Selection or End Sub

employed by a computer-programming language such as VBA—are referred to by a variety

of synonyms: statements, keywords, commands, and so on. In this book, I’ll frequently sim-

ply use the generic term commands.

Double-Click Modules to View Their Code

For a module or a class module, you can also double-click the object to view its code. Th is is usually

faster than selecting it and then clicking the View Code button. For a user form or a fi le, however,

double-clicking displays the View Object option (discussed next) rather than the View Code option.

View Object Displays a window containing the selected object. The View Object button

remains dimmed and unavailable until you select an object (such as a user form or a fi le or

object within a fi le) that can be displayed. If the selected object is a user form, clicking the

View Object button displays the user form; if the selected object is a fi le or an object within a

fi le, clicking the View Object button displays that object in the host application’s window.

For example, selecting the ThisDocument object for a Word document and clicking the View

Object button displays the actual Word document in the Word window. Selecting the Sheet1

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 37

object in an Excel workbook and clicking the View Object button displays that worksheet in

the Excel workbook in the Excel window.

Viewing an Object

You can also trigger the View Object mode by right-clicking an object and choosing View Object

from the shortcut menu or by double-clicking an object that supports the View Object feature.

(If the object doesn’t support the View Object feature, double-clicking it triggers the View Code

mode instead.)

Toggle Folders Toggles the view of the objects in the Project Explorer between folder view

(a view that shows the objects grouped within their projects and folders) and contents view

(which displays only the objects within their projects—no folders are shown).

The left part of Figure 2.4 shows the Project Explorer for an application session sorted by

folder view, and the right part shows the Project Explorer for the same situation in contents

view. Whether you spend more time in folder view or contents view will depend on the size

of your screen, the number of objects you put in any given project, and the way your mind

works, not necessarily in that order. For many purposes, you’ll want to toggle between folder

view and contents view to locate objects most easily.

Figure 2.4

Folder view (left)

displays the objects

separated into fold-

ers beneath the

projects that con-

tain them. Contents

view (right) displays

only the objects and

the projects that

contain them.

The Project Explorer has several uses, which is another reason to keep it open all the time.

Apart from navigating to the items you need to work with, you can perform the following addi-

tional tasks with the Project Explorer:

 ◆ Add components to or remove them from a project. For example, you can use the Project

Explorer to add a module or a user form to a project.

 ◆ Compare the components of one project to the components of another project. Such a com-

parison can be useful when you need to establish the differences between two or more

projects quickly (for example, your reference copy of a company template and the copies

users have been adding to).

 ◆ Move or copy items from one project to another. You can drag a code module, class mod-

ule, or user form from one project to another in the Project Explorer to copy it or from

the Project Explorer in one instance of the Visual Basic Editor to a project in the Project

38 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Explorer in another instance. For example, you could drag a user form from a Visual Basic

Editor instance hosted by Excel to a Visual Basic Editor session hosted by PowerPoint to

copy the user form. You can’t, however, copy or move objects that are specifi c to a par-

ticular application’s object model; for example, you can’t drop an Excel sheet into Word’s

Project Explorer because Word doesn’t support that type of object.

 ◆ Import or export a code module or a user form to or from a project.

The Project Explorer Is Your Best View

Many actions that you can perform through the Project Explorer you can also perform through the

Visual Basic Editor’s menu items. In general, though, the Project Explorer provides the easiest way

to navigate from module to module in the Visual Basic Editor, especially if you ever have several

complex projects open at the same time. You can access the most commonly used features for an

object by right-clicking it in the Project Explorer to display the shortcut menu.

Th e Object Browser
The Visual Basic Editor provides a full Object Browser for working with objects in VBA. You’ll

look at the Object Browser in detail in Chapter 8, “Finding the Objects, Methods, and Properties

You Need,” and when you examine the object models for the various Offi ce applications in the

fi nal part of the book. But in the meantime take a quick look at Figure 2.5, which shows the Object

Browser for a Word VBA session. The Document object is selected in the left-hand panel, and a list

of its properties appears in the right-hand panel. (To see this in your VBA Editor, press F2.)

Figure 2.5

Th e Object Browser

provides a quick

way to look up

objects and their

properties. Here,

you can see the

properties con-

tained in the

Document object.

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 39

You’ll fi nd that a number of these properties immediately make sense from your general

knowledge of Word documents. For example, as you would expect, the AttachedTemplate prop-

erty tells you which template the document is currently attached to. Likewise, the Bookmarks

property contains information on any bookmarks in the document. The property information

is displayed at the bottom of the Object Browser. One of the great things about the BASIC lan-

guage, of which VBA is a variant, and the libraries of objects underlying the Offi ce applications

is that they generally use ordinary English terminology.

Th e Code Window
You’ll do most of the actual work of testing and editing your macros in the Visual Basic Editor’s

Code window. (Since code is written in plain text, you could simply write it in Notepad, then

paste it into the code editor for testing and debugging. But the Visual Basic Editor offers so

many useful programming tools that only the brilliant few can easily get good results by trying

to wing it without any assistance from the editor.)

The Visual Basic Editor provides an individual Code window for each open project, for each

document section within the project that can contains code, and for each code module and

user form in the project. Each Code window is identifi ed by the project name, the name of the

module within the project, and the word Code in parentheses. Figure 2.6 shows the Visual Basic

Editor Code window with the Transpose_Word_Right macro open in it.

Figure 2.6

You edit macros in

the Code window.

Object drop-down list Procedure drop-down list

Procedure View button

Full Module View button

As you can see from the fi gure, two drop-down list boxes appear just below the title bar of

the Code window:

 ◆ The Object drop-down list box at the upper-left corner of the Code window provides a

quick way of navigating between different objects.

 ◆ The Procedure drop-down list box at the upper-right corner of the Code window lets you

move quickly from procedure to procedure within the current module. Click the down

arrow button to display the drop-down list of procedures. You’ll see that the fi rst proce-

dure is (Declarations). Clicking this item in the list takes you to the Declarations area at the

40 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

top of the current code sheet, which is where you declare public variables and other VBA

information that multiple procedures need to know.

The Visual Basic Editor Code window provides a half dozen features that help you edit code

effi ciently and accurately, as discussed in the following sections.

Complete Word

The Complete Word feature can complete the word you’re typing into the Code window, once

you’ve typed enough letters to distinguish that word from any other. If you haven’t typed

enough letters to distinguish the word, the Visual Basic Editor gives you the closest possibilities

(see Figure 2.7). You can either “type down” (continue typing to narrow the selection) or scroll

through the displayed list to fi nd the one you want.

Figure 2.7

Th e Complete Word

feature automati-

cally completes a

term when you’ve

typed enough to

identify it. If you

haven’t typed

enough, you can

choose from a short

list.

The easiest way to activate Complete Word when you’re typing code is to press Ctrl+spacebar.

You can also choose Edit ➢ Complete Word or click the Complete Word button on the Edit tool-

bar (see Figure 2.8). Note that the Edit toolbar isn’t visible by default. Open it by choosing View

➢ Toolbars ➢ Edit or by right-clicking the toolbar area in the editor, then choosing Edit from the

shortcut menu that appears.

Figure 2.8

Th e Edit toolbar

contains features

used when work-

ing in the Code

window.
List Properties/Methods

List Constants

Quick Info

Parameter Info

Complete Word

Indent

Outdent Toggle Breakpoint

Clear All Bookmarks

Previous Bookmark

Next Bookmark

Toggle Bookmark

Uncomment Block

Comment Block

Quick Info

The Quick Info feature displays a ScreenTip showing syntax information about the currently

selected variable, function, method, statement, or procedure. (Selected here just means the word

in the code that’s under or adjacent to the blinking cursor insertion point.) If you type in a com-

mand like MsgBox and then press the spacebar, the ScreenTip pops up to help you complete typ-

ing in the command. The tip shows both the required and optional elements of that command.

Optional elements are enclosed in square brackets.

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 41

Figure 2.9 shows an example of a Quick Info ScreenTip.

Figure 2.9

Use the Editor’s

Quick Info feature

to see a VB lan-

guage command’s

syntax or a quick

readout of status.

To display Quick Info, use one of these methods:

 ◆ Just type a space following a VB command. For example, type msgbox (space).

 ◆ Click the Quick Info icon on the Edit toolbar.

 ◆ Right-click a VB command and choose Quick Info from the shortcut menu.

 ◆ Position the insertion point in the command and press Ctrl+I.

 ◆ Position the insertion point in the term and choose Edit ➢ Quick Info.

 ◆ If you’re typing in actual commands from the VBA language (as opposed to, say, variables

or objects), the easiest way to see Quick Info is just to type the command’s name (such as

MsgBox), then press the spacebar key. Note that VB doesn’t pay any attention to capitaliza-

tion, so you can type in msgbox or MsgBox or whatever variation you wish. Once you fi nish

typing in the line of code (by pressing Enter), the editor will automatically capitalize the

command the standard way: MsgBox.

Auto List Members

Many VB commands have properties (qualities) and methods (behaviors). Taken together, the

properties and methods of an object are called its members.
For example, a message box can display various icons (such as question mark, exclamation

point, and so on) to cue the user about the purpose of the message (question, warning, etc.). This

icon is called the Buttons property of the message-box object. And this property is specifi ed right

after the text message in the line of code. Therefore, when I type a comma to indicate that I’m

now going to specify the icon for my message box, the Auto List Members feature opens a drop-

down list of the choices available. As you can see in Figure 2.10, I’m choosing vbOKOnly, but

there are a number of other possible choices, such as vbOKCancel, vbQuestion, and so on.

Figure 2.10

Use the Auto List

Members com-

mand to enter code

items quickly and

accurately.

The Auto List Members list allows you to quickly complete the line of code. Auto List

Members is switched on by default and is automatically displayed when you type a period in

42 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

an object description or a comma, parentheses, or other punctuation in a line of code. Notice

in Figure 2.10 that I’ve typed in a message-box command followed by the text Hello, Marvin!

and then a comma. As soon as I typed the comma, the list of settings for the Buttons appeared.

(These settings are called constants.)
Alternatively, you can display the list box by clicking the List Properties/Methods button on

the Edit toolbar.

To use Auto List Members to insert your choice into your code, follow these steps:

 1. Press the down arrow key to scroll down to the property or method, or scroll down with

the mouse (see Figure 2.10). You can also type the fi rst few letters of the property or meth-

od’s name to jump to it.

 2. Enter the property or method into the code by doing one of the following:

 a. Press Tab, or double-click the property or method, if you want to continue adding to

this line of code after entering the property or method. (There might be additional

optional properties you want to specify on this line.)

 b. Press Enter if you want to start a new line after entering the property or method.

List Constants

The List Constants feature displays a pop-up list box containing constants for a property you’ve

typed so that you can quickly complete the expression. List Constants is switched on by default.

Alternatively, you can display the list box by clicking the List Constants button on the Edit

toolbar.

To use List Constants (see Figure 2.11), follow these steps:

 1. Press ➢ to scroll down to the constant, type its fi rst letter (or fi rst few letters), or scroll

down with the mouse.

 2. Enter the constant in the code by doing the following:

 a. Press Tab, or double-click the constant, if you want to continue working on the same

line after entering the constant.

 b. Press Enter if you want to start a new line after entering the constant.

Figure 2.11

Th e List Constants

feature saves you

time and eff ort,

especially when

typing complex

constant names.

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 43

Data Tips

The Data Tips feature displays a ScreenTip containing the value of a variable the mouse pointer

moves over when the Visual Basic Editor is in Break mode (a mode you use for testing and

debugging macros, described later in this book). Figure 2.12 shows an example. The Data Tips

feature is switched on by default, but you can switch it, and other features, off by choosing Tools

➢ Options.

Figure 2.12

Use the Data Tips

feature to check the

value of a variable

when you’re run-

ning or stepping

through code.

Margin Indicators

The Margin Indicators feature lets you quickly set a breakpoint, the next statement, or a book-

mark by clicking in the margin of the Code window. You’ll look at setting breakpoints, setting

the next statement, and setting bookmarks later. (You can just right-click the gray margin on the

left side of the Code window, then choose Toggle from the shortcut menu to manipulate break-

points or bookmarks. You can also just left-click to toggle breakpoints.)

Other Editing Features

Apart from these features, the Code window includes standard Offi ce editing features such as

copy and move, cut and paste, and drag and drop. You can drag code from one procedure or

module to another.

Th e Properties Window
The Visual Basic Editor provides a Properties window you can use to view and modify the

properties of an object in VBA, such as a project, a module or class module, a user form, or a con-
trol (a button or check box in a dialog box, for example). If the Properties window isn’t visible in

the Editor, press F4.

In the drop-down list at the top of the Properties window you can select the object whose

properties you want to view or modify. The Alphabetic option displays an alphabetical list of

the properties in the item, and the Categorized option presents a list of the properties broken

down into categories. Generally, I fi nd the categorization less than useful because many proper-

ties don’t really fi t neatly into any particular category.

Figure 2.13 shows the Alphabetic option with the properties for an Excel workbook on the left

and the Categorized page on the right. (Showing the Categorized page for the Excel workbook

44 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

or worksheet isn’t very helpful because all of the properties belong to a Misc category—miscel-

laneous. There’s no categorization here at all.)

Figure 2.13

Use the Properties

window to view

the properties of a

project, user form,

module, class mod-

ule, or control.

The purpose of most of the workbook properties is easy to grasp. For example, if the

HasRoutingSlip property is set to False, it means the workbook does not have an email routing

slip attached to it, and if the Saved property is set to True, that indicates that the workbook does

not contain any unsaved changes. You’ll learn about the properties for user forms in Chapter 14,

“Creating Simple Custom Dialog Boxes,” and Chapter 15, “Creating Complex Forms.”

Understanding Design Mode, Run Mode, and Break Mode

Th e Visual Basic Editor can be in one of three modes, refl ecting three fundamental phases of pro-

gramming—writing, locating a bug, and fi xing a bug:

Design mode Also known as design time. Anytime you’re working in the Visual Basic

Editor on your code, you’re in Design mode. You don’t have to be actively designing anything

visually—such as a user control or form—although you often will be. You will also often just

be typing in source code—the commands that Visual Basic will execute when you switch to

Run mode. Or you might be editing code you’ve recorded.

USING THE VISUAL BASIC EDITOR’S MAIN WINDOWS | 45

Run mode Also known as runtime. When code is running, you’re in Run mode. Th e macro

will be executed just as if it had been launched from within an application like Word (using a

shortcut key combination or via clicking a Quick Access Toolbar button). Th e purpose of Run

mode in the Visual Basic Editor is to allow you to test and observe the code’s behavior and

interact with it if necessary, to see that it works as it’s supposed to. Th is is known as debug-

ging. If you do fi nd any problem during runtime testing, you can stop the execution by press-

ing Ctrl+Break and then check the values in variables or otherwise attempt to track down

where in your code the error is located. VBA itself can also throw you into Break mode if it

detects an error condition.

Break mode When code is running but execution is temporarily suspended, you’re in

Break mode. Among other things, Break mode lets you step through your code one command

or one procedure at a time (rather than running all the commands at once at full speed).

Stepping is a very handy tool when you’re debugging or otherwise critiquing your code.

You’ll explore debugging techniques in detail in Chapter 17, “Debugging Your Code and

Handling Errors.”

The Visual Basic Editor displays the Properties window by default, but you can close it by

clicking its close button (the x button). To display the Properties window again, press F4 or

choose View ➢ Properties Window.

To change a property, click the cell containing the property’s name. If a down arrow but-

ton appears in the value cell, click it to choose a new value from a drop-down list. If no button

appears, click the value cell to display the blinking insertion cursor and type in a new value.

You’ll be able to choose different values from drop-down lists, depending on the type of

property. For a True/False property, you’ll be limited to those two choices in the drop-down

list. For a text property such as Name, you can enter any valid VBA name.

By default, the Properties window is docked below the Project Explorer. You can adjust the

relative heights of the Properties window or the Project Explorer window by dragging the bor-

der between them. Or you can widen both at once by dragging the border to their right. If you

undock the Properties window (drag it), you can resize it by dragging its borders or corners to

display more properties or to shrink the window so it takes up less space in the Visual Basic

Editor. Undock interior windows (also called panes, such as the Properties pane) by dragging

them by their title bar or by double-clicking their title bar. Redock by double-clicking their title

bar or dragging them back into position.

Th e Immediate Window
Beyond the Project Explorer, the Code window, and the Properties window, the Visual Basic

Editor includes a number of other windows that it doesn’t display by default. Two of the key

windows are the Object Browser (described earlier in this chapter) and the Immediate window,

which you’ll use during the discussion of the VBA language in Chapter 5, “Understanding the

Essentials of VBA Syntax.”

The Immediate window, shown in Figure 2.14, is a small, unadorned window you can use as

a virtual scratch pad to enter lines of code you want to test without entering them in an actual

macro. When you type a line of code into the Immediate window and press the Enter key, the

Visual Basic Editor executes that code.

46 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Figure 2.14

Use the Immediate

window for on-

the-fl y work and

information.

To display the Immediate window, press Ctrl+G or choose View ➢ Immediate Window.

Display Variables’ Status during Debugging

You can also use the Immediate window to display information to help you check the values of

variables and expressions while code is executing. Th at is done by using the Debug.Print com-

mand, as in this example, which displays the value of the variable x in the Immediate window:

Sub ShowDebug()

Dim x As Integer

x = 12

Debug.Print x

End Sub

Setting Properties for a Project
Each VBA project has several properties of its own that you can set, including its project name,

its description, and whether it is locked against viewing. To examine or set the properties for a

project, right-click the project or one of its components in the Project Explorer and choose the

Properties item in the context menu to display the Project Properties dialog box.

Both the menu item and the resulting dialog box are identifi ed by the description of

the project—for example, the properties dialog box for a template in Word is identifi ed as

TemplateProject – Project Properties, and the properties dialog box for an Excel workbook is

identifi ed as VBAProject – Project Properties. Figure 2.15 shows the Project Properties dialog box

for an Excel workbook project.

Here’s what you can do on the General tab of the Project Properties dialog box:

 ◆ Set the project name in the Project Name text box. This name identifi es the project in the

Object Browser and, when necessary, in the Windows Registry. Make sure the name is

unique to avoid confusion with any other project. Technically, the project name is the name

of the type library for the project (a type library describes the objects—such as modules and

user forms—that the project contains); it is used to build the fully qualifi ed class name of

classes in the project (more on this later in the book). The project name can contain under-

scores but cannot contain spaces.

 ◆ Enter a description of the project in the Project Description text box. This description

appears in the Description pane in the Object Browser to help the user understand what

the project is. So be as concise, yet descriptive, as possible.

SETTING PROPERTIES FOR A PROJECT | 47

Figure 2.15

Use the Project

Properties dialog

box to view and set

the properties for a

project and to lock

a project against

change.

 ◆ Designate the Help fi le for the project by entering the name and path of the Help fi le in the

Help File Name text box. Click the button marked with the ellipsis (…) to the right of

the Help File Name text box to display the Help File dialog box. Then select the fi le and

click the Open button to enter the name of the Help fi le in the text box. (Alternatively, you

can type or paste in the name and path.)

 ◆ Specify the Help context for the project in the Project Help Context ID text box. The Help
context refers to a location in the Help fi le. The default Help context is 0, which causes the

Help fi le to display its opening screen (the same screen you’ll see if you run the Help fi le

from the Run dialog box or by double-clicking the fi le in Explorer). You can specify a differ-

ent help context to take the user to a particular topic—for example, one more relevant to the

project on which they’re seeking help.

 ◆ Specify any conditional compilation arguments needed for the project.

Here’s what you can do on the Protection tab of the Project Properties dialog box, shown in

Figure 2.16:

 ◆ Select the Lock Project For Viewing check box to prevent other people from opening the

project, viewing it, and changing it without knowing the password.

 ◆ In the Password To View Project Properties group box, enter a password for the project

in the Password text box, and then enter the same password in the Confi rm Password

text box. Click the OK button and then close the project. Now nobody can open and

view (let alone change) the project if they don’t know the password. That said, Offi ce’s

password security has been weak and was easily cracked prior to Offi ce 2007. Now supe-

rior encryption techniques are used, but the password is still crackable, albeit with far

greater diffi culty. More on this in Chapter 19, “Securing Your Code with VBA’s Security

Features.”

48 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Figure 2.16

Th e Protection

page of the Project

Properties dialog

box lets you lock

your project with

a password so that

nobody can view or

edit it

Select Lock Project For Viewing If You Want to Prevent Others from

Opening It

If you enter a password in the Password text box and the Confi rm Password text box but you don’t

select the Lock Project For Viewing check box, the Visual Basic Editor will prompt you for the pass-

word the next time you try to display the Project Properties dialog box. However, you’ll be able to

open and view the project and its contents without supplying the password.

Customizing the Visual Basic Editor
Given how much time you’re likely to spend in the Visual Basic Editor, you ought to customize it

so you can work as effi ciently and comfortably as possible. You can customize it as follows:

 ◆ Choose editor and view preference settings in the Visual Basic Editor to control how it

interacts with you

 ◆ Choose which windows to display in the Visual Basic Editor, and organize their layout so

you can use your workspace as effectively as possible

 ◆ Customize the toolbar and menus in the Visual Basic Editor so the commands you need are

at hand (without cluttering up your workspace)

 ◆ Customize the Toolbox so it contains the tools you need to build your user forms

The following sections explain your options.

Customization Is Global across Applications

Any customizing you do to the VBA Editor applies across all Offi ce applications using the version

of VBA you are customizing. For example, if you change the font in an instance of the Visual Basic

Editor hosted by Excel, the font also changes for Editor instances hosted by Word, PowerPoint,

Outlook, and so on.

CUSTOMIZING THE VISUAL BASIC EDITOR | 49

Choosing Editor and View Preferences
To begin choosing editor and view preferences, choose Tools ➢ Options to open the Options dia-

log box (see Figure 2.17).

Figure 2.17

Th e Editor page of

the Options

dialog box

Editor Page Options

The Editor page of the Options dialog box includes the following settings:

Auto Syntax Check Controls whether VBA displays warning message boxes when it discov-

ers errors while automatically checking your syntax as you type lines of code. Some people

fi nd this feature helpful because VBA instantly points out errors that could otherwise remain

unnoticed until you tried to run or debug your code. But if your style is to move from one

unfi nished line of code to another (and ultimately fi nish all the lines at your convenience), you

may want to turn off this feature to prevent the Visual Basic Editor from bombarding you with

message boxes for errors you’re aware of but prefer to fi x later. This choice is similar to the dif-

ference between writers who like to fi x spelling errors while they’re typing (and thus leave

Word’s Check Spelling As You Type option active) and those who prefer to keep their eye on

the ball and deal with minutia such as spelling after fi nishing their thoughts.

You’ll Always Get a Code Red on Lines with Errors

Even if you turn off Auto Syntax Check, the Visual Basic Editor still turns any off ending lines of

code red to draw your attention to them. It simply stops interrupting you with message boxes

displaying error warnings each time you mistype something.

Require Variable Declaration Governs whether you must declare variables explicitly.

Declaring variables explicitly is a little more work than declaring them implicitly, but many

50 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

people believe that it’s a good practice and will save you time down the road—so make

sure that this check box is selected unless you have a strong preference otherwise. (Chapter

6, “Working with Variables, Constants, and Enumerations,” discusses how to work with

variables.)

Auto List Members Described earlier in this chapter, this option controls whether the

Auto List Members and List Constants features automatically suggest properties, methods,

and constants as you work in the Code window. Most people fi nd these features helpful, but

some experienced programmers turn these features off because they know pretty much all

the properties, methods, and constants they need and prefer not to be distracted by a busy

interface.

Auto Quick Info This option controls whether the Quick Info feature automatically dis-

plays information about functions and their parameters as you work with functions in the

Code window.

Auto Data Tips This option controls whether the Visual Basic Editor displays ScreenTips

when you hover the mouse pointer over a variable or expression in Break mode, enabling you

to check the value of a variable or expression quickly. (Alternatively, you can use the Locals,

Immediate, or Watch window, but these take up more screen space.)

Auto Indent Determines whether the Visual Basic Editor automatically indents subse-

quent lines of code after you’ve indented a line. When Auto Indent is switched on, the Visual

Basic Editor starts each new line of code indented to the same level (the same number of

tabs or spaces or the same combination of the two) as the previous line. When Auto Indent

is switched off, the Visual Basic Editor starts each new line of code at the left margin of the

Code window. Usually, automatic indentation is a time-saver, although it means that each

time you need to decrease a new line’s level of indentation, you must press Shift+Tab, click

the Outdent button on the Edit toolbar, or delete the tabs or spaces.

Tab Width Sets the number of spaces in a tab. You can adjust this setting from 1 to 32

spaces. The default setting is 4 spaces, which works well for the default font. If you choose to

use a proportional font (such as Times or Arial) rather than a monospaced font (such as the

default New Courier) for your code, you may want to increase the number of spaces a tab

represents in order to clarify the levels of indentation in your code.

Drag-And-Drop Text Editing Controls whether the Visual Basic Editor supports drag-

and-drop. Most people fi nd this feature helpful. You can drag portions of your code around

the Code window or from one Code window to another. You can also drag code into the

Immediate window or drag an expression into the Watch window.

Default To Full Module View Controls whether the Visual Basic Editor displays all

the procedures in a module in one list (Full Module view) or displays them one at a time

(Procedure view). If you’re working with short procedures, you may fi nd Full Module view

useful. However, the individual view can provide a less cluttered and more workable context

for lengthy procedures. When working in Procedure view, you open the procedure you want

to work with by choosing it from the Procedure drop-down list at the top of the Code win-

dow. To toggle between Full Module view and Procedure view, click the Full Module View

button or the Procedure View button in the lower-left corner of any Code window.

CUSTOMIZING THE VISUAL BASIC EDITOR | 51

Use a Drop-Down List to Quickly Move Procedures

You can also use the Procedures drop-down list when working in Full Module view to quickly move

to a procedure by name.

Procedure Separator Controls whether the Visual Basic Editor displays horizontal lines to

separate the procedures within a module shown in Full Module view in the Code window.

Usually these lines are helpful, providing a quick visual cue showing where one procedure

ends and the next begins. (If you’re using Procedure view, this check box has no effect.)

Editor Format Page Options

The Editor Format page of the Options dialog box, shown in Figure 2.18, controls how code

appears in the Visual Basic Editor.

Figure 2.18

Th e Editor Format

page of the Options

dialog box

By default, comments in your code are rendered in green. This helps you easily recognize

that type of text in the code window. You can change the default colors for various types of text

by choosing a type of text in the Code Colors list box and then specifying its colors and typeface

(font). You have control over Foreground, Background, and Indicator options via drop-down

lists. However, I fi nd the default choices sensible, so I don’t change them.

Here’s what the Code Colors choices mean:

Normal Text Takes care of much of the text in a typical procedure. You’ll probably want to

make this a conventional color (such as black, the default).

Selection Text Affects the color of selected (highlighted) text.

Syntax Error Text Affects the color VBA uses for offending lines. The default color is red.

52 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Execution Point Text Affects the color VBA uses for the line currently being executed in

Break mode. You’ll usually want to make this a highlighter color (like the fl uorescent yellow

the Visual Basic Editor uses as the default) so you can immediately see the current line.

Breakpoint Text Affects the color in which VBA displays breakpoints (points where code

execution is forced to stop).

Comment Text Affects the color of comment lines. The default color is dark green.

Keyword Text Affects the color of keywords (words recognized as part of the VBA

language). Recall that in this book I’m using the term command for the words in the

VBA language.

Such text accounts for a sizable portion of each procedure. You may want to display key-

words in a different color than normal text because some people fi nd it helpful to be able to

distinguish keywords without needing to read the entire code. The default color is dark blue,

which is a good choice—not so intrusive that the characters look like confetti, yet not so hard

to see that you can’t quickly visualize the underlying syntax of a line of code.

Identifi er Text Affects the color VBA uses for identifi ers. Identifi ers include the names of

variables, constants, and procedures you defi ne.

Bookmark Text Affects the color VBA uses for the bookmarks in your code.

Call Return Text Affects the color VBA uses for calls to other procedures. By default, the

Visual Basic Editor uses lime green for call return text.

You can change the font and size of all the types of text in the Code window by using the

Font and Size drop-down lists on the Editor Format page. You can also prevent the display of

the margin indicator bar (the zone in which items such as the Next Statement and Breakpoint

icons appear) by clearing the Margin Indicator Bar check box. (Usually, these icons are helpful,

but removing this bar slightly increases the code area onscreen.)

General Page Options

The General page of the Options dialog box contains several categories of settings. The follow-

ing sections discuss them in groups. I always leave these options set to the default settings,

which are shown in Figure 2.19.

Figure 2.19

Th e General page of

the Options dialog

box

CUSTOMIZING THE VISUAL BASIC EDITOR | 53

Form Grid Settings Group Box

The Form Grid Settings options control how the Visual Basic Editor handles user forms:

 ◆ The Show Grid check box controls whether the Visual Basic Editor displays a grid pattern

of dots on the user form in Design mode to help you place and align controls. This check

box is selected by default.

 ◆ The Width and Height text boxes set the spacing of the dots that make up the grid. You

can set any value from 2 points to 60 points (the default setting is 6 points). If you display

the grid onscreen, you’ll see the dots; if you don’t display the grid, it still affects the Align

Controls To Grid feature, discussed next. Experiment and fi nd the coarseness of grid that

you fi nd easiest to work with.

 ◆ The Align Controls To Grid check box governs whether the Visual Basic Editor automati-

cally snaps the edges of controls you place or move to the nearest grid line. This option

lets you place controls in approximately the right positions rapidly and easily, but it pre-

vents you from making extremely fi ne positional adjustments. The grid enforces certain

positions, and you might fi nd it frustrating when trying to improve the layout of controls

you’ve already placed on a user form. (If so, one option is to clear the Align Controls To

Grid check box; another is to leave it selected but to decrease the size of the grid—to allow

fi ner adjustments.)

Th e Edit and Continue Group Box

The Edit And Continue group box contains only one control—the Notify Before State Loss check

box. This option controls whether the Visual Basic Editor warns you, when you’re running code,

if you try to take an action that requires VBA to reset the values of all variables in the module.

Error Trapping Group Box

The Error Trapping group box contains three option buttons you use to specify how VBA han-

dles errors that occur when you’re running code:

Break On All Errors Tells VBA to enter Break mode when it encounters any error, no mat-

ter whether an error handler (a section of code designed to handle errors) is active or whether

the code is in a class module. Break On All Errors is useful for pinpointing where errors

occur, which helps you track them down and remove them. But if you’ve included an error

handler in your code, you probably won’t need this option.

Break In Class Module This is arguably the most useful option for general use. When VBA

encounters an unhandled error in a class module (a module that defi nes a type of object),

VBA enters Break mode at the offending line of code.

Break On Unhandled Errors The default setting, this is useful when you’ve constructed an

error handler to deal with predictable errors in the current module. If there is an error han-

dler, VBA allows the handler to trap the error and doesn’t enter Break mode, but if there is

no handler for the error generated, VBA enters Break mode on the offending line of code. An

unhandled error in a class module, however, causes the project to enter Break mode on the

line of code that invoked the offending procedure of the class, thus enabling you to identify

(and alter) the line that caused the problem.

54 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Compile Group Box

The Compile group box controls when VBA compiles the code for a project into executable code.

Before any code can be executed, it needs to be compiled, but not all the code in a project must

necessarily be compiled before the Visual Basic Editor can start executing the fi rst parts of the

code.

You can select the Compile On Demand check box if you want VBA to compile the code only

as needed. VBA compiles the code in the procedure you’re running before starting to execute

that procedure, but it doesn’t compile code in other procedures in the same module unless the

procedure you’re running calls them (transfers execution to them, a technique you’ll learn later

in this book).

As a result, execution of the procedure you run fi rst in a module can begin as soon as VBA

fi nishes compiling the code for that procedure. If the procedure then calls another procedure in

the module, VBA compiles the code for the second procedure when the fi rst procedure calls it,

not when you begin running the fi rst procedure.

Compile On Demand is usually a good choice. It’s especially useful when you’re building

a number of procedures in a module and have unfi nished code lying around in some of them.

In contrast, if you clear the Compile On Demand check box, VBA compiles all the code in all
the procedures in the module before starting to execute the procedure you want to run. This

means that not only does the procedure start a little later (more code takes more time to compile,

though most computers today are so fast you won’t notice), but any language error or compile

error in any procedure in the entire module prevents you from running and testing the current

procedure, even if the code in that procedure contains no errors. This is a problem when you’ve

only sketched in some of the procedures, so they remain unfi nished.

Suppose you have a module named Compilation that contains two procedures, GoodCode

and BadCode, which look like this:

Sub GoodCode()

 MsgBox “This code is working.”

End Sub

Sub BadCode()

 Application.Delete

End Sub

GoodCode simply displays a message box to indicate that it’s working, whereas BadCode con-

tains an invalid statement (Application objects don’t have a Delete method). GoodCode runs

without causing a problem, but BadCode causes an error every time.

If you try to run GoodCode with Compile On Demand switched on, the procedure runs fi ne:

VBA compiles only the programming in the GoodCode procedure, fi nds no errors, and runs it.

But if you try to run GoodCode with Compile On Demand switched off, VBA also compiles the

code in BadCode before starting to run GoodCode—and VBA stops with a compile error at the

bogus Application.Delete statement. This thorough checking before running any code is

good for fi nished modules that work together, but it can slow you down and be annoying when

you’re just “sketching” code—experimenting with code in a module.

CUSTOMIZING THE VISUAL BASIC EDITOR | 55

On the other hand, you can see the advantage of compiling all the code in the module when

GoodCode calls BadCode, as in the third line of this version of the procedure:

Sub GoodCode()

 MsgBox “This code is working.”

 BadCode

End Sub

Here, compiling the code in BadCode before starting to run GoodCode is a good idea because

doing so prevents GoodCode from running if BadCode contains an error. If you run this version

of GoodCode with Compile On Demand switched on, VBA compiles GoodCode and starts to run

it, displaying the message box in the second line. The BadCode call in the third line then causes

VBA to compile BadCode, at which point VBA stops with the compile error. You don’t want

this to happen in the middle of a complex procedure; in such a case, you’d want Compile On

Demand switched off.

The Background Compile check box, which is enabled only when the Compile On Demand

check box is selected, controls whether the Visual Basic Editor uses idle CPU time to compile

further code while it’s running the code that it has already compiled. Keep Background Compile

switched on unless you notice and are bothered by any slowing of the execution of your code.

With current computer speeds, and if your projects aren’t huge, you’ll likely be unaware of any

bothersome difference in execution rate.

Show ToolTips and Collapse Proj. Hides Windows

The fi nal two options on the General page of the Options dialog box are Show ToolTips and

Collapse Proj. Hides Windows. Also known as ScreenTips, ToolTips are text descriptions that

appear when you hover the mouse pointer over a button or icon. The Show ToolTips check box

controls whether the Visual Basic Editor displays ToolTips for its toolbar buttons. ToolTips tend

to be useful unless you’re desperate to save the memory and processor cycles they consume—

which is very unlikely.

The Collapse Proj. Hides Windows check box controls whether the Visual Basic Editor hides

the Code window and other project windows that you collapse in the Project Explorer’s tree.

This check box is selected by default, and in general it’s a useful choice. When you collapse a

project in the Project Explorer, the Visual Basic Editor hides any Code windows or user form

windows belonging to that project and removes them from the list that appears on the Window

menu. When you expand the project again, the Visual Basic Editor displays the windows in their

previous positions and restores them to the Window menu’s list.

Docking Page Options

The Docking page of the Options dialog box, shown in Figure 2.20, controls whether the vari-

ous windows in the Visual Basic Editor are dockable—that is, whether they snap automatically

and magnetically to a side of the window when you move them there. Keeping windows dock-

able usually makes for a more organized interface. However, you may want to make the win-

dows undockable so you can drag them off the edge of the Visual Basic Editor if necessary and

56 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

arrange them as you like on the screen. Contemporary monitors are becoming quite large, so

you might have plenty of room to display various windows outside the primary editor window.

Figure 2.20

Th e Docking page of

the Options dialog

box

Choosing and Laying Out the Editor Windows
You can reposition the various windows (or panes) within the Visual Basic Editor. Your choice of

layout depends largely on the size and resolution of your screen and your personal preferences,

but here are a couple of suggestions:

 ◆ Always make the Code window large—maximize it. If you write long lines of code, you’ll

want to have as much space in the Visual Basic Editor window as possible. That way your

lines won’t wrap and the code will be easier to read.

 ◆ Some people fi nd that much of the time they’re actively writing code, they can dispense

with the Project Explorer, displaying it only when needed. As a handy way of restoring it,

you can put the Project Explorer display command on the Code window, Code window

break, Watch window, Immediate window, and Locals window context menus. (You’ll

learn how to customize the editor’s menus in the next section.) You can also quickly display

the Project Explorer by pressing its shortcut key, Ctrl+R.

 ◆ If you’re using a multimonitor arrangement, you’ll wish you could drag the child win-

dows outside the Visual Basic Editor parent window and onto the second monitor.

Unfortunately, they won’t go far beyond the boundaries of the parent window. But you

can achieve a similar effect by expanding the Visual Basic Editor window from your right-

hand monitor onto the left-hand monitor and then docking the Properties window and

the Project Explorer on the left-hand monitor. The appearance of the menu bar and toolbar

will suffer, but you’ll have more space for the Code window, and all three windows will be

available.

Customizing the Toolbar and Menu Bar
The Visual Basic Editor supports the same toolbar and menu bar customizations as the classic,

pre-Ribbon Microsoft applications used to offer, such as those found in Offi ce 2003.

CUSTOMIZING THE VISUAL BASIC EDITOR | 57

However, since the Ribbon was introduced in Offi ce 2007, the lone toolbar is the Quick

Access Toolbar, and there are no menus at all in the main application. But the Visual Basic

Editor retains the older interface style—enabling you to customize its menus and toolbars in the

classic fashion.

To customize the Visual Basic Editor, choose View ➢ Toolbars ➢ Customize (or right-click a

displayed toolbar or the menu bar and choose Customize from the context menu) to display the

Customize dialog box, shown in Figure 2.21.

Figure 2.21

Use the Customize

dialog box to cus-

tomize the Visual

Basic Editor’s

menus, toolbars,

and context menus.

Limitations of Menu and Keyboard Shortcuts

Th e Visual Basic Editor doesn’t let you create new menus of your own or customize its keyboard

shortcuts.

You can customize the Visual Basic Editor’s toolbars, menus, and context menus to suit the

way you work. Above all, if you use the context menus, be sure to customize them so they pro-

vide the commands you need.

In particular, you may want to add two key commands to the context menus: Comment Block

and Uncomment Block. The Comment Block command adds a comment apostrophe (‘) to the

beginning of each line of code in a multiline block of text you select. This transforms these lines

into a multiline comment that VBA won’t execute.

The Uncomment Block command reverses the process. It removes the fi rst comment apostro-

phe from each command in the selected block. This makes the lines executable. (Any line that

was commented before you employed the Comment Block command helpfully remains com-

mented after you run the Uncomment Block command. Run the Uncomment Block command

again, and you remove further commenting.)

These commands are available from the Edit toolbar in the normal confi guration of the

Visual Basic Editor, but you’ll probably fi nd it more convenient to make them available at all

times from the Code window’s context menu.

58 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

The Visual Basic Editor offers the context menus listed in Table 2.1. To customize a context

menu, right-click anywhere within the toolbars and menus area. Then choose Customize from

the shortcut menu. Now click the Toolbars tab in the Customize dialog box.

Select the Shortcut Menus check box in the Toolbars list on the Toolbars page of the

Customize dialog box. Then click the Commands tab in the Customize dialog box and drag the

command you want from the Commands page to the context menu (see Figure 2.22).

Figure 2.22

Use the Shortcut

Menus toolbar to

put key commands

on the context

menus in the Visual

Basic Editor.

Table 2.1: Context menus in the Visual Basic Editor

Context Menu Appears When You Right-Click In or On

MSForms A user form

MSForms Control A control on a user form

MSForms Control Group A group of controls on a user form

MSForms MPC A multipage control on a user form

Code Window Th e Code window in Design mode

Code Window (Break) Th e Code window in Break mode

Watch Window Th e Watch window

Immediate Window Th e Immediate window

Locals Window Th e Locals window

Project Window Th e Project window in Design mode

Project Window (Break) Th e Project window in Break mode

Object Browser Th e Object Browser

MSForms Palette Th e clear space on a page in the Toolbox

CUSTOMIZING THE VISUAL BASIC EDITOR | 59

Context Menu Appears When You Right-Click In or On

MSForms Toolbox Th e tab on a page in the Toolbox

MSForms DragDrop An item on a user form that can be dragged and dropped elsewhere on the

user form

Property Browser A property in the Properties window

Docked Window A docked window (for example, the Project Explorer)

Here are some suggestions for customizing the Visual Basic Editor:

 ◆ If you use the Locals window often to track the value of variables when stepping through

your code to debug it, place a button for that window on a toolbar that you always keep

displayed (the default button for Locals is located by default only on the Debug toolbar), or

place an item for it on the context menus for the Code window (both in Design mode and in

Break mode), Watch window, and Immediate window.

 ◆ Put the Watch window and the Immediate window options on the context menus for the

windows from which you’ll invoke them.

 ◆ If you have a medium-sized monitor, consider grouping all the toolbar buttons you com-

monly use on one toolbar so that you don’t waste space by displaying multiple toolbars

horizontally.

Customizing the Toolbox
You can also customize the Toolbox, a special pane that contains controls for building user

forms. It can be made visible only when a user form is visible in the Code window. (Chapters 14

and 15 show you how to build user forms.)

You can customize this Toolbox by adding and removing controls and adding new Toolbox

pages of your own. Some programmers put their most-used controls on the Toolbox, all on one

page, to save themselves time. These controls can include customized variations on the regular

Toolbox controls, and by putting them on the Toolbox, you avoid having to customize them again.

For example, many dialog boxes you create need an OK button that dismisses the dialog box,

implements some code, and then continues execution of the procedure. Each OK button needs

its Name property set to cmdOK, its Caption property set to OK, its Default property set to True,

and its Height and Width properties set to a size smaller than the clunky dimensions the Visual

Basic Editor assigns by default. Once you’ve thus customized a command button by modifying

all these properties, you can place a copy of the special button on the Toolbox and easily just

reuse it for subsequent forms. This saves time. Another candidate for this kind of customization

is the TextBox. The default TextBox displays only a single line and uses a nearly unreadable font

size of 8. To avoid having to modify these default properties each time you use a TextBox, create

a custom TextBox that has multiple lines and is set to a font size of 11.

Another reason to customize the Toolbox is to add advanced controls that extend the things

you can do with dialog boxes and user forms.

Table 2.1: Context menus in the Visual Basic Editor (continued)

60 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Adding Controls to the Toolbox

The fi rst way you’ll probably want to add controls to the Toolbox is directly from a user form.

For example, once you’ve created your custom OK and Cancel buttons, or a TextBox, you can

copy them from the user form to the Toolbox so you can reuse them in any user forms you sub-

sequently create.

To copy one of your custom controls from a displayed user form to the Toolbox, just drag it

and drop it, as shown in Figure 2.23. (Chapter 14 shows you how to put controls onto user forms

you create yourself.)

Figure 2.23

Th e quickest way to

add a control to the

Toolbox is to drag

it there from a user

form.

Microsoft and other vendors also provide a variety of prewritten controls you can add to

your Toolbox. To add these controls, follow these steps:

 1. Right-click in the Toolbox page where you want to add controls. (You’ll learn how to add

new pages to the Toolbox in the section “Adding Pages to the Toolbox” a little later in this

chapter.)

 2. Choose Additional Controls from the context menu to display the Additional Controls

dialog box shown in Figure 2.24.

 3. In the Available Controls list box, click the check boxes for the controls you want to add to

the Toolbox, and then click the OK button.

CUSTOMIZING THE VISUAL BASIC EDITOR | 61

Figure 2.24

In the Additional

Controls dialog box,

select the check

boxes for the con-

trols you want to

add, and then click

the OK button.

Once you are fi nished, if you would like to collapse the list to only the currently selected

items, click the Selected Items Only check box in the Show group box.

Depending on your computer and what software is installed on it, you may fi nd a variety

of interesting and useful controls. There are numerous controls, but these are among the most

noteworthy:

 ◆ A set of Microsoft Outlook controls

 ◆ A control for Apple’s QuickTime

 ◆ A status-bar control

Some of these controls can add important functionality to your macros. You can also search

the Internet for additional specialized controls like calendars, security locks, and so on. Adding

prebuilt controls can save you time because you simply drag and drop functionality onto your

user forms—functionality that doesn’t require you to spend days writing code.

You can move a control from one page of the Toolbox to another by dragging it from the page

it’s on and moving the mouse pointer (still dragging) over the tab of the destination page to dis-

play that page. Then, move the mouse pointer down (again, still dragging) into the body of that

page and drop the control.

Renaming a Toolbox Control

When you move the mouse pointer over a control in the Toolbox, a ScreenTip appears, show-

ing the name of that control. To rename a control, right-click it in the Toolbox and choose the

Customize option from the context menu to display the Customize Control dialog box.

Type the name for the control in the Tool Tip Text box in the Customize Control dialog box

(delete or change the existing name as necessary). This name appears as a ScreenTip when the

user moves the mouse pointer over the control in the Toolbox. Then, if you wish, assign a dif-

ferent picture to the control’s Toolbox icon, as described in the next section. Otherwise, click the

OK button to close the Customize Control dialog box.

62 | CHAPTER 2 GETTING STARTED WITH THE VISUAL BASIC EDITOR

Assigning a Picture to a Control’s Toolbox Icon

Each control in the Toolbox is identifi ed by a picture. You can assign a new picture to the control

by displaying the Customize Control dialog box, clicking the Load Picture button, and selecting

the picture or icon in the resulting dialog box.

You can edit the picture assigned to some controls by displaying the Customize Control dia-

log box, clicking the Edit Picture button, and using the Edit Image dialog box to color the pixels

that make up the picture.

Removing Controls from the Toolbox

To remove a control from the Toolbox, right-click it and choose Delete from the context menu.

The item is identifi ed by the name of the control—for example, if you right-click a control named

Company Name Combo Box, the menu item is named Delete Company Name Combo Box.

If the item is a custom control you created, this action gets rid of the control and you can’t

restore it (unless you have a copy elsewhere). If the item is one of the Microsoft-supplied controls

that come with the Microsoft Forms 2.0 package (which is part of VBA), you can restore it to the

Toolbox using the Additional Controls dialog box. Just select the check box for the appropriate

object (for example, Microsoft Forms 2.0 CommandButton).

You can also remove controls from the Toolbox by deleting the entire page they’re on. See

“Removing Pages from the Toolbox,” later in this chapter.

Adding Pages to the Toolbox

To add a page to the Toolbox, right-click the tab at the top of a page (or the label on the tab) and

choose New Page from the context menu. The Visual Basic Editor adds a new page named New

Page, to which it adds the Select Objects control. You’ll probably want to rename the new page

immediately.

By the way, the Select Objects control (its icon is a black arrow) appears on every page in the

Toolbox, and you can’t remove it. This is strange since you can go years without ever clicking

it. This “control” is unlike others. It isn’t added to a form. Instead, it must be selected in the

Toolbox when you’re resizing or repositioning, or when you otherwise need to select a true

control on the form. However, when you merely click a control (and following many other

actions), VBA automatically activates this “select object” feature—so you’ll fi nd that you never

actually click it.

Renaming Pages in the Toolbox

To change the name of a Toolbox page, right-click its tab or label and choose Rename from the

context menu to display the Rename dialog box. Type the name in the Caption text box, type any

control tip text in the Control Tip Text box, and click the OK button to close the dialog box.

Removing Pages from the Toolbox

To remove a page from the Toolbox, right-click its tab or label and choose Delete Page from the

context menu. The Visual Basic Editor removes the page from the Toolbox without any confi r-

mation, regardless of whether the page contains controls.

THE BOTTOM LINE | 63

Importing and Exporting Toolbox Pages

If you want to share Toolbox pages, you can save them as separate fi les and distribute them to

your colleagues. Toolbox pages have a .pag fi lename extension.

To import a Toolbox page, right-click the tab or label on an existing page in the Toolbox and

choose Import Page from the context menu to display the Import Page dialog box. Select the

page you want to import and click the Open button in the dialog box. The Visual Basic Editor

adds the new page after the last page currently in the Toolbox and names it New Page.

Right-click the page’s tab or label, choose Rename, type a new name and description, and

then click the OK button.

Likewise, you can export a Toolbox page by right-clicking its tab or label and choosing

Export Page from the context menu to display the Export Page dialog box. Type a name for the

page, choose the folder in which to save it, and then click the Save button to save it. Now anyone

can import your page into their editor as described previously.

Moving Pages in the Toolbox

To move a page in the Toolbox, right-click its tab or label and choose Move from the context

menu to display the Page Order dialog box. In the Page Order list box, select the page or pages

you want to move (Shift+click to select multiple contiguous pages, Ctrl+click to select multiple

pages individually) and use the Move Up and Move Down buttons to rearrange the pages as

desired. Click the OK button to close the Page Order dialog box when you’ve fi nished.

Th e Bottom Line

Open the Visual Basic Editor. When you want to create a new macro by hand-program-

ming (as opposed to recording) or need to modify or test a macro, the Visual Basic Editor is a

powerful tool.

Master It Open the Visual Basic Editor in Word and create a simple macro.

Open a Macro in the Visual Basic Editor. You edit and test macro code in the Code win-

dow of the Visual Basic Editor.

Master It Open the Visual Basic Editor and display a particular macro in the Code

window.

Understand the Project Explorer’s two views. The Project Explorer window displays a tree

of current projects. You can choose between viewing only the fi les or the folders and fi les.

Master It Switch between folder and contents view in the Project Explorer.

Set properties for a project. You can specify a project’s name, an associated Help fi le, and

other qualities of a project.

Master It Lock a project so others can’t modify or even read its contents.

Customize the Visual Basic Editor. The Visual Basic Editor can be customized in many

ways, including personalizing classic menus and toolbars.

Master It Undock the Properties window and change its size. Then redock it.

c03.indd 09:43:6:AM 07/19/2013 Page 65

Chapter 3

Editing Recorded Macros

In this chapter, you’ll use the Visual Basic Editor to edit the Word and Excel macros you

recorded with the Macro Recorder in Chapter 1, "Recording and Running Macros in the Offi ce

Applications." In addition, you’ll create a new macro in PowerPoint and see how to edit it.

Even if you’re working with an application that doesn’t include the Macro Recorder (such as

PowerPoint), you may still want to read through this chapter because it shows you how to use

some of the key editing features of the Visual Basic Editor.

There are three reasons for working with macros in the Visual Basic Editor:

 ◆ First, to fi x any problems in the behavior of a macro you recorded. For example, if you acci-

dentally hit the Enter key while recording the macro, the macro will keep performing that

wrong instruction every time you run it unless you remove or change the instruction. You

would want to delete this line of code in your macro:

Selection.TypeParagraph

(Alternatively, it’s sometimes easier to just rerecord the macro.)

 ◆ Second, to add further instructions to the macro to make it behave differently. This is a

great way to get started learning VBA because sometimes by just making relatively small

or simple changes to a recorded macro, you can greatly increase its power and fl exibility. In

the process, you become familiar with the language.

 ◆ Third, to create new macros by writing them in the Visual Basic Editor instead of record-

ing them. You can write a new macro from scratch or paste in parts of an existing macro, as

appropriate.

In this chapter you will learn to do the following:

 ◆ Test a macro in the Visual Basic Editor

 ◆ Set breakpoints and use comments

 ◆ Edit the recorded Word macro

 ◆ Edit the recorded Excel macro

 ◆ Edit a new PowerPoint macro

66 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 66

Testing a Macro in the Visual Basic Editor
If a macro fails when you try to run it from the host application, the quickest way to fi nd out

what’s going wrong is to open the macro in the Visual Basic Editor, run it, and see where in the

code it fails:

 1. In the host application, press Alt+F8 or choose Tools ➢ Macro ➢ Macros to display the

Macros dialog box.

 2. Select the macro, and then click the Edit button. The host application opens an instance of

the Visual Basic Editor and displays the macro for editing.

 3. Start the macro running by pressing F5. Alternatively, you could choose Run ➢ Run Sub/

UserForm or click the Run Sub/UserForm button (a green arrow) on the Standard toolbar

in the Visual Basic Editor (see Figure 3.1).

Figure 3.1

Click the Run Sub/

UserForm button

on the Standard

toolbar to start

running the code.

Insert <Item>

View <Application>

Save <Project>

Cut

Copy

Paste

Find

Undo

Redo

Line and Column
Readout

Run Sub/UserForm

Break

Reset

Design Mode

Project Explorer

Properties Window

Object Browser

Toolbox

Help

 4. If the macro encounters an error and halts execution (goes into Break mode), VBA displays

an error-message box onscreen and selects the offending statement in the Code window

(displays white letters on a blue background). You can then edit the statement to fi x the

problem. Once you’ve done so, step through the macro as described in the next section.

Understanding the VBA Editor Modes

 Th e VBA Editor is always in one of three modes:

 ◆ Design mode when you’re designing a user form or writing code

 ◆ Execution mode when you’ve pressed F5 and are running your code, usually to see how it behaves

to test it

 ◆ Break mode when execution has been halted (so you can examine variables or otherwise take a

look at what’s going on in the code)

TESTING A MACRO IN THE VISUAL BASIC EDITOR | 67

c03.indd 09:43:6:AM 07/19/2013 Page 67

Th e Editor halts execution and enters Break mode in several ways: when you press Ctrl+Break, each

time you press F8 to single-step through the code, when it encounters a breakpoint that you’ve set

within the code (discussed shortly), or when certain types of errors occur.

You can tell if you’re in Break mode by looking at the Editor’s title bar. If you see the word [break],

you’re in Break mode. If it just says Normal, you’re in Design mode. When you’re in Break mode,

you can return to normal Design (editing) mode (so you can type in the Code window to revise and

retest the macro) by clicking the Reset button on the Standard toolbar in the Visual Basic Editor

(it’s the blue square next to the equals sign (Break button)—see Figure 3.1). If you ever fi nd yourself

unable to type in the Editor, or the Editor is otherwise behaving strangely, remember to click this

Reset button to get out of Break mode and restore normalcy.

Test Macros Only on Files You Don’t Care About

Always test your macros on fi les (or copies of fi les) that you don’t care about. Th ere are few better

ways to lose valuable work than to unleash untested macros on a document and watch it get mangled

or worse. Store your code in a central location (such as Normal.dotm in Word or the Personal Macro

Workbook in Excel) so that it’s accessible to all your fi les rather than only the fi le that contains it.

If you create a macro in the wrong fi le, export it from that fi le and import it into your centralized

storage. To export the macro, right-click its module in the Project Explorer, choose Export File

from the context menu, use the Export File dialog box to specify the folder and fi lename, and then

click the Save button. To import a module, right-click the destination project in the Project Explorer,

choose Import File, select the fi le in the Import File dialog box, and then click the Open button.

Stepping through a Macro
To see exactly what a macro does (and what it does wrong), you can step through the macro—go

through the macro, executing one command at a time—so that you can see the effect of each

command. Stepping through a macro can be time-consuming—you’re seeing the macro run in

slow motion—but it’s one of the best ways to identify problems and fi x them.

Usually debugging is a matter of fi nding out where in the code something goes wrong. And

although you generally already know what goes wrong, you still need to fi gure out the location

of the problem in your code; then you can fi gure out how the error happens.

To step through a macro, follow these steps:

 1. Open the host application, and then open the macro for editing: press Alt+F8, select the

macro, and then click the Edit button.

 2. Sometimes it’s helpful to arrange the Visual Basic Editor window and the host applica-

tion’s window so that you can see them both simultaneously. Either arrange the windows

manually or use a Windows command to do so. For example, stack the windows by right-

clicking in open space on the Windows Taskbar and choosing Show Windows Stacked

from the context menu. Alternatively, you can select Show Windows Side By Side. If you

68 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 68

have any other applications currently running, minimize them so they won’t be included

in your stack. (If you have two monitors, you can dedicate one to the Editor and one to

the application.) In Windows 7 or 8, the quickest way to display two windows is to drag

one of them to the far left (drop it, and it will snap to that location and resize so it takes

up 50 percent of the screen). Drag the other window to the right.

 3. Set up conditions the macro expects. Perhaps you need to have a document open. For

example, to run properly, a macro that applies a style to a paragraph requires that a para-

graph is actually available.

 4. Click somewhere in the macro code. The location of the insertion cursor is how the Editor

decides which macro you want to work with.

 5. Press F8 to step through the macro command by command. Each time you press F8, one

line of your VBA code will be executed. The Visual Basic Editor highlights each com-

mand as it’s executed, and you can watch the effect in the application window to catch

errors.

Pressing F Is the Easiest Way to Step Through Macros

You can also step through a macro by choosing Debug ➢ Step Into or clicking the Step Into button

on the Debug toolbar, but the F8 key is easiest to use. After all, you’ll often need to step repeatedly

until you locate the problem. Pressing a single key is quite a bit more effi cient than repetitively

opening a menu.

Figure 3.2 provides an example of stepping through a macro recorded in Word. As you’ll

see, to catch what a macro is doing wrong, arrange the application window and the Visual Basic

Editor window so that you can see them both. Then step through the macro by pressing the F8

key or using the Step Into command.

Figure 3.2:

Stepping through a

macro recorded in

Word

You’ll learn about debugging macros in detail in Chapter 17, “Debugging Your Code and

Handling Errors.” However, let me briefl y introduce two additional important techniques that

can help you locate bugs in your macros: setting breakpoints and commenting out lines.

Setting Breakpoints
A breakpoint can be set on a line of code to tell VBA to stop executing the macro there. By using a

breakpoint, you can run quickly through known functional parts of a macro at full speed (press

F5 to run), and then the Editor automatically stops at the breakpoint. You put a breakpoint just

TESTING A MACRO IN THE VISUAL BASIC EDITOR | 69

c03.indd 09:43:6:AM 07/19/2013 Page 69

before where you suspect a bug is located in the code. That way, you don’t have to step through

all your code. You can execute the macro at normal, rapid speed—but then halt near the suspi-

cious location and begin pressing F8 to step through the code, executing it slowly, statement by

statement, to closely observe the behaviors. You can set as many breakpoints as you wish.

To toggle a breakpoint on or off, right-click in a line of executable code (not a comment line,

described in the following section) and choose Toggle ➢ Breakpoint from the context menu or

click the Toggle Breakpoint button on the Edit toolbar. Even easier, just click in the gray margin

indicator bar to the left of the line of code.

A line of code on which you set a breakpoint is shaded red by default. The breakpoint itself is

designated by a red circle in the margin indicator bar (see Figure 3.3).

Figure 3.3

Use a breakpoint

(the red circle that

appears in the mar-

gin indicator bar) to

stop code execution

at a line of your

choice.

Breakpoints Are Not Persistent

Breakpoints are temporary—the Visual Basic Editor doesn’t save them with your code. You must

specify them for each editing session.

Commenting Out Lines
Like most programming languages, VBA lets you add comments to your code so that it’s easier

to understand. Comments can be invaluable both when you’re creating code and when you’re

revisiting your own code long enough after you’ve written it to forget what it does—or, worse,

trying to fi gure out what someone else’s code does.

But there’s another use for commenting. You can also comment out lines of code to prevent

the Visual Basic Editor from executing them. In other words, comments are normally just notes

to self that are not part of the macro proper—they are not written in VBA. However, sometimes

while debugging you’ll want to comment out an actual line of executable code in your macro.

That way during execution, this line is simply not executed. It’s ignored.

This can be a useful technique for temporarily skipping over suspect lines of code without

actually removing them from the macro. Then you run the code and see what the difference is

with the commented lines ignored. If the bug goes away, it’s probably located within the lines

that are commented out.

To comment out a line manually, type an apostrophe (‘) at the very beginning of the line.

Alternatively, you can use the Rem command instead of the apostrophe. (Rem is short for remark,

70 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 70

and comment lines are sometimes called remark lines.) To uncomment the line manually, just

delete the apostrophe or Rem.

The Visual Basic Editor provides the Comment Block and Uncomment Block commands for

commenting out multiple lines automatically. Select the lines of code (or click in the single line

you want to affect), and then click the Comment Block button on the Edit toolbar to place an

apostrophe at the beginning of each line; to uncomment a line or a group of selected lines, click

the Uncomment Block button, and the Visual Basic Editor removes an apostrophe from each line.

The Comment Block and Uncomment Block commands work only with apostrophes, not

with Rem lines. If you prefer to use Rem, you must comment and uncomment lines manually. Few

people, though, use Rem these days.

Comment Block Commands Can Be Efficient

Th e Comment Block command adds an apostrophe to the beginning of each line in the selected

block, even for lines that are already commented off (this does no harm). Likewise, the Uncomment

Block command removes apostrophes one at a time from each line in the selected block rather than

removing all apostrophes at once. Th is behavior helps preserve comment lines and enables you to

use diff erent levels of commenting.

Stepping Out of a Macro
Once you’ve identifi ed and fi xed the problem with a macro, you probably won’t want to step

through the rest of the macro command by command. To run the rest of the macro and the rest

of any macro that called it (triggered it), you can press the F5 key. Alternatively, you can click

the Run Sub/UserForm button on the Standard toolbar or the Debug toolbar (see Figure 3.4), or

you can choose Run ➢ Continue. If you want to run only the rest of this macro, and then return

to stepping through the macro that called this one, use the Step Out command. The Step Out

command fi nishes executing the current macro or procedure at full speed, but if the code then

continues with another procedure, the Visual Basic Editor reverts to Break mode so you can

examine that procedure’s code. We’ll explore what it means to call procedures later in this book.

Figure 3.4

Th e Debug toolbar

contains commands

for running code,

stepping into it

and out of it, and

displaying key win-

dows for debugging.

Design Mode

Run Sub/UserForm

Break

Reset

Toggle Breakpoint

Step Into Step Over

Step Out

Locals Window

Immediate Window

Watch Window

Quick Watch

Call Stack

To issue the Step Out command, press Ctrl+Shift+F8, click the Step Out button on the Debug

toolbar, or choose Debug ➢ Step Out.

EDITING THE WORD MACRO | 71

c03.indd 09:43:6:AM 07/19/2013 Page 71

Editing the Word Macro
Now, edit the Transpose_Word_Right macro that you recorded in Word in Chapter 1, and use it

to build another macro. To begin, open the macro in the Visual Basic Editor:

 1. Start Word if it’s not already running, or activate it.

 2. Press Alt+F8 or choose Tools ➢ Macro ➢ Macros to display the Macros dialog box.

 3. Select the Transpose_Word_Right macro, and then click the Edit button.

In the Code window, you should see code similar to Listing 3.1, except for the line numbers,

which I’m using here to identify the lines of code.

Listing 3.1: Th e recorded transpose-words macro

 1. Sub Transpose_Word_Right()

 2. ‘

 3. ‘ Transpose_Word_Right Macro

 4. ‘ Transposes the current word with the word to its right. _

 5. ‘Created 5/5/13 by Nanci Selest-Gomes.

 6. ‘

 7. Selection.Extend

 8. Selection.Extend

 9. Selection.EscapeKey

10. Selection.Cut

11. Selection.MoveRight Unit:=wdWord, Count:=1

12. Selection.PasteAndFormat (wdFormatOriginalFormatting)

13. Selection.MoveLeft Unit:=wdWord, Count:=1

14. End Sub

Here’s what the macro does:

 ◆ Line 1 starts the macro with the Sub Transpose_Word_Right() statement, and line 14 ends

the macro with the End Sub statement. The Sub and End Sub lines mark the beginning and

end of the macro (as they do any macro).

 ◆ Lines 2 and 6 are blank comment lines the Macro Recorder inserts to make your macro

easier to read. You can use any number of blank lines or blank comment lines in a macro to

help separate statements into groups. (A blank line doesn’t have to be commented out—it

can just be blank—but the Macro Recorder has added commenting to these blank lines to

make it clear what they are.)

 ◆ Lines 3 through 5 are comment lines that contain the name of the macro and its

description. The Macro Recorder entered these lines from the information you typed into

the Record Macro dialog box.

 ◆ Line 7 records the fi rst keystroke of the F8 key, which starts Extend mode—a way of

selecting text in a Word document.

72 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 72

 ◆ Line 8 records the second keystroke of the F8 key, which continues Extend mode and

thereby selects the current word.

 ◆ Line 9 records the keystroke of the Esc key, which cancels Extend mode.

 ◆ Line 10 records the Cut command, which cuts the selection (in this case, the selected word)

to the Clipboard.

 ◆ Line 11 records the Ctrl+→ command, which moves the insertion point one word to the

right.

 ◆ Line 12 records the Paste command, which pastes the selection into the document at the

current position of the insertion point. Whatever formatting was originally applied to the

selection is retained (rather than applying the formatting in effect at the new location).

 ◆ Line 13 records the Ctrl+← command, which moves the insertion point one word to

the left.

Stepping Th rough the Transpose_Word_Right Macro
Try stepping through this macro in Break mode using the Step Into command:

 1. Arrange your screen so you can see both the active Word window and the Visual Basic

Editor window (for example, by right-clicking the Taskbar and choosing Show Windows

Stacked from the context menu or by snapping each window to a side of the screen).

 2. Click in the Visual Basic Editor, and then click to place the blinking insertion point at the

start (on the Sub) of the Transpose_Word_Right macro in the Code window.

 3. Press F8 to step through the code one active line at a time. You’ll notice that VBA skips

the blank lines and the comment lines because they’re supposed to be ignored. VBA

highlights the current statement each time you press F8, and you see the actions taking

place in the Word window.

The Visual Basic Editor leaves Break mode when it reaches the end of the macro (in this case,

when you press F8 to execute the End Sub statement in line 14). The Editor returns to Design

mode. You can also exit Break mode at any time by clicking the Reset button (blue square) on

the Standard or the Debug toolbar or by choosing Run ➢ Reset.

Running the Transpose_Word_Right Macro
If the macro works fi ne when you step through it, you may also want to run it from the Visual

Basic Editor. Just press F5. In Break mode, F5 executes the macro from the current instruction

(where the insertion cursor is located).

Creating a Transpose_Word_Left Macro
At this point we’ll modify the macro. We’ll create a Transpose_Word_Left macro by making

minor adjustments to the Transpose_Word_Right macro. Follow these steps.

 1. In the Code window, select all the code for the Transpose_Word_Right macro, from the

Sub Transpose_Word_Right() line to the End Sub line. You can select in three ways:

by dragging with the mouse, by holding down Shift and using the arrow keys to extend

the selection, or by positioning the insertion point at one end of the macro and then

Shift+clicking the other end.

EDITING THE WORD MACRO | 73

c03.indd 09:43:6:AM 07/19/2013 Page 73

 2. Copy the code by issuing a Copy command (for example, by right-clicking and choosing

Copy from the context menu or by pressing Ctrl+C or Ctrl+Insert).

 3. Click to move the insertion point to the line below the End Sub statement for the

Transpose_Word_Right macro in the Code window.

 4. Paste the code by issuing a Paste command (by right-clicking and choosing Paste from

the context menu or by pressing Ctrl+V or Shift+Insert). The Visual Basic Editor automati-

cally enters a horizontal line between the End Sub statement for the Transpose_Word_

Right macro and the new macro you’ve pasted.

 5. Change the name of the second Transpose_Word_Right macro to Transpose_Word_Left

by editing the Sub line:

Sub Transpose_Word_Left()

 6. Edit the comment lines at the beginning of the macro accordingly—for example,

‘Transpose_Word_Left Macro

‘Transposes the current word with the word to its left. _

‘Created 5/5/13 by Nanci Selest-Gomes.

 7. Now all you need to do is replace the MoveRight method with the MoveLeft method.

This will move the insertion point one word to the left instead of one word to the right.

While you could do that by typing the correction or by using Cut and Paste to replace the

Selection.MoveRight line with the commented-out Selection.MoveLeft line, try using

the List Properties/Methods feature instead. Just for practice, follow these steps:

 a. Click to place the insertion point in the word MoveRight.

 b. Click the List Properties/Methods button on the Edit toolbar to display the list of prop-

erties and methods. It’s the fi rst button on the far left. Or just press Ctrl+J. (If the Edit

toolbar isn’t visible, right-click one of the existing toolbars and choose Edit from the

context menu.)

 c. Double-click the MoveLeft method in the list to make it replace the MoveRight method

in the code line.

 8. Now that you no longer need it, delete the line Selection.MoveLeft Unit:=wdWord,

Count:=1 from the end of the macro.

You should end up with a macro that looks like Listing 3.2.

Listing 3.2: Th e edited transpose-words macro

Sub Transpose_Word_Left()

‘

‘ Transpose_Word_Left Macro

‘ Transposes the current word with the word to its left. _

‘ ‘Created 5/5/13 by Nanci Selest-Gomes.

‘

 Selection.Extend

74 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 74

 Selection.Extend

 Selection.EscapeKey

 Selection.Cut

 Selection.MoveLeft Unit:=wdWord, Count:=1

 Selection.PasteAndFormat (wdFormatOriginalFormatting)

End Sub

Try stepping through this macro to make sure it works. If it does, you’re ready to save it—and

perhaps to create a Quick Access Toolbar button, or keyboard shortcut, for it in Word if you plan

to use it in your writing.

Save Your Work
When you fi nish working with this or any other macro, choose File ➢ Save (Ctrl+S) from the

Visual Basic Editor to save the document or template that contains the macro and the changes

you’ve made to it. Then press Alt+Q or choose File ➢ Close And Return To Microsoft Word to

close the Visual Basic Editor and return to Word.

Editing the Excel Macro
In the following sections, you’ll edit the Excel macro that you recorded in Chapter 1. This time,

you won’t create a new macro—instead, you’ll add to the existing one.

Unhiding the Personal Macro Workbook
Before you can edit the Excel macro, you’ll need to unhide the Personal Macro Workbook if it’s

currently hidden:

 1. Open the View tab on the Ribbon.

 2. If the Unhide button is gray (disabled) in the Window group, then no workbooks are hid-

den, including Personal. You can skip the following steps. However, if the Unhide button

is black (enabled), click it to display the Unhide dialog box.

 3. Select PERSONAL.XLSM or PERSONAL.XLSB and click the OK button. If you stored the macro

from Chapter 1 in another workbook, open that workbook before trying to proceed. To

hide the Personal Macro Workbook again after editing the macro, click the Hide button

on the Ribbon while the Personal Macro Workbook is active.

Creating a Backup Copy of your Files

Eventually you’ll have a collection of macros in the Personal workbook. It’s a good idea to keep a

backup copy of these fi les in case something happens—such as reinstalling your Offi ce applications

when you buy a new computer. You don’t want to lose your macro collection. To create a backup

fi le, just locate PERSONAL.XLSB in Windows 8 by pressing the Windows key+F (or in Windows 7,

just by pressing the Windows key) to open the Windows Search fi eld and typing in its name. Th en

right-click PERSONAL.XLSB in the search-results list and choose Open File Location.

EDITING THE EXCEL MACRO | 75

c03.indd 09:43:6:AM 07/19/2013 Page 75

Now you can copy the fi le, save it to another location, and rename it something like PERSONAL.BAK.

You can also fi nd PERSONAL.XLSB by using Windows explorer to locate it in this folder: Users

\YourNameHere\AppData\Roaming\Microsoft\Excel\XLStart.

Also make a backup copy of any other important macro collections, such as Word’s Normal.Dotm

fi le.

Opening the Macro for Editing
Now take the following steps to open the macro you recorded in Chapter 1 for viewing and

editing:

 1. Press Alt+F8 to display the Macros dialog box.

 2. Select the macro named New_Workbook_with_Months.

 3. Click the Edit button to display the macro for editing in the Visual Basic Editor. Listing

3.3 shows code similar to what you should be seeing.

Listing 3.3: New “workbook with months added” macro

1. Sub New_Workbook_with_Months()

2. ‘

3. ‘ New_Workbook_with_Months Macro

4. ‘ Creates a new workbook with the months filled in for a year.

5. ‘

6. ‘

7. Workbooks.Add

8. Range(“A1”).Select

9. ActiveCell.FormulaR1C1 = “Jan-2011”

10. Range(“B1”).Select

11. ActiveCell.FormulaR1C1 = “Feb-2011”

12. Range(“A1:B1”).Select

13. Selection.AutoFill Destination:=Range(“A1:L1”), Type:=xlFillDefault

14. Range(“A1:L1”).Select

15. ActiveWorkbook.SaveAs Filename:= _

“C:\Users\Richard\Documents\Sample Workbook.xlsx”, FileFormat:= _

 xlOpenXMLWorkbook, CreateBackup:=False

16. End Sub

(If you are using a version of Offi ce prior to Offi ce 2013, the fi le location specifi ed in line 15

is likely C:\Users\Richard\AppData\Roaming\Microsoft\Excel\XLSTART\Sample

Workbook.xlsx. Replace Richard with your name.)

76 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 76

Here’s what happens in the macro in Listing 3.3:

 ◆ Line 1 starts the macro with the Sub New_Workbook_with_Months() statement, and line 16

ends the macro with the End Sub statement.

 ◆ Lines 2, 5, and 6 are comment lines that the Macro Recorder automatically adds. (The com-

ment line in line 6 seems superfl uous. It’s there because Excel allows you to enter two lines

in the Description text box in the Record Macro dialog box, but this macro uses only one

line. Delete any blank or comment lines you wish. They’ll have no effect on the behavior of

the macro, though removing them could make it less readable in the Editor. It’s your call.)

 ◆ Line 3 is a comment line that gives the macro’s name and describes it as a macro, and line 4

contains the description from the Record Macro dialog box.

 ◆ Line 7 creates a new blank workbook by using the Add method on the Workbooks collection

object. (A collection object, or more concisely a collection, is an object that contains objects

of a given type. For example, a worksheet will contain a PivotTables collection of all the

PivotTables on that worksheet.)

 ◆ Line 8 selects the Range object A1, making cell A1 active.

 ◆ Line 9 enters Jan-2011 in the active cell. Notice that the Macro Recorder has stored the

parsed date value rather than the text that you typed in (January 2011). Also, keep in mind

that the date displayed in the cell may be in a different format than MMM.

 ◆ Line 10 selects the Range object B1, making cell B1 active, and line 11 enters Feb-2011 in

that cell.

 ◆ Line 12 selects the range A1:B1.

 ◆ Line 13 performs a default AutoFill operation on the range A1:L1, and line 14 selects that

range. Note how the Macro Recorder has recorded two separate actions, although in the

Excel interface you performed only one action.

 ◆ Line 15 saves the workbook under the name and folder given. Note that the Macro

Recorder has automatically broken this long statement onto three lines by using the contin-

uation character, an underscore preceded by a space. You can break lines of code anywhere

between keywords to make the lines of code a comfortable length for working within the

Editor. Again, lines broken with an underscore at the end have no effect on macro execu-

tion. They’re merely formatting issues, so it’s your call.

Editing the Macro
Now modify the macro by following these steps:

 1. Select lines 8 through 13.

 2. Copy these lines by pressing Ctrl+C or right-clicking in the selection and choosing Copy

from the context menu.

 3. Click at the start of line 14 to move the insertion point there.

 4. Paste the copied lines by pressing Ctrl+V and choosing Edit ➢ Paste or right-clicking at

the insertion point and choosing Paste from the context menu.

EDITING THE EXCEL MACRO | 77

c03.indd 09:43:6:AM 07/19/2013 Page 77

 5. If necessary, press the Enter key to move the line Range(“A1:L1”).Select down one line.

(Press Enter if this code is red, indicating that it should be moved down one line rather

than appended to line 13’s code.)

Your new macro should look like Listing 3.4.

Listing 3.4: New extended version

1. Sub New_Workbook_with_Months()

2. ‘

3. ‘ New_Workbook_with_Months Macro

4. ‘ Creates a new workbook with the months filled in for a year.

Recorded 5/5/13 by Abe Normal.’

5. ‘

6. ‘

7. Workbooks.Add

8. Range(“A1”).Select

9. ActiveCell.FormulaR1C1 = “Jan-2011”

10. Range(“B1”).Select

11. ActiveCell.FormulaR1C1 = “Feb-2011”

12. Range(“A1:B1”).Select

13. Selection.AutoFill Destination:=Range(“A1:L1”), Type:=xlFillDefault

14. Range(“A1”).Select

15. ActiveCell.FormulaR1C1 = “Jan-2011”

16. Range(“B1”).Select

17. ActiveCell.FormulaR1C1 = “Feb-2011”

18. Range(“A1:B1”).Select

19. Selection.AutoFill Destination:=Range(“A1:L1”), Type:=xlFillDefault

20. Range(“A1:L1”).Select

21. ActiveWorkbook.SaveAs Filename:= _

“C:\Users\Richard\AppData\Roaming\Microsoft\Excel\XLSTART\Sample Workbook.xlsx”, _

 FileFormat:=xlOpenXMLWorkbook, CreateBackup:=False

22. End Sub

Now, change the macro by taking the following steps:

 1. Delete line 6. It’s not doing any good, just taking up space in the Code window.

 2. Delete line 20. It’s not necessary for what the macro does—you don’t need the macro

to select the range because the AutoFill instruction in line 13 is enough to perform the

AutoFill operation without selecting the range.

 3. Change line 14 to select cell A2 instead of cell A1:

Range(“A2”).Select

 4. Change line 15 so that it enters the value 100 instead of Jan-2008:

ActiveCell.FormulaR1C1 = 100

78 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 78

 5. Change line 16 to select cell B2 instead of cell B1:

Range(“B2”).Select

 6. Change line 17 so that it enters the value 200 instead of Feb-2008:

ActiveCell.FormulaR1C1 = 200

 7. Change line 18 so that it selects the range A2:B2:

Range(“A2:B2”).Select

 8. Change line 19 so that it performs the AutoFill operation on the range A2:L2:

Selection.AutoFill Destination:=Range(“A2:L2”), Type:=xlFillDefault

 9. Break line 13 with a space, underscore, and carriage return before the Type argument, as

shown here. Indent the second line by one tab.

Selection.AutoFill Destination:=Range(“A1:L1”), _

 Type:=xlFillDefault

 10. Similarly, break line 19 with a space, underscore, carriage return, and tab before the Type

argument.

 11. Click the Save button or choose File ➢ Save to save the changes you made.

The macro should now read like Listing 3.5.

Listing 3.5: Streamlined macro

1. Sub New_Workbook_with_Months()

2. ‘

3. ‘ New_Workbook_with_Months Macro

4. ‘ Creates a new workbook with the months filled in for a year.

Recorded 5/5/13 by Abe Normal.

‘

5. ‘

6. Workbooks.Add

7. Range(“A1”).Select

8. ActiveCell.FormulaR1C1 = “Jan-2011”

9. Range(“B1”).Select

10. ActiveCell.FormulaR1C1 = “Feb-2011”

11. Range(“A1:B1”).Select

12. Selection.AutoFill Destination:=Range(“A1:L1”), _

 Type:=xlFillDefault

13. Range(“A2”).Select

14. ActiveCell.FormulaR1C1 = 100

15. Range(“B2”).Select

16. ActiveCell.FormulaR1C1 = 200

EDITING A POWERPOINT MACRO | 79

c03.indd 09:43:6:AM 07/19/2013 Page 79

17. Range(“A2:B2”).Select

18. Selection.AutoFill Destination:=Range(“A2:L2”), _

 Type:=xlFillDefault

19. ActiveWorkbook.SaveAs Filename:= _

“C:\Users\Richard\AppData\Roaming\Microsoft\Excel\XLSTART\temp.xlsx”, _

 FileFormat:=xlOpenXMLWorkbook, CreateBackup:=False

20. End Sub

Now step through the macro and watch what happens: it creates the new workbook as before

and enters the months, but then it enters the values 100 through 1200 in the second row of cells.

This one is fun to watch on a split screen because you watch the cells fi ll with data as you step

through it.

At the end, the macro attempts to save the workbook as before. However, an error message or

dialog box warns that a previous workbook exists by this name (unless you’ve already deleted

it). Later you’ll see how to handle this type of error so the macro doesn’t halt or confuse the user

with these kinds of odd error messages or dialog boxes.

Save Your Work
When you fi nish working with this macro, choose File ➢ Save from the Visual Basic Editor to

save the workbook that contains the macro and the changes you’ve made to it. Then press Alt+Q

or choose File ➢ Close And Return To Microsoft Excel to close the Visual Basic Editor and return

to Excel.

Editing a PowerPoint Macro
In this section, you’ll edit a PowerPoint macro. PowerPoint no longer includes a macro recorder,

so you’ll either have to type in the code for the following example or, better, just copy and paste

it from this book’s Web page at www.sybex.com/go/masteringvba2013.

Start by opening the PowerPoint Visual Basic Editor:

 1. Open PowerPoint, and choose the blank presentation template (in PowerPoint 2010 and

earlier versions, the blank presentation is opened by default). Now add a shape by click-

ing the Insert tab on the Ribbon, then clicking the Shapes icon in the Illustrations section.

 2. Click a rectangle shape of your choice, and drag on the slide to create it. This will be

object 1 in the Shapes collection, so we can refer to it in the code like this:

ActiveWindow.Selection.SlideRange.Shapes(1).Select

 3. Open the PowerPoint Visual Basic Editor by pressing Alt+F11.

 4. Create a new, empty module by choosing Insert ➢ Module in the Editor. Now you’re

ready to add some code.

 5. Type in (or paste from this book’s web page) the code shown in Listing 3.6.

http://www.sybex.com/go/masteringvba2013

80 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 80

Listing 3.6: Add a slide in PowerPoint

 1. Sub Add_Slide_and_Format_Placeholder()

 2. ‘

 3. ‘ Sample macro that adds a slide, formats its placeholder,

 ‘ and adds text to it. Recorded 6/16/13 by Batfield Dial.

 4. ‘

 5. ActiveWindow.View.GotoSlide Index:= _

 ActivePresentation.Slides.Add(Index:=2, _

 Layout:=ppLayoutText).SlideIndex

 6. ActiveWindow.Selection.SlideRange.Layout = ppLayoutTitle

 7. ActiveWindow.Selection.SlideRange.Shapes(1).Select

 8. With ActiveWindow.Selection.ShapeRange

 9. .IncrementLeft -6#

10. .IncrementTop -125.75

11. End With

12. ActiveWindow.Selection.ShapeRange.ScaleHeight 1.56, msoFalse, _

 msoScaleFromTopLeft

13. ActiveWindow.Selection.SlideRange.Shapes(1).Select

14. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Select

15. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Characters _

 (Start:=1, Length:=0).Select

16. With ActiveWindow.Selection.TextRange _

17. .Text = “The quick brown dog jumped over the lazy fox”

18. With .Font

19. .Name = “Arial”

20. .Size = 44

21. .Bold = msoFalse

22. .Italic = msoFalse

23. .Underline = msoFalse

24. .Shadow = msoFalse

25. .Emboss = msoFalse

26. .BaselineOffset = 0

27. .AutoRotateNumbers = msoFalse

28. .Color.SchemeColor = ppTitle

29. End With

30. End With

31. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Characters _

 (Start:=1, Length:=42).Select

32. With ActiveWindow.Selection.TextRange.Font

33. .Name = “Impact”

34. .Size = 54

35. .Bold = msoFalse

36. .Italic = msoFalse

37. .Underline = msoFalse

38. .Shadow = msoFalse

39. .Emboss = msoFalse

40. .BaselineOffset = 0

EDITING A POWERPOINT MACRO | 81

c03.indd 09:43:6:AM 07/19/2013 Page 81

41. .AutoRotateNumbers = msoFalse

42. .Color.SchemeColor = ppTitle

43. End With

44. End Sub

Here’s what happens in the macro:

 ◆ Line 1 starts the macro, and line 44 ends it.

 ◆ Lines 2 and 4 are blank comment lines used to set off the description of the macro, which

appears in line 3.

 ◆ Line 5 adds the slide to the presentation. This statement is a little complicated, but don’t

worry about it too much just yet. For now, note two things: First, the statement uses the Add

method with the Slides collection object to add a slide to the collection (in other words, to

create a new slide in this case). This is similar to the way the Excel macro explored earlier

in this chapter used the Add method to add a workbook to its Workbooks collection. Second,

the layout of the slide is ppLayoutText, the VBA constant for the Text slide layout that

PowerPoint uses for a default new slide.

 ◆ Line 6 applies the Title layout (ppLayoutTitle) that you chose when recording the macro.

(If you chose a different slide layout, you’ll see a different constant than ppLayoutTitle.)

 ◆ Line 7 selects the fi rst shape in the Shapes collection on the active slide. (For the moment,

don’t worry about how you get to the active slide.)

 ◆ Lines 8 to 11 are a With block. This block begins with a With statement that specifi es

properties or behaviors (methods) for the shape that has been selected (ActiveWindow.

Selection.ShapeRange). A With statement is a way of simplifying object references, and

everything between the With statement and the End With statement refers to the objects

that the With statement fi rst mentions. In this case, line 9 uses the IncrementLeft method

with a negative value to move the shape to the left, and line 10 uses the IncrementTop

method with a negative value to move the shape up the slide.

The With Command Has Two Uses

With statements have two benefi ts: Th ey simplify code (because you don’t need to specify the

object in each of the lines between the With and End With lines), and they make code run faster.

 ◆ Line 13 selects the fi rst shape in the Shapes collection, and line 14 selects the TextRange

object in the TextFrame object in the shape. When you’re working interactively,

PowerPoint makes this selection process seamless: You click in a shape displaying the leg-

end “Click to add title” (or whatever), and PowerPoint selects the text range in the shape's

text frame—but all you see is that the text in the shape becomes selected. In VBA, you

have to go through a couple of unseen layers in the object model before getting to the text.

82 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 82

 ◆ When you select the placeholder text, PowerPoint gets rid of it. The same thing hap-

pens when you select the placeholder text via VBA. So line 15 makes a new selection

at the beginning of the fi rst character in the text range. The Length of the selection is

0, meaning that the selection is collapsed to an insertion point rather than containing

any characters. Line 16 starts a With statement that continues until line 30. The With

ActiveWindow.Selection.TextRange statement in line 16 lets line 17 reference the Text

property of the TextRange object in the ActiveWindow object's Selection object much

more simply (instead of ActiveWindow.Selection.TextRange.Text), and it lets line

18 reference the Font property of the TextRange object in the Selection object in the

ActiveWindow object easily (instead of ActiveWindow.Selection.TextRange.Font).

 ◆ Line 17 sets the Text property of the ActiveWindow.Selection.TextRange object to the

text typed.

 ◆ Line 18 then begins a nested With statement that sets the properties of the Font object for

the TextRange object. Line 19 sets the Name property of the Font object to Arial; line 20 sets

the Size property of the Font object to 44; line 21 sets the Bold property of the Font object

to msoFalse, the Microsoft Offi ce (mso) constant for False; and so on. These statements are

not necessary for our purposes in this macro. But they’re harmless, so you can leave them

in your code or, if you wish, delete this entire With block (as we’ll do shortly). Line 29 ends

the nested With statement.

With Blocks Can Be Nested

A nested With statement is one that is placed within another With statement and specifi es an

object within the object specifi ed in the outer With statement. You can nest multiple-level With

statements when necessary. You can see that the With block that begins on line 18 is nested within

the outer With block that begins on line 16.

 ◆ Line 31 uses the Select method to select characters 1 through 42 in the text range. This is

the same as pressing the Ctrl+Shift+Home key combination. Because this statement speci-

fi es the characters to select, you’ll need to change it if you change the text that this macro

inserts. (If you run the statement on a text range that has fewer than 42 characters, it will

return an error. If you run it on a text range that has more than 42 characters, it will select

only the fi rst 42 characters in the text range—not what you want.)

 ◆ Line 32 begins another With statement that works with the Font object of the TextRange

object. This With statement imitates what happens if the user opens and modifi es the Font

dialog box.

 ◆ Line 43 ends the With statement, and line 44 ends the macro.

You can edit this macro by slimming it down a little and changing the text it inserts:

 1. Delete the unnecessary With statement in lines 18 through 29.

 2. Delete line 30.

EDITING A POWERPOINT MACRO | 83

c03.indd 09:43:6:AM 07/19/2013 Page 83

 3. Change lines 16 and 17 into a single statement without With:

ActiveWindow.Selection.TextRange.Text = _

 “The quick brown dog jumped over the lazy fox”

 4. Now change the text that the new line 16 inserts. Type text of your choice between the

double quotation marks.

 5. Change line 31 to use the Select method on the text range rather than specifying which

characters to select. Delete Characters(Start:=1, Length:=42) to leave this statement:

ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Select

By specifying a range rather than a particular character count, you avoid the problem dis-

cussed earlier of having to count characters anytime you change the message. Specifying

a character count is called hard-coding and it’s to be avoided whenever possible. If there’s

a way—as there is here with the TextRange property—let the computer fi gure out the

count rather than specifying it in your code.

 6. Click the Save button on the Standard toolbar or choose File ➢ Save to save the changes

you’ve made to the presentation. In the Save As dialog box, locate the Save As Type drop-

down list and change it from the default .pptx type (which cannot contain macros) to the

.pptm type (which can).

You should now have code that reads like Listing 3.7.

Listing 3.7: Th e macro slimmed down and modifi ed

 1. Sub Add_Slide_and_Format_Placeholder()

 2. ‘

 3. ‘ Sample macro that adds a slide, formats its placeholder, and adds text

 ‘ to it. Recorded 12/4/08 by Rodney Converse.

 Recorded 12/4/08 by Rodney Converse.

 4. ‘

 5. ActiveWindow.View.GotoSlide Index:= _

 ActivePresentation.Slides.Add(Index:=2, _

 Layout:=ppLayoutText).SlideIndex

 6. ActiveWindow.Selection.SlideRange.Layout = ppLayoutTitle

 7. ActiveWindow.Selection.SlideRange.Shapes(“Rectangle 4”).Select

 8. With ActiveWindow.Selection.ShapeRange

 9. .IncrementLeft -6#

10. .IncrementTop -125.75

11. End With

12. ActiveWindow.Selection.ShapeRange.ScaleHeight 1.56, msoFalse, _

 msoScaleFromTopLeft

13. ActiveWindow.Selection.SlideRange.Shapes(“Rectangle 4”).Select

14. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Select

15. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Characters _

 (Start:=1, Length:=0).Select

16. ActiveWindow.Selection.TextRange.Text = “Welcome to Acme Industries”

84 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 84

17. ActiveWindow.Selection.ShapeRange.TextFrame.TextRange.Select

18. With ActiveWindow.Selection.TextRange.Font

19. .Name = “Impact”

20. .Size = 54

21. .Bold = msoFalse

22. .Italic = msoFalse

23. .Underline = msoFalse

24. .Shadow = msoFalse

25. .Emboss = msoFalse

26. .BaselineOffset = 0

27. .AutoRotateNumbers = msoFalse

28. .Color.SchemeColor = ppTitle

29. End With

30. End Sub

Now step through the changed macro and make sure it works as you expect it to. You may

need to modify Rectangle 4 in the code to a different number.

Save Your Work
When you fi nish working with this macro, choose File ➢ Save from the Visual Basic Editor to

save the presentation that contains the macro and the changes you’ve made to it. Be sure to

change the fi le type from the default .pptx to the macro-enabled .pptm fi le type. Then press

Alt+Q or choose File ➢ Close And Return To Microsoft PowerPoint to close the Visual Basic

Editor and return to PowerPoint.

When Should You Use the Macro Recorder?

As you’ve seen so far in this book, you can create VBA code two ways. First, you can use the Macro

Recorder (in the two applications—Word and Excel—that provide one) to record a series of actions

when working interactively in the application. Or, second, you can type VBA statements into the

Code window in the Visual Basic Editor. You’re probably wondering when you should record a

macro and when you should create code from scratch. Writing a procedure from scratch is clearly

more diffi cult and more advanced than recording a procedure—so should you always record if a

Recorder is available?

Using the Macro Recorder has advantages and disadvantages. Th e advantages are as follows:

 ◆ Th e Macro Recorder creates usable code every time (provided you run the macro under suit-

able conditions).

 ◆ It is quick and easy to use.

 ◆ It can help you discover which VBA objects, methods, and properties correspond to which part

of an application’s interface.

THE BOTTOM LINE | 85

c03.indd 09:43:6:AM 07/19/2013 Page 85

And here are the disadvantages:

 ◆ Code created in the Macro Recorder may contain unnecessary statements because the Macro

Recorder records everything you do in the application—including all the options in every built-

in dialog box you use when recording the macro. For example, if you start the Macro Recorder

from Word, choose Tools ➢ Options to display the View page of the Options dialog box, click the

Edit tab to display the Edit page, and change the Auto-Keyboard Switching setting, the Macro

Recorder will record all the settings on the Edit page as well as all those on the View page. Th e

result is about 40 lines of unnecessary code. (If you visit any other pages in the Options dialog

box on the way to the Edit page, the Macro Recorder will record all the settings in those pages

as well.) If you create the code manually in the Visual Basic Editor, you can achieve the same

eff ect by using one statement rather than dozens.

 ◆ Code created by the Macro Recorder can work only in the active document because whichever

document you’re working with interactively automatically becomes the active document. Later

in this book, you’ll learn how to use objects in the applications’ object models to work with

documents other than the active document. Working with other documents can have advan-

tages; for example, you can make your code run faster or hide from the user the manipulations

you’re performing.

 ◆ Th e Macro Recorder can create VBA code for only some of the actions you perform in the host

application. For example, if you want to display a dialog box or a user form in the course of

a procedure, you need to write the appropriate statement manually—you can’t record it. Th e

subset of VBA actions available through the Macro Recorder is similar to the set of actions you

can take in the host application when working interactively, so you can get a lot done with it.

Still, you’ll fi nd it’s limited compared to the full range of actions you can perform through VBA.

However expert you become with VBA, consider the Macro Recorder a useful tool for creating

either rough-and-ready macros or the basis of more complex procedures. You’ll often fi nd it makes

sense to have the Macro Recorder handle as much of the strain of creating a procedure as possible.

If you can save time by using the Macro Recorder to quickly identify the VBA object or property

that you need, then do so.

In addition, the Macro Recorder can show you how to write some code that you can’t fi gure out how

to write on your own. Th e Recorder always gets the syntax right.

Th e Bottom Line

Test a macro in the Visual Basic Editor. When you need to modify or debug a macro, the

Visual Basic Editor is your best friend. It’s fi lled with tools to make your job easier.

Master It Open a macro; then step through it to see if anything goes wrong.

Set breakpoints and use comments. Setting breakpoints allows you to press F5 to execute

a macro, but forces the Editor to enter Break mode when execution reaches the line where

the breakpoint resides. Comments help you understand the purpose of code—they describe

it but are ignored during execution of the macro’s code. “Commenting out” a line of code

86 | CHAPTER 3 EDITING RECORDED MACROS

c03.indd 09:43:6:AM 07/19/2013 Page 86

allows you to temporarily render it inactive to see what effect this has during execution. This

is sometimes a good way to see if that line is causing the bug you’re tracking down.

Master It Set a breakpoint in, and add a comment to, a macro.

Edit a recorded macro. Make some changes to a Word macro.

Master It With the Visual Basic Editor open, choose a macro and modify it.

Chapter 4

Creating Code from Scratch in the
Visual Basic Editor

In this chapter, you’ll practice creating procedures from scratch in the Visual Basic Editor. The

examples walk you through creating a procedure in Word, Excel, and PowerPoint.

For the examples in this book, the Visual Basic Editor should be set up a certain way and (for

good practice) set to require explicit declarations of variables. So we’ll start off this chapter by

ensuring that these conditions are met.

The purpose of this chapter is to give you a feel for creating code in the Visual Basic Editor

before you study the details of the language. You’ll work briefl y with VBA elements (such as

objects, properties, methods, variables, and constants) that you’ll learn about more fully later

in this book. Along the way, you’ll meet several of the many helpful tools that the Visual Basic

Editor provides, including the Macro Recorder, the Object Browser, and the Help system. You’ll

explore these tools more thoroughly later in this book, as well.

In this chapter you will learn to do the following:

 ◆ Set up the Visual Basic Editor for creating procedures

 ◆ Create a procedure for Word

 ◆ Create a procedure for Excel

 ◆ Create a procedure for PowerPoint

 ◆ Create a procedure for Access

Setting Up the Visual Basic Editor for Creating the
Procedures
You’ll fi nd it easiest to follow the instructions in the following procedures—and in the rest of

the book—if you have the Visual Basic Editor set up in a default confi guration (like the layout

you see the fi rst time you display the Visual Basic Editor from a VBA host). Any changes you

make to the VBA Editor will be in effect across all VBA-enabled Offi ce applications. So, if you set

up the Editor as described next, it will look like this whether you open it in Excel, Word, Access,

Outlook, or PowerPoint.

88 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

The following steps describe how to set up the Visual Basic Editor so it looks like Figure 4.1:

 1. If the Project Explorer isn’t displayed, choose View ➢ Project Explorer or press Ctrl+R to

display it.

 2. If the Properties window isn’t displayed, choose View ➢ Properties Window or press the

F4 key to display it.

 3. Unless you really prefer things otherwise, dock the Project Explorer in its conventional

position at the upper-left corner of the main Visual Basic Editor area. Dock the Properties

window below the Project Explorer, again in its default position. (To change docking,

choose Tools ➢ Options, click the Docking tab, and select the Docking options.) To dock

an undocked (fl oating) window, double-click its title bar.

 4. Set up the Visual Basic Editor to require variables to be declared explicitly. The Editor

will then enforce a rule that you must declare each variable formally before you can

use it in the code. Choose Tools ➢ Options to display the Options dialog box, select the

Require Variable Declaration check box on the Editor page, and then click the OK button.

More on variable declaration later in the book, but here’s a brief summary. This setting

makes the Visual Basic Editor automatically enter an Option Explicit statement for all

modules and user forms you create from now on. And that statement causes the Editor to

check during runtime for any implicitly declared variables and remind you that you must

declare them explicitly, like this:

Dim txtName As String

Figure 4.1

Th e default confi gu-

ration for the VBA

Editor

CREATING A PROCEDURE FOR WORD | 89

Creating a Procedure for Word
The procedure you’ll create for Word causes the Track Changes feature to toggle (between

Strikethrough and Hidden) how deleted text will be displayed. With this macro, you’ll be able to

switch instantly between having deleted text remain onscreen with a line through it or having it

simply disappear.

Start by using the Macro Recorder to provide the necessary object qualifi cations. Then you

can modify the code by hand in the Editor to create the toggle behavior.

Follow these steps to record the macro:

 1. Start Word. If Word is already running, exit it and restart it.

 2. Record a macro to get to the object qualifi cations (properties and settings) you need.

(Remember that to some, recording may feel like cheating, but the Macro Recorder is

truly a gift when it comes to fi nding objects and getting complicated syntax correctly

coded.) Follow these substeps:

 a. Click the Developer tab on the Ribbon; then click the Record Macro button in the Code

section to display the Record Macro dialog box.

 b. Either accept the macro name that the Macro Recorder automatically assigns (Macro1,

Macro2, and so on) or create a scratch name of your own, such as Temp, that will remind

you to delete the macro if you forget to do so.

 c. Leave the Store Macro In drop-down list set to All Documents (Normal.dotm). Leave

the description blank. This is a temporary macro just for practice, so we won’t add it to

our permanent collection.

 d. Click the OK button to start recording the macro.

 e. Click the Review tab on the Ribbon, and then click the small arrow in the lower-right

corner of the Tracking section. The Track Changes Options dialog box opens. In that

box click the Advanced Options button. (Note that the Advanced Track Changes

Options dialog box looks somewhat different in Offi ce 2010 and earlier versions.

And you open the fi rst dialog box by clicking the bottom half of the Track Changes

icon.) Now ensure that Strikethrough is selected in the Deletions drop-down list (see

Figure 4.2), and then click OK twice to close the two Track Changes Options dialog

boxes. (Strikethrough is the default, so it’s probably already selected—but we want the

Recorder to show us how this option is coded in VBA. Clicking OK to close a dialog

box records all the current settings in that box.)

 f. Repeat the preceding step (e.) to reopen the Track Changes Options dialog box.

Now, select Hidden in the Deletions drop-down list, and again click OK to close the

dialog box.

 g. Stop recording the macro by clicking the white recording button in the status bar or by

clicking the Stop Recording button on the Developer tab on the Ribbon.

90 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

Figure 4.2

Th e Advanced Track

Changes Options

dialog box in Word

 3. Press Alt+F8 to display the Macros dialog box. Select the macro you just recorded and

click the Edit button to open it for editing in the Visual Basic Editor. Your code should

look like this:

1. Sub temp()

2. ‘

3. ‘ temp Macro

4. ‘

5. ‘

6. With Options

7. .InsertedTextMark = wdInsertedTextMarkUnderline

8. .InsertedTextColor = wdRed

9. .DeletedTextMark = wdDeletedTextMarkStrikeThrough

10. .DeletedTextColor = wdRed

11. .RevisedPropertiesMark = wdRevisedPropertiesMarkNone

12. .RevisedPropertiesColor = wdByAuthor

13. .RevisedLinesMark = wdRevisedLinesMarkOutsideBorder

14. .CommentsColor = wdRed

15. .RevisionsBalloonPrintOrientation = _

CREATING A PROCEDURE FOR WORD | 91

wdBalloonPrintOrientationPreserve

16. End With

17. ActiveWindow.View.RevisionsMode = wdMixedRevisions

18. With Options

19. .MoveFromTextMark = wdMoveFromTextMarkDoubleStrikeThrough

20. .MoveFromTextColor = wdGreen

21. .MoveToTextMark = wdMoveToTextMarkDoubleUnderline

22. .MoveToTextColor = wdGreen

23. .InsertedCellColor = wdCellColorLightBlue

24. .MergedCellColor = wdCellColorLightYellow

25. .DeletedCellColor = wdCellColorPink

26. .SplitCellColor = wdCellColorLightOrange

27. End With

28. With ActiveDocument

29. .TrackMoves = False

30. .TrackFormatting = True

31. End With

32. With Options

33. .InsertedTextMark = wdInsertedTextMarkUnderline

34. .InsertedTextColor = wdRed

35. .DeletedTextMark = wdDeletedTextMarkHidden

36. .DeletedTextColor = wdRed

37. .RevisedPropertiesMark = wdRevisedPropertiesMarkNone

38. .RevisedPropertiesColor = wdByAuthor

39. .RevisedLinesMark = wdRevisedLinesMarkOutsideBorder

40. .CommentsColor = wdRed

41. .RevisionsBalloonPrintOrientation = _

wdBalloonPrintOrientationPreserve

42. End With

43. ActiveWindow.View.RevisionsMode = wdMixedRevisions

44. With Options

45. .MoveFromTextMark = wdMoveFromTextMarkDoubleStrikeThrough

46. .MoveFromTextColor = wdGreen

47. .MoveToTextMark = wdMoveToTextMarkDoubleUnderline

48. .MoveToTextColor = wdGreen

49. .InsertedCellColor = wdCellColorLightBlue

50. .MergedCellColor = wdCellColorLightYellow

51. .DeletedCellColor = wdCellColorPink

52. .SplitCellColor = wdCellColorLightOrange

53. End With

54. With ActiveDocument

55. .TrackMoves = False

56. .TrackFormatting = True

57. End With

58. End Sub

 4. That’s a daunting amount of code for the few rather simple actions you took. Remember

that this is because the Macro Recorder records the settings for all of the possible options

92 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

in the Track Changes Options dialog box that you visited, not just the option you selected.

Look over the code briefl y to see the many settings that were recorded from the options

inside the dialog box displayed in Figure 4.2.

If you look at the fi gure, you can see how the code refl ects the settings. For example, see

the .SplitCellColor = wdCellColorLightOrange line of code and locate the setting it

refers to in the dialog box.

 5. A second set of nearly identical settings in the code represents your second visit to the dia-

log box. Notice lines 9 and 36 in particular; these are key. Line 35 refl ects the change made

on your second visit—specifying a hidden rather than strikethrough property for the

DeletedTextMark property of the Options object. Notice, too, the two values for this prop-

erty: wdDeletedTextMarkStrikeThrough (when you recorded the Deletions drop-down

specifying Strikethrough) and wdDeletedTextMarkHidden (when you set it to Hidden).

 6. Now in the Editor, select the entire recorded macro, from the Sub temp statement down

to the End Sub statement, and press the Delete key to get rid of it.

 7. Make sure the Visual Basic Editor is set up as described in the section “Setting Up the

Visual Basic Editor for Creating the Procedures,” earlier in this chapter.

 8. In the Project Explorer window, right-click anywhere in the Normal item and choose

Insert ➢ Module from the context menu. The Visual Basic Editor inserts a new module in

the Normal.dotm global template and displays a Code window for it.

 9. Press the F4 key to activate the Properties window for the new module. (By activate I
mean give the focus to—whatever window has the focus is the one where typing will be

displayed or mouse clicks will have an effect.) The Visual Basic Editor selects the (Name)

property, the only property available for this new module. (Confusingly, the property’s

name is enclosed in parentheses.)

 10. Type a name for the new module in the Properties window. For this example, delete

the default name (Module 1 or Module 2 or whatever it is) and type the name

Procedures_to_Keep_1.

 11. Press the F7 key or click in the Code window to activate it.

 12. Verify that the Visual Basic Editor has entered the Option Explicit statement in the dec-

larations area at the top of the code sheet (the code area) in the Code window. If not, go

back and complete step 4 in the list at the start of this chapter.

 13. Below the Option Explicit statement, type the Sub statement for the procedure and

press the Enter key. Name the procedure

Toggle_Track_Changes_between_Hidden_and_Strikethrough:

Sub Toggle_Track_Changes_between_Hidden_and_Strikethrough

 14. When you press the Enter key, the Visual Basic Editor inserts for you the required paren-

theses at the end of the Sub statement, a blank line, and the End Sub statement and places

the insertion point on the blank line, ready for you to start typing in some programming:

Sub Toggle_Track_Changes_between_Hidden_and_Strikethrough()

End Sub

CREATING A PROCEDURE FOR WORD | 93

 15. Press the Tab key to indent the fi rst line below the Sub statement.

 16. Type if options. (in lowercase, and be sure to end with the period). Now the Editor dis-

plays the List Properties/Methods drop-down list.

 17. Type down through the list (type d, e, and then l) and use the key, or simply scroll with

the mouse, to select the DeletedTextMark entry.

 18. Now just type = (the equal sign). The Visual Basic Editor enters the DeletedTextMark

command for you, followed by the equal sign, and then displays the List Properties/

Methods list of constants that can be used with the DeletedTextMark property (see

Figure 4.3).

Figure 4.3

Th e Visual Basic

Editor’s List

Properties/

Methods list dis-

plays the constants

available for the

DeletedTextMark

property.

 19. Select the wdDeletedTextMarkHidden item and enter it into your code by pressing the Tab

key or by double-clicking it.

 20. Type Then and press the Enter key. Note that when you start the next line of code (by

pressing Enter), the Visual Basic Editor checks the line of code for errors. If you used

lowercase for the If Options part of the statement, the Visual Basic Editor applies capi-

talization (this is just for show—VBA pays no attention to capitalization when executing

code). If there are no space characters on either side of the equal sign, the Visual Basic

Editor adds them too.

 21. Enter Options.DeletedTextMark=wdDeletedTextMarkStrikethrough, using the assis-

tance offered by the Visual Basic Editor’s Auto List Members features (described earlier,

in steps 16 through 18), and then press Enter.

 22. Press the Backspace key or Shift+Tab to unindent the new line of code by one tab stop.

 23. Type the ElseIf keyword, and then enter the rest of the procedure as follows:

ElseIf Options.DeletedTextMark = wdDeletedTextMarkStrikeThrough Then

 Options.DeletedTextMark = wdDeletedTextMarkHidden

End If

 24. Make sure your completed procedure looks like this:

Sub Toggle_Track_Changes_between_Hidden_and_Strikethrough()

 If Options.DeletedTextMark = wdDeletedTextMarkHidden Then

 Options.DeletedTextMark = wdDeletedTextMarkStrikeThrough

 ElseIf Options.DeletedTextMark = wdDeletedTextMarkStrikeThrough Then

94 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

 Options.DeletedTextMark = wdDeletedTextMarkHidden

 End If

End Sub

 25. Press Alt+F11 to switch to Word, and then type in a line or two of text.

 26. Arrange the Word window and the Visual Basic Editor window side by side. In Word, click

the Review tab on the Ribbon, and click the upper half of the Track Changes button (the

graphic icon) to activate the feature that marks up (or otherwise handles) revisions. Delete

a word in your text. Notice whether it is struck through or is simply hidden. You have a

macro that toggles between these two behaviors, so in the Visual Basic Editor, press the F5

key or click the Run Sub/UserForm button (on the Standard and Debug toolbars) to run

the macro. Back in Word, see what effect the deletion has now. You can also take a look

at the Track Changes Options dialog box to see that the Deletions setting has changed.

 27. Click the Save button on the Standard toolbar in the Visual Basic Editor.

Note that you could alternatively write this macro using a With statement for the Options

object so that it looks like this:

Sub Toggle_Track_Changes_between_Hidden_and_Strikethrough_2()

 With Options

 If .DeletedTextMark = wdDeletedTextMarkHidden Then

 .DeletedTextMark = wdDeletedTextMarkStrikeThrough

 ElseIf .DeletedTextMark = wdDeletedTextMarkStrikeThrough Then

 .DeletedTextMark = wdDeletedTextMarkHidden

 End If

 End With

End Sub

There are usually several ways to code a given behavior in VBA. Although formal (profes-

sional) programmers learn a set of “best practices,” if you’re just a hobbyist writing VBA for

your own personal use, go ahead and code however you wish. Whatever works.

Creating a Procedure for Excel
The procedure you’ll create for Excel is short but helpful: When the user runs Excel, the proce-

dure maximizes the Excel window and opens the last fi le used. The procedure also illustrates

some useful techniques, including these:

 ◆ Writing a macro that executes when an application fi rst starts up

 ◆ Working with events

 ◆ Using the Object Browser to fi nd the objects, methods, and properties you need

Follow these steps to create the procedure:

 1. Start Excel if it’s not already running.

 2. Press Alt+Tab to cycle through your workbooks to locate Personal.xlsb. If your Personal

Macro Workbook is currently hidden, click the Unhide button in the Window section of

CREATING A PROCEDURE FOR EXCEL | 95

the View tab on the Ribbon. Select PERSONAL.XLSB in the Unhide Workbook list box, and

then click the OK button.

 3. Press Alt+F11 to open the Visual Basic Editor.

 4. Make sure the Visual Basic Editor is set up as described in the section “Setting Up the

Visual Basic Editor for Creating the Procedures” earlier in this chapter.

 5. In the Project Explorer window, expand VBAProject (PERSONAL.XLSB) if it’s collapsed.

To expand it, either double-click its name or click the + sign to its left.

 6. Expand the Microsoft Excel Objects folder.

 7. Double-click the ThisWorkbook item to open its code sheet in a Code window. The

ThisWorkbook object represents the current workbook.

 8. Verify that the Visual Basic Editor has entered the Option Explicit statement in the

declarations area at the top of the code sheet. If not, go back and complete step 4 in the list

at the start of this chapter. However, note that at the time of this writing, even if you

select the Require Variable Declaration option (via the Tools ➢ Options menu in the Excel

version of the VBA Editor), Option Explicit is not automatically inserted into your

Code window.

 9. In the Code window, type

Private Sub Auto_Open

and then press the Enter key. The Editor will add the required parentheses and the End

Sub line.

Macros Have Scope

Th e Private keyword limits the scope of a macro—the area in which it can operate. Private scope

makes the macro available to all procedures in the module that contains it, but not to procedures

in other modules. Chapter 6, "Working with Variables, Constants, and Enumerations," explains

scope in more detail.

 10. Open the Object Browser. Press the F2 key, choose View ➢ Object Browser, or click the

Object Browser button on the Standard toolbar to display the Object Browser window

(see Figure 4.4).

 11. The fi rst action we want to take in this macro is to maximize the Excel’s application

window. As in any application, VBA uses the Application object to represent the Excel

application, but you need to fi nd the correct property of this object to work with. Select

Excel in the Project/Library drop-down list (see the label in Figure 4.4), type maximize in

the Search Text box, and either click the Search button or press the Enter key. The Object

Browser displays the result of the search (see Figure 4.5) in its Search Results pane (which

was collapsed and not visible in Figure 4.4). The constant xlMaximized is a member of the

class XlWindowState.

96 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

Figure 4.4

Use the Object

Browser to fi nd the

objects, methods,

and properties

you need for a

procedure.

Search Text

SearchProject/Library

Figure 4.5

Th e result of the

search for “maxi-

mize” in the Object

Browser

 12. Press the F7 key to activate the Code window. (Alternatively, click the Code window,

choose View ➢ Code, or choose the Code window from the Window menu.)

 13. Type application. (in lowercase and including the period) so that the Visual Basic

Editor displays the drop-down list, type w to jump to the items beginning with W, and

select the WindowState item.

 14. Type = to enter the WindowState item in your code and to display the list of constants

available for WindowState (see Figure 4.6).

CREATING A PROCEDURE FOR EXCEL | 97

Figure 4.6

Use the list of con-

stants to enter the

constant quickly

and easily.

 15. Select the xlMaximized item and press Enter to insert that property in the code, and move

down a line to start writing a new statement.

 16. The second action for the macro is to open the last fi le used—fi le 1 on the recently used

fi les list (this is the list that appears in the Recent Documents list when you click the

Recent item in the File tab on the Ribbon). Press the F2 key to activate the Object Browser

again.

 17. Leave Excel selected in the Project/Library drop-down list, type recent, and either

press the Enter key or click the Search button. The Object Browser displays the results

of the search (see Figure 4.7). The item you need is the RecentFiles property of the

Application object. The RecentFiles property returns the RecentFiles collection, an

object that knows the information about the fi les in the recently used fi les list.

Figure 4.7

Th e result of the

search for “recent”

in the Object

Browser

 18. Press the F7 key to return to the Code window. Type application. and select

RecentFiles from the List Properties/Methods drop-down list. Then type (1). to

98 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

indicate the fi rst item in the RecentFiles collection, and select the Open method from the

List Properties/Methods list:

Application.RecentFiles(1).Open

 19. That’s it. Your procedure should look like this:

Private Sub Auto_Open()

 Application.WindowState = xlMaximized

 Application.RecentFiles(1).Open

End Sub

 20. Press Alt+Q or choose File ➢ Close And Return To Microsoft Excel to return to Excel.

 21. Click the File tab on the Ribbon and choose Save.

 22. Click the Hide button in the Window section of the View tab on the Ribbon. This hides

PERSONAL.XLSB from view.

 23. Open a sample document, type something into one of the cells, save it, and close it.

 24. Press Alt+F4 to exit Excel. If you are asked if you want to save the changes you made to

the current workbook and your Personal Macro Workbook, choose Yes.

 25. Restart Excel. Notice how Excel automatically maximizes the application window and

opens the most recently used fi le.

If you see an error message, it most likely means that you’ve renamed or moved the most

recently used fi le. To prevent this problem, you can add some error-trapping code. We’ll

explore the On Error command thoroughly in Chapter 17, "Debugging Your Code and

Handling Errors," but if you wish, you can make the following changes to your Auto_

Open macro:

Private Sub Auto_Open()

On Error GoTo Problem

 Application.WindowState = xlMaximized

 Application.RecentFiles(1).Open

Exit Sub

Problem:

 MsgBox “Error: “ & Application.RecentFiles(1).Path & “ can’t be opened.”

End Sub

The Auto_Open name is special. When you name a macro Auto_Open, VBA knows that what-

ever actions are in the macro code should be executed when Excel starts running. This is one of

a handful of special names called Excel’s events—things that happen to an object, in this case the

Open event of the Excel application. (Notice that an object’s methods are actions it can take, such

CREATING A PROCEDURE FOR POWERPOINT | 99

as a print method sending a document to the printer. Conversely, an object’s events are things

that can happen to it, such as a user clicking a button or opening an application.)

How to Turn off Default Templates

Th e following section describes how to use a template that comes with PowerPoint. You’ve likely

noticed that when you start Offi ce 2013 applications, they display a set of templates. Some users are

likely to never use these templates and would prefer the traditional Offi ce applications’ behavior:

starting with a blank document and bypassing this display of templates. To turn this off , choose

File ➢ Options, then uncheck Show Th e Start Screen When Th is Application Starts.

Creating a Procedure for PowerPoint
The procedure you’ll create for PowerPoint is short and straightforward, but it can save the user

enough effort over the long run to make it worthwhile. It adds a title slide to the active presen-

tation, inserting a canned title that includes the current date and the company’s name as the

presenter.

Follow these steps to create the procedure:

 1. Start PowerPoint. If PowerPoint is already running, close it and restart it. If PowerPoint

creates a default presentation on startup, close the presentation (click the File tab and

choose Close).

 2. Create a new presentation based on the Contemporary Photo Album template. In Offi ce

2013, locate the list of Suggested Searches at the top of the default templates window dis-

played when you fi rst run PowerPoint. Then click Photo Albums. (In previous versions of

Offi ce, click the File tab and choose New And Sample Templates). Make sure the default

slide on the presentation has the Title Slide layout by right-clicking a blank area in

the slide, then choosing Layout ➢ Title And Content (it will be called Title Slide in earlier

versions of Offi ce) to apply it to the default slide.

 3. Press Alt+F11 to open the Visual Basic Editor.

 4. Make sure the Visual Basic Editor is set up as described in the section “Setting Up the

Visual Basic Editor for Creating the Procedures” earlier in this chapter.

 5. In the Project Explorer window, right-click anywhere in the VBAProject(Presentation1)

item and choose Insert ➢ Module from the context menu. The Visual Basic Editor inserts

a new module in the project, displays a Code window containing the code sheet for the

module, and expands the project tree in the Project Explorer.

 6. Verify that the Visual Basic Editor has entered the Option Explicit statement in the dec-

larations area at the top of the code sheet. If not, go back and complete step 4 in the list at

the start of this chapter.

 7. Press the F4 key to activate the Properties window.

 8. Replace the default name Module 1 by typing (in the Properties window)

General_Procedures.

100 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

 9. Press the F7 key or click in the Code window to activate it.

 10. Below the Option Explicit statement, type the Sub statement for the procedure and

press the Enter key:

Sub Add_Title_Slide

 11. When you press Enter, the Visual Basic Editor enters the parentheses at the end of the Sub

statement, a blank line, and the End Sub statement for you, and places the insertion point

on the blank line:

Sub Add_Title_Slide()

End Sub

 12. Press the Tab key to indent the fi rst line below the Sub statement.

 13. Now identify the objects you need by using the Help system. You’ll be working with

the active presentation, which is represented by the ActivePresentation object. As

you’ll see in Part 6 of this book, ”Programming the Offi ce Applications”—which is

all about objects—there are several ways to get information when programming with

objects. For now, let’s try searching online help rather than using the Editor’s built-in

Object Browser. Using Google or Bing, search for object model reference power-

point 2013. You should then be able to locate the details about the Application object’s

ActivePresentation property object, as shown in Figure 4.8.

Figure 4.8

Th e

ActivePresentation

property screen

 14. Click the Presentation link in “Returns a Presentation object…” near the top, as shown

in Figure 4.8. This link will take you to the Presentation object’s Help screen. We’re

CREATING A PROCEDURE FOR POWERPOINT | 101

drilling down in this Help system to fi nd example code and other assistance that will

show us how to work with slides and related objects. All this will become much clearer to

you in Part 6. For now, just follow along to get the general idea.

 15. Now on the Presentation object’s Help page, click the Presentation Object Members link

(scroll to fi nd it near the bottom of this web page), and then scroll way down to locate the

Slides object in the properties list. Click the Slides link (see Figure 4.9), then in the new

web page that appears, click a Slides link again (it’s near the top where it says “Returns a

Slides collection…”). Now you see the information about the Slides Collection object, as

shown in Figure 4.10.

Figure 4.9

Select the Slides

object from the list.

 16. From this screen, you learn two pieces of information: fi rst, that a slide is represented by

a Slide object (stored in a Slides collection), and second, that you use the Add method to

create a new slide.

 17. Type a declaration for an object variable of the Slide object type to represent the slide

the procedure creates. Notice that after you type as and a space, the Visual Basic Editor

displays the list of available objects. Type down through the list (type s and l) until you

have selected Slide, and then press the Enter key to complete the term and start a new

line of code:

Dim sldTitleSlide As Slide

102 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

Figure 4.10

Th e Slides

Collection Object

Help screen

 18. Use a Set statement to assign to the sldTitleSlide object a new slide you create by using the

Add method. Type set sld and then press Ctrl+spacebar to make the Editor’s Complete Word

feature enter sldTitleSlide for you. Then type = activepresentation.slides.add(, using

the Visual Basic Editor’s assistance, so that the line reads as shown here:

Set sldTitleSlide = ActivePresentation.Slides.Add(

 19. When you type the parenthesis, the Auto Quick Info feature displays the syntax for the

Add method, as shown in Figure 4.11.

Figure 4.11

Th e Auto Quick Info

feature displays the

syntax for the Add

method when you

type the parenthe-

sis after the Add

method

 20. Type the Index argument, a colon, an equal sign, the value 1 (because the title slide is to

be the fi rst slide in the presentation), and a comma:

Set sldTitleSlide = ActivePresentation.Slides.Add(Index:=1,

CREATING A PROCEDURE FOR POWERPOINT | 103

Choosing between Labeled and Implied Argument Lists

When a method uses arguments, as the Add method does here, you can choose between specify-

ing the argument names or omitting them and letting VBA infer the arguments from the order

of the values or constants. For example, in this case you can specify either Add(Index:=1,

Layout:=ppLayoutTitle) or Add(1, ppLayoutTitle). Th e latter is more concise and easier

to type in, but the former is much clearer to read.

 21. Break the statement to the next line with a line-continuation character (an underscore

preceded by a space). Then type a tab to indent the new line, type the Layout argument, a

colon, and an equal sign, and pick the ppLayoutTitle constant from the List Properties/

Methods drop-down list, as shown in Figure 4.12.

Figure 4.12

Choose the

ppLayoutTitle

constant for the

Layout argument.

 22. Type the parenthesis to end the statement:

Set sldTitleSlide = ActivePresentation.Slides.Add(Index:=1, _

 Layout:=ppLayoutTitle)

 23. Press the Enter key to start a new line, and then press either the Backspace key or

Shift+Tab to unindent the new line by one tab stop.

 24. You’ll be working with the sldTitleSlide from here on, so create a With statement using

it, and place the insertion point on the line between the With statement and the End With

statement:

With sldTitleSlide

End With

 25. Next, the macro will manipulate the two items on the slide. To make it do so, you need

to know the objects that represent them. You could use the Macro Recorder to fi nd the

objects, but this time try a more direct method: Place the insertion point on the line

within the With statement and type . (a period) to display the List Properties/Methods

drop-down list of available properties and methods for the Slide object.

 26. Sometimes the List Properties/Methods drop-down list is of little help because it displays

so many possibly relevant properties and methods that you can’t identify the property

you need. But if you scan the list in this case, you’ll see that the Shapes property (which

returns the Shapes collection) is the only promising item.

104 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

 27. Press Ctrl+G, choose View ➢ Immediate, or click the Immediate Window button on the

Debug toolbar to display the Immediate window for a bit of testing.

 28. Type the following exploratory statement into the Immediate window and press the Enter

key to execute this statement:

ActivePresentation.Slides(1).Shapes(1).Select

(The Immediate window is a quick way to test individual lines of code without having

to run the entire macro.) Now switch to PowerPoint’s window to see if the item was, in

fact, selected (whether it has a frame drawn around it). Press Alt+F11 or click the View

Microsoft PowerPoint button on the Standard toolbar to display the PowerPoint window

to verify that VBA has selected the fi rst Shape object on the slide.

 29. Okay, this is the right object to start with, but now you need to fi nd out how to add text

to the shape. Go back to the Code window (click in the Code window or press the F7

key). Press the Backspace key to delete the period, and then type it again to redisplay the

list. Type te to jump down to the items in the list whose names start with text. Select the

TextFrame item in the list, and then type a period to enter the term and display the next

list. Scroll down the list, select the TextRange object, and type a period to enter the term

and display the next list. In the next list, select the Text property. Type an equal sign to

enter the term. Then type double quotation marks followed by the text to assign to the

text property Pollution Update: (with a space after it), double quotation marks, an

ampersand, and the date (supplied by the Date function):

Shapes(1).TextFrame.TextRange.Text = “Pollution Update: “ & Date

 30. Assign information to the second Shape in the same way:

.Shapes(2).TextFrame.TextRange.Text = “JMP Industrials.”

 31. The fi nished procedure should look like this:

Sub Add_Title_Slide()

 Dim sldTitleSlide As Slide

 Set sldTitleSlide = ActivePresentation.Slides.Add(Index:=1, _

 Layout:=ppLayoutTitle)

 With sldTitleSlide

 .Shapes(1).TextFrame.TextRange.Text = _

 “Pollution Update: “ & Date

 .Shapes(2).TextFrame.TextRange.Text = _

 “JMP Industrials”

 End With

End Sub

 32. Press F5 to test the procedure. Look at the slides in PowerPoint. There should be a new

fi rst slide in the collection of slides on the left. Then delete all slides from the presentation

(select slides by pressing Shift while clicking a range of slides in the left pane, then press

Delete).

 33. If you wish, right-click on the Quick Access Toolbar in the upper-left corner of

PowerPoint’s screen, then choose Customize Quick Access Toolbar. Then add a Quick

Access Toolbar button for the Add_Title_Slide macro.

CREATING A PROCEDURE FOR ACCESS | 105

 34. Save the presentation under a name such as Procedures.pptm. You might see a warning

about personal-information risks. Click OK to close that Be Careful! message box.

 35. Create a new presentation; then test the toolbar button or menu item for the procedure.

If you see a security warning, read the sidebar titled “A Warning about Security” in

Chapter 1. Close the presentation without saving changes.

Creating a Procedure for Access
Access has a long tradition of autonomy from the other Offi ce applications, and this applies as

well to its implementation of macros. It has no Recorder, for example, nor does it permit you to

assign macros to shortcut key combinations.

In addition, Access includes a legacy “Macro Builder,” which you can take a look at by clicking

the Macro button on the Create tab of the Ribbon. (Note that in Access there is no Developer tab

on the Ribbon. You can open the Visual Basic Editor from the Database Tools tab or press Alt+F11.)

The Macro Builder utility has been generally unpopular over the years because the Visual

Basic Editor offers far more options, objects, and features. The Builder is for nonprogrammers—

a way to create simple macros via lists rather than actual programming. However, the Builder

was somewhat improved in Access 2007, including provisions for error handling and the ability

to embed macros within individual forms. And additional improvements were made for Access

2010, enough improvements that Microsoft renamed it the Macro Designer. But a rose by any

other name is still a rose. If you’re interested in details about the Macro Designer and its curi-

ous, some might say simplistic, reliance on repeated If…Then structures, see the sidebar titled

“Using The Macro Builder” in Chapter 28, “Understanding the Access Object Model and Key

Objects.”

For the reasons I mentioned, you will likely prefer to use the Visual Basic Editor rather than

the Builder/Designer for any but the most elementary macros. After all, relying on a list of If

queries is not only limiting, it’s downright dated.

Let’s get a feel for writing real VBA macros in Access. In this example, you’ll write a macro

that displays today’s date and time:

 1. Start Access.

 2. Double-click the Blank Desktop Database icon (in Access 2010 and earlier, double-click

the Blank Database button).

 3. Press Alt+F11 to open the Visual Basic Editor.

 4. Right-click the database name in the Project Explorer, then choose Insert Module to open

a new module in the Code window, where you can write macros.

 5. In the Code window, type the following macro:

Sub ShowDate()

MsgBox (“It is: “ & Now)

End Sub

 6. Click anywhere within this code, and then press F5 to execute the macro. You should see

a message box that displays the current date and time. (Note that you don’t type the End

Sub; Access automatically inserts it for you.)

106 | CHAPTER 4 CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR

We’ll cover Access macro programming in depth in Chapter 28 and Chapter 29,

“Manipulating the Data in an Access Database via VBA.” Also, you might have noticed that

the Editor automatically inserted a line of code at the top: Option Compare Database. This

specifi es a particular way to go about comparing text strings.

Th e Bottom Line

Set up the Visual Basic Editor for creating procedures. How you arrange the various com-

ponents of the Visual Basic Editor is your personal choice, but while using this book, it’s easi-

est if you set up the Editor to resemble the way it appears in the book’s fi gures. Besides, this

arrangement is quite close to the default layout, which has proven to be the most effective

one for the majority of programmers (according to various focus groups and polls) for the

decades that Visual Basic has been used.

Master It Press a single key to display, then hide, the Properties window.

Create a procedure for Word. Using the Help feature in any VBA-enabled application

allows you to fi nd code examples that you can copy and paste into your own code.

Master It Open the Code window and use Help to fi nd a code example.

Create a procedure for Excel. Certain procedure names are special. In a previous Excel

exercise, you added line numbering and gave that procedure a name of your own choice. But

some procedure names have a special meaning—they are triggered by an event in Excel itself.

They will execute automatically when that event takes place (you don’t have to run events by

choosing Run from the Macro dialog box or by assigning the macro to a keyboard shortcut or

Quick Access Toolbar button). One such event is Excel’s Auto_Open procedure.

Master It Display a message to the user when Excel fi rst executes.

Create a procedure for PowerPoint. As you type a procedure, the Visual Basic Editor pro-

vides you with lists of objects’ members (the Auto List Members feature) and with syntax

examples, including both required and optional arguments (the Auto Quick Info feature).

These tools can be invaluable in guiding you quickly to the correct object and syntax for a

given command.

Master It Use the Auto List Members and Auto Quick Info features to write a macro

that saves a backup copy of the currently active presentation.

Create a procedure for Access. Although Access includes a variety of macro-related fea-

tures that are unique (such as its Macro Builder/Designer), its Visual Basic Editor is quite

similar to the Visual Basic Editors in the other Offi ce applications.

Master It Open the Visual Basic Editor in Access and write a macro that displays to-

day’s date using the Date function rather than the Now function. Use the Access Visual

Basic Editor Help system to understand the difference between these two functions.

c05.indd 10:46:59:AM 07/26/2013 Page 107

Part 2

Learning How to Work
with VBA
◆ Chapter 5: Understanding the Essentials of VBA Syntax

◆ Chapter 6: Working with Variables, Constants, and Enumerations

◆ Chapter 7: Using Array Variables

◆ Chapter 8: Finding the Objects, Methods, and Properties You Need

c05.indd 10:46:59:AM 07/26/2013 Page 108

c05.indd 10:46:59:AM 07/26/2013 Page 109

Chapter 5

Understanding the Essentials of
VBA Syntax

In this chapter, you’ll learn the essentials of VBA syntax, building on what you learned via

practical examples in the previous chapters. This chapter defi nes the key terms that you need to

know about VBA to get going with it, and you’ll practice using some of the features in the Visual

Basic Editor.

If You Don’t Understand a Programming Term, Look Ahead

You’ll fi nd lots of defi nitions of programming terms as you work your way through this chapter. If

you come across something that doesn’t yet make sense to you, just keep going; you’ll most likely

fi nd an explanation in the next few pages.

In this chapter you will learn to do the following:

 ◆ Understand the basics of VBA

 ◆ Work with procedures and functions

 ◆ Use the Immediate window to execute statements

 ◆ Understand objects, properties, methods, and events

Getting Ready
To learn most effi ciently in this next section, arrange the Visual Basic Editor in Word by per-

forming the following steps. This chapter focuses on Word because it’s the most widely dis-

tributed of the VBA-enabled applications. If you don’t have Word, read along anyway without

performing the actions on the computer; the examples are easy to follow. (Much of this will

work on any VBA host application, though many of the commands shown here are specifi c to

Word.) Here are the steps:

 1. Start Word.

 2. Launch the Visual Basic Editor by pressing Alt+F11 or clicking the Developer tab on the

Ribbon and then clicking the Visual Basic button.

110 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 110

 3. Arrange the Word window and the Visual Basic Editor window so that you can see both

of them at once. For example, if these are the only two open windows that are not mini-

mized, right-click the Taskbar and choose Show Windows Stacked or Show Windows

Side By Side from the context menu to arrange the windows, or just drag them by their

title bars to the right or left side.

 4. Display the Immediate window in the Visual Basic Editor by pressing Ctrl+G, choosing

View ➢ Immediate Window, or clicking the Immediate Window button on the Debug

toolbar. Your setup should look like Figure 5.1.

Figure 5.1

Th e Visual Basic

Editor set up along-

side a Word docu-

ment. Th is is a good

way to edit or debug

macros. You can see

where you are in the

code and, often, the

eff ect the macro is

having.

Using Dual Monitors

If you’re using a multiple-monitor setup, you can dedicate one monitor to Word and another to

the Visual Basic Editor.

Procedures
A procedure in VBA is a named unit of code that contains a sequence of statements to be executed

as a group. VBA itself has a library of procedures.

For example, VBA contains a function (a type of procedure) named Left, which returns the

left portion of a text string that you specify. For example, hello is a string of text fi ve characters

long. The statement Left(“hello”, 3) returns the leftmost three characters of the string: hel.

(You could then display this three-character string in a message box or use it in code.) The name

assigned to the procedure gives you a way to refer to the procedure.

In addition, when you write a macro, you are writing a procedure of your own (as opposed to

a procedure built into VBA already).

PROCEDURES | 111

c05.indd 10:46:59:AM 07/26/2013 Page 111

Any executable code (your macros) in VBA must be contained in a procedure—if it isn’t, VBA

can’t execute it and an error occurs. (The exception is statements you execute in the Immediate

window, which take place outside a procedure. However, the contents of the Immediate win-

dow exist only during the current VBA session and are used for testing code. They cannot be

executed from the host application via buttons, ribbons, or keyboard shortcuts.)

A macro—in other words the code from Sub to End Sub—is a procedure.

Procedures are contained within modules, which in turn are contained within project fi les,

templates, or other VBA host objects, such as user forms.

There are two types of procedures: functions and subprocedures (subs).

Functions
A function in VBA is one of two types of procedures. Like a sub, a function is a procedure

designed to perform a specifi c task. For example, the built-in VBA Left function returns the

left part of a text string, and the Right function, its counterpart, returns the right part of a text

string. Each function has a clear task that you use it for, and it doesn’t do anything else. To take

a ridiculous example, you can’t use the Left function to print a document in Word or make

characters boldface—for those tasks, you need to use the appropriate functions, methods, and

properties. Left just does its one, simple job.

VBA comes with many built-in functions, but you can create your own as well. You’ll create

your own functions later in the book. They will begin with a Function statement and end with

an End Function statement.

Each function returns a value. For example, the Left function returns the left part of the string.

Other functions return different kinds of results. Some, for example, just test a condition and

return True if the condition is met and False if it is not met. But just remember that what distin-

guishes a function is that it returns some value.

Subprocedures
A subprocedure (also called a sub or subroutine), like a function, is a complete procedure designed

to perform a specifi c task, but unlike a function, a sub does not return a value.
Note that many tasks need not return a result. For example, the Transpose_Word macros you

created earlier in this book merely switch a pair of words in a document. There’s no need for

any value to be returned to VBA for further use. On the other hand, if your procedure calculates

sales tax, there is a result, the amount of tax, that must be returned by the procedure for display

to the user or further manipulations by the VBA code.

All the macros you record using the Macro Recorder are subprocedures, as are many of the

procedures you’ll look at in the rest of this book.

Each subprocedure begins with a Sub statement and ends with an End Sub statement.

Functions Aren’t Displayed in the Macros Dialog Box

Only subprocedures appear in the Macros dialog box. Should you choose to write a function, it will

not appear in that box.

112 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 112

Statements
When you create a macro in VBA, you’re writing statements, which are similar to sentences in

ordinary speech. A statement is a unit of code that describes an action, defi nes an item, or gives

the value of a variable. VBA usually has one statement per line of code, although you can put

more than one statement on a line by separating them with colons. (This isn’t usually a good idea

because it makes your code harder to read. Most programmers stick to one statement per line.)

You can also break a lengthy line of code onto a second line or a subsequent line to make it

easier to read (although this isn’t usually necessary). You continue a statement onto the next line

by using a line-continuation character: an underscore (_) preceded by a space (and followed

by a carriage return; in other words, press the Enter key). You continue a line strictly for visual

convenience; VBA still reads continued lines as a single “virtual” line of code. In other words, no

matter how many line continuations you use for easy-to-read formatting, during execution it’s

still a single statement to VBA.

So, think of VBA code as a series of sentences, each on its own line (or continued), that are

usually executed one by one down from the top.

You Can’t Break Strings with the Line-Continuation Character

You can’t break a string (text enclosed in quotation marks) with the line-continuation character. If

you need to break a line that involves a long string in quotes, break the string into shorter strings

and concatenate them using the & operator: “This” & “that”.

VBA statements vary widely in length and complexity. A statement can range in length from

a single word (such as Beep, which makes the computer beep, or Stop, which halts the execution

of VBA code) to very long and complicated lines involving many components. But to make it

easy to read your code, try to make your lines as brief as possible.

That said, let’s examine the makeup of several sample VBA statements in Word. Most of

these will use the ActiveDocument object, which represents the active document in the current

session of Word; a couple use the Documents collection, which represents all open documents

(including the active document); and one uses the Selection object, which represents the cur-

rent selection within a document (selected text or the location of the blinking insertion cursor).

Don’t worry if some of these statements aren’t immediately comprehensible—you’ll understand

them soon enough.

Here are some example statements for you to try:

Documents.Open “c:\temp\Sample Document.docm”

MsgBox ActiveDocument.Name

ActiveDocument.Words(1).Text = “Industry”

ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges

Documents.Add

Selection.TypeText “The quick brown fox jumped over the lazy dog.”

Documents.Close SaveChanges:=wdDoNotSaveChanges

Application.Quit

Let’s look at each of these statements in turn. The statement

Documents.Open “c:\temp\Sample Document.docm”

STATEMENTS | 113

c05.indd 10:46:59:AM 07/26/2013 Page 113

uses the Open method of the Documents collection to open the specifi ed document—in this case,

Sample Document.docm. Enter this statement in the Immediate window, substituting a path and

fi lename of a document that exists on your computer for \temp\Sample Document.docm.

Press the Enter key, and VBA opens the document in the Word window. Just as when you

open a document by hand while working interactively in Word, this statement in the macro

makes this document the active document (the document whose window has the focus; in other

words, the window that is currently selected and will therefore take input from keystrokes or

mouse activity).

The statement

MsgBox ActiveDocument.Name

uses the MsgBox function (built into VBA) to display the Name property of the ActiveDocument

object (in this example, Sample Document.docm). As an experiment, type this MsgBox statement

into the Immediate window (type in lowercase, and use VBA’s Help features as you choose) and

press the Enter key. VBA displays a message box over the Word window. Click the OK button to

dismiss the message box.

Now you see how you can quickly test a statement using the Immediate window. You don’t

have to execute an entire macro; you can just try out a single statement (a single line of code) in

the Immediate window if you want to see its effect.

Next, the statement

ActiveDocument.Words(1).Text = “Industry”

uses the assignment operator (the equal [=] sign) to assign the value Industry to the Text prop-

erty of the fi rst item in the Words collection in the ActiveDocument object. Enter this statement

in the Immediate window and press the Enter key. You’ll see the word Industry displayed in the

current typeface at the beginning of the document you opened.

Note that after this line executes, the blinking insertion point appears at the beginning of this

word rather than at the end of the word, where it would be if you’d typed the word. This hap-

pens because VBA manipulates the properties of the document (in this case the Words collec-

tion) directly rather than imitating “typing” into it.

The statement

ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges

uses the Close method to close the ActiveDocument object. It uses one argument, SaveChanges,

which controls whether Word saves the document that’s being closed (if the document contains

unsaved changes). In this case, the statement uses the constant wdDoNotSaveChanges to specify

that Word shouldn’t save changes when closing this document. Enter this statement in the

Immediate window and press the Enter key, and you’ll see VBA make Word close the document.

An argument is information you send to a procedure. For example, in this next statement the

argument is the text string show, which is sent to the built-in VBA MsgBox function:

MsgBox (“show”)

A MsgBox function will display any text. So you send it an argument: the particular text you

want it to display. You’ll learn more about arguments shortly.

Now try entering this statement in the Immediate window:

Documents.Add

114 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 114

This statement uses the Add method of the Documents collection to add a new Document object

to the Documents collection. In other words, it creates a new document. Because the statement

doesn’t specify which template to use, the new document is based on the default template

(Normal.dotm). When you enter this statement in the Immediate window and press Enter, Word

creates a new document. As usual, this new document becomes the active document.

The statement

Selection.TypeText “The quick brown fox jumped over the lazy dog.”

uses the TypeText method of the Selection object to type text into the active document at the

position of the insertion point or current selection. (The Selection object represents the current

selection, which can be either a “collapsed” selection—a mere insertion point with nothing actu-

ally selected, as in this example—or one or more selected objects, such as one or more words.)

If text is selected in the active document, that selection is overwritten as usual—unless you’ve

cleared the Typing Replaces Selected Text check box by pressing Alt+F then I, and then clicking

the Advanced option in the left pane of the Word Options dialog box. In that case, the selection is

collapsed to its beginning and the new text is inserted before the previously selected text.

But in this example—because you just created a new document—nothing is selected. Enter

the previous Selection.TypeText statement in the Immediate window and press the Enter

key, and Word enters the text. Note that this time the insertion point ends up after the inserted

text; the TypeText method of the Selection object is analogous to typing something into Word

yourself.

The statement

Documents.Close SaveChanges:=wdDoNotSaveChanges

is similar to an ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges statement

except that it works on the Documents collection rather than the ActiveDocument object. The

Documents collection represents all open documents in the current Word session. So this state-

ment closes all open documents and doesn’t save any unsaved changes in them. Enter this state-

ment in the Immediate window and press Enter, and you’ll see that Word closes all the open

documents.

The statement

Application.Quit

uses the Quit method of the Application object to close the Word application. Enter the state-

ment in the Immediate window and press the Enter key. Word closes itself, also closing the

Visual Basic Editor in the process because Word is the host for the Visual Basic Editor.

Getting Help in Visual Basic for Applications

Th e Visual Basic Editor off ers comprehensive help for the Visual Basic for Applications programming

language. To view it, choose Help ➢ Microsoft Visual Basic For Applications Help from the Visual

Basic Editor. You’re taken to a website devoted to the current application (in this case, Word 2013).

Pressing F1 works two ways. If your blinking cursor is on a blank space or an empty line in the Code

window, F1 displays a generic Offi ce Help page. Th is page contains the link “Welcome to the Visual

Basic for Applications language reference for Offi ce 2013.” Click that link.

KEYWORDS | 115

c05.indd 10:46:59:AM 07/26/2013 Page 115

Here’s a second way to press F1 for help. Often the quickest way to get help is to click a keyword in

your code, such as ActiveWindow or MsgBox. By clicking, you put the blinking insertion cursor

in that command, “selecting” it. Now when you press F1, the Editor tries to locate online help for

that particular command.

Most of the built-in VBA statements and functions are illustrated with code examples, which can

be particularly useful when you’re creating and troubleshooting your own code. Th e samples show

you how it’s done.

Th e Visual Basic Help fi les use a couple of conventions you should know about before you try to

use them:

 ◆ Italics denote variables or values you’ll need to change yourself.

 ◆ Brackets—[and]—denote optional arguments.

Th is book uses the same conventions, so you’ll see them in use soon.

If you don’t fi nd what you need by searching the Microsoft Visual Basic Help web pages, choose

Help ➢ MSDN On Th e Web. Th at’s a more generic Offi ce 2013 help site, with links for all the various

Offi ce applications and their object library references.

Keywords
A keyword is a word that is part of the built-in VBA language. Here are some examples:

 ◆ The Sub keyword indicates the beginning of a subprocedure, and the End Sub keywords

mark the end of a subprocedure.

 ◆ The Function keyword indicates the beginning of a function, and the End Function key-

words mark the end of a function.

 ◆ The Dim keyword starts a declaration (for example, of a variable) and the As keyword links

the item declared to its type, which is also a keyword. For example, in the statement Dim

strExample As String, there are three keywords: Dim, As, and String.

The names of functions and subprocedures are not keywords (neither the built-in procedures

nor procedures you write). Note that in this book I sometimes use the term command as a syn-

onym for keyword.

Identifying Keywords by Color

Th e Visual Basic Editor displays all keywords in blue. But if you wish, you can specify a diff erent

color for keyword text on the Editor Format tab of the Options dialog box (choose Tools ➢ Options

from the Visual Basic Editor). If you’re not sure whether an item is a keyword, check if the color the

Visual Basic Editor gives the item is the same color as keywords such as Sub.

116 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 116

Expressions
An expression involves multiple words. It consists of a combination of keywords, operators, vari-

ables, and/or constants that results in (or resolves to) a string, number, or object. For example, you

could use an expression to do a math calculation or to compare one variable against another.

Here’s an example of a numeric expression (it’s shown in boldface) that compares the variable N

to the number 4 by using the > (greater than) operator:

If N > 4 Then

The result of this expression will depend on whatever value is currently held in the variable

N. If it holds 12, then the expression will result in TRUE because 12 is greater than 4. More on

expressions later.

Operators
An operator is a symbol you use to compare, combine, or otherwise work with values in an

expression. VBA has four kinds of operators:

 ◆ Arithmetic operators (such as + and –) perform mathematical calculations.

 ◆ Comparison operators (such as < and >, less than and greater than, respectively) compare

values.

 ◆ Logical operators (such as And, Not, and Or) build logical structures.

 ◆ The concatenation operator (&) joins two strings together.

You’ll look at the different kinds of operators and how they work in Chapter 11, “Making

Decisions in Your Code.”

Variables
A variable is a location in memory set aside for storing a piece of information that can change

while a procedure is running. (Think of it as a named, resizable compartment within the mem-

ory area.)

For example, if you need the user to input their name via an input or a dialog box, you’ll typi-

cally store the name in a variable so you can work with it further down in some later statement

in the procedure. Or perhaps you’re adding several numbers that the user types in. You would

have a variable that holds the current sum total—which keeps changing (varying) as the user

types in more numbers.

VBA uses several types of variables, including these:

Strings store text characters or groups of characters.

Integers store whole numbers (numbers without fractions).

Objects store objects.

Variants can store any type of data. Variant is the default type of variable.

Either you can let VBA create Variant variables as the default type, or you can specify

another data type if you wish. Specifying the types of variables has certain advantages that

you’ll learn about in due course.

CONSTANTS | 117

c05.indd 10:46:59:AM 07/26/2013 Page 117

For the moment, try creating a variable in the Immediate window. Type the following line

and press Enter:

myVariable = “Some sample text”

Nothing visible happens, but VBA has created the myVariable variable. It has set aside some

memory and labeled that area myVariable. It also stored the text string Some sample text in

that variable. Now, type the following line and press Enter:

MsgBox myVariable

This time, you can see the result: VBA goes to the memory area you specifi ed (with the vari-

able name myVariable) and retrieves the value, the string. A message box appears containing

the text you had stored in the variable.

You can declare variables either explicitly or implicitly. An explicit declaration is a line of code

that specifi es the name you want to give the variable, and usually its type, before you use the

variable in your code. Here’s an explicit variable declaration:

Dim myVariable As String

An implicit declaration means that you don’t bother with that explicit declaration statement.

Instead, you just use the variable name in some other statement. VBA then stores the data in a

Variant variable. (You have not specifi ed the type.)

In other words, if you just use a variable in your code without declaring it, it’s implicit.

Here’s an example of implicit declaration:

myVariable = “Some sample text”

You never explicitly declared this variable. The fi rst time it appeared in your code, you

just assigned some data, the text, to it. So VBA assumes that you want to create the variable

implicitly.

In the next few chapters, you’ll use a few implicit variable declarations to keep things simple.

In other words, you won’t have to type in lines of code to declare implicit variables. VBA will

create them for you when you fi rst use them in an assignment or other statement.

However, many educators and professional programmers insist on explicit declaration, so we’ll

do that for the most part in the later sections of this book. Explicit variable declarations make your

code run faster and make it easier to understand. What’s more benefi cial, some types of errors can

be avoided if you explicitly declare all your variables. So declaring is a good habit to get into.

Constants
A constant is similar to a variable. It’s a named item that keeps a constant value while a program

is executing. The constant’s meaning doesn’t change during the macro’s execution. (So in this way,

it’s unlike a variable.)

VBA uses two types of constants: intrinsic constants, which are built into the VBA language

itself (and individual Offi ce applications’ implementations of VBA), and user-defi ned constants,
which you can create. For example, the built-in constant vbOKCancel is always available in VBA

to be used with the MsgBox function. This constant creates a message box that contains an

OK and a Cancel button. There are sets of built-in constants for colors, printing (vbTab, for

example), and other properties.

Concerning constants that you defi ne, you might want to create one to store a piece of infor-

mation that doesn’t change, such as the name of a procedure or the distance between Boston and

118 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 118

New York. In practice, the built-in intrinsic constants are used quite often in VBA programming;

user-defi ned constants not so much. It’s just as easy to put the distance between those cities in a

variable, even though it won’t vary.

Arguments
An argument is a piece of information—supplied by a constant, a variable, a literal, or an expres-

sion—that you pass to a procedure, a function, or a method. Some arguments are required;

others are optional. The text hello there in this MsgBox function is an argument:

MsgBox “hello there”

Here’s another example. As you saw earlier, the following statement uses the optional argu-

ment SaveChanges to specify whether Word should save any unsaved changes while closing the

active document:

ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges

This optional argument uses the built-in constant wdDoNotSaveChanges.

Understanding Literals

A literal can be used instead of a constant or variable, if you wish. With a literal, you just type the

actual value into the argument. For example, you could display a message box that says “Hi there”

by using a variable:

txtMsg = “Hi there!”

MsgBox (txtMsg)

Or you could simply avoid the variable and employ a literal (the actual text string) as the argument:

MsgBox (“Hi there!”)

Both of these approaches have the same result.

The Visual Basic Editor’s helpful prompts and the Visual Basic Help fi le show the list of argu-

ments for a function, a procedure, or a method in parentheses, with any optional arguments

enclosed in brackets. If you have its Auto Quick Info feature activated, the Editor displays the

argument list for a function, procedure, or method after you type its name followed by a space.

Figure 5.2 shows the argument list for the Document object’s Open method. Type Documents.Open,

then press the spacebar to see the argument list.

Figure 5.2

Optional argu-

ments are enclosed

within brackets.

The FileName argument is required, so it isn’t surrounded by brackets. All the other argu-

ments (ConfirmConversions, ReadOnly, AddToRecentFiles, and so on) are optional and there-

fore are surrounded by brackets.

ARGUMENTS | 119

c05.indd 10:46:59:AM 07/26/2013 Page 119

If you don’t supply a value for an optional argument, VBA uses the default value for the

argument. (To fi nd out the default value for an argument, consult the VBA Help fi le. The default

is usually the most commonly employed value.) The Visual Basic Editor uses boldface to indi-

cate the current argument in the list; as you enter each argument, the next argument in the list

becomes bold.

Specifying Argument Names vs. Omitting Argument Names
You can add arguments in either of two ways:

 ◆ Enter the name of the argument (for example, ConfirmConversions), followed by a colon,

an equal sign (ConfirmConversions:=), and the constant or value you want to set for it

(ConfirmConversions:=True). For example, the start of the statement might look like this:

Documents.Open FileName:=”c:\temp\Example.docm”, _

 ConfirmConversions:=True, ReadOnly:=False

 ◆ Or enter the constant or value in the appropriate position in the argument list for the

method, without entering the name of the argument. The previous statement would look

like this:

Documents.Open “c:\Temp\Example.docm”, True, False

When you use the fi rst approach—naming the arguments—you don’t need to put them in

order because VBA looks at their names to identify them. The following statements are function-

ally equivalent:

Documents.Open ReadOnly:=False, FileName:= “c:\temp\Example.docm”, _

 ReadOnly:=False, ConfirmConversions:=True

Documents.Open FileName:=”c:\temp\Example.docm”, _

 ConfirmConversions:=True, ReadOnly:=False

You also don’t need to indicate to VBA which optional arguments you’re omitting.

By contrast, when you don’t employ argument names, you’re specifying which argument

is which by its position in the list. Therefore, the arguments must be in the correct order for VBA

to recognize them correctly. If you choose not to use an optional argument but to use another

optional argument that follows it, enter a comma (as a placeholder) to denote the omitted argu-

ment. For example, the following statement omits the ConfirmConversions argument and

uses a comma to denote that the False value refers to the ReadOnly argument rather than the

ConfirmConversions argument:

Documents.Open “c:\temp\Example.docm”,, False

Remember that when you type the comma in the Code or the Immediate window, Auto

Quick Info moves the boldface to the next argument in the argument list to indicate that it’s next

in line for your attention.

Required Arguments Precede Optional Arguments

Typically, required arguments are listed fi rst in the argument list—before optional arguments. Th at

way, you don’t have to use commas to indicate the omission of optional arguments if you only want

to enter the required arguments. You can just leave out all the rest of the items in the argument list.

120 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 120

When to Include the Parentheses around the Argument List
Most programmers enclose argument lists within parentheses. It makes the code easier to read.

However, parentheses can be omitted in some circumstances. When you’re assigning the result

of a function to a variable or other object, you must enclose the whole argument list in parenthe-

ses. For example, to assign to the variable objMyDocument the result of opening the document

c:\temp\Example.docm, use the following statement:

objMyDocument = Documents.Open(FileName:=”c:\temp\Example.docm”, _

 ConfirmConversions:=True, ReadOnly:=False)

However, when you aren’t assigning the result of an operation to a variable or an object, you

don’t need to use the parentheses around the argument list, even though it’s common practice to

do so. The following examples illustrate how you can either use or leave out parentheses when

not assigning a result to a variable or other object:

MsgBox (“Hi there!”)

MsgBox “Hi there!”

Objects
To VBA, each application consists of a series of objects. Here are a few examples:

 ◆ In Word, a document is an object (the Document object), as is a paragraph (the Paragraph

object) and a table (the Table object). Even a single character is an object (the Character

object).

 ◆ In Excel, a workbook is an object (the Workbook object), as are the worksheets (the

Worksheet object) and charts (the Chart object).

 ◆ In PowerPoint, a presentation is an object (the Presentation object), as are its slides (the

Slide object) and the shapes (the Shape object) they contain.

Most of the actions you can take in VBA involve manipulating objects. For example, as you

saw earlier, you can close the active document in Word by using the Close method on the

ActiveDocument object:

ActiveDocument.Close

Collections
A collection is an object that contains other objects, the way an umbrella-stand object contains

umbrella objects. Collections provide a way to access all their members at the same time. For

example, the Documents collection contains all the open documents, each of which is an object.

Instead of closing Document objects one by one, you can close all open documents by using the

Close method on the Documents collection:

Documents.Close

Likewise, you can use a collection to change the properties of all the members of a collection

simultaneously.

EVENTS | 121

c05.indd 10:46:59:AM 07/26/2013 Page 121

Here’s an example of some code that displays, in the Immediate window of the Editor, all the

names of the objects in Word’s CommandBars collection:

‘fetch the number of commandbars

 n = CommandBars.Count

‘display all their names

 For i = 1 To n

 Debug.Print CommandBars(i).Name

 Next i

Properties
Each object has a number of properties. Think of properties as the qualities of an object, such as

its color, size, and so on.

For example, the current document in Word has properties such as the number of sentences

in the document. Type this into the Immediate window, then press Enter:

MsgBox (ActiveDocument.Sentences.Count)

Here you’re using the Count property of the Sentences collection to fi nd out how many sen-

tences are in the document.

Likewise, even a single character has various properties, such as its font, font size, and vari-

ous types of emphasis (bold, italic, strikethrough, and so on).

Methods
A method is something an object can do. A capability. Different objects have different methods,

just as different people have different talents. For example, here’s a list of some of the methods

of the Document object in Word (many of these methods are also available to objects such as the

Workbook object in Excel and the Presentation object in PowerPoint):

Activate Activates the document (the equivalent of selecting the document’s window with

the keyboard or mouse)

Close Closes the document (the equivalent of pressing Alt+F then C, or clicking the Close

button after clicking the File tab on the Ribbon)

Save Saves the document (the equivalent of pressing Alt+F then S, or clicking the Save but-

ton after clicking the File tab on the Ribbon)

SaveAs Saves the document under a specifi ed name (the equivalent of pressing Alt+F then

A, or clicking the Save As button after clicking the File tab on the Ribbon)

Events
When an event occurs, VBA is aware that something happened, usually something that hap-

pened to an object. For example, the opening of a fi le (either by a user or by a macro procedure)

typically generates an event. The user clicking a button in the toolbar generates a Click event.

Another way to put it is that when you click a button, you trigger that button’s Click event, and

VBA becomes aware that this has happened.

122 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 122

By writing code for an event, you can cause VBA to respond appropriately when that event

occurs. For example, let’s say you display a user form (a window). You might write some code in

an OK button’s Click event. This code might check that all necessary settings were specifi ed by

the user when the user clicked the OK button to close the user form and apply the settings. You

might write more code within that button’s Click event that responded (perhaps by displaying

a message box) if the user had failed to type in some required information. In essence, you can

write code in an event to tell VBA what to do if that event is triggered. You don’t have to write

code for all events; sometimes you’ll write code in only one of them. But if you put a button cap-

tioned “Display Results” on a user form, you’d better at least write some code in that button’s

Click event to display some results.

Objects and Their Components

I’ll have much more to say about objects throughout the rest of this book. For now, see if you can

identify the three primary parts of a typical object: properties (its qualities), methods (ways you can

make the object behave), and events (something that happens to an object while a program or applica-

tion is executing). Collectively, these three components of an object are called the object’s members.

Take a look at the following code window. See if you can spot the members of the Document object—

its properties, its methods, and an event.

THE BOTTOM LINE | 123

c05.indd 10:46:59:AM 07/26/2013 Page 123

Here, you can see that the ThisDocument object is selected in the Project Explorer on the left. Th is

object has available to it the many properties in the long list displayed in the Properties window

on the left side. You can either modify those properties directly in the Visual Basic Editor or write

code that modifi es them on the fl y while the macro executes.

On the right side is a drop-down list of events—actions that can happen to a Document object, or

at least happen while the document is in existence within the computer. You can write code in any

of these events (in the Code window, each event will be a separate subprocedure, enclosed within

the Sub and End Sub statements). Here, you can see that we’re writing code that will execute

when the Document_Close event is triggered:

Private Sub Document_Close()

In this example, I’m writing code to query users if they attempt to close the document. Th is code

will execute anytime this document’s Close event is triggered (when the user clicks the x button

in the upper-right corner of the window, for instance).

Only one method is shown in the Code-window illustration. Can you spot it? It’s in boldface in the

following code example:

Private Sub Document_Close()

Dim intAnswer As Integer

intAnswer = MsgBox(“Do you want to check the spelling?”, _

 vbOKCancel, “Document Is Being Closed”)

If intAnswer = 1 Then ‘ they clicked OK. 1 = OK 2 = Cancel

 ThisDocument.CheckSpelling
End If

End Sub

As you can see, CheckSpelling is a method (a task that an object is able to carry out).

Th e Bottom Line

Understand the basics of VBA. VBA includes two types of procedures, used for different

purposes.

Master It Name the two types of procedures used in VBA (and indeed in most com-

puter languages), and describe the difference between them.

Work with procedures and functions. A procedure is a container for a set of programming

statements that accomplish a particular job.

Master It Write a subprocedure in the Visual Basic Editor that displays a message to the

user. Then execute that subprocedure to test it.

124 | CHAPTER 5 UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX

c05.indd 10:46:59:AM 07/26/2013 Page 124

Use the Immediate window to execute individual statements. When you’re writing code,

you often want to test a single line (a statement) to see if you have the syntax and punctuation

right or if it produces the expected result.

Master It Open the Immediate window, type in a line of code, and then execute that

line.

Understand objects, properties, methods, and events. Object-oriented programming

(OOP) means creating objects to use in your programming. OOP has become the fundamen-

tal paradigm upon which large programming projects are built. Generally speaking, macros

are not large and therefore don’t profi t from the clerical, security, and other benefi ts that OOP

offers—particularly for people who write large applications as a team.

However, code libraries, such as the vast VBA set of objects and their members (not to men-

tion the even vaster .NET libraries that tap into the power of the operating system itself) are

written by large groups of people, and written at different times. These libraries themselves

are huge. There must be a way to organize their objects and functions—to categorize them

and allow you to execute the methods and manage their properties and arguments. As a

result, another aspect of OOP—taxonomy—is quite valuable even when writing brief macros.

It’s a way to quickly locate the members you’re interested in.

Master It Look up the Document object in the Visual Basic Editor’s Help system; then

look at its methods.

Chapter 6

Working with Variables, Constants,
and Enumerations

This chapter covers the basics of working with variables, constants, and enumerations. Variables

are used very often; they provide a way of storing and manipulating information. Variables

come in several types, such as String variables for storing text, various numeric data types for

storing numbers (for example, Integer variables for storing integer values), Date variables

for storing dates and time, Boolean variables for storing True/False values, and even Object

variables for storing objects.

A constant is a named item that stores a value that doesn’t change. Constants, like variables,

exist only while a program is executing. Most programmers rarely create their own constants;

they just use variables instead. However, there is another kind of constant that the programmer

does not create. And this type of constant is used all the time. Many useful constants are built

into VBA, to represent elements in Access, text color options in Excel, styles in Word, and so on.

For our purposes, the term enumeration means a numbered list—like a list of all the items

you need to buy to paint a room. The list contains both the numbers and the names of the

items. So you can refer to each item either by its number in the list or by its name. Essentially,

an enumeration is a group of related, predefi ned constants. But constants are more com-

monly identifi ed by their names rather than their numbers in the list. That’s because the name

AnimationFlyIntoFromLeft is easier to use in your programming than its number, 1312.

The one type of variable that this chapter doesn’t discuss is the Array variable, which is used

to store a set of multiple pieces of related information at the same time. It’s similar to an enu-

meration. Arrays are so important in computer programming that I’ll devote an entire chapter

to them: Chapter 7, “Using Array Variables.”

In this chapter you will learn to do the following:

 ◆ Understand what variables are and what you use them for

 ◆ Create and use variables

 ◆ Specify the scope and lifetime of a variable

 ◆ Work with constants

 ◆ Work with enumerations

126 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

Working with Variables
Variables are used in nearly all computer programs, even short programs like macros. Think of a

variable as a named area in the computer’s memory that you use for storing data while a proce-

dure is running. For example, in Chapter 5, “Understanding the Essentials of VBA Syntax,” you

created a variable that stored a simple string of text that you then displayed in a message box:

myVariable = “Sample variable text”

MsgBox myVariable

The fi rst statement sets aside an area in memory, names it myVariable, and assigns the string

Sample variable text to it. The second statement retrieves the contents (called the value) of

myVariable from memory and uses the MsgBox function to display it in a message box. The

contents of myVariable remain in memory, so you can use the value again if necessary while

the macro is running. Or you can even change the contents. In other words, the value in a vari-

able can vary while the program runs. A constant, by contrast, doesn’t vary during program

execution.

Choosing Names for Variables
VBA imposes several constraints on how you name your variables:

 ◆ Variable names must start with a letter and can be up to 255 characters in length. Usually,

you’ll want to keep them much shorter than this so that you can easily type them into your

code and so that your lines of code don’t rapidly reach awkward lengths.

The Visual Basic Editor’s AutoComplete feature helps make long variable names a little

more manageable: Type enough of the variable’s name to distinguish it from any key-

words and other variable names, and press Ctrl+spacebar. If you’ve typed enough letters

to uniquely identify the variable, the Visual Basic Editor inserts its name; if not, the Visual

Basic Editor displays the drop-down list of keywords and names starting with those

letters.

 ◆ Variable names can’t contain characters such as periods, exclamation points, mathemati-

cal operators (+, –, /, *), or comparison operators (=, <>, >, >=, <, <=), nor can they internally

contain type-declaration characters (@, &, $, #). (You’ll learn about the type-declaration

characters later in this chapter.)

 ◆ Variable names can’t contain spaces but can contain underscores, which you can use to

make the variable names more descriptive by combining words. User_Response is one

example. However, it’s more common to just omit the underscore and let capitalization seg-

regate the words, as in UserResponse.

As a general rule, you’re pretty safe if you stick with straightforward alphanumerics enliv-

ened with the occasional underscore if you like underscores.

For example, all of the following variable names are fi ne, although the last one is awkwardly

long:

 ◆ i

 ◆ John

 ◆ MyVariable

WORKING WITH VARIABLES | 127

 ◆ MissionParameters

 ◆ The_String_the_User_Entered_in_the_Input_Box

On the other hand, these variable names are not usable:

 ◆ My Variable—Contains a space

 ◆ My!Variable—Contains an exclamation point

 ◆ Time@Tide—Contains a type-declaration character (@)

 ◆ 1_String—Does not start with a letter

Each variable name must be unique within the scope in which it’s operating (to prevent VBA

from confusing it with any other variable). Typically, the scope within which a variable operates

is a procedure, but if you declare the variable as public or private (discussed later in the chapter),

its scope is wider.

The other constraint on variable names is that you should avoid assigning to a variable a

name that VBA already uses in its own language or the name of a built-in function, statement, or

object member. Doing so is called shadowing a VBA keyword. It doesn’t necessarily cause prob-

lems, but it may prevent you from using that function, statement, or method without specifi cally

identifying it to VBA by prefacing its name with VBA. For example, instead of Date, you’d have

to use VBA.Date—no big deal, but worth avoiding in the fi rst place. After all, why add this com-

plexity when it’s simpler to just make up your own, unique variable names? Why do things that

provide you with no real benefi t and have drawbacks like making your code harder to read?

There’s no reason to shadow a VBA keyword, but VBA has so many keywords that it’s sur-

prisingly easy to do so.

Don’t worry about accidentally creating a variable name that violates one of the rules listed

in this section. VBA will throw you an error message if you use @ or start your variable name

with 6 or try any other illegal moves. VBA will either report “Invalid Character” or separate

your variable name into multiple words, such as changing 56nin into 56 nin, thinking you are

trying to use line numbers in your code. (You can, if you wish, number your lines, and VBA will

execute the code by just ignoring the line numbers. I number the lines in the code in this book

so I can reference them in the text.)

Declaring a Variable
Recall from Chapter 5 that VBA lets you declare variables either implicitly or explicitly. As you’ll

see shortly, each approach has its pros and cons. However, as you’ll also see, explicit declara-

tions are almost always a good idea, and when you’ve been working with VBA for even a little

while, you’ll probably use them all the time. For this reason, it’s best to declare your variables

explicitly right from the beginning. But this chapter also illustrates how to make implicit decla-

rations so you know that technique if that’s your preference.

Declaring a Variable Implicitly

Declaring a variable implicitly means that you just use it in your code without fi rst declaring

it explicitly. When you declare a variable implicitly, VBA checks to make sure that there isn’t

already an existing variable with that name. It then automatically creates a variable with that

128 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

name for you and assigns it the Variant data type, which can contain any type of data except a

fi xed-length string.

For example, in the previous chapter, you declared the variable myVariable by using the fol-

lowing implicit declaration:

myVariable = “Sample variable text”

Here, myVariable is implicitly declared as a variable—because it is used in a statement rather

than fi rst being declared explicitly (usually with the Dim command).

VBA assigns an implicitly declared variable to the Variant data type, which has a dozen or

so subtypes. In this case, the variable’s subtype is a string because it contains text. VBA usually

assigns the variable the value Empty (a special value used to indicate Variant variables that have

never been used) when it creates it, but in this case the variable receives a value immediately

(because the string of text is assigned to it). VBA then assigns the string type because it can see

you’re storing a string in the variable.

The advantage of declaring a variable implicitly is that you write less code. When you want

a variable, you simply declare it on the spot by using it in a statement. But declaring a variable

implicitly also has a couple of disadvantages:

 ◆ It’s easier to make a mistake typing the variable’s name elsewhere in your code. For

example, suppose you implicitly declare the variable FilesToCreate and then later type

FllesToCreate instead. VBA doesn’t query the latter spelling (with its double ll typo). No

error messages are displayed. VBA merely creates another, new, different variable with the

ll name.

When you’re working with a number of variables, it can be diffi cult and time-consuming

to catch little typo mistakes like this. And a mistake like this (having two variables when you

think you have only one) causes errors. The problem in this example is that you think you’re

referring to the FilesToCreate variable, but you’re not. VBA can detect this kind of error, but

only if explicit declaration is enforced. (Enforced here means that if you try to get away with using

an undeclared variable—the one with the typo was never formally declared—the Visual Basic

Editor displays an error message and halts execution.)

 ◆ The Variant variable type takes up more memory than other types of variables because it

has to be able to store various types of data. This difference is negligible under most nor-

mal circumstances, particularly if you’re using only a few variables or writing only short

procedures. However, if you’re using many variables in a huge program running on a com-

puter with limited memory, the extra memory used by Variant variables might slow down

a procedure or even run the computer out of memory. What’s more important on an under-

powered computer is that manipulating Variants takes longer than manipulating the other

data types. This is because VBA has to keep checking to see what sort of data is

in the variable.

You can get around this second disadvantage in a couple of ways: fi rst, by using a type-

declaration character to specify the data type when you declare a variable implicitly or, second

(as you will see in the next section), by simply telling VBA to force you to declare variables

explicitly—and to display an error message if you don’t.

A type-declaration character is a character that you add to the end of a variable’s name in an

implicit declaration to tell VBA which data type to use for the variable. Table 6.1 lists the type-

declaration characters.

WORKING WITH VARIABLES | 129

Table 6.1: Type-declaration characters

Character Data Type of Variable Example

% Integer Quantity%

& Long China&

@ Currency Profits@

! Single temperature!

Double Differential#

$ String (variable length) myMessage$

So you could implicitly declare the String variable UserName with the following statement,

which assigns the value Jane Magnolia to the variable:

UserName$ = “Jane Magnolia”

And you could implicitly declare the currency variable Price by using this statement:

Price@ = Cost * Margin

You use the type-declaration character only when declaring the variable. Thereafter, you can

refer to the variable by its name—UserName and Price in the previous examples.

Declaring a Variable Explicitly

Declaring a variable explicitly means telling VBA that the variable exists before you use it.

VBA allocates memory space to that variable and registers it as a known quantity. You can also

declare the variable type at the same time—a good idea but not obligatory.

You can declare a variable explicitly at any point in code before you use it, but custom and

good sense recommend declaring all your variables at the beginning of the procedure that uses

them. (Or, to give a variable greater scope, declare it in the General Declarations area up at the

top of the Code window. More on scope later.)

Locating all your declarations at the top of a procedure makes them easy to fi nd, which helps

anyone reading the code.

Declaring variables explicitly offers the following advantages:

 ◆ Your code is easier to read and to debug, both for you yourself and for other programmers.

When you write complex code, this is an important consideration.

 ◆ Forcing explicit variable declarations is accomplished by adding an Option Explicit

statement at the top of a module—in the General Declarations section of the Code window.

This enforcement makes it more diffi cult for you to create new variables unintentionally by

mistyping the names of existing variables.

 ◆ It is more diffi cult for you to wipe out the contents of an existing variable unintentionally

when trying to create a new variable.

130 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

 ◆ VBA can catch some data-typing errors at design time or compile time that with implicit

declarations wouldn’t surface until runtime.

Store the Correct Type of Value in a Variable

A data-typing error occurs when you assign the wrong type of information to a variable. For exam-

ple, if you declare an Integer variable and then assign a string of text to it, VBA triggers an error

because it can’t store string information in an Integer variable.

 ◆ Your code runs a fraction faster because VBA won’t need to determine each variable’s type

while the code is running.

The disadvantage of declaring variables explicitly is that doing so takes a little more time,

effort, and thought. For most code, however, this disadvantage is far outweighed by the

advantages.

To declare a variable explicitly, you use one of the following keywords: Dim, Private, Public,

or Static.

For example, the following statement declares the variable MyValue:

Dim MyValue

Dim is the most common keyword to use for declaring a variable, and you’ll probably want to

use it for most of your variable declarations. You use the other keywords to specify a different

scope, lifetime, and data type for the variable in the declaration. In the previous example, the

MyValue variable receives the default scope and lifetime and the Variant data type, which makes

it suitable for general-purpose use.

You can also declare multiple variables on the same line by separating the variable state-

ments with commas:

Dim Supervisor As String, ControllerCode As Long

This can help you keep down the number of declaration lines in your code, but it makes the dec-

larations harder to read, so it’s not usually a good idea.

Be warned that when you declare multiple variables on the same line, you must specify the

data type for each, as in the previous example. You might be tempted to try a little abbreviation,

like this, hoping for a couple of String variables:

Dim strManager, strReportingEmployee As String

This statement doesn’t create two String variables: strReportingEmployee is a String vari-

able, but strManager is a Variant because the As String part of the code applies only to

strReportingEmployee.

Choosing the Scope and Lifetime of a Variable
The scope of a variable is the area in VBA where it can operate. Think of it as similar to your

scope of activity at work: those areas in which you perform tasks and those areas in which you

don’t. Your scope might be the offi ce-cubicles area of the building, but if you were found slink-

ing around inside the walk-in safe, there would be trouble. Entering the safe is not part of your

job description.

WORKING WITH VARIABLES | 131

The default scope of a variable is the procedure that declares the variable (either implicitly

or explicitly). In other words, the scope is between the Sub and End Sub (or Function and End

Function) that defi ne the start and end of a procedure. Macros are most often fairly short, and

thus their code is most often contained within a single procedure. For these typical macros,

there’s no reason for a variable to have a scope any larger than its own procedure.

Here’s an example of procedure-level scope. Suppose you have a module named Financial_

Procedures that contains the procedures Breakeven_Table and Profit_Analysis_Table, each

of which uses a variable named Gross_Revenue and another named Expenses. The variables in

each procedure are distinct from the variables in the other procedure, so there is no danger of

VBA confusing the two. (For the human reader, though, using the same variable names in dif-

ferent procedures rapidly becomes confusing when debugging. In general, it’s a good idea to use

unique variable names, even at the default procedure level.)

The lifetime of a variable is the period during which VBA remembers the value of the variable.

You need different lifetimes for your variables for different purposes. A variable’s lifetime is tied to

its scope. Lifetime, here, refers to how long during program execution the variable is in existence.

Sometimes you need to access a variable from outside the procedure in which it’s declared. In

these cases, you need to declare a different, wider scope for the variable.

Require Explicit Declarations for Variables

Most experts urge you to explicitly declare variables. You can set VBA to require you to declare

variables explicitly. Most programmers and developers fi nd this feature useful because it prevents

you from declaring any variables implicitly, whether intentionally or otherwise.

To require variable declarations globally—so explicit declaration is automatically enforced in any

new module you create—choose Tools ➢ Options in the Visual Basic Editor to display the Options

dialog box, select the Require Variable Declaration check box in the Code Settings area, and then

click the OK button. (Th e Require Variable Declaration check box is cleared by default, enabling you

to declare variables implicitly, which is usually the easiest way to learn how to work with variables.)

Th e Visual Basic Editor then adds an Option Explicit statement to each new module that you

create. Th is statement enforces explicit variable declarations for the module it’s in.

When you select the Require Variable Declaration check box, the Visual Basic Editor doesn’t add the

Option Explicit statement to your existing modules. You must type the Option Explicit state-

ment into your existing modules manually if you want to force explicit declarations in them too.

To require variable declarations only for specifi ed modules, put an Option Explicit statement at

the beginning of each module for which you want to require declarations. Th e Option Explicit

statement must go before the Sub or Function statement for the fi rst procedure in the module—if

you put it inside a procedure, or between procedures, VBA gives an error when you try to run any

of the code in the module. Th is zone—above the fi rst procedure in a module—is called the General

Declarations area.

If you’ve set Option Explicit either globally or for a module, VBA tests the procedure before

running it. More precisely, VBA protests when it tries to compile the code and discovers that you

haven’t declared one or more of the variables, and it warns you if a variable isn’t explicitly declared,

as shown here in this screenshot. VBA also highlights the variable in your code.

132 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

If you get this message box, you can solve the problem either by declaring the variable or by turning

off the requirement of variable declarations for the module. To turn off the requirement, remove

the Option Explicit statement from the module by selecting and deleting the line that contains

it or by commenting out this line by putting a single-quote symbol (‘) at the start of the line.

A variable can have three types of scope:

 ◆ Procedure

 ◆ Private

 ◆ Public

Procedure Scope

A variable with procedure scope (also known as procedure-level scope or local scope) is available only

to the procedure that contains it. As a result, the lifetime of a local variable is limited to the dura-

tion of the procedure that declares it: As soon as that procedure stops running, VBA removes all

local variables from memory and reclaims the memory that held them. This is true even if later

on that same procedure is executed again. Local variables don’t persist if execution moves out-

side their procedure.

Procedure scope is all you’ll need for variables that operate only in the procedure in which

they’re declared. For example, say you implicitly declare a Variant variable named Supervisor,

like this:

Supervisor = “Paul Smith”

You can then use the Supervisor variable in the rest of that procedure—for example, retriev-

ing the text stored in it or changing that text. When the procedure stops running, VBA removes

the variable and reclaims the memory it occupied.

Implicitly Declared Variables Are Always Local

When you declare a variable implicitly, it’s automatically assigned procedure scope.

WORKING WITH VARIABLES | 133

To explicitly declare a local variable, use the Dim keyword and place the declaration inside

the procedure, like this:

Sub Create_Weekly_Report()

 Dim strSupervisor As String

 Dim lngController As Long

...

End Sub

Here, the second line declares the variable strSupervisor as the String data type, and the

third line declares the variable lngController as the Long data type. (The section “Specifying

the Data Type for a Variable,” a bit later in this chapter, goes through the variable types.)

On the other hand, if you need to pass any of these variables to another procedure that you

call from the current procedure, procedure scope isn’t suffi cient—you need to use either private

scope or public scope.

Private Scope

A variable with private scope is available to all the other procedures in the module that contains

it, but not to procedures in other modules. Using private variables enables you to pass the value

of a variable from one procedure to another. Unlike local variables, which retain their value only

as long as the procedure that contains them is running, private variables retain their value as

long as any procedure in the project that contains them is executing.

To declare a variable with private scope, you can use either the Dim keyword or the Private

keyword at the beginning of a module, placing it up top before the Sub statement for the fi rst

procedure in the module, like this:

Dim strSupervisor As String

Private blnConsultantAssigned As Boolean

Sub Assign_Personnel()

The Visual Basic Editor displays the private declarations above the dividing line that appears

between the General Declarations area and the code below it (see Figure 6.1).

Figure 6.1

Private variable

declarations appear

in the declarations

area.

134 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

You’ll notice that the Dim statement here uses exactly the same syntax as the earlier declara-

tion for the local variable. The only difference is that to declare a private variable, you place the

Dim statement in the declarations area rather than within a procedure. Because the Private

statement has the same effect as the Dim statement for declaring private variables and can’t be

used within a procedure, it’s clearer to use the Private statement rather than the Dim statement

for declaring private variables.

Public Scope

A variable declared with public scope is available anywhere in a project. It’s accessible by all pro-

cedures in all modules in the project that contains it.

To declare a public variable, you use the Public keyword in the General Declarations area at

the beginning of a module (up above the Sub statement for the fi rst procedure in the module).

Here’s an example:

Option Explicit

Public intMyVar As Integer

The second statement declares the public variable intMyVar as the Integer type.

Like private variables, public variables retain their value as long as the project that contains

them is open (still running). For example, if you want to track the user’s name through a series

of operations in Word, you can create an AutoExec procedure that prompts users to enter their

name when they start Word. (AutoExec is the built-in name for a procedure that runs auto-

matically when Word starts. Word, when you start it, searches to see if there is a Sub named

AutoExec and, if so, executes that procedure.)

The Declarations Area Appears at the Top of the Code Window

as Necessary

Th e General Declarations area appears at the beginning of each module that contains declarations.

For example, if you choose to use explicit variable declarations (by selecting the Require Variable

Declaration check box on the Editor page of the Tools ➢ Options dialog box), the Visual Basic Editor

automatically enters the Option Explicit declaration at the start of each new module you cre-

ate. If not, the Visual Basic Editor creates the declarations area when you fi rst enter a statement

there manually.

By storing the result of the user’s input in a public variable, you can then retrieve the value

for use anytime later in the same Word session. You can see how this would be handy if several

macros needed the information contained in a variable. Remember that local variables (those

declared inside a procedure) are destroyed as soon as that procedure reaches its End Sub state-

ment and shuts down.

WORKING WITH VARIABLES | 135

Use Prefixes to Identify Variable Types

You’ll likely notice in the various examples in this chapter that it’s common to employ prefi xes to

identify a variable’s data type (more on this later in the chapter). For instance, instead of naming

a variable CurrentUser in Listing 6.1, I named it strCurrentUser. Th is str prefi x identifi es

CurrentUser as a variable that holds text strings. Th ese prefi xes make your code easier to read and

modify because each variable, everywhere in the code, is identifi ed as a particular type. Prefi xes

commonly used include str for String, int for Integer, var for Variant, lng for Long, obj for

Object, and so on. As you’ll see later in this book, a similar set of prefi xes is used to identify controls

you place on a user form: txt for Text, btn for Button, and so on. If you’re interested in following

this convention, you can fi nd lists of prefi xes at this location in Wikipedia:

http://en.wikipedia.org/wiki/Leszynski_naming_convention

Listing 6.1 shows an AutoExec procedure.

Listing 6.1: An AutoExec procedure

1. Public strCurrentUser As String

2.

3. Sub AutoExec()

4. strCurrentUser = InputBox(“Please enter your name.”, _

 “Current User Identity”)

5. End Sub

6.

7. Sub Identify_Current_User()

8. MsgBox “The current user is “ & strCurrentUser, _

 vbOKOnly + vbInformation, “Current User”

9. End Sub

This code consists of three different parts:

 ◆ Line 1 declares the public String variable strCurrentUser.

 ◆ Lines 3 through 5 contain the AutoExec procedure. This procedure runs each time the user

starts Word. Line 4 displays an input box that prompts the user to enter their name and

stores their response in the public variable strCurrentUser.

 ◆ Lines 7 through 9 contain the Identify_Current_User procedure, which simply displays

a message box that gives the name of the user, along with lead-in text and an information

icon and title bar for completeness.

http://en.wikipedia.org/wiki/Leszynski_naming_convention

136 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

You can test these procedures by stepping through (by pressing the F8 key) fi rst the AutoExec

procedure and then the Identify_Current_User procedure in the Visual Basic Editor. But to

see their effect, you’ll have to create the procedures and then exit Word. When you restart Word,

the AutoExec procedure displays the input box for you to enter your name. At any point thereaf-

ter (until you exit Word), you can access the value in the strCurrentUser variable. For example,

you could run the Identify_Current_User procedure at any time (until you close Word itself),

and VBA displays a message box with the name you entered. A public variable is said to persist.

A Large Number of Public Variables Can Clog Memory

Why not just make all variables public? When writing short programs like macros, this wouldn’t

cause as much diffi culty as when writing large programs or programming professionally in a team.

However, there is a variety of reasons to limit the scope of variables to as local as possible. For an

interesting take on the advantages and disadvantages of public (global) variables, see this website:

http://c2.com/cgi/wiki?GlobalVariablesAreBad

Using Static Variables

Besides declaring variables with Dim, Private, and Public, you can also use the Static key-

word, which is special. You can use it to cause even a local variable to persist. Use Static instead

of Dim when you want to declare a static variable—a variable whose values you want to preserve

between calls to the procedure in which they are declared.

Static variables are similar to public variables in that their lifetime is not limited to the dura-

tion of the procedure that declares them. The difference is that static variables, once declared,

are available only to the procedure that declared them, whereas public variables are available to

all procedures once they’ve been declared. So, a static variable has the scope of a local variable

but the lifetime of a public or private variable. There is one particular situation where static vari-

ables come in handy: toggling.

Static variables are useful for maintaining information on a process that you need to run

a number of times during a session of the application, either to maintain a running total (for

example, a count of the times you performed a procedure) or to keep at hand a piece of informa-

tion that may prove useful when you run a procedure a second or subsequent time. Typically

you employ a static variable in a procedure that toggles something between two states. For

example, you could create a procedure that when fi rst executed turns on italics, then when next

executed turns italics off, then back on, and so on. Such a toggle would look something like this:

Sub ToggleItal()

Static switch As Boolean

switch = Not switch

If switch Then

 MsgBox “on”

http://c2.com/cgi/wiki?GlobalVariablesAreBad

WORKING WITH VARIABLES | 137

Else

 MsgBox “Off”

End If

End Sub

You can test this by stepping through it (pressing F8 after clicking the fi rst line of the pro-

cedure). Each time you execute the procedure, you get a different message. The Not command

switches a Boolean variable type back and forth between True and False. A Boolean variable

has only those two possible values.

The following statement declares the static String variable strSearchTerm1:

Static strSearchTerm1 As String

Specifying the Data Type for a Variable
Table 6.2 explains the data types that VBA supports and the amount of memory each variable

type requires.

Table 6.2: VBA variable data types

Variable Short Description Memory Required

Boolean True or False 2 bytes

Byte An integer from 0 to 255 1 byte

Currency A positive or negative number with up to 15 digits to the

left of the decimal point and 4 digits to the right of it

8 bytes

Date A fl oating-point number with the date to the left of the

decimal point and the time to the right of it

8 bytes

Decimal An unsigned integer scaled by a power of 10 12 bytes

Double A fl oating-point number with a negative value between

–1.79769313486231570E+308 and

–4.94065645841246544E-324 or a positive value

between 4.94065645841246544E-324 and

1.79769313486231570E+308

8 bytes

Integer An integer from –32,768 to 32,767 2 bytes

Long An integer from –2,147,483,648 to 2,147,483,647 4 bytes

Object A reference to an object 4 bytes

Single A fl oating-point number with a negative value between

–3.4028235E+38 and –1.401298E-45 and a positive value

between 1.401298E-45 and 3.4028235E+38

4 bytes

138 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

Variable Short Description Memory Required

Variable-length

String

A string of text 10 bytes plus the storage

for the string

Fixed-length

String

A string whose length doesn’t change Whatever size is speci-

fi ed for the length

Variant Any type of data except a fi xed-length string in a subtype

of the Variant

Variants containing

numbers: 16 bytes;

Variants containing

characters: 22 bytes plus

the storage for the

characters

The next few pages discuss these data types in detail.

Do You Need to Specify the Data Type?

Specifying the data type for each variable you create is a good idea, but it’s not compulsory. You

can almost always use the default Variant data type (as you’ve done a couple of times so far in

this book’s examples) and let VBA fi gure out which subtype to assign to the Variant.

There are four disadvantages to using the Variant data type like this:

 ◆ Sometimes VBA makes a mistake when trying to interpret which kind of subtype you

intended. This can cause rather obscure bugs.

 ◆ Using the Variant data type causes your code to run more slowly. However, with short

procedures (or long procedures involving relatively few variables), memory and speed are

rarely an issue.

 ◆ Your code is harder for humans to read and to debug. This can be more of a concern than

memory or speed issues.

 ◆ The Variant data type takes up more memory than any of the other data types except long

strings.

Boolean

A Boolean variable can be set only to True or False. You can use the keywords True and

False to set the value of a Boolean variable, as in the second line in the following code (the fi rst

declares the Boolean variable blnProduct_Available):

Dim blnProduct_Available As Boolean

blnProduct_Available = True

You can then retrieve the result of the Boolean variable and take action accordingly:

Table 6.2: VBA variable data types (continued)

WORKING WITH VARIABLES | 139

If blnProduct_Available = True Then

 MsgBox “The product is available.”

Else ‘blnProduct_Available = False

 MsgBox “The product is not available.”

End If

When you convert a Boolean variable to another data type (such as a numeric value), True

returns –1 and False returns 0. When you convert a numeric value to a Boolean value, 0 returns

False and all other numbers (whether positive or negative) return True.

Boolean variables take up 2 bytes each in memory.

Byte

A Byte variable takes up the least memory of any data type—just 1 byte—and can store a num-

ber from 0 to 255.

Currency

The Currency data type is designed for use with money. It allows for positive and negative num-

bers with up to 15 digits to the left of the decimal point and 4 digits to the right of it. Unlike the

Single and Double data types, the Currency data type is exact, not rounded.

To implicitly declare a Currency variable, use the type-declaration character @. For example,

you could work out your weekly salary with a little simple math:

Sub Calculate_Weekly_Salary()

 Salary@ = InputBox(“Enter your salary.”, _

 “Calculate Weekly Salary”)

 WeeklySalary@ = Salary / 52

 MsgBox WeeklySalary

End Sub

Currency variables take up 8 bytes each.

Date

The Date data type is relatively complex. VBA works with dates and times as fl oating-point

numbers, with the date displayed to the left of the decimal point and the time to the right. VBA

can handle dates from 1 January 100 to 31 December 9999 and times from 0:00:00 to 23:59:59.

Fixed-Point Numbers Are More Efficient

Computer programming typically stores a number in either of two ways: as a fl oating-point number

or as a fi xed-point number. A fl oating-point number is a number in which the quantity is given by

one number multiplied by a power of the number base (for example, 10): the decimal point “fl oats”

to diff erent locations. A fi xed-point number is one in which the decimal place remains in the same

location. Fixed-point numbers should be used whenever practical because the computer can cal-

culate with them more quickly, for the same reason that addition, multiplication, and subtraction

are easier to learn in school than long division and fractions.

140 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

You can enter date variables as literal date values—such as 6/30/36 or June 30, 1936—by plac-

ing a # sign before and after the literal date value:

#June 30, 1936#

When you move the insertion point from the line in the Code window in which you’ve

entered a literal date value between # signs, VBA converts the data to a number and changes the

display to the date format set in your computer. For example, if you enter June 30, 1936, VBA

will probably display it as 6/30/36. Likewise, you can enter a literal time value (for example,

#10:15PM#), and VBA converts it to a number and displays it according to the current time for-

mat (for example, 10:15:00 PM).

Date variables take up 8 bytes each.

Always Specify the Century When Managing Date Data

Always specify the century of the dates you use (such as 1909 or 2009), because VBA may supply

the wrong century if you don’t. Earlier versions of VBA (for example, in Offi ce 2000 and Offi ce 97)

used to assign any year from 1 through 29 to the twentieth century and any year from 30 through

00 to the twenty-fi rst century.

Decimal

The Decimal data type stores unsigned integers, scaled by powers of 10. Unsigned means that

the integers carry no plus or minus designation. Note that you can’t declare a Decimal variable

directly: you can use the Decimal data type only within a Variant data type (discussed later in

this section).

Decimal variables take up 12 bytes each.

Double

The Double data type is for fl oating-point numbers and can handle negative values from

–1.79769313486231570E+308 to –4.94065645841246544E-324 and positive numbers from

4.94065645841246544E-324 to 1.79769313486231570E+308

Some numbers in this range cannot be represented exactly in binary, so VBA rounds them.

Double here stands for double-precision fl oating point—the way in which the number is han-

dled by the computer. Single (discussed later) stands for single-precision fl oating point.

You can use the # type-declaration character to declare a Double variable implicitly. Double

variables take up 8 bytes each.

Integer

The Integer data type is the most effi cient way of handling numbers within its range (from

32,768 to 32,767), a range that makes it useful for many procedures. For example, if you wanted

to repeat an action 300 times, you could use an Integer variable for the counter, as in the follow-

ing lines:

Dim intMyVar As Integer

For intMyVar = 1 to 300

WORKING WITH VARIABLES | 141

 ‘repeat actions

Next intMyVar

Integer variables take up 2 bytes each. The Integer is the most commonly used numeric data

type for many programming tasks. This is because unless you’re working with something like

moon rockets or the national debt, most math will fall within the Integer type’s range.

Long

The Long data type is for the national debt. A Long can hold integer values larger or smaller

than those the Integer data type can handle: long variables can handle numbers from

–2,147,483,648 to 2,147,483,647. (For numbers even larger or smaller than these, use the Double

data type, but beware of its rounding.)

Long variables use the type-declaration character & for implicit declarations and take up 4

bytes each.

Object

The Object data type is for storing addresses that reference objects (for example, objects in an

application’s object model), providing an easy way to refer to an object.

Object variables take up 4 bytes each.

Single

The Single data type, like the Double data type, is for working with fl oating-point numbers.

Single can handle negative values from –3.4028235E+38 through –1.401298E-45 and positive val-

ues from 1.401298E-45 through 3.4028235E+38

Some numbers in this range cannot be represented exactly in binary, so VBA rounds them.

Use the exclamation point type-declaration character to declare a Single variable implicitly (if

you must use implicit declarations). Single variables take up 4 bytes each.

String

The String data type is for handling text:

 ◆ Variable-length String variables can contain up to about 2 billion characters. They take up

10 bytes plus the storage required for the string.

 ◆ Fixed-length String variables can contain from 1 to about 64,000 characters. They take

up only the storage required for the string. If the data assigned to the String variable is

shorter than the fi xed length, VBA pads the data with trailing spaces to make up the full

complement of characters. If the data assigned to the String variable is longer than the fi xed

length, VBA truncates the data after the relevant character. VBA counts the characters from

the left end of the string—for example, if you assign the string Output to a fi xed-length

String variable that’s four characters long, VBA stores Outp. Fixed-length String variables

are rarely used in most programming, with the exception of managing certain databases

where there’s a rule that a string cannot be longer than a specifi ed length.

 ◆ Strings can contain letters, numbers (digits), spaces, and punctuation, not to mention spe-

cial characters like @ and *.

142 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

 ◆ You can use the $ type-declaration character to declare a String variable implicitly, but (as

usual) you’ll do best to declare your String variables explicitly, along with all your other

variables.

Variant

The Variant data type, as mentioned earlier in this chapter, is the default type. It’s assigned

by VBA to any variable whose data type isn’t specifi ed by you—so a declaration such as

Dim myUntypedVariable creates a Variant. However, Dim intVariable As Integer creates

a variable of the Integer data type. (You can also declare a Variant variable explicitly: Dim

myVariant As Variant, for example.)

Variants can handle most of the different types of data, but there are a couple of characteris-

tics of Variants to keep in mind:

 ◆ Variants can’t contain fi xed-length string data. If you need to use a fi xed-length string, you

must specify a fi xed-length String data type.

 ◆ Variant variables can contain four special values: Empty (which means the variable hasn’t

yet been initialized), Error (a special value used for tracking errors in a procedure),

Nothing (a special value used for disassociating a variable from the object it was associ-

ated with), and Null (which you use to indicate that the variable deliberately

contains no data).

Variant variables take up more memory than other types. Variant variables that contain num-

bers take up 16 bytes, and Variant variables that contain characters take up 22 bytes plus the

storage required for the characters.

Deciding among Types for Variables

If you found the details of the different types of variables confusing, relax. First, you can usually

avoid the whole issue of choosing a variable type by declaring the variable either implicitly or

explicitly and letting VBA assign the Variant data type with the appropriate subtype. Second,

if you do choose to specify data types for some or all of your variables, you can apply a few

straightforward rules to direct your choices:

 ◆ If the variable will contain only the values True and False, declare it as the Boolean

data type.

 ◆ If the variable will always contain an integer (if it will never contain a fraction), declare it

as the Integer data type. (If the number may be too big for the Integer data type, declare

it as the Long data type instead.)

 ◆ If the variable will be used for calculating money, or if you require no-rounding fractions,

use the Currency data type.

 ◆ If the variable may sometimes contain a fraction, declare it as the Single or Double

data type.

 ◆ If the variable will always contain a string, declare it as the String data type.

WORKING WITH CONSTANTS | 143

If You’re Unsure, Test a Variable’s Type Using a Variant

If you aren’t sure what type of variable will best contain the information you’re planning to use,

start by declaring the variable as a Variant. Th en step through the procedure in Break mode with

the Locals window displayed (View ➢ Locals Window). Th e Locals window displays local variables,

their value, and their type. As you press F8 to step through your procedure, see what Variant sub-

type VBA assigns to the variable. You’ll see the type, such as Variant/Double or Variant/String, in

the Type column. Test the procedure a couple more times to make sure this subtype is consistent,

and then try declaring the variable as the data type indicated by the subtype. Run the code a few

times to make sure the new data type works.

Working with Constants
A constant is a named item that keeps a constant value during execution of a program. VBA

provides many built-in constants, but you can also declare your own constants to help you

work with information that stays constant through a procedure. But recall that many program-

mers simply use variables rather than constants, even for values that won’t change (such as the

number of eggs in a dozen). However, constants are available if you or your superiors fi nd them

of value.

Declaring Your Own Constants
To declare your own constants, use the Const statement. By declaring a constant, you can sim-

plify your code when you need to reuse a set value a number of times in your procedures.

Syntax

The syntax for the Const statement is as follows:

[Public/Private] Const constant [As type] = expression

Here, Public and Private are optional keywords used for declaring public or private scope

for a constant. You’ll learn how they work in a moment. constant is the name of the constant,

which follows the normal rules for naming variables. type is an optional argument that specifi es

the data type of the constant. expression is a literal (a value written into your code), another con-

stant, or a combination of the two.

As with variables, you can declare multiple constants in the same line by separating the state-

ments with a comma:

Const conPerformer As String = “Carmen Singer”, _

 conTicketPrice As String = “$34.99”

Example

Declaring a constant in VBA works in a similar way to declaring a variable explicitly, but you

declare the value of the constant when you declare the constant (rather than at a later point of

your choosing). You can’t change its value afterward.

144 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

As an example, take a look at the following statements:

Const conVenue As String = “Davies Hall”

Const conDate As Date = #December 31, 2013#

MsgBox “The concert is at “ & conVenue & “ on “ _

& conDate & “.”

The fi rst line declares the constant conVenue as a String data type and assigns it the data

Davies Hall. The second line declares the constant conDate as a Date string type and assigns

it the date December 31, 2013. (When you fi nish creating this line of code and move the

insertion point to another line, VBA changes the date to the date format set in your computer’s

clock—#12/31/2013#, for example.) The third line displays a message box containing a string

concatenated from the three text items in double quotation marks, the conVenue string constant,

and the conDate date constant.

Choosing the Scope and Lifetime for Your Constants
Scope works the same way for constants as it does for variables. The default scope for a con-

stant declared in a procedure is local—that is, its scope is the procedure that declares it.

Consequently, its lifetime is the time for which the procedure runs. But you can set a different

scope and lifetime for your constants by using the Public or Private keyword.

 ◆ To declare a private constant, place the declaration at the beginning of the module in which

you want the constant to be available. A private constant’s lifetime isn’t limited, but it’s

available only to procedures in the module in which it’s declared:

Private Const conPerformer As String = “Carmen Singer”

 ◆ To declare a public constant, place the declaration at the beginning of a module. A public

constant’s lifetime isn’t limited, and it’s available to all procedures in all modules in the

project in which it’s declared:

Public Const conTicketPrice As String = “$34.99”

Working with Enumerations
In addition to constants you can create in your code, VBA includes sets of predefi ned constants.

An enumeration is a predefi ned list of unique integers (numbers) that have individual names. It’s

a set of items, related in some way.

Here’s an enumeration, a set of items that you need to paint a room. Note that another way to

describe this is that it’s a numbered list:

 1. Brushes

 2. Paint

 3. Masking tape

 4. Drop cloth

 5. Sandpaper

THE BOTTOM LINE | 145

You could now refer to any of these items by either their number in the enumeration or by

their name.

An enumeration is typically used in your programming to specify a property of an object.

Each integer in the enumeration has a meaning to VBA and a name that allows you to refer to

it easily. The names that correspond to the integers in the enumeration are called enumerated
constants.

For example, when you use the MsgBox function to display a message box using VBA, you

can pick one of the enumerated constants in the VbMsgBoxStyle enumeration to specify the type

of message box you want to show. If you require an icon in the message box, you can specify

which icon from the list of available built-in icons. For example, one of the icons—a stop sign—is

the enumerated constant vbCritical (or the integer 16). The enumerated constant vbQuestion

(integer 32) displays a question-mark icon, and the enumerated constant vbExclamation (48)

displays an exclamation-point icon. The enumerated constant vbInformation (64) refers to an

information icon. However, in practice, the integers are rarely used. The enumerated constants

(names like vbQuestion) are far easier for humans to grasp, read, and remember than the values

(the various integers like 16, 32, 64, and so on) to which they are mapped. So, although you could

use the integers in your code, it’s better to stick with the enumerated constants like vbQuestion.

VBA includes many built-in enumerations, and the Visual Basic Editor displays the list of

available enumerated constants to help you select the appropriate integer value when you’re cre-

ating code. To see such a list, type this into a procedure:

msgbox(“inga”,

As soon as you type the comma, up pops the list of enumerated constants, all the available

button styles for a message box, including vbQuestion, vbYesNo, vbOKOnly, and so on. As you

might guess, the vbOKOnly style displays only a single button, captioned OK. The vbYesNo style

displays two buttons, one captioned Yes, the other No.

You just click one of these button styles in the list of enumerated constants to enter it into

your code. If you don’t see the list, choose Tools ➢ Options in the Visual Basic Editor, then select

the Auto List Members check box.

You can also defi ne your own enumerations in custom objects that you create.

Th e Bottom Line

Understand what variables are and what you use them for. Variables are a cornerstone of

computer programming; they are extremely useful for the same reason that fi les are useful

in the real world. You give a name to a variable for the same reason that you write a name

to identify a fi le folder. And a fi le can, over time, contain various different papers, just as the

value contained in a programming variable can vary. In both cases, the contents vary; the

name remains the same. It’s good practice to always specifi cally name a variable before using

it in your code. This is called explicit declaration.

Master It Explicitly declare a variable named CustomersAge.

Create and use variables. When creating (declaring) a new variable, you should avoid using

words or commands that are already in use by VBA, such as Stop or End. There are also

restrictions such as not using special characters.

146 | CHAPTER 6 WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS

Master It This variable name cannot be used, for two reasons. Fix it so it is a legitimate

variable name:

Dim 1Turn! as Integer

Specify the scope and lifetime of a variable. Variables have a range of infl uence, depend-

ing on how you declare them.

Master It Create a variable named AnnualSales that will be available to any procedure

within its own module but not to other modules.

Work with constants. Constants, like variables, are named locations in memory that con-

tain a value. Unlike with variables, however, the value in a constant does not change during

program execution.

Master It Defi ne a string constant using the Dim command. Name your constant

FirstPrez, and assign it the value George Washington.

Work with enumerations. Enumerations provide a handy name for each item in a list, often

a list of properties.

Master It In the Project Explorer, click the ThisDocument object to select it. Then locate

the JustificationMode property in the Properties window, and choose one of that prop-

erty’s enumerated constants by clicking the small down arrow that appears, then clicking

one of the constants in the drop-down list .

c07.indd 09:33:49:AM 07/19/2013 Page 147

Chapter 7

Using Array Variables

In this chapter, you’ll learn how to use arrays—containers that can store multiple values at the

same time. An array is a kind of super-variable.

You’ll start by examining what arrays are and what you use them for. You’ll then examine

how to create them, populate them, and erase them. Along the way, you’ll look at how to resize

an array to make it contain more (or fewer) values, how to specify the scope for an array, and

how to fi nd out while your macro executes whether a particular variable name represents an

array or a just an ordinary, single-value variable.

In this chapter you will learn to do the following:

 ◆ Understand what arrays are and what you use them for

 ◆ Create and use arrays

 ◆ Redimension an array

 ◆ Erase an array

 ◆ Find out whether a variable is an array

 ◆ Sort an array

 ◆ Search an array

What Is an Array?
An array is a variable on steroids—a variable that can contain multiple values (but they must be

of the same data type).

You can access the array itself as a whole to work with all the values it contains at once. Or

you can access any individual value stored within the array by specifying its index number,

which indicates its position within the array.

If you’re having diffi culty visualizing what this means, try picturing an array as a numbered

list, similar to an enumeration (as described in Chapter 6, “Working with Variables, Constants,

and Enumerations”). Each item in the list is located in its own row and is identifi ed by an index

number, so you can access the value of the item by just specifying its index number. It’s like

houses on a street: they all share the same name, such as Maple Drive, but each has a distin-

guishing number all its own. You’ll see visual examples of arrays later in this chapter.

148 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 148

Variant Arrays Can Store Values of Differing Data Types

An array with the Variant data type can store multiple subtypes of data. Th at’s because a Variant

permits any kind of data: strings, integers, and so on. It’s a shape-shifter, unique among data types

in that it can contain data of all types.

The previous description is of a simple array—a numbered list like a row of houses on a

street. Such an array is said to have only one dimension. However, later in this chapter you’ll see

that you can construct more complicated arrays, which are called multidimensional. They’re more

like a crossword puzzle with both rows and columns.
For now, though, let’s look at the qualities of the most common, and most easily visualized,

array structure, the one-dimensional array.

Use Option Base to Simplify Indexes

Although your code will be less portable—and other programmers who use other computer lan-

guages might object—if you’re writing macros for your own private use you might want to employ

the controversial Option Base 1 statement.

An array is delimited (or bounded) by a lower bound and an upper bound. In other words, the

array’s index numbers start with 1 (the lower bound) and end with whatever number of items are

in the array (the upper bound). An array representing the eggs in an egg carton would have a lower

bound of 1 and an upper bound of 12. Th at’s the simple way to construct and visualize an array,

but there’s a catch: many computer languages, including VBA, employ a lower bound of zero rather

than one by default.

Th is means that the fi rst item in an array is indexed as zero—it’s the zeroth item. Th is can be

confusing, because it means that you’re always working with an index number that’s one lower than

the item’s position in the array. In such an array, January would be the zeroth month, February the

fi rst month, with array index number 1, March would be given index 2, and so on. It’s as if your

shopping list looked like this:

 0. Brushes

 1. Paint

 2. Masking tape

 3. Drop cloth

 4. Sandpaper

Nobody writes lists with a zeroth item, but this is just one of the kinks in computer programming

caused by carelessness when programming languages were fi rst invented.

However, unlike most other computer languages, VBA allows you to normalize the way array indexes

work: beginning them with index 1, the way humans count items in sets or lists.

VBA lets you make 1 the default index number of the fi rst item in an array by entering an Option

Base 1 statement at the beginning of a module. Type this option up in the General Declarations

section of your Code window, and the index number for each item in the array is then the same as

the item’s position in the array, so the array is easier to work with—easier to visualize.

DECLARING AN ARRAY | 149

c07.indd 09:33:49:AM 07/19/2013 Page 149

Why does the fi rst item in an array default to zero anyway? Forty years ago, people who wrote pro-

gramming languages decided to do this, and it has persisted. Th e major exception was the BASIC

language, VBA’s ancestor. It defaulted, sensibly, to 1 as the lower bound of any array. Eventually

(with version 6 of Visual Basic), BASIC was modifi ed to make it conform to the other languages

and those in charge changed VBA’s lower bound to zero. But BASIC did preserve the programmer’s

option to specify the lower bound as 1 with this Option Base statement.

Arrays are lists, and we humans don’t start lists with zero. We have a fi rst birthday party, not a

zeroth one. A winning team comes in fi rst place, not zeroth place. Nonetheless, computer program-

mers have been wrestling with zero-based array indexing for three decades now—and introducing

countless bugs into their code as a result. You’re fortunate to be working with VBA, where you have

an option to avoid this problem if it bothers you. But note that if you are studying programming or

plan to use other languages or program professionally, you will have to accustom yourself to the

types of error messages generated by this zero index hitch. Th en you can say, “Oh, this is probably

an indexing problem,” and fi ddle with an index number to fi x it. Generally, you’ll subtract 1 from

the index number and that’ll do the trick.

Declaring an Array
An array is a kind of variable, so you declare an array by using the familiar keywords: Dim,

Private, Public, and Static. To indicate that it’s an array, however, you add a pair of paren-

theses after the array’s name. For example, the following statement declares an array named

curMonthProfit:

Dim varMonthProfit()

If you had left off the parentheses, then you would have created an ordinary variable capable

of holding only a single value:

Dim varMonthProfit

Because no data type was specifi ed in the declaration (Dim) of the preceding array example,

this example creates a Variant array. VBA then assigns the appropriate data types (String,

Integer, and so on) when you store data in the array.

But you can specify the data type of an array, just as you would for an ordinary variable. For

example, the following statement declares the array named curMonthProfit and makes it the

Currency data type:

Dim curMonthProfit() As Currency

You can also specify the number of items in the array by using an array subscript. For exam-

ple, the following statement declares the array named curMonthProfit, assigns the Currency

data type, and specifi es that the array contains 12 items:

Dim curMonthProfit(11) As Currency

Now you can see one aspect of the zeroth problem. This array holds 12 items, but in its dec-

laration we must specify 11! The array subscript in the Dim curMonthProfit(11) As Currency

statement is 11 rather than 12 because by default an array’s index starts at 0 rather than 1. That

0 index number gives this list an extra element. The 1st item is curMonthProfit(0), the 2nd is

150 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 150

curMonthProfit(1), and the 12th is curMonthProfit(11). (You can avoid this counterintuitive

approach by using the Option Base 1 statement.)

Figure 7.1 shows a simple representation of the single-dimensional array created by the Dim

curMonthProfit(11) As Currency statement.

Figure 7.1

Th e single-dimen-

sional array created

by the statement

Dim curMonth-

Profit(11) As

Currency can be

thought of as look-

ing like this.

Element # Name Contents

0 curMonthProfit(0) —

1 curMonthProfit(1) —

2 curMonthProfit(2) —

3 curMonthProfit(3) —

4 curMonthProfit(4) —

5 curMonthProfit(5) —

6 curMonthProfit(6) —

7 curMonthProfit(7) —

8 curMonthProfit(8) —

9 curMonthProfit(9) —

10 curMonthProfit(10) —

11 curMonthProfit(11) —

To make numbering start at 1, add an Option Base statement to the declarations area at the

beginning of the module in which you declare the array. Here is an example:

Option Base 1 ‘at the beginning of the code sheet

Dim curMonthProfit(12) As Currency

Figure 7.2 shows a simple representation of how this array would look.

Variants Can Be Inefficient under Extreme Circumstances

Recall that omitting the data type when declaring an array (and thus making VBA automatically

use the Variant data type) causes slightly increased memory usage, which could (under extreme

circumstances) slow the performance of the computer. Because an array needs storage for each item

it contains, a very large array can consume a signifi cant amount of memory. Th is is particularly

true with multidimensional arrays discussed later in this chapter.

You can also specify both the lower and upper bounds of an array explicitly. This example

code states that the lower bound is to be 1 and the upper bound is 12:

Option Base 1 ‘at the beginning of the code sheet

Dim curMonthProfit(1 To 12) As Currency

STORING VALUES IN AN ARRAY | 151

c07.indd 09:33:49:AM 07/19/2013 Page 151

Because learning to use arrays is much easier for beginners if we start with an index of 1, the

examples in the rest of this chapter use Option Base 1 statements.

Figure 7.2

Th e single-dimen-

sional array created

by the statement

Dim curMonth-

Profit(12) As

Currency with the

Option Base 1

statement. Compare

this to Figure 7.1.

Element # Name Contents

1 curMonthProfit(1) —

2 curMonthProfit(2) —

3 curMonthProfit(3) —

4 curMonthProfit(4) —

5 curMonthProfit(5) —

6 curMonthProfit(6) —

7 curMonthProfit(7) —

8 curMonthProfit(8) —

9 curMonthProfit(9) —

10 curMonthProfit(10) —

11 curMonthProfit(11) —

12 curMonthProfit(12) —

Storing Values in an Array
To assign a value to an item in an array, you use each item’s index number to identify it. For

example, the following statements assign the values London, Hong Kong, and Taipei to the fi rst

three items in an array named strLocations:

Option Base 1

Dim strLocations(6) As String

strLocations(1) = “London”

strLocations(2) = “Hong Kong”

strLocations(3) = “Taipei”

Figure 7.3 shows how this array can be envisioned.

Figure 7.3

A simple String

array with three

values assigned

Element # Name Contents

1 strLocations(1)

strLocations(2)

strLocations(3)

strLocations(4)

strLocations(5)

strLocations(6)

London

2 Hong Kong

3 Taipei

4 —

5 —

6 —

152 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 152

Multidimensional Arrays
The curMonthProfit example in the previous section is a one-dimensional array, which is the

easiest kind of array to use. But VBA supports arrays with up to 60 dimensions—enough to tax

the visualization skills of anyone without a PhD in multidimensional modeling. You probably

won’t want to get this complicated with arrays—two, three, or four dimensions are enough for

most purposes. In fact, one dimension is enough for many purposes.

To declare a multidimensional array, you separate the dimensions with commas. For exam-

ple, the following statements declare a two-dimensional array named MyArray with three items

in each dimension:

Option Base 1

Dim MyArray(3, 3)

Figure 7.4 shows how you might represent the resulting array. Note that inside each item in

this fi gure’s table you can see the pair of index numbers you would use to access it, such as item

1,2 or item 3,2.

Figure 7.4

You can think of a

two-dimensional

array as consist-

ing of rows and

columns.

Column 1

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

Column 2 Column 3

Multidimensional arrays sound forbidding, but a two-dimensional array is quite straightfor-

ward if you think of it basically as a table that consists of rows and columns.

In this example, the fi rst series of three elements appears down the fi rst column of the table,

the second series of three elements appears down the second column, and so on.

The information in any series doesn’t need to be related to information in the other series,

although it does need to be of the same data type. For example, you could assign three folder

names to the fi rst dimension of a String variable array (they would be in column 1), the names of

your three cats to the second dimension (more strings), a list of the names of the Three Stooges

to the third dimension (the third column in the table), and so on. You could then access the

information in the array by specifying the position of the item you want to access—for instance,

the second item in the fi rst column of the table (item 1,2). You’ll learn how to do this in just a

minute.

Similarly, you could picture a three-dimensional array as being something like a workbook

of spreadsheets—rows and columns, with further rows and columns in the third dimension

(down, or away from you).

But that’s about the limit of easily pictureable arrays—four-dimensional and larger arrays

start to tax the imagination. A row of honeycombs, a set of apartment buildings? It gets diffi cult.

Declaring a Dynamic Array
You can declare both fi xed-size arrays and dynamic arrays. The examples you’ve seen so far were

fi xed-size arrays. For instance, the curMonthProfit array was specifi ed as having 12 items.

Dynamic arrays are useful when the number of values you need to store will vary. For exam-

ple, for a procedure that arranges windows side by side, you might create an array to contain the

RETURNING INFORMATION FROM AN ARRAY | 153

c07.indd 09:33:49:AM 07/19/2013 Page 153

name of each open window. But while writing the code, you can’t know how many windows

might want to open while the macro runs. You’ll probably want to use a dynamic array to con-

tain the information. That way the array can be sized to fi t the situation.

To declare a dynamic array, you use a declaration statement without specifying the number of

items (you include the parentheses but leave them empty). For example, the following statement

declares a dynamic array named arrTestArray and causes VBA to assign it the Variant data

type (because no data type is specifi ed):

Dim arrTestArray()

Redimensioning an Array
You can change the size of, or redimension, a dynamic array by using the ReDim statement. For

example, to redimension the dynamic array arrTestArray declared in the previous example

and assign it a size of fi ve items, you could use the following statement:

ReDim arrTestArray(5)

When you use ReDim to redimension an array like this, you lose the values currently in the

array. If so far you’ve only declared the array as a dynamic array and it contains nothing, losing

its contents won’t bother you. There are no contents.

But in other situations an array might be full of data, so you’ll want to increase the size of an

array while keeping its current contents. To preserve the existing values in an array when you

raise its upper bound, use a ReDim Preserve statement instead of a straight ReDim statement:

ReDim Preserve arrTestArray(5)

If you use ReDim Preserve to reduce the size of the array (to lower its upper bound), you of

course lose the information stored in any items not included in the redimensioned array. For

example, if you have a fi ve-subscript (fi ve-item) array with information in each item and then

you redimension it using ReDim Preserve so that it has only three subscripts, you lose the

information in the fourth and fi fth subscripts.

Note that ReDim Preserve works only for the last dimension of a multidimensional array.

You can’t preserve the data in other dimensions in a multidimensional array.

Returning Information from an Array
To get information from an array, you use an index number to specify the position of the infor-

mation you want to return. For example, the following statement returns the fourth item in the

array named arrMyArray and displays it in a message box:

Option Base 1

MsgBox arrMyArray(4)

The following statement returns the fi fth item in the second dimension of a two-dimensional

array named arrMy2DArray and displays it in a message box:

Option Base 1

MsgBox arrMy2DArray(2,5)

To return multiple items from an array, specify each item individually.

154 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 154

Erasing an Array
To erase the contents of an array, use the Erase command with the name of the array. This

command reinitializes the items in a fi xed-size array and frees the memory taken by items in

dynamic arrays (completely erasing the array). For example, the following statement erases the

contents of the fi xed-size array named arrMyArray:

Erase arrMyArray

Finding Out Whether a Variable Is an Array
Because an array is a type of variable, you may occasionally need to check whether a particular

variable name denotes an array or an ordinary variable (sometimes called a scalar variable). To

fi nd out whether a variable is an array, use the IsArray function with the variable’s name. For

example, the following statements check the variable MyVariable and display the results in a

message box:

If IsArray(MyVariable) = True Then

 Msg = “MyVariable” & “ is an array.”

Else

 Msg = “MyVariable” & “ is not an array.”

End If

MsgBox Msg, vbOKOnly + vbInformation, “Array Check”

Finding the Bounds of an Array
To fi nd the bounds of an array, you use the LBound function and the UBound function. LBound

returns the lower bound, the index number of the fi rst item; UBound returns the upper bound, the

index number of the last item.

The LBound function and the UBound function have the following syntax:

LBound(array [, dimension])

UBound(array [, dimension])

Here, array is a required argument specifying the name of the array, and dimension is an

optional variant specifying the dimension whose bound you want to return—1 for the fi rst

dimension, 2 for the second, and so on. (If you omit the dimension argument, VBA assumes you

mean the fi rst dimension.)

For example, the following statement returns the upper bound of the second dimension in

the array named arrMyArray and displays it in a message box:

MsgBox UBound(arrMyArray, 2)

Sorting an Array
You’ll sometimes need to sort an array, especially when you load information into the array

from an external source rather than assigning values one by one in your code.

Sorting is easy to understand conceptually: You simply rearrange things into the desired

order. For example, you could sort the strings in one array into alphabetical order or reverse

SORTING AN ARRAY | 155

c07.indd 09:33:49:AM 07/19/2013 Page 155

alphabetical order, or the numbers in another array into ascending order or descending order.

But writing a program that sorts is much more diffi cult. So, don’t write it. Just copy it from

examples on the Internet, or from the following example.

This section shows you a simple form of sorting—the bubble sort, so called because the items

being sorted to the earlier positions in the array gradually bubble up to the top. The bubble sort

consists of two loops that compare two items in the array; if the second item belongs further up

the list than the fi rst item, the sort reverses their positions, and the comparisons continue until the

whole list is sorted into order. The bubble sort is a relatively ineffi cient method of sorting items,

but it’s easy to grasp, and processor cycles are comparatively cheap these days. The bubble sort

hasn’t itself become any more effi cient over the years, but processor speeds have sure ramped up.

This example also introduces you to a major element of programming: the loop. Loops are

an important tool found in many procedures and projects. In effect, a loop repeats some action

until a condition is met. It’s like saying, “Keep rearranging these attendance cards until the

stack is alphabetized.” Chapter 12, “Using Loops to Repeat Actions,” shows you how to work

with loops.

Listing 7.1 contains the code for the bubble sort.

Listing 7.1: A bubble sort

 1. Option Explicit

 2. Option Base 1

 3.

 4. Sub Sort_an_Array()

 5.

 6. ‘declare the array and other variables

 7. Dim strArray(12) As String

 8. Dim strTemp As String

 9. Dim strMsg As String

10. Dim X As Integer, Y As Integer, i As Integer

11.

12. ‘assign strings to the array

13. strArray(1) = “nihilism”

14. strArray(2) = “defeatism”

15. strArray(3) = “hope”

16. strArray(4) = “gloom”

17. strArray(5) = “euphoria”

18. strArray(6) = “despondency”

19. strArray(7) = “optimism”

20. strArray(8) = “pessimism”

21. strArray(9) = “misery”

22. strArray(10) = “happiness”

23. strArray(11) = “bliss”

24. strArray(12) = “mania”

25.

26. strMsg = “Current items in array:” & vbCr & vbCr

27. For i = 1 To UBound(strArray)

28. strMsg = strMsg & i & “:” & vbTab & strArray(i) & vbCr

29. Next i

156 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 156

30. MsgBox strMsg, vbOKOnly + vbInformation, “Array Sorting: 1”

31.

32. For X = LBound(strArray) To (UBound(strArray) - 1)

33. For Y = (X + 1) To UBound(strArray)

34. If strArray(X) > strArray(Y) Then

35. strTemp = strArray(X)

36. strArray(X) = strArray(Y)

37. strArray(Y) = strTemp

38. strTemp = “”

39. End If

40. Next Y

41. Next X

42.

43. strMsg = “Items in sorted array:” & vbCr & vbCr

44. For i = 1 To UBound(strArray)

45. strMsg = strMsg & i & “:” & vbTab & strArray(i) & vbCr

46. Next i

47. MsgBox strMsg, vbOKOnly + vbInformation, “Array Sorting: 2”

48.

49. End Sub

Read through this code, and the explanation of it that follows, to see how much of it you can

understand. At this point, you might not grasp much at all. But don’t worry; things will become

clearer as you progress through this book. What’s more, you need never write a bubble sort from

scratch anyway—just copy this one, modifying it a little to sort whatever array you’re dealing

with. And remember, you can copy all the code in this book from this book’s website at

www.sybex.com/go/masteringvba2013.

How to Locate Line Numbers in the Editor

In this book code examples more than a few lines long are given line numbers so the lines can be

referenced easily in the explanatory text. If you’re following along with a code description in this

book, you’ll sometimes want to know what line the blinking cursor is on in the editor code. Just

look at the fi eld at the far right of the editor’s Standard toolbar, right next to the blue Help ques-

tion mark. Th is fi eld always displays the current line number and character number, as you can

see in this screenshot.

Here’s what happens in Listing 7.1:

 ◆ Line 1 contains an Option Explicit statement to force explicit declarations of variables,

and line 2 contains an Option Base 1 statement to make array index numbers start at 1

rather than 0. These two statements appear in the General Declarations zone of the code

sheet, above any other procedure in the Code window. Line 3 is a spacer—a blank line

http://www.sybex.com/go/masteringvba2013

SORTING AN ARRAY | 157

c07.indd 09:33:49:AM 07/19/2013 Page 157

inserted just to make the code easier to read. You can remove it if you wish, or add more

spacers—it’s your call. VBA ignores blank lines.

 ◆ Line 4 begins the Sort_an_Array procedure. Line 5 is a spacer.

 ◆ Line 6 is a comment line prefacing the declaration of the array and the variables. Line 7

declares the String array strArray with 12 subscripts (array items). Line 8 declares the

String variable strTemp. Line 9 declares the String variable strMsg. Line 10 declares the

Integer variables X, Y, and i. Line 11 is a spacer.

 ◆ Line 12 is a comment line explaining that the next 12 statements (lines 13 through 24)

assign strings to the array. The strings used are words describing various moods. Line 25 is

a spacer.

 ◆ Lines 26 through 30 build a string out of the strings assigned to the array and then display

it in a message box. This section of code is included to help users easily see what’s going on

if they run the procedure rather than stepping through it. Line 26 assigns introductory text

and two carriage returns (two vbCr characters) to the String variable strMsg. Line 27 starts

a For… Next loop that runs from i = 1 to i = UBound(strArray)—in other words, once for

each item in the array. (The loop could also have run to i = 12 because the upper bound of

the array is set, but using the upper bound is more fl exible than hard-coding values.) Line

28 adds to strMsg the value of the counter variable i, a colon, a tab (vbTab), the contents

of the array item currently referenced (strArray(i)), and a carriage return (vbCr). Line

29 concludes the loop, and line 30 displays a message box containing strMsg, as shown in

Figure 7.5. Line 31 is a spacer.

Figure 7.5

Th e Sort_an_

Array procedure

displays a message

box of the unsorted

terms so that the

user can see how

things start out.

 ◆ The sorting part of the procedure takes place in lines 32–41. Here are the details:

 ◆ Line 32 begins a set of nested loops: one inside another. There’s an outer loop and

an inner loop. The outer For… Next loop ends in line 41 with the Next X state-

ment. This loop runs from X = LBound(strArray) (in other words, X = 1) to X =

(UBound(strArray) - 1) (in other words, X = 11, the upper bound of the array,

minus 1).

158 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 158

 ◆ Line 33 begins the inner (nested) For… Next loop, which runs from Y = (X + 1) to

Y = UBound(strArray). Line 40 ends this loop.

 ◆ Line 34 compares strArray(X) to strArray(Y). If strArray(X) is greater than

strArray(Y)—in other words, if strArray(X) should appear after strArray(Y)

in the alphabetized array—line 35 assigns strArray(X) to strTemp, line 36 assigns

strArray(Y) to strArray(X), and line 37 assigns strTemp to strArray(Y), thus

switching the values. Line 38 restores strTemp to an empty string. Line 39 ends the

If statement. Line 40 ends the inner loop, line 41 ends the outer loop, and line 42 is a

spacer.

 ◆ Lines 43 through 47 essentially repeat lines 26 through 30, displaying a message box

(shown in Figure 7.6) of the now-sorted array so that the user can see that the sort has

worked.

Figure 7.6

When the Sort_

an_Array proce-

dure has fi nished

sorting, it displays

the sorted list in

a second message

box.

 ◆ Line 48 is a spacer, and line 49 ends the procedure.

Searching through an Array
Another task you sometimes need to perform with an array is searching to fi nd a particular

value in it. This is similar to rifl ing through a box of recipe cards until you fi nd Ralph’s Jailhouse

Chili.
The following sections show you two methods of sorting—a linear search, which you can

perform on either a sorted array or an unsorted array, and a binary search, which is faster but

works only on a sorted array.

Performing a Linear Search through an Array
A linear search is a simple kind of search: You start at the beginning of the array and check each

item until you fi nd your target, or until you reach the end of the array and must report not found.

Before executing this code, display the Immediate window in the editor by pressing Ctrl+G

or choosing View ➢ Immediate Window. This procedure prints information in the Immediate

window so that you can see what’s going on—and whether the code is running as intended.

SEARCHING THROUGH AN ARRAY | 159

c07.indd 09:33:49:AM 07/19/2013 Page 159

Using the Immediate Window like this to check output is often preferable to displaying message

boxes as we did in the previous section. With the Immediate window, you don’t have to click the

message boxes closed, and the window can also be scrolled, displaying as much information as

you wish.

Listing 7.2 contains the code for a simple linear search through a one-dimensional array.

Listing 7.2: A simple linear search

 1. Option Explicit

 2. Option Base 1

 3.

 4. Sub Linear_Search_of_Array()

 5.

 6. ‘declare the array and the variables

 7. Dim intArray(10) As Integer

 8. Dim i As Integer

 9. Dim varUserNumber As Variant

10. Dim strMsg As String

11.

12. ‘add random numbers between 0 and 10 to the array

13. ‘and print them to the Immediate window for reference

14. For i = 1 To 10

15. intArray(i) = Int(Rnd * 10)

16. Debug.Print intArray(i)

17. Next i

18.

19. Loopback:

20. varUserNumber = InputBox _

 (“Enter a number between 1 and 10 to search for:”, _

 “Linear Search Demonstrator”)

21. If varUserNumber = “” Then End

22. If Not IsNumeric(varUserNumber) Then GoTo Loopback

23. If varUserNumber < 1 Or varUserNumber > 10 Then GoTo Loopback

24.

25. strMsg = “Your value, “ & varUserNumber & _

 “, was not found in the array.”

26.

27. For i = 1 To UBound(intArray)

28. If intArray(i) = varUserNumber Then

29. strMsg = “Your value, “ & varUserNumber & _

 “, was found at position “ & i & “ in the array.”

30. Exit For

31. End If

32. Next i

33.

34. MsgBox strMsg, vbOKOnly + vbInformation, “Linear Search Result”

35.

36. End Sub

160 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 160

Here’s what happens in Listing 7.2:

 ◆ As in the previous listing, line 1 contains an Option Explicit statement to force explicit

declarations of variables, and line 2 contains an Option Base 1 statement to make the

index numbers of arrays start at 1 rather than 0. These two statements appear in the decla-

rations part of the code sheet, before any other procedure. Line 3 is a spacer.

 ◆ Line 4 begins the Linear_Search_of_Array procedure. Line 5 is a spacer.

 ◆ Line 6 is a comment line prefacing the declaration of the array and the other variables

that the code uses. Line 7 declares the Integer array intArray with 10 subscripts. Line 8

declares the Integer variable I (traditionally programmers use the name I for a loop’s coun-

ter variable—I for increment or iteration).

 ◆ Line 9 declares the Variant variable varUserNumber, which the code uses to store the user’s

input from an input box. (More on this control in a moment.) Line 10 declares the String

variable strMsg. Line 11 is a spacer.

 ◆ The procedure declares the variable varUserNumber as a Variant rather than an Integer.

This way, Visual Basic doesn’t automatically halt execution and display an error message if

the user enters something other than an integer (for example, text) in the input box.

 ◆ Lines 12 and 13 contain an extended comment line on the code in lines 14 through 17.

(These two lines could be combined into one logical line by adding a continuation charac-

ter at the end of the fi rst line and omitting the apostrophe at the beginning of the second

line, but the code is easier to read when the second line begins with the comment character

as well.)

 ◆ Line 14 begins a For… Next loop that repeats 10 times: from i = 1 to 1 = 10. Line 15

assigns to the current item in the intArray array the integer result of a random number

multiplied by 10: intArray(i) = Int(Rnd * 10). (The Rnd function generates a random

number between 0 and 1 with a good number of decimal places. So the procedure mul-

tiplies that random number by 10 to get a number between 0 and 10 and then takes the

integer portion of the number. In other words, the Int command strips off any fractional

result, any values to the right of the decimal point.) Line 16 then uses the Print method

of the Debug object to print the current item in intArray to the Immediate window. This

is an easy way for you, the programmer, to examine the values generated randomly for

the array. The user never sees the Immediate window. Line 17 ends the loop with the

Next i statement. Line 18 is a spacer.

 ◆ Line 19 contains a label, named Loopback, used to return execution to this point in the code

if the user’s input does not meet required conditions (If it’s not between 1 and 10).

 ◆ Line 20 assigns to the Variant variable varUserNumber the result of the user’s input. An

input box (shown in Figure 7.7) prompts the user to enter a number between 1 and 10.

 ◆ Line 21 then compares the contents of varUserNumber to an empty string—the result you

get if the user clicks the Cancel button in the input box or clicks the OK button without

entering anything in the text box. If varUserNumber is an empty string, the End statement

ends execution of the procedure.

 ◆ Line 22 uses the IsNumeric function to see whether the contents of varUserNumber are

numeric. If they’re not, the GoTo Loopback statement returns execution to the Loopback

SEARCHING THROUGH AN ARRAY | 161

c07.indd 09:33:49:AM 07/19/2013 Page 161

label, after which the input box is displayed again for the user to try their luck once more.

Line 23 checks to see if varUserNumber is less than 1 or greater than 10. If either is the case,

another GoTo Loopback statement returns execution to the Loopback label, and the input

makes another appearance. Line 24 is a spacer.

Figure 7.7

Th e Linear_

Search_of_Array

procedure displays

an input box

prompting the user

to enter a number

between 1 and 10.

Th e array itself

is printed in the

Immediate window.

VBA Is Flexible

Note the fl exibility of VBA here: Th e code solicits user input and makes sure that it’s a number

between 1 and 10 (inclusive). Th ough that number is still stored in a Variant rather than explicitly

converted to an Integer, VBA still performs the comparison needed.

 ◆ Line 25 assigns to the String variable strMsg a preliminary message stating that the value

(which it specifi es) was not found in the array. (If the code fi nds the value in the array, it

changes the message before displaying it.) Line 26 is a spacer.

 ◆ Lines 27 through 32 contain the searching part of the procedure. Line 27 begins a For…

Next loop that runs from i = 1 to i = UBound(intArray)—once for each subscript in the

array. Line 28 compares intArray(i) to varUserNumber; if there’s a match, line 28 assigns

162 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 162

to strMsg a string telling the user at which position in the array the value was found, and

line 29 uses an Exit For statement to exit the For… Next loop. (If line 28 does not match, the

Next i statement in line 32 causes the code to loop.)

 ◆ Line 33 is a spacer. Line 34 displays a message box containing strMsg to convey to the user

the result of the linear search operation. Figure 7.8 shows the result of a successful search.

Line 35 is a spacer, and line 36 ends the procedure.

Figure 7.8

Line 34 of Listing

7.2 displays a mes-

sage box telling the

user the result of

the linear search

operation.

How to Generate Random Numbers

Sharp-eyed readers will notice that a 0 sometimes appears in the array in the previous example,

and what’s more, 10 never appears. In other words, the code Int(Rnd * 10) randomly produces

numbers ranging from 0 to 9. Th is is a byproduct of the rounding performed by the Int command.

Here’s how to use the Rnd command to produce the exact range of numbers you want.

When asking VBA for a random number, you specify the upper limit of the range of numbers you

want and then multiply that number by Rnd. For example, if you want to simulate rolling dice, you

need random numbers from 1 to 6, so 6 is the upper limit. You multiply the result that Rnd gives

you by 6. But then you must add 1 to make the result range from 1 to this upper limit. (Otherwise,

the result is a range between 0 and the upper limit, minus 1, as in the code in Listing 7.2, which

provided numbers from 0 to 9 rather than 1 to 10.)

SEARCHING THROUGH AN ARRAY | 163

c07.indd 09:33:49:AM 07/19/2013 Page 163

Th e Int function must be used because Rnd provides only fractions. Here are some typical results

when the Rnd function executes:

 ◆ 0.4542078

 ◆ 0.3570231

 ◆ 0.1499811

 ◆ 0.7043958

 ◆ 0.928786

Because these are fractions, you need to multiply to get whole numbers. But the Int command

rounds off any fractional part of the fi nal result. So here is how you would get a random number

from 1 to 50:

X = Int(Rnd * 50 + 1)

To get a range from 0 to an upper limit, specify as the upper limit a number 1 higher than you

actually want. And don’t add 1 inside the parentheses. Th is example provides a random number

from 0 to 50:

X = Int(Rnd * 51)

Performing a Binary Search through an Array
As you saw in the previous section, a linear search is easy to perform, but it’s pretty simple and

slow—it starts looking at the beginning of the array and then checks each element, each item, in

turn. This approach works fi ne for small searches, such as the 10-subscript array you searched

in the last example, but you wouldn’t want to try it on anything the size of a phone book—even

in a small town. For serious, heavy-duty searching, you need a smarter approach.

For conventional purposes, a binary search is a good way to approach searching a sorted array.

A binary search formalizes the technique you probably use when searching for something like

a lost TV remote control. You expect it to be in a given location—somewhere in the living room,

probably near the couch. So you focus your attention on the relevant area and search it thor-

oughly. (With a linear search, you search everywhere in the house, from start to fi nish, without

any attempt to intelligently narrow the search area.)

The binary search technique (technically called an algorithm) determines the most likely

target area by dividing the sorted array in half, establishing which half will contain the search

item, and then repeating the divide-and-interrogate procedure until it either fi nds the search

item or reaches the last subdivisible unit of the array without fi nding it. Remember, this array

is presorted, so if the algorithm is looking for the number 12 in a list from 1 to 20, it’s likely that

the target will be in the second half of the list.

Here’s another example. Say that a binary search is looking for the value 789,789 in a million-

subscript array that contains the numbers 1 through 1,000,000 in ascending order. It divides the

array into two halves, each of which contains a half million subscripts. It establishes whether the

search item is in the fi rst half or the second half and then narrows the search to the appropriate

half and divides it into new halves. It establishes whether the search item is in the fi rst of these

halves or the second and then focuses on that half, dividing it into halves—and so on until it

fi nds the term or has gotten down to a single subscript.

164 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 164

This is a simple example, but a million is still a hefty number. Listing 7.3 makes things even

simpler by using an array of a thousand subscripts that contains the numbers 1 through 1000

in order: The fi rst subscript contains the number 1, the second subscript contains the number 2,

and so on up to 1000. The example is unrealistic, but it makes it easy to see what’s happening in

the code.

Listing 7.3: Searching through a large array

 1. Option Explicit

 2. Option Base 1

 3.

 4. Sub Binary_Search_of_Array()

 5.

 6. ‘declare the array and the variables

 7. Dim intThousand(1000) As Integer

 8. Dim i As Integer

 9. Dim intTop As Integer

10. Dim intMiddle As Integer

11. Dim intBottom As Integer

12. Dim varUserNumber As Variant

13. Dim strMsg As String

14.

15. ‘populate the array with numbers 1 to 1000, in order

16. For i = 1 To 1000

17. intThousand(i) = i

18. Next i

19.

20. ‘prompt the user for the search item

21. Loopback:

22. varUserNumber = InputBox _

 (“Enter a number between 1 and 1000 to search for:”, _

 “Binary Search Demonstrator”)

23. If varUserNumber = “” Then End

24. If Not IsNumeric(varUserNumber) Then GoTo Loopback

25.

26. ‘search for the search item

27. intTop = UBound(intThousand)

28. intBottom = LBound(intThousand)

29.

30. Do

31. intMiddle = (intTop + intBottom) / 2

32. If varUserNumber > intThousand(intMiddle) Then

33. intBottom = intMiddle + 1

34. Else

35. intTop = intMiddle - 1

36. End If

37. Loop Until (varUserNumber = intThousand(intMiddle)) _

 Or (intBottom > intTop)

SEARCHING THROUGH AN ARRAY | 165

c07.indd 09:33:49:AM 07/19/2013 Page 165

38.

39. ‘establish whether the search discovered the search item _

 or not and add the appropriate information to strMsg

40. If varUserNumber = intThousand(intMiddle) Then

41. strMsg = “The search found the search item, “ _

 & varUserNumber & “, at position “ & intMiddle _

 & “ in the array.”

42. Else

43. strMsg = “The search did not find the search item, “ _

 & varUserNumber & “.”

44. End If

45.

46. MsgBox strMsg, vbOKOnly & vbInformation, “Binary Search Result”

47.

48. End Sub

Here’s what happens in Listing 7.3:

 ◆ Line 1 contains an Option Explicit statement to force explicit declarations of variables,

and line 2 contains an Option Base 1 statement to make the numbering of arrays start

at 1 rather than 0. These two statements appear in the declarations part of the code sheet,

before any procedure.

 ◆ Line 3 is a spacer. Line 4 declares the Binary_Search_of_Array procedure, and line 5 is

another spacer.

 ◆ Line 6 is a comment line prefacing the declaration of the array (the thousand-subscript

Integer array intThousand, declared in line 7) and the other variables that the procedure

uses: the Integer variables i (line 8), intTop (line 9), intMiddle (line 10), and intBottom

(line 11); the Variant variable varUserNumber (line 12); and the String variable strMsg (line

13). Line 14 is yet another spacer.

 ◆ Line 15 is a comment line announcing that lines 16 through 18 populate the array with the

numbers 1 to 1000 in order. To do so, these lines use a For… Next loop that runs from i = 1

to i = 1000, assigning the current value of i to the subscript in the array referenced by i—

in other words, assigning to each subscript the number that corresponds to its position in

the array. Line 19 is a spacer.

 ◆ Line 20 is a comment line introducing the section of code (lines 21 through 24) that uses an

input box (shown in Figure 7.9) to prompt users to enter a number to search for, and checks

that they do so. As in the previous listing, this section of code checks to make sure users

don’t enter an empty string in the input box (line 23) and terminates execution of the proce-

dure if they did. It also uses a label named Loopback (in line 21), to which the code returns

if what a user entered in the input box (in line 22) turns out not to be numeric when line 24

checks. Because this time you know which numbers the array will contain, you don’t need

to check to make sure that users enter a suitable value. If they want to enter a value that

doesn’t appear in the array, so be it.

166 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 166

Figure 7.9

Th e Binary_

Search_of_Array

procedure prompts

the user to enter a

number between 1

and 1000.

 ◆ Line 25 is a spacer, and line 26 is a comment that introduces the section of code that

searches for the search item the user entered. Line 27 assigns to the intTop variable the

upper bound of the array, and line 28 assigns to intBottom the lower bound. Line 29 is a

spacer.

 ◆ Lines 30 through 37 contain a Do… Loop Until loop that performs the bulk of the binary

searching. Here are the details:

 ◆ Line 30 starts the Do… Loop Until loop with the Do keyword, and line 37 ends

it with the Loop Until keywords and the condition ((varUserNumber =

intThousand(intMiddle)) Or (intBottom > intTop)). You’ll look at loops in

detail in Chapter 12; for now, all you need to know is that a Do… Loop Until runs

once and then evaluates the condition in the Loop Until statement to determine

whether it should end or run again. The condition here specifi es that the loop con-

tinue until either the value of the subscript in the array identifi ed by intMiddle

–intThousand(intMiddle)– matches the value in varUserNumber or the value of

intBottom is greater than the value of intTop (intBottom > intTop).

 ◆ Line 31 sets the value of the Integer variable intMiddle to the sum of intTop and

intBottom divided by 2 : (intTop + IntBottom) / 2. Doing so gives the midpoint

for dividing the array. For example, in the thousand-subscript array, intTop has a

value of 1000 on the fi rst iteration of the loop, and intBottom has a value of 0, so int-

Middle receives the value 500 (1000 divided by 2).

 ◆ Line 32 tests whether varUserNumber is greater than the value stored in the subscript

identifi ed by intMiddle—intThousand(intMiddle), the midpoint of the current sec-

tion of the array. If it is, the search needs to work on the top half of the array, so line

33 resets intBottom to intMiddle + 1. If it’s not, the Else statement in line 34 kicks

in, and line 35 resets intTop to intMiddle–1 so that the search works on the lower

half of the array.

 ◆ Line 36 ends the If statement, and line 37 tests the condition and continues or termi-

nates the loop, as appropriate.

 ◆ Line 38 is a spacer. Line 39 contains a two-line comment introducing the code in lines 40

through 44, which establish whether the search found the search item and assign suit-

able information to the strMsg String variable. Line 40 compares varUserNumber to

intThousand(intMiddle); if it matches, line 41 assigns to strMsg a string telling the user

where the search item was found in the array. If it doesn’t match, line 43 assigns a string

telling the user that the search did not fi nd the search item. Line 45 is a spacer, and line 46

displays a message box telling the user the result of the search. Figure 7.10 shows exam-

ples—one successful, one otherwise—of the message box.

SEARCHING THROUGH AN ARRAY | 167

c07.indd 09:33:49:AM 07/19/2013 Page 167

Figure 7.10

Th e Binary_

Search_of_Array

procedure tells the

user whether the

search was success-

ful (left) or not.

 ◆ Line 47 is another spacer, and line 48 ends the procedure.

The most complex part of the procedure is what happens in the loop. Download the code

from the book’s website at www.sybex.com/go/masteringvba2013.

Copy the code, and paste it into the Visual Basic Editor (this code will work in any VBA-

enabled application). Then open up the module and follow these steps:

 1. Display the Locals window (View ➢ Locals Window) so that you can track the values of

the variables intTop, intMiddle, and intBottom. Figure 7.11 shows the Locals window

while the procedure is running.

Figure 7.11

Use the Locals

window to track

the values of the

intTop, intMid-

dle, and intBot-

tom variables as the

procedure runs.

 2. Set a breakpoint in the procedure on line 22 by clicking in the margin indicator bar next

to the statement that begins varUserNumber = InputBox. (Because the statement is bro-

ken onto three lines, the Visual Basic Editor displays three red dots rather than one in the

margin indicator bar, to indicate the breakpoint.)

 3. Press the F5 key (or choose Run ➢ Run Sub/UserForm) to run the code up to the break-

point. VBA creates and populates the array and then stops at line 22.

 4. Press the F8 key to step through the next statements. The fi rst press displays the input

box. Enter the value 67 for this example and click the OK button.

 5. As the code enters the Do loop and cycles through it, watch the values of the variables

intTop, intMiddle, and intBottom in the Locals window. You’ll see them change, as

shown in the following list:

Iteration intTop intMiddle intBottom

0 1000 — 1

1 499 500 1

2 249 250 1

http://www.sybex.com/go/masteringvba2013

168 | CHAPTER 7 USING ARRAY VARIABLES

c07.indd 09:33:49:AM 07/19/2013 Page 168

Iteration intTop intMiddle intBottom

3 124 125 1

4 124 62 63

5 93 94 63

6 77 78 63

7 69 70 63

8 69 66 67

9 69 68 67

10 67 67 67

At the end of the tenth iteration of the loop, intThousand(intMiddle) is equal to varUser-

Number, so the loop ends. As you can see, breakpoints, single-stepping, and the Locals window

are excellent debugging tools. Chapter 17, “Debugging Your Code and Handling Errors,” further

explores these and other debugging techniques.

Th e Bottom Line

Understand what arrays are and what you use them for. Arrays play an important role in

computer programming. In some ways they resemble a mini-database, and organized data is

central to computing. Computers are sometimes called data processors for good reason, and

arrays make it easier for you to manipulate variable data.

Master It What is the difference between an array and an ordinary variable?

Create and use arrays. When you create a new array, you declare it and, optionally, specify

the number of values it will contain.

Master It There are four keywords that can be used to declare arrays. Name at least

three of them.

Redimension an array. If you want to resize an existing dynamic array, you can redimen-

sion it.

Master It Redimensioning an array with the ReDim statement causes you to lose any

values that are currently in that array. However, you can preserve these values using a

special keyword. What is it?

Erase an array. You can erase all the values in a fi xed-size array or completely erase a

dynamic array.

Master It Write a line of code that erases an array named arrMyArray.

THE BOTTOM LINE | 169

c07.indd 09:33:49:AM 07/19/2013 Page 169

Find out whether a variable is an array. An array is a type of variable, and you may occa-

sionally need to check whether a particular variable name denotes an array or an ordinary

scalar variable (a variable that isn’t an array).

Master It Which built-in function can you use in VBA to fi nd out whether a variable is

an array or an ordinary, single-value variable?

Sort an array. Visual Basic .NET includes array objects with built-in search and sort meth-

ods. In VBA, however, you must write a bit of code to search and sort the values in an array.

Master It Name a popular, understandable, but relatively ineffi cient sorting technique.

Search an array. Searching through an array can be accomplished in two primary ways. If

you have a relatively small array, you can use the simpler, but less effi cient technique. With

large amounts of data, though, it’s best to use the more robust approach.

Master It Name two common ways to search an array.

c07.indd 09:33:49:AM 07/19/2013 Page 170

Chapter 8

Finding the Objects, Methods,
and Properties You Need

In this chapter, you’ll learn how to fi nd the objects you need in the applications you’re using. To

learn the material in this chapter, you’ll build on what you’ve learned in the earlier chapters. You’ll

start by examining the concepts involved: what objects and collections are, what properties are,

and what methods are. You’ll then learn how to fi nd the objects, collections, properties, and meth-

ods you need to make your code work. To identify these items, you’ll use a number of tools you’ve

already read about, including the Object Browser (which you used briefl y in Chapter 4, “Creating

Code from Scratch in the Visual Basic Editor”) and the VBA online Help resources.

Along the way, this chapter explains how to use Object variables to represent objects in your code.

In this chapter you will learn to do the following:

 ◆ Understand and use objects, properties, and methods

 ◆ Use collections of objects

 ◆ Find objects, properties, and methods

 ◆ Use Object variables to represent objects

What Is an Object?
VBA-enabled applications (and many other modern applications) consist of a number of discrete

objects, each with its own characteristics and capabilities.

Th e Benefi ts of OOP
Building an application out of objects is called object-oriented programming (OOP). In theory,

object-oriented programming has a number of benefi ts—for example, the code is easier to build

and maintain (update) because you break it down into objects of a manageable size.

Object-oriented programs should also be easier to understand than monolithic programs

because it’s less diffi cult for most people to grasp the concept of individual objects with associ-

ated characteristics and actions than to remember a far longer list of capabilities for the applica-

tion as a whole.

Figuring out which commands to use to accomplish your programming goals can also be

faster thanks to OOP taxonomy. For example, a table in Word is represented by a Table object,

and a column is represented by a Column object. The Column object has a Width property that

172 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

sets or returns its width. It’s simpler to manage this information when it’s broken down into

small pieces than to deal with some complex command such as WordTableSetColumnWidth or

WordTableGetColumnWidth.

A third benefi t of object-oriented programming is that the VBA language itself can be

extended. The programmer can build custom objects to implement functionality that the lan-

guage itself didn’t originally contain. For example, you can use VBA to build your own objects

that do things that the Offi ce applications themselves can’t do.

Another, rather different, use for OOP is somewhat clerical: OOP can be of help when a

group of programmers are working together on a single program. They can easily step on each

other’s toes in various ways—using the wrong version, changing each other’s code, and so on.

We’ll look at the ways OOP is employed in team programming at the end of this chapter.

Objects can—and frequently do—contain other objects. Typically, the objects in an object-

oriented application are arranged into a hierarchy called the object model of the application. This

hierarchy is intended to make it easier to fi gure out where—within a large library of objects—

you’ll fi nd a particular object that you want to use in your macros. It’s similar to the way a biog-

raphy is likely to be found in the library’s nonfi ction area.

Object Models Covered in Depth Later in the Book

Th is chapter discusses object models only a little, at the conceptual level: You need to know what

an object model is in order to make sense of what you’ll be learning in the following chapters, but

you don’t need to know the specifi cs of each object model to manipulate the objects used in the

examples. Part 5 of this book, “Creating Eff ective Code,” examines the object models of each of

the applications covered in this book in enough detail to get you started on exploring the depths

of each object model on your own.

Most VBA host applications, including all the major Offi ce applications, have an Application

object that represents the application as a whole. The Application object has properties and

methods for things that apply to the application as a whole. For example, many applications

have a Quit method that exits the application and a Visible property that controls whether the

application is visible or hidden.

In a typical object model, the Application object essentially contains all the other objects

(and collections—groups—of objects) that make up the application. For example, Excel has an

Application object that represents the Excel application, a Workbook object (grouped into the

Workbooks collection) that represents a workbook, and a Worksheet object (grouped into the

Sheets collection) that represents a worksheet. The Workbook object is contained within the

Application object because you normally need to have the Excel application open to work with

an Excel workbook.

In turn, the Worksheet object is contained within the Workbook object because you need

to have an Excel workbook open to use a worksheet. Walking further down the object model,

the Worksheet object contains assorted other objects, including Row objects that represent the

individual rows in the worksheet, Column objects that represent columns in the worksheet, and

Range objects (which represent ranges of cells). And these objects in turn contain further objects.

To get to an object, you typically walk down through the hierarchy of the object model until

you reach the object you’re looking for.

To get to a Range object in Excel, for example, you would go through the Application object

to the Workbook object, through the Workbook object to the appropriate Sheet object, and then

WHAT IS AN OBJECT? | 173

fi nally to the Range object. The following statement shows how to select the range A1 in the fi rst

worksheet in the fi rst open workbook (more on this in a minute):

Application.Workbooks(1).Sheets(1).Range(“A1”).Select

Understanding Creatable Objects
The Application object, however, is optional and is usually left out of code lines. Why? Because

you’d have to go through the Application object to get to pretty much anything in the applica-

tion, most applications expose (make available to you) a number of creatable objects. Creatable

merely means that you can access something without having to type the word Application in

your code. It’s assumed. This is similar to the fact that you don’t have to include the word Earth

when addressing an envelope. There’s only that one possibility.

These creatable objects are usually the most-used objects for the application, and by

going through them, you can access most of the other objects without having to refer to the

Application object. For example, Excel exposes the Workbooks collection as a creatable object,

so you can use the following statement, which doesn’t require that you type in Application.

See the alternative example a couple of paragraphs earlier in this chapter.

Workbooks(1).Sheets(1).Range(“A1”).Select

Any object can have properties and methods. The next sections discuss these items in detail.

Properties
In VBA, a property is an attribute or characteristic of an object. Most objects have multiple prop-

erties that specify each aspect of it.

Each property has a specifi c data type for the information it stores. For example, the objects

that represent fi les (such as documents, workbooks, or presentations) typically have a Boolean

property named Saved that stores a value denoting whether all changes in the object have been

saved (a value of True) or not (a value of False). These two values encompass the entire range

of possibilities for the object: it can either contain unsaved changes or not contain unsaved

changes. There is no third state. And a Boolean data type is used because that type has only two

possible values.

Similarly, most objects that represent fi les have a Name property that contains the name of the

fi le in question. The Name property contains a String data type because it needs to contain text.

And that text can be just about anything, limited only by the 255-character path that Windows

permits for fi les and by certain characters—such as colons and pipe (|) characters—that

Windows forbids in fi lenames.

To work with a property, you get (fetch or return) it to fi nd out its current value or set (change)

it to a value of your choosing. Many properties are read/write, meaning that you can both get and

set their values, but some properties are read-only, meaning that you can view their values but

not change them.

The Saved property is read/write for most applications, so you can set it. This means that

you can tell the application that a fi le contains unsaved changes when it really doesn’t or that it

contains no unsaved changes when it actually has some. (Changing the Saved property can be

useful when you’re manipulating a fi le without the user’s knowledge.) But the Name property

of a fi le object is read-only—you’ll typically set the name by issuing a Save As command, after

which you cannot change the name from within the application while the fi le is open. So you

can get (read, return, or fetch) the Name property but not set it. You’ll also encounter some write-

only properties, properties that you can set but not get.

174 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

When an object contains another object, or contains a collection, it typically has a prop-

erty that you call (invoke) to return the contained object or collection. For example, the Word

Document object includes a PageSetup property that returns the PageSetup object for the docu-

ment (the PageSetup object contains settings such as paper size, orientation, lines per page, and

margins for the document) and a Tables property that you call to return the Tables collection.

Here’s how you can call the PageSetup object (which is contained in the Document object):

Sub GetLinesPage()

 Dim sngLinesPerPage As Single

 sngLinesPerPage = ActiveDocument.PageSetup.LinesPage

 MsgBox sngLinesPerPage

 End Sub

Each object of the same type has the same set of properties but stores its own particular

values for them. For example, if you’re running PowerPoint and have three Presentation

objects open, each has its own Name property. The value in each Name property is specifi c to each

Presentation object. In other words, the value in a property in one object has nothing to do

with the value in that property in another object: each object is independent of the other objects.

Methods
A method is an action that an object can perform, a capability an object has. For example, the

Document object in various applications has a Save method that saves the document. You

can use the Save method on different Document objects—Documents(1).Save saves the

fi rst Document object in the Documents collection, and Documents(2).Save saves the second

Document object—but the Save method does the same thing in each case. An object can have one

or more methods associated with it. Some objects have several dozen methods to implement all

the functionality they need.

The Save method is very common. It appears in many applications, as do other methods,

such as SaveAs (which saves the fi le with a different name, location, or both) and Close (which

closes the fi le).

But other methods are unique to each application. For example, the Presentation object

in PowerPoint has an AddBaseline method that applies a baseline (consisting either of the

active presentation or of a specifi ed presentation fi le) that enables you to track changes

for a merge. The Document object in Word has no AddBaseline method, but it has an

AcceptAllRevisions method that accepts all revisions in the document. PowerPoint doesn’t

have an AcceptAllRevisions method.

Just as methods like Save are common to multiple applications, some methods are found

in more than one object. For example, the Delete method is associated with many different

objects. As its name suggests, the Delete method usually deletes the specifi ed object. But

other implementations of the Delete method behave somewhat differently, depending on the

object they’re working with. So even if you’re familiar with a method from using it with one

object, you need to make sure that it will have the effect you expect when you use it with

another object.

WHAT IS AN OBJECT? | 175

Some methods take no arguments. Other methods take one or more arguments (to supply

necessary information). Just as with built-in VBA functions like MsgBox, some methods’ argu-

ments are required, while others are optional.

When a method applies to multiple objects, it may have different syntax for different objects.

Again, even if you’re familiar with a method, you need to know exactly what it does with the

object for which you’re planning to use it.

To use a method, you access it through the object involved. For example, to close the

ActivePresentation object, which represents the active presentation in PowerPoint, you use

the Close method (but you must specify the ActivePresentation object, like this):

ActivePresentation.Close

Max the Dog: Visualizing Objects, Methods, and Properties

If you have a hard time getting a grip on objects, their properties, and methods, here’s a somewhat

strained comparison between the virtual objects, properties, and methods in VBA and physical

objects, properties, and actions in the real world. Consider this example.

Let’s say you have a massive dog named Max—a Pyrenean mountain dog, white, 200 pounds, four

years old, male, and not fi xed.

Max performs all the usual dog actions—sleep, run, eat, bark, growl, chew things, various unmen-

tionable actions that we’ll skip over—but also has a couple of unusual (for dogs) actions built in,

such as slobbering on command, knocking people down, and biting mail carriers.

If Max were implemented in VBA, he’d be a Dog object in a Dogs collection. Th e Dog object for Max

would have properties such as these:

Name Th is is a read-only String with a value of Max.
Sex Th is is a read-only String with a value of Male.

Fixed Th is is a read/write Boolean with a value of False.

Height Th is is a read/write Long with a value of 36.

Weight Th is is a read/write Long with a value of 200.

Age Th is is a read/write Integer with a value of 4.

Type Th is is a read/write String with a value of Pyrenean Mountain.

Color Th is is a read/write String with a value of White.

Max would have methods such as Slobber, Bark, KnockDown, Intimidate, Chew, Run, and so

on. Some of these methods would require arguments. Th e Slobber method would defi nitely need

arguments like this, probably using Dog-specifi c constants that start with the dog designation:

Dogs(“Max”).Slobber OnWhat:=”MyKnee”, How:=dogSlobberDisgustingly

Th e Dog object would contain objects representing the many components of the dog—ears, eyes,

tongue, brain, stomach, legs, tail, and so on. Each of these objects in turn would have its own

properties and methods as appropriate. For example, the Tail object would need a Wag method,

which you would probably invoke (call) something like this:

Dogs(“Max”).Tail.Wag Direction:=dogWagHorizontal, Frequency:=200

176 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

Working with Collections
When an object contains more than one object of the same type, the contained set of objects

is said to be grouped into a collection. For example, Word uses Document objects, which are

grouped into the Documents collection; PowerPoint has a Presentations collection for

Presentation objects, and Excel has the Workbooks collection.

As in these examples, the names of most collections are simply the plural of the outer, con-

tainer object. There are some exceptions, such as the Sheets collection in Excel that contains the

Worksheet objects. But by and large the names of most collections are easy to derive from the

name of the objects they contain—and vice versa.

A collection—taken as a whole—is an object too and can have its own properties and meth-

ods. For example, many collections have a Count property that tells you how many objects

are in the collection. This next example tells you how many documents are in the Documents

collection:

Sub GetDocCount()

 Dim lngCount As Long

 lngCount = Documents.Count

 MsgBox lngCount

End Sub

Collections tend to have fewer properties and methods than individual objects. Most collec-

tions have an Add method for adding another object to the collection. Some collections, however,

are read-only and do not have an Add method. Most collections have an Item property (the

default property) for accessing an item within the collection.

Most collections in VBA have the core group of properties listed in Table 8.1.

Table 8.1: Core properties for collections in VBA

Property Explanation

Application A read-only property that returns the application associated with the object or collec-

tion—the root of the hierarchy for the document. For example, the Application prop-

erty for objects in PowerPoint returns Microsoft PowerPoint.

Count A read-only Long property that returns the number of items in the collection—for exam-

ple, the number of Shape objects in the Shapes collection in a PowerPoint slide.

Creator In Microsoft applications, a read-only Long property that returns a 32-bit integer indi-

cating the application used to create the object or collection.

Item A read-only property that returns a specifi ed member of the collection. Item is the

default property of every collection, which means that you seldom need to specify it.

Parent In Microsoft applications, a read-only String property that returns the parent object for

the object or collection. Th e parent object is the object that contains the object in ques-

tion; the contained object is the child object. For example, a Document object is a child of

the Documents collection.

FINDING THE OBJECTS YOU NEED | 177

Working with an Object in a Collection
To work with an object in a collection, you identify the object within the collection either by its

name or by its position in the collection. For example, the following statement returns the fi rst

Document object in the Documents collection and displays its Name property in a message box:

MsgBox Documents(1).Name

Most Collections Are Zero-Based

Recall that arrays are zero-based by default in VBA. Th ey employ a 0 index number for the fi rst item

in the array (unless you use the Option Base 1 statement to force the fi rst index number to 1 as

we did in Chapter 7, “Using Array Variables”).

Fortunately, most VBA collections default to the more sensible 1 for the fi rst item in the collection.

Th is makes it easy to identify the object you need. For example, Documents(1) gives you the fi rst

document, Workbooks(2) gives you the second workbook, and so on.

But notice the word most. Sadly, there are exceptions to this rule. Be warned that some collections in

VBA implementations are zero-based—their numbering starts at 0 (zero) rather than 1. For exam-

ple, Access—nearly always the special case in VBA—employs zero-based collections. If you’re not

sure whether a particular collection is one- or zero-based, consult the Help topic for that collection.

You can optionally use the Item property to return an object from the collection, but because

Item is the default property of a collection, you don’t need to use it. It’s assumed. The following

two statements have the same effect, so there’s no advantage to using the Item method:

strName = Documents(1).Name

strName = Documents.Item(1).Name

Adding an Object to a Collection
To create a new object in a collection, you add an object to the collection. In many cases, you

use the Add method to do so. For example, the following statement creates a new Document

object in Word:

Documents.Add

Finding the Objects You Need
The Visual Basic Editor provides a number of tools for fi nding the objects you need:

 ◆ The Macro Recorder, which you used to record macros in some Microsoft Offi ce applica-

tions in Chapter 1, “Recording and Running Macros in the Offi ce Applications”

 ◆ The Object Browser, which you used briefl y in Chapter 4

 ◆ The online Help system, which can provide detailed help on the objects in the application

 ◆ The Auto List Members feature in the Visual Basic Editor

The following sections show you how to use these tools to fi nd objects.

178 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

Using the Macro Recorder to Add Code for the Objects You Need
If you’re using a Microsoft application, chances are that the easiest way to fi nd the objects you

need is to run the Macro Recorder to record a quick macro using the objects you’re interested in.

While you perform various actions in the application, the Macro Recorder creates code that you

can then open in the Visual Basic Editor, examine, and modify if necessary.

In spite of its advantages, the Macro Recorder does have two drawbacks:

 ◆ First, you can’t record every action that you might want. Let’s say you’re working in Excel

and want to create a statement that performs an action on a specifi ed workbook in the

Workbooks collection rather than on the active workbook. With the Macro Recorder, you

can record only actions performed on the active workbook. (This is the case because the

Macro Recorder can record only those actions you can perform interactively in Excel, and

you can’t work interactively with any workbook other than the active one.) Here’s another

example: Some Ribbon actions are not recorded. In Word, clicking the Review ➢ Show

Markup Formatting feature to deselect it results in no recorded code. You would need to

write the following code in the Editor yourself:

ActiveWindow.View.ShowFormatChanges = False

 ◆ Second, the Macro Recorder is apt to record more statements than you need, particularly

when you’re trying to record a setting in a dialog box.

You saw an example of the second problem in Chapter 4. Here’s another example. This time

we’ll record a macro to create an AutoCorrect entry. Let’s say that you often have to type the

word references in your job. Dozens of times every day. You can speed up your work by merely

typing reffs (or some other abbreviation of your choice). Then Word will automatically replace

reffs with references as you type. Here’s how to create this macro:

 1. Start Word.

 2. Click the Record Macro button on the status bar, or click the Developer tab on the Ribbon

and then click the Record Macro button in the Code section. This displays the Record

Macro dialog box. Type Add_Item_to_AutoCorrect in the Macro Name text box, and

type a description in the Description text box. Make sure All Documents (Normal.dotm)

is selected in the Store Macro In drop-down list, and then click the OK button to start

recording.

 3. Press Alt+F then I. Then click the Proofi ng button and the AutoCorrect Options button to

display the AutoCorrect dialog box. Type reffs in the Replace box and references in the

With box, and click the Add button. Then click OK twice to close both open dialog boxes.

 4. Click the Stop Recording button on the Ribbon or the status bar to stop the Macro

Recorder.

Now press Alt+F8 to display the Macros dialog box, select the Add_Item_to_AutoCorrect

entry, and click the Edit button to open the macro in the Visual Basic Editor. The code should

look like this:

Sub Add_Item_to_AutoCorrect()

‘

‘ Add_Item_to_AutoCorrect Macro

‘ Change reffs to references

FINDING THE OBJECTS YOU NEED | 179

‘

 AutoCorrect.Entries.Add Name:=”reffs”, Value:=”references”

 With Options

 .AutoFormatAsYouTypeApplyHeadings = False

 .AutoFormatAsYouTypeApplyBorders = True

 .AutoFormatAsYouTypeApplyBulletedLists = True

 .AutoFormatAsYouTypeApplyNumberedLists = True

 .AutoFormatAsYouTypeApplyTables = True

 .AutoFormatAsYouTypeReplaceQuotes = True

 .AutoFormatAsYouTypeReplaceSymbols = True

 .AutoFormatAsYouTypeReplaceOrdinals = True

 .AutoFormatAsYouTypeReplaceFractions = True

 .AutoFormatAsYouTypeReplacePlainTextEmphasis = False

 .AutoFormatAsYouTypeReplaceHyperlinks = True

 .AutoFormatAsYouTypeFormatListItemBeginning = True

 .AutoFormatAsYouTypeDefineStyles = False

 .TabIndentKey = True

 End With

 With AutoCorrect

 .CorrectInitialCaps = True

 .CorrectSentenceCaps = True

 .CorrectDays = True

 .CorrectCapsLock = True

 .ReplaceText = True

 .ReplaceTextFromSpellingChecker = True

 .CorrectKeyboardSetting = False

 .DisplayAutoCorrectOptions = True

 .CorrectTableCells = True

 End With

 With OMathAutoCorrect

 .UseOutsideOMath = False

 .ReplaceText = True

 End With

 With Options

 .AutoFormatApplyHeadings = True

 .AutoFormatApplyLists = True

 .AutoFormatApplyBulletedLists = True

 .AutoFormatApplyOtherParas = True

 .AutoFormatReplaceQuotes = True

 .AutoFormatReplaceSymbols = True

 .AutoFormatReplaceOrdinals = True

 .AutoFormatReplaceFractions = True

 .AutoFormatReplacePlainTextEmphasis = True

 .AutoFormatReplaceHyperlinks = True

 .AutoFormatPreserveStyles = True

 .AutoFormatPlainTextWordMail = True

 End With

 Options.LabelSmartTags = False

End Sub

180 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

Here, the Recorder has created dozens of lines of unnecessary code. The only statement you

actually need to accomplish your task is this:

AutoCorrect.Entries.Add Name:=”reffs”, Value:=”references”

This line shows you that to add an AutoCorrect entry, you need to work with the Entries col-

lection object in the AutoCorrect object. You use the Add method on the Entries collection to

add an AutoCorrect entry to the list.

All the other lines of code specifying the status of various options are unnecessary because

you are not interested in changing any of them in this macro.

By removing these extraneous lines from this recorded macro, you can reduce it to just the

single line it needs to contain (together with the comment lines, which you can also remove if

you want):

Sub Add_Item_to_AutoCorrect()

‘

‘ Add_Item_to_AutoCorrect Macro

‘ Change reffs to references

‘

 AutoCorrect.Entries.Add Name:=”reffs”,Value:=”references”

End Sub

You used the Recorder to see the correct syntax for adding an entry to the AutoCorrect fea-

ture. There’s no point to leaving in lines of code unrelated to your purposes. What’s more, such

extraneous code would make it harder at some future date to read and understand the macro’s

purpose. Even worse, these extra lines can set properties to conditions that you, or someone else

using this macro, might not want. Let’s say you run this macro in the future and you are work-

ing in a document that must not have any bullet symbols in it. So you’ve clicked the File tab on

the Ribbon, then chosen File ➢ Options ➢ Proofi ng ➢ AutoCorrect Options ➢ AutoFormat As

You Type and turned off bullets. However, when you run this macro, bullets are turned back on

by this unneeded line in the code:

 .AutoFormatAsYouTypeApplyBulletedLists = True

In spite of its limitations, the Macro Recorder does provide quick access to the objects you

need to work with, and you can always modify the resulting code in the Visual Basic Editor.

What’s more, the code that the Recorder generates is, if nothing else, guaranteed to execute

without bugs.

Using the Object Browser
For many programmers, the primary tool for writing code for objects is the Object Browser,

which you used briefl y in Chapter 4. In the following sections, you’ll get to know the Object

Browser better and learn to use it to fi nd the information you need about objects. To see the

Object Browser, press F2 in the Editor.

Components of the Object Browser

The Object Browser provides the following information about both built-in objects and custom

objects you create:

 ◆ Classes (formal defi nitions of objects)

 ◆ Properties (the attributes of objects or aspects of their behavior)

FINDING THE OBJECTS YOU NEED | 181

 ◆ Methods (actions you can perform on objects)

 ◆ Events (for example, the opening or closing of a document)

 ◆ Constants (named items that keep a constant value while a program is executing)

Figure 8.1 shows the components of the Object Browser.

Figure 8.1

Th e Object Browser

provides informa-

tion on built-in

objects and custom

objects. Here, the

application is Excel.

Show/Hide Search
Results button

Split bars

Search button

Search Results list

Project/Library drop-down list

Search Text box

Go Back button

Go Forward button

Copy To Clipboard button

View Definition button

Help button

Details pane

Members Of list

Classes list

Here’s what the different elements of the Object Browser do:

 ◆ The Project/Library drop-down list provides a list of object libraries available to the cur-

rent project. (An object library is collection of objects made available to programs. There can

be several libraries in use at a given time. For example, one library might contain objects

182 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

that specialize in rendering graphics, a second library might contain objects that assist

with security features, and so on.) Use the drop-down list to choose the object libraries you

want to view. For example, you might choose to view only objects in Outlook by choos-

ing Outlook in the Project/Library drop-down list. Alternatively, you could stay with the

default choice of <All Libraries>.

 ◆ In the Search Text box, enter the string you want to search for: Either type it in or choose a

previous string in the current project session from the drop-down list. Then either press

Enter or click the Search button to fi nd members containing the search string.

Improve Your Searches with These Techniques

To make your searches less specifi c, you can use wildcards such as ? (to represent any single charac-

ter) and * (to represent any group of characters). You can also choose to search for a whole word only

(rather than matching your search string with part of another word) by right-clicking anywhere

in the Object Browser (except in the Project/Library drop-down list or in the Search Text box) and

choosing Find Whole Word Only from the context menu. Th e Find Whole Word Only choice has

a check mark next to it in the context menu when it’s active; to deactivate it, choose Find Whole

Word Only again on the context menu.

 ◆ Click the Go Back button to retrace one by one your previous selections in the Classes list

and the Members Of list. Click the Go Forward button to move forward through your pre-

vious selections one by one. The Go Back button becomes available when you go to a class

or member in the Object Browser; the Go Forward button becomes available only when

you’ve used the Go Back button to go back to a previous selection.

 ◆ Click the Copy To Clipboard button to copy the selected item from the Search Results list,

the Classes list, the Members Of list, or the Details pane to the Clipboard so that you can

paste it into your code.

 ◆ Click the View Defi nition button to display a Code window containing the code for the

object selected in the Classes list or the Members Of list. The View Defi nition button is

available (undimmed) only for objects that contain code, such as procedures and user

forms that you’ve created.

 ◆ Click the Help button to display any available help for the currently selected item.

Alternatively, press the F1 key.

 ◆ Click the Search button to search for the term entered in the Search Text box. If the Search

Results pane isn’t open, VBA opens it at this point.

 ◆ Click the Show/Hide Search Results button to toggle the display of the Search Results pane

on and off.

 ◆ The Search Results list in the Search Results pane contains the results of the latest search

you’ve conducted for a term entered in the Search Text box. If you’ve performed a search,

the Object Browser updates the Search Results list when you use the Project/Library

drop-down list to switch to a different library. Choosing a different library in the Project/

FINDING THE OBJECTS YOU NEED | 183

Library drop-down list is a handy way of narrowing, expanding, or changing the focus of

your search.

 ◆ The Classes list shows the available classes in the library or project specifi ed in the Project/

Library drop-down list.

 ◆ The Members Of list displays the available elements of the class selected in the Classes list.

A method, constant, event, property, or procedure that has code written for it appears in

boldface. The Members Of list can display the members either grouped into their differ-

ent categories (methods, properties, events, and so on) or ungrouped as an alphabetical

list of all the members available. To toggle between grouped and ungrouped, right-click

in the Members Of list and choose Group Members from the context menu; click either to

place a check mark (to group the members) or to remove the check mark (to ungroup the

members).

 ◆ The Details pane displays the defi nition of the member selected in the Classes list or in the

Members Of list. For example, if you select a procedure in the Members Of list, the Details

pane displays its name, the name of the module and template or document in which it’s

stored, and any comment lines you inserted at the beginning of the procedure. The module

name and project name contain hyperlinks (jumps) so that you can quickly move to them.

You can copy information from the Details pane to the Code window by using either copy

and paste or drag and drop.

 ◆ Drag the three split bars to resize the panes of the Object Browser to suit yourself. (You can

also resize the Object Browser window as needed or maximize it so that it docks itself in

the Code window.)

The Object Browser uses different icons to indicate the various types of object that it lists.

Figure 8.1 shows several icons; Table 8.2 shows the full range of icons and what they represent.

A blue dot in the upper-left corner of a Property icon or a Method icon indicates that that

property or method is the default.

Table 8.2: Object Browser icons

Icon Meaning

Property

User-defi ned type

Method

Global

Constant

Library

Module

184 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

Icon Meaning

Project

Event

Built-in keyword or type

Class

Enum (enumeration)

Adding and Removing Object Libraries

The default object libraries are suffi cient for most typical macros, so you generally need not

worry about adding any specialized libraries. If you get into some kinds of advanced macro

programming, however, you will need to add other libraries (you’ll modify the Ribbon in

Chapter 31, “Programming the Offi ce 2010 Ribbon,” and to do that you have to add a special

library). You can add and remove object libraries by choosing Tools ➢ References in the editor

and using the References dialog box to make your selections:

 ◆ By adding object libraries, you can make available additional objects to work with.

 ◆ By removing object libraries that you don’t need to view or use, you can reduce the

number of object references that VBA needs to resolve when it is compiling the code in a

project. This allows the code to run faster, though as I’ve mentioned before, today’s com-

puters are so fast that fi nding ways to increase speed of macro execution is never an issue

for most people.

When you start the Visual Basic Editor, it automatically loads the object libraries required for

using VBA and user forms with the host application. You don’t have to change this set of object

libraries until you need to access objects contained in other libraries. For example, if you create

a procedure in Word that needs to employ a feature found in Excel, you’ll have to add to Word’s

VBA Editor a reference to an Excel object library to make Excel’s objects available.

You can adjust the priority (or order of precedence) of different references by adjusting the

order in which the references appear in the References dialog box. The priority of references

matters when you use in your code an object whose name appears in more than one refer-

ence: VBA checks the References list to determine the order of the references that contain

that object name and uses the fi rst one unless specifi cally told to do otherwise by use of an

unambiguous name.

To add or remove object libraries, follow these steps:

 1. In the Visual Basic Editor, choose Tools ➢ References to display the References dialog box

(see Figure 8.2). You can also display the References dialog box by right-clicking in the

Object Browser and choosing References from the context menu.

Table 8.2: Object Browser icons (continued)

FINDING THE OBJECTS YOU NEED | 185

Figure 8.2

You add and remove

object librar-

ies by using the

References dialog

box.

 2. In the Available References list box, select the check boxes for the object libraries you

want to have access to, and clear the check boxes for the references you want to remove

because you don’t need them. You should fi nd a reference for an object library for each

application that supports automation and is installed on your computer. Automation, in

this context, means that an application permits the automation of tasks (in other words,

macros). Another way to put this is an application that supports automation exposes its

objects, meaning that the application makes its objects available to programmers.

 3. The references that are in use appear together at the top of the Available References list

box, not in alphabetical order (in order of precedence, as described earlier in this chapter).

 4. Adjust the order of precedence of the references if necessary by selecting a reference and

using the up- and down-arrow Priority buttons to move it up or down the list. Usually,

you’ll want to keep Visual Basic for Applications and the object library of the application

you’re working with at the top of your list.

Adding a Reference Library

You can even add new reference libraries to the list of available references in the References dialog

box by clicking the Browse button to display the Add Reference dialog box, selecting the library

fi le, and then clicking the Open button.

 5. Click OK to close the References dialog box and return to the Object Browser.

Navigating with the Object Browser

To browse the objects available to a project, follow these steps:

 1. First, activate a code module by double-clicking it in the editor’s Project Explorer.

 2. Display the Object Browser by choosing View ➢ Object Browser, by pressing the F2 but-

ton, or by clicking the Object Browser button on the Standard toolbar. (If the Object

186 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

Browser is already displayed, make it active by clicking it or by selecting it from the list at

the bottom of the Window menu.)

 3. In the Project/Library drop-down list, select the name of the project or the library that

you want to view. The Object Browser displays the available classes in the Classes list.

 4. In the Classes list, select the class you want to work with. For example, if you chose a

project in step 3, select the module you want to work with in the Classes list.

 5. If you want to work with a particular member of the class or project, select it in the

Members Of list. For example, if you’re working with a template project, you might want

to choose a specifi c procedure or user form to work with.

Once you’ve selected the class, member, or project, you can perform the following actions on it:

 ◆ View information about it in the Details pane at the bottom of the Object Browser window.

 ◆ View the defi nition of an object by clicking the View Defi nition button. Alternatively,

right-click the object in the Members Of list and choose View Defi nition from the context

menu. The View Defi nition button and the View Defi nition command are enabled (avail-

able, undimmed) only for objects that contain code, such as procedures and user forms that

you’ve created.

A “Definition” Is Contained Code

Th e defi nition of a procedure is the code that it contains. Th e defi nition of a module is all the code

in all the procedures that it contains. Th e defi nition of a user form is the code in all the procedures

attached to it. To see how the View Defi nition button works, type the name of one of your macros

in the Object Browser’s Search fi eld (to the left of the icon). Th en click the icon to locate this macro.

Th en click the View Defi nition button, and the Code window will open, displaying this macro’s code.

 ◆ Copy the text for the selected class, project, or member to the Clipboard by clicking the

Copy button or by issuing a standard Copy command (pressing Ctrl+C or Ctrl+Insert).

Using Help to Find the Object You Need
VBA’s online Help system provides another easy way to access the details of the objects you want

to work with. The Help fi les provide a hyperlinked reference to all the objects, methods, and

properties in VBA, including graphics that show how the objects are related to each other, and

plenty of code samples to show you the correct syntax.

The quickest way to access VBA Help is to press the F1 key while working in the Visual

Basic Editor.

FINDING THE OBJECTS YOU NEED | 187

Pressing F to Go to a General VBA Help Page

F1 works two different ways. Press F1 with the cursor on a blank line, and you’re taken to the

VBA portal shown in Figure 8.3. However, press F1 with the cursor on a language keyword such

as Variant or InputBox, and you’re taken to a Help page with specifi c information about that

particular keyword.

First, try clicking a blank line in the Code window, then press F1. Your browser opens a

generic Offi ce website shown in Figure 8.3.

Figure 8.3

Th e generic VBA

portal

For us Offi ce programmers in the web page shown in Figure 8.3 are two links: the Offi ce link

under Platforms shown down at the bottom and the Welcome to the Visual Basic for Applications

language reference for Offi ce 2013 link shown in the middle of the page.

Click the Offi ce link and you’re taken to the Offi ce for Developers help page, shown in

Figure 8.4. There you’ll fi nd many useful links to code samples, Offi ce application–specifi c

pages, video lessons, and whatnot.

Pressing F to Go Directly to a Command’s Help Page

The second way to use F1 takes you directly to the Help page for the keyword you’re inter-

ested in. If you want to see how to manipulate the active window, for example, just type

188 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

activewindow into the Editor’s Code window, and then, with the blinking insertion cursor

somewhere in that word, press F1. See Figure 8.5.

Figure 8.4

Th is Help page con-

tains many valuable

links.

Figure 8.5

Put your insertion

cursor on a com-

mand, then Press

F1 to get context-

sensitive help.

FINDING THE OBJECTS YOU NEED | 189

After you press F1 on the activewindow command, as shown in Figure 8.5, the Help page for

this command opens, as you can see in Figure 8.6.

Figure 8.6

Here’s the main

Help page for the

ActiveWindow

property.

Apart from the regular Help information you’ll fi nd in the Help pages online, here are a few

additional ways to fi nd help:

 ◆ At the top of most Microsoft help windows, you’ll see a fi eld titled Search MSDN With Bing.

Try this: Type Word 2013 selection object into the Bing search fi eld. A page is displayed

with plenty of links. Click the top link, and you’ll see several helpful code examples.

 ◆ When looking for help, you can also try clicking the Help menu in the Editor, then choos-

ing one of the two help options listed: Microsoft Visual Basic Applications Help or MSDN

On The Web. These two options open different entrees into the Help system, from which

you can drill down until you locate the explanations or code samples you’re after.

 ◆ Finally, when looking for help with objects, don’t forget you can press F2 to display the

built-in Object Browser.

Using the Auto List Members Feature
You’ve already used the Auto List Members feature a couple of times in the previous chapters.

To recap, in VBA code—as with most other programming languages—objects and their members

(properties and methods) are separated by periods. This punctuation helps you see the relation-

ships between parent objects, child objects, and members. Notice the two periods in this code:

sngLinesPerPage = ActiveDocument.PageSetup.LinesPage

190 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

When you’re entering a statement in the Visual Basic Editor and you type the period at the

end of the current object, the Auto List Members feature displays a list of properties and meth-

ods appropriate to the statement you’ve entered so far. (Turn this feature on in the Visual Basic

Editor by choosing Tools ➢ Options, then selecting the Auto List Members check box.)

Technically, there’s a distinction between Auto List Members and a somewhat similar List

Properties/Methods feature. The former feature is triggered by typing a period (.) following the

name of an object in a line of code. The latter is triggered by pressing Ctl+J or by right-clicking

the name of an object in a line of code and choosing List Properties/Methods from the menu

that appears. Of the two, I fi nd Auto List Members more useful.

The Auto List Members feature provides a quick way of completing statements, but you need

to know which object you should work with before you can work with its members. Sometimes

using this feature is a bit like fi nding your way through a maze and being given detailed direc-

tions that end with the phrase, “But you can’t get there from here.”

Once you know the object from which to start, though, you can easily fi nd the property or

method you need. For example, to put together the statement Application.Documents(1).Close

to close the fi rst document in the Documents collection in Word, you could work as follows:

 1. Place the insertion point on a fresh line in an empty procedure (between the Sub and End

Sub statements). Create a new procedure if necessary.

 2. Type the word application, or type appl and press Ctrl+spacebar to have the Complete

Word feature complete the word for you.

 3. Type the period (.) after Application. The Auto List Members feature displays the list of

properties and methods available to the Application object.

 4. Choose the Documents item in the Auto List Members list. You can scroll to it using the

mouse and then double-click it to enter it in the Code window, scroll to it by using the

arrow keys and enter it by pressing Tab, or type the fi rst few letters of its name (to auto-

matically locate it) and then enter it by pressing Tab. The latter method is shown in Figure

8.7, which uses Word.

Figure 8.7

Using the Auto List

Members feature to

enter code

 5. Type (1). after Documents. When you type this period, the Auto List Members feature dis-

plays the list of properties and methods available to a Document object. Note that without

the (1), you’re working with the documents collection, but as soon as you add the (1),

you’re then working with a specifi c document, namely the fi rst one in the collection.

 6. Choose the Close method in the Auto List Members list by scrolling to it with the mouse

or with the down arrow key. Because this is the end of the statement, press the Enter key

USING OBJECT VARIABLES TO REPRESENT OBJECTS | 191

to enter the method and start a new line (rather than pressing the Tab key, which enters

the method but continues the same line of code).

Automatic Selection Helps You Keep Your Hands on the Keyboard

For most people, the quickest way to enter statements in the Code window is to keep their hands

on the keyboard. After all, you’re typing your programming. To help you do this, the Visual Basic

Editor automatically selects the current item in the Auto List Members list when you type a period

or an opening parenthesis. In the previous example, you can type Application. to display the list,

Do to select the Documents item, and (to enter the Documents item.

Using Object Variables to Represent Objects
As you learned in Chapter 6, “Working with Variables, Constants, and Enumerations,” one of

the data types available for variables in VBA is the Object type. You use an Object variable to

represent an object in your code: instead of referring to the object directly, you can employ the

Object variable to access or manipulate the object it represents.

Here’s one major benefi t of this approach: Using Object variables makes your code easier to

read. It’s simpler to see which object a section of code is working with, especially when you’re

working with multiple objects in the same section of code. Plus, you can give names to these

variables that are descriptive and easily understood. What’s more, object variables are often a

necessity when you need to manipulate collections of objects.

For example, say you create a procedure that manipulates the three open workbooks in

Excel, copying a range of cells from one to the other two. If you have only those three work-

books open, you’ll be able to refer to them directly as Workbooks(1), Workbooks(2), and

Workbooks(3), respectively, because they’ll occupy the fi rst (and only) three slots in the

Workbooks collection.

But if your procedure changes the order of the workbooks, closes one or more workbooks,

or creates one or more new workbooks, things rapidly get confusing. If, however, you’ve cre-

ated Object variables (named, say, xlWorkbook1, xlWorkbook2, and xlWorkbook3) to refer to

those specifi c workbooks, it will be much easier to keep them straight. This is because no matter

which workbook moves to fi rst position in the Workbooks collection, you’ll be able to refer to the

object represented by the Object variable xlWorkbook1 and know that you’ll be accessing the

workbook you’re after. In other words, when you create Object variables, you get to name them,

using words that are more easily understood than index numbers. More important, once it’s

named, an Object variable’s name does not change. Index numbers can change.

To create an Object variable, you declare it in almost exactly the same way as you declare any

other variable, using a Dim, Private, or Public statement. For example, the following statement

declares the Object variable objMyObject:

Dim objMyObject As Object

As usual for the Dim statement, if you use this declaration within a procedure, it creates a

variable with local scope. If you use it in the declarations section at the top of a code sheet, it

192 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

creates a variable with module-level private scope. Similarly, the Private and Public key-

words create module-level private and public Object variables, respectively.

Once you’ve declared the Object variable, you can assign an object to it. (Assigning objects

works a bit differently from the way you use just an equal sign to assign a value to an ordinary

variable.) To assign an object to an Object variable, you use a Set statement. The syntax for a Set

statement is as follows:

Set objectvariable = {[New] expression|Nothing}

Here’s how that syntax breaks down:

 ◆ objectvariable is the name of the Object variable to which you’re assigning the object.

 ◆ New is an optional keyword that you can use to implicitly create a new object of the speci-

fi ed class. However, usually it’s better to create objects explicitly and then assign them to

Object variables rather than use New to create them implicitly.

 ◆ expression is a required expression that specifi es or returns the object you want to assign to

the Object variable.

 ◆ Nothing is an optional keyword that you assign to an existing Object variable to obliterate

its contents and release the memory they occupied.

For example, the following statements declare the Object variable objMyObject and assign to

it the active workbook in Excel:

Dim objMyObject As Object

Set objMyObject = ActiveWorkbook

The following statement uses the Nothing keyword to release the memory occupied by the

objMyObject Object variable:

Set objMyObject = Nothing

What’s different about declaring an Object variable versus declaring other types of variables

is that not only can you declare the Object variable as being of the type Object and then use

the Set command, but you can also specify which type of object it is. For example, if an Object

variable will always represent a Workbook object, you can declare it as being of the Workbook

data type. The following statement declares the Object variable xlWorkbook1 as being of the

Workbook data type:

Dim xlWorkbook1 As Workbook

Strongly associating a type with an Object variable like this has a couple of advantages. First,

once you’ve strongly typed (as it’s called) the Object variable, the Visual Basic Editor can pro-

vide you with full assistance for the Object variable, just as if you were dealing with the object

directly. For example, once you’ve created that Object variable xlWorkbook1 of the Workbook

object type, the Visual Basic Editor displays the Auto List Members drop-down list when you

type that Object variable’s name followed by a period, as shown in Figure 8.8.

Second, when you strongly type an Object variable, you make it a bit harder to get things

wrong in your code. If you try to assign the wrong type of object to a strongly typed Object

variable, VBA gives an error. For example, if you create a Worksheet Object variable in Excel,

as in the fi rst of the following statements, but assign to it a Workbook object, as in the second

USING OBJECT VARIABLES TO REPRESENT OBJECTS | 193

statement, VBA displays a “Type Mismatch” error message when you execute this code—as well

it should:

Dim wksSheet1 As Worksheet

Set wksSheet1 = ActiveWorkbook

Figure 8.8

When you strongly

type your Object

variables, you get

the full benefi t of

the Visual Basic

Editor’s code-

completion features

for those Object

variables.

Finding out at this testing stage that you’ve created a problem is usually preferable to fi nding

out later (for example, when you go to manipulate the wksSheet1 object and discover it doesn’t

behave as you expect it to).

The main argument for not strongly typing an Object variable is that you might not be sure

ahead of time (while writing the code) what kind of object that variable will eventually reference

during execution or if the kind of object it will store may vary from one execution of the code to

another. (If either is the case, your code will need to be fl exible enough to accommodate objects

of different types for the same Object variable.) Usually, though, you’ll want to strongly type all

your Object variables.

If you’re not sure which object type to use for an Object variable, start by declaring the Object

variable as being of the Object data type. Then run through the code a couple of times with the

Locals window (View ➢ Locals) displayed, and note the data type that VBA assigns to the Object

variable. For example, if you press F8 repeatedly to step through the following statements in a

Visual Basic Editor session hosted by Excel, the readout in the Locals window at fi rst identifi es

the Object variable wks only as Object (as shown on the left in Figure 8.9). That’s not too useful.

However, press F8 again to execute the Set command, and you see loads of information (press

the + icon next to wks). You now see Object/Sheet1 (as shown on the right in Figure 8.9) when

executing the second statement assigns the fi rst sheet in the active workbook to it. You also can

see all the members, their current values, and their type.

Dim wks As Object

Set wks = ActiveWorkbook.Sheets(1)

Figure 8.9

You can use the

Locals window to

help identify the

object type that an

Object variable will

contain.

194 | CHAPTER 8 FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED

There Are Drawbacks to Weakly Typed Variables

As you learned earlier in the book, you can avoid specifying data types altogether. For example, the

statement Dim varMyVariant creates a Variant variable because the statement does not specify

a data type. Variant variables can contain objects as well as other data types—but as before, using

Variants requires VBA to do a little more work each time it encounters the variable (because VBA

has to determine what data type the variable currently is) and denies you the benefi ts of strongly

typing your variables. Weak typing also makes your code harder to read.

Team Programming and OOP
VBA is used by individual programmers as well as teams. OOP can offer some advantages when

you are trying to manage a group of programmers working together on a large, complex VBA

solution. OOP can help people avoid stepping on each other’s toes—duplicating global variable

names, creating version problems—because everyone’s individual copy of the code is their latest

version but not the latest offi cial version of the group, and other kinds of interference.

Group programming needs management, and OOP, among its other benefi ts, assists in avoid-

ing chaos when a team needs to work together on a common goal.

One feature of OOP is encapsulation. This means that an object is self-contained and sealed

off. It’s like a black box that is plugged into your video system to improve the picture. You don’t

open the box. Nobody is supposed to modify the innards. You just use it.

As an example, say that the boss wants all documents from now on to emphasize the compa-

ny’s name. You give Sandra the task of creating an object that is supposed to italicize and capi-

talize all references to ACME WINDOWORKS in all company documents. And you ask Joe to

create an object that ensures that any use of the company name is displayed in green rather than

the normal black letters. (In reality, you would likely want to code these simple manipulations

into functions—see Chapter 10, “Creating Your Own Functions,”—rather than objects. Objects

tend to perform multiple related jobs rather than a single, simple job like turning something

green. But this is just an example, so we’ll keep it simple here.)

When this code is encapsulated into sealed-off objects, nobody has to worry that Sandra and

Joe might use the same variable names or otherwise interfere with each other’s code. Instead,

within their totally separate, sealed-off objects, they can go ahead and write code as they please.

This is because the scope of the code is local to the object, and also, neither Joe nor Sandra can

view, much less modify, each other’s code.

A document is passed to Sandra’s ItalAndCap object, and the document comes out the other

end (returns) with all instances of ACME WINDOWORKS italicized and capitalized. Then the

document is passed to Joe’s object and in turn spit out with ACME WINDOWORKS in green.

Thus, each component of the overall solution, the larger program, does its own job without

interference from any other component (object). You thus avoid a lot of problems if people are

working on individual tasks with the assurance that nobody else will be able to mess with their

code or accidentally interact with it in some unpredictable way. Also, it’s easier to track down

bugs because each job is isolated from other jobs—and if the company name is only turning

green half the time, you can tell Joe to take another look at his object.

THE BOTTOM LINE | 195

It’s true that over the years OOP theory has grown quite arcane, abstract, and academic. OOP

can be, in the upper reaches of universities, a terribly complex subject of study. In fact, they say

that, like quantum mechanics, advanced OOP theory is understood by only 12 people in the

world—and they’re fooling themselves. Nonetheless, if you are in charge of a team that’s respon-

sible for building a large application for Offi ce, take some time to employ OOP features. Each

individual programmer will be responsible for how their object works. The other programmers

can merely use that object without worrying about debugging it. They are not even allowed

to see its internal code. Consider the objects that are built into VBA itself, such as Word’s

Selection object. It was written by somebody at Microsoft. You can put this object in your code

and ask it to do things for you, such as move the cursor one word to the left:

Selection.MoveLeft Unit:=wdWord, Count:=1

But you never see the actual code within the Selection object. You aren’t allowed to modify

it. And its code does not interact with your code’s variables or cause other unwanted side effects.

In other words, the built-in VBA objects are encapsulated—usable as black boxes, but sealed off.

To create your own encapsulated objects in VBA, you add class modules to a project, which are

distinct from regular code modules. You’ll see how to do this in Chapter 16, “Building Modular

Code and Using Classes.”

Th e Bottom Line

Understand and use objects, properties, and methods. Contemporary programming

employs a hierarchical method of organization known as object-oriented programming

(OOP). At the very top of the hierarchy for any given application is the Application object.

You go through this object to get to other objects that are lower in the hierarchy.

Master It By using creatable objects, you can often omit the Application object when

referencing it in code. What are creatable objects?

Use collections of objects. Collections are containers for a group of related objects, such as

the Documents collection of Document objects.

Master It Are collections objects? Do they have their own methods and properties?

Find objects, properties, and methods. The Visual Basic Editor offers several ways to

locate objects’ members and add them to your programming code. There’s an extensive

Help system, the Object Browser, a List Properties/Methods feature, and the Auto List

Members tool.

Master It How do you employ Auto List Members to fi nd out which properties and

methods are available for Word’s Document object?

Use Object variables to represent objects. You can create variables that contain objects

rather than typical values like strings or numbers.

Master It What keywords do you use to declare an Object variab le?

Part 3

Making Decisions
and Using Loops and
Functions
◆ Chapter 9: Using Built-in Functions

◆ Chapter 10: Creating Your Own Functions

◆ Chapter 11: Making Decisions in Your Code

◆ Chapter 12: Using Loops to Repeat Actions

Chapter 9

Using Built-in Functions

VBA comes with a large number of built-in functions that perform commonly needed opera-

tions—everything from determining whether a fi le exists to returning the current date and

converting data from one format to another. (For example, you can use a function to convert

numeric data into a text string.)

This chapter demonstrates what functions are, what they do, and how to use them. Along the

way, you’ll get to know some of the key functions built into VBA—including functions that con-

vert data from one data type to another, functions that manage fi le operations, functions that do

math, and many others.

You can also create custom functions of your own to supplement VBA’s built-in functions.

The next chapter tells you how to build your own when VBA’s functions don’t meet your needs.

In this chapter you will learn to do the following:

 ◆ Understand what functions are and what they do

 ◆ Use functions

 ◆ Use key VBA functions

 ◆ Convert data from one type to another

 ◆ Manipulate strings and dates

What Is a Function?
A function is a type of procedure. A function differs from a subroutine (subprocedure) in that a

function always returns a value and a subroutine doesn’t. And in common practice, a function

almost always takes one or more arguments. Although subroutines can be written to take argu-

ments, most programmers don’t write their code this way.

So, to sum up, here are the key difference between functions and subroutines:

Subroutines These never return values and are rarely sent arguments. Subs are also gener-

ally self-contained.

Functions These communicate more with code outside their own, accepting incoming data

from arguments, processing that data in some way, and sending back a result.

You’ll often use functions that are built into VBA. Typically, you feed information into a

built-in function by sending it arguments. The built-in function then processes that info and

returns a value for you to use. But you can also create your own functions in the Code win-

dow if you wish.

200 | CHAPTER 9 USING BUILTIN FUNCTIONS

Built-in functions are so essential to VBA that you’ve already used several in examples in

this book. However, we’ll now explore them more fully. For example, in Chapter 7, “Using

Array Variables,” you used the Rnd function to generate random numbers to fi ll an array named

intArray, and the Int function to turn the random numbers into integers:

intArray(i) = Int(Rnd * 10)

Rnd is one of the rare functions that does not have to take one or more arguments. (Rnd can

take one optional argument, but the previous example doesn’t use it.)

The Int function, on the other hand, requires an argument—the number or expression that

it’s turning into an integer. The argument in this example is supplied by the expression Rnd

* 10. Here the Rnd function returns a value that the Int function uses; the Int function then

returns a value to the procedure, which uses it to populate a subscript in the array.

An argument is a piece of information that gets passed to a function. (Arguments are also

passed to methods and other commands.) You can tell when arguments are optional in Help

descriptions because they’re shown enclosed within brackets. When they are optional, you can

either provide or omit the arguments displayed in the brackets. For example, the full Help syn-

tax for the Rnd function looks like this:

Rnd([number]) As Single

The brackets indicate that the number argument is optional, and the As Single part of the

syntax denotes that the value returned by the function will be of the Single data type.

Different functions return different data types suited to their job: Many functions return

a Variant, but yes/no functions, such as the IsNumeric function used in Chapter 7, return a

Boolean value, either True or False. When necessary, VBA may even sometimes convert the

result of a function to a different data type needed by another function in the expression.

If any pair of brackets contains two arguments, you have to use both of them at once (bless-

edly, this is quite rare). For example, the MsgBox function displays a message box. The syntax for

the MsgBox function is as follows:

MsgBox(prompt[, buttons] [, title][, helpfile, context])

Here, prompt is the only required argument: buttons, title, helpfi le, and context are all optional.

But notice that helpfi le and context are enclosed within a single set of brackets instead of each

having its own pair, meaning that you need to use either both of these arguments or neither

of them; you cannot use one without the other. Chapter 13, “Getting User Input with Message

Boxes and Input Boxes,” shows you how to use the MsgBox function in your code.

Using Functions
To use a function, you call it (or invoke it) from a procedure—either a subprocedure (Sub) or from

another function (Function).

To call a function, you can use a call statement, either with the optional Call keyword or by

just using the name of the function. Using the Call keyword allows you to search through all

calls in your project by searching for “call ” (call followed by a space). However, using the Call

keyword is overkill for everyday functions; programmers rarely use it.

The syntax for the Call statement is as follows:

[Call] name [argumentlist]

Here, name is a required String argument giving the name of the function or procedure to

call, and argumentlist is an optional argument providing a comma-delimited list of the variables,

USING FUNCTIONS | 201

arrays, or expressions to pass to the function or procedure. When calling a function, you’ll

almost always need to pass arguments (except for those few functions that take no arguments).

The brackets around the Call keyword indicate that it is optional. If you do use this key-

word, you need to enclose the argumentlist argument in parentheses. In most cases, it’s easier to

read the code if you don’t use the Call keyword when calling a function.

For example, the following statement calls the MsgBox function, supplying the required argu-

ment prompt (in this example, it’s the string Hello, World!):

MsgBox “Hello, World!”

You could use the Call keyword instead, as shown in the following statement, but there’s

little advantage in doing so:

Call MsgBox “Hello, World!”

Note that the MsgBox function is one of the few with which you can omit the parentheses

around the argument list.

You can assign to a variable the result returned by a function. For example, consider the fol-

lowing code fragment. The fi rst two of the following statements declare the String variables

strExample and strLeft10. The third statement assigns a string of text to strExample. The

fourth statement uses the Left function to return the leftmost 10 characters from strExample

and assign them to strLeft10, which the fi fth statement then displays in a message box (see

Figure 9.1):

Dim strExample As String

Dim strLeft10 As String

strExample = “Technology is interesting.”

strLeft10 = Left(strExample, 10)

MsgBox strLeft10

Figure 9.1

Using the Left

function to take

the left part of a

string—in this

case, the fi rst 10

characters of the

string

202 | CHAPTER 9 USING BUILTIN FUNCTIONS

If you prefer, you can assign the result of each function to a variable, as in this next example.

Here the fi rst string variable, str1, is assigned the leftmost 13 characters from the string This

is Pride and Patriotism. So after its code line executes, str1 holds the value This is Pride.
Then str2 is assigned the rightmost 5 characters from str1, resulting in Pride.

Dim str1 As String

Dim str2 As String

str1 = Left(“This is Pride and Patriotism”, 13)

str2 = Right(str1, 5)

MsgBox str2

However, after you become accustomed to working with functions, you can collapse them

in various ways in your code. Instead of assigning the result of a function to a variable, you can

insert it directly in your code or pass it (as an argument) to another function. This is a common

shortcut. Take a look at the following statement. It does the same thing as the previous example

but collapses the code into one line, avoiding the use of variables altogether:

MsgBox Right(Left(“This is Pride and Patriotism”, 13), 5)

This statement uses three functions: the MsgBox function, the Left function, and the Right

function. (The Right function is the counterpart of the Left function and returns the specifi ed

number of characters from the right side of the specifi ed string.)

When you have multiple sets of parentheses in a VBA statement, the code is executed starting

from the innermost pair of parentheses and working outward. This is the same way that nested

parentheses are handled in math.

So, in the previous example the Left function is evaluated fi rst, returning the leftmost 13

characters from the string: This is Pride (the spaces are characters too). VBA passes this new

string to the Right function, which in this case returns the rightmost fi ve characters from it:

Pride. VBA then passes this second new string to the MsgBox function, which displays it in a

message box.

Limit Your Nesting

You can nest functions to many levels without giving VBA any trouble, but multilevel nesting can

become hard for us humans to read and troubleshoot. For most practical purposes, it’s a good idea

to limit nesting to only a few levels, if that.

Passing Arguments to a Function
When a function takes more than one argument, you can pass the arguments to it in any of

three ways:

 ◆ By supplying the argument values, without their names, positionally (in the order in which

the function expects them)

 ◆ By supplying the arguments, with their names, in the order in which the function

expects them

USING FUNCTIONS TO CONVERT DATA | 203

 ◆ By supplying the arguments, with their names, in any order you choose

The fi rst method, supplying the arguments positionally without using their names, is usu-

ally the quickest way to proceed. The only disadvantage to doing so is that anyone reading your

code may not know immediately which value corresponds to which argument—though they

can look this up without trouble. To omit an optional argument, you place a comma where it

would appear in the sequence of arguments.

It does take extra time to type in argument names, but it makes your code easier to read. And

when you omit an argument from a named argument list, you don’t need to use the comma to

indicate that you’re skipping it.

There’s no advantage to using named arguments out of order over using them in order unless

you happen to fi nd doing so easier.

For example, the DateSerial function returns a Variant/Date containing the date for the

given year, month, and day. The syntax for DateSerial is as follows:

DateSerial(year, month, day)

Here, year is a required Integer argument supplying the year, month is a required Integer argu-

ment supplying the month, and day is a required Integer argument supplying the day.

The following statement supplies the arguments positionally without their names:

MsgBox DateSerial(2010, 12, 31)

This statement is equivalent but supplies the arguments positionally with their names:

MsgBox DateSerial(Year:=2010, Month:=12, Day:=31)

The following statement supplies the arguments, with their names, out of order:

MsgBox DateSerial(Day:=31, Year:=2010, Month:=12)

All three of these statements work fi ne and achieve the same result. You’ll cause a problem

only if you list out-of-order arguments that you’re supplying without names (positionally), if

you name some arguments and don’t name others, or if you omit required arguments. Figure 9.2

shows one of the errors you may encounter. In this case, I left out the required month argument.

Figure 9.2

An “Argument not

optional” error

occurs when you

omit a required

argument.

Using Functions to Convert Data
Most data-type conversion isn’t frequently needed in VBA, but you might as well at least under-

stand what it does. Some computer languages are pretty strict about requiring explicit data

204 | CHAPTER 9 USING BUILTIN FUNCTIONS

typing (sometimes called strong data typing). And there are a few specialized situations where

you will need to convert one variable type into another. For example, you might be using the

InputBox command to get some information from the user. The user is typing on a keyboard,

so all the data they input will be characters (text string) data. But if your macro needs to do any

math with this input, such as using the + command to add numbers, you must fi rst convert the

string data into numeric variables (or use the default Variant type). To convert a string to an inte-

ger number, you could use the Cint command. This same problem arises if you are importing

data from another source, such as a database that stores everything as a string variable.

VBA provides a full set of simple functions for converting data from one data type to

another. Table 9.1 lists VBA’s functions for simple data conversion.

Table 9.1: VBA’s functions for simple data conversion

Function (Arguments) Data Type Returned

CBool(number) Boolean

CByte(expression) Byte

CCur(expression) Currency

CDate(expression) Date

CDec(expression) Decimal

CDbl(expression) Double

CInt(expression) Integer

CLng(expression) Long

CSng(expression) Single

CStr(expression) String

CVar(expression) Variant

For example, the following statements declare the untyped variable varMyInput and the

Integer variable intMyVar and then display an input box prompting the user to enter an integer.

In the third statement, the user’s input is assigned to varMyInput, which automatically becomes

a Variant/String. The fourth statement uses the CInt function to convert varMyInput to an inte-

ger, assigning the result to intMyVar. The fi fth statement compares intMyVar to 10, converts the

result to Boolean by using the CBool function, and displays the result (True or False) in a mes-

sage box.

Dim varMyInput

Dim intMyVar As Integer

varMyInput = InputBox(“Enter an integer:”, “10 Is True, Other Numbers Are False”)

intMyVar = CInt(varMyInput)

MsgBox CBool(intMyVar = 10)

USING FUNCTIONS TO CONVERT DATA | 205

Recall that a Boolean variable is only either True or False. So in the fi nal line of this example,

you’re saying in effect, “If the value in the variable intMyVar is 10, the Boolean result will be

True. If the value is anything other than 10, the result will be False.”

VBA also has a set of functions that manipulate data in more complicated ways. Only two

of these more complex manipulation functions—Format and Chr—are used much in VBA pro-

gramming, so we’ll explore them in depth in this chapter.

Table 9.2 lists VBA’s functions for more complex data manipulation.

Table 9.2: VBA’s functions for complex data conversion

Function (Arguments) Returns

Asc(string) Th e ANSI character code for the fi rst character in the string.

Chr(number) Th e string for the specifi ed character code (a number between 0

and 255).

Format(expression, format) A variant containing expression formatted as specifi ed by format.

(You’ll see how Format works in “Using the Format Function to

Format an Expression” later in the chapter.)

Hex(number) A string containing the hexadecimal value of number.

Oct(number) A string containing the octal value of number.

RGB(number1, number2, number3) A Long integer representing the color value specifi ed by number1,

number2, and number3.

QBColor(number) A Long containing the RGB value for the specifi ed color.

Str(number) A Variant/String containing a string representation of number. Use

the superior CStr function instead.

Val(string) Th e numeric portion of string; if string does not have a numeric

portion, Val returns 0. Use the superior CInt function instead.

Using the Asc Function to Return a Character Code
This function isn’t used much. Asc tells you which numeric value has been assigned to a par-

ticular letter according to the ANSI character code that’s used in Windows. A character code is a

list of numbers by which computers refer to letters of the alphabet. For example, the character

code used in Windows for a capital A is 65 and for a capital B is 66; a lowercase a is 97, and a low-

ercase b is 98.

The syntax for the Asc function is straightforward:

Asc(string)

Here, string is any string expression. For example, Asc(“A”) returns 65.

The following statements use the Asc function to return the character code for the fi rst char-

acter of the current selection in the active document and display that code in a message box:

206 | CHAPTER 9 USING BUILTIN FUNCTIONS

strThisCharacter = Asc(Selection.Text)

MsgBox strThisCharacter, vbOKOnly, “Character Code”

Using the Val Function to Extract a Number from the Start of a String
The Val function, like Asc, is not much used. But for completeness, I’ve included it. The Val

function converts the numbers contained in a text string into a numeric value. Val follows these

rules:

 ◆ It reads only numbers in a string.

 ◆ It starts at the beginning of the string and reads only as far as the string contains characters

that it recognizes as numbers (digits).

 ◆ It ignores tabs, line feeds, and blank spaces.

 ◆ It recognizes the period as a decimal separator, but not the comma.

This means that if you feed Val a string consisting of tabbed columns of numbers, such as

the second line here, it will read them as a single number (in this case, 445634.994711):

Item# Price Available On Order Ordered

 4456 34.99 4 7 11

If, however, you feed it something containing a mix of numbers and letters, Val will read

only the numbers and strings recognized as numeric expressions (for example, Val(“4E5”)

returns 400000 because it reads the expression as exponentiation). For example, if fed the

address shown in the next example, Val returns 8661, ignoring the other numbers in the string

(because it stops at the L of Laurel, the fi rst character that isn’t a number, a tab, a line feed, or a

space):

8661 Laurel Avenue Suite 3806, Oakland, CA 94610

The syntax for Val is straightforward:

Val(string)

Here, string is a required argument consisting of any string expression.

The following statement uses Val to return the numeric variable StreetNumber from the

string Address1:

StreetNumber = Val(Address1)

Using CInt Instead of Val

You should generally use the CInt function rather than the Val function when converting text

to numbers. Th e reason is that CInt takes into account where you are located (the regional settings

in Windows). In America, for example, we use a comma to indicate thousands: 12,000. Th e CInt

function can handle this; Val cannot (and converts “12,000” into 12):

Dim StrVar As String

StrVar = “12,000”

MsgBox “Val = “ & Val(StrVar) & “ CInt = “ & CInt(StrVar)

USING FUNCTIONS TO CONVERT DATA | 207

When you execute this code, you’ll see the result shown in the following message box. Th is illustrates

why you should use CInt rather than Val.

Remember that Val stops when it reaches the fi rst non-digit character. So that comma trips it up

when trying to convert 12,000.

Using the Str Function to Convert a Number into a String
Just as you can use CInt to convert a text string into a numeric value as described in the previ-

ous section, you can also convert a numeric value to a string with the Str function. But you

should use the newer CStr function rather than the Str function, for the same reasons that CInt

is superior to the older Val command.

You’ll need to convert a number to a string when you want to concatenate the information

contained in a value with a string. Concatenation means appending one string to another, as in

“123” & “654”, which results in the text “123654”.

Concatenation cannot be accomplished by simply using the + operator because VBA would

attempt to perform the mathematical operation addition rather than the string operation you

want: concatenation.

A text string is just that: text. It’s one or more alphanumeric characters, such as “55”—and

that’s quite different from the number 55. You can’t concatenate “55” and 55. They’re not the

same kind of data at all.

Here’s an example. Suppose you’ve declared a String variable named strYourAge and a

numeric variable named intAge. You can’t use a strYourAge + intAge statement to concatenate

them because they’re different data types. You fi rst need to create a string from the intAge vari-

able and then concatenate that string with the strYourAge string. (Alternatively, you can use the

& operator to concatenate the two variables.)

To convert a value to a string, use the CInt function. The syntax for the CInt function is this:

CInt(number)

Here, number is a variable containing a numeric expression (such as an Integer data type, a Long

data type, or a Double data type).

The following short procedure provides an example of converting a value to a string:

Sub Age()

 Dim intAge As Integer, strYourAge As String

 intAge = InputBox(“Enter your age:”, “Age”)

 strYourAge = “Your age is ” & CInt(intAge) & “.”

 MsgBox strYourAge, vbOKOnly + vbInformation, “Age”

End Sub

208 | CHAPTER 9 USING BUILTIN FUNCTIONS

Using a Declaration Shortcut

Notice in the example Sub Age how the Dim statement uses a kind of shorthand. Two diff erent

variables, separated by a comma, are declared on the same line using the same Dim command. Th is

is equivalent to

 Dim intAge As Integer

 Dim strYourAge As String

Using the Format Function to Format an Expression
The Format function is a powerful tool for changing numbers, dates and times, and strings into

a format that you prefer.

The syntax for the Format function is as follows:

Format(expression[, format[, firstdayofweek[, firstweekofyear]]])

These are the components of the syntax:

 ◆ expression is any valid expression.

 ◆ format is an optional argument specifying a named format expression or a user-defi ned

format expression. More on this in a moment.

 ◆ fi rstdayofweek is an optional constant specifying the day that starts the week (for date infor-

mation): The default setting is vbSunday (1), but you can also set vbMonday (2), vbTuesday

(3), vbWednesday (4), vbThursday (5), vbFriday (6), vbSaturday (7), or vbUseSystem (0; uses

the system setting).

 ◆ fi rstweekofyear is an optional constant specifying the week considered fi rst in the year

(again, for date information), as shown in Table 9.3.

Table 9.3: Constants that specify how a year starts

Constant Value Year Starts with Week

vbUseSystem 0 Use the system setting.

vbFirstJan1 1 Th e week in which January 1 falls (the default setting).

vbFirstFourDays 2 Th e fi rst week with a minimum of four days in the year.

vbFirstFullWeek 3 Th e fi rst full week (seven days) of the year.

You can defi ne your own formats for the Format function as described in the following sec-

tions if none of the predefi ned numeric formats (described next) suit your needs.

Using Predefined Numeric Formats

Table 9.4 lists the predefi ned numeric formats that you can use with the Format function.

USING FUNCTIONS TO CONVERT DATA | 209

Table 9.4: Predefi ned numeric formats

Format Name Explanation Example

General Number Th e number is displayed with no thousand separator. 124589

Currency Th e number is displayed with two decimal places, a thousand separator,

and the currency symbol appropriate to the system locale.

$1,234.56

Fixed Th e number is displayed with two decimal places and at least one inte-

ger place.

5.00

Standard Th e number is displayed with two decimal places, at least one integer

place, and a thousand separator (when needed).

1,225.00

Percent Th e number is displayed multiplied by 100, with two decimal places and

with a percent sign.

78.00%

Scientifi c Th e number is displayed in scientifi c notation. 5.00E+00

Yes/No A nonzero number is displayed as Yes; a zero number is displayed as No. Yes

True/False A nonzero number is displayed as True; a zero number is displayed as

False.

False

On/Off A nonzero number is displayed as On; a zero number is displayed as Off. Off

For example, the following statement returns $123.45:

Format(“12345”, “Currency”)

Creating a Numeric Format

If none of the predefi ned numeric formats suit your needs, you can create your own numeric

formats by using your choice of a combination of the characters listed in Table 9.5.

Table 9.5: Characters for creating your own number formats

Character Explanation

[None] Displays the number without any formatting. (You won’t usually want to use this

option.)

0 Placeholder for a digit. If there’s no digit, VBA displays a zero. If the number has fewer

digits than you use zeroes, VBA displays leading or trailing zeroes as appropriate.

Placeholder for a digit. If there’s no digit, VBA displays nothing.

. Placeholder for a decimal. Indicates where the decimal separator should fall. Th e deci-

mal separator varies by locale (for example, a decimal point in the United States, a

comma in Germany).

210 | CHAPTER 9 USING BUILTIN FUNCTIONS

Character Explanation

% Placeholder for a percent character. VBA inserts the percent character and multiplies

the expression by 100.

, Th ousand separator (depending on locale, a comma or a period).

: Time separator (typically a colon, but again this depends on the locale).

/ Date separator. (Again, what you’ll see depends on the locale.)

E− E+ e− e+ Scientifi c format: E− or e− places a minus sign next to negative exponents. E+ or e+

places a minus sign next to negative exponents and places a plus sign next to positive

exponents.

− + $ () Displays a literal character.

\[character] Displays the literal character.

“[string]” Displays the literal character. Use Chr(34) (the character code for double quotation

marks) to provide the double quotation marks.

For example, the following statement returns a currency formatted with four decimal places:

Format(“123456”, “$00.0000”)

Creating a Date or Time Format

Similarly, you can create your own date and time formats by mixing and matching the charac-

ters listed in Table 9.6.

Table 9.6: Characters for creating your own date and time formats

Character Explanation

: Time separator (typically a colon, but this depends on the locale).

/ Date separator (also locale-dependent).

C Displays the date (if there is a date or an integer value) in the system’s short date format

and the time (if there is a date or a fractional value) in the system’s default time format.

D Displays the date (1 to 31) without a leading zero for single-digit numbers.

Dd Displays the date with a leading zero for single-digit numbers (01 to 31).

Ddd Displays the day as a three-letter abbreviation (Sun, Mon, Tue, Wed, Th u, Fri, Sat) with

no period.

Table 9.5: Characters for creating your own number formats (continued)

USING FUNCTIONS TO CONVERT DATA | 211

Character Explanation

Dddd Displays the full name of the day.

Ddddd Displays the complete date (day, month, and year) in the system’s short date format.

Dddddd Displays the complete date (day, month, and year) in the system’s long date format.

aaaa Displays the full, localized name of the day.

w Displays an integer from 1 (Sunday) to 7 (Monday) containing the day of the week.

ww Displays an integer from 1 to 54 giving the number of the week in the year. Th e number

of weeks is 54 rather than 52 because most years start and end with partial weeks rather

than having 52 start-to-fi nish weeks.

m Displays an integer from 1 to 12 giving the number of the month without a leading zero

on single-digit months. When used after h, returns minutes instead of months.

mm Displays a number from 01 to 12 giving the two-digit number of the month. When used

after h, returns minutes instead of months.

mmm Displays the month as a three-letter abbreviation (except for May) without a period.

mmmm Displays the full name of the month.

oooo Displays the full localized name of the month.

q Displays a number from 1 to 4 giving the quarter of the year.

y Displays an integer from 1 to 366 giving the day of the year.

yy Displays a number from 00 to 99 giving the two-digit year.

yyyy Displays a number from 0100 to 9999 giving the four-digit year.

h Displays a number from 0 to 23 giving the hour.

Hh Displays a number from 00 to 23 giving the two-digit hour.

N Displays a number from 0 to 60 giving the minute.

Nn Displays a number from 00 to 60 giving the two-digit minute.

S Displays a number from 0 to 60 giving the second.

Ss Displays a number from 00 to 60 giving the two-digit second.

ttttt Displays the full time (hour, minute, and second) in the system’s default time format.

Table 9.6: Characters for creating your own date and time formats (continued)

212 | CHAPTER 9 USING BUILTIN FUNCTIONS

Character Explanation

AM/PM Uses the 12-hour clock and displays AM or PM as appropriate.

am/pm Uses the 12-hour clock and displays am or pm as appropriate.

A/P Uses the 12-hour clock and displays A or P as appropriate.

a/p Uses the 12-hour clock and displays a or p as appropriate.

AMPM Uses the 12-hour clock and displays the AM or PM string literal defi ned for the system.

For example, the following statement returns Saturday, April 01, 2010:

Format(#4/1/2010#, “dddddd”)

Creating a String Format

The Format function also lets you create custom string formats using the options shown

in Table 9.7.

Table 9.7: Characters for creating your own string formats

Character Explanation

@ Placeholder for a character. Displays a character if there is one, and a space if there is

none.

& Placeholder for a character. Displays a character if there is one, and nothing if there is

none.

< Displays the string in lowercase.

> Displays the string in uppercase.

! Causes VBA to fi ll placeholders from left to right instead of from right to left (the default

direction).

For example, the following statement assigns to strUser a string consisting of four spaces if

there is no input in the input box:

strUser = Format(InputBox(“Enter your name:”), “@@@@”)

Using the Chr Function and Constants to Enter Special Characters
in a String
To insert special characters (such as a carriage return or a tab) into a string, specify the built-in

constant (for those special characters that have built-in constants defi ned) or enter the appropri-

ate character code using the Chr function. The syntax for the Chr function is straightforward:

Chr(charactercode)

Table 9.6: Characters for creating your own date and time formats (continued)

USING FUNCTIONS TO CONVERT DATA | 213

Here, charactercode is a number that identifi es the special character you want to add.

Table 9.8 lists the most useful character codes and character constants.

Table 9.8: VBA character codes and character constants

Code

Built-in Character

Constant Character

Chr(9) vbTab Tab

Chr(10) vbLf Line feed

Chr(11) vbVerticalTab Soft return (Shift+Enter)

Chr(12) vbFormFeed Page break

Chr(13) vbCr Carriage return

Chr(13) + Chr(10) vbCrLf Carriage return/line feed combination

Chr(14) — Column break

Chr(34) — Double straight quotation marks (")

Chr(39) — Single straight quotation mark/apostro-

phe (')

Chr(145) — Opening single smart quotation mark (')

Chr(146) — Closing single smart quotation mark/

apostrophe (’)

Chr(147) — Opening double smart quotation mark (“)

Chr(148) — Closing double smart quotation mark (”)

Chr(149) — Bullet

Chr(150) — En dash

Chr(151) — Em dash

Here’s a practical example exploiting the Chr function. Say you wanted to build a string con-

taining a person’s name and address from individual strings containing items of that informa-

tion. You also wanted the individual items separated by tabs in the resulting string so that you

could insert the string into a document and then easily convert it into a table.

To do this, you could use the following code:

Sub FormatTabular()

Dim i As Integer

Dim strFirstName As String

214 | CHAPTER 9 USING BUILTIN FUNCTIONS

Dim strLastName As String

Dim strAddress As String

Dim strCity As String

Dim strState As String

Dim strAllInfo As String

strFirstName = “Phil”

strLastName = “Mortuqye”

strAddress = “12 Batwing Dr.”

strCity = “Tulsa”

strState = “OK”

 strAllInfo = strFirstName & vbTab & strLastName _

 & vbTab & strAddress & vbTab & strCity _

 & vbTab & strState & vbCr

 Selection.TypeText strAllInfo

End Sub

String variables are assigned to the string strAllInfo by concatenating the strings

strFirstName, strLastName, and so on with tabs—vbTab characters—between them. The fi nal

character added to the built string is vbCr (a carriage-return character), which creates a new

paragraph.

The fi nal line enters the strAllInfo string into the current document, thus building a tab-

delimited list containing the names and addresses. This list can then be easily converted into

a table whose columns each contain one item of information: The fi rst column contains the

strFirstName string, the second column the strLastName string, and so on.

Using Functions to Manipulate Strings
String variables are often useful for holding text. You can use them to store any quantity of text,

from a character or two up to a large number of pages from a Word document or other text doc-

ument. You can also use strings to store specialized information, such as fi lenames and folder

names. Once you’ve stored text in a string, you can manipulate it according to your needs.

Table 9.9 lists VBA’s built-in functions for manipulating strings. Because many of these func-

tions are useful, and some are complex, you’ll fi nd detailed examples after the table.

Table 9.9: VBA’s string-manipulation functions

Function (Arguments) Returns

InStr(start, string1, string2, compare) A Variant/Long giving the position of the fi rst instance of the

search string (string2) inside the target string (string1), start-

ing from the beginning of the target string

InStrRev(stringcheck,

stringmatch, start, compare)

A Variant/Long giving the position of the fi rst instance of the

search string (stringmatch) inside the target string (string-

check), starting from the end of the target string

LCase(string) A String containing the lowercased string

USING FUNCTIONS TO MANIPULATE STRINGS | 215

Function (Arguments) Returns

Left(string, number) A Variant/String containing the specifi ed number of charac-

ters from the left end of string

Len(string) A Long containing the number of characters in string

LTrim(string) A Variant/String containing string with any leading spaces

trimmed off it

Mid(string, start, length) A Variant/String containing the specifi ed number of charac-

ters from the specifi ed starting point within string

Right(string, number) A Variant/String containing the specifi ed number of charac-

ters from the right end of string

RTrim(string) A Variant/String containing string with any trailing spaces

trimmed off it

Space(number) A Variant/String containing number of spaces

StrComp(string1, string2, compare) A Variant/Integer containing the result of comparing string1

and string2

StrConv(string, conversion,

LCID)

A Variant/String containing string converted as specifi ed by

conversion for the (optional) specifi ed Locale ID (LCID)

String(number, character) A Variant/String containing number of instances of character

StrReverse(expression) A String containing the characters of expression in

reverse order

Trim(string) A Variant/String containing string with any leading spaces or

trailing spaces trimmed off it

UCase(string) A String containing the uppercased string

Using the Left, Right, and Mid Functions to Return Part of a String
Frequently, you’ll need to use only part of a string in your macros. For example, you might want

to take only the fi rst three characters of the name of a city to create a location code.

VBA provides several functions for returning from strings the characters you need:

 ◆ The Left function returns a specifi ed number of characters from the left end of the string.

 ◆ The Right function returns a specifi ed number of characters from the right end of

the string.

 ◆ The Mid function returns a specifi ed number of characters starting from a specifi ed loca-

tion inside a string.

Table 9.9: VBA’s string-manipulation functions (continued)

216 | CHAPTER 9 USING BUILTIN FUNCTIONS

Some String Functions Come in Two Flavors

VBA provides two versions of a number of string functions, including the Left, Right, and Mid

functions: the versions shown here, which return String-type Variant values, and versions whose

names end with $ (Left$, Right$, Mid$, and so on), which return pure String values.

Th e functions that return the pure Strings run faster (though you’re not likely to notice any dif-

ference with normal use) but return an error if you use them on a Null value. Th e functions that

return the String-type Variants can deal with Null values with no problem. Which approach you

employ can depend on, for example, the type of data you’re manipulating. Some databases employ

Null, some do not.

Using the Left Function

The Left function returns the specifi ed number of characters from the left end of a string. The

syntax for the Left function is as follows:

Left(string, length)

Here, the string argument is any string expression—that is, any expression that returns a

sequence of contiguous characters. Left returns Null if string contains no data. The length argu-

ment is a numeric expression specifying the number of characters to return. length can be a

straightforward number (such as 4, or 7, or 11) or it can be an expression that results in a number.

For example, if the length of a word were stored in the variable named LenWord and you wanted

to return two characters fewer than LenWord, you could specify the expression LenWord - 2 as

the length argument; to return three characters more than LenWord, you could specify LenWord +

3 as the length argument.

One way to use the Left function would be to separate the area code from a telephone

number that was provided as an unseparated 10-digit number from a database. In the follow-

ing statements, the telephone number is stored in the String variable strPhone, which the code

assumes was created earlier:

Dim strArea As String

strArea = Left(strPhone, 3)

These statements create the variable Area and fi ll it with the leftmost three characters of the

variable strPhone.

Using the Right Function

The Right function is the mirror image of the Left function. Right returns a specifi ed number

of characters from the right end of a string. The syntax for the Right function is as follows:

Right(string, length)

USING FUNCTIONS TO MANIPULATE STRINGS | 217

Again, the string argument is any string expression, and length is a numeric expression speci-

fying the number of characters to return. And, again, Right returns Null if string contains no

data, and length can be a number or an expression that results in a number.

To continue the previous example, you could use the Right function to separate the last

seven digits of the phone number stored in the string strPhone from the area code:

Dim strLocalNumber As String

strLocalNumber = Right(strPhone, 7)

These statements create the variable strLocalNumber and fi ll it with the rightmost seven charac-

ters from the variable strPhone.

Using the Mid Function

The Left and Right functions extract a substring from the left or right side of a string. The Mid

function fetches a substring out of the middle of a string.

The Mid function returns the specifi ed number of characters from inside the given string. You

specify a starting position in the string and the number of characters (to the right of the starting

position) that you want extracted.

The syntax for the Mid function is as follows:

Mid(string, start[, length])

Here are the elements of the syntax:

 ◆ As in Left and Right, the string argument is any string expression. Mid returns Null if

string contains no data.

 ◆ start is a numeric value specifying the character position in string at which to start the

length selection. If start is larger than the number of characters in string, VBA returns a

zero-length string. In code, an empty string is typed as two quotation marks with nothing

inside: strState = “”.

 ◆ length is an optional numeric expression specifying the number of characters to return. If

you omit length or use a length argument greater than the number of characters in string,

VBA returns all the characters from the start position to the end of string. length can be an

ordinary literal number or an expression that results in a number.

Using the phone-number example, you could employ Mid to pluck the local exchange code out

from within a 10-digit phone number (for instance, extract the 555 from 5105551212), like this:

Dim strPhone As String

strPhone = “5105551212”

MsgBox Mid(strPhone, 4, 3)

This statement displays three characters in the variable strPhone, starting at the fourth

character.

218 | CHAPTER 9 USING BUILTIN FUNCTIONS

Don’t Torture Your Users—Accept a Variety of Formats

All too often programmers, for no good reason, make it hard for users to succeed. How many times

have you tried to type your phone number in a website and been told that the only acceptable for-

mat is xxx-xxx-xxxx? Or (xxx) xxx-xxxx? Or numbers only! You will do things our way. Well…why?

Why? Because the programmer was lazy and refused to permit a variety of input.

People write down their phone number various ways. Some type it in like this: (xxx) xxx-xxxx; oth-

ers favor variations like xxx xxx-xxxx. Have you seen those instructions that say “use no hyphens”

or “you must use hyphens”?

Th is is simply slothful programming. Th e programmer doesn’t want to take a little extra time to

deal with varying input, so they transfer the work to the user. Make life easier for your users by

writing a little extra code to translate various typical formats into whatever your program expects.

Don’t force the users to provide data “just so.”

Avoid such user frustration by simply writing some code that tests the user’s input. Here are a few

easy solutions:

Use the InStr function (described later in this chapter) to check for parentheses or hyphens. Or

use Mid to extract only the numeric values in the user’s string entry—ignoring whatever blank

spaces or non-numeric characters the user might have typed in. Your program’s goal is to end up

with 5105551212. After extracting the non-digits, you can then show the user a useful error mes-

sage if they have not entered the necessary 10 digits.

Test the number with the Len function to see if there are 10 digits. If not, tell the user they made a

mistake and to please reenter the phone number because there are not enough (or too many) digits.

Your error message should also display the user’s entry so they can see the problem. But you’re just

being lazy and annoying if you tell them they can’t use parentheses or hyphens or must use those

punctuation marks—to satisfy you. Who are you?

Your code should accept several predictable variations of user input. Th ere’s no need to reject legiti-

mate user input simply because that input is punctuated in a diff erent way than your data store or

your code prefers. After all, why waste the time of perhaps thousands of users when it only takes

a little extra coding to accommodate them?

We’ve seen how to extract a substring using Mid. But this function has another use as well.

You can also use Mid to fi nd the location of a character within a string. In the following snip-

pet, the Do Until… Loop walks backward through the string strFilename (which contains the

FullName property of the template attached to the active document in Word) until it reaches the

fi rst backslash (\), storing the resulting character position in the Integer variable intLen. The

message box then displays that part of strFilename to the right of the backslash (determined by

USING FUNCTIONS TO MANIPULATE STRINGS | 219

subtracting intLen from the length of strFilename)—the name of the attached template with-

out its path:

Dim strFilename As String, intLen As Integer

strFilename = ActiveDocument.AttachedTemplate.FullName

MsgBox strFilename

intLen = Len(strFilename)

Do Until Mid(strFilename, intLen, 1) = “\”

 intLen = intLen - 1

Loop

MsgBox Right(strFilename, Len(strFilename) - intLen)

This example is more illustrative than realistic for two reasons: First, you can get the name

of the template more easily by just using the Name property rather than the FullName property.

Second, there’s a function called InStrRev (discussed next) that returns the position of one

string within another by walking backward through it.

Using InStr and InStrRev to Find a String within Another String
You can use the Mid function to fi nd an individual character within a string, but what if you

need to fi nd a set of characters within a string? The InStr function is designed to fi nd one

string within another string. For example, you could check, say, the current paragraph to see if

it contained a particular word. If it did, you could take action accordingly—for instance, replac-

ing that word with another word or selecting the paragraph for inclusion in another document.

Maybe your company has changed its name and you need to do a search and replace in a large

number of document templates. Or something.

The InStrRev function is the counterpart of the InStr function, working in a similar way but

in the reverse direction.

The syntax for InStr is as follows:

InStr([start,]string1, string2[, compare])

Here are the arguments:

 ◆ start is an optional argument specifying the starting position in the fi rst string, string1. If

you omit start, VBA starts the search at the fi rst character in string1 (which is usually where

you want to start). However, you do need to use start when you use the compare argument to

specify the type of string comparison to perform.

 ◆ string1 is a required argument specifying the string expression in which to search for

string2.

 ◆ string2 is a required argument specifying the string expression for which to search in

string1.

 ◆ compare is an optional argument specifying the type of string comparison you want to

perform. Text can be compared two ways: a binary comparison, which is case sensitive,

220 | CHAPTER 9 USING BUILTIN FUNCTIONS

or a textual comparison, which is not case sensitive. The default is a binary comparison,

which you can specify by using the constant vbBinaryCompare or the value 0 for compare.

Although specifying this value isn’t necessary (because it’s the default), you might want to

include it to make your code ultra-clear. To specify a textual, case-insensitive comparison,

use the constant vbTextCompare or the value 1 for compare.

Use Textual Comparisons with Unpredictable String Data

A textual comparison is a useful weapon when you’re dealing with data that may arrive in a variety

of ways, like the telephone-number punctuation problem described in this chapter’s Real World

Scenario. Here’s another example: If you wanted to search a selection for instances of a name, you’d

probably want to fi nd all instances of the name—uppercase, lowercase, or title case (initial caps).

Otherwise, you’d fi nd only the name with exactly the same capitalization as you specifi ed in the

String2 argument.

Another way to use InStr is to fi nd the location of a certain string within another string so

that you can then change that substring. You might want to do this if you needed to move a fi le

from its current position in a particular folder or subfolder to another folder that had a similar

subfolder structure. For instance, suppose you work with documents stored in a variety of sub-

folders beneath a folder named In (such as z:\Documents\In\), and after you’re fi nished with

them, you save them in corresponding subfolders beneath a folder named Out (z:\Documents\
Out\). The short procedure shown in Listing 9.1 automatically saves the documents in the Out
subfolder.

Listing 9.1: Changing a fi le path

1. Sub Save_in_Out_Folder()

2. Dim strOName As String, strNName As String, _

 intToChange As Integer

3. strOName = ActiveDocument.FullName

4. intToChange = InStr(strOName, “\In\”)

5. strNName = Left(strOName, intToChange - 1) & “\Out\” _

 & Right(strOName, Len(strOName) - intToChange - 3)

6. ActiveDocument.SaveAs strNName

7. End Sub

The code in Listing 9.1 works as follows:

 ◆ Line 1 begins the procedure, and line 7 ends it.

 ◆ Line 2 declares the String variable strOName (as in original name), the String variable strN-

Name (as in new name), and the Integer variable intToChange. Line 3 then assigns strOName

the FullName property of the ActiveDocument object: the full name of the active docu-

ment, including the path to the document (for example, z:\Documents\In\Letters\My

Letter.docm).

USING FUNCTIONS TO MANIPULATE STRINGS | 221

 ◆ Line 4 assigns to the variable intToChange the value of the InStr function that fi nds the

string \In\ in the variable strOName. Using the example path from the previous paragraph,

intToChange will be assigned the value 13 because the 1st character of the \In\ string is

the 13th character in the strOName string.

 ◆ Line 5 assigns to the variable strNName the new fi lename created in the main part of the

statement. This breaks down as follows:

 ◆ Left(strOName, intToChange - 1) takes the left section of the strOName string,

returning the number of characters specifi ed by intToChange - 1—the number stored

in intToChange minus one.

 ◆ & “\Out\” adds to the partial string specifi ed in the previous bullet item (to continue

the previous example, z:\Documents) the characters \Out\, which effectively replace

the \In\ characters, thus changing the directory name (z:\Documents\Out\).

 ◆ & Right(strOName, Len(strOName) - intToChange - 3) completes the partial string

by adding the right section of the strOName string, starting from after the \In\ string

(Letters\My Letter.docm), giving z:\Documents\Out\Letters\My Letter.docm.

The number of characters to take from the right section is determined by subtracting

the value stored in intToChange from the length of strOName and then subtracting 3

from the result. Here, the value 3 comes from the length of the string \In\; because

the intToChange value stores the character number of the fi rst backslash, you need

count only the I, the n, and the second backslash to reach its end.

 ◆ Line 6 saves the document using the name in the strNName variable.

The syntax for InStrRev is similar to that of InStr:

 InStrRev(stringcheck, stringmatch[, start[, compare]])

These are the arguments:

 ◆ stringcheck is a required String argument specifying the string in which to search for

stringmatch.

 ◆ stringmatch is a required String argument specifying the string for which to search.

 ◆ start is an optional numeric argument specifying the starting position for the search. If you

omit start, VBA starts at the last character of stringcheck.

 ◆ compare (as for InStr) is an optional argument specifying how to search: vbTextCompare

for text, vbBinaryCompare for a binary comparison.

Using LTrim, RTrim, and Trim to Remove Spaces from a String
Often you’ll need to trim strings before concatenating them to avoid ending up with extra

spaces in inappropriate places, such as in the middle of eight-character fi lenames.

Data can contain appended or prepended spaces. And always remember that users might

randomly type spaces in various ways when entering data. You never know. Your programming

(and databases), however, need data in a predictable format (so the data can easily be searched,

sorted, and otherwise manipulated).

For example, if 500 users entered their zip code, some might type a space before entering

the digits. Any such entries would be placed at the start of a list after the list was alphabetically

222 | CHAPTER 9 USING BUILTIN FUNCTIONS

sorted (the space character is seen as “lower” than ordinary characters by a sorting function). So

the sort would produce an inaccurate result. It’s easy, though, to use the Trim functions to get

rid of spaces.

As you saw in Table 9.9, VBA provides three functions specifi cally for trimming leading

spaces and trailing spaces from strings:

 ◆ LTrim removes leading spaces from the specifi ed string.

 ◆ RTrim removes trailing spaces from the specifi ed string.

 ◆ Trim removes both leading and trailing spaces from the specifi ed string.

Trim Is Often the Only Space-Removal Function You Need

In many cases, you can simply use Trim instead of fi guring out whether LTrim or RTrim is appropri-

ate for what you expect a variable to contain. At other times, you’ll need to remove either leading

or trailing spaces while retaining spaces on the other end. In those special cases, you’ll need to use

either LTrim or RTrim. RTrim is especially useful for working with fi xed-length String variables,

which will contain trailing spaces if the data assigned to them is shorter than their fi xed length.

The syntax for the LTrim, RTrim, and Trim functions is straightforward:

LTrim(string)

RTrim(string)

Trim(string)

In each case, string is any string expression.

You could use the Trim function to remove both leading and trailing spaces from a string

derived from the current selection in the active document in Word. The fi rst line in this next

code example declares strUntrimmed and strTrimmed as String variables. The second line

assigns the data in the current selection to the strUntrimmed string. The third line assigns the

trimmed version of the strUntrimmed string to the strTrimmed string:

Dim strUntrimmed As String, strTrimmed As String

strUntrimmed = Selection.Text

strTrimmed = Trim(strUntrimmed)

Using Len to Check the Length of a String
To fi nd out how long a string is, use the Len function. The syntax for the Len function is

straightforward:

Len(string)

Here, string is any valid string expression. (If string is Null, Len also returns Null.)

One use for Len is to make sure a user’s entry in an input box or in a text box on a form is of a

suitable length. A United States phone number must be 10 digits, for instance.

The CheckPassword procedure shown in Listing 9.2 uses Len to make sure a password the

user enters is long enough to be diffi cult to guess, but not too long.

USING FUNCTIONS TO MANIPULATE STRINGS | 223

Listing 9.2: Testing password length with the Len function

 1. Sub CheckPassword()

 2. Dim strPassword As String

 3. BadPassword:

 4. strPassword = InputBox _

 (“Enter the password to protect this item from changes:” _

 , “Enter Password”)

 5. If Len(strPassword) = 0 Then

 6. End

 7. ElseIf Len(strPassword) < 6 Then

 8. MsgBox “The password you chose is too short.” _

 & vbCr & vbCr & _

 “Choose a password between 6 and 15 characters in length.”, _

 vbOKOnly + vbCritical, “Unsuitable Password”

 9. GoTo BadPassword

10. ElseIf Len(strPassword) > 15 Then

11. MsgBox “The password you chose is too long.” _

 & vbCr & vbCr & _

 “Choose a password between 6 and 15 characters in length.”, _

 vbOKOnly + vbCritical, “Unsuitable Password”

12. GoTo BadPassword

13. End If

14. End Sub

Listing 9.2 ensures that a password contains between 6 and 15 characters (inclusive). Here’s

how the code works:

 ◆ Line 2 declares a String variable named strPassword.

 ◆ Line 3 contains the label BadPassword, to which the GoTo statements in line 9 and line 12

redirect execution if the password fails either of the checks. Labels are locations within

code that you might need to jump to during execution. A label is a word on its own line in

the code that ends with a colon. Labels are discussed in Chapter 11, “Making Decisions in

Your Code.”

 ◆ Line 4 assigns to strPassword the result of an input box that invites the user to enter the

password for the item.

 ◆ Lines 5 through 13 then use an If statement to check that the password is an appropri-

ate length. First, line 5 checks strPassword for zero length, which would mean that the

user clicked either the Cancel button or the close button on the input box or clicked the

OK button with no text entered in the input box. If the length of strPassword is zero, the

End statement in line 6 terminates the procedure. If the password passes that test, line 7

checks to fi nd out if its length is less than 6 characters; if so, the procedure displays a mes-

sage box alerting the user to the problem and then redirects execution to the BadPassword

label. If the password is 6 or more characters long, line 10 checks to see if it’s more than

15 characters long; if it is, the user is shown another message box and another trip to the

BadPassword label.

224 | CHAPTER 9 USING BUILTIN FUNCTIONS

Using StrConv, LCase, and UCase to Change the Case of a String
If you need to change the case of a string, use the StrConv (whose name comes from string con-
version), LCase, and UCase functions. Of these, the easiest to use is StrConv, which can convert

a string to a variety of different formats varying from straightforward uppercase, lowercase, or

propercase (as VBA refers to initial capitals, also known as title case) to the Japanese hiragana and

katakana phonetic characters.

Using StrConv

The StrConv function has the following syntax:

StrConv(string, conversion)

Here, the string argument is any string expression, and the conversion argument is a constant or

value specifying the type of conversion required. The most useful conversion constants and val-

ues are shown in Table 9.10.

Table 9.10: Th e most common conversion constants

Constant Value Effect

vbUpperCase 1 Converts the given string to uppercase characters

vbLowerCase 2 Converts the given string to lowercase characters

vbProperCase 3 Converts the given string to propercase (aka title case—the fi rst

letter of every word is capitalized)

vbUnicode 64 Converts the given string to Unicode using the system’s default

code page

vbFromUnicode 128 Converts the given string from Unicode to the system’s default

code page

For example, suppose you received from a database program a string called strCustomerName

containing a person’s name. You could use StrConv to make sure that it was in title case by using

a statement such as this:

strProperCustomerName = StrConv(strCustomerName, vbProperCase)

StrConv Ignores the Capitalization You Feed It

Note that StrConv doesn’t care about the case of the string you feed it—it simply returns the case

you asked for. For example, feeding StrConv uppercase and asking it to return uppercase doesn’t

cause any problem.

USING FUNCTIONS TO MANIPULATE STRINGS | 225

Using LCase and UCase

If you don’t feel like using StrConv, you can alternatively use the LCase and UCase functions,

which convert a string to lowercase and uppercase, respectively.

LCase and UCase have the following syntax:

LCase(string)

UCase(string)

Here, string is any string expression.

For example, the following statement lowercases the string MyString and assigns it to

MyLowerString:

MyLowerString = LCase(MyString)

Using the StrComp Function to Compare Apples to Apples
As you’ve seen already, you can compare one item to another item by simply using the

= operator:

If 1 = 1 Then MsgBox “One is one.”

This straightforward comparison with the = operator also works with two strings, as shown

in the second line here:

strPet = InputBox(“Is your pet a dog or a cat?”, “Pet”)

If strPet = “Dog” Then MsgBox “We do not accept dogs.”

The problem with this code as written is that the strings need to match exactly in capitaliza-

tion for VBA to consider them equal. If the user enters dog or DOG (not to mention dOG, doG, dOg,

or DoG) rather than Dog, the condition isn’t met. Again, permit your users a variety of correct

responses—don’t enforce pointless capitalization and punctuation rules.

To accept variations of capitalization, you could use the Or operator to hedge your bets:

If Pet = “Dog” Or Pet = “dog” Or Pet = “DOG” Or Pet = “dogs” _

 Or Pet = “Dogs” or Pet = “DOGS” Then MsgBox _

 “We do not accept dogs. “

As you can see, such code rapidly becomes clumsy, even omitting some variations such

as dOG. Or you could change the case of one or both strings involved to make sure their case

matched, but it’s simpler to just use the StrComp function, which is designed to permit you to

ignore case. The syntax for StrComp is as follows:

StrComp(string1, string2 [, compare])

Here, string1 and string2 are required String arguments specifying the strings to compare, and

compare is an optional argument specifying textual comparison (vbTextCompare) or binary com-

parison (vbBinaryCompare).

The following statement uses StrComp to settle the pet question once and for all:

If StrComp(Pet, “dog”, vbTextCompare) = True Then _

 MsgBox “We do not accept dogs.”

226 | CHAPTER 9 USING BUILTIN FUNCTIONS

Using VBA’s Mathematical Functions
VBA provides a solid suite of functions for standard mathematical operations. Table 9.11 lists

these functions with examples.

Table 9.11: VBA’s mathematical functions

Function(Argument) Returns Example

Abs(number) Th e absolute value of number—the unsigned

magnitude of the number.

Abs(-100) returns 100.

Atn(number) Th e arctangent of number in radians. Atn(dblMyAngle)

Cos(number) Th e cosine of angle number. Cos(dblMyAngle)

Exp(number) e, the base of natural logarithms, raised to

the power of number.

Exp(5) returns

148.413159102577.

Fix(number) Th e integer portion of number (without

rounding). If number is negative, returns the

negative number greater than or equal to

number.

Fix(3.14159) returns 3.

Fix(-3.14159) returns

–3.

Int(number) Th e integer portion of number (again, without

rounding). If number is negative, returns the

negative number less than or equal to number.

Int(3.14159) returns 3.

Int(-3.14159) returns

–4.

Log(number) Th e natural logarithm of number. Log(dblMyAngle)

Rnd([number]) A random number (with no argument) or a

number based on the given initial seed.

Rnd(1) returns a random

number.

Sgn(number) –1 if number is negative, 0 if number is 0, 1 if

number is positive.

Sgn(7) returns 1. Sgn(-7)

returns –1. Sgn(0)

returns 0.

Sin(number) Th e sine of the angle specifi ed by number

(measured in radians).

Sin(dblMyAngle)

Sqr(number) Th e square root of number. If number is nega-

tive, VBA gives a runtime error.

Sqr(9) returns 3.

Tan(number) Th e tangent of the angle specifi ed by number

(measured in radians).

Tan(dblMyAngle)

USING VBA’S DATE AND TIME FUNCTIONS | 227

Using VBA’s Date and Time Functions
VBA provides a full complement of date and time functions, as listed in Table 9.12. The table

provides brief examples of working with the functions. The sections after the table provide lon-

ger examples showing how to use some of the more complex functions.

Table 9.12: VBA’s date and time functions

Function

(Arguments) Returns Example

Date A Variant/Date containing the

current date according to your

computer

MsgBox Date might display

04/01/2010. (Th e format depends

on your Windows date settings.)

DateAdd(interval, num-

ber, date)

A Variant/Date containing the date

of the specifi ed interval after the

specifi ed date

DateAdd(“m”, 1, “6/3/06”)

returns 7/3/2010.

DatePart(interval, date) Th e part (specifi ed by interval) of

the specifi ed date

See the example in the next section.

DateSerial(year,

month, day)

A Variant/Date containing the date

for the specifi ed year, month, and

day

dteCompanyFounded =

DateSerial(1997, 7, 4).

DateValue(date) A Variant/Date containing the

specifi ed date

dteDeath = “July 2, 1971”

Day(date) A Variant/Integer between 1 and

31, inclusive, representing the day

of the month for date

If Day(Date) = 1 And

Month(Date) = 1 Then MsgBox

“Happy new year!”

Hour(time) A Variant/Integer between 0 and

23, inclusive, representing the

hour for time

dteHour = Hour(dteLoggedIn)

Minute(time) A Variant/Integer between 0 and

59, inclusive, representing the

minute for time

dteMinute =

Minute(dteLoggedIn)

Month(date) A Variant/Integer between 1 and

12, inclusive, representing the

month for date

strThisDate = Month(Date) &

“/” & Day(Date)

MonthName(month) A String containing the name of

the month represented by month

MsgBox MonthName(Month(Date))

displays a message box containing

the current month.

228 | CHAPTER 9 USING BUILTIN FUNCTIONS

Function

(Arguments) Returns Example

Now A Variant/Date containing the

current date and time according to

your computer

MsgBox Now might display

04/01/2010 9:25:15PM. (Th e for-

mat of date and time will depend on

your Windows date settings.)

Second(time) A Variant/Integer between 0 and

59, inclusive, representing the sec-

ond for time

dteSecond =

Second(dteLoggedIn)

Time A Variant/Date containing the

current time according to your

computer

MsgBox Time might display

9:25:15PM. (Th e time format and

time will depend on your Windows

date settings.)

Timer A Single giving the number of sec-

onds that have elapsed since

midnight

If Timer > 43200 Then MsgBox _

“This code only works in the

morning.”: End

TimeSerial(hour,

minute, second)

A Variant/Date containing the

time for the specifi ed hour, minute,

and second

TimeSerial(11, 12, 13) returns

11:12:13AM. (Th e format will

depend on your Windows date

settings.)

TimeValue(time) A Variant/Date containing the

time for time

TimeValue(Now)

Weekday(date) A Variant/Integer containing the

day of the week represented by date

See the next entry.

WeekdayName (weekday) A String containing the weekday

denoted by weekday

WeekdayName(Weekday

(#4/1/2013#)) returns Saturday,

the day of the week for April Fool’s

Day 2013.

Using the DatePart Function to Parse Dates
The DatePart function lets you take a date and separate it into its components. You can often

achieve the same results by using other date functions, but DatePart is a great tool to have in

your VBA toolbox.

The syntax for DatePart is as follows:

DatePart(Interval, Date[,FirstDayOfWeek[, FirstWeekOfYear]])

Table 9.12: VBA’s date and time functions (continued)

USING VBA’S DATE AND TIME FUNCTIONS | 229

The components of the syntax are as follows:

 ◆ Interval is a required String expression giving the unit in which you want to measure the

interval: yyyy for year, q for quarter, m for month, y for the day of the year, d for day, w for

weekday, ww for week, h for hour, n for minute (because m is for month), and s for second.

 ◆ Date is a required Variant/Date giving the date you want to examine.

 ◆ FirstDayOfWeek is an optional constant specifying the day that starts the week (for date

information). The default setting is vbSunday (1), but you can also set vbMonday (2),

vbTuesday (3), vbWednesday (4), vbThursday (5), vbFriday (6), vbSaturday (7), or vbUs-

eSystem (0; this uses the system setting).

 ◆ FirstWeekOfYear is an optional constant specifying the week considered fi rst in the year.

Table 9.13 shows the options for this constant.

Table 9.13: Th e options for the FirstWeekOfYear constant

Constant Value Year Starts with Week

vbUseSystem 0 Use the system setting.

vbFirstJan1 1 Th e week in which January 1 falls (the

default setting).

vbFirstFourDays 2 Th e fi rst week with a minimum of four days

in the year.

vbFirstFullWeek 3 Th e fi rst full week (7 days) of the year.

For example, the following statement assigns the current year to the variable dteThisYear:

dteThisYear = DatePart(“yyyy”, Date)

Using the DateDiff Function to Figure Out a Time Interval
The DateDiff function returns the interval (the number of days, weeks, hours, and so on)

between two specifi ed dates. The syntax for DateDiff is as follows:

DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])

Here are the components of the syntax:

 ◆ interval is a required String expression giving the unit in which you want to measure the

interval: yyyy for year, q for quarter, m for month, y for the day of the year, d for day, w for

weekday, ww for week, h for hour, n for minute (because m is for month), and s for second.

 ◆ date1 and date2 are the dates between which you’re calculating the interval.

 ◆ fi rstdayofweek is an optional constant specifying the day that starts the week (for date infor-

mation). The default setting is vbSunday (1), but you can also set vbMonday (2), vbTuesday

230 | CHAPTER 9 USING BUILTIN FUNCTIONS

(3), vbWednesday (4), vbThursday (5), vbFriday (6), vbSaturday (7), or vbUseSystem (0; this

uses the system setting).

 ◆ fi rstweekofyear is an optional constant specifying the week considered fi rst in the year.

Table 9.13 shows the options for this constant.

For example, the following statement returns the number of weeks between June 3, 2009, and

September 30, 2009:

MsgBox DateDiff(“ww”, “6/3/2009”, “9/30/2009”)

Using the DateAdd Function to Add or Subtract Time from a Date
The DateAdd function lets you easily add an interval of time to, or subtract an interval of time

from, a specifi ed date, returning the resulting date. The syntax for DateAdd is as follows:

DateAdd(interval, number, date)

Here are the components of the syntax:

 ◆ interval is a required String expression giving the unit of measurement for the interval:

yyyy for year, q for quarter, m for month, y for the day of the year, d for day, w for weekday,

ww for week, h for hour, n for minute, and s for second.

 ◆ number is a required numeric expression giving the number of intervals to add (a positive

number) or to subtract (a negative number). If number isn’t already of the data type Long,

VBA rounds it to the nearest whole number before evaluating the function.

 ◆ date is a required Variant/Date or literal date giving the starting date.

For example, the following statement returns the date 10 weeks from May 27, 2010:

DateAdd(“ww”, 10, #5/27/2009#)

Using File-Management Functions
The following sections demonstrate how to use a couple of key VBA fi le-management functions:

the Dir function, which you use to fi nd out whether a fi le exists, and the CurDir function, which

returns the current path.

Using the Dir Function to Check Whether a File Exists
Often when managing fi les, you’ll need to fi rst check whether a particular fi le already exists. For

instance, if you’re about to save a fi le, you may want to make sure the save operation won’t over-

write an existing fi le—a fi le with the same name in the same location on the hard drive.

Or if you’re about to open a fi le, you may want to see if that fi le exists before you use the Open

method; otherwise, VBA will give an error.

To test whether a fi le exists, you can use a straightforward procedure such as the one shown

in Listing 9.3.

USING FILEMANAGEMENT FUNCTIONS | 231

Listing 9.3: Checking if a fi le exists with the Dir function

 1. Sub Does_File_Exist()

 2. Dim strTestFile As String, strNameToTest As String, _

 strMsg As String

 3. strNameToTest = InputBox(“Enter the file name and path:”)

 4. If strNameToTest = “” Then End

 5. strTestFile = Dir(strNameToTest)

 6. If Len(strTestFile) = 0 Then

 7. strMsg = “The file “ & strNameToTest & _

 “ does not exist.”

 8. Else

 9. strMsg = “The file “ & strNameToTest & “ exists. “

10. End If

11. MsgBox strMsg, vbOKOnly + vbInformation, _

 “File-Existence Check”

12. End Sub

This procedure in Listing 9.3 uses the Dir function to check whether a fi le exists and displays

a message box indicating whether it does or doesn’t. Figure 9.3 shows examples of the message

box. This message box is for demonstration purposes only. In a real-world macro you’d likely

use the result of the test to branch (execute different code blocks) based on whether the fi le

exists. Branching is covered in Chapter 11.

Figure 9.3

You can use the

Dir function to

check whether a

fi le exists so that

you don’t acciden-

tally overwrite it

or cause an error

by trying to open a

nonexistent fi le.

Here’s how the code works:

 ◆ Line 2 declares the string variables strTestFile, strNameToTest, and strMsg.

 ◆ Line 3 then displays an input box prompting the user to enter a fi lename and path; VBA

assigns the result of the input box to strNameToTest.

 ◆ Line 4 compares strNameToTest to a blank string (which means the user clicked the

Cancel button in the input box or clicked the OK button without entering any text in the

text box) and uses an End statement to end the procedure if it gets a match.

232 | CHAPTER 9 USING BUILTIN FUNCTIONS

 ◆ Line 5 assigns to strTestFile the result of running the Dir function on the strNameToTest

string. If Dir fi nds a match for strNameToTest, strTestFile will contain the name of the

matching fi le; otherwise, it will contain an empty string.

 ◆ Line 6 begins an If… Then statement by testing the length of the strTestFile string. If the

length is 0, the statement in line 7 assigns to strMsg text saying that the fi le doesn’t exist;

otherwise, VBA branches to the Else statement in line 8 and runs the statement in line 9,

assigning text to strMsg saying that the fi le does exist. Line 10 ends the If statement.

 ◆ Line 11 displays a message box containing strMsg. Line 12 ends the procedure.

Garbage In, Garbage Out

Th e code shown in Listing 9.3 isn’t bulletproof because Dir is designed to work with wildcards as

well as regular characters. As long as you’re working with a simple text fi lename in strNameToTest,

you’ll be fi ne because Dir compares that text to the existing fi lenames on the hard drive and the

result lets you know whether you have a match. But if strNameToTest contains wildcards (say

it’s c:\temp*.*; the asterisks specifying any fi lename), Dir reports that the fi le exists. However,

there’s no fi le by that name, just one or more fi les that match the wildcard. You can check on line

5 whether the name returned by Dir is exactly the same as the input name and make sure you do

a case-insensitive comparison. Th is literalness of Dir is a nice illustration of GIGO (garbage in,

garbage out)—from the computer’s (and VBA’s) point of view, it’s doing what you asked it to, but

the result is far from what you intended.

Returning the Current Path
You can fi nd out the current path (the location on the hard drive to which the host application is

currently pointed) on either the current drive or a specifi ed drive by using the CurDir function.

Often, you’ll need to change the current path (using the ChDir function) to make sure the user is

saving fi les in, or opening fi les from, a suitable location.

To return the current path, use CurDir without an argument:

CurDir

To return the current path for a specifi ed drive, enter the drive letter as an argument. For

example, to return the current path on drive D, use this statement:

CurDir(“D”)

Th e Bottom Line

Understand what functions are and what they do. A function is a unit of code, a proce-

dure, that performs a task and returns a value.

You can write your own functions by writing code between Function and End Function

in the VBA Editor. Chapter 10, “Creating Your Own Functions,” explores how to write such

THE BOTTOM LINE | 233

custom functions. But in addition to functions you might write, there are many functions

already prewritten in VBA—ready for you to call them from your macros to perform various

tasks.

Master It A function is quite similar to a subroutine, but there is a signifi cant differ-

ence. What is it?

Use functions. In a macro, you can call a built-in function by merely typing in its name and

providing any required arguments.

Master It You can combine multiple functions in a single line of code. The MsgBox func-

tion displays a message box containing whatever data you request. The only required

argument for this function is the prompt. The Now function returns the current date and

time. Write a line of code that calls the MsgBox function and uses the Now function as its

argument.

Use key VBA functions. VBA offers the services of hundreds of built-in functions. You’ll

fi nd yourself using some of them over and over. They are key to programming.

Master It What built-in function is used quite often to display information in a dialog

box to the user while a procedure runs?

Convert data from one type to another. It’s sometimes necessary to change a value from

one data type to another. Perhaps you used an input box to ask the user to type in a String

variable, but then you need to change it into an Integer type so you can do some math with it.

(You can’t add pieces of text to each other.)

Master It What built-in function would you use to convert a string such as “12” (which,

in reality, is two text characters, the digits 1 and 2) into an Integer data type, the actual

number 12, that you can manipulate mathematically?

Manipulate strings and dates. VBA includes a full set of functions to manage text and

date data.

Master It Which built-in function would you use to remove any leading and trailing

space characters from a string? For example, you want to turn

 “ this “

into

 “this”

Chapter 10

Creating Your Own Functions

In Chapter 9, “Using Built-in Functions,” you learned how to use VBA’s built-in functions. In

this chapter, you’ll learn how to create your own functions. You create a function the same way

you create a subprocedure: by typing in the Code window. (You can’t record a function in Excel

and Word—the applications that provide a Macro Recorder. Instead, you have to write functions

yourself because the Recorder creates only subprocedures.)

It’s important to recall that, although both are procedures, functions differ from subs. The

primary difference is that functions interact more with other procedures: They accept argu-

ments (incoming data) from the procedure that calls them, and they return a value (outgoing

data) back to the procedure that calls them. Subs, by contrast, normally don’t require arguments

and never return any data.

But functions are used in VBA far less often than subs. Most macros are self-contained subs.

That’s because most macros are small, brief automations: They perform simple, quick jobs like

inserting a date into a document or saving a document using a particular fi lename.

But you aren’t limited to brief macros. You are free to create more complex, larger, and more

sophisticated programs in VBA. And if you do create a large project, you’ll want to use multiple

procedures, not just one sub. This allows you to divide your work into multiple logical units that

can each be individually tested and more easily modifi ed. When you’re using multiple proce-

dures, however, they must work together and need to communicate among themselves. This is

why you often use functions in large projects. Remember that the key feature of a function is

that it facilitates communication—sending values back and forth—among multiple procedures.

This chapter will cover several ways to employ functions with the various Offi ce 2013 appli-

cations. I’ll start by explaining the components of a function and showing you how to put them

together. You’ll then create some functions that work in any VBA host and some functions that

are specifi c to Word, Excel, and PowerPoint.

In this chapter you will learn to do the following:

 ◆ Understand the components of a function statement

 ◆ Create a generic function

 ◆ Create a function for Word

 ◆ Create a function for Excel

 ◆ Create a function for PowerPoint

 ◆ Create a function for Access

236 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

Components of a Function
To create a function, you use a Function statement. This is essentially the same way you create a

Sub: just type in the word Function followed by the name you’re giving the function.

The syntax for the Function statement is as follows:

[Public | Private] [Static] Function function_name [(argument_list)] [As type]

 [statements]

 [function_name = expression]

 [Exit Function]

 [statements]

 [function_name = expression]

End Function

This syntax, most of which is optional, breaks down like this:

 ◆ Public is an optional keyword that you can use to make the function publicly accessible—

accessible to all other procedures in all loaded modules. (If you need to limit the function’s

scope to the project that contains it, you can override this public availability by putting an

Option Private Module statement in the module that contains the function.)

 ◆ Private is an optional keyword that you can use to make the function accessible to the

other procedures in the module that contains it. The function is hidden from procedures in

any other module.

 ◆ Static is an optional keyword that you can use to make local variables in the function

retain their value between calls to the function.

 ◆ function_name is required. It specifi es a name for the function so you can refer to it

elsewhere in your project (so you can call the function—in other words, start it running).

Functions follow the same naming rules as other VBA items, such as the rules for variable

names: alphanumerics and underscores are fi ne, but no spaces, symbols, or punctuation.

Note that a function passes data back to whatever procedure called (executed) the function.

It passes data back by assigning a value to its (the function’s) name. If the function’s name is

AddStateTax, you would do some calculations to add the tax, then assign the result to the

function’s name:

Function AddStateTax(SubTotal)

 AddStateTax = SubTotal * 1.07 ‘do the math and assign the result

 ‘to the function name so it gets passed back

 End Function

 ◆ argument_list is an optional argument supplying the list of variables that represent argu-

ments passed to the function when it is invoked. argument_list takes the syntax shown here:

[Optional] [ByRef | ByVal] [ParamArray] variable_name[()] [As type]

[= default_value]

COMPONENTS OF A FUNCTION | 237

Here’s a description of the elements of the argument_list:

 ◆ Optional is an optional keyword that you can use to denote that an argument is

optional—in other words, that it is not required. Once you’ve used Optional to

declare an optional argument, any subsequent arguments in the argument_list

also have to be optional. That means you must put any required arguments before the

optional arguments, the same way VBA does with its built-in functions’ argument

lists. Also, it’s a good idea to give optional arguments a default value.

 ◆ ByRef is an optional keyword that you can use to specify that an argument be passed

by reference; ByVal is an optional keyword that you can use to specify that an argu-

ment be passed by value. You can pass an argument either by reference or by value.

 ◆ ParamArray is an optional keyword you can use as the last argument in argument_

list to denote an optional array of Variants. You can’t use ParamArray with ByVal,

ByRef, or Optional.

You Can Pass to a Function Either a Value’s Address or a Copy

of the Actual Value

When a procedure (either a function or a subroutine) passes an argument to a function by reference,

the recipient procedure gets access to the actual memory location where the original variable is

stored and can thus change the value held in the original variable. By contrast, when an argument is

passed by value, the function gets only a copy of the information in the variable and therefore can’t

change the value held in the original variable (the recipient procedure doesn’t even know where

the original variable is located). By reference is the default way to pass an argument, and there is

rarely any reason to pass by value, so just use the default.

 ◆ variable_name is the name of the variable that you want to use for this argument.

When the function is called and a value is supplied for this argument, this variable

can be used in your code.

 ◆ type is an optional keyword giving the data type of the argument (Byte, Boolean,

Currency, Date, Decimal, Double, Integer, Long, Object, Single, variable-length String,

or Variant). For nonoptional arguments, you can also specify an object type (for exam-

ple, a Worksheet object) or a custom object (one you’ve created).

 ◆ default_value is an optional literal (the value itself spelled out, such as

“Sacramento”) constant, or constant expression that you use to specify a default value

for optional parameters. You’ll see how to provide a default value shortly.

 ◆ type is an optional argument specifying the data type of the value that the function

returns: Byte, Boolean, Currency, Date, Decimal, Double, Integer, Long, Object, Single,

variable-length String, Variant, or a custom type.

238 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

 ◆ statements represents the statement or statements in the function (the code that does the

job the function is supposed to accomplish). In theory, statements is optional, but in prac-

tice, most functions will need one or more statements.

 ◆ expression represents the value the function returns. expression is also optional.

Creating a Function
The following sections walk you through the process of creating a function.

Starting a Function Manually
The easiest way to start creating a function is to type into the VBA Code window the word

Function followed by the name you want to give to the function and any necessary argu-

ments in parentheses, and then press Enter. VBA automatically enters a blank line and an End

Function statement for you and places the insertion point on the blank line ready for you to cre-

ate the programming code inside the new function.

For example, if you type the following line and press Enter, the Visual Basic Editor displays

what you see in Figure 10.1:

Function MyFunction(MaxTemp, MinTemp)

Figure 10.1

When you type a

Function state-

ment and press

Enter, the Visual

Basic Editor auto-

matically inserts

a blank line and

an End Function

statement for you.

CREATING A FUNCTION | 239

Starting a Function by Using the Add Procedure Dialog Box
If you like to make the Visual Basic Editor work for you as much as possible (and prefer the slow

way of doing things), you can also start creating a new function by using the Add Procedure

dialog box:

 1. Choose Insert ➢ Procedure to display the Add Procedure dialog box (see Figure 10.2).

Figure 10.2

You can also use the

Add Procedure dia-

log box to specify

elements of a new

function.

 2. Type the name for the procedure in the Name text box.

 3. Select the Function option button in the Type group box.

 4. Select the Public option button or the Private option button (as appropriate) in the Scope

group box.

 5. If you want all local variables in the function to be of the static type (which you usually

won’t), select the All Local Variables As Statics check box.

 6. Click OK to enter the stub for the function, and then enter any arguments for the function

in the parentheses manually.

Passing Arguments to a Function
The arguments that will be passed to a function are listed in parentheses, separated by

commas. In the following example code, the function states that it requires an argument named

MaxTemp and an argument named MinTemp. These data must be passed to (sent to) this function

for it to work:

Function GetTemps(MaxTemp As Double, MinTemp As Double)

If somewhere in your code you attempt to call this function without passing the data it

requires, VBA will display the error message “Argument Not Optional.”

240 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

You can also specify the data type of the arguments if you want by including an As statement

with the data type after the argument’s name. For example, you could use the following state-

ment to set the MaxTemp and MinTemp arguments to the Double numeric data type:

Function GetTemps(MaxTemp As Double, MinTemp As Double)

Passing an argument by reference (the default) is useful when you want to manipulate the

variable in the recipient procedure and then return the variable to the procedure from which

it originated. Alternatively, passing an argument by value is useful when you want to use the

information stored in the variable in the recipient procedure and at the same time ensure that

the original information in the variable doesn’t change (but this isn’t typically necessary).

Because by reference is the default way of passing an argument, both of the following state-

ments pass the argument MyArg by reference:

Function PassByReference(MyArg)

Function PassByReference(ByRef MyArg)

As you see, you can omit the default ByRef command. However, to pass an argument by

value, you must use the ByVal keyword. The following statement passes the ValArg argument

by value:

Function PassByValue(ByVal ValArg)

If necessary, you can pass some arguments for a procedure by reference and others by value.

The following statement passes the MyArg argument by reference and the ValArg argument by

value:

Function PassBoth(ByRef MyArg, ByVal ValArg)

In practice, though, you’re likely to simply use the default ByRef approach for most, if not all,

of your programming.

Declaring the Data Types of Arguments
You can explicitly declare the data types of arguments. This conserves memory (although this

is rarely an issue anymore) and ensures that the outside (calling) procedures are passing the

correct type of information to your function. For this second reason, it’s always a good idea to

specify the data type. You avoid some kinds of errors that way.

When passing an argument, you want to ensure that the data type of the argument you’re

passing matches the data type expected in the procedure. For example, if you declare a string

and try to pass it as an argument when the receiving function specifi es that it is expecting a

Variant, VBA displays an error message.

To declare the data type of an argument, just include the usual data-type declaration in the

argument list. The following statement declares MyStrArg, specifying with As that a string must

be passed and specifying a variant with VarArg:

Function PassType(MyStrArg As String, VarArg As Variant)

Specifying an Optional Argument
You can specify an optional argument by using the Optional keyword:

Function PassBoth(ByRef MyArg As String, ByVal ValArg As Variant, _

 Optional ByVal strName As String)

EXAMPLES OF FUNCTIONS FOR ANY VBAENABLED OFFICE APPLICATION | 241

When you specify an optional argument, it’s a good idea to assign a default value to it. Doing

so makes the code less susceptible to errors and gives the programmer a clue as to what kind

of information is used here. To assign the default value, type an equal sign after the variable’s

defi nition, and then type the default value (use double quotation marks for a String value). For

example, the following function statement declares the strName optional argument and assigns

the default value if no value is passed:

Function PassBoth(ByRef MyArg As String, ByVal ValArg As Variant, _

 Optional ByVal strName As String = ”Sacramento”)

What happens here is that this macro is being used by a company located in Sacramento, so

they most often use that city’s name for the literal value in this particular macro. Your default

literal will differ, depending on what your macro is supposed to accomplish.

Controlling the Scope of a Function
Like a subroutine, a function can have private or public scope. Private scope makes the function

available only to procedures in the module that contains it, and public scope makes the

function available to all open modules in your project.

If you don’t specify whether a function is private or public, VBA makes it public by default,

so you don’t need to specify the scope of a function unless you want it to have private scope.

However, if you do use explicit Public declarations for those functions you want to be public,

your code will be somewhat easier to read:

Private Function MyFunction(MaxTemp, MinTemp)

Public Function AnotherFunction(Industry, Average)

Examples of Functions for Any VBA-Enabled Offi ce
Application
This part of the chapter contains two examples of functions that will work in any application

that hosts VBA. That’s because these functions don’t access objects particular to any specifi c

Offi ce application.

Later in this chapter, you’ll see examples of functions that employ resources or features par-

ticular to a specifi c Offi ce application.

To start, fi rst declare the function and its arguments. The following statement declares a

function named NetProfit:

Function NetProfit(Gross As Double, Expenses As Double) As Double

NetProfit uses two arguments, Gross and Expenses, declaring each as the Double data

type; it’s a fl oating-point (has a decimal point) number.

At the end of this statement, we have specifi ed that our function returns a Double value type.

It’s important to explicitly specify the variable types of the arguments and the type of the value

that the function returns to the caller. This avoids unpleasant surprises (bugs) in your code

because VBA catches and reports any attempt to pass the wrong data type to the function or

send the wrong type of data back to whatever code called (executed) your function.

Armed with the arguments (and their type, if you explicitly type them as I’m suggesting you

do), you call (execute) your NetProfit function the same way you would execute a prewritten

242 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

function that’s built into VBA (like MsgBox). You simply use the function’s name and supply the

two arguments it needs, like this:

MyProfit = NetProfit(44000, 34000)

Here, the variable MyProfit is assigned the value of the NetProfit function. In other words,

after this function fi nishes its job and execution resumes in the caller (the procedure that

invoked the function), the returned value is assigned to the variable MyProfit.

In this example, the NetProfit function is provided with a Gross argument of 44000 and an

Expenses argument of 34000.

Once you’ve created a function, the Visual Basic Editor displays its argument list when you

type the name of the function in a caller procedure, as shown in Figure 10.3.

Figure 10.3

Th e Visual Basic

Editor displays a

ToolTip of Auto

Quick Info for func-

tions you create as

well as for its built-

in functions.

Listing 10.1 contains an example of calling a function: The ShowProfit procedure calls the

NetProfit function and displays the result in a message box.

Listing 10.1: How to call a function

1. Sub ShowProfit()

2. MsgBox (NetProfit(44000, 34000)),, ”Net Profit”

3. End Sub

4.

5. Function NetProfit(Gross As Double, Expenses As Double) As Double

6. NetProfit = (Gross - Expenses) * 0.9

7. End Function

In Listing 10.1, lines 1 through 3 contain the ShowProfit procedure, which simply calls the

NetProfit function in line 2, passes it the arguments 44000 for Gross and 34000 for Expenses,

and displays the result in a message box titled Net Profit. Notice that in line 2 we have

employed a shortcut: using the function call inside an argument list. Line 2 does the same thing

as this longer version:

Dim result as double

Result = NetProfit(44000, 34000)

MsgBox (Result),, ”Net Profit”

Lines 5 through 7 contain the NetProfit function. Line 5 declares the function as working

with two Double arguments, Gross and Expenses, telling VBA what to do with the two argu-

ments that line 2 has passed to the function.

Line 6 calculates NetProfit to be 90 percent (0.9) of the value of Gross minus Expenses.

EXAMPLES OF FUNCTIONS FOR ANY VBAENABLED OFFICE APPLICATION | 243

How Functions Return Information
It’s important to notice what else happens in line 6: the information calculated by the function

is being assigned to the name of the function. This is how the information gets passed back to the

ShowProfit procedure that called the function.

To make this process a bit clearer, let’s write the code in a more verbose way. We’ll do this the

long way, without using the shortcut of doing both the calculating and assigning all on the same

line. Here’s how a function goes about its business.

There are three main steps: calculation, assignment, and return. They are labeled as lines 1, 2,

and 3 in the following listing.

The function fi rst does some computing—in this case, calculating a net profi t. Then, second,

it assigns the results of the calculation to its own name (NetProfit in this case). This assignment

is how the data gets passed back to the caller. And fi nally, third, with the End command, it sends

the results back to whatever procedure called the function:

Function NetProfit(Gross As Double, Expenses As Double) As Double

Dim Result As Double

1. Result = (Gross - Expenses) * 0.9 ‘do the calculating

2. NetProfit = Result ‘store the information to be sent back

3. End Function ‘send the information back

Returning Text Data from a Function
Listing 10.2 contains a function that returns a String argument.

Listing 10.2: A function that returns a string

 1. Sub TestForSmog()

 2. Dim intCYear As Integer, strThisCar As String

 3. BadValueLoop:

 4. On Error GoTo Bye

 5. intCYear = InputBox(“Enter the year of your car.”, _

 ”Do I Need a Smog Check?”)

 6. strThisCar = NeedsSmog(intCYear)

 7. If strThisCar = ”Yes” Then

 8. MsgBox ”Your car needs a smog check.”, _

 vbOKOnly + vbExclamation, ”Smog Check”

 9. ElseIf strThisCar = ”BadValue” Then

10. MsgBox ”The year you entered is in the future.”, _

 vbOKOnly + vbCritical, ”Smog Check”

11. GoTo BadValueLoop

12. Else

13. MsgBox ”Your car does not need a smog check.”, _

 vbOKOnly + vbInformation, ”Smog Check”

14. End If

15. Bye:

244 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

16. End Sub

17.

18. Function NeedsSmog(CarYear As Integer) As String

19. If CarYear > Year(Now) Then

20. NeedsSmog = ”BadValue”

21. ElseIf CarYear <= Year(Now) - 3 Then

22. NeedsSmog = ”Yes”

23. Else

24. NeedsSmog = ”No”

25. End If

26. End Function

Listing 10.2 contains the procedure TestForSmog (lines 1 through 16) and the NeedsSmog

function (lines 18 through 26). The TestForSmog procedure calls the NeedsSmog function, which

returns a value indicating whether the user’s car needs a smog check. TestForSmog uses this

value to display a message box (see Figure 10.4) informing users whether or not their car needs a

smog check.

Figure 10.4

Th e TestForSmog

procedure prompts

for the car’s year

and then displays a

message box stat-

ing whether the car

needs a smog test.

Here’s how the code works:

 ◆ TestForSmog starts by declaring the Integer variable intCYear and the String variable

strThisCar in line 2.

EXAMPLES OF FUNCTIONS FOR ANY VBAENABLED OFFICE APPLICATION | 245

 ◆ Line 3 contains the BadValueLoop label, to which execution returns from line 11 if the

user has entered an unsuitable value for the year of the car. We’ll want to display the

input box again, to see if they can get it right this time. Note that if you want execution

to jump to a particular zone in your code, you just type in a name for the location, such

as BadValueLoop here, and end with a colon. This name-plus-colon is called a label and it

provides a way for you to transfer execution to a specifi c location within your macro. Then

elsewhere in your code you can transfer execution to this label by using the GoTo command

like this:

GoTo BadValueLoop

 ◆ Line 4 contains an On Error statement to transfer execution to the Bye label in line 15 if an

error occurs. An error occurs if the user cancels the upcoming input box or clicks its OK

button with no value entered in its text box.

 ◆ Line 5 displays an input box prompting the user to enter the year of the car. This line

assigns to the intCYear variable the value the user enters in the input box.

 ◆ Line 6 then sets the value of the String variable strThisCar to the result of the NeedsSmog

function running on the intCYear integer variable.

 ◆ Execution now shifts to the NeedsSmog function (line 18), which evaluates intCYear and

returns the value for strThisCar. Line 18 declares the function, assigning its value to

NeedsSmog. The function takes one argument, CarYear, which is declared as the Integer

data type.

 ◆ Line 19 checks to see whether CarYear is greater than the value of the current year using

Year(Now). If so, line 20 sets the value of NeedsSmog to BadValue, which is used to indicate

that the user has entered a date in the future. If not, the ElseIf statement in line 21 runs,

checking if the value of CarYear is less than or equal to Year(Now) - 3, the current year

minus three. If so, line 22 sets the value of NeedsSmog to Yes; if not, the Else statement in

line 23 runs, and line 24 sets the value of NeedsSmog to No. Line 25 ends the If statement,

and line 26 ends the function.

 ◆ Execution then returns to the calling line (line 6) in the TestForSmog procedure, to which

the NeedsSmog function returns the value it has assigned to the strThisCar variable.

 ◆ The rest of the TestForSmog procedure then works with the strThisCar variable. Line 7

compares strThisCar to Yes. If it matches, line 8 displays a message box stating that the

car needs a smog check. If strThisCar doesn’t match Yes, line 9 compares ThisCar to

BadValue. If it matches, line 10 displays an alert-message box, and line 11 returns execution

to the BadValueLoop label in line 3. If strThisCar doesn’t match BadValue, the Else state-

ment in line 12 runs, and line 13 displays a message box stating that the car doesn’t need a

smog check.

 ◆ Line 14 ends the If statement, line 15 contains the Bye label, and line 16 ends the procedure.

Functions can be more complex than the simple, stand-alone examples shown here. For

instance, you can include a function as part of a larger expression. You could add the results of

the functions NetProfit and CurrentBalance (which takes a single argument) by using a state-

ment such as this:

CurrentEstimate = NetProfit(44000, 33000) + CurrentBalance(MainAccount)

246 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

Creating a Function for Word
Functions such as those shown in the previous section work in any VBA-hosting application

because they do not call any application-specifi c features. This section and the following three

sections show you examples of functions that are specifi c to applications.

The task accomplished by the example program shown in Listing 10.3 is to remove some

special types of formatting (hyperlinks, bookmarks, and fi elds) but retain any text in those spe-

cial zones.

Creating Custom Function Libraries

Some programmers like to keep functions they write (that aren’t application-specifi c) in separate

modules in the Editor. Th ese little libraries represent your own collections of tested, useful, generic

procedures. Need to calculate sales tax? Don’t reinvent the wheel. Just import your library of math

functions, among which is just this procedure. You can export a module as a fi le with the .bas

fi lename extension and import it into whichever application needs the functions. Choose File ➢

Export File (or press Ctrl+E). For example, you might maintain separate modules that contain

your math equations, your string-manipulation functions, and other custom functions that work

in any VBA host. A .bas fi le is merely an ordinary text fi le containing a module’s source code (its

subroutines and functions). You can read it in Notepad, but you can also use the File Import feature

to add it to a VBA project. When imported, it will appear in the Project Explorer as a new module.

The function shown in Listing 10.3 is for Word and—unusually for a function—returns no

information (technically it returns a null value). The function’s main purpose is to perform sev-

eral operations on the specifi ed document. So no data needs to be returned to the caller.

Listing 10.3: A function that returns a null value

 1. Option Explicit

 2.

 3. Function Strip_Hyperlinks_Bookmarks_Fields()

 4. Dim myLink As Hyperlink

 5. Dim myBookmark As Bookmark

 6. Dim myField As Field

 7. With ActiveDocument

 8. For Each myLink In .Hyperlinks

 9. myLink.Delete

10. Next myLink

11. For Each myBookmark In .Bookmarks

12. myBookmark.Delete

13. Next myBookmark

14. For Each myField In .Fields

CREATING A FUNCTION FOR WORD | 247

15. myField.Unlink

16. Next myField

17. End With

18. End Function

19.

20. Sub Clean_Up_Document_for_Conversion()

21. Call Strip_Hyperlinks_Bookmarks_Fields

22. ‘other cleanup functions here

23. End Sub

 Here’s how the code works:

 ◆ Line 1 contains the Option Explicit statement for the module to force explicit declara-

tions of all variables. Line 2 is a spacer.

 ◆ Line 3 starts the function named Strip_Hyperlinks_Bookmarks_Fields, which removes

all hyperlinks, bookmarks, and fi elds from the active document. The function continues

until the End Function statement in line 18.

 ◆ Line 4 declares a variable named myLink as being of the Hyperlink type. Line 5 declares

a variable named myBookmark as being of the Bookmark type. Line 6 declares a variable

named myField as being of the Field type.

 ◆ Line 7 begins a With statement that works with the ActiveDocument object and continues

until the End With statement in line 17. This With statement contains three For Each…Next

loops.

 ◆ The fi rst For Each…Next loop, in lines 8 through 10, goes through each myLink object in the

current document’s Hyperlinks collection. Line 9 uses the Delete method to delete each of

the links in turn. Deleting a hyperlink removes the link from the document but leaves the

text that was displayed for the hyperlink.

 ◆ The second For Each…Next loop, in lines 11 through 13, works with each myBookmark

object in the Bookmarks collection. Line 12 uses the Delete method to delete each of the

bookmarks in turn. Deleting a bookmark removes the marker from the document but

leaves any text or other object that the bookmark contained.

 ◆ The third For Each…Next loop, in lines 14 through 16, works with each myField object in

the Fields collection. Line 15 uses the Unlink method to unlink each of the fi elds in turn.

Unlinking a fi eld leaves the fi eld’s contents in the document as text or as an object but

removes the fi eld link.

 ◆ Line 17 contains the End With statement that ends the With statement, and line 18 contains

the End Function statement that ends the function. Line 19 is a spacer.

 ◆ Lines 20 through 23 contain a short subprocedure that simply calls the Strip_

Hyperlinks_Bookmarks_Fields function. Line 22 contains a comment stating that the

subprocedure would call other cleanup functions. But the code to call other functions

hasn’t yet been written. It’s a reminder.

248 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

Creating a Function for Excel
This section shows you a function for Excel. The function in Listing 10.4 checks whether a work-

book contains any unused sheets.

Listing 10.4: An Excel function

 1. Option Explicit

 2.

 3. Function BlankSheetsInWorkbook(ByRef WorkbookToTest As Workbook) As Boolean

 4. Dim objWorksheet As Worksheet

 5. BlankSheetsInWorkbook = False

 6. For Each objWorksheet In WorkbookToTest.Worksheets

 7. If Application.WorksheetFunction.CountBlank _

 (objWorksheet.Range(”A1:IV65536”)) = 16777216 Then

 8. BlankSheetsInWorkbook = True

 9. Exit Function

10. End If

11. Next objWorksheet

12. End Function

13.

14. Sub Check_Workbook_for_Blank_Worksheets()

15. If BlankSheetsInWorkbook(ActiveWorkbook) = True Then

16. MsgBox ”This workbook contains one or more blank worksheets.” & _

 vbCr & vbCr & ”Please remove all blank worksheets before” & _

 ” submitting the workbook.”, vbOKOnly & vbExclamation, _

 ”Check Workbook for Blank Worksheets”

17. End If

18. End Sub

Here’s how the code works:

 ◆ Line 1 contains the Option Explicit statement for the module to force explicit declara-

tions of all variables. Line 2 is a spacer.

 ◆ Line 3 starts the function named BlankSheetsInWorkbook, which it declares as a Boolean

function. The function works on an object named WorkbookToTest, which has the type

Workbook—in other words, it’s a workbook.

 ◆ Line 4 declares a variable named objWorksheet that is of the Worksheet type.

 ◆ Line 5 sets the value of the BlankSheetsInWorkbook function to False.

 ◆ Line 6 starts a For Each…Next loop that runs for each objWorksheet object (each work-

sheet) in the Worksheets collection in the WorkbookToTest object—that is, with each work-

sheet in the workbook that is passed to the function.

 ◆ Line 7 uses the CountBlank worksheet function to count the number of blank cells in the

range A1:IV65536 in the worksheet being tested by the loop. If the number of blank cells is

CREATING A FUNCTION FOR POWERPOINT | 249

16777216, the worksheet is blank because this is the number of cells in a worksheet. Line

8 then sets the value of the BlankSheetsInWorkbook function to True, and line 9 uses an

Exit Function statement to exit the function. This is because there is no need to test any

more worksheets once the function has found that at least one worksheet is blank.

 ◆ Line 10 contains the End If statement that ends the If statement. Line 11 contains the Next

objWorksheet statement that ends the For Each…Next loop. And line 12 contains the End

Function statement that ends the function. Line 13 is a spacer.

 ◆ Line 14 begins a short subprocedure named Check_Workbook_for_Blank_Worksheets.

Line 15 runs the BlankSheetsInWorkbook function on the ActiveWorkbook object, which

represents the active workbook in the Excel session. If the BlankSheetsInWorkbook func-

tion returns True, line 16 displays a message box that points out to the user that the work-

book contains one or more blank worksheets and tells the user to remove them.

Creating a Function for PowerPoint
This section includes an example function for PowerPoint. The function in Listing 10.5 checks

that all the text on a slide is at least the minimum font size specifi ed and displays an error-

message box if any font is too small. (If, when you press Alt+F11 to open the VBA Editor, you see

nothing in the Code window, choose Insert ➢ Module so you’ll have a container for your code.)

Listing 10.5: A function in PowerPoint

 1. Option Explicit

 2.

 3. Function CheckMinFontSize(objPresentation As Presentation) As Boolean

 4.

 5. Dim objSlide As Slide

 6. Dim objShape As Shape

 7.

 8. CheckMinFontSize = True

 9.

10. For Each objSlide In objPresentation.Slides

11. objSlide.Select

12. objSlide.Shapes.SelectAll

13. For Each objShape In Windows(1).Selection.ShapeRange

14. If objShape.Type = msoPlaceholder Then

15. If objShape.TextFrame.TextRange.Font.Size < 14 Then

16. CheckMinFontSize = False

17. Exit Function

18. End If

19. End If

20. Next objShape

21. Next objSlide

22. End Function

23.

250 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

24. Sub Font_Check()

25. If CheckMinFontSize(ActivePresentation) = False Then

26. MsgBox ”Some of the fonts in this presentation are too small.” _

 & vbCr & vbCr & ”Please change all fonts to 14 points or larger.”, _

 vbCritical + vbOKOnly, ”Font Size Check”

27. End If

28. End Sub

Here’s how the code works:

 ◆ Line 1 contains the Option Explicit statement for the module to force explicit declara-

tions of all variables. Line 2 is a spacer.

 ◆ Line 3 declares the function named CheckMinFontSize as Boolean and specifi es that it

works on a variable named objPresentation, which is of the Presentation type. Line 4 is

a spacer.

 ◆ Line 5 declares a variable named objSlide that is of the Slide type. Line 6 declares a vari-

able named objShape that is of the Shape type. Line 7 is a spacer.

 ◆ Line 8 sets the value of the CheckMinFontSize function to True. This indicates that the font

sizes are the minimum size or larger. Line 9 is a spacer.

 ◆ Line 10 starts a For Each…Next loop that continues until line 21 and works with each

objSlide object in the Slides collection in the objPresentation object. This loop makes

the function examine each of the Slide objects in the presentation that is passed to the

function.

 ◆ Line 11 selects the current objSlide object, and line 12 uses the SelectAll method of the

Slides collection.

 ◆ Line 13 starts a nested For Each…Next loop that runs once for each of the objShape objects

in the ShapeRange object in the Selection object in the fi rst window using Windows(1).

The ShapeRange object contains all of the Shape objects within the selection. Here, the

Shape objects are represented by the objShape variable.

 ◆ Line 14 uses an If statement to see if the Type property of the current Shape object is

msoPlaceholder, the type that indicates a placeholder used for text. If the shape is a place-

holder, line 15 checks if the font size used in the TextRange object within the TextFrame

object within the Shape object is smaller than 14 points. If so, line 16 assigns the value

False to the CheckMinFontSize function, and line 17 uses an Exit Function statement to

stop execution of the function. This is because once a font smaller than the minimum per-

mitted size has been found, there is no need to check further.

 ◆ Line 18 contains the End If statement that ends the nested If structure, and line 19 con-

tains the End If statement that terminates the outer If structure.

 ◆ Line 20 contains the Next objShape statement that ends the nested For Each…Next loop,

and line 21 contains the Next objSlide statement that ends the outer For Each…Next loop.

CREATING A FUNCTION FOR ACCESS | 251

 ◆ Line 22 contains the End Function statement that ends the function. Line 23 is a spacer.

 ◆ Lines 24 through 28 contain a subroutine named Font_Check that runs the

CheckMinFontSize function on the ActivePresentation object. If the function returns

False, the subprocedure displays a message box alerting the user to the problem.

Creating a Function for Access
You can create functions for Access the same way you do for any other VBA-enabled Offi ce 2013

application—just type in the word Function and give this function a name.

However, Access often has special ways of programming, and it has several unique aspects

to its object model. The fi rst thing you’ll notice is a general-purpose object named DoCmd. This

object has no properties, but it has lots of methods that accomplish such common tasks as

launching other applications, locating records, and opening reports and forms.

Before we create a macro to illustrate how to use the DoCmd object, it’s necessary to have a lit-

tle database set up that you can experiment with. Access comes with several templates, so we’ll

use one of them. Follow these steps:

 1. Run Access.

 2. In Offi ce 2013, the various applications such as Word and Access display on startup a set

of common templates.

 3. Double-click Desktop Contacts to open that database template. (Don’t choose the Contacts

template, which includes online features that will complicate this example.)

 4. If you see a security warning message (a yellow strip below the Ribbon), click the Enable

Content button.

 5. Click Create. If you see an offer to watch some videos from Microsoft at this point, click

the x in the upper-right corner to close that window.

 6. Type in some random data by clicking the (New) link in the Open column on the left side,

as shown in Figure 10.5. A Contacts Details dialog box opens (not shown in the fi gure).

 7. Click the Save And New button in the Contact Details dialog box each time you add a

new contact. Add about three contacts.

Now you can use the DoCmd to locate a particular record by its ID number. Press Alt+F11 to

open the Visual Basic Editor in Access; then right-click the database name (it’s the one in bold-

face) in the Project Explorer. Choose Insert ➢ Module from the context menu. In your new mod-

ule, type the following code, which will move the insertion pointer to a new record:

1. Function MoveToNew()

2.

3. DoCmd.OpenForm ”Contact List”

4. DoCmd.GoToRecord , , acNewRec

5.

6. End Function

To test this macro, click somewhere in one of the existing records so the blinking insertion

cursor is located above the New record line. Then switch to the VBA Editor and click inside the

252 | CHAPTER 10 CREATING YOUR OWN FUNCTIONS

MoveToNew function to place the Editor’s cursor there. Press F5. Then go back to Access, and you

should see that the blinking cursor has moved to the New record.

Figure 10.5

Type in some

data—any data

will do—so you can

experiment with

Access’s DoCmd

object.

Here’s how the code works:

 ◆ Line 3 ensures that the correct form is open. Because you’ve just started working with this

Contacts database and fi lled in some information in the Contact List form, the correct form

is open and has the focus. However, it’s possible that later additional forms will be added.

It’s always a good idea to specify which form, table, or other object you want to work with.

You can’t assume that a macro will always be executed in a specifi c context (such as with

the correct form having the focus). In other words, if you omit line 3, this macro will act on

whatever form is currently open in Access.

 ◆ Line 4 employs the GoToRecord method of the DoCmd object. The acNewRec constant speci-

fi es a new, rather than an existing, record.

Th e Bottom Line

Understand the components of a function statement. Arguments can be passed from the

calling code to a function in one of two ways: by reference or by value.

Master It Describe the difference between passing data by reference and passing data

by value.

Create a generic function. You can write, and save (File ➢ Export File), sets of generic func-

tions that work in any VBA-enabled application.

THE BOTTOM LINE | 253

Master It Create a function that displays the current year in a message box. This func-

tion will require no arguments, nor will it return any value.

Create a function for Word. Word contains a whole set of objects and members unique

to word-processing tasks. Functions that are specifi c to Word employ one or more of these

unique features of the Word object model.

Master It Write a function that displays the number of hyperlinks in the currently ac-

tive document. Use Word’s Hyperlinks collection to get this information.

Create a function for Excel. Excel uses an ActiveWorkbook object to represent the currently

selected workbook. You can employ a full set of built-in methods to manipulate the features

of any workbook.

Master It Using the Sheets collection of Excel’s ActiveWorkbook object, write a func-

tion that displays the number of sheets in the current workbook.

Create a function for PowerPoint. PowerPoint’s object model includes an

ActivePresentation object, representing the currently selected presentation. Functions can

make good use of this object and its members.

Master It Write a function that returns how many slides are on a presentation. Pass the

ActivePresentation object as an argument to this function; then display the number of

slides the presentation contains. Call this function from a subroutine.

Create a function for Access. Access often works a little differently from other VBA-

enabled Offi ce applications. For example, some common tasks are carried out by using meth-

ods of the special DoCmd object rather than methods of a Form or Table object.

Master It Write a function that closes Access by using the DoCmd object’s Quit method.

Ensure that all data is saved by employing the acQuitSaveAll constant as an argument

for the Quit method.

c11.indd 08:21:35:PM 07/25/2013 Page 255

Chapter 11

Making Decisions in Your Code

Computers behave intelligently in large part because programming languages include com-

mands that test conditions. Then based on the results of that test, the code jumps (branches) to an

appropriate area within the program. This is similar to human decision-making: if it’s raining,

then take an umbrella. If not, leave it home.

This chapter covers what are called conditional expressions. VBA uses these to create decision

structures to direct the fl ow—the path of execution—of your procedures.

By using decision structures, you can cause your procedures to branch to different sections

of code depending on such things as the value of a variable or expression or whether the user

clicks the OK or Cancel button in a message box.

VBA offers two types of decision structures: If blocks and Select Case blocks. And there

is a set of various kinds of If statements suitable for making typical decisions. For more com-

plicated decision-making, you’ll want to use the heavy-duty Select Case block structure. It’s

more effi cient when working with truly involved decisions.

The chapter starts by introducing you to the comparison operators and logical operators you

can use when building conditional expressions and logical expressions. Then it covers the dif-

ferent types of If blocks, which take up the bulk of the chapter. At the end of the chapter, you’ll

learn how to use Select Case.

In this chapter you will learn to do the following:

 ◆ Use comparison operators

 ◆ Compare one item with another

 ◆ Test multiple conditions

 ◆ Use If blocks

 ◆ Use Select Case blocks

How Do You Compare Th ings in VBA?
To compare things in VBA, you use comparison operators to specify what type of comparison

you want: whether one variable or expression is equal to another, whether one is greater than

another, whether one is less than or equal to another, and so on.

VBA supports the comparison operators shown in Table 11.1.

256 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 256

Table 11.1: VBA’s comparison operators

Operator Meaning Example

= Equal to If strMyString=”Hello” Then

<> Not equal to If x <> 5 Then

< Less than If y < 100 Then

> Greater than If strMyString > ”handle” Then

<= Less than or equal

to

If intMyCash <= 10 Then

>= Greater than or

equal to

If Time >= 12:00 PM Then MsgBox ”It’s afternoon.”

Else MsgBox ”It’s morning.” End If

Is Is the same object

variable as

If Object1 Is Object2 Then

The fi rst six comparison operators shown in Table 11.1 are straightforward. Numeric expres-

sions are evaluated as you would expect. Alphabetical expressions are evaluated in alphabetical

order: for example, because ax comes before handle in alphabetical order, it’s considered “less

than” handle.
So, “ax” < “handle” would evaluate to True. And whether an evaluation results in True or

False determines what happens in an If. . . Then block. (In other words, the code in the Then

section is executed when something is True. And it is not executed if something is False. Think

If it’s raining, Then take an umbrella. Otherwise, don’t.)

Mixed expressions (numbers and letters) are evaluated in alphabetical order as well: Offi ce 97

is “greater than” Offi ce 2013 because 9 is greater than 2.

Is, the seventh comparison operator, is less familiar, and less often used. You use Is to

compare object variables to establish whether two object variables represent the same object (a

named object, not an object such as a document or a range).

For example, the following statements declare two objects—objTest1 and objTest2—and

assign to each ActiveDocument.Paragraphs(1).Range, the range consisting of the fi rst para-

graph in the active document in Word. The next statement then compares the two objects to each

other, returning False in the message box because the two objects are different even though

their contents are the same:

Dim objTest1 As Object

Dim objTest2 As Object

Set objTest1 = ActiveDocument.Paragraphs(1).Range

Set objTest2 = ActiveDocument.Paragraphs(1).Range

‘the next statement returns False because the objects are different

MsgBox objTest1 Is objTest2

However, if both object variables refer to the same object, the Is comparison returns True,

as in the following example, in which both objTest1 and objTest2 refer to the object variable

objTest3:

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 257

c11.indd 08:21:35:PM 07/25/2013 Page 257

Dim objTest1 As Object

Dim objTest2 As Object

Dim objTest3 As Object

Set objTest3 = ActiveDocument.Paragraphs(1).Range

Set objTest1 = objTest3

Set objTest2 = objTest3

‘the next statement returns True because

‘objTest1 and objTest2 refer to the same object

MsgBox objTest1 Is objTest2

When using Is, keep in mind that it isn’t the specifi c contents of the object variables that are

being compared, but which object they refer to.

Testing Multiple Conditions by Using Logical Operators
Often, you’ll need to test two or more conditions before taking an action: If statement X is True

and statement Y is True, then do this; if statement X is True or statement Y is True, then do the

other; if statement X is True and statement Y isn’t True, then fi nd something else to do; and so

on. For example, if it’s raining and you have a cold, put on your warmest rain gear.

To test multiple conditions, you use VBA’s logical operators to link the conditions together.

Table 11.2 lists the logical operators that VBA supports, with short examples and comments.

Table 11.2: VBA’s logical operators

Operator Meaning Example Comments

And Conjunction If ActiveWorkbook.FullName =

”c:\temp\Example.xlsm” And

Year(Date) >= 2005 Then

If both conditions are

True, the result is True. If

either condition is False,

the result is False.

Not Negation ActivePresentation.Saved = Not

ActivePresentation.Saved

Not reverses the value of x

(True becomes False;

False becomes True). Th e

Saved property used in

this example is Boolean.

Or Disjunction If ActiveWindow.View = wdPa-

geView Or ActiveWindow.View =

wdOutlineView Then

If either the fi rst condition

or the second is True, or if

both conditions are True,

the result is True.

XOr Exclusion If Salary > 55000 XOr

Experienced = True Then

Tests for diff erent results

from the conditions.

Returns True if one condi-

tion is False and the other

is True; returns False if

both conditions are True

or both conditions are

False.

258 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 258

Operator Meaning Example Comments

Eqv Equivalence If blnMyVar1 Eqv blnMyVar2 Then Tests for logical equiva-

lence between the two

conditions. If both values

are True, or if both values

are False, Eqv returns

True. If one condition is

logically diff erent from the

other (that is, if one condi-

tion is True and the other

is False), Eqv returns

False.

Imp Implication If blnMyVar1 Imp blnMyVar2 Then Tests for logical implica-

tion. Returns True if both

conditions are True, both

conditions are False, or

the second condition is

True. Returns Null if both

conditions are Null or if

the second condition is

Null. Otherwise, returns

False.

Of these six logical operators, you’ll probably use the conjunction (And), disjunction (Or), and

negation (Not) operators the most, with the other three thrown in on special (in other words,

rare) occasions. (If the Imp logical operator doesn’t make sense to you at this point, you probably

don’t need to use it.)

VBA Doesn’t Do Short-Circuit Evaluation

Here’s something to beware of when evaluating multiple conditions: VBA doesn’t do short-circuit

evaluation in logical expressions (unlike other programming languages, such as C and C++).

Short-circuit evaluation is the formal term for a simple logical technique most people use several

times a day when making decisions in their daily lives: If the fi rst of two or more dependent condi-

tions is false, you typically don’t waste time evaluating any other conditions contingent upon it.

For example, suppose your most attractive coworker says they’ll take you to lunch if you get the

product out on time and get a promotion. If you don’t get the product out on time, you’ve blown your

chances—it doesn’t much matter if you get the promotion because even if you do, your lunch will

still be that brown bag you forgot to put in the department fridge. Th ere’s no point in evaluating

the second condition because it depends on the fi rst, and the fi rst condition wasn’t met. You can

just short-circuit any further condition testing.

Table 11.2: VBA’s logical operators (continued)

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 259

c11.indd 08:21:35:PM 07/25/2013 Page 259

VBA doesn’t think that way. It evaluates the second condition (and any subsequent conditions)

whether or not it needs to. Evaluating all conditions takes a little more time (which isn’t usually

an issue), but it can introduce unexpected complications in your code (which can be an issue). For

example, the following snippet produces an error when the selection is only one character long.

Th e error occurs because the code ends up running the Mid function on a zero-length string (the

one-character selection minus one character)—even though you wouldn’t expect this condition to

be evaluated when the fi rst condition is not met (because the length of the selection is not greater

than 1):

Dim strShort As String

strShort = Selection.Text

If Len(strShort) > 1 And _

 Mid(strShort, Len(strShort) - 1, 1) = ”T” Then

 MsgBox ”The second-last character is T.”

End If

To avoid problems such as this, use nested If blocks. In the following code example, the fi rst condi-

tion isn’t met (again, for a one-character selection), so the second condition isn’t evaluated. Notice

that one of the If blocks here is nested within (contained within) the other If block:

If Len(strShort) > 1 Then

 If Mid(strShort, Len(strShort) - 1, 1) = ”T” Then

 MsgBox ”The second-last character is T.”

 End If

End If

Using Not to Toggle Boolean Properties

Here’s a useful tip. Th e Not command is a handy way of turning True to False and False to True.

By using Not with a Boolean variable or property, you can toggle the state of the variable or property

without even needing to check what the current state is. For example, in Excel, you could create

an If structure to toggle the value of the Boolean property Saved (which controls whether Excel

thinks the document in question contains unsaved changes) by using code such as this:

If ActiveWorkbook.Saved = True Then

 ActiveWorkbook.Saved = False

Else

 ActiveWorkbook.Saved = True

End If

But you can achieve the same toggling eff ect much more simply by using Not as shown in the fol-

lowing code:

ActiveWorkbook.Saved = Not ActiveWorkbook.Saved

If Blocks
As in most programming languages, If blocks in VBA are among the most immediately useful

and versatile commands for making decisions.

260 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 260

In the sections that follow, you’ll look at three variations on the If statement:

 ◆ If…Then

 ◆ If…Then… Else

 ◆ If…Then… ElseIf… Else

If…Th en
If…Then statements tell VBA to make the simplest of decisions. If the condition is met, execute

the following statement (or statements). If the condition isn’t met, skip to the line immediately

following the conditional block.

An If statement block begins with If and concludes with End If. (However, a short If…Then

statement can be written entirely on a single line, in which case the End If is omitted.)

Syntax

Simple If…Then statements can be expressed entirely on a single line. A one-line If…Then state-

ment looks like this:

If condition Then Code to be executed goes here

If the condition is met, VBA executes the statement or statements that follow on that same logi-
cal line. If the condition isn’t met, VBA doesn’t execute the statement or statements.

But you can also write multi-line If…Then blocks. A multiple-line If…Then statement (the

lines of code between If and End If are more properly known as a block) looks like this:

If condition Then

Code to be executed goes here

End If

If the condition is met, VBA executes all the code within the block (the statements enclosed

between the If and End If). If the condition isn’t met, VBA skips over the enclosed line or lines

of code and resumes execution at the line after the End If statement.

Single-Line If Statements Don’t Use End If

Remember that a single-line If…Then statement has no End If to end it, whereas the If block

requires an End If. VBA knows that a single-line If condition will end on the same line on which

it starts. But an If block needs to have its end clearly specifi ed so VBA knows which code to skip

over if the condition evaluates to False. If blocks tend to be easier for humans to read.

Examples

In the previous chapters, you’ve already encountered a number of If blocks—they’re so neces-

sary in programming (not to mention in life itself) that it’s hard to get anything done without

them. The following sections show you some further examples.

One-Line If Statements

Here’s an example of a one-line If statement:

Dim bytAge As Integer

bytAge = InputBox(”Enter your age.”, ”Age”)

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 261

c11.indd 08:21:35:PM 07/25/2013 Page 261

If bytAge < 21 Then MsgBox ”You may not purchase alcohol.”,, ”Underage”

The fi rst line declares the Integer variable bytAge. The second line prompts the user to enter

their age in an input box and stores the answer in the variable. The third line checks the value

held in bytAge and displays an Underage message box if bytAge is less than 21.

You can include multiple statements on a single line if you separate the statements by a colon.

A single-line If statement can sometimes be a good candidate for a multi-statement line of code.

What you are doing is specifying that more than one action should be taken if the expression in

the If…Then statement evaluates to True.

For example, let’s say you wanted to halt the macro after displaying the Underage message

box. You could include the End statement after a colon on the same line, as shown here:

If bytAge < 21 Then MsgBox ”You may not purchase alcohol.”,, ”Underage”: End

VBA executes this as follows:

 1. First, it evaluates the condition.

 2. If the condition is met, it executes the fi rst statement after Then—in this case, it displays

the Underage message box. Then it proceeds to execute any further statements on that

line. Notice that all statements on a single-line If structure are conditional based on

(depend on) that If statement. They are executed (or not) based on whether the condition

is true or false.

 3. Once the user has dismissed the Underage message box (by clicking the OK button, the

only button it has), VBA executes the statement after the colon: End.

If you wanted, you could even add several more statements on the same “logical” line, sepa-

rated by colons. End would have to be the last one because it ends the procedure. (By the way, a

logical line means that VBA sees this as a single line of code to be executed, no matter how many

real-world, physical lines the code takes up on your monitor.)

You could even add another If statement if you felt like it:

If bytAge < 21 Then If bytAge > 18 Then MsgBox _

 ”You may vote but you may not drink.”,, ”Underage”: End

As you’ll see if you’re looking at this line in the Visual Basic Editor, there are a couple of

problems with this approach:

 ◆ First, you need to break long lines of code with the line-continuation character or else they

go off the edge of the Code window in the Editor, forcing you to scroll horizontally to read

the ends of each line. You could hide all windows except the Code window, use a minute

font size for your code, or buy a larger monitor, but you’re probably still not going to have

any fun working with long lines of code. So, in practice, you don’t want to pile statements

onto a single code line. The brief End statement is probably the most you’ll want to add.

 ◆ Second, long lines of code (broken or unbroken) that involve a number of statements tend

to become visually confusing. Even if everything is obvious to you when you’re entering

the code, you may fi nd the code hard to read when you have to debug it a few months later.

Usually it’s better to use If blocks rather than complex one-line If statements.

If Blocks

Block If constructions work the same way as one-line If statements except blocks contain mul-

tiple lines—typically with one command to each line—and they require an End If statement

262 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 262

at the end. For example, the one-line If statement from the previous section could also be con-

structed as an If block like this:

If bytAge < 21 Then

 MsgBox ”You may not purchase alcohol.”,, ”Underage”

 End

End If

If the condition in the fi rst line (the line with the If command) is True, VBA executes the

statements within the block If. VBA displays the message box and then executes the End

statement.

As you can see from this example, If blocks are much easier to read (and thus easier to

debug) than one-line If statements. This is especially true when you nest If statements within

one another, which you’ll need to do fairly often.

To make If blocks easier to read, the convention is to press the Tab key to indent the lines

within the block (VBA ignores the indentation during execution). You can see this indentation in

the previous code example.

With short If blocks, like the ones shown in this section, indentation doesn’t make a great

deal of difference. But with complex If statements, it can make all the difference between clarity

and incomprehensibility, as you’ll see in “Nesting If Blocks” later in this chapter.

If…Th en… Else Statements
If…Then statements are good for taking a single course of action based on a condition, but often

you’ll need to decide between two courses of action. To do so, you use the If…Then… Else

statement.

By using an If…Then… Else statement, you can take one course of action if a condition is

True and another course of action if it’s False. It’s the equivalent of ordinary language, such as

If it’s raining, Then take an umbrella, Else wear sunscreen.

For example, If…Then… Else statements are a great way to deal with two-button message

boxes. If the user clicks the OK button, the code will do one thing. If they click the Cancel but-

ton, it will do something different.

Use If…Then… Else with Clear-Cut True/False Situations

Th e If…Then… Else statement is best used with clear-cut binary conditions—those that lend them-

selves to a true/false analysis. (Recall that a binary condition is like a two-position light switch—if

it’s not switched on, it must be switched off .) For more complex conditions, such as switches that

can have three or more positions, you need to use a more complex logical statement, such as If…

Then… ElseIf… Else or Select Case. We’ll get to these structures later in this chapter.

Syntax

The syntax for the If…Then… Else statement is as follows:

If condition Then

statements1

Else

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 263

c11.indd 08:21:35:PM 07/25/2013 Page 263

statements2

End If

If the condition is True, VBA executes statements1, the fi rst group of statements. If the condi-

tion is False, VBA moves execution to the Else line and executes statements2, the second group

of statements.

Again, you have the option of creating one-line If…Then… Else statements or block If…

Then… Else statements. However, it makes more sense to create block If…Then… Else state-

ments because they’re much easier to read and debug and because an If…Then… Else structure

is inherently longer than an If…Then structure and thus certain to result in an awkwardly

long line.

Example

As a straightforward example of an If…Then… Else statement, consider the Electronic_

Book_Critic procedure shown in Listing 11.1.

Listing 11.1: A Simple If…Then example

 1. Sub Electronic_Book_Critic()

 2.

 3. Dim intBookPages As Integer

 4.

 5. intBookPages = InputBox _

 (”Enter the number of pages in the last book you read.”, _

 ”The Electronic Book Critic”)

 6. If intBookPages > 1000 Then

 7. MsgBox ”That book is seriously long.”, vbOKOnly _

 + vbExclamation, ”The Electronic Book Critic”

 8. Else

 9. MsgBox ”That book is not so long.”, vbOKOnly _

 + vbInformation, ”The Electronic Book Critic”

10. End If

11.

12. End Sub

Here’s what happens in Listing 11.1:

 ◆ Line 1 starts the procedure, and line 12 ends it. Lines 2, 4, and 11 are spacers.

 ◆ Line 3 declares the Integer variable intBookPages. Line 5 then assigns to intBookPages

the result of an input box prompting users to enter the number of pages in the last book

they read.

 ◆ Line 6 checks to see if intBookPages is greater than 1000. If it is, the statement in line 7

runs, displaying a message box that states that the book is long.

 ◆ If intBookPages is not greater than 1000, VBA branches to the Else statement in line 8 and

executes the statement following it, which displays a message box telling the user that the

book wasn’t so long.

 ◆ Line 10 ends the If condition.

264 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 264

If…Th en… ElseIf… Else Statements
The last variation of the If command that you’ll look at here is the If… Then… ElseIf… Else

block, which you can use to help VBA decide between multiple courses of action. You can use

any number of ElseIf lines, depending on how complex the condition is that you need to check.

Again, you could create either one-line If… Then… ElseIf… Else statements or If… Then…

ElseIf… Else blocks. However, in almost all cases, If… Then… ElseIf… Else blocks are

easier to construct, to read, and to debug. As with the other If statements, one-line If… Then…

ElseIf… Else statements don’t need an End If statement, but If… Then… ElseIf… Else blocks

do need one.

Syntax

The syntax for If… Then… ElseIf… Else is as follows:

If condition1 Then

statements1

ElseIf condition2 Then

statements2

[ElseIf condition3 Then

statements3]

[Else

statements4]

End If

If the condition expressed in condition1 is True, VBA executes statements1, the fi rst block of

statements, and then resumes execution at the line after the End If clause. If condition1 is False,

VBA branches to the fi rst ElseIf clause and evaluates the condition expressed in condition2.

If this is True, VBA executes statements2 and then moves to the line after the End If line; if it’s

False, VBA moves to the next ElseIf clause (if there is one) and evaluates its condition (here,

condition3) in turn.

If all the conditions in the ElseIf statements prove False, VBA branches to the Else statement

(if there is one) and executes the statements after it (here, statements4). The End If statement then

terminates the conditional statement, and execution resumes with the line after the End If.

The Else clause is optional, although in many cases it’s a good idea to include it to let VBA

take a different course of action if none of the conditions specifi ed in the If and ElseIf clauses

turns out to be True.

You can have any number of ElseIf clauses in an If block, each with its own condition. But

if you fi nd yourself needing to use If statements with large numbers of ElseIf clauses (say,

more than 5 or 10), you may want to try using the Select Case command instead, which you’ll

look at toward the end of the chapter.

Examples

This section shows you two examples of If…Then… ElseIf… Else statements:

 ◆ A simple If…Then… ElseIf… Else statement for taking action based on which button the

user clicks in a three-button message box

 ◆ An If…Then… ElseIf statement without an Else clause

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 265

c11.indd 08:21:35:PM 07/25/2013 Page 265

A Simple If…Th en… ElseIf… Else Statement

A simple If…Then… ElseIf… Else statement, as used in Listing 11.2, is perfect for dealing with

a three-button message box.

Listing 11.2: Understanding the If…Then…ElseIf…Else structure

 1. Sub Creating_a_Document()

 2.

 3. Dim lngButton As Long

 4. Dim strMessage As String

 5.

 6. strMessage = ”Create a new document based on the ” & _

 ”VP Report project?” & vbCr & vbCr & _

 ”Click Yes to use the VP Report template.” & vbCr & _

 ”Click No to use a blank document.” & vbCr & _

 ”Click Cancel to stop creating a new document.”

 7.

 8. lngButton = MsgBox _

 (strMessage, vbYesNoCancel + vbQuestion, ”Create New Document”)

 9.

10. If lngButton = vbYes Then

11. Documents.Add Template:= ”z:\public\template\vpreport.dotm”

12. ElseIf lngButton = vbNo Then

13. Documents.Add

14. Else ‘lngButton is vbCancel

15. End

16. End If

17.

18. End Sub

The Creating_a_Document procedure in Listing 11.2 displays a Yes/No/Cancel message box

inviting the user to create a new document based on the VP Report project. The user can choose

the Yes button to create such a document, the No button to create a blank document, or the

Cancel button to cancel out of the procedure without creating a document at all.

Here’s what happens:

 ◆ Line 1 starts the procedure, and line 18 ends it.

 ◆ Line 2 is a spacer, after which line 3 declares the Long variable lngButton and line 4

declares the String variable strMessage. Line 5 is another spacer.

 ◆ Line 6 assigns to the String variable strMessage a long string that contains all the text for

the message box. Line 7 is another spacer.

 ◆ Line 8 displays the message box, using strMessage as the prompt, specifying the

vbYesNoCancel constant to produce a Yes/No/Cancel message box, and applying a suitable

266 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 266

title (Create New Document). It assigns the result of the message box to the Long variable

lngButton. Line 9 is a spacer.

 ◆ Line 10 starts the If…Then… ElseIf… Else statement, comparing the value of lngButton to

vbYes.

If line 10 matches, line 11 uses the Add method of the Documents object to create a new

document based on the vpreport.dotm template. If not, the ElseIf condition in line 12

is evaluated, comparing the value of lngButton to vbNo. If you run this procedure and

choose the Yes button in the message box, you will need to have a template named

vpreport.dotm in the folder z:\public\template\ for line 11 to run. If you don’t have

the template, you’ll get an error. Given that you’re unlikely to have this template, you

might want to change the path and fi lename to a template that you do have.

 ◆ If this second comparison matches, line 13 uses the Add method of the Documents object to

create a new blank document. If not, the Else statement in line 14 is activated because the

user must have chosen the Cancel button in the message box. The End statement in line 15

ends execution of the procedure.

 ◆ Line 16 ends the If statement. Line 17 is a spacer.

This example is a little unusual in that the Else statement is limited to three possible

branches because that’s the number of possible responses from a message box—Yes, No, and

Cancel.

Because the If statement checks for the vbYes response and the ElseIf statement checks for

the vbNo response, only the vbCancel response will trigger the Else statement.

In other circumstances, the Else statement can serve as a catchall for anything not caught

by the If and ElseIf statements above the Else, so you need to make sure the If and ElseIf

statements cover all the contingencies you want evaluated before the Else statement kicks in. So,

put the Else statement at the bottom of the block. For example, if you quiz the reader about the

colors of the US fl ag, you must provide If and ElseIf statements for red, white, and blue. If you

omit, for example, white (one of the possibilities), and the user types in white, your code will fall

through to the Else statement, which might display an incorrect message such as “The color

you entered is not on the fl ag.”

An If…Th en… ElseIf Statement without an Else Clause

You can use an If…Then… ElseIf statement without an Else clause when you don’t need to take

an action if none of the conditions in the If statement proves True. In the previous example,

the situation had three clearly defi ned outcomes: the user could choose the Yes button, the No

button, or the Cancel button in the message box. So you were able to use an If clause to test

whether the user chose the Yes button, an ElseIf clause to test whether the user chose the No

button, and an Else clause to test whether neither was chosen (meaning that the Cancel button

was chosen). (Clicking the close button [x] on the title bar of a message box is the equivalent of

choosing the Cancel button in the message box.)

As an example of a situation in which you don’t need to take action if no condition is True,

consider the If statement in the Check_Password procedure in Listing 11.3. This procedure

checks to ensure that the password a user enters to protect an item is of a suitable length.

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 267

c11.indd 08:21:35:PM 07/25/2013 Page 267

Listing 11.3: Taking no action when no condition is true

 1. Sub Check_Password()

 2.

 3. Dim strPassword As String

 4.

 5. BadPassword:

 6.

 7. strPassword = InputBox _

 (”Enter the password to protect this item from changes:”, _

 ”Enter Password”)

 8.

 9. If Len(strPassword) = 0 Then

10. End

11. ElseIf Len(strPassword) < 6 Then

12. MsgBox ”The password you chose is too short.” & vbCr _

 & vbCr & ”Please choose a password between ” & _

 ”6 and 15 characters in length.”, _

 vbOKOnly + vbCritical, ”Unsuitable Password”

13. GoTo BadPassword

14. ElseIf Len(strPassword) > 15 Then

15. MsgBox ”The password you chose is too long.” & vbCr _

 & vbCr & ”Please choose a password between ” & _

 ”6 and 15 characters in length.”,

 vbOKOnly + vbCritical, ”Unsuitable Password”

16. GoTo BadPassword

17. End If

18.

19. End Sub

This procedure forces users to enter an acceptable password. Here’s what happens:

 ◆ Line 1 starts the procedure, and line 19 ends it.

 ◆ Line 2 is a spacer, after which line 3 declares the String variable strPassword.

 ◆ Line 4 is a spacer. Line 5 contains a label, BadPassword, to which VBA will loop if the pass-

word the user enters proves to be unsuitable. Line 6 is another spacer.

 ◆ Line 7 displays an input box prompting the user to enter a password, which VBA stores in

the variable strPassword. Line 8 is a spacer.

 ◆ Line 9 checks strPassword to see if its length is zero, which means it’s an empty string.

This could mean that either the user clicked the Cancel button in the input box or the user

clicked the OK button without entering any text in the text box of the input box. Either of

these actions causes VBA to branch to line 10, where it executes the End statement that ends

execution of the procedure.

268 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 268

 ◆ If the length of strPassword isn’t zero (that is, the user has entered text into the text box of

the input box and clicked the OK button), the If clause in line 9 is False and VBA moves to

line 11, where it checks to see if the length of strPassword is less than 6 characters.

 ◆ If the length of strPassword is zero, VBA executes the code in lines 12 and 13. Line 12

displays a message box telling the user that the password is too short and specifying the

length criteria for the password. This message box contains only an OK button, so when

the user clicks it to continue, VBA continues with line 13, which returns execution to the

BadPassword label on line 5. From there the procedure repeats itself, redisplaying the input

box so that the user can try again.

 ◆ If the length of strPassword isn’t more than 15 characters, execution passes from line 11 to

the second ElseIf clause in line 14, where VBA checks to see if the length of strPassword

is more than 15 characters.

 ◆ If the length of strPassword is more than 15 characters, VBA executes the code in lines 15

and 16: Line 15 displays a message box (again, with only an OK button) telling the user that

the password is too long, and line 16 returns execution to the BadPassword label, again dis-

playing the input box.

There’s no need for an Else statement in this case because once the user has supplied a pass-

word that doesn’t trigger the If clause or either of the ElseIf clauses, execution moves out of

the If block and continues at the line after the End If statement.

Creating Loops with If and GoTo
So far in this book, you’ve seen several examples of For… Next loops and For Each… Next

loops. (Chapter 12, ”Using Loops to Repeat Actions,” shows you how to construct these types of

loops and other types, such as Do loops.) You can also create loops with If statements and the

GoTo statement, as you did in the last example.

Many teachers and programmers frown upon making loops with If and GoTo. It’s bad prac-

tice because If… GoTo loops can create “spaghetti code” (execution paths that jump around and

are hard to visualize). Such paths can be not only grotesque in themselves, but also a nightmare

to debug.

However, simple versions of If and GoTo loops can work perfectly well, so even if you choose

not to use this technique yourself, you should at least know how such loops work. Whether

or not to ban GoTo from your code is a matter of personal preference, company policy, or your

teacher’s beliefs.

If nothing else, you might one day be responsible for working with someone else’s code—

someone whose standards aren’t as rigorous as yours regarding the notorious GoTo command.

So let’s take a brief look at how GoTo can be used.

Syntax

The GoTo statement is straightforward, and can be useful—it’s already been used several times

in the examples you’ve looked at so far in this book (in Listings 7.2 and 9.2, for example). The

syntax is as follows:

GoTo line

Here, the line argument can be a line label (or, rarely these days, a line number) within the cur-

rent procedure.

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 269

c11.indd 08:21:35:PM 07/25/2013 Page 269

A line number is simply a number placed at the beginning of a line to identify it. For exam-

ple, consider this demonstration of GoTo:

Sub Demo_of_GoTo()

1

 If MsgBox(”Go to line 1?”, vbYesNo) = vbYes Then

 GoTo 1

 End If

End Sub

The second line here contains only the line number 1, which identifi es the line. The third line

displays a message box offering the choice of going back to line 1; if the user chooses the Yes

button, VBA executes the GoTo 1 statement and returns to the line labeled 1, after which it dis-

plays the message box again. (If the user chooses the No button, the If block is exited.)

However, it’s usually better to use a line label than a line number. A line label is a name for a

line. A label starts with a letter and ends with a colon. Between the letter and the colon, the label

can consist of any combination of characters. For example, earlier in this chapter you saw the

label BadPassword: used to loop back to an earlier stage in a procedure when certain conditions

were met. Perhaps the quintessential example of a label is the Bye: label traditionally placed at

the end of a procedure for use with this GoTo statement:

GoTo Bye

When this label is placed just above the End…Sub command, it simply exits the macro.

GoTo is usually used with a condition. If you use it without a condition to go back to a line

earlier in the code than the GoTo statement, you’re apt to create an infi nite loop (this bug is dis-

cussed in Chapter 12). And if you were to use the GoTo Bye statement without a condition, you

would guarantee that your procedure would stop executing—no statement after this line would

ever be executed. You would be jumping to the end of the macro.

Example

As an example of a GoTo statement with a condition, you might use a GoTo Bye statement

together with a message box that makes sure that the user wants to run a certain procedure:

Response = MsgBox(”Do you want to create a daily report for ” & _

 ”the head office from the current document?”, _

 vbYesNo + vbQuestion, ”Create Daily Report”)

If Response = vbNo Then GoTo Bye

If the user chooses the No button in the message box that the fi rst line displays, VBA executes

the GoTo Bye statement, branching to the Bye: label located at the end of the subroutine.

Nesting If Blocks
You can nest If blocks (put one inside another) as needed to manage any contortions required in

your code. Each nested If block must be complete in and of itself. (This means each nested block

must start with an If and conclude with its own End…If.)

For example, if you nest one If block within another If block (but forget the End If that con-

cludes the nested If), VBA assumes that the End If line for the outer If actually pairs with the

nested If. That’s so wrong.

270 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 270

To make your If blocks easy to read, indent them to different levels. This is particularly

important when nesting If blocks. Indenting provides you with visual cues, making it clear

which If line is paired with each End If line. In other words, indentation makes the various If

blocks stand out.

To see how this is done, check out the following nested If statements:

 1. If condition1 Then ‘start of first If

 2. If condition2 Then ‘start of second If

 3. If condition3 Then ‘start of third If

 4. statements1

 5. ElseIf condition4 Then ‘ElseIf for third If

 6. statements2

 7. Else ‘Else for third If

 8. statements3

 9. End If ‘End If for third If

10. Else ‘Else for second If

11. If condition5 Then ‘start of fourth If

12. statements4

13. End If ‘End If for fourth If

14. End If ‘End If for second If

15. Else ‘Else for first If

16. statements5

17. End If ‘End If for first If

By following the layout, you can easily trace the fl ow of execution. For example, if condition1

in line 1 is False, VBA branches to the Else statement in line 15 and continues execution from

there. If condition1 in line 1 is True, VBA evaluates the nested condition2 in line 2, and so on.

The indentation is for visual clarity only—VBA pays no attention to it—but it can be a great

help to the human reader. The previous nested If commands are also annotated with comments

so that you can see which Else, ElseIf, and End If line belongs with which If line. However,

with the indentation, commenting is unnecessary.

By contrast, check out the unindented version of these nested blocks. This version is hard for

the human eye to follow—and is even harder when it’s buried in a morass of other code:

 1. If condition1 Then

 2. If condition2 Then

 3. If condition3 Then

 4. statements1

 5. ElseIf condition4 Then

 6. statements2

 7. Else

 8. statements3

 9. End If

10. Else

11. If condition5 Then

12. statements4

13. End If

14. End If

15. Else ‘

16. statements5

17. End If

TESTING MULTIPLE CONDITIONS BY USING LOGICAL OPERATORS | 271

c11.indd 08:21:35:PM 07/25/2013 Page 271

There’s seldom a pressing need to nest multiple If blocks. Often, you’ll need only to nest a

simple If…Then statement within an If…Then… Else statement or within an If…Then… ElseIf…

Else statement. Listing 11.4 shows an example using Word.

Listing 11.4: Nesting an If…Then block

 1. Selection.HomeKey Unit:=wdStory

 2. Selection.Find.ClearFormatting

 3. Selection.Find.Style = ActiveDocument.Styles(”Heading 5”)

 4. Selection.Find.Text = ” ”

 5. Selection.Find.Execute

 6. If Selection.Find.Found Then

 7. lngResponse = MsgBox(”Make this into a special note?”, _

 vbOKCancel, ”Make Special Note”)

 8. If lngResponse = vbOK Then

 9. Selection.Style = ”Special Note”

10. End If

11. End If

The code in Listing 11.4 searches through the active document for the Heading 5 style and, if

it fi nds the style, displays a message box offering to make it into a special note by applying the

Special Note style. Here’s what happens:

 ◆ Line 1 starts by returning the insertion point to the beginning of the document.

 ◆ Line 2 clears formatting from the Find command (to make sure that it isn’t searching for

inappropriate formatting).

 ◆ Line 3 sets Heading 5 as the style for which the Find command is searching, and Line 4 sets

the search string as an empty string (” ”).

 ◆ Line 5 then runs the Find operation.

 ◆ Lines 6 through 11 contain the outer If…Then loop. Line 6 checks to see if the Find opera-

tion in line 5 found a paragraph in Heading 5 style. If it did, VBA runs the code in lines 7

through 10.

 ◆ Line 7 displays a message box asking if the user wants to make the paragraph into a special

note.

 ◆ Line 8 begins the nested If…Then statement and checks the user’s response to the message

box.

 ◆ If the user’s response is a vbOK—if the user chose the OK button—VBA executes the state-

ment in line 9, which applies the Special Note style (which I’ll assume is included in the

styles available to the current document or template) to the paragraph.

 ◆ Line 10 contains the End If statement for the nested If…Then block, and line 11 contains

the End If statement for the outer If…Then block.

If you expect a document to contain more than one instance of the Heading 5 style, use a Do

While… Loop loop to search for each instance. See Chapter 12 for details on Do While… Loop loops.

272 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 272

Select Case Blocks
The Select Case block provides an effective alternative to complex multiple If…Then blocks or

multiple ElseIf statements. Select Case combines the same decision-making capability of If

constructions with tighter and more readable code.

Use the Select Case statement when the decision you need to make is complicated because

it involves more than two or three different values that are being evaluated

Select Case blocks are easier to read than complex If…Then blocks, mostly because there’s

less code. This also makes Select Case blocks easier to modify: when you need to adjust one or

more of the values used, you have less code to wade through.

Syntax
The syntax for Select Case is as follows:

Select Case TestExpression

 Case Expression1

Statements1

 [Case Expression2

Statements2]

 [Case Else

StatementsElse]

End Select

Here’s how the syntax breaks down:

 ◆ Select Case starts the block, and End Select ends it.

 ◆ TestExpression is the expression that determines which of the Case statements executes.

 ◆ Expression1, Expression2, and so on are the expressions against which VBA matches

TestExpression.

For example, you might test to see which of a number of buttons in a user form the user

chose. The TestExpression would be tied to a button that’s been chosen; if it were the fi rst but-

ton, VBA would match that to Expression1 and would run the statements in the lines following

Case Expression1; if it were the second button, VBA would match that to Expression2 and

would run the statements in the lines following Case Expression2; and so on for the rest of the

Case blocks.

Case Else is similar to the Else clause in an If block. Case Else is an optional clause that

(if it’s included) runs if none of the given expressions is matched.

Example
As an example of a Select Case block, consider Listing 11.5, which prompts users to enter their

typing speed and then displays an appropriate response.

Listing 11.5: Working with a Select Case structure

 1. Sub Check_Typing_Speed()

 2.

 3. Dim varTypingSpeed As Variant

c11.indd 08:21:35:PM 07/25/2013 Page 273

SELECT CASE BLOCKS | 273

 4. Dim strMsg As String

 5.

 6. varTypingSpeed = InputBox _

 (”How many words can you type per minute?”, ”Typing Speed”)

 7. Select Case varTypingSpeed

 8. Case ” ”

 9. End

10. Case Is < 0, 0, 1 To 50

11. strMsg = ”please learn to type properly before ” & _

 ”applying for a job.”

12. Case 50 To 60

13. strMsg = ”Your typing could do with a little brushing up. ”

14. Case 60 To 75

15. strMsg = ”We are satisfied with your typing speed.”

16. Case 75 To 99

17. strMsg = ”Your typing is more than adequate. ”

18. Case 100 To 200

19. strMsg = ”You wear out keyboards with your blinding speed.”

20. Case Is > 200

21. strMsg = ”I doubt that’s true.”

22. End Select

23.

24. MsgBox strMsg, vbOKOnly, ”Typing Speed”

25.

26. End Sub

Here’s what happens in the Check_Typing_Speed procedure in Listing 11.5:

 ◆ Line 1 starts the procedure, and line 26 ends it.

 ◆ Line 2 is a spacer. Line 3 declares the Variant variable varTypingSpeed, and line 4 declares

the String variable strMsg. Line 5 is another spacer.

 ◆ Line 6 displays an input box prompting the user to enter their typing speed. It stores this

value in the variable varTypingSpeed.

 ◆ Line 7 begins the Select Case block, predicating it on the variable varTypingSpeed.

 ◆ Next, VBA evaluates each of the Case clauses in turn until it fi nds one that proves True.

The fi rst Case clause, in line 8, compares varTypingSpeed to an empty string (” ”) to see if

the user chose the Cancel button in the input box or clicked the OK button without entering

a value in the text box. If Case ” ” is True, VBA executes the End statement in line 9, ending

the procedure.

 ◆ If Case ” ” is False, VBA moves execution to the next Case clause—line 10 in this exam-

ple—where it compares varTypingSpeed to three items: less than 0 (Is < 0), 0, and the

range 1 to 50 words per minute. Notice three things here:

 1. You can include multiple comparison items in the same Case statement by separating

them from each other with commas.

274 | CHAPTER 11 MAKING DECISIONS IN YOUR CODE

c11.indd 08:21:35:PM 07/25/2013 Page 274

 2. Using the Is keyword with the comparison operator (here, the less than operator)

checks the relation of two numbers to each other.

 3. The To keyword denotes the range of values.

 ◆ If varTypingSpeed matches one of the comparison items in line 10, VBA assigns to the

String variable strMsg the text on line 11 and then continues execution at the line after

the End Select statement.

 ◆ If varTypingSpeed isn’t within this range, VBA moves to the next Case clause and evaluates

it in turn. When VBA fi nds a Case clause that’s True, it executes the statement following that

clause (in this case, assigning a text string to the strMsg variable) and then continues execu-

tion at the line after the End Select statement.

 ◆ For any case other than that in line 8 (which ends the procedure), line 24 displays a message

box containing the text stored in the statement strMsg.

A Select Case block can be a good way of specifying which action to take based on the

user’s choice from a ListBox or ComboBox control (these controls are explored in Chapter 14,

"Creating Simple Custom Dialog Boxes"). Typically, a list box or combo box displays a list of

many different options, such as all the states in the USA. After the user clicks to select an item

within a ListBox or ComboBox control, the chosen item appears in the control’s Value property.

Your macro could then check this Value property as the test expression in your Select Case

block and take action accordingly.

When Order Matters
One fi nal point about complex test structures. You need to ensure that your Select Case and

If…Then… Else statements (or other multiple If structures) evaluate their test conditions in the

appropriate order. This means that each condition to be evaluated must exclude all the conditions

that follow it.

Let’s say you’re asking the user how old they are. And you set up your test cases like this:

1. Age = InputBox (“How old are you?”)

2.

3. Select Case Age

4.

5. Case < 50

6. strMsg = “You’re nearing retirement.”

7.

8. Case < 12

9. strMsg = “Hello, youngster.”

This is a logic bug. And a bad one. Line 8 can never execute because everyone under 50,

including those younger than 12, will trigger line 5. (The expression “less than 50” includes

“less than 12.”)

To work properly, these tests must be reversed, like this:

Case < 12

 strMsg = “Hello, youngster.”

THE BOTTOM LINE | 275

c11.indd 08:21:35:PM 07/25/2013 Page 275

Case < 50

 strMsg = “You’re nearing retirement.”

You can avoid this problem entirely by testing for equality or a range, as illustrated in

Listing 11.5:

Case 50 To 60

Th e Bottom Line

Use comparison operators. Comparison operators compare items using such tests as greater
than or not equal to.

Master It Write a line of code that uses a less than comparison to test whether a variable

named Surplus is less than 1200.

Compare one item with another. You can compare strings using less than and more than

comparison operators.

Master It What symbol do you use to determine if VariableA is lower in the alphabet

than VariableB?

Test multiple conditions. To test multiple conditions, you use VBA’s logical operators to link

the conditions together.

Master It Name two of the most commonly used logical operators.

Use If blocks. If blocks are among the most common programming structures. They are

often the best way to allow code to make decisions. To test two conditions, use If… Else…

EndIf.

Master It Write an If… Else… End If block of code that displays two message boxes.

If the temperature (the variable Temp) is greater than 80, tell the user that it’s hot outside.

Otherwise, tell the user that it’s not that hot.

Use Select Case blocks. Select Case structures can be a useful alternative to If blocks.

Master It When should you use a Select Case structure?

c11.indd 08:21:35:PM 07/25/2013 Page 276

c12.indd 08:22:4:PM 07/25/2013 Page 277

Chapter 12

Using Loops to Repeat Actions

As in life, so in macros. Sometimes, you’ll want to repeat an action a predetermined number of

times: break six eggs to make an omelet, or create two new documents.

More often, though, you’ll just repeat an action until a certain condition is met: break eggs

until the pan is full, or buy two lottery tickets a week until you hit it big, or subtract fi ve from

every instance of a value in an Excel spreadsheet. In these situations, you don’t know in advance

when you’ll triumph against the wretched odds of the lottery, or how many times the value will

appear in the spreadsheet—your code must simply carry on until the condition is met.

In VBA, you use loops to repeat actions. VBA provides a number of ways to use loops in your

code. In this chapter, you’ll learn about the different types of loops and typical uses for each.

In this chapter you will learn to do the following:

 ◆ Understand when to use loops

 ◆ Use For… loops for fi xed repetitions

 ◆ Use Do… loops for variable numbers of repetitions

 ◆ Nest one loop within another loop

 ◆ Avoid infi nite loops

When Should You Use a Loop?
To repeat an action or a series of actions in VBA, you could record the repetition itself into

a macro by using the Macro Recorder (if the application you’re using supports the Macro

Recorder—remember that only Word and Excel do).

Or you could copy some code and paste it back into the macro multiple times to repeat the

behavior. For example, you could record a macro containing the code for creating a new Word

document based on the default template, open the macro in the Visual Basic Editor, and then

copy this new-document code and paste it fi ve times to create a procedure that makes six new

documents.

It’s almost always much better, however, to just write a loop block (structure) to repeat the

commands as necessary.

Loops have several straightforward advantages over repetitive, redundant code:

 ◆ Your procedures are shorter—they contain less code and fewer instructions—and are thus

easier to understand.

 ◆ Your procedures are more fl exible: instead of hard-coding the number of repetitions, you

can vary the number as necessary. (Hard-coding means writing fi xed code as opposed to

278 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 278

fl exible, variable code, such as Create 6 new documents versus Create x number of new docu-
ments, thereby allowing the user or the code to supply the value of x.)

 ◆ Your procedures are easier to test, debug, and modify, particularly for people other than you.

That said, if you just need to repeat one or more actions two or three times in a procedure

and that procedure will always need to repeat the action this same number of times, there’s

nothing wrong with hard-coding the procedure by repeating the code. It’ll work fi ne, it’s easy to

do, and you won’t have to spend time considering the logic of loops. The code will be longer and

a tad harder to maintain, but that’s no big deal in simple situations.

Understanding the Basics of Loops
In VBA, a loop is a structure (block of code) that repeats a number of statements, looping back to

the beginning of the structure once it has fi nished executing them. Each cycle of execution of a

loop is called an iteration.

There are two basic categories of loops:

 ◆ Fixed-iteration loops repeat a set number of times (six eggs).

 ◆ Indefi nite loops repeat a fl exible number of times (enough eggs to fi ll whatever pan is being

used).

The execution of either type of loop is controlled by the loop invariant, also called the loop

determinant. This can be either a numeric expression or a logical expression. Fixed-iteration loops

typically use numeric expressions, whereas indefi nite loops typically use logical expressions.

For example, a fi xed-iteration loop might specify that the loop will iterate fi ve times, while an

indefi nite loop might continue iterating until the end of a document is reached.

Table 12.1 explains the types of loops that VBA provides.

Table 12.1: VBA’s loop types

Loop Type Explanation

For…Next Fixed Repeats an action or a sequence of actions a given number of times.

For Each…

Next

Fixed Repeats an action or a sequence of actions once for each object in a VBA

collection.

Do While…

Loop

Indefi nite Performs an action or a sequence of actions if a condition is True and

continues to perform it until the condition becomes False.

While… Wend Indefi nite Performs an action or a sequence of actions if a condition is True and

continues to perform it until the condition becomes False. Th is type of

loop is similar to Do… Loop While but is now almost obsolete.

Do Until…

Loop

Indefi nite Performs an action or sequence of actions while a condition is False and

continues to perform it until the condition becomes True.

c12.indd 08:22:4:PM 07/25/2013 Page 279

USING FOR…LOOPS FOR FIXED REPETITIONS | 279

Loop Type Explanation

Do… Loop

While

Indefi nite Performs an action or a sequence of actions once and then repeats it

while a condition is True until it becomes False.

Do… Loop

Until

Indefi nite Performs an action or a sequence of actions once and repeats it while a

condition is False until it becomes True.

Using For…loops for Fixed Repetitions
For…loops execute for a fi xed number of times. For…Next loops repeat for the number of times

of your choosing, while For Each… Next loops execute once for each element in a specifi ed VBA

collection.

For…Next Loops
A For…Next loop repeats an action or a sequence of actions a given number of times. How many

times it loops is specifi ed by a counter variable. The counter variable can be hard-coded into the

procedure, passed from an input box or dialog box, or passed from a value generated either by a

different part of the procedure or by a different procedure.

Syntax

The syntax for For…Next loops is as follows:

For counter = start To end [Step stepsize]

 [statements]

[Exit For]

 [statements]

Next [counter]

Here’s what happens in a For…Next loop (refer to the syntax):

 1. When VBA enters the loop at the For statement, it assigns the start value to counter. It then

executes the statements in the loop. When it reaches the Next statement, it increments

counter by 1 or by the specifi ed stepsize and loops back to the For statement.

 2. VBA then checks the counter variable against the end variable. When stepsize is positive,

if counter is greater than end, VBA terminates the loop and continues execution of the

procedure with the statement immediately after the Next statement (which could be any

action or the end of the procedure). If counter is less than or equal to end, VBA repeats

the statements in the loop, increases counter by 1 or by stepsize, and loops back to the For

statement again. (For a loop in which stepsize is negative, the loop continues while counter

is greater than or equal to end and ends when counter is equal to or less than end. In other

words, when the stepsize is negative, the loop counts down rather than up.)

 3. The Exit For statement exits the For...loop early. You’ll look at how to use the Exit

For statement, and examples of the different uses of For…Next loops, later in this chapter.

Table 12.1: VBA’s loop types (continued)

280 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 280

Table 12.2 explains the components of the For…Next loop syntax. As usual, brackets enclose

optional items and italicized words are placeholders—elements in the code that are to be

replaced by you, the programmer.

Table 12.2: Components of the syntax for a For…Next loop

Component Description

Counter A numeric variable or an expression that produces a number. By default, VBA

increases the counter value by an increment of 1 with each iteration of the loop, but

you can change this increment by using the optional Step keyword and stepsize argu-

ment. counter is required in the For statement and is optional in the Next statement,

but it’s a good idea to also include counter in the Next statement to make your code

easy to read. Th is is particularly important when you’re using multiple For…Next

statements in the same procedure or nesting one For…Next statement within another.

Start A numeric variable or numeric expression giving the starting value for counter.

End A numeric variable or numeric expression giving the ending value for counter.

Stepsize A numeric variable or numeric expression specifying how much to increase or decrease

the value of counter. To use stepsize, use the Step keyword and specify the stepsize vari-

able. stepsize is 1 by default, but you can use any positive or negative value.

Exit For A statement for exiting a For...loop.

Next Th e keyword indicating the end of the loop. Again, you can specify the optional counter

here to make your code clear.

Straightforward For…Next Loops

In a simple For…Next loop, you fi rst specify a counter variable and the starting and ending val-

ues for it:

Dim i As Integer

For i = 1 to 200

Here, i is the counter variable, 1 is the starting value, and 200 is the ending value. Because

VBA by default increases the counter variable by 1 with each iteration of the loop, the counter

variable in this example will count 1, 2, 3, and so on up to 200. Once the loop iterates enough

times so the value in counter is 201, the looping ends and execution continues in the line below

the loop’s End statement.

You can also use the Step keyword to specify a different increment, either positive or nega-

tive; more on this in the next section.

USING FOR…LOOPS FOR FIXED REPETITIONS | 281

c12.indd 08:22:4:PM 07/25/2013 Page 281

i Is the Traditional Counter Variable Name for for…next Loops

i is the classic integer counter variable used in a For…Next loop; after using i, the convention is

to use j, k, l, m, and n for any subsequent counter variables (if you’re adding nested loops within in

i loop). Th ese short variable names derive from the days of key-card computation, when memory

was at a premium and longer names represented a signifi cant extravagance. Th ese days, computer

memory is abundant, so using long variable names is common practice for most variables. But not

with loop counters. Using i as the loop counter is pervasive, even in languages like Java and C++.

So stick with i.

After the previous two statements (Dim and For), you specify whatever actions you want car-

ried out within the loop, followed by the Next keyword to end the loop:

Application.StatusBar = _

 “Please wait while Excel checks for nonuniform prices: “ & i & “...“

Next i

This code displays (on the status bar) Excel’s progress in checking your spreadsheet for improb-

able values.

As another example, say you need to check every paragraph in Word documents you receive

from contributors to make sure there’s no unsuitable formatting. By using a loop that runs from

1 to the number of paragraphs in the active document, you can check each paragraph in turn

and let the user view the progress in the status bar. The number of paragraphs in a document is

stored in the Count property of the Paragraphs collection in the ActiveDocument object:

Dim i As Integer

For i = 1 To ActiveDocument.Paragraphs.Count

 ‘CheckParagraphForIllegalFormatting

 DoEvents

Application.StatusBar = _

 “Please wait while Word checks the formatting in “ _

 & “ this document: Paragraph “ & i & “ out of “ _

 & ActiveDocument.Paragraphs.Count & “...“

Selection.MoveDown Unit:=wdParagraph, _

 Count:=1, Extend:=wdMove

Next i

This code snippet executes a CheckParagraphForIllegalFormatting procedure. We’ve not

yet written this procedure, so I just wrote a comment line indicating that the procedure needs to

be called from inside this loop.

Next we use the DoEvents command. This allows multitasking. It interrupts the loop to

see if something else is going on in the computer (the user typing something, the status bar

282 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 282

in Word being updated, or whatever). This prevents your loop from hogging the computer’s

microprocessor.

Then the loop continues executing. The message is displayed in the status bar, indicating which

paragraph out of the total number it’s working on, and then the loop moves down a paragraph.

When VBA reaches the Next statement, it increases the i counter by the default value, 1 (because no

stepsize variable is specifi ed in the For statement) and loops back to the For statement, where it com-

pares the value of i to the value of ActiveDocument.Paragraphs.Count. The procedure continues

to loop until i has reached the value of ActiveDocument.Paragraphs.Count, which is the fi nal

iteration of the loop. Notice here how the counter variable is used twice: fi rst to keep track of the

loop’s iterations, but it’s also used later within the loop to display the current paragraph number:

Paragraph ″ & i &

In a similar way you could use a simple For…Next loop to quickly build the structure of a

timesheet or work log in Excel. The following statements use a For…Next loop to insert the labels

1.00 through 24:00 in the current column in the active sheet of the active workbook:

Dim i As Integer

For i = 1 To 24

 ActiveCell.FormulaR1C1 = i & “:00“

 ActiveCell.Offset(RowOffset:=1, ColumnOffset:=0).Select

Next i

Here, the ActiveCell.FormulaR1Ci statement inserts the automatically increased

string for the counter i together with a colon and two zeroes (to create a time format). The

ActiveCell.Offset(RowOffset:=1, ColumnOffset:=0).Select statement selects the cell in

the next row and the same column. The loop runs from i = 1 to i = 24 and stops when the

automatic increase takes i to 25. Again, the counter variable is used within the loop. This is

quite common.

For…Next Loops with Step Values

If increasing the counter variable by the default 1 doesn’t suit your purpose, you can use the

Step keyword to specify a different increment or decrement.

For example, the following statement increases the counter variable by 20, so the sequence is 0,

20, 40, 60, 80, 100:

For i = 0 to 100 Step 20

You can also decrement by specifying a negative Step value:

For i = 1000 to 0 Step -100

This statement produces the sequence 1000, 900, 800, and so on, down to 0.

Instead of the “x out of y” countdown given in the example in the previous section, you could

produce a countdown running from ActiveDocument.Paragraphs.Count to zero:

Dim i As Integer

For i = ActiveDocument.Paragraphs.Count To 0 Step -1

 CheckParagraphForIllegalFormatting

 Application.StatusBar = _

 “Please wait while Word checks the formatting in this document: “ & i

USING FOR…LOOPS FOR FIXED REPETITIONS | 283

c12.indd 08:22:4:PM 07/25/2013 Page 283

 Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdMove

Next i

Using an Input Box to Drive a For…Next Loop

Sometimes you’ll be able to hard-code the number of iterations into a For…Next loop (six

eggs). You’ll know the number of iterations when writing your code, so you can just type in the

end condition number, like the 100 here:

For i = 0 to 100

Other times, though, you can’t know in advance how many loop iterations are needed. This

information only becomes available during program execution (called runtime) rather than when

you’re writing the code (called design time).
Often you’ll take a number from another operation during execution, such as the

ActiveDocument.Paragraphs.Count property in the previous example.

You want to use this macro with many documents in the future. The number of paragraphs

in various documents is different; it varies. So you can’t know when writing your code how

many times it should loop. Your macro itself has to gather that information at runtime.

Frequently you ask the user to specify the number of loop repetitions. The easiest way of

doing this is to display an input box, requesting the user to enter a value.

For example, Listing 12.1 contains a simple procedure named CreatePresentations that

displays an input box prompting users to enter the number of presentations they want to create.

It then uses a For…Next loop to create the documents in PowerPoint.

Listing 12.1: Letting the user specify the number of iterations

1. Sub CreatePresentations()

2. Dim intPresentations As Integer

3. Dim i As Integer

4. intPresentations = InputBox _

 (“Enter the number of presentations to create:“, _

 “Create Presentations“)

5. For i = 1 To intPresentations

6. Presentations.Add

7. Next i

8. End Sub

Here’s what happens in the CreatePresentations procedure in Listing 12.1:

 ◆ Line 2 declares the Integer variable intPresentations, and line 3 declares the Integer

variable i.

 ◆ Line 4 displays an input box prompting users to enter the number of presentations they

want to create.

 ◆ Lines 5 through 7 contain a For…Next loop that runs from i = 1 to i = intPresentations with

the default increment of 1 per iteration. Each iteration of the loop executes the Presentations.

Add statement in line 6, creating a new presentation based on the default template.

284 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 284

Control a For…Next Loop with User Input via a Dialog Box

An input box returns only a single value. Sometimes you need multiple values from the user. So, for

those occasions when an input box won’t suffi ce, you can easily get input from a dialog box to drive

a For…Next loop. Th is book hasn’t yet shown you how to create dialog boxes, but in this section

you’ll get a sneak preview by looking at a procedure named Create_Folders. You aren’t expected

to build and test this example; just read the code to get an idea of how it accepts user input and

then employs that information in the loop.

Th is example procedure reduces the tedium of creating multiple folders with predictable names,

such as when I had to create 31 folders, a folder for each chapter in this book.

Say that you’re using a four-digit number to identify the project, the letter s for section, and a

two-digit number to identify the section. So you’d end up with folders named 1234s01, 1234s02,

1234s03, and so on—simple enough to create manually, but tedious if you need more than a dozen

or so.

In its simplest form, this dialog box would provide a text box for the number of folders to be cre-

ated (though you could also use a drop-down list for this, or even a spinner control) and a text box

for the project number. Th e following illustration is an example of how this dialog box might look.

USING FOR…LOOPS FOR FIXED REPETITIONS | 285

c12.indd 08:22:4:PM 07/25/2013 Page 285

You display a dialog box by using the Show method in a separate macro, perhaps using a Load

statement fi rst, like this:

Sub makefolders()

 Dialogs(wdDialogFileSaveAs).Show

 Load frmCreateFolders

 frmCreateFolders.Show

End Sub

You might have noticed the Dialogs command in this code. It’s quite useful, but we’ll discuss it at

the end of this sidebar. For now, our focus is on looping techniques.

I named the example dialog box frmCreateFolders. However, any valid VBA name will work. Th e

fi rst text box—identifi ed with the Number Of Folders To Create label—is named txtFolders; the

second text box is named txtProjectNumber.

Th e Cancel button here has an End statement attached to its Click event so that if the user clicks

it, VBA ends the procedure:

Private Sub cmdCancel_Click()

 End

End Sub

Th e OK button in the dialog box has the following code attached to its Click event:

 1. Private Sub cmdOK_Click()

 2.

 3. Dim strMsg As String

 4. Dim strFolder As String

 5. Dim i As Integer

 6.

 7. frmCreateFolders.Hide

 8. Unload frmCreateFolders

 9. strMsg = “The Create_Folders procedure has created “ _

 & “the following folders: “ & vbCr & vbCr

10.

11. For i = 1 To txtFolders.Value

12. strFolder = txtProjectNumber.Value & “p“ & Format(i, “0#“)

13. MkDir strFolder

14. strMsg = strMsg & “ “ & strFolder & vbCr

15. Next i

16.

17. MsgBox strMsg, vbOKOnly + vbInformation, _

 “Create Folders“

18.

19. End Sub

286 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 286

Let’s pause here a minute for a pep talk. You might read the preceding code and say, “Hey! I’ll never

be able to remember all this stuff about Format and Hide and vbCr and vbOKOnly.” Don’t pout.

Nobody memorizes all the variations of the Format command, or all the vb constants like vbCr.

Remember, there are tons of sample code examples on the Internet and in books like this one.

What’s more, the VBA Editor itself displays lists of constants and object members as you type in

a line of code. (Look up “Auto List Members” in this book’s index. Or search the VBA Editor’s Help

index to locate online resources.)

Now back to our regular programming. Notice that the Value properties of the two text boxes are used

in this loop. Th e value in txtFolders specifi es the loop’s number of iterations. Th e txtProjectNumber

specifi es the fi rst part of the name for each newly created folder.

Th e cmdOK_Click procedure runs when the user clicks the OK button in the dialog box:

 ◆ Line 1 declares the cmdOK_Click subroutine, and line 19 ends it. Line 2 is a spacer.

 ◆ Line 3 declares the String variable strMsg, which is used to contain a string to display in a

message box at the end of the procedure.

 ◆ Line 4 declares the String variable strFolder, which will contain the name of the current

folder to create in each iteration of the loop.

 ◆ Line 5 declares the Integer variable i, which will be the counter variable for the For…Next loop.

 ◆ Line 6 is a spacer.

 ◆ Line 7 hides frmCreateFolders.

 ◆ Line 8 unloads frmCreateFolders from memory.

 ◆ Line 9 assigns some introductory text to strMsg, ending it with a colon and two vbCr carriage-

return characters to make the start of a list.

 ◆ Line 10 is a spacer.

 ◆ Lines 11 through 15 contain the For…Next loop that creates the folders. Line 11 causes the

loop to run from i = 1 to i = txtFolders.Value, the value supplied by the user in

the Number Of Folders To Create text box. Line 12 assigns to the strFolder String variable the

Value property of the txtProjectNumber text box, the letter p, and the value of i formatted

via the Format function to include a leading zero if it’s a single digit (so that 1 will appear as

01, and so on). Line 13 uses the MkDir command with strFolder to create a folder (that is,

make a directory—the old DOS command mkdir lives on in VBA) of that name. Line 14 adds

some spaces (for an indent), the contents of strFolder, and a vbCr character to strMsg. Line

15 then loops back to the For statement, incrementing the i counter. VBA then compares the

i counter to txtFolders.Value and repeats the loop as necessary.

Th is procedure creates a set of new subfolders within whatever is the current folder, without giv-

ing the user a choice of location. Chances are you won’t want to do this in real-life situations. You

might want to change a folder to a set location (so as to keep all the project fi les together), but more

likely you’ll want to let the user choose a suitable location—for example, by displaying a common

dialog box, such as the Save As dialog box used by most Windows applications. Th ese built-in dialog

boxes can be very useful because everyone who uses Windows is familiar with them and because

they contain quite a bit of functionality. You display, for example, the classic Windows SaveAs

dialog box like this:

Dialogs(wdDialogFileSaveAs).Show

USING FOR…LOOPS FOR FIXED REPETITIONS | 287

c12.indd 08:22:4:PM 07/25/2013 Page 287

When the user closes this dialog box, whatever folder the user specifi es becomes the current folder

and the document is automatically saved. You can fi nd out more about how to use common dialog

boxes in Chapter 14, “Creating Simple Custom Dialog Boxes,” and also at this Microsoft web page:

http://msdn.microsoft.com/en-us/library/bb208857.aspx

I wanted you to be aware that common dialog boxes exist, but in this example, perhaps a more

direct way of allowing the user to specify the path for the new directories would be to use the ChDir

(change directory) command, like this:

Dim strDir As String

strDir = InputBox(“Type the full path where you want new folders to be stored”)

ChDir (strDir)

For Each… Next Loops
The For Each… Next loop, which is unique to the various versions of Visual Basic, includ-

ing VBA, is similar to the For…Next loop. With For Each, however, the iterations are based

on the number of objects in a collection, such as the Slides collection in a presentation or the

Documents collection of Word documents. So, using For Each means that you, the programmer,

don’t necessarily know the number of loop iterations in advance, but VBA will know during

execution because it will query an object’s Count property.

For example, you can choose to take an action for each Slide object in a presentation. During

design time while writing your macro you don’t need to know how many slides are in the col-

lection. (If there are none, nothing happens.)

Syntax

The syntax for the For Each… Next statement is straightforward:

For Each object In collection

 [statements]

 [Exit For]

 [statements]

Next [object]

VBA starts by evaluating the number of objects in the specifi ed collection. It then executes the

statements in the loop for the fi rst of those objects. When it reaches the Next keyword, it loops

back to the For Each line, reevaluates the number of objects, and performs further iterations as

appropriate.

Here’s an example: The Documents collection contains the open documents in Word. So you

could create a straightforward procedure to close all the open documents by using a For Each…

Next loop like this:

Dim Doc As Document

For Each Doc in Documents

 Doc.Close SaveChanges:=wdSaveChanges

Next

http://msdn.microsoft.com/en-us/library/bb208857.aspx

288 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 288

VBA closes each open document in turn by using the Close method. The statement uses the

wdSaveChanges constant for the SaveChanges argument to specify that any unsaved changes in

the document be saved when the document is closed. As long as there are open documents in

the Documents collection, VBA repeats the loop, so it closes all open documents and then termi-

nates the procedure.

This example provides a straightforward illustration of how a For Each… Next loop works,

but you probably wouldn’t want to use the example in practice. Instead, you’d probably use the

Close method with the Documents collection (this collection contains all the open documents)

to close all the open documents. It’s a simpler approach. However, you might use a For Each…

Next loop to check each document for certain characteristics before closing it.

Using an Exit For Statement
As you saw earlier in this chapter when looking at the syntax for For statements, you can use

one or more Exit For statements to exit a For...loop if a certain condition is met. Exit For

statements are optional and are seldom necessary. If you fi nd yourself needing to use Exit

For statements in all your procedures, there’s probably something wrong with the way you’re

constructing your loops. That said, you may sometimes fi nd Exit For statements useful—for

example, to respond to an error that happens within a loop or if the user chooses to cancel a

procedure.

On those occasions when you do need Exit For statements to exit a loop early, you’ll typi-

cally use them with straightforward conditions. For example, in Word, if you wanted to close

open windows until you reached a certain document that you knew to be open, you could use

an Exit For statement like this:

Dim Doc As Document

For Each Doc in Documents

 If Doc.Name = “Document1“ Then Exit For

 Doc.Close

Next Doc

This For Each… Next statement checks the Name property of the document to see if it’s

Document1; if it is, the Exit For statement causes VBA to exit the loop. Otherwise, VBA closes

the document and returns to the start of the loop.

Use Multiple Exit For Statements If You Wish

You can also use multiple Exit For statements if you need to. For example, you might need to

check two or more conditions during the actions performed in the loop.

Using Do… Loops for Variable Numbers of Repetitions
Do loops give you more fl exibility than For…loops in that you can test for conditions and direct

the fl ow of the procedure accordingly. VBA includes several types of Do loops:

 ◆ Do While… Loop

 ◆ Do… Loop While

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 289

c12.indd 08:22:4:PM 07/25/2013 Page 289

 ◆ Do Until… Loop

 ◆ Do… Loop Until

These loops break down into two categories:

 ◆ Loops that test a condition at the start of the loop, before executing any of the statements

contained inside the loop. Do While… Loop and Do Until… Loop loops fall into this cat-

egory. In other words, if the test fails, the loop’s code within the loop block will not execute

even once.

 ◆ Loops that test a condition at the end of the loop. This type of loop executes the code within

the loop block before testing a condition. Do… Loop While and Do… Loop Until fall into

this category. This type of loop will execute at least one time.

The difference between the two types of loop in each category is that each While loop repeats

itself while a condition is True (until the condition becomes False), whereas each Until loop

repeats itself until a condition becomes True (while the condition remains False).

This means that you can get by to some extent using only the While loops or only the Until

loops—you’ll just need to set up some of your conditions the other way around. For example,

you could use a Do While… Loop loop with a condition of x < 100 or a Do Until… Loop loop

with a condition of x = 100 to achieve the same effect. Put another way: loop while x is less than

100 is equivalent to loop until x = 100—as long as you start looping below 100.

The following sections describe all the different kinds of Do loops so that you can know when

to use each.

Do While… Loop Loops
In a Do While… Loop loop, you specify a condition that has to remain True for the actions (state-

ments) inside the loop to be executed. If the condition isn’t True, the actions aren’t executed and

the loop ends. When a loop ends, the code below the loop block then executes.

For example, you might want to search a document for an instance of a particular word or

phrase and take action after you fi nd it. Figure 12.1 shows a Do While… Loop loop.

Figure 12.1

A Do While… Loop

loop tests for a

condition before

performing the

actions contained

in the loop.

Start

Do While Condition

True

Statements

Loop

End

False

290 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 290

Syntax

The syntax for the Do While… Loop loop is straightforward:

Do While condition

 [statements]

 [Exit Do]

 [statements]

Loop

While the condition is met (Do While the condition remains True), the statements in the loop

are executed. The Loop keyword returns execution to the Do While line, which is then reevalu-

ated. If the condition is still True, the loop continues—it iterates again.

However, if the condition is False, execution jumps to the code below the loop block, starting

with the statement on the line after the Loop keyword.

You can use one or more optional Exit Do statements if you want to exit the loop without

waiting until the condition turns False.

Say you wanted to construct a glossary from a lengthy Word document that highlights the

main terms by italicizing them. These terms are located in the body text as well as within bul-

leted or numbered lists. However, you want to avoid picking up italicized terms used in other

elements of the document, such as headings or captions. In this situation, body text is in the

Times New Roman font, but the captions and headlines are in other fonts.

You could command Word to search for Times New Roman text with the italic attribute. If

Word found instances of the text, it would take the appropriate actions, such as selecting the

sentence containing the term, together with the next sentence (or the rest of the paragraph), and

copying it to the end of another document. Then it would continue the search, performing the

loop until it no longer found instances of italic Times New Roman text.

Listing 12.2 shows an example of how such a procedure might be constructed with a Do

While… Loop structure. This listing includes a number of commands that you haven’t learned

about yet, but you should easily be able to see how the loop works.

Listing 12.2: Understanding how Do While works

 1. Sub GenerateGlossary()

 2.

 3. Dim strSource As String

 4. Dim strDestination As String

 5. Dim strGlossaryName As String

 6.

 7. strSource = ActiveWindow.Caption

 8. strGlossaryName = InputBox _

 (“Enter the name for the glossary document.“, _

 “Create Glossary“)

 9. If strGlossaryName = ““ Then End

10.

11. Documents.Add

12. ActiveDocument.SaveAs FileName:=strGlossaryName, _

 FileFormat:=wdFormatDocument

13. strDestination = ActiveWindow.Caption

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 291

c12.indd 08:22:4:PM 07/25/2013 Page 291

14. Windows(strSource).Activate

15.

16. Selection.HomeKey Unit:=wdStory

17. Selection.Find.ClearFormatting

18. Selection.Find.Font.Italic = True

19. Selection.Find.Font.Name = “Times New Roman“

20. Selection.Find.Text = ““

21. Selection.Find.Execute

22.

23. Do While Selection.Find.Found

24. Selection.Copy

25. Selection.MoveRight Unit:=wdCharacter, _

 Count:=1, Extend:=wdMove

26. Windows(strDestination).Activate

27. Selection.EndKey Unit:=wdStory

28. Selection.Paste

29. Selection.TypeParagraph

30. Windows(strSource).Activate

31. Selection.Find.Execute

32. Loop

33.

34. Windows(strDestination).Activate

35. ActiveDocument.Save

36. ActiveDocument.Close

37.

38. End Sub

The GenerateGlossary procedure in Listing 12.2 copies italic items in the Times New Roman

font from the current document and inserts them in a new document that it creates and saves.

Here’s what happens:

 ◆ Line 1 begins the procedure, and line 2 is a spacer.

 ◆ Lines 3, 4, and 5 declare the String variables strSource, strDestination, and strGlossary-

Name, respectively. Line 6 is a spacer.

 ◆ Line 7 assigns the Caption property of the active window to the String variable strSource.

The procedure uses this variable to activate the document when it needs to work with it.

 ◆ Line 8 displays an input box asking the user to enter a name for the document that will

contain the glossary entries pulled from the current document. It stores the string the user

enters in the String variable strGlossaryName.

 ◆ Line 9 then compares strGlossaryName to an empty string (″″) to make sure the user

hasn’t clicked the Cancel button to cancel the procedure or clicked the OK button in the

input box without entering a name in the text box. If GlossaryName is an empty string, line

9 uses an End statement to terminate execution of the procedure.

 ◆ Provided line 9 hasn’t stopped the procedure in its tracks, the procedure rolls on. Line 10

is a spacer. Line 11 then creates a new blank document. (This document is based on the

292 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 292

Normal.dotm global template because no Template argument is used to specify a different

template.) This document will become the glossary document.

 ◆ Line 12 saves the document with the name the user specifi ed in the input box.

 ◆ Line 13 stores the Caption property of this document in the strDestination variable,

again making it available to activate this document as necessary throughout the proce-

dure. You now have the source document identifi ed by the strSource variable and the

destination document identifi ed by the strDestination variable.

 ◆ Line 14 uses the Activate method to activate the strSource window. Line 15 is a spacer.

 ◆ Line 16 uses the HomeKey method of the Selection object with the wdStory unit to move

the insertion point to the beginning of the document, which is where the procedure needs

to start working to catch all the italicized words in Times New Roman.

 ◆ Lines 17 through 20 detail the Find operation the procedure needs to perform: Line 17

removes any formatting applied to the current Find item, line 18 sets the Find feature to

fi nd italic formatting, line 19 sets Find to fi nd Times New Roman text, and line 20 speci-

fi es the search string, which is an empty string (″″) that causes Find to search only for the

specifi ed formatting.

 ◆ Line 21 then performs the Find operation by using the Execute method. Line 22 is a spacer.

 ◆ Lines 23 through 32 implement the Do While… Loop loop. Line 23 expresses the condition

for the loop: While Selection.Find.Found (while the Find operation is able to fi nd an

instance of the italic Times New Roman text specifi ed in the previous lines). While this

condition is met (is True), the commands contained in the loop will execute.

 ◆ Line 24 copies the selection (the item found with italic Times New Roman formatting).

 ◆ Line 25 moves the insertion point one character to the right, effectively deselecting the selec-

tion and getting the procedure ready to search for the next instance in the document. You

need to move the insertion point off the selection to the right so that the next Find operation

doesn’t fi nd the same instance. (If the procedure were searching up through the document

instead of down, you’d need to move the insertion point off the selection to the left instead

by using a Selection.MoveLeft statement.)

 ◆ Line 26 activates the strDestination window, putting Word’s focus on it.

 ◆ Line 27 then moves the insertion point to the end of the glossary document, and line 28

pastes the copied item in at the position of the insertion point. Moving to the end of the

document isn’t strictly necessary here, provided that the Normal.dotm global template

doesn’t contain any text—if Normal.dotm is empty, the new document created in line 11

will be empty too, and the start and end of the document will be in the same position.

And after each paste operation, Word positions the insertion point after the pasted item.

However, if Normal.dotm does contain text, then this step is necessary.

 ◆ Line 29 uses the TypeParagraph method of the Selection object to enter a paragraph after

the text inserted by the paste operation.

 ◆ Line 30 activates the strSource document once more, and line 31 repeats the Find

operation.

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 293

c12.indd 08:22:4:PM 07/25/2013 Page 293

 ◆ The Loop statement in line 32 then loops execution of the procedure back to line 23, where

the Do While Selection.Find.Found condition evaluates whether this latest Find opera-

tion was successful (True).

 ◆ If it was successful, the loop continues; if it wasn’t, execution of the procedure continues at

line 34, which activates the glossary document again. Line 35 saves the active document

(the glossary document, because it was just activated), and line 36 closes it.

 ◆ Line 37 is a spacer, and line 38 ends the procedure.

Do… Loop While Loops
A Do… Loop While block is similar to a Do While… Loop, except that in the Do… Loop While

loop, the statements contained within the loop are executed at least once.

Whether the condition is True or False, the loop executes at least the fi rst time through

because the condition isn’t tested until the end of the loop block.

If the condition is True, the loop continues to run until the condition becomes False.

Figure 12.2 shows a Do… Loop While loop.

Figure 12.2

In a Do… Loop

While loop, the

actions in the loop

run once before the

condition is tested.

Start

Do

True

Statements

End

False

Loop While Condition

The Do While… Loop block described earlier probably made immediate sense to you, but this

Do… Loop While block may seem odd. You’re going to execute the contained statements before

checking the condition?

But you’ll fi nd that Do… Loop While loops can be very useful, although they lend themselves

to different situations than Do While… Loop loops.

Consider the lottery example from the beginning of the chapter. In that situation, you execute

the action before you check the condition that controls the loop. First you buy a lottery ticket,

and then you check to see if you’ve won. If you haven’t won, or you’ve won only a small sum,

you loop back and buy more tickets for the next lottery. (Actually, this is logically a Do… Loop

Until loop rather than a Do… Loop While loop because you continue the loop while the condi-

tion is False; when you win a suitably large amount, the condition becomes True.)

Likewise, in programming it’s not uncommon to take an action and then check whether you

need to repeat it. For example, you might want to apply special formatting to the current para-

graph and then check to see if other paragraphs need the same treatment.

294 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 294

Syntax

The syntax for a Do… Loop While loop is as follows:

Do

 [statements]

 [Exit Do]

 [statements]

Loop While condition

VBA performs the statements included in the loop, after which the Loop While line evalu-

ates the condition. If it’s True, VBA returns execution to the Do line and the loop continues to

execute; if it’s False, execution continues at the line after the Loop While line.

As an example of a Do… Loop While loop, consider this crude password checker that you

could use to prevent someone from executing a macro without supplying the correct password:

Dim varPassword As Variant

VarPassword = “corinth”

Do

 varPassword = InputBox _

 (“Enter the password to start the procedure:“, _

 “Check Password 1.0“)

Loop While varPassword <> “CorrectPassword“

Here the Do… Loop While loop fi rst displays an input box for the user to enter the pass-

word. The Loop While line compares the value from the input box, stored in varPassword,

against the correct password (here, CorrectPassword). If the two aren’t equal (varPassword <>

″CorrectPassword″), the loop continues, displaying the input box again.

This loop is just an example—you wouldn’t want to use it as it is in real life. Here’s why:

Choosing the Cancel button in an input box causes it to return a blank string, which also doesn’t

match the correct password, causing the loop to run again. The security is perfect; the problem

is that the only way to end the loop is for users to supply the correct password. If they’re unable

to do so, they will see the input box again and again. There’s no way out of the loop. This is

called an endless loop and it’s really bad programming. The user can get hopelessly trapped with

the code repeating endlessly (in this case if they can’t remember the password). Such loop stalls

are also called infi nite loops. More on these at the end of this chapter.

You should build a more friendly password-checking procedure. You might specify a num-

ber of incorrect password guesses that the user could enter (perhaps three) and then if they still

haven’t gotten it right, make the procedure terminate itself. Or you could simply use an End

statement to terminate the procedure if the user entered a blank string, like this:

Do

 varPassword = InputBox _

 (“Enter the password to start the procedure:“, _

 “Check Password 1.0“)

 If varPassword = ““ Then End

Loop While varPassword <> “CorrectPassword“

Do Until… Loop Loops
A Do Until… Loop loop is similar to a Do While… Loop loop. The difference is how the condi-

tion works. In a Do Until… Loop loop, the loop runs while the condition is False and stops

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 295

c12.indd 08:22:4:PM 07/25/2013 Page 295

running when it’s True. So this is the opposite of the way that the condition works in a Do

While… Loop loop.

Figure 12.3 shows a Do Until… Loop loop.

Figure 12.3

A Do Until… Loop

loop runs while the

condition is False

and stops running

when the condition

becomes True.

Start

Do Until Condition
True

Statements

Loop

End

False

Do Until…Loop Blocks Execute Until a Condition Becomes False

Note that Do Until… Loop loops are useful if you prefer to work with a condition that’s True and

keep it looping until the condition becomes False. Otherwise, you can achieve the same eff ects

using Do While… Loop loops and inverting the condition. In other words, these two approaches

to looping are functionally the same; it’s just a matter of how you want to manage the condition.

It’s the diff erence between “sweep the porch until it’s clean” versus “sweep the porch while it’s still

dirty.” Same idea, expressed diff erently.

Syntax

The syntax for Do Until… Loop loops is as follows:

Do Until condition

statements

 [Exit Do]

 [statements]

Loop

When VBA enters the loop, it checks the condition. If the condition is False, VBA executes the

statements in the loop, encounters the Loop keyword, and loops back to the beginning of the

loop, reevaluating the condition as it goes. If the condition is True, VBA terminates the loop and

continues execution at the statement after the Loop line.

For example, here’s the lottery example once again, but now employing a Do…Until loop in

Listing 12.3.

296 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 296

Listing 12.3: Using Do…Until loops

1. Sub Lottery_1()

2. Dim intWin As Integer

3. Do Until intWin > 2000

4. intWin = Rnd * 2100

5. MsgBox intWin, , “Lottery“

6. Loop

7. End Sub

Here’s how Listing 12.3 works:

 ◆ Line 2 declares the Single variable intWin. Line 3 then starts a Do Until… Loop loop with

the condition that intWin > 2000—the value of the intWin variable must be larger than

2000 for the loop to end. Until then, the loop will continue to run.

 ◆ Line 4 assigns to intWin the result of 2100 multiplied by a random number produced by

the Rnd function, which generates random numbers between 0 and 1. (This means that the

loop needs to receive a random number of a little more than .95 to end—a chance of a little

less than 1 in 20, considerably better than most lotteries.)

 ◆ Line 5 displays a simple message box containing the current value of the Win variable so

that you can see how lucky you are.

 ◆ Line 6 contains the Loop keyword that completes the loop.

 ◆ Line 7 ends the procedure.

Listing 12.4 shows a more useful example of a Do Until… Loop loop in Word.

Listing 12.4: A practical example showing how to employ Do Until in Word

1. Sub FindNextHeading()

2. Do Until Left(Selection.Paragraphs(1).Style, 7) = “Heading“

3. Selection.MoveDown Unit:=wdParagraph, _

 Count:=1, Extend:=wdMove

4. Loop

5. End Sub

Listing 12.4 contains a short procedure that moves the insertion point to the next heading in

the active document in Word. Here’s how it works:

 ◆ Line 2 starts a Do Until… Loop loop that ends with the Loop keyword in line 4. The condi-

tion for the loop is that the seven leftmost characters in the name of the style for the fi rst

paragraph in the current selection—Left(Selection.Paragraphs(1).Style, 7)—match

the string Heading. This will match any of the Heading styles (the built-in styles Heading 1

through Heading 9, or any style the user has defi ned whose name starts with Heading).

 ◆ Until the condition is met, VBA executes the statement in line 3, which moves the selection

down by one paragraph.

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 297

c12.indd 08:22:4:PM 07/25/2013 Page 297

Do… Loop Until Loops
The Do… Loop Until loop is similar to the Do Until… Loop structure except that in the Do…

Loop Until loop, the statements contained within the loop block are executed at least once,

whether the condition is True or False. If the condition is False, the loop continues to run until

the condition becomes True. Figure 12.4 shows a Do… Loop Until loop.

Figure 12.4

In a Do… Loop

Until loop, the

actions in the loop

are run once before

the condition is

tested.

Start

Do

True

Statements

Loop Until Condition

End

False

Syntax

The syntax for Do… Loop Until loops is as follows:

Do

 [statements]

 [Exit Do]

 [statements]

Loop Until condition

VBA enters the loop at the Do line and executes the statements in the loop. When it encounters

the Loop Until line, it checks the condition. If the condition is False, VBA loops back to the Do

line and again executes the statements. If the condition is True, VBA terminates the loop and con-

tinues execution at the line after the Loop Until line.

As an example, say you want to repeatedly display an input box that adds new worksheets to

a workbook until the user clicks the Cancel button or enters an empty string in the text box. You

could use code like that shown in Listing 12.5.

Listing 12.5: Use Do Loop to execute the code at least once

 1. Sub Create_Worksheets()

 2. Dim strNewSheet As String

 3. Do

 4. strNewSheet = InputBox _

 (“Enter the name for the new worksheet “ _

298 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 298

 & “(31 characters max.):“, “Add Worksheets“)

 5. If strNewSheet <> ““ Then

 6. ActiveWorkbook.Worksheets.Add

 7. ActiveSheet.Name = strNewSheet

 8. End If

 9. Loop Until strNewSheet = ““

10. End Sub

Here’s what happens in the Create_Worksheets procedure:

 ◆ Line 2 declares the String variable strNewSheet.

 ◆ Line 3 begins a Do… Loop Until loop.

 ◆ Line 4 displays an input box asking the user to enter the name for the new worksheet.

 ◆ Line 5 uses an If statement to make sure that strNewSheet is not an empty string. If it’s

not, line 6 adds a new worksheet to the active workbook, and line 7 assigns the value of

strNewSheet to the active sheet (the new sheet). Line 8 ends the If statement.

 ◆ Line 9 contains a Loop Until strNewSheet=″″ statement that causes the procedure to loop

back to the Do line until the user enters an empty string in the input box. The user can enter

an empty string either by leaving the text box in the input box blank and clicking the OK

button or by clicking the Cancel button.

 ◆ Line 10 ends the procedure.

Using an Exit Do Statement
As with an Exit For statement in a For…loop, you can use an Exit Do statement to exit a Do

loop without executing the statements below the Exit line. The Exit Do statement is optional,

and you’ll probably seldom want to use Exit Do statements in your loops—at least if the loops

are properly designed.

When you do need an Exit Do statement, you’ll generally use it with its own condition. The

example shown in Listing 12.6 makes the lottery a little more interesting by adding an If condi-

tion with an Exit Do statement to take effect if the win is less than $500.

Listing 12.6: How to use the Exit Do command

 1. Sub Lottery_2()

 2. Dim intWin As Integer

 3. Do Until intWin > 2000

 4. intWin = Rnd * 2100

 5. If intWin < 500 Then

 6. MsgBox “Tough luck. You have been disqualified.“, _

 vbOKOnly + vbCritical, “Lottery“

 7. Exit Do

 8. End If

 9. MsgBox intWin, , “Lottery“

USING DO… LOOPS FOR VARIABLE NUMBERS OF REPETITIONS | 299

c12.indd 08:22:4:PM 07/25/2013 Page 299

10. Loop

11. End Sub

The procedure in Listing 12.6 works in the same way as the example in Listing 12.3 except

that line 5 introduces a new If condition. If the variable intWin is less than 500, the statements

in lines 6 and 7 run. Line 6 displays a message box announcing that the player has been disqual-

ifi ed from the lottery, and line 7 exits the Do loop.

Is the Exit Do Statement Bad Practice?
Some programmers consider using an Exit Do statement to exit a Do loop a tactic of last resort,

or at least clumsy programming. Others disagree. Many reckon that it’s always acceptable to use

an Exit Do statement to respond to an error or to the user clicking a cancel button.

VBA executes Exit Do statements with no problem, so it’s there if you want to use it.

However, you can often rewrite your code to avoid using an Exit Do statement.

For example, a condition that you check in the middle of the loop to decide whether to exit

the loop can often be built into the main condition of the loop by using an operator such as And,

Or, or Not, as shown in Listing 12.7:

Listing 12.7: How to avoid the Exit Do command

1. Sub Lottery_3()

2.

3. Dim intWin As Integer

4.

5. Do

6. intWin = Rnd * 2100

7. MsgBox intWin, , “Lottery”

8. Loop Until intWin > 2000 Or intWin < 500

9.

10.

11. If intWin < 500 Then

12. MsgBox “Tough luck. You have been disqualified.”, _

13. vbOKOnly + vbCritical, “Lottery”

14. End If

15.

16. End Sub

Listing 12.7 is a revision of the example in Listing 12.6. Listing 12.7 shows you how to use the

Or operator to specify two conditions for the loop to iterate. In this way, you can omit the Exit

Do command entirely.

In line 8 of Listing 12.7, we are saying that the loop should end if the variable is greater than

2000 Or less than 500. This makes it somewhat clearer what the loop is doing.

We must also make two other changes. First, we have to move the condition test from the top

of the loop to the bottom. The Do Until command in Listing 12.6 must be changed to the Loop

300 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 300

Until command in Listing 12.7. If we leave the condition test at the top of the loop, the condi-

tion will always prevent the loop from executing. This is because the intWin variable will always

hold zero when this loop fi rst executes. So we move the condition test to the bottom of the loop,

allowing the variable to be assigned some value in line 6.

The fi nal change we need to make is to move the If…Then block down to the bottom of the

procedure.

If the code is simple like this example, you might be better off rewriting it to employ an opera-

tor. But if the code is complex and lengthy, there’s no good reason to force yourself to use operators

when an Exit Do statement will do the trick instead.

While… Wend Loops
In addition to the For…Next loop, the For Each… Next loop, and the four fl avors of Do loops

examined so far in this chapter, VBA includes the While… Wend loop. While… Wend is VBA’s

version of the While… Wend looping structure used by earlier programming languages, such as

the WordBasic programming language used with versions of Word up to and including Word

95. VBA includes While… Wend more for compatibility with those earlier versions than as a rec-

ommended technique. But you can use it if you choose to. The various Do loops have replaced

While… Wend, but While… Wend still works fi ne.

The syntax of a While… Wend loop is as follows:

While condition

 [statements]

Wend

While the condition is True, VBA executes the statements in the loop. When it reaches the Wend

keyword (which is a contraction of While End), it returns to the While statement and evaluates

the condition again. When the condition evaluates as False, the statements in the loop are no lon-

ger executed and execution moves to the statement after the Wend statement.

The following statements create a simple While… Wend loop for Word:

While Documents.Count < 10

 Documents.Add

Wend

While the number of documents in the Documents collection (measured here by the Count

property of the Documents collection) is smaller than 10, the loop runs. Each time through,

the Documents.Add statement in the second line creates a new document based on the Normal

template (because no other template is specifi ed). After the new document is created, the Wend

statement in the third line returns execution to the fi rst line, where the While condition is

evaluated again.

Avoid Branching into the Middle of a While…Wend Loop

If you do use a While… Wend loop, make sure the only way to enter the loop is by passing through

the gate of the While condition. Branching into the middle of a While… Wend loop (for example,

by using a label and a GoTo statement) can cause errors.

NESTING LOOPS | 301

c12.indd 08:22:4:PM 07/25/2013 Page 301

Nesting Loops
You can nest one or more loops within another loop to create the pattern of repetition you

need: You can nest one For…loop inside another For…loop, a For…loop inside a Do loop, a Do

loop inside a For…loop, or a Do loop inside a Do loop.

VBA Permits up to Levels of Nesting, but Who Could Understand

Such Complexity?

You can nest up to 16 levels of loops in VBA, but you’ll be hard-pressed to comprehend even half

that number of levels as you read over your code. If you fi nd your code becoming this complicated,

consider whether you can take a less tortuous approach to solve the problem.

For example, if you need to create a number of folders, each of which contains a number of

subfolders, you could use a variation of the Create_Folders procedure you looked at earlier in

the chapter. But such a task cries out for nesting.

The dialog box for the procedure will need another text box to contain the number of subfold-

ers to create within each folder. The new dialog box is named frmCreateFoldersAndSubFolders

and the text box for the number of subfolders is named txtHowManySubFolders.

Figure 12.5 shows the dialog box.

Figure 12.5

Th e dialog box to

create folders and

subfolders

Listing 12.8 shows the code triggered by the Click event on the cmdOK button of the form.

Listing 12.8: Employing a nested loop

 1. Private Sub cmdOK_Click()

 2.

 3. Dim strStartingFolder As String

302 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 302

 4. Dim strFolderName As String

 5. Dim strSubfolderName As String

 6. Dim intSubfolder As Integer

 7. Dim intLoopCounter As Integer

 8.

 9. frmCreateFoldersAndSubfolders.Hide

10. Unload frmCreateFoldersAndSubfolders

11.

12. strStartingFolder = CurDir

13.

14. For intLoopCounter = 1 To txtHowManyFolders.Value

15. strFolderName = txtProjectNumber.Value & “s“ & _

 Format(intLoopCounter, “0#“)

16. MkDir strFolderName

17. ChDir strFolderName

18. For intSubfolder = 1 To txtHowManySubfolders.Value

19. strSubfolderName = “Subsection“ & intSubfolder

20. MkDir strSubfolderName

21. Next intSubfolder

22. ChDir strStartingFolder

23. Next intLoopCounter

24.

25. End Sub

Here’s what the code in Listing 12.8 does:

 ◆ Line 1 begins the procedure, and line 25 ends it. Line 2 is a spacer.

 ◆ Lines 3 through 5 declare three String variables, strStartingFolder, strFolderName, and

strSubfolderName, respectively.

 ◆ Line 6 declares the Integer variable intSubfolder, and line 7 declares the Integer variable i.

Line 8 is a spacer.

 ◆ Line 9 hides the user form, and line 10 unloads it. Line 11 is a spacer.

 ◆ Line 12 stores the name of the current folder in the String variable strStartingFolder.

You’ll need this variable to make sure everything happens in the appropriate folder later in

the procedure. Line 13 is another spacer.

 ◆ Lines 14 through 16 and line 23 are essentially the same as in the previous procedure. They

build the folder name out of the Value property of the txtProjectNumber text box, the let-

ter s, a two-digit number, and the i variable and then use the MkDir statement to create the

folder.

 ◆ Line 17 uses a ChDir statement to change folders to the folder that was just created,

strFolderName.

 ◆ In line 18, the nested For…Next loop starts. This loop is controlled by the loop

counter intSubfolder and will run from intSubfolder = 1 to intSubfolder =

AVOIDING INFINITE LOOPS | 303

c12.indd 08:22:4:PM 07/25/2013 Page 303

txtHowManySubFolders.Value, which is the value entered by the user in the Number Of

Subfolders To Create text box in the dialog box.

 ◆ Line 19 builds the String variable strSubfolderName out of the word Subsection and the

value of the intSubfolder counter variable. For this procedure, you can assume that there

will be fewer than 10 subsections for each of the sections, so single-digit numbering is

adequate.

 ◆ Line 20 creates the subfolder by using a MkDir statement with the strSubfolderName

String variable.

 ◆ Line 21 uses the Next Subfolder statement to loop back to the beginning of the nested

For…Next loop. VBA reevaluates the condition and repeats the loop as necessary.

 ◆ Line 22 changes folders back to strStartingFolder for the next iteration of the out-

side loop. (Otherwise, the next folder would be created within the current folder,

strFolderName.)

 ◆ Line 23 then loops back to the beginning of the outer loop.

Use the Counter Variable with Next when Nesting For…loops

Using counter variables with the Next command is optional (in Listing 12.8, the counter variables

are named intLoopCounter and intSubfolder). You could simply use Next by itself and VBA

will fi gure out what you mean. But when nesting For…loops, it’s a good idea to include a counter

variable to make it easier to see which loop is ending with the Next command (in other words,

use Next intLoopCounter, for example, rather than just the shorthand version Next). Using a

counter variable makes your procedures much easier to read and may prevent unpleasant surprises

(bugs). Your nested loops must end in the exact reverse order of their starting, and the counters

need to match.

Avoiding Infi nite Loops
If you create an infi nite (aka endless) loop in a procedure, it will happily run forever, unless the

user presses Ctrl+Break, presses Ctrl+Alt+Del to use the Task Manager to shut down the frozen

application, restarts the computer, or pulls the plug.

For example, one type of loop you haven’t yet encountered is the Do… Loop. As you can see in

the example in Listing 12.9, without a condition attached to it, this structure is an infi nite loop.

There’s no condition that can stop the looping.

Listing 12.9: An example of an endless loop

1. Sub InfiniteLoop()

2. Dim x

3. x = 1

4. Do

304 | CHAPTER 12 USING LOOPS TO REPEAT ACTIONS

c12.indd 08:22:4:PM 07/25/2013 Page 304

5. Application.StatusBar = _

 “Your computer is stuck in an endless loop: “ & x

6. x = x + 1

7. Loop

8. End Sub

In Listing 12.9, line 2 declares the variable x, and line 3 assigns it the value 1. Line 4 begins

the Do loop, which displays a status-bar message and increases the value of x by 1. The effect

of this loop is to display a message and an ever-increasing number on the status bar until you

press Ctrl+Break to stop the procedure or until the value overfl ows the variable’s maximum

value. This is all thoroughly pointless (except perhaps as a way to burn in a new computer) and

is perhaps a good reason not to use the Do… Loop structure—at least not without a condition

attached to one end of it.

No matter what type of loop you use, to avoid creating an infi nite loop, you need to make

sure the condition that will terminate the loop can be satisfi ed at some point. For example, for an

editing or cleanup procedure, you’ll often want to perform an action until the end of the docu-

ment is reached and then stop. Or you’ll want to include some form of counting mechanism to

make sure a Do loop doesn’t exceed a certain number of iterations.

Th e Bottom Line

Understand when to use loops. Loops come in very handy when you need to perform a

repetitive task, such as searching through a document for a particular word.

Master It What is the alternative to looping if you are carrying out repetitive tasks in a

macro?

Use For…loops for fi xed repetitions. For…loops are the most common loop structures in

programming. You specify the number of iterations the loop must make, and the loop is

exited when that number is reached.

Master It Write a For…Next loop that counts up to 100, but use the Step command to

increment by twos.

Use Do… loops for variable numbers of repetitions. A Do… loop iterates until or while a con-

dition exists, then exits from the loop when the condition no longer exists.

Master It There are two categories of Do… loops. Do While… Loop and Do Until… Loop

loops test a condition before performing any action. What is the other category?

Nest one loop within another loop. You can put loops inside other loops.

Master It Think of a programming task where nested loops would be useful.

Avoid infi nite loops. An infi nite (or endless) loop causes your macro to continue execution

indefi nitely—as if the macro had stopped responding and was “frozen.”

Master It How do you avoid creating an infi nite loop?

Part 4

Using Message Boxes,
Input Boxes, and
Dialog Boxes
◆ Chapter 13: Getting User Input with Message Boxes and Input Boxes

◆ Chapter 14: Creating Simple Custom Dialog Boxes

◆ Chapter 15: Creating Complex Forms

Chapter 13

Getting User Input with Message
Boxes and Input Boxes

This chapter shows you how to start adding a user interface to recorded or written code in order

to increase the power and functionality of your macros or applications.

You’ll learn the three easiest ways of communicating with the user of your code, the two easi-

est ways of enabling the user to make decisions in a procedure, and the easiest way of soliciting

input from the user. Along the way, you’ll see how to decide what is the best way to communi-

cate with the user in any given set of circumstances. This will set the scene for starting an exam-

ination of more complex interactions with the user via custom dialog boxes, later in the book.

In most Offi ce applications, VBA offers you a choice of up to fi ve ways of communicating

with the user of a procedure:

 ◆ Displaying a message on the status bar at the bottom of the window (if the application pro-

vides a status bar). This is a bit limited, but it can be an effective way of communicating

with the user. And it’s not intrusive—users can easily ignore the status bar if they wish.

 ◆ Displaying a message box (usually in the middle of the screen). Message boxes are useful

both for providing some information to users and for giving them the means to make a

single choice based on the information you give them. You’ll spend the bulk of this chapter

working with message boxes.

 ◆ Displaying an input box (again, usually in the middle of the screen). You can use input boxes

the same way you use message boxes—to communicate some information to users. But the

primary purpose of an input box is input: to solicit one item of information from the user.

Input boxes also provide users with the means of making a single choice to direct the fl ow of

a procedure, although the mechanism for presenting this choice is much more limited than

that in a message box. You’ll look at input boxes toward the end of this chapter.

 ◆ Displaying a dialog box (once again, usually in the middle of a screen). You can use dialog

boxes both to display information to the user and to let them make a variety of choices that

are communicated back to your code. Dialog boxes are best reserved for those times when

other forms of communication won’t suffi ce; in other words, there’s no point in using a dia-

log box when a simple message box or input box will do. You’ll look at creating your own

custom dialog boxes by using VBA user forms later in the book.

 ◆ Displaying an application’s built-in dialog box, such as Word’s FileOpen dialog box. This

approach is explored in Chapter 14, “Creating Simple Custom Dialog Boxes.”

308 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

In this chapter you will learn to do the following:

 ◆ Display messages on the status bar

 ◆ Display message boxes

 ◆ Display input boxes

 ◆ Understand the limitations of message boxes and input boxes

Opening a Procedure to Work On
Make sure you’re all set for editing in the Code window in the VBA Editor:

 1. Start the application for which you’re creating code.

 2. Launch the Visual Basic Editor from the host application by pressing Alt+F11.

 3. Open a procedure for editing in the Code window: Use the Project Explorer to navigate to

the module that holds the procedure, and then either scroll to the procedure in the Code

window or choose it from the Procedures drop-down list in the Code window.

You Can Locate Procedures Using the Macro Dialog Box

Alternatively, in the VBA Editor, choose Tools ➢ Macros to display the Macros dialog box. Or to

display this dialog box from an application such as Word, click the Developer tab on the Ribbon,

then click the Macros icon. Once the Macros dialog box is open, you can select a procedure you’ve

created from the Macro Name list box and click the Edit button to display the Visual Basic Editor

with the procedure open in the Code window.

If you’ve opened an existing procedure, test its code by using the F8 key to step through the state-

ments or by clicking F5 (the Run Sub/UserForm) to run it without stepping. (You can also run it by

typing the procedure’s name into the Editor’s Immediate window and pressing Enter.)

Nevertheless, it’s probably best to work in a new procedure rather than in an existing one

because that way you won’t do any damage to a macro you may want to use in the future.

Create a new procedure in the Visual Basic Editor Code window by typing the Sub keyword,

giving the procedure a name on a blank line in a module, and then pressing Enter. VBA adds the

parentheses and End Sub statement. For example, you could type the following and press the

Enter key:

Sub Experimentation_Zone

VBA adds the parentheses and End Sub statement, together with a separator line to separate

the procedure from any adjacent procedures in the Code window:

Sub Experimentation_Zone()

End Sub

DISPLAYING STATUSBAR MESSAGES IN WORD AND EXCEL | 309

Displaying Status-Bar Messages in Word and Excel
Word and Excel let you display information on the status bar. This is often a convenient way to

tell the user what’s happening in a procedure without halting execution of the code (or, more

important, without interrupting the user’s work and requiring them to click a button to get rid

of your message box).

By displaying status information on the status bar as the procedure works, you can indicate

to the user not only what the procedure is doing, but also that it’s still, in fact, running. Of

course, the user might not notice the status bar. So if you are displaying crucial information,

you must use a message box or one of the other types of boxes, like an input box. These force

the user to pay attention; no further work can be done within the application until that box is

dismissed.

How to Avoid Alarming the User

A problem you’ll sometimes encounter is that the user thinks a procedure has frozen, crashed, gone

into an infi nite loop, or failed to work because no changes are visible onscreen, whereas in fact

your procedure is working properly in the background. If you have a procedure that takes a long

time to execute, updates on the status bar let the user see that the procedure is still working. To see

example code that illustrates how to update the status bar, take a look at the sidebar entitled “i Is

the Traditional Counter Variable Name for For…Next Loops” in Chapter 12, “Using Loops to Repeat

Actions.”

But remember that the main disadvantage of displaying messages on the status bar is that

users may miss them if they’re not paying attention, if they’ve hidden the status bar, or if they’re

not expecting to see messages there.

How to Hide the Status Bar

When I mentioned hiding the status bar in the previous paragraph, you might have launched an

eff ort to do just that. You looked all over the Ribbon, paying particular attention to the View tab.

Th en you clicked the File tab to open the Options dialog box. But you didn’t fi nd a way, anywhere,

to hide the status bar. Well, this is yet one more reason to learn VBA. As I’ve mentioned, you can do

things with VBA that are not possible any other way. Here’s the code that will hide the status bar:

Sub HideStatusBar()

 Application.CommandBars(“Status Bar”).Visible = True

End Sub

If an application uses the status bar extensively to give the user information (as Word and

Excel do), this might not be a problem for attentive users. But if there’s any doubt, notify the

310 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

user that information will be displayed on the status bar. For example, you might display a

message box at the beginning of a procedure to tell the user to watch the status bar for updates.

To display a message on the status bar in Word or Excel, you set the StatusBar property of

the Application object to an appropriate string of text. The following example displays the

status-bar information shown in Figure 13.1:

Application.StatusBar = “Word is formatting the report. Please wait…“

Figure 13.1

In some applica-

tions, you can dis-

play information on

the status bar.

Typically, any information you display on the status bar remains displayed there until you

change it, until the user clicks something, or until the application displays a message there itself.

For example, if you display a message on the status bar and then invoke the Copy command

in Excel, Excel displays its normal Copy message, “Select destination and press ENTER or

choose Paste,” on the status bar, wiping out your message. Application messages trump user-

created messages.

If you display a message on the status bar in the course of a procedure, you should update it

later in the procedure to avoid leaving a now-obsolete and potentially misleading message on

the status bar after the procedure has fi nished running. For example, you might display another

message saying that the procedure has fi nished or clear the status bar by displaying a blank

string on it.

To clear the status bar, assign an empty string to it, as in the following statement:

Application.StatusBar = ““

To see the effect of this statement, run it from the Visual Basic Editor (click the upper-right

corner to ensure that the Editor window isn’t maximized) with the Word or Excel window

(or at least its status bar) visible at the same time. You’ll see the effect best if you run a state-

ment that displays information on the status bar (such as Application.StatusBar = “Hello,

MESSAGE BOXES | 311

World!“) fi rst so that the status bar has information for the Application.StatusBar = ““

statement to clear:

Application.StatusBar = “Hello, World!“

Application.StatusBar = ““

Progress Indicators Can Be Written Various Ways

It’s especially helpful to display a progress indicator on the status bar during longer processes so

that the user can tell that they’re still running and that they’re making progress. Progress indica-

tion is usually coded within a loop block. For example, you might display a readout of the progress,

such as “Excel is working on sheet 9 out of 150.” Even more simply, adding increasing numbers of

periods to the end of the status message gives an indication of progress, although it doesn’t give an

idea of how much longer the task will take. Here’s how you can add periods to a string:

strPeriod = strPeriod & “.”

Message Boxes
Another way to display information to the user is the message box; you’ve probably seen

examples of it in almost every Windows application you’ve used. Message boxes are simple

and limited, but they play an important role.

Here are some typical uses of message boxes:

 ◆ Telling users what a procedure is about to do (and giving them the chance to exit the proce-

dure if it isn’t what they thought it was).

 ◆ Presenting users with an explanation of what a procedure will do next and asking them to

make a simple decision (usually, to let it proceed or to send it on a different course).

 ◆ Warning users of an error that the procedure encountered and allowing them to take

action on it.

 ◆ Informing users that a procedure ran successfully and that it has fi nished. This message

is particularly useful for procedures that turn off screen updating or otherwise hide from

users what they are doing. Such procedures may leave users unsure of whether they are

still running or have fi nished. You can also use the message box to report what a proce-

dure has done—for example, that it changed particular items, made a certain number of

changes, or discovered problems in the document that require attention.

This chapter shows you how to create a message box suitable for each of these tasks. In later

chapters, you’ll create specifi c message boxes to enhance various procedures.

Th e Pros and Cons of Message Boxes
These are the advantages of using a message box:

 ◆ Users can’t miss seeing the message box. Users are prevented from continuing to use the

application until they close the message box. (If you want, you can even display a message

312 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

box that the user can’t escape by pressing Alt+Tab to switch to another application. You’ll

look at this a little later in the chapter.)

 ◆ You can present the user with a simple choice among two or three options.

These are the disadvantages of using a message box:

 ◆ A message box can present only one, two, or three buttons, which means it can offer only a

limited set of options to the user.

 ◆ The buttons in message boxes are predefi ned in sets—you can’t put a custom button in a

message box. (For that, you have to use a dialog box.)

 ◆ You can’t use features such as text boxes, group boxes, or list boxes within message boxes.

Message-Box Syntax
The basic syntax for message boxes is as follows:

MsgBox(prompt[, buttons] [, title][, helpfile, context])

Here’s what the elements of this syntax mean:

MsgBox The function that VBA uses to display a message box. You typically use it with a

number of arguments enclosed in parentheses after it.

prompt A required argument for the MsgBox function that specifi es what text is displayed

in the message box. prompt is a String argument, meaning you need to type in the text of

your choice; it can be up to 1,023 characters long, although it’s usually a good idea to be more

concise than this. (Any prompt longer than 1,023 characters is truncated to 1,023 characters

without warning.)

buttons An optional argument that controls the type of message box that VBA displays

by specifying which buttons it contains. For example, as you’ll see in a couple of pages, you

can display a message box with just an OK button; with OK and Cancel buttons; with Abort,

Retry, and Ignore buttons; and so on. You can also add arguments to the buttons argument

that control the icon in the message box and the modality of the message box. You’ll also look

at these options later in this chapter.

title An optional argument that controls the title bar of the message box. This too is a

String argument. If you don’t specify title, VBA uses the application’s title—Microsoft Word

for Word, Microsoft Excel for Excel, Microsoft PowerPoint for PowerPoint, and so on.

Usually, it’s best to specify the title because the application name on its own isn’t helpful

(unless the user has become confused as to which application is running the procedure).

helpfi le An optional argument that controls which Help fi le VBA displays when the user

presses F1 within the message box to get help (or clicks the Help button in a message box that

contains a Help button).

context An optional argument that controls which topic in the Help fi le VBA jumps to. If

you specify the helpfile argument, you must specify the context argument as well.

In the following sections, you’ll fi rst look at how you can build the simplest of message boxes

and then explore how to add arguments to it to make it more complex.

MESSAGE BOXES | 313

Displaying a Simple Message Box
You can display the simplest message box by specifying only the prompt as a text string

enclosed in double quotation marks:

MsgBox “This is a simple message box.“

Run from Excel, this statement produces the simple message box shown in Figure 13.2. With

prompt as the only argument supplied, VBA produces a message box with only an OK button

and with the application’s name in the title bar. This message box does nothing except display

information.

Figure 13.2

When you use only

the prompt argu-

ment to display a

simple message box,

VBA uses the appli-

cation’s name as the

title.

You can enter this MsgBox statement on any blank line within a procedure. After you type the

MsgBox keyword, VBA’s Auto Quick Info feature prompts you with the syntax of the function, as

shown in Figure 13.3.

Figure 13.3

VBA’s Auto Quick

Info feature

prompts you with

the syntax for the

message box.

Once you’ve entered the MsgBox statement with its required argument (prompt), you can dis-

play the message box by stepping through the code (by pressing the F8 key or clicking the Step

Into button on the editor’s Debug toolbar) or by running the procedure (by pressing the F5 key,

by clicking the Run Sub/UserForm button, or by choosing Run ➢ Run Sub/UserForm).

314 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Instead of entering a literal text string for the prompt argument, you can use a String variable.

The following example uses a String variable named strMsg:

Dim strMsg As String

strMsg = “This is a simple message box.“

MsgBox strMsg

This approach can be useful when you’re working with long strings (you can build a big

string by concatenating several shorter strings with the & operator). Using a variable is also use-

ful when you need to display a string that has been defi ned earlier in the procedure or a string

dynamically created by the procedure (for example, after having gotten the user’s name via an

input box).

Displaying a Multiline Message Box
By default, VBA displays short message strings as a single line in a message box and wraps lon-

ger strings onto two or more lines as necessary, up to the limit of 1,024 characters in a string.

You can deliberately break a string into more than one line by including line-feed and

carriage-return characters in the string as follows:

 ◆ Chr(13) or vbCr represents a carriage return.

 ◆ Chr(10) or vbLf represents a line feed.

 ◆ Chr(10) + Chr(13) or vbCrLf represents a line-feed/carriage-return combination.

In message boxes, these three characters all have the same effect—moving down one line.

Your code is easier to read if you use a built-in constant (vbCr, vbLf, or vbCrLf) rather than the

corresponding Chr() construction; it’s also quicker to type. Usually, it’s clearest to use the vbCr

constant.

You can add a tab to a string by using Chr(9) or vbTab. Again, vbTab is easier to read and

to type.

The following code displays the Word message box shown in Figure 13.4. Note that each

part of the text string is enclosed in double quotation marks (to tell VBA that they’re part of the

string). The Chr(149) characters are bullets, so the text after them starts with a couple of spaces

to give the bullets some room:

Dim strMsg As String

strMsg = “Word has finished formatting the report you requested.“ _

 & vbCr & vbCr & “You can now run the following procedures:“ & vbCr _

 & vbCr & Chr(149) & “ Distribute_Report will email the report to “ _

 & “the head office.“ & vbCr & vbCr & Chr(149) & _

 “ Store_Report will copy the report to the holding directory.“ _

 & vbCr & vbCr & Chr(149) & “ Backup_Report will create a backup “ _

 & “of the report on the file server.“

MsgBox strMsg

MESSAGE BOXES | 315

Figure 13.4

You can display a

multiline message

box by using line-

feed and carriage-

return characters

within the prompt

string.

VBA Automatically Helps You Punctuate Your Code

You’ll notice that in this example, a space appears on either side of each of the ampersands (&) and

the equal sign. You can enter these spaces yourself or have VBA enter them for you when you move

the insertion point to another line by pressing Enter or clicking the mouse. (Moving the insertion

point to another line causes VBA to check the line you’ve just been working on and make various

automatic changes if necessary. For example, some characters may be capitalized, or if you typed

EndIf, VBA will make it two words as it’s supposed to be.)

Choosing Buttons for a Message Box
The buttons argument controls which buttons a message box contains. VBA offers the types of

message boxes shown in Table 13.1, controlled by the buttons argument.

Table 13.1: Message-box types, controlled by the buttons argument

Value Constant Buttons

0 vbOKOnly OK

1 vbOKCancel OK, Cancel

2 vbAbortRetryIgnore Abort, Retry, Ignore

3 vbYesNoCancel Yes, No, Cancel

4 vbYesNo Yes, No

5 vbRetryCancel Retry, Cancel

You can specify these message-box types in your code by using either the numeric value or

the constant. For example, you can specify either 1 or vbOKCancel to produce a message box with

OK and Cancel buttons. The value is easier to type; the constant is easier to read. Either of the fol-

lowing statements produces the message box shown in Figure 13.5 when run from PowerPoint:

Dim lngR As Long

lngR = MsgBox(“Apply standard formatting to the slide?“, vbYesNo)

lngR = MsgBox(“Apply standard formatting to the slide?“, 4)

316 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Figure 13.5

Th e vbYesNo con-

stant produces a

message box with

Yes and No buttons.

From VBA’s point of view, it doesn’t matter whether you use values or constants in the mes-

sage boxes for your procedures. For the human, though, the text constants are far preferable.

Even if you’re the only person who ever sees your code, the code is much easier to read if you

use the constants.

Choosing an Icon for a Message Box
You can also add an icon to a message box by including the appropriate value or constant argu-

ment. Table 13.2 shows the options.

Table 13.2: Arguments for message-box icons

Value Constant Displays

16 vbCritical Stop icon

32 vbQuestion Question-mark icon

48 vbExclamation Exclamation-point icon

64 vbInformation Information icon

Again, you can refer to these icons by using either the value or the constant: Either 48

or vbExclamation will produce an exclamation-point icon. Again, the constant is much easier

to read.

To link the value or constant for the message box with the value or constant for the icon,

use a plus sign (+). For example, to produce a message box containing Yes and No buttons

together with a question-mark icon (see Figure 13.6), you could enter vbYesNo + vbQuestion

(or 4 + 32, vbYesNo + 32, or 4 + vbQuestion):

lngR = MsgBox(“Apply standard formatting to the slide?“, _

 vbYesNo + vbQuestion)

Figure 13.6

Adding an icon

gives a message

box greater visual

impact.

MESSAGE BOXES | 317

Setting a Default Button for a Message Box
As usual in the Windows interface, the user is cued to a default button in a message box. It’s the

one with a blue border around its outside and a dotted line around its text area. (See the Yes but-

ton in Figure 13.6.) The user can move the selection to another button by using Tab or Shift+Tab

or the →, ←, ↑, or ↓ key.

However, you can specify in your code which button you want to be the default.

The Practical Use of Default Buttons

You can set a default button for a message box by specifying a particular button in the MsgBox state-

ment. Specifying a default button can be a wise move when you give procedures that take drastic

action to users who may be unfamiliar with what’s going to happen. (Th e user might accidentally

hit the Enter key or click the highlighted button—the default button.)

For example, consider a procedure that deletes the current document without the user having to

close it and then switches to a fi le-management program (such as Windows Explorer) or messes

around in one of the common dialog boxes (such as the Open or the Save dialog box). Common

dialog boxes are demonstrated in the Real World Scenario sidebar titled “Control a For…Next Loop

with User Input via a Dialog Box” in Chapter 12.

Because such procedures can destroy someone’s work if they run it inadvertently, you’d probably

want to set a default button of No or Cancel in a confi rmation message box so that the user has to

actively choose to run the rest of the procedure. Th e message box halts execution, allows the user

to agree or disagree with the action, and then carries out the user’s wishes based on which button

is clicked in the message box.

Why does VBA include a default button at all? Th is makes it easy for the user to choose the ordi-

nary VBA default button (captioned Yes or OK) by simply pressing Enter. Having the appropriate

default button on a message box or dialog box can help the user deal with the message box or

dialog box more quickly. But you as the programmer should decide if there is a diff erent, more

appropriate, default button. VBA automatically sets the fi rst button in a message box to be the

default button. But there are times that you will want to specify that the default button be a dif-

ferent button than the fi rst. If you are doing something potentially dangerous in a macro—such

as deleting the current document without saving it—it would be a good idea to make the second

button (the No button) the default. Th is way, if the user simply presses Enter, nothing happens;

the macro exits without deletion. Using this technique, you force the user to make a deliberate

decision to move the mouse and click the Yes button. Table 13.3 shows you how to adjust which

button is the default by using various built-in constants. And the short code example that ends

the section demonstrates this technique.

318 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Table 13.3 lists the arguments for default buttons.

Table 13.3: Arguments for default message-box buttons

Value Constant Effect

 0 vbDefaultButton1 Th e fi rst button is the default button.

256 vbDefaultButton2 Th e second button is the default button.

512 vbDefaultButton3 Th e third button is the default button.

768 vbDefaultButton4 Th e fourth button is the default button.

All the message boxes mentioned so far have only one, two, or three buttons, but you can

add a Help button to any of the message boxes, making for a fourth button on those boxes that

already have three buttons (such as vbYesNoCancel). You’ll see how to add the Help button in

the section “Adding a Help Button to a Message Box” later in this chapter.

In VBA, unless you specify otherwise, the fi rst button on each of the message boxes is auto-

matically the default button: for example, the OK button in a vbOKCancel message box, the

Abort button in a vbAbortRetryIgnore message box, the Yes button in a vbYesNoCancel mes-

sage box, the Yes button in a vbYesNo message box, and the Retry button in a vbRetryCancel

message box. VBA counts the buttons in the order they’re presented in the constant for the type

of message box (which in turn is the left-to-right order in which they appear in the message box

onscreen). So in a vbYesNoCancel message box, Yes is the fi rst button, No is the second button,

and Cancel is the third button.

To make a different button the default, specify the value or constant as part of the buttons

argument. When run in PowerPoint, this statement produces the message box shown in

Figure 13.7:

Dim lngQuery As Long

lngQuery = MsgBox(“Do you want to delete this presentation?“, _

 vbYesNo + vbCritical + vbDefaultButton2)

Figure 13.7

Specify a default

button to steer the

user toward a par-

ticular button in a

message box.

Controlling the Modality of a Message Box
VBA can display both application-modal message boxes and system-modal message boxes—at

least in theory. Application-modal message boxes stop you from doing anything in the current

application until you dismiss them, whereas system-modal message boxes stop you from doing

anything on your entire computer until you dismiss them.

MESSAGE BOXES | 319

Most message boxes are application modal, allowing the user to switch to another applica-

tion by pressing Alt+Tab (or switching via the Taskbar). The user can then work in the other

application even though they haven’t gotten rid of the message box. This gives them freedom

and fl exibility. In contrast, some message boxes (most often used during an installation pro-

cess) are system modal, insisting that users concentrate their attention on them and them alone.

Windows’s critical system errors and “you must restart your computer now” messages are sys-

tem modal to prevent you from avoiding them.

You probably know from your own experience how frustrating system-modal message boxes

can be. So when designing procedures, use system-modal message boxes only when absolutely

necessary—for example, when an action might result in data loss or system instability. For most

conventional purposes, application-modal message boxes will do everything you need them

to—and won’t confuse or vex your users.

In theory, you can control the modality of a message box by using the two buttons arguments

shown in Table 13.4.

Table 13.4: Arguments for message-box modality

Value Constant Result

 0 vbApplicationModal Th e message box is application modal.

4096 vbSystemModal Th e message box is system modal.

In practice, even if you use the vbSystemModal argument, the user can switch to another

application (provided that one is running) and continue working. However, the message box

does stay “on top,” remaining displayed—enough to annoy users but not totally prevent them

from accessing another application.

By default, message boxes are application modal, so you need to specify modality only on those

rare occasions when you need a system-modal message box. When you do, add the vbSystemModal

constant or 4096 value to the buttons argument:

Response = MsgBox(“Do you want to delete this document?“, _

 vbYesNo + vbCritical + vbDefaultButton2 + vbSystemModal)

Please note that system-modal message boxes look the same as application-modal

message boxes.

Specifying a Title for a Message Box
The next component of the message box is its title bar, which is controlled by the optional title

argument. If you omit title, VBA displays the application’s name as the title, but users of your

procedures will benefi t from your providing a more helpful title.

title is a string expression and can be up to 1,024 characters in length, in theory (longer

strings are truncated with no warning or error message), but in practice, any title longer than

about 75 characters gets truncated with an ellipsis. If you want people to read the title bars of

your message boxes, 25 characters or so is a reasonable maximum.

320 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Title Bars Can Provide Useful Information
The title bar is usually the fi rst part of a message box that the user notices, so make your title

bars as helpful as possible. Conventional etiquette is to put the name of the procedure in the title

bar of a message box and then use the prompt argument to explain what actions the buttons in

the message box will trigger.

In addition, if you expect to revise your procedures, you may fi nd it helpful to include their

version number in the title so that users can easily check which version of the procedure they’re

using (and update to a more current version as appropriate). For instance, the Delete Workbook

procedure is identifi ed as version 12.39 in the message box shown in Figure 13.8.

Figure 13.8

Usually, you’ll want

to specify the title

argument for your

message boxes. You

may also want to

include a version

number.

Specify the title argument after the buttons argument like this:

Dim lngQuery As Long

lngQuery = MsgBox(“Do you want to delete this workbook?“, vbYesNo _

 + vbCritical + vbDefaultButton2, “Delete Workbook 12.39“)

You can use a string variable as the title argument. For example, you could declare a single

string variable and use it to supply the title for each message box that a procedure calls. Or you

might need to display in the title of the message box a string created or stored in the procedure.

Avoid Using Special Characters in Titles

Don’t try putting line-feed, carriage-return, or tab characters in the title argument. VBA just

ignores them.

Adding a Help Button to a Message Box
To add a Help button to a message box, use the vbMsgBoxHelpButton constant. You add this

argument to whichever buttons you’re specifying for the message box:

lngQuery = MsgBox(“Do you want to delete this workbook?“, vbYesNo _

 + vbCritical + vbDefaultButton2 + vbMsgBoxHelpButton, _

 “Delete Workbook“)

Adding the vbMsgBoxHelpButton argument simply places the Help button in the message

box—it doesn’t make the Help button display a Help fi le until you specify which Help fi le and

topic it should use (see the next section for details). Figure 13.9 shows the message box that this

statement produces.

MESSAGE BOXES | 321

Figure 13.9

Use the

vbMsgBoxHelp-

Button constant to

add a Help button

to a message box.

Specifying a Help File for a Message Box
The fi nal arguments you can use for a message box are the helpfile and context arguments:

 ◆ The helpfile argument is a string argument specifying the name and location of the Help

fi le that VBA displays when the user summons help from the message box.

 ◆ The context argument is a Help context number within the Help fi le. The Help context num-

ber controls which Help-fi le topic is displayed.

The helpfile and context arguments are primarily useful if you’re writing your own Help

fi les, because otherwise it’s diffi cult to access the Help context numbers, which are buried in the

offi cial Help fi les.

If you’re writing your own Help fi les, the syntax for specifying the helpfile and context
arguments is simple:

Dim lngQuery As Long

lngQuery = MsgBox(“Do you want to delete this workbook?“, vbYesNo _

 + vbCritical + vbDefaultButton2 + vbMsgBoxHelpButton, _

 “Delete Workbook“, “c:\Windows\Help\My_Help.chm“, 1012)

In this case, the Help fi le is specifi ed as My_Help.chm in the \Windows\Help\ folder. VBA dis-

plays the Help topic numbered 1012.

When the user clicks the Help button in the message box, VBA displays the specifi ed topic in

the Help fi le. The message box stays onscreen so that when users have fi nished consulting the

Help fi le, they can make their choice in the message box.

The Help context number for the opening screen of a Help fi le is 0. Use 0 when you need to

display a Help fi le for which you don’t know the Help context number. Users must then locate

the information they need on their own.

Three Unusual Constants for Special Effects

VBA provides three special constants for use with message boxes. You probably won’t need to use

these often, but if you do, they’ll come in handy. Specify them as the fi rst argument in the buttons

arguments:

vbMsgBoxSetForeground Tells VBA to make the message box the foreground window.

You shouldn’t need to use this constant often, because message boxes are displayed in the

foreground by default (so that you can see them).

vbMsgBoxRight Tells VBA to right-align the text in the message box.

vbMsgBoxRtlReading Tells VBA to arrange the text from right to left on Hebrew and

Arabic systems. It has no eff ect on non-BiDi (bidirectional) systems.

322 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Using Some Arguments without Others
When displaying a message box, you can either specify or omit optional arguments. If you want

to specify arguments later in the argument list without specifying the ones before them, use a

comma to indicate each unused optional argument. (This technique can be used with any argu-

ment list.) For example, if you wanted to display the message box shown in the previous exam-

ple without specifying buttons and title arguments, you could use the following statement:

Response = MsgBox(“Do you want to format the report?“,,, _

 “c:\Windows\Help\Procedure Help.chm“, 1012

Here, the triple comma indicates that the buttons and title arguments are omitted (which

will cause VBA to display defaults—a vbOKOnly message box with a title bar containing the

application’s name), preventing VBA from confusing the helpfile argument with the buttons

argument. Alternatively, you could use named arguments, which makes for less-concise but

easier-to-read code:

Response = MsgBox(“Do you want to format the report?“, _

 HelpFile:=“c:\Windows\Help\Procedure Help.chm“, Context:=1012)

Retrieving a Value from a Message Box
If you display a vbOKOnly message box, you know which button the user clicks because the mes-

sage box contains only an OK button. But when you use one of the other message-box styles,

which can have two, three, or four buttons, you must retrieve a value that tells you which button

the user clicked. You can then branch execution to respond appropriately to the user’s choice.

To retrieve a value from a message box, declare a variable for it. You can do so quite simply

by telling VBA that the variable name is equal to the message box (so to speak), like this:

Dim lngResponse As Long

lngResponse = MsgBox(“Do you want to create the daily report?“, _

 vbYesNo + vbQuestion, “Create Daily Report“)

You fi rst declare a variable of the appropriate type (a Long variable) to contain the user’s

choice, as in the examples throughout this chapter:

When you run the code, VBA stores which button the user clicked as a value in the variable.

You can then check the value and take action accordingly.

Table 13.5 shows the full list of buttons the user may choose. You can refer to the buttons

by either the constant name or the value number. As usual, the constant is easier to read than

the value.

Table 13.5: Constants for selected buttons

Value Constant Button Selected

1 vbOK OK

2 vbCancel Cancel

INPUT BOXES | 323

Value Constant Button Selected

3 vbAbort Abort

4 vbRetry Retry

5 vbIgnore Ignore

6 vbYes Yes

7 vbNo No

For example, to check a vbYesNo message box to see which button the user chose, you can use

a straightforward If… Then… Else statement:

Dim lngUserChoice As Long

lngUserChoice = MsgBox(“Do you want to create the daily report?“, _

 vbYesNo + vbQuestion, “Create Daily Report“)

If lngUserChoice = vbYes Then

 Goto CreateDailyReport

Else

 Goto Bye

EndIf

Here, if the user chooses the Yes button, VBA goes to the line of code identifi ed by the

CreateDailyReport label and continues running the procedure from there; if not, it terminates

the procedure by going to the Bye label at the end. The If condition checks the response gener-

ated by the choice the user made in the message box to see if it’s a vbYes (generated by clicking

the Yes button or pressing Enter with the Yes button selected). The Else statement runs if the

response was not vbYes—that is, if the user clicked the No button or pressed Esc.

Input Boxes
Message boxes tell VBA which button the user clicked. But sometimes you want the user to sup-

ply your macro with some text, such as their name or birthday.

When you want to retrieve one simple piece of text information from the user, use an input

box. You’ll be familiar with input boxes by sight if not by name: they usually look something

like the example shown in Figure 13.10.

Figure 13.10

Use an input box

to retrieve a single

piece of informa-

tion from the user.

Table 13.5: Constants for selected buttons (continued)

324 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Create Custom Boxes for Complex Interaction

To retrieve two or more pieces of information from the user, you could use two or more input boxes

in succession, but it’s usually easier for the user if you create a custom dialog box. You’ll start build-

ing custom dialog boxes in Chapter 14.

Input-Box Syntax
The syntax for displaying an input box is straightforward and similar to the syntax for

a message box:

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

Here’s what the arguments mean:

prompt A required string that specifi es the prompt that appears in the input box. As with

MsgBox, prompt can be up to about 1,024 characters long, and you can use the carriage-return

constant (vbCr) to force separate lines. Like the MsgBox prompt argument, the InputBox

prompt automatically wraps if the prompt is longer than about 35 characters.

title A string that specifi es the text in the title bar of the input box. If you don’t specify a

title argument, VBA supplies the application’s name.

default A string that you can use to specify text that will appear in the text box. Entering

a default argument can be a good idea both for cases when the default text is likely to be

suitable (so the user can just press Enter to accept that default) or when you need to display

sample text so that the user can understand what type of response you’re looking for.

Here’s an example of suitable default text to cue the user: if you display an input box

asking for the user’s name, you could enter the Name value by fetching it from the

BuiltInDocumentProperties collection of the ActiveDocument object, like this:

Dim strAuthor As String

 strAuthor = _

 ActiveDocument.BuiltInDocumentProperties(wdPropertyLastAuthor)

xpos and ypos These are optional numeric values for specifying the onscreen position of

the input box. xpos governs the horizontal position of the left edge of the input box from the

left edge of the screen (not of the Word window), whereas ypos governs the vertical posi-

tion of the top edge of the input box from the top of the screen. Each measurement is in

twips, described in the sidebar “Input Boxes Are Usually Best Displayed in the Center of the

Screen” in this chapter. If you omit these two arguments, VBA displays the input box at the

default position of halfway across the screen and one-third of the way down it.

helpfi le and context Optional arguments for specifying the Help fi le and context in the

Help fi le to jump to if the user summons help from the input box. If you use helpfile, you

must also use context.

INPUT BOXES | 325

Input Boxes Are Usually Best Displayed in the Center of the Screen

A twip is 1/1440 inch. An average computer screen uses 96 dots per inch (dpi), so there are 15 twips

per pixel, and a computer screen at 1024 × 768 resolution is 15,360 × 11,520 twips. If you need

to position your input boxes and dialog boxes precisely, experiment with twips at diff erent screen

resolutions until you achieve satisfactory results. Generally, it’s most eff ective to display an input

box in the default center position. Your users are likely to have a variety of screen resolutions.

You can omit any of the optional arguments for an input box. But if you want to use another

argument later in the syntax sequence, remember that you need to indicate the omission with a

spacer comma (or use named arguments as described earlier in this chapter).

Unlike message boxes, input boxes come with a predefi ned set of buttons—OK and Cancel,

plus a Help button if you specify the helpfile and context arguments—so there’s no need to

specify the main buttons for an input box. The following example declares the String variable

strWhichOffice and assigns to it the result of the input box shown in Figure 13.11:

Dim strWhichOffice As String

strWhichOffice = InputBox(_

 “Enter the name of the office that you visited:“, _

 “Expense Assistant“, “Madrid“, , , _

 “c:\Windows\Help\Procedure Help.chm“, 0)

Figure 13.11

Th e input box comes

with a predefi ned

set of buttons.

Retrieving Input from an Input Box
To retrieve the user’s input from an input box, declare the numeric variable or String variable

that will contain it. Here, the variable strWhichOffice will contain what the user types into the

input box:

Dim strWhichOffice

strWhichOffice = _

 InputBox(“Enter the name of the office that you visited:“, _

 “Expense Assistant 2000“, “Madrid“, , , _

 “c:\Windows\Help\Procedure Help.chm“, 0)

326 | CHAPTER 13 GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES

Once the user has entered a value or a string and clicked the OK button, your code can then

use the returned value as usual in VBA. To make sure the user has clicked the OK button, check

that the input box hasn’t returned a zero-length string (which it also returns if the user chooses

the OK button with the text box empty), and take action accordingly:

strWhichOffice = InputBox _

 (“Enter the name of the office that you visited:“, _

 “Expense Assistant 2000“, “Madrid“, , , _

 “c:\Windows\Help\Procedure Help.chm“, 0)

If strWhichOffice = ““ Then End

Forms: When Message Boxes and Input Boxes
Won’t Suffi ce
As you’ve seen in this chapter, a message box can greatly enhance a procedure by enabling the

user to make a choice at a turning point or by presenting the user with important information.

But once you’ve used message boxes for a while, you’re apt to start noticing their shortcomings:

 ◆ You can present only a limited amount of information, and you’re constrained in the

way you can display it (to whatever layout you can conjure up with new paragraphs, line

breaks, tabs, and spaces).

 ◆ You can use only seven sets of buttons, which limits the amount of information that a user

can return to your code via message boxes.

While you can get creative and enter complex messages in message boxes to make the most

use of the buttons they offer, you’ll usually do better to just create a custom dialog box instead.

As you’ll see in Chapters 14 and 15, custom dialog boxes are relatively simple to create, and they

are more powerful and fl exible than message boxes.

You’ll also want to avoid writing procedures that present the user with a number of choices

via a sequence of message boxes. Similarly, input boxes are useful for retrieving a single piece

of information from the user, but beyond that, their limitations quickly become apparent too.

If you fi nd yourself planning to use two or more input boxes in immediate succession, create

a custom dialog box instead. That way you display a single form for the user to fi ll in all the

needed information, instead of several boxes. You’ll see how to create forms in Chapter 14.

Th e Bottom Line

Display messages on the status bar. The information bar at the bottom of the window in

many applications is a useful, unobtrusive way of communicating with the user. The status

bar is frequently used by applications to indicate the current page, zoom level, active view

(such as datasheet in Access), word count, and so on. However, you, too, can display informa-

tion on the bar.

Master It Write a small sub in the Visual Basic Editor that displays the current date and

time in the status bar.

THE BOTTOM LINE | 327

Display message boxes. Message boxes are commonly used to inform or warn the user. By

default, they appear in the middle of the screen and prevent the user from interacting with

the host application until a button on the message box is clicked, thereby closing it.

Master It Write a small sub in the Visual Basic Editor that displays the current date and

time using a message box.

Display input boxes. An input box is similar to a message box, except the former can get

more information from the user. An input box allows the user to type in a string, which is

more data than the simple information provided by which button the user clicked in a mes-

sage box.

Master It Write a small sub in the Visual Basic Editor that asks users to type in their

name. Use the InStr function to see if there are any space characters in the returned

string. If not, it means either they are Madonna or they have typed in only one name—so

display a second input box telling them to provide both their fi rst and last names.

Understand the limitations of message boxes and input boxes. For even moderately com-

plex interaction with the user, message and input boxes are often too limited. They return to

the VBA code, for example, only a single user response: a button click or a single piece of text.

So you can’t conveniently use an input box to ask for multiple data—such as an address and a

phone number—without displaying multiple input boxes. That’s ugly and disruptive.

Master It In addition to the limitations on the amount of information you can retrieve

from the user, what are the two other major limitations of message boxes and input

boxes?

c14.indd 10:51:59:AM 07/26/2013 Page 329

Chapter 14

Creating Simple Custom Dialog
Boxes

In this chapter, you’ll start looking at Visual Basic for Applications’ tools for creating custom

dialog boxes that interact with the user. The terms dialog box and form (or user form) are generally

used interchangeably. Technically, a dialog box is a quite simple, small window, such as a mes-

sage box or input box. Forms, generally, are larger windows featuring more rich and complex

interaction with the user. These terms, though, are equivalent in common usage.

Dialog boxes and forms are among the most powerful and feature-packed elements of VBA.

We will spend quite a bit of time exploring their uses as the primary communication path

between users and procedures.

This chapter covers the most straightforward form components and how to manipulate them.

The next chapter shows you how to create more elaborate forms, such as those with tabbed

pages and those that update themselves when the user clicks a control.

In this chapter you will learn to do the following:

 ◆ Understand what you can do with a custom dialog box

 ◆ Create a custom dialog box

 ◆ Add controls to a dialog box

 ◆ Link dialog boxes to procedures

 ◆ Retrieve the user’s choices from a dialog box

When Should You Use a Custom Dialog Box?
You’ll often want to use a form (another word for dialog box or window) when simpler methods

of interacting with the user fall short. Sometimes, because of the limited selection, the but-

tons provided in message boxes are insuffi cient for getting needed information from the user.

Similarly, the single text fi eld available in an input box would be inadequate if you need the user

to provide multiple data (name, address, phone number, and so on). In other words, sometimes

you need the user to fi ll in a form.

You’ll also want to use a custom dialog box for specialized input: when you need the user to

choose nonexclusive options by selecting or clearing check boxes, to choose from among mutu-

ally exclusive choices via option buttons (also called radio buttons), or to select an item within a

list displayed in a list box. Or perhaps you need to show users a picture. In other words, simple

message boxes or input boxes cannot handle complex user input.

330 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 330

Custom dialog boxes can include the full range of interface elements the user is probably

familiar with from working with Windows applications. You can create custom dialog boxes

that look and function almost exactly like the dialog boxes built into applications (such as the

File Save dialog box). Or you can create even larger constructions that approach the sophistica-

tion of typical application windows.

You’ll use forms often in your more sophisticated macros. For example, when the user starts

a procedure, you can have the procedure display a form presenting options—such as choosing

the fi les for the procedure to manipulate. The user’s choices determine what the procedure will

then do.

You can also create dialog boxes that VBA triggers in response to events in the computer

system: for example, an event that runs at a specifi c time or runs when the user takes a specifi c

action (such as creating, opening, or closing a document).

Making your own dialog boxes is not that hard, but it can be time-consuming if you’re build-

ing a complicated form. Because creating forms is not the fastest programming job, you might

want to consider any practical alternatives to using them.

You’ve already looked at message boxes and input boxes, which provide a simple alternative

for some of the relatively easy tasks for which you might want to create a custom dialog box.

Also, some applications, such as Word and Excel, even let you use their built-in dialog boxes for

your own purposes. If users are familiar with the application, they’re probably familiar with these

built-in dialog boxes and can immediately use them to perform standard actions—for example, to

open or save fi les. These are called common dialog boxes. How to use common dialog boxes in your

macros is demonstrated briefl y in the Real World Scenario titled “Control a For…Next Loop with

User Input via a Dialog Box” in Chapter 12, “Using Loops to Repeat Actions,” and more fully later

in this chapter in the section titled “Using an Application’s Built-in Dialog Boxes from VBA.”

Creating a Custom Dialog Box
If you want to employ a custom dialog box or window in VBA, you use a visual object called

a user form. A user form (also sometimes just referred to as a form) is a blank sheet on which

you can place controls (such as check boxes, buttons, and text boxes) to create a made-to-order

dialog box.

As you’ll see, a user form contains its own code page where you, the programmer, write code

to manage the various controls in the form. You can attach code to any of the controls, or to the

user form itself, and that code is stored in the user form’s code sheet. You can display the user

form’s code sheet in the Code window of the Visual Basic Editor and work with it as you would

any other code. You can also run and test a user form as you would any other procedure (for

example, by pressing F5 with the user form selected), and the VBA Editor will execute the code

behind the form.

You can display a user form (a dialog box) for the user to interact with, and you can then

retrieve information from the user form and manipulate it with VBA code. It’s in this sense that

code supporting a form is said to be behind a form. The user sees and interacts with a form, but

behind the scenes you have written code to intelligently react to whatever the user might input.

CREATING A CUSTOM DIALOG BOX | 331

c14.indd 10:51:59:AM 07/26/2013 Page 331

User Forms Aren’t Always Dialog Boxes

You can also create user forms that aren’t dialog boxes. Th e distinction between a dialog box and

a full window is imprecise, but it’s usually easiest to defi ne a resizable form as a window (you can

resize it by dragging its borders or by clicking its Maximize button), while a dialog box has a fi xed

size. Some dialog boxes, such as the Find And Replace dialog box in Word, have an initially hidden

part that the user can display (in the case of the Find And Replace dialog box, by clicking a More

button).

But apart from this simple resizing, the bounds of the dialog box are fi xed—you can’t grab the

corner of the dialog box with the mouse and drag it to enlarge it. But remember that you, the pro-

grammer, can create very large user forms that have the complexity and dimensions of a typical

application window.

Each user form is itself an object and can contain a number of other objects that you can

manipulate individually.

For example, you could create a simple dialog box with two option buttons, an OK button,

and a Cancel button. Each option button would be an object, the OK button would be a third

object, and the Cancel button would be a fourth object. You could set properties individually

for each object—such as the action to take when the Cancel button was clicked or the ScreenTip

(also called a ToolTip) to display when the user moved the mouse pointer over each of the option

buttons. (ToolTips help make the components of your form understandable for the user.) The

point is to consider the components of a form—the controls you place on the form—as objects.
This is another use of the concept of objects. Controls are visual objects, but like purely program-

matic objects, controls have members such as properties.
You can specify most properties of an object either at design time (when you’re creating the

user form) or at runtime (while the code is executing, either before or after you display the user

form). For example, you can set the Value property of a check-box control to True to display the

check box in its selected state or to False to display the check box in its cleared state. You can set

the Value property three different ways:

 ◆ When building the user form, you can use the Editor’s Properties window to specify val-

ues. For example, you can make a check box that will default to its selected (checked) state

each time the user form is displayed.

 ◆ You can write code that sets the check box before the form gets displayed to the user while

the macro is running.

 ◆ You can write code that sets the check box while the user is interacting with the form. Note

that the user can click the check box to toggle it between its selected and deselected states.

But your code can also do this.

The next sections explain the process of creating a dialog box. Later in this chapter, you’ll

fi nd examples that step through creating a procedure and adding a dialog box to it.

332 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 332

Designing a Dialog Box
It’s possible to whip together a half-decent dialog box without much planning. Some program-

mers like to just “sketch” the user interface in a dialog box by dragging and dropping controls

onto it, then positioning them so they look good and modifying their properties.

Other programmers prefer to adopt a more methodical approach and plan what they need to

include in the dialog box before they start creating it. If you fall into this latter category, consider

the intended purpose of the dialog box and list the elements it will need in order to achieve this

goal. Then sketch on paper a rough diagram of the dialog box to get an approximate idea of

where you’ll want to locate each of the elements (the controls you place on the form).

Try Basing Custom Dialog-Box Designs on Existing Dialog Boxes

Another option is to base the design for your custom dialog box on an existing dialog box—either

a dialog box built into an application (called a common dialog box) or a custom dialog box that

your company or organization has already implemented. Leveraging previous development eff orts

can not only help you avoid reinventing the wheel, but also produce a custom dialog box that users

fi nd familiar and intuitive.

Inserting a User Form
Once you have a design in mind, the fi rst step in creating a custom dialog box is to insert a user

form in the appropriate template or document:

 1. Press Alt+11 to display the Visual Basic Editor if it’s not already open.

 2. In the Project Explorer window, right-click the appropriate project and choose Insert ➢

UserForm from the context menu.

Other Ways to Add a User Form

You can also insert a user form by clicking the Insert UserForm button on the far left of the Editor’s

Standard toolbar.

The Visual Basic Editor opens a new user form like that shown in Figure 14.1, named

UserForm1 (or the next available number if the project already contains other user forms).

The Visual Basic Editor also displays the Toolbox. (If you’ve previously hidden the Toolbox

while working on a user form, the Visual Basic Editor doesn’t display it. Choose View ➢ Toolbox

or click the Toolbox button on the far right of the Standard toolbar.)

CREATING A CUSTOM DIALOG BOX | 333

c14.indd 10:51:59:AM 07/26/2013 Page 333

Figure 14.1

Th e fi rst step in

creating a new dia-

log box is to start

a new user form.

Th e Visual Basic

Editor displays the

Toolbox when a user

form is the active

window.

VBA automatically inserts the user form in the Forms object (the collection of forms) for the

project. If the project you chose didn’t already contain a Forms collection, VBA adds one to con-

tain the new user form. You’ll see the Forms object displayed in the Project Explorer.

Choosing User-Form Grid Settings

The Visual Basic Editor displays a grid in each user form to help you place controls relative to

the dialog box and to align controls relative to each other so they look neat instead of random.

I don’t know why you would want to do this, but to switch off the display of this grid

or to switch off the Visual Basic Editor’s automatic alignment of controls to the grid, follow

these steps:

 1. Choose Tools ➢ Options to display the Options dialog box.

 2. Click the General tab to display the General page (see Figure 14.2).

334 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 334

Figure 14.2

Th e General page

of the Options

dialog box includes

options for toggling

the display of the

grid, resizing the

grid, and toggling

whether VBA aligns

the controls to the

grid.

 3. Choose the settings you want:

 a. Clear the Show Grid check box if you want to turn off the display of the grid. (The grid

continues to function, but the dots are not displayed.)

 b. Clear the Align Controls To Grid check box if you want to stop using the grid whether

it’s visible or not. This feature is usually a timesaver, but if the grid is too coarse for the

layout you’re trying to achieve, just reduce the sizing of the grid from the default 6 to

perhaps 3 or 4.

 c. Change the number of points in the Width and Height text boxes to adjust the sizing of

the grid’s units.

 4. Click the OK button to close the Options dialog box and apply your choices.

Naming Conventions in Visual Basic for Applications

Naming controls in VBA is similar to naming variables. Names for controls can be up to 40 charac-

ters long, must begin with a letter, and after that can be any combination of letters, numbers, and

underscores. You can’t use spaces or symbols in the names, and each name must be unique in its

context—for example, each user form must have a unique name within a project, but within any

user form or dialog box, a control can have the same name as another control in a diff erent form.

Th ose are the rules; you can also use conventions to make the names of your VBA objects as con-

sistent and easy to understand as possible. Recall the conventions you’ve used in previous chapters

for identifying the variable type with a prefi x: str, lng, int, and so on. Th e prefi xes widely used

when naming controls identify the control. For example, by using the convention of prefi xing a text

box control’s name with txt, you can be sure that anyone else reading your code will immediately

identify the name as belonging to a text box—and that you yourself will easily identify the name

when you revisit your old code.

CREATING A CUSTOM DIALOG BOX | 335

c14.indd 10:51:59:AM 07/26/2013 Page 335

Here’s an example showing conventional prefi xes for several controls:

Private Sub cmbSelectEmployee_Change()

 lblEmployeeName = cmbSelectEmployee.Text

 fraStep2.Enabled = True

 lblInstructions = “Enter text in the Step 2 text box. “ & _

 “For example, you might include brief biographical “ & _

 “information on the employee, details of their position, “ & _

 “or your hopes for their contribution to the company.”

 cmdClearEmployeeName.Enabled = True

End Sub

Some popular naming conventions for the most-used VBA objects are shown in the following list.

You’ll encounter the naming conventions for other VBA objects later in the book. Th is list includes

the control’s name, the standard prefi x, and fi nally an example showing how the control can be

named in code:

Check box Th e standard prefi x is chk, as in chkReturnToPreviousPosition.

Command button Th e standard prefi x is cmd, as in cmdOK.

Form (user form) Th e standard prefi x is frm, as in frmMoveParagraph.

Frame Th e standard prefi x is fra, as in fraMovement.

List box Th e standard prefi x is lst, as in lstConferenceAttendees.

Combo box Th e standard prefi x is cmb, as in cmbColor.

Menu Th e standard prefi x is mnu, as in mnuProcedures.

Option button Th e standard prefi x is opt, as in optSpecialDelivery.

Label Th e standard prefi x is lbl, as in lblUserName.

Text box Th e standard prefi x is txt, as in txtUserDescription.

Just as with variable names, the naming convention for controls begins with three lowercase let-

ters and then starts the rest of the object’s name with an uppercase letter to make it a little easier

to read. For example, a text box in which the users are to type their last names might be named

txtLastName.

Naming conventions tend to seem awkwardly formal at fi rst, and there’s a strong temptation to

avoid them. But if you plan to distribute your macros or expect others to work with them, it’s usu-

ally worth the trouble to follow the naming conventions. Plus they help you when debugging. It’s

just another way to make reading code easier for everybody.

Renaming a User Form
Next, change the user form’s name property from the default (UserForm1) to a more descriptive

name. The following steps show how to do this. (For advice on choosing names, refer to the side-

bar “Naming Conventions in Visual Basic for Applications” in this chapter.)

 1. If the Properties window isn’t displayed, press F4 to display it. Figure 14.3 shows the two

pages of the Properties window: Alphabetic and Categorized. Alphabetic displays an

alphabetical listing of the properties of the currently selected object; Categorized displays

336 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 336

the same properties but separated into categories, such as Appearance, Behavior, Font,

Misc., Picture, and Position. (Some controls have more categories than those listed here.)

You can expand a category by clicking the plus (+) sign beside it to display the properties

it contains, and collapse it by clicking the resulting minus (–) sign. If the Alphabetic tab

isn’t selected, click it to select it.

Figure 14.3

You can choose

either an alpha-

betized or a cat-

egorized list in the

Properties window.

The Categorized option is not, in my view, very helpful because many of the properties

are simply too diffi cult to fi t into categories that make any sense. The Caption property,

for example, is assigned to the Appearance category, but the (Name) property is contained

in the Misc. collection. The very existence of a “miscellaneous” category demonstrates

that the categorization effort has broken down. I suggest you stick with the default

Alphabetic option instead.

 2. Make sure the drop-down list (at the top of the Properties window) is displaying the

default name of the user form. If it isn’t, select the user form from the drop-down list.

CREATING A CUSTOM DIALOG BOX | 337

c14.indd 10:51:59:AM 07/26/2013 Page 337

 3. Select the user form’s default name (such as UserForm1 or UserForm2) in the cell to the

right of the Name cell (you can double-click the name to select it quickly). Now type a

new, more descriptive name for the user form. This name can be anything you want, with

the standard VBA limitations:

 ◆ It must start with a letter.

 ◆ It can contain letters, numbers, and underscores but no spaces or symbols.

 ◆ It can be up to 40 characters long.

 4. Click the Caption cell to select the user form’s default name and type the caption for the

user form—that is, the text label that you want the user to see in the title bar of the dialog

box. This name has no restrictions beyond the constraints imposed by the length of the

title bar. You can enter a name longer than will fi t in the title bar, but VBA truncates it

with an ellipsis at its maximum displayable length. As you type, the name appears in the

user-form title bar as well, so it’s easy to see what’s an appropriate length—at least, for

the current size of the user form.

 5. Press Enter or click elsewhere in the Properties window (or elsewhere in the Visual Basic

Editor) to set (make offi cial) the user form’s name. (Naming controls works the same way

as naming forms.)

Dealing with the “Name Conflicts with Existing Module” Error

If you run into the “Name name confl icts with existing module, project, or object library” error

(shown here), chances are you’ve just tried to give a user form the same name already assigned to

something else.

You’ve tried to reuse the name of a VBA project or object library.

Adding Controls to the User Form
Now that you’ve renamed the user form, you’re ready to add controls to it from the Toolbox,

shown in Figure 14.4. VBA automatically displays the Toolbox when a user form is active, but

you can also display the Toolbox when no user form is active by choosing View ➢ Toolbox.

338 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 338

Figure 14.4

Use the Toolbox to

add controls to the

user form.

ListBox

ComboBox

TextBox

Label

Select Objects

CheckBox ToggleButton
CommandButton
FrameOptionButton

TabStrip

MultiPage

ScrollBar

SpinButton

Image

Removing the “Roaming Office” Control

Obviously an oversight on Microsoft’s part, they’ve included in the VBA 2013 Toolbox an obscure

and—even in MSDN—essentially ignored control called the RoamingOffi ce control (not shown

in Figure 14.4). Its use is beyond the scope of this book, not to mention beyond the scope of the

VBA Help system and even Google. Perhaps Microsoft intends to make it useful in the future. For

now, though, it clearly doesn’t belong among the default controls on the Toolbox. It’s the small gray

crosshatched square icon next to the Image control. If you wish, you can remove the RoamingOffi ce

control from your Toolbox by right-clicking its crosshatched icon, then choosing Delete

RoamingOffi ce from the context menu.

Here’s what the buttons on the Toolbox do:

Select Objects This fi rst control has a very specialized purpose, and you might never need

to use it. First, it’s not an ordinary control (it doesn’t appear on a form; you can’t drag and

drop it onto a form). Its job is to restore the mouse pointer to selection mode. However, the

mouse pointer automatically returns to selection mode after you’ve dropped a control onto

a form. So usually you’ll need to click the Select Objects button only when you’ve selected

another control and then changed your mind and decided not to use it. So you need to

restore the pointer to its normal state. Alternatively, if you double-click a control (such as the

check box), you trigger a technique that allows you to quickly add multiple versions of the

same control repeatedly. (Every time you click in the form, a new check box is added to it, for

CREATING A CUSTOM DIALOG BOX | 339

c14.indd 10:51:59:AM 07/26/2013 Page 339

example, while the Editor is in this state. To stop this repetitive behavior, you click the Select

Objects button.

Label Creates a label, which is text used to identify a part of the dialog box or to explain

information the user needs to know in order to use the dialog box effectively.

TextBox Creates a text box (also sometimes called an edit box), a fi eld into which the user

can type text. You can also use a text box to display text to the user or to provide text for the

user to copy and paste elsewhere. A text box can contain either one line (the default) or mul-

tiple lines and can display a horizontal scroll bar, a vertical scroll bar, or both.

ComboBox Creates a combo box, a control that combines a text box with a list box. The user

can either choose a value from the list box or enter a new value in the text box.

ListBox Creates a list box, a control that lists a number of values. Users can pick one value

from the list but can’t enter a new value of their own (unlike with a combo box). The list box

is good for presenting closed sets of data.

CheckBox Creates a check box and an accompanying label. The user can select or clear the

check box to turn the associated action on or off.

OptionButton Creates an option button (also known as a radio button) and an accompany-

ing label to identify the purpose of the button. This button is usually a circle that contains

a black dot when selected. The user can select only one option button out of any group of

option buttons. (The name radio button comes from radios with push buttons for stations;

you can select only one button at a time. Push one, and the others pop out.)

ToggleButton Creates a toggle button, a button that shows whether or not an item is

selected. A toggle button can be defi ned with any two settings, such as On/Off or Yes/No.

You can add a picture to a toggle button, which provides a graphical way of letting a user

choose between options.

Frame Creates a frame, an area of a user form or dialog box surrounded by a thin line and

an accompanying label. You can use frames (also known as group boxes) to group related

elements in your forms. As well as cordoning off elements visually, frames can separate ele-

ments logically. For example, VBA treats a group of option buttons contained within a frame

as separate from option buttons in other frames or option buttons loose in the dialog box.

This separation makes it easier to use multiple sets of option buttons in a form.

CommandButton Creates a command button. This is the typical, ordinary Windows button

that users click to communicate their wishes. Most dialog boxes contain command buttons

such as OK and Cancel, or Open and Cancel, or Save, or Apply and Close.

TabStrip Creates a tab strip for displaying multiple sets of data in the same set of controls.

Tab strips are especially useful for presenting records in a database for review or modifi ca-

tion: Each record in the database contains the same fi elds for information, so they can be

displayed in the same group of controls. The tab strip provides an easy way of navigating

between records.

MultiPage Creates a multipage control for displaying multipage dialog boxes that have

different layouts on each of their tabs. An example of a multipage dialog box is the Options

dialog box (Tools ➢ Options), which has multiple pages (often referred to incorrectly as tabs)

in most of the Offi ce applications.

340 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 340

ScrollBar Creates a stand-alone scroll bar. Stand-alone scroll bars are of relatively little use

in dialog boxes. Combo boxes and list boxes have built-in scroll bars.

SpinButton Creates a spin-button control for attaching to another control. Spin buttons

(also known as spinners) are typically small, rectangular buttons with one arrow pointing

up and one down (or one arrow pointing left and the other pointing right). Spin buttons are

useful for presenting sequential values with consistent intervals within an understood range,

such as times or dates. For example, if you want the user to increment or decrement a price in

a text box in 25-cent steps, you could use a spinner to adjust the price rather than letting the

user type directly into the text box.

Image Creates an image control for displaying a picture within a form. For example, you

might use an image control to show a corporate logo or a picture of some sort. (If you want to

display a photo, texture, or other graphic on the background of the form itself, set the form’s

Picture property.)

Adding Controls to the Visual Basic Editor Toolbox

Th e Toolbox shown in Figure 14.4 contains the basic set of tools provided by VBA. As discussed in

“Customizing the Toolbox” in Chapter 2, “Getting Started with the Visual Basic Editor,” you can

customize the Toolbox in various ways: by adding other controls to it, creating additional pages for

the controls, moving controls from page to page, and creating customized controls of your own mak-

ing so that you can avoid having to repeatedly adjust properties each time you add those controls.

Click one of the controls in the Toolbox to select it. Then click in the user form to insert the

control on the form, as illustrated in Figure 14.5. VBA places the top-left corner of the control

where you click. As you place a control, it snaps to the grid on the user form (unless you’ve

turned off the Align Controls To Grid feature as described in “Choosing User-Form Grid

Settings,” earlier in this chapter).

You can resize the control as desired by selecting it and then clicking and dragging one of the

selection handles (the white squares) that appear around it, as shown in Figure 14.6. The mouse

pointer changes to a double-arrow icon when you’ve correctly positioned it to drag. When you

drag a corner handle, VBA resizes the control on both sides of the corner; when you drag the

handle at the midpoint of one of the control’s sides, VBA resizes the control only in that dimen-

sion. In either case, VBA displays a dotted outline indicating the size that the control will be

when you release the mouse button.

To resize the user form itself, click its title bar, or click in any blank space in the form (any-

where outside a control). This selects the user form. Then click and drag one of the selection

handles that appear around the form.

To delete a control, right-click it in the user form and choose Delete from the context menu.

Alternatively, click it to select it and then press the Delete key or choose Edit ➢ Delete. Restore it

by pressing Ctrl+Z.

CREATING A CUSTOM DIALOG BOX | 341

c14.indd 10:51:59:AM 07/26/2013 Page 341

Figure 14.5

When you click in

the user form, VBA

places a standard-

size control of the

type you chose. If

the Align Controls

To Grid feature is

switched on (as

it is by default),

VBA automatically

aligns the control

with the grid on the

user form.

Figure 14.6

Once you’ve placed

a control, you can

resize it as neces-

sary by dragging

one of its selection

handles.

Random Additional Default Toolbox Controls

Now and then Microsoft adds application-specifi c or novel controls to the default Toolbox. Th is

not only causes confusion, but it also means that the VBA Editor’s Toolboxes are not standardized

across the Offi ce applications. Th is is a recent development, and unwelcome. Word 2013 arbitrarily

includes a “Roaming Offi ce” control. For more on this peculiar feature, see the sidebar “Removing

the ‘Roaming Offi ce’ Control” earlier in this chapter.

Excel’s VBA Editor includes a RefEdit control that mimics Excel’s reference-edit boxes.

Nobody objects to Microsoft providing additional controls to we programmers. (You can easily

add controls to the Toolbox by right-clicking within the Toolbox and choosing Additional Controls

from the context menu.) What’s problematic is the randomness of what’s now being included in

the default Toolboxes.

342 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 342

Grouping Controls
Sometimes it’s quite effi cient to temporarily select several controls as a group in the Editor. This

allows you to manipulate all the grouped controls as a unit. For example, if you want to change

the font size of three text boxes, two option buttons, and four labels, just group them and change

the font-size property in the Properties window only once. The whole group will have all their

font sizes changed automatically. (This trick is not related to grouping controls within a Frame

control as described earlier in this chapter.)

We’ll explore this useful grouping technique later in this chapter in the section titled

“Working with Groups of Controls.” For now, I’ll just briefl y introduce the concept.

To delete, move, resize, or change the properties of multiple controls at once, fi rst select them

into a group. You can then delete them all at once by using the methods just described. Or you

can move, resize, or modify the properties of the group as a whole.

Here’s how to group controls:

 ◆ To select multiple contiguous controls, click the fi rst control, hold down Shift, and then

click the last control in the sequence.

 ◆ To select multiple noncontiguous controls—or to add additional controls to a group after

you’ve selected multiple contiguous controls by using the Shift key—hold down the Ctrl

key as you click each additional control. (With the Ctrl key pressed, you can deselect any

control in a group by clicking it a second time.)

 ◆ To select multiple controls in the same area of the user form, click in the form’s background

outside the controls and drag the resulting selection box until it encompasses at least part

of each control. When you release the mouse button, the Visual Basic Editor selects the con-

trols as a group.

Renaming Controls
As with user forms, VBA automatically gives each control that you add to a form a default name

consisting of the type of control plus a sequential number. When you add the fi rst text box in

a user form, VBA names it TextBox1; when you add another text box, VBA names it TextBox2;

and so on. (Each control in a dialog box must have a unique name so that you can refer to it spe-

cifi cally in code.)

You’ll usually want to change the controls’ default names to names that describe their pur-

pose so you can remember what they do for the macro.

For example, if TextBox2 is used for entering the user’s organization name, you might want

to rename it txtOrganizationName, txtOrgName, txtO_Name, or something similar.

To rename a control, follow these steps:

 1. Click the control in the user form to select it and thereby display its properties in the

Properties window.

 ◆ If the Properties window is already displayed, you can, if you prefer, select the control

from the drop-down list at the top of the Properties window instead of selecting it

in the user form. VBA then visually highlights (selects) the control in the user form,

which helps you make sure that you’ve selected the control you want to affect.

CREATING A CUSTOM DIALOG BOX | 343

c14.indd 10:51:59:AM 07/26/2013 Page 343

 ◆ If the Properties window isn’t displayed, you can quickly display it with the prop-

erties for the appropriate control by right-clicking the control in the user form and

choosing Properties from the context menu.

 2. In the Properties window, double-click to select the default name in the cell to the right of

the Name property.

 3. Type the new name for the control.

 4. Press Enter to set the control name, or click elsewhere in the Properties window or in the

user form.

If You Rename a Control, You May Have to Modify Your Code

You can rename a control anytime. But if you do, you must also change any existing references to

it in the code that drives the user form. Th is gives you a strong incentive to choose suitable names

for your controls before you write the code.

Moving a Control
To move a control, click anywhere in it to select it, and then drag it to where you want it to

appear, as shown in Figure 14.7.

Figure 14.7

If a control isn’t

currently selected,

you can move it by

clicking it and drag-

ging it.

To move a selected control, move the mouse pointer over the selection border around it so

that the mouse pointer turns into a four-headed arrow (as shown in Figure 14.8), and then click

and drag the control to where you want it to appear.

344 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 344

Figure 14.8

If a control is

selected, move the

mouse pointer over

its selection border,

and then click and

drag the control.

Useful Copy-and-Paste Techniques with Controls

You can use the Copy and Paste commands (from the Standard toolbar, the Edit menu, or the

context menu or by using the easiest approach, the keyboard, such as pressing Ctrl+X and Ctrl+V)

to move a control.

Copy and Paste isn’t that effi cient when moving a single control; the Paste command places the

control right in the middle of the user form, so you have to drag it to its new position anyway.

However, when creating multiple, similar control sets—such as a group of text boxes with accompa-

nying labels—copying and pasting can be quite useful. It’s a quick way to build a whole set of fi elds

for the user to fi ll in, for example. Th is way, you don’t have to position and align each label/text

box pair. Nor do you have to adjust each control’s properties, because they are copied too. Align the

fi rst label/text pair, set the Font property the way you want it (usually larger, changing it from

the default 8 pt. size to 11), resize the controls as you want them, change any other properties to suit

yourself, and then copy and paste (clone) the pair as often as necessary by repeatedly pressing Ctrl+V.

Be aware, though, that the VBA Editor unfortunately places each new clone directly on the center

of the form, thereby hiding any other clones you’ve just added. In other words, when you paste,

you can’t actually see the new clone—it’s in a pile on the center of the form. So you have to drag

the clones away from the center to reveal the others beneath.

Here’s a related technique: Sometimes you want to copy the entire set of controls from one form

to another. Select all the controls on Form1, then press Ctrl+C to copy them, then click Form2 to

select it, and press Ctrl+V to paste the entire set of controls into the new form.

Th e advantage of using Copy and Paste for creating new controls is that the new controls inherit

all the characteristics of the original controls, so you can save time by creating a control, setting

its properties, and then cloning it.

CREATING A CUSTOM DIALOG BOX | 345

c14.indd 10:51:59:AM 07/26/2013 Page 345

You don’t even need to change the names of the copies you paste to another user form—they just

need to be named suitably for the code with which they work.

As an alternative to using the Copy and Paste commands, you can also copy a control by holding

down the Ctrl key as you click and drag the control. VBA displays a + sign attached to the mouse

pointer to indicate that you’re copying the control rather than moving it. Drop the copy where you

want it to appear on the user form.

Changing the Caption on a Control
Some controls—such as option buttons and check boxes—have built-in text captions to let the

user understand their purpose. You can change these captions like this:

 1. Click the control to select it.

 2. Click the caption itself to select it. VBA displays the blinking insertion cursor and a faint

dotted border around the text, as shown in Figure 14.9.

Figure 14.9

To change the cap-

tion on a control,

select the control,

and then click in

the text so that it

displays this faint

dotted border.

Double-Clicking Opens the Code Window Rather Than Selects a

Control

When you click a label to select it and click again to position the insertion point to change the cap-

tion, make sure you click slowly enough that Windows doesn’t interpret this as a double-click. A

double-click displays the code sheet for the user form and automatically adds a procedure for the

Click event of the control. If this happens, you can easily get back to viewing the form (it’s called

Design view, as opposed to Code view). Just press Shift+F7, double-click the module’s name in the

Project Explorer, or choose View ➢ Object to view the form again.

346 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 346

 3. Now click in the label to position the insertion point for editing it, or drag through the

label to select all of it.

 4. Edit the text of the label as desired.

 5. Press Enter or click elsewhere in the user form to effect the change to the label. (You

can alternatively change the label by changing its Caption property in the Properties

window.)

When Should You Set Properties of a Control?

You can set (specify) many properties of a control either at design time (while you’re creating the

user form) or at runtime (while the form’s code is executing). Th ere’s a time and a place for each

approach, a time when either is a reasonable course of action.

Generally speaking, the more static the property, the more likely you’ll want to set it at design time.

Some properties, such as the Name property of a user form, have to be set at design time—you can’t

change such properties at runtime for a user form. You’ll also usually want to name your controls at

design time, though you can add controls at runtime and set their Name properties during execution.

In most cases, you’ll want to set the properties that govern the position and size of the user form

itself and its controls at design time. Th e advantages are clear: you can make sure that the user

form looks as you intend it to, that it’s legible, and so on.

Occasionally, you may want to change the properties of a user form or the size or position of some

of the controls on it at runtime. For example, you might need to add a couple of option buttons to

the form to take care of eventualities not included in the basic design of the form. Alternatively, you

might create a form that had two groups of option buttons sharing the same space—one group, in

eff ect, positioned on top of the other. At runtime, you could modify their Visible properties

in your code and thus display one group and hide the other group. If each group contained the

same number of option buttons, you could even make do with only one group of option buttons,

assigning the appropriate properties to each at runtime. However, there’s no particular advantage

in trying to simultaneously make just the one group do double duty like that. It can make your

code more confusing.

Given the fl exibility that many properties of controls provide, you can often design your user forms

to handle several circumstances by displaying and hiding diff erent groups of controls at runtime

rather than having to add or remove controls at runtime. Creating the complete set of controls for

a user form at design time avoids most of the diffi culties that can arise from adding extra controls

at runtime. Th at said, you may sometimes need to create a user form on the fl y to present informa-

tion about the situation in which users have placed themselves.

As you’ll see as you continue to work with controls, you have to set values for some controls at

runtime. For example, you sometimes can’t assign the list of items to a list box or combo box

at design time. If a list displays items from a database, the list can vary depending on which data

set the user selects. So you would have to write code that fi lls the list box during execution. (Often,

you’ll fi ll a list box during a UserForm_Initialize procedure that runs as the user form is being

initialized for display.) Th e set of items in some lists can be known in advance and specifi ed in your

code during design time, such as a list box displaying all the countries in the world, from which

the user selects the country of residence.

CREATING A CUSTOM DIALOG BOX | 347

c14.indd 10:51:59:AM 07/26/2013 Page 347

Key Properties of the Toolbox Controls
The following sections discuss the key properties of the controls in the default Toolbox.

First, I’ll explain the common properties used to manipulate many of the controls effectively.

After that, I’ll go through the controls one by one, listing the properties particular to each

control.

If you’re new to VBA and fi nd this section heavy going, just skip it for the time being and

return to it when you’re creating code and need to reference information about the properties of

the controls.

Common Properties

Table 14.1 lists the properties shared by all or most controls, grouped by category.

Table 14.1: Properties common to most or all controls

Property

Information Applies To Explanation

General

Properties

BoundValue All controls except

Frame, Image, and Label

Contains the value of the control when the control

receives the focus in the user form.

HelpContextID All controls except Image

and Label

Returns the context identifi er of the Help fi le topic

associated with the control.

Name All controls Contains the name for the control.

Object All controls Enables you to assign to a control a custom property

or method that uses the same name as a standard

property or method.

Parent All controls Returns the name of the user form that contains

the control.

Tag All controls Used for assigning extra information to the control.

Th is is rarely used.

Value CheckBox, ComboBox,

CommandButton,

ListBox, MultiPage,

OptionButton, ScrollBar,

SpinButton, TabStrip,

TextBox, ToggleButton

One of the most varied properties, Value specifi es

the current state or value of the control. A

CheckBox, OptionButton, or ToggleButton can have

an integer value of −1 (True), indicating that the

item is selected, or a value of 0 (False), indicating

that the item is cleared. A ScrollBar or SpinButton

returns a value containing the current value in the

control. A ComboBox or ListBox returns the cur-

rently selected row’s (or rows’) BoundColumn value.

A MultiPage returns an integer indicating the active

page, and a TextBox returns the text in the text box.

348 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 348

Property

Information Applies To Explanation

Th e value of a CommandButton is False because

choosing the command button triggers a Click

event. However, you can set the value of a

CommandButton to True, which has the same eff ect

as clicking it. In other words, the value property is

similar to the value of a variable, but the property’s

possible values are highly specifi c to each control.

Size and Position

Height All controls Th e height of the control, measured in points.

LayoutEffect All controls except Image Indicates whether a control was moved when the

layout of the form was changed.

Left All controls Th e distance of the left border of the control in

pixels from the left edge of the form or frame that

contains it.

OldHeight All controls Th e previous height of the control, measured in

pixels.

OldLeft All controls Th e previous position of the left border of the

control, measured in pixels.

OldTop All controls Th e previous position of the top border of the

control, measured in pixels.

OldWidth All controls Th e previous width of the control, measured in

points.

Top All controls Th e distance of the top border of the control in

pixels from the top edge of the form or frame that

contains it.

Width All controls Th e width of the control, measured in points.

Appearance

Alignment CheckBox,

OptionButton,

ToggleButton

Specifi es how the caption is aligned to the control.

AutoSize CheckBox, ComboBox,

CommandButton, Image,

Label, OptionButton,

TextBox, ToggleButton

A Boolean (True or False only) property that con-

trols whether the object resizes itself automatically

to accommodate its contents. Th e default setting is

False, which means that the control doesn’t auto-

matically resize itself.

Table 14.1: Properties common to most or all controls (continued)

CREATING A CUSTOM DIALOG BOX | 349

c14.indd 10:51:59:AM 07/26/2013 Page 349

Property

Information Applies To Explanation

BackColor All controls Th e background color of the control. Th is property

contains a number representing the color.

BackStyle CheckBox, ComboBox,

CommandButton, Frame,

Image, Label,

OptionButton, TextBox,

ToggleButton

Specifi es whether the background of the object is

transparent (fmBackStyleTransparent) or

opaque (fmBackStyleOpaque, the default). You can

see through a transparent control—anything

behind it on the form will show through. You can

use transparent controls to achieve interesting

eff ects—for example, by placing a transparent com-

mand button on top of an image or another control.

BorderColor ComboBox, Image, Label,

TextBox, ListBox

Specifi es the color of the control’s border. You can

choose a border color from the System drop-down

list or the palette or enter BorderColor as an

eight-digit integer value (such as 16711680 for mid-

blue). VBA stores the BorderColor property as a

hexadecimal value (for instance, 00FF0000). For

BorderColor to take eff ect, BorderStyle must be

set to fmBorderStyleSingle.

BorderStyle ComboBox, Frame,

Image, Label, ListBox,

TextBox, UserForm

Specifi es the style of border on the control or user

form. Use BorderStyle with the BorderColor

property to set the color of a border.

Caption CheckBox,

CommandButton, Label,

OptionButton,

ToggleButton

A text string containing the description that

appears for a control—the text that appears in a

label, on a command button or toggle button, or

next to a check box or option button.

Font (object) All controls except Image,

SpinButton, and

ScrollBar

Font—an object rather than a property—controls

the font in which the label for the object is dis-

played. For TextBox, ComboBox, and ListBox con-

trols, Font controls the font in which the text in the

control is displayed.

ForeColor All controls except Image Th e foreground color of the control (often the text

on the control). Th is property contains a number

representing the color.

Locked CheckBox, ComboBox,

CommandButton,

ListBox, OptionButton,

TextBox, ToggleButton

A Boolean property that specifi es whether the user

can change the control. When Locked is set to

True, the user can’t change the control, though the

control can still receive the focus (that is, be

selected) and trigger events. When Locked is False

(the default value), the control is open for editing.

Table 14.1: Properties common to most or all controls (continued)

350 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 350

Property

Information Applies To Explanation

MouseIcon All controls except

MultiPage

Specifi es the image to display when the user moves

the mouse pointer over the control. To use the

MouseIcon property, the MousePointer property

must be set to 99, fmMousePointerCustom.

MousePointer All controls except

MultiPage

Specifi es the type of mouse pointer to display when

the user moves the mouse pointer over the control.

Picture CheckBox,

CommandButton, Frame,

Image, Label,

OptionButton, Page,

ToggleButton, UserForm

Specifi es the picture to display on the control. By

using the Picture property, you can add a picture

to a normally text-based control, such as a com-

mand button.

PicturePosition CheckBox,

CommandButton, Label,

OptionButton,

ToggleButton

Specifi es how the picture is aligned with its caption.

SpecialEffect CheckBox, ComboBox,

Frame, Image, Label,

ListBox, OptionButton,

TextBox, ToggleButton

Specifi es the visual eff ect to use for the control. For

a CheckBox, OptionButton, or ToggleButton, the

visual eff ect can be fl at (fmButtonEffectFlat) or

sunken (fmButtonEffectSunken). For the other

controls, the visual eff ect can be fl at (fmSpecial-

EffectFlat), raised (fmSpecialEffectRaised),

sunken (fmSpecialEffectSunken), etched

(fmSpecialEffectEtched), or a bump

(fmSpecialEffectBump).

Visible All controls Indicates whether the control is visible; expressed

as a Boolean value.

WordWrap CheckBox,

CommandButton, Label,

OptionButton, TextBox,

ToggleButton

A Boolean property that specifi es whether the text

in or on a control wraps at the end of a line. For most

controls, WordWrap is set to True by default; you’ll

often want to change this property to False to pre-

vent the text from wrapping inappropriately. If the

control is a TextBox and its MultiLine property is

set to True, VBA ignores the WordWrap property.

Table 14.1: Properties common to most or all controls (continued)

CREATING A CUSTOM DIALOG BOX | 351

c14.indd 10:51:59:AM 07/26/2013 Page 351

Property

Information Applies To Explanation

Behavior

Accelerator CheckBox,

CommandButton, Label,

OptionButton, Page, Tab,

ToggleButton

Th e accelerator key (or access key, or mnemonic) for

the control—the key the user presses (typically in

combination with Alt) to access the control. For

example, in many dialog boxes, the user can access

the Cancel button by pressing Alt+C. Th e accelerator

key for a label applies to the next control in the tab

order rather than to the label itself. Th e accelerator

character must be one of the characters in the con-

trol’s text caption, usually the fi rst (Th e C in Cancel,

for example). Once you specify the accelerator char-

acter, VBA automatically underlines that character

in the caption to cue the user that they can press,

for example, Alt+C to select the Cancel button. For

additional information on tab order, see the section

titled “Adjusting the Tab Order of a Form” later in

this chapter.

ControlSource CheckBox, ComboBox,

ListBox, OptionButton,

ScrollBar, SpinButton,

TextBox, ToggleButton

Th e cell or fi eld used to set or store the Value of the

control. Th e default value is an empty string (“”),

indicating that there is no control source for the

control.

ControlTipText All controls Th e text of the ScreenTip displayed when the user

holds the mouse pointer over the control. Th e

default value of ControlTipText is a blank string,

which means that no ScreenTip is displayed.

Enabled All controls A Boolean value that determines whether the con-

trol can be accessed (either interactively or

programmatically).

TabIndex All controls except Image Th e position of the control in the tab order of the

user form, expressed as an integer from 0 (the fi rst

position) through the number of controls on the

user form.

TabStop All controls except Image

and Label

A Boolean value establishing whether the user can

select the control by pressing the Tab key. If

TabStop is set to False, the user can select the

control only with the mouse. Th e TabStop setting

doesn’t change the tab order of the dialog box.

Table 14.1: Properties common to most or all controls (continued)

352 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 352

Label

The Label control simply displays text on the screen. It’s most often used to identify the purpose

of another control, so you frequently see a Label control placed on a form to the left of a textbox

whose purpose the label describes. Use the Caption property to type in the text that you want

the label to display. Use the TextAlign property as shown in Table 14.2 to align the text of the

label with the borders of the Label control.

Table 14.2: TextAlign property values for the Label control

fmTextAlign Constant Value Text Alignment

fmTextAlignLeft 1 With the left border of the control

fmTextAlignCenter 2 Centered on the control’s area

fmTextAlignRight 3 With the right border of the control

TextBox

The TextBox is one of the most common controls. Recall that it can be a single-line control (often

employed to display a fi eld the user must fi ll in) or a multiline control, for displaying lots of text,

as in a diary program where the user determines how much they want to write. Adjust this fea-

ture with the MultiLine property. Also, the defaults for a TextBox are a size of 8 pt. (too small

usually) and a sans-serif font called Tahoma (sans-serif type is generally thought more appropri-

ate for headlines than body text). So you’ll usually fi nd yourself employing the Font property to

choose a larger font size and more readable font (such as Times New Roman).

Table 14.3 lists the key properties of the TextBox control.

Table 14.3: Key properties of the TextBox control

Property Description

AutoTab A Boolean property that determines whether VBA automatically moves to the

next fi eld when the user has entered the maximum number of characters in the

text box or combo box.

AutoWordSelect A Boolean property that determines whether VBA automatically selects a whole

word when the user drags the mouse through text in a text box or a combo box.

DragBehavior Enables or disables drag-and-drop for a text box or combo box: fmDragBehav-

iorDisabled (0) disables drag-and-drop; fmDragBehaviorEnabled (1)

enables drag-and-drop.

EnterFieldBehavior Determines whether VBA selects the contents of the edit area of the text box or

combo box when the user moves the focus to the text box or combo box:

fmEnterFieldBehaviorSelectAll (0) selects the contents of the text box or

current row of the combo box; fmEnterFieldBehaviorRecallSelection (1)

doesn’t change the previous selection.

CREATING A CUSTOM DIALOG BOX | 353

c14.indd 10:51:59:AM 07/26/2013 Page 353

Property Description

EnterKeyBehavior A Boolean property that determines what VBA does when the user presses Enter

with the focus on a text box. If EnterKeyBehavior is True, VBA creates a new

line when the user presses Enter; if EnterKeyBehavior is False, VBA moves

the focus to the next control on the user form. If MultiLine is False, VBA

ignores the EnterKeyBehavior setting.

HideSelection A Boolean property that determines whether VBA displays any selected text in a

text box or combo box. If HideSelection is True, VBA displays the text with-

out indicating the selection when the control doesn’t have the focus. If

HideSelection is False, VBA indicates the selection both when the control

has the focus and when it doesn’t.

IMEMode Determines the default runtime mode of the Input Method Editor (IME). Th is

property is used only in Far Eastern applications (for example, those using

Japanese hiragana or katakana or Korean hangul).

IntegralHeight A Boolean property that determines whether a list box or a text box resizes itself

vertically to display any rows that are too tall to fi t into it at its current height

(True) or not (False).

MultiLine A Boolean property that determines whether the text box can contain multiple

lines of text (True) or only one line (False). When MultiLine is True, the text

box adds a vertical scroll bar when the content becomes more than will fi t within

the current dimensions of the text box. VBA defaults to Multiline = False.

PasswordChar Specifi es the placeholder character to display in place of the characters the user

types (so somebody peeping won’t see the actual password). Th e common pass-

word character is the asterisk *. Th is property is normally used for entering

passwords and other information that needs to be obscured so that it cannot be

read.

ScrollBars Specifi es which scroll bars to display on the text box. Usually, you’ll do best to

set the WordWrap property to True and let VBA add the vertical scroll bar to the

text box as needed rather than using the ScrollBars property.

SelectionMargin A Boolean property that determines whether the user can select a line of text in

the text box or combo box by clicking in the selection bar to the left of the line.

ShowDropButtonWhen Determines when to display the drop-down button for a combo box or a text

box. fmShowDropButtonWhenNever (0) never displays the drop-down button

and is the default for a text box. fmShowDropButtonWhenFocus (1) displays

the drop-down button when the text box or combo box has the focus. fmShow-

DropButtonWhenAlways (2) always displays the drop-down button and is the

default for a combo box.

TabKeyBehavior A Boolean property that specifi es whether the user can enter tabs in the text

box. If TabKeyBehavior is True and MultiLine is True, pressing Tab enters a

tab in the text box. If MultiLine is False, VBA ignores a TabKeyBehavior

setting of True. If TabKeyBehavior is False, pressing Tab moves the focus to

the next control in the tab order.

Table 14.3: Key properties of the TextBox control (continued)

354 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 354

ComboBox and ListBox

From the user’s point of view, a key distinction is that a list box simply provides a list of

options the user can choose from, whereas a combo box offers that list and also includes a fi eld

where the user can type in items.

Table 14.4 shows the key properties of the ComboBox control and the ListBox control. These

two controls are similar and share many properties. They do, however, differ somewhat in

behavior and features; these differences are described in the entries marked “List box only” and

“Combo box only” in the table.

Table 14.4: Key properties of the ComboBox and ListBox controls

Property Description

AutoTab See Table 14.3.

AutoWordSelect See Table 14.3.

BoundColumn A Variant property that determines the source of data in a combo box or a list

box that has multiple columns. Th e default setting is 1 (the fi rst column). To

assign another column, specify the number of the column (columns are num-

bered from 1, the leftmost column). To assign the value of ListIndex to

BoundColumn, use 0.

ColumnCount A Long (data type) property that sets or returns the number of columns dis-

played in the combo box or list box. If the data source is unbound, you can spec-

ify up to 10 columns. To display all available columns in the data source, set

ColumnCount to –1.

ColumnHeads A Boolean property that determines whether the combo box or list box displays

headings on the columns (True) or not (False).

ColumnWidths A String (data type) property that sets or returns the width of each column in a

multicolumn combo box or list box.

ListRows (Combo box only.) A Long (data type) property that sets or returns the number

of rows displayed in the combo box. If the number of items in the list is greater

than the value of ListRows, the combo box displays a scroll bar so that the user

can scroll to the unseen items.

ListStyle Determines the visual eff ect the list uses. For both a combo box and a list box,

fmListStylePlain displays a regular, unadorned list. For a combo box,

fmListStyleOption displays an option button to the left of each entry,

allowing the user to select one item from the list. For a list box, fmListStyle-

Option displays option buttons for a single-select list and check boxes for

a multiselect list.

CREATING A CUSTOM DIALOG BOX | 355

c14.indd 10:51:59:AM 07/26/2013 Page 355

Property Description

ListWidth (Combo box only.) A Variant property that sets or returns the width of the list in

a combo box. Th e default value is 0, which makes the list the same width as the

text area of the combo box.

MatchEntry Determines which type of matching the combo box or list box uses when the user

types characters with the focus on the combo box or list box. fmMatchEntry-

FirstLetter (0) matches the next entry that starts with the letter or character

typed: if the user types t twice, VBA selects the fi rst entry beginning with t and

then the second entry beginning with t. fmMatchEntryComplete (1) matches

each letter the user types: if the user types te, VBA selects the entry that starts

with te. fmEntryMatchNone (2) specifi es no matching: the user can’t select an

item by typing in the list box or combo box but must use the mouse or the arrow

keys instead. Th e default MatchEntry setting for a combo box is fmMatchEntry-

Complete. Th e default setting for a list box is fmMatchEntryFirstLetter.

MatchRequired (Combo box only.) A Boolean property determining whether the user must select

an entry from the combo box before leaving the control (True) or not (False).

Th is property is useful for making sure that if the user types a partial entry into

the text-box area of the combo box, they don’t forget to complete the selection

in the drop-down list area.

If MatchRequired is True and the user tries to leave the combo box without

making a selection, VBA displays an “Invalid Property Value” message box.

MultiSelect (List box only.) Controls whether the user can make a single selection in the list

or multiple selections. fmMultiSelectSingle (0) lets the user select only one

item. fmMultiSelectMulti (1) lets the user select multiple items by clicking

with the mouse or by pressing the spacebar. fmMultiSelectExtended (2) lets

the user use Shift+click, Ctrl+click, and Shift with the arrow keys to extend or

reduce the selection.

RowSource A String property that specifi es the source of a list to be displayed in a combo

box or a list box.

SelectionMargin See Table 14.3.

ShowDropButtonWhen See Table 14.3.

CheckBox

Check boxes are similar to option buttons—a set of choices presented to the user. However,

option buttons permit the user to select only one from among the displayed options (like a set of

radio pushbuttons). By contrast, users can select as many check boxes as they wish.

Table 14.4: Key properties of the ComboBox and ListBox controls (continued)

356 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 356

Most of the properties of the CheckBox control have been discussed already. The key prop-

erty of the CheckBox that you haven’t come across yet is TripleState, which is a feature of the

OptionButton and ToggleButton controls as well.

TripleState is a Boolean property that determines whether the check box, option button, or

toggle button can have a null state as well as True and False states. When a check box or other

control is in the null state, it appears with a small black square in its box.

You can see the null state in the Font dialog box in Word when one of the check-box-

controlled properties—such as the Strikethrough check box in Figure 14.10—is true for some but

not all of the current selection. For example, select a word (or any amount of selected text) that

is only partly struck through, and you trigger the null state for the Strikethrough check box, as

shown in Figure 14.10. Normally, a check box is either checked or not, but when in a null state, it

contains a small black square, indicating it’s neither true nor false. (In earlier versions of Offi ce,

the null state in a check box was indicated by fi lling the box with gray or black.)

Figure 14.10

By setting the

TripleState

property of a check

box to True, you

can display a check

box in a null state.

Here Word’s Font

dialog box shows

the Strikethrough

check box in a null

state (containing a

small black square,

but not checked).

A couple of properties described briefl y in the context of other controls deserve more

detail here:

 ◆ The SpecialEffect property controls the visual appearance of the check box. The default

value is fmButtonEffectSunken (2), which displays a sunken box—the norm for 3D

Windows dialog boxes. You can also choose fmButtonEffectFlat(0) to display a box with

a fl at effect, but why? To me, it doesn’t look as good as the default 3D, shadowed box. The

fl at version is less subtle, crude actually. But, it fi ts in well with the new “Modern” aesthetic

promoted by Microsoft in Windows 8—no gradients, opacity, dimensional effects, shadows,

subtle colors, highlights, refl ections, serif typefaces, and so on. In other words, fl atland.

Figure 14.11 shows a sunken check box and a fl at check box. The Value property, which

indicates whether the check box is selected (True) or cleared (False), is the default prop-

erty of the check box. Recall that the default property need not be specifi ed in code; it’s

CREATING A CUSTOM DIALOG BOX | 357

c14.indd 10:51:59:AM 07/26/2013 Page 357

assumed. Thus, you can either write CheckBox1.Value or just CheckBox. The following

three statements have the same effect:

If CheckBox1.Value = True Then

If CheckBox1 = True Then

If CheckBox1 Then

Figure 14.11

Use the

SpecialEffect

property to display

a fl at check box

(bottom) rather

than the traditional

sunken check box.

 ◆ The Accelerator property provides quick access to the check box. Assign a unique accel-

erator key to check boxes so that the user can swiftly toggle them on and off from the

keyboard.

OptionButton

A group of OptionButtons provides a set of mutually exclusive options from which the user can

choose. Only one of the buttons in a group can be selected. For instance, you could have two

OptionButtons under the heading Sex: Male and Female. (Recall that a set of CheckBoxes per-

mits multiple options to be chosen simultaneously. CheckBoxes are useful for choosing more

complex options. For example, under the heading Typeface, you could have Italic, Bold, and

Underlined options, all of which could be selected simultaneously.)

Like the CheckBox, the OptionButton control has a straightforward set of properties, almost all of

which you’ve seen already in this chapter. This section shows you the GroupName property, which is

unique to the OptionButton, and some of the key properties for working with option buttons.

The GroupName property is a String data type that assigns the option button to a group of

option buttons. Alternatively, you can create a group by placing a set of option buttons on a

Frame control. The key idea here is that, once grouped, the buttons become mutually exclusive.

However, there can be more than one group (or set) on a form—as long as you employ a Frame

control or the GroupName property to isolate the various groups of buttons.

The default setting for GroupName is a blank string (“”), which means that an option but-

ton isn’t assigned to a group until you explicitly assign it. When you enter the group name, the

group is created. By using the GroupName property, you can have multiple groups of option but-

tons on the same form without using frames to specify groups, but you must somehow distin-

guish the logical groups of option buttons from each other so that the user can tell which option

buttons constitute a group. Using a Frame control is the easiest way of segregating groups of

option buttons both visually and logically—but it’s useful to have the fl exibility that GroupName

provides when you need it. Also, a Frame has a built-in Caption property you can use to

describe the group’s purpose.

These are the other key properties of the OptionButton control:

 ◆ The Value property, which indicates whether the option button is selected (True) or

cleared (False), is the default property of the option button. So you can set or return the

358 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 358

state of the option button by setting either the OptionButton object or its Value to True or

False, as appropriate. Setting the Value of one OptionButton to True sets the Value of all

other OptionButton controls in the same group or frame to False.

 ◆ The Accelerator property provides quick access to the option button. Assign a unique

accelerator key to each option button so that the user can toggle it on and off from the

keyboard.

 ◆ The SpecialEffect property controls the visual appearance of the option button. The

default value of fmButtonEffectSunken (2) displays a sunken button, while

fmButtonEffectFlat (0) displays a fl attened button. Figure 14.11 shows a sunken option but-

ton and a fl at option button.

 ◆ The TripleState property (discussed in the previous section, “CheckBox”) lets you cre-

ate an option button that has three states: selected (True), cleared (False), and null (which

appears selected but grayed out). The TripleState property is disabled so that the user

can’t set the null state interactively, but you can set it programmatically as needed.

ToggleButton

When it’s not selected, the ToggleButton control appears raised, but it looks pushed in when it’s

selected. The key properties for the ToggleButton control are the same as those for the CheckBox

and CommandButton:

 ◆ The Value property is the default property of the ToggleButton.

 ◆ The TripleState property lets you create a ToggleButton that has three states: selected

(True), cleared (False), and null. The user can set a triple-state ToggleButton to its null state

by clicking it. In its null state, a ToggleButton appears selected, but gray.

 ◆ The Accelerator property provides quick access to the toggle button.

Frame

The Frame control is relatively straightforward, but it has several properties worth mentioning; they’re

shown in Table 14.5. The Frame control shares a couple of these properties with the Page object.

Table 14.5: Properties of the Frame control

Property Description

Cycle Determines the action taken when the user leaves the last control in the

frame or on the page. fmCycleAllForms (0) moves the focus to the next

control in the tab order for the user form or page, whereas

fmCycleCurrentForm (2) keeps the focus within the frame or on the page

until the focus is explicitly moved to a control in a diff erent frame or on a

diff erent page. Th is property applies to the Page object as well.

InsideHeight A read-only property that returns the height (measured in points) of the area

inside the frame, not including the height of any horizontal scroll bar dis-

played. Th is property applies to the Page object as well.

CREATING A CUSTOM DIALOG BOX | 359

c14.indd 10:51:59:AM 07/26/2013 Page 359

Property Description

InsideWidth A read-only property that returns the width (in points) of the area inside the

frame, not including the width of any vertical scroll bar displayed. Th is prop-

erty applies to the Page object as well.

KeepScrollBarsVisible A property that determines whether the frame or page displays horizontal

and vertical scroll bars when they aren’t required for the user to be able to

navigate the frame or the page. fmScrollBarsNone (0) displays no scroll

bars unless they’re required. fmScrollBarsHorizontal (1) displays a hori-

zontal scroll bar all the time. fmScrollBarsVertical (2) displays a vertical

scroll bar all the time. fmScrollBarsBoth (3) displays a horizontal scroll

bar and a vertical scroll bar all the time. fmScrollBarsNone is the default

for the Frame object, and fmScrollBarsBoth is the default for the Page

object. Th is property applies to the Page object as well.

PictureTiling A Boolean property that determines whether a picture displayed on the con-

trol is tiled (True) so that it takes up the whole area covered by the control or

not (False). To set the tiling pattern, you use the PictureAlignment and

PictureSizeMode properties. Th is property applies to the Page object and

the Image control as well.

PictureSizeMode Determines how to display the background picture.

fmPictureSizeModeClip (0), the default setting, crops (removes) any part

of the picture too big to fi t in the page, frame, or image control. Use this set-

ting to show the picture at its original dimensions and in its original propor-

tions. fmPictureSizeModeStretch (1) stretches the picture horizontally

or vertically to fi ll the page, frame, or image control. Th is setting is good for

colored backgrounds and decorative eff ects but tends to be disastrous for

pictures that need to be recognizable; it also overrides the

PictureAlignment property setting. fmPictureSizeModeZoom (3)

zooms the picture proportionately until the horizontal dimension or the

vertical dimension reaches the edge of the control but doesn’t stretch the

picture so that the other dimension is maximized as well. Th is is good for

maximizing the size of a picture while retaining its proportions, but you’ll

need to resize the nonmaximized dimension to remove blank spaces. Th is

property applies to the Page object and the Image control as well.

PictureAlignment Determines where a picture is located. fmPictureAlignmentTopLeft (0)

aligns the picture with the upper-left corner of the control.

fmPictureAlignmentTopRight (1) aligns the picture with the upper-right

corner of the control. fmPictureAlignmentCenter (2), the default setting,

centers the picture in the control (both horizontally and vertically).

fmPictureAlignmentBottomLeft (3) aligns the picture with the lower-

left corner of the control. fmPictureAlignmentBottomRight (4) aligns

the picture with the lower-right corner of the control. Th is property applies

to the Page object and the Image control as well.

Table 14.5: Properties of the Frame control (continued)

360 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 360

CommandButton

The CommandButton is used quite often. This control has three unique properties, listed in

Table 14.6.

Table 14.6: Unique properties of the CommandButton control

Property Description

Cancel A Boolean property that determines whether the command button is the Cancel

button for the user form (True) or not (False). Th e Cancel button for a user form

can bear any name; what distinguishes it is that its Cancel property is set to

True. Th e Cancel button is activated by the user’s pressing Esc, or clicking the but-

ton, or putting the focus on the button and pressing Enter. Only one command

button on a form can be the Cancel button at any given time. Setting the Cancel

property for a command button to True causes VBA to set the Cancel property to

False for any button for which it was previously set to True.

Default A Boolean property that determines whether the command button is the default

button for the user form (True) or not (False). Only one command button on

a form can be the default button at any given time. Setting the Default property

for a command button to True causes VBA to set the Default property to False

for any button for which it was previously set to True. Th e default button is acti-

vated by the user pressing Enter when the focus isn’t on any other command

button.

TakeFocusOnClick A Boolean property that determines whether the command button takes the focus

when the user clicks it (True) or not (False). Th e default setting for this property

is True, but you may want to set it to False when you need the focus to remain on

another control in the user form even when the user clicks the command button.

However, if the user uses the Tab key or the arrow keys to move to the command

button, the command button will take the focus even if the TakeFocusOnClick

property is set to False.

Note that it’s useful to set the Accelerator property for each command button on a form.

This way, the user can quickly access it from the keyboard.

Sometimes the Cancel Button Should Be the Default Button

Sometimes you’ll be tempted to make the Cancel button the default on a form. Th is off ers an obvi-

ous benefi t for forms that off er irreversible actions, such as deleting text or deleting a fi le, but it

can confuse accessibility aids (such as screen readers) and make it diffi cult for users with cognitive

diffi culties to work with the form. For these reasons, it’s usually best to make the default button

on a form a diff erent button than the Cancel button.

CREATING A CUSTOM DIALOG BOX | 361

c14.indd 10:51:59:AM 07/26/2013 Page 361

TabStrip and MultiPage

TabStrip controls allow you to create a multipage dialog box. Click the Home tab in Word and

then click the small arrow icon in the lower-right corner of the Font area on the Ribbon. Word’s

Font dialog box will open and you’ll see a two-tab dialog box. One tab is labeled Font and the

other tab is labeled Advanced. This is a good way to organize a dialog box when you have quite a

few options to present to the user.

The TabStrip control has several unique properties and a number of properties that it shares

with the MultiPage control. Table 14.7 lists these properties.

Table 14.7: Properties of the TabStrip and MultiPage controls

Property Description

ClientHeight (Tab strip only.) A Single (data type) property that sets or returns the height of the

display area of the tab strip, measured in points.

ClientLeft (Tab strip only.) A Single property that returns the distance, measured in points,

between the left border of the tab strip and the left border of the control inside it.

ClientTop (Tab strip only.) A Single property that returns the distance, measured in points,

between the top border of the tab strip and the top border of the control inside it.

ClientWidth (Tab strip only.) A Single property that sets or returns the width of the display area

of the tab strip, measured in points.

SelectedItem Sets or returns the tab currently selected in a tab strip or the page currently selected

in a MultiPage control.

TabFixedHeight A Single property that sets or returns the fi xed height of the tabs, measured in

points. Set TabFixedHeight to 0 to have the tabs automatically size themselves to

fi t their contents.

TabFixedWidth A Single property that sets or returns the fi xed width of the tabs, measured in points.

Set TabFixedWidth to 0 to have the tabs automatically size themselves to fi t their

contents.

TabOrientation Determines the location of the tabs in the tab strip or multipage.

fmTabOrientationTop (0), the default, displays the tabs at the top of the tab strip

or multipage. fmTabOrientationBottom (1) displays the tabs at the bottom of the

tab strip or multipage. fmTabOrientationLeft (2) displays the tabs at the left of

the tab strip or multipage, and fmTabOrientationRight displays the tabs at the

right of the tab strip or multipage.

362 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 362

ScrollBar and SpinButton

A SpinButton allows the user to easily increment or decrement numbers, dates, and so on. The

ScrollBar and SpinButton share a number of properties that you haven’t yet encountered. Table

14.8 lists these properties.

Table 14.8: Properties of the ScrollBar and SpinButton controls

Property Description

Delay A Long (data type) property that sets the delay in milliseconds between clicks

registered on the control when the user clicks and holds down the mouse button.

Th e default delay is 50 milliseconds. Th e control registers the fi rst click immedi-

ately, the second click after Delay x 5 (the extra delay is to assist the user in click-

ing only once), and the third and subsequent clicks after Delay.

LargeChange (Scroll bar only.) A Long property that determines how much the item is scrolled

when the user clicks in the scroll bar between the thumb (the small square within

the scroll bar) and the scroll bar’s arrow. Set the LargeChange property after

setting the Max and Min properties of the scroll bar.

SmallChange A Long property that determines how much movement occurs when the user

clicks a scroll arrow in a scroll bar or spin button. SmallChange needs to be an

integer value; the default value is 1.

Max A Long property that specifi es the maximum value for the Value property of the

scroll bar or spin button. Max must be an integer. Th e default value is 1.

Min A Long property that specifi es the minimum value for the Value property of the

scroll bar or spin button. Min must be an integer. Th e default value is 1.

ProportionalThumb (Scroll bar only.) A Boolean property that determines whether the thumb is a

fi xed size (False) or is proportional to the size of the scrolling region (True),

thereby giving the user an approximate idea of how much of the scrolling region is

currently visible. Th e default setting is True.

Image

By now, you’ve seen all the properties of the Image control. Most of the time when you use an

Image control, you’ll want to adjust the following properties:

 ◆ Use the Picture property to assign the picture fi le you want to appear in the Image con-

trol. Click in the Picture row in the Properties window, and then click the ellipsis button

(…) that the text box displays. In the Load Picture dialog box, select the picture and click

the OK button to add it. The Image control can display .BMP, .CUR (cursor), .GIF, .ICO

CREATING A CUSTOM DIALOG BOX | 363

c14.indd 10:51:59:AM 07/26/2013 Page 363

(icon), .JPG, and .WMF fi les, but not other graphics fi les, such as .TIF. Most graphics appli-

cations, however, can easily convert one graphics fi le type into another.

An Easy Way to Capture a Graphic Image

Th e easiest way to display part of a Windows screen in an Image control is to capture it by press-

ing the Print Screen key (to capture the entire screen) or the Alt+Print Screen key combination

(to capture the currently active window). Th en paste it into an application such as the Windows

Paint accessory, trim (crop) it there as necessary, and save it as a .BMP fi le. Windows 8 provides a

third option: Press the Windows key plus the Print Screen key to capture and automatically save

the screen to disk. Th e captured image will be saved in your Libraries folder in a subfolder named

Screenshots. Th e image is saved as a .PNG graphics fi letype—widely considered to be the best way

to grab screen images.

 ◆ Use the PictureAlignment property to set the alignment of the picture.

 ◆ Use the PictureSizeMode property to set whether the picture is clipped, stretched, or

zoomed to fi ll the Image control. Adjust the height and width of the Image control as

necessary.

 ◆ Use the PictureTiling property if you need to tile the image to take up the full space in

the control.

Page

The Page object is one of the pages contained within a MultiPage object. You’ve already seen

all its properties (in the context of other controls) except for the Index property, which it shares

with the Tab object.

The Index property is an Integer data type that determines the position of the Page object in

the Pages collection in a MultiPage control or the position of a Tab object in the Tabs collection

in a TabStrip. The fi rst Page object or Tab object is numbered 0 (zero); the second Page or Tab

object is numbered 1; and so on. You can change the Index property of a tab or page to change

the position in which the tab or page appears in the collection.

Tab

The Tab object is one of the tabs contained within a TabStrip object. You’ve already learned

about all its properties in the context of other controls.

Working with Groups of Controls
As mentioned briefl y earlier in this chapter, when you are designing a form, it’s often handy to

group controls. By grouping two or more controls, you can work with them as a single unit to

size, reposition, format, or delete them. (Recall that this form-design grouping technique has

nothing to do with creating a set of option buttons within a Frame control. That creates a mutu-

ally exclusive collection of radio buttons to display to the user during runtime.)

364 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 364

Grouping Controls

To group controls, select them by Shift+clicking, Ctrl+clicking, or dragging around them, and

then right-click and choose Group from the context menu. Alternatively, select the controls,

and then click the Group button on the UserForm toolbar (you’ll need to display this toolbar—

it’s not displayed by default) or choose Format ➢ Group. VBA creates a new group containing

the controls and places a shaded border with handles around the whole group, as shown on the

right in Figure 14.12.

Figure 14.12

You can work with

multiple controls

simultaneously by

grouping them.

VBA indicates a

group of controls

by placing a border

around the entire

group, as shown on

the right.

When you merely select a set of controls (by Shift+clicking, Ctrl+clicking, or dragging

around them), you have only temporarily grouped them. You can still manipulate them as a

group, but as soon as you deselect them—by, for example, clicking the background of the form

itself—the grouping disappears. However, when you right-click and choose Group from the

context menu, they will remain grouped until you right-click and choose Ungroup.

Ungrouping Controls

To ungroup controls, right-click any of the controls contained in the group and then choose

Ungroup from the context menu. Alternatively, select the group of controls by clicking in any

control in the group and then click the Ungroup button on the UserForm toolbar, or choose

Format ➢ Ungroup. VBA removes the shaded border with handles from around the group and

displays the normal border and handles around each individual control.

Sizing Grouped Controls

You can quickly size all controls in a group by selecting the group and then dragging the siz-

ing handles on the surrounding border. For example, you could select the middle handle on the

right side and drag it inward to shorten the controls, as shown in Figure 14.13. The controls will

be resized proportionately to the change in the group outline.

CREATING A CUSTOM DIALOG BOX | 365

c14.indd 10:51:59:AM 07/26/2013 Page 365

Figure 14.13

You can resize all

the controls in a

group by dragging

a sizing handle on

the surrounding

border.

When the controls are grouped, you can then use the Properties window to quickly modify

any properties they have in common (such as Font). But resizing a group can present prob-

lems—the results can be ugly. Generally speaking, resizing works fi ne when you’ve grouped

a number of controls of the same type, as in Figure 14.13. For example, sizing a group that con-

sists of several command buttons or option buttons works well, whereas sizing a group that

consists of a text box, a command button, and a combo box is seldom a good idea.

Deleting Grouped Controls

You can quickly delete a whole group of controls by right-clicking any of them and choosing

Delete from the context menu or by selecting the group and pressing the Delete key.

Working with One Control in a Group

Even after you’ve grouped a number of controls, you can still work with them individually if

necessary. To do this, fi rst click any control in the group to select the group as a whole, as shown

on the left in Figure 14.14. Then click the control you want to work with. As shown on the right

in Figure 14.14, VBA displays a dark shaded border around the group (indicating that the group

still exists) and displays the lighter shaded border around the individual control, indicating that

that control is selected.

Figure 14.14

To work with one

control in a group,

start by selecting

the group (as shown

on the left) and

then select the con-

trol (as shown on

the right).

366 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 366

You can then modify the selected individual control as if it were not grouped. Change its

ForeColor property to blue, for instance, and only the caption in that particular control will turn

blue. When you’ve fi nished working with it, click another control in the group to individually

select it, or click elsewhere in the user form to deselect all individual controls and restore the

group.

Aligning Controls
Even if you use the Snap To Grid feature, you’ll often need to align controls manually. They

must be ungrouped for this feature to work. The easiest way to align controls is to select two or

more, then right-click in any one of them and choose an option from the Align submenu: Lefts,

Centers, Rights, Tops, Middles, Bottoms, or To Grid. These options work as follows:

Lefts aligns the left borders of the controls.

Centers aligns the horizontal midpoints of the controls.

Rights aligns the right borders of the controls.

Tops aligns the tops of the controls.

Middles aligns the vertical midpoints of the controls.

Bottoms aligns the bottoms of the controls.

To Grid aligns the controls to the grid.

VBA aligns the borders or midpoints to the current position of that border or midpoint on the

dominant control—the control that has white sizing handles around it rather than black sizing

handles. After selecting the controls you want to align, make dominant the one that is already

in the correct position by clicking it so that it takes on the white sizing handles. Then choose the

alignment option you want.

Ensure That You Choose Appropriate Alignment Options

Make sure the alignment option you choose makes sense for the controls you’ve selected. VBA will

happily align controls in an inappropriate way if you tell it to. For example, if you select a number

of option buttons or text boxes and choose Tops from the Align submenu, VBA will obligingly

stack all the controls on top of each other, rendering them unusable. (To recover from such minor

mishaps, press Ctrl+Z.)

Placing Controls
The VBA Editor offers several placement commands on the Format menu:

 ◆ On the Format ➢ Make Same Size submenu, use the Width, Height, and Both commands to

make two or more controls the same size in one or both dimensions.

 ◆ Use the Format ➢ Size To Fit command to have VBA decide on a suitable size for an element

based on the size of its label. This works well for, say, a toggle button with a medium-length

label, but VBA will shrink an OK button to a size so small as to be unusable.

CREATING A CUSTOM DIALOG BOX | 367

c14.indd 10:51:59:AM 07/26/2013 Page 367

 ◆ Use the Format ➢ Size To Grid command to increase or decrease the size of a control to the

nearest gridpoints.

 ◆ On the Format ➢ Horizontal Spacing and Format ➢ Vertical Spacing submenus, use the

Make Equal, Increase, Decrease, and Remove commands to set the horizontal spacing and

vertical spacing of two or more controls. The Remove option removes extra space from

between controls, which works well for, say, a vertical series of option buttons (which look

good close together) but isn’t a good idea for command buttons (which need a little space

between them).

 ◆ On the Format ➢ Center In Form submenu, use the Horizontally and Vertically commands

to center a control or a group of controls in the form. Centering controls vertically is sel-

dom a good idea, but you’ll often want to center a frame or a group of command buttons

horizontally.

 ◆ On the Format ➢ Arrange Buttons submenu, use the Bottom and Right commands to repo-

sition command buttons in a form quickly.

Adjusting the Tab Order of a Form
The tab order of a user form (or of a frame control within a form) is the order in which VBA

selects controls in the form or frame when the user moves through them by pressing the Tab key

(to move forward) or the Shift+Tab key combination (to move backward).

Put another way, it’s a Windows convention that when the user presses the Tab key, the focus
moves to the next control in a window.

Only one control at a time can have the focus. For example, if a form has fi ve text boxes,

only one of these text boxes, the one that currently has the focus, will display characters as the

user types. In addition, a button in a set of buttons can also have the focus, and when the user

presses the Enter key, the button with the focus will be triggered. Or the user can click a

different button to move the focus to that button.

VBA displays a visual cue to indicate which control currently has the focus. You’ll see a

dotted frame around a button or option button and a blinking insertion cursor in a text box.

Each frame you add to a user form has a separate tab order for the controls it contains: The

frame itself appears in the tab order for the form, and the controls within the frame appear in

the tab order for the frame.

Set the tab order for a form or a frame to make it as easy as possible for the user to work with

your form. Generally, for English-speaking users, it’s best to arrange the tab order from left to

right and from top to bottom in the dialog box or frame. For international users, you may want

to arrange the tab order from right to left. You may also need to arrange the tab order to move

from one control to a related control that would not normally be next in the tab order.

The whole point of managing the tab order is that you simplify things for your user.

Employing the Tab key in this way allows the user to fi ll in a whole form without once having to

move their hand off the keyboard to keep selecting, with a mouse click, each next text box.

This kind of tabbing is particularly useful when the user is asked to fi ll in several fi elds by

typing into multiple text boxes (such as Name, Address, Phone, and so on). As soon as users fi n-

ish fi lling in one fi eld, they can press Tab to move on to the next. (Even easier, pressing the Enter

key while in a text box moves users to the next control in the tab order.) At the end, after they’ve

fi lled in the last fi eld, they can quickly close the dialog box if you make the OK button the next

control in the tab order.

368 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 368

VBA assigns the tab order to the controls in a dialog box or frame on a fi rst-come, fi rst-served

basis as you add the controls. Unless you add all the controls in perfect order, this default order

will seldom produce the optimal tab order for a dialog box, so usually you’ll want to adjust the

tab order—or at least check to ensure that it’s right. You’re likely to place fewer controls on a

frame than on a form, so you have a better chance of adding them in a suitable order, but you

should check these controls too before unleashing the dialog box on users.

Just press F5 and then repeatedly press the Tab key to examine your current tab order.

Alternatively, you can open a Tab Order dialog box (shown in Figure 14.15) by right-clicking in

the open space in the background of the form or frame and choosing Tab Order from the context

menu. Or select the user form or frame and then choose View ➢ Tab Order.

Figure 14.15

Use the Tab Order

dialog box to

arrange the con-

trols in your user

form or frame into

a logical order for

the user.

The time to adjust the tab order is after you’ve fi nished creating your form (adding a control

later will require that you go back and modify the tab order). Here’s how to change the tab order

in a dialog box or frame:

 1. Rearrange the controls into the order in which you want them to appear by selecting

them in the Tab Order list box and clicking the Move Up button or Move Down button as

appropriate. You can Shift+click or drag to select a range of controls, or Ctrl+click to select

two or more noncontiguous controls. (Or just change the controls’ TabIndex properties in

the Properties window.)

 2. Click the OK button to close the Tab Order dialog box.

Linking a Form to a Procedure
Designing a custom form is only the fi rst step in getting it to work in a procedure. The other

step is writing the code to display the form to the user and make it perform its tasks.

Typically, the code for a form consists of the following:

 ◆ A macro procedure that displays the dialog box by loading it and using the Show method.

Usually, this procedure can be assigned to a Quick Access Toolbar button or to a shortcut

key combination so that the user can conveniently invoke it. However, a procedure can also

be designed to run automatically in response to a system event (such as running at a speci-

fi ed time or when a worksheet is opened).

 ◆ The user form that represents the form and its controls.

LINKING A FORM TO A PROCEDURE | 369

c14.indd 10:51:59:AM 07/26/2013 Page 369

 ◆ The code attached to the user form. This code consists of procedures for designated con-

trols. For example, for a simple dialog box containing two option buttons and two com-

mand buttons (an OK button and a Cancel button), you’d typically write one procedure for

the OK button and one for the Cancel button. The procedure for the OK button is executed

when the user either clicks the button with the mouse or presses the Enter key while the

focus is on that button. Either of these user actions triggers the button’s Click event, and

whatever code you, the programmer, have written within this event is then executed.

Remember that the easiest way to create an event (procedure) for a control is to just double-

click the control on the form. The editor then switches to Code view and writes the neces-

sary Sub…End Sub envelope for that event, like this:

Private Sub btnOK_Click()

End Sub

Notice that the Editor automatically combines the Name property of the control with the name

of the event as the procedure’s name, separated by an underscore character: btnOK_Click.

In Static Dialog Boxes, Click Events Are Usually Employed with

Command Buttons

Most controls have quite a few events. Some of them might seem inappropriate or useless at fi rst.

For example, option buttons have a Click event. But why? It makes sense to trap (to respond in

code to an event such as a user’s mouse click) using command buttons in a static dialog box. (A

static dialog box is the most common type. Th e controls don’t change or move.) However, as you’ll

see in the next chapter, in a dynamic dialog box, you may want to trap the click on an option button

and display further controls to get additional input from the user.

Once the code attached to a button has run, execution returns to the form (if it’s still dis-

played) or to the procedure that called the form.

Note that code that runs directly in response to an event is called an event procedure or event
handler. An event procedure can call other procedures as necessary, so multiple procedures can

be run indirectly when a single event handler Sub is triggered.

Loading and Unloading a Form
You load a form by using the Load statement, and unload it by using the Unload statement. The

Load statement loads the form into memory so that it’s available to the program but doesn’t

display the form; for that you use the Show method (discussed in the next section). The Unload

statement unloads the form from memory and releases any memory associated with that object.

If the form is displayed when the Unload statement runs, VBA removes the form from the

screen.

The syntax for the Load and Unload statements is straightforward:

Load UserForm1

Unload UserForm1

370 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 370

Here, UserForm1 is the name of the user form or dialog box. For example, the following state-

ment loads the dialog box named frmMyDialog:

Load frmMyDialog

Displaying and Hiding a Form
To display a form, you use the Show method; to hide a form, you use the Hide method. For exam-

ple, the following statement displays the form named frmMyDialog:

frmMyDialog.Show

If you execute a procedure containing this line, the frmMyDialog form appears onscreen so

the user can interact with it: enter text in its text boxes, select or clear its check boxes, use its

drop-down lists, click its buttons, and so on.

When the user closes the form (by clicking the Close button on its title bar or by clicking a

command button that dismisses it), the form disappears from the screen and the procedure con-

tinues to run. But until you retrieve settings from the form and take action on them, the form

has no effect beyond its graphical display.

You can display a form by using the Show method without explicitly loading the form with a

Load command fi rst; VBA takes care of the implied Load command for you. There’s no particu-

lar advantage to including the Load command, but it might make your code easier to read and to

debug. For example, the two procedures shown here have the same effect:

Sub Display_Dialog()

 Load frmMyDialog ‘loads the form into memory

 frmMyDialog.Show ‘displays the form

End Sub

Sub Display_Dialog()

 frmMyDialog.Show ‘loads the form into memory and displays it

End Sub

If you run a Hide method without having loaded the form into memory by using the Load

statement or the Show method, VBA loads the form but does not display it onscreen.

Once you’ve displayed the form, take a moment to check its tab order by pressing F5 and

then moving through it using the Tab key. When you fi rst open the form, is the focus on the

appropriate control, the control the user is most likely to want to interact with fi rst? When you

move forward from that control, is the next control that is selected the next control that the user

will typically need to use? Adjust the tab order as necessary, as described in “Adjusting the Tab

Order of a Form” earlier in this chapter.

Setting a Default Command Button
To specify a default command button in a form, set that command button’s Default property to

True. VBA selects the default button when it displays the form so that if the user simply presses

the Enter key to dismiss the dialog box, this button receives the keystroke.

Only one button can be the default button at any given time. If you set the Default property

of any button to True, VBA automatically changes to False the Default property of any other

button previously set to True.

RETRIEVING THE USER’S CHOICES FROM A DIALOG BOX | 371

c14.indd 10:51:59:AM 07/26/2013 Page 371

Retrieving the User’s Choices from a Dialog Box
To make a form do something, your code will usually respond to the user’s input. The following

sections fi rst cover the VBA commands for retrieving information from a dialog box. Then you’ll

see an example of how to retrieve the user’s choices from both a relatively simple dialog box and

then a more complex form.

Returning a String from a Text Box
To return (retrieve) a string from a text box, your code can check its Value property or Text prop-

erty after the user has clicked an OK or Cancel button or otherwise dismissed the dialog box.

For example, if you have a text box named txtMyText, you could return its value and display

it in a message box by using the following line:

MsgBox txtMyText.Value

The Text Property of a Text Box Is Unique

For a text box, the Value property and the Text property return the same information; for most

other VBA objects, the Value property and the Text property return diff erent information.

Recall that VBA supports both one-line and multiline text boxes. To create a multiline text

box, select the text box in the user form or in the drop-down list in the Properties window and

set its MultiLine property to True. The user can then enter multiple lines in the text box and

start new lines by pressing Shift+Enter.

Quick Changes for Two-State Properties

Here’s a tip: If you’re changing a Boolean (two-state, True versus False) property—like Enabled,

Visible, or Multiline—just double-click the value in the Properties window. For example, to

change the default False setting for Multiline, double-click False in the Properties window. It

changes to True. (Th is doesn’t work with the Value property.)

To add a horizontal or vertical scroll bar to a text box, set its ScrollBars property to 1 -

fmScrollBarsHorizontal (for a horizontal scroll bar), 2 - fmScrollBarsVertical (for a verti-

cal scroll bar, which is usually more useful), or 3 - fmScrollBarsBoth (for both).

Returning a Value from an Option Button
A regular option button is a binary control, so it can have only two values: True and False. True

indicates that the button is selected, False that it’s unselected. You can check an option button’s

value with a simple If… Then structure. For example, if you have two option buttons, named

optSearchForFile and optUseThisFile, you can check their values and fi nd out which was

selected by using the following code:

If optSearchForFile = True Then

 ‘optSearchForFile was selected; take action on this

372 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 372

Else ‘optSearchForFile was not selected, so optUseThisFile was

 ‘take action for optUseThisFile

End If

Remember that Value is the default property of the OptionButton control. The previous code

checks the value of the default property of the control, so you need not specify the property in your

code. Default properties can be omitted as a kind of shorthand programming. The fi rst line of code

could be written out more fully as If optSearchForFile.Value = True Then. But in the code

example, I chose to write it more succinctly, with = True implied: If optSearchForFile Then.

With more than two option buttons, use an If… Then… ElseIf condition or a Select Case

statement to determine which option button is selected.

You Can’t Directly Test for a Null Value

Th is is a bit esoteric, but as you saw earlier in this chapter, an option button or a check box can

also have a null value if its TripleState property is set to True. Null means basically “neither

completely true nor false”—the selected paragraph is partially boldface, so its FontStyle is both

bold and regular. If you allow your option buttons or check boxes to have a null state, you’ll need

to check for that as well in your procedures. You can’t directly check for the control’s value being

Null (for example, If opt1.Value = Null causes an error), so use an If statement or Select

Case statement to test True and False fi rst. If the Value of the control is neither True nor False,

it Else must be Null.

Returning a Value from a Check Box
Like an option button, a regular check box can only be either True or False, so you can use an

If… Then structure to check its value. Here’s an example:

If chkDisplayProgress = True Then

 ‘take actions for chkDisplayProgress

End If

Again, you’re checking the default property of the control here—the Value property. The fi rst

line of code could also be written as If chkDisplayProgress.Value = True Then.

Sometimes you’ll need to take an action if the check box was cleared (deselected) rather

than selected. For example, if the user clears the check box, you may need to turn off a confi gu-

ration option.

Returning a Value from a List Box
List boxes start out empty. So, before you can ask the user to choose an item in a list box, you

must fi rst fi ll the box with items from which the user can choose—you must tell VBA which

items to display. To do so, you create a procedure to initialize (prepare) the user form and add

the items to the list box before displaying it:

 1. Right-click the name of the user form in the Project Explorer and choose View Code from

the context menu to display (in the Code window) the code for the controls assigned

to the dialog box. Or you can just double-click somewhere in the background on the user

RETRIEVING THE USER’S CHOICES FROM A DIALOG BOX | 373

c14.indd 10:51:59:AM 07/26/2013 Page 373

form to go to Code view. Recall that you can toggle between the Code window (press F7)

and the form-design window (Shift+F7).

 2. In the Object drop-down list (on the top left of the Code window), make sure UserForm is

selected.

 3. Choose Initialize from the Procedure drop-down list (on the top right of the Code win-

dow). The Visual Basic Editor creates a new procedure named Private Sub UserForm_

Initialize for you, inserting it at the end of the procedures currently displayed in the

code window:

Private Sub UserForm_Initialize()

End Sub

Here’s a tip: VBA runs a UserForm_Initialize procedure every time the user form is

brought to life. This procedure is a good place to add items to a list box or combo box or

to set properties of other controls on the user form. In other words, this Initialize event

is where you write code to do any necessary preliminary housekeeping before displaying

the form to the user.

 4. To add items to a list box, you can use the AddItem method for the list box object (here the

box is named lstBatteries) with a text string in quotation marks to display the ID num-

ber of each battery in the list box:

lstBatteries.AddItem “Battery #A4601”

lstBatteries.AddItem “Battery #A4602”

lstBatteries.AddItem “Battery #A4603”

lstBatteries.AddItem “Battery #A4604”

The Initialize Event Is Flexible

By adding items when you initialize the form, you can add diff erent numbers of items as appropri-

ate. For example, if you wanted the user to pick a document from a particular folder, you could

create a list of the documents in that folder on the fl y in your code during runtime and fi ll the list

box with the documents’ names.

To retrieve the user’s choice from a single-select-style list box, check the Value property in

your code, as in this example:

MsgBox “You chose this entry from the list box: “ & lstBattery.Value

Single-select list boxes are like a set of option buttons—the user is allowed to select only one

of them.

When you use the MultiSelect property to create a list box capable of multiple selections,

you can no longer use the Value property to return the items selected in the list box. When

MultiSelect is set to True, Value always returns a null value. Instead, you use the Selected

property to determine which rows in the list box are selected and the List property (it’s an

array) to return the contents (the values) of each selected row.

374 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 374

The following statements use a For… Next loop to build a string named strMsg containing

the entries selected from a multiselect list box:

strMsg = “You chose the following entries from the list box: “ & vbCr

For i = 1 To lstBatteries.ListCount

 If lstBatteries.Selected(i - 1) = True Then

 strMsg = strMsg & lstBatteries.List(i - 1) & vbCr

 End If

Next i

MsgBox strMsg

Returning a Value from a Combo Box
To return a value from a combo box (a control that is, in effect, a combination list box and text

box), you add items to the combo box list in an Initialize procedure and then check the Value

of the combo box after the user has dismissed the dialog box. (The combo box control doesn’t

offer multiple-selection capabilities, so Value is the property to check.)

For example, you would use the following code to add items to a combo box named

cmbColor:

Private Sub UserForm_Initialize()

 cmbColor.AddItem “Red”

 cmbColor.AddItem “Blue”

 cmbColor.AddItem “Yellow”

End Sub

To return the item the user chose in the combo box, retrieve the Value property:

Result = cmbColor.Value

The item retrieved from a combo box can be either one of the items assigned in the

Initialize procedure or one that the user has typed into the text-box portion of the combo box.

Examples of Connecting Forms to Procedures
The following sections show you two examples of how you can create a procedure and then

design a form that works with it to make the procedure more useful and powerful. In the fi rst

example, you’ll record a macro in Word and then link a form to that code. In the second example,

which will work with any VBA-enabled application, you’ll create a user form and its associated

code from scratch.

Word Example: Th e Move-Paragraph Procedure
This fi rst example moves the current paragraph up or down within the document by one or two

paragraphs in Word.

Recording the Procedure

Start by recording a procedure in Word to move the current paragraph. In the procedure, you

need to record the commands for the following actions:

 ◆ Selecting the current paragraph

 ◆ Cutting the selection and then pasting it

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 375

c14.indd 10:51:59:AM 07/26/2013 Page 375

 ◆ Moving the insertion point up and down the document

 ◆ Inserting a bookmark, moving the insertion point to it, and then deleting the bookmark

We want our fi nished procedure to display a dialog box with option buttons for moving the

current paragraph up one paragraph, up two paragraphs, down one paragraph, or down two

paragraphs. The dialog box should also include a check box that indicates the user wants the

insertion point returned to its original position at the end of the procedure. Because this is pre-

sumably desirable default behavior for the procedure, this check box is selected by default. Users

can clear the check box if they don’t want to return the insertion point to its original position.

First, start Word and create a new, blank, scratch document (press Ctrl+N), and enter three

or four paragraphs of text—just about anything will do, but it’ll be easier to have recognizable

text so that you can make sure the procedure is moving paragraphs as it should. Then place the

insertion point in one of the paragraphs you’ve just entered and start recording a macro as dis-

cussed in Chapter 1, “Recording and Running Macros in the Offi ce Applications”:

 1. Click the Record Macro icon on the status bar or the Record Macro icon in the code sec-

tion of the Ribbon’s Developer tab. Either way, you see the Record Macro dialog box.

 2. Type the name for the macro, Move_Paragraph, in the Macro Name text box and a

description in the Description text box.

 3. Choose a template or document, if necessary, in the Store Macro In drop-down list. (You

probably don’t want to add this to the global NewMacros module in the Normal.dotm fi le.

Why clutter it up with practice macros?)

 4. If you want, use the Button or Keyboard button to create a Quick Access Toolbar button

or keyboard shortcut for the macro.

 5. Click the OK button to start recording the macro.

Record the following actions in the macro:

 1. Insert a bookmark at the current position of the insertion point by clicking the Bookmark

icon in the Links section of the Ribbon’s Insert tab. This displays the Bookmarks dialog

box. Enter a name for the bookmark, and click the Add button. In this example, the book-

mark is named Move_Paragraph_Temp to indicate that it’s a temporary bookmark used

for the Move_Paragraph procedure.

 2. Select the current paragraph by pressing F8 four times. The fi rst press of F8 activates

Extend mode, the second selects the current word, the third selects the current sentence,

and the fourth selects the current paragraph. Press the Esc key to turn off Extend mode

once the paragraph is selected.

 3. Cut the selected paragraph by using one of the variations of the Cut command (for exam-

ple, press either Ctrl+X or Shift+Delete, or click the Cut icon in the Ribbon’s Clipboard

section).

 4. Move the insertion point up one paragraph by pressing Ctrl+.

 5. Paste the cut paragraph back in by using a Paste command (for example, press Ctrl+V or

Shift+Insert, or click the Paste button on the Home tab of the Ribbon).

376 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 376

 6. Move the insertion point down one paragraph by pressing Ctrl+ ↓.

 7. Move the insertion point up two paragraphs by pressing Ctrl+ ↑ twice.

Note that if you started with the insertion point at the beginning of the fi rst paragraph

in the document, you’ll only be able to move the insertion point up one paragraph. This

doesn’t matter—press the keystroke anyway to record it. If Word beeps at you, ignore it.

 8. Move the insertion point down two paragraphs by pressing Ctrl+ ↓ twice. (If in doing so

you hit the end of the document after the fi rst keystroke, don’t worry—perform the sec-

ond keystroke anyway to record it. Word may sound a beep.)

 9. Open the Bookmarks dialog box again (click the Bookmark icon in the Links section of

the Ribbon’s Insert tab), select the Move_Paragraph_Temp bookmark, and click the Go To

button to go to it. Then click the Delete button to delete the Move_Paragraph_Temp book-

mark. Click the Close button to close the Bookmarks dialog box.

 10. Stop the Macro Recorder by clicking the Stop Recording icon on the status bar or the Stop

Recording icon in the code section of Ribbon’s Developer tab.

Open the recorded macro in the Visual Basic Editor by pressing Alt+F8, selecting the macro’s

name in the Macros dialog box, and clicking the Edit button.

You should see a macro that looks something like this:

 1. Sub Move_Paragraph()

 2. ‘

 3. ‘ Move_Paragraph Macro

 4. ‘ Move a paragraph up or down

 5. ‘

 6. With ActiveDocument.Bookmarks

 7. .Add Range:=Selection.Range, Name:=”Move_Paragraph_Temp”

 8. .DefaultSorting = wdSortByName

 9. .ShowHidden = False

10. End With

11. Selection.Extend

12. Selection.Extend

13. Selection.Extend

14. Selection.Extend

15. Selection.EscapeKey

16. Selection.Cut

17. Selection.MoveUp Unit:=wdParagraph, Count:=1

18. Selection.Paste

19. Selection.MoveDown Unit:=wdParagraph, Count:=1

20. Selection.MoveUp Unit:=wdParagraph, Count:=2

21. Selection.MoveDown Unit:=wdParagraph, Count:=2

22. Selection.GoTo What:=wdGoToBookmark, Name:=”Move_Paragraph_Temp”

23. ActiveDocument.Bookmarks(“Move_Paragraph_Temp”).Delete

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 377

c14.indd 10:51:59:AM 07/26/2013 Page 377

24. With ActiveDocument.Bookmarks

25. .DefaultSorting = wdSortByName

26. .ShowHidden = False

27. End With

28. End Sub

You can probably read this macro code easily enough by now:

 ◆ Line 1 starts the macro, and line 28 ends it. Lines 2 and 5 are blank comment lines around

the comment lines showing the macro’s name (line 3) and description (line 4).

 ◆ Lines 6 through 10 contain a With statement that adds the Move_Paragraph_Temp book-

mark. Lines 7 and 8 are unnecessary here, but the Macro Recorder records all the settings

in the Bookmarks dialog box, including the setting for the Sort By option button and the

Hidden Bookmarks check box.

 ◆ Lines 11 through 15 use the Extend Selection feature to select the current paragraph.

 ◆ Lines 17, 19, 20, and 21 record the syntax for moving the insertion point up and down one

paragraph and two paragraphs, respectively.

 ◆ Line 16 records the Cut command and Line 18 the Paste command.

 ◆ Line 22 moves the insertion point to the Move_Paragraph_Temp bookmark, and line 23

deletes the bookmark. Lines 24 through 27 again record the settings in the Bookmarks dia-

log box, which you don’t need here either.

If you wish, you can quickly delete unnecessary lines of code, and collapse the fi rst With

structure, to create a more succinct, more easily understood, version of the code:

 1. Sub Move_Paragraph()

 2. ActiveDocument.Bookmarks.Add Range:=Selection.Range, _

 Name:=”Move_Paragraph_Temp”

 3. Selection.Extend

 4. Selection.Extend

 5. Selection.Extend

 6. Selection.Extend

 7. Selection.EscapeKey

 8. Selection.Cut

 9. Selection.MoveUp Unit:=wdParagraph, Count:=1

10. Selection.Paste

11. Selection.MoveDown Unit:=wdParagraph, Count:=1

12. Selection.MoveUp Unit:=wdParagraph, Count:=2

13. Selection.MoveDown Unit:=wdParagraph, Count:=2

14. Selection.GoTo What:=wdGoToBookmark, _

 Name:="Move_Paragraph_Temp"

15. End Sub

378 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 378

Creating the Dialog Box

Next, create the dialog box for the procedure (see Figure 14.16):

Figure 14.16

Th e Move Current

Paragraph dialog

box that you will

connect to the

Move_Paragraph

macro

 1. Start a user form in the Visual Basic Editor by clicking the Insert button’s drop-down

list and choosing UserForm (or just click the Insert button if it’s already showing the

UserForm icon) or by choosing Insert ➢ UserForm.

 2. Use the Properties window for the user form to set its Name and Caption properties.

Click in the cell next to the Name cell and enter the Name property there, and then click in

the cell next to the Caption cell and enter the Caption property. The example user form

is named frmMoveParagraph and has the caption Move Current Paragraph so that the

name of the form is closely related to the text the user will see in the title bar of the dialog

box but different from the procedure name (Move_Current_Paragraph).

 3. Place two frames in the user form, as shown in Figure 14.17, to act as group containers in

the dialog box:

 a. Double-click the Frame tool in the Toolbox, and then click and drag in the user form to

place each frame.

 b. Align the frames by selecting them both and choosing Format ➢ Align ➢ Lefts.

 c. With the frames still selected, verify that they are the same width by choosing

Format ➢ Make Same Size ➢ Width. (Don’t choose Format ➢ Make Same Size ➢ Height

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 379

c14.indd 10:51:59:AM 07/26/2013 Page 379

or Format ➢ Make Same Size ➢ Both. The top frame will need to be taller than the

bottom frame.)

 d. Caption the top frame Movement and the bottom frame Insertion Point by selecting

each in turn and then setting the Caption property in the Properties window. Then

name the top frame fraMovement and the bottom frame fraInsertionPoint.

Figure 14.17

Start by placing two

frames in the user

form.

 4. Place four option buttons in the Movement frame, as shown in Figure 14.18:

Figure 14.18

Place four option

buttons in the

Movement frame

like this.

380 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 380

 a. Double-click the OptionButton tool in the Toolbox, and then click in the Movement

frame to place each option button. This time, don’t click and drag—just click to place a

normal-width option button.

 b. When you’ve placed the four option buttons, click the Select Objects button in the

Toolbox to restore the selection pointer. Then select the four option buttons and align

them with each other by choosing Format ➢ Align ➢ Lefts. Even out any disparities in

spacing by choosing Format ➢ Vertical Spacing ➢ Make Equal. If necessary, use the

other items on the Format ➢ Vertical Spacing submenu—Increase, Decrease, and

Remove—to adjust the amount of space between the option buttons. (You can do all

these things freehand if you prefer by just eyeballing. Drag them around until you

have them neatly positioned and sized.)

 c. Change the caption for each option button by setting the Caption property in the

Properties window. Caption them as illustrated in Figure 14.18: Up one paragraph, Up

two paragraphs, Down one paragraph, and Down two paragraphs. These option

buttons will control the number of paragraphs the procedure moves the current

paragraph.

 d. If you need to resize the option buttons to make all the text in the captions visible,

select them and group them by right-clicking and choosing Group from the context

menu, by choosing Format ➢ Group, or by clicking the Group button on the UserForm

toolbar. Then select the group and drag one of the handles to resize all the option but-

tons evenly. For example, to reveal hidden text that’s cut off on the right side, drag the

handle at the right midpoint of the group outward.

 e. Name the option buttons optUpOne, optUpTwo, optDownOne, and optDownTwo, respec-

tively, by changing the Name property of each in turn in the Properties window.

Option Buttons Are Mutually Exclusive

By default, all the option buttons on a user form (if they’re not contained within a frame) are part

of the same option group. Th is means that only one of these option buttons can be selected at any

given time. If you want to provide more than one group of option buttons on a user form, you need

to specify the separate groups. Th e easiest way to do this is to position each group within a separate

Frame control as you did in this example. Alternatively, you can specify a diff erent GroupName

property for each option button.

 f. Next, set the fi rst option button’s Value property to True by selecting the default False

value in the Properties window and entering True instead. Doing so will select the

option button in the user form you’re designing, and when the dialog box is displayed,

that option button will be selected as the default choice for the option group. Set its

accelerator key to U by entering U as its Accelerator property. Set the Accelerator

property of the second option button to t, the third to D, and the fourth to w. The

Accelerator property is case sensitive only when the caption for the control contains

both the uppercase and lowercase versions of the same letter.

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 381

c14.indd 10:51:59:AM 07/26/2013 Page 381

 5. Place a check box in the Insertion Point frame, as shown in Figure 14.19:

Figure 14.19

Place a check box in

the Insertion Point

frame.

 a. Click the CheckBox tool in the Toolbox and then click in the Insertion Point frame in

the user form to place a check box of the default size.

 b. In the Properties window, set the name of the check box to

chkReturnToPreviousPosition (a long name but a descriptive one). Then set its

Caption property to Return to previous position. Set its accelerator key to R by

entering R as its Accelerator property. Finally, set the check box to be selected by

default by entering True as its Value property.

 6. Next, insert the command buttons for the form (see Figure 14.20):

Figure 14.20

Add two command

buttons and set

their properties.

 a. Double-click the CommandButton tool on the Toolbox and click to place the fi rst com-

mand button at the bottom of the user form. Click to place the second command but-

ton, and then click the Select Objects button to restore the selection mouse pointer.

 b. Size and place the command buttons by using the commands on the Format menu. For

example, group the buttons, and then use the Format ➢ Center In Form ➢ Horizontally

command to center the pair horizontally. You must group the buttons before doing

this—if you simply select both of them, VBA centers one button on top of the other so

that only the uppermost button is visible.

 c. Set properties of the command buttons as follows: For the left-hand button (which will

become the OK button), set the Name property to cmdOK, the Caption prop-

erty to OK, the Accelerator property to O (that’s O as in OK, not a zero), and

the Default property to True. For the right-hand button (which will

become the Cancel button), set the Name property to cmdCancel, the

Accelerator property to A, the Caption property to Cancel, and the Cancel property

to True. Leave the Default property set to False.

 7. Now we attach our code to this form. Dive down into the Code window by double-clicking

the Cancel button to display a procedure associated with it:

Private Sub cmdCancel_Click()

End Sub

382 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 382

Recall that the Editor chooses to create a procedure for the most common event for what-

ever control (or the form) you double-click to get down into the code window. For most

controls, this will be the Click event, as it is for the CommandButton control.

Type an End statement between the lines:

Private Sub cmdCancel_Click()

 End

End Sub

This End statement removes the form from the screen and ends the current procedure—in

this case, the Move_Current_Paragraph procedure.

Now you’ll attach code to the OK button, which is where things get interesting. When

the user clicks the OK button, the procedure needs to continue executing and do all of the

following:

 ◆ Remove the dialog box from display by hiding it or by unloading it (or, preferably, both). As

discussed earlier in the chapter, the choice is yours, but using both commands is usually

clearest.

 ◆ Check the Value property of the check box to see whether it was selected or cleared.

 ◆ Check the Value property of each option button in turn to see which of them was selected

when the OK button was clicked.

Now continue creating the Move Current Paragraph dialog box:

 8. Double-click the OK button to display the code attached to it. (If you’re still working in

the Code window, select cmdOK in the Object drop-down list (on the top left of the Code

window). The editor automatically creates the Click event procedure for this button.

First, enter the following two lines between the Private Sub and End Sub lines:

frmMoveParagraph.Hide

Unload frmMoveParagraph

The frmMoveParagraph.Hide line activates the Hide method for the frmMoveParagraph

user form, hiding it from display on the screen. The Unload frmMoveParagraph line

unloads the dialog box from memory.

Removing a Form Can Prevent Confusion

It isn’t necessary to hide or unload a form to continue execution of a procedure, but if you don’t, users

may become confused. For example, if you click the OK button on a Print dialog box in a Windows

application, you expect the dialog box to disappear and the Print command to be executed. If the

dialog box didn’t disappear (but it launched the printing job in the background), you’d probably

think it hadn’t registered your click, so you’d click again and again until it went away. Th en you’d

print multiple copies, which is so wrong.

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 383

c14.indd 10:51:59:AM 07/26/2013 Page 383

 9. Next, the procedure needs to check the Value property of the chkReturnToPreviousPosition

check box to fi nd out whether to insert a bookmark in the document to mark the current posi-

tion of the insertion point. To do this, enter a straightforward If… Then statement:

If chkReturnToPreviousPosition = True Then

End If

If the chkReturnToPreviousPosition statement is set to True—that is, if the check box

is selected—the code in the lines following the Then statement runs. The Then statement

consists of the lines for inserting a bookmark that you recorded earlier. Cut these lines

from the procedure and paste them into the If… Then statement like this:

If chkReturnToPreviousPosition = True Then

 With ActiveDocument.Bookmarks

 .Add Range:=Selection.Range, Name:=” Move_Paragraph_Temp”

 End With

End If

If the check box is selected, the procedure inserts a bookmark; if the check box is cleared,

the procedure passes over these lines.

 10. Next, right after the End If, paste in the code for selecting the current paragraph and cut-

ting it to the Clipboard:

Selection.Extend

Selection.Extend

Selection.Extend

Selection.Extend

Selection.Cut

 11. After this, you need to retrieve the Value properties from the option buttons to see which

one was selected when the user chose the OK button in the dialog box. For this, you can

again use an If condition—this time, an If… Then ElseIf… Else condition, with the

relevant insertion-point-movement lines from the recorded procedure pasted in:

If optUpOne = True Then

 Selection.MoveUp Unit:=wdParagraph, Count:=1

ElseIf optUpTwo = True Then

 Selection.MoveUp Unit:=wdParagraph, Count:=2

ElseIf optDownOne = True Then

 Selection.MoveDown Unit:=wdParagraph, Count:=1

Else

 Selection.MoveDown Unit:=wdParagraph, Count:=2

End If

Selection.Paste

Here, optUpOne, optUpTwo, optDownOne, and optDownTwo (which uses the Else statement

here and therefore isn’t specifi ed by name in the listing) are the four option buttons from

the dialog box, representing the choice to move the current paragraph up one paragraph,

up two paragraphs, down one paragraph, or down two paragraphs, respectively.

384 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 384

The condition is straightforward: If optUpOne is True (that is, if the option button is

selected), the fi rst Then condition runs, moving the insertion point up one paragraph

from its current position (after the current paragraph is cut, the insertion point will be at

the beginning of the paragraph that was after the current one). If optUpOne is False, the

fi rst ElseIf condition is evaluated; if the condition evaluates to True, the second Then

condition runs; and if the condition evaluates to False, the next ElseIf condition is eval-

uated. If that conditiona, too, turns out to be False, the Else code is run. In this case, the

Else statement means that the optDownTwo option button was selected in the dialog box,

so the Else code moves the insertion point down two paragraphs.

Wherever the insertion point ends based on which option button the user chose, the next

line of code (Selection.Paste) pastes in the cut paragraph from the Clipboard.

 12. Finally, the procedure must return the insertion point to where it was originally if the

chkReturnToPreviousPosition check box is selected. Again, you can test for this with a

simple If… Then condition that incorporates the go-to-bookmark and delete-bookmark

lines from the recorded procedure:

If chkReturnToPreviousPosition = True Then

 Selection.GoTo What:=wdGoToBookmark, _

 Name:=“ Move_Paragraph_Temp“

 ActiveDocument.Bookmarks(“Move_Paragraph_Temp”).Delete

End If

If the chkReturnToPreviousPosition check box is selected, VBA moves the insertion

point to the temporary bookmark and then deletes that bookmark.

Listing 14.1 shows the full listing for the cmdOK button.

Listing 14.1: Th e full listing

 1. Private Sub cmdOK_Click()

 2. frmMoveParagraph.Hide

 3. Unload frmMoveParagraph

 4. If chkReturnToPreviousPosition = True Then

 5. With ActiveDocument.Bookmarks

 6. .Add Range:=Selection.Range, _

 Name:=”Move_Paragraph_Temp”

 7. End With

 8. End If

 9. Selection.Extend

10. Selection.Extend

11. Selection.Extend

12. Selection.Extend

13. Selection.Cut

14. If optUpOne = True Then

15. Selection.MoveUp Unit:=wdParagraph, Count:=1

16. ElseIf optUpTwo = True Then

17. Selection.MoveUp Unit:=wdParagraph, Count:=2

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 385

c14.indd 10:51:59:AM 07/26/2013 Page 385

18. ElseIf optDownOne = True Then

19. Selection.MoveDown Unit:=wdParagraph, Count:=1

20. Else

21. Selection.MoveDown Unit:=wdParagraph, Count:=2

22. End If

23. Selection.Paste

24. If chkReturnToPreviousPosition = True Then

25. Selection.GoTo What:=wdGoToBookmark, _

 Name:=“Move_Paragraph_Temp“

26. ActiveDocument.Bookmarks(“Move_Paragraph_Temp“).Delete

27. End If

28. End Sub

Go ahead and try it. To test this example properly, you should remove the bookmark you

inserted while recording the macro earlier in this chapter. To remove it, click the Bookmark item

in the Links section in the Insert tab on Word’s Ribbon. In the Bookmarks dialog box that opens,

select Move_Paragraph_Temp and click the Delete button.

Now open the scratch document in Word that you created earlier in this chapter and fi lled

with several paragraphs of text. Press Alt+F11 to open the Visual Basic Editor. Double-click frm-

MoveParagraph in the Project Explorer to display the user form. Press F5 to run this procedure.

Click the OK button in your user form and observe that the paragraphs were rearranged in the

document.

General Example: Opening a File from a List Box
This next example displays a user form that employs a list box from which the user can select

a fi le to open. The user form is simple, as is its code. The macro includes a loop and an array to

gather the names of the fi les in a folder and then displays the fi lenames in the list box. The user

gets to select a fi le and click the Open button to open it. Figure 14.21 shows the user form in

action, displaying Excel fi les.

Figure 14.21

Th e user form you’ll

build in this exam-

ple contains a list

box that gives the

user quick access to

all current fi les.

You can adapt this example to any of the Offi ce 2013 applications discussed in this book by

changing the fi lename to an appropriate type for that application and also modifying a couple

386 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 386

of the key statements. The version of this example we’ll look at now shows you how to create the

procedure in Excel.

Building the User Form

Follow these steps to build the user form:

 1. Start the application you want to work in. The example uses Excel.

 2. Display the Visual Basic Editor by pressing the Alt+F11 key or by clicking the Visual Basic

icon in the Ribbon’s Developer tab.

 3. In the Project Explorer, right-click the project to which you want to add the user form and

choose Insert ➢ UserForm from the context menu to insert a default-size user form in the

project.

 4. Drag the handle at the lower-right corner of the user form to the right to make the user

form a bit wider.

 5. Set the Name property of the form to frmOpen_a_Current_File and its Caption to Open a

Current File. Check the Width property. You want it to be about 350 pixels wide.

 6. Click the Label button in the Toolbox, and then click in the upper-left corner of the user

form to place a default-size label there. Activate the Properties window and set the prop-

erties of the label as shown in Table 14.9.

Table 14.9: Set these properties of your label

Property Value

(Name) lblInfo

AutoSize True

Caption Choose the file to open and click the Open button.

Left 10

Top 6

WordWrap False

 7. Click the ListBox button in the Toolbox, and then click below the label in the user form to

place a default-size list box there. Set its properties as shown in Table 14.10.

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 387

c14.indd 10:51:59:AM 07/26/2013 Page 387

Table 14.10: Set these properties of the ListBox

Property Value

(Name) lstifles

Height 100

Left 10

Top 25

Width 300

 8. Double-click the CommandButton button in the Toolbox, and then click twice at the

bottom of the user form to place two default-size command buttons there. Set their prop-

erties as shown in Table 14.11.

Table 14.11: Set these properties of the CommandButton

Property First Button Value Second Button Value

(Name) cmdOpen cmdCancel

Cancel False True

Caption Open Cancel

Default True False

Height 21 21

Width 55 55

 9. Arrange the command buttons as follows:

 a. Click the cmdCancel button to select it, and then drag it close to the cmdOK button.

 b. With the cmdCancel button still selected, Ctrl+click the cmdOK button to add it to the

selection.

 c. Choose Format ➢ Group to group the buttons.

 d. Choose Format ➢ Center In Form ➢ Horizontally to center the buttons horizontally in

the form.

 e. Drag the group up or down as necessary.

388 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 388

(Or just drag them around and eyeball them into a pleasing position.)

Creating the Code for the User Form
Follow these steps to create the code for the user form:

 1. With the user form selected, press the F7 key to display the user form’s code sheet.

 2. In the declarations portion of the code sheet (just keep pressing the up-arrow key until

you move to the very top of the Code window), enter an Option Base 1 statement to

make the array numbering start at 1 instead of at 0:

Option Base 1

 3. Make sure that UserForm is selected in the Object drop-down list (top left of the code

sheet), and then pull down the Procedure drop-down list (top right) and choose Initialize

from it. The Visual Basic Editor enters the stub of an Initialize procedure in the code

sheet, like this:

Private Sub UserForm_Initialize()

End Sub

 4. Enter the statements for the Initialize procedure shown in Listing 14.2.

 5. In the Object drop-down list, select cmdCancel. The Visual Basic Editor enters the stub

of a Click procedure, as shown here. (Click is the default event for the CommandButton

control, so the Visual Basic Editor assumes that you want to create a Click procedure.)

Private Sub cmdCancel_Click()

End Sub

 6. Enter the statements for the cmdCancel_Click procedure shown in Listing 14.2.

 7. In the Object drop-down list, select cmdOpen. The Visual Basic Editor enters the stub of a

Click procedure.

 8. Enter the statements for the cmdOpen_Click procedure shown in Listing 14.2.

 9. Customize line 9 (in the Initialize procedure) and line 32 (in the cmdOpen_Click pro-

cedure) so that the code will work with the application you’re using, as shown in the fol-

lowing list. The procedure as shown is set up to run for Excel, but you’ll probably need to

change the path to refl ect where the target fi les are on your computer.

 ◆ For Word, change the Workbooks.Open statement to Documents.Open:

If lstFiles.Value <> ““ Then Documents.Open _

 Filename:=”c:\transfer\” & lstFiles.Value

 ◆ For PowerPoint, change the Workbooks.Open statement to Presentations.Open:

If lstFiles.Value <> ““ Then Presentations.Open _

 Filename:=“c:\transfer\“ & lstFiles.Value

EXAMPLES OF CONNECTING FORMS TO PROCEDURES | 389

c14.indd 10:51:59:AM 07/26/2013 Page 389

Listing 14.2 shows the full version of the code behind the Open a Current File user form.

Listing 14.2: Using a ListBox to open a fi le

 1. Option Base 1

 2.

 3. Private Sub UserForm_Initialize()

 4.

 5. Dim strFileArray() As String

 6. Dim strFFile As String

 7. Dim intCount As Integer

 8.

 9. strFFile = Dir(“c:\transfer\spreads*.xlsb“)

10. intCount = 1

11.

12. Do While strFFile <> ““

13. If strFFile <> “.“ And strFFile <> “..“ Then

14. ReDim Preserve strFileArray(intCount)

15. strFileArray(intCount) = strFFile

16. intCount = intCount + 1

17. strFFile = Dir()

18. End If

19. Loop

20.

21. lstFiles.List() = strFileArray

22.

23. End Sub

24.

25. Private Sub cmdCancel_Click()

26. Me.Hide

27. Unload Me

28. End Sub

29.

30. Private Sub cmdOpen_Click()

31. Me.Hide

32. If lstFiles.Value <> “” Then Workbooks.Open _

 Name:=”c:\transfer\spreads” & lstFiles.Value

33. Unload Me

34. End Sub

Listing 14.2 contains all the code that appears on the code sheet for the frmOpen_a_Current_

File user form: a declarations section and three event procedures.

In the declarations section, line 1 contains the Option Base 1 statement, which makes any

array used on the code sheet begin at 1 rather than at 0. Line 2 is a spacer.

390 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 390

Here’s what happens in the UserForm_Initialize procedure (lines 3 to 23):

 ◆ Line 3 begins the Initialize procedure for the user form. Line 4 is a spacer.

 ◆ Line 5 declares the String array variable strFileArray. Line 6 declares the String variable

strFFile. Line 7 declares the Integer variable intCount. Line 8 is a spacer.

 ◆ Line 9 assigns to strFFile the result of a directory operation on the designated folder

(here, c:\transfer\spreads\), but substitute your own path to a folder on your computer

that contains fi les with an .xlsb fi lename extension. Enter your own path in line 32 as well.

 ◆ Line 10 sets the intCount counter to 1. Note that if you don’t use the Option Base 1 dec-

laration for this procedure, you need to set Count to 0 (or the corresponding value for a

different option base that you use). The fi rst call to Dir, which specifi es the pathname in an

argument, returns the fi rst fi le it fi nds in the folder (assuming it fi nds at least one fi le). Each

subsequent call without the argument returns the next fi le in the folder, until Dir fi nds no

more fi les.

 ◆ Line 11 is a spacer. Lines 12 through 19 contain a Do While…Loop loop that runs while strF-

File isn’t an empty string (″″):

 ◆ Line 13 makes sure that strFFile isn’t a folder by comparing it to the single period

and double period used to denote folders. If strFFile isn’t a folder, line 14 uses a

ReDim Preserve statement to increase the dimensions of the strFileArray array to

the number in intCount while retaining the current information in the array, thus

building the list of fi les in the folder.

 ◆ Line 15 assigns to the intCount index of the strFileArray array the current contents

of strFFile.

 ◆ Line 16 then adds 1 to intCount, and Line 17 sets strFFile to the result of the Dir

function (the fi rst fi lename matching the *.xlsb pattern in the designated folder).

 ◆ Line 18 ends the If condition. Line 19 contains the Loop keyword that will continue

the loop as long as the Do While statement is True.

 ◆ When the loop ends, line 21 sets the List property of the lstFiles list box in the dialog

box to the contents of strFileArray, which now contains a list of all the fi les in the folder.

 ◆ Line 22 is a spacer, line 23 ends the procedure, and line 24 is another spacer.

Here’s what happens in the cmdCancel_Click procedure (lines 25 through 28):

 ◆ Line 25 starts the cmdCancel_Click procedure, and line 28 ends it.

 ◆ Line 26 hides the user form, using the Me keyword to reference it.

 ◆ Line 27 unloads the user form from memory.

Here’s what happens in the cmdOpen_Click procedure (lines 30 through 34):

 ◆ Line 30 starts the cmdOpen_Click procedure, and line 34 ends it.

 ◆ Line 31 hides the user form, again by using the Me keyword.

USING AN APPLICATION’S BUILTIN DIALOG BOXES FROM VBA | 391

c14.indd 10:51:59:AM 07/26/2013 Page 391

 ◆ Line 32 checks to make sure the Value property of the lstFiles list box is not an

empty string (“”) and, if it is not, uses the Open method of the Documents collection

to open the fi le selected in the list box. The statement adds to the path (c:\transfer\

spreads\) the Value property of the list box to produce the full fi lename. Substitute

your own path for c:\transfer\spreads\.

 ◆ Line 33 unloads the user form from memory.

Remember that to test this example, you’ll need to adjust lines 9 and 32 to include a fi le path

on your machine where some XLSB fi les are stored. For Excel 2013, try this location: C:\Users\

YourName\AppData\Roaming\Microsoft\Excel\XLSTART.

Using an Application’s Built-in Dialog Boxes from VBA
Some applications, such as Word and Excel, let you use their built-in dialog boxes via VBA. If a

built-in dialog box offers the functionality you need, using it can be a great solution: you don’t

have to build a custom dialog box, just reference the built-in dialog box in your code.

You shouldn’t even need to debug the dialog box, and users of your procedures will probably

be familiar with the dialog box from their work in the application. These built-in dialog boxes

are called common dialog boxes, and we explored them briefl y in the sidebar titled “Control a For…

Next Loop with User Input via a Dialog Box” in Chapter 12.

Displaying a Built-in Dialog Box
To display a built-in dialog box, you need to know its name and constant. You also must decide

which method to use to display the dialog box.

Finding the Dialog Box Name and Constant

Although Offi ce 2013 no longer uses menus (with some exceptions, such as the Visual Basic

Editor), built-in dialog boxes (in Word and other applications) are still identifi ed by constants

derived from the older, pre-Ribbon menu-style interface. These constants start with the letters

wdDialog (as in Word Dialog), followed by the name of the dialog box.

The name of the dialog box is derived from the pre–Offi ce 2010 menu commands that

displayed the dialog box prior to the introduction of the Ribbon interface (with Offi ce 2007). For

example, to refer to the Open dialog box, you use the constant wdDialogFileOpen, because in

previous versions of Word, you would have chosen File ➢ Open to display that dialog box.

Or to display the Print dialog box (the old File ➢ Print options), you use the constant

wdDialogFilePrint, and to display the Options dialog box (Tools ➢ Options), you use the

constant wdDialogToolsOptions.

So, although the user interface has evolved beyond classic menus, the menu structure itself

remains as part of the classifi cation system for internal objects—such as these constants used to

identify various dialog boxes.

Excel follows a similar but less rigid taxonomic convention. Built-in Excel dialog boxes are

(for backward compatibility with older macro code) still identifi ed by constants starting with the

letters xlDialog followed by the name of the dialog box. The name of the dialog box is derived

either from the classic menu commands that were required to display it or from the dialog box’s

392 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 392

title. For example, to refer to the Open dialog box, you use the constant xlDialogOpen (rather

than xlDialogFileOpen).

Anyway, the easiest way to fi nd the name for the built-in dialog box you need is to search the

Visual Basic Editor’s Help system for “Built-in Dialog Box Argument Lists” in Word or Excel.

(Access employs a whole different system for common dialog boxes, requiring the importation

of object libraries using its Visual Basic Editor’s Tools ➢ References menu and the employment

of specialized objects.)

You can also view a list of Word or Excel built-in dialog boxes by displaying the Object

Browser (press F2 in the Editor) and typing wddialog (for Word) or xldialog (for Excel) in the

Search textbox.

You use these constants with the Dialogs property, which returns the Dialogs collection

object, which in turn contains all the built-in dialog boxes in the host application.

For example, to display Word’s Save As dialog box, you use the Show method, as illustrated in

the following statement:

Dialogs(wdDialogFileSaveAs).Show

It’s as simple as that. To display Word’s Replace dialog box, just substitute

wdDialogEditReplace for wdDialogFileSaveAs.

The Dialogs Collection Is Creatable in Word, but Not in Excel

In Word, the Dialogs collection is a “creatable object,” meaning you can access it directly without

going through the Application object. In Excel, however, the Dialogs collection is not creatable,

so you must always add the Application object to this code, like this:

Application.Dialogs (xlDialogOptionsGeneral).Show.

Choosing between the Show Method and the Display Method

VBA provides two methods of displaying built-in dialog boxes onscreen: Show and Display:

 ◆ The Show method shows the specifi ed Dialog object and then uses functions built into the

Dialog object to carry out the user’s requests. You don’t need to write any code of your

own. For example, if you use the Show method to display the wdDialogFileSaveAs dialog

box and the user enters a name for the fi le in the File Name box and clicks the Save button,

VBA itself automatically saves the fi le with the given name in the specifi ed folder (and with

any other options the user chose). You didn’t write any programming to save this fi le.

 ◆ The Display method merely displays the dialog box onscreen, but it does not execute

the actions the user requests in the dialog box. Instead, it allows you to fetch the settings

(the user’s requests and selections) from the dialog box once the user dismisses it, but then

you must write your own code to carry out what the user requested.

USING AN APPLICATION’S BUILTIN DIALOG BOXES FROM VBA | 393

c14.indd 10:51:59:AM 07/26/2013 Page 393

Displaying a Particular Tab of a Word Dialog Box

If the dialog box you want to display has tabs, you can display the tab of your choice by specify-

ing the DefaultTab property. You refer to a tab by the name of the dialog box plus the word

Tab and the name of the tab. For example, the constant for the Bullets And Numbering dialog

box is wdDialogFormatBulletsAndNumbering, and the constant for its Outline Numbered

tab is wdDialogFormatBulletsAndNumberingTabOutlineNumbered. Likewise, the Font dia-

log box is referred to as wdDialogFormatFont, and its Character Spacing tab is referred to as

wdDialogFormatFontTabCharacterSpacing. You could display this tab by using the follow-

ing statements:

With Dialogs(wdDialogFormatFont)

 .DefaultTab = wdDialogFormatFontTabCharacterSpacing

 .Show

End With

To get a list of all the tab constants, search for wdWordDialogTab in the Object Browser.

Using the Show Method to Display and Execute a Dialog Box

The Show method displays the specifi ed dialog box and automatically responds to whatever

actions the user takes in it. Show is useful when your user is merely going to perform a conven-

tional interactive action. As a simple example, in a procedure that’s supposed to perform certain

formatting tasks on the current document, you could check to make sure a document was open

before attempting to perform the formatting; then, if no document was open, you could display

the built-in Open dialog box so that the user could open a fi le. (You might precede the Open dia-

log box with a message box explaining the problem.) Listing 14.3 shows the code for this part of

the procedure.

Listing 14.3: Using a common dialog box

 1. If Documents.Count = 0 Then

 2. Proceed = MsgBox("There is no document open." _

 & vbCr & vbCr & _

 "Please open a document for the procedure to work on.", _

 vbOKCancel + vbExclamation, "Format Report")

 3. If Proceed = vbOK Then

 4. Dialogs(wdDialogFileOpen).Show

 5. If Documents.Count = 0 Then End

 6. Else

 7. End

 8. End If

 9. End If

10. ‘rest of procedure here

394 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 394

Here’s how the code works:

 ◆ Line 1 checks the Count property of the Documents collection to see if no documents are

open; if that’s the case, the statements in lines 2 through 8 run.

 ◆ Line 2 displays a message box informing users that no document is open and asking them

to open one for the procedure to work on. The message box has OK and Cancel buttons and

stores the button chosen in the variable Proceed.

 ◆ Line 3 checks to see if the OK button was chosen; if it was, line 4 displays the Open dialog

box so that users can select the fi le, which VBA will open when they click the Open button

in the Open dialog box.

 ◆ Users can cancel the procedure at this point by clicking the Cancel button in the Open dia-

log box, so line 5 checks the Count property of the Documents collection again and uses an

End statement to terminate execution of the procedure if there is still no document open.

 ◆ If the OK button was not chosen, execution moves from line 3 to the Else statement in line

6, and the End statement in line 7 ends execution of the procedure.

 ◆ Line 8 contains the End If statement for the nested If statement, and line 9 contains the

End If statement for the outer If statement.

 ◆ Line 10 contains a comment to indicate that you’d write more code here—the rest of the

procedure would run from this point, which is reached only if a document is open.

Using the Display Method to Display a Dialog Box

Remember that unlike the Show method, the Display method displays a built-in dialog box but

doesn’t respond to any actions the user takes in the dialog box. Instead, you must write code

that checks the settings that the user chose in the dialog box and then write more code to carry

out the user’s wishes. When you use the Display method, the user gets to work with familiar

dialog boxes, but you totally control the behavior that results from that interaction.

For example, you’ll often need to fi nd out which folder a procedure should be working in,

such as when you need the location of a number of documents that the user wants to manipu-

late. To get the folder, you could display a straightforward input box and prompt the user to type

in the correct path to the folder—if the user knows the path and can type it in correctly.

Perhaps a better solution is to display a list box containing the tree of drives, folders, and fi les

on the user’s hard drive, but to do this you need to dimension an array and fi ll it with the folders

and fi lenames, and you need to refresh the display every time the user moves up or down the

tree—quite a lot of programming work.

So why not just borrow all this functionality from a built-in common dialog box? It’s already

part of the Offi ce applications. You can achieve the same result much more easily by using a

built-in dialog box that has the tree built in (for example, the Open dialog box) and then retriev-

ing the user’s responses for your own purposes.

If you need to execute the settings (user choices) in a built-in dialog box, you can use the

Execute method. But you might want to check the user’s selections in the dialog box before

implementing them. If you fi nd a problem, you could then, for example, display a dialog box of

your own, such as an Input Box, asking for clarifi cation.

USING AN APPLICATION’S BUILTIN DIALOG BOXES FROM VBA | 395

c14.indd 10:51:59:AM 07/26/2013 Page 395

Setting and Restoring Options in a Built-in Dialog Box
Most of the built-in Word and Excel dialog boxes have arguments that you can use for

retrieving or setting values in the dialog box. For example, the Open dialog box in Word has

arguments for Name, ConfirmConversions, ReadOnly, LinkToSource, AddToMru (adding the

document to the Most Recently Used document list on the Recent section of the File tab on the

Ribbon), PasswordDoc, and more. Some of these are options that you’ll see in the Open dia-

log box itself; others are associated options that you’ll fi nd on the various tabs of the Options

dialog box. You can guess some argument names from the names of the corresponding con-

trols in the dialog box, but other names aren’t directly related. To learn the names, search for

“Built-in Dialog Box Argument Lists” in the VBA Editor’s Help system (choose MSDN on the

Web, then search with Bing).

For example, the following statements set the contents of the File Name text box in the Save

As dialog box in Word and then display the dialog box:

With Dialogs(wdDialogFileSaveAs)

 .Name = “Yellow Paint Primer”

 .Show

End With

Be aware that some arguments that applied to dialog boxes displayed by Offi ce 2003 no lon-

ger apply to Offi ce 2007, 2010, or 2013 dialog boxes. So you may need to experiment a bit to see if

a particular legacy argument is still useful in the Offi ce 2013 interface.

If you change the settings in a dialog box that uses sticky (persistent) settings, it’s a good idea

to change them back at the end of your procedure so that users don’t get unexpected results the

next time they open the dialog box.

Which Button Did the User Choose in a Dialog Box?
To fi nd out which button the user clicked in a dialog box, check the return value of the Show

method or the Display method. The return values are shown in Table 14.12.

Table 14.12: Click return values

Return Value Button Clicked

–2 Close

–1 OK

0 Cancel

1 Th e fi rst command button

2 Th e second command button

>2 (greater than 2) Subsequent command buttons

396 | CHAPTER 14 CREATING SIMPLE CUSTOM DIALOG BOXES

c14.indd 10:51:59:AM 07/26/2013 Page 396

For example, you might want to cancel your whole procedure if the user clicks the Cancel

button in a dialog box, like this:

If Dialogs(wdDialogFileOpen).Show = 0 Then End

Specifying a Time-Out for a Dialog Box
In some applications, including Word, you can display some built-in dialog boxes for a specifi ed

time rather than having them stay open until the user dismisses them by clicking OK or Cancel

or some other button. To do so, you use the TimeOut Variant argument with the Show method or

the Display method. You specify TimeOut as a number of units, each of which is approximately

a thousandth of a second. (If the system is busy with many other tasks, the actual result might

be a slightly longer delay.) So you could display the General page of the Word Options dialog

box for about 10 seconds—long enough for the user to check the Name setting and change it if

necessary—by using the following statements:

With Dialogs(wdDialogToolsOptions)

 .DefaultTab = wdDialogToolsOptionsTabUserInfo

 .Show (10000)

End With

The TIMEOUT Argument Doesn’t Work with Custom Dialog Boxes

TimeOut doesn’t work with custom dialog boxes you create, only with the built-in Word dialog

boxes. Also, some built-in Word dialog boxes—such as the New dialog box (wdDialogFileNew)

and the Customize dialog box (wdDialogToolsCustomize)—don’t recognize the TimeOut option

either.

Timing out a dialog box is especially useful for noncritical information like the username in

this example because it allows the procedure to continue even if the user has left the computer.

Likewise, you might want to time out a Save As dialog box in which the procedure suggested a

viable fi lename but allowed users to override it if they were present. However, for a procedure

in which the user’s input is essential, you won’t want to use the TimeOut argument. You want to

compel the user to respond by at least clicking a button; in this context, the dialog box should

not disappear all by itself via this timeout technique.

Th e Bottom Line

Understand what you can do with a custom dialog box. Custom dialog boxes—user inter-

faces you design as forms in the Visual Basic Editor—are often needed in macros and other

kinds of Offi ce automation. You might, for example, want to display a dialog box that allows

the user to specify whether to let a macro continue beyond a certain point in its code or cease

execution. Perhaps your macro is searching through a document for a particular phrase; then

when it fi nds that phrase, it displays a dialog box to users asking if they want to continue

further.

THE BOTTOM LINE | 397

c14.indd 10:51:59:AM 07/26/2013 Page 397

Master It Which VBA statement would you use to stop a macro from continuing

execution?

Create a custom dialog box. You use the Visual Basic Editor to both design a custom dialog

box (form) and write code for macros. You can attach the various controls to a form and then

enter code behind the dialog box.

Master It How do you switch between the form-design window (sometimes called the

object window) and the Code window in the Visual Basic Editor?

Add controls to a dialog box. It’s easy in the Visual Basic Editor to add various controls—

such as command buttons and text boxes—to a user form (a custom dialog box).

Master It How do you add a command button to a custom dialog box?

Link dialog boxes to procedures. Buttons, check boxes, option buttons—displaying vari-

ous controls to the user is fi ne, but unless you write some code behind these various user-

interface objects, what’s the point? Your macro’s user shouldn’t discover that clicking a button

does nothing.

Dialog boxes often display objects with which users can communicate their wishes to your

code. Therefore, you write code that explores the values the user enters into controls and

responds to whatever buttons the user might click.

Master It Create a small custom dialog box that displays a message in a label control

saying, “Would you like to know the current date and time?” Put an OK button and a

Cancel button on this form. Write code that simply ends the procedure if the user presses

the Cancel button but that displays the date and time in the label if the user clicks the OK

button. If the user clicks OK a second time, end the procedure.

Retrieve the user’s choices from a dialog box. A major task of most dialog boxes is retriev-

ing values that the user has specifi ed in various controls by selecting check boxes and so

on. Then you write code to carry out the user’s wishes based on these retrieved values. This

interaction via dialog box is the typical way that a user communicates with your procedures,

and vice versa.

Master It Create a new dialog box that contains three option buttons captioned Small,

Medium, and Large and named optSmall, optMedium, and optLarge. Write code in each

option button’s Click procedure to change the button’s caption to boldface when the but-

ton is clicked.

c14.indd 10:51:59:AM 07/26/2013 Page 398

Chapter 15

Creating Complex Forms

While simple dialog boxes tend to be static, more complex dialog boxes can be dynamic: They can

change when the user clicks certain elements in them. Such changes can include the following:

 ◆ The application changes the information in the dialog box to refl ect choices that the user

has made. For example, if a user selects a particular check box, the application may make

other check boxes unavailable (hidden or disabled) because the options offered by the

other check boxes cannot be simultaneously chosen along with the fi rst check box.

 ◆ The dialog box displays a hidden section of secondary, less frequently used options when

the user clicks a button in the primary area of the dialog box.

 ◆ The application uses the dialog box to keep track of a procedure and to guide the user to

the next step by displaying appropriate instructions and by activating relevant controls. In

this chapter, you’ll look at an example of this technique.

In this chapter, you’ll start by investigating how to create dynamic forms. Such dialog boxes

cost you a little more work than static dialog boxes, but they’re a great way to both present infor-

mation and allow the user to make choices. (Note that the terms form and dialog box can be used

interchangeably, though dialog boxes tend to be smaller and simpler than forms.)

From dynamic dialog boxes you’ll move on to multipage dialog boxes, which you use to pres-

ent more information or options to the user than the eye and mind can comfortably encompass

at once.

You’ll then look at how to create a modeless dialog box (one that users can leave onscreen

while they continue to work in their application, much like Word’s Research pane displays

results from the thesaurus, though you can continue to edit the document).

The chapter ends by showing you how to work with the many events supported by the

UserForm object and the controls you use on it. By using events, you can monitor what the user

does and take action accordingly, or even prevent the user from doing something that doesn’t

seem like a good idea.

In this chapter you will learn to do the following:

 ◆ Understand what a complex dialog box is

 ◆ Reveal and hide parts of a dialog box

 ◆ Create multipage dialog boxes

 ◆ Create modeless dialog boxes

 ◆ Explore all the form and control events

400 | CHAPTER 15 CREATING COMPLEX FORMS

Creating and Working with Complex Dialog Boxes
You should never use a complex dialog box when a simple one will do the trick and be easier for

users to work with. If all a procedure needs is a pair of check boxes and a group of option but-

tons, there’s no need to employ multiple pages of dynamically updating controls. But often, you

will want to create complex dialog boxes (like the examples given at the beginning of this chap-

ter) to provide users with the fl exibility that your procedures demand.

Updating a Dialog Box to Refl ect the User’s Choices
You’ll fi nd it relatively easy to change a form to refl ect the options the user chooses. Your pri-

mary tool for doing this is the Click event, to which most controls placed on a form react and to

which you can code in the Code window that’s “behind” (associated with) your form.

When you double-click a control on a form, the Code window for that form opens and

a default Sub procedure is displayed. This procedure is associated with the clicked control.

The procedure is automatically named after the control and the control’s default event. If you

double-click a command button, for example, the Code window opens with this button’s default

Click event:

Private Sub CommandButton1_Click()

End Sub

Whatever code you put into this procedure will be executed when the user clicks this par-

ticular command button.

Some controls have different default events than Click; you’ll learn about the Change event

as you work with complex dialog boxes, and you’ll see the full slew of other events in the second

half of the chapter.

Listing 15.1 in the next section shows you an example of code that updates a dialog box

should the user click a button captioned More.

Revealing a Hidden Part of a Form
Hiding part of a complex form is a great way to simplify the user’s initial interaction with the

dialog box. Consider the Find And Replace dialog box in Word: When you fi rst see it (by press-

ing Ctrl+H, or by clicking the Replace icon in the Editing section of the Ribbon’s Home tab),

you’re shown only the part of the dialog box (see the top box in Figure 15.1) for the most com-

mon type of search and replace—just the target and the replacement, along with the option to

replace them one by one, or en masse.
But, should you want to use the less common or more advanced options that the abbreviated

version of the Find And Replace dialog box doesn’t display by default, you can click the More

button to reveal the bottom part of the dialog box, as shown at the bottom in Figure 15.1. Here

are more rarely used options, such as matching prefi x or case.

You may want to take a similar approach with your own dialog boxes, hiding a subset of

actions that most users won’t need most of the time. To do so, you can use two techniques, either

separately or in tandem:

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 401

 ◆ Set the Visible property to False to hide controls that are located in a displayed part of

the dialog box. Set the Visible property to True when you want to display these controls

(after the user presses a More button or some such trigger).

 ◆ Increase the height or width (or both) of the dialog box to reveal an area containing further

controls. The Find And Replace dialog shown in Figure 15.1 uses the technique of increas-

ing the Height property of the box.

Figure 15.1

Word’s Find And

Replace dialog box

hides some of its

options (top) until

you click the More

button to display its

lower half (bottom).

As a simple example of the latter technique, consider the dialog box shown in Figure 15.2.

When you display the dialog box, only the top part is visible; when you click the More button,

the bottom part is displayed. Listing 15.1 contains the code behind the dialog box that makes all

this happen.

402 | CHAPTER 15 CREATING COMPLEX FORMS

Figure 15.2

Th e top part of this

Inventories form

off ers the most

frequently used

options. Clicking

the More button

reveals the rest

of the dialog box

(shown on the

bottom), which

contains less-often-

used controls.

Listing 15.1: Revealing part of a dialog box

1. Private Sub UserForm_Initialize()

2. frmInventories.Height = 120

3. End Sub

4.

5. Private Sub cmdMore_Click()

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 403

6. If cmdMore.Caption = “< < Less” Then

7. cmdMore.Caption = “More > >”

8. cmdMore.Accelerator = “M”

9. frmInventories.Height = 120

10. Else

11. frmInventories.Height = 240

12. cmdMore.Caption = “< < Less“

13. cmdMore.Accelerator = “L“

14. fraOptions.Enabled = True

15. End If

16. End Sub

17.

18. Private Sub chkArtNames_Click()

19. If chkArtNames = True Then

20. optFromDocument.Enabled = True

21. optFromDocument = True

22. optAutoNames.Enabled = True

23. Else

24. optFromDocument.Enabled = False

25. optFromDocument = False

26. optAutoNames.Enabled = False

27. optAutoNames = False

28. End If

29. End Sub

30.

31. Private Sub cmdOK_Click()

32. frmInventories.Hide

33. Unload frmInventories

34. ‘create inventories here

35. End Sub

36.

37. Private Sub cmdCancel_Click()

38. End

39. End Sub

Listing 15.1 contains fi ve short procedures that control the behavior of the dialog box:

UserForm_Initialize Initializes the dialog box before it’s displayed.

cmdMore_Click Runs when the cmdMore button is chosen. This button bears the caption

More when only the top half of the dialog box is displayed, and the caption Less when the

full dialog box is displayed.

chkArtNames_Click Runs when the Enter Art Filenames check box is chosen.

cmdOK_Click Runs when the OK button is chosen.

cmdCancel_Click Runs when the Cancel button is chosen.

404 | CHAPTER 15 CREATING COMPLEX FORMS

Here’s what happens in the code.

 ◆ The UserForm_Initialize procedure sets the Height property of the frmInventories

user form to 120, which is enough to display only the top part of the dialog box. (To fi nd

the appropriate height for your dialog box, drag it to the height that looks right and note

the Height property in the Properties window.) This procedure is necessary only if the

user form is set to its full height at design time. By setting the user form to a height of 120 at

design time, you could avoid having to use a UserForm_Initialize procedure. However,

for a user form that has three or more different sizes—or for a user form with two different

sizes, one of which needs to be chosen at runtime depending on environmental condi-

tions—you’ll need to use a UserForm_Initialize procedure.

 ◆ The cmdMore_Click procedure starts by checking in line 6 whether the Caption property of

the cmdMore command button is <<Less. If so, that means that the whole dialog box is dis-

played. Line 7 then sets the Caption property of the cmdMore command button to More > >,

the button that will be used to display the bottom part of the dialog box again if necessary.

Line 8 sets the Accelerator property of the cmdMore command button to M (to make the M in

More the accelerator key for the button). Line 9 sets the Height property of frmInventories

to 120, which is the depth required to show only the top part of the dialog box.

The Caption Property Works, But Using a State Variable Is Considered

More Elegant

Checking the Caption property of the cmdMore button is an eff ective way of determining the cur-

rent state of this form (whether it’s expanded or not), but this isn’t the most elegant of techniques.

It’s a form of hard coding, considered by many to be a sleazy way of programming. Instead, you could

maintain an internal state variable (a Static toggle) in which you store information about whether

the dialog box is displayed in its full state or its partial state. Using an internal state variable avoids

assuming that this caption will always remain the same. Th e code would fail to work correctly, for

example, if the form were at some point localized (adapted for a diff erent language locale, where

the words more and less are not used).

If the condition in line 6 is False, execution shifts from line 6 to the Else statement in line

10. This must mean that the Caption property of the cmdMore button is already set to More > >,

so the dialog box is displayed in its smaller version and the More > > button is being clicked to

expand the dialog box again. Line 11 sets the Height property of the user form to 249, thus dis-

playing the lower part of the dialog box. Line 12 changes the Caption property of the cmdMore

command button to < < Less. Line 13 sets the Accelerator property of the cmdMore command

button to L.

Line 14 enables the fraOptions frame (identifi ed as Options in the dialog box and disabled

in the user form, as are the optFromDocument option button and the optAutoNames option but-

ton), making it and the controls it contains available to the user. Line 16 ends the cmdMore_Click

procedure.

 ◆ The chkArtNames_Click procedure (lines 18 to 29) runs when the Enter Art Filenames

check box is clicked. This procedure enables and disables the option buttons below

it, as appropriate. Line 19 checks to see if the chkArtNames check box is selected. If it

is, the statements in lines 20 through 22 run. Line 20 sets the Enabled property of the

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 405

optFromDocument option button (identifi ed as From Document in the dialog box) to True,

thus making it available, and line 21 selects this option button as the default choice. Line

22 enables optAutoNames, the option button identifi ed as Automatic Naming in the dialog

box.

If the chkArtNames check box isn’t selected, execution shifts to the Else statement in line 23,

which directs execution to line 24. This line sets the Enabled property of the optFromDocument

option button to False, disabling it. Line 25 then deselects this option button (whether it’s selected

or not). Line 26 disables the optAutoNames option button, and line 27 deselects it (again, whether

it’s selected or not). The End If statement in line 28 ends this If statement, and line 29 ends this

procedure.

 ◆ The cmdOK_Click procedure in lines 31 to 35 shows the beginning of the procedure that

runs once the OK button is clicked. Line 32 hides the Inventories dialog box, and line 33

unloads it from memory. Line 34 contains a comment indicating that the instructions for

creating the inventories appear here.

 ◆ The cmdCancel_Click procedure contains only an End statement to end execution of the

procedure if the user chooses the Cancel button.

Tracking a Procedure in a Form
The next level of complexity in working with forms is using them to track the different stages of

a procedure and to guide the user as to how to continue.

Take a look at the Create New Employee Web Page dialog box shown in Figure 15.3. This

dialog guides the user through a four-stage procedure to create a web page for a new employee.

The fi rst step is to identify the employee deserving of this honor by using either the drop-down

list or the Select Other Employee command button in the step 1 frame. The second step is to

enter suitable introductory, critical, or laudatory text about the employee. The third step is to

select the most (or perhaps least) fl attering photo of the employee to include in the web page.

The fourth step is to save the web page to a folder on the company’s intranet.

When the user fi rst displays the Create New Employee Web Page dialog box, they will see the

version of the dialog box shown in Figure 15.3, with steps 2, 3, and 4 disabled and instructions

for step 1 shown in the Instructions box at the top.

When the user follows the instructions and selects the employee by using either the combo

box drop-down list or the Select Other Employee command button, the code attached to the

combo box drop-down list or the command button enables the step 2 frame, making its text box

available to the user, as shown in Figure 15.4. Here is the code for the Change event of the

cmbSelectEmployee combo box; the code for the Click event of the cmdSelectOtherEmployee

command button is similar, although a little more complex.

Private Sub cmbSelectEmployee_Change()

 lblEmployeeName = cmbSelectEmployee.Text

 fraStep2.Enabled = True

 lblInstructions = “Enter text in the Step 2 text box. “ & _

 “For example, you might include brief biographical “ & _

 “information on the employee, details of their position, “ & _

 “or your hopes for their contribution to the company.”

 cmdClearEmployeeName.Enabled = True

End Sub

406 | CHAPTER 15 CREATING COMPLEX FORMS

Figure 15.3

Th e Create New

Employee Web Page

form provides users

with instructions

that are dynami-

cally updated as

they work their

way through the

procedure.

An Ellipsis Signals That a Dialog Box Can Be Displayed

Th e Select Other Employee button in the Create New Employee Web Page dialog box ends with

an ellipsis (…), as do some of the other command buttons. Th is ellipsis is the Windows conven-

tion for indicating that the choice (here a command button, but also other contexts) results in a

dialog box being displayed rather than an action being taken immediately.

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 407

Figure 15.4

Th e second stage

of the Create New

Employee Web Page

dialog box. Notice

the changes from

the fi rst stage: the

instructions in the

Instructions frame

have changed,

and the use of the

step 1 combo box

drop-down list has

enabled the step 2

frame.

These are the changes that occur when the user completes step 1 of the dialog box:

 ◆ The text of the label in the Instructions box at the top of the dialog box is changed to con-

tain information about step 2 of the procedure.

 ◆ The name of the employee selected by the user is listed above the Employee label in the

step 1 frame.

 ◆ The frame for step 2 is enabled (the text box it contains is enabled along with the frame).

408 | CHAPTER 15 CREATING COMPLEX FORMS

Using Multipage Dialog Boxes and Tab Strip Controls
VBA includes a MultiPage control, which enables you to create multipage dialog boxes, and a

TabStrip control, which lets you create dialog boxes driven by tab strips (similar to the tabs on

the Offi ce applications’ Ribbon). You’ve almost certainly used multipage dialog boxes (if you’re

not sure what they are, press Ctrl+D in Word to open the Font dialog box and see an example

of one). You can access any page (one at a time) by clicking the tab at the top of the page. Each

page contains a different set of controls and can have a different layout appropriate to the page’s

purpose.

A Tab Is Not a Page

Th e tab is the little thing that sticks out from the top of the page, not the whole page itself. Many

people refer to the pages as “tabs” because the tab is the part you click to access the page. It’s per-

fectly okay to use these terms interchangeably, but this discussion uses tab to mean only the tab

component and page to refer to the page qua page.

Multipage dialog boxes are great for packing a lot of information into a single form without

having it take up the whole screen with a bewildering embarrassment of options. You’ll need to

divide the information into discrete sets of related information to fi t it onto the pages. Each page

can (and should) have a different layout of controls that govern the behavior of discrete items;

the pages are normally separate in theme or purpose. Again, the Font dialog boxes in the Offi ce

applications have a Font tab and an Advanced tab. Look at the Tools ➢ Options dialog box in the

VBA Editor for another example.

A dialog box that uses a tab strip differs from a multipage dialog box in that it contains a tab

strip control containing multiple tabs but not multiple pages. To the user, it looks as if different

pages are being displayed, but the actual layout of the controls in the dialog box doesn’t change.

No matter which tab on the tab strip is selected, the set of controls remains the same, although

the data displayed in the controls does change. This approach is useful for displaying records

from a database. The tabs merely switch to a different record.

Tab strips are useful when you need to display consistent sets of information, such as the

records you might maintain on your company’s customers. Each customer record has the same

set of fi elds (analogous to the columns in a database): an account number, a name (perhaps sev-

eral), an address, phone numbers, email addresses, URLs, an order history, an account balance,

and so on. Therefore, you can use the same set of controls (text boxes and labels, for example)

to display the information for each record. The tab strip control governs which customer’s set

of information is displayed in them. Because few databases have a small and fi xed number of

records, you’ll need to populate the tab strip on the fl y (during execution) with tabs and cap-

tions, but it works fi ne.

Table 14.7 in Chapter 14, “Creating Simple Custom Dialog Boxes,” explains the properties

unique to the TabStrip control and MultiPage control.

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 409

Limit the Number of Pages in Your Multipage Dialog Boxes

You can create dialog boxes containing dozens of tabs or dozens of pages. And if you run out of

horizontal space to display the tabs, the VBA Editor adds a scroll bar to enable the user to scroll

through the tabs. However, gigantic tab dialog boxes are impractical in the real world. As you

doubtless know, not everything that’s possible is also desirable.

You’ll probably want to avoid creating multipage dialog boxes with more than 10 or 12 pages because

the wealth of information such a dialog box will contain is likely to overwhelm the user.

If you need more than a dozen pages to organize the information in a dialog box, you’re probably

trying to present the user with too much data at once. Consider an alternative way of displaying

it. Most likely, you should subdivide the information into smaller, easier-to-manage categories.

For example, Microsoft spends countless hours spread over several years testing focus groups,

quizzing users, and observing people’s behavior when using Word. One result is that Microsoft’s

designers subdivide tasks and user interaction into various subcategories. Click the Page Layout

tab in the Word Ribbon. Notice that the many tasks within this category are subdivided into logical

areas: Page Setup, Paragraph, and Arrange. What’s more, two of these subcategories—Page Setup

and Paragraph—have small box icons you can click in the lower-right corner. Clicking these icons

opens a separate dialog box with additional, less frequently used, options.

Tabs are a diff erent matter. If you use a tab strip to move through the records in a database recordset,

you may need to use quite a few tabs in a given tab strip. Unless the number of tabs is absurdly large,

this shouldn’t normally be a problem. However, a better solution if you’re attempting to manage a

database might be to switch to one of the more robust, specialized database-related user interface

controls available in Access, Visual Basic Express, or Visual Basic .NET. For more information, see

www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

Multipage Dialog Boxes

To create a multipage dialog box, click the MultiPage icon in the Toolbox, and then click in the

user form where you want the control to appear. The VBA Editor places a MultiPage control

with two pages, whose tabs have the labels Page 1 and Page 2. You can then move and size the

control as usual. In typical usage, you’ll want to create a MultiPage control that’s only a little

smaller than the user form it inhabits (like most of the multipage dialog boxes you’ll see in

Windows applications).

Once you’ve created a MultiPage control, you work with a page on it by right-clicking its tab

and using the resulting context menu:

 ◆ To add a page, right-click the label and choose New Page from the context menu. VBA will

add a new page of the default size and will name it Pagen, where n is the next number after

the current number of pages (even if the other pages have names other than Page1, Page2,

and so on).

 ◆ To rename a page in a MultiPage control, right-click the label and choose Rename from the

context menu. In the Rename dialog box (see Figure 15.5), enter the caption (the label text) for

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

410 | CHAPTER 15 CREATING COMPLEX FORMS

the page in the Caption text box, the accelerator key in the Accelerator Key text box, and any

control-tip text (the tip the user sees when they move the mouse pointer over the tab for the

page) in the Control Tip Text text box. Click the OK button to close the Rename dialog box.

Figure 15.5

Use the Rename

dialog box to set the

caption, accelerator

key, and control-tip

text for a page.

 ◆ To delete a page from a MultiPage control, right-click the label and choose Delete Page

from the context menu. The VBA Editor will remove the page without prompting for

confi rmation.

 ◆ To move a page to a different place in the MultiPage control, right-click the label and

choose Move from the context menu to display the Page Order dialog box (see Figure 15.6).

In the Page Order list box, select the page or pages that you want to move (Shift+click to

select multiple contiguous pages, Ctrl+click to select multiple noncontiguous pages), and

then use the Move Up and Move Down buttons to rearrange the page or pages as desired.

When you’ve fi nished, click the OK button to close the Page Order dialog box.

Figure 15.6

Use the Move Up

and Move Down

buttons in the

Page Order dialog

box to change the

order of pages in a

MultiPage control.

 ◆ To specify which page of a multipage dialog box to display by default, use the Value prop-

erty of the MultiPage control. You can set this property either at design time or at runtime.

For example, you could use an initialization procedure such as the one shown here to dis-

play the third page (identifi ed by the value 2, because the page numbering starts at 0) of a

dialog box with a MultiPage control called MyMulti at runtime:

Sub UserForm_Initialize()

 MyMulti.Value = 2

End Sub

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 411

Once you’ve created a multipage dialog box, you can populate its pages with controls using

the techniques you learned in Chapter 14. Each control must have a unique name in the entire

form (not just within the page on which it appears).

When designing a multipage dialog box, keep the following issues in mind:

 ◆ What’s the best way to divide the information or options in the dialog box? What belongs

on which page? Which information or options will the user expect to fi nd grouped

together?

 ◆ Which controls should appear on each page? Most dialog boxes need at least a pair of com-

mand buttons—such as OK and Cancel or OK and Close—available from each page to

allow the user to dismiss the dialog box from whichever page they happen to end up on.

In rare instances, you may want to force the user to return to a particular page in order to

close a dialog box. In these cases, make sure each page that doesn’t contain a command

button to dismiss the dialog box tells the user where they will fi nd such a command

button.

 ◆ For settings, do you need to have an Apply button (as well as an OK button) to apply the

changes on a particular page without closing the dialog box?

Because each control in a multipage form has a unique name, when returning information

from a multipage dialog box you need specify only the relevant object—you don’t need to spec-

ify which page it’s on.

Figure 15.7 shows an example of a multipage dialog box. The fi rst page contains the custom-

er’s personal contact information; the second, the customer’s professional information; the third,

the associations the customer belongs to; and the fourth, the certifi cations the customer holds.

Figure 15.7

By using mul-

tiple pages in a

dialog box, you can

achieve a clean and

uncluttered look

that’s also easily

navigable.

412 | CHAPTER 15 CREATING COMPLEX FORMS

Most of the properties of the MultiPage control are straightforward, but a few deserve special

mention:

 ◆ The Style property offers fmStyleTabs (the default setting, showing tabs for navigating

between the pages), fmStyleButtons (which gives each page a rectangular button, with

the button for the current page appearing pushed in), or fmStyleNone (which provides no

means of navigating between the pages and no indication of the borders of the multipage

dialog box). fmStyleNone can be useful for creating user forms that have two or more alter-

nate layouts of which the user will only ever need to see one at a time. By including one set

of controls on one page of the multipage dialog box and another set of controls on the other

page, you can present two seemingly different dialog boxes by doing nothing more than

changing which page of the MultiPage control is displayed. For example, you can use this

approach to create a wizard that guides the user through a multistep process.

 ◆ The TabOrientation property controls where the tabs (or buttons) for the pages appear on

the control. Your choices are fmTabOrientationTop (the default setting, placing the tabs at

the top of the control), fmTabOrientationBottom, fmTabOrientationLeft, and

fmTabOrientationRight. Experiment with the effects that the bottom, left, and right ori-

entations offer, but unless they provide signifi cant advantages over the more normal top

orientation, use them sparingly if at all. Users won’t thank you for deviating from the tradi-

tional, familiar interface unnecessarily.

 ◆ The MultiRow property controls whether a MultiPage control has one row of tabs for its

pages (False) or multiple rows (True). When you have MultiRow set to True, the VBA

Editor adds the second or subsequent rows of tabs when you run out of space on the fi rst or

current row.

The MultiPage control doesn’t have to take up the whole dialog box—in fact, most dialog

boxes keep the key command buttons like OK and Cancel outside the multipage area so that

they’re available to the user no matter which page the user is on.

That said, it is usually a good idea to make a MultiPage control the dominant part of a dialog

box. In a complex and busy dialog box, a small MultiPage control can appear to be little more

than a group box, and the user may miss the tabs, particularly if they’re just skimming the con-

trols looking for a particular option.

Using the Tab Strip Control

Forms that use a tab strip are substantially different from multipage dialog boxes. A TabStrip

control is used not to rearrange other controls but to change the data that appears in them as the

user moves from one set of data to another. In other words, the layout of the controls remains

static; just the values displayed in the controls changes from page to page on the strip.

For instance, you might use a dialog box driven by a tab strip to view and update the records

in a data source such as a Word table, an Excel spreadsheet, or an Access database. This example

uses an Excel workbook in which information is stored on a number of worksheets. Figure 15.8

shows the DataSurfer dialog box, which is driven by a tab strip.

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 413

Figure 15.8

Using a TabStrip

control to create a

multitab dialog box.

Th e tab strip is used

to control which

set of information

is displayed in the

other controls in

the dialog box.

The actual strip of tabs in a TabStrip control can appear above, below, or beside the con-

trols that it contains. Above is the conventional—and default—position, just as it is in real-

world recipe-card boxes and fi le drawers. But vertical and bottom tabs have shown up in

eccentric Windows applications from time to time. As with the MultiPage control, use the

TabOrientation property of the TabStrip control to specify whether the tab strip should appear

at the top, bottom, left, or right of its control. But be sure to have some pretty good reason if

you’re departing from convention.

The tab strip can contain zero, one, or more tabs. For most purposes, there’s little point in

having only one tab on a tab strip, and even less in having no tab at all. But if you dynamically

populate the tab strip with tabs in your procedures (as you’re about to do in this next example)

and create one tab for each record found, you may run into situations with only one record and

thus a dialog box with only one tab—or even a tab strip without any tabs at all.

Click the TabStrip button on the Toolbox, click in the user form to place the tab strip, and

then drag it to an appropriate size. Bear in mind that a tab strip is only a visual display for the

user’s benefi t. Unlike the MultiPage control, you establish the logical connection between the tab

strip and the other controls through code. You can then add, rename, move, and delete tabs in

the same way as you can pages in a MultiPage control.

If you haven’t placed the other controls for the dialog box, do so now.

Once everything’s in place, you write the code that will enable the tab strip to display the

contents of the other controls. Listing 15.2 shows the code for the tab strip in the DataSurfer

dialog box. This tab strip is named tabSurfer, and the code works with its Change event—the

event procedure that fi res (is triggered and executes its code) when the user clicks a new tab on

the strip.

414 | CHAPTER 15 CREATING COMPLEX FORMS

Listing 15.2: Programming a tab strip

 1. Private Sub tabSurfer_Change()

 2. If blnInitializing = False Then

 3. With ActiveWorkbook.Sheets(tabSurfer.Value + 1)

 4. ‘load the contents of the worksheet that corresponds _

 to the tab chosen

 5. .Activate

 6. txtFirstName.Text = .Cells(1, 2).Text

 7. txtInitial.Text = .Cells(2, 2).Text

 8. txtLastName.Text = .Cells(3, 2).Text

 9. txtAddress1.Text = .Cells(4, 2).Text

10. txtAddress2.Text = .Cells(5, 2).Text

11. txtCity.Text = .Cells(6, 2).Text

12. txtState.Text = .Cells(7, 2)

13. txtZip.Text = .Cells(8, 2).Text

14. txtHomeArea.Text = .Cells(9, 2).Text

15. txtHomePhone.Text = .Cells(10, 2).Text

16. txtWorkArea.Text = .Cells(11, 2).Text

17. txtWorkPhone.Text = .Cells(12, 2).Text

18. txtWorkExtension.Text = .Cells(13, 2).Text

19. txtEmail.Text = .Cells(14, 2).Text

20. End With

21. End If

22. End Sub

After specifying the worksheet, the code in Listing 15.2 essentially repeats itself for each

of the text boxes that appears in the DataSurfer dialog box. This dialog box works with a data

source implemented as Excel spreadsheets in the active workbook.

Each worksheet in the workbook is one customer’s record, with the name of the customer

appearing on the worksheet’s tab and the customer’s data appearing in the second column: the

fi rst name in the fi rst cell of the second column, the middle initial in the second cell, the last

name in the third cell, and so on for the address, phone numbers (both home and work), and

email address. So to get at any piece of information, you need to know the sheet of the record in

question and the appropriate cell in the second column.

Here’s how the code works:

 ◆ Line 1 declares the procedure tabSurfer_Change, which executes automatically whenever

the Change event of the tabSurfer tab strip fi res. The Change event fi res each time the

user clicks a new tab, so you use this event to control the information displayed in the text

boxes.

 ◆ The Change event also fi res when a tab is added to (or removed from) the tab strip. Because

the DataSurfer user form uses the Initialize event procedure to populate the tab strip

with tabs (one per worksheet in the workbook), you do need to prevent the Change event

procedure from running unnecessarily during the initialization phase of your program.

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 415

So the user form declares a private Boolean variable named blnInitializing that the

Initialize procedure sets to True while it’s running and to False just before it ends. Line

2 of the Change event procedure checks to make sure that blnInitializing is False. If

it’s not, the Initialize procedure has fi red the event, and the Change procedure does not

need to load the information into the cells—so execution continues at line 21, just before

the end of the procedure. But once the Initialize procedure has fi nished running,

blnInitializing will be set to False, and the Change event procedure will run each time

the user changes tabs in the tab strip.

 ◆ Line 3 begins a With statement that works with the appropriate worksheet in the active

workbook: (ActiveWorkbook.Sheets(tabSurfer.Value + 1). The Value property of the

tabSurfer tab strip tells us which tab in the tab strip is selected. Because the fi rst tab in

the tab strip is numbered 0 and the fi rst worksheet in the workbook is numbered 1, you

need to add 1 to the Value of the tab strip to even the numbers.

 ◆ Line 4 is a comment. Line 5 uses the Activate method to activate the worksheet in

question.

 ◆ Lines 6 through 19 then set the Text property of each text box in the user form to the

contents of the corresponding cell in the second column on the worksheet. For example,

line 6 sets the Text property of the txtFirstName text box (which appears under the

First Name label in the dialog box) to the contents of the fi rst cell in the second column:

.Cells(1, 2).Text.

 ◆ Line 20 ends the With statement, line 21 ends the If statement, and line 22 ends the

procedure.

Using Pictures in Forms

VBA includes extensive graphics capabilities that allow you to make your forms look pretty

much any way you want them to. This book doesn’t go into design aesthetics in any detail, but

there’s much you can do to make your forms look good. You can fi ddle with Format ➢ Order

to pile controls on top of each other. Controls like the command button have their own Picture

properties, as do forms themselves. Take a look at Figure 15.9. It shows a photo inside an image

control, a background texture in the form’s picture property, and a command button that blends

into the background because its BackStyle property is set to Transparent.

You can add a picture to a form by using an Image control. Click the Image button in the

Toolbox, and then click in the user form where you want the Image control to appear. Once

you’ve placed the Image control, you can size and move the picture just as you would any other

control.

Ensure That You Include Any Necessary Graphics Files When You

Deploy a Macro

Make sure the picture you choose for an Image control or a user form’s background is available to

all computers that will display the dialog box. If the picture isn’t available, it fails to appear in the

dialog box, which spoils the eff ect.

416 | CHAPTER 15 CREATING COMPLEX FORMS

Figure 15.9

VBA includes

extensive graphics

features—you can

make your forms

look any way you

want them to.

To choose the picture that will appear in the Image control, select the Picture property in

the Properties window and click the ellipsis button that then appears to the right of the entry.

The VBA Editor displays the Load Picture dialog box. Select the picture fi le and choose the

Open button. The Picture property in the Properties window registers the type of picture you

selected—such as Bitmap—but not its fi lename, and the picture appears in the Image control so

that you can see if it’s an appropriate size.

Loading a Picture into an Image Control Programmatically

When specifying the picture for an Image control programmatically (the picture is loaded while the

macro is executing, during runtime), you need to use a LoadPicture statement. Compare that

to how, when programming (design time) you can simply use the Properties window to assign a

picture to the Picture property of the Image control. LoadPicture has the following syntax:

LoadPicture filename, [WidthDesired], [HeightDesired]

fi lename is a String argument specifying the name of the picture fi le to be loaded into the Image

control. WidthDesired is an optional Long argument specifying the width of the picture in twips,

and HeightDesired is an optional Long argument specifying the height of the picture.

For example, the following statement loads the picture named Rose.jpg that’s located in the c:\

root directory

Image1.Picture = LoadPicture(“C:\rose.jpg”)

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 417

Once you’ve chosen the picture, you have various options for positioning it and formatting it:

 ◆ If necessary, set the alignment of the picture by using the PictureAlignment property.

(If the picture fully fi lls the Image control—neither overlapping it nor leaving parts of it

empty—you may not need to set the alignment for it.) Table 15.1 shows the constants and

values for the PictureAlignment property.

 ◆ If necessary, clip, stretch, or zoom the picture by using the PictureSizeMode property:

fmPictureSizeModeClip (0) clips the picture to fi t the Image control;

fmPictureSizeModeStretch (1) stretches or squeezes the picture so that it fi ts the Image

control (this option often makes for strange effects); and fmPictureSizeModeZoom (2)

enlarges or reduces the picture so that its nearest dimension exactly fi ts the width or height

of the Image control without changing the picture’s proportions (this option usually leaves

an unfi lled gap on the other side).

 ◆ If you need to tile the image to take up the remaining space in the control, set the

PictureTiling property to True. This option is rarely used with database work.

 ◆ If you need to adjust the position of the picture relative to its caption, set the

PicturePosition property of the check box, command button, label, option button, or

toggle button in question. Table 15.2 shows the constants and values for PicturePosition.

Table 15.1: Constants and values for the PictureAlignment property

Constant Value Picture Alignment in Image Control

fmPictureAlignmentTopLeft 0 Top left

fmPictureAlignmentTopRight 1 Top right

fmPictureAlignmentCenter 2 Centered

fmPictureAlignmentBottomLeft 3 Bottom left

fmPictureAlignmentBottomRight 4 Bottom right

Table 15.2: Constants and values for the PicturePosition property

Constant Value Picture Position Caption Alignment

fmPicturePositionLeftTop 0 Left of the caption With top of picture

fmPicturePositionLeftCenter 1 Left of the caption Centered on picture

fmPicturePositionLeftBottom 2 Left of the caption With bottom of picture

fmPicturePositionRightTop 3 Right of the caption With top of picture

418 | CHAPTER 15 CREATING COMPLEX FORMS

Constant Value Picture Position Caption Alignment

fmPicturePositionRightCenter 4 Right of the caption Centered on picture

fmPicturePositionRightBottom 5 Right of the caption With bottom of picture

fmPicturePositionAboveLeft 6 Above the caption With left edge of picture

fmPicturePositionAboveCenter 7 Above the caption Centered below picture

(the default setting)

fmPicturePositionAboveRight 8 Above the caption With right edge of picture

fmPicturePositionBelowLeft 9 Below the caption With left edge of picture

fmPicturePositionBelowCenter 10 Below the caption Centered above picture

fmPicturePositionBelowRight 11 Below the caption With right edge of picture

fmPicturePositionCenter 12 In center of control Centered horizontally and

vertically on top of picture

Once you’ve placed, sized, and formatted a picture, there are various possibilities for what you

can do with it, such as using a picture’s Click event to trigger an action. For example, you could

display two graphics illustrating a choice of two formats for a document. Then the user could click

the appropriate picture to signal their choice.

Creating a Modeless Dialog Box
We’re using VBA version 7, and ever since version 6 the language has offered the programmer

an option to create a modeless dialog box—one that users can leave onscreen while they continue

to work in their application. In other words, they don’t have to click an OK or Cancel button or

otherwise dismiss the dialog box to regain the ability to interact with their application.

You’re doubtless familiar with modeless dialog boxes from working with Offi ce. For example,

the Find And Replace dialog box in Access, Word, and Excel is modeless, as is the Replace dialog

box in PowerPoint.

When you display a modeless dialog box, it takes the focus just as any modal dialog box does

(its frame turns from gray to white and the X close icon in the upper right changes from dark

gray to red, the indication that focus is on a message box in Windows 8’s graphic scheme).

But you can click in the application window to transfer the focus back to that window. For

example, you can continue typing in a Word document, even while the Find And Replace dialog

box remains visible.

Creating a modeless dialog box is as simple as setting the ShowModal property of the user

form to False from its default setting of True.

There are various situations where you might want to use a modeless dialog box rather than

a modal one. As a simple example, you might create a procedure and dialog box in Word that

Table 15.2: Constants and values for the PicturePosition property (continued)

CREATING AND WORKING WITH COMPLEX DIALOG BOXES | 419

collects information from the user for a memo or a report. By making the dialog box modeless,

you could allow the user to copy information from an open document (or open other documents

and gather information from them) and paste it into the dialog box—saving users from hav-

ing to copy the information before invoking the dialog box and allowing them to copy multiple

separate items easily. Likewise, you could create a modeless user form (perhaps shaped like a

toolbar) that users could keep onscreen and use to automatically enter text into predefi ned sec-

tions of three or four other documents without losing their place in the current document.

You can also use modeless dialog boxes to display complex sets of interrelated user forms in

which the user needs to copy and paste information from one user form to another or at least to

access different areas of two or more displayed user forms at the same time. Displaying multiple

forms at once can be confusing to the user, but you may sometimes fi nd it necessary.

Most of the time, you’ll probably want to use modal dialog boxes in your VBA procedures.

With modal dialog boxes, users must deal with the dialog box before they can continue to work

in the application, and there’s no risk that they’ll end up with multiple dialog boxes scattered

around the screen in assorted states of disuse.

You Can Use Serial Modal Dialog Boxes

You can’t display both modal and modeless user forms at the same time, but you can display one

modal dialog box from another modal dialog box. When users close the second modal dialog box,

VBA returns them to the fi rst modal dialog box by default. However, you can write code to make

the second modal dialog box automatically close the fi rst dialog box after it closes itself.

Specifying a Form’s Location Onscreen
By default, VBA centers a dialog box on the middle of the application window as much as pos-

sible, which is the normal behavior for Windows applications. If you want to position a form

elsewhere on the screen (for example, to avoid obscuring important data onscreen), set the

StartUpPosition property for the user form. Table 15.3 explains the settings you can use.

Table 15.3: StartUpPosition property settings

Property Value Effect

Manual 0 Displays the user form in the upper-left corner of the Windows Desktop.

CenterOwner 1 Centers the user form horizontally and vertically in the owner applica-

tion—the application to which the user form belongs.

CenterScreen 2 Centers the user form horizontally and vertically on the Desktop. In a

multimonitor arrangement, this value centers the user form on the

monitor containing the active window.

WindowsDefault 3 Displays the user form in the default position for Windows dialog boxes.

420 | CHAPTER 15 CREATING COMPLEX FORMS

Using Events to Control Forms
This section discusses the events built into VBA for use with forms and with individual controls

to give the programmer fi ne control over how user forms look and behave.

So far in this chapter, you’ve used three of the most useful events:

 ◆ You used the Initialize event to add items to list boxes just before a form is loaded and to

adjust the number of tabs on a tab strip.

 ◆ You used the Click event to take action when the user clicks a particular control in a user

form. So far you’ve been using Click mostly for command buttons, but you can use it for

just about any control—including the user form itself.

 ◆ You used the Change event to control what happens when the user changes the tab dis-

played on a tab strip.

Table 15.4 lists the events that VBA supports and the objects and controls with which each

can be used.

Table 15.4: Events that VBA supports and the objects and controls associated with them

Event Occurs

Applies to These Controls and

Objects

Activate When the user form becomes

the active window

UserForm

Deactivate When the user form ceases to

be the active window

UserForm

AddControl When a control is added at

runtime

Frame, MultiPage, UserForm

AfterUpdate After the user has changed

data in a control

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

BeforeDragOver When the user is performing a

drag-and-drop operation

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

BeforeDropOrPaste When the user is about to

release a dragged item or about

to paste an item

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

USING EVENTS TO CONTROL FORMS | 421

Event Occurs

Applies to These Controls and

Objects

BeforeUpdate When the user has changed

data in the control before the

new data appears in the control

CheckBox, ComboBox, ListBox,

OptionButton, ScrollBar, SpinButton,

TextBox, ToggleButton

Change When the Value property of a

control changes

CheckBox, ComboBox, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton

Click When the user clicks a control

or object with the primary

mouse button

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, TabStrip, ToggleButton,

UserForm

DblClick When the user double-clicks a

control or object with the pri-

mary mouse button

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, TabStrip, TextBox,

ToggleButton, UserForm

DropButtonClick When the user displays or

hides a drop-down list

ComboBox, TextBox

Enter Just before one control on a

user form receives the focus

from another control

CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox,

ToggleButton

Exit Just before one control on a

user form loses the focus to

another control

CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox,

ToggleButton

Error When a control or object

encounters an error

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

Initialize After a user form is loaded but

before it’s displayed

UserForm

KeyDown When the user presses a key on

the keyboard

CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox,

ToggleButton, UserForm

Table 15.4: Events that VBA supports and the objects and controls associated

with them (continued)

422 | CHAPTER 15 CREATING COMPLEX FORMS

Event Occurs

Applies to These Controls and

Objects

KeyUp When the user releases a key

they’ve pressed on the

keyboard

CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox,

ToggleButton, UserForm

KeyPress When the user presses an ANSI

key on the keyboard

CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox,

ToggleButton, UserForm

Layout When the size of a frame,

multipage, or user form

changes

Frame, MultiPage, UserForm

MouseDown When the user presses the pri-

mary mouse button

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

MouseUp When the user releases the

primary mouse button (after

pressing it)

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton,

TabStrip, TextBox, ToggleButton, UserForm

MouseMove When the user moves the

mouse

CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage,

OptionButton, TabStrip, TextBox,

ToggleButton, UserForm

QueryClose When a user form is about to

close

UserForm

RemoveControl When a control is deleted Frame, MultiPage, UserForm

Resize When a user form is resized UserForm

Scroll When the user moves the scroll

box

Frame, MultiPage, ScrollBar, UserForm

SpinDown When the user clicks the down

button on a SpinButton control

SpinButton

Table 15.4: Events that VBA supports and the objects and controls associated

with them (continued)

USING EVENTS TO CONTROL FORMS | 423

Event Occurs

Applies to These Controls and

Objects

SpinUp When the user clicks the up

button on a SpinButton control

SpinButton

Terminate When a user form has been

unloaded from memory

UserForm

Zoom When the Zoom property of the

control or user form changes

Frame, MultiPage, UserForm

The ByVal keyword is used to pass arguments between procedures. When used with forms,

it can return ReturnBoolean, ReturnEffect, ReturnInteger, and ReturnString objects.

As you can see, VBA’s events fall into several categories, which are discussed in the following

sections in descending order of usefulness:

 ◆ Events that apply only to the UserForm object

 ◆ Events that apply to the UserForm object and other container objects (such as the Frame

control and the MultiPage control)

 ◆ Events that apply to many or most of the controls, sometimes including the UserForm

object as well

 ◆ Events that apply only to a few controls

Events Unique to the UserForm Object
This section discusses the events that are unique to the UserForm object. These are the

Initialize, QueryClose, Activate, Deactivate, Resize, and Terminate events.

Initialize Event

An Initialize event occurs when the user form is loaded but before it appears onscreen.

VBA’s syntax for the Initialize event is as follows, where userform is a valid UserForm

object:

Private Sub userform_Initialize()

Typical uses for the Initialize event include retrieving information—from a database, a set

of worksheets, or whatever—that the user form or application needs and assigning information

to the controls on the user form (especially ListBox and ComboBox controls, to which you often

need to add the information at runtime rather than at design time).

Table 15.4: Events that VBA supports and the objects and controls associated

with them (continued)

424 | CHAPTER 15 CREATING COMPLEX FORMS

Depending on the style and complexity of your user forms, you may also want to use the

Initialize event to resize the user form, resize controls on the user form, display or hide par-

ticular controls, and in general make sure the user form is as closely suited as possible to the

user’s needs before displaying it.

QueryClose Event

The QueryClose event applies to the UserForm object only. This event fi res just before the user

form closes.

The syntax for the QueryClose event is as follows:

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Here, Cancel is an integer, typically 0 (zero). A nonzero value prevents the QueryClose event

from fi ring and stops the user form (and the application) from closing.

CloseMode is a value or a constant giving the cause of the QueryClose event. Table 15.5 shows

the values and constants for CloseMode.

Table 15.5: Values and constants for the CloseMode argument

Constant Value Cause of the QueryClose Event

vbFormControlMenu 0 Th e user has closed the user form by clicking its close button or by

invoking the Close command from the user form’s control menu (for

example, by right-clicking the title bar of the user form and choosing

Close from the context menu).

vbFormCode 1 An Unload statement in code has closed the user form.

vbAppWindows 2 Windows is closing down and is closing the user form.

vbAppTaskManager 3 Th e Task Manager is closing the application and thus is also closing

the user form.

At fi rst glance, QueryClose may appear to have few uses beyond double-checking that users

really want to close a user form that they’re attempting to close. Say that you have established

that users had entered a lot of data in a form they were about to close. You might want to check

that they hadn’t clicked the user form’s Close button or Cancel button by mistake, as illustrated

in the following code fragment for Word:

Private Sub UserForm_QueryClose(Cancel As Integer, _

 CloseMode As Integer)

 ‘make sure the user wants to close the user form

 ‘if they have entered information in it

 Select Case CloseMode

USING EVENTS TO CONTROL FORMS | 425

 Case 0

 ‘user has clicked the close button or invoked an Unload statement

 ‘if text box contains more than 5 characters, ask to save it

 If Len(txtDescription.Text) > 5 Then

 If MsgBox(“The Description text box contains “ & _

 “a significant amount of text.” & vbCr & _

 “Do you want to save this text?”, vbYesNo + _

 vbQuestion, “Close Form”) <> 0 Then

 Documents.Add

 Selection.TypeText txtDescription.Text

 ActiveDocument.SaveAs _

 “c:\temp\Temporary Description.docm”

 MsgBox “The contents of the Description text “ & _

 “box have been saved in “ & _

 “c:\temp\Temporary Description.docm.”, _

 vbOKOnly + vbInformation, _

 “Form Information Saved”

 End If

 End If

However, QueryClose comes into its own when the whole application, rather than just the

user form, is closing. If the user form is modeless, users may not be aware that it’s still open and

that they’re about to lose data they’ve typed into it or options they’ve selected in it.

Sometimes you may be able to use QueryClose to save information from a user form when

the application has stopped responding and is being closed by Windows or the Task Manager.

Be warned that QueryClose’s record isn’t perfect on this—the code sometimes won’t run.

To stop an application from closing, set the Cancel property of the QueryClose event to True.

Activate Event

The Activate event fi res when the user form becomes the active window. Typically, this means

the event fi res when the user form is displayed, occurring just after the Initialize event if the

user form is loaded by a Show statement rather than a Load statement.

Note that if the user form is loaded by using a Load statement before being displayed with

the Show statement, the Initialize event fi res after the Load statement. The Activate event,

fi ring after the Show statement, fi res later.

However, the Activate event also fi res when the user form is reactivated after having been

deactivated. For example, if you create a modeless user form with an Activate event procedure,

the code is executed each time the user reactivates the user form after having deactivated it (for

example, by working in the application window). Likewise, if you display one user form from

another and then close the second user form, returning the focus to the fi rst user form and reac-

tivating it, the Activate event fi res again.

The syntax for the Activate event is as follows:

Private Sub UserForm_Activate()

426 | CHAPTER 15 CREATING COMPLEX FORMS

Bug Alert: You May Face Problems Using Deactivate and Activate in

Immediate Succession

VBA can’t always execute the event procedures for the Deactivate event of one user form and the

Activate event of another user form in immediate succession. Sometimes things work as they

should; more often, they don’t.

For example, say you have two user forms, named One and Two, each with an Activate event

procedure and a Deactivate event procedure. If you display Two from One, the Deactivate

event code from One should run, followed by the Activate event code from Two. Th is doesn’t

usually happen: Often, the Deactivate code of One will run, but the Activate code of Two

won’t. Run it again, and you may get the Activate code of Two to run but not the Deactivate

code of One. However, if you remove or comment out the Deactivate event procedure from One

and try again, Two’s Activate code will run consistently each time One displays Two, indicating

that the Activate event is fi ring but the Activate event procedure’s code isn’t running when the

Deactivate event procedure is present.

Deactivate Event

The Deactivate event fi res when the user form loses the focus after having been the active

window, but it doesn’t fi re when the user form is hidden or unloaded. For example, if you dis-

play a user form that contains a Deactivate event procedure and then close the user form,

the Deactivate event doesn’t fi re. However, if you display one user form from another, the

Deactivate event for the fi rst user form fi res as the focus is transferred to the second user form.

With modeless user forms, the Deactivate event is triggered each time the user leaves one user

form by clicking on another.

The syntax for the Deactivate event is as follows:

Private Sub UserForm_Deactivate()

See the previous sidebar for details on a bug in using the Deactivate and Activate events in

immediate succession.

Resize Event

The Resize event fi res when a user form is resized either manually by the user or programmati-

cally by you.

The syntax for the Resize event is as follows:

Private Sub UserForm_Resize()

The main use for the Resize event is to move, resize, display, or hide controls to respond to

a resized form. For example, you might resize a text box so that it occupies most of the width of

the user form it lives on (see Figure 15.10) by using code such as that shown in Listing 15.3.

USING EVENTS TO CONTROL FORMS | 427

Figure 15.10

You can use the

Resize event of a

user form to resize

or reposition the

controls it contains.

Listing 15.3: Resizing via code

 1. Private Sub cmdWidenForm_Click()

 2. With frmResize

 3. If .Width < 451 Then

 4. .Width = .Width + 50

 5. If cmdNarrowForm.Enabled = False Then _

 cmdNarrowForm.Enabled = True

 6. If .Width > 451 Then _

 cmdWidenForm.Enabled = False

 7. End If

 8. End With

 9. End Sub

10.

11. Private Sub cmdNarrowForm_Click()

12. With frmResize

13. If .Width > 240 Then

14. .Width = .Width - 50

15. If cmdWidenForm.Enabled = False Then _

 cmdWidenForm.Enabled = True

16. If .Width < 270 Then _

 cmdNarrowForm.Enabled = False

17. End If

18. End With

19. End Sub

20.

21. Private Sub cmdClose_Click()

22. Unload Me

23. End Sub

24.

25. Private Sub UserForm_Resize()

26. txt1.Width = frmResize.Width - 30

27. End Sub

428 | CHAPTER 15 CREATING COMPLEX FORMS

Listing 15.3 contains four short procedures: one for the Click event of the cmdWidenForm

command button, one for the Click event of the cmdNarrowForm command button, one for the

Click event of the cmdClose command button, and one for the Resize event of the user form.

The cmdWidenForm_Click procedure shown in lines 1 through 9 increases the width of the user

form by 50 points (1 point is 1/72 inch) when the user clicks the Widen Form button, as long as the

Width property of the user form is less than 451 points. Line 5 enables the cmdNarrowForm com-

mand button if it isn’t already enabled. (The cmdNarrowForm command button is disabled when

the user form is displayed at its original narrow width.) Line 6 disables the cmdWidenForm com-

mand button if the Width property of the user form is more than 451 points.

The cmdNarrowForm_Click procedure shown in lines 11 through 19 narrows the user form

by 50 points as long as the Width of the user form is greater than 240 points (its original width),

reenabling the cmdWidenForm button if it’s disabled and disabling the cmdNarrowForm button if

the Width of the user form is less than 270 points.

The cmdClose_Click procedure shown in lines 21 through 23 simply unloads the user form

(which it refers to by the Me keyword).

The UserForm_Resize event procedure in lines 25 through 27 sets the Width property of

txt1, the text box in the user form, to 30 points less than the Width of the user form. If you step

through the code (repeatedly pressing F8) in the user form, you’ll notice that the Resize event

fi res when the size of the user form changes. For example, when line 4 of the cmdWidenForm_

Click procedure is executed, execution branches to the Resize event procedure in line 25, and

this procedure is executed before the code in line 5.

Terminate Event

The Terminate event fi res when the user form has been unloaded—or, more precisely, when

all references to an instance of the user form have been removed from memory or have gone out

of scope.

The syntax for the Terminate event is as follows:

Private Sub UserForm_Terminate()

Events Th at Apply to Both UserForms and Container Controls
This section discusses the events that apply to the UserForm object and to the container con-

trols—the MultiPage control and the Frame control. Container controls can have other controls

placed inside of them. (The Scroll event applies to the ScrollBar control as well as to MultiPage,

Frame, and UserForm.) These events are Scroll, Zoom, Resize, Layout, AddControl, and

RemoveControl.

Scroll Event

The Scroll event applies to the Frame control, the MultiPage control, the ScrollBar control, and

the UserForm object. This event occurs when the user moves the scroll box (the thumb) on a

scroll bar on a frame, MultiPage control, scroll bar, or user form.

The syntax for the Scroll event varies for the three controls and the UserForm object. The

syntax for the Scroll event with the UserForm object is as follows:

Private Sub UserForm_Scroll(ByVal ActionX As MSForms.fmScrollAction, ByVal ActionY

As MSForms.fmScrollAction, ByVal RequestDx As Single, ByVal RequestDy As Single,

ByVal ActualDx As MSForms.ReturnSingle, ByVal ActualDy As MSForms.ReturnSingle)

USING EVENTS TO CONTROL FORMS | 429

The syntax for the Scroll event with the ScrollBar control is as follows:

Private Sub scrollbar_Scroll()

The syntax for the Scroll event with the MultiPage control is as follows:

Private Sub multipage_Scroll(index As Long, ActionX As fmScrollAction, ActionY As

fmScrollAction, ByVal RequestDx As Single, ByVal RequestDy As Single, ByVal

ActualDx As MSForms.ReturnSingle, ByVal ActualDy As MSForms.ReturnSingle)

The syntax for the Scroll event with the Frame control is as follows:

Private Sub frame_Scroll(ActionX As fmScrollAction, ActionY As fmScrollAction,

ByVal RequestDx As Single, ByVal RequestDy As Single, ByVal ActualDx As MSForms

.Return Single, ByVal ActualDy As MSForms.ReturnSingle)

In these last three syntax statements, scrollbar is a valid ScrollBar object, multipage is a

valid MultiPage object, and frame is a valid Frame object.

Here are the arguments for the Scroll event:

Index A required argument specifying the page of the MultiPage with which the event

procedure is to be associated.

ActionX and ActionY Required arguments determining the user’s horizontal and vertical

actions (respectively), as shown in Table 15.6.

RequestDx The distance to move the scroll box horizontally, specifi ed in points.

RequestDy The distance to move the scroll box vertically, specifi ed in points.

ActualDx The distance the scroll box moved horizontally, measured in points.

ActualDy The distance the scroll box moved vertically, measured in points.

Table 15.6: ActionX and ActionY constants and values for the Scroll event

Constant Value Scroll Box Movement

fmScrollActionNoChange 0 Th ere was no change or movement.

fmScrollActionLineUp 1 Th e user moved the scroll box a short way upward on a

vertical scroll bar (equivalent to pressing the ↑ key) or a

short way to the left on a horizontal scroll bar (equiva-

lent to pressing the ← key).

fmScrollActionLineDown 2 Th e user moved the scroll box a short way downward on

a vertical scroll bar (equivalent to pressing the ↓ key) or

a short way to the right on a horizontal scroll bar (equiv-

alent to pressing the → key).

fmScrollActionPageUp 3 Th e user moved the scroll box up one page on a vertical

scroll bar (equivalent to pressing the Page Up key) or one

page to the left on a horizontal scroll bar (also equiva-

lent to pressing the Page Up key).

430 | CHAPTER 15 CREATING COMPLEX FORMS

Constant Value Scroll Box Movement

fmScrollActionPageDown 4 Th e user moved the scroll box down one page on a verti-

cal scroll bar (equivalent to pressing the Page Down key)

or one page to the right on a horizontal scroll bar (also

equivalent to pressing the Page Down key).

fmScrollActionBegin 5 Th e user moved the scroll box to the top of a vertical

scroll bar or to the left end of a horizontal scroll bar.

fmScrollActionEnd 6 Th e user moved the scroll box to the bottom of a vertical

scroll bar or to the right end of a horizontal scroll bar.

fmScrollActionPropertyChange 8 Th e user moved the scroll box, changing the value of

either the ScrollTop property or the ScrollLeft

property.

fmScrollActionControlRequest 9 Th e scroll action was requested by a control in the con-

tainer in question.

fmScrollActionFocusRequest 10 Th e user moved the focus to a diff erent control. Th is

movement scrolls the user form so that the selected

control is fully displayed in the available area.

Zoom Event

Changing the Zoom property is like using a magnifying glass. The form’s controls all grow

larger if the Zoom value is greater than 100, and they grow smaller if the value is less than 100.

However, the form itself doesn’t change size. To change the size of the form, you must adjust its

Height and Width properties.

The Zoom event fi res when the Zoom property of the object changes at runtime. The Zoom prop-

erty can be changed either automatically through code or by the user’s manipulating—dragging

a scroll bar’s thumb, for example—a control that changes the property because you’ve written

code that responds this way.

The Zoom property uses this syntax for the control and the UserForm object:

Private Sub object_Zoom(Percent As Integer)

Here, object is a Frame control or a UserForm object. Percent is an Integer argument used to

specify the percentage (from 10 percent to 400 percent) the user form is to be zoomed to. By

default, user forms and controls are displayed at 100 percent zoom—full size.

The Zoom property uses this syntax for the MultiPage control:

Private Sub multipage_Zoom(ByVal Index As Long, Percent As Integer)

Index is the index (name or number) of the Page object in the MultiPage control with which the

Zoom event procedure is associated.

Table 15.6: ActionX and ActionY constants and values for the Scroll event (continued)

USING EVENTS TO CONTROL FORMS | 431

Zooming a user form zooms all the controls that are on it. For example, say a user form

named frmEventsDemo includes a combo box named cmbZoom that offers a selection of zoom

percentages. When the user selects an item in the combo box, the Change event for cmbZoom

applies the combo box’s Value property to the Zoom property of the user form, zooming it to

the percentage selected. Zooming the user form triggers the Zoom event, whose procedure in

this example sets the Width and Height of the user form to new values suited to the new zoom

percentage:

Private Sub cmbZoom_Change()

‘change the size of the controls:

 frmEventsDemo.Zoom = cmbZoom.Value

End Sub

Private Sub UserForm_Zoom(Percent As Integer)

‘ change the size of the form itself:

 frmEventsDemo.Width = 300 * cmbZoom.Value / 100

 frmEventsDemo.Height = 350 * cmbZoom.Value / 100

End Sub

Layout Event

A Layout event is triggered when the size of the frame, MultiPage control, or user form is

changed, either by the user or programmatically (automatically by an autosized control’s becom-

ing resized).

By default, the Layout event automatically calculates the new position for any control that

has been moved and repaints the screen accordingly. However, you can also use the Layout

event for your own purposes if you need to.

The syntax for the Layout event with a Frame control or a UserForm object is as follows:

Private Sub object_Layout()

Here, object is a Frame control or a UserForm object.

The syntax for using the Layout event with a MultiPage control is as follows:

Private Sub multipage_Layout(index As Long)

Here, multipage is a MultiPage control and index is the Page object in the MultiPage control.

VBA Automatically Saves Height and Width Properties

When a control is resized, VBA automatically stores its previous height and width in the OldHeight

and OldWidth properties, while the Height and Width properties take on the new height and

width values. It allows you to restore a control to its previous size by retrieving the OldHeight and

OldWidth properties and assigning them to the Height and Width properties.

AddControl Event

The AddControl event is triggered when a control is added programmatically to a Frame con-

trol, a MultiPage control, or the user form at runtime; it isn’t triggered when you add a control

432 | CHAPTER 15 CREATING COMPLEX FORMS

manually at design time. The event isn’t triggered when the user form is initialized unless the

Initialize event adds a control to the user form.

The syntax for the AddControl event varies depending on the object or control. The syntax

for the UserForm object and the Frame control is as follows:

Private Sub object_AddControl(ByVal Control As MSForms.Control)

Here, object is a UserForm object or Frame control, and Control is the control that’s being added.

The syntax for the MultiPage control is as follows:

Private Sub multipage_AddControl(ByVal Index As Long, ByVal Control As MSForms

.Control)

Here, Index is the index number or name of the Page object that will receive the control.

For example, the following cmdAddControl_Click procedure adds three option buttons (opt1,

opt2, and opt3, respectively) to the frame fraOptions and sets properties for the fi rst option but-

ton. (A comment indicates where the code would go on to set properties for the second and third

option buttons.) The fraOptions_AddControl event procedure displays a message box giving the

number of controls the frame now contains. Because the cmdAddControl_Click procedure adds

three controls, the AddControl event fi res three times, and the fraOptions_AddControl proce-

dure runs three times:

Private Sub cmdAddControl_click()

 Dim opt1 As OptionButton

 Dim opt2 As OptionButton

 Dim opt3 As OptionButton

 Set opt1 = fraOptions.Controls.Add(“Forms.OptionButton.1”)

 Set opt2 = fraOptions.Controls.Add(“Forms.OptionButton.1”)

 Set opt3 = fraOptions.Controls.Add(“Forms.OptionButton.1”)

 With opt1

 .Left = 10

 .Top = 10

 .Name = “optDomestic”

 .Caption = “Domestic”

 .AutoSize = True

 .Accelerator = “D”

 End With

 ‘set properties for opt2 and opt3 here

End Sub

Private Sub fraOptions_AddControl(ByVal Control As MSForms.Control)

 MsgBox “The frame now contains “ & _

 fraOptions.Controls.Count & “ controls.”

End Sub

RemoveControl Event

The RemoveControl event fi res when a control is deleted from a frame control, a MultiPage

control, or a user form, either programmatically or manually at runtime. (To remove a control

USING EVENTS TO CONTROL FORMS | 433

manually, the user would typically use a control built into the user form for that purpose. There

has to be some programming here—users can’t simply delete controls all by themselves.)

The syntax for the RemoveControl event is as follows for all controls but the MultiPage

control:

Private Sub object_RemoveControl(ByVal Control As MSForms.Control)

Here, object is a valid object, and Control is a valid control.

The syntax for the RemoveControl event is as follows for the MultiPage control:

Private Sub multipage_RemoveControl(ByVal Index As Long, ByVal Control As

MSForms.Control)

Here, multipage is a valid MultiPage object. For a MultiPage control, Index specifi es the Page

object in the MultiPage control that contains the control to be deleted.

Events Th at Apply to Many or Most Controls
This section discusses the events that apply to many or most controls. Some of these events

apply to the UserForm object as well. These events are Click; Change; Enter and Exit;

BeforeUpdate and AfterUpdate; KeyDown, KeyUp, and KeyPress; MouseDown, MouseUp, and

MouseMove; BeforeDragOver; BeforeDropOrPaste; DblClick; and Error.

Click Event

The most common event of all, the Click event services the CheckBox, ComboBox,

CommandButton, Frame, Image, Label, ListBox, MultiPage, OptionButton, TabStrip, and

ToggleButton controls. It is not available to the TextBox, ScrollBar, or SpinButton controls, but it

is a member of the UserForm object.

A Click event occurs when the user clicks a control with the left mouse button or when the

user selects a value for a control that has more than one possible value. For most controls, this

means that each time the user clicks the control, the event fi res. But there are a few exceptions:

 ◆ Clicking a disabled control fi res the Click event of the user form (as if the user were click-

ing the user form through the control).

 ◆ The Click event of an OptionButton control fi res when the user clicks the option button

to select it. If the option button is already selected, clicking it has no effect. (On the other

hand, the Click event of a CheckBox control fi res each time the user clicks the check box—

either to select it or to clear it.)

 ◆ The Click event of a ListBox control or ComboBox control fi res when the user clicks to

select an item from the list (not when the user clicks on the drop-down arrow or in the

undropped portion of the combo box). If the user clicks an already-selected item, the Click

event doesn’t fi re again.

 ◆ The Click event of a ToggleButton control occurs whenever the toggle button is clicked

and when its Value property is changed. This means that it isn’t a good idea to use the

Click event of the ToggleButton control to toggle its Value.

 ◆ The Click event of a selected CommandButton control fi res when you press the spacebar.

434 | CHAPTER 15 CREATING COMPLEX FORMS

 ◆ The Click event of the default command button (the button with its Default property set

to True) fi res when the user presses Enter with no other command button selected.

 ◆ The Click event of the command button with its Cancel property set to True fi res when

the user presses Esc. The Click event for a control with an accelerator key set also fi res

when the user presses the accelerator key.

For all controls except the TabStrip control and the MultiPage control, the Click event needs

no arguments, as follows:

Private Sub object_Click()

For a TabStrip control or a MultiPage control, your code must react to the Index argument, a

required Long (data type) argument that VBA passes to indicate the affected tab or page of the

control:

Private Sub object_Click(ByVal Index As Long)

Here, object is a valid MultiPage control or TabStrip control.

Sequence of Events: What Happens When the User Clicks (and Clicks

Again)

Th e order in which events trigger can sometimes be important to the programmer. If you don’t

understand the order in which events take place, you can become baffl ed and start using events in

ways that trigger each other, or confl ict with each other.

When the user clicks a command button, the Enter event for this button occurs before its Click

event if the click transfers the focus to the command button. When the Enter event for the com-

mand button fi res, it usually prevents the Click event from fi ring.

When the user clicks a control, the fi rst event triggered is the MouseDown event, which fi res when

the user presses the mouse button. Th en the MouseUp event fi res when the user releases the mouse

button. A Click event occurs after a MouseUp event. If the user clicks again within the double-

click timeframe set in Windows, the DblClick event fi res, followed by another MouseUp event.

Change Event

The Change event applies to the CheckBox, ComboBox, ListBox, MultiPage, OptionButton,

ScrollBar, SpinButton, TabStrip, TextBox, and ToggleButton controls. This event fi res when the

Value property of a control changes. This change can occur either through an action of the

user’s (such as typing text into a text box, selecting an option button, selecting or clearing a

check box, clicking a toggle button, or changing the page displayed on a MultiPage control) or

through an action taken programmatically at runtime.

Bear in mind that when the Change event is fi red by an action of the user’s, that action may

also trigger a Click event. (Even when this happens, Change is regarded as a better way of

determining the new Value of the control than Click—though for many purposes Click will

USING EVENTS TO CONTROL FORMS | 435

work satisfactorily as well.) Changing the Value property of a control manually at design time

doesn’t fi re a Change event.

The syntax for the Change event is as follows:

Private Sub object_Change()

The Change event is useful for updating other controls after the user changes a control. For

example, if the user enters the name for a new report into a text box (here, txtReportName), you

could use the Change event to automatically insert into another text box (here called txtFileName)

the name of the fi le in which to save the report:

Private Sub txtReportName_Change()

 txtFileName.Text = txtReportName.Text & “.txt”

End Sub

Enter and Exit Events

The Enter and Exit events apply to CheckBox, ComboBox, CommandButton, Frame, ListBox,

MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and ToggleButton controls.

The Enter event fi res when the focus is moved from one control on a user form to another

control. The event fi res just before the second control receives the focus.

Like the Enter event, the Exit event fi res when the focus is moved from one control on a user

form to another control. However, the Exit event fi res just before the fi rst event loses the focus.

The syntax for the Enter event is as follows:

Private Sub object_Enter()

The syntax for the Exit event is a little more complex:

Private Sub object_Exit(ByVal Cancel As MSForms.ReturnBoolean)

Here, Cancel is a required argument specifying event status. The default setting is False, which

specifi es that the control involved should handle the event and that the focus will pass to the

next control; a setting of True specifi es that the application handle the event, which keeps the

focus on the current control.

By using the Enter and Exit events, you can track the user’s progress through the controls

on a user form.

The Exit event is useful for checking to see if the user has made an appropriate selection in

the control or has entered a suitable value. For example, you could check the user’s entry in the

control and, if you fi nd it inappropriate, display a message box alerting the user to the problem

and then return the focus to the control so that the user can try again.

Other Ways to Trap User Input

Other events that you might use for checking the contents of a control after the user has visited it

include AfterUpdate and LostFocus. Similarly, you might use the BeforeUpdate and GotFocus

events instead of the Enter event. A signifi cant diff erence between Enter and GotFocus and

between Exit and LostFocus is that GotFocus and LostFocus fi re when the user form receives

or loses the focus, respectively, but Enter and Exit don’t fi re.

436 | CHAPTER 15 CREATING COMPLEX FORMS

BeforeUpdate Event

The BeforeUpdate event applies to the CheckBox, ComboBox, ListBox, OptionButton, ScrollBar,

SpinButton, TextBox, and ToggleButton controls. This event occurs as the value or data in the

specifi ed control is changed; you can use the event to evaluate the change and decide whether to

implement it.

The syntax for the BeforeUpdate event is as follows:

Private Sub object_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)

Here, object is a valid object, and Cancel is a required argument indicating the status of the

event. The default setting of False makes the control handle the event; True prevents the update

from being executed and makes the application handle the event.

Here’s the sequence in which events fi re as you move focus to a control, update it, and move on:

 1. The Enter event for the control fi res when you move the focus to the control.

 2. The BeforeUpdate event for the control fi res after you’ve entered the information for

the update (for example, after you’ve pressed a key in a text box) but before the update

is executed. By setting Cancel to True, you can prevent the update from taking place. (If

you don’t set Cancel to True, the update occurs and the AfterUpdate event can’t prevent

it from occurring.)

 3. The AfterUpdate event for the control fi res after you’ve entered the information in

the control and the update has been executed. If you set the Cancel argument for

BeforeUpdate to True, the AfterUpdate event doesn’t fi re.

 4. The Exit event for the control fi res when you move from this control to another control.

(After the Exit event fi res for the control you’ve left, the Enter event fi res for the control

to which you have moved the focus.)

AfterUpdate Event

The AfterUpdate event applies to the CheckBox, ComboBox, ListBox, OptionButton, ScrollBar,

SpinButton, TextBox, and ToggleButton controls. This event fi res after the user changes informa-

tion in a control and after that update has been executed.

The syntax for the AfterUpdate event is the same for all the controls and objects it applies to:

Private Sub object_AfterUpdate()

KeyDown and KeyUp Events

The KeyDown event and KeyUp event work with the CheckBox, ComboBox, CommandButton,

Frame, ListBox, MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and

ToggleButton controls and to the UserForm object. These events are not available to the Image

and Label controls.

The KeyDown event fi res when the user presses a key on the keyboard. The KeyUp event fi res

when the user releases the key. The KeyDown and KeyUp events also occur when a key is sent to

the user form or control programmatically by using the SendKeys statement. These events don’t

occur when the user presses Enter when the user form contains a CommandButton control with

its Default property set to True, nor when the user presses Esc when the user form contains a

CommandButton control with its Cancel property set to True.

USING EVENTS TO CONTROL FORMS | 437

When the keystroke moves the focus to another control, the KeyDown event fi res for the origi-

nal control, while the KeyPress and KeyDown events fi re for the control to which the focus is

moved.

The KeyPress event fi res after the KeyDown event and before the KeyUp event.

The syntax for the KeyDown event is as follows:

Private Sub object_KeyDown(ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As

Integer)

The syntax for the KeyUp event is as follows:

Private Sub object_KeyUp(ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As

Integer)

Here, object is an object name and is required. KeyCode is a required Integer argument speci-

fying the key code of the key pressed. For example, the key code for the letter t is 84. The key

code isn’t an ANSI value—it’s a special number that identifi es the key on the keyboard.

Shift is a required argument specifying whether the Shift, Ctrl, or Alt key was pressed. Use

the constants or values shown in Table 15.7.

Table 15.7: Shift constants and values

Constant Value Description

fmShiftMask 1 Shift key pressed

fmCtrlMask 2 Ctrl key pressed

fmAltMask 4 Alt key pressed

KeyPress Event

The KeyPress event is a member of the CheckBox, ComboBox, CommandButton, Frame,

ListBox, MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and ToggleButton

controls. It also is a member of the UserForm object. The Label control has no KeyPress event.

The KeyPress event fi res when the user presses a printable character, Ctrl plus an alphabetic

character, Ctrl plus a special character (symbols), the Esc key, or the Backspace key while the

control or object in question has the focus. Pressing the Tab key, the Enter key, or an arrow key

doesn’t cause the KeyPress event to fi re, nor does a keystroke that moves the focus to another

control from the current control.

Technically, only ANSI keys fi re the KeyPress event. The Delete key isn’t an ANSI key, so

pressing the Delete key to delete, say, text in a text box doesn’t fi re the KeyPress event. But delet-

ing the same text in the same text box using the Backspace key does because Backspace is an

ANSI key.

The KeyPress event fi res after the KeyDown event and before the KeyUp event. It also fi res

when you use SendKeys to send keystrokes to a user form programmatically.

The syntax for the KeyPress event is as follows:

Private Sub object_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

438 | CHAPTER 15 CREATING COMPLEX FORMS

Here, object is a required argument specifying a valid object, and KeyAscii is a required Integer

argument specifying an ANSI key code. To get the ANSI key code, use the Asc function. For

example, Asc(“t”) returns the ANSI key code for the letter t (the code is 116).

By default, the KeyPress event processes the code for the key pressed—in humble terms,

what you press is what you get. For example, if you press the t key, you get a t; if you press

the Delete key, you get a Delete action; and so on. By using a KeyPress event procedure, you

can perform checks such as fi ltering out all nonnumeric keys when the user must enter a

numeric value.

MouseDown Event and MouseUp Event

The MouseDown and MouseUp events apply to the CheckBox, ComboBox, CommandButton,

Frame, Image, Label, ListBox, MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox,

and ToggleButton controls and to the UserForm object. The MouseDown event fi res when the user

presses a button on the mouse, and a MouseUp event occurs when the user releases that button.

A Click event fi res after a MouseUp event occurs.

The syntax for the MouseDown and MouseUp events is as follows for all controls except for

MultiPage and TabStrip:

Private Sub object_MouseDown(ByVal Button As Integer, ByVal Shift As Integer,

ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(ByVal Button As Integer, ByVal Shift As Integer,

ByVal X As Single, ByVal Y As Single)

The syntax for the MouseDown and MouseUp events with the MultiPage and TabStrip controls

adds an Index argument to specify the index of the page or the tab involved:

Private Sub object_MouseUp(ByVal Index As Long, ByVal Button As Integer, ByVal

Shift As Integer, ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseDown(ByVal Index As Long, ByVal Button As Integer, ByVal

Shift As Integer, ByVal X As Single, ByVal Y As Single)

Here, object is a valid object for the statement.

Index returns –1 if the user clicks outside the page or tab area of the control but still within

the control (for example, to the right of the rightmost tab in a top-tab tab strip).

Button is a required Integer argument specifying the mouse button that triggered the event.

Table 15.8 lists the possible values for Button.

Table 15.8: Button values and constants

Constant Value Description

fmButtonLeft 1 Left (primary)

fmButtonRight 2 Right (non-primary)

fmButtonMiddle 4 Middle

USING EVENTS TO CONTROL FORMS | 439

Shift is a required argument specifying whether the Shift, Ctrl, or Alt key was pressed.

Table 15.9 lists the values for Shift.

Table 15.9: Shift values

Value Key or Keys Pressed

1 Shift

2 Ctrl

3 Shift+Ctrl

4 Alt

5 Alt+Shift

6 Alt+Ctrl

7 Alt+Shift+Ctrl

You can also detect a single key by using the key masks listed in Table 15.7.

X is a required Single argument specifying the horizontal position in points from the left

edge of the user form, frame, or page. Y is a required Single argument specifying the vertical

position in points from the top edge of the user form, frame, or page.

MouseMove Event

The MouseMove event is available to the CheckBox, ComboBox, CommandButton, Frame, Image,

Label, ListBox, MultiPage, OptionButton, TabStrip, TextBox, and ToggleButton controls and to

the UserForm object. This event fi res when the user moves the mouse pointer over the control or

object in question.

The syntax for the MouseMove event is different for the MultiPage control and the TabStrip

control than for the other controls and for the UserForm object. The syntax for the other controls

is as follows:

Private Sub object_MouseMove(ByVal Button As Integer, ByVal Shift As Integer,

ByVal X As Single, ByVal Y As Single)

The syntax for the MultiPage control and the TabStrip control is as follows:

Private Sub object_MouseMove(ByVal Index As Long, ByVal Button As Integer,

ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

Here, object is a required argument specifying a valid object.

For the MultiPage and TabStrip controls, Index is a required argument that returns the index

of the Page object in the MultiPage control or the Tab object in the TabStrip control associated

with the event procedure.

440 | CHAPTER 15 CREATING COMPLEX FORMS

Button is a required Integer argument that returns which mouse button (if any) the user is

pressing. Table 15.10 lists the values for Button.

Table 15.10: Button values

Value Button Pressed

0 No button

1 Left

2 Right

3 Left and right

4 Middle

5 Left and middle

6 Middle and right

7 Left, middle, and right

Shift is a required Integer argument that returns a value indicating whether the user is

pressing the Shift, Alt, and/or Ctrl keys. Refer back to Table 15.9 for the list of Shift values.

X is a required Single argument that returns a value specifying the horizontal position in

points from the left edge of the user form, frame, or page. Y is a required Single argument speci-

fying the vertical position in points from the top edge of the user form, frame, or page.

As with the MouseDown and MouseUp events, you can also detect a single key by using the key

masks listed in Table 15.7.

Like most windows in the Windows operating system, user forms largely experience life as a

nonstop sequence of mouse events. MouseMove events monitor where the mouse pointer is on the

screen and which control has captured it. MouseMove events fi re even if you use the keyboard to

move a user form from under the mouse pointer because the mouse pointer ends up in a differ-

ent place in relation to the user form even though it hasn’t moved in the conventional sense.

One use for the MouseMove event is to display appropriate text or an image for a control at

which the user is pointing. For example, suppose a user form provides a list of available prod-

ucts, with each product’s title appearing in a label. When the user positions the mouse pointer

over a title in the label, you could use the MouseMove event to load a picture of the product into

an Image control and a short description into another label.

MouseMove Events May Not Trigger between Close Controls

Th e user form traps MouseMove events when the mouse pointer isn’t over any control. However,

if the user moves the mouse pointer quickly from one control to another very close to it, the user

form may fail to trap the movement over the short intervening space.

USING EVENTS TO CONTROL FORMS | 441

BeforeDragOver Event

The BeforeDragOver event applies to the UserForm object itself and to the following con-

trols: CheckBox, ComboBox, CommandButton, Frame, Image, Label, ListBox, MultiPage,

OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and ToggleButton. A BeforeDragOver

event is triggered when the user is performing a drag-and-drop operation.

The syntax for the BeforeDragOver event depends on the object or control in question. The

basic syntax for the UserForm object and all controls except the Frame, TabStrip, and MultiPage

is as follows, where object is a valid UserForm or control:

Private Sub object_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean, ByVal

Control As MSForms.Control, ByVal Data As MSForms.DataObject, ByVal X As Single,

ByVal Y As Single, ByVal State As MSForms.fmDragState, ByVal Effect As MSForms.

ReturnEffect, ByVal Shift As Integer)

The syntax for the BeforeDragOver event with the Frame control is as follows, where frame is

a valid Frame control:

Private Sub frame_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean, ByVal

Control As MSForms.Control, ByVal Data As MSForms.DataObject, ByVal X As Single,

ByVal Y As Single, ByVal State As MSForms.fmDragState, ByVal Effect As MSForms.

ReturnEffect, ByVal Shift As Integer)

The syntax for the BeforeDragOver event with the MultiPage control is as follows, where

multipage is a valid MultiPage control:

Private Sub multipage_BeforeDragOver(ByVal Index As Long, ByVal Cancel As MSForms.

ReturnBoolean, ByVal Control As MSForms.Control, ByVal Data As MSForms.

DataObject, ByVal X As Single, ByVal Y As Single, ByVal State As MSForms.

fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As Integer)

The syntax for the BeforeDragOver event with the TabStrip control is as follows, where

tabstrip is a valid TabStrip control:

Private Sub tabstrip_BeforeDragOver(ByVal Index As Long, ByVal Cancel As MSForms.

ReturnBoolean, ByVal Data As MSForms.DataObject, ByVal X As Single, ByVal Y As

Single, ByVal DragState As MSForms.fmDragState, ByVal Effect As MSForms.

ReturnEffect, ByVal Shift As Integer)

These are the different parts of the statements:

 ◆ Index is the index of the Page object in a MultiPage control (or the Tab object in a TabStrip

control) that is affected by the drag-and-drop.

 ◆ Cancel is a required argument giving the status of the BeforeDragOver event. The default

setting is False, which makes the control handle the event. A setting of True makes the

application handle the event.

 ◆ Control is a required argument specifying the control that is being dragged over.

 ◆ Data is a required argument specifying the data being dragged.

442 | CHAPTER 15 CREATING COMPLEX FORMS

 ◆ X is a required argument specifying the horizontal distance in points from the left edge of

the control. Y is a required argument specifying the vertical distance in points from the top

of the control.

 ◆ DragState is a required argument specifying where the mouse pointer is in relation to a

target (a location at which the data can be dropped). Table 15.11 lists the constants and val-

ues for DragState.

 ◆ Effect is a required argument specifying the operations the source of the drop is to sup-

port, as listed in Table 15.12.

 ◆ Shift is a required argument specifying whether the Shift, Ctrl, or Alt key is held down

during the drag-and-drop operation, as listed in Table 15.7.

Table 15.11: DragState constants and values

Constant Value Position of Mouse Pointer

fmDragStateEnter 0 Within range of a target

fmDragStateLeave 1 Outside the range of a target

fmDragStateOver 2 At a new position, but remains within range of the same target

Table 15.12: Effect constants and values

Constant Value Drop Effect

fmDropEffectNone 0 Doesn’t copy or move the source to the target

fmDropEffectCopy 1 Copies the source to the target

fmDropEffectMove 2 Moves the source to the target

fmDropEffectCopyOrMove 3 Copies or moves the source to the target

You use the BeforeDragOver event to control drag-and-drop actions that the user performs.

Use the DragState argument to make sure that the mouse pointer is within range of a target.

BeforeDropOrPaste Event

The BeforeDropOrPaste event applies to the CheckBox, ComboBox, CommandButton, Frame,

Image, Label, ListBox, MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and

ToggleButton controls and to the UserForm object.

A BeforeDropOrPaste event fi res just before the user drops or pastes data onto an object.

USING EVENTS TO CONTROL FORMS | 443

The syntax for the BeforeDropOrPaste event is different for the MultiPage and TabStrip con-

trols than for the UserForm object and for the other controls. The basic syntax is as follows:

Private Sub object_BeforeDropOrPaste(ByVal Cancel As MSForms.ReturnBoolean, ByVal

Control As MSForms.Control, ByVal Action As MSForms.fmAction, ByVal Data As

MSForms.DataObject, ByVal X As Single, ByVal Y As Single, ByVal Effect As

MSForms.ReturnEffect, ByVal Shift As Integer)

The syntax for the MultiPage control is as follows, where multipage is a valid MultiPage

control:

Private Sub multipage_BeforeDropOrPaste(ByVal Index As Long, ByVal Cancel As

MSForms.ReturnBoolean, ByVal Control As MSForms.Control, ByVal Action As MSForms.

fmAction, ByVal Data As MSForms.DataObject, ByVal X As Single, ByVal Y As

Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As Integer)

The syntax for the TabStrip control is as follows, where tabstrip is a valid TabStrip control:

Private Sub tabstrip_BeforeDropOrPaste(ByVal Index As Long, ByVal Cancel As

MSForms.ReturnBoolean, ByVal Action As MSForms.fmAction, ByVal Data As MSForms.

DataObject, ByVal X As Single, ByVal Y As Single, ByVal Effect As MSForms.

ReturnEffect, ByVal Shift As Integer)

Here are the parts of the syntax:

 ◆ object is a required object specifying a valid object.

 ◆ For the MultiPage control, Index is a required argument specifying the Page object

involved.

 ◆ Cancel is a required argument giving the status of the event. The default setting of False

makes the control handle the event; True makes the application handle the event.

 ◆ Control is a required argument specifying the target control.

 ◆ Action is a required argument specifying the result of the drag-and-drop operation.

Table 15.13 shows the constants and values for Action.

 ◆ Data is a required argument specifying the data (contained in a DataObject) being

dragged and dropped.

 ◆ X is a required argument specifying the horizontal distance in points from the left edge of

the control for the drop. Y is a required argument specifying the vertical distance in points

from the top of the control.

 ◆ Effect is a required argument specifying whether the drag-and-drop operation copies the

data or moves it, as listed in Table 15.12.

 ◆ Shift is a required argument specifying whether the user has pressed the Shift, Ctrl, and/

or Alt keys, as listed in Table 15.7.

444 | CHAPTER 15 CREATING COMPLEX FORMS

Table 15.13: Action constants and values

Constant Value Action Taken

fmActionPaste 2 Pastes the object into the target.

fmActionDragDrop 3 Th e user has dragged the object from its source and dropped it on the

target.

The BeforeDropOrPaste event fi res when a data object is transferred to a MultiPage or

TabStrip control and just before the drop or paste operation occurs on other controls.

DblClick Event

The DblClick event works with the CheckBox, ComboBox, CommandButton, Frame, Image,

Label, ListBox, MultiPage, OptionButton, TabStrip, TextBox, and ToggleButton controls, as well

as the UserForm object.

A DblClick event occurs when the user double-clicks a control or object with the primary

mouse button. The double-click must be fast enough to register as a double-click in Windows

(this speed is controlled by the setting on the Buttons tab in the Mouse Properties dialog box in

Control Panel) and occurs after the MouseDown event, the MouseUp event, and the Click event

(for controls that support the Click event).

The DblClick event has a different syntax for the MultiPage and TabStrip controls than for

the other controls or for the user form.

For the MultiPage and TabStrip controls, the syntax is as follows:

Private Sub object_DblClick(ByVal Index As Long, ByVal Cancel As MSForms

.ReturnBoolean)

The syntax for the DblClick event for other controls is as follows:

Private Sub object_DblClick(ByVal Cancel As MSForms.ReturnBoolean)

Here, object is a required argument specifying a valid object. For the MultiPage control

and the TabStrip control, Index is a required argument specifying the Page object within a

MultiPage control or the Tab object within a TabStrip control to be associated with the event

procedure.

Cancel is a required argument specifying the status of the event. The default setting of False

causes the control to handle the event; True causes the application to handle the event instead

and causes the control to ignore the second click.

In controls that support both the Click event and the DblClick event, the Click event occurs

before the DblClick event. If you take an interface action (such as displaying a message box)

with the Click event procedure, it blocks the DblClick event procedure from running. In the

following example, the DblClick event procedure doesn’t run:

Private Sub CommandButton1_Click()

 MsgBox “Click event”

End Sub

USING EVENTS TO CONTROL FORMS | 445

Private Sub CommandButton1_DblClick _

 (ByVal Cancel As MSForms.ReturnBoolean)

 MsgBox “Double-click event”

End Sub

However, you can execute non-interface statements in the Click event procedure without

blocking the DblClick event procedure. The following example declares a private String vari-

able named strMessage in the declarations portion of the code sheet for the user form. The

Click event procedure for the CommandButton1 command button assigns text to strMessage.

The DblClick event procedure assigns more text to strMess and then displays a message box

containing strMessage so that you can see that both events have fi red. Don’t step into this code

by pressing F8 in the VBA Editor—instead, press F5 to run it, or it won’t work:

Private strMess As String

Private Sub CommandButton1_Click()

 strMess = “Click event” & vbCr

End Sub

Private Sub CommandButton1_DblClick _

 (ByVal Cancel As MSForms.ReturnBoolean)

 strMessage = strMessage & “Double-click event”

 MsgBox strMessage

End Sub

For most controls you won’t want to use both a Click event procedure and a DblClick event

procedure—you’ll choose one or the other as appropriate to the control’s purpose.

Error Event

The Error event applies to the CheckBox, ComboBox, CommandButton, Frame, Image, Label,

ListBox, MultiPage, OptionButton, ScrollBar, SpinButton, TabStrip, TextBox, and ToggleButton

controls. It also applies to the UserForm object. The Error event fi res when a control encoun-

ters an error and is unable to return information about the error to the program that called the

control. We will explore error handling in depth in Chapter 17 “Debugging Your Code and

Handling Errors.”

The syntax for the Error event for the UserForm object and for all controls except the

MultiPage control is as follows:

Private Sub object_Error(ByVal Number As Integer, ByVal Description As MSForms.

ReturnString, ByVal SCode As Long, ByVal Source As String, ByVal HelpFile As

String, ByVal HelpContext As Long, ByVal CancelDisplay As MSForms.ReturnBoolean)

The syntax for the Error event for the MultiPage control is as follows, where multipage is a

valid MultiPage control:

Private Sub multipage_Error(ByVal Index As Long, ByVal Number As Integer, ByVal

Description As MSForms.ReturnString, ByVal SCode As Long, ByVal Source As String,

ByVal HelpFile As String, ByVal HelpContext As Long, ByVal CancelDisplay As

MSForms.ReturnBoolean)

446 | CHAPTER 15 CREATING COMPLEX FORMS

These are the components of the syntax:

 ◆ object is the name of a valid object.

 ◆ For a MultiPage control, Index is the index of the Page object in the MultiPage control asso-

ciated with the event.

 ◆ Number is a required argument that returns the value used by the control to identify the

error.

 ◆ Description is a required String argument describing the error.

 ◆ SCode is a required argument giving the OLE status code for the error.

 ◆ Source is a required String argument containing the string identifying the control

involved.

 ◆ HelpFile is a required String argument containing the full path to the Help fi le that con-

tains the Description.

 ◆ HelpContext is a required Long argument containing the context ID for the Description

within the Help fi le.

 ◆ CancelDisplay is a required Boolean argument that controls whether VBA displays the

error message in a message box.

Events Th at Apply Only to a Few Controls
This section discusses the three events that apply only to one or two controls. The fi rst of the

three is the DropButtonClick event, which applies only to the ComboBox and TextBox controls;

the second and third are the SpinUp and SpinDown events, which apply only to the SpinButton

control.

DropButtonClick Event

The DropButtonClick event fi res when the user displays or hides a drop-down list on a

ComboBox by clicking the drop-down button or by pressing the F4 key when the ComboBox has

the focus (is selected). DropButtonClick also fi res when the user press the F4 key with a TextBox

control selected, though this manifestation of the event is arcane enough to be singularly use-

less. It also fi res when the DropDown method is executed in VBA to display the drop-down list,

and it fi res again when the DropDown method is executed again to hide the drop-down list.

The syntax for the DropButtonClick event is as follows:

Private Sub object_DropButtonClick()

Here, object is a valid ComboBox or TextBox control.

One use for the DropButtonClick event is to add items to a ComboBox control rather than

adding them at load time via the Initialize event. By adding these items only on demand

(I’m assuming the user might not use the ComboBox control at all or might type information

into its text-box area), you can cut down on load time for the user form. You can also load the

ComboBox with data relevant to the other choices the user has made in the dialog box, allowing

for more targeted information than you could have provided by loading the ComboBox with the

Initialize event.

THE BOTTOM LINE | 447

SpinDown and SpinUp Events

The SpinDown and SpinUp events apply only to the SpinButton control. SpinDown and SpinUp

are used to control what happens when the user clicks either the down-arrow button and up-

arrow button, respectively, of a vertical SpinButton control or the right-arrow button and left-

arrow button, respectively, of a horizontal SpinButton control. The SpinDown event fi res when

the user clicks the down-arrow or right-arrow button, and the SpinUp event fi res when the user

clicks the up-arrow or left-arrow button.

The syntax for the SpinUp event and the SpinDown event is as follows:

Private Sub spinbutton_SpinDown()

Private Sub spinbutton_SpinUp()

Here, spinbutton is a SpinButton control.

By default, the SpinDown event decreases and the SpinUp event increases the Value property

of the SpinButton by the SmallChange increment.

Th e Bottom Line

Understand what a complex dialog box is. Simple dialog boxes tend to be static, but com-

plex dialog boxes are dynamic—they change during execution in response to clicks or other

interaction from the user.

Master It Describe two types of dynamic behavior typical of complex dialog boxes.

Reveal and hide parts of a dialog box. Dialog boxes need not display everything at once.

Word’s Find And Replace dialog box illustrates how useful it can be to display an abbrevi-

ated dialog box containing the most common tasks and expand the box to reveal less-popular

options if the user needs access to them.

Master It Name the two most common techniques you can use to display additional

options in a dialog box.

Create multipage dialog boxes. VBA includes the MultiPage control, which enables you to

create multipage dialog boxes. Word’s Font dialog box is an example of one. You can access

any page (one at a time) by clicking its tab at the top of the page.

Master It How does the TabStrip control differ from the MultiPage control? What are

the typical uses for each?

Create modeless dialog boxes. A modeless dialog box can be left visible onscreen while

the user continues to work in an application. For example, the Find And Replace dialog box

in Access, Word, and Excel is modeless, as is the Replace dialog box in PowerPoint. A modal
dialog box, by contrast, must be closed by users before they can continue to interact with the

application.

Master It How do you make a user form modeless?

Work with form events. Events are actions that happen while a program is executing.

Many events are supported by the UserForm object and the controls you use on it. By using

events, you can monitor what the user does and take action accordingly or even prevent the

user from doing something that doesn’t seem like a good idea.

Master It Name two of the three most useful events available in VBA programming.

c16.indd 08:28:57:AM 07/10/2013 Page 449

Part 5

Creating Eff ective Code
◆ Chapter 16: Building Modular Code and Using Classes

◆ Chapter 17: Debugging Your Code and Handling Errors

◆ Chapter 18: Building Well-Behaved Code

◆ Chapter 19: Securing Your Code with VBA’s Security Features

c16.indd 08:28:57:AM 07/10/2013 Page 450

c16.indd 08:28:57:AM 07/10/2013 Page 451

Chapter 16

Building Modular Code and Using
Classes

This chapter shows you how to start building modular code—code broken up into individual

components rather than all built together into a monolithic mass. You’ll also see how to create

reusable code that you can use in future procedures.

The second part of this chapter discusses how you can build and use your own classes

in VBA to implement custom objects, store information in them, and return information

from them.

In this chapter you will learn to do the following:

 ◆ Arrange your code in modules

 ◆ Call a procedure

 ◆ Pass information from one procedure to another

 ◆ Understand what classes are and what they’re for

 ◆ Create an object class

Creating Modular Code
The code that you’ve created so far in this book has been effective—it worked—but much of it has

been less concise, organized, or elegant than it might be. The following sections show you how

to refi ne your code.

What Is Elegance in Code?

Elegance in computer programming means not only that your code is bug-free and impeccably put

together and that your user interface is well designed, but also that the code contains nothing

unnecessary—it has been stripped down to the minimum required to achieve the desired eff ect.

What Is Modular Code?
Modular code is code composed of different procedures that you can use in combination. The

name doesn’t specifi cally come from the fact that you store your VBA code in modules.

452 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 452

For example, suppose you’re working in Word. You can take a monolithic approach and cre-

ate a single giant procedure that does a lot of things: creates a document based on the user’s

choice of template, inserts text and formats it, saves it in a particular folder under a name of the

user’s choice, prints it to a specifi c printer, and then closes it. Whew!

Or…you can take the more practical modular approach and subdivide this lengthy series of

tasks into several separate procedures—one for each task. You can then create a kind of mas-

ter procedure that runs each of these individual task procedures. In this way you can achieve

the same results as executing the large, monolithic procedure. But subdivided code is easier

to read, test, and even sometimes reuse. Think of it as using multiple small subs rather than a

single large sub.

You can also later create new master procedures that reuse these individual task procedures

in a different way.

Advantages of Using Modular Code
Modular code has several advantages over code that lumps everything together in one long sub

or function. For one thing, it’s often easier to write modular code because you create a number

of short procedures, each of which performs a specifi c task. You stay focused on the single task

at hand.

You can usually debug these procedures relatively easily too, because their shorter length

makes it simpler to identify, locate, and eliminate bugs.

The procedures will also be more readable because they’re less complex and you can more

easily follow what they do.

Modular code is also more effi cient, for four reasons:

 ◆ By breaking your code into procedures, you can repeat their tasks at different points in

a sequence of procedures without needing to repeat the lines of code. Having less code

should make your procedures run faster.

 ◆ By reusing whole procedures, you can reduce the amount of code you have to write. And

by writing less code, you give yourself less chance to write new errors into your program.

 ◆ If you need to change an item in the code, you can make a single change in the appropriate

procedure instead of having to make changes at a number of locations in a long procedure

(and perhaps missing some of them). This change then also applies to any procedures that

call the procedure.

 ◆ You can call individual procedures from other procedures without having to assimilate

them into the other procedures. Just think how tedious it would be if you had to create each

of VBA’s many built-in functions from scratch instead of being able to invoke them at will.

You can do much the same with functions you create—reuse them rather than

reinvent the wheel.

How to Approach Creating Modular Code
The usefulness of modular coding will vary from person to person, from project to project, and

from procedure to procedure. For example, if you record a macro to perform a simple, one-time

CREATING MODULAR CODE | 453

c16.indd 08:28:57:AM 07/10/2013 Page 453

task on a number of presentations, there’s no need to worry about breaking it down into its com-

ponents and formalizing them as procedures. Just go ahead and use a single procedure.

However, if you sit down to plan a large procedure that’s going to automate the creation of

your company’s budget-estimate spreadsheets, you can benefi t greatly from dividing the code

into a set of several procedures. This automation job is complex and requires a lot of code, and

it’s also a program that must be reused every time there’s a new budget proposal.

You can go about creating modular code in two main ways:

 ◆ Record (if the application you’re using supports the VBA Macro Recorder) or write a pro-

cedure as usual and then examine it and break it into modules as necessary. This is a great

way to start creating modular code, but it’s usually less effi cient: You’ll end up spending a

lot of time retrofi tting your original, large procedure as you break it into smaller, separate

procedures.

 ◆ List the different actions that your project requires, then code each action (or set of actions)

as a separate procedure. This method requires a bit more planning but usually proves

more effi cient in the long run.

Arranging Your Code in Modules
Once you’ve created a set of procedures, you can move them to a new module within the same

project, or even to a different project. By grouping your procedures in modules, you can easily

distribute the procedures to your colleagues without including any they don’t need. In addi-

tion, you can remove from your immediate working environment any modules of code that you

don’t need.

Give Descriptive Names to Your Modules

Give your modules descriptive names so that you can instantly identify them in the VBA Editor

Project Explorer and other module-management tools. Avoid leaving modules named the default

Module1, Module2, and so on.

Calling a Procedure
When one of your procedures needs to use another procedure you wrote, it calls it (by name) in

the same way that you learned in Chapter 9, “Using Built-in Functions,” to call a built-in func-

tion like MsgBox.

To call a procedure in the same project, either enter the name of the procedure to be called as

a statement or use a Call statement with the name of the procedure.

The syntax for the Call statement is the same for procedures as for functions:

[Call] name[, argumentlist]

Here, name is a required String argument giving the name of the procedure to call.

Meanwhile, argumentlist is an argument (or list of several arguments) providing a comma-

delimited list of the variables, arrays, or expressions to pass to the procedure. You use an argu-

ment list only for procedures that require arguments.

454 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 454

Calling involves two procedures, the caller and the called. For example, the following

CreateReceiptLetter procedure (the caller) calls the procedure FormatDocument (the called):

Sub CreateReceiptLetter()

 ‘other actions here

 Call FormatDocument

 ‘other actions here

End Sub

Most programmers omit the Call keyword, using just the name of the procedure. This next

code does the same thing as the previous code example:

Sub CreateReceiptLetter()

 ‘other actions here

 FormatDocument

 ‘other actions here

End Sub

However, as with calling built-in functions, some programmers believe that using the Call

keyword can make it clearer that your code is calling a procedure, and it enables you to search

more easily for your calls. (When debugging, you can see what procedures are calling others by

choosing the Call Stack option on the Editor’s View menu. This feature is only available in Break

mode, however, not during design time.)

In the following example, a procedure named Caller calls a procedure named Called,

which takes the String argument strFeedMe. Note that when you use Call, you need to enclose

the argument list in parentheses:

Sub Caller()

 Call Called(“Hello”)

End Sub

Sub Called(ByVal strFeedMe As String)

 Msgbox strFeedMe

End Sub

Again, you can omit the Call keyword and, if you wish, the parentheses, and yet achieve the

same result:

Sub Caller()

 Called “Hello”

End Sub

As well as calling a procedure in the same project, you can call a procedure in another open

project in the same host application (but usually not in another application). Typically, the syn-

tax used to call a procedure in another project is as follows, although it can vary by application

and version:

Project.Module.Procedure

CREATING MODULAR CODE | 455

c16.indd 08:28:57:AM 07/10/2013 Page 455

To call a procedure in another project, you need to add a reference to that project in the VBA

Editor’s References dialog box. Choose Tools ➢ References, select the project (click the Browse

button if you need to browse to it), and then click the OK button. Once this reference is in place,

you can call the procedure.

Circular References Are Not Allowed

You can’t add to the current project a reference to a project that itself contains a reference to

the current project. If you attempt a circular reference like that, when you add the reference and

close the References dialog box, the VBA Editor displays a message box with the warning “Cyclic

reference of projects not allowed” and the Editor refuses to insert the reference. (It does close the

References dialog box, though.)

Let’s turn our attention to another benefi t of modular code: you can refi ne your code and

make it run faster by making logical improvements and visual improvements.

Making Logical Improvements to Your Code
Breaking a large procedure into several smaller procedures can improve the logic of your code

by forcing you to consider each set of actions the procedure takes as modular, which means

they’re separate from other sets of actions. And you can also improve the logic of your code in

other ways: by using explicit variable declarations, by stripping out unnecessary statements to

simplify recorded code, and by using With statements to eliminate repetitive object references.

The following sections describe ways to improve the quality of your code.

Declaring Variables Explicitly Instead of Implicitly

This has been mentioned before, but it’s important. Instead of declaring variables implicitly,

declare all your variables explicitly:

Dim strName As String

strName = “Lola Montez”

Use that approach rather than the implicit declaration approach, which skips declaring the vari-

able and merely assigns a value to it (which implicitly creates it):

strName = “Lola Montez”

Explicit declaration allows VBA to allocate only as much memory as that variable type needs.

What’s more, by specifying the data type of a variable, you relieve VBA of the necessity to waste

time fi guring out the data type each time the variable appears in your code. Better still, you

avoid the risk of unintentionally storing the wrong type of data in the variable. Because the vari-

able is explicitly typed, VBA displays an error message rather than storing the data and chang-

ing the variable type.

Table 16.1 shows the details on the amounts of memory that the different types of variables

require.

456 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 456

Table 16.1: Memory consumed by the diff erent types of variables

Variable Memory Needed (Bytes)

Boolean 2

Byte 1

Currency 8

Date 8

Variant/Decimal 12

Double 8

Integer 2

Long 4

Object 4

Single 4

 String Variable-length strings: 10 bytes plus the storage required for the string, which can be

up to about two billion characters; fi xed-length strings: the number of bytes required

to store the string, which can be from 1 to about 64,000 characters

Variant Variants that contain numbers: 16 bytes; variants that contain characters: 22 bytes

plus the storage required for the characters

How much memory you save by specifying data types, and how much difference choosing

variable types makes to your procedures, depends on the type of work you’re doing. For exam-

ple, if you store a million characters in a Single variable, the 12 bytes you save by specifying that

it’s a String variable rather than a Variant variable make little difference.

But if you use many variables on a computer with limited memory, specifying the appropri-

ate data types for your variables may save enough memory to enable your procedure to run

where it otherwise wouldn’t have been able to, or at least enable it to run faster. Of course, hard-

ware is continually improving—and memory is hardware. Now that RAM is becoming cheap

and plentiful, conserving memory is not much of an issue for programmers.

A second reason for declaring your variables explicitly rather than implicitly is to make your

code easier to read and to debug. And a third reason is that you can implement some runtime

range-checking. If you know something will be less than 32,768, and you therefore declare it as

being the Integer data type (rather than the Long type), you’ll automatically get a helpful error if

a Long-size value creeps into it somehow at runtime.

CREATING MODULAR CODE | 457

c16.indd 08:28:57:AM 07/10/2013 Page 457

Simplify Recorded Code

Recall that the Macro Recorder (available only in Word and Excel) off ers an excellent way to get

started writing code for a project. Just turn on the recorder and carry out the actions you want

your code to accomplish. Th e recorder can write code for many tasks. It can’t create conditional

branches, loops, and a few other code features, but it nevertheless can do quite a bit.

Th e Macro Recorder provides a great way to kick-start creating code by letting you identify quickly

the built-in objects the procedure will need to work with and the methods and properties you’ll

need to use with them.

But as you’ve seen, one drawback of the Macro Recorder is that it tends to record a lot of code that

you don’t actually need in your procedures. It records the state of a context—the status of all the

options in the current context. And you’re probably interested in only one or two options.

It’s like taking a photo. Th e camera records everything that you point it at. But often you don’t want to

see everything, just a particular object. You took a picture of the school play. Th e photo contains all

the kids on the stage, but you’re only really interested in little Darla’s lovely smile and her costume.

So you use a graphics program to crop out (cut away) everything but Darla.

Here’s an example of “cropping” code: When you record a procedure that changes one setting in a

dialog box (such as switching to italic in the Font dialog box in Word), the Macro Recorder none-

theless records all the other settings on not only that page, but also on all the other Font dialog

box’s pages (Character Spacing and things like that). Just in case you wanted them. But you don’t.

You’re only interested in the italic feature.

Once you’ve fi nished recording the procedure, you’ll often want to open it to make minor adjust-

ments; to add loops, decisions, or UI items (message boxes, input boxes, or user forms); or even to

lift parts of the code for use in other procedures. When you do this, fi rst examine the code the Macro

Recorder has recorded, and where possible, strip out the statements unrelated to your purpose.

Leave only the recorded pieces of code that you need. Make the code focus on what you’re actually

doing—the task you’re carrying out. Later, you’ll thank yourself if you have to examine or reuse

this code: You’ll be able to easily see what the code is doing: not superscript, not boldface, or any

of the other settings—just italic.

Take this Word example. Compare the Applying_Arial_Font procedure that follows with the

Stripped_Down_Procedure_Applying_Arial_Font procedure that comes after it:

Sub Applying_Arial_Font()

‘

‘ Applying_Arial_Font Macro

‘ Applies the Arial font to the selected text

‘

 With Selection.Font

 .Name = “Arial”

 .Size = 13

 .Bold = False

458 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 458

 .Italic = False

 .Underline = wdUnderlineNone

 .UnderlineColor = wdColorAutomatic

 .StrikeThrough = False

 .DoubleStrikeThrough = False

 .Outline = False

 .Emboss = False

 .Shadow = False

 .Hidden = False

 .SmallCaps = False

 .AllCaps = False

 .Color = wdColorAutomatic

 .Engrave = False

 .Superscript = False

 .Subscript = False

 .Spacing = 0

 .Scaling = 100

 .Position = 0

 .Kerning = 0

 .Animation = wdAnimationNone

 End With

End Sub

Sub Stripped_Down_Procedure_Applying_Arial_Font()

 Selection.Font.Name = “Arial”End Sub

As you can see, the Stripped_Down_Procedure_Applying_Arial_Font code has the same eff ect

as the recorded procedure, but it contains 3 lines instead of the recorded procedure’s 31.

Using With Statements to Simplify Your Code

When you’re performing multiple actions with an object, you can often use With statements to

avoid repeating the object reference for each action. This simplifi es your code. It becomes easier

to read. And it may make it run marginally faster.

For example, the following statements contain multiple references to the fi rst Paragraph

object—Paragraphs(1)—in the ActiveDocument object in Word:

ActiveDocument.Paragraphs(1).Range.Font.Bold = True

ActiveDocument.Paragraphs(1).Range.Font.Name = “Times New Roman”

ActiveDocument.Paragraphs(1).LineSpacingRule = wdLineSpaceSingle

ActiveDocument.Paragraphs(1).Borders(1).LineStyle = wdLineStyleDouble

ActiveDocument.Paragraphs(1).Borders(1).ColorIndex = wdBlue

You can replace this redundancy by employing a With structure that references the

Paragraphs(1) object in the ActiveDocument object to simplify the number of references

involved:

With ActiveDocument.Paragraphs(1)

 .Range.Font.Bold = True

CREATING MODULAR CODE | 459

c16.indd 08:28:57:AM 07/10/2013 Page 459

 .Range.Font.Name = “Times New Roman”

 .LineSpacingRule = wdLineSpaceSingle

 .Borders(1).LineStyle = wdLineStyleDouble

 .Borders(1).ColorIndex = wdBlue

End With

When you need to work with multiple child objects contained within a single parent object,

you can either use separate With statements or pick the lowest common denominator of the

objects you want to work with and use an outer With statement along with nested With state-

ments for the child objects.

If you wish, you can further reduce the number of object references in the previous code

example by using nested With statements for the Font object in the Range object and for the

Borders(1) object, like this:

With ActiveDocument.Paragraphs(1)

 With .Range.Font

 .Bold = True

 .Name = “Times New Roman”

 End With

 .LineSpacingRule = wdLineSpaceSingle

 With .Borders(1)

 .LineStyle = wdLineStyleDouble

 .ColorIndex = wdBlue

 End With

End With

Don’t Use With Statements Pointlessly

With statements are great for reducing repetitive object references and making your code easier

to read, but don’t use them just because you can. If you have only one statement within a With

statement, as in the following example (which again uses Word), you’re probably wasting your

time typing the extra code to set up the With structure:

With ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary) _

 .Range.Words(1)

 .Bold = True

End With

Likewise, don’t nest With statements unless you need to—it gets confusing, like this bizarre

example:

With ActiveDocument

 With .Sections(1)

 With .Headers(wdHeaderFooterPrimary)

 With .Range

 With .Words(1)

 With .Font

 .Italic = True

 .Bold = False

 .Color = wdColorBlack

 End With

460 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 460

 End With

 End With

 End With

 End With

End With

This code is better when written like this:

With ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Range. _

 Words(1).Font

 .Italic = True

 .Bold = False

 .Color = wdColorBlack

End With

Optimizing Your Select Case Statements

When you use a Select Case statement, arrange the Case statements so that the most likely ones

appear fi rst. This saves VBA some work and time—VBA goes down through the list of Case

statements until it fi nds a match, so the earlier in the list it scores a match, the quicker the execu-

tion of the statement.

Don’t Check Things Senselessly

If you need to implement a setting (especially a Boolean one) every time a particular procedure

runs, there’s no point in checking the current value.

For example, suppose you wanted to make sure the EnableAutoRecover property (a Boolean

property that sets or returns whether the AutoRecover feature is on for the current workbook)

of the ActiveWorkbook object in Excel is set to True. You could check the current value of

EnableAutoRecover and, if it is False, set it to True like this:

If ActiveWorkbook.EnableAutoRecover = False Then _

 ActiveWorkbook.EnableAutoRecover = True

But that wastes code. Instead, simply set the property to True:

ActiveWorkbook.EnableAutoRecover = True

Removing Unused Elements from Your Code

To improve the effi ciency of your code, try to remove all unused elements from it. When creat-

ing a complex project with many interrelated procedures, it’s easy to end up with some proce-

dures that are almost or entirely useless. You were trying out various approaches and perhaps

sketched in a couple of procedures that ended up never being used, for example.

You’ll fi nd it easier to remove superfl uous procedures if you’ve commented your code com-

prehensively while creating it so you can be sure that what you’re removing is unused rather

than used. If you’re in doubt as to which procedure is calling which, display the Call Stack

dialog box (see Figure 16.1); choose View ➢ Call Stack or press Ctrl+L to see what’s happening.

Recall that the Call Stack dialog box is available in Break mode (while you’re single-stepping

through a procedure, or the editor has halted execution at a breakpoint, and so on). If one proce-

dure has called another one during execution, they will both be listed.

CREATING MODULAR CODE | 461

c16.indd 08:28:57:AM 07/10/2013 Page 461

Figure 16.1 reveals that the procedure named Identify_Current_User called the proce-

dure named ToggleItal and that ToggleItal then called GetClipboardText, which, in turn,

called DocumentOpen. Execution is currently halted (is in Break mode) within the DocumentOpen

procedure.

Figure 16.1

Th e Call Stack dia-

log box lets you see

which procedure

has called which.

Alternatively, try one of these techniques:

 ◆ Set a breakpoint at the beginning of a suspect procedure so that you’ll be alerted when it’s

called.

 ◆ Display message boxes at decisive junctures in your code so you can see what’s happening:

Is the procedure ever called?

 ◆ Use a Debug.Print statement at an appropriate point (again, perhaps the beginning of a

procedure) to temporarily log information in the Immediate window.

Before you remove an apparently dead procedure from your code, make sure not only that

it’s unused in the way the code is currently being run, but also that it’s not used in ways in

which the procedure might be run were circumstances different. If you think that the procedure

might still be used, try moving it to a project from which you can easily restore it rather than

deleting it altogether.

Once you’ve removed any unused procedures, examine the variables in the procedures. Even

if you’re using the Option Explicit declaration and declaring every variable explicitly, check

that you haven’t declared variables that end up not being used. For simple projects, you’ll be

able to catch the unused variables by using the Locals window to see which of them never get

assigned a value. For more complex projects, you may want to try some of the available third-

party tools that help you remove unneeded elements from your code.

If in doubt, just use the Editor’s Find feature (Ctrl+F) to see if the variable name appears only

once: when the variable is declared.

Removing unused procedures and variables isn’t crucial. They do no real harm; they’re just

debris. But they do clutter up your code, potentially making it harder to understand and modify

if you come back to it later for maintenance or reuse.

Back Up Your Modules, Forms, and Class Modules

Before removing an entire module, use the File ➢ Export File command to export a copy of the mod-

ule to a .BAS fi le in a safe storage location in case the module contains anything you’ll subsequently

discover to be of value. Similarly, export your user forms to .FRM fi les and your classes to .CLS fi les.

462 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 462

Making Visual Improvements to Your Code
Another way to improve your code is to format it so it’s as easy as possible to read, maintain,

and modify.

Indenting the Different Levels of Code

As you’ve seen in the examples so far in this book, you can make code much easier to follow by

indenting some lines of code with tabs or spaces to show their logical relation to each other or to

visually illustrate subordination and structures such as loops.

You can click the Indent and Outdent buttons on the editor’s Edit toolbar or press Tab and

Shift+Tab to quickly indent or unindent a selected block of code, with the relative indentation of

the lines within the block remaining the same.

Labels Can’t Be Indented, But That’s a Good Thing

You can’t indent a label—a word ending with a colon (:) and used as the target of a GoTo statement.

If you try to indent a label, the VBA Editor won’t let you. Th e editor removes all spaces to the left

of the label as soon as you press Enter or otherwise move the insertion point off the line contain-

ing the label. A label is a target and should be on the far left of its code line so you can easily see it.

Using Line-Continuation Characters to Break Long Lines

Use the line-continuation character (a space followed by an underscore) to break long lines of

code into two or more shorter lines. Breaking lines makes long statements fi t within the Code

window on an average-size monitor at a readable point size and enables you to break the code

into more logical segments.

Using the Concatenation Character to Break Long Strings

You can’t use the line-continuation character to break strings, however. If you want to break

a long string, you must divide the string into smaller strings and then use the concatenation

character (&) to attach the parts again. You can separate the parts of the divided string (which are

merely separated by the line-continuation character). For example, consider a long string such as

this:

strMessageText = “The macro has finished running. Please check your presentation

to ensure that all blank slides have been removed.”

Instead, you could divide the string into two, and then rejoin it like this:

strMessageText = “The macro has finished running. “ & _

 “Please check your presentation to ensure that “ & _

 “all blank slides have been removed.”

CREATING MODULAR CODE | 463

c16.indd 08:28:57:AM 07/10/2013 Page 463

For Legacy Reasons, You Can Employ the + Character for

Concatenation

Alternatively, you can use the addition character (+) to concatenate one string with another, but

not to concatenate a string and a numeric variable (do that, and VBA tries to add them mathemati-

cally instead of concatenating them). However, your code is easier to read if you just stick with the

concatenation character & when concatenating strings. Leave the + character for math.

Using Blank Lines to Break Up Your Code

To make your code more readable, use blank lines to separate statements into logical groups. For

example, you might segregate all the variable declarations in a procedure as shown in the fol-

lowing example so that they stand out more clearly:

Sub Create_Rejection_Letter

 Dim strApplicantFirst As String, strApplicantInitial As String, _

 strApplicantLast As String, strApplicantTitle As String

 Dim strJobTitle As String

 Dim dteDateApplied As Date, dteDateInterviewed As Date

 Dim blnExperience As Boolean

 strApplicantFirst = “Shirley”

 strApplicantInitial = “P”

 strApplicantLast = “McKorley”

]

Using Variables to Simplify Complex Syntax

You can use variables to simplify and shorten complex syntax. For example, you could display a

message box by using an awkwardly long statement such as this one:

If MsgBox(“The document contains no text.” & vbCr & vbCr _

 & “Click the Yes button to continue formatting the document.” & _

 “ Click the No button to cancel the procedure.”, _

 vbYesNo & vbQuestion, _

 “Error Selecting Document: Cancel Procedure?”) Then

Alternatively, you could use one String variable for building the message and another String

variable for the title:

Dim strMsg As String

Dim strTBar As String

strMsg = “The document contains no text.” & vbCr & vbCr

strMsg = _

 strMsg & “Click the Yes button to continue formatting the document. “

464 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 464

strMsg = strMsg & “Click the No button to cancel the procedure.”

strTBar = “Error Selecting Document: Cancel Procedure?”

If MsgBox(strMsg, vbYesNo & vbQuestion, strTBar) Then

At fi rst sight, this code looks more complex than the straightforward message-box statement,

mostly because of the explicit variable declarations that increase the length of the code segment.

But in the long run, this approach is much easier to read and modify.

In the previous example, you could also replace the vbYesNo & vbQuestion part of the

MsgBox statement with a variable (preferably a Long rather than a Variant). But doing so makes

the code harder to read and is seldom worthwhile.

Passing Information from One Procedure to Another

Using Arguments

Often when you call another procedure, you’ll need to pass information to it from the calling

procedure. And you sometimes go the other way: when the called procedure has fi nished exe-

cuting, it needs to pass back info to the caller.

The best way to pass information from a caller procedure to a called procedure is by using

arguments. You declare the arguments to pass in the declaration line of the procedure that

passes them. The arguments appear in the parentheses after the procedure’s name. You can pass

either a single argument (as the fi rst of the following statements does) or multiple arguments

separated by commas (as the second does):

Sub PassOneArgument(MyArg)

Sub PassTwoArguments(FirstArg, SecondArg)

As with functions (discussed in Chapter 9), you can pass an argument either by reference or

by value. When a procedure passes an argument to another procedure by reference, the recipi-

ent procedure gets access to the memory location where the original variable is stored and can

change the original variable. By contrast, when a procedure passes an argument to another pro-

cedure by value, the recipient procedure gets only a copy of the information in the variable and

can’t change the information in the original variable.

Passing an argument by reference is useful when you want to manipulate the variable in

the recipient procedure and then return the variable to the procedure from which it originated.

Passing an argument by value is useful when you want to use the information stored in the

variable in the recipient procedure and at the same time make sure the original information in

the variable doesn’t change.

By reference is the default way to pass an argument, but you can also use the ByRef keyword

to state explicitly that you want to pass an argument by reference. Both of the following state-

ments pass the argument MyArg by reference:

Sub PassByReference(MyArg)

Sub PassByReference(ByRef MyArg)

To pass an argument by value, you must use the ByVal keyword. The following statement

passes the ValArg argument by value:

Sub PassByValue(ByVal ValArg)

CREATING MODULAR CODE | 465

c16.indd 08:28:57:AM 07/10/2013 Page 465

In practice, however, you’ll rarely, if ever, need to employ ByVal. Arguments are nearly uni-

versally passed by reference, the default.

If necessary, you can pass some arguments for a procedure by reference and others by

value. The following statement passes the MyArg argument by reference and the ValArg

argument by value:

Sub PassBoth(ByRef MyArg, ByVal ValArg)

You can explicitly declare the data type of arguments you pass in order to take up less

memory and ensure that your procedures are passing the type of information you intend them

to. But when passing an argument by reference, you need to make sure that the data type of the

argument you’re passing matches the data type expected by the called procedure. For example,

if you declare a String in the caller procedure and try to pass it as an argument when the called

procedure is expecting a Variant, VBA gives an error.

To declare the data type of an argument, include a data-type declaration in the argument list.

The following statement declares MyArg as a String and ValArg as a Variant:

Sub PassBoth(MyArg As String, ValArg As Variant)

You can specify an optional argument by using the Optional keyword. Place the Optional

keyword before the ByRef or ByVal keyword if you need to use ByRef or ByVal:

Sub PassBoth(ByRef MyArg As String, ByVal ValArg As Variant, _

 Optional ByVal MyOptArg As Variant)

Listing 16.1 shows a segment of a procedure that uses arguments to pass information from

one procedure to another.

Listing 16.1: Passing arguments from one procedure to another

 1. Sub GetCustomerInfo()

 2. Dim strCustName As String, strCustCity As String, _

 strCustPhone As String

 3. ‘Get strCustName, strCustCity, strCustPhone from a database

 4. CreateCustomer strCustName, strCustCity, strCustPhone

 5. End Sub

 6.

 7. Sub CreateCustomer(ByRef strCName As String, _

 ByRef strCCity As String, ByVal strCPhone As String)

 8. Dim strCustomer As String

 9. strCustomer = strCName & vbTab & strCCity _

 & vbTab & strCPhone

10. ‘take action with strCustomer string here

11. End Sub

466 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 466

Listing 16.1 contains two minimalist procedures—GetCustomerInfo and CreateCustomer—

that show how to use arguments to pass information between procedures:

 ◆ The fi rst procedure, GetCustomerInfo, explicitly declares three String variables in line 2:

strCustName, strCustCity, and strCustPhone.

 ◆ Line 3 contains a comment indicating that you would write additional code here to obtain

the data and assign information to the variables.

 ◆ Line 4 calls the CreateCustomer procedure and passes to it the variables strCustName,

strCustCity, and strCustPhone as arguments. Because this statement doesn’t use the

Call keyword, the arguments aren’t enclosed in parentheses.

 ◆ Execution then switches to line 7, which starts the CreateCustomer procedure by declaring

the three String arguments it uses: strCName and strCCity are to be passed by reference,

and strCPhone is to be passed by value.

 ◆ Line 8 declares the String variable strCustomer. Line 9 then assigns to strCustomer the

information in strCName, a tab, the information in strCCity, another tab, and the informa-

tion in strCPhone.

 ◆ Line 10 contains a comment indicating where the procedure would take action with the

strCustomer string (for example, dumping it into some kind of primitive database), and

line 11 ends the procedure.

Passing Information Back from a Called Procedure

Just a reminder: Functions, not subs, are used to pass information back to a caller. Both

functions and subs are procedures, but functions are specifi cally designed to send information

back to a caller.

This code example calls a function that adds state tax to a purchase price, then passes back

the resulting total cost:

1. Sub FindTotalCost()

2.

3. Dim OriginalCost, TotalCost ‘ declare two variant types

4. OriginalCost = 155 ‘this sweater is expensive

5.

6. TotalCost = AddTax(OriginalCost) ‘call the AddTax function

7. MsgBox TotalCost ‘show the final cost including 7% tax

8.

9.

10. End Sub

11.

12. Function AddTax(SubTotal)

13.

14. AddTax = SubTotal * 1.07 ‘do the math and assign the result

15. ‘to the function name so it gets passed back

16.

17. End Function

CREATING MODULAR CODE | 467

c16.indd 08:28:57:AM 07/10/2013 Page 467

Data is passed from the caller to the called in line 6. Data is passed back from the called to

the caller by assigning a value to the name of the function in line 14.

Passing Information from One Procedure to Another Using Private

or Public Variables

Another way to pass information from one procedure to another is to use either private

variables or public variables. You can use private variables if the procedures that need to share

information are located in the same module. If the procedures are located in different modules,

you’ll need to use public variables to pass the information.

Avoid Using Global Variables to Pass Data

Using private or public variables to pass information from one procedure to another is widely

considered poor programming practice. Doing so makes it harder to track the fl ow of information

between procedures, especially when several procedures are involved. However, you may sometimes

fi nd this way of passing information helpful—or you may be required to work with someone else’s

code that uses this approach.

Listing 16.2 contains an example of passing information by using private variables.

Listing 16.2: Passing data using a private variable

 1. Private strPassMe As String

 2.

 3. Sub PassingInfo()

 4. strPassMe = “Hello.”

 5. PassingInfoBack

 6. MsgBox strPassMe

 7. End Sub

 8.

 9. Sub PassingInfoBack()

10. strPassMe = strPassMe & “ How are you?”

11. End Sub

Listing 16.2 begins by declaring the private String variable strPassMe at the beginning of the

code sheet for the module. strPassMe is then available to all the procedures in the module.

 ◆ The PassingInfo procedure (lines 3 to 7) assigns the text Hello. (with the period) to

strPassMe in line 4 and then calls the PassingInfoBack procedure in line 5.

 ◆ Execution then shifts to line 9, which starts the PassingInfoBack procedure.

 ◆ Line 10 adds How are you? with a leading space to the strPassMe String variable.

468 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 468

 ◆ Line 11 ends the PassingInfoBack procedure, at which point execution returns to the

PassingInfo procedure at line 6, which displays a message box containing the strPassMe

string (now Hello. How are you?).

 ◆ Line 7 ends the procedure.

Creating and Using Classes
A class is the formal defi nition of an object—typically, a custom object. By defi ning classes, you

can build your own custom objects. A class is essentially a template for an object: Once you’ve

defi ned the class in your code, VB will then create objects based on it when the code executes.

The relationship between class and object is sometimes described as similar to a cookie cut-

ter and a cookie or a blueprint and the houses based on that blueprint. The former is a descrip-

tion, the latter is the description brought to life.

Another way to think of the distinction between class and object is to recall the distinction

between design time and runtime. You create a class during design time by writing code that

describes the object (or multiple objects). The class will come into being during runtime when

the class code executes.

The phrase come into being is more formally expressed as follows: an object is instantiated. (An

instance—the object—of the class comes into existence during runtime.) Got it?

What Can You Do with Class Modules?
Programming means telling the computer how to process some information.

Information to be processed can be stored in various places. For example, you can store it in a

database that your code accesses. Or you can type it into your code, such as storing the informa-

tion Donald in a string variable:

MyString = “Donald”

The second half of information-processing is executing code that manipulates the informa-

tion (the data). You’ve been doing this throughout this book. Here we process some data by com-

puting the length of a string:

MsgBox Len(myString)

One thing that is interesting about objects is that they not only can process information; they

can also contain it. They can hide their data (properties) or their processing (methods) from out-

side programming. This hiding is called encapsulation.

You can use objects to store information, to process information, and to make information

selectively accessible (hide it or not, as the programmer specifi es) to the various other objects in

an application.

Consider what is to me the most successful application of object-oriented programming (or

OOP): the controls you can put on a user form, such as the TextBoxes or Labels that we explored

in Chapters 14 and 15—”Creating Simple Custom Dialog Boxes” and “Creating Complex

Forms.”

A Label is an object that has a set of properties, which can be visualized as both data and as

processing capabilities. When you assign the value 33, say, to a Label’s Left property, the Label

automatically moves to that location on the form.

You did no programming to make this move happen. You merely passed a desired position to the

object and the object’s internal capability to move itself took over and carried out the necessary

CREATING AND USING CLASSES | 469

c16.indd 08:28:57:AM 07/10/2013 Page 469

tasks to make this happen. This is encapsulation: The programming that moves a Label is hid-

den from the outside world. The object has its own capabilities. And it contains its own internal

data as well (the kind of line that frames a Label, its default width, the color of its background,

and so on).

When OOP is applied to more abstract concepts such as translating procedural program-

ming (subs and functions) into OOP (objects), the results are mixed. Some programmers swear

by OOP; others demur. OOP has become quite popular in many professional programming

circles, but even after decades of implementation, OOP still causes controversy. For small jobs

like simple macros, OOP is clearly overkill. For large projects, you might like the organizational

and security features of OOP. And, if you intend to go into professional programming, you must

understand how to use it.

A Brief Overview of Classes
To create a class in VBA, you insert a class module in a project (Insert ➢ Class Module) and give

the class the name by which you’ll access it. You then use the Code window to create the code

(constant and variable declarations, subroutines, and functions) that defi nes the properties and

methods that the class will have. When you’ve fi nished, the class contains all the information

that the custom object needs to perform its tasks and store data.

A major distinction between a class module and a regular code module is that you don’t

directly execute code in a class module. Instead, in a regular code module you declare an object

variable of the class’s type. You then use this variable to access the class’s members (its proper-

ties and methods) in your regular code.

The concept of classes can be diffi cult to grasp, so the following sections present a simple

example of a class that relates to something physical—the book you’re holding. The example

describes a class named Book that contains the salient information about a book. During run-

time, after creating the Book object, the example’s code adds this book’s information to the

Book object.

Entire books endeavor to explain OOP and its uses. But I’ll give you a taste of it here. The fol-

lowing example class works in any VBA host application.

Planning Your Class
Before you start creating a class, decide the following:

 ◆ A class describes an object, so…what does this object do?

 ◆ What information does the class need to contain for the object to do what it’s supposed to

do? You use variables and properties to store this information. You use variables to store

information used privately, internally inside the object, and properties to make available

pieces of that information that need to be accessed from outside the object. You can create

both read-only and read/write properties.

 ◆ What capabilities should this object have? Things a class can do, its behaviors, are called its

methods. You create subroutines and functions to implement the class’s methods—subrou-

tines for the methods that return no value after doing their job and functions for the meth-

ods that do return a value after executing.

Objects based on our Book class will contain information about a book project. Note that I

said objects, plural. A single class can create as many objects during runtime as the programmer

wishes, just as a single cookie cutter can stamp out multiple cookies. Or a single blueprint can be

used to build many townhouses.

470 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 470

If you’re a librarian programmer, you might use the Book class to generate thousands of Book

objects.

The class we’ll construct will need properties for storing information such as the title, author,

and price and will need a method that displays all this book information.

Creating a Class Module
The fi rst step in creating your class is to insert a class module into your project. You create a

class module in much the same way you create a regular module.

In the Project Explorer, right-click the target project or one of the items it contains and choose

Insert ➢ Class Module from the context menu. Alternatively, choose Insert ➢ Class Module

from the editor’s menu bar, or click the Insert button on the Standard toolbar and choose Class

Module from the drop-down list.

The VBA Editor creates a new class module named Classn (where n is the next-higher con-

secutive number not yet employed to name a class module) and opens a Code window for it. If

the project doesn’t already contain a Class Modules folder, VBA adds one, and it appears in the

Project Explorer.

If you have the Require Variable Declarations option selected (on the Editor page of the

Tools ➢ Options dialog box in the VBA Editor), the VBA Editor automatically places an Option

Explicit statement in the declarations area at the top of the code sheet for the class, just as it

does for an ordinary module.

If you don’t have the Require Variable Declarations option selected, it’s still a good idea to

type in the Option Explicit statement anyway to force yourself to declare variables explicitly.

Naming the Class
Now change the name of the class to something more descriptive than Classn. Press F4 to dis-

play the Properties window (if it’s not already displayed) and enter the new name in the (Name)

text box. Make the name descriptive, because you’ll be using it in your code and you’ll want its

purpose to be easily grasped. We can name our example class Book. Press Enter or click else-

where in the Visual Basic Editor window to make the change take effect.

Setting the Instancing Property
The Instancing property determines whether a class module is visible (can be instantiated—

brought into existence) from an outside project.

Recall that an outside project must fi rst reference the project that the class module is in before

any access to another project’s objects is even possible. Referencing is accomplished by Tools ➢

References in the Editor.

The default setting, 1 – Private, prevents other projects from seeing the class module and

from working with instances (objects) of that class. In other words, the object is encapsulated,

hidden.

The other setting is 2 – PublicNonCreatable, and it allows an outside project to see the

class. The outside project, even with a reference, however, still can’t create instances (create

objects) from the class by itself. The instantiation must take place in the project that hosts the class.
So, for one project to access an object in another, three conditions must be met:

 ◆ The Instancing property in the project containing the object must be set to

PublicNonCreatable.

CREATING AND USING CLASSES | 471

c16.indd 08:28:57:AM 07/10/2013 Page 471

 ◆ The project containing the object must have instantiated that object.

 ◆ The outside project must have established a reference to the project containing the object.

To permit an outside project access to instances of a class (objects), set the Instancing prop-

erty to 2 – PublicNonCreatable. Otherwise, leave the default setting of 1 – Private intact.

With the default Private setting, only the project that has the class can access objects instanti-

ated from that class.

Declaring Variables and Constants for the Class
After setting the Instancing property, you should declare the variables and constants that the

class will need for its internal operations.

These declarations work just like the declarations you’ve seen so far in the book, except that

you’ll probably want to use a naming convention to indicate that the variables and constants

belong to a class rather than to a procedure. We’ll use the prefi x book on the constants and vari-

ables to make it easy for the programmer to see that they’re part of the Book class.

The Book class uses the declarations shown in the following code snippet to declare one con-

stant (bookName) and fi ve variables (bookTitle, bookAuthor, bookPages, bookPrice, and book-

PublicationDate) of assorted data types:

Const BookName = “Book Project”

Dim BookTitle As String

Dim BookAuthor As String

Dim BookPages As Long

Dim BookPrice As Currency

Dim BookPublicationDate As Date

Adding Properties to the Class
Now add the properties to the class. Table 16.2 lists the properties that the Book class uses.

Table 16.2: Properties of the Book class

Property Description

Title A read/write String property that sets or returns the formal title of the book

Author A read/write String property that sets or returns the author’s name

Pages A read/write Long property that sets or returns the page count of the book

Price A read/write Currency property that sets or returns the price of the book

PublicationDate A read/write Date property that sets or returns the publication date of the book

You can create properties for a class in either of two ways. The fi rst way is less formal than

the second but provides you with less control over the properties.

472 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 472

Creating a Property by Using a Public Variable

One way to create a property in your code is to declare a Public variable in the class module.

Doing this creates a read/write property with the name of the variable. For example, the follow-

ing statement (when typed into a class module) creates a read/write Boolean property named

HardCover:

Public HardCover As Boolean

Using a Public variable like this is a quick way to create a property, but it’s a bit limited: It

must be read/write. You can’t choose to make the property read-only (or write-only). What’s

more, you can’t execute any other code when the program’s code sets or returns the value of the

property.

After declaring a Public variable, your code can then set and return the property’s value in

the usual way. For example, say we’ve created the Boolean property HardCover in an instance

named MastVBA of the Book class. The following statements set (store, write data in) the property

and then display a message box returning (reading the value from) the property:

MastVBA.HardCover = False

MsgBox MastVBA.HardCover

Something special is illustrated here. The name of the class is Book, but notice that the name

of an object instantiated from this class is MastVBA. Objects—there can be many derived from a

given class—will each have its individual object name. Instantiated objects should not have the

same name as the class from which they spring.

Creating a Property by Using Property Procedures

The second and more formal and fl exible way to create a property is to use property

procedures. There are three types of property procedures—Property Let, Property Get,

and Property Set:

 ◆ A Property Let procedure assigns a value to a property. It writes.

 ◆ A Property Get procedure returns the value from a property. It reads.

 ◆ A Property Set procedure creates a reference to an object. (This is similar to how you cre-

ate an object variable in ordinary, non-object procedures.)

You typically use these procedures in pairs, pairing a Property Get procedure with a

Property Let procedure. That creates a read/write capability. Or you pair a Property Set pro-

cedure with a Property Let procedure. If you use a Property Get procedure on its own, that

property will be read-only.

Assigning a Value to a Property with a Property Let Procedure

To permit outside code to assign a value to an object’s property, you use a Property Let proce-

dure. The syntax for a Property Let procedure is as follows:

Property Let name ([arglist,] value)

 [statements]

End Property

CREATING AND USING CLASSES | 473

c16.indd 08:28:57:AM 07/10/2013 Page 473

These are the components of the syntax:

 ◆ The Property keyword starts the procedure, and the End Property keywords end the

procedure.

 ◆ name is a required argument specifying the name of the property procedure being created.

If you also create a paired Property Get procedure as well for this property, use the same

name as the Property Let procedure.

 ◆ arglist is a required argument listing the arguments that are passed to the procedure. An

argument list is required here because a Let procedure is designed to assign a value or val-

ues to this property. So the outside code must provide at least one value. If arglist contains

multiple arguments, you separate them with commas.

For example, the following Property Let procedure creates the String property Title,

assigning the argument NewTitle and passing its value to the variable bookTitle:

Property Let Title(NewTitle As String)

 bookTitle = NewTitle

End Property

If you don’t add a Property Get procedure for this Title data, the property named Title

will be write-only. Write-only properties aren’t widely useful, so the next step is to write code

that reads the value in the property. Then it becomes a read/write property.

Returning a Value from a Property with a Property Get Procedure

To return a value from a property, you use a Property Get procedure. The syntax for a

Property Get procedure is as follows:

Property Get name [(arglist)] [As type]

 [statements]

End Property

The components of the syntax are the same as for the Property Let procedure, except for

two things:

 ◆ First, Property Get adds the optional type argument, which specifi es the data type for the

property.

 ◆ Second, for Property Get, the arglist argument is optional. You can have arguments for

Property Get procedures, but you won’t usually need to. If you do use arguments, their

names and data types must match those in the corresponding Property Let procedure.

For example, the following Property Get procedure creates the String property Title,

assigning to it the contents of the bookTitle variable:

Property Get Title() As String

 Title = bookTitle

End Property

If this Property Get procedure existed alone (without being paired with a corresponding

Property Let procedure), it would be a read-only property. Use Property Get alone if you

don’t want to allow outside code to modify this property in any way.

474 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 474

However, because we’ve paired it with the Property Let Title procedure shown in the pre-

vious section, you now have a read/write property.

Assigning an Object to a Property with a Property Set Procedure

Instead of assigning a value to a property, you can assign an object to it. To do so, you use a

Property Set procedure rather than a Property Let procedure. The syntax for a Property

Set procedure is as follows:

Property Set name ([arglist,] reference)

 [statements]

End Property

The components of the syntax are the same as for the Property Let procedure, except

that Property Set uses the reference argument rather than the value argument. reference is a

required argument specifying the object to reference.

For example, the following Property Set procedure creates the object property Where that

references a range:

Property Set Where(rngR As Range)

 bookRange = rngR

End Property

Both Set and Let Can Be Used with Object Variables

For an object variable, you can use both a Property Set procedure and a Property Let procedure,

but in most cases it makes more sense to use only a Property Set procedure.

The Properties for the Book Class

Listing 16.3 shows the full listing of properties for the Book class.

Listing 16.3: All the properties of the Book class

1. Option Explicit

2.

3. Const BookName = “VBA Book Project”

4. Dim BookTitle As String

5. Dim BookAuthor As String

6. Dim BookPages As Integer

7. Dim BookPrice As Currency

8. Dim BookPublicationDate As Date

9.

10. Public Property Let Title(strT As String)

11. BookTitle = strT

12. End Property

CREATING AND USING CLASSES | 475

c16.indd 08:28:57:AM 07/10/2013 Page 475

13.

14. Public Property Get Title() As String

15. Title = BookTitle

16. End Property

17.

18. Public Property Let Author(strA As String)

19. BookAuthor = strA

20. End Property

21.

22. Public Property Get Author() As String

23. Author = BookAuthor

24. End Property

25.

26. Public Property Let Pages(intPages As Integer)

27. BookPages = intPages

28. End Property

29.

30. Public Property Get Pages() As Integer

31. Pages = BookPages

32. End Property

33.

34. Public Property Let Price(curP As Currency)

35. BookPrice = curP

36. End Property

37.

38. Public Property Get Price() As Currency

39. Price = BookPrice

40. End Property

41.

42. Public Property Let PublicationDate(dtePD As Date)

43. BookPublicationDate = dtePD

44. End Property

45.

46. Public Property Get PublicationDate() As Date

47. PublicationDate = BookPublicationDate

48. End Property

In Listing 16.3, each property for the Book class is declared as Public so that it is publicly

accessible.

The code illustrates how you should organize your paired procedures by putting each

Property Let procedure next to the corresponding Property Get procedure: The Property

Let Title procedure in lines 10 through 12 is matched by the Property Get Title procedure

in lines 14 through 16, and so on for the Author, Pages, Price, and PublicationDate property

procedures.

Pairing the procedures makes it easy to read the code to make sure each procedure that

should have a counterpart does have one, and to make sure the arguments match.

476 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 476

Adding Methods to a Class
Now that we’ve created properties as places to store data in our object, it’s time to add function-

ality that will process that data. It’s time to add the class’s methods by adding subroutines and

functions as necessary. As you’ll see at the end of this chapter, the VBA Editor will display a list

of the members—properties and methods—of an object you create, or objects built into VBA

Subroutines and functions you create within a class are like the subroutines and functions

you use in ordinary, non-object code modules.

Our example Book class uses only one method, ShowInfo, which displays a message box

showing the properties of the book. Listing 16.4 displays the ShowInfo procedure.

Listing 16.4: Th e ShowInfo method of the Book class

1. Sub ShowInfo()

2. Dim strM As String

3. strM = “Title:” & vbTab & BookTitle & vbCr

4. strM = strM & “Author:” & vbTab & BookAuthor & vbCr

5. strM = strM & “Pages:” & vbTab & BookPages & vbCr

6. strM = strM & “Price:” & vbTab & “$” & BookPrice & vbCr

7. strM = strM & “Date:” & vbTab & Me.PublicationDate & vbCr

8. MsgBox strM, vbOKOnly + vbInformation, BookName _

9. & “ Information”

10. End Sub

The ShowInfo procedure builds a string containing the information from the class and then

displays the string in a message box. Here’s what happens:

 ◆ Line 2 declares the String variable strM, which the procedure uses to store the information

for the prompt argument in the message box.

 ◆ Line 3 adds to strM the text Title:, a tab, the contents of the bookTitle variable (which

contains the title of the book in the object), and a carriage return.

 ◆ Line 4 builds on strM, adding the author information. Likewise, line 5 adds the informa-

tion on the page count, and line 6 adds the price information (including a dollar sign for

completeness).

 ◆ Line 7 also builds on strM, adding the date information. However, instead of using the

class’s internal variable (bookPublicationDate) to return the date stored, it calls the

PublicationDate property of the object (which is identifi ed by the Me keyword). This is

by way of an example—returning bookPublicationDate works fi ne too. But you’ll see the

difference when you retrieve information from the object: instead of supplying the vari-

able, VBA runs the Property Get PublicationDate procedure to return the information.

 ◆ Line 9 displays an OK-style message box containing the string strM. The message-box title

is set to bookName (the constant that contains the text Book Project) and Information,

and the message box uses an Information icon.

CREATING AND USING CLASSES | 477

c16.indd 08:28:57:AM 07/10/2013 Page 477

Using Your Class
Recall that you can’t execute class code directly. You can’t put your insertion point inside the

ShowInfo procedure and press F5 to run the code or F8 to step through the code.

A class is a description of an object not yet in existence. Again, think blueprint for a house.

So, before you can execute or test a class, you must create an instance of the class. You can’t

test the plumbing in a house by just looking at the blueprints before the house has been built. In

other words, you must create an object based on the class template, then test the object.

To instantiate an object, you write code in an ordinary, non-object code module (like

the modules we’ve been using throughout this book so far, such as the Module1 or NewMacros

module).

To use the class you created, you create a new instance of the object by using a New keyword.

The New keyword can be employed in either a Dim statement or a Set statement. For example, the

following statement creates a new object variable based on the Book class:

Dim myBook As New Book

The following statements declare an Object variable named bookAnotherBook and then

assign to it a new instance of the Book object:

Dim bookAnotherBook As Object

Set bookAnotherBook = New Book

You can then access the properties and methods of the Book object as you would any other

VBA object’s properties and methods (note the syntax: objectVariableName.Property). For

example, the following statement sets the Price property of the bookAnotherBook object:

bookAnotherBook.Price = 54.99

Listing 16.5 contains a short procedure called Class_Test that shows the Book class in action.

Type this procedure into an ordinary code module (not a class module). And be sure the module

you type this into is in the same project as the Book class module you created earlier.

Listing 16.5: Testing the Book class

 1. Sub Class_Test()

 2.

 3. Dim myBook As New Book

 4.

 5. myBook.Title = “Mastering VBA for Microsoft Office 2013”

 6. myBook.Price = 49.99

 7. myBook.Author = “Richard Mansfield”

 8. myBook.Pages = 880

 9. myBook.PublicationDate = #8/17/2013#

10.

11. myBook.ShowInfo

12.

13. End Sub

478 | CHAPTER 16 BUILDING MODULAR CODE AND USING CLASSES

c16.indd 08:28:57:AM 07/10/2013 Page 478

The listing shows an example of how to use a class in your programming. Here’s what

happens:

 ◆ Line 1 begins the Class_Test procedure, and line 13 ends it.

 ◆ Line 2 is a spacer. Line 3 declares a new object variable named myBook of the Book class.

Line 4 is another spacer.

 ◆ Lines 5 through 9 set the fi ve properties of the myBook object—Title, Price, Author,

Pages, and PublicationDate—as you’d set the properties for any other object. Note that

the object name (the object variable name) is separated by a period from the properties and

methods of that object.

 ◆ Line 10 is a spacer. Line 11 invokes the ShowInfo method of the myBook object—again, as

you’d invoke a method for any other object.

You can now test your object, clicking inside this procedure to put the blinking insertion

cursor there, then pressing F5 (run) or F8 (single-stepping). Try single-stepping to see how the

instantiation takes place and how the inner workings of the object add info to the properties and

carry out the ShowInfo method.

Here’s another quick experiment. Notice that the VBA editor’s Auto List Members feature

works with objects you create, as well as objects built into VBA itself, such as Excel’s Workbooks

object. Remember that if in Excel’s VBA Editor Code window you type workbooks. (you must

type the period), suddenly a list drops down showing you all the members—the properties and

methods—of the workbooks object. To then add one of these members to your code, just click it

or use the down-arrow key to select it, then press Enter.

Similarly, when you are programming with the MyBook object, typing MyBook followed by a

period drops that object’s members list down, as shown in Figure 16.2:

Figure 16.2

VBA’s helpful Auto

List Members

feature shows the

properties and

methods of your

objects.

Th e Bottom Line

Arrange your code in modules. Rather than use a single lengthy, complex procedure that

accomplishes many tasks at once, programmers usually subdivide their code into smaller,

self-contained procedures—dedicated to a single, discrete task.

THE BOTTOM LINE | 479

c16.indd 08:28:57:AM 07/10/2013 Page 479

Master It Shorter, self-contained, single-task procedures offer the programmer several

advantages. Name three.

Call a procedure. You execute a procedure by calling it from within your program-

ming code.

Master It How do you call a procedure?

Pass information from one procedure to another. Sometimes a procedure requires that

you pass it some information. For example, a procedure that searches text and makes some

style changes to it will require that you pass the text you want modifi ed.

Sometimes a procedure passes back information to the procedure that called it. For example,

it might pass back a message describing whether the actions taken in the procedure were (or

were not) accomplished successfully.

Master It What kind of procedure can pass back information to the caller?

Understand what classes are and what they’re for. Contemporary computer programs

employ classes for various reasons—to help organize large programs, to make code more

easily reusable, to provide certain kinds of security, or as a superior substitute for public vari-

ables. But beginners sometimes have a hard time wrapping their minds around the concept,

particularly the relationship between classes and objects.

Master It What is the difference between a class and an object?

Choose the correct answer (only one answer is correct):

 1. A class is like a cookie and an object is like a cookie cutter.

 2. A class is like a programmer and an object is like a module.

 3. A class is like a blueprint and an object is like a house built from that blueprint.

Create a class. The VBA Editor employs a special kind of module for containing classes.

Master It How do you create a class module in the VBA Editor?

c16.indd 08:28:57:AM 07/10/2013 Page 480

Chapter 17

Debugging Your Code
and Handling Errors

In this chapter, you’ll learn some of the things that can go wrong in your VBA code and what

you can do about them. You’ll examine the types of errors that can occur, from simple typos to

infi nite loops to errors that occur only once in a while (intermittent bugs are usually the hardest

to locate).

The chapter starts by explaining the basics of debugging. Then you’ll work with the tools that

VBA offers for debugging VBA code and use them to get the bugs out of some examples. The

end of the chapter discusses the various ways to have your program itself respond to errors that

happen during runtime.

In this chapter you will learn to do the following:

 ◆ Understand the basic principles of debugging

 ◆ Recognize the four different types of errors you’ll create

 ◆ Employ VBA’s debugging tools

 ◆ Deal with runtime errors

Principles of Debugging
A bug is an error in hardware or software that causes a program to execute other than as

intended. Debugging means removing the bugs from hardware or software.

Where Did the Term Bug Come From?

Th ere are various explanations of the etymology of the word bug as used in computer program-

ming, ranging from apocryphal stories of moths being found in the circuit boards of malfunc-

tioning computers to musings that the word came from the mythological bugbear, an unwelcome

beast. But in fact, the term bug has been used to mean something troublesome for centuries. For

more information, see the “bug” entry in the Free On-line Dictionary of Computing at a site such as

http://foldoc.org/.

http://foldoc.org

482 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Your goal when debugging should be to remove all bugs from your code. Your order of busi-

ness will probably go something like this:

 1. First, test your code to see whether it works as it should. Put it through its paces. Test it

by running the procedure once or twice using suitable fi les or other appropriate data. Try

all the options the macro makes available to the user. Even if it seems to work, continue

testing for a reasonable period with various data from various sample documents before

unleashing the procedure on the world (or your colleagues).

 2. If your code doesn’t work as you expected it to, you’ll need to debug it. That means fol-

lowing the techniques described in this chapter to locate the bugs and then remove them.

Once you’ve removed all the bugs that you can fi nd, retest the code as described in the

fi rst step. This is important, because sometimes the act of debugging itself introduces

new bugs.

 3. When testing your code, try to anticipate unusual, perhaps exotic ways that users might

employ your code. For example, you might write a sophisticated procedure for manipu-

lating a Word document on the (perfectly reasonable) assumption that the document will

be open when the user starts the procedure running. You can test it on sample documents

until you’re blue in the face and it’ll work fi ne every time. But if a user tries to run the

procedure without fi rst opening a document, it crashes.

And don’t make fun of this user. It might seem sensible to users that the procedure should

be launched before a fi le is loaded. Users might expect the procedure to display an input

box asking them which document they want to manipulate. And more important, users

also expect that you will anticipate and handle unexpected errors without crashing your

programming. There are ways to trap unanticipated user behavior or other runtime errors

and respond to them gracefully. What does your program do if the user attempts to save

a fi le to a disk that’s full, for example? Just crash and thereby lose all the information

they’ve spent time typing in?

 4. When you’re ready to distribute your procedure, you may want to write instructions for

its use. In these instructions, you may also need to document any bugs that you can’t

squash or circumstances under which the procedure shouldn’t be run. But it’s better to

build instructions, responses to unanticipated problems, and other kinds of error trapping

into the macro itself Try to make your code bulletproof.

Debugging a procedure tends to be idiosyncratic. There’s no magic wand that you can wave

over your code to banish bugs (although the VBA Editor does its best to help you eliminate cer-

tain types of errors from your code as you create it). Moreover, such simple things as forgetting

to initialize a variable can wreak havoc on your code.

You’ll probably develop your own approach to debugging, partly because your programming

will inevitably be written in your own style. But when debugging, it helps to focus on under-

standing what the code is supposed to do. You then correlate this with your observations of

what the code actually does. When you reconcile the two, you’ll probably have worked out how

to debug the procedure.

Also, the longer and more complex your code, the higher the probability that it will contain

bugs. Certain kinds of bugs occur because of interactions among the parts of a project. And

obviously the larger the project, the more parts with potential side effects. So keep your code

as simple as possible by breaking it into separate procedures and modules, as discussed in

Chapter 16, “Building Modular Code and Using Classes.” Small code sections, with distinct,

THE DIFFERENT TYPES OF ERRORS | 483

small tasks to accomplish, are almost always easier to debug than large lumps of code that try

to do several things all at once. Remember that most debugging is a matter of locating where

in your code the problem occurs. If you’re testing a small module of code with a very easily

specifi ed objective, locating a bug is that much easier.

Th e Diff erent Types of Errors
You’ll encounter four basic kinds of errors in your programming:

 ◆ Language errors

 ◆ Compile errors

 ◆ Runtime errors

 ◆ Program logic errors

The following sections look at these kinds of errors in turn and discuss how to prevent them.

After that, you’ll examine the tools VBA provides for debugging.

Language Errors
The fi rst type of error is a language error (also known as a syntax error). When you mistype a

word in the Code window, omit a vital piece of punctuation (and in programming, all punctua-

tion is vital), scramble a statement, or leave off the end of a construction, that’s a language error.

If you’ve worked your way through the book to this point, you’ve probably already made dozens

of language errors as part of the learning process and through simple typos.

VBA helps you eliminate many language errors as you create them, as you’ll see later in this

chapter. Those language errors that the VBA Editor doesn’t catch as you type them in usually

show up as compile errors during runtime testing, so the next section shows you examples of

both language errors and compile errors.

Compile Errors
Compile errors occur when VBA can’t compile a statement correctly—that is, when VBA can’t

turn a statement that you’ve entered into viable code.

For example, if your programming tells VBA to use a certain property for an object that

doesn’t have that property, a compile error results. Compilation is the act of turning your source

code (the programming you type into the Editor) into the lower-level commands understand-

able by the computer. For example, when you press F5 to execute your program, VBA starts off

by compiling your programming. If it fi nds a problem during compilation, it displays an error

message.

The good news is that the VBA Editor detects many language errors and some compile errors

as soon as you move the insertion point from the offending line. You don’t even have to press F5

in many cases. For example, try typing the following statement in the Code window and press-

ing Enter to create a new line (or pressing ↑or ↓ to move to another line, or clicking the mouse in

another line in the macro):

If X > Y

The VBA Editor displays the compile error “Expected: Then or GoTo” (see Figure 17.1) to tell

you that the statement is missing a vital element: it should say If X > Y Then or If X > Y

484 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

GoTo. (If you don’t see the error message, there are two possibilities: Either you have turned off

the Auto Syntax Check option [Tools ➢ Options] or you didn’t actually type it in by hand and

press Enter.)

Figure 17.1

Th e VBA Editor

helps debug your

code by identify-

ing many compile

errors as it checks

the statements you

enter.

Every time you enter a line of code, the Editor examines that line for completeness and accu-

racy. In this example, VBA knows that when the code contains an If command, there must be a

subsequent Then or Goto command. And so the Editor rejects the line and informs you what the

problem is.

This vigilance on the part of the VBA Editor prevents you from running into this type of

error deep in the execution of your code.

Decide for Yourself If You Like the Auto Syntax Check Feature

Th is chapter assumes that you’re keeping VBA’s Auto Syntax Check feature and other features

switched on. If you have Auto Syntax Check turned off (Tools ➢ Options ➢ Editor tab), you won’t

see the error message displayed in Figure 17.1. Instead, the only warning you get about that incom-

plete line of code is that the VBA Editor turns the line red. Code turned red is the Editor’s way of

telling you that it’s choking on your inadequate programming. You can either try to fi x the error

right then or keep on coding—putting off the debugging process until you’ve sketched in more

code in the procedure.

Some developers choose to turn off Auto Syntax Checking because they don’t want to be nagged as

they type in their code—it can interfere with their focus on the larger goals of the program they’re

writing. Working without automatic, immediate syntax checking can prove a cure worse than the

disease for some programmers. But others fi nd error message interruptions about typos annoying.

Ultimately, whether you use the Auto Syntax Check feature is a matter of personal taste. For

example, some people like to be told right away if they make a spelling error in a Word document;

others consider spelling errors rather tedious issues best left for later during an editing phase. Th ey

write, focusing on the main points they’re trying to make, then at some later time they turn on

the spell checker and fi x any typos and punctuation blunders. You fi nd a similar choice when you

work at most any task. Consider woodworking: Should you hang each tool back on the wall in its

appropriate place when you fi nish using it, or is it better to just let the saws and screwdrivers pile

up around you, putting them away all at once after the coat rack is fi nished?

THE DIFFERENT TYPES OF ERRORS | 485

The VBA Editor notices blunders like the previous If X > Y problem easily enough, but you

can also make language errors that the VBA Editor cannot identify when you move the insertion

point from the line in which the blunder resides. Instead, VBA identifi es these errors as compile

errors later when you press F5 and it compiles the code. For example, if you enter the following

statement in the Code window when working with Word, the VBA Editor doesn’t detect any-

thing wrong. But when you run the procedure by pressing F5, VBA compiles the code, discovers

the error, and objects to it (see Figure 17.2):

ActiveDocument.SaveAs FileMame:=“My File.docm”

Figure 17.2

Other errors appear

only when you try

to run the code.

This error is a straightforward typo—FileMame instead of FileName—but VBA won’t see this

particular kind of problem until it runs the code and fails to fi nd any FileName property.

The VBA Editor sometimes indirectly helps you to notice errors of this kind while you’re

writing code. Say you’re trying to enter a Documents.Close statement in Word and mistype

Documents as Docments. In this case, the VBA Editor doesn’t display the Properties/Methods list

(Auto List Members) as it normally does if you have this feature turned on. You haven’t entered

a valid object. VBA doesn’t therefore have a members list to display.

Not seeing the Properties/Methods list should alert you that something is wrong. If you

continue anyway and enter the Docments.Close statement, the VBA Editor doesn’t spot the

mistake—it shows up as a “Run-time error 424: Object required” message (if you don’t have

Option Explicit on) when you try to run the procedure. (If you do have Option Explicit on,

you get a “Variable not defi ned” compile error instead.)

The Editor gives you yet another clue that Docments.Close is an error. When you press Enter

to leave this line of code, you see this:

docments.Close

Does anything here look odd to you? VBA will automatically capitalize valid objects names. But

docments is not capitalized.

Another kind of problem is caused if you specify a property or method for an object to which

that property or method doesn’t apply. In this situation, VBA displays a compile error. For exam-

ple, say you forget that the proper method here is Add and you enter Documents.Create instead.

VBA highlights the offending word and gives the compile error “Method or data member not

found” (see Figure 17.3), which tells you there’s no Create method for the Documents collec-

tion. This message is displayed only during runtime, not design time (design time means when

you’re typing in code lines).

486 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Figure 17.3

Th e “Method or

data member not

found’’ error tells

you that you’ve

used a method or

property that isn’t

available for the

object in question.

Runtime Errors
The third type of error is the runtime error, which occurs while code is executing. You will cause

a runtime error if you write code that forces VBA to try to perform an impossible operation,

such as opening a document that doesn’t exist, closing a fi le when no fi le is open, or performing

something mathematically impossible, such as dividing by zero.

The diction, punctuation, and syntax of your code is error-free, but you’re asking VBA to

do something that can’t be done. An unhandled runtime error results in a crash that manifests

itself as a Microsoft Visual Basic dialog box displaying a runtime error number, such as the one

shown in Figure 17.4.

Figure 17.4

An unhandled run-

time error causes

VBA to display a

message box such as

this one.

As an example of an impossible operation, consider the archetypal division by zero. The

following statements give a “Run-time error ‘11’: Division by zero” message:

Dim x As Integer

x = 1 / 0

You’re unlikely to enter anything as obviously wrong as this in your code (you’re not nuts).
A line of code like this will inevitably produce a division-by-zero error because the divisor is

zero. But it’s easy to enter a valid equation, such as MonthlyPay = Salary/Months, and forget

to assign any value to Months (if a numeric variable is empty, it counts as a zero value) or to pro-

duce a zero value for Months by addition or some other math. Or the user can type zero into a

dialog box, then your code later tries to use that as a divisor. And so on.

One way to check for runtime errors is to track the values of your variables by using the

Watch window (discussed later in this chapter). To avoid possible user-input errors, have your

code check their input after they close a dialog box. You can, for example, display a message

explaining that zero isn’t an acceptable input for their age, then display the dialog box again,

expecting valid input this time around.

VBA’S DEBUGGING TOOLS | 487

Program Logic Errors
The fourth type of error is the program logic error, which is characterized by valid code that none-

theless produces incorrect results. With program logic errors, the code is technically fi ne. VBA

is able to compile and run it without noticing any errors—but you get a different result than you

intended.

Program logic errors range in scope from the relatively obvious (such as performing manipu-

lations on the wrong workbook in Excel because your code doesn’t check which window is

active) to the subtle (such as extending a range to the wrong character or cell). In the fi rst exam-

ple, the procedure is likely to run perfectly, but the resulting workbook will bear little resem-

blance to what you were trying to accomplish. In the second example, you might get a result

that is almost correct—or the error might cause you to get perfect results sometimes and slightly

wrong results at other times.

Program logic errors tend to be the hardest errors to fi x. To nail them down, you need to trace

the execution of your code and pinpoint where things start to go wrong. To do that, you almost

always need to employ the debugging tools discussed in the next section.

A friend of mine wrote a very nice program to format and print forms. But while he was

testing it he noticed that after working fi ne about fi ve times, it suddenly sent only one-third of

the form to the printer during a trial run. He couldn’t get it to repeat this behavior. So he sur-

rounded the code with a loop and let it run continuously (dumping the sample form repeatedly

into a log fi le rather than wasting paper printing it over and over). He discovered that the error

only occurred once every 256 times the program ran. He never did locate the bug, but when he

gave the program to other people, he just told them that it worked “almost always.”

When Errors Aren’t Your Fault

Th ere are two other types of errors that you may run into—even though perhaps you shouldn’t. Th e

fi rst type is where Microsoft has documented a VBA item diff erently than it actually works. Th is

shouldn’t happen, but because of the complexity of VBA, it does. If you fi nd that your code absolutely

won’t work even though it follows the Microsoft documentation to the letter, consider the possibility

that the documentation may be incorrect. Search the Web using the VBA keywords involved to fi nd

if others have encountered this problem and learn how they’ve worked around it. Th e second type of

error, a distant relation of the fi rst type, is where one version of VBA behaves diff erently than another

version. For example, you might create a procedure that works perfectly in Word 2010, but you have

to change it to make it work with Word 2013. In an ideal world, this shouldn’t happen—but as you

know, this world is far from ideal. Th ese two errors are blessedly quite rare. For one thing, VBA has

been extensively used for decades, so it’s a very mature language with few surprises.

VBA’s Debugging Tools
VBA provides a solid assortment of debugging tools to help you remove the bugs from your pro-

cedures. The main windows you’ll employ for debugging are the Immediate window, the Locals

window, and the Watch window. You can access these tools in various ways, one of which is by

using the Debug toolbar (shown in Figure 17.5). Four of the buttons—Design Mode, Run Sub/

488 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

UserForm, Break, and Reset—are shared with the Standard toolbar. You’ll learn about most of

the others later in this chapter.

Figure 17.5

Th e Debug tool-

bar provides 13

commands for

debugging your

procedures.

Step Over

Step Out

Locals Window

Immediate Window

Watch Window

Quick Watch

Call StackDesign Mode

Run Sub/UserForm/
Continue

Break

Reset

Toggle Breakpoint

Step Into

Heisenbugs, Bohr Bugs, and Other Uncatchable Critters

Th e more complex and lengthy your code, the more likely you are to create bugs that are excep-

tionally diffi cult to catch. Usually, with determination and ingenuity, you can track down even

the tougher bugs located in a single procedure. But bugs that depend on several unforeseen and

improbable circumstances occurring simultaneously can be tough to isolate.

For example, an error that occurs in a procedure when the user makes a certain choice in a dialog

box is relatively easy to catch. But if the error occurs only when the user has made two particular

choices in the dialog box, it’s much harder to locate. And if the error is contingent on a particular

combination of three choices the user has made in the dialog box, or if it depends on an element

in the particular fi le from which the procedure is getting its data, you’ll likely have a much harder

time pinpointing it.

Programmer folklore defi nes various kinds of rare bugs by assigning them names derived from

such disciplines as philosophy and quantum physics. For instance, a heisenbug is defi ned as “a bug

that disappears or alters its behavior when one attempts to probe or isolate it.” Heisenbugs are

frustrating, as are Bohr bugs and mandelbugs (search online for details if you’re curious). But the

worst kind of bug is the schroedinbug, which is a design or implementation bug that remains quies-

cent until someone reads the code and notices that it shouldn’t work, whereupon it stops working

until the code is made logically consistent.

Th ese bugs are, of course, ridiculous—until you start to discover bit rot at work on your code and

have to explain the problem to your superiors.

Break Mode
Break mode is a vital tool for debugging your procedures because it lets you watch your code

execute step by step—line by line—in the Code window (by repeatedly pressing F8). This tech-

nique is called single-stepping.

VBA’S DEBUGGING TOOLS | 489

For example, if an If…Then…ElseIf…Else statement appears to be executing incorrectly, you

can step through it in Break mode and watch exactly which statements are executing, and which

are being skipped, to produce the bad result.

These are the easiest ways to enter Break mode:

 ◆ Click to place the blinking insertion cursor in the procedure you want to run in the Code

window and press the F8 key (or click the Step Into button on the Debug toolbar, or choose

Debug ➢ Step Into) to start stepping through it. Repeatedly press F8 to step down through

the code.

 ◆ Set one or more breakpoints in the procedure to cause VBA to halt execution and enter

Break mode when it reaches one of the marked lines. A breakpoint allows you to stop

execution at a particular point in your code. The easiest way to set a breakpoint is to click

beside the line where you want to stop. You click in the gray margin-indicator bar to the

left of the Code window. (You could also right-click in the line of code and choose Toggle ➢

Breakpoint from the context menu.) You can set any number of breakpoints. They’re espe-

cially useful when you need to track down a bug that you suspect is located in a particular

procedure because a breakpoint allows you to run the parts of a procedure that have no

problems at full speed and then stop the procedure where you think there might be prob-

lems. From there, you can step through the suspicious statements and watch closely how

they execute.

You can also enter Break mode in a couple of other ways:

 ◆ Interrupt your code by pressing Ctrl+Break and then click the Debug button in the result-

ing dialog box (see Figure 17.6). Normally, the only reason to enter Break mode this way is

if your code gets stuck in an endless loop (which you’ll typically recognize when the code

appears to be doing nothing for a long time or repeating itself when you think it shouldn’t

be). VBA highlights the statement that was executing when you pressed Ctrl+Break, but

(depending on your timing) it’s unlikely to be the statement that’s causing the problem in

your code—it’ll just be one of the statements in the offending loop. You’ll then need to step

through the loop to identify the aberrant statement.

Figure 17.6

You can enter Break

mode by pressing

Ctrl+Break and then

clicking the Debug

button in this

dialog box.

 ◆ Click the Debug button in a runtime-error dialog box such as the one shown in Figure 17.7.

In the Code window, VBA highlights the statement that caused the error. (You can also

490 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

click the Help button in the runtime-error dialog box to get an explanation of the error

before clicking the Debug button.)

Figure 17.7

Entering Break

mode from a run-

time error dialog

box like this one

takes you straight

to the off ending

statement in your

code. Th e problem

code will be high-

lighted in yellow.

Access’s SingleStep Method

In addition to hosting a full version of VBA, Access includes a unique, legacy macro-design tool

called the Macro Builder. Th is book doesn’t spend much time with the Builder feature because

Access’s VBA off ers much more capability and fl exibility than its Builder. However, if you want

to experiment with the Macro Builder, in Access click on the Ribbon’s Create tab, then click the

Macro icon on the far right. One interesting command (added to the Builder in Access 2007) is the

SingleStep method of the DoCmd object. Th is operates somewhat like a breakpoint, dropping you

into Break mode during execution and displaying Access’s specialized Macro Single Step dialog box.

You can insert DoCmd.SingleStep into a VBA macro as well. VBA recognizes it as a legitimate

line of code. However, VBA just ignores this statement during runtime. Only macros created in the

Access Builder will respond to this SingleStep method.

Th e Step Over and Step Out Commands
In Chapter 3, “Editing Recorded Macros,” you learned how to step through a procedure by

repeatedly pressing the F8 key to issue the Step Into command, going down the lines one at a

time. (You can also issue this command by clicking the Step Into button on the Debug toolbar or

choosing Debug ➢ Step Into, but F8 is ever so much more effi cient.)

Stepping into lets you see exactly what each statement in your code does, but you’ll often fi nd

that you need to get past sections of code that you’re sure are working fi ne so that you can step

through a section that seems suspicious. This situation is particularly true of loop structures,

which can have you going round and round—a real time-waster if you know the bug you’re

tracking down isn’t within the loop.

Break mode offers three features to speed up stepping through your code: the Step Over

command, the Step Out command, and the Run To Cursor command. The Step Over and Step

Out commands aren’t available until you enter Break mode (for example, by using the Step Into

command).

The Step Over command (which you can trigger by pressing Shift+F8, clicking the Step

Over button on the Debug toolbar, or choosing Debug ➢ Step Over) executes the whole Sub or

function called from the current procedure instead of stepping through the called procedure

VBA’S DEBUGGING TOOLS | 491

statement by statement as the Step Into command would do. (It “steps over” that procedure or

function.) Use the Step Over command when you’re debugging a procedure that calls another

procedure or function that you know to be error-free and that you don’t need to test step by step.

The Step Out command (which you can issue by Ctrl+Shift+F8, clicking the Step Out button

on the Debug toolbar, or choosing Debug ➢ Step Out) runs the rest of the current procedure at

full speed. Use the Step Out command to quickly execute the rest of a procedure once you’ve

gotten through the part that you needed to watch step by step.

The Run To Cursor command (which you can issue by pressing Ctrl+F8 or choosing Debug

➢ Run To Cursor) runs the code at full speed until it reaches the statement where the blinking

cursor currently is in the Code window, whereupon it enters Break mode. Click to position the

cursor in the appropriate statement before invoking this command.

Th e Locals Window
The Locals window provides a quick readout of the values and types of all variables or expres-

sions in the currently active procedure. It displays a collapsible tree view (see Figure 17.8).

Figure 17.8

Use the Locals

window to see at

a glance all the

expressions in the

active procedure.

An expression is a combination of keywords, operators, variables, and/or constants. Variables

are one kind of expression; but more complex expressions involve more than a single variable:

x > y, for example, is an expression stating that x is greater than y. This expression might be

True or False, depending on what’s happening during runtime.

The Expression column displays the name of each expression, listed under the name of the

procedure in which it appears. The Value column displays the current value of the expression

(including Empty if the expression is empty, or Null or Nothing as appropriate). And the Type

column displays the data type of the expression, with Variants listed as “Variant” along with

their assigned data type (for example, “Variant/String” for a Variant assigned the String data

type).

To display the Locals window, click the Locals Window button on the Debug toolbar or

choose View ➢ Locals Window. To hide the Locals window, click its close button.

From the Locals window, you can also click the button marked with an ellipsis (…) to display the

Call Stack dialog box, discussed later in this chapter. This button is available only in Break mode.

How to Float and Dock Windows

Remember that you can make panes (interior windows such as the Locals window) fl oat by either

dragging them or double-clicking their title bar. Restore them to their default docking location by

double-clicking their title bar a second time.

492 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Th e Watch Window
The Watch window (identifi ed as Watches in Figure 17.9) is a separate window that you use to

track the values of variables and expressions as your code executes. To display the Watch win-

dow, click the Watch Window button on the Debug toolbar or choose View ➢ Watch Window

in the VBA Editor. To hide the Watch window again, click its close button (clicking the Watch

Window button or choosing View ➢ Watch Window again doesn’t hide it).

Figure 17.9

Use the Watch win-

dow to track the

values of variables

and expressions in

your code.

The Watch window displays watch expressions—expressions in your code that you spec-

ify ahead of time. You want to view a dynamic display of the values in these variables or

expressions.

Watch-expression information can help you to pinpoint where an unexpected value for a

variable or an expression occurs as your code executes. The Watch window lists the names of

the watched expressions or variables in the Expression column, their values in the Value col-

umn, their type (Integer, Byte, String, Long, and so on) in the Type column, and their context

(the module and procedure in which they’re operating) in the Context column. So to track the

value of a given variable, you need only look at the Watch window at any given point while in

Break mode.

If a variable or expression listed in the Watch window hasn’t been initialized, the Watch win-

dow displays “< Out of Context >” in the Value column and “Empty” (for a variable other than a

Variant) or “Variant/Empty” (for a Variant) in the Type column.

The VBA Editor updates all watch expressions in the Watch window whenever you enter

Break mode and whenever you execute a statement in the Immediate window. So if you step

through a procedure in the Code window by pressing the F8 key (which keeps you in Break

mode), you can watch the value in a variable, or of an expression, as each statement executes.

This is a great way to pinpoint where an error or an unexpected value occurs—and is much

easier than moving the mouse over each variable or expression in question to check its value

by using the Auto Data Tips feature.

Here’s a typical debugging scenario. Let’s say your code is producing a preposterous result,

such as asserting that your annual salary is $2,200,000. As usual with most debugging, you’re

trying to fi gure out where in your code this sudden and massive gain in income is being cal-

culated. Observe the Watch window while single-stepping through your code to see in which

line of code the variable MySalary goes from 50,000 to 2,200,000. Now you’re right there close

to where the bug is and you can examine the preceding lines of code very carefully to see

what’s impacting the MySalary variable.

Because watch expressions slow down execution of your code, the VBA Editor doesn’t save

them with the code—you need to redo them for each editing session. However, the Editor does

store watch expressions during the current editing session, so you can move from procedure to

procedure without losing your watch expressions.

VBA’S DEBUGGING TOOLS | 493

Setting Watch Expressions

Sometimes referred to as conditional breakpoints, watch expressions give you considerable fl exibil-

ity when debugging. You can ask the VBA Editor to halt execution on most any kind of situation

you can think up, such as break on any line that causes a variable to exceed a certain value, go

below zero, change to a shorter string length, and so on. In other words, you specify a condition,

an expression such as MySalary > 50000, and the VBA Editor automatically halts execution and

displays the line where your salary increases beyond the expected 50,000. As you can imagine,

the conditional breakpoint is one of the best tools a debugger has.

To set a watch expression, add it to the list in the Watch window by following these steps:

 1. Select the variable or expression in your code, right-click it, and choose Add Watch from

the context menu to display the Add Watch dialog box (see Figure 17.10). The variable or

expression in which you right-clicked appears in the Expression text box.

Figure 17.10

In the Add Watch

dialog box, specify

the watch expres-

sion you want to

add.

You can also select the variable or expression you’re interested in and choose Debug

➢ Add Watch to display the Add Watch dialog box. If you choose Debug ➢ Add Watch

without selecting the variable or expression, you must type it in the Expression text box,

which is a waste of time.

 2. If necessary, adjust the settings in the Context group box. The Procedure drop-down

list is set to the current procedure, and the Module drop-down list is set to the current

module.

 3. In the Watch Type group box, adjust the option-button setting if necessary:

 ◆ The default setting—Watch Expression—adds the variable or expression in the

Expression text box to the list in the Watch window. However, conditional break-

points are more useful if you do more than merely observe the status of variables

or expressions. The following two list items describe the true benefi t of these

breakpoints.

 ◆ Break When Value Is True causes VBA to enter Break mode whenever the value of the

variable or expression changes to True.

 ◆ Break When Value Changes causes VBA to enter Break mode whenever the value

of the watch expression changes. Use this setting when dealing either with a watch

expression whose value you don’t expect to change but that appears to be changing

494 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

(such as MySalary in the previous example) or with a watch expression whose every

change you need to observe.

 4. Click the OK button to add the watch expression to the Watch window.

Use These Two Important Conditional Break Techniques

Th e Break When Value Is True option button allows you to run your code without stepping through

each statement that doesn’t change the value of the watch expression to True. Th is allows you to

specify that Break mode should be entered, for example, when your variable exceeds a certain value

(such as X > 10000) or equals another variable (such as x = y). Employing this kind of conditional

break can be extremely helpful when tracking down elusive bugs.

Th e Break When Value Changes option button allows you to run your code and stop at each location

where the value changes in the code.

You can also drag a variable or an expression from the Code window to the Watch window;

doing so sets a default watch expression in the current context. To set Break When Value Is True

or Break When Value Changes, edit the watch expression after dragging it to the Watch window.

Editing Watch Expressions

To edit a watch expression, right-click it in the Watch window and choose Edit Watch from the

context menu, or select it in the Watch window and choose Debug ➢ Edit Watch. Either action

will display the Edit Watch dialog box with the watch expression selected in the Expression box,

as shown in Figure 17.11. Change the context or watch type for the watch expression by using

the settings in the Context group box and the Watch Type group box, and then click the OK

button to apply your changes.

Figure 17.11

You can edit your

watch expressions

in the Edit Watch

dialog box.

Deleting Watch Expressions

To delete a watch expression, right-click it in the Watch window and choose Delete Watch from

the context menu. You can also delete the current watch expression by clicking the Delete button

in the Edit Watch dialog box.

VBA’S DEBUGGING TOOLS | 495

Using the Quick Watch Feature

For those times when you don’t need to create a watch expression for an expression or a vari-

able, when you merely want to observe the value, you can use the Quick Watch feature, which

displays the Quick Watch dialog box (see Figure 17.12) containing the context and value of the

selected expression.

To use Quick Watch, while in Break mode select the expression or variable in the Code

window and then click the Quick Watch button on the Debug toolbar, choose Debug ➢ Quick

Watch, or press Shift+F9. (If you’re already working in the Quick Watch dialog box, you can click

the Add button to add the expression to the Watch window.)

Figure 17.12

Use the Quick

Watch dialog box to

get quick informa-

tion on a variable

or expression for

which you don’t

want to set a watch

expression in the

Watch window.

Th e Immediate Window
One use for the Immediate window is as a virtual scratchpad. In the Immediate window you

enter lines of code that you want to test quickly, without having to enter them in a procedure

and then test the entire procedure. A second major use of the Immediate window is to display

information to help you check the values of variables while a procedure is executing.

In the fi rst case, you type code into the Immediate window, then press Enter to see the results

immediately (get it?). In the second case, you insert in your code Debug.Print statements that

display information in the Immediate window, where you can easily view it. We’ll explore both

of these techniques in the following sections.

To display the Immediate window, click the Immediate Window button on the Debug tool-

bar, choose View ➢ Immediate Window, or press Ctrl+G. To hide the Immediate window again,

click its close button. (Clicking the Immediate Window button, choosing View ➢ Immediate

Window, or pressing Ctrl+G when the Immediate window is displayed does not hide the

Immediate window.)

You can execute code in the Immediate window in both Break mode and Design mode.

What You Can’t Do in the Immediate Window

There are a number of restrictions on the code you can use in the Immediate window:

 ◆ You can’t use declarative statements (such as Dim, Private, Public, Option Explicit,

Static, or Type) or control-fl ow statements (such as GoTo, Sub, or Function). These state-

ments cause VBA to return an “Invalid in Immediate Pane” error.

 ◆ You can’t use multiline statements (such as block If statements or block For… Next state-

ments) because there’s no logical connection between statements on different lines in the

Immediate window: Each line is treated in isolation.

 ◆ You can’t place breakpoints in the Immediate window.

496 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Entering Code in the Immediate Window

The Immediate window supports a number of standard Windows editing keystrokes and key

combinations, such as Ctrl+X (Cut), Ctrl+C (Copy), Ctrl+V (Paste), Ctrl+Home (move the insertion

point to the start of the window), Ctrl+End (move the insertion point to the end of the window),

Delete (delete the current selection), and Shift+F10 (display the context menu).

The Immediate window also supports the following VBA Editor keystrokes and key

combinations:

 ◆ F5 continues running a procedure.

 ◆ Alt+F5 runs the error-handler code for the current procedure.

 ◆ F8 single-steps through code (executing one statement at a time).

 ◆ Shift+F8 procedure-steps through code (executing one procedure at a time).

 ◆ Alt+F8 steps into the error handler for the current procedure.

 ◆ F2 displays the Object Browser.

Finally, the Immediate window has a couple of commands of its own:

 ◆ Pressing Enter runs the current line of code.

 ◆ Pressing Ctrl+Enter inserts a carriage return.

Printing Information to the Immediate Window

As well as entering statements in the Immediate window for quick testing, you can use this

window for a different debugging technique. To include in your procedures statements that

print information to the Immediate window, use the Print method of the Debug object. Printing

like this allows you to create a log during execution, a log you can later examine for errors or

strange behavior. You don’t single-step or display message boxes containing the value of a vari-

able. Instead you print data for later study.

The syntax for the Print method is as follows:

Debug.Print [outputlist]

outputlist is an optional argument specifying the expression or expressions to print. You’ll

almost always want to include outputlist—if you don’t, the Print method prints a blank line,

which is of little use. Construct your outputlist using the following syntax:

[Spc(n) | Tab(n)] expression

Here, Spc(n) inserts space characters and Tab(n) inserts tab characters, with n being the

number of spaces or tabs to insert. Both are optional arguments, and for simple output, you’ll

seldom need to use them.

expression is an optional argument specifying the numeric expression or String expression

to print:

 ◆ To specify multiple expressions, separate them with either a space or a semicolon.

 ◆ A Boolean value prints as either True or False (as appropriate).

VBA’S DEBUGGING TOOLS | 497

 ◆ If outputlist is Empty, Print doesn’t print anything. If outputlist is Null, Print prints Null.

 ◆ If outputlist is an error, Print prints it as Error errorcode, where errorcode is the code speci-

fying the error.

As an example, you could log the contents of the String variables (expressions) CustName,

Address1, Address2, City, State, and Zip to the Immediate window in an address format by

using the following statements:

Debug.Print CustName

Debug.Print Address1 & “,“ & Address2

Debug.Print City & “,“ & State & “ “ & Zip

As another example, the following procedure prints the names and paths of all open work-

books in Excel to the Immediate window:

Sub See_All_Workbook_Names()

 Dim oBook As Workbook

 For Each oBook In Workbooks

 Debug.Print oBook.FullName

 Next

End Sub

In practice Debug.print is used by many programmers as a sometimes-quick, effi cient alter-

native to debugging with the Watch windows, message boxes, or breakpoints. You need to see if

something is going wrong with a variable (its value is wrong, but where does it go wrong?). So

you insert some Debug.Print statements to display the variable’s value while executing a proce-

dure. Then you can see if the value is wrong in that location or somewhere else in the code.

If your program contains multiple procedures, you might also want to debug.print the

name of the procedure. This example identifi es both the procedure and variable name within

the Debug.Print statement:

Debug.Print “In the Sub Add_Tax the variable intLocal is: “ & intLocal

This results in the following line in the Immediate window:

In Sub Add_Tax the variable intLocal is: 7

Th e Call Stack Dialog Box
When working in Break mode, you can summon the Call Stack dialog box (see Figure 16.1 in

Chapter 16) to display a list of the active procedure calls—the outside procedures being triggered

by the current procedure. It shows the history of your code’s execution path.

When you begin running a procedure, that procedure is added to the call-stack list in the

Call Stack dialog box. If that procedure then calls another procedure, the name of the second

procedure is added to the call-stack list, but only while the procedure is executing; it’s then

removed from the list. By using the Call Stack dialog box in Break mode, you can fi nd out what

procedures are being called by another procedure; this can help you establish which parts of

your code you need to check for errors.

To display the Call Stack dialog box, click the Call Stack button on the Debug toolbar, press

Ctrl+L, or select View ➢ Call Stack. To display one of the procedures listed in the Call Stack

dialog box, select it in the Project.Module.Function list box and click the Show button.

498 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Dealing with Infi nite Loops
You’ll probably fi nd it easy to tell when a procedure gets stuck in an infi nite loop: You’ll notice

that the procedure simply doesn’t stop executing. If you open Windows’s Task Manager, it

will report that your application has “stopped responding.” To interrupt an infi nite loop, press

Ctrl+Break. The VBA Editor then displays a Code Execution Has Been Interrupted dialog box.

Infi nite loops are also known as endless loops.
There are several ways to get stuck in infi nite loops, such as using GoTo statements without

If conditions or Do loops without While or Until constraints. These are easy enough to avoid,

but even if you do, it’s still possible for infi nite loops to occur in your code because of conditions

you haven’t been able to anticipate.

The best way to approach detecting and eliminating an infi nite loop is to use breakpoints

or a watch expression to pinpoint where the procedure enters the infi nite loop. Once you’ve

reached it, use the Step Into command to step into the procedure. Then use the Watch window

or the Locals window to observe the variable and expressions in the loop, which should indicate

when something is going wrong and causing the loop to be endless.

If your code contains a loop that should execute only a set number of times but you suspect

it’s running endlessly, you can insert a counter variable in the loop in an If… Then structure

that triggers either an Exit For statement or an Exit Do statement to exit the loop if it runs more

than a certain number of times.

Dealing with Runtime Errors
Despite the help that VBA provides by checking for language errors and compile errors, run-

time errors remain an unpleasant fact of life. Sooner or later, you will get runtime errors in your

code, but you don’t have to take them lying down. Just add error handlers, pieces of code that trap

errors, analyze them, and take action if they match given error codes.

An error handler is a preventative measure, allowing your code to manage problems grace-

fully rather than crashing in front of a user’s alarmed or bemused face.

When Should You Write an Error Handler?
Consider writing an error handler in the following circumstances:

 ◆ When a runtime error can cause your code to fail disastrously. For a procedure that tweaks

a couple of objects on a slide in PowerPoint, you’re unlikely to need an error handler. By

contrast, for a procedure that creates, deletes, or moves fi les, you’ll probably want an error

handler.

 ◆ When your program accesses peripherals or objects outside the application itself—the sta-

tus of which is unpredictable during design time. In this situation, you can identify partic-

ular errors that are likely to occur and that can be trapped. For example, when the user tries

to open a fi le, certain well-known errors can occur—perhaps the fi le doesn’t exist, or is cur-

rently in use by another computer, or is on a network drive, fl oppy drive, CD-ROM drive,

or removable drive that isn’t available at the time. You’ll also run into errors if the user tries

to use a printer or other remote device (say, a scanner or a digital camera) that’s not present,

not connected, turned off, or not confi gured correctly. Similarly, any procedure that deals

with a particular object in a document (for example, a chart in Excel) will run into trouble if

that object is not available.

DEALING WITH RUNTIME ERRORS | 499

Consider Trapping Errors Rather than Anticipating Them

In some instances, you may fi nd it simpler to trap a resulting error from a procedure than to

anticipate and try to forestall the many and various conditions that might lead to the generation

of the error. For example, instead of checking to make sure a fi le exists before you try to open or

manipulate the fi le, just trap any kind of error that results if the fi le isn’t detected.

Trapping an Error
Trapping an error means catching it in your code during runtime so that you can write program-

ming that handles the error.

VBA’s On Error statement triggers when there is a runtime error, allowing you to write code

that responds to the error.

Usually, you’ll want to prevent an error from stopping your VBA code, but you can also

anticipate particular errors and use them to determine a suitable course of action to follow from

the point at which they occur.

To trap an error, you use the On Error statement. The usual syntax for On Error is as follows:

On Error GoTo line

Here, line is a label specifying the line to which execution is to branch when a runtime

error occurs. For example, to branch to the label named ErrorHandler, you could use a struc-

ture like this:

Sub ErrorDemo()

 On Error GoTo ErrorHandler

 ‘ordinary code statements here

Exit Sub

ErrorHandler:

 ‘error-handling statements here

End Sub

The label you use to identify the error handler can be named with any valid label

name—you don’t have to call it ErrorHandler or anything similar. Some people fi nd that

a descriptive label (perhaps one that identifi es the type or types of error expected, such as

HandleErrorNoFileOpen) is clearer in the long run than a generic name; others prefer to go

with a generic name such as HandleErr.

Usually, you’ll want to place the error trap early, near the top of a procedure so that it’s active

and ready to trap errors for all the lines of code below it throughout the whole procedure. If nec-

essary, you can place several different error traps in a procedure by entering multiple On Error

statements where they’re needed—but only one can be enabled at a time. (Enabled means that an

error trap has been switched on by an On Error statement. When an error occurs and execution

branches to the error handler, that error handler is active.)
Inserting multiple error handlers in a procedure can be useful when you’re dealing with

statements that can cause different types of errors that may need to be trapped. In the following

example, the fi rst On Error statement directs execution to ErrorHandler1, and the second On

Error statement directs execution to ErrorHandler2:

Sub ErrorDemo2()

 On Error GoTo ErrorHandler1

500 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

 ‘statements here

 On Error GoTo ErrorHandler2

 ‘statements here

 Exit Sub

ErrorHandler1:

 ‘statements for first error handler here

ErrorHandler2:

 ‘statements for second error handler here

End Sub

Each error handler is limited to the procedure in which it appears, so you can create different

error handlers for different procedures and have each enabled in turn as the procedures run.

Because the error handler appears as code in the procedure, you need to make sure that it

doesn’t run when no error has occurred. You can do this by using either an Exit Sub statement

in the line just above the error-handler statement (this ends execution of the procedure) or a

GoTo statement that directs execution to a label beyond the error-handling code. The Exit Sub

statement is better if you choose to place your error handler at the end of its procedure, which is

standard practice and usually makes sense. The GoTo statement may prove easier to use if you

choose to place your error handler elsewhere in the procedure.

For a function, use an Exit Function statement rather than an Exit Sub statement. For a

property in a class module, use an Exit Property statement.

The following example uses an Exit Sub statement to cause execution to end before the error

handler if no error occurs:

Sub ErrorDemo3()

 On Error GoTo ErrorHandler

 ‘statements that might cause an error

 Exit Sub

ErrorHandler:

 ‘statements that handle the error

End Sub

This next example uses a GoTo statement to skip the error handler—which is placed

within the code of the procedure—unless an error occurs. When execution reaches the GoTo

SkipErrorHandler statement, it branches to the SkipErrorHandler label, thus bypassing the

code in the error handler:

Sub ErrorDemo4()

 On Error GoTo ErrorHandler

 ‘statements that might cause an error

 GoTo SkipErrorHandler

ErrorHandler:

 ‘statements that handle the error

SkipErrorHandler:

 ‘statements

End Sub

You read earlier in this book that some people don’t like GoTo statements for uses such as the

second example here. Given that this GoTo statement makes the fl ow of the procedure a little

harder to follow, you may be inclined to agree with them in this case. (The use of GoTo in the On

Error statement itself is, however, unavoidable.)

DEALING WITH RUNTIME ERRORS | 501

Disabling an Error Trap
Recall that an error trap works only for the procedure in which it appears, and VBA disables it

when the code in the procedure has fi nished executing. You can also disable an error trap before

the end of a procedure in which it appears if you wish by using the following statement:

On Error GoTo 0

Why would you do this? You might want to disable an error trap while testing a procedure to

enable yourself to pinpoint errors that occur after a certain point while at the same time retain-

ing error trapping for the fi rst part of the procedure.

Resuming after an Error
You use the Resume statement to resume execution of a procedure after trapping an error or han-

dling an error with an error-handling routine. The Resume statement takes three forms: Resume,

Resume Next, and Resume line.

Using a Resume Statement

The Resume statement causes execution to resume with the line that caused the error. Use

Resume with an error-handling routine that detects and fi xes the problem that caused the

offending statement to fail. For example, look at the error handler in Listing 17.1, which runs

when VBA is unable to apply a specifi ed style in Word.

Listing 17.1: Trapping a style error

 1. Sub StyleError()

 2.

 3. On Error GoTo Handler

 4.

 5. Selection.Style = “Executive Summary”

 6.

 7. ‘the rest of the procedure happens here

 8.

 9. ‘exit the procedure once execution gets this far

10. Exit Sub

11.

12. Handler:

13.

14. If Err = 5834 Then

15. ActiveDocument.Styles.Add _

 Name:=“Executive Summary”, Type:=wdStyleTypeParagraph

16. Resume

17. End If

18.

19. End Sub

502 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Here’s how the StyleError procedure in Listing 17.1 works:

 ◆ Line 1 starts the procedure, and line 19 ends it. Lines 2, 4, 6, 8, 11, 13, and 18 are spacers.

 ◆ Line 3 uses an On Error statement to enable the imaginatively named error handler, which

is identifi ed by the Handler label in line 12.

 ◆ Line 5 applies the style named Executive Summary to the current selection. If this opera-

tion succeeds, execution will continue at line 7, which in this example contains only a com-

ment indicating that this is where the rest of the procedure would take place.

 ◆ Line 9 is a comment introducing line 10, which holds the Exit Sub statement to end execu-

tion of the procedure before the error handler.

 ◆ If the Selection.Style statement in line 5 causes an error, execution branches to the

Handler label in line 12, and the error handler is activated. Line 14 compares the error

value to 5834, the error that occurs if the specifi ed style doesn’t exist. If it matches, line 15

then adds the missing style to the document, and the Resume statement in line 16 causes

execution to resume where the error occurred, on line 5. Because the specifi ed style is now

available, the Selection.Style statement runs without an error.

How to Find VBA Error Numbers and Their Explanations

To fi nd error numbers, here are three approaches:

 ◆ Go to this Web page:

http://msdn2.microsoft.com/en-us/library/Aa264975(VS.60).aspx.

 ◆ Search the VBA Help system for trappable errors.

 ◆ Deliberately cause the error yourself and note the number and description in the resulting

error-message dialog box that VBA displays.

Using a Resume Next Statement

Resume Next causes execution to resume with the next statement after the statement that caused

the error. You can use Resume Next in either of the following circumstances:

 ◆ With an error-handling routine that ignores the error and allows execution to continue

without executing the offending statement

 ◆ As a straightforward On Error Resume Next statement that causes execution to continue at

the next statement after the statement that caused an error, without using an error handler

to fi x the error

As an example of the fi rst circumstance, if the style specifi ed in the previous example isn’t

available, you can use a Resume Next statement to skip applying it:

Sub StyleError2()

 On Error GoTo Handler

 Selection.Style = “Executive Summary”

http://msdn2.microsoft.com/en-us/library/Aa264975(VS.60).aspx

DEALING WITH RUNTIME ERRORS | 503

 ‘the rest of the procedure happens here

 ‘exit the procedure once execution gets this far

 Exit Sub

Handler:

 Resume Next

End Sub

The descriptions of Resume and Resume Next apply if the error occurred in the procedure that

contains the error handler. But if the error occurred in a different procedure from the procedure

that contains the error handler, Resume causes execution to resume with the last statement that

transferred execution (called) out of the procedure where the handler is located; Resume Next

causes execution to resume with the statement after the last statement to call out of the proce-

dure that contains the error handler.

Using a Resume Line Statement

Resume line causes execution to resume at the specifi ed line. Use a label to indicate the line,

which must be in the same procedure as the error handler.

For example, if a procedure tried to open a particular fi le, you could create a simple error han-

dler that uses a Resume line statement, as shown in Listing 17.2. This procedure works with Word.

To make it work with other applications, substitute the appropriate error numbers in line 15.

Listing 17.2: Resuming execution at a specifi ed line

 1. Sub Handle_Error_Opening_File()

 2.

 3. Dim strFName As String

 4.

 5. StartHere:

 6.

 7. On Error GoTo ErrorHandler

 8. strFName = InputBox(“Enter the name of the file to open.”, _

 “Open File”)

 9. If strFName = ““ Then End

10. Documents.Open strFName

11. Exit Sub

12.

13. ErrorHandler:

14.

15. If Err = 5174 Or Err = 5273 Then MsgBox _

 “The file “ & strFName & “ does not exist.” & vbCr & _

 “Please enter the name again.”, _

 vbOKOnly + vbCritical, “File Error”

16. Resume StartHere

17.

18. End Sub

504 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Here’s how Listing 17.2 works:

 ◆ Line 1 starts the procedure, and line 18 ends it.

 ◆ Line 2 is a spacer. Line 3 declares the String variable strFName. Line 4 is another spacer.

 ◆ Line 5 contains the StartHere label, to which execution will return from the Resume state-

ment in line 16. Line 6 is a spacer.

 ◆ Line 7 uses an On Error statement to enable the error handler ErrorHandler.

 ◆ Line 8 displays an input box prompting users for the name of the fi le they want to open,

and stores the name in the variable strFName, which line 9 then tries to open. Line 10

checks strFName against an empty string and ends execution if it matches.

 ◆ If the fi le exists and can be opened, execution passes to line 11, where an Exit Sub state-

ment exits the procedure, ending its execution. Otherwise, an error is generated, and

execution branches to the ErrorHandler label in line 13, where the error handler becomes

active.

 ◆ Line 14 is a spacer. Line 15 then compares the value of the error to 5174 (the error that occurs

if VBA can’t fi nd the fi le) and to 5273 (the error that occurs if the document name or path

isn’t valid in Word). If either of these comparisons matches, line 15 displays a message box

advising users of the error and prompting them to enter the correct fi lename.

 ◆ The Resume statement in line 16 then returns execution to the StartHere label in line 5.

Line 17 is a spacer.

Try Inserting a Counter Variable to Deal with Repetitious

User Errors

For some procedures, you may want to build in a counter mechanism to prevent users from repeat-

ing the same error endlessly because they don’t grasp what’s wrong. By incrementing a counter

variable each time the error handler is invoked and checking the resulting number, you can choose

to take a diff erent action after a number of unsuccessful attempts to execute a particular action.

You can’t use a Resume statement anywhere other than in an error-handling routine (or an On

Error Resume Next statement). If you do, VBA reports an error.

Getting a Description of an Error
To see the description of the current error, return the Description property of the Err object:

MsgBox Err.Description

In general, operating-system and programming-language error messages tend to be terse,

cryptic, and of less help to the end user than to the people who built the OS or language. Think

twice before displaying one of these error messages to an end user. The error message shown in

Figure 17.7 says “Run-time error ‘5941’: The requested member of the collection does not exist.”

As you can imagine, most users would be baffl ed by this message; some would panic.

Usually, it’s more effective, not to mention kinder, to write and display a more verbose error

message of your own devising. It should explain in ordinary English what the problem is—and,

preferably, what (if anything) the user can do to solve it.

HANDLING USER INTERRUPTS IN WORD, EXCEL, AND PROJECT | 505

Raising Your Own Errors
As part of your testing, you may want to deliberately simulate errors so that you can see how

well your error handler handles them. (Programming lingo sometimes substitutes the word

raise for cause or trigger. Nobody knows why.)

To cause an error to be triggered, use the Raise method of the Err object, specifying only the

number argument. number is a Long argument giving the number of the error that you want to

cause. For example, the following statement “raises” error 5121:

Err.Raise 5121

Suppressing Alerts
Many of the procedures you build will use message boxes or dialog boxes to allow the user to

choose options for the procedure. In some applications—such as Word, Excel, PowerPoint, and

Access—you can use the DisplayAlerts property of the Application object to suppress the

display of message boxes and errors while a procedure is running:

 ◆ In Word, DisplayAlerts can be set to wdAlertsNone (0) to suppress alerts and message

boxes, wdAlertsMessageBox (-2) to suppress alerts but display message boxes, or

wdAlertsAll (-1, the default) to display all alerts and message boxes. DisplayAlerts is a

sticky setting. You need to set DisplayAlerts explicitly back to one of four things: to True

or to wdAlertsAll when you want to see alerts again after setting it to False, to wdAlerts-

None, or to wdAlertsMessageBox. VBA resets the default value when you restart Word.

 ◆ In Excel, DisplayAlerts is a read/write Boolean property that can be set to True to display

alerts and False to suppress them. The setting sticks until you change it or restart Excel, at

which point VBA resets it to True.

 ◆ In PowerPoint, DisplayAlerts is a read/write property that can be set to ppAlertsAll

to display all alerts and ppAlertsNone to suppress all alerts. The setting sticks until you

change it or until you restart PowerPoint, at which point VBA resets it to ppAlertsNone.

 ◆ In Access, you use the pervasive DoCmd object’s SetWarnings method, like this:

 DoCmd.SetWarnings False

Handling User Interrupts in Word, Excel, and Project
Errors may seem quite enough of a problem, but you also need to decide what will happen if

a user tries to interrupt your code by pressing Ctrl+Break during execution. Some VBA hosts,

including Word and Excel, offer you three options:

 ◆ You can allow a user interrupt to stop your code. This is the easy way to proceed (and,

as the default condition, needs no effort on your part), but in complex procedures, it may

cause problems. For example, the user may have spent fi ve minutes typing in data, only to

lose it because the data wasn’t saved due to the early termination of the program.

 ◆ You can prevent user interrupts by disabling user input while the procedure is running.

This is simple to do, but you run the risk of creating unstoppable code if a procedure enters

an endless loop. The user would have to power down the machine or, at least, invoke

Task Manager and kill your task. Any unsaved work in the procedure or even the host

506 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

application will be lost. The user might have been typing for hours without saving their

work. Losing this much…it can send some people right over the edge.

 ◆ As a compromise between the fi rst two options, you can allow user interrupts during

certain parts of a procedure and prevent user interrupts during more critical parts of a

procedure.

Disabling User Input While a Procedure Is Running
To disable user input while a procedure is executing, disable the Ctrl+Break key combination

by setting the EnableCancelKey property of the Application object to wdCancelDisabled (in

Word) or xlDisabled (in Excel):

Application.EnableCancelKey = wdCancelDisabled ‘Word

Application.EnableCancelKey = xlDisabled ‘Excel

VBA automatically enables user input again when the procedure stops executing. You can

also reenable user input during a procedure by setting the EnableCancelKey property to

wdCancelInterrupt (in Word) or xlInterrupt (in Excel):

Application.EnableCancelKey = wdCancelInterrupt ‘Word

Application.EnableCancelKey = xlInterrupt ‘Excel

Excel offers a third setting, xlErrorHandler, that traps the Ctrl+Break keystroke as error 18.

You can deal with this error as you would any other error. Here’s a quick example:

Sub CancelKey_Example()

 Dim i As Long

 On Error GoTo EH

 Application.EnableCancelKey = xlErrorHandler

 For i = 1 To 100000000 ‘ time-consuming loop

 Application.StatusBar = i

 Next i

EH:

 If Err.Number = 18 Then

 If MsgBox(“Do you want to stop the procedure?” _

 & vbCr & vbCr & “If not, stop pressing Ctrl+Break!”, _

 vbYesNo + vbCritical, “User Interrupt Detected”) = vbYes Then End

 End If

End Sub

Disabling User Input While Part of a Procedure Is Running
You may want to temporarily disable user input while a procedure is executing a sensitive

task that must not be interrupted. Then when the task is complete, you can reenable user input

because it’s safe for the user to stop the procedure again.

For example, say you have a procedure in which a section of code moves a number of fi les

from one folder to another. You don’t want the user to prevent the code that executes the move

operations from being interrupted. That could cause problems because if the user stopped the

procedure in mid-task, it might leave some fi les still in the source folder and some in the desti-

nation folder.

DOCUMENTING YOUR CODE | 507

Here’s an example using Word:

‘interruptible actions up to this point

Application.EnableCancelKey = wdCancelDisabled

For i = 1 to LastFile

 SourceFile = Source & “\Section” & i

 DestFile = Destination & “\Section” & i

 Name SourceFile As DestFile

Next i

Application.EnableCancelKey = wdCancelInterrupt

‘interruptible actions after this point

Documenting Your Code
Some musicians can read a symphonic score and more or less “hear” the music. Likewise, some

programmers can read raw code and visualize what it does. But most programmers need com-

ments to help them understand what code is doing, particularly if they wrote the code months

before or if it was written by another programmer.

Many programmers also fi nd it easier to debug their procedures by documenting their code.

The best way to document your code is to add comments to it, either as you create the code or

after you’ve fi nished creating it: This procedure does this. It expects this data as input and pro-

vides this as its output. This line does this. And so on.

Some experts advise that you document your code as you create it in any procedure in which

you’re exploring your way and trying different methods to reach your goal. Add comments to

explain what action each group of statements is trying to achieve. Once you’ve gotten the proce-

dure to work, go through the code and delete the statements you didn’t use, using the comments

to identify which sections are now useless and which are still worthwhile and leaving only the

comments that are relevant to how the remaining code functions.

Also consider adding comments when you’re modifying an existing procedure so that you

don’t lose track of your changes. Once you have the procedure working to your liking, remove

any unnecessary comments and reword any verbose or unclear comments.

Other experts suggest documenting your code when you’ve fi nished writing it. This allows

you to enter only the comment lines that you want to be there permanently. This is the way to go

when you’re fairly sure of the direction of your code when you start writing the procedure and

the procedure needs only a few pointers to make its code clear once it’s complete.

To document your code, use comments prefaced by either the single quote (’) or the Rem key-

word (short for remark).

Use Block-Commenting as a Debugging Tool

Remember that commenting can also be employed as a debugging technique–when you want to

see how code runs with some lines inactivated. In other words, does the bug disappear when the

commented-out lines are not executed? If so, the bug is probably located somewhere in those lines

of code. You can “comment out” a group of lines, a whole line, or part of a line: anything to the

right of an apostrophe or the Rem keyword is commented out. See the section in Chapter 3 titled

“Commenting Out Lines” for details on this tactic.

508 | CHAPTER 17 DEBUGGING YOUR CODE AND HANDLING ERRORS

Few programmers use Rem anymore. When you’re trying to comment out only a part of a

line, the apostrophe is usually the better choice anyway. If you do choose to use the Rem key-

word, you’ll need to add a colon before it to make it work consistently (some statements accept a

Rem without a colon at their end; others generate a compile error):

Rem This is a comment line.

Documents.Add: Rem create a document based on Normal.dotm

Generally, apostrophe-commented remarks are separated by a few spaces or tabs from any

statement the line contains (as in the second line here). This makes the code and comments

easier to read than comments using Rem:

‘This is a comment line

Documents.Add ‘create a document based on Normal.dotm

It’s tempting to think that you don’t need to document your code because you’ll be able to

recall what it does. But once you’ve written a lot of code, you probably won’t be able to remem-

ber. Coming back to a procedure six months after writing it, you’ll fi nd it as unfamiliar as if

someone else had written it. And if you’ve become a VBA whiz, you may even fi nd it hard to

visualize the clumsy techniques you were using at that time.

Most programmers have a distinct aversion to documenting their code; for some, the dislike

of documenting is almost pathological. You can see why: When you’re writing the code, docu-

menting what each line does slows you down and distracts you from your larger purpose. And

documenting after the code is fi nished and tested is tedious work. Besides, anyone that’s compe-

tent should be able to read the code and see what it does…shouldn’t they?

Maybe so, but consider this: It’s likely that you won’t always be the person working with your

code—at times, others may work with it too, and they’ll appreciate all the help they can get in

understanding its purposes and behaviors. Likewise, the code on which you work won’t always

be your own—you may at times have to debug code that others have written, and in this case,

you’ll be the one grateful for comments.

Th e Bottom Line

Understand the basic principles of debugging. A major aspect of programming is testing

your code. Debugging can be enjoyable if you think of it as a puzzle that you can solve. But

whether or not you enjoy it, debugging is essential if you want to preserve a reputation as a

professional.

Master It When testing your code, try to imagine ways that the code could fail.

Describe a situation that can produce unanticipated results.

Recognize the four different types of errors you’ll create. Experts have concluded that

there are four primary categories of error in programs.

Master It Name two of the four basic types of programming errors.

Employ VBA’s debugging tools. The VBA Editor and VBA include a generous assortment

of debugging tools to help you track down and remove bugs from your procedures. The main

THE BOTTOM LINE | 509

windows you’ll employ for debugging are the Immediate window, the Locals window, and

the Watch window.

Master It The Watch window is especially useful because you can set watch expres-

sions (also known as conditional breakpoints). Describe this debugging tactic.

Deal with runtime errors You can trap some runtime errors (errors that show up while a

procedure is executing) while debugging your code. But others show up only while your user

is interacting with your program—and you’re probably not there to help them. There is a

way, though, to soften the blow and, in some cases, even fi x a problem by adding error

handlers to your programs.

Master It Error handlers are special statements and sections of code that detect and

then manage runtime errors. What VBA statement detects a runt ime error?

Chapter 18

Building Well-Behaved Code

This chapter concentrates on the principles of good behavior. Once you’ve built a procedure

that’s useful and that works consistently as intended, you’ll probably want to distribute it to as

many of your coworkers as might use it or even to a wider audience on the Internet. Before you

distribute it, though, you should make sure that the procedure is as civilized as possible in its

interaction with users and with the settings they may have chosen on their computers. It’s all

too easy to distribute an apparently solid, useful procedure that runs roughshod over the user’s

preferences or one that fails unexpectedly under certain circumstances. In this chapter, you’ll

look at how to avoid such problems and how to construct your procedures so that the user will

have no problem interacting with them.

The specifi cs of good program behavior vary from application to application, and you will

need to apply the principles of the application with which you’re working. This chapter gives

some examples.

In this chapter you will learn to do the following:

 ◆ Understand the characteristics of well-behaved procedures

 ◆ Retain and restore the user environment

 ◆ Let the user know what’s happening

 ◆ Check that the procedure is running under suitable conditions

 ◆ Clean up after a procedure

What Is a Well-Behaved Procedure?
A well-behaved procedure leaves no trace of its actions beyond those that the user expected it to

perform. This means the following:

 ◆ Making no detectable changes to the user environment or, if the procedure does need to

make changes (for example, in order to do its job), restoring the previous settings

 ◆ Presenting the user with relevant choices for the procedure and relevant information once

the procedure has fi nished running

 ◆ Showing or telling the user what is happening while the procedure is running

 ◆ Making sure (if possible) that conditions are appropriate for the procedure to run success-

fully—before the procedure takes any actions

512 | CHAPTER 18 BUILDING WELLBEHAVED CODE

 ◆ Anticipating or trapping errors wherever possible so that the procedure doesn’t crash or, if

it does crash under exceptional circumstances, so that it does so as gracefully as possible,

minimizing damage to the user’s work

 ◆ Leaving users in the optimal position to continue their work after the procedure fi nishes

executing

 ◆ Deleting any scratch documents, folders, or other detritus that the procedure created in

order to perform its duties but that are no longer needed

You can probably think of a couple of examples in which applications you use don’t exactly

do these things. For example, do you use Word? Then you’re probably familiar with the less-

than-inspiring behavior of the Page Up and Page Down feature. While working in a document,

press the Page Down key three times, then press the Page Up key three times. Your blinking

insertion point should be back in the exact location where it was before you paged down, then

back up, right? Unfortunately, the insertion point doesn’t always (let’s be honest, it will rarely)

return to the exact point in the document as it should.

So if you page through your document to look at some paragraph but then try to return to

where you were last, you always need to check that the insertion point is in the right place before

you start typing—otherwise, the characters are very likely to land in the wrong place. Word was

fi rst released in October 1983, so Microsoft has had time to fi x this. It would be simple for Word to

note the insertion point before the paging, but why that’s never done remains a mystery. I’ll show

you how to do this in your macros in the section titled “Leaving the User in the Best Position to

Continue Working” later in this chapter.

Such weaknesses in commercial applications’ interfaces provoke two main reactions among

developers. First, if users are accustomed to such niggles as having to reposition the selection or

change the view when they shouldn’t need to, they’re unlikely to get too annoyed with having

to perform similar actions after running one of our procedures. This is particularly true if your

macro saves them plenty of time and effort, for which they should be grateful rather than picky.

Besides, they mostly likely didn’t pay for your macro, did they?

The second reaction is an impressive (and sometimes overzealous) determination on the part

of macro programmers to restore the user environment absolutely perfectly even if major soft-

ware corporations seem incapable of producing software that does so.

The fi rst approach tends to be more economical in its code and the second more inventive. To

get your work done and retain your sanity, you’ll probably want to steer a course between the

two extremes.

Retaining or Restoring the User Environment
In many cases, your procedures will run without even needing to change the user environ-

ment—but if not, restore it as closely as possible to its previous state. What this means depends

on the host application, but here are some examples of environment changes in Word, Excel, and

PowerPoint:

 ◆ In Word: Changing the revision-marking (Track Changes) setting so that you can change

the text without the changes being marked as revisions.

 ◆ In Word or PowerPoint: Changing the view to a different view so that you can perform cer-

tain operations that cannot be performed in the original view.

LEAVING THE USER IN THE BEST POSITION TO CONTINUE WORKING | 513

 ◆ In Excel: Creating a temporary worksheet on which you can manipulate data secure

in the knowledge that you don’t need to check whether any ranges are already occupied

by user data.

 ◆ In any application that lets you manipulate its Find and Replace feature: Using the Find

and Replace feature to identify and/or modify parts of a document, then restoring users’

last search (and replace, if necessary) so that they can perform it again seamlessly. The

problem here is that most applications have “sticky” Find and Replace settings to allow

the user to perform the same search or replacement operation again quickly without

reentering the parameters. If you’ve replaced users’ search and replacement parameters,

they’ll get a rude shock the next time they try to search or replace. This is particularly true

if you’ve turned on some esoteric feature like Match Case. The next time the user tries to

search for fl orida, they will fi nd no matches, even if the document is about Miami and is

jam-packed with the word Florida. Why? Because your macro left the Match Case fi lter

turned on, and the user didn’t capitalize Florida when initiating the search. Fail.

You’ll want to save information about the user’s environment so that you can restore it at the

end of the procedure. If your procedure will mess around with the Match Case property of

the Word’s Find and Replace feature, at the start of this procedure you save the user’s current

value in this property in a private variable, public variable, or custom object as appropriate.

Then at the end of your macro, fetch the saved value and restore it to the property you tempo-

rarily modifi ed. Here’s an example:

Dim CaseStatus As Boolean ‘match case is either on or off

 CaseStatus = Selection.Find.MatchCase ‘save the user’s setting

 Selection.Find.MatchCase = True ‘our macro needs to be case-sensitive

 ‘ execute statements in the macro

 Selection.Find.MatchCase = CaseStatus ‘restore the user’s preference

Leaving the User in the Best Position to Continue
Working
After your procedure fi nishes running, users need to be in the best possible position to continue

their work. What exactly this best possible position entails depends on the situation, but here are

three simple suggestions:

 ◆ Usually, you’ll want to leave users viewing the same document they were working on

when they started running your macro. There are some obvious exceptions to this, such

as when the procedure creates a new fi le for the user and the user is expecting to work in

that fi le, but the general principle applies in most situations.

 ◆ If a fi le is essentially untouched (at least from the user’s point of view) by your macro, the

blinking insertion cursor (selection) should probably be placed back where it was when

the user started running the procedure. To restore the selection, you may want to defi ne a

514 | CHAPTER 18 BUILDING WELLBEHAVED CODE

range at the start of your procedure and then move the selection back to it at the end of the

procedure. In some applications, you could also use a bookmark or a named range—but if

you do, be sure to remove it afterward. Remember, leave no debris behind.

Listing 18.1 is an example macro that you can try out. It saves a Word document’s current

blinking insertion-cursor location in a bookmark. Next it moves the cursor down a few lines

and shows you a message box so you can see the new location of the cursor. Finally, it restores

the cursor to its original location:

Listing 18.1: Restoring the cursor

1. Sub SaveAndRestoreCursor()

2.

3. ‘save the current cursor location in a bookmark

4. ActiveDocument.Bookmarks.Add Name:=”OriginalInsertionPoint”, _

 Range:=Selection.Range

5.

6. ‘move down eight lines

7. Selection.MoveDown Unit:=wdLine, Count:=8

8.

9. MsgBox “moved to here (look for insertion line; it’s moved down 8 lines from where it

 was.)”

10.

11. ‘fetch the saved bookmark and go to it

12. Selection.GoTo what:=wdGoToBookmark, Name:=”OriginalInsertionPoint”

13.

14. MsgBox “Now the insertion line has been restored to where it was when this macro

 started.)”

15.

16. ‘remove the bookmark to leave no debris behind

17.

18. ActiveDocument.Bookmarks(“OriginalInsertionPoint”).Delete

19. End Sub

Notice in line 18 that we delete our bookmark when we’ve fi nished using it. Don’t leave rub-

bish behind.

 ◆ If the procedure has created a new object in the fi le, and the user will be expecting to work

with it, you may want to have that object selected at the end of the procedure.

Keeping the User Informed during the Procedure
A key component of a well-behaved procedure is keeping the user adequately informed

throughout the process. In a macro that performs a basic if tedious task, adequate information

may require only a clear description in the macro’s Description fi eld, to assure users that they’re

choosing the right procedure from the Macros dialog box.

KEEPING THE USER INFORMED DURING THE PROCEDURE | 515

With a more complex procedure, adequate information will probably have to be more exten-

sive: You may need to display a starting message box or dialog box, show information on the

status bar during the procedure, display an ending message box, or create a log fi le of informa-

tion so that the user has a record of what took place during execution of the procedure.

You must fi rst decide whether to disable user input during the procedure. In Word and

Excel, you can disable user input to protect sensitive sections of your procedures by setting the

EnableCancelKey property of the Application object (as discussed in “Disabling User Input

While a Procedure Is Running” in Chapter 17, “Debugging Your Code and Handling Errors”).

When you do so, it’s a good idea to indicate to the user at the beginning of the procedure that

input will be disabled and explain why. Otherwise, a user may react to a procedure that seems

not to be executing in the same way they would respond to an application that had hung—by

trying to close the application forcibly via Task Manager. To keep the user informed about other

aspects of the procedure, you have several options, which are discussed in the following sec-

tions. But fi rst, the sidebar “Disabling Screen Updating” examines how you can hide information

from the user (and the reasons for doing so) by disabling screen updating in Word and Excel.

Disabling Screen Updating

Access, Word, and Excel let you disable screen updating—that is, stop the redrawing of the infor-

mation in the document area. Th e other parts of the application window—the title bar, command

bars, status bar, scroll bars, and so on—continue to update, but these items are usually relatively

static compared to the document area and so don’t take much updating. Still, if the user resizes

the application window or the document window, they will see these other parts of the application

window change, even with screen updating disabled.

Th ere are two advantages to disabling screen updating while your procedure is running:

 ◆ You can speed up the execution of your procedures somewhat. Th is improvement was quite

noticeable in the early days of personal computing, and it is still perceptible with underpowered

computers that have slow graphics cards. Most computers built since 2000 or so have relatively

capable graphics cards, so turning off screen updating makes little visible diff erence. Any speed

improvement from disabling screen updating applies especially to procedures that cause a lot of

changes to the onscreen display. For example, suppose a procedure in Word strips a certain type

of information out of the current document, pastes it into a new document, creates a table out

of it, and applies assorted formatting to the table. Th e computer will expend a fair amount of

eff ort updating what’s appearing on the monitor. Th is is wasted eff ort if the user isn’t hanging

on every operation, so you might as well turn off screen updating.

 ◆ You can hide from users any parts of the procedure that you don’t want them to see. Th is

sounds totalitarian, but it’s usually more like a cross between benevolent dictatorship and

public television: People shouldn’t see certain things that might really upset them, and there’s

a lot that most people don’t really need to know about. It's the same when you write programs:

If users don’t know about the operations that a procedure will routinely perform to achieve

certain eff ects, they may be surprised or dismayed by what they see onscreen. For example,

in a procedure that moves an open fi le, you might want to hide from the user the fact that the

procedure closes the open fi le, moves it, and then reopens the fi le from its new location. By

disabling screen updating, you can achieve this.

516 | CHAPTER 18 BUILDING WELLBEHAVED CODE

Th e major disadvantage to disabling screen updating is that doing so prevents users from seeing

information that might be useful to them. In the worst case, users may assume from the lack

of activity onscreen that either the procedure has entered an endless loop or the computer has

hung, and so they may try to stop the procedure by pressing Ctrl+Break or Ctrl+Alt+Delete to use

Task Manager to close the application. (Task Manager typically lists the host application as “Not

responding” for much of the time VBA code is running, which doesn’t help.)

To forestall users from disrupting a procedure, warn them in advance that a procedure will disable

screen updating. For instance, you might mention the fact in a message box at the beginning of

the procedure, or you might display a dialog box that allows the user to choose whether to disable

screen updating and have the procedure run faster or to leave screen updating on and have the

procedure run at its normal speed and provide a performance possibly worth watching.

If you don’t display a message box or dialog box at the beginning of a procedure, you may want to

display information on the status bar to tell the user what’s going on during the procedure. Word

and Excel update the status bar and the title bar of the application even if screen updating is turned

off —provided the status bar and the title bar are visible. To display information on the status bar,

assign a suitable string to the StatusBar property of the Application object:

Application.StatusBar = _

 “Word is creating 308 new documents for you to edit. Please wait …”

Alternatively, you can disable screen updating for parts of a procedure and turn it back on, or

refresh it, for other parts. Consider a procedure that creates and formats a number of documents

from an existing document. If you turn off screen updating at the beginning of the procedure and

then refresh it once each document has been created and formatted, the user will see each docu-

ment in turn (which conveys the progress the procedure is making) without seeing the details

of the formatting. What’s more, the procedure will run faster than if the screen were showing all of

the formatting taking place.

To turn off screen updating, set the ScreenUpdating property of the Application object to

False:

Application.ScreenUpdating = False

To turn screen updating back on, set ScreenUpdating to True again:

Application.ScreenUpdating = True

In Access, use the Echo method of the DoCmd object to turn screen updating on or off , respectively:

DoCmd.Echo True ‘turns updating on

DoCmd.Echo False ‘turns updating off

In Word, to refresh the screen with the current contents of the video memory buff er, use the

ScreenRefresh method of the Application object:

Application.ScreenRefresh

KEEPING THE USER INFORMED DURING THE PROCEDURE | 517

Manipulating the Cursor
Word and Excel permit you to manipulate the cursor (the mouse pointer). You may need to do

this because VBA automatically displays the busy cursor (an hourglass in Windows XP, a rotating

ring in Windows versions since then) while a VBA procedure is running and then restores the

normal cursor when it has fi nished. Sometimes, however, you may need or want to specify

the cursor’s appearance in your code.

Stick with the Familiar Cursor Cues

After using computers for even a few months, users tend to develop almost Pavlovian reactions

to the cursor, with the busy cursor signifying (in ascending order) a momentary breather (or a

slow computer), a chance to grab a cup of coff ee or chat with a colleague, or the onset of panic that

the computer has hung before they’ve saved the last three hours of work. You usually won’t want

to mess with these reactions. So it’s a mistake to display an I-beam insertion cursor or “normal”

arrow cursor when the system is in fact busy—or to display the busy cursor after the procedure

has in fact fi nished running.

Manipulating the Cursor in Word

Word implements the cursor via the System object. To manipulate the cursor, you set the Cursor

property. This is a read/write Long property that can be set to the following values: wdCursorIBeam

(1) for an I-beam cursor, wdCursorNormal (2) for a normal cursor, wdCursorNorthWestArrow (3)

for a left-angled resizing arrow (pointing up), and wdCursorWait (0) for the busy cursor. The exact

appearance of the cursor depends on the cursor scheme the user has selected.

For example, the following statement displays a busy cursor:

System.Cursor = wdCursorWait

Note that a user can customize the cursors by clicking the Mouse icon in Control Panel to

open the Mouse Properties dialog box, then selecting the Pointers tab.

Manipulating the Cursor in Excel

Excel lets you manipulate the cursor through the Cursor property of the Application object.

Cursor is a read/write Long property that can be set to the following values: xlIBeam (3) for

an I-beam cursor, xlDefault (-4143) for a default cursor, xlNorthwestArrow (1) for the arrow

pointing up and to the left, and xlWait (2) for the busy cursor.

For example, the following statement displays the busy cursor:

Application.Cursor = xlWait

When you explicitly set the Cursor property of the Application object in Excel, remember to

reset it to something appropriate before your code stops executing. Otherwise, the cursor stays

as you left it.

Displaying Information at the Beginning of a Procedure
At the beginning of many procedures, you’ll probably want to display a message box or a

dialog box. For this purpose, you’ll typically use a Yes/No or OK/Cancel message-box style.

518 | CHAPTER 18 BUILDING WELLBEHAVED CODE

The message box tells users what the procedure will do and gives them the chance to cancel the

procedure without running it any further.

Alternatively, a dialog box can present options for the procedure (for example, mutually exclu-

sive options via option buttons or nonexclusive options via check boxes), allowing users to enter

information (via text boxes, list boxes, or combo boxes) and of course letting them cancel the pro-

cedure if they’ve cued it by accident. If you have time to create a Help fi le to accompany the

procedures and user forms you create, you might add a Help button to each message box or dia-

log box, linking it to the relevant topic in the Help fi le.

You can also use a message box or dialog box to warn the user that the procedure is going to

disable user interrupts for part or all of its duration.

Communicating with the User via a Message Box or Dialog Box at the
End of a Procedure
With some procedures, you’ll fi nd it useful to collect information on what the procedure is

doing so that you can display that information to the user in a message box or dialog box

after the procedure has fi nished its work. As you saw in Chapter 13, “Getting User Input with

Message Boxes and Input Boxes,” message boxes are easier to use but are severely limited in

their capabilities for laying out text—you’re limited to the effects you can achieve with spaces,

tabs, carriage returns, and bullets. With dialog boxes, however, you can lay out text however you

need to (by using labels or text boxes) and even include images if necessary.

The easiest way to collect information while running a procedure is to build one or more

strings containing the information you want to display. For an example of this, look back to

the sidebar titled “Control a For…Next Loop with User Input via a Dialog Box” in Chapter 12,

“Using Loops to Repeat Actions,” in which a cmdOK_Click procedure collects information while

creating a series of folders and then at the end displays a message box telling the user what the

procedure has accomplished.

Creating a Log File
If you need to collect a lot of information during the course of running a procedure and either

present it to the user once the procedure has fi nished or just make it available for reference if

needed, consider using a log fi le rather than a message box or dialog box. Log fi les are useful for

lengthy procedures that manipulate critical data: by writing information periodically to a log

fi le (and by saving it frequently), you create a record of what the procedure achieves in case

it crashes.

Make a Log File Useful for Both Average and Sophisticated Users

If you want a log fi le to be useful for ordinary users as well as to the technically inclined, make

its entries readable and helpful while including any technical information required for advanced

troubleshooting. For example, a message such as Th e data fi les for the “Madrid” offi ce (madrid060430

.xlsm) and the “Taos” offi ce (taos060430.xlsm) were not found in the expected location, “\\server2\data\

dayfi les\”, so the information could not be included is usually more widely helpful than a cryptic Error

code 44E: Required Data Missing.

KEEPING THE USER INFORMED DURING THE PROCEDURE | 519

Say you wrote a procedure for Word that collects information from a variety of sources each

day and writes it into a report. You might want to keep a log fi le that tracks whether informa-

tion from each source was successfully transferred and at what time. Listing 18.2 provides an

example of such a procedure. At the end of the procedure, you could leave the log fi le open so

that the user could check whether the procedure was successful in creating the report or leave

the summary fi le open so that the user could read the report itself.

Listing 18.2: Creating a log fi le

 1. Sub Create_Log_File()

 2.

 3. Dim strDate As String

 4. Dim strPath As String

 5. Dim strCity(10) As String

 6. Dim strLogText As String

 7. Dim strLogName As String

 8. Dim strSummary As String

 9. Dim strFile As String

10. Dim i As Integer

11.

12. On Error GoTo Crash

13.

14. strCity(1) = “Chicago”

15. strCity(2) = “Toronto”

16. strCity(3) = “New York”

17. strCity(4) = “London”

18. strCity(5) = “Lyons”

19. strCity(6) = “Antwerp”

20. strCity(7) = “Copenhagen”

21. strCity(8) = “Krakow”

22. strCity(9) = “Pinsk”

23. strCity(10) = “Belgrade“

24.

25. strDate = Month(Date) & “-“ & Day(Date) & “-“ _

 & Year(Date)

26. strPath = “f:\Daily Data\“

27. strLogName = strPath & “Reports\Log for “ _

 & strDate & “.docm“

28. strSummary = strPath & “Reports\Summary for “ _

 & strDate & “.docm“

29. Documents.Add

30. ActiveDocument.SaveAs strSummary

31.

32. For i = 1 To 10

33. strFile = strPath & strCity(i) & “ “ & strDate & “.docm“

34. If Dir(strFile) <> ““ Then

35. Documents.Open strFile

520 | CHAPTER 18 BUILDING WELLBEHAVED CODE

36. Documents(strFile).Paragraphs(1).Range.Copy

37. Documents(strFile).Close _

38. SaveChanges:=wdDoNotSaveChanges

39. With Documents(strSummary)

40. Selection.EndKey Unit:=wdStory

41. Selection.Paste

42. .Save

43. End With

44. strLogText = strLogText & strCity(i) _

 & vbTab & “OK“ & vbCr

45. Else

46. strLogText = strLogText & strCity(i) _

 & vbTab & “No file“ & vbCr

47. End If

48. Next i

49.

50. Crash:

51.

52. Documents.Add

53. Selection.TypeText strLogText

54. ActiveDocument.SaveAs strLogName

55. Documents(strLogName).Close

56. Documents(strSummary).Close

57.

58. End Sub

The procedure in Listing 18.2 creates a new document that contains a summary, opens a

number of fi les in turn, copies the fi rst paragraph out of each and pastes it into the summary

document, and then closes the fi le. As it does this, the procedure maintains a string of log infor-

mation from which it creates a log fi le at the end of the procedure or, if an error occurs, during

the procedure. Here’s what happens in the code:

 ◆ Lines 3 through 9 declare six String variables—strDate, strPath, strLogText,

strLogName, strSummary, and strFile—and one String array, strCity, containing 10

items. (The procedure uses an Option Base 1 statement that doesn’t appear in the listing,

so strCity(10) produces 10 items in the array rather than 11.) Line 10 declares the Integer

variable i, which the procedure will use as a counter.

 ◆ Line 11 is a spacer. Line 12 uses an On Error GoTo statement to start error handling and

direct execution to the label Crash: in the event of an error. Line 13 is a spacer.

 ◆ Lines 14 through 23 assign the names of the company’s 10 offi ces to the strCity array. Line

24 is a spacer.

 ◆ Line 25 assigns to strDate a string created by concatenating the month, the day, and the

year for the current date (with a hyphen between each part) by using the Month, Day, and

Year functions, respectively. For example, January 21, 2007, will produce a date string of

KEEPING THE USER INFORMED DURING THE PROCEDURE | 521

1-21-2007. (The reason for creating a string like this is that Windows can’t handle slashes

in fi lenames—slashes are reserved for indicating folders.)

 ◆ Line 26 sets strPath to the f:\Daily Data\ folder. Line 27 then builds a fi lename for the

log fi le in the \Reports\ subfolder, and line 28 creates a fi lename for the summary fi le, also

in the \Reports\ subfolder.

 ◆ Line 29 creates a new document based on Normal.dotm, and line 30 saves this document

under the name stored in the strSummary variable. Line 31 is a spacer.

 ◆ Line 32 begins a For… Next loop that runs from i = 1 to i = 10. Line 33 assigns to the

String variable strFile the fi lename for the fi rst of the cities stored in the strCity array:

strPath & strCity(i) & ” ” & strDate & ”.docm”.

 ◆ Line 34 then begins an If statement that checks whether Dir(strFile) returns an empty

string. If not, line 35 opens the document specifi ed by strFile, line 36 copies its fi rst

paragraph, and line 37 closes it without saving changes. The procedure doesn’t make any

changes to the document, but if the document contains any dynamic “hot fi elds” (such as

date fi elds or links that automatically update themselves when the document is opened),

it may have become dirty (modifi ed). Including the SaveChanges argument ensures that

users don’t get an unexpected message box prompting them to save a document they know

they haven’t changed. (An alternative would be to set the Saved property of the document

to True and then close it without using the SaveChanges argument.)

 ◆ Lines 39 through 43 contain a With statement that works with the Document object speci-

fi ed by strSummary. Line 40 uses the EndKey method with the Unit argument wdStory

to move the selection to the end of the document. Line 41 pastes in the material copied

from the document just opened, and line 42 saves the document. Line 43 ends the With

statement.

 ◆ Line 44 adds to strLogText the contents of strCity(i), a tab, the text OK, and a carriage

return, which will produce a simple tabbed list of the cities and the status of their reports.

 ◆ If the condition posed in line 34 isn’t met, execution branches to the Else statement in

line 45, and line 46 adds to strLogText the contents of strCity(i), a tab, No file, and a

carriage return. Line 47 ends the If statement, and line 48 ends the For… Next loop, return-

ing execution to line 32.

 ◆ Line 49 is a spacer. Line 50 contains the Crash: label and marks the start of the error han-

dler. Unlike in many procedures, you don’t want to stop execution before entering the error

handler—as it happens, you want to execute these statements (to create the log fi le) even if

an error occurs. Line 51 is a spacer.

 ◆ Line 52 creates a new document based on the default template; line 53 types the contents

of strLogText into the new document; and line 54 saves it under the name strLogName.

Line 55 closes this new document (alternatively, you could leave the document open so that

the user could view it). Line 56 closes the summary document (which has remained open

since it was created; again, you might want to leave this open so that the user might view

it or offer the user the option of keeping it open). Line 57 is a spacer, and line 58 ends the

procedure.

522 | CHAPTER 18 BUILDING WELLBEHAVED CODE

Making Sure a Procedure Is Running under Suitable
Conditions
Another important consideration when creating a well-behaved procedure is to check that it’s

running under suitable conditions. This ideal is nearly impossible to achieve under all circum-

stances, but you should take some basic steps, such as the following:

 ◆ Make sure a fi le is open in a procedure that needs a fi le to be open—otherwise, you’ll get

an error every time. For example, in Excel, you might check the Count property of the

Workbooks collection to make sure at least one workbook is open:

If Workbooks.Count = 0 Then _

 MsgBox ”This procedure will not run without a “ _

 & ”workbook open. Open one, then run the procedure again.“, _

vbOKOnly + vbExclamation, _

 ”No Workbook Is Open“

 ◆ Check that the procedure is referencing an appropriate item, if the procedure has defi n-

able requirements. For example, in an Excel procedure that applies intricate formatting to a

chart the user has selected, make sure the user has, in fact, actually selected a chart. Trying

to manipulate another object with chart-related commands is likely to cause an error or at

least unwanted side effects.

 ◆ Make sure a fi le contains the element required by the procedure. (If it doesn’t, an error will

likely result.) Alternatively, trap the error that will result from the element’s absence.

Cleaning Up after a Procedure
Like your children or housemates, your procedures should learn to clean up after themselves.

Cleaning up involves the following:

 ◆ Undoing any changes that the procedure had to make

 ◆ Closing any fi les that no longer need to be open

 ◆ Removing any scratch fi les or folders that the procedure has created to achieve its effects

Undoing Changes the Procedure Has Made
In some cases, you’ll need to make changes to a document in order to run a procedure success-

fully. Here are a couple of examples:

 ◆ In Word, you might need to apply some formatting to half of a table but not to the rest of it.

In this case, it may be easier to split the table into two tables so that you can select columns

in the relevant part and format or change them without affecting the columns in the other

half of the original table. If you do this, you’ll want to join the tables together again after-

ward by removing the break you’ve inserted between the original table’s two halves. The

easiest way to do this is to bookmark the break that you insert. You can then go back to the

bookmark and delete it and the break at the same time. Alternatively, you could use a Set

statement to defi ne a range for the break and then return to the range and remove the break.

CLEANING UP AFTER A PROCEDURE | 523

 ◆ In Excel, you may need to defi ne named ranges in a workbook so that you can easily refer-

ence them from the code. (Usually, you’ll do better to use ranges via VBA, which won’t

leave unwanted named ranges in the workbook.) Delete these named ranges when you’ve

fi nished with them.

Removing Scratch Files and Folders
During a complex procedure, you may need to create scratch fi les in which to temporarily store

or manipulate data, or scratch folders in which to store temporary fi les.

For example, if you need to perform complex formatting on a few paragraphs of a long docu-

ment in Word, you may fi nd it easier to copy and paste those paragraphs into a new blank

document and manipulate them there than to continue working in the original document and

risk unintentionally affecting other paragraphs as well. Likewise, in PowerPoint, you might

need to create a new presentation that you could use for temporary or backup storage of intri-

cate objects.

Creating scratch fi les, while often necessary for the safe and successful operation of a proce-

dure, can be intrusive. You’re cluttering up the user’s hard drive with information that’s prob-

ably of no use to that user. Creating scratch folders in which to save the scratch fi les is even

worse. Always go the extra distance to clean up any temporary items that you’ve stored on the

user’s hard drive. If you’re thinking that commercial applications don’t always do this, not even

Microsoft’s applications, you’re right. But that doesn’t mean you should follow their example.

If your procedure is going to remove any scratch fi les it creates, you may be tempted to con-

ceal from the user their creation and subsequent deletion. This usually isn’t a good idea—in

most cases, the best thing is to warn the user that the procedure will create scratch fi les. You

might even let the user specify or create a suitable folder for the scratch fi les or present the user

with a list that logs the fi les created and whether they were successfully deleted. Doing so will

allow users to easily delete any scratch fi les left on their computer if your procedure goes wrong

or is interrupted during execution.

Another approach is to use the API (application programming interface) commands

GetTempDir and GetTempFileName to fi nd out the location of the computer’s temporary folder

and a temporary fi lename that you can use. (How to make an API call is illustrated in Chapter 30,

“Accessing One Application from Another Application,” in the sidebar titled “Using the Sleep

Function to Avoid Problems with Shell’s Asynchrony.”) But even if you use the default temporary

folder, you should delete any fi les that you create in it when your procedure is fi nished. Again, a

disappointing number of commercial software developers fail to do this.

Using Your Own Scratch Folder

You can use the MkDir command to create a folder. For example, the following statement creates

a folder named Scratch Folder on the C: drive:

MkDir ”c:\Scratch Folder“

Before creating a folder, use the Dir command to check to see that the name isn’t already in

use. (If a folder with that name already exists, an error results.) Here’s how:

Dim s As String

s = “c:\TempDir”

524 | CHAPTER 18 BUILDING WELLBEHAVED CODE

If Len(Dir(s, vbDirectory)) = 0 Then

 MkDir s

End If

For temporary storage, you may want to use a folder name based on the date and time to

lessen the chance that a folder with that name already exists. You could also use VBA’s Rnd func-

tion to generate a random number to use as part of the folder name.

Deleting a Scratch Folder

You can use the RmDir statement to remove an empty folder. (Make sure that you’ve deleted all

fi les in the folder fi rst—otherwise RmDir will fail.) For example, the following statement removes

the scratch folder named Scratch Folder on the C: drive:

RmDir ”c:\Scratch Folder“

Th e Bottom Line

Understand the characteristics of well-behaved procedures. Well-behaved procedures

don’t annoy or alarm the user either during or after their execution.

Master It Name two ways programmers can write procedures that don’t annoy users.

Retain and restore the user environment. Users quite rightly don’t appreciate it if your

procedure leaves the state of their application’s or operating system’s environment modifi ed.

Find ways to restore the user environment before your procedure fi nishes execution.

Master It Assume that you are writing a procedure that employs Word’s Search and

Replace feature. This feature retains its settings between uses so the user can repeatedly

trigger the same search or replace actions. How can you temporarily store the status of

the user’s last search or replace so that you can restore this data after your procedure is

fi nished executing?

Let the user know what’s happening. Particularly when a procedure is doing a lengthy

“batch job” such as updating dozens of fi les, it’s important to let the user know that the

computer hasn’t frozen. People need to be told that execution is continuing as expected even

though nothing appears to be happening.

Master It Describe a way to let the user know that a procedure isn’t frozen—that activ-

ity is taking place during execution.

Check that the procedure is running under suitable conditions. Another important ele-

ment of creating a well-behaved procedure is to check that it’s running under suitable condi-

tions. This ideal is nearly impossible to achieve under all circumstances, but you should take

some basic steps.

Master It If a procedure accesses data from a fi le, name an error that could occur and

thus should be trapped.

Clean up after a procedure. A well-behaved procedure avoids leaving unneeded fi les or

other temporary items behind. In other words, a procedure should clean up after itself.

Master It Cleaning up involves three major tasks. Name one.

c19.indd 07:40:18:AM 07/02/2013 Page 525

Chapter 19

Securing Your Code with VBA’s
Security Features

This chapter discusses how to use the security tools that VBA provides for distributing and

implementing macros and VBA code. VBA security falls into three categories: securing your

applications against rogue VBA code; establishing that your VBA code isn’t itself rogue so that it

can be run; and securing your code against theft, alteration, or snooping.

In this chapter you will learn to do the following:

 ◆ Understand how VBA implements security

 ◆ Sign a macro project with a digital signature

 ◆ Get a digital certifi cate

 ◆ Choose the appropriate security level

 ◆ Lock your code

Understanding How VBA Implements Security
Macros, dialog boxes, and user forms that you write are computer programs, albeit usually

rather small ones. But because macros, like any other computer program, can access the user’s

hard drive and exploit other features of a computer, macros can do damage.

Offi ce and the operating systems Vista, Windows 7, and Windows 8 include a variety of secu-

rity features designed to protect the user from malicious code—macro, virus, Trojan horse, bot,

or whatever. But some security features are specifi c to Offi ce documents and the macros, dialog

boxes, and user forms they can contain.

Scary but true: An evil macro can do its damage automatically. It’s not necessary for the user

to deliberately launch a macro from the Macros dialog box or from within the VBA Editor. Some

procedures (with certain special names such as Open) automatically launch themselves. For

example, if you name one of your procedures Document_Open Sub, all the code within that sub

executes spontaneously when the user opens its host document:

Private Sub Document_Open()

This can be handy, of course. Perhaps you’ll want to write some code in this procedure that

automatically sets up your preferred zoom level or completes some other housekeeping task

that you always perform when opening any document. But the fact that the user doesn’t need

to specifi cally choose to run this macro means that a virus can be put into this procedure. And

whammo—your computer is infected.

526 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 526

Malicious code can enter a user’s Offi ce applications via three primary vehicles: macros,

ActiveX controls, and add-ins. Microsoft provides users with various approaches to VBA secu-

rity, including the following:

 ◆ Certain Offi ce document fi le types that simply cannot contain any embedded macros at

all. That’s the difference between, for example, saving a fi le using the Word .docx option,

which cannot contain macros, and the .docm fi le type, which can.

 ◆ Documents that are loaded from a trusted area on the hard drive.

 ◆ Trust Center settings the user can specify, such as completely preventing the execution

of any ActiveX controls, macros, or add-ins without even notifying or querying the user.

Alternatively, the user can be prompted for permission before potentially dangerous code

is allowed execute.

 ◆ A list of user-modifi able “trusted publishers”—companies whose documents are consid-

ered safe.

 ◆ The ability to digitally sign your own documents or templates, thereby making you a

“trusted publisher.”

Offi ce 2007 introduced the concept of two types of documents. For the fi rst time, the user

could save documents that simply cannot contain any macros or other potentially malicious

code. By default, any new Word document is of the .docx type, not the .docm (macro-enabled)

type. In other words, a document must be deliberately created as a macro-enabled document.

And because it also must have a .docm fi lename extension, everybody else (including Word

when opening the document) knows that it contains possibly dangerous code. Administrators

can use Group Policy to enforce rules concerning which fi le types are permitted. But the default

.docx fi le type is free of potentially risky executables (fi les or procedures that can execute).

Other Offi ce applications also have pairs of macro-disabled, macro-enabled fi le types. Excel

has .xlsx and .xlsm fi les, and PowerPoint has .pptx and .pptm fi les.

Offi ce includes various security tools and features that ordinary users, administrators, and

IT professionals can employ to further safeguard Offi ce applications from attack:

 ◆ An Offi ce ActiveX kill bit that allows administrators to forbid certain ActiveX controls

from executing.

 ◆ File-type blocking that can be implemented via Group Policy settings or individually via

the Offi ce Trust Center. The types of fi les that an application can access can be specifi cally

controlled.

 ◆ A Trusted Documents feature that allows users to specify individual documents as reli-

able, thereby obviating whatever macro settings the user has enforced in the Trust Center.

 ◆ A scanning feature that searches for format exploits before a fi le can be opened by an Offi ce

application.

 ◆ A sandbox named Protected View. A sandbox isolates an executing program so it can’t

damage other programs, introduce viruses into the operating system, or store nasty sur-

prises on the hard drive. Figure 19.1 shows the warning you get if you’re about to open a

document from a potentially dangerous source, and the Protected View options. This is

similar to starting Windows in Safe Mode. In Protected View, executables are disabled. The

protected document is in effect quarantined, so it theoretically can’t do any harm to your

UNDERSTANDING HOW VBA IMPLEMENTS SECURITY | 527

c19.indd 07:40:18:AM 07/02/2013 Page 527

computer or its contents. I say theoretically because as we all know, no security is perfect.

Note that in its description of Protected View in Figure 19.1, Microsoft carefully states that

this mode will “help minimize harm”—no claim of invulnerability. All the Protected View

options are turned on by default, so fi les you get from the Internet and Outlook attach-

ments, for example, are automatically tossed into the sandbox when opened.

Figure 19.1

Suspect sources

trigger this security

warning when

opened in Offi ce

applications.

Also, the user can deliberately choose to open a fi le in sandbox mode by selecting the

fi le’s name in an Offi ce application’s Open dialog box, clicking the Open drop-down box

in the lower-right corner of the Open dialog, then choosing Open In Protected View.

 ◆ Various under-the-hood features, including password security and encryption to protect

the privacy of user information.

Doubtless there are additional hardening tactics that Microsoft is not mentioning. After all,

why tell the bad people everything that’s being done to prevent their incursions?

Real Security in an Insecure World

All the virus-detection software, fi rewalls, digital signatures, and other security eff orts in the

world won’t protect you or your colleagues if somebody on your network opens email attachments,

downloads dodgy executables, or otherwise invites trouble into your environment.

Even if everybody is aware of the dangers and follows the best security practices, viruses and other

troubles can still get in. After all, antivirus applications are always playing catch-up. A new virus

is released, and then the antivirus forces identify it and send out a new update.

On the plus side, currently it’s pretty rare to fi nd macros employed as a vehicle for spreading

viruses. And, of course, if you’re writing the VBA code yourself—as a reader of this book—you

can certainly trust the source of your macros. It’s you!

528 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 528

Because threats are constant, and because it’s ultimately impossible to guarantee that you will

never get a virus (in spite of taking great pains to prevent them), you should ensure that you are

taking additional precautions to at least mitigate damage.

Malicious software falls into two broad categories:

 ◆ Code that attempts to do damage to you by, for example, erasing fi les or slowing your com-

puter down so much that it becomes painful to use. Th e goal here is to create a mess you have

to clean up.

 ◆ Code that attempts to fi nd out your secrets to do damage to you by, for example, stealing your

identity to ruin your credit or to drain your bank account. Th e issue here is violation of your

privacy, a diff erent kind of mess you have to clean up.

If you’re concerned about privacy, you should encrypt any documents containing sensitive infor-

mation. Fortunately, with Offi ce 2007 the formerly weak Offi ce encryption scheme was replaced

with a highly secure one. And Microsoft continues to toughen built-in encryption schemes and has

added integrity-checking technologies for encrypted fi les. PowerPoint, Word, and Excel all permit

you to encrypt fi les and then decrypt them by providing a password. Click File on the Ribbon, then

in the Info page click Protect Document and then Encrypt With Password.

If you’re worried about a virus attack, be sure to back up your documents (you should do this

anyway, in case of a drive crash, fi re, theft, or other havoc). Th ese days, with three-terabyte exter-

nal drives selling for around $100, it’s practical to store your entire computer system (a “system

image”)—documents, programs, inbox email, everything—as an image on an external drive. Th at

way, you wouldn’t even have to reinstall applications in the event of a serious problem. You can

use third-party backup systems. Or if you use Windows 7, you can use Windows’s built-in backup

system by choosing Start ➢ Control Panel, then clicking Backup And Restore.

If you use Windows 8 and just want to back up your data fi les, press Windows key+W and type Save

Backup to use the new File History utility. If you want to use the traditional Windows backup, it’s

possible even in Windows 8. To invoke this utility, press Windows key+W and type Windows 7 File

Recovery. From there you can create an image, a repair disk, or a traditional Windows-style backup.

To secure an application against rogue VBA code, you can use the Offi ce Trust Center to

choose the level of security that you want the application to use when running VBA code. Click

the File tab, then choose Options. Click the Trust Center button in the left pane, and click the

Trust Center Settings button.

You can also specify which sources to trust and how much to trust them. A trusted source

might be someone who works for the same company as you, or someone who has a digital cer-

tifi cate from a third party you trust, such as the VeriSign certifi cation authority. Because you (in

this example) trust VeriSign, you therefore trust the third party to whom VeriSign has issued

a digital certifi cate. Offi ce also has a trusted time-stamping feature with the digital signature

technology.

To establish that your own code is fi ne for the Offi ce applications to trust, you can sign a

document or template project that contains customizations or macro project items (code mod-

ules, class modules, or user forms) with a digital signature generated by a digital certifi cate that

uniquely identifi es you or your company. We’ll look at this technique fi rst because it sets the

stage for specifying the level of security to use.

SIGNING YOUR MACRO PROJECTS WITH DIGITAL SIGNATURES | 529

c19.indd 07:40:18:AM 07/02/2013 Page 529

You can also lock a macro project with a password so that nobody can open the code. This

both prevents anyone from tinkering with your code and either stopping it from working or

rendering it harmful, and protects your intellectual property: If nobody can see your code, they

can’t steal your ideas. The section “Locking Your Code” shows you how to do this.

Signing Your Macro Projects with Digital Signatures
VBA provides a security mechanism for securing macro projects with digital signatures. The

digital signatures provide a means of establishing the provenance of the projects, which should

help you decide whether to trust the code. If you trust the source of the code to produce benevo-

lent programming, you can open the project and run the code. If you suspect the source or the

information of being malignant, you can either avoid opening the project or open the project

with the code disabled.

The same goes for other people: If others are concerned about your macros, you may need

to sign your projects so that other people know where they come from and who created them.

Once you’ve signed the projects, the code is available to any application that has specifi ed you as

a trusted source for macro projects. (This assumes users have chosen one of the Disable options

in the Macro Settings dialog box. You’ll see how to set the security level later, in the section

“Specifying a Suitable Security Setting.”)

The following sections discuss what digital certifi cates are, what they mean in practical

terms, how you obtain them, and how you use them to create digital signatures.

Trusting a Publisher Is Global for VBA-Enabled Applications

VBA’s security mechanism, and the list of certifi cates, is shared across the range of VBA-enabled

applications on your computer. So if you designate a trusted publisher in one application, all the

other applications that support VBA security will trust that source as well. For example, if you

open a document that contains code in Word and choose to trust the source of the code, Excel and

Outlook also gain that trust and open projects from that source without having to prompt you.

What Is a Digital Certifi cate?
A digital certifi cate is an encrypted datum that uniquely identifi es its holder. Rather like a driver’s

license, it provides a level of trust that you are who you say you are and that your code can

be trusted.

You use your digital certifi cate to create a digital signature for a project. This project can be

a document project, a template project, or an add-in. The project doesn’t have to contain macros,

procedures, user forms, classes, or VBA code for you to sign it, although these contents are the

usual reason for signing a project.

A digital signature applies to a whole macro project, typically a document project or a tem-

plate project. You can’t apply a digital signature to just part of a project—say, just to one module

of code or to one user form. Each macro project item in that macro project—each module, user

form, class, and reference—is covered by the digital certifi cate.

But digital signatures, while usually reliable, have sometimes been compromised.

530 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 530

Getting a Digital Certifi cate
There are three types of digital certifi cates: those you create yourself (“self-signed”), those you

get from your company or organization, and those you get from a commercial certifi cation

authority, or certifi cate authority (CA).

A digital certifi cate you create yourself is the weakest form of identifi cation and is of little use

to people beyond you and those who use your machine, whereas a certifi cate from a commercial

certifi cation authority should be good enough for general use in the world. Self-signed code will

generate a security warning if someone opens a fi le containing this code. Offi ce applications

will not allow this code to run on any but the machine on which the certifi cate was created.

A certifi cate issued by your company falls in the middle range of trustworthiness: In many

cases, the company will have obtained the certifi cate from a commercial certifi cation authority,

which means the commercial certifi cation authority has established to its satisfaction that the

company is trustworthy. Whom the company chooses to trust with the certifi cate is another

matter and introduces another complicating link into the chain of trust. However, server soft-

ware such as Windows Server includes independent certifi cation-authority services that do

not require a certifi cate from a commercial certifi cation authority, so you should be careful

which certifi cates you trust. See the section “Whose Certifi cate Is It, and What Does It Mean?”

later in this chapter for a discussion of how to discern a certifi cate’s provenance and meaning.

Creating a Digital Certificate of Your Own

The quickest and easiest way of getting a digital certifi cate is to create one yourself. It’s easy, but

its usefulness is very limited. Remember that this kind of certifi cation only works on the com-

puter on which the certifi cate was created.

To understand how digital certifi cates work, you’ll probably want to create several of your

own and practice with them on sample fi les. By designating some of your fi les as originating

from trusted publishers and leaving others untrusted, you can get a clear idea of how digital

certifi cates work without having to actually mess around with suspect code on your system.

To open the Create Digital Certifi cate dialog box (see Figure 19.2), from the Desktop in

Windows 8, press the Windows Key and type digital certificate. Press Enter when you see

Digital Certifi cate for VBA projects. You’ll see the form you can “sign,” as shown in Figure 19.2.

If you’re using Windows 7, choose Start ➢ All Programs ➢ Microsoft Offi ce ➢ Microsoft Offi ce

2013 Tools ➢ Digital Certifi cate For VBA Projects.

Type the name for the certifi cate in the text box, and then click the OK button. The SelfCert

application creates the certifi cate and installs it automatically.

Figure 19.2

You can self-sign

a certifi cate, but

Offi ce only permits

such certifi cation to

be trusted within

the computer where

the certifi cate was

created.

SIGNING YOUR MACRO PROJECTS WITH DIGITAL SIGNATURES | 531

c19.indd 07:40:18:AM 07/02/2013 Page 531

Getting a Digital Certificate from Your Company

Your second option is to get a digital certifi cate from a digital certifi cate server that your com-

pany has. The details of this procedure vary from company to company. The certifi cates the

company provides via its digital certifi cate server are generated in the same fashion as the digi-

tal certifi cates distributed by the commercial certifi cation authorities discussed in the next sec-

tion. However, a company distributes the certifi cates from a pool that it has allocated, without

needing to apply to the certifi cation authority for each certifi cate as it’s needed, or creates the

certifi cates of its own accord without getting them from a certifi cation authority. Clearly this

isn’t all that safe. A rogue employee can pose as trustworthy, obtain a company certifi cate, and

then run totally wild. Totally.

Getting a Digital Certificate from a Commercial Certification

Authority

Your third choice is to get a digital certifi cate from a commercial certifi cation authority such

as these:

 ◆ VeriSign (www.verisign.com). This, the most famous code-signing company, is now

owned by Symantec.

 ◆ Go Daddy (www.godaddy.com) is the new kid on the block. Offers bargain code certifi cation

and other security products.

 ◆ Thawte, Inc. (www.thawte.com, a VeriSign company).

 ◆ GeoTrust (www.geotrust.com, another VeriSign company).

 ◆ DigiCert (www.digicert.com).

VeriSign’s computers handle four trillion lookups per day, but the company plans to spend

$300 million over the next several years to increase that capacity to four quadrillion.

Several types of certifi cate are available, depending on what you want to do. If you’re creat-

ing and distributing software, you’ll probably want to consider one of the certifi cates targeted

at developers.

The procedure for proving your identity varies depending on the CA and the type of certifi -

cate you want. Generally speaking, the greater the degree of trust that the certifi cate is intended

to inspire, the more proof you’ll need to supply. For example, you can get a basic certifi cate

on the strength of nothing more than a verifi able email address, but this type of certifi cate is

unlikely to make people trust you. Other certifi cate types require you to appear in person before

a registration authority with full documentation (such as a passport, driver’s license, or other

identity documents). Such certifi cates obviously inspire more trust.

Installing a Digital Certificate

Once you have a digital certifi cate, you need to install it so that Windows and the applications

that will use it know where it’s located.

http://www.verisign.com
http://www.godaddy.com
http://www.thawte.com
http://www.geotrust.com
http://www.digicert.com
http://www.digicert.com

532 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 532

Self-Certifications Are Automatically Registered

Th e Offi ce SelfCert program automatically registers the certifi cates it creates on the computer on

which it creates them. If you created a digital certifi cate for yourself, you shouldn’t need to install it

on the same computer. If you want to practice installing it, you’ll need to use a diff erent computer.

To install a digital certifi cate, follow these steps (you must be logged on as Administrator to

view the Certifi cates dialog box):

 1. In Windows 8, from the Desktop, press the Windows Key and type certmgr.msc.

In Windows 7, click the Start button. A Search Programs And Files fi eld opens just above

the Start button. In the Search Programs And Files fi eld, type certmgr.msc.

 2. When certmgr.msc appears in the Programs list, click it. You’ll possibly be asked if you

want to give yourself permission to take this step. Unless you are not you, go ahead and

grant the permission by clicking the Continue button. (From this point on, Windows 7

will take a different path and display different dialogs than those shown here.)

You now see the Certifi cates dialog box shown in Figure 19.3.

Figure 19.3

Windows provides

the Certifi cates dia-

log box to manage

digital certifi cates.

As you can see in Figure 19.3, I, identifying myself as an entity named TotallyTrustworthy,

granted code-signing certifi cation to myself, also TotallyTrustworthy, as described earlier

in this chapter in the section “Creating a Digital Certifi cate of Your Own.”

 3. Click the Trusted Publishers folder in the left pane of the Certifi cates dialog box.

 4. Choose Action ➢ All Tasks ➢ Import from the Certifi cates dialog box's menu. The

Certifi cate Import Wizard opens, as shown in Figure 19.4.

SIGNING YOUR MACRO PROJECTS WITH DIGITAL SIGNATURES | 533

c19.indd 07:40:18:AM 07/02/2013 Page 533

Figure 19.4

Windows includes

the Certifi cate

Import Wizard to

manage digital

certifi cates.

 5. Click the Next button in the wizard to locate the fi le you want to import. You can search

your hard drive for fi lenames ending in .cer or .crt.

 6. Click Next to display the Certifi cate Store page of the wizard, shown in Figure 19.5.

 7. Choose how to store the certifi cate:

 ◆ To have Windows store each certifi cate automatically in the default certifi cate store for

the certifi cate’s type, select the Automatically Select The Certifi cate Store Based On

The Type Of Certifi cate option button.

 ◆ To control where Windows stores the certifi cates, select the Place All Certifi cates In

The Following Store option button. To specify the store, click the Browse button to

display the Select Certifi cate Store dialog box, shown in Figure 19.6. Choose the cer-

tifi cate store (for example, Personal) and click the OK button. To specify a particular

location within a certifi cate store, select the Show Physical Stores check box, and then

click the plus (+) sign next to the store in question to display its subfolders. Select the

folder you want, and then click the OK button.

 8. Click the Next button to fi nish setting up the import procedure. The Completing The

Certifi cate Import Wizard dialog box is displayed to confi rm the choices you’ve made.

 9. Review your choices, and then click the Finish button. The Certifi cate Import Wizard

imports the certifi cate and then confi rms that the operation was successful.

534 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 534

Figure 19.5

On the Certifi cate

Store page of the

Certifi cate Import

Wizard, choose the

certifi cate store in

which to store the

certifi cate you’re

importing.

Figure 19.6

Use the Select

Certifi cate Store

dialog box to

specify the certifi -

cate store in which

you want to keep

the certifi cate. Th e

screen on the left

shows the catego-

ries of stores; the

screen on the right

shows the physical

stores.

Now that you’ve imported the certifi cate, it appears in the Certifi cates dialog box on the

appropriate page.

Exporting a Digital Certificate

You may need to export a certifi cate for backup so that you can keep it safely on removable

media away from your computer or so that you can install it on another computer. For security,

you should not store the digital certifi cate on your hard drive after you install it, because storing

it there is an unnecessary security risk.

SIGNING YOUR MACRO PROJECTS WITH DIGITAL SIGNATURES | 535

c19.indd 07:40:18:AM 07/02/2013 Page 535

To export a certifi cate, right-click it in the Certifi cates dialog box, then choose All Tasks ➢

Export. Windows starts the Certifi cate Export Wizard, which walks you through the process of

exporting the certifi cate. If you choose to export the private key with the certifi cate, be sure to

protect it with a password.

Removing a Digital Certificate

To remove a digital certifi cate from Windows’s digital certifi cate store, follow these steps:

 1. Display the Certifi cates dialog box (follow steps 1 and 2 in the section earlier in this

chapter on installing a certifi cate).

 2. Click the folder in the left pane that contains the digital certifi cate in question, and then

select the certifi cate you want to remove.

 3. Click the red X icon, or choose Action ➢ Delete. Windows displays a dialog box warning

you of the consequences of deleting the digital certifi cate and asking you to confi rm

the deletion. Figure 19.7 shows the warning you get when removing a certifi cation

authority certifi cate (top) or a personal certifi cate (bottom). Click the Yes button

to delete the certifi cate.

Figure 19.7

Two of the warn-

ings the Certifi cate

Manager displays

when you’re about

to remove a digital

certifi cate

Signing a Macro Project with a Digital Signature

Once you’ve completed a macro project and have it ready for distribution, you sign it with a

digital signature so that applications that use a high level of security can use it.

536 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 536

To sign a macro project digitally, follow these steps:

 1. In the VBA Editor, navigate to the document or template project that contains the macro

project you want to sign.

 2. Select the project in the Project Explorer.

 3. Choose Tools ➢ Digital Signature to display the Digital Signature dialog box (see

Figure 19.8).

Figure 19.8

Use the Digital

Signature dialog

box to specify the

digital signature for

a macro project.

If the Digital Signature dialog box lists the certifi cate you want in the Sign As area, sim-

ply click the OK button to use that certifi cate.

 4. Click the Choose button. If you have more than one certifi cate, you’ll see a Select

Certifi cate dialog box. (If you have only one certifi cate, you’ll see the Windows Security

dialog box where you can confi rm your choice, as shown in Figure 19.9. You should then

skip to step 7.)

Figure 19.9

Use this Windows

Security dialog box

to confi rm your

choice of certifi cate

with which to sign

the macro project.

 5. Click the certifi cate you want to use for the macro project.

SIGNING YOUR MACRO PROJECTS WITH DIGITAL SIGNATURES | 537

c19.indd 07:40:18:AM 07/02/2013 Page 537

 6. Click the OK button to apply the selected certifi cate and close the Select Certifi cate

dialog box.

 7. Click the OK button to close the Digital Signature dialog box.

 8. Click the Save button on the Standard toolbar, press Ctrl+S, or choose File ➢ Save to save

the document or template project with the digital signature applied to it.

Removing a Digital Signature from a Macro Project

To remove a digital signature from a macro project, follow these steps:

 1. In the VBA Editor, navigate to the document or template project that contains the macro

project.

 2. Select the project in the Project Explorer.

 3. Choose Tools ➢ Digital Signatures to display the Digital Signature dialog box.

 4. Click the Remove button. Both the Certifi cate Name readout in the area labeled The VBA

Project Is Currently Signed As and the Certifi cate Name in the Sign As area of the Digital

Signature dialog box will display [No Certifi cate] to indicate that the project no longer

has a digital certifi cate assigned to it.

 5. Click the OK button to close the Digital Signature dialog box.

You can always reapply the digital signature to the project whenever you wish, as described

earlier in this chapter.

Whose Certificate Is It, and What Does It Mean?

When you receive a digitally signed project, you’ll probably want to fi nd out just who has signed

it and just what type of digital certifi cate they used. To view the details of a digital certifi cate,

follow these steps:

 1. In the VBA Editor, navigate to the document or template project that contains the macro

project.

 2. Select the project in the Project Explorer.

 3. Choose Tools ➢ Digital Signature to display the Digital Signature dialog box.

 4. For an offi cial (VeriSign or other) certifi cation, click the Details button to see information

about the source.

If you want to view the details of one of your own, dodgy, self-signed certifi cates, click the

Choose button in the Digital Signature dialog box, and click the Click Here To View Certifi cate

Properties link to display the Certifi cate Details dialog box shown in Figure 19.10.

By examining Figure 19.10 close up, you’ll see the Offi cial Certifi cate icon with the Gold Seal

and the Blue Ribbon (they inspire trust), but there is, alas, also a Red X symbol! Chilling. This X

means that the project in question cannot be trusted whatsoever.

538 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 538

Figure 19.10

Use the Certifi cate

Details dialog box

to examine the

properties of a

certifi cate.

The Certifi cate Details dialog box has three pages:

 ◆ The General page displays basic information about the certifi cate: for what purpose the

certifi cate is intended, to whom it’s issued, by whom it’s issued, and the period for which

it’s valid.

 ◆ The Details page of the Certifi cate Details dialog box, shown in Figure 19.11, contains spe-

cifi cs about the certifi cate. Click one of the fi elds in the list box to display its value in the

text box below.

 ◆ The Certifi cation Path page of the Certifi cate Details dialog box shows the path by which

the certifi cate has been issued from the issuing authority to the current holder. To check

one of the links in the chain, select it in the Certifi cation Path list box and click the View

Certifi cate button (if it’s available). You’ll see the Certifi cate Details dialog box for the certif-

icate in question. You can then follow the certifi cation path for that certifi cate if you choose

or click the OK button to dismiss the second (or subsequent) Certifi cate Details dialog box

and return to the previous one.

CHOOSING A SUITABLE LEVEL OF SECURITY | 539

c19.indd 07:40:18:AM 07/02/2013 Page 539

Figure 19.11

Th e Details page

of the Certifi cate

Details dialog box

contains a host of

details about the

certifi cate.

Choosing a Suitable Level of Security
To use VBA macros safely, you or a user of your code must open the Offi ce Trust Center and

choose a suitable level of security—high enough to avoid the threats posed by malicious

or incompetent code but low enough that it doesn’t prevent you from running useful,

safe code.

Understanding the Security Th reats Posed by VBA
The VBA macro language is formidable. It can accomplish sophisticated and valuable tasks. But

its capabilities also pose a threat when misused. Using relatively simple VBA commands, you

can create fi les, delete fi les, manipulate existing data, and even control other applications.

Also, code developed with the best of intentions can damage a computer when run under

unsuitable circumstances. For example, a procedure might delete valuable data or delete critical

fi les, making the computer crash. Such unintentional damage happens frequently enough, but

what tends to make the headlines is damage caused intentionally by malicious code in macro

viruses and other malicious software (or malware).
A macro virus is simply a computer virus written in a macro language such as VBA.

540 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 540

Protecting against Macro Viruses
Protecting your computer (and computers connected to it in a network) against macro viruses

requires three main steps:

 1. Install and run antivirus software, such as Malwarebytes (www.malwarebytes.org/) on

your computer. And use the Windows Defender that’s built into Windows. Update the

antivirus software frequently and regularly with the latest virus defi nitions. (Most antivi-

rus software offers automatic updating.)

 2. Confi gure suitable security settings in the applications you use, especially in those

applications that host VBA or other programming languages or scripting languages. For

example, confi gure VBA security settings as described in the next section.

 3. Be careful when opening any fi le that might contain code or an email attachment. Most

modern applications warn you when there might be a problem with a fi le. Many macro

viruses attempt to outwit such warnings by social engineering—conning the user—rather

than by sophisticated programming.

For example, a macro virus may transmit itself as an email attachment to all the

addresses in a friend’s email application. The message and attachment suggest that

the contents of the attachment are interesting or amusing—for example, jokes or com-

promising pictures. Because the fi le comes from a friend, someone known and trusted,

and because the contents seem compelling, many users will open the fi le and ignore any

security warnings. The action of simply opening the fi le can cause the code within the fi le

to execute. Similarly, simply opening a Word .docm fi le can execute a macro. And by then

it could be too late. Creepy code robots could be multiplying exponentially throughout

your system.

Specifying a Suitable Security Setting
First, set a suitable level of security for your purposes. To open the Options dialog box in

Access, Word, Excel, or PowerPoint, click the File tab, then choose Options. Click the Trust

Center button in the left pane. Then click the Trust Center Settings button, and click Macro

Settings (see Figure 19.12).

The various macro security settings are self-explanatory. However, if you are working in

documents that you’ve created yourself and saved as the .docm type, having written your own

macros you can temporarily choose the Enable All Macros option. At least while you’re practic-

ing with the examples in this book, you can trust your own documents. However, if you are

opening macro-enabled document fi les (.docm or the other fi les from PowerPoint or Excel with

an m appended to the fi lename extension), you should specify a less risky setting in your Trust

Center macro settings.

There’s an easier way to deal with this problem, though. You can alternatively (and more

safely) employ one of the disable options shown in Figure 19.12, but while doing development

work with VBA (such as experimenting with the code in this book), just ensure that you save

http://www.malwarebytes.org

CHOOSING A SUITABLE LEVEL OF SECURITY | 541

c19.indd 07:40:18:AM 07/02/2013 Page 541

your .docm documents in one of the trusted locations. You can see the list of trusted locations by

clicking the Trusted Locations button shown in the left pane in Figure 19.12.

Figure 19.12

On the Macro

Settings page of the

Trust Center dialog

box, choose the

level of security you

want to use when

running macros.

If you choose the Disable All Macros Except Digitally Signed Macros option, any unsigned

macros in your documents won’t work. They are blocked from executing. However, you can get

them to work again by simply moving the document fi les to a trusted location.

Additional Trust Center Settings
Microsoft is currently encouraging (by the pricing structure if nothing else) that its Offi ce cus-

tomers move from one-purchase, disk-based Offi ce installation to a downloaded, pay-yearly

subscription model called Offi ce 365.

What’s more, there are seven versions of Offi ce 365, each with its own variations on security

features, such as whether or not it supports Group Policy settings. To see the variations, visit

this page:

http://technet.microsoft.com/en-us/library/jj851145.aspx

Notice also a security feature listed in the left pane in Figure 19.12 that is new in Offi ce 2013:

Trusted App Catalogs.

Open the Trusted Application Catalogs page in the Trust Center dialog box and you’ll see the

options illustrated in Figure 19.13.

http://technet.microsoft.com/en-us/library/jj851145.aspx

542 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 542

Figure 19.13

On this page of

the Trust Center

dialog box, choose

whether you

want to trust app

catalogs.

The New Office Apps

What is an Offi ce app? Microsoft describes the new apps like this: “An app for Offi ce is a region

inside an Offi ce application that contains a web page that can interact with the document to aug-

ment content and provide new interactive content types and functionality. apps [sic] for Offi ce

can be obtained by users from the new Offi ce marketplace or from a private catalog in the form of

stand-alone apps or subcomponents of a document template solution, or a SharePoint application.”

In other words, an online image-search tool or grammar checker could be embedded in Word as a

command-bar pane, like Word’s own built-in Navigation or Th esaurus command bars.

At the time of this writing, the kinks have not yet been ironed out of all apps for Offi ce, but if

you’re interested, you can try some free apps that are available in the Offi ce Store. Click the Insert

tab on the Ribbon, then click Apps For Offi ce. Click See All. Click the Find more apps at the Offi ce

Store link. Your browser opens showing various apps you can add to whatever Offi ce application

you happen to be working in currently.

Th e apps for Offi ce technology is, to be polite, still being refi ned at this time. For a sad example,

try adding the Merriam-Webster dictionary to Word. Word 2013 has no built-in dictionary, pre-

sumably to encourage you to use an app instead. But this dictionary may not be the best. It doesn’t

have an entry for normally, for example. Worse, if you look up normal, the fi rst defi nition given is

perpendicular. A superior dictionary app for Offi ce is the Bing dictionary, found here:

http://office.microsoft.com/en-us/store/results.aspx?vtags=Reference&av=zwd150

http://office.microsoft.com/en-us/store/results.aspx?vtags=Reference&av=zwd150

CHOOSING A SUITABLE LEVEL OF SECURITY | 543

c19.indd 07:40:18:AM 07/02/2013 Page 543

Alas, the person who wrote the interface for the Bing dictionary seems to think that the adjective

lookup is interchangeable with the verb look up. But don’t blame Bing. On the plus side, the Bing

dictionary does have a good defi nition of the word naturally.

A key feature of the new Offi ce apps is that they cannot be written in VBA. You must use “web

technologies like HTML5, XML, CSS3, JavaScript, and REST APIs” instead.

When you trust a catalog of Offi ce apps, you’re telling Offi ce that it can stop notifying you

or otherwise blocking executable content (such as macros or ActiveX controls) from this source.

Thus you can override on a case-by-case basis the macro and other security settings that have

been specifi ed (see Figure 19.12 and Figure 19.13).

File Block Settings

The File Block Settings page, shown in Figure 19.14, gives you the ability to block individual fi le

types from opening or to open them in Protected View. Here you can also specify which types

of fi les can be saved. Notice at the bottom of this page that you specify what choosing the Open

option means:

 ◆ Do Not Open Selected File Types means documents are totally blocked.

 ◆ Open Selected File Types In Protected View means you can open documents in the sand-

box for reading only.

 ◆ Open Selected File Types In Protected View And Allow Editing means you can open docu-

ments in the sandbox for editing.

Figure 19.14

File Block Settings

specify what types

of documents you

want blocked or

sandboxed.

544 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 544

If you want to delve more deeply into Offi ce 2013 security features, take a look at these web

pages and the links therein:

http://technet.microsoft.com/en-us/library/cc179050.aspx

http://technet.microsoft.com/en-us/library/cc179171.aspx

Can Even a Simple .txt File Harbor a Virus?

You might wonder why the Plain Text Files option is included in the File Block Settings page shown in

Figure 19.14. It would seem that a simple Notepad .txt fi le couldn’t contain any dangerous execut-

able code (any more than a stop sign could fi re a bullet at you). After all, text is just words, right?

Nope. Even opening simple .txt fi les can install a virus. How? Th e bad guys use trick fi lename exten-

sions. Even though it says .txt, it might only be masquerading as a text fi le. Executable fi les (programs

or viruses) usually have a .exe fi lename extension, but by default Windows hides fi lename extensions.

So you see Word, not Word.exe in Windows Explorer. Also, Windows fi les can be named with multiple

extensions. So, you can have a dangerous fi le named OpenMe.txt.exe, but thanks to Windows’s

default extension-hiding, the fi lename that you actually see in this case is OpenMe.txt. You go ahead

and double-click it thinking it will open in Notepad like most .txt fi les. Your hard drive explodes.

Well, maybe not a detonation, but all your fi les could be wiped or there could be some other nasty virus

surprise. OpenMe.txt was merely posing as a .txt fi le, and inside was a monster.

Locking Your Code
To prevent anyone from viewing the contents of a macro project, you can lock it with a pass-

word. You’ll usually want to do this before distributing a project to your colleagues. If your

workplace is particularly volatile, you might even want to lock projects while they are merely

under development on your own desktop. The argument against locking a project on which

you’re still actively working is that the lock adds a step to accessing the modules and forms in

the project—but if you need the security, it’s well worth the small amount of effort involved.

Follow these steps to lock a document or template project:

 1. Press Alt+F11 to display the VBA Editor.

 2. In the Project Explorer, right-click the project that you want to lock, and choose

Project Properties from the context menu to display the Project Properties dialog box.

Alternatively, select the project in the Project Explorer and choose Tools ➢ Project

Properties.

 3. Click the Protection tab to display the Protection page (see Figure 19.15).

 4. Select the Lock Project For Viewing check box in the Lock Project group box.

 5. In the Password To View Project Properties group box, type a password in the Password

text box and the same password in the Confi rm Password text box. Setting a password is

http://technet.microsoft.com/en-us/library/cc179050.aspx
http://technet.microsoft.com/en-us/library/cc179171.aspx

LOCKING YOUR CODE | 545

c19.indd 07:40:18:AM 07/02/2013 Page 545

compulsory: You can’t lock a project without specifying a password. Without a password,

how could you unlock it?

Figure 19.15

Use the Protection

page of the Project

Properties dialog

box to lock the

project.

 6. Click the OK button to apply the locking to the project. The VBA Editor closes the Project

Properties dialog box but leaves the contents of the project open for you to view and work

with.

 7. Switch back to the application, save your work, and close the application.

Once you’ve done that, the project is locked and can’t be viewed or edited without the pass-

word. When you choose to edit a procedure in the project from the application or try to expand

the project in the Project Explorer in the VBA Editor, the Project Password dialog box appears, as

shown in Figure 19.16 (unless you have macros disabled in the Trust Center settings).

Figure 19.16

When you open a

locked project,

you need to enter

the password for the

project in this Project

Password dialog box.

Type the password in the Password text box and click the OK button to display the contents

of the project. (If you enter the wrong password, the application or the VBA Editor displays a

Project Locked message box followed by the Project Password dialog box for you to try again.)

To unlock a project, open it in the VBA Editor (supplying the password), display the VBA

Project Properties dialog box (by right-clicking the project’s name in the Project Explorer,

546 | CHAPTER 19 SECURING YOUR CODE WITH VBA’S SECURITY FEATURES

c19.indd 07:40:18:AM 07/02/2013 Page 546

then choosing the Project Properties option from the context menu), clear the Lock Project For

Viewing check box on the Protection page, and click the OK button. Save the fi le that contains

the project.

Th e Bottom Line

Understand how VBA implements security. Microsoft takes a multipronged approach to

protecting users from malicious VBA code embedded in documents and capable of launch-

ing itself when the user simply opens the document.

Master It Name two ways that users are protected from malicious VBA code.

Sign a macro project with a digital signature. You can add a digital signature to your

projects by creating your own certifi cation, getting it from your company, or getting it from

certifi cation authorities such as VeriSign.

Master It Describe the limitations of certifying a VBA macro project for yourself—

without obtaining a certifi cate from your company or a commercial certifi cation

authority.

Get a digital certifi cate. Commercial certifi cation authorities provide the greatest level of

security, but their certifi cation is also more diffi cult to attain than self-certifi cation or certifi -

cation from your company.

Master It Name some of the ways you may be required to prove your identity when

obtaining a digital signature from a commercial certifi cation authority.

Choose the appropriate security level. When choosing the right security level to use VBA

macros safely, you or a user of your code must achieve a balance. The security level must be

set high enough to avoid malicious or incompetent code but low enough that it doesn’t pre-

vent you from running useful, safe code.

Master It To set a suitable level of security for your purposes, open the Trust Center in

Access, Word, Excel, or PowerPoint. You’ll see four settings. Which one of the following

fi ve settings is not available:

 ◆ Disable All Macros Without Notifi cation

 ◆ Disable All Macros With Notifi cation

 ◆ Disable All Macros Except Digitally Signed Macros

 ◆ Enable All Macros With Notifi cation

 ◆ Enable All Macros

Lock your code. You can protect your source code in the VBA Editor from others. You add a

password to a project (projects are in boldface in the Project Explorer), and others can’t open

your VBA procedures for reading or modifying.

Master It What is the one drawback to locking your code?

Part 6

Programming the Offi ce
Applications
◆ Chapter 20: Understanding the Word Object Model and Key Objects

◆ Chapter 21: Working with Widely Used Objects in Word

◆ Chapter 22: Understanding the Excel Object Model and Key Objects

◆ Chapter 23: Working with Widely Used Objects in Excel

◆ Chapter 24: Understanding the PowerPoint Object Model and Key Objects

◆ Chapter 25: Working with Shapes and Running Slide Shows

◆ Chapter 26: Understanding the Outlook Object Model and Key Objects

◆ Chapter 27: Working with Events in Outlook

◆ Chapter 28: Understanding the Access Object Model and Key Objects

◆ Chapter 29: Manipulating the Data in an Access Database via VBA

◆ Chapter 30: Accessing One Application from Another Application

◆ Chapter 31: Programming the Offi ce 2013 Ribbon

Chapter 20

Understanding the Word Object
Model and Key Objects

In this chapter you’ll become familiar with the Word object model and the architecture under-

lying Word. You’ll see how to perform common tasks with the most frequently useful Word

objects. These objects include the Documents collection and the Document object, the Selection

object, Range objects, and the Options object.

In this chapter you will learn to do the following:

 ◆ Understand the Word object model

 ◆ Understand Word’s creatable objects

 ◆ Work with the Documents collection and the Document object

 ◆ Work with the Selection object

 ◆ Create and use ranges

 ◆ Manipulate options

Examining the Word Object Model
You don’t need to understand how the entire Word object model fi ts together in order to work

with VBA in Word, but most people fi nd having a general idea of the components and structure

of the object model helpful. Some VBA programming involves managing objects, and for this

the Help system’s code examples are often invaluable. To see Word’s object model reference, fol-

low these steps:

 1. Launch or activate Word, and then press Alt+F11 to launch or activate the VBA Editor.

 2. Choose Help ➢ Microsoft Visual Basic For Applications Help. (Pressing F1 is not an

alternative, alas; it currently takes you to an entirely different page.) You should now see

a web page similar to the one shown in Figure 20.1 (this fi gure shows a part of the web

page). If you don’t see this web page, type this URL into your browser’s address fi eld:

http://msdn.microsoft.com/en-US/library/fp179696(v=office.15).aspx

http://msdn.microsoft.com/en-US/library/fp179696(v=office.15).aspx

550 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Figure 20.1

A Word Help web-

site (partial view)

 3. Click the Welcome to the Word 2013 developer reference link on the left side of the web page

(see the pointing hand icon in Figure 20.1).

You now see the page shown in Figure 20.2.

Figure 20.2

Drilling down in

the Word Help site

(partial view)

EXAMINING THE WORD OBJECT MODEL | 551

 4. Now click the link named Object model reference (Word 2013 developer reference), as shown

in Figure 20.2 with the pointing hand cursor.

You now see the Object Model Reference, shown partially in Figure 20.3.

Figure 20.3

Th e entries in the

Word Object Model

Reference will help

you write your own

VBA code.

Help When Migrating Legacy Code from Earlier Office Projects

If you’ve inherited VBA code written in earlier versions of Offi ce, those procedures might contain

objects, methods, and properties that have been changed in Offi ce 2013. Th ough modifi cations to

object models are generally few, some incompatibilities can crop up and “break” the code so it won’t

run correctly. Fortunately, you can download a free utility, the Offi ce Code Compatibility Inspector,

that will fl ag objects and their members that have changed. It does a text comparison of the Offi ce

2013 object model against VBA code written in earlier versions of Offi ce. You can download the

Compatibility Inspector from this web page:

www.microsoft.com/en-us/download/details.aspx?id=15001

A Shortcut: Understanding Creatable Objects

Like most VBA-enabled applications, Word has a number of creatable objects. Th is merely means

that you don’t have to employ the full qualifi cation. In other words, you don’t need to mention

the Application object in your code. For example, the Documents collection object is creatable,

http://www.microsoft.com/en-us/download/details.aspx?id=15001

552 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

so you can omit its parent, the Application object, when using the collection in code, like this:

Dim x As Integer

x = Documents.Count

MsgBox x

The Application object is simply understood, for the same reason that you don’t have to

add Planet Earth when addressing an envelope. Th e post offi ce assumes that Mother Earth is the

parent—the context—of all addresses.

However, you can, if you wish, use the longer (“fully qualifi ed”) version:

x = Application.Documents.Count

Both versions have the same eff ect.

Th e following are typically the most useful of these creatable objects:

 ◆ Th e ActiveDocument object returns a Document object that represents the active document.

 ◆ Th e ActiveWindow object returns a Window object that represents the active window.

 ◆ Th e Documents collection contains the Document objects, each of which represents an open

document.

 ◆ Th e Options object represents Word options and document options, including most of the

options that appear in the Options dialog box.

 ◆ Th e Selection object represents the selection in the active document. Selection represents

the selection (containing text or other objects) or collapsed selection (containing nothing—

merely the blinking insertion point) in the document.

 ◆ Th e Windows collection contains the Window objects that represent all open windows.

The following sections show you how to work with some of the most useful Word objects,

starting with the Documents collection and the Document object. You’ll see how to use the

ActiveWindow object and the Windows collection in the next chapter.

Working with the Documents Collection and
the Document Object
In many of your Word procedures, you’ll likely work with documents: creating new documents,

saving documents, opening existing documents, closing documents, and printing documents.

To do so, you work with the Documents collection, which contains a Document object for each

open document in Word.

Creating a Document
To create a new fi le, use the Add method of the Documents collection. The syntax is as follows:

expression.Add Template, NewTemplate, DocumentType, Visible

Here, expression is a required expression that returns a Documents collection. Typically, you’ll

want to use the Documents collection itself (Documents.Add).

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 553

Template is an optional Variant argument that specifi es the template on which to base the

new document. If you omit Template, Word uses the Normal template (this process is the same

as if you’d clicked the File tab on the Ribbon, then clicked the New button to open a blank docu-

ment). So you need specify a Template argument only when you want to base the new docu-

ment on a template other than the default Normal.dotm.

NewTemplate is an optional Variant argument that you can set to True to create a template

fi le (.dotx) rather than a document. NewTemplate is set to False by default, so you can safely

omit this argument unless you’re creating a template.

DocumentType is an optional Variant argument that you can use to specify the type of docu-

ment to create: wdNewBlankDocument (the default), wdNewEmailMessage, wdNewFrameset (for a

frameset), or wdNewWebPage.

Visible is an optional Variant argument that you can set to False to have the document cre-

ated in a window that isn’t visible. The default setting is True, making the document window

visible.

There are two ways to create a document:

Creating a document based on Normal.dotm The following statement creates a new

document based on the Normal.dotm global template:

Documents.Add

Creating a document based on a template The following statement creates a new document

based on the template named Company Report.dotm stored in the network folder designated

\\server\public\templates:

Documents.Add Template:= “\\server\public\templates\Company Report.dotm”

Creating a Template
The following statements declare a new object variable of the Document class named

myTemplate, create a new template based on the template named Fancy.dotx, and assign it to

myTemplate:

Dim myTemplate As Document

Set myTemplate = Documents.Add(Template:=”c:\program files (x86)\Microsoft Office\

Office14\1033\Quickstyles\fancy.dotx”, _

 NewTemplate:=True, Visible:=True)

In this example, the fi le path (c:\program files\and so on) to the template is specifi ed

because this template is not in one of the default template folders. The result is a new .dotx fi le,

based on the Fancy.dotx template.

Changing the Default File Locations

Word has two templates folders: the user templates folder and the workgroup templates folder.

You can change the locations of these folders by clicking the File tab on the Ribbon, then click-

ing the Options button to open the Word Options dialog box. Th en click the Advanced button in

the left pane. Scroll all the way down in the General Options section, and click the File Locations

button you see at the bottom. Th en click to select the default folder you want to change and click

the Modify button.

554 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Saving a Document
Just as when a user is saving a newly created document via the keyboard and mouse, when exe-

cuting VBA code you must specify a fi lename and path the fi rst time you save a new document.

After that, you can save it under the same name or specify a different name or format. This is

the difference between the Save and Save As options.

Saving a File for the First Time or as a Different File

To save a fi le for the fi rst time, or to save a fi le under a different name or in a different format,

use the SaveAs2 method. The syntax is as follows:

expression.SaveAs2(FileName, FileFormat, LockComments, Password, AddToRecentFiles,

WritePassword, ReadOnlyRecommended, EmbedTrueTypeFonts, SaveNativePictureFormat,

SaveFormsData, SaveAsAOCELetter, Encoding, InsertLineBreaks, AllowSubstitutions,

LineEnding, AddBiDiMarks, CompatibilityMode

With Word 2010, the traditional SaveAs command was replaced by the SaveAs2 command,

which is identical except for the addition of a CompatibilityMode argument. Documents can be

saved fi ve different ways with respect to their compatibility with earlier versions of Word. Based

on how you set the CompatibilityMode argument, Word saves your document like this:

 ◆ 0 is the default if you don’t specify any of the other CompatibilityMode options in this list.

The document will be saved using whatever compatibility mode is currently used by this

document.

 ◆ wdCurrent is a compatibility mode equivalent to the latest version of Microsoft Word.

 ◆ wdWord2003 is a mode that’s compatible with Word 2003. Any features new in Word 2013

are disabled.

 ◆ wdWord2007 is essentially the same as 2003 mode, but features compatible with the 2007

version of Word are enabled.

 ◆ wdWord2010 is the mode where the Word 2010 features are enabled.

The traditional SaveAs command will still work, but the Editor has a tendency to automati-

cally replace it with SaveAs2. Spooky, true, but no real harm done.

In the syntax , expression is an expression that returns a Document object. For example, you

might use the ActiveDocument object or an object in the Documents collection.

FileName is an optional Variant argument that specifi es the name for the document. If you

omit FileName, VBA uses the current folder and the default fi lename of Docn.docx (or .docm) or

a document and Dotn.dotx (or .dotm) for a template, where n is the next available number (for

example, Doc5.docx for a macro-free document or Dot2.dotm for a macro-enabled template).

Avoid Accidentally Overwriting a File

When writing code that saves a document, you should fi rst check whether a document with this

name and location already exists. If you don’t check, VBA overwrites an existing fi le without warn-

ing, potentially causing data loss.

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 555

FileFormat is an optional Variant argument that specifi es the format in which to save the

document. Table 20.1 lists the wdSaveFormat constants for specifying commonly used formats.

Table 20.1: WdSaveFormat constants

Constant Saves Document As

wdFormatDocument A Word document

wdFormatDocument97 Th e Word version 97 document format

wdFormatDocumentDefault Th e Word document default (the docx fi le type)

wdFormatDOSText A DOS text fi le (the pre-Windows OS)

wdFormatDOSTextLineBreaks A DOS text fi le with carriage returns

wdFormatEncodedText A text fi le with encoding

wdFormatFilteredHTML A fi ltered HTML fi le (Word 2003 and XP only)

wdFormatFlatXML An unindexed XML document

wdFormatFlatXMLMacroEnabled An unindexed XML document with macro capability

wdFormatFlatXMLTemplate An unindexed XML template

wdFormatFlatXMLTemplateMacroEnabled An unindexed XML template with macro capability

wdFormatHTML An HTML fi le

wdFormatOpenDocumentText An XML fi le format developed by Sun Microsystems

wdFormatPDF Adobe’s Portable Document Format

wdFormatRTF A Rich Text format fi le

wdFormatStrictOpenXMLDocument An XML document standard promoted for several

years by Microsoft

wdFormatTemplate A Word template

wdFormatTemplate97 Th e Word version 97 template format

wdFormatText A text fi le (plain ASCII)

wdFormatTextLineBreaks A text fi le with carriage returns

wdFormatUnicodeText A text fi le with Unicode characters

wdFormatWebArchive A web archive fi le

wdFormatXML An XML fi le (Word 2003 only)

556 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Constant Saves Document As

wdFormatXMLDocument XML document format

wdFormatXMLDocumentMacroEnabled XML document format with macros enabled

wdFormatXMLTemplate XML template format

wdFormatXMLTemplateMacroEnabled XML template format with macros enabled

wdFormatXPS XPS format

A Quick Way to See Objects and Their Constants

If you’re writing code and you want to quickly see a list of constants, such as the WdSaveFormat

constants shown in Table 20.1, just press F2 to open the Object Browser in the Editor. Th en type

wdsaveformat in the Object Browser’s search fi eld and press Enter. You’ll see the complete list of

constants as shown in the illustration.

Table 20.1: WdSaveFormat constants (continued)

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 557

As an example of how to use one of these constants, the following statement saves the active

document as a fi ltered HTML fi le under the name Example.html in the current folder:

ActiveDocument.SaveAs2 FileName:=”Example.html”, _

 FileFormat:=wdFormatFilteredHTML

After you run this example code, use Windows Explorer to locate this new Example.html fi le

and click on it. It will open in Internet Explorer as if it were a web page, because it’s stored using

the HTML format (if Internet Explorer is the default application in which your machine opens.

html fi les). Or take a look at it in Notepad if you want to see the full horror of HTML markup.

Save Documents Using File Converters

In addition to the wdSaveFormat constants described in Table 20.1, you can save documents in

other formats for which you have fi le converters installed by specifying the appropriate value for

the SaveFormat property of the FileConverter object. For example:

ActiveDocument.SaveAs2 FileFormat:=FileConverters(15).SaveFormat.

See the FileConverters property entry in the VBA Help fi le for more information.

AddToRecentFiles is an optional Variant argument that you can set to True to have Word

add the document to the list of recently used fi les displayed when you click the File tab on the

Ribbon and then click Recent. (Often, when experimenting with documents in procedures,

you’ll want to avoid listing them on the Most Recently Used list, leaving the user’s previous list

of recent fi les undisturbed.)

To protect the document as you save it, you can use four different protection features:

 ◆ LockComments is an optional Variant argument that you can set to True to lock the docu-

ment so that reviewers can enter comments but can’t change the text of the document.

 ◆ Password is an optional Variant argument that you can use to set a password required

before opening the document.

 ◆ WritePassword is an optional Variant argument that you can use to set a password

required before saving changes to the document.

 ◆ ReadOnlyRecommended is an optional Variant argument that you can set to True to have

Word recommend that the user open the document as read-only.

Finally, there are the following optional arguments you’ll use infrequently, if ever:

 ◆ EmbedTrueTypeFonts is an optional Variant argument that you can set to True to save

TrueType fonts with the document. (This is a good idea only if you’re distributing the

document to someone you know doesn’t have the TrueType fonts installed to view the

document correctly.)

 ◆ SaveNativePictureFormat is an optional Variant argument that you can set to True to

have graphics imported from another platform saved as Windows graphics.

 ◆ SaveFormsData is an optional Variant argument that you can set to True to save the data

entered in a form as a data record (as opposed to saving the whole form, including its

static text).

558 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

 ◆ SaveAsAOCELetter is an optional Variant argument that you can set to True to save the

document as an AOCE (Apple Open Collaboration Environment) letter (a mailing format

for routing documents).

 ◆ Encoding is an optional Variant argument for using a different code page than the system

code page. For example, you might need to save a document using a Cyrillic code page.

 ◆ InsertLineBreaks is an optional Variant argument that you can set to True when saving a

document as a text fi le to make Word insert a line break at the end of each line of text.

 ◆ AllowSubstitutions is an optional Variant argument that you can set to True when sav-

ing a document as a text fi le to make Word substitute some symbol characters with similar

text. For example, Word substitutes (TM) for a trademark symbol (™).

 ◆ LineEnding is an optional Variant argument that you can use when saving a document as

a text fi le to control how Word marks line breaks and paragraph breaks.

 ◆ AddBiDiMarks is an optional Variant argument that you can set to True to make Word add

control characters to the fi le to maintain bidirectional layout.

Usually, when saving a fi le for the fi rst time, you’ll need to specify only its name and path;

if you want to save it in a format other than a Word document, specify that too. The following

statement saves the active document under the name Beehives.docx in the folder \\server\

Products\Field\:

ActiveDocument.SaveAs2 _

 “\\server\Products\Field\Beehives.docx”

Saving a Document That Has Already Been Saved

After a document has been fi rst saved, you can save it in the future under the same name by

using the Save method. For a Document object, the Save method takes no arguments (all the

document’s current formats are saved unchanged). For example, the following statement saves

the document named Guns01.docx:

Documents(“Guns01.docx”).Save

Saving All Open Documents

To save all open documents, use the Save method with the Documents collection. The syntax is

as follows:

expression.Save(NoPrompt, OriginalFormat)

Here, expression is an expression that returns a Documents collection. Often, you’ll use the

Documents collection itself.

NoPrompt is an optional Variant argument that you can set to True to make Word save all

open documents containing unsaved changes and any attached templates containing unsaved

changes without prompting the user. The default setting is False, which causes Word to

prompt the user whether to save each document and template. Even if you set NoPrompt to

True, Word will prompt the user to save changes to Normal.dotm if the Prompt Before Saving

Normal Template check box is selected in the Save section of the Advanced tab of the Options

dialog box.

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 559

OriginalFormat is an optional Variant argument that you can set to wdOriginalDocu-

mentFormat to save the documents in their original formats, wdWordDocument to force each

document to be saved as a Word document, or wdPromptUserX to prompt the user about which

format to use.

For example, the following statement saves all open documents and templates without

prompting the user:

Documents.Save NoPrompt:=True

Checking Whether a Document Contains Unsaved Changes

To fi nd out whether a document contains unsaved changes, check its Saved property. Saved is

a read/write Boolean property that returns False if the document contains unsaved changes

and True if it does not. A new document contains no unsaved changes, even though it has never

been saved.

The Dangers of Cloud Storage and How to Send Files up into the Cloud

With mobility now the main trend in personal computing, people increasingly expect their fi les to

be available anywhere, not just on their hard drive at home or in the offi ce. Th ey also want them

accessible to various devices: the Surface tablet/Ultrabook, the phone, the laptop, whatever.

So, to make fi les within reach everywhere and on whatever kind of computer, data is being moved

to the cloud. Never mind that if you read their EULAs you discover that cloud storage providers

nearly universally refuse to guarantee either the safety or security of your data. It could be lost in

a fi re; it could be captured by snoops. To protect yourself, it is a wise precaution to keep your own

backup copies in your own house or offi ce and also encrypt sensitive information. Th e cloud is useful,

but dicey. Who are these people storing your data? And where, exactly, are their servers located?

Nonetheless, if you want to know how to save Word fi les to the cloud on Microsoft’s SkyDrive,

it’s pretty straightforward. Just save a document to your SkyDrive folder. Th is example saves the

current document to SkyDrive (change my name, Richard, to your name in the fi le path in this

example code):

ActiveDocument.SaveAs (“C:\Users\Richard\SkyDrive\CloudTest”)

Similarly, to save to Dropbox:

ActiveDocument.SaveAs2 (“C:\Users\Richard\Dropbox\CloudTest”)

Opening a Document
To open a document, use the Open method with the appropriate Document object. The syntax for

the Open method is as follows:

expression.Open FileName, ConfirmConversions, ReadOnly,

AddToRecentFiles, PasswordDocument, PasswordTemplate,

Revert, WritePasswordDocument, WritePasswordTemplate,

Format, Encoding, Visible,

OpenAndRepair, DocumentDirection, NoEncodingDialog, XMLTransform

560 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

The arguments are as follows:

 ◆ expression is a required expression that returns a Documents collection. Usually, you’ll want

to use the Documents collection itself.

 ◆ FileName is a required Variant argument specifying the name (and path, if necessary) of

the document to open.

 ◆ ConfirmConversions is an optional Variant argument that you can set to True to have

Word display the Convert File dialog box if the fi le is in a format other than Word.

 ◆ ReadOnly is an optional Variant argument that you can set to True to open the document as

read-only.

 ◆ AddToRecentFiles is an optional Variant argument that you can set to True to have Word

add the fi lename to the list of recently used fi les at the foot of the File menu.

 ◆ PasswordDocument is an optional Variant argument that you can use to set a password for

opening the document.

 ◆ PasswordTemplate is an optional Variant argument that you can use to set a password for

opening the template.

 ◆ Revert is an optional Variant argument that specifi es what Word should do if the

FileName supplied matches a fi le that’s already open. By default (that is, if you don’t

include the Revert argument), Revert is set to False, which means that Word activates the

open instance of the document and doesn’t open the saved instance. You can set Revert to

True to have Word open the saved instance of the document and discard any changes to

the open instance.

 ◆ WritePasswordDocument is an optional Variant argument that indicates the password for

saving changes to the document.

 ◆ WritePasswordTemplate is an optional Variant argument that specifi es the password for

saving changes to the template.

 ◆ Format is an optional Variant argument that you can use to specify the fi le converter with

which to open the document. Table 20.2 lists the WdOpenFormat constants you can use

specify the fi le converter.

 ◆ Encoding is an optional Variant argument specifying the document encoding (the code

page or the character set) for Word to use when opening the document.

 ◆ Visible is an optional Variant argument that you can set to False to have Word open the

document in a window that isn’t visible. (The default setting is True, specifying a visible

window.)

 ◆ OpenAndRepair is an optional Variant that, when True, repairs the document to prevent

corruption.

 ◆ DocumentDirection is an optional WdDocument Direction variable type, indicating the

horizontal fl ow of text in the document. The default is wdLeftToRight.

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 561

 ◆ NoEncodingDialog is an optional Variant that defaults to False. But if it’s set to True, the

Encoding dialog box is not displayed when Word cannot recognize text encoding.

 ◆ XMLTransform is mysterious. The only explanation I could fi nd is in MSDN and it merely

says, “Specifi es a transform to use.” So your guess is as good as mine about what this

option accomplishes.

Table 20.2: WdOpenFormat constants for opening a document

Constant Effect

wdOpenFormatAllWord Word opens the document in any recognized Word for-

mat as a Word document.

wdOpenFormatAllWordTemplates Word opens the document in any recognized Word for-

mat as a Word template.

wdOpenFormatAuto Word chooses a converter automatically. Th is is the

default setting.

wdOpenFormatDocument Word opens the document as a Word document.

wdOpenFormatDocument97 Microsoft Word 97 document format.

wdOpenFormatEncodedText Word opens the document as a text fi le with encoding.

wdOpenFormatOpenDocumentText Word opens the document in an XML fi le format devel-

oped by Sun Microsystems.

wdOpenFormatRTF Word opens the document as a Rich Text format fi le.

wdOpenFormatTemplate Word opens the document as a template.

wdOpenFormatTemplate97 Word 97 template format.

wdOpenFormatText Word opens the document as a text fi le.

wdOpenFormatUnicodeText Word opens the document as a Unicode text fi le.

wdOpenFormatWebPages Word opens the document as a web page.

wdOpenFormatXML Word opens the document in XML format.

wdOpenFormatXMLDocument XML document format.

wdOpenFormatXMLDocumentMacroEnabled XML document format with macros enabled.

wdOpenFormatXMLDocumentMacro-

EnabledSerialized

Word opens an XML document with macros enabled by

reconstructing the original document from a one-dimen-

sional stream of bits.

562 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Constant Effect

wdOpenFormatXMLDocumentSerialized Word opens an XML document by reconstructing the

original document structure from a one-dimensional

stream of bits.

wdOpenFormatXMLTemplate XML template format.

wdOpenFormatXMLTemplateMacroEnabled XML template format with macros enabled.

wdOpenFormatXMLTemplateMacro-

EnabledSerialized

Word opens an XML template with macros enabled by

reconstructing the original document from a one-dimen-

sional stream of bits.

wdOpenFormatXMLTemplateSerialized Word opens an XML template by reconstructing the orig-

inal document from a one-dimensional stream of bits.

The following statement opens the document Times.docx found in the C:\My Documents\

folder:

Documents.Open “C:\My Documents\Times.docx”

The following statement opens the fi le notes.docm in the folder C:\temp as read-only and

adds it to the list of most recently used fi les (the list you see when you click the File tab on the

Ribbon, then click Recent):

Documents.Open “C:\temp\notes.docm”, ReadOnly:=True, _

 AddToRecentFiles:=True

How to Look Up Office Members in MSDN

Recall that Microsoft’s MSDN online help system can sometimes be diffi cult to search because it

is so huge; it’s perhaps too complete. Among other issues, MSDN includes enumerations (lists of

properties and methods, or constants, for example) for older versions of Offi ce applications, such

as 2007 or 2010, as well as those for the current version 2013.

Although these lists usually don’t change much between versions, they can change. To preserve

compatibility—so you don’t have to rewrite your macros every time a new version of Offi ce comes

out—few enumerations ever lose members. But new capabilities are added. Word 2013, for example,

adds wdFormatStrictOpenXMLDocument to the enumeration list for wdSaveFormat shown in

Table 20.1.

To search MSDN for the latest enumeration, type something like this in the MSDN online Search

Offi ce With Bing fi eld: wdDefaultFilePath offi ce 2013. Th en in the list of hits displayed by Bing,

choose the enumeration. Note that wd specifi es Word.

Closing a Document
To close a document, use the Close method with the application Document object. The syntax is

as follows:

expression.Close(SaveChanges, OriginalFormat, RouteDocument)

Table 20.2: WdOpenFormat constants for opening a document (continued)

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 563

Here, expression is a required expression that returns a Document object or a Documents col-

lection. Typically you use the ActiveDocument object or, to close all documents, the Documents

collection object.

SaveChanges is an optional Variant argument you can use to specify how to handle unsaved

changes. Use wdDoNotSaveChanges to discard changes, wdPromptToSaveChanges to have Word

prompt the user to save changes, or wdSaveChanges to save changes without prompting.

OriginalFormat is an optional Variant argument you can use to specify the save format for

the document. Use wdOriginalDocumentFormat to have Word use the original document for-

mat, wdPromptUser to have Word prompt the user to choose a format, or wdWordDocument to use

the Word document format.

RouteDocument is an optional Variant argument that you can set to True to route a document

that has a routing slip attached.

For example, the following statement closes the active document without saving changes:

ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges

The following statement closes all open documents (but not the Word application itself) and

saves changes automatically:

Documents.Close SaveChanges:=wdSaveChanges

Changing a Document’s Template
To change the template attached to a document, set the AttachedTemplate property of the

Document object you want to affect to the path and name of the appropriate template. For exam-

ple, the following statement attaches the template named SalesMarket02.dotm to the active

document. In this example, the template is assumed to be stored in one of the Word templates

folders, so the path need not be specifi ed:

ActiveDocument.AttachedTemplate = “SalesMarket02.dotm”

Printing a Document
To print a document, use the PrintOut method for the appropriate Document object. The syntax

for the PrintOut method is as follows:

expression.PrintOut(Background, Append, Range, OutputFileName, From, To, Item, Copies,

Pages, PageType, PrintToFile, Collate, ActivePrinterMacGX, ManualDuplexPrint,

PrintZoomColumn, PrintZoomRow, PrintZoomPaperWidth, PrintZoomPaperHeight)

These are the components of the PrintOut method:

 ◆ expression is a required expression specifying an Application, Document, or Window object.

Usually, you’ll print a Document object such as ActiveDocument.

 ◆ Background is an optional Variant argument that you can set to True to have Word print

the document in the background, allowing the procedure to continue running.

 ◆ Append is an optional Variant argument that you can set to True to append the document

being printed to fi le to the print fi le specifi ed.

 ◆ Range is an optional Variant argument specifying the selection or range of pages to print:

wdPrintAllDocument (0, the default), wdPrintCurrentPage (2), wdPrintFromTo (3; use

the From and To arguments to specify the pages), wdPrintRangeOfPages (4), or wdPrint-

Selection (1).

564 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

 ◆ OutputFileName is an optional Variant argument used to specify the name for the output

fi le when printing to fi le.

 ◆ From is an optional Variant argument used to specify the starting page number when

printing a range of pages.

 ◆ To is an optional Variant argument used to specify the ending page number when printing

a range of pages.

 ◆ Item is an optional Variant argument used to specify the item to print: wdPrintAuto

TextEntries (4), wdPrintComments (2), wdPrintDocumentContent (0, the default),

wdPrintKeyAssignments (5, shortcut key assignments for the document or its template),

wdPrintProperties (1), or wdPrintStyles (3).

 ◆ Copies is an optional Variant argument used to specify the number of copies to print. (If

you omit Copies, Word prints one copy.)

 ◆ Pages is an optional Variant argument used to specify the pages to print—for example, 1,

11-21, 31.

 ◆ PageType is an optional Variant argument used to specify whether to print all pages

(wdPrintAllPages, 0, the default), odd pages (wdPrintOddPagesOnly, 1), or even pages

(wdPrintEvenPagesOnly, 2).

 ◆ PrintToFile is an optional Variant argument that you can set to True to direct the output

of the print operation to a fi le.

 ◆ Collate is an optional Variant argument used when printing multiple copies of a docu-

ment to specify whether to collate the pages (True) or not (False).

 ◆ ActivePrinterMacGX is an optional Variant argument used on the Macintosh to specify

the printer if QuickDraw GX is installed.

 ◆ ManualDuplexPrint is an optional Variant argument that you set to True for two-sided

printing on a printer that doesn’t have duplex capabilities. When ManualDuplexPrint

is True, you can use the PrintOddPagesInAscendingOrder property or the

PrintEvenPagesInAscendingOrder property of the Options object to print odd or even

pages in ascending order to create a manual duplex effect (reloading the odd-page-printed

paper into the printer the other way up to print the even pages). The ManualDuplexPrint

argument is available only in some languages.

 ◆ PrintZoomColumn and PrintZoomRow are optional Variant arguments that you use to spec-

ify the number of pages to print on a page horizontally (PrintZoomColumn) and vertically

(PrintZoomRow). Each property can be 1, 2, or 4.

 ◆ PrintZoomPaperWidth is an optional Variant argument that you can use to specify the

width (measured in twips) to which to scale printed pages.

 ◆ PrintZoomPaperHeight is an optional Variant argument that you can use to specify the

height (measured in twips) to which to scale printed pages.

For example, the following statement prints three collated copies of the active document in

the background:

ActiveDocument.PrintOut Background:=True, Copies:=3, Collate:=True

WORKING WITH THE DOCUMENTS COLLECTION AND THE DOCUMENT OBJECT | 565

The following statement prints pages 2 through 5 of the active document:

ActiveDocument.PrintOut Range:=wdPrintFromTo, From:=2, To:=5

The following statement prints the active document at two virtual pages per sheet of paper:

ActiveDocument.PrintOut PrintZoomColumn:=2, PrintZoomRow:=1

Working with the ActiveDocument Object
The ActiveDocument object returns a Document object that represents the current document

you’re working with—in other words, whichever document has the focus in the Word window.

The ActiveDocument object behaves like a Document object, but watch out for two possible prob-

lems when working with it.

First, you may have problems locating information about the ActiveDocument object in the

Help system. It’s actually a property of the Application object, so its status as an actual object

is somewhat iffy. Object taxonomy is an evolving clerical system and, as you see, remains

incomplete.

To fi nd the ActiveDocument object in the Help system, MSDN system, or VBA Editor Object

Browser, you need to fi rst locate the Application object, then look at its properties (or mem-

bers). Just remember, ActiveDocument is found only under the Application object. It’s a cleri-

cal error. It’s as if you were looking for California in a geography book’s index, but the index is

wacky because you fi nd most states listed under their own names (Hawaii is under H, for exam-

ple), but for some reason, California is not listed under C. You’re puzzled. It’s a big, important

state. Then you stumble upon the solution: In this bizarre index, California is only found under

the entry for United States.
The second oddity about the ActiveDocument “property” is that it can be evanescent. The

fi rst problem is that if there’s no document open in Word, there’s no ActiveDocument object,

and any code that tries to work with the ActiveDocument object returns an error. When writ-

ing code that invokes the ActiveDocument object, remember to check the Count property of

the Documents collection to make sure there’s a document open (Count will be at least 1) before

attempting to use ActiveDocument in your code. Here’s an example that tests to see if there is an

open document:

If Documents.Count = 0 Then

 If MsgBox(“No document is open.” & vbCr & vbCr & _

 “Do you want to create a new blank document?”, _

 vbYesNo + vbExclamation, “No Document Is Open”) = vbYes Then

 Documents.Add

 Else

 End

 End If

End If

A second problem relating to this evanescence is that a different document may be active

than your code assumes is active. This problem tends to occur when a procedure starts with the

active document and then creates a new document to work in; this new document becomes the

active document, and from this point on, confusion may result.

If you know the name of the document that should be active, you can check to see if the name

of the active document matches it, to verify that you’ll be working with the right document.

566 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

If there’s any doubt about which document you’re working with, declare a Document object

variable and employ that object variable in your code rather than the ActiveDocument object.

For example, the following statements declare a Document object and assign the

ActiveDocument object to it so that subsequent code can work with the Document object:

Dim myDocument As Document

Set myDocument = ActiveDocument

With myDocument

 ‘actions here

End With

Or if you know the name of the document you want to work with:

Dim myDocument As Document

Set myDocument = ActiveDocument

If myDocument.Name = “CorrectFile.docx” Then

 ‘actions here

End If

Working with the Selection Object
Up to now in this chapter we’ve worked with programming that affects an entire document. To

write code that works with only part of a document (a word, paragraph, or whatever), you can

access these zones in three ways:

 ◆ By using the Selection object

 ◆ By directly accessing the object that you want to affect

 ◆ By defi ning a range that encompasses the object

Using the Selection object is analogous to working interactively with Word and is effective

with procedures that require the user to select an object or position the insertion point to denote

what content in the document the procedure should access.

Using the Selection object is also effective when you’re learning to use VBA with Word,

because many actions that you record using the Macro Recorder use the Selection object.

The Selection object represents the current selection in the active document in Word. The

selection can be very small (collapsed to the blinking cursor insertion point), in which case

nothing is selected. Or a Selection object can contain one or more objects—one or more charac-

ters, one or more words, one or more paragraphs, a graphic, a table, the entire document. Or the

selection can be a combination of these objects. Whatever’s selected.

Even if the selection is collapsed to an insertion point, you can use it to refer to objects out-

side the selection. For example, Selection.Paragraphs(1).Range.Words(10).Text returns the

10th word in the paragraph in which the insertion point is positioned (or, if a paragraph or mul-

tiple paragraphs are selected, the 10th word in the fi rst paragraph).

Checking the Type of Selection
Word recognizes nine different kinds of selections. When you’re working in the active docu-

ment, you’ll often need to check what kind of selection is active so that you know whether

you’re dealing with no selection (just the insertion point), a block of ordinary text, or a special

type of text like a table or a graphic.

WORKING WITH THE SELECTION OBJECT | 567

Depending on the current selection, you may not be able to take certain actions in your pro-

cedure, and you may not want to take other actions. You can’t, for example, insert a table row

into an ordinary text paragraph.

Table 20.3 lists the types of selections that Word differentiates.

Table 20.3: Selection types in Word

wdSelectionType

constant Value Meaning

wdNoSelection 0 Th ere’s no selection. (Th is state seems impossible to achieve.

You’d think it’d be when no document is open, but then

Selection statements return runtime error 91. Stay tuned…)

wdSelectionIP 1 Th e selection is collapsed to a plain insertion point—nothing is

selected. But the insertion cursor is blinking as usual.

wdSelectionNormal 2 A “normal” selection, such as a selected word or sentence.

wdSelectionFrame 3 A frame is selected.

wdSelectionColumn 4 A column or part of a column (two or more cells in a column or

one cell in each of two or more columns) is selected.

wdSelectionRow 5 A full row in a table is selected.

wdSelectionBlock 6 A block is selected (a vertical part of one or more paragraphs,

selected by holding down the Alt key and dragging with the

mouse or by using column-extend mode).

wdSelectionInline-

Shape

7 An inline shape or graphic (a shape or graphic that’s in the text

layer rather than fl oating over it) is selected.

wdSelectionShape 8 A Shape object is selected. (A text box counts as a Shape object.)

To fi nd out what type of selection you currently have, look at the Type property of the

Selection object. The following statements check that the current selection is merely an inser-

tion point before inserting a text literal. The text will not be inserted if the user has dragged to

select, for example, some characters, a word, or a paragraph:

If Selection.Type = wdSelectionIP Then

 Selection.TypeText “This is inserted.”

End If

Checking the Story Type of the Selection
Beyond the type of selection, you’ll sometimes need to fi nd out which “story” the selection is

in—the main text story, the comments story, the primary header story, and so on. Microsoft uses

the word story instead of zone, type, or other terms to mean a distinct type of content.

568 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Checking the story can help you avoid problems, such as trying to perform in a header or

footer actions that Word supports only in a main text story.

The story is the zone of the document within which the current selection is located. So, most

of the time the story is the main text story (wdMainTextStory). That’s the document and the items

within it. But alternative “stories” are things like footnotes, frames, headers, and footers—as you can

see in Table 20.4, which lists the wdStoryType constants and the stories to which they correspond.

You may notice another whimsical, enigmatic feature of Table 20.4. It starts the enumeration

value with 1. Compare that to Table 20.3 which starts with 0. Inconsistencies like this make pro-

gramming more challenging.

Table 20.4: Word story types

wdStoryType Constant Value Meaning

wdMainTextStory 1 Main (body) text of the document

wdCommentsStory 4 Comments section

wdEndnotesStory 3 Endnotes section

wdFootnotesStory 2 Footnotes section

wdTextFrameStory 5 Text in frames

wdPrimaryFooterStory 9 Main footer

wdEvenPagesFooterStory 8 Even-page footer

wdFirstPageFooterStory 11 First-page footer

wdPrimaryHeaderStory 7 Main header

wdEvenPagesHeaderStory 6 Even-page header

wdFirstPageHeaderStory 10 First-page header

wdFootnoteSeparatorStory 12 Footnote separator

wdFootnoteContinuationSeparatorStory 13 Footnote continuation separator

wdFootnoteContinuationNoticeStory 14 Footnote continuation notice

wdEndnoteSeparatorStory 15 Endnote separator

wdEndnoteContinuationSeparatorStory 16 Endnote continuation separator

wdEndnoteContinuationNoticeStory 17 Endnote continuation notice

Here’s a code example that displays a message box if the selection isn’t in the main text of a

document:

If Selection.StoryType <> wdMainTextStory Then

WORKING WITH THE SELECTION OBJECT | 569

 MsgBox “This range is not in the main text.”

End If

Getting Other Information about the Current Selection
To work effectively with a selection, you’ll often need to know what it contains and where it’s

positioned. To fi nd out, use the Information property to learn the details you need. Table 20.5

lists examples of useful information available in the Information property.

Here’s an example showing how to use the Information property:

If Selection.Information(wdCapsLock) = True Then

 MsgBox “The caps lock is ON.”

End If

Sharp-eyed readers will notice a capricious inconsistency in this code. In the other code

examples in this section, no parentheses were used around a constant, and the operator (= or <>

or whatever) is placed between the property and the constant, as shown in this example:

Selection.Type = wdSelectionIP

But with the Information property, you do use parentheses, and you move the operator to

the right of the constant:

Selection.Information(wdCapsLock) =

This syntax and punctuation irregularity is yet another of those exceptions to the rule. You

should therefore remember that if the usual syntax produces an error message from the Editor,

try the other (parenthetical) version.

To see the complete list of all members, open the object browser (F2) and scroll down in the

Classes list until you see wdInformation. Double-click it and its members will be listed in the

Members of “WdInformation” list on the right.

Table 20.5: Information available in the Information property

Constant Returns This Information

Environment Information

wdCapsLock True if Caps Lock is on.

wdNumLock True if Num Lock is on.

wdOverType True if Overtype mode is on. (You can turn Overtype

mode on and off by changing the Overtype property.)

wdRevisionMarking True if Track Changes is on.

wdSelectionMode A value that specifi es the current selection mode: 0 indi-

cates a normal selection, 1 indicates an extended selection

(Extend mode is on), and 2 indicates a column selection.

wdZoomPercentage Th e current zoom percentage.

570 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Constant Returns This Information

Selection and Insertion Point

Information

wdActiveEndAdjustedPageNumber Th e number of the page containing the active end of the

selection or range. Th is number refl ects any change you

make to the starting page number; wdActiveEndPage-

Number, the alternative, doesn’t.

wdActiveEndPageNumber Th e number of the page containing the active end of the

selection or range.

wdActiveEndSectionNumber Th e number of the section containing the active end of the

selection or range.

wdFirstCharacterColumnNumber Th e character position of the fi rst character in the selec-

tion or range. If the selection or range is collapsed to an

insertion point, this constant returns the character num-

ber immediately to the right of the insertion point. (Note

that this “column” is relative to the currently active left

margin and doesn’t have to be inside a table.)

wdFirstCharacterLineNumber In Print Layout view and Print Preview, this constant

returns the line number of the fi rst character in the selec-

tion. In nonlayout views (e.g., Normal view), it returns -1.

 wdFrameIsSelected True if the selection or range is a whole frame or text box.

wdHeaderFooterType A value that specifi es the type of header or footer contain-

ing the selection or range: -1 indicates that the selection

or range isn’t in a header or footer; 0 indicates an even page

header; 1 indicates an odd page header in a document that

has odd and even headers and the only header in a docu-

ment that doesn’t have odd and even headers; 2 indicates

an even page footer; 3 indicates an odd page footer in a

document that has odd and even footers and the only

footer in a document that doesn’t have odd and even head-

ers; 4 indicates a fi rst-page header; and 5 indicates a fi rst-

page footer.

wdHorizontalPositionRelativeToPage Th e horizontal position of the selection or range—the

distance from the left edge of the selection or range to the

left edge of the page, measured in twips.

wdHorizontalPositionRelativeTo-

TextBoundary

Th e horizontal position of the selection or range—the

distance from the left edge of the selection or range to the

text boundary enclosing it, measured in twips.

wdInCommentPane True if the selection or range is in a comment pane.

Table 20.5: Information available in the Information property (continued)

WORKING WITH THE SELECTION OBJECT | 571

Constant Returns This Information

wdInEndnote True if the selection or range is an endnote (defi ned as

appearing in the endnote pane in Normal view or in the

endnote area in Print Layout view).

wdInFootnote True if the selection or range is in a footnote (defi ned as

appearing in the footnote pane in Normal view or in the

footnote area in Print Layout view).

wdInFootnoteEndnotePane True if the selection or range is in a footnote or endnote.

wdInHeaderFooter True if the selection or range is in a header or footer

(defi ned as appearing in the header or footer pane in

Normal view or in the header or footer area in Print Layout

view).

wdInMasterDocument True if the selection or range is in a master document (a

document containing at least one subdocument).

wdInWordMail A value that specifi es the WordMail location of the selec-

tion or range: 0 indicates that the selection or range isn’t in

a WordMail message; 1 indicates that it’s in a WordMail

message you’re sending; 2 indicates that it’s in a WordMail

you’ve received.

wdNumberOfPagesInDocument Th e number of pages in the document in which the selec-

tion or range appears.

wdReferenceOfType A value that specifi es where the selection is in relation to a

footnote reference, endnote reference, or comment refer-

ence. -1 indicates the selection or range includes a refer-

ence. 0 indicates the selection or range isn’t before a refer-

ence. 1 indicates the selection or range is before a footnote

reference, 2 that it’s before an endnote reference, and 3

that it’s before a comment reference.

wdVerticalPositionRelativeToPage Th e vertical position of the selection or range—the dis-

tance from the top edge of the selection to the top edge of

the page, measured in twips.

wdVerticalPositionRelativeToText-

Boundary

Th e vertical position of the selection or range—the dis-

tance from the top edge of the selection to the text bound-

ary enclosing it, measured in twips.

Table Information

wdWithInTable True if the selection is in a table.

wdStartOfRangeColumnNumber Th e number of the table column containing the beginning

of the selection or range.

Table 20.5: Information available in the Information property (continued)

572 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Constant Returns This Information

wdEndOfRangeColumnNumber Th e number of the table column containing the end of the

selection or range.

wdStartOfRangeRowNumber Th e number of the table row containing the beginning of

the selection or range.

wdEndOfRangeRowNumber Th e number of the table row containing the end of the

selection or range.

wdAtEndOfRowMarker True if the selection or range is at the end-of-row marker

in a table (not the end-of-cell marker).

wdMaximumNumberOfColumns Th e largest number of table columns in any row in the

selection or range.

wdMaximumNumberOfRows Th e largest number of table rows in the table in the selec-

tion or range.

Macintosh

wdInClipboard Used with Microsoft Offi ce Macintosh Edition

Inserting Text at, after, or before the Selection
You can insert text at the selection by using the TypeText method of the Selection object, insert

text before the selection by using the InsertBefore method, or insert text after the selection by

using the InsertAfter method.

The TypeText method merely inserts a text string into the document if the selection is col-

lapsed (merely the blinking insertion cursor with nothing actually selected). But if something

is selected, such as a word or phrase, that selection is replaced by the string when you execute

the TypeText method. However, the InsertBefore and InsertAfter methods do not replace a

selection. They merely insert the new string.

The syntax is as follows:

Selection.TypeText string

Selection.InsertAfter string

Selection.InsertBefore string

Here, string is a required String expression containing the text you want to insert in double

quotation marks, as in this example:

Selection.TypeText “Please come to the meeting next Friday at 9:00 A.M.”

Selection.InsertBefore “Dr. “

Selection.InsertAfter vbCr & Address

When you use the InsertAfter or the InsertBefore method, VBA extends the selection

to include the text you inserted. (You can see selected text, cells, or other items in a document

Table 20.5: Information available in the Information property (continued)

WORKING WITH THE SELECTION OBJECT | 573

because Word changes the background from the default white to the document frame color.)

When you use the TypeText method, the result is a collapsed selection—whether you are

replacing a selection or a collapsed selection. (Recall that a collapsed selection means nothing is

selected—merely the blinking insertion point.)

A Selected Paragraph Includes the Ending Paragraph Mark

When you have a whole paragraph selected, the selection includes the paragraph mark at the end

of the paragraph. So any text you add to the end of the selection appears at the beginning of the

next paragraph rather than at the end of the selected paragraph.

Inserting a Paragraph in a Selection
You can insert paragraphs:

 ◆ To insert a paragraph at the current selection, use the InsertParagraph method.

 ◆ To insert a paragraph before the current selection, use the InsertParagraphBefore

method.

 ◆ To insert a paragraph after the current selection, use the InsertParagraphAfter method.

You can also have VBA type a paragraph by using the Selection.TypeParagraph command.

Applying a Style
To apply a style to a paragraph, set the Style property of the Paragraph object:

Selection.Style = “Heading 3”

View the styles in the current document by pressing Ctrl+S, or click the Home tab on the

Ribbon.

Similarly, you can apply a character style to the current selection or (as in the following

example) to a specifi c range of words or characters. This example changes the fi fth word in the

second paragraph of the current document to boldface:

ActiveDocument.Paragraphs(2).Range.Words(5).Style = “Bold”

Note that a character style must always be applied to a range rather than directly to a

paragraph.

Extending a Selection
To extend a selection programmatically (through programming rather than by the user), use the

EndOf method for a Range or Selection object. The syntax for the EndOf method is as follows:

expression.EndOf(Unit, Extend)

Here, expression is a required expression that returns a Range or Selection object, such as

an object in the Characters, Words, Sentences, or Paragraphs collection. Unit is an optional

Variant specifying the unit of movement (see Table 20.6).

574 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Table 20.6: Units of movement for the EndOf method

Unit Meaning

wdCharacter A character.

wdWord A word. (Th is is the default setting if you omit the argument.)

wdSentence A sentence.

wdLine A line. (Th is unit can be used only with Selection objects, not with ranges.)

wdParagraph A paragraph.

wdSection A section of a document.

wdStory Th e current story—for example, the document story or the header and footer story.

wdCell A cell in a table.

wdColumn A column in a table.

wdRow A row in a table.

wdTable A whole table.

Extend is an optional Variant specifying whether to move or extend the selection or range.

wdMove moves the selection or range and is the default setting; wdExtend extends the selection or

range.

For example, the following statement extends the current selection to the end of the

paragraph:

Selection.EndOf Unit:=wdParagraph, Extend:=wdExtend

The following statement moves the selection to the end of the paragraph:

Selection.EndOf Unit:=wdParagraph, Extend:=wdMove

The following statement selects from the current selection to the end of the current Word

story:

Selection.EndOf Unit:=wdStory, Extend:=wdExtend

To select the whole active document, use ActiveDocument.Content.Select. This command

has the same effect as pressing Ctrl+A when working interactively.

Collapsing a Selection
When you’ve fi nished working with a selection larger than a blinking cursor insertion point,

you often want to deselect it. In other words, you may want to force the selection into a col-

lapsed state (just the blinking cursor) when your procedure ends. (If you don’t do this and the

user just starts typing, whatever is selected will be replaced by the user’s typing.)

CREATING AND USING RANGES | 575

The easiest way to do so is to use the Collapse method of the Selection object to collapse

the selection to its start or its end:

Selection.Collapse Direction:=wdCollapseStart

Selection.Collapse Direction:=wdCollapseEnd

Alternatively, you can reduce the selection to just one point by setting the selection’s end

selection equal to its start (collapsing the selection to its start) or by setting the selection’s start

equal to its end (collapsing the selection to its end):

Selection.End = Selection.Start

Selection.Start = Selection.End

Creating and Using Ranges
In Word, a range is a contiguous area of a document with a defi ned starting point and ending

point. For example, if you defi ne a range that consists of the fi rst two paragraphs in a specifi ed

document, the range’s starting point is at the beginning of the fi rst paragraph, and its ending

point is at the end of the second paragraph (after the paragraph mark).

Although similar to a selection, a range is more fl exible. And, it’s important to note that a

range is named in your code, so you can refer to it by name at any time. There can be multiple

ranges, but there can only be one selection at a time, and it has no name.

The typical use of ranges in Word VBA is similar to how you use bookmarks when working

interactively with Word: to mark a location in a document that you want to be able to access

quickly or manipulate easily.

Like a bookmark, a range can contain any amount of text in a document, from a single char-

acter to the entire contents of the document. A range can even have the same starting point and

ending point, which gives it no contents and makes it, in effect, an invisible mark in the docu-

ment that you can use to insert text. (This is similar to a collapsed selection.)

Once you’ve created a range, you can refer to it, access its contents or insert new contents in it,

or format it—all by using the methods and properties of the range object.

How a Range Differs from a Bookmark

Th e main diff erence between a range and a bookmark is that the lifetime of a range is limited to

the VBA procedure that defi nes it. Once the procedure fi nishes executing, the range vanishes. By

contrast, a bookmark persists. It is saved with the document or template that contains it and can

be accessed at any time (whether or not a procedure is running).

Defi ning a Named Range
To create a Range object, you use a Set statement and either the Range method on a Document

object or the Range property for an object—for example, the Selection object, the Paragraphs

collection, or a Paragraph object. The syntax for using the Range method is as follows:

Set RangeName = Document.Range(Start, End)

576 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Here, RangeName is the name you are assigning to the range, and Start and End are optional

arguments specifying the starting and ending points of the range.

The syntax for using the Range property on an object is as follows:

Set RangeName = object.Range

For example, the following statement uses the Range property of the Paragraphs collection

to defi ne a range named FirstPara that consists of the fi rst paragraph of the active document.

This statement doesn’t use Start and End arguments because the starting point and ending

point of the paragraph are clearly understood:

Set FirstPara = ActiveDocument.Paragraphs(1).Range

The following statements change to uppercase the fi rst three words at the start of a

document:

Dim InitialCaps As Range

Set InitialCaps = ActiveDocument.Range _

(Start:=ActiveDocument.Words(1).Start, _

 End:=ActiveDocument.Words(3).End)

InitialCaps.Case = wdUpperCase

The fi rst statement defi nes a Range object named InitialCaps. The second statement assigns

InitialCaps to a range in the active document, from the beginning of the fi rst word to the end

of the third word. The third statement changes the case of the InitialCaps Range object to

uppercase.

Because InitialCaps is now defi ned as a Range object for the duration of the procedure

that declares it, you can return to InitialCaps and manipulate it later in the procedure if you

want to.

Redefi ning a Range
To redefi ne a range to make it refer to another part of a document, use the SetRange method.

The syntax is as follows:

expression.SetRange(Start, End)

Here, expression is a required expression that returns a Range or Selection object, and Start

and End are optional arguments specifying the starting and ending points of the range.

For example, the following statement redefi nes the range named InitialCaps so it now

refers to the fi rst two characters of the document:

InitialCaps.SetRange Start:=0, End:=2

You can also redefi ne a range by reusing the Set method, creating the range again from

scratch.

Using the Duplicate Property to Store or Copy Formatting
You can use the Duplicate property to store or copy a range so that you can apply it to another

range. For example, the following statements declare two ranges, Range1 and Range2; store the

MANIPULATING OPTIONS | 577

duplicate of the current selection’s range in Range1; assign to Range2 the Range of the fi rst book-

mark in the active document; and then apply to Range2 the contents of Range1:

Dim Range1 As Range, Range2 As Range

Set Range1 = Selection.Range.Duplicate

Set Range2 = ActiveDocument.Bookmarks(1).Range

Manipulating Options
In your procedures, you’ll often need to check the status of options in the Word application or in

a particular document. In VBA, many of the options are controlled by the Options object, which

has dozens of properties but no methods.

Let’s look now at four brief examples that show how to set options. Three of them use the

Options object and one uses a property of the Document object. To see the full list of properties

available for the Options object, look in the Help system.

Making Sure Hyperlinks Require Ctrl+Clicking
Hyperlinks in Word documents have proved a mixed blessing—especially since Microsoft’s

changes to the way Word handles hyperlinks have left users unsure whether to just click or to

Ctrl+click the hyperlink to follow it. You can set the CtrlClickHyperlinkToOpen property of

the Options object to True to ensure that hyperlinks require Ctrl+clicking:

Options.CtrlClickHyperlinkToOpen = True

Setting this option to False means you can trigger links by merely clicking them—no Ctrl

key required.

Turning Off Overtype
To make sure your procedures behave as expected, you may need to check that Word is using

Insert mode rather than Overtype mode. (In Insert mode, Word inserts the characters you type

at the insertion point, moving right any existing text to make room. In Overtype mode, each

character you type replaces the character to the right of the insertion point.)

Overtype mode is controlled by the Overtype property of the Options object. When

OverType is True, Overtype mode is on; when Overtype is False, Insert mode is on. The follow-

ing statements store the user’s current Overtype setting in a Boolean variable named blnOver-

typeOn, set Overtype to False, perform its actions, and then restore the user’s Overtype setting:

Dim blnOvertypeOn As Boolean

blnOvertypeOn = Options.Overtype

Options.Overtype = False ‘write more code here to perform actions

Options.Overtype = blnOvertypeOn

Setting a Default File Path
When confi guring Word on a computer, you may need to make sure that its default fi le paths are

set to the correct folders. You can do so by working with the DefaultFilePath property of the

Options object. The syntax is as follows:

expression.DefaultFilePath(Path)

578 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Here, expression is a required expression that returns an Options object. Often, it’s easiest to

use the Options object itself. Path is one of the self-explanatory enumerated constants shown in

the following list:

wdAutoRecoverPath wdStyleGalleryPath

wdBorderArtPath wdTempFilePath

wdCurrentFolderPath wdTextConvertersPath

wdDocumentsPath wdToolsPath

wdGraphicsFiltersPath wdTutorialPath

wdPicturesPath wdUserOptionsPath

wdProgramPath wdUserTemplatesPath

wdProofingToolsPath wdWorkgroupTemplatesPath

wdStartupPath

For example, the following statements set the user templates path and the workgroup tem-

plates path:

Options.DefaultFilePath(wdUserTemplatesPath) = _

“c:\users\richard\appdata\roaming\microsoft\templates”

Options.DefaultFilePath(wdWorkgroupTemplatesPath) = _

“\\server\users\templates”

Turning Off Track Changes
Before running a procedure that adds, deletes, or formats text, you may need to turn off the

Track Changes feature so that the changes the procedure makes are not marked up in the text.

If the user had Track Changes on, you should turn it back on at the end of the procedure so that

changes the user makes are tracked again. Remember that it’s usually a good practice when

changing options to fi rst store the user’s current setting in a variable, carry out your procedure’s

task, and then restore the user’s original setting.

The following example saves the user’s setting for the TrackRevisions option in the

ActiveDocument object in a Boolean variable named blnTrackChangesOn, sets TrackRevisions

to False, performs its actions, and then restores the user’s TrackRevisions setting:

Dim blnTrackChangesOn As Boolean

blnTrackChangesOn = ActiveDocument.TrackRevisions

ActiveDocument.TrackRevisions = False

‘ write more code here to perform actions

ActiveDocument.TrackRevisions = blnTrackChangesOn

MANIPULATING OPTIONS | 579

Accessing OneNote
Earlier in this chapter you saw how to access the cloud: SkyDrive, Dropbox, and so on. It’s

uncomplicated. Dealing with OneNote is another matter because its contents are stored in the

tricky XML format. Tricky because reading and manipulating XML data is somewhat surreal.

XML tries to be all things to all people, and the usual consequences of that effort ensue. XML

comes in many, many versions; it mixes a “self-describing” metalanguage into its data; you’ll

fi nd no standards for parsing (breaking the data down for reading and managing); and so on.

When you write code to manage an ordinary text document, it’s pretty simple because

of VBA’s string-manipulation features. Even managing a Word document is easy enough

because VBA has so many built-in functions involving the Range, Selection, and other objects.

Word effectively hides its internal formatting and other complexities, allowing you the option

of handling the text simply as text.

Not so with XML. As you’ll see, just getting the metadata (information such as the name of a

notebook) is heavy-going.

Why bother to explore this topic then? Although VBA is not built into OneNote, VBA code

in other Offi ce 2013 applications can directly manipulate OneNote. And, because Microsoft is

currently promoting OneNote, attempting to make it popular after all these years, I’m including

this example demonstrating how to access it from the other Offi ce applications.

OneNote is useful; it’s actually quite rich in features and well integrated into the Windows

and Offi ce platforms. And now that versions of OneNote are available on everything from iOS

to Android devices, perhaps Microsoft’s dream will come true. So, if you should ever need to

know how to contact OneNote from Word or some other Offi ce application, read on.

The following example fetches metadata from the user’s OneNote. Before you try this code,

choose Tools ➢ References in the Editor and ensure that both Microsoft OneNote 15.0 Object

Library and Microsoft XML, v6.0 are both checked in the References dialog box.

1. Sub GetMetaData()

2.

3. ‘If it’s not currently running, OneNote will be launched

4. Dim ONote As oneNote.Application

5. Set ONote = New oneNote.Application

6.

7. Dim strXML As String

8.

9. ONote.GetHierarchy “”, hsNotebooks, strXML, xs2010 ‘this fails if you use xs2013

10.

11. MsgBox strXML

12. End Sub

Lines 4 and 5 create an instance of OneNote and assign it to the ONote object variable.

Next we create a string variable in line 7 to hold the metatdata. Line 9 uses the GetHierarchy

method to fi ll strXML with the metadata. hsNotebooks represents the collection of notebooks in

OneNote. The messagebox displays the results, as illustrated in Figure 20.4.

580 | CHAPTER 20 UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS

Figure 20.4

Metadata fetched

from OneNote

Th e Bottom Line

Understand the Word object model. Some people fi nd viewing a schematic of the Word

object model useful as a way of visualizing the interrelationships of the various objects and

collections.

Master It When you look at the Word Object Model Map, what is the highest object in

the hierarchy—the object that contains all other objects?

Understand Word’s creatable objects. Word contains a set of creatable objects that VBA

programmers will frequently employ in their code.

Master It What is a creatable object?

Work with the Documents collection and the Document object. The Documents collection

represents all the currently open documents. Using VBA, you can manipulate this collection

in a variety of ways.

Master It Here is the syntax for creating a new document in the Documents collection:

Documents.Add Template, NewTemplate, DocumentType, Visible

If you merely want to add a new, empty document (based on the default Normal.dotm

template) to the documents currently open in Word, the code is quite simple. What is the

code that you would write in VBA to accomplish this?

Work with the Selection object. The Selection object represents the current selection in

the active document in Word. A zone can be selected by the user by dragging the mouse or

by using various key combinations (such as pressing Shift and an arrow key). A selection can

include one or more objects—one or more characters, one or more words, one or more para-

graphs, a graphic, a table, and so on. Or a combination of these objects.

Master It One kind of selection is described as a collapsed selection. What is that?

Create and use ranges. In Word, a range is a named contiguous area of a document with a

defi ned starting and ending point. The typical use of ranges in Word VBA is similar to how

you use bookmarks when working interactively with Word: to mark a location in a document

that you want to be able to access quickly or manipulate easily.

THE BOTTOM LINE | 581

Master It Although a range is similar to a bookmark, what is the signifi cant difference

between them?

Manipulate options Word contains many options that can be manipulated from within

VBA.

Master It In Word, one object controls many of the options. This object has dozens of

properties but no methods. Name this object .

c21.indd 01:6:32:PM 07/18/2013 Page 583

Chapter 21

Working with Widely Used Objects
in Word

In the previous chapter, you learned how to work with some of the main objects in the Word

object model, such as Document objects, the Selection object, Range objects, and the Options

object. This chapter shows you how to go further with VBA in Word by working with Find and

Replace; with headers, footers, and page numbers; with sections, page setup, windows, and

views; and with tables.

In this chapter you will learn to do the following:

 ◆ Use Find and Replace via VBA

 ◆ Work with headers, footers, and page numbers

 ◆ Manage sections, page setup, windows, and views

 ◆ Manipulate tables

Using Find and Replace via VBA
Word’s Find and Replace tool can be very useful in your procedures. You can, for example,

quickly adjust multiple styles throughout an entire document. Or you could automate the pro-

cess of fi nalizing documents (spell-checking, revising corporate information, looking for out-of-

date references, or whatever routinely needs to be done before publication).

To access Word’s Find and Replace features via VBA, you use the Find and Replacement

objects. This section illustrates how to work with the Find object’s Execute method, usually the

best method to employ when working with Find. You usually specify the parameters for the

Find operation as arguments in the Execute statement, but you can also specify them before-

hand using properties if you prefer that approach.

Table 21.1 describes the Find properties that are most useful for common search operations.

584 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 584

Table 21.1: Properties of the Find object

Property Meaning

Font Font formatting you’re searching for (on either specifi ed text or an empty

string).

Forward A Boolean variable-type argument specifying whether to search forward

(True) or backward (False) through the document.

Found A Boolean property that’s True if the search fi nds a match and False if it

doesn’t.

Highlight A Long variable-type argument controlling whether highlighting is included in

the formatting for the replacement text (True) or not (False).

MatchAllWordForms A Boolean property—True or False—corresponding to the Find All Word

Forms check box.

MatchCase A Boolean property corresponding to the Match Case check box. If the user has

this option deselected, be sure your code deselects it after you’re fi nished with

any case-sensitive searching in your procedure. See the sidebar “Practical

Searching: Remember to Clear Formatting” later in this chapter.

MatchSoundsLike A Boolean property corresponding to the Sounds Like check box.

MatchWholeWord A Boolean property corresponding to the Find Whole Words Only check box.

MatchWildcards A Boolean property corresponding to the Use Wildcards check box.

ParagraphFormat Paragraph formatting you’re searching for (on either specifi ed text or an empty

string).

Replacement Returns a Replacement object containing the criteria for a replace operation.

Style Th e style for the search text. Usually, you’ll want to use the name of a style in

the current template, but you can also use one of the built-in Word constant

style names, such as wdStyleHeading1 (Heading 1 style).

Text Th e text you’re searching for (what you’d enter in the Find What box in the Find

And Replace dialog box). Use an empty string ("") to search only for formatting.

Wrap A Long property that governs whether a search that starts anywhere other

than the beginning of a document (for a forward search) or the end of a docu-

ment (for a backward search), or a search that takes place in a range, wraps

(continues) when it reaches the end or beginning of the document or the end or

beginning of the selection.

You use the Replacement object to specify the replace criteria in a replacement operation. The

Replacement object has the following properties, which correspond to the properties of the Find

object (but pertain to the replacement operation instead): Font, Highlight, ParagraphFormat,

Style, and Text.

USING FIND AND REPLACE VIA VBA | 585

c21.indd 01:6:32:PM 07/18/2013 Page 585

Understanding the Syntax for the Execute Method
The syntax for the Execute method is as follows:

expression.Execute(FindText, MatchCase, MatchWholeWord, MatchWildcards,

 MatchSoundsLike, MatchAllWordForms, Forward, Wrap, Format,

 ReplaceWith, Replace, MatchKashida, MatchDiacritics, MatchAlefHamza,

 MatchControl, MatchPrefix, MatchSuffix, MatchPhrase, IgnoreSpace,

 IgnorePunct)

The fi nal fi ve arguments, starting with MatchPrefix, are not displayed in the

Auto List Members tool in the Editor, but they can be used in code, as in, for example,

IgnoreSpace:=True.

The most commonly used arguments for this method are explained here:

 ◆ expression is a required expression that returns a Find object. Usually, it’s easiest to use the

Find object itself.

 ◆ FindText is an optional Variant specifying the text for which to search. Although this

argument is optional, you’ll almost always want to specify it, even if you specify only an

empty string (“”) to allow you to search for formatting rather than text. (If you don’t spec-

ify “” for FindText, you will inadvertently search for the previous text searched for, and

the style you want to locate will never be found unless that text is also present.)

You can search for special characters by using special characters you use when work-

ing interactively (for example, ^p for a paragraph mark or ^t for a tab) and for wildcards

by using the traditional Windows wildcards. For wildcards to work, you need to set

MatchWildcards to True. You can search for a symbol by entering a caret and a zero, fol-

lowed by its character code. For example, to search for a smart double closing quote, you’d

specify ^0148 because its character code is 148.

 ◆ MatchCase is an optional Variant that you can set to True to make the search case sensitive.

 ◆ MatchWholeWord is an optional Variant that you can set to True to restrict the search to

fi nding whole words rather than words contained in other words.

 ◆ MatchWildcards is an optional Variant that you can set to True to use wildcards in the

search.

 ◆ MatchSoundsLike is an optional Variant that you can set to True to have Word fi nd words

that it thinks sound similar to the Find item specifi ed.

 ◆ MatchAllWordForms is an optional Variant that you can set to True to have Word fi nd all

forms of the Find item specifi ed (for example, different forms of the same verb or noun).

 ◆ Forward is an optional Variant that you can set to True to have Word search forward (from

the beginning of the document toward the end) or False to have Word search backward.

 ◆ Wrap is an optional Variant that governs whether a search that begins anywhere other than

the beginning of a document (for a forward search) or the end of a document (for a back-

ward search), or that takes place in a range, wraps (continues) when it reaches the end or

beginning of the document. Word offers various options for Wrap, as detailed in

Table 21.2.

586 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 586

Table 21.2: Options for Wrap off ered by Word

Constant Value Meaning

wdFindAsk 2 Word searches the selection or range—or from the insertion point to the

end or beginning of the document—and then displays a message box

prompting the user to decide whether to search the rest of the

document.

wdFindContinue 1 Word continues to search after reaching the end or beginning of the

search range or the end or beginning of the document.

wdFindStop 0 Word stops the Find operation upon reaching the end or beginning of

the search range or the end or beginning of the document.

 ◆ Format is an optional Variant that you can set to True to have the search operation fi nd for-

matting as well as (or instead of) any Find text you’ve specifi ed.

 ◆ ReplaceWith is an optional Variant specifying the replacement text. You can use an

empty string for ReplaceWith to simply remove the FindText text; you can also use spe-

cial characters for ReplaceWith as you can for the FindText argument. To use a graphic

object, copy it to the Clipboard and then specify ̂ c (which stands for the contents of the

Clipboard).

How to Use Graphic Objects with ReplaceWith

To use a graphic object as described in the bulleted item that explains the ReplaceWith argument,

the graphic needs to be in the text layer (not fl oating over text). If the graphic is fl oating over text,

^c pastes in the previous text contents of the Clipboard.

 ◆ Replace is an optional Variant that controls how many replacements the Find operation

makes: one (wdReplaceOne), all (wdReplaceAll), or none (wdReplaceNone).

 ◆ MatchPrefix is an optional Variant that allows you to search for a string of characters at

the start of words, but not if any other character(s) precede the string. Here’s how it works:

If you leave MatchPrefix and MatchWholeWord set to False, then search for real, you’ll

get results with any word that contains that string, such as real, surreal, realtime, boreal,
and so on. Any word with real in it will be a hit. But set MatchWholeWord to True, and

only the string itself, real, will result in a hit. Leave MatchWholeWord set to False and set

MatchPrefix to True, and only words that begin with real will hit, such as real and real-
time. Words like surreal fail to qualify because they don’t begin with the target string.

 ◆ MatchSuffix is an optional Variant that works the same way as MatchPrefix, except

MatchSuffix allows you to search for a string of characters at the end of a word but not

if any other characters follow the string. Using the example in the previous bullet, with

MatchSuffix set to True, you would get hits on surreal and boreal but not realtime.

USING FIND AND REPLACE VIA VBA | 587

c21.indd 01:6:32:PM 07/18/2013 Page 587

 ◆ MatchPhrase is an optional Variant that when set to True ignores any control characters

(such as paragraph or tab characters) or white space (one or more space characters) between

words.

This

phrase

becomes equivalent to

this phrase.

 ◆ IgnoreSpace is an optional Variant that ignores any white space between words but that

does not ignore control characters.

 ◆ IgnorePunct is an optional Variant that ignores all punctuation characters between words

in a search phrase.

Practical Searching: Remember to Clear Formatting

One behavior in Word that can puzzle even experienced users and developers results from the fact

that Find settings persist. For example, say that you search for a style such as Heading1. All goes

well, you fi nd the headings, and you close the Find And Replace dialog box (or if you’re searching

using VBA code, your macro fi nishes execution).

Th en somewhat later you run another macro that searches or replaces—or you use the Find And

Replace dialog box in Word to look for a word such as program. You know that the word program

appears many times in your document, but the Find utility displays a message stating that “Th e

search item was not found.” What’s wrong?

Th e problem is that your original search for the headline style persists during your session with

Word. Even switching to a diff erent document during the current session will not clear the search

criteria—including any style, font, or other special search criteria, such as MatchCase, that may

have been employed

In other words, you’re now searching for the word program but also for the style Heading 1. So all

the instances of program in regular body text do not trigger hits. Th ey are not in the specifi ed style.

If you search for a style but fail to click the No Formatting button in the Find And Replace dialog

box when you’ve fi nished, that style search remains active.

Likewise, when you use the Find object and the Replacement object in a procedure, you’ll often

need to use the ClearFormatting method, which clears any formatting specifi ed under the Find

What box or the Replace With box. Using the ClearFormatting method has the same eff ect as

clicking the No Formatting button with the focus on the Find What box or the Replace With box.

Th e following statements (here used within a With structure) clear formatting from the Find and

Replacement objects, respectively:

With ActiveDocument.Content.Find

 .ClearFormatting

 .Replacement.ClearFormatting

End With

588 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 588

It’s a good idea to get into the habit of using the ClearFormatting method at the end of

any macro that searches for styles or other special formatting. And it doesn’t hurt to use

the ClearFormatting method at the start of any macro that searches for anything, as well.

Sometimes unnecessary? Potentially redundant? Sure. But it’s good insurance against this

common and puzzling bug.

A similar situation occurs when you employ the Execute method, as described earlier in this

chapter. Remember that when using Execute, you should almost always specify the FindText

argument—even if you specify only an empty string (“”) to allow you to search for formatting. If

you don’t specify FindText, you run the risk of searching inadvertently for the string searched

for previously.

Putting Find and Replace to Work
The simplest way to use Find and Replace is to specify only as many parameters as you need in

an Execute statement, leaving out any optional parameters that are irrelevant to your search.

With long argument lists, it’s always better to use the named-argument approach, like this:

FindText:=”National Velvet”

This example replaces all pairs of paragraph marks (removing empty lines) in the active

document with single paragraph marks; you could search for ^p^p and replace it with ^p with

the following statement:

ActiveDocument.Content.Find.Execute FindText:=”^p^p”,

 ReplaceWith:=”^p”, _

 Replace:=wdReplaceAll

By running this statement in a loop, you could replace all extra paragraph marks in the docu-

ment. You would have to employ a loop here because the wdReplaceAll constant specifi es that

the fi nd-and-replace activity should go through the entire document once.

It’s necessary to loop because you might have multiple paragraph marks in clusters, such as

four in a row: ^p^p^p^p. The fi rst pass through the document would replace those four with

two (̂ p^p), so you’d need to go through again to reduce these to the desired single ^p. In other

words, in this case you must search and replace more than once.

You can also use a With statement to specify the properties for a Find and Replace operation.

Listing 21.1 shows an example of this. The code changes all bold formatting in the open docu-

ment named Example.docm to italic formatting.

Listing 21.1: Using With to specify properties

 1. With Documents(“Example.docm”).Content.Find

 2. .ClearFormatting

 3. .Font.Bold = True

 4. With .Replacement

 5. .ClearFormatting

 6. .Font.Bold = False

 7. .Font.Italic = True

WORKING WITH HEADERS, FOOTERS, AND PAGE NUMBERS | 589

c21.indd 01:6:32:PM 07/18/2013 Page 589

 8. End With

 9. .Execute FindText:= “”, ReplaceWith:= “”, _

 Format:=True, Replace:=wdReplaceAll

10. End With

 ◆ Here, line 1 identifi es the Document object (Example.docm in the Documents collection) with

which to work and begins a With statement with its Find object.

 ◆ Line 2 uses the ClearFormatting method to clear any formatting from the Find object, and

 ◆ Line 3 then sets the Bold property of its Font object to True.

 ◆ Lines 4 through 8 contain a nested With statement for the Replacement object.

 ◆ Line 5 uses the ClearFormatting method to clear formatting from the Replacement object,

 ◆ Line 6 sets its Bold property to False, and

 ◆ Line 7 sets its Italic property to True.

 ◆ Line 9 then uses the Execute method to execute the replacement operation. Both

FindText and ReplaceWith here are specifi ed as empty strings to cause Word to work

with formatting only; Format is set to True to activate the formatting set in the Find and

Replacement objects, and Replace is set to wdReplaceAll to replace all instances of the

bold formatting with the italic formatting.

 ◆ Line 10 ends the outer With statement.

Working with Headers, Footers, and Page Numbers
The following sections show you how to work with headers and footers in Word documents.

You’ll also learn how to use VBA to manipulate page numbers, which are often included in

headers and footers.

Understanding How VBA Implements Headers and Footers
You can create several types of headers and footers in a Word document: the primary header

and footer, unique fi rst-page-only headers and footers, special headers and footers that appear

only on the even pages—even different sets of headers and footers for each of the sections in a

document if need be.

Every document automatically gets a primary header and a primary footer, even if you don’t

put anything in them. You can then create different fi rst-page and even-page headers by chang-

ing the Page Setup options for the section. (Click the Page Layout tab on the Ribbon, then click

the small arrow in the lower-right corner of the Page Setup zone. This opens the Page Setup

dialog box; click the Layout tab. Note, however, that the primary header and footer features are

accessed from the Insert tab on the Ribbon.)

VBA uses the following objects for headers and footers:

 ◆ Both headers and footers are contained in HeaderFooter objects. You access headers

through the Headers property and footers through the Footers property.

 ◆ The HeadersFooters collection contains all the HeaderFooter objects in a given section of a

document. Because each section of a document can have different headers and footers than

the other sections have, you reach any given header or footer by going through the section.

590 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 590

 ◆ To return the HeadersFooters collection, you use the Headers property or the Footers

property of the appropriate Section object in the appropriate Document object.

Alternatively, you can use the HeaderFooter property of the Selection object to return a

single HeaderFooter object, but this approach tends to be more limited in its use.

 ◆ The HeaderFooter object gives access to the Range object, the Shapes collection, and the

PageNumbers collection.

Getting to a Header or Footer
You access a header or footer through the appropriate section within the document. For example,

the following statement displays a message box containing the text in the fi rst-page footer that’s

in the second section of the open document Transfer.docm:

MsgBox Documents(“Transfer.docm”).Sections(2). _

 Footers(wdHeaderFooterFirstPage).Range.Text

The following statements declare the HeaderFooter object variable myHeader and assign to it

the primary header in the fi rst section in the active document:

Dim myHeader As HeaderFooter

Set myHeader = ActiveDocument.Sections(1).Headers _

 (wdHeaderFooterPrimary)

Checking to See If a Header or Footer Exists
Recall that Word automatically creates a primary header and primary footer for each document,

so these objects always exist. To fi nd out whether other types of headers or footers exist, check

the Exists property of the application HeaderFooter object. The following statements check

to see if the even-pages footer exists in each section in turn in the active document and create

a generic header (containing the section number and the full name of the document) formatted

with the style named Footer (which exists by default in most Word documents):

Dim cSection As Section

With ActiveDocument

 For Each cSection In .Sections

 cHeader = cSection.Headers(wdHeaderFooterEvenPages)

 If Not cSection.Headers(wdHeaderFooterEvenPages).Exists Then

 cSection.PageSetup.OddAndEvenPagesHeaderFooter = True

 cSection.Headers(wdHeaderFooterEvenPages).Range.Text _

 = “Section “ & cSection.Index & “ of “ & .FullName

 cSection.Headers(wdHeaderFooterEvenPages).Range. _

 Style = “Even Footer”

 End If

 Next cSection

End With

Linking to the Header or Footer in the Previous Section
By default, Word links the header and footer in each section after the fi rst to the header and

footer in the previous section. To break the link, set the LinkToPrevious property of the header

WORKING WITH HEADERS, FOOTERS, AND PAGE NUMBERS | 591

c21.indd 01:6:32:PM 07/18/2013 Page 591

or footer to False; to create the link, set this property to True. The following statement unlinks

the primary footer in the third section of the active document from the corresponding footer in

the second section:

ActiveDocument.Sections(3).Footers _

(wdHeaderFooterPrimary).LinkToPrevious = False

Creating a Diff erent First-Page Header
To create a different header on the fi rst page of a section, set the DifferentFirstPageHeaderFooter

property of the PageSetup object for the section to True. The following statements check to see if the

10th section of the active document contains a fi rst-page header and create one if it doesn’t:

With ActiveDocument.Sections(10)

 If .Headers(wdHeaderFooterFirstPage).Exists = False Then _

 .PageSetup.DifferentFirstPageHeaderFooter = True

End With

Creating Diff erent Odd- and Even-Page Headers
To produce different headers for odd and even pages of your document (other than the fi rst

page), create an even-page header. The primary header by default appears on both odd and even

pages until you create an even-page header, at which point the primary header becomes the

odd-page header.

As with the fi rst-page header, you work through the PageSetup object to create a different

even-page header, setting the OddAndEvenPagesHeaderFooter property to True, as in the fol-

lowing statement:

ActiveDocument.Sections(1).PageSetup.OddAndEvenPagesHeaderFooter = True

Use Nested Loops to Modify Headers and Footers

If you write procedures to format documents, you may need to check or change all the headers and

footers in a document. Th e easiest way to do so is to use two For Each… Next loops, the outer

loop working through each Section object in the Sections collection and the inner loop working

through each HeaderFooter object in the HeaderFooters collection within that section.

Adding Page Numbers to Your Headers and Footers
A header or footer of a document often contains a page number: either a simple number in a

straightforward format (1, 2, 3, and so on) or a more complex number denoting the chapter and

page within it, separated by a separator character.

VBA implements page numbers through a PageNumbers collection that you return by using

the PageNumbers property of the appropriate HeaderFooter object within the appropriate sec-

tion of the document.

592 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 592

Adding Page Numbers to One or More Sections of a Document

To add page numbers to a document, use the Add method with the PageNumbers collection for

the appropriate section of the document.

The syntax for the Add method is as follows:

expression.Add PageNumberAligment, FirstPage

Here, expression is a required expression that returns a PageNumbers collection. Usually,

you’ll use the PageNumbers collection itself.

PageNumberAlignment is an optional Variant argument specifying the alignment for the

page numbers being added. Table 21.3 lists the constants and values you can use.

Table 21.3: PageNumberAlignment constants and values

Constant Value Resulting Alignment

wdAlignPageNumberLeft 0 Left

wdAlignPageNumberCenter 1 Centered

wdAlignPageNumberRight 2 Right (default)

wdAlignPageNumberInside 3 Inside margin (right on left-hand pages, left on right-hand

pages)

wdAlignPageNumberOutside 4 Outside margin (left on left-hand pages, right on right-

hand pages)

FirstPage is an optional Variant argument that you can set to False to make the header

and footer on the fi rst page suppress the page number. If you omit the FirstPage argument,

the DifferentFirstPageHeaderFooter property of the PageSetup object controls whether the

header and footer on the fi rst page are the same as or different than they are on the other pages

in the section.

Both the PageNumberAlignment argument and the FirstPage argument are optional, but

you’ll usually want to specify at least the PageNumberAlignment argument.

The following subprocedure adds page numbers to all the headers in each section of a docu-

ment by using two For Each… Next loops:

Sub AddPageNumbersToAllHeadersAndSections()

 Dim cHeader As HeaderFooter, cSection As Section

 With Documents(“Headers and Footers.docm”)

 For Each cSection In .Sections

 For Each cHeader In cSection.Headers

 cSection.Headers(wdHeaderFooterPrimary).PageNumbers.Add _

 PageNumberAlignment:=wdAlignPageNumberRight, FirstPage:=True

WORKING WITH HEADERS, FOOTERS, AND PAGE NUMBERS | 593

c21.indd 01:6:32:PM 07/18/2013 Page 593

 Next cHeader

 Next cSection

 End With

End Sub

Removing Page Numbers from One or More Sections of a Document

To remove a page number from a page, specify the PageNumber object and use the Delete

method. The following subprocedure removes each PageNumber object from the current section

of the active document:

Sub RemovePageNumbersFromCurrentSection()

 Dim ThisHeader As HeaderFooter

 Dim ThisPageNumber As PageNumber

 With Selection.Sections(1)

 For Each ThisHeader In .Headers

 For Each ThisPageNumber In ThisHeader.PageNumbers

 ThisPageNumber.Delete

 Next ThisPageNumber

 Next ThisHeader

 End With

End Sub

Finding Out If a Section of a Document Has Page Numbers

The easiest way to fi nd out if any given page number exists is to check the Count property

for the PageNumbers collection for the appropriate section. For example, the following state-

ment adds centered page numbers to the even-pages header in the current section if the header

doesn’t already have them:

If Selection.Sections(1).Headers(wdHeaderFooterEvenPages) _

 .PageNumbers.Count = 0 Then Selection.Sections(1) _

 .Headers(wdHeaderFooterEvenPages).PageNumbers.Add _

 PageNumberAlignment:=wdAlignPageNumberCenter

Changing the Page Numbering for a Section

To change the page numbering for a section, you work with the StartingNumber property,

using the RestartNumberingAtSection property, the IncludeChapterNumber property, and the

ChapterPageSeparator property as necessary.

The StartingNumber property is a Long property that contains the starting page num-

ber for the section when the RestartNumberingAtSection property is set to True. When the

RestartNumberingAtSection property is set to False, StartingNumber returns 0 (zero). The

following statements set the page numbering for the primary header in the fourth section of the

active document to start at 55 if it doesn’t currently have a starting number assigned:

With ActiveDocument.Sections(4).Headers(wdHeaderFooterPrimary)

 If .PageNumbers.StartingNumber = 0 Then

594 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 594

 .PageNumbers.RestartNumberingAtSection = True

 .PageNumbers.StartingNumber = 55

 End If

End With

To add the chapter number to the page numbers, use heading numbering in your document.

Set the IncludeChapterNumber property to True, and specify the separator to use (for example,

wdSeparatorEnDash for an en dash):

With ActiveDocument.Sections(4).Headers(wdHeaderFooterPrimary) _

 .PageNumbers

 .IncludeChapterNumber = True

 .ChapterPageSeparator = wdSeparatorEnDash

End With

Suppressing the Page Number for the First Page

To suppress the page number for the fi rst page in a section, set the ShowFirstPageNumber prop-

erty for the appropriate HeaderFooter object in the appropriate section to False:

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary).PageNumbers_

 .ShowFirstPageNumber = False

Formatting Page Numbers

You can format page numbers in two ways: by setting the format in which they’re displayed (for

instance, as regular Arabic numbers or as lowercase Roman numerals) and by formatting the

font in which that format is displayed.

To choose the format in which the page numbers are displayed, set the NumberStyle prop-

erty of the PageNumbers collection in question. For example, the following statement formats the

page numbers in the primary header in the fourth section of the active document as lowercase

letters:

ActiveDocument.Sections(4).Headers(wdHeaderFooterPrimary) _

 .PageNumbers.NumberStyle = wdPageNumberStyleLowercaseLetter

Once the page numbers are in the header or footer, you can format them in any of several

ways. One easy way to set the font in which a given page number is formatted is to use the

Select method to select the PageNumber object and then apply formatting to it as you would

any other selection, as in the following statements:

ActiveDocument.Sections(4).Headers(wdHeaderFooterPrimary) _

 .PageNumbers(1).Select

 With Selection.Font

 .Name = “Impact”

 .Size = 22

 .Bold = True

 End With

WORKING WITH SECTIONS, PAGE SETUP, WINDOWS, AND VIEWS | 595

c21.indd 01:6:32:PM 07/18/2013 Page 595

Creating “Page X of Y”–Type Page Numbers

You can also implement page numbering by using Word’s fi eld codes in the header or footer.

This technique is especially useful when you want to number the pages with an “X of Y”

numbering scheme—“Page 168 of 192” and so on. The following statements select the primary

header for the fi nal section of the active document, apply center alignment, and enter the text

and fi elds to produce this type of numbering:

ActiveDocument.Sections(ActiveDocument.Sections.Count) _

 .Headers(wdHeaderFooterPrimary).Range.Select

With Selection

 .Paragraphs(1).Alignment = wdAlignParagraphCenter

 .TypeText Text:=”Page “

 .Fields.Add Range:=Selection.Range, Type:=wdFieldEmpty, Text:= _

 “PAGE “, PreserveFormatting:=True

 .TypeText Text:=” of “

 .Fields.Add Range:=Selection.Range, Type:=wdFieldEmpty, Text:= _

 “NUMPAGES “, PreserveFormatting:=True

End With

If you insert a page number by using a fi eld in this way, you can still access the page number

by using the appropriate PageNumber object. (In this case, the PageNumber object consists of the

PAGE fi eld, not of the NUMPAGES fi eld.)

Working with Sections, Page Setup, Windows, and Views
Each Word document contains at least one section by default and can contain multiple sections

as needed for its contents and layout. The section of the document controls the page layout so

that different sections of a document can use different page layouts if necessary.

Adding a Section to a Document
You can add a section to a document either by using the Add method with the Sections collec-

tion or by using the InsertBreak method with a Range or Selection object.

The Add method has the following syntax:

expression.Add Range, Start

Here, expression is a required expression that returns a Sections collection. Range is an

optional Variant argument specifying the range at the beginning of which to insert the break. (If

you omit Range, VBA inserts the break at the end of the document.) Start is an optional Variant

argument used to specify the type of section break to insert:

 ◆ wdSectionContinuous (0) for a continuous break

 ◆ wdSectionEvenPage (3) for an even-page break

 ◆ wdSectionOddPage (4) for an odd-page break

596 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 596

 ◆ wdSectionNewColumn (1) for a new-column break

 ◆ wdSectionNewPage (2, the default) for a new-page break

The following statement adds a new-page section to the active document, placing it before the

second paragraph:

ActiveDocument.Sections.Add _

Range:=.Range(Start:=.Paragraphs(2).Range.Start, _

 End:=.Paragraphs(2).Range.Start), Start:=wdSectionNewPage

The InsertBreak method takes the following syntax:

expression.InsertBreak Type

Here, expression is a required expression that returns a Selection or Range object. Type is an

optional Variant argument specifying the type of section break to be inserted:

 ◆ wdSectionBreakNextPage (2) for a new-page break

 ◆ wdSectionBreakContinuous (3) for a continuous break

 ◆ wdSectionBreakEvenPage (4) for an even-page break

 ◆ wdSectionBreakOddPage (5) for an odd-page break

 ◆ wdColumnBreak (8) for a new-column break

The following statement inserts a continuous section break before the second paragraph in

the active document:

ActiveDocument.Paragraphs(2).Range.InsertBreak _

 Type:=wdSectionBreakContinuous

Changing the Page Setup
To change the page setup of a document or a section, you work with the PageSetup object of the

application Document object or Section object. For example, the following statements work with

the PageSetup object of the document named Planning.docm, setting letter-size paper, portrait

orientation, mirror margins, and margin measurements (in points):

With Documents(“Planning.docm”).PageSetup

 .PaperSize = wdPaperLetter

 .Orientation = wdOrientPortrait

 .TopMargin = 1

 .BottomMargin = 1

 .LeftMargin = 1

 .RightMargin = 1.5

 .MirrorMargins = True

End With

WORKING WITH SECTIONS, PAGE SETUP, WINDOWS, AND VIEWS | 597

c21.indd 01:6:32:PM 07/18/2013 Page 597

Opening a New Window Containing an Open Document
To open a new window containing an open document, use the Add method. Its syntax is

straightforward:

expression.Add window

Here, expression is an expression that returns a Windows collection, and window is an optional

Variant argument specifying the window containing the document for which you want to open

a new window. If you omit window, VBA opens a new window for the active document.

Understanding the Two Windows Collections

Th ere are two Windows collections: one for the application and one for the windows displaying

the document with which you’re working. Th e Windows collection for the Document object can be

useful if you have multiple windows open for the same document (as you can do by clicking the

Ribbon’s View tab, then clicking the New Window button in the Window section of the Ribbon),

but usually you’ll want to use the Windows collection for the Application object. Windows is a

creatable object, so you don’t need to specify the Application object.

For example, the following statements open a new window for the fi rst window open for the

active document, assigning the window to the variable myWindow:

Dim myWindow As Window

Set myWindow = Windows.Add(Window:=ActiveDocument.Windows(1))

Closing All Windows Except the First for a Document
Occasionally, it’s useful to open one or more new windows for a document. If you do so, sooner

or later you’ll need to close all the secondary windows to give yourself more room to maneuver.

The following statements close all windows except the fi rst for the active document:

Dim myWin As Window, myDoc As String

myDoc = ActiveDocument.Name

For Each myWin In Windows

 If myWin.Document = myDoc Then _

 If myWin.WindowNumber <> 1 Then myWin.Close

Next myWin

Splitting a Window
To split a window in two parts horizontally, set its Split property to True. To specify the split

percentage (which controls how far down the window, measuring vertically, the split is placed),

598 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 598

set the SplitVertical property. The following statements split the active window 70 percent of

the way down the window:

With ActiveWindow

 .Split = True

 .SplitVertical = 70

End With

To remove the split from the window, set the Split property to False:

ActiveWindow.Split = False

Try Snapping Windows

Windows 7 and 8 have a nice feature that you might want to use instead of Word’s internal split

window. Drag a window by its title bar to the left side of the screen. Drag another window to the

right side. Th ey snap and automatically take up half the screen each.

Displaying the Document Map for a Window
To display the Document Map for a window at the Document Map’s previous width percentage

(of the entire window), set the DocumentMap property to True:

ActiveWindow.DocumentMap = True

To display the Document Map at a different width, or to change the width of the Document

Map, set the DocumentMapPercentWidth property to a suitable percentage of the window’s

width:

ActiveWindow.DocumentMapPercentWidth = 25

To hide the Document Map again, set the DocumentMap property to False or set the

DocumentMapPercentWidth property to 0.

Scrolling a Window
To scroll a window up, down, left, or right, use either the LargeScroll method or the

SmallScroll method.

The LargeScroll method is analogous to clicking within the scroll bar (not on a thumb—the

arrows at the top and bottom of the scroll bar); this scrolls the contents of the window by one

entire “screen.” The SmallScroll method is analogous to clicking a thumb, this scrolls the con-

tents of the window up or down by one line. If you’re working with a horizontal scroll bar, the

contents move left or right by a small scroll increment.

The syntax for the LargeScroll method is as follows:

expression.LargeScroll(Down, Up, ToRight, ToLeft)

The syntax for the SmallScroll method is almost identical:

expression.SmallScroll(Down, Up, ToRight, ToLeft)

Here, expression is a required expression that returns a Window object. Down, Up, ToRight, and

ToLeft are optional Variant arguments that specify the number of screens (for LargeScroll) or

WORKING WITH SECTIONS, PAGE SETUP, WINDOWS, AND VIEWS | 599

c21.indd 01:6:32:PM 07/18/2013 Page 599

lines or horizontal movement units (for SmallScroll) to scroll the contents of the window in the

directions their names indicate.

The following statement scrolls the active window up two screens:

ActiveWindow.LargeScroll Up:=2

Arranging Windows
To arrange a number of windows, use the Arrange method. The syntax for the Arrange method

is as follows:

expression.Arrange ArrangeStyle

Here, expression is an expression that returns a Windows collection, and ArrangeStyle is an

optional Variant argument that specifi es how to arrange the windows: as icons (wdIcons, 1) or

tiled (wdTiled, 0). The default is wdTiled.

For example, the following statement tiles the open windows:

Windows.Arrange ArrangeStyle:=wdTiled

Positioning and Sizing a Window
To position a window on the monitor, set its Left and Top properties, as in this example:

ActiveWindow.Left = 100

ActiveWindow.Top = 200

To size a window, set its Height and Width properties:

With ActiveWindow

 .Height = 300

 .Width = 400

End With

To maximize, minimize, or “restore” a window, set its WindowState property to

wdWindowStateMaximize, wdWindowStateMinimize, or wdWindowStateNormal, respectively. The

following statements maximize the window containing the document named Example.docm if

the window is minimized:

With Documents(“Example.docm”).Windows(1)

 If .WindowState = wdWindowStateMinimize Then _

 .WindowState = wdWindowStateMaximize

End With

Making Sure an Item Is Displayed in the Window
After opening or arranging windows, you’ll often need to make sure an item you want the user

to see—a range, some text, a graphic or other shape, or a fi eld—is displayed in the window. The

easiest way to do so is to use the ScrollIntoView method of the Window object. This method

moves the view but not the selection, so if you need the selection to move as well, you’ll need to

write additional code to move it there.

The ScrollIntoView method takes the following syntax:

expression.ScrollIntoView(Obj, Start)

Here, expression is a required expression that returns a Window object. Obj is a required argu-

ment specifying a Range or Shape object. Start is an optional Boolean argument that you can

600 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 600

set to True (the default) to have the upper-left corner of the range or shape displayed, or False to

have the lower-right corner displayed. Specify False for Start when you need to make sure the

end of a range or shape that may be larger than the window is displayed.

The following statements position the selection at the end of the last paragraph in the fi rst list

in the active document, ready to add a new paragraph to the list:

Dim rngFirstList As Range

Set rngFirstList = ActiveDocument.Lists(1).Range

ActiveDocument.Windows(1).ScrollIntoView Obj:=rngFirstList,

 Start:=False

rngFirstList.Select

Selection.Collapse Direction:=wdCollapseEnd

Selection.MoveLeft Unit:=wdCharacter, Count:=1, Extend:=wdMove

Changing a Document’s View
To change a document’s view, set the Type property of the View object for the appropriate win-

dow to wdConflictView, wdMasterView, wdNormalView, wdOutlineView, wdPrintPreview,

wdPrintView, wdReadingView, or wdWebView. For example, the following statement changes the

view for Sample.docm to Print Layout view:

Documents(“Sample.docm”).Windows(1).View.Type = wdPrintView

Switching to Read Mode
Read mode hides the Ribbon, any markup, and nearly everything else except the text itself.

Panes, however, such as Navigation and Thesaurus, do remain visible. The text itself is usually

displayed as two pages or three (depending on your zoom level) side by side as in a book. You

cannot edit in this view. Here’s how to switch to read mode:

ActiveDocument.ActiveWindow.View.Type = wdReadingView

Read mode is thoughtfully designed to make the content as easy to read and remember

as possible. For example, the zoom feature (lower right) adjusts the font size but repaginates

(refl ows) so you never have the struggle with moving a horizontal scroll bar to show hidden text.

There is a scroll bar, but it’s never needed to display text that’s out of view because of the zoom

level. The zoom bar is strictly for global document navigation and as an indicator of your cur-

rent position.

Read mode also gives you some control over column width. Most people fi nd it easier to

read shorter lines of text, so you can adjust line length in the View menu. The Esc key exits read

mode.

Zooming the View to Display Multiple Pages
To zoom Print Layout view or Print Preview to display multiple pages, set the PageColumns and

PageRows properties of the appropriate View object. (Change the view fi rst if necessary.) The

following statement displays Sample.docm in Print Layout view with six pages displayed (three

across by two deep):

With Documents(“Sample.docm”).Windows(1).View

 .Type = wdPrintView

 With .Zoom

WORKING WITH TABLES | 601

c21.indd 01:6:32:PM 07/18/2013 Page 601

 .PageColumns = 3

 .PageRows = 2

 End With

End With

Working with Tables
Many people need to work with tables in their Word documents, either creating them from

scratch or manipulating existing tables.

VBA uses a Table object to represent each individual table. If there is more than one Table

object, they are gathered together into the Tables collection. To work with tables, you use the

Tables property to return the Tables collection for the Document, Range, or Selection object in

question.

Here is a sample of the collections and objects that are members of the Tables collection and

the Table object:

 ◆ The Rows collection contains the rows in the table. Each row is represented by a Row object.

 ◆ The Columns collection contains the columns in the table. Each column is represented by a

Column object.

 ◆ The Cell object provides access to a specifi ed cell directly from the Table object. You can

also reach the cells in the table by going through the row or column in which they reside.

 ◆ The Range object provides access to ranges within the table.

 ◆ The Borders collection contains all the borders for the table.

 ◆ The Shading object contains all the shading for the table.

For a complete list of the members of the Table object in Word 2013, see this Web page:

http://msdn.microsoft.com/en-us/library/office/ff195902.aspx

The members of the Tables collection can be found here:

http://msdn.microsoft.com/en-us/library/office/ff822892.aspx

Creating a Table
To create a new table from scratch (rather than converting existing text to a table), use the Add

method with the Tables collection. The Add method takes the following syntax for the Tables

collection:

expression.Add(Range, NumRows, NumColumns, DefaultTableBehavior, AutoFitBehavior)

The arguments are as follows:

 ◆ expression is a required expression that returns a Tables collection. Typically, you’ll want

to use the Tables collection for the appropriate document.

 ◆ Range is a required argument supplying the range where you want to insert the table. If the

range is a selection (rather than being a collapsed selection, or insertion point), the table

replaces the range.

http://msdn.microsoft.com/en-us/library/office/ff195902.aspx
http://msdn.microsoft.com/en-us/library/office/ff822892.aspx

602 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 602

 ◆ NumRows is a required Long argument specifying the number of rows the table is to have.

 ◆ NumColumns is a required Long argument specifying the number of columns the table is to

have.

 ◆ DefaultTableBehavior is an optional Variant argument specifying whether the table

autofi ts its columns to their contents or to the window when you change the contents or

the window width. Use wdWord9TableBehavior to have the table autofi t its columns or

wdWord8TableBehavior (the default) to have the columns retain their width.

 ◆ AutoFitBehavior is an optional Variant argument specifying the autofi t behavior for the

table. This argument applies only when DefaultTableBehavior is wdWord9TableBehavior.

Use wdAutoFitContent to resize the columns to their contents, wddAutoFitWindow to resize

the columns to the window width, or wdAutoFitFixed to use a fi xed column width.

For example, the following statement inserts a new, blank, non-autofi tting table containing 10

rows and 5 columns at the current position of the insertion point in the active document:

ActiveDocument.Tables.Add Range:=Selection.Range, NumRows:=10, _

 NumColumns:=5, DefaultTableBehavior:=wdWord8TableBehavior

Selecting a Table
To select a table, specify the Document, Range, or Selection object involved, and then identify

the Table object and use the Select method. This method takes no arguments.

The following statement selects the fi rst table in the active document:

ActiveDocument.Tables(1).Select

The following statements declare the variable tempTable and then select the fi rst table in the

document named Log.docm and assign its Range object to tempTable:

Dim tempTable

Documents(“Log.docm”).Tables(1).Select

Set tempTable = Selection.Tables(1).Range

The following statement selects the second table in the range named tempRange:

tempRange.Tables(2).Select

This statement selects the fi rst table in the current selection:

Selection.Tables(1).Select

Converting Text to a Table
To convert ordinary text to a table (as opposed to inserting a new table from scratch), use the

ConvertToTable method with an appropriate Range or Selection object. The ConvertToTable

method takes the following syntax:

expression.ConvertToTable(Separator, NumRows, NumColumns,

 InitialColumnWidth, Format, ApplyBorders, ApplyShading, ApplyFont,

 ApplyColor, ApplyHeadingRows, ApplyLastRow, ApplyFirstColumn,

 ApplyLastColumn, AutoFit, AutoFitBehavior, DefaultTableBehavior)

WORKING WITH TABLES | 603

c21.indd 01:6:32:PM 07/18/2013 Page 603

The arguments are as follows:

 ◆ expression is a required argument specifying an expression that returns a Range object or a

Selection object.

 ◆ Separator is an optional Variant argument specifying the separator character (also known

as the delimiter character) to use to mark where the column divisions were. You can use

these values for Separator:

 ◆ wdSeparateByCommas separates column information at commas.

 ◆ wdSeparateByDefaultListSeparator separates column information at the currently

specifi ed Other list separator character (the character shown in the text box alongside

the Other option button in the Convert Table To Text dialog box).

 ◆ wdSeparateByParagraphs separates column information at the paragraph marks.

 ◆ wdSeparateByTabs (the default separator if you don’t specify one) separates column

information at tabs.

 ◆ Alternatively, you can specify a single separator character of your choice as a string or

between double quotation marks. For example, enter Separator:=”|” to use a verti-

cal bar [|] as the separator.

 ◆ NumRows is an optional Variant argument specifying the number of rows the table should

have. If you omit the NumRows argument, Word decides the number of rows in the table

based on the number of columns specifi ed and/or the number of the chosen separator

characters it fi nds.

 ◆ NumColumns is an optional Variant argument specifying the number of columns the table

should have. As with NumRows, if you omit the NumColumns argument, Word decides the

number of columns in the table based on the number of rows specifi ed and/or the number

of the chosen separator characters it fi nds.

 ◆ InitialColumnWidth is an optional Variant argument that you can use to specify the

initial width (in points) of each column in the table. If you omit the InitialColumnWidth

argument, Word uses the full width of the page—from margin to margin—and allocates

an equal width to each column, regardless of the relative widths of the contents of the col-

umns. The InitialColumnWidth argument is useful primarily for restraining tables from

using the full width of the page automatically. In many cases, autofi tting the columns pro-

vides a better solution.

 ◆ Format is an optional Variant argument that you can use to specify one of Word’s built-

in autoformat styles for tables. To use the Format argument, specify the appropriate

WdTableFormat constant (such as wdTableFormatElegant to specify the Elegant autofor-

mat style). If you choose to apply a format, you can specify which properties of the autofor-

mat style to apply to the table by using the following optional Variant arguments:

 ◆ Set ApplyBorders to True to apply the border formatting, or to False not to apply it.

 ◆ Set ApplyShading to True to apply the shading, or to False not to apply it.

 ◆ Set ApplyFont to True to apply the font formatting, or to False not to apply it.

604 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 604

 ◆ Set ApplyColor to True to apply the color formatting, or to False not to apply it.

 ◆ Set ApplyHeadingRows to True to apply any heading-row formatting, or to False not

to apply it.

 ◆ Set ApplyLastRow to True to apply any last-row formatting, or to False not to apply it.

 ◆ Set ApplyFirstColumn to True to apply any fi rst-column formatting, or to False not

to apply it.

 ◆ Set ApplyLastColumn to True to apply any last-column formatting, or to False not to

apply it.

 ◆ AutoFit is an optional Variant argument you can set to True to have Word adjust the col-

umn width to best fi t whatever contents are in the cells. When autofi tting, Word doesn’t

increase the overall width of the table—it either reduces or retains the table’s width.

 ◆ AutoFitBehavior and DefaultTableBehavior are as described in the section “Creating a

Table,” earlier in the chapter.

The following statement converts the current selection to a fi ve-column table, separating the

information at commas. It applies autofi tting to the table based on cell content and sets the cells

to resize automatically:

Set myTable = Selection.ConvertToTable(wdSeparateByCommas, _

 Selection.Paragraphs.Count, 5, , , , , , , , , , , True, _

 wdAutoFitContent, wdWord9TableBehavior)

Ensuring Th at a Selection Is within a Table
Before running any procedure that is intended to manipulate a table, it’s a good idea to make

sure that the current selection actually is within a table. Use the wdWithInTable argument of the

Information property for the selection. wdWithInTable is Boolean, returning True if the selec-

tion is in a table and False if it isn’t. Here’s an example:

If Selection.Information(wdWithInTable) = True Then

 ‘take actions here

End If

Finding Out Where a Selection Is within a Table
In addition to establishing whether the selection is in a table, you can use the Information

property to fi nd out other information that can be useful when working with tables via a Range

object or Selection object.

Once you’ve established that the selection is within a table (probably by using the

wdWithinTable argument), check whether the selection is at an end-of-row marker rather than

being in a cell. If the selection is at an end-of-row marker, certain actions fail. For example,

attempting to select the current cell or column fails because the selection is outside any cell or

column, but attempting to select the current row succeeds.

To check whether the selection is at the end-of-row marker, use the AtEndOfRowMarker argu-

ment for the Information property. The following statement moves the selection left one char-

acter (into the last cell in the same row) if the selection is at the end-of-row marker:

If Selection.Information(wdAtEndOfRowMarker) = True Then _

 Selection.MoveLeft Unit:=wdCharacter, Count:=1

WORKING WITH TABLES | 605

c21.indd 01:6:32:PM 07/18/2013 Page 605

If the selection contains the end-of-row marker rather than being a collapsed selection (an

insertion point) before the marker, the wdAtEndOfRowMarker argument returns False. To avoid

a selected end-of-row marker causing problems in your procedures, collapse the selection if it

isn’t collapsed before checking whether it’s at the end-of-row marker. The following statements

do this, using a variable named curSel to restore the selection it collapses unless collapsing the

selection leaves the selection at an end-of-row marker:

Dim curSel

With Documents(“Communications.docm”)

 If Selection.Type <> wdSelectionIP Then

 Set curSel = Selection.Range

 Selection.Collapse Direction:=wdCollapseStart

 End If

 If Selection.Information(wdAtEndOfRowMarker) = True Then

 Selection.MoveLeft Unit:=wdCharacter, Count:=1, Extend:=wdMove

 Else

 If curSel <> “” Then curSel.Select

 Set curSel = Nothing

 End If

End With

After establishing that the selection is safely in a table, you can retrieve six useful pieces of

information about the table:

 ◆ wdStartOfRangeColumnNumber returns the number of the column in which the beginning

of the selection or range falls. The following statement selects the column in which the cur-

rent selection begins:

Selection.Tables(1).Columns(Selection.Information _

 (wdStartOfRangeColumnNumber)).Select

 ◆ wdEndOfRangeColumnNumber returns the number of the column in which the end of the

selection or range falls. The following statements delete the column in which the range

testRange ends if the range is more than one column wide:

With testRange

 If .Information(wdStartOfRangeColumnNumber) <> _

 .Information(wdEndOfRangeColumnNumber) Then _

 .Tables(1).Columns(.Information _

 (wdEndOfRangeColumnNumber)).Delete

End With

 ◆ wdStartOfRangeRowNumber returns the number of the row in which the beginning of the

selection or range falls.

 ◆ wdEndOfRangeRowNumber returns the number of the row in which the end of the selection

or range falls.

 ◆ wdMaximumNumberOfColumns returns the highest number of columns in any row in the

selection or range.

 ◆ wdMaximumNumberOfRows returns the highest number of rows in the specifi ed selection or

range in the table.

606 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 606

Sorting a Table
To sort a table, identify the table and use the Sort method. Sort takes the following syntax with

the Table object:

expression.Sort(ExcludeHeader, FieldNumber, SortFieldType, SortOrder,

 FieldNumber2, SortFieldType2, SortOrder2, FieldNumber3,

 SortFieldType3, SortOrder3, CaseSensitive, BidiSort, IgnoreThe,

 IgnoreKashida, IgnoreDiacritics, IgnoreHe, LanguageID)

The arguments are as follows:

 ◆ expression is an expression that returns a Table object.

 ◆ ExcludeHeader is an optional Variant argument that you can set to True to exclude the fi rst

row in the table (which is often the table header row) from the sort, or to False to include

the fi rst row in the table.

 ◆ FieldNumber, FieldNumber2, and FieldNumber3 are optional Variant arguments specify-

ing the fi rst, second, and third fi elds by which to sort (respectively). Usually you’ll want

to specify at least FieldNumber; if you don’t, Word performs an alphanumeric sort on the

table.

 ◆ SortFieldType, SortFieldType2, and SortFieldType3 are optional Variant argu-

ments specifying the type of sorting you want to use for FieldNumber, FieldNumber2,

and FieldNumber3, respectively. For U.S. English, the options are alphanumeric sorting

(wdSortFieldAlphanumeric, the default), numeric sorting (wdSortFieldNumeric), and

date sorting (wdSortFieldDate).

 ◆ SortOrder, SortOrder2, and SortOrder3 are optional Variant arguments specifying the sort-

ing order for FieldNumber, FieldNumber2, and FieldNumber3. Use wdSortOrderAscending

to specify an ascending sort (the default) or wdSortOrderDescending to specify a descending

sort.

 ◆ CaseSensitive is an optional Variant argument that you can set to True to specify case-

sensitive sorting. The default setting is False.

 ◆ The next fi ve arguments (BidiSort, IgnoreThe, IgnoreKashida, IgnoreDiacritics, and

IgnoreHe) are for specialized sorting (such as right-to-left languages, Arabic, and Hebrew).

 ◆ LanguageID is an optional Variant argument that you can use to specify the language in

which to sort. For example, to sort in Lithuanian, you could specify wdLithuanian for

LanguageID. For sorting in your default language, you can omit this argument.

Adding a Column to a Table
To add a column to a table, use the Add method with the Columns collection for the appropriate

Table object. The Add method takes the following syntax for the Columns collection:

expression.Add [BeforeColumn]

Here, expression is a required expression that returns a Columns collection, and BeforeColumn

is an optional Variant argument specifying the column to the left of which you want to insert

the new column.

The following example uses the Count property to check the number of columns in the fi rst

table in the active document. If this table contains fewer than fi ve columns, one or more columns

WORKING WITH TABLES | 607

c21.indd 01:6:32:PM 07/18/2013 Page 607

are added to bring the number of columns up to fi ve. Each new column is added before (to the

left of) the existing last column in the table:

With ActiveDocument.Tables(1)

 .Select

 If .Columns.Count < 5 Then

 Do Until .Columns.Count = 5

 .Columns.Add BeforeColumn:=.Columns(.Columns.Count)

 Loop

 End If

End With

Deleting a Column from a Table
To delete a column, identify it and use the Delete method. Delete takes no arguments. The fol-

lowing statement deletes the fi rst column in the table referenced by the object variable myTable:

myTable.Columns(1).Delete

Setting the Width of a Column
You can set the width of a column by using the AutoFit method, by using the SetWidth

method, or by specifying the Width property for the column.

The AutoFit method resizes each column automatically to a width suitable to its contents.

AutoFit takes no arguments. The following statement uses the AutoFit method to resize each

column in the fi rst table in the active document:

ActiveDocument.Tables(1).Columns.AutoFit

The SetWidth method allows you to set the width of one or more columns and specify how

the other columns in the table should change as a result. The syntax for the SetWidth method is

as follows:

expression.SetWidth ColumnWidth, RulerStyle

Here, expression is an expression that returns the Columns collection or Column object whose

width you want to set. ColumnWidth is a required Single argument specifying the width of the

column or columns, measured in points. RulerStyle is a required Long argument that specifi es

how Word should adjust the width of the columns:

 ◆ The default value, wdAdjustNone, sets all the specifi ed columns to the specifi ed width,

moving other columns to the left or right as necessary. This argument is analogous to

Shift+dragging a column border when working interactively.

 ◆ wdAdjustFirstColumn applies the specifi ed width to the fi rst specifi ed column, adjust-

ing only as many columns to the right of this column as necessary. For example, widening

the fi rst column in a table slightly causes Word to narrow the second column but leave the

third and subsequent columns unchanged. Widening the fi rst column signifi cantly causes

Word to narrow the second and third columns, leaving the fourth and subsequent columns

unchanged. This argument is analogous to dragging a column border when working

interactively.

 ◆ wdAdjustProportional applies the specifi ed width to the fi rst specifi ed column, keeping

the right edge of the table in its previous position and adjusting all nonspecifi ed columns

proportionally to accommodate the change.

608 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 608

 ◆ wdAdjustSameWidth applies the specifi ed width to the fi rst specifi ed column, keeping the

right edge of the table in its previous position and adjusting all the other columns to an

identical width to accommodate the change. This argument is analogous to Ctrl+dragging

a column border when working interactively.

The following statement sets the width of the second column in the fi rst table in the active

document to 50 points, adjusting the columns to the right of the second column proportionally:

ActiveDocument.Tables(1).Columns(2).SetWidth ColumnWidth:=50, _

 RulerStyle:=wdAdjustProportional

The Width property lets you change the width of a column without worrying about the effect

on the other columns. Specify the width you want in points, as in this example:

ActiveDocument.Tables(11).Columns(44).Width = 100

Selecting a Column
To select a column, use the Select method with the appropriate Column object. Select takes no

arguments. The following statement selects the second column in the third table in the docu-

ment named Originals.docm:

Documents(“Originals.docm”).Tables(3).Columns(2).Select

Adding a Row to a Table
To add a row, use the Add method with the Rows collection for the table. The Add method takes

the following syntax for the Rows collection:

expression.Add [BeforeRow]

Here, expression is a required expression that returns a Rows object, and BeforeRow is an

optional Variant argument specifying the row before which you want to add the new row. If you

omit BeforeRow, VBA adds the new row after the last existing row in the table.

The following statement adds a new fi rst row to the table referenced by the object variable

myTable:

myTable.Rows.Add BeforeRow:=1

You can also insert a row into a table at the current selection, using the InsertRowsBelow or

InsertRowsAbove method. You specify how many rows. In this example, one row is inserted

below the current selection:

Selection.InsertRowsBelow 1

Deleting a Row from a Table
To delete a row, use the Delete method with the appropriate Row object. The Delete method

takes no arguments. The following statement deletes the fi rst row in the table referenced by the

object variable myTable:

myTable.Rows(1).Delete

WORKING WITH TABLES | 609

c21.indd 01:6:32:PM 07/18/2013 Page 609

Setting the Height of One or More Rows
You can set the height of rows by letting Word set the row height automatically, by using the

SetHeight method to specify an exact height or a minimum height, or by setting the Height

property of the row or rows directly.

To have Word set the height of a row automatically, set the row’s HeightRule property to

wdRowHeightAuto. Word then adjusts the height of the row to accommodate the cell with the

tallest contents. The following statement sets the HeightRule property for the second row in the

fourth table in the active document to wdRowHeightAuto:

ActiveDocument.Tables(4).Rows(2).HeightRule = wdRowHeightAuto

To specify an exact height or a minimum height for one or more rows, use the SetHeight

method with the row or rows. The syntax for the SetHeight property is as follows:

expression.SetHeight RowHeight, [HeightRule]

Here, expression is an expression that returns a Row object or a Rows collection. HeightRule

is a required Variant argument specifying the rule for setting the row height: use

wdRowHeightAtLeast to specify a minimum height or wdRowHeightExactly to specify an exact

height. (The third setting for HeightRule is wdRowHeightAuto, which specifi es automatic row

height and which you won’t want to use in this case.)

Instead of using the SetHeight method, you can set the Height property of the row or rows

in question by specifying the height in points:

Documents(“Tables.docm”).Tables(3).Rows(3).Height = 33

Selecting a Row
To select a row, use the Select method for the appropriate Row object. The Select method takes

no arguments. The following statement selects the last row in the last table in the document

named Tables.docm:

Documents(“Tables.docm”).Tables(.Tables.Count).Rows.Last.Select

Inserting a Cell
To insert a cell, use the Add method with the Cells collection. The Add method takes the follow-

ing syntax for the Cells collection:

expression.Add [BeforeCell]

Here, expression is an expression that returns a Cells collection, and BeforeCell is an

optional Variant argument that specifi es the cell to the left of which the new cell should be

inserted. (If you omit the BeforeCell argument, VBA adds a new row of cells to the end of the

table if you’re using the Cells collection of the Columns collection, or it adds a new cell to the

fi rst row in the table if you’re using the Cells collection of the Rows collection.)

The following statement inserts a cell before the second cell in the fi rst row of the fi rst table

in the document named Tables.docm:

Documents(“Tables.docm”).Tables(1).Rows(1).Cells.Add _

 BeforeCell:=Documents(“Tables.docm”).Tables(1).Rows(1).Cells(2)

610 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 610

Returning the Text in a Cell
To return the contents of a cell, use the Text property of the Range object for the cell. The follow-

ing statement returns the text in the fi rst cell in the second row of the third table in the active

document and assigns it to the variable strCellText:

strCellText = ActiveDocument.Tables(3).Rows(2).Cells(1).Range.Text

Because the Text property includes the end-of-cell marker (which takes up two characters),

you’ll usually want to strip off the last two characters when assigning the Text property to a

string, like this:

strCellText = ActiveDocument.Tables(3).Rows(2).Cells(1).Range.Text

strCellText = Left(strCellText, Len(strCellText) - 2)

When using the Range object, you can work with any of the objects and collections it con-

tains. For example, to work with the paragraphs in a cell, use the Paragraphs collection.

Entering Text in a Cell
To enter text in a cell, assign the text to the Text property of the Range object for the cell. The fol-

lowing statements enter text in the fi rst three cells in the fi rst row of the current selection:

With Selection.Tables(1).Rows(1)

 .Cells(1).Range.Text = “Sample text in first cell.“

 .Cells(2).Range.Text = “Sample text in second cell.“

 .Cells(3).Range.Text = “Sample text in third cell.“

End With

Deleting Cells
To delete cells, use the Delete method with the appropriate Cell object or Cells collection.

When you delete one or more cells, you must specify what happens to the rest of the table—

whether the cells to the right of those you deleted move to the left or whether the cells below

those you deleted move up.

The syntax for the Delete method for the Cells collection and the Cell object is as follows:

expression.Delete [ShiftCells]

Here, expression is an expression that returns a Cells collection or a Cell object. ShiftCells

is an optional Variant argument that specifi es how the cells below or to the right of the deleted

cell or cells should move. Use these values:

 ◆ wdDeleteCellsEntireColumn deletes the whole column in which the specifi ed cell (or

cells) is located.

 ◆ wdDeleteCellsEntireRow deletes the whole row.

 ◆ wdDeleteCellsShiftLeft moves cells across to the left to fi ll the gap.

 ◆ wdDeleteCellsShiftUp moves cells up to fi ll the gap.

WORKING WITH TABLES | 611

c21.indd 01:6:32:PM 07/18/2013 Page 611

The following statement deletes the fi rst cell in the fi rst row of the fi rst table in the active

document and shifts the other cells in the fi rst row to the left to fi ll the gap:

ActiveDocument.Tables(1).Rows(1).Cells(1).Delete _

 ShiftCells:=wdDeleteCellsShiftLeft

For procedures that rely on the user to make a selection within a table, you may want to

determine how many rows or columns are in the selection before deciding how to shift the cells.

The following example checks the number of rows and columns in a selection. If the selection is

only one cell, or if the selection is all in one column, the code deletes the cell or cells and moves

the other cells in the row to the left. If the selection is multiple cells in one column, the code

deletes the cells and moves the other cells in the column up. If the selection spans columns and

rows, the code displays a message box asking the user to make a selection in only one row or

only one column:

With Selection

 If .Columns.Count > 1 And .Rows.Count > 1 Then

 MsgBox “Please select cells in only one row “ _

 & “or only one column.”

 End

 Else

 If .Cells.Count > 1 Then

 If .Columns.Count > 1 Then

 .Cells.Delete ShiftCells:=wdDeleteCellsShiftUp

 Else

 .Cells.Delete ShiftCells:=wdDeleteCellsShiftLeft

 End If

 Else

 .Cells.Delete ShiftCells:=wdDeleteCellsShiftLeft

 End If

 End If

End With

Selecting a Range of Cells
To select a range of cells within a table, declare a Range variable, assign to it the cells you want

to select, and then select the range. The following example declares the Range variable myCells,

assigns to it the fi rst four cells in the fi rst table in the active document, and then selects the

range:

Dim myCells As Range

With ActiveDocument

 Set myCells = .Range(Start:=.Tables(1).Cell(1, 1).Range.Start, _

 End:=.Tables(1).Cell(1, 4).Range.End)

 myCells.Select

End With

612 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 612

Converting a Table or Rows to Text
To convert an entire table or a row or number of rows to text, specify the table, row, or rows and

use the ConvertToText method. This is frequently useful if you’re copying and pasting from

Internet pages; they often contain tables and you just want the contents, the text, not the table

structure itself. Due to limitations of the HTML language used to describe web page layout,

HTML tables are sometimes even used for spacing and other reasons unrelated to displaying

actual tabular data. These faux “tables” can look bizarre when pasted as text into Word or other

body text. To see how to get rid of these annoying artifacts, see the example macro at the end of

this section. It’s a useful macro to add to your Normal project in Word’s VBA Editor.

The ConvertToText method takes the following syntax:

expression.ConvertTotext(Separator, Nested Tables)

Here, expression is a required expression that returns a Table object, a Row object, or a Rows

collection. Separator is an optional Variant argument specifying the separator character (also

known as the delimiter character) to use to mark where the column divisions were. The possible

values are as follows:

 ◆ wdSeparateByCommas separates column information by commas.

 ◆ wdSeparateByDefaultListSeparator separates column information by the currently

specifi ed Other list-separator character (the character shown in the text box alongside the

Other option button in the Convert Table To Text dialog box).

 ◆ wdSeparateByParagraphs separates column information with paragraph marks.

 ◆ wdSeparateByTabs (the default separator if you don’t specify one) separates column infor-

mation by tabs.

 ◆ Alternatively, you can specify a separator character of your choice as a string or between

double quotation marks. For example, enter Separator:=”|” to use a vertical bar [|] as the

separator. (Although you can supply more than one separator character here, Word uses

only the fi rst character.)

The following statement converts the fi rst table in the current selection to text using an aster-

isk (*) as the separator character:

Selection.Tables(1).ConvertToText Separator:=”*”

You can use the ConvertToText method with a Table object, a Row object, or a Rows collec-

tion. The following statement converts only the fi rst row of the selected table to tab-delimited

text:

Selection.Tables(1).Rows(1).ConvertToText Separator:=wdSeparateByTabs

If you need to continue working with the contents of the table once you’ve converted it,

assign a range to the table as you convert it. You can then work with the Range object afterward

to manipulate the information. For example, the following statements convert the fi rst table in

the document named Cleveland Report.docm to text separated by paragraphs and assign the

range exTable to the converted information and then copy the range, create a new document,

and paste in the information:

Dim exTable As Range

Set exTable = Documents(“Cleveland Report.docm”).Tables(1). _

THE BOTTOM LINE | 613

c21.indd 01:6:32:PM 07/18/2013 Page 613

 ConvertToText(Separator:=wdSeparateByParagraphs)

exTable.Copy

Documents.Add

Selection.Paste

Often when you copy and paste information from a web page, it’s in a tabular format. If you

paste such tables into Word, it usually doesn’t look right, is too bulky, and can be diffi cult to edit

or format. In other words, you want to remove the web-page table defi nitions but leave the data

in a usable format within Word.

The following macro does just that:

Sub Untable()

On Error Resume Next

 Selection.Rows.ConvertToText Separator:=wdSeparateByCommas, NestedTables:= _

 True

 Selection.MoveDown Unit:=wdLine, Count:=1

If Err Then MsgBox “No table was detected, dude.”

End Sub

To use this macro, click somewhere within the text you’ve pasted from the Internet to put the

insertion cursor in a table (or a suspected table; they often don’t look like tables, merely like an

area of bizarre formatting), then execute the macro. You may need to execute this macro more

than once to completely eliminate all the tabular formatting debris left over from the original

HTML. The macro tells you when all table structures have been destroyed, and not only that—it

calls you “dude.”

Th e Bottom Line

Use Find and Replace via VBA. Word’s Find and Replace utilities are frequently valuable

to the VBA programmer. You’ll want to master them and also some subtleties associated with

their use.

Master It Sometimes when replacing, you need to go through a document more than

once—using a loop structure. Why would you ever need to repeatedly search and replace

the same document? Doesn’t the Replace All setting in fact replace all?

Work with headers, footers, and page numbers. All Word documents contain headers

and footers, even if they are empty. In addition, you can insert various types of headers and

footers.

Master It Name two types of headers you can use in a Word document.

Manage sections, page setup, windows, and views. Among the various ways you can

view a document, you sometimes want to have the document automatically scroll to a par-

ticular table, graphic, or other target.

Master It What method of the Window object can be used to easily accomplish

this task?

614 | CHAPTER 21 WORKING WITH WIDELY USED OBJECTS IN WORD

c21.indd 01:6:32:PM 07/18/2013 Page 614

Manipulate tables. When you need to manage tables in Word documents, you can employ

VBA to work with the Table object to represent a single table. If there is more than one table,

they are referenced by a collection of Table objects.

Master It Name two important and useful objects within the Tables collection or the

Table object.

c22.indd 10:56:26:AM 07/26/2013 Page 615

Chapter 22

Understanding the Excel Object
Model and Key Objects

This chapter shows you how to start working with the Excel object model, the architecture

underlying Excel. It also shows you how to perform common actions with the most immediately

useful Excel objects. These objects include the Workbooks collection and the Workbook object, the

ActiveCell object, and Range objects. You’ll also see how to set options in Excel.

In this chapter you will learn to do the following:

 ◆ Work with workbooks

 ◆ Work with worksheets

 ◆ Work with the active cell or selection

 ◆ Work with ranges

 ◆ Set options

Getting an Overview of the Excel Object Model
As with the other Offi ce applications, it’s not necessary (or even possible for most people) to

understand how the entire Excel object model fi ts together in order to work with VBA in Excel,

but most people fi nd that knowing the main objects in the object model is helpful. And often the

code examples in the Help system’s object-model reference are invaluable—showing you how

and where to employ objects in your own programming.

To see the Excel object-model reference, follow these steps:

 1. Launch or activate Excel, and then press Alt+F11 to launch or activate the VBA Editor.

 2. Move your cursor to a blank space in the code window (to avoid context-sensitive help).

 3. Press F1 in the Editor to launch the web page for the VBA language reference for

Offi ce 2013.

 4. In the Bing search fi eld, type excel 2013 object model and press Enter.

 5. Click the link Object Model Reference (Excel 2013 Developer Reference). You’ll now have

access to the whole collection of syntax specifi cations, useful descriptions, and code

examples, as shown in Figure 22.1.

616 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 616

Figure 22.1

Th e entries in the

Excel object model

reference will help

you write your own

VBA code.

Help When Migrating Legacy Code from Earlier Office Projects

If you’ve inherited VBA code written in earlier versions of Offi ce, those procedures might contain

objects, methods, and properties that have been changed in Offi ce 2013. Th ough modifi cations to

object models are generally few, some incompatibilities can crop up and “break” the code so it won’t

run correctly. Fortunately, you can download a free utility, the Offi ce Code Compatibility Inspector,

that will fl ag objects and their members that have changed. It does a text comparison of the Offi ce

2013 object model against VBA code written in earlier versions of Offi ce. You can download the

Compatibility Inspector from this web page:

www.microsoft.com/en-us/download/details.aspx?id=15001

Understanding Excel’s Creatable Objects
Excel exposes (makes available for your use in code) various creatable objects, meaning that you

can employ most of the important objects in its object model without explicitly going through

(mentioning) the Application object. For most programming purposes, these creatable objects

are the most commonly used objects. Here’s a list:

 ◆ The Workbooks collection contains the Workbook objects that represent all the open

workbooks. Within a workbook, the Sheets collection contains the Worksheet objects that

represent the worksheets and the Chart objects that represent chart sheets. On a sheet, the

Range object gives you access to ranges, which can be anything from an individual cell to a

http://www.microsoft.com/en-us/download/details.aspx?id=15001

MANAGING WORKBOOKS | 617

c22.indd 10:56:26:AM 07/26/2013 Page 617

complete worksheet. Remember that, because the workbooks object is creatable, you need

not write Application.Workbooks in your code. You can leave off the Application and

merely write Workbooks.

 ◆ The ActiveWorkbook object represents the currently active workbook.

 ◆ The ActiveSheet object represents the active worksheet.

 ◆ The Windows collection contains the Window objects that represent all the open windows.

 ◆ The ActiveWindow object represents the active window. When using this object, be sure

to check that the window it represents is the type of window you want to manipulate,

because the object returns whatever window currently has the focus.

 ◆ The ActiveCell object represents, you guessed it, the active cell. This object is especially

valuable for simple procedures (for example, those that compute values or correct format-

ting) that work on a cell selected by the user.

Managing Workbooks
In many of your Excel procedures, you’ll need to manipulate workbooks: creating new work-

books, saving them in various locations and formats, opening existing workbooks, closing and

printing workbooks. To accomplish these tasks, you employ the Workbooks collection, which

contains a Workbook object for each open workbook in Excel.

Creating a Workbook
To create a new workbook, use the Add method with the Workbooks collection. The syntax is as

follows:

Workbooks.Add(Template)

Here, Template is an optional Variant argument that specifi es how to create the workbook.

The following subsections discuss the available options.

Creating a New Blank Workbook

To create a blank workbook (as if you’d clicked the File tab on the Ribbon, then clicked the

New button), omit the Template argument:

Workbooks.Add

The new workbook receives the number of sheets specifi ed in the Excel Options dialog

box (click the File tab on the Ribbon, then choose Options to display the When Creating New

Workbooks section of the dialog box—you’ll see a fi eld where you can adjust the Include This

Many Sheets option.

You can get or set this value in VBA by using the SheetsInNewWorkbook property of the

Application object. For example, the following macro declares an Integer variable named

mySiNW, stores the current SheetsInNewWorkbook property in it, sets the SheetsInNewWorkbook

property to 12, creates a new workbook (with those 12 worksheets), and then restores the

SheetsInNewWorkbook setting to its previous value:

Sub MVBA_New_Workbook_with_12_Sheets()

 Dim mySiNW As Integer

618 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 618

 mySiNW = Application.SheetsInNewWorkbook

 Application.SheetsInNewWorkbook = 12

 Workbooks.Add

 Application.SheetsInNewWorkbook = mySiNW

End Sub

Creating a New Workbook Based on a Template

To create a workbook based on a template, specify the full path and name of the template fi le.

For example, the following statement creates a new workbook based on the template Balance

Sheet.xlt in a network folder \\server\template\excel:

Workbooks.Add Template:= “\\server\template\excel\Balance Sheet.xlt”

Creating a New Workbook Based on an Existing Workbook

To create a workbook based on an existing workbook, specify the full name and path of the

workbook fi le. For example, the following statement creates a new workbook based on the exist-

ing workbook named Personnel.xlsx in the C:\Business folder:

Workbooks.Add Template:= “C:\Business\Personnel.xlsx”

Creating a Chart Workbook, a Macro Sheet, or a Worksheet

You can also create a workbook that contains a single chart, macro sheet, or worksheet by using

the constants shown in Table 22.1 with the Template argument.

Table 22.1: Constants for creating a chart workbook, macro sheet, or worksheet

Constant Creates a Workbook Containing

xlWBATChart A chart sheet

xlWBATExcel4IntlMacroSheet An international macro sheet

xlWBATExcel4MacroSheet A macro sheet

xlWBATWorksheet A worksheet

For example, the following statement creates a workbook containing a single chart sheet:

Workbooks.Add Template:=xlWBATChart

Saving a Workbook
The fi rst time you save a workbook, you must specify the path and fi lename to use (this is the

SaveAs option). After that, you can save the workbook under the same name or specify a differ-

ent path, name, format, or all three (this is the Save option).

MANAGING WORKBOOKS | 619

c22.indd 10:56:26:AM 07/26/2013 Page 619

Saving a Workbook for the First Time or as a Different File

To save a workbook for the fi rst time, or to save a workbook using a different path, name, or for-

mat, use the SaveAs method. The syntax is as follows:

expression.SaveAs(FileName, FileFormat, Password, WriteResPassword,

 ReadOnlyRecommended, CreateBackup, AccessMode, ConflictResolution,

 AddToMru, TextCodePage, TextVisualLayout, Local)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Workbook object.

 ◆ FileName is an optional Variant argument that specifi es the name for the workbook. If you

omit FileName, VBA uses the current folder and the default fi lename of Bookn.xlsx for a

workbook, where n is the next available number (for example, Book5.xlsx).

VBA uses the default fi le format, which is specifi ed in the Options dialog box’s Save page.

(Click the File tab on the Ribbon, then click Options to display the Options dialog box, then

click the Save button on the left. You’ll see a Save Files In This Format drop-down list.)

You can get and set the default save format by using the DefaultSaveFormat property of

the Application object. For example, the following statement sets the default save format to

xlNormal, the “Excel Workbook” format:

Application.DefaultSaveFormat = xlNormal

 ◆ FileFormat is an optional Variant argument that specifi es the format in which to save

the workbook. Table 22.2 lists the XlFileFormat constants for specifying commonly used

formats.

Be Careful Not to Accidentally Overwrite a File

When saving a workbook to a folder, you should check whether a workbook with the same name

already exists in the folder. If it does, and unless you prevent it, VBA overwrites it without warn-

ing, causing data loss. See “Using the Dir Function to Check Whether a File Exists” in Chapter

9, “Using Built-in Functions,” for instructions on how to check whether a fi le with a particular

fi lename already exists.

 ◆ Password is an optional Variant argument that you can use to supply the password that is

to be required to open the workbook (the “password to open”). Password is case sensitive.

If the user can’t provide the password, Excel won’t open the workbook.

 ◆ WriteResPassword is an optional Variant argument that you can use to supply the pass-

word that is required to open the workbook in a writable form (the “password to modify”).

WriteResPassword is case sensitive. If the user can’t provide the password, Excel will open

the workbook as read-only.

620 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 620

 ◆ ReadOnlyRecommended is an optional Variant argument that you can set to True to have

Excel recommend that the user open the document as read-only. Such recommendations

typically carry little force, and you’ll do better to protect the workbook with a “password to

modify.”

 ◆ CreateBackup is an optional Variant argument that you can set to True to make Excel auto-

matically create a backup of the workbook. The default setting is False.

 ◆ AccessMode is an optional argument that you can use to specify whether the workbook

is shared or is in Exclusive mode. Specify xlExclusive for Exclusive mode, xlShared for

Shared mode, and xlNoChange to leave the access mode unchanged (this is the default

setting).

 ◆ ConflictResolution is an optional argument that you can use to specify how to resolve

any confl icting changes to the workbook. Use xlLocalSessionChanges to accept the

changes in the current Excel session, xlOtherSessionChanges to accept the other user’s or

users’ changes, and xlUserResolution to display the Resolve Confl icts dialog box so that

the user can choose how to resolve the confl icts.

 ◆ AddToMru is an optional Variant argument that you can set to True to add the workbook to

the list of recently used fi les at the bottom of the File menu. The default setting is False.

 ◆ TextCodePage and TextVisualLayout are optional Variant arguments used in interna-

tional versions of Excel (not in U.S. English Excel).

 ◆ Local is an optional Variant that controls whether the language used is that of Excel (True)

or of VBA (False). (You’ll seldom need to use Local.)

Table 22.2: XlFileFormat constants for widely used formats

Constant Saves Document As

xlNormal A normal workbook

xlXMLSpreadsheet An XML spreadsheet

xlWebArchive A single-fi le web page

xlHtml A web page

xlTemplate A template

xlExcel9795 An Excel workbook for Excel versions 95 and later

For example, the following statement saves the active workbook in the current folder under

the name Salaries.xlsx and using the default save format:

ActiveWorkbook.SaveAs FileName:=”Salaries.xlsx”

MANAGING WORKBOOKS | 621

c22.indd 10:56:26:AM 07/26/2013 Page 621

The following statement saves the open workbook named Schedule.xlsx under the name

Building Schedule.xlsx in the folder named \\server2\Public using the Microsoft Excel

97–2003 & 5.0/95 format (from Excel 2003):

ActiveWorkbook.SaveAs Filename:=”\\server2\Public\Building Schedule.xlsx”, _

 FileFormat:=xlExcel9795

To see a complete list of all the Excel 2013 fi le formats, visit this web page:

http://msdn.microsoft.com/en-us/library/office/ff198017.aspx

Saving a Workbook That Has Already Been Saved

Once a workbook has been saved, you can just save it again with the same name by using the

Save method. For a Workbook object, the Save method takes no arguments. For example, the fol-

lowing statement saves the workbook named Data Book.xlsx:

Workbooks(“Data Book.xlsx”).Save

Saving All Open Workbooks

The Workbooks collection doesn’t have a Save method, but you can save all open workbooks by

using a loop such as that shown in the following subroutine:

Sub Save_All_Workbooks()

 Dim myWorkbook As Workbook

 For Each myWorkbook In Workbooks

 myWorkbook.Save

 Next myWorkbook

End Sub

Note that if any of the currently opened workbooks have not been previously saved, and if

they include any macros, a security message will be displayed when this procedure executes.

Users are told that they must agree to save the potentially dangerous executable content in a

macro-enabled fi le format (.xlsm). However, if the fi le has already been saved with the .xlsm

fi lename extension, no message is displayed. If you want to suppress such messages, you can

insert the following code at the start of this procedure:

Application.DisplayAlerts = False

However, be sure to set the DisplayAlerts property back to True as soon as you can in the

code. This particular warning message is quite useful as a reminder to the user—so you likely

won’t want to suppress it.

Accessing Cloud Storage
Having VBA access SkyDrive, Dropbox, or one of the other cloud storage systems—systems, is

fairly easy. Just open or save a fi le from the SkyDrive or Dropbox folder.

http://msdn.microsoft.com/en-us/library/office/ff198017.aspx

622 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 622

The only thing to fi gure out is the fi le path, and it will look something like this: “C:\Users\

Richard\SkyDrive\ExcelToCloudTest”, with Richard replaced by your name.

This example saves the current document to SkyDrive. Because this is a source of so many

errors, I repeat: Change my name, Richard, to your name in the fi le path in this example code:

ActiveWorkbook.SaveAs (“C:\Users\Richard\SkyDrive\ExcelCloudTest”)

To save to Dropbox, it’s pretty much the same:

ActiveWorkbook.SaveAs (“C:\Users\Richard\DropBox\ExcelCloudTest”)

Opening a Workbook
To open a workbook, use the Open method with the Workbooks collection. The syntax is as

follows:

expression.Open(FileName, UpdateLinks, ReadOnly, Format, Password,

 WriteResPassword, IgnoreReadOnlyRecommended, Origin, Delimiter,

 Editable, Notify, Converter, AddToMru, Local, CorruptLoad)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Workbooks collection. Often, you’ll want

to use the Workbooks collection itself.

 ◆ FileName is a required String argument that supplies the path and name of the workbook

to open.

 ◆ UpdateLinks is an optional Variant that controls how Excel updates any links in the work-

book. If you leave out this argument, the user is prompted to specify how to update the

links. Table 22.3 shows the values and their effects. If Microsoft Excel is opening a fi le in

the WKS, WK1, or WK3 format and the UpdateLinks argument is 2, Microsoft Excel gener-

ates charts from the graphs attached to the fi le. If the argument is 0, no charts are created.

 ◆ ReadOnly is an optional Variant that you can set to True to open the workbook as read-

only. The default is False.

 ◆ Format is an optional Variant that you can use to specify the delimiter character when

opening a text fi le. Use 1 for tabs, 2 for commas, 3 for spaces, 4 for semicolons, 5 for no

delimiter character, and 6 for a delimiter you specify using the Delimiter argument.

 ◆ Password is an optional Variant argument that you can use to provide the password

required to open the workbook (the “password to open”). Password is case sensitive. If you

omit Password and a password is required, Excel prompts the user for it.

Don’t Include Passwords in Your Procedures

If possible, avoid placing passwords in your code, because it may be possible for other people to

read them.

 ◆ WriteResPassword is an optional Variant argument that you can use to provide the

password required to open the workbook in a writable form (the “password to modify”).

WriteResPassword is case sensitive. If you omit WriteResPassword and a password is

required, Excel prompts the user for it.

MANAGING WORKBOOKS | 623

c22.indd 10:56:26:AM 07/26/2013 Page 623

 ◆ IgnoreReadOnlyRecommended is an optional Variant argument that you can set to True to

have Excel ignore a read-only recommendation on the workbook.

 ◆ Origin is an optional Variant argument that you can use when opening a text fi le to spec-

ify the operating system used to encode it and thus how to treat carriage-return/line-feed

characters and character encoding. Use xlWindows to indicate Windows, xlMacintosh to

indicate Mac OS, or xlMSDOS to indicate DOS.

 ◆ Delimiter is an optional Variant argument you can use with a Format value of 6 to specify

one delimiter character to use when opening a text fi le.

 ◆ Editable is an optional Variant argument that you can set to True when FileName speci-

fi es a template to open the template itself rather than start a workbook based on the tem-

plate (False). Editable also applies to Excel 4.0 add-ins: True opens the add-in in a visible

window, while False opens the add-in hidden. However, you can’t employ this option

with add-ins created in Excel 5.0 or later.

 ◆ Notify is an optional Variant argument that you can set to True to have Excel add the

workbook to the notifi cation list when someone else has the workbook open for editing

and VBA requests the workbook. Excel then notifi es the user when the workbook becomes

available. If you specify Notify:=False, opening the workbook fails if someone else has

the workbook open.

 ◆ Converter is an optional Variant argument that you can use to specify the fi rst fi le con-

verter to use when opening a fi le.

 ◆ AddToMru is an optional Variant argument that you can set to True to add the workbook to

the list of recently used fi les at the bottom of the File menu. The default setting is False.

 ◆ Local is an optional Variant that controls whether the language used is that of Excel (True)

or of VBA (False). (You’ll seldom need to use Local.)

 ◆ CorruptLoad is an optional Variant that you can use to control how Excel handles

corruption it encounters when opening the workbook. Use xlNormalLoad to use normal

behavior—fi rst, opening the workbook as usual; second, repairing the fi le if there’s a prob-

lem; and third, recovering the data from the workbook. Use xrRepairFile to go straight

to the repair stage or xlExtractData to go straight to the recovery stage.

Table 22.3: Values for the UpdateLinks argument

Value Effect

(If you omit this argument) Excel prompts the user to decide how to update links.

1 User specifi es how links are to be updated.

2 Links are never updated for this workbook when it’s opened.

3 Excel always updates links for this workbook when opening it.

624 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 624

For example, the following statement opens the workbook named Expenses.xlsx stored in

the C:\Business folder without updating links:

Workbooks.Open Filename:= “C:\Business\Expenses.xlsx”, UpdateLinks:=0

The following statement opens the workbook named Plan.xlsx stored in the D:\Planning

folder, providing the password for opening the workbook:

Workbooks.Open Filename:=”D:\Planning\Plan.xlsx”, Password:=”s@cur1ng!”

The following statement opens the text fi le named Data13.txt in the folder z:\transfer

using an exclamation point (!) as the delimiter character:

Workbooks.Open _

 Filename:=”z:\transfer\Data13.txt”, Format:=6, Delimiter:=”!”

Closing a Workbook
To close a workbook, use the Close method with the appropriate Workbook object. The syntax is

as follows:

expression.Close(SaveChanges, Filename, RouteWorkbook)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Workbook object or the Workbooks

collection.

 ◆ SaveChanges is an optional Variant argument that lets you specify whether to save any

unsaved changes in the workbook (True) or not (False). If you omit the SaveChanges argu-

ment, Excel prompts the user to save any workbook that contains unsaved changes.

 ◆ Filename is an optional Variant that you can use to specify the fi lename under which to

save the workbook if it contains changes. In most cases, it’s best to use the SaveAs method

to save the workbook under a different name before you use the Close method to close it.

 ◆ RouteWorkbook is an optional Variant argument that you can set to True to route the work-

book to the next recipient on its routing slip, or False to refrain from routing the work-

book. If the workbook has no routing slip attached, RouteWorkbook has no effect.

For example, the following statement closes the active workbook without saving changes:

ActiveWorkbook.Close SaveChanges:=False

Closing All Open Workbooks

To close all open workbooks, use the Close method with the Workbooks collection:

Workbooks.Close

The Close method takes no arguments. Excel prompts you to save any workbook that

contains unsaved changes. If such prompts will be inconvenient in a procedure, use a loop (for

example, a For Each… Next loop with the Workbooks collection) to close each open workbook

individually, using the SaveChanges argument to control whether Excel saves or discards any

unsaved changes.

MANAGING WORKBOOKS | 625

c22.indd 10:56:26:AM 07/26/2013 Page 625

Sharing a Workbook
To determine whether a workbook is shared, check its MultiUserEditing property. This is a

read-only Boolean property.

To share a workbook, use the SaveAs method (discussed in “Saving a Workbook for the First

Time or as a Different File,” earlier in this chapter) to save the fi le using the xlShared value for

the AccessMode argument.

For example, the following statements share the workbook named Brainstorming.xlsx if it

is not already shared:

With Workbooks(“Brainstorming.xlsx”)

 If MultiUserEditing = False Then

 .SaveAs Filename:=.FullName, AccessMode:=xlShared

 End If

End With

Protecting a Workbook
To protect a workbook, use the Protect method with the appropriate Workbook object. The syn-

tax is as follows:

expression.Protect(Password, Structure, Windows)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Workbook object.

 ◆ Password is an optional Variant argument that specifi es the password for unprotecting the

workbook. Password is case sensitive. You’ll almost always want to supply Password—if

you don’t, anybody who can open your workbook can unprotect it.

 ◆ Structure is an optional Variant argument that you can set to True to protect the work-

book’s structure (how the worksheets are positioned relative to each other) or leave at its

default setting, False.

 ◆ Windows is an optional Variant argument that you can set to True to protect the workbook

windows or omit to leave the windows unprotected.

For example, the following statement protects the structure and windows of the active

workbook with the password 0llsecurd:

ActiveWorkbook.Protect Password:=”0llsecurd”, Structure:=True, Windows:=True

You Can Protect Workbooks against Both Writing (Editing) and

Reading

In addition to protecting a workbook against modifi cations, you can protect it against being opened

and viewed. See the sidebar “Setting Passwords and Read-Only Recommendations for a Workbook”

later in this chapter for details.

626 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 626

Working with the ActiveWorkbook Object
The ActiveWorkbook object returns a Workbook object that represents the active workbook

(whichever workbook currently has the focus in the Excel window). The ActiveWorkbook object

behaves like a Workbook object and is very useful in procedures that users execute (put another

way, macros that users run) after opening the workbook that they want to manipulate.

If no workbook is open, there is no ActiveWorkbook object, so any code that tries to use the

ActiveWorkbook object returns an error. Users can run macros when no workbook is open in

Excel, so it’s a good idea to verify that at least one workbook is open before trying to execute

code that assumes there is an active workbook. One option is to check that the ActiveWorkbook

object is not Nothing before running the code, as in the following example:

If ActiveWorkbook Is Nothing Then

 MsgBox “Please open a workbook and click in it before running this macro.” _

 & vbCr & vbCr & “This macro will now end.”, _

 vbOKOnly + vbExclamation, “No Workbook Is Open”

 End

End If

It’s also a good idea to check that the workbook your code assumes is the active workbook

actually is the active workbook. This problem can easily occur when a procedure starts with the

active workbook and then creates a new workbook to work in; the new workbook becomes

the active workbook, and from this point on, the code may start accessing the wrong workbook.

If there’s any doubt about which workbook you’re working with, declare a Workbook object

variable and use that object variable in your code rather than the ActiveWorkbook object.

For example, the following statements declare a Workbook object variable and assign the

ActiveWorkbook object to it, so that subsequent code can work with the object variable:

Dim myWorkbook As Workbooks

Set myWorkbook = ActiveWorkbook

With myWorkbook

 ‘actions here

End With

Working with Worksheets
Most workbooks you need to manipulate via VBA will contain one or more worksheets. As a

result, many procedures will need to work with worksheets—inserting them, deleting them,

copying or moving them, or simply printing the appropriate range from them.

Each worksheet is represented by a Sheet object. The Sheet objects are contained within the

Sheets collection.

Inserting a Worksheet
To insert a worksheet into a workbook, use the Add method with the Sheets collection. The syn-

tax is as follows:

expression.Add(Before, After, Count, Type)

WORKING WITH WORKSHEETS | 627

c22.indd 10:56:26:AM 07/26/2013 Page 627

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Sheets collection. Often, you’ll want to

use the Sheets collection itself.

 ◆ Before is an optional Variant argument that specifi es the sheet before which to add the

new sheet. After is an optional Variant argument that specifi es the sheet after which to

add the new sheet. Typically, you’ll want to specify either Before or After, but not both.

You can also omit both arguments to make Excel insert the new sheet before the active

worksheet.

 ◆ Count is an optional Variant argument that specifi es how many sheets to add. If you omit

Count, VBA uses the default value, 1.

 ◆ Type is an optional Variant that specifi es the type of sheet to insert. The default is

xlWorksheet, a standard worksheet. You can also insert a chart sheet (xlChart), an

Excel 4 macro sheet (xlExcel4MacroSheet), or an Excel 4 international macro sheet

(xlExcel4IntlMacroSheet).

For example, the following statements declare a Worksheet object variable named mySheet,

insert a worksheet before the fi rst sheet in the fi rst open workbook and assign the new sheet to

mySheet, and then set the Name property of mySheet to Summary (the Name property controls the

text that appears on the worksheet’s tab):

Dim mySheet As Worksheet

Set mySheet = Workbooks(1).Sheets.Add(before:=Sheets(1))

mySheet.Name = “Summary”

The following statements insert two chart sheets after the last worksheet in the active work-

book. The chart sheets receive default names, such as Chart1 and Chart2:

ActiveWorkbook.Sheets.Add _

After:=Sheets(Sheets.Count), Count:=2, Type:=xlChart

Deleting a Worksheet
To delete a worksheet, use the Delete method of the appropriate Sheet object. The Delete

method takes no arguments. For example, the following statement deletes the worksheet named

Summary from the workbook referenced by the myWorkbook object variable:

myWorkbook.Sheets(“Summary”).Delete

If you delete a worksheet, you lose any data stored on that worksheet, so Excel asks the

user to confi rm the deletion by default (see Figure 22.2). If you need to avoid this user inter-

action—for example, in a procedure that adds a worksheet without the user’s knowledge,

uses it to manipulate data, and then deletes it—you can turn off alerts in Excel by setting the

DisplayAlerts property of the Application object to False before deleting the worksheet and

then turning alerts back on:

Application.DisplayAlerts = False

myWorkbook.Sheets(“Summary”).Delete

Application.DisplayAlerts = True

628 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 628

Figure 22.2

When deleting a

worksheet, you

must either sup-

press alerts in

Excel or have the

user confi rm the

deletion in this

dialog box.

Copying or Moving a Worksheet
To copy a worksheet, use the Copy method of the appropriate Sheet object. To move a work-

sheet, use the Move method. The syntax is as follows:

expression.Copy(Before, After)

expression.Move(Before, After)

Here, expression is a required expression that returns a Worksheet object. Before is an

optional Variant argument that specifi es the sheet before which to place the copy or the moved

sheet. After is an optional Variant argument that specifi es the sheet after which to place it:

 ◆ Typically, you’ll want to specify either Before or After, but not both.

 ◆ You can specify another workbook by name to copy or move the worksheet to another

workbook.

 ◆ You can also omit both arguments to make Excel create a new workbook containing the

copied or moved sheet. The new workbook becomes the active workbook, so you can use

the ActiveWorkbook object to start working with it or to assign it to an object variable.

For example, the following statement copies the worksheet named Costs – Materials in

the workbook named Building Schedule.xlsx, placing the copy after the last of the current

worksheets in the workbook:

Workbooks(“Building Schedule.xlsx”).Sheets(“Costs - Materials”).Copy, _

 After:=Sheets(Sheets.Count)

The following line of code moves the worksheet named Homes from the workbook named

Planning.xlsx to the workbook named Building Schedule.xlsx, inserting the worksheet

before the fi rst existing worksheet in the workbook:

Workbooks(“Planning.xlsx”).Sheets(“Homes”).Move , _

 Before:=Workbooks(“Building Schedule.xlsx”).Sheets(1)

Printing a Worksheet
To print a worksheet, use the PrintOut method with the appropriate Worksheet object.

The PrintOut Method Can Be Used with Several Objects

Various objects in addition to an individual worksheet have a PrintOut method, including the

Worksheets collection, the Chart object and the Charts collection, the Workbook object, the

Window object, and the Range object.

WORKING WITH WORKSHEETS | 629

c22.indd 10:56:26:AM 07/26/2013 Page 629

The syntax for the PrintOut method is as follows:

expression.PrintOut(From, To, Copies, Preview, ActivePrinter,

 PrintToFile, Collate, PrToFileName, IgnorePrintAreas)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns the appropriate Worksheet object or other

object to which the PrintOut method applies.

 ◆ From is an optional Variant argument that specifi es the number of the page at which to start

printing. Omit From to start printing at the beginning of the object. Note that From and To

refer to the pages in the printout, not to the overall number of pages that the object would

take up.

 ◆ To is an optional Variant argument that specifi es the number of the page at which to stop

printing. Omit the To argument to print to the end of the object.

 ◆ Copies is an optional Variant argument that specifi es the number of copies to print. If you

omit Copies, Excel prints one copy.

 ◆ Preview is an optional Variant argument that you can set to True to display the object

in Print Preview before printing it. Set Preview to False, or simply omit this argument, to

print the object without previewing it. Use the PrintPreview method to display an object

in Print Preview without printing it.

 ◆ ActivePrinter is an optional Variant argument that you can use to specify the printer on

which to print.

 ◆ PrintToFile is an optional Variant argument that you can set to True to make Excel print

to a print fi le rather than a printer. When printing to a fi le, you can use the PrToFileName

property to specify the fi lename, or omit it and have Excel prompt the user for the fi lename.

 ◆ Collate is an optional Variant argument that you can set to True to have Excel print mul-

tiple copies for collation rather than printing all the copies of one page, all the copies of the

next, and so on.

 ◆ PrToFileName is an optional Variant argument that you can use with PrintToFile:=True

to specify the fi lename of the print fi le.

 ◆ IgnorePrintAreas is an optional Variant argument. Set to False, this argument prints

the entire specifi ed print area; when it’s True, the entire object is printed and any print

area is ignored. A print area can be defi ned in Excel and is useful as a way of printing only

a specifi ed range of cells. Once specifi ed, the print area is retained by Excel until you either

clear it or specify a new print area. You defi ne a print area by selecting the cells you want

to print, then clicking the Ribbon’s Page Layout tab. Click the Print Area option in the Page

Setup area of the Ribbon.

The following statement prints two copies of each page of the fi rst worksheet in the active

workbook, collating the pages:

ActiveWorkbook.Sheets(1).Printout Copies:=2, Collate:=True

The following statement prints the fi rst two pages of the worksheet named Summary in the

workbook named Planning.xlsx to a fi le named Planning Summary.prn in the network folder

\\server\to_print:

Workbooks(“Planning.xlsx”).Sheets(“Summary”).PrintOut From:=1, To:=2, _

630 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 630

 PrintToFile:=True, _

 PrToFileName:=”\\server\to_print\Planning Summary.prn”

Protecting a Worksheet
To protect a worksheet, use the Protect method with the appropriate Worksheet object. The

syntax is as follows:

expression.Protect(Password, DrawingObjects, Contents, Scenarios,

 UserInterfaceOnly, AllowFormattingCells, AllowFormattingColumns,

 AllowFormattingRows, AllowInsertingColumns, AllowInsertingRows,

 AllowInsertingHyperlinks, AllowDeletingColumns, AllowDeletingRows,

 AllowSorting, AllowFiltering, AllowUsingPivotTables)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Worksheet object.

 ◆ Password is an optional Variant argument that specifi es the password for unprotecting the

worksheet. Password is case sensitive. You’ll almost always want to supply Password to

prevent unauthorized people from unprotecting the workbook.

 ◆ DrawingObjects is an optional Variant argument that you can set to True to protect shapes

in the worksheet. The default setting is False.

 ◆ Contents is an optional Variant argument that protects the locked cells when set to True,

its default value. Set Contents to False to leave the locked cells unprotected.

 ◆ Scenarios is an optional Variant argument that protects scenarios when set to True, its

default value.

 ◆ UserInterfaceOnly is an optional Variant argument that you can set to True to leave

macros unprotected while protecting the user interface. The default value is False.

 ◆ AllowFormattingCells, AllowFormattingColumns, and AllowFormattingRows are

optional Variant arguments that you can set to True to allow the formatting of cells,

columns, and rows, respectively. The default value for each argument is False.

 ◆ AllowInsertingColumns, AllowInsertingRows, and AllowInsertingHyperlinks are

optional Variant arguments that you can set to True to allow the user to insert columns,

rows, and hyperlinks, respectively. The default value for each argument is False.

 ◆ AllowDeletingColumns and AllowDeletingRows are optional Variant arguments that you

can set to True to allow the user to delete columns or rows, respectively, where every cell in

the column or row is unlocked. The default setting is False.

 ◆ AllowSorting is an optional Variant argument that you can set to True to allow the user to

sort unlocked cells on the protected worksheet. The default setting is False.

 ◆ AllowFiltering is an optional Variant argument that you can set to True to allow the user

to set fi lters or change fi lter criteria (but not enable or disable an autofi lter) on a protected

worksheet. The default setting is False.

 ◆ AllowUsingPivotTables is an optional Variant argument that you can set to True to allow

the user to work with pivot tables on the protected worksheet. The default value is False.

WORKING WITH THE ACTIVE CELL OR SELECTION | 631

c22.indd 10:56:26:AM 07/26/2013 Page 631

For example, the following statement protects the worksheet referenced by the object variable

myWorksheet using the password no1gets1n:

myWorksheet.Protect Password:=”no1gets1n”

The following statement protects the myWorksheet worksheet with the same password but

allows the formatting of cells and allows the sorting of unlocked cells:

myWorksheet.Protect Password:=”no1gets1n”, AllowFormattingCells:=True, _

 AllowSorting:=True

Working with the ActiveSheet Object
The ActiveSheet object returns the active worksheet. If you specify a workbook, then the active

worksheet in that specifi ed workbook is returned.

If no sheet is active, ActiveSheet returns Nothing. Before executing code that depends on

there being an active sheet, it’s a good idea to check, as in this example:

If ActiveSheet Is Nothing Then End

Working with the Active Cell or Selection
In a procedure that manipulates a selection that the user has made, you’ll typically work with

either the active cell or the selection. The active cell is always a single cell, but the selection can

encompass multiple cells or other objects.

Working with the Active Cell
The ActiveCell property of the Application object or the Window object returns a Range object

that represents the active cell in the Excel application or in the specifi ed window. If you use

ActiveCell without specifying the window, VBA returns the active cell in the active window.

For example, the following statement returns the address of the active cell in the active

workbook:

ActiveCell.Address

The following statement returns the text in the active cell in the fi rst window open on the

workbook named Planning.xlsx:

MsgBox Workbooks(“Planning.xlsx”).Windows(1).ActiveCell.Text

If no worksheet is active, or if a chart sheet is active, there is no active cell. If you try to access

ActiveCell, VBA returns an error. So before using code that assumes there is an active cell,

check that ActiveCell is not Nothing:

If ActiveCell Is Nothing Then End

Getting and Setting the Value of the Active Cell

To return the value of the active cell, use the Value property. For example, the following

statement sets the value of the active cell to 25:

ActiveCell.Value = 25

632 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 632

And the following statement retrieves the value of the active cell:

MsgBox ActiveCell.Value

Moving the Active Cell to Another Address

The ActiveCell object is often convenient to work with in your code, so sometimes you’ll

want to make a different cell the active cell in order to work with it via the ActiveCell object.

To make a cell the active cell, use the Activate method with the appropriate Range object. For

example, the following statement makes cell L7 the active cell in the worksheet identifi ed by the

object variable myWorksheet:

myWorksheet.Range(“B5”).Activate

Often, you’ll need to move the active cell to a different range a specifi ed number of rows

or columns away (in other words, to an address relative to the location of the active cell—as

opposed to an absolute address, such as C12). To do so, use the Offset property of the active

cell object, specifying the number of rows with the RowOffset argument and the number of

columns with the ColumnOffset argument. Use a positive offset to move the active cell right

or down and a negative offset to move the active cell left or up. For example, the following

statement moves the active cell up two rows (RowOffset:=-2) and four columns to the right

(ColumnOffset:=4):

 ActiveCell.Offset(RowOffset:=-2, ColumnOffset:=4).Activate

In procedures that the user triggers (macros), it’s often a good idea to return the active cell

to where it was when the user started the procedure. To do so, you can store the location of the

active cell and then return it to the stored location after your procedure is fi nished with its tasks.

Here’s an example:

 Set myActiveCell = ActiveCell

 Set myActiveWorksheet = ActiveSheet

 Set myActiveWorkbook = ActiveWorkbook

 ‘take actions here

 myActiveWorkbook.Activate

 myActiveWorksheet.Activate

 myActiveCell.Activate

Be Careful with Equations That Use Relative Cell Addresses

Always test your procedures carefully with various types of data. Errors can sometimes occur when

you move cells that contain equations that use relative cell addresses.

Working with the Region around the Active Cell

You can work with the range of cells around the active cell by using the CurrentRegion

property to return the CurrentRegion object. The current region extends from the active cell to

the fi rst blank row above and below and to the fi rst blank column to the left and right. In other

WORKING WITH RANGES | 633

c22.indd 10:56:26:AM 07/26/2013 Page 633

words, if there are no blank rows or columns in the entire worksheet, then the region is all the

cells in the worksheet.

For example, the following statements use the Font property of the CurrentRegion object to

set the font of the current region to 12-point Times New Roman with no bold or italic:

With ActiveCell.CurrentRegion.Font

 .Name = “Times New Roman”

 .Size = 12

 .Bold = False

 .Italic = False

End With

Working with the User’s Selection
In macros designed to be run by a user, you will often need to work with cells that the user has

selected. For example, a user might select a range of cells and then run a macro to manipulate

the contents of the range.

To work with the range the user has selected, use the RangeSelection property of the appro-

priate Window object. For example, you might assign the RangeSelection property to a range so

that you could work with it in a macro and then select it again at the end of the macro, leaving

the user ready to work with their selection again. Here’s an example:

Dim myMacroRange As Range

Set myMacroRange = ActiveWindow.RangeSelection

With myMacroRange

 ‘take actions on the range here

End With

myMacroRange.Activate

Working with Ranges
Within a worksheet, you’ll often need to manipulate ranges of cells. You can work with absolute

ranges (ranges for which you specify the absolute addresses of the cells you want to affect, such

as C12) or ranges relative to the active cell, where you merely describe an offset.

You can either specify a range by using the Range property or create a named range by using

the Names collection. Excel also provides the UsedRange property for working with the used

range on a worksheet, and the SpecialCells method of the Range object for working with cells

that meet specifi c criteria.

Working with a Range of Cells
To work with a range of cells, use the Range property of the appropriate Worksheet object to

specify the cells. For example, the following statement sets the value of cell C12 on the active

worksheet to 44:

ActiveSheet.Range(“C12”).Value = “44”

Creating a Named Range
To create a named range, use the Add method with the Names collection. The syntax is as follows:

expression.Add(Name, RefersTo, Visible, MacroType, ShortcutKey,

634 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 634

 Category, NameLocal, RefersToLocal, CategoryLocal, RefersToR1C1,

 RefersToR1C1Local)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a Names object.

 ◆ Name is an optional Variant argument that specifi es the name to assign to the named range.

Name is required if you don’t specify the NameLocal argument (later in this list). The name

cannot be a cell reference, nor can it contain spaces.

 ◆ RefersTo is an optional Variant argument that specifi es the range for the named

range. You need to specify RefersTo unless you use the RefersToLocal argument, the

RefersToR1C1 argument, or the RefersToR1C1Local argument.

 ◆ Visible is an optional Variant argument that you can omit, set to True to have Excel make

the name visible in the user interface (in the Go To dialog box, the Paste Name dialog box,

and other locations), or set to False to make the name hidden.

 ◆ MacroType is an optional Variant argument that you can use to assign a macro type to the

range: 1 for a user-defi ned Function procedure, 2 for a Sub procedure, and 3 or omitted for

no macro.

 ◆ ShortcutKey is an optional Variant argument that specifi es the shortcut key for a

command macro assigned to the named range.

 ◆ Category is an optional Variant argument that specifi es the category of the macro or func-

tion specifi ed by MacroType. You can specify one of the categories used by the Function

Wizard, or specify another name to have Excel create a new category with that name.

 ◆ NameLocal is an optional Variant argument that specifi es the name for the range in the

local language. Use NameLocal when you omit Name.

 ◆ RefersToLocal is an optional Variant argument that specifi es the range for the

named range. Use RefersToLocal when you omit RefersTo, RefersToR1C1, and

RefersToR1C1Local.

 ◆ CategoryLocal is an optional Variant argument that you use to specify the category of the

macro or function specifi ed by MacroType. Use CategoryLocal when you omit Category.

 ◆ RefersToR1C1 is an optional Variant argument that specifi es the range for the named

range using R1C1 notation (R1C1 would mean row 1 column 1). Use RefersToR1C1 when

you omit RefersTo, RefersToLocal, and RefersToR1C1Local.

 ◆ RefersToR1C1Local is an optional Variant argument that specifi es the range for the

named range using R1C1 notation in the local language. Use RefersToR1C1Local when

you omit RefersTo, RefersToLocal, and RefersToR1C1.

For example, the following statement defi nes a range named myRange that refers to the range

A1:G22 on the worksheet named Materials in the workbook named Building Schedule.xlsx:

Workbooks(“Building Schedule.xlsx”).Names.Add Name:= “myRange”, _

 RefersTo:=”=Materials!A1:G22”

WORKING WITH RANGES | 635

c22.indd 10:56:26:AM 07/26/2013 Page 635

Deleting a Named Range
To delete a named range, use the Delete method with the appropriate Name object. For example,

the following statement deletes the range named myRange in the workbook named Building

Schedule.xlsx:

Workbooks(“Building Schedule.xlsx”).Names(“myRange”).Delete

Working with a Named Range
To work with a named range, specify the name with the Range object. For example, the fol-

lowing statements set the row height of the rows in the named range myRange to 20 points and

applies 16-point Arial font to the cells:

With Range(“myRange”)

 .RowHeight = 20

 .Font.Name = “Arial”

 .Font.Size = “16”

End With

Working with the Used Range
If you need to work with all the cells on a worksheet, but not with any unoccupied areas of the

worksheet, use the UsedRange property. For example, the following statement autofi ts all the

columns in the used range in the active worksheet:

ActiveSheet.UsedRange.Columns.AutoFit

Working with the Special Cells
If you need to work with only some types of cells on a worksheet or in a range, use the

SpecialCells method of the Range object to return the cells you need. The syntax is as follows:

expression.SpecialCells(Type, Value)

These are the components of the syntax:

 ◆ expression is a required expression that returns a Range object.

 ◆ Type is a required argument that specifi es which cells you want. Table 22.4 lists the con-

stants you can use.

 ◆ Value is an optional Variant argument that you can use when Type is xlCellTypeConstants

or xlCellTypeFormulas to control which cells Excel includes. Table 22.5 shows the constants

and what they return.

Table 22.4: Constants for the Type argument for the SpecialCells method

Constant Returns This Kind of Cell

xlCellTypeAllFormatConditions All formats

xlCellTypeAllValidation Cells that use validation

636 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 636

Constant Returns This Kind of Cell

xlCellTypeBlanks Empty

xlCellTypeComments Containing notes

xlCellTypeConstants Containing constants

xlCellTypeFormulas Containing formulas

xlCellTypeLastCell Th e last cell in the used range

xlCellTypeSameFormatConditions Having the same format

xlCellTypeSameValidation Containing the same validation criteria

xlCellTypeVisible All visible

Table 22.5: Constants for the Value argument for the SpecialCells method

Constant Returns Cells Containing

xlErrors Errors

xlLogical Logical values

xlNumbers Numbers

xlTextValues Text formulas

For example, the following statement activates the last cell in the worksheet referenced by the

object variable myWorksheet:

myWorksheet.Cell.SpecialCells(Type:=xlCellTypeLastCell).Activate

The following statement identifi es all the cells that contain formulas resulting in errors in the

active worksheet:

ActiveSheet.Cells.SpecialCells(Type:=xlCellTypeFormulas, _

 Value:=xlErrors).Activate

Entering a Formula in a Cell
To enter a formula in a cell, set the Formula property of the appropriate Cell object. For exam-

ple, the following statement enters the formula =SUM(G12:G22) in the active cell:

ActiveCell.Formula = “=SUM(G12:G22)”

Table 22.4: Constants for the Type argument for the SpecialCells method (continued)

SETTING OPTIONS | 637

c22.indd 10:56:26:AM 07/26/2013 Page 637

Setting Options
Unlike with Word, in which most of the options that you fi nd in the Word Options dialog box

(click the File tab, then click Options) are available through the Options object, most of Excel’s

options are located in the Application object. Workbook-specifi c properties that appear in the

Excel Options dialog box, however, are accessed through the appropriate Workbook object.

Setting Options in the Application Object
The following sections show three examples of setting widely useful options in the

Application object.

Controlling Excel’s Calculation

In complex worksheets that perform many calculations, you may need to turn off automatic cal-

culation so that a procedure can enter data quickly without the calculations taking place.

To do so, set the Calculation property of the Application object to xlCalculationManual,

enter the data, and then set the Calculation property back to its previous value:

Dim varAutoCalculation As Variant

varAutoCalculation = Application.Calculation

Application.Calculation = xlCalculationManual

‘enter the data here

Application.Calculation = xlCalculationAutomatic

Clearing the Recently Used Files List

Sometimes you may fi nd it useful to clear all the entries from recently displayed documents

(shown when you click the File tab on the Ribbon, then click Recent). Perhaps, for example, your

macro creates some temporary fi les that you want to delete.

You can do this by setting the Maximum property of the RecentFiles object to 0. After doing

so, you likely want to restore the user’s previous setting, as the following example illustrates:

Dim myMax As Long

With Application.RecentFiles

 myMax = .Maximum ‘store the user’s preference, currently in effect

 .Maximum = 0

 .Maximum = myMax

End With

After you execute this code and then click the File tab on the Ribbon and click Recent, no fi les

will be displayed in the Recent Documents list.

Setting a Default File Location

To set the default location for saving and opening fi les, use the DefaultFilePath property of

the Application object, as in this example:

Application.DefaultFilePath = “\\server3\users\mjones\files”

638 | CHAPTER 22 UNDERSTANDING THE EXCEL OBJECT MODEL AND KEY OBJECTS

c22.indd 10:56:26:AM 07/26/2013 Page 638

Setting Options in a Workbook
Workbook-specifi c options include the following:

 ◆ Security options (such as those shown in the following section and the sidebar “Setting

Passwords and Read-Only Recommendations for a Workbook”)

 ◆ Whether to update remote references in the workbook (the Boolean

UpdateRemoteReferences property) and whether to save external link values (the Boolean

SaveLinkValues property)

 ◆ Whether to use AutoRecover (the Boolean EnableAutoRecover property)

 ◆ Whether to accept labels in formulas (the Boolean AcceptLabelsInFormulas property)

and whether to use the 1904 date system (the Boolean Date1904 property)

Forcing Excel to Remove Personal Information from the File

Properties When You Save

To make Excel remove personal information from a workbook’s properties when you save it, set

the RemovePersonalInformation property of the workbook to True:

ActiveWorkbook.RemovePersonalInformation = True

Setting Passwords and Read-Only Recommendations for a Workbook

Offi ce’s protection works well in a typical workplace. To protect a workbook against an unauthorized

user opening it or modifying it, you can set a “password to open” (for reading only) or a “password

to modify” on the workbook. You can also specify that when anyone opens a workbook, Excel will

recommend that they open it as read-only rather than read/write.

To set a “password to open,” set the Password property of the Workbook object. For example, the

following statement sets the active workbook to use the “password to open” 1mpass4:

ActiveWorkbook.Password = “1mpass4”

To set a “password to modify,” set the WritePassword property of the Workbook object. For exam-

ple, the following statement sets the active workbook to use the “password to modify” n0mods:

ActiveWorkbook.WritePassword = “n0mods”

To apply a read-only recommendation to a workbook, set its ReadOnlyRecommended property to

True:

Workbooks(“Strategy.xlsx”).ReadOnlyRecommended = True

Accessing OneNote
Earlier in this chapter you saw how to access SkyDrive and Dropbox. Simple enough. Dealing

with OneNote is another matter because its contents are stored in the tricky XML format.

When you write code to deal with XML, the words effi cient, straightforward, and sensible do not

come to mind.

THE BOTTOM LINE | 639

c22.indd 10:56:26:AM 07/26/2013 Page 639

VBA isn’t built into OneNote, but you can access OneNote from VBA in other Offi ce

applications.

The following example gets the metadata (data about data) from your OneNote notebooks.

Before you try this code, choose Tools ➢ References in Excel’s VBA Editor and ensure that

both Microsoft OneNote 15.0 Object Library and Microsoft XML v6.0 are selected (checked) in

the References dialog box.

1. Sub GetMetaData()

2.

3. ‘If it’s not currently running, OneNote will be launched

4. Dim ONote As oneNote.Application

5. Set ONote = New oneNote.Application

6.

7. Dim strXML As String

8.

9. ONote.GetHierarchy “”, hsNotebooks, strXML, xs2010 ‘don’t use xs2013

10.

11. MsgBox strXML

12. End Sub

Lines 4 and 5 create an instance of OneNote and assign it to the ONote object variable.

Next we create a string variable in line 7 to hold the metadata. Line 9 uses the GetHierarchy

method to fi ll strXML with the metadata. hsNotebooks represents the collection of notebooks in

OneNote. The message box displays the results.

Th e Bottom Line

Work with workbooks. You often need to create a new, blank workbook in a macro (mim-

icking a user clicking the File tab on the Ribbon, then clicking the New button). And writing

code that accomplishes this is not diffi cult. It requires only two words.

Master It What code would you write to create a new, blank notebook?

Work with worksheets. Most workbooks you access via VBA will contain one or more

worksheets, so most procedures will need to work with worksheets—inserting, deleting,

copying, or moving them, or simply printing the appropriate range from them.

Master It Name the object you use in VBA code to represent a worksheet.

Work with the active cell or selection. In a procedure that manipulates a selection that the

user has made, you’ll typically work with either the active cell or the current selection.

Master It What is the difference between the active cell and a selection?

Work with ranges. Within a worksheet, you’ll often need to manipulate ranges of cells.

Excel includes a special kind of range—represented by the UsedRange property.

Master It What is unique about UsedRange?

Set options. Word employs an Options object to contain most of the options that you fi nd

in the Word Options dialog box (click the File tab on the Ribbon, then click Options). Excel

uses a different object to contain its options.

Master It From which object do you access most of Excel’s options ?

c22.indd 10:56:26:AM 07/26/2013 Page 640

c23.indd 02:51:34:PM 07/04/2013 Page 641

Chapter 23

Working with Widely Used Objects
in Excel

In the previous chapter, you learned to work with some of the main objects in the Excel object

model, such as Workbook objects, the ActiveCell object, Range objects, and the Options

object. This chapter shows you how to expand your programming facility with VBA in Excel

by working with charts, windows, and Find and Replace.

In this chapter you will learn to do the following:

 ◆ Work with charts

 ◆ Work with windows

 ◆ Work with Find and Replace

Working with Charts
The following sections show you how to use VBA to create and format charts, either as entire

chart sheets in a workbook or as objects on an existing worksheet.

Creating a Chart
VBA uses the Chart object to represent a chart on a chart sheet and a ChartObject object to

represent an embedded chart on a worksheet. The ChartObject object contains a Chart object,

which you can manipulate by accessing it through the ChartObject object. Confused? Object

classifi cation schemes can be a bit bewildering.

When writing a macro, you create a chart or chart object in a different order than when

working interactively and doing things by hand within Excel. Here are the steps you take when

creating charts programmatically (via code rather than interactively via a mouse and keyboard):

 1. Create a Chart object variable.

 2. Instantiate (bring into existence) the Chart object using the Set command.

 3. Specify the source range for its data using the SetSourceData method.

 4. Specify the chart type using the ChartType property.

 5. Specify any other items you need to.

642 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 642

Creating a Chart on a New Chart Sheet

To create a chart on a new chart sheet, use the Add method with the Charts collection. The syn-

tax is as follows:

expression.Add(Before, After, Count, Type)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Charts collection.

 ◆ Before is an optional Variant argument that you can use to specify the sheet before which

to add the new chart sheet. After is an optional Variant argument that you can use to

specify the sheet after which to add the new sheet. Typically, you’ll use either Before or

After. If you omit both arguments, VBA adds the new chart sheet before the active sheet.

 ◆ Count is an optional Variant argument that you can use to specify how many chart sheets

to add. The default is one.

 ◆ Type is an optional Variant argument that you can use to specify which kind of chart

you want displayed. The choices are xlWorksheet, xlChart, xlExcel4MacroSheet, and

xlExcel4IntlMacroSheet. The default value is xlWorksheet, so you have to specify

xlChart in the following code example because it adds a chart, not an ordinary worksheet.

The following code declares an object variable named myChartSheet as being of the Chart

type (a chart worksheet) and then assigns to myChartSheet a new chart sheet added after the

last existing sheet in the active workbook:

Dim myChartSheet As Chart

Set myChartSheet = ActiveWorkbook.Sheets.Add _

 (After:=ActiveWorkbook.Sheets(ActiveWorkbook.Sheets.Count), _

 Type:=xlChart)

Creating a Chart on an Existing Worksheet

To create a chart on an existing worksheet, use the Add method with the ChartObjects

collection. The syntax is as follows:

expression.Add(Left, Top, Width, Height)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a ChartObjects collection.

 ◆ Left is a required Double (variable type) argument that specifi es the position of the

upper-left corner of the chart in points from the left edge of cell A1.

 ◆ Top is a required Double argument that specifi es the position of the upper-left corner of the

chart in points from the top edge of cell A1.

 ◆ Width is a required Double argument that specifi es the width of the chart in points.

 ◆ Height is a required Double argument that specifi es the height of the chart in points.

For example, the following statements declare a new ChartObject object named

myChartObject and assign to it a new chart object (chart area) 400 points wide by 300 points

deep, positioned 200 points from the left edge and 200 points from the top of the worksheet:

WORKING WITH CHARTS | 643

c23.indd 02:51:34:PM 07/04/2013 Page 643

Dim myChartObject As ChartObject

Set myChartObject = ActiveSheet.ChartObjects.Add(Left:=200, Top:=200, _

 Width:=400, Height:=300)

To work with the chart inside the ChartObject, return the Chart property of the

ChartObject object.

Specifying the Source Data for the Chart
So far, the chart (on the chart sheet or in the Chart object) is blank. To give it contents,

specify the chart’s source data by using the SetSourceData method of the Chart object. For

example, the following statement specifi es the range A1:E5 on the worksheet named Chart

Data in the active workbook as the source data of the Chart object in the ChartObject object

named myChartObject:

myChartObject.Chart.SetSourceData Source:= _

 ActiveWorkbook.Sheets(“Chart Data”).Range(“A1:E5”)

Specifying the Chart Type
To specify the chart type, set the ChartType property of the Chart object. Excel offers too

great a variety of charts to list here (73 different types), but you can easily identify the chart

types from their enumeration-constant names. For example, the constant xl3DArea represents

the 3-D Area chart type, xlColumnStacked represents the Stacked Column chart type, and

xlDoughnutExploded represents the Exploded Doughnut chart type.

The following statement sets the type of the chart represented by the object variable myChart

to the Stacked Column type:

myChart.ChartType = xlColumnStacked

Working with Series in the Chart
To work with series in a chart, you use the SeriesCollection collection, which contains all the

series in the specifi ed chart.

Creating a New Series

To create a new series, use the NewSeries method with the SeriesCollection collection. For

example, the following statement adds a new series to the chart represented by the object vari-

able myChart:

myChart.SeriesCollection.NewSeries

Adding a New Series

To add a new series to a SeriesCollection collection, use the Add method with the appropriate

SeriesCollection object. The syntax is as follows:

expression.Add(Source, Rowcol, SeriesLabels, CategoryLabels, Replace)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a SeriesCollection collection.

644 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 644

 ◆ Source is a required Variant argument that specifi es the source of the data for the new

series. You can supply the data either as a range or as an array of data points.

 ◆ Rowcol is an optional argument that you can set to xlRows to specify that the new values

are in rows in the specifi ed range, or use the default setting, xlColumns, to specify that the

new values are in columns. If you omit this argument, Excel uses xlColumns.

 ◆ SeriesLabels is an optional Variant argument that you can set to True to specify that

the fi rst row or column in the source area contains the series labels, or False to specify

that the fi rst row or column in the source area contains the fi rst data point for the series. If

you omit this argument, Excel tries to work out whether the fi rst row or column contains a

series label. It’s best to specify this argument to avoid confusion. However, if Source is an

array, VBA ignores this argument.

 ◆ CategoryLabels is an optional Variant argument that you can set to True to specify that

the fi rst row or column contains the name for the category labels, or set to False to specify

that it does not contain them. If you omit this argument, Excel tries to work out whether

the fi rst row or column contains a category label. It’s best to specify this argument to avoid

confusion. Again, if Source is an array, VBA ignores this argument.

 ◆ Replace is an optional Variant argument that you can set to True when CategoryLabels

is True to make the categories replace the existing categories for the series, or set to False

(the default value) to prevent the existing categories from being replaced.

The following procedure brings together several elements used in the previous code exam-

ples in this chapter. It illustrates how to create a complete chart and add a new series to the chart

identifi ed by the object variable myChart. The procedure draws the data from the range A4:K4

on the active worksheet in the active workbook, using rows:

Sub test()

Dim myChartObject As ChartObject

Dim MyChart As Chart

Set myChartObject = ActiveSheet.ChartObjects.Add(Left:=100, Top:=100, _

 Width:=400, Height:=300)

Set MyChart = myChartObject.Chart

MyChart.ChartType = xlConeBarStacked

MyChart.SeriesCollection.Add _

 Source:=ActiveSheet.Range(“A4:K4”), Rowcol:=xlRows

End Sub

If you execute this example, you’ll see results similar to those shown in Figure 23.1. A chart

will be generated based on whatever data lies within the specifi ed range.

Extending an Existing Series

To extend an existing series, use the Extend method with the appropriate SeriesCollection

object. The syntax is as follows:

expression.Extend(Source, Rowcol, CategoryLabels)

WORKING WITH CHARTS | 645

c23.indd 02:51:34:PM 07/04/2013 Page 645

Here are the components of this syntax:

 ◆ expression is a required expression that returns a SeriesCollection object.

 ◆ Source is a required Variant argument that specifi es the source of the data for the new

series. You can supply the data either as a range or as an array of data points.

 ◆ Rowcol is an optional argument that you can set to xlRows to specify that the new values

are in rows in the specifi ed range, or use the default setting, xlColumns, to specify that the

new values are in columns. If you omit this argument, Excel uses xlColumns.

 ◆ CategoryLabels is an optional Variant argument that you can set to True to specify that

the fi rst row or column contains the name for the category labels, or set to False to specify

that it does not contain them. If you omit this argument, Excel tries to work out whether

the fi rst row or column contains a category label. It’s best to specify this argument to avoid

confusion. If Source is an array, VBA ignores this argument.

Figure 23.1

Th is chart was

generated in a pro-

cedure, using the

Add method of the

SeriesCollection

object.

For example, the following statement extends the series in the chart identifi ed by the object

variable myChart using the data in the cells P3:P8 on the worksheet named Chart Data:

myChart.SeriesCollection.Extend _

Source:=Worksheets(“Chart Data”).Range(“P3:P8”)

646 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 646

Adding a Legend to the Chart
To add a legend to the chart, set its HasLegend property to True. To manipulate the legend, work

with the properties of the Legend object. Key properties include these:

 ◆ The Position property controls where the legend appears: xlLegendPositionBottom,

xlLegendPositionCorner, xlLegendPositionLeft, xlLegendPositionRight, or

xlLegendPositionTop.

 ◆ The Height property and the Width property control the height and width of the legend,

respectively, in points.

 ◆ The Font property returns the Font object, whose properties you can set to specify the font

size, name, and effects.

For example, the following statements add the legend to the chart represented by the object

variable myChart and apply 16-point Arial font to it:

With myChart.Legend

 .HasLegend = True

 .Font.Size = 16

 .Font.Name = “Arial”

End With

Adding a Chart Title
To add a title to the chart, set its HasTitle property to True, as in this example:

myChart.HasTitle = True

Excel adds the title with the default text Chart Title. To change the text, set the Text prop-

erty of the ChartTitle object, which represents the chart title. Here’s an example:

myChart.ChartTitle.Text = “Industrial Mixups in North Dakota”

To position the title, set its Top property (specifying the number of points from the top edge

of the worksheet) and its Left property (specifying the number of points from the left edge of

the worksheet), as in this example:

With myChart.ChartTitle

 .Top = 100

 .Left = 150

End With

To format the text of the title, work with its Font object, as follows:

myChart.ChartTitle.Font.Name = “Arial”

Working with a Chart Axis
To work with an axis of a chart, use the Axes method to access the appropriate axis. The syntax

is as follows:

expression.Axes(Type, Group)

WORKING WITH WINDOWS | 647

c23.indd 02:51:34:PM 07/04/2013 Page 647

Here, expression is a required expression that returns a Chart object. Type is an optional

Variant argument that specifi es the axis to return. Use xlValue to return the value axis,

xlCategory to return the category axis, or xlSeriesAxis to return the series axis (on 3D charts

only). Group is an optional argument that you can set to xlSecondary to specify the second axis

group instead of xlPrimary (the default setting), which specifi es the fi rst axis group.

For example, the following statements work with the category axis in the primary group of

the chart, applying its title, adding text, setting the font and font size, and turning major grid-

lines on and minor gridlines off. Note that this With structure should be placed within a second,

outer With structure representing the chart itself:

With MyChart

 With .Axes(Type:=xlCategory, AxisGroup:=xlPrimary)

.HasTitle = True

 .AxisTitle.Text = “Years”

 .AxisTitle.Font.Name = “Times New Roman”

 .AxisTitle.Font.Size = 12

 .HasMajorGridlines = True

 .HasMinorGridlines = False

 End With

End With

Formatting Headers and Footers
You can manipulate headers and footers easily via VBA by using a built-in set of format and

content constants. These include format specifi cations such as &U for underlining and &C for cen-

tering. Content constants include &D, which inserts the current date, &P for the page number, and

&F for the document’s name. The complete list of Excel 2013 header and footer constants can be

found here:

http://msdn.microsoft.com/en-us/library/office/ff822794.aspx

This code turns on italics and underlining, and on the right side of the header prints Dr.
Dancy Page followed by the current page and the total number of pages: Dr. Dancy Page 2 of 7. If
there is no header, one is created.

ActiveSheet.PageSetup.RightHeader = “&U&I Doctor Dancy Page &P of &N”

Working with Windows
The Windows collection contains a Window object for every open window in the Excel application.

Normally, when you open a workbook, Excel opens a window so that you can see it. You can

also open further windows as necessary—for example, by clicking the Ribbon’s View tab, then

clicking the New Window button in the Window area.

In most cases, using Window objects isn’t a very useful way to access data via VBA because

you can access it more easily using objects such as the ActiveSheet object or the ActiveCell

http://msdn.microsoft.com/en-us/library/office/ff822794.aspx

648 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 648

object. However, you may want to open, close, activate, or arrange windows programmatically

(via a procedure rather than having the user do it by hand interactively) to display data to the

user in a particular way.

Opening a New Window on a Workbook
To open a new window on a workbook, use the NewWindow method of the appropriate Window

object. This method takes no arguments. For example, the following statement opens a new

window showing the contents of the fi rst window open on the workbook identifi ed by the object

variable myWorkbook:

myWorkbook.Windows(1).NewWindow

Closing a Window
To close a window, use the Close method with the appropriate Window object. The syntax is as

follows:

expression.Close(SaveChanges, Filename, RouteWorkbook)

Here, expression is a required expression that returns a Window object. This syntax is the same

as for closing a workbook (see “Closing a Workbook” in the previous chapter). The difference is

that if two or more windows are open on the same workbook, closing the second or subsequent

window does not close the workbook, so the arguments are not relevant. (If the window you’re

closing is the workbook’s last window, however, you do need to specify the windows—other-

wise, Excel prompts the user to save any unsaved changes.) For example, the following state-

ment closes all windows open on the workbook referenced by the object variable myWorkbook

except for one window:

Do While myWorkbook.Windows.Count > 1

 myWorkbook.Windows(myWorkbook.Windows.Count).Close

Loop

Activating a Window
To activate a window, use the Activate method of the appropriate Window object. For example,

the following statement activates the fi rst window open on the workbook Planning.xlsx:

Workbooks(“Planning.xlsx”).Windows(1).Activate

Similarly, you can activate the previous window by using the ActivatePrevious method or

the next window by using the ActivateNext method.

Arranging and Resizing Windows
To arrange windows, use the Arrange method with the appropriate Windows collection. The syn-

tax is as follows:

expression.Arrange(ArrangeStyle, ActiveWorkbook, SyncHorizontal, SyncVertical)

WORKING WITH WINDOWS | 649

c23.indd 02:51:34:PM 07/04/2013 Page 649

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Windows collection.

 ◆ ArrangeStyle is an optional argument that you can set to xlArrangeStyleTiled to

tile the windows (the default setting), xlArrangeStyleHorizontal to arrange the

windows horizontally, xlArrangeStyleVertical to arrange the windows vertically, or

xlArrangeStyleCascade to cascade the windows in an overlapping arrangement that lets

you see the title bar of each window but the contents of only the front window.

 ◆ ActiveWorkbook is an optional Variant argument that you can set to True to make VBA

arrange only the windows of the active workbook. The default value is False, which

arranges all open windows.

 ◆ SyncHorizontal and SyncVertical are optional Variant arguments that you can set

to True when you use ActiveWorkbook:=True to make the windows of the active work-

book scroll horizontally or vertically in sync (when you scroll one window, the other

windows scroll by the same amount in the same direction). The default is False.

For example, the following statement arranges the windows in the workbook Budget.xlsx

vertically and sets synchronized scrolling on them:

Workbooks(“Budget.xlsx”).Windows.Arrange _

 ArrangeStyle:=xlArrangeStyleVertical, _

 ActiveWorkbook:=True, SyncVertical:=True

You can maximize, minimize, or restore the application window by setting the WindowState

property of the Application object to xlMaximized, xlMinimized, or xlNormal. Similarly,

within the application window, you can maximize, minimize, or restore a document by setting

its WindowState property.

When a window is in a “normal” state (xlNormal; not maximized or minimized), you can

position it by using the Top and Left properties to specify the position of the upper-left corner

of the window and size it by setting its Height and Width properties. Check the UsableWidth

property and the UsableHeight property of the Application object to fi nd the amount of space

available in the Application window. (Similarly, you can check the UsableWidth property and

the UsableHeight of the Window object to see how much space is available in the window—for

example, so that you can size or position an object correctly.)

The following example declares two Window object variables, myWindow1 and myWindow2, and

assigns myWindow1 to the active window and myWindow2 to a new window showing the same

worksheet as myWindow1. The example then sizes and positions the two windows so that each

is the full height available in the application window, with myWindow1 taking one-quarter of the

available width and myWindow2 taking the remaining three-quarters of the available width:

Dim myWindow1 As Window, myWindow2 As Window

Set myWindow1 = ActiveWindow

Set myWindow2 = myWindow1.NewWindow

With myWindow1

 .WindowState = xlNormal

 .Top = 0

 .Left = 0

 .Height = Application.UsableHeight

650 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 650

 .Width = Application.UsableWidth * 0.25

End With

With myWindow2

 .WindowState = xlNormal

 .Top = 0

 .Left = (Application.UsableWidth * 0.25) + 1

 .Height = Application.UsableHeight

 .Width = Application.UsableWidth * 0.75

End With

Zooming a Window and Setting Display Options
To change the zoom, set the Zoom property of the appropriate Window object. For example, the

following statement zooms the active window to 150 percent:

ActiveWindow.Zoom = 150

In some procedures, you may need to change the display of the Excel window to ensure

that certain features are (or are not) available to the user. Use the Boolean properties

DisplayScrollBars, DisplayStatusBar, and DisplayFormulaBar to control whether Excel dis-

plays the scroll bars, status bar, and formula bar. Use the DisplayFullScreen property to toggle

full-screen view on and off.

For example, the following statements make sure that the scroll bars and status bar are hid-

den and that the formula bar is displayed:

With Application

 .DisplayScrollBars = False

 .DisplayStatusBar = False

 .DisplayFormulaBar = True

End With

Working with Find and Replace
Excel’s Find and Replace features can be useful for locating data in your procedures. In Excel,

Find and Replace are implemented through methods rather than (as in Word) through a Find

object.

Both the Range object and the WorksheetFunction object have Find methods and Replace

methods (but with different syntax). For most fi nd and replace operations, you’ll want to use the

Range object—for example, to replace the contents of specifi c cells on a worksheet.

Searching with the Find Method
The syntax for the Range object’s Find method is as follows:

expression.Find(What, After, LookIn, LookAt, SearchOrder, SearchDirection, MatchCase,

MatchByte, SearchFormat)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Range object.

 ◆ What is a required Variant argument that specifi es the data to fi nd. This data can be a string

of text or any Excel data type.

WORKING WITH FIND AND REPLACE | 651

c23.indd 02:51:34:PM 07/04/2013 Page 651

 ◆ After is an optional Variant argument that you can use to specify the cell after which to

begin searching. After must be a cell in the range that’s being searched. If you omit After,

Excel begins the search at the upper-left cell in the range.

 ◆ LookIn is an optional Variant argument that you can use to specify whether to search in

formulas (xlFormulas), values (xlValues), or comments (xlComments).

 ◆ LookAt is an optional Variant argument that you can set to xlWhole to search for the entire

contents of a cell, or to xlPart to search for the match within the contents of cells.

 ◆ SearchOrder is an optional Variant argument that you can set to xlByRows to search by

rows, or to xlByColumns to search by columns.

 ◆ SearchDirection is an optional Variant argument that you can set to xlNext to search

downward, or to xlPrevious to search upward.

 ◆ MatchCase is an optional Variant argument that you can set to True to use case-sensitive

searching. The default setting is False.

 ◆ MatchByte is an optional Variant argument used only if you’ve installed double-byte lan-

guage support.

 ◆ SearchFormat is an optional Variant argument that controls whether Excel searches for

specifi ed formatting (True) or not (False).

Practical Searching: Beware Persistent Settings

Th e LookIn, LookAt, SearchOrder, and MatchByte arguments of the Range object’s Find method

persist—Excel retains them from one search to the next. Unless you know that the settings used in

the previous search are suitable for your current needs, you should set these arguments explicitly

for each new search to avoid getting unexpected results.

Pay particular attention to the LookAt setting. Th is setting corresponds to the Match Entire Cell

Contents check box in the Find And Replace dialog box. To see this option manually in an Excel

window, click any cell, then click the Find And Select button on the Ribbon’s Home tab. Choose

Replace on the menu that drops down, then click the Options button in the Find And Replace dialog

box, if necessary, to display all the options available in that dialog box.

Remember that format settings such as font and subscript persist as well. So you might want to

also specify them if you’re concerned they might have been previously employed by you or the user.

And, fi nally, remember to always be courteous to users by restoring their settings. Users know that

Find and Replace settings persist, so they expect them to remain as you found them, no matter

what you might do with them while your procedure executes. So at the start of your procedure,

store the user’s current settings in variables. Th en at the end of your procedure, save these settings

back to the various options.

Excel has no global command equivalent to Word’s ClearFormatting statement, described in

Chapter 21, “Working with Widely Used Objects in Word.”

652 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 652

The following example code searches for 2008 in formulas in cells after the active cell, with-

out searching for formatting:

Cells.Find(What:=”2008”, After:=ActiveCell, LookIn:=xlFormulas, LookAt _

 :=xlWhole, SearchOrder:=xlByRows, SearchDirection:=xlNext, MatchCase:= _

 True, SearchFormat:=False).Activate

Notice that in this code each argument is named. And one, MatchByte, is omitted. Recall that

if you leave out an argument in an argument list, you must either insert a comma as a place-

holder or use named arguments. Given that Excel’s Find arguments are persistent, it is a good

idea to use named arguments here to remind yourself that they need to be restored to the user’s

previous settings.

Continuing a Search with the FindNext and FindPrevious Methods
After you have executed a search using the Find method, you can use the FindNext method

to fi nd the next instance of the search item, or the FindPrevious method to fi nd the previous

instance. The syntax is as follows:

expression.FindNext(After)

expression.FindPrevious(After)

Here, expression is a required expression that returns a Range object, and After is an optional

Variant argument that specifi es the cell after which you want to search (for the FindNext

method) or before which you want to search (for the FindPrevious method). After must be a

single cell.

For example, the following statement fi nds the next instance of the search item:

Cells.FindNext

Replacing with the Replace Method
To replace using VBA, use the Replace method with the Range object. The syntax is as follows:

expression.Replace(What, Replacement, LookAt, SearchOrder, MatchCase, MatchByte,

SearchFormat, ReplaceFormat)

The components of the syntax are the same as for the Search method except for the

following:

 ◆ Replacement is a required Variant argument that specifi es the replacement string for the

search.

 ◆ ReplaceFormat is an optional Variant argument that controls whether Excel replaces for-

matting in the search (True) or not (False).

For example, the following statement replaces the instances of the word Sales in column B of

the active worksheet with the words Sales & Marketing, using case-sensitive matching:

ActiveSheet.Columns(“B”).Replace What:=”Sales”, _

 Replacement:=”Sales & Marketing”, SearchOrder:=xlByColumns, _

 MatchCase:=True

ADDING SHAPES | 653

c23.indd 02:51:34:PM 07/04/2013 Page 653

Searching for and Replacing Formatting
To search for formatting, use the FindFormat property of the Application object to defi ne the

formatting, and then set the SearchFormat argument of the Find method to True. Similarly, use

the ReplaceFormat property of the Application object to defi ne the replacement formatting,

and then set the ReplaceFormat property of the Replace method to True.

For example, the following statements use a With structure to set the

Application.FindFormat.Font properties for which to search, a With structure to set the

Application.ReplaceFormat.Font with which to replace them, and the Replace method of

the Cells collection to effect the replacement:

 With Application.FindFormat.Font

 .Name = “Arial”

 .Size = “12”

 .Bold = True

 End With

 With Application.ReplaceFormat.Font

 .Name = “Arial Black”

 .Bold = False

 End With

 Cells.Replace What:=”5”, Replacement:=”5”, LookAt:=xlPart, SearchOrder _

 :=xlByColumns, MatchCase:=False, SearchFormat:=True, ReplaceFormat:=True

Adding Shapes
It’s easy to add shapes to a worksheet. This technique can be used to draw attention to impor-

tant points or liven up statistical data for a presentation. Here’s an example that adds two explo-

sion graphics to a worksheet:

Sub AutoShapes()

 ActiveSheet.Shapes.AddShape(msoShapeExplosion2, 425, 145, 86, 101).Select

 ActiveSheet.Shapes.AddShape(msoShapeExplosion1, 265, 224, 190, 190).Select

End Sub

The AddShape method takes the following arguments:

AddShape(Type, Left, Top, Width, Height)

The Type argument specifi es one of a set of msoShape constants that can be found in Excel’s

VBA Editor. There are dozens of shapes, including a moon, a heart, and a tear. Press F2 to dis-

play the Object Browser. In the list box at the top left of the Object Browser, you’ll likely see All

Libraries displayed by default. Instead, open this list and select Offi ce. (This list box specifi es

the library of objects that will be searched.) Now in the fi eld directly below that, type msoshape

and click the binoculars icon next to the fi eld.

654 | CHAPTER 23 WORKING WITH WIDELY USED OBJECTS IN EXCEL

c23.indd 02:51:34:PM 07/04/2013 Page 654

Th e Bottom Line

Work with charts. You can create either full chart sheets or embedded charts within an

ordinary Excel worksheet.

Master It What object is used in a procedure to represent an embedded chart?

Work with windows. To open a new window on a workbook, you use the NewWindow

method of the appropriate Window object.

Master It Does the NewWindow method take any arguments?

Work with Find and Replace. When working with the Find and Replace features in Excel,

you need to be aware of a phenomenon known as persistence.

Master It What is persistence, and why should it concern you?

Chapter 24

Understanding the PowerPoint
Object Model and Key Objects

This chapter shows you how to start working with the PowerPoint object model, the architecture

underlying PowerPoint, and how to perform common actions with the most immediately useful

PowerPoint objects. These objects include the Presentations collection and the Presentation

object, the ActivePresentation object, the Slides collection and Slide objects, Window objects,

and Master objects.

In this chapter you will learn to do the following:

 ◆ Understand the PowerPoint object model

 ◆ Understand PowerPoint’s creatable objects

 ◆ Work with presentations

 ◆ Work with windows and views

 ◆ Work with slides

 ◆ Work with masters

Getting an Overview of the PowerPoint Object Model
As with all Offi ce applications that include VBA, you can write macros without understanding

how the PowerPoint object model fi ts together, but most people fi nd that familiarity with the

main objects in the object model is helpful. Also, the code examples in the Help system’s object-

model reference can be invaluable. They show how and where to employ objects in your own

programming.

To begin exploring the PowerPoint object model, follow these steps:

 1. Launch or switch to PowerPoint, and then press Alt+F11 to launch or switch to the VBA

Editor.

 2. Move your cursor to a blank space in the code window (to avoid context-sensitive help).

 3. Press F1 in the Editor to launch the VBA language reference for Offi ce 2013 web page.

 4. In the Bing search fi eld, type powerpoint 2013 object model and press Enter.

 5. Click the link Object model reference (PowerPoint 2013 Developer Reference). You’ll now have

access to the whole collection of syntax specifi cations, useful descriptions, and code

examples, as shown in Figure 24.1.

656 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

Figure 24.1

Th e entries in the

PowerPoint

object-model

reference will help

you write your own

VBA code.

Help When Migrating Legacy Code from Earlier Office Projects

If you’ve inherited VBA code written in earlier versions of PowerPoint, those procedures might

contain objects, methods, and properties that have been changed in Offi ce 2013. Th ough changes to

previous object models are generally few, some incompatibilities can crop up and “break” the code

so it won’t run correctly. Fortunately, you can download a free utility to assist you in mending the

broken code. See the sidebar in Chapter 22 titled “Help When Migrating Legacy Code from Earlier

Offi ce Projects” for more information.

Understanding PowerPoint’s Creatable Objects
In PowerPoint, the Application object gives you access to all the objects in the PowerPoint

application. But for many operations, you can go directly through one of the “creatable” objects

available in PowerPoint. (Recall that creatable merely means you can optionally leave out the

word Application when specifying a creatable object in your code.) The four most useful creat-

able objects are listed here:

 ◆ The ActivePresentation object represents the active presentation, the presentation that

would respond if you typed something.

 ◆ The Presentations collection contains the Presentation objects, each of which repre-

sents one of the currently open presentations.

 ◆ The ActiveWindow object represents the active window in the application.

 ◆ The SlideShowWindows collection contains the SlideShowWindow objects, each of which

represents an open slide-show window. This collection is useful for manipulating a slide

show that’s currently displayed.

WORKING WITH PRESENTATIONS | 657

Within a presentation, you’ll typically fi nd yourself working with the Slides collection,

which contains all the Slide objects that represent the slides. On a slide, most items are repre-

sented by Shape objects gathered into the Shapes collection. For example, the text in a typical

placeholder is contained in the Text property of the TextRange object in the TextFrame object

within a Shape object on a slide.

Working with Presentations
To get any work done in PowerPoint, you’ll usually need to work with one or more presenta-

tions. VBA uses the Presentation object to represent a presentation and organizes the open

Presentation objects into the Presentations collection.

Creating a New Presentation Based on the Default Template
You can create a new presentation based on the default template. This is equivalent to clicking

the File tab on PowerPoint’s Ribbon, then clicking the New option in PowerPoint. To do this, use

the Add method with the Presentations collection. The syntax is as follows:

expression.Add(WithWindow)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Presentations object. Often, it’s easiest

to use the Presentations object itself.

 ◆ WithWindow is an optional Long argument. Set WithWindow to msoFalse to prevent the

new presentation from being visible—for example, so that you can create and manipulate

it without the user seeing the details. (You may want to temporarily hide the presenta-

tion so that the user doesn’t have to endure the irritating fl ickering effect that PowerPoint

tends to exhibit while creating presentation objects programmatically.) The default value is

msoTrue, making the new presentation visible.

For example, the following statements declare an object variable of the Presentation

type named myPresentation, create a new presentation, assign the new presentation to

myPresentation, and make it invisible to the user:

Dim myPresentation As Presentation

Set myPresentation = Presentations.Add(WithWindow:=msoFalse)

Understanding Tri-State Values

Th is is a bit rarifi ed, but let’s leave no stone unturned. Th e Add method of the Presentations

object allows you to set its WithWindow argument to four diff erent states: msoFalse, msoTrue,

msoTriStateToggle, or msoTriStateMixed. True and false are common and easily understood

states. But PowerPoint makes extensive use of two unusual states called MsoTriState values,

both of which represent a kind of super-Boolean state. Instead of being limited to merely True or

False, a tri-state value can also be in special third and fourth states. msoTriStateMixed means

that something is both true and false at the same time, like lovers. Here’s an example: if a string

contains three words, one of which is bold, is the string bold or not? Well, the answer in VBA is

that it is a mixed string. msoTriStateToggle means that the state is potentially true or false.

658 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

In other words, the user could click a two-state control resetting the status either way, or your

code could reset it.

In most cases, you’ll want to set a tri-state value to either msoTrue or msoFalse. In fact, I can’t

imagine a situation in which your code would actually ever have a need to set msoTriState values;

instead, you would only ever need to check this value (to read it) to fi nd out if the property you

were dealing with contained a mixture of msoTrue and msoFalse values. Remember that mixed

means something is true and false at the same time; toggle means that something is potentially

either true or false. Actually, don’t remember this, because it’s so infrequently useful. I mention it

only because it pervades the documentation on PowerPoint programming.

Creating a New Presentation Based on a Template
To create a new presentation based on a template other than the default template, use the Open

method of the Presentations collection. The syntax is as follows:

expression.Open(FileName, ReadOnly, Untitled, WithWindow)

The components of the syntax are explained here (ReadOnly, Untitled, and WithWindow are

all msoTriState values, but pay no attention to that):

 ◆ expression is a required expression that returns a Presentations object. Often, it’s easiest

to use the Presentations object itself.

 ◆ FileName is a required String argument that specifi es the path and name of the fi le to use

as a template for the new presentation. This fi le can be either a template in the conventional

sense or a presentation that you want to use as a template.

 ◆ ReadOnly is an optional argument that specifi es whether the fi le is opened with read-only

status (msoTrue) or with read/write status (msoFalse). When creating a new presentation

based on a template, you don’t need to specify ReadOnly.

 ◆ Untitled is an optional argument that specifi es whether to open the fi le as itself (mso-

False) or as a copy (msoTrue). When creating a new presentation based on a template, set

Untitled to msoTrue.

 ◆ WithWindow is an optional argument that you can set to msoFalse to prevent the new pre-

sentation from being visible. The default value is msoTrue, making the new presentation

visible.

For example, the following statement creates a new presentation based on the template

named Capsules.potm in the C:\Users\Richard\Documents\Custom Office Templates\

folder:

Presentations.Open _

 FileName:=˝C:\Users\Richard\Documents\Custom Office Templates\Presentation2.potx˝,

Untitled:=msoTrue

As usual, replace my name, Richard, with your name.

WORKING WITH PRESENTATIONS | 659

Opening an Existing Presentation
To open an existing presentation already on the hard drive, use the Open method of the

Presentations collection. The syntax is as shown in the previous section. The difference is that

you use the FileName argument to specify the presentation you want to open (as opposed to

the fi le that you want to use as the template for creating a new presentation) and either omit the

Untitled argument or set it to msoFalse. You may also need to use the OpenConflictDocument

argument to specify how to handle any confl ict fi le that exists for the presentation you’re

opening.

For example, the following statement opens the existing presentation named Train Time

.pptm stored in the folder Z:\Public, opening the presentation for editing rather than opening

it as read-only:

Presentations.Open FileName:=˝Z:\Public\Train Time.pptm˝, ReadOnly:=msoFalse

Opening a Presentation from the Cloud
Chapters 20 and 22, “Understanding the Word Object Model and Key Objects” and

“Understanding the Excel Object Model and Key Objects,” demonstrated how to save docu-

ments to SkyDrive and Dropbox. Here we’ll go the other way and open a presentation that’s

been stored on SkyDrive. The mechanics of contacting the cloud are, blessedly, handled for

us by the various cloud services. There are security issues—particularly during transmis-

sion to and from the storage servers—which I personally am glad to leave to these companies’

programmers.

All we VBA programmers have to do to store to or open from the cloud is to get the fi le

path right. It’s as if you are storing something on your hard drive—which in fact you are. The

only difference is that the fi les in this location on your hard drive are also automatically stored

(synced) somewhere else in the world, in a server farm.

Let’s assume you have a presentation named PX.pptm stored in SkyDrive. The fi le path will

normally be “C:\Users\Richard\SkyDrive\PX.pptm”.

So, to open this PX presentation, you can use this code, replacing Richard with whatever your

name is:

Presentations.Open FileName:=˝C:\Users\Richard\SkyDrive\PX.pptm˝, ReadOnly:=msoFalse

Saving a Presentation
The fi rst time you save a presentation, you must specify the path and fi lename to use. After that,

you can save the presentation under the same name or specify a different path, name, format,

or all three. This is the same distinction between the Save and Save As options on the File tab of

the Ribbon.

Saving a Presentation for the First Time or under a Different Name

To save a presentation for the fi rst time, or to save a presentation using a different path, name, or

format, use the SaveAs method. The syntax is as follows:

expression.SaveAs(Filename, FileFormat, EmbedFonts)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Presentation object.

 ◆ Filename is a required String argument that specifi es the fi lename under which to save the

presentation. Normally, you include the path in Filename; if you omit the path, PowerPoint

uses the current folder.

660 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

 ◆ FileFormat is an optional argument that specifi es the fi le format to use. Although there

are 27 total SaveAs constants, Table 24.1 lists only the 7 most widely useful formats.

 ◆ EmbedFonts is an optional argument that you can set to msoTrue to embed TrueType fonts

in the presentation, or to False (the default) to not embed them.

Table 24.1: Useful FileFormat constants for saving PowerPoint fi les

Format Name Constant

PowerPoint format ppSaveAsPre sentation

Default format (set on the Save tab of the Options dialog box) ppSaveAsDefault

Single-fi le web page ppSaveAsWebArchive

Web page ppSaveAsHTML

Presentation ppSaveAsPresentation

Design template ppSaveAsTemplate

PowerPoint show ppSaveAsShow

For example, the following statement saves the presentation identifi ed by the object variable

myPresentation under the name HR.pptm in the folder Z:\Shared\Presentations, using the

web-page format and not embedding fonts:

myPresentation.SaveAs FileName:=˝Z:\Shared\Presentations\HR.pptm˝, _

 FileFormat:= ppSaveAsHTML, EmbedTrueTypeFonts:=msoFalse

Using the Object Browser to Quickly See Constants and Objects

Here’s a useful reminder. When you don’t need code samples or extra details, you don’t need to

take the time to look through the full online Help system for an object’s members or constants

(such as the ppSaveAs constants shown in Table 24.1). Instead, just press F2 in the VBA Editor to

bring up the Object Browser. Th en, in the search fi eld (to the left of the binoculars icon), type the

object’s name, a member (property or method), or a constant name. For example, you could type

ppSaveAsPresentation, then click the binoculars icon. You would then see the entire list of 27

ppSaveAs constants.

To see the full list in the online Help system, visit this web page:

http://msdn.microsoft.com/en-us/library/office/ff746500.aspx

http://msdn.microsoft.com/en-us/library/office/ff746500.aspx

WORKING WITH PRESENTATIONS | 661

Saving a Presentation under Its Existing Name

To save a presentation under its existing name, use the Save method. This method takes no

arguments because it has only one possible behavior. For example, the following statement saves

the active presentation:

ActivePresentation.Save

If the presentation on which you use the Save method has never been saved, PowerPoint

doesn’t prompt the user to specify the fi lename and location. Instead, PowerPoint saves the

presentation using the default name assigned to its window (for example, a presentation whose

window is called Presentation11 will be saved as Presentation11.pptm) and in the current

folder. To avoid using this default name and location, you can check the Path property of the

Presentation object before using the Save method if you need to determine whether the pre-

sentation has been saved. If it has not been saved (if Path = “”), then you would use the SaveAs

method to specify the folder and title you want to use, as in this example:

If ActivePresentation.Path = ˝˝ Then

 ActivePresentation.SaveAs FileName:=˝z:\public\presentations\Corporate.pptm˝

Else

 ActivePresentation.Save

End If

Saving a Copy of a Presentation

Instead of using the SaveAs method to save a presentation under a different name, you can use

the SaveCopyAs method to save a copy of the open presentation without affecting the open

presentation (the presentation remains open, and any unsaved changes remain unsaved). The

syntax and arguments for the SaveCopyAs method are the same as for the SaveAs method:

expression.SaveAs(Filename, FileFormat, EmbedFonts)

For example, the following statement saves a copy of the active presentation under the name

Copy 1.pptm in the folder Z:\Public\Presentations, using the same fi le format as the presen-

tation currently uses:

ActivePresentation.SaveCopyAs FileName:=˝Z:\Public\Presentations\Copy 1.pptm˝

Saving All Open Presentations

The Presentations collection doesn’t have a Save method, but you can save all open presenta-

tions by using a loop such as that shown in the following subroutine. This subroutine leaves

unsaved any presentation that doesn’t yet have a fi lename assigned.

Sub Save_All_Presentations()

 Dim myPresentation As Presentation

 For Each myPresentation In Presentations

 If myPresentation.Path <> ˝˝ Then myPresentation.Save

 Next myPresentation

End Sub

662 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

Closing a Presentation
To close a presentation, use the Close method of the appropriate Presentation object. The

Close method takes no arguments. For example, the following statement closes the active

presentation:

ActivePresentation.Close

If the presentation you’re closing contains unsaved changes, PowerPoint prompts the user

to save them. To avoid the user’s being prompted, set the Saved property of the Presentation

object to True before using the Close method. Here’s an example:

With Presentations(˝Karelia Industry.pptm˝)

 .Saved = True

 .Close

End With

Exporting a Presentation or Some Slides to Graphics
You can export an entire presentation, a single slide, or a range of slides by using the Export

method of the Presentation object, the Slide object, or a SlideRange object. The syntax for

the Export method with a Presentation object is as follows:

expression.Export(Path, FilterName, ScaleWidth, ScaleHeight)

The syntax for the Export method with a Slide object or a SlideRange object is almost

the same:

expression.Export(FileName, FilterName, ScaleWidth, ScaleHeight)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Presentation object, a Slide object, or a

SlideRange object, as appropriate.

 ◆ Path (for a Presentation object) is a required String argument that specifi es the path of

the folder in which to save the graphics fi les of the slides.

 ◆ FileName (for a Slide object or a SlideRange object) is a required String argument that

specifi es the fi lename to use for the exported graphic. Include the path in FileName unless

you want PowerPoint to use the current folder.

 ◆ FilterName is a required String argument that specifi es the fi lter to use. Use the registered

fi lename extension (JPG, TIF, BMP, or PNG) for FilterName.

 ◆ ScaleWidth is an optional Long argument that you can include to specify the width of the

graphic in pixels.

 ◆ ScaleHeight is an optional Long argument that you can include to specify the height of

the graphic in pixels.

For example, the following statement exports all the slides in the active presentation to

800×600 JPG graphics in the Z:\Public\Presentations folder. PowerPoint names the graphics

Slide1, Slide2, and so on:

ActivePresentation.Export Path:=˝Z:\Public\Presentations˝, _

 FilterName:=˝JPG˝, ScaleWidth:=800, ScaleHeight:=600

WORKING WITH PRESENTATIONS | 663

The following statement exports the sixth slide in the active presentation to the fi le named

Slide6.png in the Z:\Public\Presentations folder, using the PNG format:

ActivePresentation.Slides(6).Export _

 FileName:=˝Z:\Public\Presentations\Slide6.png˝, FilterName:=˝PNG˝

Printing a Presentation
To print a presentation, use the PrintOut method of the appropriate Presentation object. The

syntax is as follows:

expression.PrintOut(From, To, PrintToFile, Copies, Collate)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Presentation object.

 ◆ From and To are optional Integer arguments that specify the fi rst slide and last slide to

print. If you omit From, PowerPoint prints from the fi rst slide; if you omit To, PowerPoint

prints through the last slide.

 ◆ PrintToFile is an optional String argument that you can include to make PowerPoint

print to the specifi ed fi le rather than to the printer.

 ◆ Copies is an optional Integer argument that specifi es how many copies of the presentation

or slides to print. Omit Copies to use the default value, 1.

 ◆ Collate is an optional argument that you can set to msoFalse to prevent PowerPoint from

collating multiple copies (which is the default setting).

For example, the following statement prints all the slides in the active presentation:

ActivePresentation.PrintOut

The following example prints slides 5 through 12 of the presentation identifi ed by the object

variable myPresentation:

myPresentation.PrintOut From:=5, To:=12

Applying a Template to a Presentation, to a Slide, or to a Range
of Slides
You can apply a design template to a presentation, to a single slide within a presentation, or to

a range of slides by using the ApplyTemplate method with the Presentation object, the Slide

object, or the SlideRange object. The syntax is as follows:

expression.ApplyTemplate(FileName)

Here, expression is a required expression that returns a Presentation object, a Slide object,

or a SlideRange object. FileName is a required String argument that specifi es the path and

name of the design template.

For example, the following statement applies the design template named Clouds.potm stored

in the C:\Users\Richard\AppData\Roaming\Microsoft\Templates\ folder:

ActivePresentation.Slides(1).ApplyTemplate FileName:= _

˝C:\Users\Richard\AppData\Roaming\Microsoft\Templates\Clouds.potm˝

664 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

As usual, replace my name, Richard, with your name.

The following statement applies the design template named Mountain Top.potm stored in

the Z:\Public\Template folder to the fi rst slide in the presentation named Success.pptm:

Presentations(˝Success.pptm˝).Slides(1).ApplyTemplate FileName:= _

 ˝Z:\Public\Template\Mountain Top.potm˝

The following example applies the design template named Disaster.potm stored in the

Z:\Public\Template folder to a range of slides consisting of the fi rst, fourth, and sixth slides in

the active presentation:

ActivePresentation.Slides.Range(Array(1, 4, 6)).ApplyTemplate _

 FileName:=˝Z:\Public\Template \Disaster.potm˝

Working with the Active Presentation
The ActivePresentation property of the Application object returns a Presentation

object that represents the active presentation (the presentation in the active window). The

ActivePresentation object can be very useful for procedures that the user starts.

If no window is open, trying to use the ActivePresentation object returns an error. Unless

you’re sure that there is an active presentation, it’s a good idea to check that a window is open

before you access the ActivePresentation object, as in this example:

If Windows.Count = 0 Then

 MsgBox ˝Please open a presentation before running this macro.˝

 End

End If

Working with Windows and Views
To get the PowerPoint window into the state you want, you’ll often need to work with the win-

dow and with the view. PowerPoint uses two types of windows:

 ◆ Document windows are windows that contain documents (presentation fi les) rather than

slide shows. VBA considers document windows to be DocumentWindow objects organized

into the DocumentWindows collection but represents them with Window objects organized

into the Windows collection. (Sounds mad, but you’ll see how this works shortly.)

 ◆ Slide-show windows are windows that contain open slide shows. VBA uses

SlideShowWindow objects and the SlideShowWindows collection to represent slide-show

windows.

The following sections show you how to work with document windows. You’ll learn how

to work with slide-show windows in ˝Setting Up and Running a Slide Show˝ in Chapter 25,

˝Working with Shapes and Running Slide Shows.̋

The Windows collection contains a Window object for every open window in the PowerPoint

application. When you open a presentation while working interactively, PowerPoint opens a

window so that you can see the presentation. When you open a presentation via VBA, you can

set the WithWindow argument of the Add method to msoFalse to prevent PowerPoint from dis-

playing a window for the presentation. In the user interface, you can also open further windows

as necessary—for example, by clicking the New Window button in the Window section of the

Ribbon’s View tab.

WORKING WITH WINDOWS AND VIEWS | 665

Working with the Active Window
PowerPoint uses the ActiveWindow object to represent the window that is active (the window

that currently has the focus and is thus the one that accepts mouse clicks or typing).

Only one window is active at a time. The active window is always the fi rst Window object in

the Windows collection—Windows(1).

If no window is open at all, or all open windows are hidden, there is no active window and

using the ActiveWindow object causes VBA to return an error. To make sure that a window is

open, check whether the Count property of the Windows collection is 0. Here’s an example:

If Windows.Count = 0 Then MsgBox ˝There is no active window.˝, vbOkOnly + _

 vbExclamation, ˝No Window Is Open˝

When you’re working with presentations using VBA, you may sometimes fi nd that the

ActiveWindow object is a handy way to access a presentation, especially for a macro that the

user runs after choosing the presentation, slide, or other object that they want to affect. In other

cases, you may fi nd that the ActivePresentation object is a more convenient way to access

the presentation you need to work with, or you may prefer to access the presentation via the

Presentations collection.

Opening a New Window on a Presentation
To open a new window, use the NewWindow method of the appropriate Window object. This

method takes no arguments. For example, the following statement opens a new window show-

ing the contents of the active window:

ActiveWindow.NewWindow

Closing a Window
To close a window, use the Close method with the appropriate Window object. In PowerPoint, the

Close method takes no arguments.

Be Careful When Closing Windows Programmatically

Recall that programmatically means by programming, by executing code (as opposed to by user interac-

tion). If the window you’re closing is the last window open for the presentation, PowerPoint simply

closes the window without prompting the user to save any unsaved changes. For this reason, be

careful when closing windows, or your code can cause the user to lose data.

For example, you might close all windows but one on a presentation:

Do While ActivePresentation.Windows.Count > 1

 ActivePresentation.Windows(ActivePresentation.Windows.Count).Close

Loop

Alternatively, you might use the Save method to save a presentation before closing its last

window, as in the next example. (More simply, you could use the Close method to close the pre-

sentation itself after saving it.)

With ActivePresentation

 If .Path = ˝˝ Then

 MsgBox ˝Please save this presentation.˝, vbOKOnly

666 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

 Else

 .Save

 For Each myWindow In Windows

 .Close

 Next myWindow

 End If

End With

Activating a Window
To activate a window or one of its panes, use the Activate method of the appropriate Window

object. For example, the following statement activates the fi rst window open on the presentation

Benefits.pptm:

Presentations(˝Benefits.pptm˝).Windows(1).Activate

Arranging and Resizing Windows
To arrange windows, use the Arrange method with the appropriate Windows collection. The syn-

tax is as follows:

expression.Arrange(ArrangeStyle)

Here, expression is a required expression that returns a Windows collection. ArrangeStyle

is a required argument that specifi es how to arrange the windows: ppArrangeCascade (cas-

cade the windows in an overlapping arrangement that lets you see the title bar of each window

but the contents of only the front window) or ppArrangeTiled (tile the windows; the default

setting).

You can maximize, minimize, or restore the application window by setting the WindowState

property of the Application object to ppWindowMaximized, ppWindowMinimized, or

ppWindowNormal. Similarly, within the application window, you can maximize, minimize, or

restore a document by setting its WindowState property.

When a window is in a ˝normal˝ state (ppWindowNormal, not maximized or minimized), you

can position it by using the Top and Left properties to specify the position of the upper-left cor-

ner of the window and size it by setting its Height and Width properties.

The following example maximizes the application window and cascades the document win-

dows within it:

Application.WindowState = ppWindowMaximized

Windows.Arrange ArrangeStyle:=ppArrangeCascade

Changing the View
To change the view in a window, set the ViewType property of the appropriate Window object to

one of these 12 constants: ppViewHandoutMaster, ppViewMasterThumbnails, ppViewNormal,

ppViewNotesMaster, ppViewNotesPage, ppViewOutline, ppViewPrintPreview, ppViewSlide,

ppViewSlideMaster, ppViewSlideSorter, ppViewThumbnails, or ppViewTitleMaster. For

example, the following statement switches the active window into Slide Sorter view:

ActiveWindow.ViewType=ppViewSlideSorter

WORKING WITH SLIDES | 667

To zoom the view, specify a value from 10 to 400 for the Zoom property of the View object for

the appropriate window. The value represents the zoom percentage, but you don’t include a per-

cent sign. For example, the following statement zooms the active window to 150 percent:

ActiveWindow.View.Zoom = 150

Working with Panes
The Pane object represents a pane of the PowerPoint window in Slide view. The Outline pane is

represented by index number 1, the Slide pane by index number 2, and the Notes pane by index

number 3. You can activate a pane by using the Activate method with the appropriate Pane

object. The following example switches the view in the active window to Slide view and acti-

vates the Outline pane:

With ActiveWindow

 .ViewType = ppViewSlide

 .Panes(1).Activate

End With

To change the arrangement of the panes in a PowerPoint window in Slide view, use the

SplitHorizontal property and the SplitVertical property of the Window object.

The SplitHorizontal property controls the percentage of the document window’s width

that the Outline pane occupies, and the SplitVertical property controls the percentage of the

document window’s height that the Slide pane occupies. The following example sets the Outline

pane to 25 percent of the width of the document window (leaving 75 percent to the Slide pane)

and the Slide pane to 75 percent of the height of the window (leaving 25 percent to the Notes

pane):

With ActiveWindow

 .SplitHorizontal = 25

 .SplitVertical = 75

End With

Working with Slides
Once you have created or opened the presentation you want to affect, you can access the slides it

contains by using the Slides collection, which contains a Slide object for each slide in the pre-

sentation. Each slide is identifi ed by its index number, but you can also assign names to slides in

three different ways:

Using object variables Then you can refer to each slide by its object variable name.

Using ID numbers See the section titled “Finding a Slide by Its ID Number” later in this

chapter.

Using the Name property See the section titled “Accessing a Slide by Name” later in this

chapter.

Having a unique name for a slide is especially useful when you add slides to or delete slides

from a presentation, because this causes the index numbers of the slides to change. It’s much

easier to just name the slides than to try to keep track of their shifting index numbers.

668 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

Adding a Slide to a Presentation
To add a slide to a presentation, use the Add method with the Slides collection. The syntax is as

follows:

expression.Add(Index, Layout)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Slides collection. In many cases, it’s easi-

est to use the Slides collection itself.

 ◆ Index is a required Long argument that specifi es the index number for positioning the

slide in the presentation. For example, the number 2 makes the new slide the second slide

in the presentation.

 ◆ Layout is a required Long argument that specifi es the layout for the new slide. The layout

names correspond closely to the names you’ll see in the Insert Slide dialog box or the

Slide Layout task pane. For example, ppLayoutBlank specifi es a blank slide,

ppLayoutTitleOnly a title-only slide, and ppLayoutChartAndText a chart-and-text slide.

The following statements declare an object variable named mySlide and assign to it a new

title slide added at the beginning of the active presentation:

Dim mySlide As Slide

Set mySlide = ActivePresentation.Slides.Add(Index:=1, _

 Layout:=ppLayoutTitle)

Understanding the ˝Mixed˝ Constants

If you look at the list of constants for the Layout property, you’ll notice one is called

ppLayoutMixed. Th ere’s no ˝Mixed˝ layout in PowerPoint’s list of slide layouts, and if you try to

apply ppLayoutMixed to a slide, VBA returns an error. Th is is because ppLayoutMixed is the

value VBA returns for the Layout property of a slide range that contains multiple slides with

diff erent designs.

Other properties have similar Mixed values to indicate that the objects use diff erent values. For

example, ppTransitionSpeedMixed means that the slides or shapes use diff erent transition

speeds. Don’t try to set a property to a Mixed value, because doing so always gives an error.

Inserting Slides from an Existing Presentation
When creating presentations automatically, it’s often useful to insert slides from an existing pre-

sentation. To do so, use the InsertFromFile method of the Slides collection. The syntax is as

follows:

expression.InsertFromFile(FileName, Index, SlideStart, SlideEnd)

Here are the components of this syntax:

 ◆ expression is a required expression that returns a Slides collection. Often, you’ll want to

use the Slides collection itself.

 ◆ FileName is a required String argument that specifi es the fi le from which to insert the

slides.

WORKING WITH SLIDES | 669

 ◆ Index is a required Long argument that specifi es the slide position in the open presenta-

tion at which to insert the slides.

 ◆ SlideStart is an optional Long argument that specifi es the fi rst slide to insert. If you omit

SlideStart, PowerPoint starts at the fi rst slide.

 ◆ SlideEnd is an optional Long argument that specifi es the last slide to insert. If you omit

SlideEnd, PowerPoint goes up to the last slide.

For example, the following statement inserts slides 2 through 8 from the presentation named

Handbook.pptm stored in the folder Z:\Transfer\Presentations, placing the slides starting at

the fi fth slide in the open presentation Corporate.pptm:

Presentations(˝Corporate.pptm˝).Slides.InsertFromFile _

 FileName:=˝Z:\Transfer\Presentations\Handbook.pptm˝, Index:=5, _

 SlideStart:=2, SlideEnd:=8

Finding a Slide by Its ID Number
When working programmatically with a presentation, it can be diffi cult to track which slide

is which, especially when you add, delete, insert, copy, or move slides—thereby changing the

slides’ index numbers.

To help you, PowerPoint assigns a slide ID number to each slide when it’s created. The

slide ID number doesn’t change when you move a slide to a different position in the presenta-

tion, unlike the index number, which always refl ects the slide’s position in the presentation.

You can check a slide’s ID number by returning the SlideID property of the appropriate Slide

object.

To fi nd a slide by its ID number, use the FindBySlideID method of the Slides collection. The

syntax is as follows:

expression.FindBySlideID(SlideID)

Here, expression is a required expression that returns a Slides collection. SlideID is a

required Long argument that specifi es the ID number of the slide you want to return.

The following example declares a Long variable named TargetSlide and assigns to it a new

slide added at the fi fth index position in the active presentation, inserts a full presentation at

the third index position, and then uses the FindBySlideID method to return the slide identifi ed

by TargetSlide and apply a different design template to it. This approach is similar to creating

object variables for slides, as described earlier in this chapter. However, here you create Long

variables to hold the ID numbers instead of object variables:

Dim TargetSlide As Long

TargetSlide = ActivePresentation.Slides.Add(Index:=5, _

 Layout:=ppLayoutFourObjects).SlideID

Presentations(˝Corporate.pptm˝).Slides.InsertFromFile _

 FileName:=˝Z:\Transfer\Presentations\Handbook.pptm˝, Index:=3

ActivePresentation.Slides.FindBySlideID(TargetSlide).ApplyTemplate _

 FileName:=˝C:\Program Files\Microsoft Office\Templates\Presentation

 ÂDesigns\Brain Blitz.potm˝

670 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

Changing the Layout of an Existing Slide
To change the layout of an existing slide, set its Layout property. For example, the following

statement changes the layout of the fi rst slide in the active presentation to the clip-art-and-

vertical-text layout:

ActivePresentation.Slides(1).Layout = ppLayoutClipArtAndVerticalText

When you change the layout of a slide, PowerPoint moves its existing contents to allow any

new objects needed to be added to the slide.

Deleting an Existing Slide
To delete an existing slide, use the Delete method with the appropriate Slide object. For exam-

ple, the following statement deletes the fi rst slide in the active presentation:

ActivePresentation.Slides(1).Delete

Be aware that PowerPoint doesn’t confi rm the deletion of a slide via VBA.

Copying and Pasting a Slide
To copy a slide, use the Copy method of the appropriate Slide object. The Copy method takes no

arguments. (You can also cut a slide by using the Cut method, which also takes no arguments.)

To paste a slide, use the Paste method of the Slides collection. The Paste method takes an

Index argument that specifi es the slide position at which to paste in the slide.

For example, the following statements copy the fi rst slide in the active presentation and paste

it in so that it is the fi fth slide:

ActivePresentation.Slides(1).Copy

ActivePresentation.Slides.Paste Index:=5

Duplicating a Slide
Instead of copying and pasting, you can directly duplicate a slide by using the Duplicate

method of the Slide object. This method takes no arguments and places the duplicate of the

slide immediately after the original in the index-number list. For example, the following state-

ment duplicates the fourth slide in the active presentation, placing the copy at the fi fth index

position:

ActivePresentation.Slides(4).Duplicate

Moving a Slide
Instead of cutting and pasting a slide, you can move it directly by using the MoveTo method with

the appropriate Slide object. Moving a slide has the same ultimate effect as cutting and pasting

it but has the advantage of not changing the contents of the Clipboard (which you might need to

preserve for the user or for other purposes). The syntax for the MoveTo method is as follows:

expression.MoveTo(ToPos)

WORKING WITH SLIDES | 671

Here, expression is a required expression that returns a Slide object, and ToPos is a required

Long argument that specifi es the index position to which you want to move the slide.

For example, the following statement moves the third slide in the presentation identifi ed by

the object variable myPresentation to the beginning of the presentation:

myPresentation.Slides(3).MoveTo ToPos:=1

Accessing a Slide by Name
Instead of accessing a slide by its index number, you can assign a name to it by using the

Name property of the Slide object. For example, the following statements assign the name

Chairman’s Introduction to the fi fth slide in the active presentation and then use the Select

method of the Slide object to select that slide by name:

ActivePresentation.Slides(1).Name = ˝Chairman’s Introduction˝

ActivePresentation.Slides(˝Chairman’s Introduction˝).Select

Working with a Range of Slides
To work with a range of slides, use the Range method of the Slides collection to return a

SlideRange object that represents the slides. The SlideRange object can represent a single

slide, but you’re usually better off using it to represent a range of slides. (You can access a single

slide more easily by its index number or by a name you assign to it than through a SlideRange

object.)

To return a SlideRange object that encompasses two or more slides, use the Array func-

tion with a comma-delimited list of the slides. The list can use either the index numbers or the

names of the slides. For example, the following statements declare the SlideRange object vari-

able mySlideRange and assign to it the fi rst fi ve slides in the open presentation named HR.pptm:

Dim mySlideRange As SlideRange

Set mySlideRange = _

Presentations(˝HR.pptm˝).Slides.Range(Array(1, 2, 3, 4, 5))

The following statement assigns to the SlideRange object variable mySlideRange the slides

named Intro and Outro in the active presentation:

Set mySlideRange = ActivePresentation.Slides.Range(Array(˝Intro˝, ˝Outro˝))

Formatting a Slide
You can apply a design template to a slide by using the ApplyTemplate method, as discussed in

A̋pplying a Template to a Presentation, to a Slide, or to a Range of Slides,˝ earlier in this chapter.

You can also apply a background or a color scheme, as discussed in the following sections.

Applying a Background to One or More Slides

To apply a background to a slide or several slides, use the Background property of the appro-

priate Slide object or SlideRange object to return the ShapeRange object representing the

672 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

background of the slide or slides. You can then use the Fill object to set a color, fi ll, gradient, or

picture in the background.

The following example applies the picture Winter.jpg from the folder C:\Sample

Pictures to the fourth slide in the presentation named Corporate.pptm. The example sets the

FollowMasterBackground property to msoFalse, making the slide use a different background

than the slide master, and also sets the DisplayMasterShapes property to msoFalse, making

the slide not display the shapes on the slide master:

With Presentations(˝Corporate.pptm˝).Slides(4)

 .FollowMasterBackground = msoFalse

 .DisplayMasterShapes = msoFalse

 With .Background

 .Fill.ForeColor.RGB = RGB(255, 255, 255)

 .Fill.BackColor.SchemeColor = ppAccent1

 .Fill.UserPicture ˝C:\Sample Pictures\Winter.jpg˝

 End With

End With

Applying a Color Scheme to a Slide

A color scheme is a group of eight colors that are used to create the look of the title, background,

and other elements of a slide, handout, or notes page. VBA uses an RGBColor object to represent

each color, and a ColorScheme object to represent each color scheme. The ColorScheme objects

are gathered in a ColorSchemes collection for the entire presentation.

To change the color scheme of a slide or several slides, use the ColorScheme property of the

appropriate Slide object or SlideRange object to return the ColorScheme object, and then work

with the Colors method to specify the color. The syntax is as follows:

expression.Colors(SchemeColor)

Here, expression is a required expression that returns a ColorScheme object. SchemeColor

 is a required argument that specifi es which color in the color scheme to set—for example,

ppAccent1 (for the fi rst accent in the color scheme), ppBackground (for the background color),

or ppTitle (for the title color).

The following statement sets the background color of the color scheme for the fi rst three

slides in the active presentation to black, which is RGB(0, 0, 0):

ActivePresentation.Slides.Range(Array(1, 2, 3)) _

 .ColorScheme.Colors(ppBackground).RGB = RGB(0, 0, 0)

Setting a Transition for a Slide, a Range of Slides, or a Master
To set a transition for a slide, a range of slides, or a master, use the SlideShowTransition

property of the Slide object, the SlideRange object, or the Master object to return the

SlideShowTransition object.

WORKING WITH SLIDES | 673

Creating Effective Transitions between Slides

Using transitions between slides can make a presentation look smooth and professional or awkward

and amateurish.

To specify the eff ect to use, set the EntryEffect property to the constant for the eff ect. Th ere

are too many constants to list here, but their names are generally descriptive enough to be easy

to decipher. For example, the ppEffectBlindsHorizontal constant generates a transition that

resembles an adjustment of window blinds, the ppEffectDissolve constant causes a rather crude

kind of melting eff ect, and the ppEffectNone constant represents the No Transition setting.

You should avoid all of these, and most of the other available transitions, unless you want to go

back several decades to early TV transition eff ects. Contemporary television and movies employ

smooth, subtle, and unobtrusive transitions between scenes. And slides are simple scenes. So, you

should generally stay away from trick transitions like window blinds or crude transitions like the

ppEffectDissolve, which is highly pixelated.

To fi gure out which of the transition eff ects are sophisticated and discreet, try them out. You can

preview all the transitions by clicking the Transitions tab on the PowerPoint Ribbon. Th en click

any slide transition you want to see.

Th e default transition is quite a good dissolve, but if you want to try another classy transition, exper-

iment with ppEffectFade. It’s similar to the default. Also try experimenting with the Animations

tab on the PowerPoint Ribbon, which governs how you animate the various shape objects on a slide.

And also try experimenting with the transition speed to suit the animation to the subject of your

presentation.

To specify the speed at which the transition runs, set its Speed property to

ppTransitionSpeedFast, ppTransitionSpeedMedium, or ppTransitionSpeedSlow.

To control how the slide advances, set the AdvanceOnTime property to msoTrue (for auto-

matic advancing) or msoFalse (for manual advancing). If you use automatic advancing, use the

AdvanceTime property to specify the number of seconds. If you want the slide to advance when

the user clicks, set the AdvanceOnClick property to msoTrue. (You can set both AdvanceOnTime

and AdvanceOnClick to msoTrue. The slide advances manually if the user clicks before the

AdvanceTime interval has elapsed.)

To play a preset sound effect with the transition, use the SoundEffect property of the

SlideShowTransition object to return the SoundEffect object, use the Name property to specify

the name of the sound effect, and then use the Play method to play the sound effect. You can

also play any compatible sound fi le by using the ImportFromFile method of the SoundEffect

object and using the FullName argument to specify the path and fi lename of the sound fi le.

PowerPoint 2013 can play any of the following audio-fi le types: .aiff, .au, .mid, .midi, .mp3,

.m4a, .mp4, .wav, or .wma. But be aware that even if a fi le has one of these fi lename extensions, it

674 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

still might not be playable if the proper codec isn’t available. That’s why everyone urges you to

never give a naked presentation. Always fi rst do a test run of any presentation on the equipment

you’ll be using for the offi cial presentation when people are there closely watching you.

If you want the sound to loop until the next sound, set the LoopSoundUntilNext property of

the SlideShowTransition object to msoTrue. The default value is msoFalse.

The following example sets up a transition for the second slide in the active presentation. The

transition uses the Fade effect running at medium speed, sets advancing to either on click or

after a delay of 30 seconds, and plays a sound fi le from an external source without looping:

With ActivePresentation.Slides(2)

 With .SlideShowTransition

 .EntryEffect = ppEffectFade

 .Speed = ppTransitionSpeedMedium

 .AdvanceOnClick = msoTrue

 .AdvanceOnTime = msoTrue

 .AdvanceTime = 30

 .SoundEffect.ImportFromFile _

 FileName:=˝d:\Sounds\Crescendo.wav˝

 .LoopSoundUntilNext = msoFalse

 End With

End With

Working with Masters
VBA uses the Master object to represent the various masters that PowerPoint uses: the slide

master, title master, handout master, and notes master.

Working with the Slide Master
To work with the slide master for a presentation, use the SlideMaster property of the

Presentation object.

To return the slide master for a slide, use the Master property of the appropriate Slide

object. For example, the following statement adds a title to the slide master for the active presen-

tation (if the slide master already has a title, VBA returns an error):

ActivePresentation.SlideMaster.Shapes.AddTitle.TextFrame.TextRange.Text = _

 ˝Orientation˝

Working with the Title Master
To fi nd out whether a presentation has a title master, check the HasTitleMaster property. If it

doesn’t, you can use the AddTitleMaster method of the Presentation object to add a title mas-

ter, as in the following example. If the presentation already has a title master, VBA returns an

error when you try to add a title master:

If Not ActivePresentation.HasTitleMaster Then _

ActivePresentation.AddTitleMaster

To return the title master for the presentation, use the TitleMaster property of the

Presentation object. The following example checks that the title master exists and, if it

THE BOTTOM LINE | 675

does, formats the date and time to be visible and to use the dMMMyy format with automatic

updating:

With myPresentation

 If .HasTitleMaster Then

 With .TitleMaster.HeadersFooters.DateAndTime

 .Visible = msoTrue

 .Format = ppDateTimedMMMyy

 .UseFormat = msoTrue

 End With

 End If

End With

Working with the Handout Master
To work with the handout master, use the HandoutMaster property of the Presentation object

to return the Master object. The following example uses the HandoutMaster property of the

ActivePresentation object to fi ll the background of the handout master with a picture:

With ActivePresentation.HandoutMaster.Background

 .Fill.ForeColor.RGB = RGB(255, 255, 255)

 .Fill.BackColor.SchemeColor = ppAccent1

 .Fill.UserPicture ˝d:\igrafx\dawn.jpg˝

End With

Working with the Notes Master
To work with the notes master, use the NotesMaster property of the Presentation object to

return the Master object. For example, the following statement clears the HeaderFooter objects

in the notes master in the fi rst open presentation:

Presentations(1).NotesMaster.HeadersFooters.Clear

Deleting a Master
You can delete the title master or handout master, but not the slide master or notes master. To

delete the title master or handout master, use the Delete method of the Master object. The fol-

lowing example checks that the active presentation has a title master and then deletes it:

If ActivePresentation.HasTitleMaster Then _

 ActivePresentation.TitleMaster.Delete

Th e Bottom Line

Understand PowerPoint’s creatable objects. Creatable objects are commonly used objects

that can be employed in VBA code without requiring that you qualify them with the

Application object. You can leave that word out of your code; it’s optional, and rarely used.

Master It Name one of the objects or collections that are creatable in PowerPoint

procedures.

676 | CHAPTER 24 UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS

Work with presentations. You can create a new presentation programmatically, but

PowerPoint generates an annoying fl icker on most systems while it brings the new presen-

tation into view. You can block this unpleasant, strobelike effect to avoid disturbing your

audience.

Master It How do you prevent a newly created presentation from being visible so that

you can create and manipulate it in your code without the user seeing the fl ickering effect

onscreen?

Work with windows and views. To get the PowerPoint window into the state you want,

you’ll often need to work with the window and with the view.

Master It PowerPoint uses two types of windows. What are they?

Work with slides. Once you have created or opened the presentation you want to manipu-

late, you can access the slides it contains by using the Slides collection. This collection

contains a Slide object for each slide in the presentation. Each slide is identifi ed by its index

number, but you can also use object variables to refer to slides or assign names to slides.

Master It Why would you want to assign names to slides rather than using the default

index numbers that are automatically assigned to the slides?

Work with masters. Before attempting to manipulate a master in your code, you should

determine whether the master actually exists in the presentation.

Master It How do you fi nd out whether a presentation has a title master?

Chapter 25

Working with Shapes and Running
Slide Shows

In the previous chapter you learned to work with Presentation objects, Slide objects, and

Master objects. In this chapter you’ll learn to work with Shape objects to manipulate the con-

tents of slides and with HeaderFooter objects to control the contents of headers and footers.

You’ll also see how to set up and run a slide show using VBA.

In this chapter you will learn to do the following:

 ◆ Work with shapes

 ◆ Work with headers and footers

 ◆ Set up and run a slide show

Working with Shapes
Most of the objects on a typical PowerPoint slide are Shape objects. For example, a title box is a

Shape object, as is a picture or a Word table that you’ve pasted in. You access the Shape objects

through the Shapes collection of a Slide object, a SlideRange object, or a Master object.

Adding Shapes to Slides
Varying methods of the Shapes collection add the different types of shapes. Table 25.1 lists the

Shape objects you can add and the methods and arguments for adding them. The following sec-

tions explain the arguments. You can fi nd additional details about the Shapes object here:

http://msdn.microsoft.com/en-us/library/office/ff745286.aspx

Shared Arguments for Adding Shapes

These are arguments that are shared among various shape-adding methods:

 ◆ BeginX and EndX are required arguments (of the Single data type) that specify the horizon-

tal starting position and ending position of the connector or line, measured in points from

the left edge of the slide.

 ◆ BeginY and EndY are required Single data arguments that specify the vertical starting point

and ending point of the connector or line, measured in points from the top of the slide.

http://msdn.microsoft.com/en-us/library/office/ff745286.aspx

678 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

 ◆ FileName is a required String argument used to specify the fi le to be used for creating the

object (for example, the media fi le for creating a media object).

 ◆ Left is a required Single argument that specifi es the position of the left edge of the shape

from the left edge of the slide, measured in points. Top is a required Single argument that

specifi es the position of the top edge of the shape from the top edge of the slide, measured

in points.

 ◆ Height is a required Single argument that specifi es the height of the shape, measured in

points. Width is a required Single argument that specifi es the width of the shape, measured

in points.

 ◆ LinkToFile is on optional argument that you can set to msoTrue to link the picture to its

source fi le.

 ◆ NumColumns and NumRows are required Long arguments that specify the number of col-

umns and rows in the table you’re adding.

 ◆ Orientation is a required argument that specifi es the orientation:

msoTextOrientationHorizontal (horizontal) or msoTextOrientationVerticalFarEast

(vertical).

 ◆ SafeArrayOfPoints is a required Variant argument that supplies an array of coordinate

pairs that give the vertices and control points of a curve or polyline. The line begins at the

fi rst pair of coordinates and ends at the last pair.

 ◆ SaveWithDocument is a required argument that controls whether PowerPoint saves the

linked picture in the presentation (msoTrue) or not (msoFalse). If you set LinkToFile:

=msoFalse, you must set SaveWithDocument: =msoTrue.

Table 25.1: Shapes and the methods for adding them to slides

To Add This Shape Use This Method and These Arguments

Callout AddCallout(Type, Left, Top, Width, Height)

Chart AddChart(Type, Left, Top, Width, Height)

Chart2 AddChart(Style, Type, Left, Top, Width, Height, NewLayout)

Comment AddComment(Left, Top, Width, Height)

Connector AddConnector(Type, BeginX, BeginY, EndX, EndY)

Curve AddCurve(SafeArrayOfPoints)

Label AddLabel(Orientation, Left, Top, Width, Height)

Line AddLine(BeginX, BeginY, EndX, EndY)

Media object AddMediaObject(FileName, Left, Top, Width, Height)

Media object 2 AddMediaObject2(FileName, LinkToFile, Left, Top, Width,

Height)

WORKING WITH SHAPES | 679

To Add This Shape Use This Method and These Arguments

Media object from

embed tag

AddMediaObjectFromEmbedTag(EmbedTag, Left, Top, Width,

Height)

OLE object AddOLEObject(Left, Top, Width, Height, ClassName, FileName,

DisplayAsIcon, IconFileName, IconIndex, IconLabel, Link)

Picture AddPicture(FileName, LinkToFile, SaveWithDocument, Left,

Top, Width, Height)

Placeholder AddPlaceholder(Type, Left, Top, Width, Height)

Polyline AddPolyline(SafeArrayOfPoints)

Shape AddShape(Type, Left, Top, Width, Height)

Smart Art AddSmartArt(Layout, Left, Top, Width, Height)

Table AddTable(NumRows, NumColumns, Left, Top, Width, Height)

Textbox AddTextbox(Orientation, Left, Top, Width, Height)

Text Eff ect AddTextEffect(PresetTextEffect, Text, FontName, FontSize,

FontBold, FontItalic, Left, Top)

Title AddTitle

Type Argument for Adding Shapes

The Type argument is different for the various methods that use it. Here are some examples:

 ◆ Type for the AddPlaceholder method is a required argument that specifi es the type of

placeholder to add. The names are self-explanatory: ppPlaceholderBitmap,

ppPlaceholderBody, ppPlaceholderCenterTitle, ppPlaceholderChart,

ppPlaceholderDate, ppPlaceholderFooter, ppPlaceholderHeader,

ppPlaceholderMediaClip, ppPlaceholderMixed, ppPlaceholderObject,

ppPlaceholderOrgChart, ppPlaceholderPicture, ppPlaceholderSlideNumber,

ppPlaceholderSubtitle, ppPlaceholderTable, ppPlaceholderTitle,

ppPlaceholderVerticalBody, ppPlaceholderVerticalObject,

ppPlaceholderVerticalTitle

Limitations on Placeholders

You can use the ppPlaceholderVerticalBody and ppPlaceholderVerticalTitle place-

holders only on slides that use vertical text—the slide layouts ppLayoutVerticalText,

ppLayoutClipArtAndVerticalText, ppLayoutVerticalTitleAndText, and ppLayout

VerticalTitleAndTextOverChart.

Table 25.1: Shapes and the methods for adding them to slides (continued)

680 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

 ◆ Type for the AddCallout method is a required argument that specifi es the type of callout

line to add: msoCalloutOne (a one-segment line that can be vertical or horizontal),

msoCalloutTwo (a one-segment line that rotates freely), msoCalloutThree (a two-segment

line), or msoCalloutFour (a three-segment line).

 ◆ Type for the AddShape method is a required argument that specifi es the type of AutoShape

to add. There are too many constants to list here, but most are easy to identify from their

names. For example, msoShapeHeart is a heart shape, msoShapeLightningBolt gives a

lightning bolt, and so on. To see a list of the constants, search for the AddShape method in

the VBA Editor Help fi le, and then click the link for the msoAutoShapeType entry. Or type

msoautoshapetype in the editor’s Object Browser search fi eld.

 ◆ Type for the AddDiagram method is a required argument that specifi es the diagram type:

msoDiagramCycle (a cycle diagram), msoDiagramOrgChart (an org chart),

msoDiagramPyramid (a pyramid diagram), msoDiagramRadial (a radial diagram),

msoDiagramTarget (a target diagram), or msoDiagramVenn (a Venn diagram).

What Is MSO? Practical Advice for the Perplexed Programmer

You may have noticed that many of the enumerations and constants you’re running into in

PowerPoint are prepended (the opposite of appended) by mso. Th is strange little acronym can

stand for several things: Martha Stewart’s stock market name (Martha Stewart Omnimedia), or

Milwaukee Symphony Orchestra, or Microsoft Offi ce. In this case, it stands for Microsoft Offi ce.

And why it is prepended to PowerPoint enumerations and not to other Offi ce 2013 enumerations

is just one of those mysteries that keep all us programmers on our toes. After all, even those of us

who are semiconscious are likely aware that we’re using VBA in Microsoft Offi ce.

Here’s another example of a mystery. Th roughout the decades of BASIC programming history, and

in all other versions of BASIC and VBA, you use the words True and False to mean true and false.

Th at makes a certain kind of sense when you think about it. However, in PowerPoint 2013, you can

also use the built-in constants msoTrue and msoFalse to, for example, set the Visible property of

a footer on a slide. Luckily, these constants are optional. You can still use the traditional True and

False. Th ere is no diff erence between Microsoft Offi ce’s truth and truth in general. (I’m speaking

here strictly in the context of these constants.)

Mso also appears in the MsoTriState variable type—that bizarro uber-Boolean type that you ran

into in the previous chapter. You remember it: it’s like the famous quantum mechanical tri-state

cat, which can be alive, dead, or a mixture of the two.

In my opinion, you should not worry much over these weird usages such as msoTriStateMixed;

tri-state entities have no precedent outside electronic chip diagrams and advanced physics. Th ink

of them as Boolean (true or false). And remember that although you can read the third (the mixed

true and false) status of a tri-state type, you can’t set (assign) anything other than the traditional

True or False values to it.

WORKING WITH SHAPES | 681

Arguments Specific to the AddTextEffect Method

The following arguments apply only to the AddTextEffect method:

 ◆ PresetTextEffect is a required argument that specifi es the preset text effect to use. These

preset text effects are identifi ed by the constants msoTextEffect1 through msoTextEffect30,

which correspond to the order in which the samples appear in the WordArt Gallery dialog

box (1 through 6 are the fi rst row, 7 through 12 the second row, and so on).

 ◆ Text is a required String argument that specifi es the text to use in the WordArt object.

 ◆ FontBold is a required argument that you set to msoTrue to make the font bold or

msoFalse to make it not bold.

 ◆ FontItalic is a required argument that you set to msoTrue to make the font italic and

msoFalse to make it not italic.

 ◆ FontName is a required String argument that specifi es the name of the font to use.

 ◆ FontSize is a required Single argument that specifi es the font size to use.

Arguments Specific to the AddOLEObject Method

The following arguments apply only to the AddOLEObject method:

 ◆ ClassName is an optional String argument that specifi es the program ID (the ProgID) or

OLE long class name for the object. You must use either ClassName or FileName, but not

both. In most cases, it’s easiest to use FileName.

 ◆ DisplayAsIcon is an optional argument that you can set to msoTrue to display the OLE

object as an icon rather than as itself (the default).

 ◆ IconFileName is an optional String argument that you can use with

DisplayAsIcon:=True to specify the fi lename of the icon you want to display for the

object.

 ◆ IconIndex is an optional Integer argument that specifi es the index of the icon to use within

the icon fi le specifi ed by IconFileName. If you omit the IconIndex argument, VBA uses the

second icon in the icon fi le, the icon at position 1 (the fi rst icon in the fi le is at position 0).

 ◆ IconLabel is an optional String argument that you can use to specify the caption (or label)

to display under the icon.

 ◆ Link is an optional argument that you can set to msoTrue to link the OLE object to its

source fi le when you use the FileName argument. Link must be msoFalse when you use

ClassName to specify a class name.

An Example of Using the AddShape Method

The following statement uses the AddShape method to add a bent up-arrow to the upper-right

corner of the last slide in the active presentation. Before executing this example, click the File tab

682 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

on PowerPoint’s Ribbon, then click the New option in the left pane to see the some of the avail-

able templates and themes. Double-click one of the templates so you’ll have some slides to work

with in this example. (In versions of PowerPoint prior to 2013, you’ll have to open the Sample

Templates folder before choosing a template.)

Open the Visual Basic Editor by pressing Alt+F11. Locate the project in the Project window,

right-click on its name (it will be boldface), and choose Insert ➢ Module. Type the following

into the new module, and then press F5 with your blinking cursor inside this subroutine to

execute the code and see the effect:

Sub test()

ActivePresentation.Slides(ActivePresentation.Slides.Count) _

 .Shapes.AddShape Type:=msoShapeBentUpArrow, Left:=575, Top:=10, _

 Width:=150, Height:=75

End Sub

To see what happened, look at last slide and notice that a shape has been added to it—a bent

up-arrow.

An Example of Using the AddTextEffect Method

The following example uses the AddTextEffect method to superimpose a WordArt item onto

the third slide. Ensure that you have at least three slides by pressing Ctrl+M a few times to add

some new slides.

This code draws the text Questions & Answers (on three lines) on the slide. This WordArt item

is instructed in our code to use 54-point bold Garamond.

ActivePresentation.Slides(3).Shapes.AddTextEffect _

 PresetTextEffect:=msoTextEffect14, _

 Text:=“Questions“ + Chr$(CharCode:=13) + _

 “&“ + Chr$(CharCode:=13) + “Answers“, _

 FontName:=“Garamond“, FontSize:=54, FontBold:=msoTrue, _

 FontItalic:=msoFalse, Left:=230, Top:=125

There are 30 msoTextEffect constants you can experiment with. They range from

msoTextEffect1 to msoTextEffect30. msoTextEffect14 is nice; it provides a kind of metal-

lic effect.

An Example of Using the AddTextbox Method

The following example adds a text box to the second slide in the active presentation and assigns

text to it:

Dim myTextBox As Shape

With ActivePresentation.Slides(2)

 Set myTextBox = .Shapes.AddTextbox _

 (Orientation:=msoTextOrientationHorizontal, Left:=100, Top:=50, _

 Width:=400, Height:=100)

 myTextBox.TextFrame.TextRange.Text = “Corrective Lenses“

End With

WORKING WITH SHAPES | 683

Deleting a Shape
To delete a shape, use the Delete method with the appropriate Shape object. For example, the

following statement deletes the fi rst Shape object on the second slide in the active presentation:

ActivePresentation.Slides(2).Shapes(1).Delete

Selecting All Shapes
To select all the shapes on a slide, use the SelectAll method of the appropriate Shapes collec-

tion. For example, the following statement selects all the Shape objects on the fi rst slide in the

active presentation:

ActivePresentation.Slides(1).Shapes.SelectAll

Repositioning and Resizing a Shape
To reposition a shape, set its Left property (to specify the distance in points from the left edge

of the slide to the left edge of the shape) and its Top property (to specify the distance in points

from the top edge of the slide to the top edge of the shape).

To change the size of a shape, set its Width and Height properties to the appropriate number

of points.

For example, the following statements position the fi rst shape on the fi rst slide in the active

presentation 200 points from the left side of the slide and 100 points from its top and make the

shape 300 points wide by 200 points high:

With ActivePresentation.Slides(1).Shapes(1)

 .Left = 200

 .Top = 100

 .Width = 300

 .Height = 200

End With

You can also move a shape relative to its current location by using the IncrementLeft

method and the IncrementTop method. Rotate it by using the IncrementRotation method.

Note that these methods are not absolute specifi ed locations within a slide. Instead, they are rel-

ative to the current position or rotation of the shape. Each of these methods takes an Increment

argument:

 ◆ For the IncrementLeft and IncrementTop methods, the Increment argument specifi es

the number of points to move the shape. A negative number moves the shape to the left or

upward, while a positive number moves the shape to the right or downward.

 ◆ For the IncrementRotation method, the Increment argument specifi es the number of

degrees to rotate the shape. A positive number rotates the shape clockwise; a negative

number rotates the shape counterclockwise.

The following example works with the fi rst shape on the third slide of the active pre-

sentation, moving it 100 points to the left and 200 points down and rotating it 90 degrees

counterclockwise:

With ActivePresentation.Slides(3).Shapes(1)

 .IncrementLeft Increment:=-100

 .IncrementTop Increment:=200

684 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

 .IncrementRotation Increment:=-90

End With

Copying Formatting from One Shape to Another
Often, it’s useful to be able to apply the same formatting to multiple shapes. When one shape

has the formatting you want, you can use the PickUp method of the Shape object to copy the

formatting from that shape and then use the Apply method to apply that formatting to another

shape.

Neither the PickUp method nor the Apply method uses any arguments. The following exam-

ple copies the formatting from the fi rst shape on the second slide in the active presentation and

applies it to the third shape on the fourth slide:

With ActivePresentation

 .Slides(2).Shapes(1).PickUp

 .Slides(4).Shapes(3).Apply

End With

Working with Text in a Shape
The text within a shape is contained in a TextRange object, which itself is contained in a

TextFrame object. To work with the text in a shape, you use the TextFrame property of

the Shape object to return the TextFrame object and then use the TextRange property of the

TextFrame object to return the TextRange object. Got it?

Within the TextRange object, the Text property contains the text, the Font object contains

the font formatting, the ParagraphFormat object contains the paragraph formatting, and the

ActionSettings collection contains the action settings for the text range.

Finding Out Whether a Shape Has a Text Frame

Not every shape has a text frame, so prior to manipulating text it’s a good idea to fi rst determine

whether the shape you’re dealing with in fact even has a text frame.

To do so, check that the HasTextFrame property of the Shape object is msoTrue, as in this

example:

If ActivePresentation.Slides(1).Shapes(1).HasTextFrame = msoTrue Then

 MsgBox “The shape contains a text frame.“

End If

You may also need to check whether the text frame contains text. To do so, check that the

HasText property of the TextFrame object is msoTrue. Here’s an example:

With ActivePresentation.Slides(1).Shapes(1).TextFrame

 If .HasText = msoTrue Then MsgBox .TextRange.Text

End With

Returning and Setting the Text in a Text Range

To return (read) or set (specify) the text in a text range, you can simply use the Text property of

the TextRange object. For example, the following statement sets the text in the fi rst shape on the

WORKING WITH SHAPES | 685

fourth slide in the presentation identifi ed by the object variable myPresentation to Strategic

Planning Meeting:

Sub Test()

Dim myPresentation As Presentation

Set myPresentation = Presentations(1)

myPresentation.Slides(4).Shapes(1).TextFrame.TextRange.Text _

 = “Strategic Planning Meeting“

End Sub

You can also return parts of the text by using the Paragraphs method, the Sentences

method, the Lines method, the Words method, the Characters method, or the Runs method.

The syntax for these methods is shown here, using the Paragraphs method as the example:

expression.Paragraphs(Start, Length)

The components of the syntax are as follows:

 ◆ expression is a required expression that returns a TextRange object.

 ◆ Start is an optional Long argument that specifi es the fi rst item (paragraph, sentence, line,

word, character, or text run) to return.

 ◆ Length is an optional Long argument that specifi es how many items to return—for exam-

ple, two paragraphs, three sentences, or four words.

Understanding Text Runs

A text run is a sequence of characters that have the same font formatting. Text runs can be useful

for picking out parts of text ranges that are formatted in a particular way.

The following code example returns the second through fi fth words (the four words starting

with the second word) from the fi rst shape on the fi rst slide in the active presentation:

MsgBox ActivePresentation.Slides(1).Shapes(1).TextFrame _

 .TextRange.Words(Start:=2, Length:=4)

The next code example sets the text of the second paragraph in the second shape on the sixth

slide in the presentation identifi ed by the object variable myPresentation to VP of Business

Development:

myPresentation.Slides(6).Shapes(2).TextFrame.TextRange _

 .Paragraphs(Start:=2, Length:=1).Text = “VP of Business Development“

686 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

Formatting the Text in a Text Range

To format the text in a text range, use the ParagraphFormat object to control the paragraph for-

matting (including the alignment and the space before and after) and the Font object to control

the font formatting.

These are the most useful properties of the ParagraphFormat object:

 ◆ The Alignment property controls the alignment. Use ppAlignLeft for left alignment,

ppAlignCenter for centering, ppAlignJustify for justifi ed alignment,

ppAlignDistribute for distributed alignment (justifi ed using all available space), or

ppAlignRight for right alignment.

 ◆ The Bullet property returns the BulletFormat object, which represents the bullet format-

ting. See the next section for details.

 ◆ The LineRuleBefore property, the LineRuleAfter property, and the LineRuleWithin

property determine whether the measurements set by the SpaceBefore property, the

SpaceAfter property, and the SpaceWithin property use lines (msoTrue) or points

(msoFalse).

 ◆ The SpaceBefore property and the SpaceAfter property control the amount of space

before and after each paragraph. The SpaceWithin property controls the amount of space

between base lines in a paragraph. All measurements are in points.

The following example sets left alignment, 18 points of spacing before and after paragraphs,

and 12 points of spacing between lines for the second shape on the slide identifi ed by the object

variable mySlide:

Dim mySlide As Slide

Set mySlide = Presentations(1).Slides(2)

With mySlide.Shapes(2).TextFrame.TextRange.ParagraphFormat

 .Alignment = ppAlignLeft

 .LineRuleAfter = msoFalse

 .SpaceAfter = 18

 .LineRuleBefore = msoFalse

 .SpaceBefore = 18

 .LineRuleWithin = msoFalse

 .SpaceWithin = 12

End With

Formatting the Bullets for a Text Range

Bullets and numbers are vital to the lists used in many PowerPoint slides. To control whether

and how bullets and numbers appear, use the Bullet property of the TextRange object to

return the BulletFormat object, and then work with the BulletFormat object’s properties and

methods.

To make bullets and numbers visible, set the Visible property of the BulletFormat object to

msoTrue; to hide bullets and numbers, set Visible to msoFalse.

To specify which type of bullet or numbering to use, set the Type property of the

BulletFormat object to ppBulletUnnumbered (for a bullet), ppBulletNumbered (numbers),

ppBulletPicture (for a picture), or ppBulletNone (no bullet).

WORKING WITH SHAPES | 687

Another Mixed Data Type

Th e Type property of the BulletFormat object returns the value ppBulletMixed when the selec-

tion includes multiple types of bullets. You can’t set Type to ppBulletMixed. You can only read it.

To specify the bullet character, use the Character property and the character number. You

can fi nd out the character number from the Symbol dialog box or the Character Map applet,

which you can run by pressing the Windows key to get to the Modern view in Windows 8, then

typing Character Map.

Seeing this application in previous versions of Windows is somewhat more clumsy (Yay!

Windows 8 demonstrates that it is an improvement in some ways). For Windows 7 and previous,

click Start ➢ All Programs ➢ Accessories ➢ System Tools ➢ Character Map.

Unfortunately, the character codes are given in the hexadecimal numbering system. If you look

up the check-box symbol for the Wingdings font that’s used in the following code example, the

character map utility doesn’t say 254 in our human decimal numbering system. Instead, it says

Character Code: 0xFE (the hex way of expressing 254).

This tedious holdover from the early days of computing serves no particular purpose in char-

acter codes, but you have to deal with it. Why? Because some people think that pointless com-

plexity is cute, or it helps make programming seem somehow more mysterious than it in fact is.

This type of thing can also help with job security because managers will usually be dazzled by

what they assume are complicated programming mysteries like hex. Hex (short for hexadeci-

mal) is based on 16 digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F. People with eight fi ngers on each hand

have an advantage here.

To solve the hex-character-code problem, you can either use a calculator that can translate

between hex and decimal or just prepend the characters &H in front of the hex code and let VBA

translate it for you when executing your procedure.

For example, in the following code example, I used 254 (a decimal number) because I can

translate hex (well, my HP programming calculator can). But if you can’t, or more likely don’t

want to be bothered, just click the character you want to use in the Character Map dialog box

and then look at its hex code in the lower left of the dialog box.. In this example, it’s listed as

0xFE (which means, you guessed it, decimal 254). Since the Wingdings font has only 256 charac-

ters, ignore the 0x part and use the FE, like this, in your code:

.Character = &H FE

Use the Font property to specify the font name, size, and color. The following example sets

the bullet for the fi rst shape on the slide identifi ed by the object variable mySlide to Wingdings

character 254, a check box, using the color white, which is RGB(255, 255, 255), and 44-point

size:

With mySlide.Shapes(1).TextFrame.TextRange.ParagraphFormat.Bullet

 .Type = ppBulletUnnumbered

 .Character = 254

 With .Font

 .Name = “Wingdings“

 .Size = 44

 .Color = RGB(255, 255, 255)

 End With

End With

688 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

Color is of course an important element in any design. You can easily fi nd out which RGB

values you need to employ for various colors by visiting this web page:

http://cloford.com/resources/colours/500col.htm

To use your own custom picture as a bullet, set the Type property of the BulletFormat object

to ppBulletPicture and then use the Picture method with the Picture argument, a required

String argument that specifi es the path and fi lename of the fi le to use as the bullet. You can

use most common types of graphics fi les, including .bmp, .eps, .gif, .jpg, .jpeg, .pcx, .png,

.tiff, and .wmf fi les. The following example uses the fi le Face1.jpg stored in the folder Z:\

Public\Pictures as the bullet for the fi rst shape on the slide identifi ed by the object variable

mySlide:

With mySlide.Shapes(1).TextFrame.TextRange.ParagraphFormat.Bullet

 .Type = ppBulletPicture

 .Picture Picture:=“z:\Public\Pictures\Face1.jpg“

End With

Animating a Shape or a Range of Shapes
To animate a shape or a range of shapes, use the AnimationSettings property of the Shape

object or the ShapeRange object to return the AnimationSettings object.

To specify the animation effect to use, set the EntryEffect property to the constant for the

effect. Let’s see how to fi gure out which animation effect looks best for the shape you’re working

with. First, click a shape in a slide to select the shape. Now display the Add Animation pane.

There are too many animation constants to list here, but their names are easy to understand

from the names listed in the Add Animation pane. To open this pane, click the Animations tab

in PowerPoint’s Ribbon, then click the Add Animation icon in the Advanced Animation section.

A pane drops down in PowerPoint’s window, as shown in Figure 25.1.

As usual with animations, less is more. Choose subtle effects unless you’re presenting to an

audience of louts that will appreciate vulgarity.

To write code that creates an animation, set the Animate property to msoTrue. (To turn off an

animation, set Animate to msoFalse.)

To control how the text in a shape is animated, set the TextLevelEffect property

to ppAnimateLevelNone (no animation), ppAnimateByFirstLevel,

ppAnimateBySecondLevel, ppAnimateByThirdLevel, ppAnimateByFourthLevel,

ppAnimateByFifthLevel, or ppAnimateByAllLevels.

If you set TextLevelEffect to any value other than ppAnimateByAllLevels or ppAnimate

LevelNone, you can use the TextUnitEffect property to specify how to animate the text. Use

ppAnimateByParagraph to animate by paragraph, ppAnimateByWord to animate by word, or

ppAnimateByCharacter to animate by character.

To reverse the order of the animation, set the AnimateTextInReverse property to msoTrue.

(The default is msoFalse.)

To control how the animation advances, set the AdvanceMode property to ppAdvanceOnTime

(for automatic advancing using a timing) or ppAdvanceOnClick (for manual advancing). If you

use automatic advancing, use the AdvanceTime property to specify the number of seconds to

wait before advancing.

To play a built-in sound effect with the transition, use the SoundEffect property of the

AnimationSettings object to return the SoundEffect object, use the Name property to specify

the name of the sound effect, and then use the Play method to play the sound effect. You can

http://cloford.com/resources/colours/500col.htm

WORKING WITH SHAPES | 689

also play your own sound fi le by using the ImportFromFile method of the SoundEffect object

and using the FullName argument to specify the path and fi lename of the sound fi le.

Figure 25.1

Here’s a selection of

animation eff ects

available for use in

PowerPoint.

To control how a media clip is played, use the PlaySettings property of the Animation

Settings object to return the PlaySettings object. For example, if you want the sound to loop

until the next sound, set the LoopSoundUntilNext property of the PlaySettings object within

the AnimationSettings object to msoTrue. The default value is msoFalse.

You can fi nd all these options by pressing F2 to display the Object Browser in the VBA Editor

and then searching for them. For example, search for ppEntryEffect to see all possible con-

stants for the various possible lead-in animations.

The following example applies a custom animation to the fi rst shape on the slide identifi ed

by the object variable mySlide. The animation uses the entry effect Fly In From Right, plays a

sound effect from a fi le, animates the text by fi rst-level paragraphs and by whole paragraphs,

and advances when the user clicks:

Dim mySlide As Slide

Set mySlide = Presentations(1).Slides(2)

690 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

With mySlide.Shapes(1).AnimationSettings

 .EntryEffect = ppEffectFlyFromRight

 .AdvanceMode = ppAdvanceOnClick

 .SoundEffect.ImportFromFile FileName:=“D:\Media\Whistle4.wav“

 .TextLevelEffect = ppAnimateByFirstLevel

 .TextUnitEffect = ppAnimateByParagraph

End With

To test this (or other code examples you try in PowerPoint), just press F5 in the main

PowerPoint window, and then repeatedly click the screen to activate the various transitions and

effects. Press Esc when you’re done.

Working with Headers and Footers
PowerPoint uses HeaderFooter objects to represent the headers, footers, slide numbers, and

date and time on slides. The HeaderFooter objects are organized into the HeadersFooters col-

lection, which you access through the HeaderFooters property of the Master object, a Slide

object, or a SlideRange collection.

Be warned: Before you can execute the following code examples, you must fi rst add a footer to

the slides in your active presentation. The code examples expect to modify an existing footer, not to

create it (unlike in Excel, where a new header or footer will be created automatically).

So, before executing these examples, click the Insert tab on PowerPoint’s Ribbon, and then

in the Text area, click the Header And Footer button to open the Header And Footer dialog box.

In this dialog box, click the Date And Time check box and the Footer check box. Then click the

Apply To All button.

Returning the Header or Footer Object You Want
To access the object you want, use the appropriate property of the HeaderFooter object:

 ◆ Use the DateAndTime property to return the date and time.

 ◆ Use the Footer property to return the footer itself.

 ◆ Use the Header property to return the header on a notes page or handout. Slides them-

selves can’t have a header.

 ◆ Use the SlideNumber property to return the slide number on a slide or the page number on

a notes page or a handout.

The following example uses the Footer property to set the text of the HeaderFooter object of

the fi rst slide in the active presentation:

ActivePresentation.Slides(1).HeadersFooters.Footer.Text = “Sentence 102“

Displaying or Hiding a Header or Footer Object
To display the HeaderFooter object, set its Visible property to msoTrue (or just True). To hide

the HeaderFooter object, set its Visible property to msoFalse. For example, the following state-

ment hides the footer on the fi fth slide in the active presentation:

ActivePresentation.Slides(5).HeadersFooters.Footer.Visible = False

WORKING WITH HEADERS AND FOOTERS | 691

Setting the Text in a Header or Footer
To set the text that you want in a HeaderFooter object, assign a string containing the text to the

object’s Text property. For example, the following statement sets the text of the footer of the fi fth

slide in the active presentation to Confidential:

ActivePresentation.Slides(5).HeadersFooters.Footer.Text = “Confidential“

If you executed the previous example code, executing this example will trigger an error mes-

sage. That’s because you made the same slide (#5) invisible in the previous code. To be able to set

the text in this slide, it must fi rst be visible:

ActivePresentation.Slides(5).HeadersFooters.Footer.Visible = True

ActivePresentation.Slides(5).HeadersFooters.Footer.Text = “Confidential“

Setting the Format for Date and Time Headers and Footers
If your slides, notes pages, or handouts use dates and times in their footers or headers, use the

Format property to specify how the dates and times should appear. Table 25.2 lists the constants

you can use.

Table 25.2: Format property constants for date and time headers and footers

Format Example

ppDateTimeddddMMMMddyyyy Th ursday, October 05, 2013

ppDateTimedMMMMyyyy 5 October 2013

ppDateTimedMMMyy 5-Oct-13

ppDateTimeFormatMixed 10/5/2013

ppDateTimeHmm 10:17

ppDateTimehmmAMPM 10:17AM

ppDateTimeHmmss 10:17:16

ppDateTimehmmssAMPM 10:17:16AM

ppDateTimeMdyy 10/5/2013

ppDateTimeMMddyyHmm 10/5/2013 10:17AM

ppDateTimeMMddyyhmmAMPM 10/5/2013 10:17:16AM

ppDateTimeMMMMdyyyy October 5, 2013

ppDateTimeMMMMyy October 08

ppDateTimeMMyy Oct-08

692 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

Set the UseFormat property of the HeaderFooter to msoTrue if you want the date and time to

be updated automatically. Set UseFormat to msoFalse if you want the date and time to remain

unchanged.

The following example displays the current date in the format Friday, April 12, 2013:

Sub SetFooter()

Dim objPresTation As Presentation

Set objPresTation = Application.ActivePresentation

With objPresTation.Slides(2).HeadersFooters.DateAndTime

 .UseFormat = True

 .Format = ppDateTimeddddMMMMddyyyy

End With

End Sub

Setting Up and Running a Slide Show
Not only can you assemble and format a slide show using VBA; you can also run it using

VBA. To set up a slide show, use the SlideShowSettings property of the Presentation

object to return the SlideShowSettings object. When you run the slide show, VBA creates a

SlideShowWindow object, which you can then manipulate to control the slide show.

Controlling the Show Type
To specify the type of show, set the ShowType property of the SlideShowSettings object to

ppShowTypeSpeaker (for a standard full-screen presentation presented by a speaker),

ppShowTypeKiosk (for a kiosk presentation), or ppShowTypeWindow (for a ”browsed by an indi-

vidual” presentation that appears in a window). For a show in a window, you can use the Left

and Top properties to specify the position of the upper-left corner of the window and the Height

and Width properties to specify its size.

To control whether animation and narration are used, set the ShowWithAnimation prop-

erty and the ShowWithNarration property of the SlideShowSettings object to msoTrue or

msoFalse.

To control whether the presentation loops until stopped, set the LoopUntilStopped property

of the SlideShowSettings object to msoTrue or msoFalse.

To control how the presentation advances, set the AdvanceMode property to

ppSlideShowManualAdvance (for manual advancing), ppSlideShowUseSlideTimings (for auto-

matic advancing using timings already set), or ppSlideShowRehearseNewTimings (to rehearse

new timings while the show plays).

SETTING UP AND RUNNING A SLIDE SHOW | 693

The following example sets the active presentation running as a kiosk presentation that will

advance automatically using its timings and loop until it is stopped:

With ActivePresentation.SlideShowSettings

 .LoopUntilStopped = msoCTrue

 .AdvanceMode = ppSlideShowUseSlideTimings

 .ShowType = ppShowTypeKiosk

 .Run

End With

This next example sets the presentation named Corporate.pptm running in speaker (full-

screen) mode, sizing the image to 800×600 pixels and positioning it at the upper-left corner of

the screen. The show uses manual advancing:

With Presentations(“Corporate.pptm“).SlideShowSettings

 .LoopUntilStopped = msoFalse

 .ShowType = ppShowTypeSpeaker

 .AdvanceMode = ppSlideShowManualAdvance

 With .Run

 .Height = 600

 .Width = 800

 .Left = 0

 .Top = 0

 End With

End With

Creating a Custom Show
Custom shows within a presentation are represented by the NamedSlideShows collection within

the SlideShowSettings object. Use the NamedSlideShows property of the SlideShowSettings

object to return the NamedSlideShows collection.

To create a custom show, use the Add method of the NamedSlideShows collection. The syntax

is as follows:

expression.Add(Name, SafeArrayOfSlideIDs)

Here, expression is a required expression that returns a NamedSlideShows object. Name

is a required String argument that specifi es the name to assign to the new custom show.

SafeArrayOfSlideIDs is a required Variant that specifi es the numbers or names of the slides to

include in the custom show.

For example, the following statements declare an array of the Long data type; assign to it

slides 2, 4, 5, and 10 from the open presentation named Corporate.pptm; and create a new cus-

tom show named Short Show using the following array:

Dim myArray(4) As Long

With Presentations(“Corporate.pptm“)

 myArray(1) = .Slides(2).SlideID

 myArray(2) = .Slides(4).SlideID

694 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

 myArray(3) = .Slides(5).SlideID

 myArray(4) = .Slides(10).SlideID

 .SlideShowSettings.NamedSlideShows.Add Name:=“Short Show“, _

 safeArrayOfSlideIDs:=myArray

End With

Deleting a Custom Show
To delete a custom show, use the Delete method with the appropriate NamedSlideShow object.

For example, the following statement deletes the custom show named Overview from the active

presentation:

ActivePresentation.SlideShowSettings.NamedSlideShows(“Overview“).Delete

Starting a Slide Show
To start a slide show using the whole presentation, use the Run method of the

SlideShowSettings object. For example, the following statement starts the slide show running

in the presentation identifi ed by the object variable myPresentation:

myPresentation.SlideShowSettings.Run

To show only a range of slides from a presentation, set the RangeType property of the

SlideShowSettings object to ppShowSlideRange, use the StartingSlide property of

the SlideShowSettings object to specify the fi rst slide and the EndingSlide property to specify

the last slide, and then use the Run method to run the presentation. The following example

shows slides 4 through 8 in the presentation named Corporate.pptm:

With Presentations(“Corporate.pptm“).SlideShowSettings

 .RangeType = ppShowSlideRange

 .StartingSlide = 4

 .EndingSlide = 8

 .Run

End With

To start running a custom show, set the RangeType property of the SlideShowSettings

object to ppShowNamedSlideShow, use the SlideShowName property to specify the name of the

custom show, and then use the Run method to run the custom show. The following example

shows the custom show named Short Show in the active presentation:

With ActivePresentation.SlideShowSettings

 .RangeType = ppShowNamedSlideShow

 .SlideShowName = “Short Show“

 .Run

End With

When you start a slide show, VBA creates a SlideShowWindow object representing the object.

You can access the SlideShowWindow object either through the SlideShowWindows collection

(a creatable object that contains a SlideShowWindow object for each open slide show) or through

the SlideShowWindow property of the Presentation object. If you know which presentation is

running, it’s easier to go through the appropriate Presentation object.

SETTING UP AND RUNNING A SLIDE SHOW | 695

Changing the Size and Position of a Slide Show
To fi nd out whether a slide show is displayed full screen or in a window, check the IsFullScreen

property of the SlideShowWindow object. If the IsFullScreen property returns -1, the presenta-

tion is full screen; if the property returns 0, the presentation is a window.

To set the height and width of the slide-show window in pixels, use the Height property and

the Width property. To set its position, use the Top property to specify the distance in pixels of the

top edge of the presentation from the top of the window or screen, and the Left property to

specify the distance in pixels of the left edge of the presentation from the left edge of the window

or the screen.

Moving from Slide to Slide
Apart from controlling the position and size of the presentation, most of the actions you can

take with a presentation involve the View object. To fi nd out which slide is displayed, return the

CurrentShowPosition property:

MsgBox ActivePresentation.SlideShowWindow.View.CurrentShowPosition

To display the fi rst slide in the presentation, use the First method. To display the last slide,

use the Last method:

ActivePresentation.SlideShowWindow.View.First

ActivePresentation.SlideShowWindow.View.Last

To display the next slide, use the Next method. To display the previous slide, use the

Previous method. Here’s an example:

ActivePresentation.SlideShowWindow.View.Previous

To display a particular slide in the slide show, use the GotoSlide method of the View object,

using the Index argument to specify the slide number. For example, the following statement dis-

plays slide 5 in the fi rst open slide-show window:

Application.SlideShowWindows(1).View.GotoSlide Index:=5

Pausing the Show and Using White and Black Screens
To display a white screen, set the State property to ppSlideShowWhiteScreen. To display a

black screen, set the State property of the View object to ppSlideShowBlackScreen:

ActivePresentation.SlideShowWindow.View.State = ppSlideShowWhiteScreen

ActivePresentation.SlideShowWindow.View.State = ppSlideShowBlackScreen

To toggle the black screen or white screen off and start the show running again, set the State

property to ppSlideShowRunning.

To pause the presentation, set the State property of the View object to ppSlideShowPaused.

To start the show again, set the State property to ppSlideShowRunning, as in this example:

With ActivePresentation.SlideShowWindow.View

 .State = ppSlideShowPaused

 .State = ppSlideShowRunning

End With

696 | CHAPTER 25 WORKING WITH SHAPES AND RUNNING SLIDE SHOWS

Starting and Stopping Custom Shows
To start a custom show running, use the GotoNamedShow method and use the SlideShowName

argument to specify the name of the custom show. For example, the following statement starts

the custom show named New Show running:

SlideShowWindows(1).GotoNamedShow SlideShowName:=“New Show“

To exit a custom show, use the EndNamedShow method and then use the Next method to

advance the presentation. PowerPoint then displays the fi rst slide in the full presentation:

With ActivePresentation.SlideShowWindow.View

 .EndNamedShow

 .Next

End With

Exiting a Slide Show
To exit the slide show, use the Exit method of the View property of the SlideShowWindow object.

For example, the following statement exits the slide show in the active presentation:

ActivePresentation.SlideShowWindow.View.Exit

Th e Bottom Line

Work with shapes. PowerPoint VBA provides many ways to access and manipulate shapes.

Master It Describe what the following line of code does:

ActivePresentation.Slides(2).Shapes(1).Delete

Work with headers and footers. Using PowerPoint headers and footers can be a convenient

way to provide continuity for presentations as well as to identify each element.

Master It In this chapter, you worked with several examples showing how to manipu-

late footers for slides. Why were there no examples illustrating how to manipulate head-

ers for slides?

Set up and run a slide show. To create a custom slide show, you use the Add method of the

NamedSlideShows collection.

Master It The syntax when using the Add method of the NamedSlideShows collection is

expression.Add(Name, SafeArrayOfSlideIDs)

Explain what the four components of this line of code are and do.

Chapter 26

Understanding the Outlook Object
Model and Key Objects

In this chapter, you’ll begin to come to grips with the Outlook object model and using VBA to

manipulate Outlook. You’ll learn where Outlook stores VBA items, meet the VBA objects for

Outlook’s creatable objects and main user-interface items, and work with some of the main

Outlook objects. You’ll explore a variety of objects, from the Application object that represents

the entire application through the objects that represent individual messages, calendar items,

and tasks. You’ll also learn how to search programmatically.

In this chapter you will learn to do the following:

 ◆ Work with the Application object

 ◆ Work with messages

 ◆ Work with calendar items

 ◆ Work with tasks and task requests

 ◆ Search for items

Getting an Overview of the Outlook Object Model
Many people fi nd Outlook harder to work with programmatically than other Offi ce applica-

tions, so it’s particularly helpful to explore the Outlook object model to see which objects

Outlook uses and how they’re related. Above all, when working with objects, seeing VBA code

examples in the online Help system or online can be invaluable.

You can fi nd the Outlook object-model reference by following these steps:

 1. Launch or switch to Outlook, and then press Alt+F11 to launch or switch to the VBA

Editor.

 2. Move your cursor to a blank space in the code window (to avoid context-sensitive help).

 3. Press F1 in the editor to launch MSDN (the Microsoft Developer Network). At the time

of this writing, you’ll see a message that the page you requested cannot be found. This

is because Outlook has the incorrect link built into its Help feature. Never mind. We just

want to use the Bing search anyway.

 4. In the Bing search fi eld, type outlook 2013 object model and press Enter.

698 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

 5. Click the link Object Model (Outlook 2013 Developer Reference). You’ll now have access to the

whole collection of Outlook 2013 VBA syntax specifi cations, useful descriptions, and code

examples (one of which is shown in Figure 26.1).

Figure 26.1

Sample code

found in the

Outlook object

model-reference

will help you write

your own VBA code.

Understanding Where Outlook Stores VBA Macros
As you’ve seen earlier in this book, Word and Excel let you store VBA projects either in a global

location (the Normal.dotm template in Word or the Personal Macro Workbook in Excel) or in

individual templates or document fi les. PowerPoint lets you store VBA projects in presentation

fi les and templates.

Outlook, by contrast, doesn’t let you store VBA projects in individual items (such as Outlook’s

email messages or contacts). Instead, Outlook saves all projects in a single VBA project called

VbaProject.OTM, which is stored in the following folder (instead of Richard in this path, substi-

tute your username):

C:\Users\Richard\AppData\Roaming\Microsoft\Outlook

Understanding Outlook’s Most Common Creatable Objects
In Outlook VBA, the Application object represents the entire Outlook application, so you can

access any Outlook object by going through the Application object. However, Outlook also

exposes various creatable objects, allowing you to reach some of the objects in its object model

without explicitly going through the Application object. Recall that ”creatable” merely means

that when you’re writing code involving these objects, using the word Application is optional.

You can get the same result by using either of the following versions:

Application.Explorers

WORKING WITH THE APPLICATION OBJECT | 699

or more simply,

Explorers

Here is a list of Outlook’s most common creatable objects; you’ll work with most of them in

more detail later in this chapter and in the next chapter:

 ◆ The Explorers collection contains an Explorer object for each window that displays the

contents of a folder.

 ◆ The Inspectors collection contains an Inspector object for each window that’s open dis-

playing an Outlook item.

 ◆ The COMAddIns collection contains a COMAddIn object for each COM (Component Object

Model) add-in loaded in Outlook.

 ◆ The Reminders collection contains a Reminder object for each reminder.

The most prominent objects in the Outlook user interface are represented in VBA by items

whose names are descriptive of their purpose, such as these, for example:

 ◆ The MailItem object represents a mail item.

 ◆ The ContactItem object represents a contact.

 ◆ The TaskItem object represents a task.

 ◆ The AppointmentItem object represents an appointment.

 ◆ The JournalItem object represents a journal entry.

 ◆ The NoteItem object represents a note.

You’ll learn how to work with these objects later in this chapter and in the next chapter.

Working with the Application Object
You can have only one instance of Outlook running at a time. (By contrast, you can run multiple

instances of Word or Excel at the same time.) You probably won’t fi nd this a limitation when

you’re writing macros that work within Outlook. But if you create a procedure in another appli-

cation (such as Word) that will communicate with and manipulate Outlook, you will need to

check whether there is an instance of Outlook currently running in the computer before you

create an instance programmatically. (See Chapter 30, “Accessing One Application from Another

Application,” for instructions on accessing one application programmatically from another

application.)

Working with the NameSpace Object
Here is a new concept: the NameSpace. Among all the VBA-enabled Offi ce applications, only

Outlook employs this technique. That the NameSpace approach is unique to Outlook demon-

strates beyond all doubt that the various Microsoft Offi ce application teams work at least partly

independently when building their object-model structures.

700 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Working with Inspectors and Explorers
Many Outlook VBA activities, such as accessing email messages, tasks, or contacts program-

matically, require that you use the GetNameSpace method of Outlook’s Application object to

return the NameSpace object that represents the root object of the data source. Anyway, that’s

the offi cial version. Just remember that you use the following syntax to get most jobs done in

Outlook VBA:

expression.GetNameSpace(Type)

Here, expression is a required expression that returns an Application object. Type is a

required String argument that specifi es the type of namespace you want to return. Outlook sup-

ports only the MAPI data source, so you always use Type: = “MAPI” with the GetNameSpace

method. For example, the following statement returns the NameSpace and uses the CurrentUser

property to display the name—the email address—of the current user in a message box:

MsgBox Application.GetNamespace(“MAPI”).CurrentUser

What Is an API?

MAPI means Messaging Application Programming Interface. It’s a collection of functions written

by Microsoft that can be used in programming related to email. Th ere are all kinds of APIs used for

various purposes. API is just another term for a library of built-in functions. Come to think of it,

namespace is also a synonym. Th e general term namespace in computer programming means a col-

lection of functions that is self-contained. Th is allows you to have functions with identical names

that are distinguished by their individual namespaces. Th at way VBA or another language knows

which function to trigger when it appears in the code. It’s similar to a teacher using full names to

distinguish John Th ompson from John Ortega.

Accessing Default Folders within the NameSpace Object

The NameSpace object contains the folders that Outlook uses—both the collection of default fold-

ers used to store default items such as email messages, tasks, and contacts as well as any other

folders created by the user or by custom procedures. These folders are represented in Outlook’s

VBA by MAPIFolder objects that are organized into a Folders collection.

You’d probably expect that to fi nd out which are the current default folders, you would use

a method of the Folders collection. Nope. Given that we’re in a special situation here (dealing

with email), GetDefaultFolder is a method of the NameSpace object. The syntax is as follows:

expression.GetDefaultFolder(FolderType)

Here, expression is a required expression that returns a NameSpace object. FolderType is

a required argument that specifi es which default folder you want to return. The constants are

self-explanatory: olFolderCalendar, olFolderConflicts,

olFolderContacts, olFolderDeletedItems, olFolderDrafts, olFolderInbox,

olFolderJournal, olFolderJunk, olFolderLocalFailures, olFolderManagedEmail,

olFolderNotes, olFolderOutbox, olFolderRSSFeeds, olFolderSentMail,

olFolderServerFailures, olFolderSuggestedContacts, olFolderSyncIssues,

olFolderTasks, olFolderToDo, or olPublicFoldersAllPublicFolders.

WORKING WITH THE APPLICATION OBJECT | 701

The following example creates the object variable myCal and assigns the default calendar

folder to it:

Dim myCal As MAPIFolder

Set myCal = Application.GetNamespace(“MAPI”) _

 .GetDefaultFolder(FolderType:=olFolderCalendar)

Accessing Other Folders within the NameSpace Object

Accessing the default folders in the NameSpace object via the GetDefaultFolder method is easy,

but often you’ll need to access other folders. In this case, you do use the Folders collection.

The following example displays a message box (see Figure 26.2) containing a list of all the

folders contained in the namespace:

Sub List_All_NameSpace_Folders()

 Dim myNS As NameSpace

 Dim myFolder As MAPIFolder

 Dim mySubfolder As MAPIFolder

 Dim strFolderList As String

 strFolderList = “Your Outlook NameSpace contains these folders:” _

 & vbCr & vbCr

 Set myNS = Application.GetNamespace(“MAPI”)

 With myNS

 For Each myFolder In myNS.Folders

 strFolderList = strFolderList & myFolder.Name & vbCr

 For Each mySubfolder In myFolder.Folders

 strFolderList = strFolderList & “* “ & mySubfolder.Name & vbCr

 Next mySubfolder

 Next myFolder

 End With

 MsgBox strFolderList, vbOKOnly + vbInformation, “Folders in NameSpace”

End Sub

Creating a New Folder

To create a new folder, use the Add method with the Folders collection. The syntax is as follows:

expression.Add(Name, Type)

Here, expression is a required expression that returns a Folders collection. Name is a

required String argument that specifi es the display name to assign to the new folder. Type is an

optional Long argument that you can use to specify the type of folder to create:

olFolderCalendar, olFolderContacts, olFolderDrafts, olFolderInbox, olFolderJournal,

olFolderNotes, or olFolderTasks. If you omit Type, Outlook assigns the new folder the same

type as its parent folder (the folder in which you create the new folder).

The following statement creates a new folder named Personal Tasks in the Tasks folder,

assigning the new folder the olFolderTasks folder type explicitly for clarity:

Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderTasks) _

 .Folders.Add Name:=“Personal Tasks”, Type:=olFolderTasks

702 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Figure 26.2

Listing the folders

contained in the

NameSpace object

Deleting a Folder

To delete a folder, use the Delete method with the appropriate MAPIFolder object. This method

takes no arguments. The following example deletes the folder named Personal Tasks in the

Tasks folder:

Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderTasks) _

 .Folders(“Personal Tasks”).Delete

WORKING WITH THE APPLICATION OBJECT | 703

Deletion Is Dangerous

Be careful when deleting objects in Outlook. First, Outlook doesn’t request any confi rmation before

deleting an object. Second, the deletion is permanent; there’s no Recycle Bin backup.

Understanding Inspectors and Explorers
VBA uses two major Outlook objects that most users wouldn’t recognize from working with the

Outlook user interface alone:

 ◆ An Inspector is an object that represents a window displaying a specifi c Outlook item,

such as an email message or an appointment.

 ◆ An Explorer object represents a window that displays the contents of a folder, such as a

list of emails.

Objects within Objects

Unlike the behavior of many collections, an Explorer object is included in the Explorers collec-

tion even if it is not visible.

Opening an Inspector Window

To open an inspector window for an object, use the Display method of the Inspector object.

For example, the following statement displays an inspector window for the object referenced by

the object variable myItem:

myItem.Display

Returning the Inspector Associated with an Item

To return the inspector associated with an item, use the GetInspector property of the appropri-

ate object. The following example returns the inspector for the item identifi ed by the object vari-

able myItem:

myItem.GetInspector

Returning the Active Window, Inspector, or Explorer

Unlike Word, Excel, and PowerPoint, Outlook doesn’t have an ActiveWindow object that repre-

sents the active window. However, Outlook’s Application object does have an ActiveWindow

method, which returns the topmost Outlook window. (If there is no window, ActiveWindow

returns Nothing.)

This window will be either an Inspector object or an Explorer object. Similarly,

the ActiveExplorer method of the Application object returns the active explorer, and the

ActiveInspector method of the Application object returns the active inspector. Got it?

704 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

You can use the TypeName function to determine which type of window is active. The follow-

ing example displays a message box that states which window type is active if there is an active

window:

If Not TypeName(ActiveWindow) = “Nothing” Then

 MsgBox “An “ & TypeName(ActiveWindow) & “ window is active.”

End If

Notice that we say here If Not… Nothing. The double negative means “if the active window

isn’t nothing.”

Working with the Active Inspector

In many procedures, you’ll need to determine what the topmost inspector in the Outlook appli-

cation is, either so that you can work with that inspector or so that you can restore the inspector

to the topmost position at the end of a procedure that manipulates other inspectors. (Remember,

you should always try to restore an application to the state it was in when your procedure

started execution. This is a courtesy to the user and evidence of careful, quality programming.)

To fi nd out which is the topmost inspector, use the ActiveInspector method of the

Application object. For example, the following statement maximizes the window of the top-

most inspector:

Application.ActiveInspector.WindowState = olMaximized

Note that this example attempts to maximize an inspector window, so there must actually be

an inspector window open when you run the code. In other words, double-click an email mes-

sage in Outlook to open it in a window separate from the Outlook window. This separate win-

dow, showing a single email, is an inspector. If you want to trap this error (and you should) to

prevent your macro from crashing when no inspector exists, here’s how to make sure there is an

active inspector. You can check that the TypeName function does not return Nothing when run

on the ActiveInspector method of the Application object, like this:

If TypeName(Application.ActiveInspector) = “Nothing” Then

 MsgBox “No item is currently open.”

 End ‘shut down the macro

End If

Creating Items
To create new items in Outlook, you use the CreateItem method or the CreateItemFromTemplate

method of the Application object. The CreateItem method creates default items, while the

CreateItemFromTemplate method creates items based on the templates you specify.

You Can Use Custom Forms to Create New Objects

You can also create new objects using a custom form. To do so, use the Add method with the Items

collection.

WORKING WITH THE APPLICATION OBJECT | 705

Using the CreateItem Method to Create Default Items

The syntax for the CreateItem method is as follows:

expression.CreateItem(ItemType)

Here, expression is a required expression that returns an Application object. ItemType is a

required argument that specifi es the type of item to create: olAppointmentItem,

olContactItem, olDistributionListItem, olJournalItem, olMailItem, MobileItemMMS,

MobileItemSMS, olNoteItem, olPostItem, or olTaskItem.

The following example creates a new email message; assigns a recipient (by setting the To

property), a subject (by setting the Subject property), and body text (by setting the Body prop-

erty); and then displays the message window:

Dim myMessage As MailItem

Set myMessage = Application.CreateItem(ItemType:=olMailItem)

With myMessage

 .To = “test@example.com”

 .Subject = “Test message”

 .Body = “This is a test message.”

 .Display

End With

Using the CreateItemFromTemplate Method to Create Items Based

on Templates

Instead of creating a default item by using the CreateItem method, you can alternatively use

the CreateItemFromTemplate method of the Application object to create a new item based on

a template. The syntax for the CreateItemFromTemplate method is as follows:

expression.CreateItemFromTemplate(TemplatePath, InFolder)

Here, expression is a required expression that returns an Application object. TemplatePath

is a required String argument that specifi es the path and fi lename of the template on which to

base the new item. InFolder is an optional Variant argument that you can use to specify the

folder in which to create the item. If you omit the InFolder argument, Outlook creates the item

in the default folder for that item type.

Before you can test the following example, you must create a note template to work with. Press

Ctrl+Shift+N in Outlook to create a new note, then choose File ➢ Save As and choose the Outlook

Template option in the Save As Type list box in the Save As dialog box. Save it as tpltNote.oft.

The following example creates a new note item based on the custom template

tpltNote.oft you just stored in the C:\Users\Richard\AppData\Roaming\Microsoft\
Templates folder within the user’s user profi le (substitute your computer’s name for Richard).

The example then displays the new note item:

Dim myNoteItem As NoteItem

Set myNoteItem = Application.CreateItemFromTemplate _

(“C:\Users\Richard\AppData\Roaming\” _

& “Microsoft\Templates\tpltNote.oft”)

myNoteItem.Display

mailto:test@example.com%E2%80%9D

706 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Quitting Outlook
To quit Outlook, use the Quit method of the Application object. This method takes no

arguments:

Application.Quit

You may also want to work with the events available to the Application object. See

Chapter 27, “Working with Events in Outlook,” for a discussion of how to work with these

application-level events and with item-level events.

Understanding General Methods for Working with
Outlook Objects
Many of the objects in Outlook use the methods covered in the following sections. You’ll see

brief examples showing you how to use the methods, as well as further examples on the indi-

vidual types of objects—email messages, appointments, contacts, tasks, and so on—later in this

chapter and in the next.

Using the Display Method
To open an item in an inspector window, use the Display method. The syntax is as follows:

expression.Display(Modal)

Here, expression is a required expression that returns the type of object you want to display—

for example, a ContactItem object or a MailItem object. Modal is an optional Variant argu-

ment that you can set to True to make the window modal. A window is modeless by default, or

becomes modeless if you set Modal to False. Making the window modal means that users must

close the window before they can work with another window.

Note that the Modal argument isn’t available for Explorer and MAPIFolder objects.

For example, the following statement uses the Display method to display the Inbox:

Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderInbox).Display

Using the Close Method
To close a window, use the Close method. The syntax is as follows:

expression.Close(SaveMode)

Here, expression is a required expression that returns the object you want to close. SaveMode

is a required argument that specifi es whether to save changes (olSave), discard the changes

(olDiscard), or prompt the user to decide whether to save the changes (olPromptForSave).

The following example closes the active inspector and saves any changes to its contents:

ActiveInspector.Close SaveMode:=olSave

Remember that this code requires that an inspector be currently open. See the warning ear-

lier in this chapter in the section titled “Working with the Active Inspector.”

Using the Delete Method
To delete an item, use the Delete method. This method takes no arguments. The following

example deletes the item with the index number 1 in the Contacts folder. Be careful if you want

UNDERSTANDING GENERAL METHODS FOR WORKING WITH OUTLOOK OBJECTS | 707

to give this code a test run. It will delete a contact, but exactly which contact is unpredictable.

The sidebar “Practical Programming” explains why. So, if you value your contacts list, don’t test

this example. Take my word for it; I had to test this code and I still don’t know which of my con-

tacts were deleted. I hope it was some long-ago acquaintance.

Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderContacts) _

 .Items(1).Delete

Practical Programming: The Items Collection Is Unsorted

You often need to sort and search data. Be warned that the index numbers in the Items collection

of your contacts are not ordered in any way. Th e collection is not alphabetical, nor is it ordered in

any other fashion (by the date the contact was entered, was modifi ed, or by any other order). Using

the Delete, Display, or other methods with the Items collection accesses what to us, as program-

mers, will be a random item. In the previous example, Items(1) will almost certainly not be the

fi rst contact in your list of contacts. Or, as the Outlook online Help system puts it, “Th e items in

the Items collection object are not guaranteed to be in any particular order.”

However, you can sort items yourself if you wish, by writing code that sorts. Th en you can search

the sorted list that’s generated. You do this by using the Sort method, as the following example

illustrates. Th ese statements sort your contacts alphabetically by the Full Name fi eld in the Contacts

dialog box. You can optionally sort by due date (for tasks), by last name (for contacts), and many

other ways.

Sub SortContacts()

 Dim strNames As String

 Dim myNameSpace As Outlook.NameSpace

 Dim myFolder As Outlook.Folder

 Dim myItem As Outlook.ContactItem

 Dim myItems As Outlook.Items

 Set myNameSpace = Application.GetNamespace(“MAPI”)

 Set myFolder = myNameSpace.GetDefaultFolder(olFolderContacts)

 Set myItems = myFolder.Items

 myItems.Sort “[FullName]”, False

 For Each myItem In myItems

 strNames = strNames & “, “ & myItem.FullName

 Next myItem

 MsgBox strNames

End Sub

Notice that you could use this For Each… Next loop to search for a particular item in the collec-

tion of items.

Alternatively, you can use the AdvancedSearch method of the Application object, as described

in the section “Searching for Items” later in this chapter.

708 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Using the PrintOut Method
To print an item, use the PrintOut method. This method takes no arguments. The following

example prints the item with the index number 1 in the Inbox:

Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderInbox) _

 .Items(1).PrintOut

Using the Save Method
To save an item, use the Save method. This method takes no arguments. The following example

creates a new task; assigns it a subject, start date (today), and due date (a week from today);

turns off the reminder for the task; and then saves it:

Dim myTask As TaskItem

Set myTask = Application.CreateItem(ItemType:=olTaskItem)

With myTask

 .Subject = “Arrange Review Meeting”

 .StartDate = Date

 .DueDate = Date + 7

 .ReminderSet = False

 .Save

End With

This item will appear in the ToDo list of the MyTasks section of your Outlook Tasks.

Using the SaveAs Method
To save an item as a separate fi le, use the SaveAs method. The syntax is as follows:

expression.SaveAs(Path, Type)

Here, expression is a required expression that returns the object to be saved. Path is a required

String argument that specifi es the path and fi lename under which to save the fi le. Type is an

optional Variant argument that you can use to control the fi le type used for the fi le, as shown in

Table 26.1.

Table 26.1: Type arguments for the SaveAs method

Argument Type of File

olHTML HTML fi le

olMSG Outlook message format (.msg fi lename extension)

olRTF Rich Text format

olTemplate Template

WORKING WITH MESSAGES | 709

Argument Type of File

olDoc Word document format (email messages using WordMail)

olTXT Text fi le

olVCal vCal fi le

olVCard vCard fi le

olICal iCal fi le

olMSGUnicode Outlook Unicode message format (.msg fi lename extension)

The following example saves the message open in the active inspector. So before testing this

example, be sure that a message has been double-clicked and is thus open in its own window

separate from the main Outlook window. Remember that code involving the active inspector

requires that an inspector be currently open. See the warning, and a way to error-trap this, ear-

lier in this chapter in the section titled “Working with the Active Inspector.”

If the IsWordMail property of the ActiveInspector object returns True, the example saves

the message as a .doc fi le; if the IsWordMail property returns False, the example saves the

message as an .rtf fi le. If no inspector window is active, the example displays a message box

pointing out the problem to the user:

If TypeName(ActiveInspector) = “Nothing” Then

 MsgBox “This macro cannot run because “ & _

 “there is no active window.”, vbOKOnly, “Macro Cannot Run”

 End

Else

 If ActiveInspector.IsWordMail Then

 ActiveInspector.CurrentItem.SaveAs “c:\keep\message.doc”

 Else

 ActiveInspector.CurrentItem.SaveAs “c:\keep\message.rtf”

 End If

End If

Working with Messages
If you or your colleagues use Outlook’s email capabilities extensively, you may be able to save

time by programming Outlook to create or process messages automatically. The following sec-

tions show you how to create a new message, work with its contents, add an attachment, and

send the message.

Table 26.1: Type arguments for the SaveAs method (continued)

710 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Creating a New Message
To create a new message, use the CreateItem method of the Application object and specify

olMailItem for the ItemType argument. The following example creates a MailItem object vari-

able named myMessage and assigns to it a new message:

Dim myMessage As MailItem

Set myMessage = Application.CreateItem(ItemType:=olMailItem)

Working with the Contents of a Message
To work with the contents of a message, set or get the appropriate properties. These are the most

widely useful properties:

 ◆ To is the recipient or recipients of the message.

 ◆ CC is the recipient or recipients of copies of the message.

 ◆ BCC is the recipient or recipients of blind copies of the message.

 ◆ Subject is the subject line of the message.

 ◆ Body is the body text of the message.

 ◆ BodyFormat is the message’s formatting type: olFormatPlain for text only,

olFormatRichText for text with formatting, and olFormatHTML for HTML formatting.

 ◆ Importance is the relative importance of the message. Set it to olImportanceHigh,

olImportanceNormal, or olImportanceLow.

The following example creates a new message item and assigns it to the object variable

myMessage. It then adds an addressee, a subject, and body text; applies the HTML format; sets

the importance to high; and sends the message:

Dim myMessage As MailItem

Set myMessage = Application.CreateItem(ItemType:=olMailItem)

With myMessage

 .To = “petra_smith@ourbigcompany.com”

 .Subject = “Preparation for Review”

 .Body = “Please drop by tomorrow and spend a few minutes” _

 & “ discussing the materials we need for Darla’s review.”

 .BodyFormat = olFormatHTML

 .Importance = olImportanceHigh

 .Send

End With

When this message, shown in Figure 26.3, arrives at Petra’s machine, Outlook 2013 briefl y

displays it in the upper-right corner:

Figure 26.3

A portion of a

message of high

importance is

briefl y displayed in

Outlook.

mailto:smith@ourbigcompany.com%E2%80%9D

WORKING WITH MESSAGES | 711

Adding an Attachment to a Message
To add an attachment to a message, use the Add method with the Attachments collection, which

you return by using the Attachments property of the MailItem object. The syntax is as follows:

expression.Add(Source, Type, Position, DisplayName)

Here are the components of the syntax:

 ◆ expression is a required expression that returns an Attachments collection.

 ◆ Source is a required String argument that specifi es the path and fi lename of the

attachment.

 ◆ Type is an optional String argument that you can use to specify the type of attachment.

 ◆ Position is an optional String argument that you can use with rich-text messages to spec-

ify the character at which the attachment is positioned in the text. Use character 0 to hide

the attachment, 1 to position the attachment at the beginning of the message, or a higher

value to position the attachment at the specifi ed character position. To position the attach-

ment at the end of the message, use a number higher than the number of characters in the

message.

 ◆ DisplayName is an optional String argument that you can specify to control the name dis-

played for the attachment in the message.

The following example attaches to the message referenced by the object variable myMessage

the fi le Corporate Downsizing.pptm stored in the folder Y:\Sample Documents, positioning

the attachment at the beginning of the message and setting its display name to Downsizing

Presentation:

myMessage.Attachments.Add _

 Source:=“Y:\Sample Documents\Corporate Downsizing.pptm”, _

 Position:=1, DisplayName:=“Downsizing Presentation”

To test this, insert this code into the example code from the previous section (“Working with

the Contents of a Message”), like this:

Dim myMessage As MailItem

Set myMessage = Application.CreateItem(ItemType:=olMailItem)

myMessage.Attachments.Add _

 Source:=“Y:\Sample Documents\Corporate Downsizing.pptm”, _

 Position:=1, DisplayName:=“Downsizing Presentation”

With myMessage

 .To = “petra_smith@ourbigcompany.com”

 .Subject = “Preparation for Review”

 .Body = “Please drop by tomorrow and spend a few minutes” _

 & “ discussing the materials we need for Darla’s review.”

 .BodyFormat = olFormatHTML

 .Importance = olImportanceHigh

 .Send

End With

mailto:smith@ourbigcompany.com%E2%80%9D

712 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Sending a Message
To send a message, use the Send method. This method takes no arguments. The following exam-

ple sends the message referenced by the object variable myMessage:

myMessage.Send

Multiple Sends

Th e Send method applies to the AppointmentItem, MeetingItem, and TaskItem objects as well

as to the MailItem object.

To check whether a message has been sent, check its Sent property. This Boolean property

returns True if the message has been sent and False if it has not.

Working with Calendar Items
If you create or receive many calendar items, you may be able to save time or streamline your

scheduling by using VBA. The following sections show you how to create a calendar item and

work with its contents.

Creating a New Calendar Item
To create a new calendar item, use the CreateItem method of the Application object and

specify olAppointmentItem for the ItemType argument. The following example creates an

AppointmentItem object variable named myAppointment and assigns to it a new appointment item:

Dim myAppointment As AppointmentItem

Set myAppointment = Application.CreateItem(ItemType:=olAppointmentItem)

Working with the Contents of a Calendar Item
To work with the contents of a calendar item, set or get the appropriate properties. These are the

most widely useful properties:

 ◆ Subject is the subject of the appointment.

 ◆ Body is the body text of the appointment.

 ◆ Start is the start time of the appointment.

 ◆ End is the end time of the appointment.

 ◆ BusyStatus is your status during the appointment: olBusy, olFree, olOutOfOffice, or

olTentative.

 ◆ Categories is the category or categories assigned to the item.

 ◆ ReminderSet determines whether the appointment has a reminder (True) or not (False).

 ◆ ReminderMinutesBeforeStart is the number of minutes before the event that the

reminder should occur.

WORKING WITH TASKS AND TASK REQUESTS | 713

The following example creates a new AppointmentItem object and assigns it to the object

variable myAppointment. It then sets the subject, body, start date (2:30 p.m. on the day seven days

after the present date), and end date (one hour after the start); marks the time as busy; assigns

the Personal category; sets a reminder 30 minutes before the appointment; and saves the

appointment:

Dim myAppointment As AppointmentItem

Set myAppointment = Application.CreateItem(ItemType:=olAppointmentItem)

With myAppointment

 .Subject = “Dentist”

 .Body = “Dr. Schmitt “ & vbCr & “4436 Acacia Blvd.”

 .Start = Str(Date + 7) & “ 2.30 PM”

 .End = Str(Date + 7) & “ 3.30 PM”

 .BusyStatus = olBusy

 .Categories = “Personal”

 .ReminderMinutesBeforeStart = 30

 .ReminderSet = True

 .Save

End With

The AppointmentItem object has a grand total of 71 properties. If you want to explore more

of them, take a look at this MSDN web page:

http://msdn.microsoft.com/en-us/library/office/jj900814.aspx

Allowing Users to Manually Assign Categories

Assigning categories to an item programmatically can be diffi cult, especially because many users

create custom categories or assign categories in an idiosyncratic manner. In many cases, it’s better

to allow each user to assign their preferred categories manually by displaying the Categories dialog

box at the appropriate point in your procedure. You can do so by using the ShowCategoriesDialog

method of the item—for example, myAppointment.ShowCategoriesDialog for an item refer-

enced by the object variable myAppointment.

Working with Tasks and Task Requests
VBA can automate tasks and task requests. The following sections show you how to create a

task, work with the contents of a task item, and send a task request.

Creating a Task
To create a new task item, use the CreateItem method of the Application object and specify

olTaskItem for the ItemType argument. The following example creates a TaskItem object vari-

able named myTask and assigns to it a new task item:

Dim myTask As TaskItem

Set myTask = Application.CreateItem(ItemType:=olTaskItem)

http://msdn.microsoft.com/en-us/library/office/jj900814.aspx

714 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

Working with the Contents of a Task Item
To work with the contents of a task item, set or get the appropriate properties. These are the

most widely useful properties:

 ◆ Subject is the subject of the task.

 ◆ Body is the body text of the task.

 ◆ Start is the start time of the task.

 ◆ DueDate is the due date of the task.

 ◆ Importance is the importance of the task. Set it to olImportanceHigh,

olImportanceNormal, or olImportanceLow.

 ◆ Status is the status of the task: olTaskNotStarted, olTaskWaiting, olTaskDeferred,

olTaskInProgress, or olTaskComplete.

 ◆ PercentComplete is the percentage of the task completed.

 ◆ Companies is the companies associated with the task.

 ◆ BillingInformation is the company or department to bill for the task.

The following example creates a TaskItem object variable named myTask and assigns to it a

new task item. It then sets the subject and body of the task, specifi es a due date, sets the status to

olTaskInProgress and the percentage complete to 10, specifi es the company involved and who

to bill, sets the importance to High, and then saves the task:

Dim myTask As TaskItem

Set myTask = Application.CreateItem(ItemType:=olTaskItem)

With myTask

 .Subject = “Create a business plan”

 .Body = “The business plan must cover the next four years.” & _

 vbCr & vbCr & “It must provide a detailed budget, “ & _

 “staffing projections, and a cost/benefit analysis.”

 .DueDate = Str(Date + 28)

 .Status = olTaskInProgress

 .PercentComplete = 10

 .Companies = “Acme Polyglot Industrialists”

 .BillingInformation = “Sales & Marketing”

 .Importance = olImportanceHigh

 .Save

End With

The TaskItem object has 69 properties. If you want to explore more of them, take a look at

this MSDN web page:

http://msdn.microsoft.com/en-us/library/office/jj871952.aspx

http://msdn.microsoft.com/en-us/library/office/jj871952.aspx

SEARCHING FOR ITEMS | 715

Assigning a Task to a Colleague
To assign a task to a colleague, use the Assign method of the TaskItem object, and then use the

Add method of the Recipients collection to add one or more recipients. Finally, you can use the

Send method to send the task to your colleague.

The following example creates a task, uses the Assign method to indicate that it will be

assigned, specifi es a recipient, and sends the task:

Dim myTaskAssignment As TaskItem

Set myTaskAssignment = Application.CreateItem(ItemType:=olTaskItem)

With myTaskAssignment

 .Assign

 .Recipients.Add Name:=“Peter Nagelly”

 .Subject = “Buy Bagels for Dress-Down/Eat-Up Day”

 .Body = “It’s your turn to get the bagels on Friday.”

 .Body = .Body & vbCr & vbCr & “Remember: No donuts AT ALL.”

 .DueDate = Str(Date + 3)

 .Send

End With

Searching for Items
To search for items, use the AdvancedSearch method of the Application object. The syntax is as

follows:

expression.AdvancedSearch(Scope, Filter, SearchSubFolders, Tag)

Here are the components of the syntax:

 ◆ expression is a required expression that returns an Application object.

 ◆ Scope is a required String argument that specifi es the scope of the search (which items

to search). Usually you’ll search a particular folder. For example, you might search the

Inbox for messages that match certain criteria, or you might search the Tasks folder for

particular tasks.

 ◆ Filter is an optional String argument that specifi es the search fi lter. While this argument

is optional, you will need to use it unless you want to return all the items within the scope

you’ve specifi ed.

 ◆ SearchSubFolders is an optional Variant argument that you can set to True to search

through any subfolders of the folder specifi ed by the Scope argument, or False to search

only the specifi ed folder. The default is False.

 ◆ Tag is an optional Variant argument that you can use to specify a name for the search

you’re defi ning. If you create a name, you can call the search again.

716 | CHAPTER 26 UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS

The following example searches the Inbox (Scope: = “Inbox “) for messages with the sub-

ject line containing Offi ce. If any messages are found, the procedure produces a list of sender

names, which it assigns to the String variable strMessages and displays in a message box.

Note that at the time of this writing, there appears to be a timing bug in the advanced search

feature. If you press F5 to execute the following code, no search hits are found. However, if you

press F8 repeatedly to step through the code, it works as expected and hits are found.

I’m including this code because it should work. If you fi nd a way to insert an effective delay or

otherwise fi x the problem, please email me at my address in the introduction to this book. Or

perhaps by the time this book is published Microsoft will have fi xed it.

Sub Sample_Advanced_Search()

 Dim mySearch As Search

 Dim myResults As Results

 Dim intCounter As Integer

 Dim strMessages As String

 Dim intTotal As Integer

Dim strFilter As String

strFilter = Chr(34) & “urn:schemas:httpmail:subject” & Chr(34) & “ like ‘%Office%’”

 Set mySearch = AdvancedSearch(Scope:=”Inbox”, filter:=strFilter)

 Set myResults = mySearch.Results

 intTotal = myResults.Count

 For intCounter = 1 To intTotal

 strMessages = strMessages & _

 myResults.Item(intCounter).SenderName & vbCr

 Next intCounter

 MsgBox strMessages, vbOKOnly, “Search Results”

End Sub

You Can Execute Searches Simultaneously, But Should You?

If necessary, you can run two or more searches at the same time. To do so, use the AdvancedSearch

method in successive lines of code. Actually, you can run up to 100 searches at the same time, but

doing so puts a considerable load on your computer and may make it run slowly or appear to stop

responding.

THE BOTTOM LINE | 717

Th e Bottom Line

Work with the Application object. VBA uses two major Outlook objects that most users

wouldn’t recognize from working with the Outlook user interface alone.

Master It One of these objects represents a window that displays the contents of a fold-

er. The other represents a window displaying an Outlook item, such as an email message

or an appointment. What are the names of these two objects?

Work with messages. To work with the contents of a message in VBA, you set or get vari-

ous properties.

Master It Name one of the most widely useful properties employed when manipulating

the contents of a message in a procedure.

Work with calendar items. You can create new calendar appointment items via VBA.

Master It To create a new calendar item, you use a particular method of the

Application object and specify olAppointmentItem for the ItemType argument. What is

the method?

Work with tasks and task requests. You can assign a task to a colleague and then add one

or more recipients. You can then send the task to your colleague and, optionally, the addi-

tional recipients.

Master It What methods do you use to assign, add, and send a task to others?

c27.indd 10:58:34:AM 07/26/2013 Page 719

Chapter 27

Working with Events in Outlook

If you want to automate the way that Outlook works, you may sometimes need to write code

that responds to Outlook events. Outlook has two classes of events, application-level events and

item-level events, and between them, they enable you to write code that responds to most any-

thing that happens in Outlook. In this chapter, you will learn how to work with both types of

events, and you will see code examples showing how to manage some of the events.

How Event-Handler Procedures Differ from Ordinary Macros

Both writing and testing an event-handler procedure diff er from the techniques you’ve been employ-

ing throughout this book when creating and testing ordinary macro procedures. If you intend

to test the examples in this chapter, I suggest that you fi rst read the sidebar titled “How to Test

Event-Handler Procedures” later in this chapter.

Th e following points summarize the qualities of event-handler procedures that diff er from ordi-

nary procedures:

 ◆ An event handler must be located within a class module, not in an ordinary macro module.

Th erefore, you’re entering the world of object-oriented programming (OOP). And in spite of

some useful qualities, OOP can sink us programmers into a quagmire of complexity. A complete

example demonstrating how to add an event handler to Outlook and then test it can be found

in the sidebar “How to Test Event-Handler Procedures.”

 ◆ You must declare an object variable.

 ◆ You must initialize the object variable to connect it to an actual object.

 ◆ You then write code in a procedure triggered by the event you’re interested in.

 ◆ You test your code diff erently than you would in ordinary modules. In a class module, you can-

not simply test the event handler by pressing F5 to run it directly. Pressing F5 brings up the

Macro dialog box. Instead you test your code indirectly by triggering the event it’s designed to

service—for example, by modifying a contact in the Contacts folder.

In addition to the events discussed in this chapter, Outlook supports form events such as

those discussed in “Using Events to Control Forms” in Chapter 15, “Creating Complex Forms

Boxes.” However, as is so often the case with Outlook and Access, the folders in Outlook are

somewhat unique and are different from the VBA forms you’ve worked with earlier in this

book. Outlook’s folder/form is described later in this chapter in the sidebar titled “What Is

VBScript?” As you’ll see, you even use a special variation on the VBA language when program-

ming this folder-slash-form.

720 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 720

We’ll conclude this chapter with a brief look at Outlook’s Quick Steps feature. For those who

don’t wish to, or can’t, write macros, Quick Steps provides an alternative, if seriously limited,

way to automate some tasks. This tool is similar to Access’s Macro Designer, though even more

simplistic.

In this chapter you will learn to do the following:

 ◆ Create event handlers

 ◆ Work with application-level events

 ◆ Work with item-level events

 ◆ Understand the Quick Steps tool

Working with Application-Level Events
By default, macros are disabled in Outlook 2013. To work with the examples in this chapter, or

to use macros in general, you must select an enabling option in Outlook’s Trust Center. To do so,

follow these steps:

 1. Click the File tab on the Ribbon.

 2. Choose Options in the left pane of the File window.

 3. Click Trust Center in the left pane of the Outlook Options dialog box.

 4. Click the Trust Center Settings button.

 5. Click Macro Settings in the left pane of the Trust Center dialog box.

 6. Now choose one of the two lower options: Notifi cation For All Macros (which gets old

quickly) or Enable All Macros.

Recall that an event is something that happens to an object, such as a click, a mouse drag,

a keystroke, and so on. You can write code in an event (an event procedure, as it’s called) to

respond to the click or other event.

An application-level event is an event that happens to the Outlook application as a whole

rather than to an individual item within it. For example, the Startup event is an application-

level event that occurs when Outlook starts, and the Quit event is an application-level event

that occurs when Outlook closes. By contrast, item-level events represent things that happen to

individual items—for example, the opening of a particular email message or contact record, or a

user’s switching from one folder to another.

The application-level events are easier to access than the item-level events because the

Application object is the topmost object and is always available when Outlook is running.

This means that you don’t have to use an event handler to create the Application object. It just

always exists. You do, however, have to write code to create an object for an item-level event.

To access the application-level events, you use the built-in ThisOutlookSession class mod-

ule. It’s automatically inserted into the VBA Editor. Look in the Project Explorer and expand the

Project1 item that represents the Outlook VBA project, then expand the Microsoft Outlook

Objects item. You now see the ThisOutlookSession item. Double-click it to open a Code win-

dow showing its contents. (If this is the fi rst time you’ve opened the ThisOutlookSession class

module, it will have no contents.)

WORKING WITH APPLICATIONLEVEL EVENTS | 721

c27.indd 10:58:34:AM 07/26/2013 Page 721

Each of the events described in the following sections works with the Application

object. For simplicity, most of the following examples directly use the Outlook Application object

itself, but you could declare an object variable, then use it to return the Application object if

you wish.

Recall that you can fi nd the Application object in the drop-down list on the top left of the

VBA Editor’s Code window. All the events available to the Application object can be selected

from the drop-down list on the top right of the Code window, as shown in Figure 27.1.

Figure 27.1

Th e drop-down

list on the right

shows all the

events available in

the Application

object.

You can select these various events from the drop-down list (causing the editor to type in the

procedure structure for you) or just type the event name yourself as a sub directly in the Code

window. However, if you select from the drop-down list, the VBA Editor will automatically add

any necessary arguments as well. So that’s the easier approach.

Also, if you declare object variables using the WithEvents statement, like this, the Editor’s

drop-down lists will include these objects and their available events:

Public WithEvents myInspectors As Inspectors

Public WithEvents myInspector As Inspector

That can be a useful shortcut while programming because you can view every event available in

an object—and also have the editor type in any necessary arguments. Later in this chapter you’ll

experiment with the Inspectors collection and the Inspector argument.

Using the Startup Event
The Startup event, which takes no arguments, occurs when Outlook starts. In other words,

every time the user starts Outlook, any code you might have written in the Sub Application_

Startup() procedure will automatically execute.

722 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 722

The Startup event is useful for making sure that Outlook is correctly confi gured for the user

to start work. Say that someone always starts off by writing notes, and the fi rst note is always

a reminder about time cards. The following example creates a new NoteItem object (a note),

assigns text to its Body property, and uses the Display item to display it:

Private Sub Application_Startup()

 Dim myNoteItem As NoteItem

 Set myNoteItem = Application.CreateItem(ItemType:=olNoteItem)

 myNoteItem.Body = “Please start a new time card for the day.”

 myNoteItem.Display

End Sub

You can also put the Startup event to good use by writing code with the Set command to

connect an object variable to a real object it is supposed to represent. More on this later in this

chapter, in the section titled “Declaring an Object Variable and Initializing an Event.”

Using the Quit Event
The Quit event occurs when Outlook is shut down. This event is triggered three possible ways:

 ◆ By the user choosing Exit in the File tab of the Ribbon.

 ◆ By the user clicking the red X icon in the upper right of the Outlook window.

 ◆ By the programmer using the Quit method of the Application object in VBA.

By the time that the Quit event fi res (is triggered), all of Outlook’s windows have already

been closed and all global variables have been released, so there’s little left for a programmer to

access via code in this event procedure. One possibility, however, is to display a parting message

to the user, as in the following example, which displays a message on the workday that precedes

a national holiday to remind the user of the holiday:

Private Sub Application_Quit()

 Dim strMessage As String

 Select Case Format(Date, “MM/DD/YYYY”)

 Case “01/18/2013”

 strMessage = “Next Monday is Martin Luther King Day.”

 Case “02/15/2013”

 strMessage = “Next Monday is President’s Day.”

 Case “05/23/2013”

 strMessage = “Next Monday is Memorial Day.”

 Case “07/03/2013”

 strMessage = “Friday is Independence Day.” & _

 “ Monday is a company holiday.”

 Case “08/29/2013”

 strMessage = “Next Monday is Labor Day.”

 ‘other National Holidays here

 End Select

If strMessage = “” Then Exit Sub

WORKING WITH APPLICATIONLEVEL EVENTS | 723

c27.indd 10:58:34:AM 07/26/2013 Page 723

MsgBox strMessage, vbOKCancel + vbExclamation, “Don’t Forget…”

End Sub

Using the ItemSend Event
The ItemSend event occurs when an item is sent, either by the user issuing a Send command (for

example, by clicking the Send button in a message window) or by executing the Send method in

VBA code. The syntax for the ItemSend event is as follows:

Sub expression_ItemSend(ByVal Item As Object, Cancel As Boolean)

Here, expression is a required expression that returns an Application object. Item is a

required argument that specifi es the item that’s being sent. Cancel is an optional Boolean argu-

ment that you can set to False to prevent the item from being sent.

The following example examines the Subject property of the Item object being sent. If the

Subject property is an empty string, the message box prompts the user to add a subject line,

and the Cancel = True statement cancels the sending of the item:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As Boolean)

 If Item.Subject = “” Then

 MsgBox “Please add a subject line to this message before sending it.”

 Cancel = True

 End If

End Sub

Using the NewMail and NewMailEx Events
The NewMail event occurs when one or more new mail items arrives in the Inbox. The NewMail

event can be useful for sorting messages automatically. You can also specify custom rules to sort

messages automatically. The NewMail event takes no arguments.

The following example displays a message box that offers to show the Inbox when new mail

arrives, triggering the NewMail event:

Private Sub Application_NewMail()

 If MsgBox(“You have new mail. Do you want to see your Inbox?”, _

 vbYesNo + vbInformation, ”New Mail Alert”) = vbYes Then

 Application.GetNamespace(“MAPI”).GetDefaultFolder(olFolderInbox).Display

 End If

End Sub

The NewMailEx event is a more complex version of the NewMail event that passes to your code

a list of the items received in the Inbox since that event last fi red. The NewMailEx event passes

this list only for Exchange Server and other mailboxes that provide notifi cation of messages

received. The syntax is as follows:

Sub expression.NewMailEx(EntryIDCollection As String)

Here, expression is a required expression that returns an Application object.

EntryIDCollection is a string that contains the entry IDs of the messages that have been

724 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 724

received. Each entry ID is separated from the next by a comma; if there is a single entry ID, there

is no comma in the EntryIDCollection string.

The following example of a NewMailEx event procedure uses a Do While… Loop loop to sepa-

rate the individual message IDs (by using the InStr function to identify each section of the

EntryIDCollection string, up to the next comma, in turn). Then the code builds a string that

contains introductory text followed by the subject line of each message, one message to a line.

Finally, the procedure displays the string in a message box so that when Outlook receives new

mail, the user receives an executive summary of the subject lines:

Private Sub Application_NewMailEx(ByVal EntryIDCollection As String)

 Dim myMailItem As Object

 Dim intMsgIDStart As Integer, intMsgIDEnd As Integer

 Dim intCutPoint As String, strMailItemID As String, strMailList As String

 intMsgIDStart = 1

 intCutPoint = Len(EntryIDCollection)

 intMsgIDEnd = InStr(intMsgIDStart, EntryIDCollection, “,”)

 strMailList = “You have the following messages:”

 Do While intMsgIDEnd <> 0

 strMailItemID = Strings.Mid(EntryIDCollection, intMsgIDStart, _

 (intMsgIDEnd - intMsgIDStart))

 Set myMailItem = Application.Session.GetItemFromID(strMailItemID)

 strMailList = strMailList & vbCr & myMailItem.Subject

 intMsgIDStart = intMsgIDEnd + 1

 intMsgIDEnd = InStr(intMsgIDStart, EntryIDCollection, “,”)

 Loop

 MsgBox strMailList, vbOKOnly + vbInformation, “Mail Alert”

End Sub

An Alternative to the NewMail Events

Instead of using a NewMail or NewMailEx event, you can use an ItemAdd event with the items in

the Inbox to process each new message that arrives.

Using the AdvancedSearchComplete and the AdvancedSearchStopped
Events
Outlook provides two events for working with advanced searches created using

the AdvancedSearch method. The AdvancedSearchComplete event fi res when the

AdvancedSearch method is run via VBA and fi nishes searching. The AdvancedSearchStopped

WORKING WITH APPLICATIONLEVEL EVENTS | 725

c27.indd 10:58:34:AM 07/26/2013 Page 725

event fi res when the AdvancedSearch method is run via VBA, and is stopped by using the

Stop method of the search.

The syntax for the AdvancedSearchComplete event is as follows:

Private Sub expression_ AdvancedSearchComplete(ByVal SearchObject As Object)

Here, expression is a required expression that returns an Application-type object variable

that has been declared with events in a class module. SearchObject is the Search object that the

AdvancedSearch method returns.

The following example uses the AdvancedSearchComplete event to return the number of

search results that were found by the AdvancedSearch method:

Private Sub Application_AdvancedSearchComplete(ByVal SearchObject As Search)

 MsgBox “The search has finished running and found “ & _

 SearchObject.Results.Count & “ results.”, vbOKOnly + vbInformation, _

 “Advanced Search Complete Event”

End Sub

The following example uses the AdvancedSearchStopped event to inform the user that the

search has been stopped:

Private Sub Application_AdvancedSearchStopped(ByVal SearchObject As Search)

 MsgBox “The search was stopped by a Stop command.”, vbOKOnly

End Sub

Using the MAPILogonComplete Event
The MAPILogonComplete event occurs when the user has successfully logged on to Outlook. You can

use the MAPILogonComplete event to ensure that Outlook is confi gured correctly for the user or sim-

ply to display some information in a message. The MAPILogonComplete event takes no arguments.

The following example of a MAPILogonComplete procedure displays a message about current

trading conditions when the user has successfully logged on to Outlook. The code includes a

commented line indicating where the String variables strPubDownBegin and strPubForecast

would be declared and assigned data in a real-world implementation of this example:

Private Sub Application_MAPILogonComplete()

 Dim strMsg As String

 ‘strPubDowBegin and strPubForecast declared and assigned strings here

 strMsg = “Welcome to the UltraBroker Trading System!” & vbCr & vbCr

 strMsg = strMsg & “Today’s starting value is “ & strPubDowBegin & “.” _

 & vbCr & vbCr

 strMsg = strMsg & “Today’s trading forecast is “ & strPubForecast & “.”

 MsgBox strMsg, vbOKOnly + vbInformation, _

 “UltraBroker Trading System Logon Greeting”

End Sub

726 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 726

Using the Reminder Event
The Reminder event fi res immediately before the reminder for a meeting, task, or appoint-

ment is displayed to the user. You can use the Reminder event to take an action related to the

reminder. Because the reminder itself is usually adequate for reminding the user of the meeting,

task, or appointment, the Reminder event tends to be more useful when accessing Outlook pro-

grammatically than when a user is working interactively with Outlook. The syntax is as follows:

Sub expression_Reminder(ByVal Item As Object)

Here, expression is a required expression that returns an Application object, and Item is

the AppointmentItem, MailItem, ContactItem, or TaskItem object associated with the reminder.

Using the OptionsPagesAdd Event
The OptionsPagesAdd event occurs when either the Options dialog box (Tools ➢ Options) or

the Properties dialog box for a folder, such as the Inbox, is opened. (To open the Properties dia-

log box for a folder, right-click the folder, and then choose Properties from the context menu.)

You can use this event to add a custom page (which is contained in a COM [Component Object

Model] add-in that you have created) to the Options dialog box or the Properties dialog box. The

syntax for the OptionsPagesAdd event is as follows:

Sub expression_OptionsPagesAdd(ByVal Pages As PropertyPages, _

 ByVal Folder As MAPIFolder)

Here, expression is a required expression that returns an Application object or a

NameSpace object. Pages is a required argument that gives the collection of custom property

pages added to the dialog box. Folder is a required argument used when expression returns a

MAPIFolder object. Folder returns the MAPIFolder object for which the Properties dialog box is

being opened.

Working with Item-Level Events
In addition to the application-level events discussed so far, Outlook supports a wide variety of

item-level events—events that fi re when specifi c items are manipulated, as opposed to events

related to Outlook as a whole.

You can handle item-level events in Outlook in two ways:

 ◆ By declaring an event in a class module and running an initialization procedure so that

VBA then traps the event when it fi res. This chapter takes this approach.

 ◆ By creating Visual Basic Script (VBScript) code and placing it in a “custom form” used by

the item. Custom forms are not to be confused with the UserForms we’ve been working

with in the VBA Editor throughout this book. You create a custom form in Outlook by

clicking the Developer tab on the Ribbon, then choosing options displayed on the Custom

Forms section of the Ribbon.

WORKING WITH ITEMLEVEL EVENTS | 727

c27.indd 10:58:34:AM 07/26/2013 Page 727

What Is VBScript?

Script versions of computer languages were originally designed to execute when a user visits a web

page. So these languages are supposed to contain fewer capabilities than ordinary languages. For

example, VBScript doesn’t have a command that deletes a folder in Outlook, whereas VBA does

(FolderRemove). Why? You don’t want Outlook folders being deleted—or to trigger similar damag-

ing actions—just because you simply opened a malicious web page in your browser.

Although the original intent was that script languages would be lightweight, Web-oriented versions

of their parent languages, as always seems to happen with mission creep, they have changed over

time to perform various tasks and to have a variety of implementations. Th is sort of corruption

is typical in computer software: there are many versions of “standards” like XML, HTML, and the

like. Th ey start out with the intention to be uniform across platforms, to be governed by certain

laws, and so on. Th en they deconstruct. It reminds you of Mae West’s famous remark: “I used to

be Snow White, but I drifted.”

In spite of VBScript’s limitations, you might want to employ it for one specialized job in Outlook:

sharing items with others. VBScript code is contained within its custom form, so you can send it

to other people. You can’t directly export VBA to others inside items you share.

If you’re interested in pursuing Outlook’s Custom Forms and the VBScript that drives them, consult

the useful tutorial here:

http://msdn.microsoft.com/en-us/library/office/jj973110.aspx

Declaring an Object Variable and Initializing an Event
Follow these steps to declare an object variable and initialize an event:

 1. Use a class module to contain your object-variable declaration, in one of the following

three ways:

 ◆ Use the built-in ThisOutlookSession module. In the Project Explorer, expand the

project name (it’s in boldface and by default is named Project1). Expand the Microsoft

Outlook Objects item, and double-click the ThisOutlookSession item to open its

Code window.

 ◆ Create a new class module by right-clicking the project name in the Project Explorer

and choosing Insert ➢ Class Module from the context menu. The VBA Editor auto-

matically opens a Code window for the class.

 ◆ If there is one, you can open an existing class module by double-clicking it in the

Project Explorer.

 2. In the declarations area at the beginning of your class module (at the top of the Code

window), declare a variable to represent the object to which the event applies. Use the

WithEvents keyword to specify that this object has events. The following example creates

a public variable named myPublicContactItem:

Public WithEvents myPublicContactItem As ContactItem

http://msdn.microsoft.com/en-us/library/office/jj973110.aspx

728 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 728

 3. Initialize the object variable by setting it to represent the appropriate object. The follow-

ing example sets our myPublicContactItem variable to represent the fi rst item in the

default contacts folder:

Set myPublicContactItem = Application.GetNamespace(“MAPI”) _

 .GetDefaultFolder(olFolderContacts).Items(1)

Once you’ve initialized the object variable, the procedure will run after the event fi res.

You can initialize the object variable manually if necessary, and you may fi nd it convenient

to do so when you’re writing and testing code to handle events. But if you need to handle the

event each time Outlook runs—if you want to make the macro a permanent part of your macro

collection—it’s obviously best to run the code to initialize the object variable automatically. For

example, you might use the Startup event of the Application object (discussed in “Using the

Startup Event,” earlier in this chapter) to run event-handling initialization code automatically

each time Outlook starts. In other words,

Private Sub Application_Startup()

Set myPublicContactItem = Application.GetNamespace(“MAPI”) _

 .GetDefaultFolder(olFolderContacts).Items(1)

End Sub

Understanding the Events Th at Apply to All Message Items
Table 27.1 lists the common message events. I’m using the term message here to refer to the

AppointmentItem, MailItem, ContactItem, and TaskItem objects. In other words, Table 27.1

lists the most common events that are available to these four objects.

But be aware that there are additional “item” objects in Outlook, such as the DocumentItem,

DistListItem, JournalItem, MeetingItem, and so on. To view these various items, and see

descriptions of their events, visit this web page:

http://msdn.microsoft.com/en-us/library/office/ff866465.aspx

Also note that although Table 27.1 describes 16 common events, each of the “item” objects

actually has 26 events. As an example, the complete list of events for the MailItem object in

Outlook 2013 is provided on this web page:

http://msdn.microsoft.com/en-us/library/office/jj900958.aspx)

Table 27.1: Common item-level events

Event Event Occurs

AttachmentAdd After an attachment is added to the item

AttachmentRead When the user opens an email attachment for reading

BeforeAttachmentSave When the user chooses to save an attachment but before the command is

executed

http://msdn.microsoft.com/en-us/library/office/ff866465.aspx
http://msdn.microsoft.com/en-us/library/office/jj900958.aspx

WORKING WITH ITEMLEVEL EVENTS | 729

c27.indd 10:58:34:AM 07/26/2013 Page 729

Event Event Occurs

BeforeCheckNames Before Outlook checks the names of the recipients of an item being sent

BeforeDelete Before an item is deleted

Close When an inspector is being closed but before the closing occurs

CustomAction When the custom action of an item is executed

CustomPropertyChange When a custom property of an item is changed

Forward When the user forwards an item

Open When an item is opened in an inspector

PropertyChange When a standard property (as opposed to a custom property) in the item is

changed

Read When an item is opened for editing in an inspector window or is selected for

editing in-cell

Reply When the user issues a Reply command for an item

ReplyAll When the user issues a Reply All command

Send When a Send command has been issued but before the item is sent

Write When an item is saved, either explicitly by the user or implicitly by Outlook

Note that the Close event applies to the Inspector object and the Explorer object as well as

to the objects just mentioned.

The events that fi re before an action occurs allow you to cancel the action, preventing it

from happening at all. The syntax for these events uses a Boolean argument named Cancel

that you can set to True to prevent the action from taking place. For example, the syntax for the

BeforeDelete event is as follows:

Sub expression_BeforeDelete(ByVal Item As Object, Cancel As Boolean)

Here, expression is a required expression that returns one of the message items to which the

event applies (for example, a TaskItem object). The following example uses the BeforeDelete

event to see if the TaskItem object that’s open in an inspector is marked as complete when the

user tries to delete it. If the task is not marked as complete, a message box prompts the user

to complete the task, and the example then sets the Cancel argument to True to prevent the

deletion:

Private Sub myTaskItem_BeforeDelete(ByVal Item As Object, Cancel As Boolean)

 If myTaskItem.Complete = False Then

 MsgBox “Please complete the task before deleting it.”, _

Table 27.1: Common item-level events (continued)

730 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 730

 vbOKOnly + vbExclamation, “Task Is Incomplete”

 Cancel = True

 End If

End Sub

The Difference between the READ and OPEN Events

Th e Read event and the Open event both occur when the user opens an existing item for editing.

Th e diff erence between the two events is that the Open event occurs only when the item is being

opened in an inspector window, whereas the Read event occurs both when the item is being opened

in an inspector window and also when it is being selected for editing in a cell.

Understanding the Events Th at Apply to Explorers, Inspectors,
and Views
Table 27.2 lists the events that apply to explorers, inspectors, and views. Some events apply to

both explorers and inspectors.

Table 27.2: Events that apply to explorers, inspectors, or views

Event Applies To Event Occurs

BeforeFolderSwitch Explorer Before the explorer displays a new folder

BeforeItemCopy Explorer When the user issues a Copy command but before the

Copy operation takes place

BeforeItemCut Explorer When an item is cut from a folder

BeforeItemPaste Explorer Before an item is pasted

BeforeViewSwitch Explorer Before the view changes in the Outlook window

Close Explorer,

Inspector

When an explorer is closing

FolderSwitch Explorer After an explorer displays a new folder

SelectionChange Explorer When the focus is moved to a diff erent item in

a folder, or when Outlook selects the fi rst item in a

folder when the user selects that folder

AttachmentSelectionChange Explorer,

Inspector

When a new or diff erent attachment is selected

ViewSwitch Explorer When the view changes in the explorer window

Activate Explorer,

Inspector

When an explorer window or an inspector window is

activated (becomes the active window)

WORKING WITH ITEMLEVEL EVENTS | 731

c27.indd 10:58:34:AM 07/26/2013 Page 731

Event Applies To Event Occurs

Deactivate Explorer,

Inspector

When an explorer window or an inspector window is

deactivated (stops being the active window)

BeforeMaximize Explorer,

Inspector

When the user maximizes the explorer or inspector

but before maximization takes place

BeforeMinimize Explorer,

Inspector

When the user minimizes the explorer or inspector

but before minimization takes place

BeforeMove Explorer,

Inspector

When the user moves an explorer window or an

inspector window but before the action takes place

BeforeSize Explorer,

Inspector

When the user resizes the explorer window or inspec-

tor window but before the resizing takes place

PageChange Inspector When the active form page changes

InlineResponse Explorer When an inline response appears in the reading pane

InlineResponseClose Explorer When an inline response in the reading pane closes

NewExplorer Explorers When a new explorer window is opened

NewInspector Inspectors When a new inspector window is opened

ViewAdd Views When a view is added to the Views collection

ViewRemove Views When a view is removed from the Views collection

If you work on a small screen (for example, a laptop screen), you might prefer to use the

NewInspector event to maximize each inspector window you open and to hide any toolbars you

don’t need. The fi rst procedure in the following example (which includes the necessary declarations)

uses the NewInspector event to make sure the Standard toolbar is displayed, hide the Advanced

toolbar, and assign the Inspector object representing the new inspector to the Public object vari-

able myInspector. The second procedure uses the Activate event of the myInspector object to

maximize its window by setting the WindowState property to olMaximized.

The net effect of these two event procedures is to confi gure the toolbars as described earlier

and maximize the inspector window. Put more simply, if you, for example, double-click an email,

it opens in a new window. That windows is the “inspector” object. The Activate event procedure

is necessary because the NewInspector event runs before the inspector window is displayed,

which means the NewInspector event procedure cannot maximize the inspector window.

Public WithEvents myInspectors As Inspectors

Public WithEvents myInspector As Inspector

Private Sub myInspectors_NewInspector(ByVal Inspector As Outlook.Inspector)

 With Inspector

Table 27.2: Events that apply to explorers, inspectors, or views (continued)

732 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 732

 With .CommandBars

 .Item(”Standard”).Visible = True

 .Item(”Advanced”).Visible = False

 End With

 Set myInspector = Inspector

 End With

End Sub

Private Sub myInspector_Activate()

 myInspector.WindowState = olMaximized

End Sub

How to Test Event-Handler Procedures

You don’t test event handlers the same way that you test ordinary VBA modules. In an ordinary

module, you click to put the blinking insertion cursor inside the macro you want to execute, then

press F5 to execute that procedure.

In a class module, by contrast, pressing F5 merely opens the Macros dialog box rather than directly

running the code.

If you are confused about where to put handler code, and how to test it, don’t be discouraged. An

event handler must be put into a class module. And whenever you use classes, you’re venturing

into OOP. OOP, whatever its merits, always adds a layer of complexity for the programmer. So, let’s

briefl y review this topic so you’ll see how to write, then test, event handlers.

In this next example, you want to respond to any changes the user might make to one of the user’s

contacts. In other words, you need to write some code in the ItemChange event of the Contacts

folder. Perhaps you want your code to alert the user that they need to make further changes. Or

that they need to send this new information to their assistant. Whatever the reason, your purpose

is to write code that executes when a Contact item changes—when the user modifi es a contact,

then clicks the Save button, thereby triggering the ItemChange event.

“Handling” an event (writing your own code that executes when an event takes place) requires

that you take three steps:

 1. Create an object variable—using the WithEvents command—that will represent the object

whose event you want to handle. Where does this code go? At the top of a class module in the

General Declarations section above any subs. Outlook has that special built-in class module named

ThisOutlookSession. So instead of creating a new class module, let’s keep things simple and

just use the existing ThisOutlookSession class module to declare our object variable.

 2. Point or connect (Set) your new object variable to the actual object whose event you want

to handle. In our example, we want to handle the Items collection of Outlook’s Contacts folder.

Where does this code go? It could be put into a macro. Or, because we want to have this connec-

tion made automatically, let’s put it in Outlook’s startup event. Th at way the connection is made

whenever the user runs Outlook. Remember that the various Offi ce applications have specially

reserved names: if you name a procedure in Word AutoExec, for example, its code executes when

you start Word. If you name a procedure Application_Startup in Outlook, that’s the equivalent

of Word’s AutoExec.

WORKING WITH ITEMLEVEL EVENTS | 733

c27.indd 10:58:34:AM 07/26/2013 Page 733

 3. Write the event-handler code—the actions you want taken when this event occurs. Where

does this code go? In the same class module where you declared the object variables (step 1, above).

Th ere are other ways to handle events, but this is a straightforward example. To keep it simple, we’ll

put the code for all three steps in Outlook’s built-in ThisOutlookSession class module. Now let’s

follow the preceding steps, only this time we’ll insert the actual code:

 1. First open Outlook’s VBA Editor by pressing Alt+F11. Expand Project1 in the project window until

you see the Th isOutlookSession class module (under Microsoft Outlook Objects). Double-click

Th isOutlookSession to open its code window.

 2. At the top of the Th isOutlookSession Code window, type the object variable’s declaration:

Public WithEvents objContacts As Items

 3. Now, in the Application Startup event, we’ll write code that connects the object variable to the

real Outlook object we’re interested in: the Items collection of the Contacts folder:

Private Sub Application_Startup()

 Set objContacts = Application.GetNamespace(“MAPI”) _

 .GetDefaultFolder(olFolderContacts).Items

End Sub

 4. Finally, we’ll write the event-handler code that does the job we want done. Th is code also goes in

the Th isOutlookSession module:

Private Sub objContacts_ItemChange(ByVal Item As Object)

 MsgBox “This Contact Item Has Been Changed”

End Sub

Now to test this event handler. In Outlook, open your Contacts folder. In Outlook 2013 this folder

is named People and is found in the lower-left corner next to the Mail and the Calendar links.

Double-click some random contact and type something in the Notes fi eld, then click the Save but-

ton. Th is should cause your event-handler code to execute, displaying a message box telling you

that the contact info has changed.

I’m not going to pretend that any of this is easy. Although OOP has its merits, writing code employ-

ing OOP rules can be a real wrestling match. Complexities involving diction, punctuation, reference,

scope, precedence, and other issues will often draw you into a world of multiplying interactions—

leading to unpredictable and perplexing test-code-retest cycles. Your best bet when working with

class modules is to try to fi nd working example code online that’s close to what you’re trying to

accomplish, then modify it to suit your purposes.

734 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 734

Understanding the Events Th at Apply to Folders
Outlook provides three events (see Table 27.3) that apply to folders.

Table 27.3: Events that apply to folders

Event Event Occurs

FolderAdd When a folder is added to the specifi ed Folders collection

FolderChange When a folder in the specifi ed Folders collection is changed

FolderRemove When a folder is removed from the specifi ed Folders collection

Understanding the Events Th at Apply to Items and Results
Table 27.4 lists the events that apply to items and results.

Table 27.4: Events that apply to items and results

Event Event Occurs

ItemAdd When one or more items are added to the collection but not when many items are

added all at once

ItemChange When an item in the Items collection or the Results collection is changed

ItemRemove When an item is deleted from the Items collection or the Results collection but not

when 16 or more items are deleted at once from a Personal Folders fi le, an Exchange

mailbox, or an Exchange public folder; also not when the last item in a Personal

Folders fi le is deleted

The example in the sidebar “How to Test Event-Handler Procedures” earlier in this chapter

employs the ItemChange event to monitor when any contact is changed in the Contacts folder.

Understanding the Events Th at Apply to Reminders
Table 27.5 explains the events that Outlook provides for reminders. You can use these events

to take actions when a reminder fi res, before the reminder dialog box appears, when the user

clicks the Snooze button to dismiss a reminder, or when reminders are added, changed,

or removed.

Table 27.5: Events that apply to reminders

Event Event Occurs

BeforeReminderShow Before Outlook displays the Reminder dialog box

ReminderAdd When a reminder is added

WORKING WITH ITEMLEVEL EVENTS | 735

c27.indd 10:58:34:AM 07/26/2013 Page 735

Event Event Occurs

ReminderChange After a reminder has been changed

ReminderFire Before a reminder is executed

ReminderRemove When a reminder is removed from the Reminders collection

Snooze When the user dismisses a reminder by clicking the Snooze button

Understanding the Events Th at Apply to Synchronization
If you write procedures to synchronize Outlook, you may need to use the three events that

apply to the SyncObject object, which represents a Send/Receive group for a user. (You can

access the SyncObject object by using the SyncObjects property of the NameSpace object to

return the SyncObjects collection.) Table 27.6 explains the events that apply to the SyncObject

object.

Table 27.6: Events that apply to the SyncObject object

Event Event Occurs

SyncStart When Outlook starts synchronizing a user’s folders

Progress Triggers periodically during the synchronization of Outlook folders

SyncEnd After synchronization ends

OnError When an error occurs during synchronization

The following example uses the OnError event with the object variable mySyncObject. If an

error occurs during synchronization of the SyncObject represented by mySyncObject, the pro-

cedure displays an error message giving the error code and description:

Private Sub mySyncObject_OnError(ByVal Code As Long, _

 ByVal Description As String)

 Dim strMessage As String

 strMessage = “An error occurred during synchronization:” & vbCr & vbCr

 strMessage = strMessage & “Error code: “ & Code & vbCr

 strMessage = strMessage & “Error description: “ & Description

 MsgBox strMessage, vbOKOnly + vbExclamation, “Synchronization Error”

End Sub

Table 27.5: Events that apply to reminders (continued)

736 | CHAPTER 27 WORKING WITH EVENTS IN OUTLOOK

c27.indd 10:58:34:AM 07/26/2013 Page 736

Understanding Quick Steps
A Quick Steps feature allows non-programmers to combine actions in Outlook without having

to record a macro (Outlook has no recorder anyway) or write a procedure using VBA.

While looking at the Mail page in Outlook, click the Home button on the Ribbon. You’ll see

the Quick Steps area right in the middle of the Ribbon.

The rationale for Quick Steps is the same as the rationale for writing or recording macros:

After you’ve specifi ed and saved a set of actions, you need not manually repeat those actions in

the future—you merely run the macro and the behaviors are carried out automatically.

Quick Steps is similar to Access’s Macro Designer: You’re presented with a list of common

actions and you can choose to combine two or more of them into a macro-like little “program.”

And, like a macro, a Quick Steps one-click button saves time by launching the “program” any-

time the user chooses. Non-programmers can build the Quick Steps “programs” out of actions

that they frequently perform—thus saving time.

Although not nearly as fl exible and powerful as writing macros in VBA, for a common task

you might consider seeing if it’s possible to create a Quick Step.

Some sample Quick Steps are already available in the Ribbon, and when you fi rst click them

you’re asked to customize their behavior to suit your way of working. Click, for example, the

MoveTo: ? sample, and the First Time Setup dialog box opens, as shown in Figure 27.2.

Figure 27.2

Experiment with

the sample Quick

Steps to get an idea

how to create and

customize them.

As you see in Figure 27.2, you’re allowed to customize this Quick Step by changing its name,

specifying the target folder, and deciding whether or not to mark it as read. So this little pro-

gram performs two actions at the click of a button. That could be a time-saver if you frequently

store read email in a particular folder. Also notice the Options button where you can further

modify the behavior of this Quick Step. You can add more actions, delete actions, specify

a shortcut key, and write a tooltip.

Quick Steps makes 20 actions available to you, so it’s no competition for the thousands of

things you can do with VBA. Nonetheless, you might want to consider employing the Quick

Steps tool for quick and easy automation of common mail-related tasks in Outlook.

THE BOTTOM LINE | 737

c27.indd 10:58:34:AM 07/26/2013 Page 737

Th e Bottom Line

Work with application-level events. Event handlers are procedures that contain code that

responds to an event. In other words, if a user modifi es one of their contacts, an event can

detect this modifi cation and execute code you’ve written to respond to the modifi cation.

Master It Event-handler procedures are unlike ordinary macro procedures in several

ways. Name one of the differences.

Work with item-level events. Outlook has two primary kinds of events.

Master It What are the two types of events in Outlook? And how do they differ?

c27.indd 10:58:34:AM 07/26/2013 Page 738

Chapter 28

Understanding the Access Object
Model and Key Objects

If you work with Access databases, forms, or reports, you’ll fi nd many opportunities for custom-

izing Access using VBA to streamline your work and that of your colleagues. Depending on the

purposes for which you use Access, you might program Access to automatically extract data sets

you need, to create custom reports on a regular schedule, and to perform many other tasks.

Even if your work in Access consists simply of entering data into databases and checking that

it is correct, you may be able to program VBA to make mundane tasks less onerous. For exam-

ple, you might use VBA to simplify the process of data entry or to validate the data that the user

enters to avoid problems further down the line.

This chapter fi rst shows you how to get started with VBA in Access because Access imple-

ments VBA in a different way from the other applications this book has discussed. You’ll then

come to grips with the Access object model and learn about its most important creatable objects.

After that, the chapter shows you how to open and close databases, set startup properties for a

database, work with the Screen object, and use the DoCmd object to run Access commands.

The next chapter discusses how to manipulate the data in an Access database via VBA.

In this chapter you will learn to do the following:

 ◆ Get started with VBA in Access

 ◆ Understand Access-style macros

 ◆ Open and close databases

 ◆ Work with the Screen object

 ◆ Use the DoCmd object to run Access commands

Getting Started with VBA in Access
Access implements VBA differently than the other Offi ce applications do. Here are the main

differences:

 ◆ Collections in Access are zero-based—the fi rst item in a collection is numbered 0 (zero)

rather than 1. For example, Forms(0).Name returns the Name property of the fi rst Form

object in the Forms collection. Zero-based collections make your job as a programmer more

diffi cult, particularly when employing loops.

 ◆ The term macro is used in a special way in Access, unlike the way it’s used in other Offi ce

applications, not to mention all other forms of computing. An Access “macro” is a historical

740 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

entity—a holdover from the early days of this database system. Some consider the whole

approach rather harebrained because it’s limited to a subset of the available programming

statements, and it’s not nearly as useful or fl exible or effi cient (in most cases) as just writing

VBA code. With an Access macro, you enter a list of actions that you want to perform by

using a special utility—the Macro Designer (formerly known as the Macro Builder)—that’s

built into Access. You choose these actions from a list, then type in arguments in the next

cell in a table displayed by the Macro Designer. So it’s all a bit like fi lling in a form and not

that much like real programming. It’s similar to Outlook’s Quick Steps tool described in

Chapter 27, “Working with Events in Outlook.”

 ◆ Access’s so-called “macros” are created by clicking the Table tab on the Ribbon, clicking

the Named Macros option, and clicking Create Named Macro. From now on we’ll call

these self-styled “macros” Access-style macros, to distinguish them from the true macros

we’ve worked with throughout this book.

 ◆ When you write VBA code in the Access VBA Editor—as you would in the other Offi ce

2013 applications—you create true macros, properly so called. (Just remember that Access

doesn’t describe these VBA procedures as macros. You just have to get used to the differ-

ence in terminology.) We’ll focus our attention on the VBA capabilities in Access rather

than on the legacy Macro Designer.

 ◆ For a user to execute a macro Sub, you must fi rst create an Access-style function that calls

the subprocedure. While you, the programmer, are working on a macro in the VBA Editor,

you can debug and run the subprocedure by using the VBA Editor’s usual commands

(for example, press F5 to run and test the subprocedure). But a user will not be able to run

the macro directly from the Access user interface. Instead, you must employ the RunCode

action, as you’ll see. There is an exception to this rule. In Chapter 31, “Progamming the

Offi ce 2013 Ribbon” (see the section titled “Direct Communication with VBA”), you’ll learn

how to directly trigger VBA by modifying the Access Ribbon.

The following sections provide a complete, start-to-fi nish example of how to work with VBA

in Access. You create a module, then write a procedure in that module, and fi nally, use the

Macro Designer to create an Access-style macro whose sole purpose is to start the execution of

the VBA procedure.

This chapter shows you how to create “macros” in Access, so fi rst you need to ensure that

macros are, in fact, enabled in Access. Follow these steps to enable Access macros:

 1. Click the File tab on the Ribbon.

 2. Click Options in the left pane.

 3. Click Trust Center in the Access Options dialog box.

 4. Click the Trust Center Settings button.

 5. Click Macro Settings in the left pane of the Trust Center dialog box.

 6. Click the Enable All Macros option button.

 7. Click OK twice to close the dialog boxes.

GETTING STARTED WITH VBA IN ACCESS | 741

Creating a Module in the VBA Editor
To create a module where you can write VBA code, open an Access database and click the

Ribbon’s Database Tools tab. Click the Visual Basic button on the Ribbon (or simply press

Alt+F11).

The VBA Editor opens. Choose Insert ➢ Module in the VBA Editor or right-click the project’s

name (it’s boldface) in the Project Explorer pane, and choose Insert ➢ Module from the shortcut

menu.

Creating a Function
After creating a VBA module in the VBA Editor, you can create a function within it as described

earlier in this book. The following example creates a function named Standard_Setup that sim-

ply displays a message box to indicate that it is running (the next section uses this macro as an

example):

Public Function Standard_Setup()

 ‘put your choice of commands here

 MsgBox “The Standard_Setup macro is running.“

End Function

You can test this code as usual by clicking somewhere inside the procedure, then pressing F5.

After creating the function, switch back to Access by pressing Alt+F11 or clicking the View

Microsoft Access button on the far left of the Standard toolbar in the VBA Editor. Of course, you

could also use the traditional Windows Alt+Tab shortcut.

Using the Macro Designer
Although this and the next chapter focus on automating Access via the more fl exible and pow-

erful VBA language, some readers may be interested to know how to work with the Macro

Designer tool. So we’ll explore it briefl y before moving on to VBA examples.

Creating an Access-Style Macro to Run a Function
Recall that a user can’t directly trigger a VBA procedure interactively from the main Access

interface (although you, the programmer, can press F5 to test procedures in the VBA Editor).

You’ll fi nd no Macros dialog box like the one in Word and other Offi ce 2013 applications. True,

there is a Run Macro button on the Database Tools tab of the Access Ribbon, but this feature

cannot directly trigger a VBA procedure. (It only triggers an Access-style macro.)

For a user to run a VBA procedure, you have to create an Access-style macro that was built

using Access’s Macro Designer. You use the RunCode action (command) to call the VBA proce-

dure. We’ll see how to do that now:

 1. Display the database window if it’s not already displayed. For example, click the word

View (the word with the small black down-arrow, not the icon) on the Ribbon’s Home tab,

then select Datasheet View from the options displayed.

 2. Click the Macro button on the Ribbon’s Create tab to open the Macro Designer window

(see Figure 28.1). This also opens a Design tab on the Ribbon.

742 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

Figure 28.1

Use the Macro

Designer window to

create a new Access-

style “macro” in

Access.

 3. In the Action Catalog pane on the right, open the Macro Commands folder and double-

click the RunCode item. This inserts the RunCode command into the middle pane. (The

RunMacro option command can only execute Access-style macros. Likewise, if you try

to add a button to the Quick Access Toolbar above the Ribbon, it too can only execute

Access-style macros.)

 4. In the Function Name fi eld, type Standard_Setup(), the name of the VBA test function

you created earlier in this chapter. The empty parentheses are required, so don’t omit them.

 5. Click the Save icon in the Quick Access Toolbar above the Ribbon, or press Ctrl+S.

 6. Type the name test in the Save As dialog box, and click the OK button. (Tip: If you mod-

ify the macro later and want to change its name, choose File ➢ Save As ➢ Save Object As,

then click the Save button. Isn’t Access remarkably roundabout sometimes? Or you can

right-click the macro’s name in the left pane of the main Access window, then choose

Rename.)

 7. Now test this macro (and consequently the VBA procedure it triggers) by clicking the

Run icon on the Ribbon. It’s the icon with the red exclamation point. This icon appears

only when the Macro Designer is active in the Design tab of the Ribbon. You now see the

message box telling you that your macro is running.

The user can execute Access-style macros when the Macro Designer is closed. Just double-

click test in the All Access Objects list (the pane on the left side of the main window). It may be

necessary to click the small down arrow at the top of this pane and choose Show All.

Or the user can click the Database Tools tab of the Ribbon, then click the Run Macro icon on

the Macro section (it too has a red exclamation point). Access’s Run Macro dialog box opens.

GETTING STARTED WITH VBA IN ACCESS | 743

Select test as the macro name you want to run, then click OK to close the dialog box and execute

your macro.

Three Ways to Execute an Access-Style Macro

To sum up, a user can execute an Access-style macro only three ways:

 ◆ Choose the Run Macro option from the Ribbon’s Database Tools tab. Th is opens a small Run

Macro dialog box from which you can select an Access-style macro and execute it.

 ◆ Double-click the Access-style macro’s name in the All Access Objects list in the left pane of

the main Access window.

 ◆ Add a button to the Quick Access Toolbar that will execute the Access-style macro.

Add a button to the Quick Access Toolbar by following these steps:

 1. Click the Customize Quick Access Toolbar button (the down arrow icon on the right of the Quick

Access Toolbar at the top left of the Access window).

 2. Click the More Commands option in the drop-down list. Th e Access Options dialog box opens.

 3. Select Macros in the Choose Commands From drop-down list.

 4. Double-click your macro’s name to move it into the list on the right side (where the toolbar’s

displayed items are listed).

 5. Click OK to close the dialog box and put your macro on the toolbar.

Note that you can’t trigger a macro from a keyboard shortcut (Access doesn’t permit you to create

custom keyboard shortcuts).

Translating an Access-Style Macro into a VBA Macro
Given that VBA is far more powerful than the Access-style macros, you might want to convert

an Access-style macro into VBA to enhance it. You can have Access automatically translate

Access-style macros into VBA functions. Follow these steps:

 1. Display the database window if it’s not already displayed. For example, click the word

View (the word with the small black down-arrow, not the icon) on the Ribbon’s Home tab,

then select Datasheet View from the options displayed.

 2. Click the tab on the top of the main Access window named test to view the Access-style

macro you created earlier in this chapter. Click the Macro button on the Ribbon’s Create

tab to open the Macro Designer window (see Figure 28.1). This also opens a Design tab on

the Ribbon.

 3. On the left side of the Ribbon, click Convert Macros To Visual Basic.

 4. You see a dialog box where you can optionally refuse to include error handling or

comments.

 5. Click the Convert button.

 6. Press Alt+F11 to open the VBA Editor.

744 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

 7. In the Navigation pane, locate and double-click the module named Converted Macro-test.

You now see the translated code:

‘--

‘ test1

‘

‘--

Function test1()

On Error GoTo test1_Err

 Run_SampleProcedure

test1_Exit:

 Exit Function

test1_Err:

 MsgBox Error$

 Resume test1_Exit

End Function

If you opted to avoid the error trapping and commenting, it’s simpler:

‘--

‘ test1

‘

‘--

Function test1()

 Run_SampleProcedure

End Function

Using an AutoExec Macro to Initialize an Access Session
To set up preconditions for an Access session, you can use an AutoExec macro. When Access

starts running, it checks to see if there is a macro named AutoExec. If so, that macro is executed

(runs) automatically when Access opens. This AutoExec feature is also available in other Offi ce

applications, like Word.

For example, you might choose to maximize the application window, open a particular item

(for example, a table), or display a particular record. Note that AutoExec must be the name of an

Access-style macro, not a VBA procedure.

By the way, you can prevent an AutoExec macro from running when you open a database by

holding down the Shift key while the database opens.

To create an AutoExec macro, start a new macro as described in the previous section, add to

it the actions that you want the macro to perform, and save it with the special reserved name

AutoExec. The macro then runs the next time you open the database.

We’ll now turn our attention to regular VBA programming, but if you’re interested in learn-

ing more about the Macro Designer, see the tutorial on this web page:

http://blogs.msdn.com/access/archive/2009/07/28/meet-the-access-2010-macro-

designer.aspx

http://blogs.msdn.com/access/archive/2009/07/28/meet-the-access-2010-macro-designer.aspx
http://blogs.msdn.com/access/archive/2009/07/28/meet-the-access-2010-macro-designer.aspx
http://blogs.msdn.com/access/archive/2009/07/28/meet-the-access-2010-macro-designer.aspx

GETTING STARTED WITH VBA IN ACCESS | 745

Running a Subprocedure
Until now, you’ve mostly created traditional subs when writing or recording a macro. And for

consistency, the Access VBA code examples in this chapter and elsewhere will also be subs.

But beware. If you want to permit the user to execute Access VBA procedures, they must be

turned into functions. Just replace the word Sub with Function in your code. VBA will then auto-

matically change the line at the end of your procedure from End Sub to End Function. Easy enough.

So, just remember that in this way, and many others, Access differs from other Offi ce applica-

tions. When you’re writing a VBA macro in Access, there’s no good reason to create Access VBA code

in a subprocedure rather than in a function because a sub cannot be triggered directly in Access.

Only functions can be directly triggered, as the example in the previous section illustrated. If

you feel you must create a Sub, the only way to execute it is to create a function that, in turn, has

the single job of executing your subprocedure. So what is the point?

This function triggering indirection is clumsy, but it can be made to work if for some

unimaginable reason you want to use a sub procedure. Here is a simple example:

 1. In the VBA Editor, create a subprocedure that performs the actions you want:

Sub SampleProcedure()

 MsgBox “The subprocedure named Sample Procedure is running.“

End Sub

 2. Still in the VBA Editor, create a function that runs the subprocedure:

Public Function Run_SampleProcedure()

 Call SampleProcedure

End Function

 3. Then switch to Access and create an Access-style macro that uses the RunCode action to

run the function that runs the subprocedure. (See the section earlier in this chapter titled

“Creating an Access-style Macro to Run a Function.”)

Understanding the Option Compare Database Statement
When you launch the VBA Editor in Access (by pressing Alt+F11 or clicking the Visual

Basic button on the Ribbon’s Database Tools tab) and then insert a code module you’ll notice

that Access automatically enters an Option Compare Database statement in the General

Declarations area of the Code window.

As an aside, recall that if you’ve selected the Require Variable Declaration check box on the

Editor tab of the VBA Editor Options dialog box (Tools ➢ Options) to make the VBA Editor force

you to declare all variables explicitly, you’ll see an Option Explicit statement in the General

Declarations area as well.

Access supports three different ways of comparing text strings: Option Compare Database,

Option Compare Binary, and Option Compare Text. Here’s what these options mean:

 ◆ Option Compare Database is the default comparison type for Access databases and per-

forms string comparisons using the sort order for the locale that Windows is using (for

example, U.S. English). Sorting is not case sensitive. Access automatically inserts an Option

Compare Database statement in the declarations section of each module that you insert.

You can delete the Option Compare Database statement, in which case Access will use

Option Compare Binary instead.

 ◆ Option Compare Binary performs case-sensitive sorting. To use Option Compare Binary,

either delete the Option Compare Database statement in the declarations section or

change it to an Option Compare Binary statement.

746 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

 ◆ Option Compare Text performs case-insensitive sorting. To use Option Compare Text,

change the Option Compare Database or Option Compare Binary statement to an Option

Compare Text statement.

Getting an Overview of the Access Object Model
It’s not crucial to understand how the Access object model fi ts together in order to work with

VBA in Access, but most people fi nd it helpful to know the main objects in the object model.

And sometimes the code examples in the Help system’s object-model reference can be

invaluable—showing you how and where to employ objects in your own programming.

To explore the Access object model, follow these steps:

 1. Launch or activate Access, and then press Alt+F11 to launch or activate the VBA Editor.

 2. Move your cursor to a blank space in the code window (to avoid context-sensitive help).

 3. Press F1 in the editor to launch the Help web page for the VBA language reference for

Offi ce 2013.

 4. In the Bing search fi eld, type Access 2013 object model and press Enter.

 5. Click the link Access object model reference (Access 2013 developer reference). You now see the

list of primary Access objects, as shown in Figure 28.2.

Figure 28.2

Th e entries in the

Access object-model

reference will help

you write your own

VBA code.

UNDERSTANDING CREATABLE OBJECTS IN ACCESS | 747

Understanding Creatable Objects in Access
Access exposes (makes available for your use in code) various creatable objects, meaning that you

can employ most of the important objects in its object model without explicitly going through

(mentioning in your code) the Application object.

For most programming purposes, these creatable objects are the most commonly used

objects. The main creatable objects in Access are as follows:

 ◆ The Forms collection contains all the Form objects, which represent the open forms in a

database. Because it’s creatable, you need not write Application.Form in your code. You

can leave off the Application and merely write Form.

 ◆ The Reports collection contains all the Report objects, which represent the open reports in

a database.

 ◆ The DataAccessPages collection contains all the DataAccessPage objects, which represent

the open data access pages in a project or a database. (An Access project is a fi le that con-

nects to a SQL Server database.)

 ◆ The CurrentProject object represents the active project or database in Access.

 ◆ The CurrentData object represents the objects stored in the current database.

 ◆ The CodeProject object represents the project containing the code database of a project or

database.

 ◆ The CodeData object represents the objects stored in the code database.

 ◆ The Screen object represents the screen object that currently has the focus (the object that

is receiving input or ready to receive input). The object can be a form, a report, or a control.

 ◆ The DoCmd object enables you to run Access commands.

 ◆ The Modules collection contains the Module objects, which represent the code modules and

class modules in a database.

 ◆ The References collection contains the Reference objects, which represent the references

set in the Access application.

 ◆ The DBEngine object represents the Microsoft Jet Database Engine and is the topmost

object in the Data Access Objects (DAO) hierarchy. The DBEngine object provides access to

the Workspaces collection, which contains all the Workspace objects available to Access,

and to the Errors collection, which contains an Error object for each operation involving

DAO.

 ◆ The Workspace object contains a named session for a given user. When you open a data-

base, Access creates a workspace by default and assigns the open database to it. You can

work with the current workspace or create more workspaces as needed.

 ◆ The Error object contains information about the data-access errors that have occurred in a

DAO operation.

748 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

Opening and Closing Databases
The following sections show you how to open and close databases. You can use the CurrentDb

method to return the current database, open a database and treat it as the current database, or

even open multiple databases at once. You can also create and remove workspaces.

Using the CurrentDb Method to Return the Current Database
To work with the database that’s currently open in Access, use the CurrentDb method on the

Application object or an object variable representing the Application object. The CurrentDb

method returns a Database object variable representing the currently open database that has

the focus.

The following example declares an object variable of the Database type named myDatabase

and then uses the CurrentDb method to assign the active database to it:

Dim myDatabase As Database

Set myDatabase = Application.CurrentDb

Closing the Current Database and Opening a Diff erent Database
In Access, you can choose from among several ways of opening and closing a database. This

section discusses the simplest method of opening and closing a database—by treating it as the

current database. This method is similar to opening and closing a database when working inter-

actively in Access. See the next section for another method of opening and closing databases

that lets you have two or more databases open at the same time.

To open a database as the current database, use the OpenCurrentDatabase method of the

Application object. The syntax is as follows:

expression.OpenCurrentDatabase(Filepath, Exclusive, bstrPassword)

Here are the components of the syntax:

 ◆ expression is a required expression that returns an Application object.

 ◆ Filepath is a required String argument that specifi es the path and fi lename of the data-

base to open. You should specify the fi lename extension; if you omit it, Access assumes the

extension is .accdb.

 ◆ Exclusive is an optional Boolean argument that you can set to True to open the database

in Exclusive mode rather than in Shared mode (the default, or the result of an explicit False

setting).

 ◆ bstrPassword is an optional String argument that specifi es the password required to open

the database.

To close the current database, use the CloseCurrentDatabase method with the Application

object. This method takes no arguments.

You can run the CloseCurrentDatabase method from the current database, but you can’t

do anything after that because the code stops after VBA executes the CloseCurrentDatabase

method and the database containing the code closes. To close the current database and open

another by using the OpenCurrentDatabase method, you must run the code from outside the

databases involved—for example, by using automation from another application. Chapter 30,

“Accessing One Application from Another Application,” describes this technique.

OPENING AND CLOSING DATABASES | 749

Prepare the Northwind Database to Use with This Book’s Examples

To test and experiment with some of the Access code examples in this and the following chapters,

you need to do a little preliminary housekeeping. Put simply, we all need to be experimenting with

the same database so we get the same results.

Traditionally, when authors have written about Access, they’ve employed a sample database named

Northwind that Microsoft included with Access. Northwind is a full-featured and therefore useful

example database. It can be particularly valuable when you want to experiment with Access but

don’t want to use your own database (both to keep it safe and because your database might not

have some of the features that Northwind has).

I’ll use Northwind in some of the examples in this book so that all readers can be working with the

same data and the same structures. Th erefore, before you test some of the upcoming code examples,

please put a copy of Northwind.accdt in your C:\Temp directory so the example code in this book

can locate it. If you don’t have a C:\Temp directory, create one.

You may already have Northwind on your hard drive. To see if you do, press the Start button to

display the Windows 8 Modern home page, and type Northwind.accdt. Th en click the Files search

option in the right pane. If it shows up in the search, right-click it, choose Open File Location, then

copy it and paste it into your C:\Temp directory.

Th en double-click this Northwind.accdt fi le. It will open in Access. Give the database the name

Northwind and save it to C:\Temp. You want to end up with a fi le named Northwind.accdb in

your C:\Temp directory.

If you don’t fi nd Northwind.accdt on your hard drive, you can download it from Microsoft’s

website:

http://office.microsoft.com/en-us/templates/TC012289971033.aspx

Th e downloaded fi le will be named TS01128997.accdt. At some point Windows may ask your

permission to download or install an ActiveX object. Agree to that. Don’t worry; just double-click

01228997.accdt to open Northwind in Access. You’ll see the File New Database dialog box open.

In the File Name fi eld, change the name to Northwind.accdb and click OK to close the File New

Database dialog box and save Northwind.accdb to C:\Temp. As I said earlier, you want to end up

with a fi le named Northwind.accdb in your C:\Temp directory.

Now the code examples in this book can reference this fi le path to open Northwind:

filepath:=“C:\Temp\Northwind.accdb“

Next you’ll want to remove the default login dialog box so you can work with the database more

easily from code. Open Northwind.accdb by double-clicking its name in Windows Explorer.

By default a login dialog box appears asking you to select one of the “employees” from this imaginary

company. Click the Login button to close the dialog box and see Northwind in Access.

If it’s not already open, click the >> symbol in Access’s left pane to open the Navigation pane. Locate

the Supporting Objects entry in the Navigation pane and click it to expand it. Scroll down until

you locate the macro named AutoExec. Right-click AutoExec, choose Cut from the context menu,

and then close Access.

Now that login dialog box won’t interrupt you any more when you open the Northwind example

database.

http://office.microsoft.com/en-us/templates/TC012289971033.aspx

750 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

There’s an additional requirement when you’re writing code that communicates between

Offi ce applications. You can’t simply declare an object variable to point to an application object,

like this:

Dim myAccess As Access.Application

This code will run only if you fi rst provide a reference in the host application. For example, if

you’re trying to manipulate Access from VBA code within a Word macro, you need to set a ref-

erence in Word’s VBA Editor.

The following example illustrates a way to contact and manipulate Access from another VBA

host—for example, from Excel or from Word. But before you can execute this code from Word or

some other application, you must fi rst choose Tools ➢ References in the Word VBA Editor, then

select Microsoft Access 15.0 Object Library from the drop-down list. For this example, you must

also have a database currently loaded and running in an instance of Access.

This next example declares the object variable myAccess as the Access.Application

type and the object variable myDatabase as the Object type. The example uses the

GetObject method to assign to myAccess the copy of Access that’s running, uses the

CloseCurrentDatabase method to close this database, and then uses the OpenCurrentDatabase

method to open another database, namely Northwind, in Exclusive mode. The fi nal statement

uses the CurrentDb method to assign the open database to the myDatabase object variable:

Dim myAccess As Access.Application

Dim myDatabase As Object

Set myAccess = GetObject(, “Access.Application“)

myAccess.CloseCurrentDatabase

myAccess.OpenCurrentDatabase _

 filepath:=“C:\Temp\Northwind.accdb“, Exclusive:=True

Set myDatabase = myAccess.CurrentDb

When you test this code by executing it in the Word VBA Editor, you’ll know it works

because whatever database was open in Access will be replaced by Northwind (see the “Prepare

the Northwind Database to Use with This Book’s Examples” sidebar). Also note that when run-

ning this code, you might get an error message saying “User-defi ned type not defi ned.” And the

Editor will highlight this line of code:

Dim myAccess As Access.Application

This means that the editor can’t locate the object named Access. For reasons unknown, a

newly added library is sometimes deselected in References. To fi x this problem, just repeat the

steps described previously to use Tools ➢ References to add a reference to the Microsoft Access
15.0 Object Library again.

Opening Multiple Databases at Once
Instead of using the OpenCurrentDatabase method to open a database as the current database,

you can use the OpenDatabase method of the Workspace object to open another database and

return a reference to the Database object representing it. The syntax for the OpenDatabase

method is as follows:

Set database = workspace.OpenDatabase (Name, Options, ReadOnly, Connect)

OPENING AND CLOSING DATABASES | 751

Creating New Databases, Forms, and Reports in Access

Th e discussions of the other Offi ce applications in this part of the book (Part 6) have emphasized

creating and saving new fi les—for example, creating new documents in Word or new workbooks

in Excel and saving them under suitable names and in the appropriate formats.

Access, too, has its own VBA commands for creating new databases, forms, reports, tables, and

other objects programmatically:

 ◆ To create a new database, use the NewCurrentDatabase method of the Application object.

 ◆ To create a new form, use the CreateForm method. To place controls on the form, use the

CreateControl method.

 ◆ To create a new report, use the CreateReport method. To place controls on the report, use

the CreateReportControl method.

While creating a new database programmatically is quite feasible, it is not only complex but

also something that you probably won’t need to do often, if ever. In most cases, the goal of your

Access VBA programming will be to manipulate existing databases and objects that you have built

manually.

Here are the components of the syntax:

 ◆ database is an object variable that will represent the database you open.

 ◆ workspace is an optional object variable that specifi es the workspace in which you want to

open the database. If you omit workspace, Access opens the database in the default work-

space. Although you can open the database in the default workspace without problems,

you may fi nd it more convenient to create another workspace and use it to keep the data-

base separate. See “Creating and Removing Workspaces” later in this chapter for details.

 ◆ Name is a required String argument that specifi es the name of the database to open. An

error results if the database doesn’t exist or isn’t available or if another user has opened the

database for exclusive access.

 ◆ Options is an optional Variant argument that specifi es any options you want to set for the

database. For an Access database, you can specify True to open the database in Exclusive

mode or False (the default) to open it in Shared mode. For ODBCDirect workspaces, you

can use other options; see the Access Visual Basic Help fi le for details.

 ◆ ReadOnly is an optional Variant argument that you can set to True to open the database in

read-only mode. The default value is False, which opens the database in read/write mode.

 ◆ Connect is an optional Variant that you can use to pass any necessary connection informa-

tion, such as a password for opening the database.

The following example “opens” the Northwind database in a special sense: it’s opened behind

the scenes for our code to contact it and have access to its data, structure, and other features. But

it is not opened in Access where the user can see it. In other words, an instance of the database is fully

exposed to our code, but there’s no user interface. There’s no display in Access of the Northwind

752 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

database. For this reason, I’ve included a message box in the code example to prove to you that

the code example has actually opened Northwind and fetched some data from it.

Also, when you use this invisible database technique, it’s a good idea to fi nish up by closing

any recordsets or other objects you’ve opened, as well as closing the database instance itself.

This way, unattached and useless entities aren’t left fl oating in your computer’s memory.

This example will not work if you have Northwind open in Access. You must test this code

while a different database is open in Access.

This example declares a Workspace object variable named myWorkspace and a Database

object variable named myDatabase, assigns to myWorkspace the fi rst Workspace object in

the Workspaces collection (the default workspace), and assigns to myDatabase the database

Northwind.accdb, which it opens in Exclusive mode with read/write access.

To show you that Northwind did come into existence, we fetch the City data from the fi rst

record in the Customers table. Finally, we display the city name, then clean up memory by clos-

ing both the recordset and the database instance.

You can try this by entering this code in a module in the Access VBA Editor, but just do

this while some database other than Northwind is open in Access. Press F5, and you’ll see the

city data.

Sub test()

Dim myWorkspace As Workspace

Set myWorkspace = DBEngine.Workspaces(0)

Dim myDatabase As Database

Dim RecSet As Recordset

Set myDatabase = myWorkspace.OpenDatabase _

 (Name:=”C:\temp\northwind.accdb”, _

 Options:=True, ReadOnly:=False)

Set RecSet = myDatabase.OpenRecordset(“Customers”, dbOpenDynaset)

MsgBox RecSet!City

 RecSet.Close

 myDatabase.Close

End Sub

Closing a Database
To close a database that you’ve opened by using the OpenDatabase method, use the Close

method of the object variable to which you’ve assigned the database. For example, the following

statement closes the database assigned to the object variable myDatabase:

myDatabase.Close

WORKING WITH THE SCREEN OBJECT | 753

Creating and Removing Workspaces
To keep different databases in separate sessions, you can create a new workspace as needed and

remove it when you have fi nished working with it.

Creating a New Workspace

To create a new workspace, use the CreateWorkspace method of the DBEngine object.

The syntax is as follows:

Set workspace = CreateWorkspace(Name, UserName, Password, UseType)

Here are the components of the syntax:

 ◆ workspace is the object variable to which you want to assign the workspace you’re creating.

 ◆ Name is a required String argument that specifi es the name to assign to the new workspace.

 ◆ UserName is a required String argument that specifi es the owner of the new workspace.

 ◆ Password is a required String argument that specifi es the password for the new work-

space. The password can be up to 14 characters long. Use an empty string if you want to set

a blank password.

 ◆ UseType is an optional argument that indicates the type of workspace to create. Use

dbUseJet to create a Microsoft Jet workspace. Use dbUseODBC to create an ODBCDirect

workspace. Omit this argument if you want the DefaultType property of the DBEngine

object to determine the type of data source connected to the workspace.

The following example declares an object variable named myWorkspace of the Workspace

type and assigns to it a new Jet workspace named Workspace2. The example makes the admin

account the owner of the new workspace:

Dim myWorkspace As Workspace

Set myWorkspace = CreateWorkspace(Name:=“Workspace2“, _

 UserName:=“admin“, Password:=““, UseType:=dbUseJet)

After creating a new workspace, you can use it to open a new database (as described earlier

in this chapter).

Removing a Workspace

Before removing a workspace from the Workspaces collection, you must close all the open con-

nections and databases. You can then use the Close method to close the Workspace object. For

example, the following statement closes the Workspace object identifi ed by the object variable

myWorkspace:

myWorkspace.Close

Working with the Screen Object
If you’ve used VBA in the other Offi ce applications, you’ve probably written code that

works with whichever object is currently active. For example, in Word you can use the

754 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

ActiveDocument object to work with the active document or the Selection object to work with

the current selection. In PowerPoint you can work with the ActivePresentation object to work

with whichever presentation happens to be active.

In Access, you can use the Screen object to work with the form, report, or control that has the

focus. The Screen object has various properties, including the following:

 ◆ The ActiveForm property returns the active form. If there is no active form, trying to use

the ActiveForm property returns the error 2475.

 ◆ The ActiveDatasheet property returns the active datasheet. If there is no active datasheet,

trying to use the ActiveDatasheet property returns the error 2484.

 ◆ The ActiveReport property returns the active report. If there is no active report, trying to

use the ActiveReport property returns the error 2476.

 ◆ The ActiveDataAccessPage property returns the active data access page. If there is no

active data access page, trying to use the ActiveDataAccessPage property returns the

error 2022.

 ◆ The ActiveControl property returns the active control. If there is no active control, trying

to use the ActiveControl property returns the error 2474.

 ◆ The PreviousControl property lets you access the control that previously had the focus.

To avoid errors, you should check which object is active before trying to manipulate it by

using the Screen object. The following example uses the these listed error numbers to deter-

mine whether a form, report, datasheet, or data access page is active and then displays a mes-

sage box identifying the item and giving its name:

On Error Resume Next

Dim strName As String

Dim strType As String

strType = “Form“

strName = Screen.ActiveForm.Name

If Err = 2475 Then

 Err = 0

 strType = “Report“

 strName = Screen.ActiveReport.Name

 If Err = 2476 Then

 Err = 0

 strType = “Data access page“

 strName = Screen.ActiveDataAccessPage.Name

 If Err = 2022 Then

 Err = 0

 strType = “Datasheet“

 strName = Screen.ActiveDatasheet.Name

 End If

 End If

End If

USING THE DOCMD OBJECT TO RUN ACCESS COMMANDS | 755

MsgBox “The current Screen object is a “ & strType & vbCr _

 & vbCr & “Screen object name: “ & strName, _

 vbOKOnly + vbInformation, “Current Screen Object“

If you test this, use the Create tab on the Ribbon (and click the Form icon) to ensure that there

is a form active in Access.

Using the DoCmd Object to Run Access Commands
The DoCmd object enables you to execute normal Access commands, such as Find or Rename, in

your VBA code.

To run a command, you use one of the methods of the DoCmd object. Table 28.1 lists the 66

DoCmd methods available in Access 2013 and explains briefl y what they do.

The following sections include examples showing how to use some of the methods described

in Table 28.1.

Table 28.1: Methods of the DoCmd object

Method Explanation

AddMenu Adds a menu to the global menu bar or to a custom menu bar.

ApplyFilter Applies a fi lter so that only records that match certain criteria are

displayed.

Beep Makes the computer beep—for example, to attract the user’s atten-

tion when an error has occurred.

BrowseTo BrowseTo is an Access-style macro action that helps you either cre-

ate a custom user interface on top of an existing wizard navigation

control or build your own.

CancelEvent Cancels the event that has occurred.

ClearMacroError Use after you handle an Access-style macro error to reset the data

about the error so you can check for any future errors (in the

MacroError object) while the macro continues to execute.

Close Closes the specifi ed object—for example, a form or a report.

CloseDatabase Closes the database, just as if you’d clicked the File tab on the Ribbon

and chosen the Close Database option. A Save dialog box will appear

if necessary, asking for your disposition of any unsaved objects.

CopyDatabaseFile Copies the database connected to the current project to a SQL Server

fi le.

CopyObject Copies the specifi ed object (for example, a query or a table) into the

specifi ed database (or to a new table in the current database).

756 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

Method Explanation

DeleteObject Deletes the specifi ed object from the database.

DoMenuItem Performs a command from a menu or toolbar. Th is is an older com-

mand that has been replaced by the RunCommand method (described

later in this table).

Echo Provides backward compatibility for running the Echo action in

earlier versions of VBA. It’s better to use Application.Echo now.

FindNext Finds the next record matching the search criteria specifi ed by the

FindRecord method.

FindRecord Performs a search for a record that matches the specifi ed criteria.

GoToControl Moves the focus to the specifi ed control or fi eld in a form or

datasheet.

GoToPage Moves the focus to the specifi ed page of a form.

GoToRecord Makes the specifi ed record the current record.

Hourglass Changes the mouse pointer to an hourglass (a wait pointer) or back

to a normal pointer.

LockNavigationPane Th is option prevents the user from right-clicking a database object

displayed in the left pane (Navigation pane) and then selecting the

Cut or Delete option from the context menu that appears. Other

options on that menu, such as Copy and Paste, are still enabled.

Maximize Maximizes the active window.

Minimize Minimizes the active window.

MoveSize Moves or resizes (or both) the active window.

NavigateTo Allows you to specify how objects are displayed in the Navigation

pane (left pane). For example, you could reorganize the list of

objects, or even prevent some objects from being displayed at all.

OpenDataAccessPage Opens the specifi ed data access page in the specifi ed view.

OpenDiagram Opens the specifi ed database diagram.

OpenForm Opens the specifi ed form and optionally applies fi ltering.

OpenFunction Opens the specifi ed user-defi ned function in the specifi ed view (for

example, datasheet view) and mode (for example, for data entry).

Table 28.1: Methods of the DoCmd object (continued)

USING THE DOCMD OBJECT TO RUN ACCESS COMMANDS | 757

Method Explanation

OpenModule Opens the specifi ed VBA module at the specifi ed procedure.

OpenQuery Opens the specifi ed query in the specifi ed view and mode.

OpenReport Opens a report in Design view or Print Preview. Alternatively, you

can use this method to print a hard copy of the report.

OpenStoredProcedure A macro action that opens a stored procedure in Design view,

Datasheet view, or Print Preview.

OpenTable Opens the specifi ed table in the specifi ed view and mode.

OpenView Opens the specifi ed view in the specifi ed view and mode.

OutputTo Outputs the data in the specifi ed object (for example, a report or a

data access page) in the specifi ed format.

PrintOut Prints the specifi ed object.

Quit Provides backward compatibility with Access 95. With later versions

of Access, use Application.Quit instead.

RefreshRecord Refreshes a record.

Rename Renames the specifi ed object with the name given.

RepaintObject Repaints the specifi ed object, completing any screen updates that

are pending.

Requery Updates the data in the specifi ed control by querying the data source

again.

Restore Restores the active window to its nonmaximized and nonminimized

size.

RunCommand Runs the specifi ed built-in menu command or toolbar command.

RunDataMacro Calls a named data macro.

RunMacro Runs the specifi ed macro.

RunSavedImportExport Runs a saved import or export specifi cation.

RunSQL Runs an Access action query using the specifi ed SQL statement.

Save Saves the specifi ed object or (if no object is specifi ed) the active

object.

Table 28.1: Methods of the DoCmd object (continued)

758 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

Method Explanation

SearchForRecord Searches for a specifi c record in a table, form, query, or report.

SelectObject Selects the specifi ed object in the database window or in an object

that’s already open.

SendObject Sends the specifi ed object (for example, a form or a report) in an

email message.

SetDisplayedCategories Specifi es which categories are displayed under the Navigate To

Category option in the Navigation pane. If you click anywhere in the

Navigation pane’s title bar, you’ll see the various options.

SetFilter Can be used to change the WHERE clause to update a URL.

SetMenuItem Sets the state of a menu item—for example, enabling or disabling a

menu item.

SetOrderBy Change an order by. In other words, sort records in ascending or

descending order.

SetParameter Sets the values of parameters.

SetProperty Sets various properties of a control or fi eld, such as BackColor,

Width, Enabled, and Caption.

SetWarnings Turns system messages on or off .

ShowAllRecords Removes any existing fi lters from the current form, query, or table.

ShowToolbar Displays or hides the specifi ed toolbar.

SingleStep Pauses the currently executing macro and displays a Macro Single

Step dialog box.

TransferDatabase Imports data into or exports data from the current database or

project.

TransferSharePointList Imports (or links) data from a Microsoft Windows SharePoint

Services 3.0 site.

TransferSpreadsheet Imports data from or exports data to a spreadsheet.

TransferSQLDatabase Transfers the specifi ed SQL Server database to another SQL Server

database.

TransferText Imports data from or exports data to a text fi le.

Table 28.1: Methods of the DoCmd object (continued)

USING THE DOCMD OBJECT TO RUN ACCESS COMMANDS | 759

Using the OpenForm Method to Open a Form
To open a form, use the OpenForm method of the DoCmd object. The syntax is as follows:

expression.OpenForm(FormName, View, FilterName, WhereCondition, DataMode, WindowMode,

OpenArgs)

Here are the components of the syntax:

 ◆ expression is a required expression that returns a DoCmd object. In many cases, it’s easiest to

use the DoCmd object itself.

 ◆ FormName is a required Variant argument that specifi es the name of the form you want to

open. The form must be in the current database.

 ◆ View is an optional argument that specifi es the view to use: acNormal (the default),

acDesign, acFormDS, acFormPivotChart, acFormPivotTable, or acPreview.

 ◆ FilterName is an optional Variant argument that you can use to specify the name of a

query. The query must be stored in the current database.

 ◆ WhereCondition is an optional Variant that you can use to specify a SQL WHERE clause.

Omit the word WHERE from the clause.

 ◆ DataMode is an optional argument for specifying the mode in which to open the form:

acFormPropertySettings, acFormAdd, acFormEdit, or acFormReadOnly.

acFormPropertySettings is the default setting and opens the form using the mode set in

the form.

 ◆ WindowMode is an optional argument for specifying how to open the form. The default is

acWindowNormal, a normal window. You can also open the form as a dialog box (acDialog)

or as an icon (acIcon) or keep it hidden (acHidden).

 ◆ OpenArgs is an optional Variant that you can use to specify arguments for opening the

form—for example, to move the focus to a particular record.

The following example uses the DoCmd object to open a form in the Northwind sample

database (you must have this database open in Access for this to work). Press Alt+F11 to open

Access’s VBA Editor, and then type in this code. When you execute the code by pressing F5,

Access displays the fi rst record for which the Employee fi eld matches Jan Kotas:

Sub test ()

DoCmd.OpenForm FormName:=“Sales Analysis Form“, View:=acNormal, _

WhereCondition:=“Employee =‘Jan Kotas’“

End Sub

Using the PrintOut Method to Print an Object
To print an object, use the PrintOut method. The syntax is as follows:

expression.PrintOut(PrintRange, PageFrom, PageTo, PrintQuality, Copies, CollateCopies)

760 | CHAPTER 28 UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS

Here are the components of the syntax:

 ◆ expression is a required expression that returns a DoCmd object.

 ◆ PrintRange is an optional argument that specifi es what to print: all of the object

(acPrintAll, the default), specifi c pages (acPages), or the selection (acSelection).

 ◆ PageFrom and PageTo are optional Variant arguments that you use with

PrintRange: = acPages to specify the starting and ending page numbers of the print

range.

 ◆ PrintQuality is an optional argument that you can use to specify the print quality. The

default setting is acHigh, but you can also specify acLow, acMedium, or acDraft (draft qual-

ity, to save ink and time).

 ◆ Copies is an optional Variant argument that you can use to specify how many copies to

print. The default is 1.

 ◆ CollateCopies is an optional Variant argument that you can set to True to collate the cop-

ies, and False not to. The default setting is True.

The following example prints one copy (the default) of the fi rst page in the active object at full

quality without collating the copies:

DoCmd.PrintOut PrintRange:=acPages, _

PageFrom:=1, PageTo:=1, CollateCopies:=False

Be sure to trap this code for an error in case you’ve requested a printout of something that

doesn’t exist—such as a range of 1 to 4 for a single-page form. In fact, it’s always a good idea to

trap errors in code that contacts peripherals such as printers or hard drives. What if the printer

isn’t turned on or the hard drive is full? Your code should anticipate and manage situations like

these.

Using the RunMacro Method to Run an Access-Style Macro
To run an Access-style macro, use the RunMacro method. The syntax is as follows:

expression.RunMacro(MacroName, RepeatCount, RepeatExpression)

Here are the components of the syntax:

 ◆ expression is a required expression that returns a DoCmd object.

 ◆ MacroName is a required Variant argument that specifi es the macro name.

 ◆ RepeatCount is an optional Variant argument that you can use to specify an expression to

control the number of times that the macro should run. The default is 1.

 ◆ RepeatExpression is an optional Variant argument that contains a numeric expression to

be evaluated each time the macro runs. The macro stops when this expression evaluates to

0 (False).

The following example runs an Access-style macro named RemoveDuplicates:

DoCmd.RunMacro “RemoveDuplicates“

THE BOTTOM LINE | 761

Th e Bottom Line

Get started with VBA in Access. Access allows you to write macros in a VBA Editor using

VBA code. But it also features a legacy Macro Designer utility (formerly known as the Macro

Builder) with which you create an entirely different kind of macro, what we’ve been calling

an Access-style macro.

Master It The term macro is used in a special way in Access (referring to only one of

the two types of custom procedures Access permits you to construct: VBA and Macro

Designer). This usage of macro is unlike the way the term macro is used in other Offi ce

applications, not to mention all other forms of computing. Describe what Access means

by the term macro.

Open and close databases. Access permits you to open a database in several ways.

Master It Two common commands that open a database in Access are

OpenCurrentDatabase and OpenDatabase. What is the difference between these two

commands?

Work with the Screen object. You became familiar with using ActiveDocument

objects in Word to access the document that currently has the focus. Or you used the

ActivePresentation object to work with whichever presentation happened to be active in

PowerPoint. Access, however, employs the Screen object as the parent of whatever object has

the focus.

Master It The Screen object represents the screen object that currently has the focus in

Access (that is, the object that is receiving input or ready to receive input). Three types of

common Access objects can have the focus when you employ the Screen object. What are

they?

Use the DoCmd object to run Access commands. Many of the tools that Access makes avail-

able to users, such as printing a report or maximizing a window, are also available to the pro-

grammer via the methods of the DoCmd object.

Master It The DoCmd object has 66 methods in Offi ce 2013. Describe the purpose of the

DoCmd object’s Beep method.

Chapter 29

Manipulating the Data in an Access
Database via VBA

This chapter shows you how to begin manipulating the data in an Access database. You can do

so either from within Access or from another VBA-enabled application—for example, from Excel

or from Word. This chapter shows you how to work from within Access.

There are two main ways to manage data in an Access database: via Data Access Objects

(DAO) or via ActiveX Data Objects (ADO). DAO is the older technology to access data, and it

works for both Microsoft Jet databases (Microsoft Jet is the Access database engine) and ODBC-

compliant data sources. (ODBC is Open Database Connectivity, a long-existing standard for

accessing databases. ODBC is also useful for accessing open-source solutions, such as MySQL.)

ADO is a high-level programming interface that can be used with a wide range of data sources.

Access offers you the choice of methods, but you will probably fi nd it easier to use ADO than

DAO. Additional information about choosing between these two technologies can be found at

the following location:

http://msdn.microsoft.com/en-us/library/aa164825(office.10).aspx

In this chapter you will learn to do the following:

 ◆ Open a recordset

 ◆ Access a particular record in a recordset

 ◆ Search for a record

 ◆ Edit a record

 ◆ Insert and delete records

Understanding How to Proceed
Once you’ve chosen between ADO and DAO, you take the following primary steps to manipu-

late the data in the database from Access:

 1. Add a reference to the object library you’ll be using.

 2. Create a recordset that contains the records with which you want to work.

 3. Work with the records in the recordset.

 4. Close the recordset.

http://msdn.microsoft.com/en-us/library/aa164825(office.10).aspx

764 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

All the steps work in more or less the same way for ADO and DAO, except that you create the

recordset in different ways. The following sections take you through these steps, splitting the

path where necessary to cover the differences in ADO and DAO.

Preparing to Manage the Data in a Database
Given that there are two distinct ways to manage data in Access—ADO and DAO—you have

to specify which one you’re planning to employ. You can think of libraries as collections of pre-

written functions.

Why bother fooling around with multiple libraries? The answer is that there can’t be a single,

massive, all-purpose library because, among other issues, there would be name confusion. Two

different functions in two different libraries might well share the same name. But they could

perform different tasks or perform the same task differently. It’s like having various libraries

in a large university. The word positive means entirely different things in the law library than it

does in the medical library.

Note that some of the following code examples will work just fi ne no matter which library

you are currently referencing.

However, to ensure consistency and avoid bugs, create a reference to the object library you

want to use (ADO or DAO). And in your code you’ll specify the appropriate connection to the

data source—the Microsoft ActiveX Data Objects Object 6.1 Library for an ADO connection or

Microsoft DAO 3.6 Object Library for a DAO connection. (Note that these 6.1 and 3.6 version

numbers might not match the versions of these libraries available on your machine. Just choose

the latest, highest version number you see.)

Adding a Reference to the Appropriate Object Library
To create a reference to the object library you need, follow these steps:

 1. Launch Access.

 2. Launch or activate the VBA Editor by pressing Alt+F11.

 3. In the VBA Editor, choose Tools ➢ References to display the References dialog box.

 4. Scroll down the Available References list box to the appropriate object library item, and

then select its check box and click OK to close the References dialog box:

 ◆ For an ADO connection, select the check box for the Microsoft ActiveX Data

Objects 6.1 Library item.

 ◆ For a Data Access Object, select the check box for Microsoft DAO 3.6 Object Library.

You can’t select both libraries at the same time. And if you don’t include the correct library,

you’ll get a compile error when you try to execute one of the objects in that library (such as a

DAO.Recordset). The message will refer to this as a “user-defi ned” object because it can’t fi nd

the object in the currently referenced libraries—so the Editor thinks it’s a new object introduced

by you, the programmer, but that you forgot to declare it.

Establishing a Connection to the Database
It’s possible to establish connections to databases in a variety of ways, but in this chapter we’ll

use a simple, direct line of code. In Chapter 28, “Understanding the Access Object Model and

Key Objects,” you saw what steps to take to go online and obtain the Northwind.accdb sample

OPENING A RECORDSET | 765

database and where to store it on your hard drive so you could experiment with the example

code in these fi nal chapters of the book. If you haven’t already taken those steps, see the sidebar

in Chapter 28 titled “Prepare the Northwind Database to Use with This Book’s Examples.”

To open a connection (but not make it visible to the user in Access) to the Northwind sample

database, you can use this code if you’re employing DAO:

Dim myDatabase As DAO.Database

Set myDatabase = DBEngine.OpenDatabase(”C:\temp\Northwind.accdb”)

You’ll see this approach used in examples later in this chapter. You’ll also see how to manip-

ulate Northwind while it’s loaded into Access where the user can see it. Recall from the previous

chapter that you can open a database two ways: to get to its data but not display it in Access, or

to load it into Access and make it visible to the user.

Opening a Recordset
To get to the records in the database to which you’re establishing the connection, you must open a

recordset. ADO and DAO use different approaches. The following subsections give you the details.

Opening a Recordset Using ADO
To open a recordset using ADO, you use the Open method of the RecordSet object. The syntax

for the Open method is as follows:

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

Here are the components of the syntax:

 ◆ recordset is the RecordSet object that you want to open. Often, you’ll use an object variable

that references the RecordSet object.

 ◆ Source is an optional Variant argument that specifi es the table, command, SQL statement,

or fi le that contains the recordset.

 ◆ ActiveConnection is an optional Variant argument. This can be either an object variable

of the Connection type or a Variant/String containing parameters for the connection.

 ◆ CursorType is an optional argument for specifying the type of cursor to use in the record-

set. Table 29.1 explains the cursor types.

 ◆ LockType is an optional argument for specifying how to lock the recordset while it is open.

Table 29.2 explains the lock options.

 ◆ Options is an optional Long argument that you can use to control how the Source value is

evaluated if it is not a Command object. Table 29.3 explains the available constants, which fall

into two categories: command-type options and execute options. You can use two or more

constants for the Options argument.

An Alternative to Providing Arguments for the Open Method

Instead of specifying the arguments with the Open method, you can set the Source ,

ActiveConnection, CursorType, and LockType properties of the RecordSet object you’re open-

ing and then use the Open method without arguments. You may fi nd that this approach makes

your code easier to read.

766 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

Table 29.1: Cursor-type constants for opening a recordset

Constant Cursor Type and Explanation

adOpenForwardOnly Forward-only cursor. You can scroll through the recordset only forward.

Th is is the default cursor and provides the best performance when you

need to go through the records only once.

adOpenDynamic Dynamic cursor. You can move freely through the recordset, and you

can see changes that other users make to records.

adOpenKeyset Keyset cursor. You can move freely through the recordset and see

changes that other users make to records. You cannot see records that

other users add, and records that other users delete are inaccessible.

adOpenStatic Static cursor. You can’t see changes that other users make. Use a static

cursor when you need to only search for data or create reports from the

data that exists when you open the recordset.

Table 29.2: Lock options for opening a recordset via ADO

Constant Opens the Recordset With

adLockReadOnly Data in read-only mode, so you cannot alter it. Use this constant if you

need to search or analyze the data but not manipulate it.

adLockOptimistic Optimistic locking, which locks a record only when you run the Update

method to update it explicitly.

adLockBatchOptimistic Optimistic batch locking, which enables you to perform a simultaneous

update on several records that you’ve changed.

adLockPessimistic Pessimistic locking, which locks a record immediately after you change it.

Table 29.3: Choices for the Options argument when opening a recordset

Constant Explanation

Command-Type Options

adCmdText Evaluates Source as text specifying a command or stored procedure call.

acCmdTable Evaluates Source as the name of a table consisting of columns returned

by an internally generated SQL query.

acCmdStoredProc Evaluates Source as the name of a stored procedure.

OPENING A RECORDSET | 767

Constant Explanation

acCmdFile Evaluates Source as the fi lename of a stored recordset.

acCmdTableDirect Evaluates Source as a table name and returns all columns of the table.

Do not use with adAsyncExecute.

adCmdUnknown Th is means that the type is unknown. Th is is the default.

Execute Options

adAsyncExecute Executes the command asynchronously. Does not work with

acCmdTableDirect.

adAsyncFetch Retrieves the rows specifi ed by the CacheSize property synchronously

and the remaining rows asynchronously.

adAsyncFetchNonBlocking Prevents the main thread from blocking other data access while retriev-

ing data.

adExecuteRecord Th e CommandText (adCmdText, described earlier in this table) is a stored

procedure or a command that fetches a single row of data. It is returned

as a Record object.

adExecuteNoRecords Used to improve performance when you know that no records will be

returned (for example, you’re merely adding, not fetching, data).

adExecuteStream Treats the data returned by Source as a single row that becomes a

Record object.

You’ll see examples of opening a recordset a little later in this chapter. First, you must decide

how to access the data in the recordset. The easiest methods are to use an existing table or a SQL

SELECT statement.

Choosing How to Access the Data in an ADO Recordset
How you actually get to the data in the recordset you open depends on whether you want to

fetch all the data in a table or just part of it. If you want all the data in a table, you can use a table

to access the data. If you want to return only particular records, you can use an SQL SELECT

statement to fetch them.

Using a Table to Access the Data in an ADO Recordset

To open in a recordset a whole table from a database, specify the table name as the Source argu-

ment in the Open statement. The following example declares a RecordSet object variable, uses a

Set statement to assign the appropriate recordset type to it, uses the ActiveConnection method

to connect to the currently active database (whatever you have loaded into Access at the time),

and then uses the Open method to open the entire Customers table. We’ll use the Northwind

sample database (that you installed in Chapter 28), which has a Customers table.

Table 29.3: Choices for the Options argument when opening a recordset (continued)

768 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

This example demonstrates how to bring into an ADO recordset the data from an entire table

and then move around within this recordset. Your code will not need to instantiate a database

object but instead will work with the Northwind database that’s currently loaded into Access.

(This is a very simple example to illustrate some basic concepts. Normally when accessing a

database, you’ll want to employ an SQL statement and check for recordset boundary condi-

tions—using BOF and EOF properties. SQL and BOF/EOF are described later in this chapter. For

now, just consider the following example code an illustration of elementary principles, to which

you’ll add real-world maneuvers demonstrated in the code examples later in this chapter.)

As always, it’s necessary for you to fi rst ensure that the ADO library is referenced. So in the

VBA Editor, choose Tools ➢ References and select the check box next to Microsoft ActiveX Data

Objects 6.1 Library. Finally, load the Northwind.accdb sample database into Access.

1. Sub ExploreRecordset()

2. Dim myRecordset As ADODB.Recordset

3. Set myRecordset = New ADODB.Recordset

4.

5. ‘point to the currently loaded database

6. myRecordset.ActiveConnection = CurrentProject.Connection

7. myRecordset.CursorType = adOpenStatic

8. myRecordset.Open Source:=”Customers”

9.

10. ‘Display the First Name from the first row

11. MsgBox myRecordset(“First Name”)

12.

13. ‘Move to the last row and show the Last Name

14. myRecordset.MoveLast

15. MsgBox myRecordset(“Last Name”)

16.

17. ‘Move to the previous row and display the Job Title

18. myRecordset.MovePrevious

19. MsgBox myRecordset(“Job Title”)

20.

21. ‘Move back to the first row and display the Phone Number

22. myRecordset.MoveFirst

23. MsgBox myRecordset(“Business Phone”)

24.

25. ‘Move to the next row and show the Last Name

26. myRecordset.MoveNext

27. MsgBox myRecordset(“Last Name”)

28.

29.

30. myRecordset.Close

31. Set myRecordset = Nothing

32. End Sub

In this code, you fi rst declare a recordset variable, and in line 6 you point it to the database

currently loaded in Access. Line 7 defi nes the cursor type as static, and line 8 loads the data—

the entire Customers table—into your recordset.

OPENING A RECORDSET | 769

Line 11 doesn’t move anywhere within the recordset, so by merely supplying the recordset’s

name, MyRecordset, along with one of the table’s fi eld names, Last Name, to a MsgBox function,

you can display the fi rst record in the table.

Line 14 does move to a different record within the recordset—the last record—before dis-

playing the data in that record’s Last Name fi eld. Line 18 moves to the penultimate record, line

22 moves to the fi rst record, and line 26 moves to the second record. Finally, line 30 closes the

recordset and line 31 assigns Nothing to the object variable, which has the effect of eliminating it.

What Is a “First Record” in a Table?

It’s important for beginners to understand the practical diff erence between a table of raw data in

a database and an organized recordset extracted from that database. Th e concept of a “fi rst record”

within a relational database is essentially meaningless until you use an SQL statement to organize

(sort or group) the records in some fashion.

Records in a relational database (the type of database Access employs) are not necessarily organized.

For example, they are not necessarily alphabetized by any particular fi eld (such as LastName) or

numerically listed by an ID number, or organized using some other scheme. True, data is stored

in tables, and a table does have structure: its fi elds separate the data into logical categories such as

LastName, Address, CellPhone, and so on. But its records (rows of actual data) are not necessarily

maintained in any particular order.

A set of records (a recordset) is extracted from a database when you execute an SQL statement.

Th is statement allows you to specify how you want to see the records organized (grouped by city,

alphabetized, or whatever). SQL is fl exible: You can organize records in many ways when you extract

a recordset from a database. You can sort records by any of their fi elds; you can also sort in either

ascending (the default) or descending order (specify DESC for descending). Which record is fi rst

also depends on which fi eld you sort the recordset by, as specifi ed in the ORDER BY statement.

In the example in the section “Using a Table to Access the Data in an ADO Recordset” in this

chapter, the records are moved into the recordset unsorted. As each action is carried out in

this code—moving forward and backward through the recordset—message boxes display the

records in their unsorted order. However, if you want to organize the records in alphabetical order

by each customer’s last name, add an ORDER BY keyword to your SQL statement, like this:

myRecordset.Open ”Select * from Customers

ORDER BY ‘Last Name’

”

Just remember that you can get a recordset without using an SQL statement, like this:

myRecordset.Open Source:=”Customers”

But the concept of a “fi rst record” in this recordset probably will have no meaning.

However, you can get a recordset by using an SQL statement, like this:

myRecordset.Open strSQL

In this case, the “fi rst record” will have meaning to you—based on the criteria you specifi ed in

the SQL statement (strSQL here would be a string you previously defi ned that contains an SQL

statement). Th e section titled “Using an SQL SELECT Statement to Access a Subset of the Data in

an ADO Recordset,” later in this chapter, explains how to use an SQL statement.

770 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

Using an SQL SELECT Statement to Access a Subset of the Data

in an ADO Recordset

If you want to add to your recordset only those records that match criteria you specify, use an

SQL SELECT statement. SELECT statements can be constructed in complex ways, but you can also

create straightforward statements with a little practice using this syntax:

SELECT [DISTINCT] fields FROM table WHERE criteria ORDER BY fields [DESC]

The words in uppercase are the SQL keywords, and the words in lowercase italics are place-

holders for the data you supply, such as the actual name of a real table. Here are the details:

 ◆ The SELECT keyword indicates that you’re creating a statement to select records (as

opposed to, say, delete records).

 ◆ You can include the optional DISTINCT keyword (the brackets indicate that it is optional) to

make the statement return only unique records, discarding any duplicates that the state-

ment would otherwise return. If you omit DISTINCT, you get any duplicates as well.

 ◆ fi elds is a list of the fi elds that you want to have appear in the recordset. If you use two

or more fi eld names, separate them with commas — for example, contact, company,

address. To return all fi eld names, enter an asterisk (*).

 ◆ FROM table specifi es the name of the table from which to draw the data.

 ◆ WHERE criteria specifi es the criteria for fi ltering the records. Enter the fi eld name, an equal

sign, a single straight quote, the value you’re looking for, and another single straight quote.

For example, WHERE City = ‘Taos’ returns only the results where Taos appears in the

City fi eld.

 ◆ ORDER BY fi elds specifi es the fi eld or fi elds on which to sort the results. If you use two or

more fi elds, put them in the order of precedence you want (the fi rst sort fi eld fi rst, the sec-

ond sort fi eld second, and so on) and separate them with commas. The default sort order is

ascending, but you can force a descending sort by adding the DESC keyword. For example,

ORDER BY Zip DESC produces a descending sort by the Zip fi eld, while ORDER BY State,

City produces an ascending sort by the State fi eld and, within that, by City.

Because SQL SELECT statements contain so many elements, putting a SELECT statement as an

argument in an Open statement can create uncomfortably long lines of code. You can break the

lines of code in the editor with the underscore symbol as usual, but you may fi nd it easier to

use the properties of the RecordSet object to specify the details of the recordset rather than

using the Open arguments.

Another way to avoid using a large SQL statement as an argument for the Open method is to

fi rst assign the SELECT statement to a String variable and then use that string to supply the argu-

ment. The following code illustrates that approach.

In this code, we’ll assign an SQL statement to a string and then use that string as the argu-

ment for the Open statement. Before executing this example, press Ctrl+G in the VBA Editor to

open the Immediate window, where the results will be displayed.

OPENING A RECORDSET | 771

Sub SubSet()

 Dim strSQL As String

 Dim myRecordset As ADODB.Recordset

 Set myRecordset = New ADODB.Recordset

 myRecordset.ActiveConnection = CurrentProject.Connection

 strSQL = ”Select * FROM Customers WHERE ID > 17”

 myRecordset.Open strSQL

 Do Until myRecordset.EOF

 Debug.Print myRecordset(”Last Name”)

 myRecordset.MoveNext

 Loop

End Sub

In this example, you want to import into the recordset only those records that have an ID

higher than 17, so you set up an SQL statement that specifi es that condition. Then you looped

through the recordset until EOF (end of fi le), displaying each last name in the Immediate

window.

Opening a Recordset Using DAO

When working with DAO, you use a different approach than the ADO techniques explored so

far in this chapter. You use the OpenRecordset method of the Database object to create a new

recordset and add it to the Recordsets collection.

The syntax for the OpenRecordset method is as follows:

Set recordset = object.OpenRecordset (Name, Type, Options, LockEdit)

Here are the components of the syntax:

 ◆ recordset is an object variable representing the RecordSet object you’re opening.

 ◆ object is an object variable representing the database from which to create the new

RecordSet object.

 ◆ Name is a required String argument that specifi es the table, query, or SQL statement that

provides the records for the recordset. If you’re using a Jet database and returning a table-

type recordset, you can use only a table name for the Name argument.

 ◆ Type is an optional argument that you can use to specify the type of recordset you’re open-

ing. Table 29.4 explains the constants you can use for Type.

 ◆ Options is an optional argument that you can use to specify constants that control how

Access opens the recordset. Table 29.5 explains the constants you can use for Options.

 ◆ LockEdit is an optional constant that you can use to specify how the recordset is locked.

Access 2013 no longer supports ODBCDirect workspaces. So if you need to connect to

772 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

external data stores directly (not through Access’s database engine), then you must use

ADO rather than DAO. Table 29.6 explains the constants you can use for LockEdit.

Table 29.4: Constants for the Type argument for the OpenRecordSet method

Constant Opens This Type of Recordset

dbOpenTable Table-type. Th is works only in Microsoft Jet workspaces. Th is is the default

setting if you open a recordset in a Jet workspace without specifying the

Type.

dbOpenDynamic Dynamic-type. Th is works only in ODBCDirect workspaces. Th e recordset is

similar to an ODBC dynamic cursor and enables you to add, remove, or edit

rows from a database table.

dbOpenDynaset Dynaset-type. Th is recordset is similar to an ODBC keyset cursor and

enables you to add, remove, or edit rows from a database table. You can also

move freely through the rows in the dynaset.

dbOpenSnapshot Snapshot-type. Th is recordset is similar to an ODBC static cursor. It opens a

snapshot of the records but does not update them when other users make

changes. To update the snapshot, you must close the recordset and reopen it.

dbOpenForwardOnly Forward-only. You can move only forward through the recordset.

Table 29.5: Constants for the Options argument

Constant Explanation Limitations

dbAppendOnly Users can add new records but cannot edit or delete exist-

ing records.

Jet dynaset-type

recordsets only

dbSQLPassThrough Passes an SQL statement to an ODBC data source con-

nected via Jet.

Jet snapshot-type

recordsets only

dbSeeChanges Causes a runtime error if a user attempts to change data

that another user is already editing.

Jet dynaset-type

recordsets only

dbDenyWrite Prevents other users from adding or modifying records. Jet recordsets only

dbDenyRead Prevents other users from reading data. Jet table-type

recordsets only

dbForwardOnly Forces a forward-only recordset. Th is is an older option

included for backward compatibility. Use Type: =

dbOpenForwardOnly instead.

Jet snapshot-type

recordsets only

OPENING A RECORDSET | 773

Constant Explanation Limitations

dbReadOnly Prevents users from changing the recordset. Th is is an older

option included for backward compatibility. Use

LockEdits: = dbReadOnly instead. If you must use

Options: = dbReadOnly, do not include the LockEdits

argument.

Jet recordsets only

dbRunAsync Runs a query asynchronously (so that some results are

returned while others are still pending).

ODBCDirect work-

spaces only

dbExecDirect Runs a query by calling SQLExecDirect. ODBCDirect work-

spaces only

dbInconsistent Permits inconsistent updates, enabling you to update a

fi eld in one table of a multitable recordset without updating

another table in the recordset. You can use either this con-

stant or dbConsistent, but not both.

Jet dynaset-type

and snapshot-type

recordsets only

dbConsistent Permits only consistent updates so that shared fi elds in

tables underlying a multitable recordset must be updated

together. You can use either this constant or

dbInconsistent, but not both.

Jet dynaset-type

and snapshot-type

recordsets only

dbFailOnError If an error occurs, updates are rolled back. Jet recordsets only

Table 29.6: Constants for the LockEdit argument

Constant Explanation

Default or

Limitations

dbPessimistic Uses pessimistic locking, which locks a record immedi-

ately after you change it.

Default for Jet

workspaces

dbOptimistic Uses optimistic locking, which locks a record only

when you run the Update method to update it

explicitly.

dbOptimisticValue Uses optimistic concurrency, comparing the data val-

ues in old and new records to fi nd out if changes have

been made since the record was last accessed. Th e con-

currency is based on row values.

ODBCDirect work-

spaces only

dbOptimisticBatch Uses optimistic batch locking, which enables you to

perform a simultaneous update on several records that

you’ve changed.

ODBCDirect work-

spaces only

Table 29.5: Constants for the Options argument (continued)

774 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

Opening a DAO Recordset Using a Table

The easiest way to open a DAO recordset is to open an entire table by specifying the table name

for the Name argument and using Type: = dbOpenTable to explicitly state that you’re opening

a table. The following example declares the object variable myRecordset as a DAO.Recordset

object and then assigns to it the records from the Customers table in the database identifi ed by

the myDatabase object variable:

Sub DAOTest()

Dim myRecordset As DAO.Recordset

Dim myDatabase As DAO.Database

 ‘Open the copy of Northwind on the hard drive

 Set myDatabase = DBEngine.OpenDatabase(”C:\temp\Northwind.accdb”)

 ‘Create the DAO-style Recordset

Set myRecordset = myDatabase.OpenRecordset(Name:=”Customers”, _

 Type:=dbOpenTable)

 MsgBox myRecordset(”ID”)

 MsgBox myRecordset(”Company”)

 MsgBox myRecordset(”Address”)

 MsgBox myRecordset(”City”)

 Set myRecordset = Nothing

End Sub

Opening a DAO Recordset Using an SQL SELECT Statement

If you want to return only a subset of records rather than an entire table, use an SQL SELECT

statement to open the DAO recordset. (See “Using an SQL SELECT Statement to Access a Subset

of the Data in an ADO Recordset,” earlier in this chapter, for an explanation of the essentials of

SQL SELECT statements.)

Specify the SQL statement as the Name argument for the OpenRecordset method, as the

following example illustrates. This code declares a Database object variable, assigns the

Northwind sample database to it, declares a RecordSet object variable, and then assigns to the

object variable the results of a SELECT statement run on the database:

Sub DAOSelect()

Dim myDatabase As DAO.Database

 Set myDatabase = DBEngine.OpenDatabase(”C:\temp\Northwind.accdb”)

Dim myRecordset As DAO.Recordset

 Set myRecordset = myDatabase.OpenRecordset _

 (Name:=”SELECT * FROM Customers WHERE City =‘Boston’”, _

 Type:=dbOpenDynaset)

 Do Until myRecordset.EOF

 Debug.Print myRecordset(”Last Name”)

 myRecordset.MoveNext

ACCESSING A PARTICULAR RECORD IN A RECORDSET | 775

 Loop

 Set myRecordset = Nothing

End Sub

Note that the results in this example are printed in the VBA Editor’s Immediate window, so

press Ctrl+G to open that window before pressing F5 to test this procedure.

Accessing a Particular Record in a Recordset
To work with a particular record in a recordset, you can either move through (loop) the records

until you fi nd the one you want or search for the record using Seek or Find methods. The

RecordSet object includes these methods for moving about the records in the recordset:

Method Moves to Record

MoveFirst First

MoveNext Next

MovePrevious Previous

MoveLast Last

Move Move to a specifi ed record

Using the MoveFirst, MoveNext, MovePrevious, and MoveLast Methods
The MoveFirst method and MoveLast method are always safe to use because as long as the

recordset contains one or more records, there’s always a fi rst record and a last record. (If the

recordset contains only one record, that record is considered both fi rst and last.)

But if you use the MovePrevious method from the fi rst record in the recordset or the MoveNext

method from the last record, you move beyond the recordset, accessing what is sometimes called

a “phantom record”—one that isn’t there. When you try to access the contents of such a record,

VBA gives the runtime error 3021 (“No current record”). Figure 29.1 shows this error.

Figure 29.1

Th e runtime error

“No current record”

usually means that

you’ve moved out-

side the recordset.

776 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

BOF means beginning of fi le, and EOF means end of fi le. Note that you can visualize the end

of a recordset as a point just beyond the last record. EOF, therefore, is not the same as the last

record. BOF, likewise, is not the fi rst record, but a point just before it. (I mention this because we

have a tendency to view the fi rst item in a set as the “beginning” of the set; we would consider

the fi rst fl oat as the beginning of a parade. Recordsets aren’t like that.)

To check whether you’re at the beginning or end of the recordset, use the BOF property or the

EOF property of the RecordSet object. The BOF property returns True when the current record is

at the beginning of the fi le, and the EOF property returns True when the current record is at the

end of the fi le. To avoid errors, after using the MovePrevious method check whether the begin-

ning of the fi le has been reached, as in this example:

With myRecordset

 .MovePrevious

 If .BOF = True Then .MoveNext

End With

Similarly, after using the MoveNext method check whether the end of the fi le has been

reached:

myRecordset.MoveNext

If myRecordset.EOF Then myRecordset.MovePrevious

Using the Move Method to Move by Multiple Records
To move by several records at once, but not to the fi rst record or last record in the recordset, use

the Move method. The syntax for ADO differs from that used with DAO.

Here’s the syntax for the Move method with ADO:

recordset.Move NumRecords, Start

The syntax for the Move method with DAO is as follows:

recordset.Move Rows, StartBookmark

Here, recordset is the recordset involved, NumRecords or Rows is the number of records by

which to move (use a positive number to move forward or a negative number to move back), and

Start or StartBookmark is an optional argument that you can use to specify a bookmark from

which you want to start the movement. If you omit Start or StartBookmark, movement starts

from the current record.

For example, the following statement moves 10 records forward from the current record in an

ADO recordset:

myRecordset.Move NumRecords:=10

The following statement moves 5 records backward from the current record in a DAO

recordset:

myRecordset.Move Rows:=-5

To create a bookmark, move to the record that you want to mark, and then use the Bookmark

property of the RecordSet object. The following example declares a Variant variable named

SEARCHING FOR A RECORD | 777

myBookmark and then assigns to it a bookmark representing the current record in an ADO

recordset:

Dim myBookmark As Variant

myBookmark = myRecordset.Bookmark

After setting a bookmark, you can use it as the starting point of a move. For example, the

following statement moves to the eighth record after the bookmark myBookmark in an ADO

recordset:

myRecordset.Move NumRecords:=8, Start:=myBookmark

Searching for a Record
The process of searching for a record in a recordset differs in ADO and in DAO. The following

sections show you how to search using either technology.

Also Consider the Seek Method

Both ADO recordsets and DAO recordsets include a method called Seek, which is more complex

and more powerful than the Find method for ADO and the four Find methods for DAO discussed

here. Consult the Access VBA Help fi le for additional details on the Seek method.

Searching for a Record in an ADO Recordset
To search for a record in an ADO recordset, you can use the Find method of the RecordSet

object. The syntax is as follows:

recordset.Find Criteria, SkipRows, SearchDirection, Start

Here are the components of the syntax:

 ◆ recordset is the recordset involved.

 ◆ Criteria is a required String argument that specifi es the column name, type of compari-

son, and value to use. For example, to locate a record where the state is California, you

could specify that the State column is equal (=) to CA.

 ◆ SkipRows is an optional Long value that you can use to specify an offset from the current

row (or from the bookmark specifi ed by the Start argument) at which to start searching

instead of starting from the current row. For example, an offset of 3 starts the search three

rows later than the current row.

 ◆ SearchDirection is an optional argument for specifying whether to search forward or

backward. The default is adSearchForward; specify adSearchBackward to search back-

ward instead.

 ◆ Start is an optional Variant argument that specifi es the bookmark from which to start the

search or the offset. If you omit Start, the search starts from the current row.

778 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

When you run the search, it stops at the fi rst matching record. If no record matches and

you’re searching forward, it stops at the end of the recordset; if you’re searching backward, it

stops at the beginning of the recordset. If the end or beginning of the recordset is reached, you

know that there was no match for the search.

The following example begins by moving to the fi rst record in the recordset that is rep-

resented by the object variable myRecordset. Then the code searches for the fi rst record that

matches the criterion ”City = ‘Denver’”. The example checks the EOF property to ensure

that the end of the recordset has not been reached. If it has not, this means we found a record

containing Denver in the City fi eld, so the example displays a message box with the last name

data for the record matching Denver. However, if the end of the recordset has been reached, the

example displays a message box stating that no match was found:

Sub SearchADO()

 Dim strSQL As String

 Dim myRecordset As ADODB.Recordset

 Set myRecordset = New ADODB.Recordset

 myRecordset.ActiveConnection = CurrentProject.Connection

 myRecordset.Open Source:=”Select * from Customers”, _

 Options:=adCmdText

 With myRecordset

 .MoveFirst

 .Find Criteria:=”City=‘Denver’”

 If Not .EOF Then

 MsgBox .Fields(”Last Name”)

 Else

 MsgBox ”No matching record was found.”

 End If

End With

End Sub

To continue your search for the same criteria, you can use the SkipRows argument to specify

an offset so that you don’t simply fi nd the current record again. For example, you’ll likely want

to move ahead just one row, like this:

myRecordset.Find Criteria=”City=‘Denver’”, SkipRows:=1

Searching for a Record in a DAO Recordset
To search for a record in a DAO recordset, you can use one of these four methods:

 ◆ The FindFirst method starts searching at the beginning of the recordset and searches

forward.

 ◆ The FindNext method starts searching at the current record and searches forward.

RETURNING THE FIELDS IN A RECORD | 779

 ◆ The FindPrevious method starts searching at the current record and searches backward.

 ◆ The FindLast method starts searching at the end of the recordset and searches backward.

The syntax for these four methods is as follows:

recordset.FindFirst Criteria

recordset.FindNext Criteria

recordset.FindPrevious Criteria

recordset.FindLast Criteria

Here, recordset is a required object variable that represents the RecordSet object involved.

Criteria is a required String argument that specifi es the criteria for the search. Criteria works

in the same way as the WHERE clause in an SQL statement, except that it does not use the word

WHERE.

The following example uses the FindFirst method to search from the beginning of the

recordset for the fi rst record that matches the criterion City = ‘Las Vegas’:

Sub DAOSearch()

Dim myDatabase As DAO.Database

Set myDatabase = DBEngine.OpenDatabase(”C:\temp\Northwind.accdb”)

Dim myRecordset As DAO.Recordset

Set myRecordset = myDatabase.OpenRecordset _

 (Name:=”SELECT * FROM Customers”, _

 Type:=dbOpenDynaset)

myRecordset.FindFirst ”City = ‘Las Vegas’”

MsgBox myRecordset(”Last Name”)

 Set myRecordset = Nothing

End Sub

When you start a search in a DAO recordset using one of the four Find methods, the NoMatch

property of the RecordSet object is set to True. If the method fi nds a match, the NoMatch prop-

erty is set to False. So you can test the NoMatch property to tell whether or not the search found

a match, as in this example:

If myRecordset.NoMatch = False Then

 MsgBox myRecordset(”Last Name”)

End If

Returning the Fields in a Record
Once you’ve moved to a record, you can return the fi elds it contains by using the appropriate

Field object from the Fields collection. Field is the default property for the RecordSet object,

so you can omit it if you choose. For example, both the following statements return the Last

Name fi eld from the current record:

myRecordset.Fields(”Last Name”)

myRecordset(”Last Name”)

780 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

Editing a Record
To change the data in a record, fi rst use the Edit method to specify the value you want to store

in the fi eld, and then use the Update method of the RecordSet object to update the data in the

underlying table. The following example prepares a record for editing with the Edit method,

changes the value in the Last Name fi eld to Schmidtz, and then uses the Update method to

update it:

With myRecordset

 .Edit

 .Fields(”Last Name”).Value = ”Schmidtz”

 .Update

End With

Inserting and Deleting Records
To insert a new record, use the AddNew method of the RecordSet object. You can then assign

data to the fi elds in the record. After that, use the Update method to save the data to the table in

the database. The following example uses a With statement to perform these actions:

Sub AddOne()

Dim myDatabase As DAO.Database

Set myDatabase = DBEngine.OpenDatabase(”C:\temp\Northwind.accdb”)

Dim myRecordset As DAO.Recordset

Set myRecordset = myDatabase.OpenRecordset _

 (Name:=”SELECT * FROM Customers”, _

 Type:=dbOpenDynaset)

With myRecordset

 .AddNew

 .Fields(”ID”).Value = 32

 .Fields(”Last Name”).Value = ”Murphy”

 .Fields(”First Name”).Value = ”Andrea”

 .Fields(”Company”).Value = ”Company RP”

 .Fields(”City”).Value = ”City of Industry”

 ‘add data for the other fields here

 .Update

End With

 Set myRecordset = Nothing

End Sub

After you press F5 in the VBA Editor to test this code, switch to Access, display the

Customers table, and then you will need to press F5 to refresh the view in Access before you can see this

new record.

SAVING A RECORDSET TO THE CLOUD | 781

To delete a record, identify it by either moving to it or searching for it, and then use the

Delete method followed by the Update method. The following example deletes the current

record and then updates the table:

myRecordset.Edit

myRecordset.Delete

myRecordset.Update

Closing a Recordset
After working with an object, you should close it. To close a recordset, use the Close method

with the appropriate RecordSet object or the object variable that represents the RecordSet

object. The following example closes the recordset represented by the object variable

myRecordset:

myRecordset.Close

After closing the recordset, set its object variable to Nothing to release the memory it

occupied:

Set myRecordset = Nothing

Saving a Recordset to the Cloud
You might want to store a recordset on your hard drive or in the cloud. As you’ve seen in cloud-

access examples in previous chapters, saving fi les to the cloud is much the same as saving to an

ordinary hard-drive folder. By the way, this example also illustrates how to use the Save method

of the RecordSet object:

1. Sub SaveToCloud()

2.

3. Dim myRecordset As ADODB.Recordset

4. Set myRecordset = New ADODB.Recordset

5. myRecordset.ActiveConnection = CurrentProject.Connection

6.

7. Dim strSQL As String

8. Dim strFilepath As String

9. strFilepath = “C:\Users\Richard\SkyDrive\Cities.xml”

10.

11. strSQL = “SELECT city FROM Employees”

12. myRecordset.Open strSQL

13.

14. myRecordset.Save strFilepath, adPersistXML

15.

16. Set myRecordset = Nothing

17.

18. End Sub

782 | CHAPTER 29 MANIPULATING THE DATA IN AN ACCESS DATABASE VIA VBA

To test this, open Northwind and press Alt+F11 to open the VBA Editor. Paste this code into a

module, but change Richard in line 9 to your own name.

Most of this code should be understandable from previous examples in this chapter. Line 9

specifi es the location on my hard drive where fi les move to SkyDrive automatically after being

saved there. You could just as easily save this recordset to any ordinary hard-drive folder, like this:

myRecordset.Save “c:\temp\Cities.xml”, adPersistXML

The save command we’re using stores this recordset in the XML format, about which I’ll have

much more to say in Chapter 31, “Programming the Offi ce 2010 Ribbon.”

However, for the curious, here’s what this recordset looks like in the XML format, showing

the city data for the nine records in the Employees table:

<xml xmlns:s=’uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882’

 xmlns:dt=’uuid:C2F41010-65B3-11d1-A29F-00AA00C14882’

 xmlns:rs=’urn:schemas-microsoft-com:rowset’

 xmlns:z=’#RowsetSchema’>

<s:Schema id=’RowsetSchema’>

 <s:ElementType name=’row’ content=’eltOnly’>

 <s:AttributeType name=’city’ rs:number=’1’ rs:nullable=’true’

rs:maydefer=’true’ rs:writeunknown=’true’>

 <s:datatype dt:type=’string’ dt:maxLength=’50’/>

 </s:AttributeType>

 <s:extends type=’rs:rowbase’/>

 </s:ElementType>

</s:Schema>

<rs:data>

 <z:row city=’Seattle’/>

 <z:row city=’Bellevue’/>

 <z:row city=’Redmond’/>

 <z:row city=’Kirkland’/>

 <z:row city=’Seattle’/>

 <z:row city=’Redmond’/>

 <z:row city=’Seattle’/>

 <z:row city=’Redmond’/>

 <z:row city=’Seattle’/>

</rs:data>

</xml>

Th e Bottom Line

Open a recordset. You can open an ADO recordset in two different ways.

Master It One way to open an ADO recordset is to provide an argument list following

the Open method. What is the other way to open an ADO recordset, which doesn’t involve

using arguments? Some people say that this second approach makes their code easier to

read.

THE BOTTOM LINE | 783

Access a particular record in a recordset. Both ADO and DAO technologies have methods

that allow you to move around within a recordset.

Master It One method you can use to traverse a recordset is the MoveFirst method. It

takes you to the fi rst record in the recordset. What does the fi rst record mean in a recordset

in a relational database? Is it the record that’s the lowest numerically, the lowest alpha-

betically, or what?

Search for a record. Both ADO and DAO offer methods to directly search for a particular

record.

Master It ADO offers a Find method. How many methods does DAO offer, and what

are they?

Edit a record. When editing a record, you fi rst use the Edit method, and then you can

change the value in a fi eld.

Master It After you have made a change to a value in a record, what method do you use

to save this change to make it part of the database?

Insert and delete records. It’s not diffi cult to insert new records or delete existing ones.

In both situations, you use the Update method when fi nished to save the changes to the

database.

Master It To insert a new record into a recordset, what method do you use before you

can assign data to the fi elds in the new record?

Chapter 30

Accessing One Application from
Another Application

So far, this book has focused on how to work with VBA to perform actions within a VBA host

application, such as Word or Access.

But you might sometimes (perhaps often) need to communicate between applications as well.

This chapter shows you the tools for contacting and manipulating one application from another:

Automation, data objects, Dynamic Data Exchange (DDE), and SendKeys.

In this chapter you will learn to do the following:

 ◆ Use Automation to transfer information

 ◆ Use the Shell function to run an application

 ◆ Use data objects to store and retrieve information

 ◆ Communicate via DDE

 ◆ Communicate via SendKeys

Understanding the Tools Used to Communicate
between Applications
Most VBA host applications (such as the Offi ce applications that this chapter uses as examples)

offer several tools for communicating with other applications:

Automation Formerly known as Object Linking and Embedding (OLE), Automation is usu-

ally the most effective method for transferring information from one Windows application to

another. If the applications you’re using support Automation, use it in preference to the alter-

natives, DDE and SendKeys.

Dynamic Data Exchange (DDE) An older method of transferring information between

applications that remains a good fallback when Automation isn’t available. DDE is available

in only some applications.

SendKeys The oldest and most primitive method of communicating between applications,

SendKeys relies on sending keystroke equivalents to the other application. It’s an attempt to

pretend that someone is typing on the keyboard. But this can cause timing and other issues.

Although rudimentary by comparison to Automation and DDE, SendKeys can still be effec-

tive in some situations.

786 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Beyond these three communications tools, this chapter discusses the DataObject object,

which you can use to store information and to transfer information to and from the Windows

Clipboard.

Don’t Forget the Command Line

If an application doesn’t off er any of the control methods discussed in this chapter, you may be able

to control it through the command line. For example, you can use the /p command-line switch in

many applications to print a fi le without any user interaction. Search the Web for “command line,

vba” and the application’s name to fi nd relevant tutorials.

Using Automation to Transfer Information
Automation is the most powerful and effi cient way to communicate between applications. Each

application that supports Automation offers one or more Component Object Model (COM)

objects that you can access programmatically—usually an object representing the application, an

object representing the various types of fi les the application uses, objects representing its major

components, and so on.

For any Automation transaction, there’s a server application that provides the information

or tools and a client application that receives or employs them. (There’s also another pair of

terms that distinguish between two communicating applications: the server application is also

sometimes known as the object application, and the client application is known as the controlling

application.)

Automation lets the client application harness the built-in capabilities of the server applica-

tion. For example, Excel has better calculation features than Word and can generate useful charts,

data maps, and so on based on its calculations and data. By using Automation, Word can borrow

Excel’s calculation engine and then insert the results into a Word document. Or Word could use

Excel to create a chart that it then inserts into a document as well. Word can also take more-limited

actions, such as causing Excel to open a workbook, copy a group of cells from a spreadsheet in it,

and paste-link them into a document.

To use Automation through VBA, you create an object in VBA that references the application

you want to work with. You use the CreateObject function to create a new object in another

application and the GetObject function to retrieve an existing object in another application.

When using Automation, you can choose whether to display the server application or keep

it hidden from the user. For some procedures, you’ll need to display it—for example, the user

might need to choose a fi le or a folder or make another choice that requires live intervention. In

other situations, it can be best to keep the server application hidden so that the user isn’t dis-

tracted by an application suddenly launching itself spontaneously and robotically carrying out

actions in front of the user’s startled eyes. This can make some users uneasy, as if the computer

has gotten out of control. A colleague of mine, something of a prankster, used to torment new

hires by inserting a procedure in their word processor that caused individual characters in a doc-

ument to start swinging and then drop off the bottom of the screen. As if they’d “come loose.”

Then he would walk over and tell them that this wouldn’t be a problem as long as they didn’t jar

their desk while typing.

But even if you decide to hide a server application from the user when the procedure runs,

in most cases it’s helpful to display to yourself the server application while you’re writing and

USING AUTOMATION TO TRANSFER INFORMATION | 787

testing the procedure. Doing so makes it much easier to see what’s going wrong when your code

doesn’t work as expected.

Understanding Early and Late Binding
When you use Automation to access another application, you can choose which type of binding

to use—that is, how to establish the connection between the client application and the server

application.

Early binding involves adding a reference to the application’s object library by using the

References dialog box (Tools ➢ References) at design time and then declaring an object at the

start of the code by using a Dim statement that declares the specifi c object class type rather than

declaring the object generically As Object.

For example, the following code connects to a slide within a PowerPoint presentation by

using early binding:

Dim myPowerPoint As PowerPoint.Application

Dim myPresentation As Presentation

Dim mySlide As Slide

Set myPowerPoint = CreateObject(“PowerPoint.Application”)

Set myPresentation = myPowerPoint.Presentations.Add

Set mySlide = myPresentation.Slides.Add(Index:=1, Layout:=ppLayoutTitleOnly)

With late binding, you create an object that references the other application when you run the

code. If you declare the object explicitly, you declare it as a generic object—As Object—rather

than declare it as a specifi c object class type.

For example, the following statements declare the Object variable myOutlook and then assign

to it a reference to an Outlook.Application object:

Dim myOutlook As Object

Set myOutlook = CreateObject(“Outlook.Application”)

Early Binding Isn’t Universal

Not all applications that support Automation support early binding. Some applications cannot

provide direct access to their functions at design time, while you’re writing your code, as is required

for early binding. Th ey provide access to their functions only at runtime, when the code itself is

executing. With such applications, you have no choice; you must use late binding.

If the server application you’re using supports early binding, use it in preference to late bind-

ing. There are three advantages to early binding:

 ◆ Once you’ve added to the project the reference to the application’s object library, you can

dynamically work in your code with the outside (server) application’s objects, properties,

and methods through the VBA Editor in the client application. This makes it much easier

to use the Editor’s built-in IntelliSense features to fi nd the objects, properties, and methods

you need in the application you’re referring to, and to avoid mistakes such as typos and

missing arguments.

 ◆ Because you specify the particular type of object when you declare the object variable,

you’re less likely to attempt to work with the wrong object by mistake.

788 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

 ◆ Because VBA can compile more information about the object, elements of its methods and

properties need not be resolved during runtime. So it runs faster.

On the other hand, late binding can avoid object-library issues such as having to make the

right references and other library-version problems.

Creating an Object with the CreateObject Function
The CreateObject function creates and returns a reference to an Automation object exposed to

other applications. The syntax is as follows:

CreateObject(class [,servername])

Here, class is a required argument specifying the class (the formal defi nition) of the object to

create. The class argument consists of the name of the library that will provide the object and the

type of object to be provided, so it looks like this:

applicationname.objecttype

For example, to specify the Excel Application object as a class, use a class argument of

Excel.Application. Here, Excel is the name of the application that provides the object, and

Application is the type of object that we want Excel to provide. Likewise, Excel.Sheet would

specify a worksheet object in Excel.

servername is an optional string Variant that specifi es the name of the network server on

which to create the object. If you merely want to connect to an application located on the user’s

machine (in other words, if both applications—the client and server applications—are located

on the same hard drive), omit servername or specify an empty string. To connect with an appli-

cation located on a remote server machine, you must have DCOM (the Distributed Component

Object Model) installed, and the object on the server computer must be confi gured to allow

remote creation.

Typically, you’ll use a CreateObject function with a Set statement to assign to an object

variable the object that you create. For example, the following statements declare an object vari-

able named myNewSheet and assign an Excel worksheet object to it:

Dim myNewSheet As Object

Set myNewSheet = CreateObject(“Excel.Sheet”)

CreateObject Can Be Used with Any COM Object

You can use the CreateObject function with any COM object on your computer system, not just

with application objects.

Returning an Object with the GetObject Function
The GetObject function returns a reference to an existing Automation object. The syntax is as

follows:

GetObject([pathname] [, class])

USING AUTOMATION TO TRANSFER INFORMATION | 789

You can provide either argument—but you must provide one of them. Here, pathname is an

optional string Variant specifying the full path and name of the fi le that contains the object

you want to retrieve. pathname is optional, but if you don’t specify it, you must specify the class

argument. class (which is optional if you specify pathname, but required if you don’t) is a string

Variant specifying the class of the object you want to return.

As with CreateObject, typically you’ll use a GetObject function with a Set statement to

assign to an object variable the object that you return with the GetObject function. For example,

in the second of the following statements, the GetObject function returns an object consisting

of the workbook Z:\Finance\Revenue.xlsm. The Set statement assigns this object to the object

variable named Revenue declared in the fi rst statement:

Dim Revenue As Object

Set Revenue = GetObject(“Z:\Finance\Revenue.xlsm”)

Here, the workbook is associated with Excel. When this code runs, VBA starts Excel if it isn’t

already running and activates the workbook. You can then reference the object by referring to

its object variable; in this example, you could manipulate the Revenue object to affect the

Z:\Finance\Revenue.xlsm workbook.

Examples of Using Automation with the Offi ce Applications
The following sections show three examples of using Automation with Offi ce applications.

Transferring Information from an Excel Spreadsheet

to a Word Document

This example transfers information from an Excel spreadsheet to a Word document.

First, you need to add to the target Word project (the client project that will contain the code

that accesses Excel) a reference to the Excel object library. Follow these steps:

 1. Start or activate Word, and then press Alt+F11 to launch the VBA Editor.

 2. In the Project Explorer, click the project to which you want to add the reference. For

example, if the procedure or procedures will reside in the Normal.dotm template, select

the Normal project in the Project Explorer before adding the reference. Or just choose

Insert ➢ Module to create a brand-new module to play around with.

 3. Choose Tools ➢ References to display the References dialog box.

 4. Select the check box for the Microsoft Excel 15.0 Object Library item.

 5. Click the OK button to close the References dialog box.

Once you’ve added the reference, you can use the VBA Editor’s Object Browser to browse

Excel objects. Display the Object Browser as usual by pressing F2 or choosing View ➢ Object

Browser, and then choose Excel in the Object Browser’s Project/Library drop-down list. The

Object Browser will display the contents of the Excel object library, as shown in Figure 30.1. You

can display the help (code examples, syntax) for a selected Excel object by clicking the Help but-

ton (the question-mark icon) in the Object Browser.

790 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Figure 30.1

Once you’ve loaded

the Excel object

library, you can

view its contents

in the Object

Browser from the

VBA Editor session

launched from the

host application (in

this case, Microsoft

Word).

To create and test the next code example, fi rst set up in Excel the preconditions that this

procedure expects: namely, a range object named SalesTotal. To do this, open Excel, and

right-click a cell anywhere in the displayed sheet in Book1 (the default name of the fi rst blank

workbook). If you don’t see a workbook named Book1, choose File ➢ New, then click the

blank workbook icon in the displayed templates.

In the context menu that opens when you right-click a cell in Book1, choose the Defi ne Name

option. In the New Name dialog box that opens, type SalesTotal in the Name fi eld. Then click

OK to close the dialog box.

Now double-click the same cell you just named and type in 145 or some other value. It’s this

value that your macro in Word will pluck from this workbook. Now click the File tab in the

Ribbon, choose Save As, and save this workbook as Book1.xlsx in the C:\temp subdirectory.

(Note that you’re saving it as an .xlsx fi le.) Now you can either leave Excel running or just close

it. It won’t matter because your macro will open the fi le on the hard drive.

Okay, now in Word’s VBA Editor, add the code. Because you used early binding, you have

available the Editor’s Intellisense assistance and code-completion features. Create the procedure

shown in Listing 30.1. This procedure uses the GetObject function to retrieve the information

from the specifi ed cell in the Excel spreadsheet you previously created and inserts this data in

the active Word document at the current insertion point (where the blinking cursor is).

USING AUTOMATION TO TRANSFER INFORMATION | 791

Listing 30.1: Getting data from an Excel cell and inserting it into Word

1. Sub Return_a_Value_from_Excel()

2.

3. Dim mySpreadsheet As Excel.Workbook

4. Dim strSalesTotal As String

5.

6. Set mySpreadsheet = _

7. GetObject(“C:\Temp\Book1.xlsx”)

8.

9. strSalesTotal = mySpreadsheet.Application.Range(“SalesTotal”).Value

10.

11. Set mySpreadsheet = Nothing

12.

13. Selection.TypeText “Current sales total: $” & strSalesTotal & “.”

14.

15. Selection.TypeParagraph

16.

17. End Sub

This subprocedure retrieves one piece of information from an Excel spreadsheet that’s on the

hard drive in the C:\temp directory. Here’s what happens in the subprocedure:

 ◆ Line 3 declares the object variable mySpreadsheet of the type Excel.Workbook. Line 4

declares the String variable strSalesTotal.

 ◆ Line 6 uses a Set statement and the GetObject function to make mySpreadsheet reference

the spreadsheet C:\Temp\Book1.xlsm.

 ◆ Line 9 assigns to the String variable strSalesTotal the Value property (the actual data)

of the Range object named SalesTotal in the Excel Application object. You defi ned the

SalesTotal range as a single cell, so strSalesTotal receives the value of that cell.

 ◆ Line 11 assigns to the mySpreadsheet object the special value Nothing, releasing the mem-

ory it occupied. (Because the procedure ends almost immediately afterward, this statement

isn’t necessary here. VBA will destroy it at the end of execution of the procedure. But it’s

good practice to free the memory assigned to an object when you no longer need to use the

object, just to get into the habit.)

 ◆ Line 13 uses the TypeText method of the Selection object in Word to enter a string of text

and the strSalesTotal string at the current selection. Line 14 uses the TypeParagraph

method to insert a paragraph after the text.

If you have trouble getting this example to work, double-check the following:

 ◆ Choose Tools ➢ References in the editor to ensure that the check box next to Microsoft Excel

15.0 Object Library is checked.

792 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

 ◆ If you see an error message stating “Run-time error ‘432’: File name or class name not found

during Automation operation,” it means that there’s something wrong in this line of code:

 Set mySpreadsheet = _

 GetObject(“C:\Temp\Book1.xlsx”)

Either you’ve mistyped this path in your code (such as typing C:\Docs rather than C:\

Temp) or you have not saved an Excel fi le named Book1.xlsx to this folder.

 ◆ If you see an error message stating “Run-time error ‘1004’: Method ‘Range’ of object ‘_

Application’ failed,” this is an error in the following line of code:

strSalesTotal = mySpreadsheet.Application.Range(“SalesTotal”).Value

A failure of this code means either you’ve got a typo in the code, such as specifying the

wrong range name, or there is no range by the name SalesTotal in the Excel workbook

you’re opening.

Transferring Information from a Word Document

to an Excel Workbook

We managed to send data from Excel to Word in the previous section. Now let’s go the other way.

This next procedure (Listing 30.2) runs as a macro in Word. The procedure requires that

Excel be currently running, so the procedure checks for the possibility that Excel isn’t executing

and handles the problem itself by starting Excel if necessary. The procedure creates a new Excel

workbook and then transfers information from Word to the workbook.

For this example to work, you must store a Word .docm fi le named test.docm in your

C:\temp directory.

As before, you’ll fi nd creating this procedure easier if you fi rst add to the current Word proj-

ect a reference to the Excel object library. (See the previous section for instructions.)

Listing 30.2: Sending data from Word to Excel

1. Sub Send_Word _Count_to_Excel_Spreadsheet()

2.

3. Dim WordCount As Variant

4. Dim strPath As String

5. Dim strFile As String

6. Dim docCurDoc As Document

7. Dim myXL As Excel.Application

8. Dim myXLS As Excel.Workbook

9. Const errExcelNotRunning = 429

10. Const errDocNotAvailable = 5174

11.

12. On Error GoTo Handle

13.

14. ‘ open the Word document:

15. strPath = “C:\temp”

16. strFile = “test.docm”

17. Set docCurDoc = Documents.Open(strPath & “\” _

USING AUTOMATION TO TRANSFER INFORMATION | 793

18. & strFile, AddToRecentFiles:=False)

19.

20.

21. ‘is Excel already running?

22. Set myXL = GetObject(, “Excel.application”)

23.

24. myXL.Visible = True

25. Set myXLS = myXL.Workbooks.Add

26. myXL.ActiveCell.Range(“A1”).Select

27. myXL.ActiveCell = “Word Count”

28.

29. WordCount = docCurDoc _

30. .BuiltInDocumentProperties(wdPropertyWords)

31.

32. myXL.ActiveCell.Range(“A2”).Select

33. myXL.ActiveCell = WordCount

34.

35. docCurDoc.Close SaveChanges:=wdDoNotSaveChanges

36.

37. Shutdown:

38. Set myXL = Nothing

39. Set myXLS = Nothing

40.

41. Exit Sub

42.

43. Handle:

44. If Err.Number = errExcelNotRunning Then

45. ‘If no instance of Excel is running then, run it:

46. Set myXL = CreateObject(“Excel.Application”)

47. Err.Clear

48. Resume Next

49. ElseIf Err.Number = errDocNotAvailable Then

50. MsgBox “No Word Document named Test.docm Found”

51. GoTo Shutdown

52. Else

53. Resume Next

54. End If

55.

56. End Sub

Here’s what happens in Listing 30.2:

 ◆ Line 2 is a spacer. In fact, all blank lines are just spacers—so I won’t mention them again.

 ◆ Line 3 declares the Variant variable that will be assigned the number of words in a Word

document. Later, in line 33, this same variable assigns its value to an Excel cell. Line 4

declares the String variable strPath that will hold the fi le path to the Word document, and

line 5 declares the String variable strFile that will hold the Word document’s fi lename.

794 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

 ◆ Line 6 declares the Document variable docCurDoc; it will point to the Word document when

it is opened using the Open method of the Documents object. Line 7 declares an

Excel.Application object variable myXL, and line 8 declares an Excel.Workbook object

variable myXLS.

 ◆ Line 9 declares the constant errExcelNotRunning, setting its value to 429. This error

number indicates that the procedure attempted to manipulate Excel while no instance of

Excel was currently executing. Line 10 declares the constant errDocNotAvailable, setting

its value to 5174. This error number indicates that the Word document your procedure

attempted to open could not be found.

 ◆ Line 12 starts error handling for the procedure, directing execution to the code below the

label Handle in the event of an error.

 ◆ Line 17 opens the Word document specifi ed by strPath, a backslash, and strFile, assign-

ing the document object to the docCurDoc variable. If the document isn’t available, an error

occurs and execution is transferred to the error-handler code that starts in line 43. This

error number matches the constant defi ned in the procedure as errDocNotAvailable, so

a message box informs the user that the Word document wasn’t found. Then execution is

transferred to the Shutdown label where the two object variables are destroyed and the pro-

cedure is exited.

 ◆ Line 22 can also potentially trigger an error condition. It attempts to assign a currently exe-

cuting instance of Excel to the object variable myXL. However, if this attempt fails, execution

is transferred to the Handle label. If Excel isn’t running at this point, error 429 (“ActiveX

component cannot create object”) occurs, so line 44 in the error handler checks for this

error by using the constant errExcelNotRunning. If it matches the error number, line 46

assigns to myXL a new instance of Excel that it creates by using the CreateObject function.

Line 47 then uses an Err.Clear statement to clear the error, and line 48 contains a Resume

Next statement to cause VBA to resume execution back up at the next statement following

the offending statement.

 ◆ One way or another, by the time line 24 is executed, myXL refers to a running instance of

Excel. Line 24 sets the Visible property of myXL to True so that it appears onscreen.

 ◆ Line 25 assigns to myXLS a new workbook created by using the Add method of the

Workbooks object in myXL.

 ◆ Line 26 positions the insertion pointer in the fi rst cell.

 ◆ Line 27 assigns to the active cell in myXL the text Word Count.

 ◆ Line 29 assigns the document’s word count value to the variable WordCount. This value is

accessed by using the wdPropertyWords property from the BuiltInDocumentProperties

collection of docCurDoc.

 ◆ Line 32 moves the insertion cursor down one row in Excel to cell A2, and line 33 displays

the word count in that cell.

 ◆ Finally, line 35 closes the Word document without saving any changes that may have been

made to it while it was opened for inspection.

USING AUTOMATION TO TRANSFER INFORMATION | 795

 ◆ Line 41 contains an Exit Sub statement to exit the procedure at this point—to avoid permit-

ting execution to continue down into the zone where the error-handling statements are. Using

an Exit Sub like this is common when a procedure includes an error handler at the end.

Placing a PowerPoint Slide in an Outlook Message

The next procedure shows how to communicate between PowerPoint and Outlook. This proce-

dure, run from PowerPoint, returns the existing instance of Outlook or (if there is none) creates

a new instance. The procedure then uses PowerPoint to send a message that gives details drawn

from the presentation.

Listing 30.3 shows the procedure. There’s one complication: Because PowerPoint doesn’t have

a central macro storage project like Word’s Normal.dotm or Excel’s Personal Macro Workbook,

the code must be stored in an open presentation. This could be the presentation that is the sub-

ject of the email, but it is much more convenient to maintain a code-only presentation that you

open at the beginning of all PowerPoint sessions that require the use of code. This becomes your

own personal macro-storage system.

In any case, you need some slides from which to pick information that will be sent (and you

also need to provide your email address), so follow these steps to set up the necessary precondi-

tions for the upcoming example.

First, prepare the target PowerPoint project (the project that will contain the code that

accesses Outlook and will contain the slides you’re accessing):

 1. Start PowerPoint. Click the Photo Albums link at the top of the sample templates (just

below the search fi eld). Click the Contemporary Photo Album presentation, then click the

Create button to load it into PowerPoint.

 2. Launch the VBA Editor by pressing Alt+F11.

 3. In the VBA Editor, choose Insert ➢ Module to open a code module where you can put this

procedure.

 4. Choose Tools ➢ References to display the References dialog box.

 5. Select the check box for the Microsoft Outlook 15.0 Object Library item.

 6. Click OK to close the References dialog box.

Now enter the code from Listing 30.3 into the module you inserted in step 3. Be sure to

replace my email address in line 23 with your email address.

Listing 30.3: Placing a PowerPoint Slide in an Outlook Message

 1. Sub Notify_of_New_Presentation()

 2.

 3. Dim myPresentation As Presentation

 4. Dim strPresentationFilename As String

 5. Dim strPresentationTitle As String

 6. Dim strPresentationPresenter As String

 7. Dim myOutlook As Outlook.Application

 8. Dim myMessage As Outlook.MailItem

796 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

 9. Const errOutlookNotRunning = 429

10.

11. On Error GoTo ErrorHandler

12.

13. Set myPresentation = ActivePresentation

14. With myPresentation

15. strPresentationFilename = .FullName

16. strPresentationTitle = _

 .Slides(1).Shapes(3).TextFrame.TextRange.Text

17. strPresentationPresenter = _

 .Slides(1).Shapes(1).TextFrame.TextRange.Text

18. End With

19.

20. Set myOutlook = GetObject(, “Outlook.Application”)

21. Set myMessage = myOutlook.CreateItem(ItemType:=olMailItem)

22. With myMessage

 ‘ replace the following line with your email address:

23. .To = “richard41@pri.r.com”

24.

25. .Subject = “Presentation for review: “ & strPresentationTitle

26. .BodyFormat = olFormatHTML

27. .Body = “Please review the following presentation:” & _

 vbCr & vbCr & “Title: “ & strPresentationTitle & vbCr & _

 “Presenter: “ & strPresentationPresenter & vbCr & vbCr & _

 “The presentation is in the file: “ & _

 strPresentationFilename

28. .Send

29. End With

30.

31. myOutlook.Quit

32.

33. Set myMessage = Nothing

34. Set myOutlook = Nothing

35. Exit Sub

36. ErrorHandler:

37. If Err.Number = errOutlookNotRunning Then

38. Set myOutlook = CreateObject(“Outlook.Application”)

39. Err.Clear

40. Resume Next

41. Else

42. MsgBox Err.Number & vbCr & Err.Description, vbOKOnly + _

 vbCritical, “An Error Has Occurred”

43. End If

44.

45. End Sub

mailto:richard41@pri.r.com%E2%80%9D

USING AUTOMATION TO TRANSFER INFORMATION | 797

Here’s what happens in Listing 30.3:

 ◆ Line 3 declares a Presentation object variable named myPresentation. Line 4 declares a

String variable named strPresentationFilename, which is used for storing the path and

fi lename of the presentation. Line 5 declares a String variable named strPresentation-

Title, which is used to store the title of the presentation. Line 6 declares a String variable

named strPresentationPresenter, which is used to store the name of the presenter of

the presentation.

 ◆ Line 7 declares an Outlook.Application object variable named myOutlook that is used to

represent the Outlook application. Line 8 declares an Outlook.MailItem object variable

named myMessage that is used to represent the message that the procedure creates. Line 9

declares a constant named errOutlookNotRunning and assigns to it the number 429, the

error number returned if no instance of Outlook is available when the GetObject function

tries to access it.

 ◆ Line 11 starts error handling for the procedure, directing execution to the label

ErrorHandler (in line 36) in the event of an error.

 ◆ Line 13 assigns the active presentation to the myPresentation object variable. Lines 14

through 18 contain a With structure that works with myPresentation. Line 15 assigns the

FullName property of myPresentation to strPresentationFilename.

 ◆ Line 16 assigns to strPresentationTitle the Text property of the TextRange object in the

TextFrame object in the third Shape object on the fi rst Slide object—in other words, the

text from the fi rst placeholder shape on the fi rst slide in the presentation. Similarly, line 17

assigns to strPresentationPresenter the text from the second shape on the second slide.

 ◆ Line 20 assigns to myOutlook the current instance of Outlook, which it returns using the

GetObject function. If Outlook isn’t running at this point, error 429 (“ActiveX component

cannot create object”) occurs, so line 37 in the error handler checks for this error by using

the constant errOutlookNotRunning. If it matches, line 38 assigns to myOutlook a new

instance of Outlook that it creates by using the CreateObject function. Line 39 then uses

an Err.Clear statement to clear the error, and line 40 contains a Resume Next statement to

cause VBA to jump back up in the code and resume execution where it left off (at the state-

ment after the offending statement).

 ◆ Line 21 uses the CreateItem method of the Outlook Application object (represented by

myOutlook) to create a new mail item (a new email), which it assigns to myMessage. Lines 22

through 29 contain a With structure that works with myMessage.

 ◆ Line 23 assigns recipients by setting the To property. (You should change this line to your own

email address so you can test this code and receive the message it sends.)

 ◆ Line 24 is a placeholder.

 ◆ Line 25 enters text for the Subject property. Line 26 specifi es that the message use HTML

formatting (.BodyFormat = olFormatHTML). Line 27 assigns text to the body of the mes-

sage by using the Body property. Line 28 then uses the Send method to send the message.

798 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

 ◆ Line 31 uses the Quit method to close myOutlook.

 ◆ Line 33 sets myMessage to Nothing, releasing the memory it occupied. Similarly, line 34 sets

myOutlook to Nothing. Line 35 then exits the procedure.

 ◆ As discussed earlier in this list, the primary function of the error handler is to launch an

instance of Outlook if none is currently running. If any error other than error 429 occurs,

execution branches to the Else statement in line 41, and line 42 displays a message box that

gives the error number and description.

If you test this example, be sure to remember to change line 23 from my email address to

your email address. When the procedure fi nishes execution, look in your Inbox in Outlook for

the new email message.

Using the Shell Function to Run an Application
Instead of using the CreateObject function to start an application and return a reference to it,

you can use the Shell function to run an application. Shell can run any executable program,

and its syntax is straightforward:

Shell(pathname[,windowstyle])

Here, pathname is the fi le path and program name of the program you want the Shell com-

mand to execute. Also include in the pathname any necessary command-line switches or argu-

ments required by that program.

This example opens Internet Explorer, maximizes its window, then switches the focus to it:

Sub OpenIE()

Dim id

id = Shell(“c:\program files\internet explorer\iexplore.exe”, vbMaximizedFocus)

End Sub

Shell Can Launch Applications via Filename Extensions

Shell can also start an application based on a fi le whose fi lename extension is associated with

that program. It’s as if you had double-clicked on a fi le in Windows Explorer, causing Windows to

see if any application is associated with that fi le’s extension.

For example, say that you specify a.txt fi lename extension as the argument for Shell: Shell

“testfile.txt”. A fi le with a .txt extension usually starts Notepad because Notepad is usually

associated with the fi lename extension .txt. (I say usually because Windows users are free to reas-

sign fi lename extensions to alternative applications.) If Shell can’t fi nd the specifi ed application

or fi le, it returns a runtime error.

windowstyle is an optional integer Variant that you use to specify the type of window in

which to run the application and to switch focus to the newly launched application. Table 30.1

lists the constants and values for windowstyle.

USING DATA OBJECTS TO STORE AND RETRIEVE INFORMATION | 799

Using the Sleep Function to Avoid Problems with Shell’s Asynchrony

Th e Shell function runs other programs asynchronously rather than synchronously. In other words,

Shell doesn’t halt all other activity until it is fi nished with its job. So when VBA executes a Shell

statement, it registers the statement as an action to be performed—but that action may not neces-

sarily be fi nished before the next statement in your code executes.

Th is asynchrony can cause errors in your procedures if subsequent commands depend on the

Shell statement having already been executed. If you run into this type of problem, a crude but

often-eff ective fi x is to just allow extra time for the Shell function to execute before taking any

dependent action. For example, you might run the Shell function earlier in the procedure than

you otherwise would have done rather than running it right before the dependent actions. But a

better solution is to use an API call (such as Sleep) to delay the execution of further statements

for a few seconds so that the Shell function can fi nish executing. Place this declaration in the

declarations section at the top of the Code window:

Public Declare Sub Sleep Lib “kernel32” (ByVal dwMilliseconds As Long)

Th en call the Sleep function at the appropriate point in your code, specifying the number of

milliseconds you want the code to wait. Th e following statement uses Sleep to implement a

2-second delay:

Sleep (2000)

Table 30.1: Constants and values for the windowstyle argument

Co nstant Value Window Style

vbHide 0 Minimized and hidden, but with focus

vbNormalFocus 1 Normal (“restored”) with focus

vbMinimizedFocus 2 Minimized with focus (the default)

vbMaximizedFocus 3 Maximized with focus

vbNormalNoFocus 4 Normal (“restored”) without focus

vbMinimizedNoFocus 6 Minimized without focus

Using Data Objects to Store and Retrieve Information
As you’ve seen so far in this book, you can store information in many places using VBA. But

what you will fi nd uniquely useful about the data object is its ability to copy information to,

and retrieve information from, the Clipboard. This chapter is all about ways to communicate

between applications, and the Clipboard is one such way.

800 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

A data object is logically attached to a UserForm object in the Microsoft Forms object model,

but you can use a data object by itself with no user form displayed. This is similar to the way

that you can create and manipulate a hidden Access database with no visible interface displayed

to the user. (This phenomenon is described in the section titled “Opening Multiple Databases at

Once” in Chapter 28.)

A data object, which is represented in VBA by the DataObject object, is used to store data.

Each data object can hold multiple pieces of text information, and each piece must be in a differ-

ent, defi ned format. You can create and use multiple data objects to store multiple pieces of data

in the same format, or you can cheat and tell VBA that information is in a different format when

really it’s not.

At any given time, the Clipboard can contain one text item and one item in another format,

such as a graphical object. If you copy another text item to the Clipboard, that item will over-

write the previous text item, but any graphical item on the Clipboard will remain unscathed.

Likewise, if you copy a graphical item to the Clipboard, it will overwrite any previous graphical

item (or indeed any item in a non-text format) stored in the Clipboard, but any text item in the

Clipboard won’t be affected.

The data object works in a way similar to the Clipboard. However, a data object can’t store

graphical information. It can store multiple pieces of text information, each defi ned as being in a

different format.

Creating a Data Object
To create a data object, declare an object variable of the DataObject type and then use a Set

statement to assign a new DataObject object to it. For example, the following statements declare

a DataObject variable named myDObj and assign a new DataObject to it:

Dim myDObj As DataObject

Set myDObj = New DataObject

Storing Information in a Data Object
To store information in a data object, use the SetText method, which has the following syntax:

object.SetText(StoreData [,format])

The components of the syntax are as follows:

 ◆ object is a required argument specifying a valid object.

 ◆ StoreData is a required argument specifying the data to store in the data object.

 ◆ format is an optional argument containing an Integer value or a String specifying the for-

mat of the information in StoreData. A value of 1 indicates text format; a value other than

1 or a String indicates a user-defi ned format.

For example, the following statement stores the text Sample text string in the DataObject

named myDObj:

myDObj.SetText “Sample text string”

The following statement stores the text Sample formatted text string in the DataObject

named myDObj, defi ning and using the custom format myFormat:

myDObj.SetText “Sample formatted text string”, “myFormat”

USING DATA OBJECTS TO STORE AND RETRIEVE INFORMATION | 801

Once the custom format has been defi ned and stored in the data object, you can access

the data stored in that format by specifying the format. In this case, no formatting is actually

involved—the code simply uses the format argument to create and identify a different data slot

in the data object so that the new string doesn’t overwrite the existing text string. It’s a trick.

Returning Information from a Data Object
To return information from a data object, use the GetText method of the DataObject object. The

GetText method has the following syntax:

object.GetText([format])

The components of the syntax are as follows:

 ◆ object is a required argument specifying a valid object.

 ◆ format is an optional argument containing a String or an Integer specifying the format of

the data to retrieve.

For example, the following statement displays a message box containing the plain-text string

stored in the DataObject named myDObj:

MsgBox myDObj.GetText

The following statement assigns to the String variable strTemp the text stored with the

myFormat format in the DataObject named myDObj:

strTemp = myDObj.GetText(“myFormat”)

Here’s a working code example that illustrates how to create a data object and then uses it to

store and retrieve information. First, choose Tools ➢ References in the editor to ensure that the

check box next to Microsoft Forms 2.0 Object Library is checked. Note that it’s likely this library

will not be in its correct alphabetic location in the list of libraries in the References dialog box.

Instead, it will probably be already checked and, thus, found in the fi rst 10 or so libraries at the

top of the References list.

Type this working example into an application’s VBA Editor, and press F5 to see it execute:

Sub StoreText()

 Dim myDObj As DataObject

 Set myDObj = New DataObject

 myDObj.SetText “Sample text string”

 MsgBox myDObj.GetText

End Sub

Assigning Information to the Clipboard
To assign text to the Clipboard from a data object, use the PutInClipboard method of the

DataObject. For example, the following example creates a new data object named myDO, assigns

to it the text Nasta Louise Gomes, and then assigns that text to the Clipboard:

Sub StoreText()

802 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Dim myDO As DataObject

Set myDO = New DataObject

myDO.SetText “Nasta Louise Gomes”

myDO.PutInClipboard

End Sub

Test this by pressing F5, and then press Ctrl+V to display the Clipboard contents in the Editor,

or Word, or some other text application.

Returning Information from the Clipboard to a Data Object
To fetch whatever text information is in the Clipboard and store it in a data object, use the

GetFromClipboard method of the DataObject object. The following example creates a data

object referenced by the variable aDO, assigns to it the text from the Clipboard, and then displays

the text:

Sub GetClipboardText()

Dim aDO As DataObject

Set aDO = New DataObject

aDO.GetFromClipboard

MsgBox aDO.GetText

End Sub

To return formatted information from the Clipboard and store it in a data object, use the

GetFormat method of the DataObject object.

Finding Out Whether a Data Object Contains a Given Format
To fi nd out whether a data object contains a given format, use the GetFormat method of the

DataObject object. The syntax for the GetFormat method is as follows:

object.GetFormat(format)

Here are the components of the syntax:

 ◆ object is a required argument that returns a valid DataObject object.

 ◆ format is an Integer or String specifying the format you’re looking for. If the DataObject

contains the format, GetFormat returns True; if not, GetFormat returns False.

For example, the following statement checks to see if the DataObject named myDO contains

the format myHTML and assigns the format’s contents to the string strHTMLText if it does:

If myDO.GetFormat(“myHTML”) = True Then _

 strHTMLText = myDO.GetText(Format:=”myHTML”)

COMMUNICATING VIA DDE | 803

Communicating via DDE
If the application with which you want to communicate doesn’t support Automation, you can

try Dynamic Data Exchange (DDE). DDE is a protocol that establishes a channel between two

applications through which they can automatically exchange data. DDE can be tricky to set up,

but once you get it working, it is usually reliable.

Not all applications support DDE. Among the Offi ce applications, Word, Excel, and Access

support DDE, but PowerPoint and Outlook do not. What’s more, Microsoft warns that DDE

is not a secure technology. So use it only in situations where you aren’t vulnerable to outside

intrusion.

In the following descriptions of DDE statements, I’ll use the term method in its more generic,

non-OOP sense. Back long, long ago when DDE was introduced (in Windows 3.0!), object-oriented

programming wasn’t yet fashionable.

A typical DDE conversation can contain the following actions:

 ◆ Using the DDEInitiate method to start a DDE connection and establish the channel on

which the connection operates

 ◆ Using the DDERequest method to return text from the other application or the DDEPoke

method to send text to the other application

 ◆ Using the DDEExecute method to execute a command in the other application

 ◆ Using the DDETerminate method to close the current DDE channel or using the

DDETerminateAll method to close all the DDE channels

Using DDEInitiate to Start a DDE Connection
To start a DDE connection, you use the DDEInitiate method. The DDEInitiate method

employs the following syntax:

expression.DDEInitiate(App, Topic)

The components of the syntax are as follows:

 ◆ expression is an optional expression specifying an Application object.

 ◆ App is a required String argument specifying the name of the application with which the

DDE connection is to be started.

 ◆ Topic is a required String argument specifying the DDE topic (such as an open fi le) in

the application. To discover the list of topics available for an application, you send a DDE

request (via the DDERequest method, discussed in the next section) to the System object in

the application.

DDEInitiate returns the number of the DDE channel established. You then use this number

for subsequent DDE calls.

For example, the following statements declare the Long variable lngDDEChannel1 and assign

to it a DDE channel established with the workbook Sales Results.xlsm in Excel:

Dim lngDDEChannel1 As Long

lngDDEChannel1 = DDEInitiate(“Excel”, “Sales Results.xlsm”)

804 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Using DDERequest to Return Text from Another Application
To return a string of text from another application, you use the DDERequest method. The

DDERequest method has the following syntax:

expression.DDERequest(Channel, Item)

The components of the syntax are as follows:

 ◆ expression is an optional expression that returns an Application object.

 ◆ Channel is a required Long argument specifying the DDE channel to use for the request.

 ◆ Item is a required String argument specifying the item requested.

To get the list of topics available via DDE, request the Topics item from the System topic.

For example, the following statements establish a DDE channel to FrontPage (by using

DDEInitiate) and return the list of DDE topics, assigning the list to the String variable

strDDETopics:

Dim lngDDE1 As Long

Dim strDDETopics As String

lngDDE1 = DDEInitiate(App:=”FrontPage”, Topic:=”System”)

strDDETopics = DDERequest(Channel:=lngDDE1, Item:=”Topics”)

Open Excel, click the File tab on the Ribbon, and then click the New option. Click Monthly

Family Meal Planner in the display of templates. Then click the Create button.

Now open Word’s VBA Editor and type in the following procedure. The following statements

establish a DDE channel to the workbook SalesReport1.xlsm in Excel and return the contents

of cell C7 (R7C3) in the String variable strResult:

Sub DDEtoExcel()

Dim lngDDEChannel1 As Long, strResult As String

lngDDEChannel1 = DDEInitiate(“Excel”, “Monthly family meal planner1”)

strResult = DDERequest(lngDDEChannel1, “R11C4”)

MsgBox strResult

DDETerminateAll

End Sub

When you press F5 to test this, you should see a message box displaying “Beef and

Mushroom Skillet Supper,” which sounds pretty nasty.

For DDE to work, you have to use the correct, full name of the target document as it appears

in the title bar of the application. In this case, your target document is an Excel workbook named

Monthly family meal planner1.
The previous code works only if you haven’t yet saved the Monthly family meal planner1

workbook because before it’s saved, a new workbook has no fi lename extension appended to its

name. However, if you have already saved this workbook, you must append whatever fi lename

extension you employed, such as .xlsm. Here’s an example:

lngDDEChannel1 = DDEInitiate(“Excel”, “Monthly family meal planner1.xlsm”)

COMMUNICATING VIA DDE | 805

The DDETerminateAll statement is explained shortly.

Using DDEPoke to Send Text to Another Application
To send text to another application, use the DDEPoke method. The DDEPoke method has the fol-

lowing syntax:

expression.DDEPoke(Channel, Item, Data)

The components of the syntax are as follows:

 ◆ expression is an optional expression that returns an Application object.

 ◆ Channel is a required Long argument specifying the DDE channel to use.

 ◆ Item is a required String argument specifying the item to which to send the data.

 ◆ Data is a required String argument specifying the data to be sent.

Continuing to use the previous example, the following statements use the DDEPoke method to

assign the data Potato Salad Surprise to cell R11 C4 in the worksheet:

Sub DDEPokeExcel()

Dim lngDDEChannel1 As Long, strResult As String

lngDDEChannel1 = DDEInitiate(“Excel”, “Monthly family meal planner1”)

strResult = DDERequest(lngDDEChannel1, “R11C4”)

DDEPoke Channel:=lngDDEChannel1, Item:=”R11C4”, _

 Data:=”Potato Salad Surprise”

DDETerminateAll

End Sub

Now look at the Excel worksheet and you’ll see that “Beef and Mushroom Skillet Supper” has

been replaced with the even more dubious-sounding “Potato Salad Surprise.”

Using DDEExecute to Have One Application Execute a Command
in Another
To execute a command in another application, use the DDEExecute method. The DDEExecute

method has the following syntax:

expression.DDEExecute(Channel, Command)

The components of the syntax are as follows:

 ◆ expression is an optional expression that returns an Application object.

 ◆ Channel is a required Long argument specifying the DDE channel to use.

 ◆ Command is a required String argument specifying the command or series of commands to

execute.

806 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

For example, the following statements establish a DDE channel to Excel and issue a Close

command to close the active workbook:

Sub DDEExec()

Dim lngMyChannel

lngMyChannel = DDEInitiate(App:=”Excel”, Topic:=”System”)

DDEExecute lngMyChannel, Command:=”[Close]”

Exit Sub

If the workbook you’re closing has unsaved data, Excel will display a message box prompting

you to save it—thus preventing it from closing until the prompt is satisfi ed.

Using DDETerminate to Close a DDE Channel
When you’ve fi nished a DDE communication, use the DDETerminate method to close the DDE

channel you opened. The syntax for the DDETerminate method is as follows:

expression.DDETerminate(Channel)

Here are the components of the syntax:

 ◆ expression is an optional expression that returns an Application object.

 ◆ Channel is a required Long argument specifying the DDE channel to close.

The following statements employ the previous example, closing the DDE channel that was

opened:

Dim lngMyChannel

lngMyChannel = DDEInitiate(App:=”Excel”, Topic:=”System”)

DDEExecute lngMyChannel, Command:=”[Close]”

DDETerminate lngMyChannel

Using DDETerminateAll to Close All Open DDE Channels
To close all open DDE channels, use the DDETerminateAll method:

DDETerminateAll

Because VBA doesn’t automatically close DDE channels when a procedure ends, it’s a good

idea to use a DDETerminateAll statement to make sure you haven’t inadvertently left any DDE

channels open.

Communicating via SendKeys
The SendKeys statement is a basic and limited form of communication between applications.

You may fi nd SendKeys useful if neither Automation nor DDE works with the target application.

But SendKeys does have shortcomings, as you’ll see momentarily.

SendKeys transmits specifi ed keystrokes to the destination application. It impersonates some-

one typing at the keyboard.

 For example, to use SendKeys to send the command to create a new fi le in Notepad, you

send the keystrokes for Alt+F, N (to execute the File ➢ New command), and Notepad reacts as if

COMMUNICATING VIA SENDKEYS | 807

you had pressed the keys manually. In Offi ce 2013 applications, Alt+F opens the File tab on the

Ribbon.

SendKeys works only with currently running Windows applications: You can’t use SendKeys

to start another application running (for that you need to use Shell, as discussed earlier in this

chapter), nor can you use SendKeys to communicate with DOS applications running in a virtual

DOS machine under Windows.

The syntax for the SendKeys statement is as follows:

SendKeys string[, wait]

Here, string is a required String expression specifying the keystrokes to be sent to the des-

tination application. wait is an optional Boolean value specifying whether to wait after sending

the keystrokes until the application has executed them (True) or to immediately return control

to the procedure sending the keystrokes (False, the default setting). The True setting, however,

can prevent some kinds of timing problems.

Typically, string consists of a series of keystrokes (rather than a single keystroke). All alpha-

numeric characters that appear on the regular keyboard are represented by the characters them-

selves: To send the letter H, you specify H in the string, and to send the word Hello, you specify

Hello in the string. To denote the movement (arrow) and editing keys, SendKeys uses keywords

enclosed within braces ({}), as described in Table 30.2.

Table 30.2: SendKeys keywords for movement and editing keys

Key Code

Down arrow {DOWN}

Left arrow {LEFT}

Right arrow {RIGHT}

Up arrow {UP}

Backspace {BACKSPACE}, {BS}, or {BKSP}

Break {BREAK}

Caps Lock {CAPSLOCK}

Delete {DELETE} or {DEL}

End {END}

Enter {ENTER}

Esc {ESC}

 F1, F2, etc. {F1}, {F2}, etc. (up to {F16})

Help {HELP}

Home {HOME}

808 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Key Code

Insert {INSERT} or {INS}

NumLock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Print Screen {PRTSC}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

To send Shift, Control, and Alt, use the symbols shown in Table 30.3.

Table 30.3: SendKeys symbols for meta keys

Key Code

Shift +

Ctrl ^

Alt %

SendKeys automatically assigns the keystroke after the meta key to the meta key, thereby imi-

tating pressing and holding the Alt key, for example, while simultaneously pressing S.

In other words, to send a Ctrl+O keystroke combination, you would specify ^O, and

SendKeys imitates holding down Ctrl while pressing O. Then, the next keystroke after the O is

considered to be struck separately. If you need to assign multiple keystrokes to the meta key,

enter the keystrokes in parentheses after the meta key. For example, to send Alt+F, I, I, you’d

write %(FII), not %FII.
As you can see, SendKeys has special uses for the plus sign (+), caret (̂), percent sign (%),

and parentheses (). The tilde (~) gets special treatment as well. To use these characters to merely

represent themselves instead of their special uses, enter them within braces: {=} sends a regu-

lar = sign, {^} a regular caret, {%} a percent sign, {~} a tilde, and {()} parentheses. Likewise,

you must enclose brackets (which have a special meaning in DDE in some applications) within

braces; braces themselves also go within braces.

Using SendKeys is much less complex than these details initially make it appear—but with

that reassurance, there’s one more trick you should know: To repeat a key, enter the key and the

number of repetitions in braces. For example, to send fi ve up-arrow keystrokes, you’d specify

{UP 5}; to send 10 zeroes, you’d specify {0 10}.

Table 30.2: SendKeys keywords for movement and editing keys (continued)

COMMUNICATING VIA SENDKEYS | 809

Listing 30.4 shows an example of how to use SendKeys to send some text to Notepad after

fi rst starting it with the Shell command.

Warnings about SendKeys

SendKeys is an old technology and it has two serious drawbacks. First, you can run into timing

issues. SendKeys was created when computers ran far more slowly than they do today. For this

reason, in some circumstances, executing the code in Listing 30.4 creates a problem when it displays

the Save dialog box. Execution stops, failing to complete the fi le-saving. Or the fi lename is saved as

og fi le rather than log fi le. Th ese are timing problems. Th e second drawback relates to testing your

code. Because SendKeys needs to activate the target application, you can’t step through your code

(repeatedly pressing F8) in the VBA Editor—the editor grabs the focus back at the wrong point,

becomes perplexed, and the keystrokes are dumped into the Editor rather than into Notepad, the

intended target. Instead, you must run the procedure either from the VBA Editor (by pressing F5)

or from the host application as a macro. Technically, this second behavior—absorbing keystrokes

into the Editor rather than Notepad—is a result of what SendKeys is actually doing: It’s pushing

keystrokes into the key buff er. Th en they pop back out wherever they can.

Listing 30.4: Automating Notepad with SendKeys

 1. Sub Send_to_Notepad()

 2. Dim strLogDate As String

 3. Dim strSaveLog As String

 4. Dim strMsg As String

 5. Dim appNotepad As Variant

 6. strMsg = “Sample log text here.”

 7. strLogDate = Month(Now) & “-” & Day(Now) & “-” & Year(Now)

 8. strSaveLog = “Log file for “ & strLogDate & “.txt”

 9. appNotepad = Shell(“notepad.exe”, vbNormalFocus)

10. AppActivate appNotepad

11. SendKeys strMsg & “%FS” & strSaveLog & “{Enter}” & “%{F4}”, True

12. End Sub

Here’s how the code works:

 ◆ The Send_to_Notepad procedure starts by declaring (in lines 2, 3, and 4) three String

variables—strLogDate, strSaveLog, and strMsg—and (in line 5) one Variant variable,

appNotepad.

 ◆ Line 6 then assigns to strMsg a sample string of text.

 ◆ Line 7 assigns to strLogDate a date built of the Day, Month, and Year values for Now (which

returns the current date and time). For example, if the date is July 11, 2013, Month(Now) will

810 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

return 7, Day(Now) will return 11, and Year(Now) will return 2013, so the strLogDate

string will contain 7-11-2013.

 ◆ Line 8 then assigns to the strSaveLog string (which will be used to supply the fi lename for

the log fi le) text describing the fi le, the strLogDate string, and the .txt fi lename extension

(to continue our example, Log file for 7-11-2013.txt).

 ◆ In line 9, the procedure fi nally gets down to business, using the Shell statement to run

Notepad in a “normal” (not maximized or minimized) window with focus and storing the

task ID of the Notepad session in the variable appNotepad.

 ◆ Line 10 then uses an AppActivate statement to activate Notepad.

 ◆ Line 11 uses a SendKeys statement to send to Notepad the following:

 ◆ The information contained in the String variable strMsg.

 ◆ An Alt=F keystroke (to pull down the File menu), followed by an S keystroke to

choose the Save item on the menu. This keystroke displays the Save As dialog box

with the File Name text box selected.

 ◆ The strSaveLog String variable, which is entered in the File Name text box.

 ◆ An Enter keystroke to choose the Save button in the Save As dialog box.

 ◆ An Alt=F4 keystroke to quit Notepad.

 ◆ Line 12 ends the procedure.

When you run this procedure (again, you need to run the procedure by pressing F5 rather

than stepping into it with F8), you’ll see the following:

 1. Notepad springs to life.

 2. The contents of the Msg string appear in the Notepad window.

 3. The Save As dialog box displays itself, enters the fi lename in the File Name text box, and

then dismisses itself.

 4. Notepad closes. The .txt fi le is saved to the currently active folder on your hard drive.

Because SendKeys was historically most often employed to open an application’s menus

and select an option from the menus (the way that Notepad still behaves), you might think that

applications since Vista—which are largely menu-free and employ the Ribbon instead—would

seriously curtail the fl exibility of the SendKeys technique. However, this isn’t true. Many of

the features of the Ribbon, for example, are accessible via key combinations. Try pressing the

sequence Alt, W, Q, 2, and the Enter key in Word; it will switch to the View tab on the Ribbon,

select the Zoom option, and switch to a 200% zoom. The difference here is that instead of

employing the traditional approach of simultaneously pressing the Alt key while pressing other

keys (such as Alt+V to open a View menu), in current Windows operating systems you press and

release Alt by itself, then you press the W key to switch to the View tab on the Ribbon. At this

point, additional keystrokes are possible to activate the various options on the View tab. To exit

from this mode, press Esc.

THE BOTTOM LINE | 811

Here’s another code example, which illustrates how to manipulate Ribbon-based applica-

tions. This time Excel, not Notepad, is the target, and the Ribbon, not a menu, is manipulated.

The code sends an Alt key by itself (this activates the shortcut key feature on the Ribbon and

the Quick Access Toolbar as well, displaying a variety of keys you can choose from). Then the

code switches to the View tab (a W does that), and fi nally full-screen mode is turned on by

sending an E:

Sub Send_to_Excel()

 Dim appExcel As Variant

 appExcel = Shell(“Excel.exe”, vbNormalFocus)

 AppActivate appExcel

 SendKeys “%”, True ‘send Alt by itself

 SendKeys “W”, True ‘W for the View tab

 SendKeys “E”, True ‘E for full screen mode

 End Sub

Going beyond VBA
VBA is not limited to its own library of functions. In this chapter you’ve seen how to use the

Editor’s Tools ➢ References feature to make Offi ce applications’ object libraries available to

VBA’s built-in capabilities. But wait. There’s more.

VBA can also access the entire Windows API (application programming interface). This

isn’t as simple as adding a library via Tools ➢ References. And the necessary code is verbose.

But if you want to have very complete control over Windows’s internals, to, for example, per-

fectly manage timing issues like waiting for an outside application to complete its task and

other advanced techniques—the Windows API functions are up to such jobs (and plenty more

besides).

Windows API programming is beyond the scope of this book, but if you’re interested, copy

and paste the sample code from this MSDN web page:

http://msdn.microsoft.com/en-us/library/office/bb258148(v=office.12).aspx

That sample code works fi ne in Word’s or Access’s VBA Editors. And the links provided on

that web page are your doorways into further, deeper study of the topic. If, like me, you have

major geek tendencies, it’s great fun to wander around and experiment in an immense compen-

dium like the API. You can make Windows do things you wouldn’t believe.

Th e Bottom Line

Use Automation to transfer information. Automation sets up communication between

two applications, designating one of them as the server and the other as the client.

Master It Of the various ways to communication between applications, which is gener-

ally the most effective?

http://msdn.microsoft.com/en-us/library/office/bb258148(v=office.12).aspx

812 | CHAPTER 30 ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION

Use the Shell function to run an application. Although the Shell function can prove

useful in a variety of inter-application communication situations, Shell can also present the

programmer with a timing problem.

Master It Describe the timing issues that the Shell function raises, and describe a good

solution to this problem.

Use data objects to store and retrieve information. This book has described a variety of

ways to store and retrieve information when working with the VBA language. Using data

objects is one of these useful techniques.

Master It How is the data-object technology special as a way of storing and retrieving

information; what can a data object do that’s unique?

Communicate via DDE. Dynamic Data Exchange (DDE) is a technology introduced back

in May 1990 with Windows 3.0. Use it if other, more effi cient communication technologies are

unavailable to the applications you are working with.

Master It Not all applications support DDE. Which Offi ce 2013 applications don’t sup-

port DDE communication?

Communicate via SendKeys. Using SendKeys is a fairly simple but rather awkward and

limited way to communicate between applications. It imitates typing in keystrokes, thereby

allowing you to manipulate an application by accessing some of its features using, for exam-

ple, Alt+key combinations, such as Alt+F to open the File tab on the Ribbon.

Master It SendKeys was historically most often employed to open an application’s

menus and select an option from the menus. Since Vista, Windows applications have

largely done away with traditional menus, so is SendKeys of even more limited use now

than in the past?

Chapter 31

Programming the Offi ce 2013
Ribbon

VBA programmers may want to customize the Offi ce applications’ Ribbons programmatically

(via macro code as opposed to the user employing the Options dialog box). Perhaps your

organization wants to hide certain features in Excel, add a step-through wizard to Word, create

a Ribbon that is custom-designed for working with a particular presentation, add a special tab

containing capabilities relevant to your business, or otherwise automate management of this

major part of the user interface.

Or you might want to create dynamic Ribbon effects, such as hiding, disabling, revealing, or

modifying Ribbon elements—labels, groups, controls, or whatever—based on the user’s

behaviors in the application or on some other criterion.

This chapter explores all aspects of Ribbon customization so you’ll be able to fully exploit the

Ribbon’s capabilities programmatically.

Note that the Ribbon can be programmatically modifi ed in two ways: The most effi cient

approach is to create XML code and make it interact with VBA procedures. This chapter

employs this technique and describes how to customize the Ribbon in Word, Excel, and

PowerPoint. A second, more complex approach requires writing COM add-ins, a technique that

is beyond the scope of this book.

The Access Ribbon can’t be modifi ed in the same way that you modify the Ribbon in Word,

Excel, and PowerPoint. Access requires a unique approach, including creating a specialized

table to hold the XML code that modifi es the Ribbon. Modifying the Access Ribbon is covered at

the end of this chapter.

The Ribbon’s contents are described in the XML language, but you don’t need to know how

to write XML to manipulate the Ribbon. Throughout this chapter, you can just copy and paste

XML code examples, making modifi cations to them to suit your needs.

As you’ll see shortly, there’s also a handy utility you can download that helps you avoid

several tedious steps when modifying the Ribbon and verifi es that your XML statements are

“well formed” (that they follow the rules of XML and thus should work).

In this chapter you will learn to do the following:

 ◆ Understand what XML is

 ◆ Hide a group on the Ribbon

 ◆ Add a new, custom group

 ◆ Create callbacks for event handling

814 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 ◆ Manipulate the Access Ribbon

 ◆ Debug Ribbon programming

What Is XML?
XML means extensible markup language. It’s a way to combine data with descriptions of that data.

Think of a fi le cabinet holding various documents, each of which is stored in a folder with a

label describing the meaning of its document: Telephone Bill, Boat Insurance, Bobby’s Arrest,

and so on.

But XML takes this a step further, becoming more granular (more fi nely detailed) in its mark-

ing (labeling) of data. Each paragraph, sentence, or even individual words can also be contained

within descriptive “tags,” like this:

<FirstArrest>

 <DateofArrest>12,1,2013</DateofArrest>

 <Location>Sao Paulo, Brazil

 </Location>

</FirstArrest>

<SecondArrest>

<DateofArrest>12,14,2013</DateofArrest>

 <Location>Miami Airport

 </Location>

…

You get the idea: descriptive tags, then the data contained, followed by closing tags. For

example, <Location> is a tag presumably containing some kind of geographical data;

</Location> is a tag with a backslash, meaning that this is the end of the information about

location. Any opening tag must be paired with a closing tag, and they thus surround the data

that they describe.

XML is “extensible,” meaning anybody can make up their own tags. XML is a way of storing

information along with descriptions of the meaning of that information. You can think of it as

similar to a record in a database.

Contrast this with HTML (the markup language that underlies web pages), which describes

how to display information and contains standardized tags, such as <i> </i> for italic, under-

stood by all browsers.

If you want to know more about XML, you’ll fi nd a good introductory tutorial here:

http://w3schools.com/xml/

Hiding the Editing Group on the Word Ribbon
To get an idea of how to modify the Ribbon, let’s assume that you want to remove the Editing

group in the Word Ribbon’s Home tab. This group has three options: Find, Replace, and Select.

However, you decide that you just don’t need to display these options because you always press

Ctrl+F to open the Find dialog box and Ctrl+H to open the Replace dialog box, and you select by

simply dragging the mouse. To you, this Editing group is useless, just wasting valuable space on

the Ribbon.

http://w3schools.com/xml

HIDING THE EDITING GROUP ON THE WORD RIBBON | 815

To hide the Editing group on the Ribbon, follow these steps:

 1. First you’ll want to download a free utility that makes working with the Ribbon much

easier. Go to

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2010/08/10/23248.aspx

and download, then install, the Offi ce Custom UI Editor tool. This utility can be down-

loaded via a link on this web page named OfficeCustomUIEditorSetup.zip. (The fi le

is just above the comments.) When you extract the contents of this zip fi le, you’ll have an

installer (.msi) fi le. Just double-click it to install the Custom UI Editor.

 2. Start Word.

 3. Press Alt, F, N, (or click the File tab, then click the New option). Then click the blank

document template.

 4. Press Alt, F, A and save the document as RibbonMod.docm to your Desktop (or some other

location such as C:\temp where you can easily locate it).

 5. Press Alt, F, C to close this document. Closing the document is necessary because if it’s

still open when you attempt to store your XML code in it (by choosing File ➢ Save in the

Custom UI Editor for Microsoft Offi ce), you’ll get an error message.

Why You Should Use Macro-Enabled File Types

Note that you could also save the document as the default .docx fi le type, but in this chapter

you’ll always use the macro-enabled .docm type (and the other “m” type, such as .xlsm for

macro-enabled Excel fi les and .pptm for PowerPoint). Th ese types of fi les can include macros,

and in some of the examples in this chapter, you’ll need to write procedures to handle events—

triggered when the user clicks a control that you’ve added to the Ribbon.

 6. Run the Custom UI Editor for Microsoft Offi ce.

 7. Choose File ➢ Open.

 8. Browse to the RibbonMod.docm fi le that you saved in step 4, and open it.

 9. In the right pane of the Custom UI Editor, type the following XML code:

/2009/07/<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

 <ribbon>

 <tabs>

 <tab idMso=”TabHome”>

 <group idMso=”GroupEditing” visible=”false” />

 </tab>

 </tabs>

 </ribbon>

</customUI>

Identifi ers (idMso), images (imageMso), and other attributes in Ribbon XML code can

have an Mso suffi x. Mso is short for Microsoft Offi ce, and when appended to an attribute

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2010/08/10/23248.aspx
http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

816 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

it means built-in. So, a tab with an idMso attribute is one of the tabs on the Ribbon by

default. A tab with a plain id attribute is a new tab you’ve added to the Ribbon. Likewise,

an imageMso is one of the set of built-in Offi ce 2013 icons, but an image is an icon you

created by importing a graphics fi le (see “Creating Your Own Icons” later in this chapter).

Watch Out for Special Characters

XML will choke on special characters—it expects plain vanilla text with none of those slanted quota-

tion marks (called “smart quotes”) or other fancy formatting. You used to be able to paste code into

Notepad, then copy it from Notepad and paste it into the VBA Editor or the Custom UI Editor. When

text was dipped into Notepad like this, all special characters were stripped off . Slanted quotation marks

(which are two distinct characters, open and close quotes) turned into a single, vertical quotation-mark

character. Th is was quite a good way to wash text. No more. Th ose at Microsoft who fi ddle with good

tools and make them less useful decided to justify their salaries by not leaving Notepad alone. After all,

they’re getting paid to do something, so they get restless. Until the latest version, Notepad has been

left alone, unchanged for decades.

How do you get rid of characters like smart quotes (“ and ”) that XML (and the VBA Editor) cannot

work with, replacing them with straight quotes (")? Th ere are three ways, but #3 is the best:

 1. Hand-edit each bad character by selecting it, then pressing the " key. If you press this key in Notepad

or a code editor, it will appear as the correct " simple quotation mark (no slant).

 2. If you’re working with a large piece of code with many quotation marks, paste it into Notepad,

then press Ctrl+H to open the Replace dialog box. Paste one of the bad, open-quote (“) slanted

quotation-mark characters into the Find What fi eld, then click the Replace With fi eld and press

the “ key. (Notepad by default uses the straight-quotes character.) Note that you’ll have to repeat

this process with the close-quote (”) slanted quotation-mark character.

 3. What do we do when faced with a repetitive and tedious task? Anyone?

Yes. Write a macro. Here’s a macro that opens a new, blank Word document, pastes in the text

that needs changing, then makes the necessary replacements:

1. Sub StraightenQuotes()

2. ‘ Changes smart quotes (slanted) to straight quotes

3.

4. On Error GoTo Problem

5. Dim aDO As DataObject

6. Set aDO = New DataObject

7. aDO.GetFromClipboard

8. aDO.GetText

9.

10. Dim bQuotesOn As Boolean

11. bQuotesOn = Options.AutoFormatAsYouTypeReplaceQuotes

12.

13. Options.AutoFormatAsYouTypeReplaceQuotes = False

14.

15. Documents.Add Template:=”Normal”, NewTemplate:=False, DocumentType:=0

16.

17. Selection.Paste

18.

HIDING THE EDITING GROUP ON THE WORD RIBBON | 817

19. Selection.WholeStory

20.

21. Selection.Find.ClearFormatting

22. Selection.Find.Replacement.ClearFormatting

23.

24. With Selection.Find

25. .Text = ChrW(8221)

26. .Replacement.Text = “”””

27. .Wrap = wdFindStop

28. .Forward = True

29. End With

30. Selection.Find.Execute Replace:=wdReplaceAll

31.

32. Selection.Find.ClearFormatting

33. Selection.Find.Replacement.ClearFormatting

34.

35. With Selection.Find

36. .Text = ChrW(8220)

37. .Replacement.Text = “”””

38. .Wrap = wdFindStop

39. .Forward = True

40. End With

41. Selection.Find.Execute Replace:=wdReplaceAll

42.

43. Options.AutoFormatAsYouTypeReplaceQuotes = bQuotesOn

44.

45. Exit Sub

46.

47. Problem:

48. MsgBox “There was a problem. Be sure that you have copied some text into the

Clipboard before executing this macro.”

49.

50. End Sub

To test this, just copy some text (that contains the unwanted slanted quotation marks) into the

Windows Clipboard (select the text, then press Ctrl+C). Th en run the macro. Here’s what the code does:

 ◆ Line 4 says that if something goes wrong, jump down to the label named Problem at the end

of the procedure. Th e most likely problem is that the user has a graphic in the Clipboard (they

pressed PrtScn, for example) rather than text.

 ◆ Lines 5–8 fetch the text from the Clipboard.

 ◆ Lines 10 and 11 save the user’s setting for smart quotes so we can restore it at the end of the

macro.

 ◆ Line 13 turns off Word’s Smart Quotes feature so when in our code the slanted quotation

marks are replaced by straight quotation marks, Word will permit this. Line 15 opens a new,

blank document. Th is is important because you might currently also be working on a second,

ordinary text document where you want smart quotes.

 ◆ Line 17 pastes the text from the Clipboard into the blank document.

 ◆ Line 19 selects all the text.

818 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 ◆ Lines 21 through 41 carry out the fi nd and replace. Remember, this code must be executed

twice, once for the open-quote and a second time for the close-quote characters.

 ◆ Line 43 restores the user’s setting for the Smart Quotes option.

 ◆ Line 45 exits the procedure so we don’t fall into the error handler after successfully running

the procedure without error.

 ◆ Line 47’s label identifi es the error-handler code.

 ◆ Line 48 handles the error by reminding the user that there must be text in the Clipboard for

this macro to work.

Yes, I used Word’s Macro Recorder to help me write this code. Having been programming in BASIC

and writing books on it for 25 years, I’m almost freakishly profi cient in the language. But I had only a

vague idea what kind of code would turn off Word’s Smart Quotes feature. So, I turned on the Macro

Recorder, then went to File ➢ Options in Word and turned off Smart Quotes. VBA created this code:

Options.AutoFormatAsYouTypeReplaceQuotes = False

So I just copied the code into my macro. I used the same trick to get the code that opens a new

document and does the fi nding and replacing. Unless you’re Martha Stewart and can remember

everything you’ve ever read or done, you’ll need to rely on the Macro Recorder and online code

samples to write macros of even moderate complexity.

 10. In the Custom UI Editor, click the icon with the red check mark.

This tool validates your XML code (a very handy feature).

If you don’t now see the message “Custom UI XML is well formed,” you’ve made a typo

in the XML code or included bad special characters. Retype it (or better yet, copy and

paste it from this book’s web page—see this book’s introduction for information on

copying code).

If you see an error message stating “ “” is an unexpected token…,” you need to fi x the

quotation marks in the XML code to make them straight, not “smart” quotation marks, as

described in the sidebar in this chapter titled “Watch Out for Special Characters.”

You should always validate your XML code because if there is an error of some kind, your

Ribbon customization simply won’t happen. You will be given no error message or other

warning when executing the customization itself. It just won’t work.

 11. Choose File ➢ Save (which saves your Word document), then File ➢ Exit to close the UI

Editor.

 12. Now, to see the effect, open the RibbonMod document by clicking the File tab on Word’s

Ribbon and then clicking Open. In the list of recent documents, choose RibbonMod.docm

(or double-click that fi lename in Windows Explorer).

If you entered the correct XML code, you’ll see a Ribbon like the one on the bottom of

Figure 31.1.

HIDING THE EDITING GROUP ON THE WORD RIBBON | 819

Figure 31.1

Word’s Ribbon with

(top) and without

its Editing group

(bottom)

The key lines in the XML code are these:

 <tab idMso=”TabHome”>

 <group idMso=”GroupEditing” visible=”false” />

The line of code that begins with <tab specifi es the tab on the Ribbon you want to modify—

in this case, it’s the Home tab. The group element specifi es which group within the tab you are

targeting. In this case, it’s the Editing group. Finally, the code specifi es that the Editing group’s

Visible attribute should be set to false. (I’ll defi ne the XML terms element and attribute shortly.)

Deciding What to Include on the Ribbon

Practical Ribbon programming can require a little planning. When you modify the Ribbon, you’ll

want to include utilities or features that you use frequently, and perhaps hide those you’ll never

need.

Here’s a useful tip: Real estate on the Ribbon is valuable. Notice in Figure 31.1 that when you

remove the Editing group, the Ribbon automatically expands the options visible for the Styles

group—displaying nine rather than eight styles. So, if you’re planning to add some new options

or a new group of your own (as described later in this chapter), consider making room for them by

hiding a group you don’t need.

Also, Offi ce applications are quite mature software and contain a large number of features. Of

necessity, Microsoft had to choose what to include on the Ribbon. Quite a few features simply had

to be left off or relegated to dialog boxes that appear when you click the small arrow icon found in

the bottom right of many Ribbon groups.

But Microsoft’s choices of what to show or hide are unlikely to completely match your prefer-

ences. To see if there is a feature missing from Word’s default Ribbon that you want to add to it,

right-click the Ribbon and choose Customize Th e Ribbon. In the Choose Commands From drop-

down list, select Commands Not In Th e Ribbon. You’ll see a list—a long list.

A Word of Warning
There’s a major problem to be aware of when you’re working with XML code. When XML was

being designed, some crack committee decided that this language would be case sensitive. That

820 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

decision has caused countless problems for programmers over the years. It’s easy to gener-

ate bugs in languages that are case sensitive because ThisVariableName is not the same as

ThisVariablename. The capital N in the fi rst version means that these two words refer to two

different variables (even though, of course, the programmer intended them to represent the

same variable). And since the two versions look very much the same, it is often diffi cult to locate

and fi x this bug. Your XML code won’t work if you don’t precisely match capitalization, but you

won’t be told why.

Fortunately and sensibly, VBA isn’t case sensitive, so you never have to worry about this kind

of error in VBA code. But if you’re getting an error when attempting to modify the Ribbon using

XML, make sure there isn’t a case mismatch somewhere in all that code. A good rule is to simply

always use lowercase when writing XML code. If you name a function or variable without any

capitalization—and stick to that practice—you’ll avoid the case-related debugging headaches

that XML programmers have struggled with for years.

See the section at the end of this chapter titled “What to Look For If Things Go Wrong” for

additional possible problems when working with the Ribbon.

XML Terminology
To understand the descriptions of XML code examples in this chapter, you need to know the

meaning of two terms.

In XML, an element is roughly what a programmer would call an object. For example, a button

control is an element in XML code. An element’s tag (name) is enclosed within these symbols:

< and /> (immediately following the < is the name of the element).

And just as objects in ordinary programming (such as VBA) have properties and methods,

XML’s elements have attributes. So, in the following example code, a button element is defi ned,

and it has four attributes: label, size, onAction, and imageMso. Of the four, three are analo-

gous to properties (qualities), with onAction similar to an object’s method (a behavior). But in

XML, they are all simply referred to as attributes.

<button id=”b1”

 label=”Check Spelling”

 size=”large”

 onAction=”module1.test”

 imageMso=”diamond” />

Because each attribute is named (label, size, and so on), the order of the attributes in code

is irrelevant in XML. For example, in the previous code you could put the imageMso attribute

above the label attribute and nothing would change. You’ll explore various additional attri-

butes later in this chapter.

However, although the order of attributes is irrelevant in XML, the order of elements does

matter. XML is hierarchical (also known as nested or a tree), meaning that you need to put ele-

ments inside each other in the proper order, as with a Russian doll set.

When working with the Microsoft Ribbon, the order of the element tags is Ribbon, tabs, tab,

group, button (or other control), as you can see in this code:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

 <ribbon>

 <tabs>

 <tab idMso=”TabView”>

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

WORKING WITH EXCEL AND POWERPOINT | 821

 <group id=”CustomViewsGroup”

 label=”Next Window”

 insertAfterMso=”GroupWindow”>

 <labelControl id=”null”/>

 <button idMso=”WindowNext”/>

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

If you violate this nesting structure—by putting a group tag outside a tab tag, for example—

you’ll get an error message (“The name in the end tag must match the name in the start tag”):

<button idMso=”WindowNext”/>

 </tab>

</group>

Or if you leave out one of the closing tags (signifi ed by the />), you’ll get the same error

message (here the closing </tab> tag is missing):

 </group>

 </tabs>

Using Built-in Icons
The imageMso “galleries” can be downloaded from this web page:

www.microsoft.com/downloads/details.aspx?FamilyID=2D3A18A2-2E75-4E43-8579-D543C19D

0EED&displaylang=e&displaylang=en?

Load this .docx fi le into Word. Choose Enable Editing if asked. Then you see a mystery mes-

sage in boldface: “Images are in the ImageMso 0 and ImageMso 1 tabs in the Backstage.” Are

you among the few who know what the term backstage means in relation to Offi ce applications?

It means, “click the File tab on the Ribbon.” But it’s so much more fun to have us try to guess

what it means.

You’ll see two new items listed on the left side under Options: ImageMso 0 and ImageMso 1.

Click these to see a complete list of icons and the names you can use to reference them in your

XML code, like this: imageMso=”diamond”.

Working with Excel and PowerPoint
To modify Excel’s or PowerPoint’s Ribbons, you use the same techniques demonstrated

with Word’s Ribbon in the previous section. To illustrate this, the following example hides

PowerPoint’s Ink group in the Ribbon’s Review tab.

 1. Start PowerPoint. Click the Blank Presentation template.

 2. Click the File tab on the Ribbon; then click Save As, A and save the document as

PPMod.pptx to your Desktop (or another location where you can easily locate it).

 3. Click the File tab on the Ribbon and click Close to close this document.

http://www.microsoft.com/downloads/details.aspx?FamilyID=2D3A18A2-2E75-4E43-8579-D543C19D

822 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 4. Run the Custom UI Editor for Microsoft Offi ce.

 5. Choose File ➢ Open.

 6. Browse to the PPMod.pptx fi le that you saved in step 2, and open it.

 7. In the Custom UI tab of the Editor, type the following XML code:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

 <ribbon>

 <tabs>

 <tab idMso=”TabReview”>

 <group idMso=”GroupInk” visible=”false” />

 </tab>

 </tabs>

 </ribbon>

</customUI>

 8. Click the icon with the red check mark to validate your XML code. If you don’t see the

message “Custom UI XML is well formed,” you’ve made a typo in the XML code. Retype

it (or copy and paste it from this book’s web page).

 9. Choose File ➢ Save, then File ➢Exit to close the UI Editor.

At this point, open PPMod.pptx and click the Review tab. The Ink group should now be

hidden, and as a result of the freed space, the Themes group should display several additional

themes.

Undoing Ribbon Modifi cations
In the previous two sections, you’ve modifi ed the Ribbon: fi rst by hiding a group in Word, then

by hiding a group in PowerPoint. In other examples later in this chapter, you’ll add new groups

to the Ribbon.

But what if you want to undo the changes you made to the Ribbon or modify those changes?

It’s quite easy. Just open the document, presentation, workbook, or template in the Custom UI

Editor for Microsoft Offi ce. You will see the XML code that represents your customization.

Delete it or modify it, and then simply validate and save it (overwriting it) back to your hard

drive. If you explore the Ribbon technology in depth—working directly with .zip and other

fi les that are part of an Offi ce 2013 document—you’ll come to appreciate all the tedious and

error-prone steps that the Custom UI Editor saves you.

Selecting the Scope of Your Ribbon Customization
Recall that where you put your VBA macros determines their scope: You can embed a macro in

a single document, in a template used by multiple documents, or (for Word) in the Normal.dotm

fi le that is used.

When you create XML code to manipulate the Ribbon, where you store your code determines

its scope—much the same as the way scope works with macros. Here are your options, listed in

increasing size of scope:

 ◆ To apply your Ribbon customization to only a single document, just embed it in that

document, as illustrated in the two previous examples.

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

ADDING A NEW GROUP | 823

 ◆ To use the custom Ribbon for all documents based on a particular template, put the XML

code in a macro-enabled template fi le type (fi le types with the .dotm, .xltm, and .potm

fi lename extensions).

 ◆ Add the XML code to Normal.dotm if you want the custom Ribbon automatically available

to all Word documents. Just follow the same steps as in the fi rst example in this chapter, but

instead of modifying the RibbonMod.docm fi le in the Custom UI Editor for Microsoft Offi ce,

modify Normal.dotm.

(Normal.dotm can be found in a path similar to this: C:\Users\Richard\AppData\Roaming\

Microsoft\Templates. However, replace Richard with your username.)

Recall that you add custom Ribbons to individual PowerPoint or Excel documents much the

same way that you add them to Word—by adding XML code and using the Custom UI Editor.

However, it’s not that simple to add a global custom Ribbon to PowerPoint or Excel documents

because they don’t have a direct equivalent to Normal.dotm. Instead, with Excel and PowerPoint,

you must create an add-in fi le to globally customize the Ribbon.

Adding a New Group
In this next example, you’ll see how to specify where on the Ribbon you want to place a new,

custom element and also where to fi nd the correct control identifi er (idMso attribute) for built-in

dialog boxes, commands, and controls.

Cautions about Customizing
When customizing the Ribbon for coworkers, you could, of course, hide an entire group and

then replace it by adding a new group of your own—reproducing some or all of Microsoft’s

original buttons on the group and adding some new ones of your own. But you should think

twice before taking this approach because lots of study has gone into these groupings and most

people will fi nd them well organized if not totally intuitive. What’s more, people get used to the

Ribbon’s organization.

Of course, if you’re just customizing the Ribbon for yourself and your coworkers won’t use it,

you can more freely rearrange things.

Back to the s

As an aside, we’re using the term button here because that’s the technical term. However, on the

Ribbon and elsewhere in the Windows 8 Modern interface, there’s no visual button that the user

clicks. In an eff ort to provide us with a “modern” (1950s) aesthetic, the photorealism (now derided as

skeuomorphism) that reached its zenith in Windows 7 has been stripped away by Microsoft’s design

team. Th e user interface is now fl attened. Pretty much gone are gradients, dimensional eff ects,

refl ections, textures, subtle colors, buttons, highlights, opacity, serif typefaces, and shadowing.

Figure 31.2 illustrates the diff erence.

I frequently like to cycle through open Word documents, and that requires the Next Window

feature. The Word Ribbon displays a Switch Windows drop-down list on the View tab, but I

don’t want to choose from a list; I want to just click a button to open each active document in

turn (like the way you can switch to each active Windows application by pressing Alt+Tab).

The Next Window command is listed in the Commands Not In The Ribbon list in the Word

Options dialog box. Normally, you want to avoid fi lling up the Ribbon with new groups because

824 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

some of the Ribbon’s built-in buttons must be hidden in order to make room for your custom

groups. This can force the user to have to click the Ribbon to reveal what is perhaps a favorite,

frequently used button. But in Word’s View tab, there’s plenty of room to add a new group.

Figure 31.2 shows how the new group will look in the new “modern” Windows 8 style.

Figure 31.2

A traditional but-

ton control on a

VBA form (left)

compared to the

simplifi ed “button”

on Word’s Ribbon

(right).

A good place for our new tab, which we will call Shuffl e, is just to the right of the built-in

Window group. This will leave the Macros group on the far right of the View tab, as it is in the

default Ribbon arrangement.

To create a new group (called Shuffl e) and a new button (called Next Window) in that group,

follow the steps in the fi rst example in this chapter. But replace the XML code in step 9 with this

XML code:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

 <ribbon>

 <tabs>

 <tab idMso=”TabView”>

 <group id=”CustomViewsGroup” label=”Shuffle”

insertAfterMso=”GroupWindow”>

 <labelControl id=”null”/>

 <button idMso=”WindowNext”/>

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

There are several things to notice in this code. Each element in the Ribbon (the group, label,

and button) is given an identifi er, an id—a unique string. And there are two types of IDs: the

idMso and the plain id. An idMso refers to a built-in Microsoft command, control, or dialog box

(such as the Next Window command or a font dialog box). A plain id refers to a customized ele-

ment you are adding to the Ribbon, such as a customized group, a new tab, a button that

triggers one of your macros, and so on.

Note that I added a button control to the Ribbon (there are other controls you can place on the

Ribbon, such as a label, as you’ll see in another example shortly).

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

ADDING A NEW GROUP | 825

The code in this example illustrates how to use the XML element id:

group id=”CustomViewsGroup”

You can also use it like this:

labelControl id=”null”

The id name that you give to these objects (such as CustomViewsGroup) is not displayed; it’s

for internal programming purposes only. So name them as you wish.

Note that I added a Label control but didn’t provide any text caption (I included no Label

attribute). Used this way, a Label control acts as a spacer, pushing the Next Window button to

the middle of the group area. Without it, the button would be displayed at the top of the Ribbon.

Add two of these captionless Label spacer controls if you want to push the button to the bottom

of the Ribbon.

In this code, the View tab is specifi ed as the tab we’re going to use (<tab idMso=”TabView”>).

The caption that will be displayed on the Ribbon to describe our new group is Next Window,

thanks to this code: label=”Shuffle”. The position of our new item on the Ribbon is specifi ed

as being to the right of the built-in Window group: insertAfterMso=”GroupWindow”>.

Two Ways to Find the Correct idMso
How did I know that the proper Microsoft name for this Next Window command is

WindowNext? Right-click the Ribbon and click Customize The Ribbon. If you look up the

command in the Choose Commands From drop-down list (Commands Not In The Ribbon) in

the Word Options dialog box, it is displayed as Next Window. But if you use Next Window in the

code for the idMso (Microsoft built-in command ID), nothing will be displayed on the Ribbon

because Next Window is not the correct internal ID. This won’t work:

<button idMso=”Next Window”/>

You must use this:

<button idMso=”WindowNext”/>

The quickest way to identify the correct internal Microsoft ID (idMso) for any control or

command is to pause your mouse pointer on top of the command in the Options dialog box’s

Choose Commands From drop-down list, as shown in Figure 31.3. The control name appears in

parentheses at the far right of the tooltip that is displayed when you hover your mouse pointer

over any command in the list.

If you prefer, you can download a more detailed list of the commands and controls to use

with the idMso attribute. To download tables (that can be viewed in Excel) of all the built-in

Offi ce 2013 controls—such as the font dialog box or the Clipboard task pane (ShowClipboard)—

go to this web page:

www.microsoft.com/en-us/download/details.aspx?id=36798

http://www.microsoft.com/en-us/download/details.aspx?id=36798

826 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

Figure 31.3

Hover your mouse

pointer over any

command in this

list to see the cor-

rect ID to use in

your XML code. In

this example, you

can see that the

Next Window com-

mand has an ID of

WindowNext.

Adding Callbacks
Now it’s time to employ some VBA code to respond when the user interacts with the Ribbon.

Unlike in the previous example—where we added a button that triggered Word’s built-in Next

Window feature—you’ll now add a button that triggers one of your own macros.

To run VBA code, you insert a callback in the XML code to execute whatever VBA macro you

specify. When the user clicks a control, such as a button, the XML code that services this control

sends a message to the Offi ce application, telling it that a response is needed (this is very similar

to the triggering of a Click event in ordinary VBA programming). The Offi ce application then

“calls back” to your VBA procedure—whatever procedure is specifi ed by the onAction attribute

you write in the XML code.

Put another way, to create a callback, you type in an attribute in the XML code, specifying

which macro you want to execute. It looks like this:

onAction=”module1.test”

If you add this attribute to a Button control on the Ribbon, it means that when the user

clicks that button, the macro named test located in module1 is executed. (The OnAction

ADDING CALLBACKS | 827

attribute is similar to the Click event in VBA. In addition to the Button control, the CheckBox,

ToggleButton, and Gallery controls have an OnAction attribute.)

To see exactly how this communication between a button and a VBA macro works, follow

these steps (refer to the fi rst example in this chapter if you need additional information about

how to carry out these steps):

 1. Create a new, empty Word document.

 2. Press Alt+F11 to open the VBA Editor.

 3. Double-click ThisDocument in the Project Explorer to open the Code window for your

new, empty Word document. (Make sure you’re clicking the correct ThisDocument

project if there is more than one document currently open in Word.)

 4. Now type in this macro that you will execute via a button on the Ribbon:

Sub test(control As IRibbonControl)

MsgBox “Hi!”

End Sub

Notice the argument for this procedure: control As IRibbonControl. This argument is

necessary when you’re interacting with the Ribbon using a button (or any of the large number

of other controls that can be put on the Ribbon). If you don’t include this argument, you’ll get a

“Wrong number of arguments, or invalid property assignment” error message.

 5. Go back to Word itself and click the File tab on the Ribbon. Choose Save As to save this

document as RibbonTest.docm. Then close the document. (Make sure to save it as a

.docm fi le.)

 6. Run the Custom UI Editor for Microsoft Offi ce.

 7. Choose File ➢ Open.

 8. Browse to the RibbonTest.docm fi le that you saved in step 5 and open it.

 9. In the Custom UI tab of the Editor, type the following XML code:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

<ribbon>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1” label=”Run Test”>

<button id=”b1”

 label=”See Message”

onAction=”ThisDocument.test” />

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

828 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 10. Click the icon with the red check mark to validate the XML code. If the code isn’t well

formed according to the validation test, you’ve made a typo in the XML code. Retype it

(or better, copy and paste it from this book’s web page).

 11. Choose File ➢ Save, then File ➢ Exit to close the UI Editor.

 12. Now, to see your new tab, group, and button, open RibbonTest.docm in Word, click the

new Execute tab at the far right of the button, and click the See Message “button.”

You should see a message box appear with the message “Hi!” in it. If you don’t, check out the

section “What to Look For If Things Go Wrong” later in this chapter.

Try modifying the code in the previous example to see the effect of some other attributes of

the Button control. That control has the following attributes: description, enabled, id, idMso,

idQ, image, imageMso, insertAfterMso, insertAfterQ, insertBeforeMso, insertBeforeQ,

keytip, label, ScreenTip, showImage, showLabel, size, supertip, tag, and visible.

Adding Attributes
As you can see, the Ribbon is quite dramatically modifi able; in fact, you can create it from

scratch. In this section, you’ll explore some additional ways to modify the Ribbon. For this and

the remaining examples in this chapter, we’ll use Word because it’s the most popular Offi ce

application and because modifying the Excel or PowerPoint Ribbons works much the same way,

as the second example in this chapter illustrated.

Using Built-in Icons and ScreenTips
Try following the steps in the previous section again, but this time modify the XML code for the

button element by adding two additional attributes, like this:

<button id=”b1”

 label=”See Message”

 imageMso= “ShowTimeZones”

 screentip=”Say Hi!”

 onAction=”module1.test” />

When you load the .docm fi le and click the Execute tab that you’ve added to the Ribbon,

you’ll now see two changes from the previous example, refl ecting the two attributes you added

to the button element. First, there is a globe icon (one of the built-in imageMso icons).

Also, when you pause your mouse cursor on top of the button, a tooltip (now called a

ScreenTip by Microsoft) is displayed. You can employ this attribute to remind the user of the

purpose of the button. There are actually two elements to a ScreenTip: the ScreenTip attribute

displays a heading in boldface and the supertip attribute displays a normal-font “body text”

message. You can use either or both. The following code produces the result shown in

Figure 31.4:

screentip=”Run a Macro”

supertip=”Click this button to execute the test macro.”

ADDING ATTRIBUTES | 829

Figure 31.4

Th e ScreenTip

attribute is shown

on top in boldface.

Th e supertip attri-

bute displays the

body text in a regu-

lar font, below.

Creating Your Own Icons
Although Microsoft provides an extensive collection of built-in icons, you can also create your

own. You can use any .bmp, .jpg, or .ico fi le. The attribute for a custom icon is image rather

than imageMso.

The Custom UI Editor for Microsoft Offi ce provides an easy way to fi nd and employ custom

icons. To see how this works, open RibbonTest.docm in the UI Editor, and then click the middle

icon in the UI Editor (its ScreenTip is Insert Icons). An Insert Custom Icons dialog box opens.

Browse your hard drive until you locate the graphics fi le you want to use. All permitted graph-

ics fi le types will be displayed in the browser.

It’s not necessary to reduce the size of a large graphics fi le; it will automatically be reduced

for you when displayed.

When you fi nd the fi le you want, double-click it. The dialog box closes and a picture of the

image as well as its name are displayed in the left panel of the UI Editor. You have to click the

small + next to the customUI entry in the left pane to see the image. Right-click the image to

delete it or to change its ID.

Notice that the fi lename extension, such as .jpg, is stripped off in the UI Editor. This

reminds you that you don’t use the extension when you add this image to the XML code. A

photo of a rose is used as an icon in the following code.

The fi le on the hard drive is rose.jpg, but notice that in the code it’s referred to merely

as rose:

<button id=”b1”

 label=”See Message”

 image=”Rose”

 size=”large”

 screentip=”Say Hi!”

 onAction=”module1.test” />

830 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

Using Menus and Lists
Although the button is the most common control employed on the Ribbon (or indeed in any user

interface), you can use other controls as well. For example, if you want to offer the user multiple

options—such as choosing between executing three different macros—a drop-down list box or

a menu might be preferable to using up Ribbon space by adding three buttons on the top level
(what’s always visible in a tab) of the Ribbon.

Adding Menus
Here’s how to add to the Ribbon a menu that, when clicked, displays three buttons—each of

which launches a different macro:

 1. Open RibbonTest.docm in the Custom UI Editor.

 2. Type this XML code into the Custom UI Editor:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

<ribbon>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1” label=”Favorite Macros”>

<menu id=”m1” label=”Choose a Macro”>

 <button id=”b1”

 imageMso=”InkDeleteAllInk”

 label=”Convert Case”

 onAction=”ThisDocument.ConvertCase” />

 <button id=”b2”

 imageMso=”DataRefreshAll”

 label=”Replace 5pt with 10pt”

 onAction=”ThisDocument.UpSize” />

 <button id=”b3”

 imageMso=”PictureBrightnessGallery”

 label=”Memo Format”

 onAction=”ThisDocument.Memo” />

</menu>

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

Note that I chose imageMso icons that symbolize the various actions taken by these mac-

ros (see Figure 31.5).

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

USING MENUS AND LISTS | 831

Figure 31.5

Click the Choose A

Macro menu, and

the menu items are

displayed as a set

of buttons, ready to

launch various mac-

ros when clicked.

 3. Click the Validate button in the Custom UI Editor, and if the message says your code

has no typos (meaning it is well formed), choose File ➢ Save in the UI Editor to store this

XML code in the RibbonTest.docm fi le.

 4. Open RibbonTest.docm in Word and press Alt+F11 to open the VBA Editor. Ensure that

you have three macros in the ThisDocument module, named ConvertCase, UpSize, and

Memo. They should look like this:

Sub ConvertCase(control As IRibbonControl)

 MsgBox “convert”

End Sub

Sub UpSize(control As IRibbonControl)

 MsgBox “upsize”

End Sub

Sub Memo(control As IRibbonControl)

 MsgBox “memo”

End Sub

(These message boxes are mere stubs for testing purposes; your actual procedure will, of

course, contain real macros that convert case, resize fonts, and display a memo form.)

You can now return to the document RibbonTest.docm and try out the new menu. Click

the Execute tab, and notice the Choose A Macro menu in the Favorite Macros group. A menu is

indicated in the Ribbon by a down-arrow icon that the user clicks to display the menu items, as

shown in Figure 31.5.

832 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

If you prefer, you can send all the menu buttons to the same macro and then choose between

them in the VBA code by testing their id attribute (which is passed to the VBA code by the ID

property of the control object). The VBA code would look like this:

Sub choosemacro(control As IRibbonControl)

 Select Case control.ID

 Case “b1”

 MsgBox (“button1”)

 Case “b2”

 MsgBox (“button2”)

 Case “b3”

 MsgBox (“button3”)

 End Select

End Sub

For this select-case technique to work, you also need to modify the XML code in this example

so that each button executes this same choosemacro procedure:

<menu id=”m1” label=”Choose a Macro”>

 <button id=”b1”

 imageMso=”InkDeleteAllInk”

 label=”Convert Case”

 onAction=”ThisDocument.choosemacro” />

 <button id=”b2”

 imageMso=”DataRefreshAll”

 label=”Replace 5pt with 10pt”

 onAction=”ThisDocument.choosemacro” />

 <button id=”b3”

 imageMso=”PictureBrightnessGallery”

 label=”Memo Format”

 onAction=”ThisDocument.choosemacro” />

</menu>

Adding a DropDown List Control
You can employ a DropDown List control much as you would a menu when you want to offer

the user a set of choices. Here’s an example of XML code that displays a drop-down list on the

Ribbon. This example displays the same choices (three macros) to the user as the previous exam-

ple. But here we use a drop-down list rather than a menu:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

<ribbon>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1” label=”Favorite Macros”>

<dropDown id=”ddlist1”

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

USING MENUS AND LISTS | 833

getSelectedItemIndex=”setfirst”

 label=”Favorite Macros”

 onAction=”ThisDocument.test”>

 <item id=”i1” label=”Convert Case”/>

 <item id=”i2” label=”Replace 5pt with 10pt”/>

 <item id=”i3” label=”Memo Format”/>

</dropDown>

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

You create a DropDown List control by adding a dropDown element in the XML code and

then adding as many item child elements as you wish within the parent dropDown element.

(Remember that XML is very particular about capitalization. If you try to use dropdown rather

than dropDown, you’ll cause an error because your XML code will not be well formed.)

You should include a getSelectedItemIndex attribute, as illustrated earlier, so the

DropDown List control’s text box will not initially be blank, confusing the user. This attribute

executes a macro named setfirst, which you must write. This macro returns the index number

of the item you want to initially display in the DropDown List control’s text box. In this example,

the macro returns a zero (which means to display the fi rst item). So in this example, Convert

Case will be displayed. Here’s the macro that causes this to happen by setting the return value

argument (passed back in the variable named x) to zero:

Sub setfirst(ByVal control As IRibbonControl, ByRef x)

 x = 0

End Sub

Pay particular attention to this GetSelectedItemIndex attribute. Recall that this attribute

transfers execution to a VBA procedure when the document is being loaded (before the user

sees the Ribbon), so it is a form of initialization. (For other kinds of initialization, you can use

other attributes in the set of built-in get attributes, including getEnabled, getImageMso,

getLabel, and getVisible.)

One additional macro must be written as well. This second macro (pointed to by the onAction

attribute in the XML code) responds appropriately when the user clicks an item in the list:

Sub test(control As IRibbonControl, id As String, index As Integer)

 Select Case index

 Case 0

 MsgBox (“item1”)

 Case 1

 MsgBox (“item2”)

 Case 2

834 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 MsgBox (“item3”)

 End Select

End Sub

When the user clicks an item in the list, the values of both that item’s id and index

attributes are passed to the macro. So you can use either one to decide what code to execute. In

this example, I’m using the index number, but you could just as easily use the ID string (such as

Case “i1”) to detect the ID of each item.

Using a DialogBoxLauncher
Some of the Ribbon’s built-in groups display a small arrow in the lower-right corner (see the

Font group on Word’s Home tab for an example). Click that arrow, and a dialog box or task pane

appears. This is a way to conserve space on the Ribbon if displaying a whole slew of options at

all times would be impractical.

If you want to add a dialog box to one of your custom groups, use the DialogBoxLauncher

control by writing some XML code like this:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

<ribbon>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1”

 imageMso=”StartAfterPrevious”

 label=”Insert Date”>

<dialogBoxLauncher>

 <button id=”b1”

 onAction=”test” />

</dialogBoxLauncher>

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

This DialogBoxLauncher merely transfers execution to a macro (named Test in this

example). So, when the user clicks the small arrow at the bottom of the custom group named

Execute, the test macro displays whatever built-in dialog box is appropriate. Write this code,

and the macro displays the Date And Time dialog box:

Sub test(control As IRibbonControl)

 Dialogs(wdDialogInsertDateTime).Show

End Sub

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

TOGGLING WITH A TOGGLEBUTTON CONTROL | 835

The VBA Editor will show you a list of the available dialog boxes as soon as you type the left

parenthesis in Dialogs(. (This assumes that you’ve got the handy Auto List Members feature

turned on in the VBA Editor. Choose Tools ➢ Options, then click the Editor tab in the Options

dialog box.)

Test this example. It will insert the current date, formatted as the user chooses by selecting

an option in the Date And Time dialog box.

Toggling with a Toggle-Button Control
A toggle button used to look like a regular button, but now, with the Windows 8 Modern

interface, it’s just text, like a hyperlink. The button, when clicked, used to animate itself.

Shadows were displayed behind a clicked toggle button to make the button look like it had been

pressed. With Offi ce 2010, however, the shadowing was, for some reason, removed. When tog-

gled, an Offi ce 2010 button startlingly turned yellow. I guess that’s somebody’s idea of a improv-

ing this visual cue. As we all know, when you press something it does turn yellow.

With Offi ce 2013, a pressed toggle button is, surprisingly, indicated by a blue background

around the button’s label.

What’s next? We can hope that sooner or later things will settle down and we can get accus-

tomed to cues that last longer than each revision of Offi ce, and that, at long last, make sense.

VBA Escapes the Visual Flattening Due to Neglect

Fortunately VBA’s forms have consistently retained over the years the same shadowed, realistic but-

tons and other three-dimensional controls (see Figure 31.2). Th is, however, is most likely a matter

of neglect rather than common sense on Microsoft’s part. For now, anyway, their decision-makers

appear to be generally uninterested in any form of the Basic language, including VBA. Th ey tolerate

it as a function of backward compatibility and, I suppose, because of the millions of people who

like to use Basic in their Offi ce applications, and in other contexts (see Microsoft’s Visual Studio

for ways to use Visual Basic to create stand-alone applications).

If you need to add an on-off control to the Ribbon, you can use either a check-box control or

a toggle button. Both visually cue users about their status: the check box with a check and the

toggle button by turning color and adding a frame.

Either of these controls can be used for two-state situations, such as allowing the user to

choose between italic text or no italic text. Here’s an example showing how to employ the toggle

button. When the user clicks it, the button lights up and looks as if it’s been pressed into the

Ribbon. When the button is clicked a second time, the yellow lighting effect is turned off.

Your VBA procedure can detect the status of the button—pressed or not—by examining a

Boolean argument I named down that is passed to your procedure. Here’s how to use it in your

VBA code:

Sub test(control As IRibbonControl, down As Boolean)

 If down Then

 MsgBox “Button Down”

836 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 Else

 MsgBox “Button Up”

 End If

End Sub

This VBA procedure will respond to the following XML code you can store in your

document by using the UI Editor as described in the various step-through examples throughout

this chapter:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

<ribbon>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1” label=”Run Test”>

<

toggleButton id=”tbutton1”

 label=”Click to Toggle”

 imageMso=”DeclineInvitation”

 onAction=”ThisDocument.test” />

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

Modifying the Ribbon in Access
As you’ve doubtless noticed in previous examples in this book, Access often takes its own,

sometimes rather meandering , path to accomplish a given task. Ribbon customization is no

exception.

You can still use the Custom UI Editor for Microsoft Offi ce (or any other XML editor) to enter

and validate your XML code, but you can’t use it to store the XML in an Access database the way

you’ve stored XML in Word and PowerPoint in previous examples in this chapter.

With Access, you must store XML by hand, in a cell in a special table. Let’s call it less than

elegant. I don’t want to use the word kludge.
 In the following example, you’ll see how to modify the Access Ribbon by adding a new tab,

group, and toggle button—just as we added these elements to Word’s Ribbon in the previous

section. When the Access Ribbon has been modifi ed, you can click the new toggle button and

see the message “Button Down” or “Button Up.” The result is the same as in the previous sec-

tion, “Toggling with a Toggle-Button Control,” but the steps to achieve that result in Access are

quite dissimilar from those you took to add a toggle button to Word’s Ribbon.

Follow these steps:

 1. Open a new blank database by running Access, clicking the Blank Desktop Database

template, typing in the name R.accdb, and then clicking the Create button.

(You could also open Northwind or any other database and modify its Ribbon following

these steps, but for simplicity, let’s stick with a blank database for this example.)

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

MODIFYING THE RIBBON IN ACCESS | 837

 2. Right-click the Navigation pane’s title bar where it says All Access Objects. (The

Navigation pane is on the left side.)

 3. Choose Navigation Options from the context menu.

 4. Check the Show System Objects check box in the Navigation Options dialog box.

Then click OK to close the dialog box. You’re going to create a special table named

USysRibbons, and it won’t be visible in the Navigation pane if this check box isn’t

checked.

 5. Now you want to make sure you see some error messages if there’s a bug in your Ribbon-

customization programming. To do this, follow these steps:

 a. Click the File tab on the Ribbon.

 b. Click Options.

 c. Click the Client Settings button in the left pane of the Access Options dialog box. Scroll

down until you locate the General section near the bottom.

 d. Check the Show Add-in User Interface Errors check box. If you’re using Access 2010,

this option is enabled by default. In Access 2013 it’s disabled by default, as it is in Word

and the other Offi ce 2013 applications.

 e. Click OK to close the dialog box.

 6. Next you’ll create your special table. Click the Ribbon’s Create tab, and then click the

Table Design button in the Tables group on the Ribbon.

 7. In the fi rst column of the fi rst row, type ID for the fi eld name, and in the second column,

choose AutoNumber as the data type.

 8. In the second row, type RibbonName and choose Short Text as the data type.

 9. In the third row, type RibbonXml and choose Long Text as the data type.

 10. Click the cell where you typed in ID to select it, and then click the Primary Key button in

the Tools group on the Ribbon. (You may need to click a tab at the very top named Table

Tools.)

A key symbol is displayed in the record selector.

 11. Click the File tab, then click Save to save your new table. Be sure to name the table

USysRibbons. Click the Yes button in the two message boxes that are displayed.

 12. Now that you’ve designed the structure of this special table, it’s time to add the data

that modifi es the Ribbon. Locate on your hard drive the .accdb fi le you just created and

double-click it to open it in Access. Double-click UsysRibbons in the left pane. Then

right-click the USysRibbons tab and select Datasheet View.

 13. Ignore the ID fi eld; it will automatically generate ID numbers for you.

 14. Click the RibbonName cell and type Toggle—this is the name that will identify your

custom Ribbon (you can choose any name that you wish, but for the purpose of this

example, use Toggle).

 15. Enlarge the row both vertically and horizontally to make enough room to view the

XML code you’ll add to the RibbonXml cell. (See Figure 31.6.) This step isn’t absolutely

838 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

necessary, but it makes it easier for you to test and modify the XML code. So, in the title

bar between the labels RibbonXml and Click To Add, drag to the right to widen the

RibbonXml column.

 16. Right-click the record selector (the yellow area just to the right of the Navigation pane

and just above an asterisk symbol). Choose Row Height from the context menu. Type 300

and click OK to close the Row Height dialog box.

 17. Type the following code into the RibbonXml cell:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

 <ribbon

startFromScratch=”false”>

 <tabs>

 <tab id=”t1” label=”Execute”>

 <group id=”g1” label=”Run Test”>

<toggleButton id=”tbutton1”

label=”Click to Toggle”

imageMso=”DeclineInvitation”

onAction=”togtest”/>

 </group>

 </tab>

 </tabs>

</ribbon>

</customUI>

Figure 31.6

Here’s the special

table you can use

in Access to store

your XML code

when modifying the

Ribbon.

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

MODIFYING THE RIBBON IN ACCESS | 839

Note that in Access, unlike in other applications, it is necessary to set the

startFromScratch attribute to false in the XML code. (This attribute specifi es whether

you’re creating a brand-new Ribbon or modifying the default Ribbon.)

 18. Right-click the table’s tab (it reads USysRibbons in boldface) and choose Close. Answer

Yes when asked if you want to save changes to the layout.

 19. Click the File tab and choose Close.

Testing Your New Ribbon
Now you’re ready to choose your new Ribbon as the default Ribbon for this database. You have

to specifi cally select the custom Ribbon you named Toggle. Follow these steps:

 1. Open the database that you closed in step 19 in the previous exercise.

 2. Click the File tab, and then choose Options to open the Access Options dialog box.

 3. Click the Current Database button.

 4. Scroll down until you locate the Ribbon And Toolbar Options section in the dialog box.

 5. Open the Ribbon Name drop-down list box and select Toggle. (If you didn’t name your

table USysRibbons in step 11 in the previous exercise, the Toggle option will not appear

in the drop-down list.)

 6. Click OK to close the dialog box.

 7. A message informs you that you must close then reopen this database for this new option

to take effect. Do so.

 8. Now you should see a new tab named Execute on the Ribbon, as shown in Figure 31.7.

Figure 31.7

Now you’ve modi-

fi ed the Access

Ribbon, adding

a new tab named

Execute.

 9. Click the Execute tab. You should then see the Run Test group and your Click To Toggle

button. You can look, but don’t touch. Don’t click the button yet—you’ve not yet provided a

macro named togtest that will act as an event handler (a callback) for this button. Recall

that you have this line of code in your XML: onAction=”togtest”. That means When I’m

840 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

clicked, execute the VBA procedure named togtest. But you haven’t yet created that procedure

in a VBA module. You’ll do that in the next section.

Adding a Callback in Access
In the previous section, you modifi ed the Ribbon by adding three elements to it: a tab, a group,

and a control. Now it’s time to see how to add a callback. Follow these steps:

 1. Open the database that contains your special Execute tab on its Ribbon that you used in

the previous step-through.

 2. Press Alt+F11 to open the VBA Editor in Access. Before you can communicate from the

Ribbon’s controls to a VBA procedure in Access, you must specify a reference to an object

library (this step is not required in the other Offi ce 2013 applications).

 3. Choose Tools ➢ References in the VBA Editor. Notice that the Microsoft Offi ce 15.0 Access

database engine Object Library is by default selected. However, you must scroll down

until you fi nd Microsoft Offi ce 15.0 Object Library and select its check box. Fail to take

this step, and your VBA callbacks will not work—you’ll see the error message “Microsoft

Offi ce cannot run the macro or callback function ‘togtest’. Make sure the macro or

function exists and takes the correct parameters.”

I’m harping on this because not adding the Offi ce 15.0 Object Library is an easy mistake to

make (at least it was for me—it took me hours to fi gure this one out). I read that a reference to

that library was necessary, but when I opened the References dialog box and glanced at it, I saw

Microsoft Access 15.0 Object Library and thought that was it. So I just closed the dialog box

without adding the essential reference to the Offi ce 15.0 library.

 4. Click OK to close the References dialog box.

 5. Double-click Module1 in the VBA Editor Project Explorer. If there is no Module1, choose

Insert ➢ Module.

 6. Type this procedure into the module:

Sub togtest(control As IRibbonControl, down As Boolean)

 If down Then

 MsgBox “Button Down”

 Else

 MsgBox “Button Up”

 End If

End Sub

This procedure looks at the argument named down, and if it returns a value of True, that

means the toggle button has been pressed on the Ribbon. If a value of False is returned,

that means the toggle button has popped back out. The code If down Then is just a

shorter version of If down = True Then.

 7. Now click your Click To Toggle toggle button on the Execute tab of the Access Ribbon.

You should see a message box saying “Button Down.”

WHAT TO LOOK FOR IF THINGS GO WRONG | 841

Direct Communication with VBA

You may recall from Chapter 28, “Understanding the Access Object Model and Key Objects,” that

the user can’t directly execute a VBA procedure from a button on the Quick Access Toolbar. Instead,

you must fi rst create an old-style Access “macro” that employs the RunCode command to execute

the VBA procedure. However, the callback technique you learned in this section permits the user

to click a button (or other control) on the Ribbon that directly executes a VBA function—without

going through an old-style Access “macro.”

What to Look For If Th ings Go Wrong
Ribbon customization—though useful and important—is new territory for many programmers.

You have to deal with XML as a code platform, some unusual programming techniques (such

as writing descriptive “markup” code in the XML and traditional programming code in VBA),

communication between the XML and VBA via callbacks, new controls, new enumerations

(such as the set of icons you can use with ImageMso), and so on.

Bugs happen even when writing code in a technology that you may have been using for

decades, such as Visual Basic. So it’s no surprise that Ribbon programming—with its several

unique features—is pretty much guaranteed to bother you with bugs. The following sections

describe some strategies for dealing with common Ribbon-related bugs.

Employ Error-Message Tools
Here are two preliminary steps to take in your effort to avoid, or cure, bugs.

First, turn on an error-reporting feature that’s off by default. It allows you to see certain

kinds of error messages if something is wrong with your Ribbon customization. Click the File

tab on the Ribbon, then choose Options to open the application’s Options dialog box. Click the

Advanced button (or if you’re working in Access, click the Client Settings button). Scroll down to

the General section and ensure that the Show Add-in User Interface Errors check box is selected.

XML itself doesn’t display error messages or crash—it just does nothing if there’s a problem. In

other words, whatever effect you’re after doesn’t happen: a new tab doesn’t appear, a built-in tab

isn’t hidden, and so on. But if you turn on the Show Add-in User Interface Errors feature, you’ll

see a descriptive explanation of why the Ribbon was not modifi ed. It will look something like

the message displayed in Figure 31.8.

Figure 31.8

Error messages

are your fi rst line

of defense against

bugs.

This error message tells you that your error in the XML is located in line 11 in the following

code:

1. <customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>

2. <ribbon>

http://schemas.microsoft.com/office/2009/07/customui%E2%80%9D

842 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

3. <tabs>

4. <tab id=”t1” label=”Execute”>

5. <group id=”g1” label=”Run Test”>

6.

7. <toggleButton id=”tb1”

8. label=”Change me.”

9. supertip=”Dynamically changes this button’s label”

10.

11. onActon=”tix”

12. />

13. </group>

14. </tab>

15. </tabs>

16. </ribbon>

17. </customUI>

The message also says that the toggleButton element has no attribute named onActon,

which indeed it doesn’t. You meant to type onAction, so this a typo. However, most often this

error message is caused by improper case. For example, you’ve spelled the attribute or other code

element correctly, but you typed OnAction rather than the “proper” onAction. Remember that

XML cares about capitalization and insists that it be exactly as expected. Recall that this irratio-

nal case sensitivity is the source of a great many XML bugs. Always check capitalization when

you’re tracking down an XML problem. A case issue is easily overlooked.

The second preliminary step to take when fi xing bugs is to use an XML editor capable of

validating XML code. Such an editor is included with some versions of Visual Basic (such as VB

2012, which is not the VBA built into Offi ce applications, but rather the stand-alone version of

the Basic programming language in Microsoft’s Visual Studio).

You can also fi nd free XML editors for download from places like MajorGeeks.com. Or just

use the Custom UI Editor for Microsoft Offi ce tool you downloaded earlier in this chapter. XML

editors can give you useful error messages if your XML code is faulty—the specifi c line where

a problem is and, sometimes, a good description of the error. There is overlap between XML-

validation error messages and those displayed by the Show Add-in User Interface Errors option

you turned on in the previous step. But when it comes to fi xing bugs, the more assistance the

merrier.

Cure Common User-Interface Programming Problems
Now let’s explore some common error messages and what you can do about them.

Callback Problems: Bad Reference, Missing VBA Procedure, or

Security Issues

The fi rst error message we’ll look at tells you that there’s a problem with a callback you’re

attempting. The XML code can’t execute the onAction attribute (see Figure 31.9). This error

message can be caused because you haven’t set a reference to the Microsoft Access 15.0 Object

Library, as described in step 3 in the section “Adding a Callback in Access” earlier in this

chapter (a variation on this error message is described in that section).

WHAT TO LOOK FOR IF THINGS GO WRONG | 843

Figure 31.9

When you click

your new button on

the Ribbon to test

it, you might see

this error message.

This error message can also be caused by the two problems mentioned in the error message.

First, you either mistyped or never wrote the procedure that you’re referencing. For example,

there is no procedure named tix:

onActon=”tix”

Or, second, you need to enable macros by clicking the File tab on the Ribbon, clicking

Options, then clicking the Trust Center button in the dialog box, clicking the Trust Center

Settings button, and clicking one of the check boxes that permit macros.

Other Callback Problems

The next error message (see Figure 31.10) means either one of two things. First, you’ve neglected

to put in the required argument IRibbonControl.

You’ve put in

Sub trigger()

rather than

Sub trigger(IRibbonControl)

Figure 31.10

Th is error message

results when you

don’t provide neces-

sary arguments.

Or, second, you’ve neglected to provide additional required arguments. For example, the

Toggle Button control passes two arguments to VBA, the IRibbonControl (which all callbacks

always pass) and the status of the button, up or down, a Boolean value, like this:

Sub test(control As IRibbonControl, down As Boolean)

XML Mistakes

The next error I’ll describe is easy to make. If you violate the XML nesting structure—by putting

a group tag outside a tab tag, for example—you’ll get the error message shown in Figure 31.11:

 <button idMso=”WindowNext”/>

844 | CHAPTER 31 PROGRAMMING THE OFFICE 2013 RIBBON

 </tab>

 </group>

Figure 31.11

When XML tags

aren’t in the proper

order, you’ll see this

error message.

The group is supposed to be inside a tab, not vice versa. Or if you leave out one of the clos-

ing tags (signifi ed by the />), you’ll get the same error message. Here the closing </tab> tag is

missing:

 </group>

 </tabs>

However, if you validate your XML code in an XML editor like the Custom UI Editor for

Microsoft Offi ce, the editor itself will fl ag certain problems such as this incorrect nesting.

Where to Go from Here
As you’ve seen, the Ribbon can be customized programmatically in a variety of ways. This

chapter shows you the essential techniques. However, there’s more to explore. You can experi-

ment with the interesting Gallery control or create dynamic Ribbon effects, such as disabling,

hiding, or changing the label on a control during runtime, as conditions warrant. In fact, you

can create an entirely new Ribbon from scratch using the startFromScratch attribute.

If you’re interested in going deeper into Ribbon programming, here are some useful online

resources:

Download the RibbonX Visual Designer This powerful utility can assist you in all types

of modifi cations to the Ribbon. Take a tour of its features at

www.andypope.info/vba/ribboneditor.htm

Try MSDN white papers Take a look at Microsoft’s online help system for developers—

MSDN. It includes a lengthy, three-part tutorial on Ribbon programming, which can be

found at

http://msdn2.microsoft.com/en-us/library/aa338202.aspx

This helpful tutorial covers advanced topics such as using COM add-ins and dynamic Ribbon

updating; a helpful FAQ; and a complete reference to the many attributes, callbacks, and

child elements involved in Ribbon programming. Or take a look here:

http://msdn.microsoft.com/en-us/library/office/ff862537.aspx

Read all about RibbonX RibbonX for Dummies (Wiley) is a solid introductory book to all

aspects of Ribbon programming, and it covers advanced topics as well.

http://www.andypope.info/vba/ribboneditor.htm
http://msdn2.microsoft.com/en-us/library/aa338202.aspx
http://msdn.microsoft.com/en-us/library/office/ff862537.aspx

THE BOTTOM LINE | 845

Visit the Windows Ribbon Development Forum The Windows Ribbon Development

Forum is fi lled with questions and answers on Ribbon programming. If you run into a road-

block, post your question here and experts will respond.

http://social.msdn.microsoft.com/Forums/en-US/windowsribbondevelopment

Explore Microsoft’s Access Team’s blog The following web page and its links focus on

Access, and it includes information useful to beginners as well as more advanced Access

programmers. It’s written by Microsoft’s own Access Team, and you can also post questions

at this blog:

http://blogs.office.com/b/microsoft-access/archive/tags/access+2013/default.aspx

Th e Bottom Line

Hide a tab on the Ribbon. Modifying the Ribbon involves employing XML attributes—

similar to methods and properties—of various Ribbon elements such as tabs, groups, and

buttons.

Master It Some Ribbon-related attributes include the suffi x Mso. Examples include

idMso and imageMso. What does the Mso mean, and what kind of attributes’ names are

appended with Mso?

Hide a group. You might want to make an entire Ribbon group invisible. For example, the

Editing group on the Home tab includes three options that most people launch via shortcut

keys: Find, Replace, and Select. So what’s the point of having this group take up space on the

Ribbon?

Master It What XML attribute of a group do you set to false to remove that group from

the Ribbon?

Create callbacks for event handling. To execute VBA code, you insert a callback in the

XML code that will run whatever VBA macro you specify. When the user clicks a control,

such as a button, the XML code that services this control sends a message to the Offi ce appli-

cation, telling it that a response is needed.

Master It What XML attribute do you use to create a callback?

Manipulate the Access Ribbon. Access often does things differently from the majority of

Offi ce applications, and Ribbon programming is no different. You can manipulate the Access

Ribbon as freely as in the other applications, but several of the programming techniques

differ.

Master It Where can you store the XML code when programming the Access Ribbon?

Debug Ribbon programming. Most Ribbon programming involves writing two types of

code: XML and VBA. Strategies for fi xing bugs in XML include validation.

Master It What is XML validation?

http://social.msdn.microsoft.com/Forums/en-US/windowsribbondevelopment
http://blogs.office.com/b/microsoft-access/archive/tags/access+2013/default.aspx

Appendix

Th e Bottom Line

Each of The Bottom Line sections in the chapters suggest exercises to deepen skills and under-

standing. Sometimes there is only one possible solution, but often you are encouraged to use

your skills and creativity to create something that builds on what you know and lets you

explore one of many possible solutions.

Chapter 1: Recording and Running Macros in the Offi ce
Applications

Record a macro. The easiest way to create a macro is to simply record it. Whatever you type

or click—all your behaviors—are translated into VBA automatically and saved as a macro.

Master It Turn on the macro recorder in Word and create a macro that moves the in-

sertion cursor up three lines. Then turn off the macro recorder and view the code in the

Visual Basic Editor.

Solution Click the Developer tab on the Ribbon (if that tab isn’t visible, press Alt+F,

I and select Show Developer Tab in the Ribbon). Click the Record Macro button on the

Developer tab, then give the macro a name, such as temporary, and, if necessary, change

the Store Macros In target to All Documents (Normal.dotm). Click OK to close the Record

Macro dialog box. This begins the recording process. Press the up arrow key three times.

That’s what you want to record.

Now click the Stop Recording button on the Developer tab or on the status bar at the

bottom of the screen. Press Alt+F11 to open the Visual Basic Editor. Open Normal, then

Modules, and double-click NewMacros in the left (Project) pane of the Editor. Scroll the

code window until you locate your new macro. The macro code should look something

like this:

Sub temporary()

‘

‘ temporary Macro

‘

‘

 Selection.MoveUp Unit:=wdLine, Count:=3

End Sub

Assign a macro to a button or keyboard shortcut. You can trigger a macro using three

convenient methods: clicking an entry on the Ribbon, clicking a button in the Quick Access

Toolbar, or using a keyboard shortcut. You are responsible for assigning a macro to any or all

of these methods.

848 | APPENDIX THE BOTTOM LINE

Master It Assign an existing macro to a new Quick Access Toolbar button.

Solution Press Alt+F, I. Click Customize in the left pane of the Word Options dialog

box. In the Choose Commands From list, select Macros. Click a macro’s name to select

it in the list. Click the Add button to insert this macro’s name in the Customize Quick

Access Toolbar list. Click OK to close the dialog box. Now you see a new button on the

Toolbar that, when clicked, launches your macro.

Run a macro. Macros are most effi ciently triggered via a Ribbon entry, by clicking a but-

ton on the Quick Access Toolbar, or by pressing a shortcut key combination such as Alt+N

or Ctrl+Alt+F. When you begin recording a macro, the Record Macro dialog has buttons that

allow you to assign the new macro to a shortcut key or toolbar button. However, if you are

using the Visual Basic Editor, you can run a macro by simply pressing F5.

Master It Execute a macro from within the Visual Basic Editor.

Solution Open the Visual Basic Editor by pressing Alt+F11. Click to put the insertion

cursor anywhere in the code within one of your macros in the right pane (between the

Sub and End Sub lines of code). Press F5 to execute the macro.

Delete a macro. It’s useful to keep your collection of macros current and manageable. If

you no longer need a macro, remove it. Macros can be directly deleted from the Visual Basic

Editor or by clicking the Delete button in the Macros dialog (opened by pressing Alt+F8).

Master It Temporarily remove a macro, then restore it, using the Visual Basic Editor.

Solution Press Alt+F11 to open the Visual Basic Editor. The code within this editor is

just text, similar to Notepad. Locate a macro within the Editor. Each macro is the code that

starts with Sub and concludes with End Sub. So drag your mouse to select an entire macro,

including its Sub…End Sub lines. (Note that the Editor displays a horizontal line between

each macro, so you can easily see where each macro’s code begins and ends.) Press Ctrl+C

to copy the macro’s code. Then press Delete to delete the macro. Close the Visual Basic

Editor and press Alt+F8 to open the Macros dialog box and see your list of macros. Scroll

this list and notice that the macro you deleted in the Editor no longer exists.

Now close the Macros dialog box. Restore the macro by pressing Alt+F11 to reopen the

Editor. Then click on a blank line at the very top of the right pane where the macro code

is. However, you want to put the blinking insertion cursor outside of any other macro’s

Sub…End Sub code area. Finally, press Ctrl+V to paste the macro you previously deleted.

It’s restored. Remember, this Visual Basic Editor merely accepts ordinary, plain text for its

source code—so you can freely cut, copy, and paste code. In fact, you can copy and paste

all the code examples from this book at the book’s website: www.sybex.com/go

/masteringvbaoffice2013

Chapter 2: Getting Started with the Visual Basic Editor

Open the Visual Basic Editor. When you want to create a new macro by hand-program-

ming (as opposed to recording) or need to modify or test a macro, the Visual Basic Editor is a

powerful tool.

Master It Open the Visual Basic Editor in Word and create a simple macro.

Solution Press Alt+F11.

http://www.sybex.com/go/masteringvbaoffice2013

CHAPTER 3: EDITING RECORDED MACROS | 849

Open a Macro in the Visual Basic Editor. You edit and test macro code in the Code win-

dow of the Visual Basic Editor.

Master It Open the Visual Basic Editor and display a particular macro in the Code

window.

Solution Press Alt+F8 to open the Macros dialog box, click the name of the macro you

want to work with, then click the Edit button.

The Project Explorer window displays a tree of current projects. You can choose between

viewing only the fi les or the folders and fi les.

Understand the Project Explorer’s two views. The Project Explorer window displays a tree

of current projects. You can choose between viewing only the fi les or the folders and fi les.

Master It Switch between folder and contents view in the Project Explorer.

Solution Click the icon on the right side (a picture of a folder) just under the Project

Explorer’s title bar.

Set properties for a project. You can specify a project’s name, an associated Help fi le, and

other qualities of a project.

Master It Lock a project so others can’t modify or even read its contents.

Solution Right-click the project’s name in the Project Explorer to open the shortcut

menu. Choose <ProjectName> Properties. Click the Protection tab and select the Lock

project for viewing text box. In the Password to View Project Properties group box, enter

a password for the project in the Password text box, and then enter the same password in

the Confi rm Password text box. Click the OK button and close the project.

Customize the Visual Basic Editor. The Visual Basic Editor can be customized in many

ways, including personalizing classic menus and toolbars.

Master It Undock the Properties window and change its size. Then redock it.

Solution Double-click the title bar of the Properties window to undock it. Position your

mouse pointer in the lower-right corner until the pointer changes to a double arrow. Then

drag the window to resize it. Restore the Properties window to its default docked posi-

tion by double-clicking its title bar again.

Chapter 3: Editing Recorded Macros

Test a macro in the Visual Basic Editor. When you need to modify or debug a macro, the

Visual Basic Editor is your best friend. It’s fi lled with tools to make your job easier.

Master It Open a macro; then step through it to see if anything goes wrong.

Solution Press Alt+F8 to open the Macros dialog box. Select the macro’s name that you

want to test, then click the Step Into button. The Visual Basic Editor opens and the inser-

tion cursor is located within the chosen macro, thereby making it the currently active one

(the one with which the Editor’s features—such as the Step tool—will work). The fi rst

850 | APPENDIX THE BOTTOM LINE

line is highlighted, indicating that it is the next line that will execute. Press F8 to execute

the fi rst line, then press F8 repeatedly to step down through each line of code. See if any

problems occur—either problems you observe in the behavior of the macro in your appli-

cation, or problems that VBA notifi es you of by displaying an error-message box.

Set breakpoints and use comments. Setting breakpoints allows you to press F5 to execute

a macro, but forces the Editor to enter Break mode when execution reaches the line where

the breakpoint resides. Comments help you understand the purpose of code—they describe

it but are ignored during execution of the macro’s code. “Commenting out” a line of code

allows you to temporarily render it inactive to see what effect this has during execution. This

is sometimes a good way to see if that line is causing the bug you’re tracking down.

Master It Set a breakpoint in, and add a comment to, a macro.

Solution Set a breakpoint by clicking in the gray margin indicator bar to the left of a

line of code where you want to halt execution. The line of code on which you set a break-

point is shaded brown by default. You can set as many breakpoints as you wish. Now

type in a line such as ‘The following With block describes the format for this new
paragraph. Because you’ve started this line with a single-quote symbol, the line will be

ignored when the Editor executes the macro.

Edit a recorded macro. Make some changes to a Word macro.

Master It With the Visual Basic Editor open, choose a macro and modify it.

Solution Click a line between the Sub and End Sub lines that envelop the macro you

want to modify. This puts the insertion cursor where you want it. Now simply type in

whatever adjustments you want to make to the code.

Chapter 4: Creating Code from Scratch in the Visual
Basic Editor

Set up the Visual Basic Editor for creating procedures. How you arrange the various com-

ponents of the Visual Basic Editor is your personal choice, but while using this book, it’s easi-

est if you set up the Editor to resemble the way it appears in the book’s fi gures. Besides, this

arrangement is quite close to the default layout, which has proven to be the most effective

one for the majority of programmers (according to various focus groups and polls) for the

decades that Visual Basic has been used.

Master It Press a single key to display, then hide, the Properties window.

Solution Press F4 to display the Properties window. Click the close button to dismiss it.

Create a procedure for Word. Using the Help feature in any VBA-enabled application

allows you to fi nd code examples that you can copy and paste into your own code.

Master It Open the Code window and use Help to fi nd a code example.

Solution Press F7 to open the Code window, and then press F1 to open Help. Click the

Word Object Model Reference link. Scroll down until you see the Line Numbering Object

link. Click it, then click the Line Numbering Object link in this newly displayed informa-

tion. You’ll fi nd a code example that adds line numbers to the active document. Select and

copy this code, then paste it into the Visual Basic Editor. Note that many code examples

CHAPTER 4: CREATING CODE FROM SCRATCH IN THE VISUAL BASIC EDITOR | 851

are not full procedures but merely snippets of code, so it’s up to you to add the Sub…End

Sub envelope. Your fi nal procedure in the Visual Basic Editor should look like this:

Sub AddLines()

With ActiveDocument.Sections(1).PageSetup.LineNumbering

 .Active = True

 .CountBy = 5

 .RestartMode = wdRestartPage

End With

End Sub

I named it AddLines; name it whatever you wish. But keep in mind that to be able to ex-

ecute it—for it to be a formal macro—you must include the Sub…End Sub.

Press F5 to try it out, and then look at the document and see the line numbers.

Remove the line numbers from the document by clicking the Line Numbers option in the

Page Setup section of the Page Layout tab on the Ribbon and choosing None.

Create a procedure for Excel. Certain procedure names are special. In a previous Excel

exercise, you added line numbering and gave that procedure a name of your own choice. But

some procedure names have a special meaning—they are triggered by an event in Excel itself.

They will execute automatically when that event takes place (you don’t have to run events by

choosing Run from the Macro dialog box or by assigning the macro to a keyboard shortcut or

Quick Access Toolbar button). One such event is Excel’s Auto_Open procedure.

Master It Display a message to the user when Excel fi rst executes.

Solution Press F7 to open the Code window in Excel’s Visual Basic Editor. Locate

VBAProject (theprojectname) in the Project Explorer, double-click it to open its con-

tents, and then double-click ThisWorkbook under the project. An empty Sub (an open

event) appears in the Code window. Type the highlighted code into the procedure:

Private Sub Workbook_Open()

 MsgBox “Opened”

End Sub

Close and then reopen the workbook to see the message automatically displayed.

Create a procedure for PowerPoint. As you type a procedure, the Visual Basic Editor pro-

vides you with lists of objects’ members (the Auto List Members feature) and with syntax

examples, including both required and optional arguments (the Auto Quick Info feature).

These tools can be invaluable in guiding you quickly to the correct object and syntax for a

given command.

Master It Use the Auto List Members and Auto Quick Info features to write a macro

that saves a backup copy of the currently active presentation.

Solution Create a new presentation based on a template of your choosing. Press Alt+F11

to open the Visual Basic Editor. Choose Tools ➢ Options and ensure that the Auto List

Members and Auto Quick Info check boxes are selected.

852 | APPENDIX THE BOTTOM LINE

Right-click the name of the presentation in the Project Explorer, then choose Insert

Module so you’ll have a place to write a macro.

Type the following line of code to create a macro:

Sub SaveTemp()

When you press the Enter key, the Visual Basic Editor automatically adds End Sub.

Now type Application. in the macro. As soon as you press the period (.), a list of prop-

erties and methods of the Application object is displayed. Choose ActivePresentation.

Again, when you press the period key, a list of the ActivePresentation object’s mem-

bers appears. Choose SaveCopyAs. Press the spacebar to insert a space after SaveCopyAs,

and you’ll see that this method has only one required argument: a fi lename string (mean-

ing you must provide a literal fi lename within quotes, or a string variable or constant).

In this case, just type “temporary”, and then press the F5 key to execute the macro. You

didn’t specify a path, so you can fi nd your fi le in your Documents folder, where it is saved

by default.

Your macro should look like this:

Sub SaveTemp()

Application.ActivePresentation.SaveCopyAs “temporary”

End Sub

Create a procedure for Access. Although Access includes a variety of macro-related fea-

tures that are unique (such as its Macro Builder/Designer), its Visual Basic Editor is quite

similar to the Visual Basic Editors in the other Offi ce applications.

Master It Open the Visual Basic Editor in Access and write a macro that displays to-

day’s date using the Date function rather than the Now function. Use the Access Visual

Basic Editor Help system to understand the difference between these two functions.

Solution In Chapter 4, you wrote a macro in Access that displays today’s date and time.

Here you will display the date only.

 1. Start Access.

 2. Click the Blank Database button, and then click the Create button.

 3. Press Alt+F11 to open the Visual Basic Editor.

 4. Right-click the database name in the Project Explorer, then choose Insert Module to

open a new module in the Code window.

 5. In the Code window, type the following macro:

Sub ShowDateOnly()

MsgBox Date

End Sub

 6. Press F5 to execute the macro. You should see a message box that displays the

current date.

CHAPTER 5: UNDERSTANDING THE ESSENTIALS OF VBA SYNTAX | 853

Chapter 5: Understanding the Essentials of VBA Syntax

Understand the basics of VBA. VBA includes two types of procedures, used for different

purposes.

Master It Name the two types of procedures used in VBA (and indeed in most com-

puter languages), and describe the difference between them.

Solution A function always returns a value after it fi nishes executing. For example, you

can display a message box, and when the user clicks a button to close that box, the value

returned represents which button the user clicked. When the statement that called (in-

voked) the MsgBox function gets that value, it can respond in whatever way the program-

mer fi nds appropriate. Often it’s something like this: if the user clicked OK, then check the

spelling, or if the user clicked Cancel, then close the document.

A subprocedure (or subroutine) does not return a value. It does a job, then quits without

sending back any information to the code or action that triggered it. Events are always

subprocedures.

Work with procedures and functions. A procedure is a container for a set of programming

statements that accomplish a particular job.

Master It Write a subprocedure in the Visual Basic Editor that displays a message to the

user. Then execute that subprocedure to test it.

Solution In the Visual Basic Editor Code window, type code similar to this:

Sub showmessage()

MsgBox “Hi, user.”

End Sub

Execute this code by clicking within the subprocedure to position the insertion point

there and then pressing F5.

Use the Immediate window to execute individual statements. When you’re writing code,

you often want to test a single line (a statement) to see if you have the syntax and punctuation

right or if it produces the expected result.

Master It Open the Immediate window, type in a line of code, and then execute that

line.

Solution Press Ctrl+G to open the Immediate window, then type a line of VBA code.

Press the Enter key when you’ve fi nished to execute that statement.

Understand objects, properties, methods, and events. Object-oriented programming

(OOP) means creating objects to use in your programming. OOP has become the fundamen-

tal paradigm upon which large programming projects are built. Generally speaking, macros

are not large and therefore don’t profi t from the clerical, security, and other benefi ts that OOP

offers—particularly for people who write large applications as a team.

However, code libraries, such as the vast VBA set of objects and their members (not to men-

tion the even vaster .NET libraries that tap into the power of the operating system itself) are

written by large groups of people, and written at different times. These libraries themselves

854 | APPENDIX THE BOTTOM LINE

are huge. There must be a way to organize their objects and functions—to categorize them

and allow you to execute the methods and manage their properties and arguments. As a

result, another aspect of OOP—taxonomy—is quite valuable even when writing brief macros.

It’s a way to quickly locate the members you’re interested in.

Master It Look up the Document object in the Visual Basic Editor’s Help system; then

look at its methods.

Solution With the Visual Basic Editor the active window, choose Help ➢ Microsoft

Visual Basic Help. Click the Word Object Model Reference link in the Help dialog box.

Maximize the Help dialog box so you can see the large lists of objects and members.

Scroll down until you see the Document object link. Click that link, and then click the link

Document Object Members. As you scroll down, you’ll see the many methods, properties,

and events for this object. Click any of them to get a description, syntax, and, usually, a

helpful code example you can cut and paste into your Code window.

Chapter 6: Working with Variables, Constants, and
Enumerations

Understand what variables are and what you use them for. Variables are a cornerstone of

computer programming; they are extremely useful for the same reason that fi les are useful

in the real world. You give a name to a variable for the same reason that you write a name

to identify a fi le folder. And a fi le can, over time, contain various different papers, just as the

value contained in a programming variable can vary. In both cases, the contents vary; the

name remains the same. It’s good practice to always specifi cally name a variable before using

it in your code. This is called explicit declaration.

Master It Explicitly declare a variable named CustomersAge.

Solution This code explicitly declares a variable:

Dim CustomersAge

If you decided to declare the variable as an Integer type, it would look like this:

Dim CustomersAge As Integer

Create and use variables. When creating (declaring) a new variable, you should avoid

using words or commands that are already in use by VBA, such as Stop or End. There are

also restrictions such as not using special characters.

Master It This variable name cannot be used, for two reasons. Fix it so it is a legitimate

variable name:

Dim 1Turn! as Integer

Solution

Dim Turn as Integer

You can’t begin a variable name with a digit, nor can you use an exclamation point

anywhere in the name.

Specify the scope and lifetime of a variable. Variables have a range of infl uence,

depending on how you declare them.

Master It Create a variable named AnnualSales that will be available to any procedure

within its own module but not to other modules.

Solution Constants, like variables, are named locations in memory that contain a value.

Unlike variables, however, the value in a constant does not change during program execution.

CHAPTER 6: WORKING WITH VARIABLES, CONSTANTS, AND ENUMERATIONS | 855

Work with constants. Constants, like variables, are named locations in memory that con-

tain a value. Unlike with variables, however, the value in a constant does not change during

program execution.

Master It Defi ne a string constant using the Dim command. Name your constant

FirstPrez, and assign it the value George Washington.

Solution This code line defi nes a constant, and assigns a value to it:

Const FirstPrez As String = “George Washington”

Work with enumerations. Enumerations provide a handy name for each item in a list, often

a list of properties.

Master It In the Project Explorer, click the ThisDocument object to select it. Then locate

the JustificationMode property in the Properties window, and choose one of that prop-

erty’s enumerated constants by clicking the small down-arrow that appears, then clicking

one of the constants in the drop-down list.

Solution You’ll see the drop-down list of enumerated values for the

JustificationMode property, as illustrated in the following screenshot.

856 | APPENDIX THE BOTTOM LINE

Chapter 7: Using Array Variables

Understand what arrays are and what you use them for. Arrays play an important role in

computer programming. In some ways they resemble a mini-database, and organized data is

central to computing. Computers are sometimes called data processors for good reason, and

arrays make it easier for you to manipulate variable data.

Master It What is the difference between an array and an ordinary variable?

Solution An ordinary (scalar) variable can contain only a single value; an array can con-

tain multiple values, identifi ed by index numbers.

Create and use arrays. When you create a new array, you declare it and, optionally, specify

the number of values it will contain.

Master It There are four keywords that can be used to declare arrays. Name at least

three of them.

Solution Arrays can be declared using the same keywords that are employed to declare

ordinary variables: Dim, Private, Public, or Static.

Redimension an array. If you want to resize an existing dynamic array, you can redimen-

sion it.

Master It Redimensioning an array with the ReDim statement causes you to lose any

values that are currently in that array. However, you can preserve these values using a

special keyword. What is it?

Solution To preserve values when redimensioning an array, use the Preserve com-

mand, like this:

ReDim Preserve arrTestArray(5)

Erase an array. You can erase all the values in a fi xed-size array or completely erase a

dynamic array.

Master It Write a line of code that erases an array named arrMyArray.

Solution Use the Erase statement with the name of an array you want to erase. The

following statement erases the contents of the fi xed-size array named arrMyArray:

Erase arrMyArray

Find out whether a variable is an array. An array is a type of variable, and you may

occasionally need to check whether a particular variable name denotes an array or an

ordinary scalar variable (a variable that isn’t an array).

Master It Which built-in function can you use in VBA to fi nd out whether a variable is

an array or an ordinary, single-value variable?

Solution Use the IsArray function with the variable’s name to see if a variable is an

array. For example, the following statement checks the variable MyVariable to see if it’s

an array:

If IsArray(MyVariable) = True Then

Sort an array. Visual Basic .NET includes array objects with built-in search and sort meth-

ods. In VBA, however, you must write a bit of code to search and sort the values in an array.

Master It Name a popular, understandable, but relatively ineffi cient sorting technique.

CHAPTER 8: FINDING THE OBJECTS, METHODS, AND PROPERTIES YOU NEED | 857

Solution The bubble sort is easy to visualize, but relatively ineffi cient.

Search an array. Searching through an array can be accomplished in two primary ways. If

you have a relatively small array, you can use the simpler, but less effi cient technique. With

large amounts of data, though, it’s best to use the more robust approach.

Master It Name two common ways to search an array.

Solution You can use either the simple linear search or the binary search, which

requires that an array be sorted fi rst.

Chapter 8: Finding the Objects, Methods, and Properties
You Need

Understand and use objects, properties, and methods. Contemporary programming

employs a hierarchical method of organization known as object-oriented programming

(OOP). At the very top of the hierarchy for any given application is the Application object.

You go through this object to get to other objects that are lower in the hierarchy.

Master It By using creatable objects, you can often omit the Application object when

referencing it in code. What are creatable objects?

Solution Because you’d have to go through the Application object to get to pretty much

anything in the application, most applications include a number of creatable objects—

objects that you can access without referring explicitly to the Application object. These

creatable objects are usually the most-used objects for the application, and by using them,

you can access most of the other objects without having to refer to the Application object.

For example, Excel exposes the Workbooks collection as a creatable object, so you can use

the following statement, which doesn’t use the Application object:

Workbooks(1).Sheets(1).Range(“A1”).Select

Use collections of objects. Collections are containers for a group of related objects, such as

the Documents collection of Document objects.

Master It Are collections objects? Do they have their own methods and properties?

Solution Yes, collections are themselves objects—in the same sense that a fl ower vase

contains a group of fl ower objects but the vase, too, is an object. A collection can have its

own properties and methods, though collections usually have fewer properties and meth-

ods than other objects.

Find objects, properties, and methods. The Visual Basic Editor offers several ways to

locate objects’ members and add them to your programming code. There’s an extensive

Help system, the Object Browser, a List Properties/Methods feature, and the Auto List

Members tool.

Master It How do you employ Auto List Members to fi nd out which properties and

methods are available for Word’s Document object?

Solution Type Document. in the Code window, and as soon as you type the period, a

list of the Document object's members appears.

Use Object variables to represent objects. You can create variables that contain objects

rather than typical values like strings or numbers.

Master It What keywords do you use to declare an Object variable?

858 | APPENDIX THE BOTTOM LINE

Solution The same keywords are used to declare Object variables as you use for

any other variable. To create an Object variable, declare it using a Dim, Private, or

Public statement. For example, the following statement declares the Object variable

objMyObject:

Dim objMyObject As Object

However, you assign a value to an ordinary variable by using the = sign:

strMyString = “Harry”

You assign an object to an Object variable using the Set command in addition to the =

sign, like this:

Dim wksSheet1 As Worksheet

Set wksSheet1 = ActiveWorkbook

Chapter 9: Using Built-in Functions

Understand what functions are and what they do. A function is a unit of code, a proce-

dure, that performs a task and returns a value.

You can write your own functions by writing code between Function and End Function

in the VBA Editor. Chapter 10, “Creating Your Own Functions,” explores how to write such

custom functions. But in addition to functions you might write, there are many functions

already prewritten in VBA—ready for you to call them from your macros to perform various

tasks.

Master It A function is quite similar to a subroutine, but there is a signifi cant differ-

ence. What is it?

Solution Subroutines don’t return a value; functions do.

Use functions. In a macro, you can call a built-in function by merely typing in its name and

providing any required arguments.

Master It You can combine multiple functions in a single line of code. The MsgBox func-

tion displays a message box containing whatever data you request. The only required

argument for this function is the prompt. The Now function returns the current date and

time. Write a line of code that calls the MsgBox function and uses the Now function as its

argument.

Solution

MsgBox Now

The MsgBox function displays a message box which, in this case, is the date and time

returned by the Now function.

Use key VBA functions. VBA offers the services of hundreds of built-in functions. You’ll

fi nd yourself using some of them over and over. They are key to programming.

Master It What built-in function is used quite often to display information in a dialog

box to the user while a procedure runs?

Solution Both the MsgBox and InputBox functions are used to display information to

the user in a dialog box.

CHAPTER 10: CREATING YOUR OWN FUNCTIONS | 859

Convert data from one type to another. It’s sometimes necessary to change a value from

one data type to another. Perhaps you used an input box to ask the user to type in a String

variable, but then you need to change it into an Integer type so you can do some math with it.

(You can’t add pieces of text to each other.)

Master It What built-in function would you use to convert a string such as “12” (which,

in reality, is two text characters, the digits 1 and 2) into an Integer data type, the actual

number 12, that you can manipulate mathematically?

Solution The built-in function CInt transforms other data types into an Integer type.

Here’s an example

intMyVar = CInt(varMyInput)

Manipulate strings and dates. VBA includes a full set of functions to manage text and date

data.

Master It Which built-in function would you use to remove any leading and trailing

space characters from a string? For example, you want to turn

 “ this “

into

 “this”

Solution Use the Trim function. The following example displays two message boxes.

The fi rst shows you the length of the string before the Trim function is applied. The sec-

ond displays the number of characters in the string after Trim does its job.

Chapter 10: Creating Your Own Functions

Understand the components of a function statement. Arguments can be passed from the

calling code to a function in one of two ways: by reference or by value.

Master It Describe the difference between passing data by reference and passing data

by value.

Solution The memory address of the actual value is passed to the function when passed

by reference. This means that the value can be changed by the function. When passed by

value, a copy of the data is sent to the function, leaving the original data unmodifi able by

the called function. By reference is the default.

Create a generic function. You can write, and save (File ➢ Export File), sets of generic func-

tions that work in any VBA-enabled application.

Master It Create a function that displays the current year in a message box. This func-

tion will require no arguments, nor will it return any value.

Solution

Function ShowYear()

 MsgBox (Year(Now))

 End Function

860 | APPENDIX THE BOTTOM LINE

Create a function for Word. Word contains a whole set of objects and members unique

to word-processing tasks. Functions that are specifi c to Word employ one or more of these

unique features of the Word object model.

Master It Write a function that displays the number of hyperlinks in the currently ac-

tive document. Use Word’s Hyperlinks collection to get this information.

Solution

Function FindHyperCount()

 MsgBox (ActiveDocument.Hyperlinks.Count)

End Function

Create a function for Excel. Excel uses an ActiveWorkbook object to represent the currently

selected workbook. You can employ a full set of built-in methods to manipulate the features

of any workbook.

Master It Using the Sheets collection of Excel’s ActiveWorkbook object, write a func-

tion that displays the number of sheets in the current workbook.

Solution

Function SheetsCount()

MsgBox (ActiveWorkbook.Sheets.Count)

End Function

Create a function for PowerPoint. PowerPoint’s object model includes an

ActivePresentation object, representing the currently selected presentation. Functions can

make good use of this object and its members.

Master It Write a function that returns how many slides are on a presentation. Pass the

ActivePresentation object as an argument to this function; then display the number of

slides the presentation contains. Call this function from a subroutine.

Solution

Option Explicit

Function CountSlides(objPresentation As Presentation) As Integer

 CountSlides = objPresentation.Slides.Count

End Function

Sub SeeNumber()

 MsgBox (CountSlides(ActivePresentation))

End Sub

Notice that your CountSlides function is called from within the SeeNumber Sub. The

ActivePresentation object is passed as an argument. The CountSlides function’s argu-

ment list includes a variable of the Presentation type. And the entire function is defi ned

as an Integer type, meaning it will pass back integer data to the caller. CountSlides is

assigned the integer value provided by the Count method, and thus returns this value to

the calling subroutine.

Create a function for Access. Access often works a little differently from other VBA-

enabled Offi ce applications. For example, some common tasks are carried out by using meth-

ods of the special DoCmd object rather than methods of a Form or Table object.

CHAPTER 11: MAKING DECISIONS IN YOUR CODE | 861

Master It Write a function that closes Access by using the DoCmd object’s Quit method.

Ensure that all data is saved by employing the acQuitSaveAll constant as an argument

for the Quit method.

Solution This function closes Access with the DoCmd object’s Quit method.

Function QuitApp()

DoCmd.Quit (acQuitSaveAll)

End Function

Chapter 11: Making Decisions in Your Code

Use comparison operators. Comparison operators compare items using such tests as greater
than or not equal to.

Master It Write a line of code that uses a less than comparison to test whether a variable

named Surplus is less than 1200.

Solution Here’s an example of the less than comparison operator:

If Surplus < 1200 Then

Compare one item with another. You can compare strings using less than and more than

comparison operators.

Master It What symbol do you use to determine if VariableA is lower in the alphabet

than VariableB?

Solution You use the less than symbol <, like this:

If VariableA < VariableB Then

Test multiple conditions. To test multiple conditions, you use VBA’s logical operators to link

the conditions together.

Master It Name two of the most commonly used logical operators.

Solution The most often-used logical operators are And, Or, and Not. Tests can be com-

bined using these operators, like this:

If A < B AND C = F Then

Use If blocks. If blocks are among the most common programming structures. They are

often the best way to allow code to make decisions. To test two conditions, use If… Else…

EndIf.

Master It Write an If… Else… End If block of code that displays two message boxes.

If the temperature (the variable Temp) is greater than 80, tell the user that it’s hot outside.

Otherwise, tell the user that it’s not that hot.

Solution Your code may vary somewhat from this, but see if you’ve followed the basic

structure:

Sub tempShow()

 Dim Temp As Integer

862 | APPENDIX THE BOTTOM LINE

 Temp = 66

 If Temp > 80 Then

 MsgBox “Hey, it’s hot outside!“

 Else

 MsgBox “It’s not that hot.“

 End If

End Sub

Use Select Case blocks. Select Case structures can be a useful alternative to If blocks.

Master It When should you use a Select Case structure?

Solution Select Case is often more readable than a lengthy, complex If… ElseIf…

ElseIf… multiple-test decision-making block.

Use the Select Case statement when the decision you need to make in the code depends

on one variable (or expression) that has more than two or three different values that you

need to evaluate.

Chapter 12: Using Loops to Repeat Actions

Understand when to use loops. Loops come in very handy when you need to perform a

repetitive task, such as searching through a document for a particular word.

Master It What is the alternative to looping if you are carrying out repetitive tasks in

a macro?

Solution You can copy the repeated code and then paste it into the Visual Basic Editor

as many times as you want to repeat the task. Programmers, however, frown on repeated

code because they consider it a redundancy, which it often is. If some behavior needs to

be repeated, you can almost always employ some form of loop structure.

Use For… loops for fi xed repetitions. For… loops are the most common loop structures

in programming. You specify the number of iterations the loop must make, and the loop is

exited when that number is reached.

Master It Write a For…Next loop that counts up to 100, but use the Step command to

increment by twos.

Solution This code increments its counter variable (i) by twos:

For i = 1 To 100 Step 2

Next

Use Do… loops for variable numbers of repetitions. A Do… loop iterates until or while a con-

dition exists, then exits from the loop when the condition no longer exists.

Master It There are two categories of Do… loops. Do While… Loop and Do Until… Loop

loops test a condition before performing any action. What is the other category?

Solution The second type of Do… loop includes loops that perform an action before test-

ing a condition. Do… Loop While and Do… Loop Until fall into this category.

CHAPTER 13: GETTING USER INPUT WITH MESSAGE BOXES AND INPUT BOXES | 863

Nest one loop within another loop. You can put loops inside other loops.

Master It Think of a programming task where nested loops would be useful.

Solution Nested loops would come in handy if you’re accessing a multidimensional

array or a table of data, for example. You could use one loop to search through each row

in the table, and another loop to search through all the columns. The example of nested

loops given in this chapter is that you need to create a number of folders, each of which

contains a number of subfolders. Structurally, this subfolders-within-folders example re-

sembles a multidimensional array or a table of data.

Avoid infi nite loops. An infi nite (or endless) loop causes your macro to continue execution

indefi nitely—as if the macro had stopped responding and was “frozen.”

Master It How do you avoid creating an infi nite loop?

Solution Be sure that it is possible for your loop to terminate at some point. Ensure that

a condition will occur that ends the looping.

Chapter 13: Getting User Input with Message Boxes and
Input Boxes

Display messages on the status bar. The information bar at the bottom of the window in

many applications is a useful, unobtrusive way of communicating with the user. The status

bar is frequently used by applications to indicate the current page, zoom level, active view

(such as datasheet in Access), word count, and so on. However, you, too, can display informa-

tion on the bar.

Master It Write a small sub in the Visual Basic Editor that displays the current date and

time in the status bar.

Solution This procedure shows how to display information in the status bar.

Sub Experimentation_Zone()

Application.StatusBar = Now

End Sub

Display message boxes. Message boxes are commonly used to inform or warn the user. By

default, they appear in the middle of the screen and prevent the user from interacting with

the host application until a button on the message box is clicked, thereby closing it.

Master It Write a small sub in the Visual Basic Editor that displays the current date and

time using a message box.

Solution Here’s how to display information in a message box.

Sub Experimentation_Zone()

MsgBox Now

End Sub

Display input boxes. An input box is similar to a message box, except the former can get

more information from the user. An input box allows the user to type in a string, which is

864 | APPENDIX THE BOTTOM LINE

more data than the simple information provided by which button the user clicked in a mes-

sage box.

Master It Write a small sub in the Visual Basic Editor that asks users to type in their

name. Use the InStr function to see if there are any space characters in the returned

string. If not, it means either they are Madonna or they have typed in only one name—so

display a second input box telling them to provide both their fi rst and last names.

Solution You can handle this several ways, but this example code uses a Do…Loop

Until structure to repeatedly display an input box until the user types in at least two

words:

Sub Get_Name()

Dim response As String

response = InputBox(“Please type in your full name:”, _

 “Enter Name”)

If Not InStr(response, “ “) Then ‘found no space character

 Do

 response = InputBox _

 (“You entered only one name. Please type in your full name:”, _

 “Enter First and Last Names Please”)

 Loop Until InStr(response, “ “)

End If

End Sub

Understand the limitations of message boxes and input boxes. For even moderately com-

plex interaction with the user, message and input boxes are often too limited. They return to

the VBA code, for example, only a single user response: a button click or a single piece of text.

So you can’t conveniently use an input box to ask for multiple data—such as an address and a

phone number—without displaying multiple input boxes. That’s ugly and disruptive.

Master It In addition to the limitations on the amount of information you can retrieve

from the user, what are the two other major limitations of message boxes and input

boxes?

Solution You are limited in the formatting and the amount of information you can dis-

play to the user.

Chapter 14: Creating Simple Custom Dialog Boxes

Understand what you can do with a custom dialog box. Custom dialog boxes—user inter-

faces you design as forms in the Visual Basic Editor—are often needed in macros and other

kinds of Offi ce automation. You might, for example, want to display a dialog box that allows

CHAPTER 14: CREATING SIMPLE CUSTOM DIALOG BOXES | 865

the user to specify whether to let a macro continue beyond a certain point in its code or cease

execution. Perhaps your macro is searching through a document for a particular phrase; then

when it fi nds that phrase, it displays a dialog box to users asking if they want to continue

further.

Master It Which VBA statement would you use to stop a macro from continuing

execution?

Solution The End command halts execution.

Create a custom dialog box. You use the Visual Basic Editor to both design a custom dialog

box (form) and write code for macros. You can attach the various controls to a form and then

enter code behind the dialog box.

Master It How do you switch between the form-design window (sometimes called the

object window) and the Code window in the Visual Basic Editor?

Solution The easiest way is to press F7 to display the Code window and press Shift+F7

to display the design window. However, you can also use the View menu, or double-click

the module name in the Project Explorer (to switch to design mode), or double-click the

form or one of its controls (to switch to the Code window).

Add controls to a dialog box. It’s easy in the Visual Basic Editor to add various controls—

such as command buttons and text boxes—to a user form (a custom dialog box).

Master It How do you add a command button to a custom dialog box?

Solution If the Visual Basic Editor Toolbox isn’t visible, click the form. Or you can

choose View ➢ Toolbox. Or click the Toolbox button on the Standard toolbar to display

the Toolbox. Then click the command-button icon and click the form. If you want to add

more than one command button, double-click the command-button icon in the Toolbox.

Move your mouse cursor (notice that it now displays a small button icon) to the location

in the dialog box where you want to place the command button. Click the form to place

the new button on the form.

Link dialog boxes to procedures. Buttons, check boxes, option buttons—displaying vari-

ous controls to the user is fi ne, but unless you write some code behind these various user-

interface objects, what’s the point? Your macro’s user shouldn’t discover that clicking a button

does nothing.

Dialog boxes often display objects with which users can communicate their wishes to your

code. Therefore, you write code that explores the values the user enters into controls and

responds to whatever buttons the user might click.

Master It Create a small custom dialog box that displays a message in a label control

saying, “Would you like to know the current date and time?” Put an OK button and a

Cancel button on this form. Write code that simply ends the procedure if the user presses

the Cancel button but that displays the date and time in the label if the user clicks the OK

button. If the user clicks OK a second time, end the procedure.

Solution After you’ve placed the label with its Caption property set to “Would you

like to know the current date and time?” and put two appropriately captioned buttons

on the form, double-click the Cancel button to open the Code window. Name the label

lblShowTime.

In the Cancel button’s Click procedure, type End. Now use the Object drop-down list (on

the top left of the Code window) to select the OK button.

866 | APPENDIX THE BOTTOM LINE

In the OK button’s Click procedure, type the code shown here:

1. Private Sub btnCancel_Click()

2. End

3. End Sub

4.

5. Private Sub btnOK_Click()

6.

7. If Label1.Caption = “Would you like to see the current date

 and time?” Then

8. Label1.Caption = Now

9. Else

10. End

11. End If

12.

13. End Sub

Here’s how the code works:

 ◆ Line 2 closes the dialog box using the End statement. You could also use the UnLoad

statement.

 ◆ Line 7 tests the value in the label’s Caption property. This is how the procedure

knows if this is the fi rst time the user has clicked the OK button. If the label displays

the original caption (“Would you like to see the current date and time?”), then you

know the user has not previously clicked OK. However, if this original caption is not

displayed (because the date and time are), that means the user is clicking OK a sec-

ond time and wants to close the dialog box.

 ◆ Line 8 displays the date and time in the label.

 ◆ Line 10 exits the procedures, which also has the effect of removing the dialog box.

There are other ways to test whether the user has clicked OK twice. You could create a

Static Boolean variable type that is set to True the fi rst time the OK button is clicked.

Line 7 would then test the value of this variable in the following way:

If blnToggle = True Then

Retrieve the user’s choices from a dialog box. A major task of most dialog boxes is retriev-

ing values that the user has specifi ed in various controls by selecting check boxes and so

on. Then you write code to carry out the user’s wishes based on these retrieved values. This

interaction via dialog box is the typical way that a user communicates with your procedures,

and vice versa.

Master It Create a new dialog box that contains three option buttons captioned Small,

Medium, and Large and named optSmall, optMedium, and optLarge. Write code in each

option button’s Click procedure to change the button’s caption to boldface when the but-

ton is clicked.

Solution The following code shows how to employ the Font object’s Bold property to

turn boldface on and off in a caption on a dialog box:

1. Private Sub optSmall_Click()

2. optSmall.Font.Bold = True

3. optMedium.Font.Bold = False

CHAPTER 14: CREATING SIMPLE CUSTOM DIALOG BOXES | 867

4. optLarge.Font.Bold = False

5. End Sub

6.

7. Private Sub optMedium_Click()

8. optSmall.Font.Bold = False

9. optMedium.Font.Bold = True

10. optLarge.Font.Bold = False

11. End Sub

12.

13. Private Sub optLarge_Click()

14. optSmall.Font.Bold = False

15. optMedium.Font.Bold = False

16. optLarge.Font.Bold = True

17. End Sub

With code, there are always various ways to achieve a given result. You could write this

code a different way by creating a function that accepted small, medium, or large as an

argument and then used a Select Case structure to make the appropriate caption bold-

face. That solution would look like this:

Private Sub optSmall_Click()

 ChangeSize (“small”)

End Sub

Private Sub optMedium_Click()

 ChangeSize (“medium”)

End Sub

Private Sub optLarge_Click()

 ChangeSize (“large”)

End Sub

Function ChangeSize(strChoice As String)

Select Case strChoice

Case Is = “small”

optSmall.Font.Bold = True

optMedium.Font.Bold = False

optLarge.Font.Bold = False

Case Is = “medium”

optSmall.Font.Bold = False

optMedium.Font.Bold = True

optLarge.Font.Bold = False

868 | APPENDIX THE BOTTOM LINE

Case Is = “large”

optSmall.Font.Bold = False

optMedium.Font.Bold = False

optLarge.Font.Bold = True

End Select

End Function

Chapter 15: Creating Complex Forms

Understand what a complex dialog box is. Simple dialog boxes tend to be static, but com-

plex dialog boxes are dynamic—they change during execution in response to clicks or other

interaction from the user.

Master It Describe two types of dynamic behavior typical of complex dialog boxes.

Solution The following types of dynamic behavior are typical of complex dialog boxes:

 ◆ The application changes the information in the dialog box to refl ect choices that the

user has made.

 ◆ The dialog box displays a hidden section of secondary options when the user clicks a

button in the primary area of the dialog box.

 ◆ The application uses the dialog box to keep track of a procedure and to guide the user

to the next step by displaying appropriate instructions and by activating the relevant

control.

Reveal and hide parts of a dialog box. Dialog boxes need not display everything at once.

Word’s Find And Replace dialog box illustrates how useful it can be to display an abbrevi-

ated dialog box containing the most common tasks and expand the box to reveal less-popular

options if the user needs access to them.

Master It Name the two most common techniques you can use to display additional

options in a dialog box.

Solution The two most common techniques for displaying additional options in a dia-

log box are as follows:

 ◆ Set the Visible property to False during design time to initially hide a control on a

form. Then set its Visible property to True when you want to display the control.

 ◆ Increase the height or width (or both) of the dialog box to reveal an area containing

further controls.

Create multipage dialog boxes. VBA includes the MultiPage control, which enables you to

create multipage dialog boxes. Word’s Font dialog box is an example of one. You can access

any page (one at a time) by clicking its tab at the top of the page.

Master It How does the TabStrip control differ from the MultiPage control? What are

the typical uses for each?

CHAPTER 16: BUILDING MODULAR CODE AND USING CLASSES | 869

Solution A MultiPage control allows the user to switch among different virtual pages

(with differing controls and varied layouts). The MultiPage control is most often em-

ployed to display a set of property pages for a feature (such as fonts) that includes many

possible options and settings. You therefore can subdivide all these options among mul-

tiple pages in the form: one page for font properties and another page for character spac-

ing, for example.

A TabStrip control contains multiple tabs but not multiple pages. In other words, the lay-

out of the rest of the dialog box (apart from the tab strip itself) stays the same no matter

which tab on the tab strip the user clicks. This is useful for displaying records from a da-

tabase because the fi elds (such as text boxes) remain identical no matter which record the

user is viewing.

Create modeless dialog boxes. A modeless dialog box can be left visible onscreen while

the user continues to work in an application. For example, the Find And Replace dialog box

in Access, Word, and Excel is modeless, as is the Replace dialog box in PowerPoint. A modal
dialog box, by contrast, must be closed by users before they can continue to interact with the

application.

Master It How do you make a user form modeless?

Solution Set its ShowModal property to False. The default is True.

Work with form events. Events are actions that happen while a program is executing.

Many events are supported by the UserForm object and the controls you use on it. By using

events, you can monitor what the user does and take action accordingly or even prevent the

user from doing something that doesn’t seem like a good idea.

Master It Name two of the three most useful events available in VBA programming.

Solution The three most commonly useful events for VBA programming are Click,

Initialize, and Change.

Chapter 16: Building Modular Code and Using Classes

Arrange your code in modules. Rather than use a single lengthy, complex procedure that

accomplishes many tasks at once, programmers usually subdivide their code into smaller,

self-contained procedures—dedicated to a single, discrete task.

Master It Shorter, self-contained, single-task procedures offer the programmer several

advantages. Name three.

Solution The advantages of shorter, self-contained, single-task procedures are as

follows:

 ◆ Modular code is often easier to write because you create a number of short proce-

dures, each of which performs a specifi c task.

 ◆ You can usually debug shorter procedures relatively easily.

 ◆ Short procedures are more readable because you can more easily follow what they do.

 ◆ By breaking your code into procedures, you can repeat their tasks at different points

in a sequence of procedures without needing to repeat the lines of code.

870 | APPENDIX THE BOTTOM LINE

 ◆ By reusing whole procedures, you reduce the amount of code you have to write.

 ◆ If you need to change an item in the code, you can make a single change in the appro-

priate procedure instead of having to make changes at a number of locations in a long

procedure.

 ◆ You can easily reuse short, dedicated, single-task procedures in other code in the

future.

Call a procedure. You execute a procedure by calling it from within your programming

code.

Master It How do you call a procedure?

Solution You can use the optional Call statement, like this, to call a procedure named

FormatDocument:

Call FormatDocument

But most programmers omit the Call keyword, using just the name of the procedure,

like this:

FormatDocument

Pass information from one procedure to another. Sometimes a procedure requires that

you pass it some information. For example, a procedure that searches text and makes some

style changes to it will require that you pass the text you want modifi ed.

Sometimes a procedure passes back information to the procedure that called it. For example,

it might pass back a message describing whether the actions taken in the procedure were (or

were not) accomplished successfully.

Master It What kind of procedure can pass back information to the caller?

Solution Only functions can pass back information to a caller. Subroutines can accept

data (arguments) like functions, but subroutines cannot pass data back to the caller.

Understand what classes are and what they’re for. Contemporary computer programs

employ classes for various reasons—to help organize large programs, to make code more

easily reusable, to provide certain kinds of security, or as a superior substitute for public vari-

ables. But beginners sometimes have a hard time wrapping their minds around the concept,

particularly the relationship between classes and objects.

Master It What is the difference between a class and an object?

Choose the correct answer (only one answer is correct):

 1. A class is like a cookie and an object is like a cookie cutter.

 2. A class is like a programmer and an object is like a module.

 3. A class is like a blueprint and an object is like a house built from that blueprint.

Solution The answer is 3. A class is like a blueprint and an object is like a house built

from that blueprint.

Create a class. The VBA Editor employs a special kind of module for containing classes.

Master It How do you create a class module in the VBA Editor?

Solution There are three ways to create a class module:

CHAPTER 17: DEBUGGING YOUR CODE AND HANDLING ERRORS | 871

 ◆ Right-click the name of the target project in the Project Explorer (or right-click one of

the items contained within the project). Then choose Insert ➢ Class Module from the

context menu.

 ◆ Click the Insert button on the Standard toolbar and choose Class Module from the

drop-down list.

 ◆ Choose Insert ➢ Class Module from the menu bar.

Chapter 17: Debugging Your Code and Handling Errors

Understand the basic principles of debugging. A major aspect of programming is testing

your code. Debugging can be enjoyable if you think of it as a puzzle that you can solve. But

whether or not you enjoy it, debugging is essential if you want to preserve a reputation as

a professional.

Master It When testing your code, try to imagine ways that the code could fail.

Describe a situation that can produce unanticipated results.

Solution A user may try to run a document-formatting procedure without fi rst opening

a document.

Or the user might try to open a fi le and trigger certain errors—perhaps the fi le doesn’t

exist, or is currently in use by another computer, or is on a network drive, fl oppy drive,

CD-ROM drive, or removable drive that isn’t available at the time.

You’ll also run into other peripheral-related errors if the user tries to use a printer or

other remote device (say, a scanner or a digital camera) that’s not present, connected,

powered up, or confi gured correctly.

Similarly, any procedure that deals with a particular object in a document (for example, a

chart in Excel) will run into trouble if that object is not present or not available.

Recognize the four different types of errors you’ll create. Experts have concluded that

there are four primary categories of error in programs.

Master It Name two of the four basic types of programming errors.

Solution Here are the four basic types of programming errors:

 ◆ Language errors

 ◆ Compile errors

 ◆ Runtime errors

 ◆ Program logic errors

Employ VBA’s debugging tools. The VBA Editor and VBA include a generous assortment

of debugging tools to help you track down and remove bugs from your procedures. The main

windows you’ll employ for debugging are the Immediate window, the Locals window, and

the Watch window.

Master It The Watch window is especially useful because you can set watch expres-

sions (also known as conditional breakpoints). Describe this debugging tactic.

872 | APPENDIX THE BOTTOM LINE

Solution Watch expressions are fl exible and powerful debugging tools. You can ask

the VBA Editor to break on any kind of expression you can think up, such as any line

that causes a variable to exceed a certain value, go below zero, change to a shorter string

length, and so on.

You specify a condition (a watch expression such as X < 0), and the VBA Editor automati-

cally halts execution and displays the line where this occurs.

Deal with runtime errors You can trap some runtime errors (errors that show up while

a procedure is executing) while debugging your code. But others show up only while your

user is interacting with your program—and you’re probably not there to help them. There is

a way, though, to soften the blow and, in some cases, even fi x a problem by adding error han-

dlers to your programs.

Master It Error handlers are special statements and sections of code that detect and

then manage runtime errors. What VBA statement detects a runtime error?

Solution VBA’s On Error statement triggers when there is a runtime error, allowing

you to write code that responds to the error.

Chapter 18: Building Well-Behaved Code

Understand the characteristics of well-behaved procedures. Well-behaved procedures

don’t annoy or alarm the user either during or after their execution.

Master It Name two ways programmers can write procedures that don’t annoy users.

Solution Here are some ways programmers can avoid annoying users by their proce-

dures’ actions:

 ◆ Make no durable or detectable changes to the user environment—other than changes

the procedure is designed to make. In other words, restore the previous settings.

 ◆ Present the user with relevant choices for the procedure and relevant information

once the procedure has fi nished running.

 ◆ Show or tell the user what is happening while the procedure is running.

 ◆ Make sure whenever possible that conditions are appropriate for the procedure to run

successfully—before the procedure takes any actions.

 ◆ Anticipate or trap errors to avoid a crash. But if the procedure does crash, handle

the situation as gracefully as possible and minimize damage to, or loss of, the user’s

work.

 ◆ Leave users in the optimal position to continue their work after the procedure fi n-

ishes executing.

 ◆ Delete any scratch documents, folders, or other debris that the procedure created in

order to perform its duties but that are no longer needed.

CHAPTER 18: BUILDING WELLBEHAVED CODE | 873

Retain and restore the user environment. Users quite rightly don’t appreciate it if your

procedure leaves the state of their application’s or operating system’s environment modifi ed.

Find ways to restore the user environment before your procedure fi nishes execution.

Master It Assume that you are writing a procedure that employs Word’s Search and

Replace feature. This feature retains its settings between uses so the user can repeatedly

trigger the same search or replace actions. How can you temporarily store the status of

the user’s last search or replace so that you can restore this data after your procedure is

fi nished executing?

Solution To store such information, you can use private variables, public variables, or

custom objects.

Let the user know what’s happening. Particularly when a procedure is doing a lengthy

“batch job” such as updating dozens of fi les, it’s important to let the user know that the

computer hasn’t frozen. People need to be told that execution is continuing as expected even

though nothing appears to be happening.

Master It Describe a way to let the user know that a procedure isn’t frozen—that activ-

ity is taking place during execution.

Solution You can tell users via a message box before starting a lengthy process that

they should anticipate a delay. Alternatively, you can display messages on the status bar.

Or you could disable screen updating for parts of a procedure and turn it back on, or re-

fresh it, for other parts.

Check that the procedure is running under suitable conditions. Another important ele-

ment of creating a well-behaved procedure is to check that it’s running under suitable condi-

tions. This ideal is nearly impossible to achieve under all circumstances, but you should take

some basic steps.

Master It If a procedure accesses data from a fi le, name an error that could occur and

thus should be trapped.

Solution You should trap errors in case a fi le being accessed hasn’t been opened, doesn’t

exist (has been deleted or moved), or doesn’t contain data that the procedure expects to

fi nd in it.

Clean up after a procedure. A well-behaved procedure avoids leaving unneeded fi les or

other temporary items behind. In other words, a procedure should clean up after itself.

Master It Cleaning up involves three major tasks. Name one.

Solution The three main ways that a procedure cleans up after itself are as follows:

 ◆ Undoing any changes that the procedure had to make to enable itself to run

 ◆ Closing any fi les that no longer need to be open

 ◆ Removing any scratch fi les or folders that the procedure has created to achieve its

effects

874 | APPENDIX THE BOTTOM LINE

Chapter 19: Securing Your Code with VBA’s Security
Features

Understand how VBA implements security. Microsoft takes a multipronged approach to

protecting users from malicious VBA code embedded in documents and capable of launch-

ing itself when the user simply opens the document.

Master It Name two ways that users are protected from malicious VBA code.

Solution Users are protected from malicious VBA code in the followings ways:

 ◆ The default fi le type for Offi ce documents simply cannot contain any embedded mac-

ros at all (these fi les’ fi lename extensions end in x, such as .docx).

 ◆ Macro-enabled documents can be stored in a trusted area on the hard drive.

 ◆ The user can specify various trust settings for both macros and other executables,

such as add-ins and ActiveX controls. For example, the user can forbid the execution

of any controls unless the user is fi rst notifi ed. Another setting prompts the user for

permission before allowing a control to be loaded.

 ◆ The user can modify a list of “trusted publishers”—companies whose documents are

considered safe.

 ◆ Developers can digitally sign their own projects, thereby making themselves “trusted

publishers.”

 ◆ The types of fi les that an application can access can be more specifi cally controlled via

fi le blocking.

 ◆ A Trusted Documents feature allows users to specify individual documents as

reliable.

 ◆ Files are scanned before being opened.

 ◆ Files can be opened in a sandbox called Protected View.

Sign a macro project with a digital signature. You can add a digital signature to your

projects by creating your own certifi cation, getting it from your company, or getting it from

certifi cation authorities such as VeriSign.

Master It Describe the limitations of certifying a VBA macro project for yourself—

without obtaining a certifi cate from your company or a commercial certifi cation

authority.

Solution The quickest and easiest way of getting a digital certifi cate is to create one

yourself. However, this kind of certifi cation works only on the computer on which the

certifi cate was created, and it’s the least trustworthy type of digital signature. A digital

certifi cate you create yourself is of little value to people other than you and those who

personally trust you.

Get a digital certifi cate. Commercial certifi cation authorities provide the greatest level of

security, but their certifi cation is also more diffi cult to attain than self-certifi cation or certifi -

cation from your company.

CHAPTER 20: UNDERSTANDING THE WORD OBJECT MODEL AND KEY OBJECTS | 875

Master It Name some of the ways you may be required to prove your identity when

obtaining a digital signature from a commercial certifi cation authority.

Solution The procedure for proving your identity varies depending on the commercial

certifi cation authority and the type of certifi cate you want. Generally speaking, the great-

er the degree of trust that the certifi cate is intended to inspire, the more proof you’ll need

to supply. For example, you can get a basic certifi cate on the strength of nothing more

than a verifi able email address, but this type of certifi cate is unlikely to make people trust

you. Other certifi cate types require you to appear in person before a registration author-

ity with full documentation (such as a passport, driver’s license, or other identity docu-

ments). Such certifi cates carry more trust.

Choose the appropriate security level. When choosing the right security level to use VBA

macros safely, you or a user of your code must achieve a balance. The security level must be

set high enough to avoid malicious or incompetent code but low enough that it doesn’t pre-

vent you from running useful, safe code.

Master It To set a suitable level of security for your purposes, open the Trust Center in

Access, Word, Excel, or PowerPoint. You’ll see four settings. Which one of the following

fi ve settings is not available:

 ◆ Disable All Macros Without Notifi cation

 ◆ Disable All Macros With Notifi cation

 ◆ Disable All Macros Except Digitally Signed Macros

 ◆ Enable All Macros With Notifi cation

 ◆ Enable All Macros

Solution There is no Enable All Macros With Notifi cation option.

Lock your code. You can protect your source code in the VBA Editor from others. You add a

password to a project (projects are in boldface in the Project Explorer), and others can’t open

your VBA procedures for reading or modifying.

Master It What is the one drawback to locking your code?

Solution The lock requires an extra step to access the modules and forms in the project

because you must fi rst provide the password. However, for the protection you gain by

locking your code, this small extra effort can be well worth the trouble.

Chapter 20: Understanding the Word Object Model and
Key Objects

Understand the Word object model. Some people fi nd viewing a schematic of the Word

object model useful as a way of visualizing the interrelationships of the various objects and

collections.

Master It When you look at the Word Object Model Map, what is the highest object in

the hierarchy—the object that contains all other objects?

876 | APPENDIX THE BOTTOM LINE

Solution The highest object in the hierarchy is the Application object.

Understand Word’s creatable objects. Word contains a set of creatable objects that VBA

programmers will frequently employ in their code.

Master It What is a creatable object?

Solution A creatable object is simply one that doesn’t require you to use the term

Application when invoking it. It’s a kind of shorthand. For example, the Documents

collection object is creatable, so the word Application is optional in this code:

Application.Documents.Count does the same thing as Documents.Count.

Work with the Documents collection and the Document object. The Documents collection

represents all the currently open documents. Using VBA, you can manipulate this collection

in a variety of ways.

Master It Here is the syntax for creating a new document in the Documents collection:

Documents.Add Template, NewTemplate, DocumentType, Visible

If you merely want to add a new, empty document (based on the default Normal.dotm

template) to the documents currently open in Word, the code is quite simple. What is the

code that you would write in VBA to accomplish this?

Solution The code is as follows:

Documents.Add

Work with the Selection object. The Selection object represents the current selection in

the active document in Word. The user can select a zone by dragging the mouse or by using

various key combinations (such as pressing Shift and an arrow key). A selection can include

one or more objects—one or more characters, one or more words, one or more paragraphs, a

graphic, a table, and so on. Or a combination of these objects.

Master It One kind of selection is described as a collapsed selection. What is that?

Solution A collapsed selection is an insertion point (the blinking cursor). Nothing is

visibly selected. The insertion point, however, is still thought of as technically a selection

(pointing to a place within the document), even though this special kind of selection has

no contents.

Create and use ranges. In Word, a range is a named contiguous area of a document with a

defi ned starting and ending point. The typical use of ranges in Word VBA is similar to how

you use bookmarks when working interactively with Word: to mark a location in a document

that you want to be able to access quickly or manipulate easily.

Master It Although a range is similar to a bookmark, what is the signifi cant difference

between them?

Solution The main difference between a range and a bookmark involves their lifetimes.

A range exists only as long as the VBA procedure that defi nes it is executing. A bookmark

is persistent: it is saved with the document or template that contains it and can be ac-

cessed at any time (whether or not a procedure is running).

Manipulate options Word contains many options that can be manipulated from within VBA.

Master It In Word, one object controls many of the options. This object has dozens of

properties but no methods. Name this object.

CHAPTER 21: WORKING WITH WIDELY USED OBJECTS IN WORD | 877

Solution The Options object controls many of the options in Word.

Chapter 21: Working with Widely Used Objects in Word

Use Find and Replace via VBA. Word’s Find and Replace utilities are frequently valuable

to the VBA programmer. You’ll want to master them and also some subtleties associated with

their use.

Master It Sometimes when replacing, you need to go through a document more than

once—using a loop structure. Why would you ever need to repeatedly search and replace

the same document? Doesn’t the Replace All setting in fact replace all?

Solution In some situations, the act of replacing actually generates new instances of

the target of the replacement activity. Let’s say you want only single-space strings in a

document. (For example, you want sentences separated by only a single space character,

but sometimes a typist accidentally presses two or more spaces.) You set up a search

and replace that looks for double-space character strings and replaces them with single-

space characters. You have to take into account that there can also be some multiple-

space-character strings. Consider a string of six adjacent space characters. During the

fi rst pass, your double-to-single search and replace reduces the six-space string to a

three-space string (three instances of double spaces would reduce to three instances of

single spaces). The second pass through a loop would reduce it to a two-space string,

requiring yet a third pass through the loop to achieve the desired single space. This

same situation can apply to multiple-paragraph spacing (multiple blank lines) and tabs.

Work with headers, footers, and page numbers. All Word documents contain headers

and footers, even if they are empty. In addition, you can insert various types of headers and

footers.

Master It Name two types of headers you can use in a Word document.

Solution Here are the major types of Word headers: the primary header, different fi rst-

page headers, different even-page headers, and different sets of headers for each of the

sections in the document.

Manage sections, page setup, windows, and views. Among the various ways you can

view a document, you sometimes want to have the document automatically scroll to a par-

ticular table, graphic, or other target.

Master It What method of the Window object can be used to easily accomplish this

task?

Solution The ScrollIntoView method of the Window object moves the view to a target

you specify.

Manipulate tables. When you need to manage tables in Word documents, you can employ

VBA to work with the Table object to represent a single table. If there is more than one table,

they are referenced by a collection of Table objects.

Master It Name two important and useful objects within the Tables collection or the

Table object.

878 | APPENDIX THE BOTTOM LINE

Solution Some of the most useful objects within a Table object or a Tables collection

are as follows:

 ◆ The Rows collection contains the rows in the table. Each row is represented by a Row

object.

 ◆ The Columns collection contains the columns in the table. Each column is represented

by a Column object.

 ◆ The Cell object provides access to a specifi ed cell directly from the Table object. You

can also reach the cells in the table by going through the row or column in which they

reside.

 ◆ The Range object provides access to ranges within the table.

 ◆ The Borders collection contains all the borders for the table.

 ◆ The Shading object contains all the shading for the table.

Chapter 22: Understanding the Excel Object Model and
Key Objects

Work with workbooks. You often need to create a new, blank workbook in a macro (mim-

icking a user clicking the File tab on the Ribbon, then clicking the New button). And writing

code that accomplishes this is not diffi cult. It requires only two words.

Master It What code would you write to create a new, blank notebook?

Solution To create a blank workbook, omit the Template argument, like this:

 Workbooks.Add

Work with worksheets. Most workbooks you access via VBA will contain one or more

worksheets, so most procedures will need to work with worksheets—inserting, deleting,

copying, or moving them, or simply printing the appropriate range from them.

Master It Name the object you use in VBA code to represent a worksheet.

Solution Each worksheet is represented by a Sheet object. The Sheet objects are con-

tained within the Sheets collection.

Work with the active cell or selection. In a procedure that manipulates a selection that the

user has made, you’ll typically work with either the active cell or the current selection.

Master It What is the difference between the active cell and a selection?

Solution The active cell is always a single cell, but the selection can either be a single

cell or encompass multiple cells or other objects.

Work with ranges. Within a worksheet, you’ll often need to manipulate ranges of cells.

Excel includes a special kind of range—represented by the UsedRange property.

Master It What is unique about UsedRange?

Solution If you need to work with all the cells on a worksheet (but not with any unoc-

cupied areas of the worksheet), use the UsedRange property. UsedRange ignores empty

areas of a worksheet.

CHAPTER 24: UNDERSTANDING THE POWERPOINT OBJECT MODEL AND KEY OBJECTS | 879

Set options. Word employs an Options object to contain most of the options that you fi nd

in the Word Options dialog box (click the File tab on the Ribbon, then click Options). Excel

uses a different object to contain its options.

Master It From which object do you access most of Excel’s options?

Solution You access most of Excel’s options from the Application object. However, you

can access the workbook-specifi c properties that appear in the Excel Options dialog box

through the appropriate Workbook object.

Chapter 23: Working with Widely Used Objects in Excel

Work with charts. You can create either full chart sheets or embedded charts within an

ordinary Excel worksheet.

Master It What object is used in a procedure to represent an embedded chart?

Solution VBA uses the ChartObject object to represent an embedded chart on a

worksheet.

Work with windows. To open a new window on a workbook, you use the NewWindow

method of the appropriate Window object.

Master It Does the NewWindow method take any arguments?

Solution No, the NewWindow method takes no arguments. For example, the following

statement opens a new window showing the contents of the fi rst window open on the

workbook identifi ed by the object variable myWorkbook:

 myWorkbook.Windows(1).NewWindow

Work with Find and Replace. When working with the Find and Replace features in Excel,

you need to be aware of a phenomenon known as persistence.

Master It What is persistence, and why should it concern you?

Solution The LookIn, LookAt, SearchOrder, and MatchByte arguments of the Range

object’s Find method persist. This means that Excel retains their settings from one search

to the next (until this session with Excel ends and you shut it down). So, if you don’t know

that the settings used in the last search (either programmatically in a procedure or by

the user) are suitable for your current needs, you should set these arguments explicitly

in each search to avoid getting unexpected results. Format settings such as font and sub-

script also persist.

Chapter 24: Understanding the PowerPoint Object
Model and Key Objects

Understand PowerPoint’s creatable objects. Creatable objects are commonly used objects

that can be employed in VBA code without requiring that you qualify them with the

Application object. You can leave that word out of your code; it’s optional, and rarely used.

Master It Name one of the objects or collections that are creatable in PowerPoint

procedures.

880 | APPENDIX THE BOTTOM LINE

Solution Objects or collections that are creatable in PowerPoint procedures include the

ActivePresentation object, the Presentations collection, the ActiveWindow object, and

the SlideShowWindows collection.

Work with presentations. You can create a new presentation programmatically, but

PowerPoint generates an annoying fl icker on most systems while it brings the new presen-

tation into view. You can block this unpleasant, strobelike effect to avoid disturbing your

audience.

Master It How do you prevent a newly created presentation from being visible so that

you can create and manipulate it in your code without the user seeing the fl ickering effect

onscreen?

Solution WithWindow is an optional Long argument of the Add method of the

Presentations collection. Set WithWindow to msoFalse to hide the presentation so that

the user doesn’t have to endure the irritating fl ickering effect that PowerPoint tends to

exhibit while creating presentation objects programmatically. The default value is

msoTrue, making the new presentation visible.

Work with windows and views. To get the PowerPoint window into the state you want,

you’ll often need to work with the window and with the view.

Master It PowerPoint uses two types of windows. What are they?

Solution PowerPoint uses document windows and slide-show windows.

Work with slides. Once you have created or opened the presentation you want to manipu-

late, you can access the slides it contains by using the Slides collection. This collection

contains a Slide object for each slide in the presentation. Each slide is identifi ed by its index

number, but you can also use object variables to refer to slides or assign names to slides.

Master It Why would you want to assign names to slides rather than using the default

index numbers that are automatically assigned to the slides?

Solution Assigning names to slides is useful because if you add slides to, or delete them

from, the presentation, the index numbers of the slides will change. You don’t want to

have to keep track of readjusted index numbers as you manipulate the collection. If they

have names, you can access the slides directly, without worrying that their index num-

bers might have changed.

Work with masters. Before attempting to manipulate a master in your code, you should

determine whether the master actually exists in the presentation.

Master It How do you fi nd out whether a presentation has a title master?

Solution Check the HasTitleMaster property. If the presentation already has a title

master, VBA returns an error when you try to add a title master. So check, like this:

 If ActivePresentation.HasTitleMaster Then

 ‘take further action based on the If…Then test

CHAPTER 26: UNDERSTANDING THE OUTLOOK OBJECT MODEL AND KEY OBJECTS | 881

Chapter 25: Working with Shapes and Running Slide
Shows

Work with shapes. PowerPoint VBA provides many ways to access and manipulate shapes.

Master It Describe what the following line of code does:

ActivePresentation.Slides(2).Shapes(1).Delete

Solution The code example deletes the fi rst Shape object on the second slide in the ac-

tive presentation.

Work with headers and footers. Using PowerPoint headers and footers can be a convenient

way to provide continuity for presentations as well as to identify each element.

Master It In this chapter, you worked with several examples showing how to manipu-

late footers for slides. Why were there no examples illustrating how to manipulate head-

ers for slides?

Solution Slides can’t have headers, only footers. Notes pages or handouts can have

headers.

Set up and run a slide show. To create a custom slide show, you use the Add method of the

NamedSlideShows collection.

Master It The syntax when using the Add method of the NamedSlideShows collection is

expression.Add(Name, SafeArrayOfSlideIDs)

Explain what the four components of this line of code are and do.

Solution The components are as follows:

 ◆ expression is a required expression that returns a NamedSlideShows object.

 ◆ Add is the method (of the NamedSlideShows object) that adds the slides to the new

show.

 ◆ Name is a required String argument that specifi es the name to assign to the new cus-

tom slide show.

 ◆ SafeArrayOfSlideIDs is also a required argument. It’s a Variant argument that spec-

ifi es the numbers or names of the slides to include in the custom show.

Chapter 26: Understanding the Outlook Object Model
and Key Objects

Work with the Application object. VBA uses two major Outlook objects that most users

wouldn’t recognize from working with the Outlook user interface alone.

Master It One of these objects represents a window that displays the contents of a fold-

er. The other represents a window displaying an Outlook item, such as an email message

or an appointment. What are the names of these two objects?

882 | APPENDIX THE BOTTOM LINE

Solution An Inspector object is an object that represents a window displaying an

Outlook item, such as an email message or an appointment.

An Explorer object represents a window that displays the contents of a folder.

Work with messages. To work with the contents of a message in VBA, you set or get vari-

ous properties.

Master It Name one of the most widely useful properties employed when manipulating

the contents of a message in a procedure.

Solution The most commonly useful properties when accessing a message in VBA are

To, CC, BCC, Subject, Body, BodyFormat, and Importance.

Work with calendar items. You can create new calendar appointment items via VBA.

Master It To create a new calendar item, you use a particular method of the

Application object and specify olAppointmentItem for the ItemType argument. What is

the method?

Solution To create a new calendar item, you use the CreateItem method of the

Application object. This example creates an AppointmentItem object variable named

myAppointment and assigns to it a new appointment item:

Dim myAppointment As AppointmentItem

Set myAppointment = Application.CreateItem(ItemType:=olAppointmentItem)

Work with tasks and task requests. You can assign a task to a colleague and then add one

or more recipients. You can then send the task to your colleague and, optionally, the addi-

tional recipients.

Master It What methods do you use to assign, add, and send a task to others?

Solution To assign, add, and send a task to others, use the Assign, Add, and Send

methods.

Chapter 27: Working with Events in Outlook

Work with application-level events. Event handlers are procedures that contain code that

responds to an event. In other words, if a user modifi es one of their contacts, an event can

detect this modifi cation and execute code you’ve written to respond to the modifi cation.

Master It Event handler-procedures are unlike ordinary macro procedures in several

ways. Name one of the differences.

Solution Both the construction of an event-handler procedure and its testing differ

somewhat from the techniques you’ve been employing throughout this book when creat-

ing and testing ordinary macro procedures:

 ◆ An event handler must be located within a class module, not an ordinary macro

module.

 ◆ An object variable must be declared that can point to the event.

 ◆ The object variable must be initialized (connected to an object).

 ◆ You cannot simply test the event handler by pressing F5 to run it directly (you must

instead run it indirectly by triggering the event it’s designed to service—for example,

by modifying a contact in the Contacts folder).

CHAPTER 28: UNDERSTANDING THE ACCESS OBJECT MODEL AND KEY OBJECTS | 883

Work with item-level events. Outlook has two primary kinds of events.

Master It What are the two types of events in Outlook? And how do they differ?

Solution The two types of events in Outlook are application-level and item-level events.

Application-level events apply to Outlook as a whole (for example, an event that trig-

gers when the application is closed). Item-level events apply to individual items within

Outlook, such as a contact or an email message in the Inbox.

Chapter 28: Understanding the Access Object Model and
Key Objects

Get started with VBA in Access. Access allows you to write macros in a VBA Editor using

VBA code. But it also features a legacy Macro Designer utility (formerly known as the Macro

Builder) with which you create an entirely different kind of macro, what we’ve been calling

an Access-style macro.

Master It The term macro is used in a special way in Access (referring to only one of

the two types of custom procedures Access permits you to construct: VBA and Macro

Designer). This usage of macro is unlike the way the term macro is used in other Offi ce

applications, not to mention all other forms of computing. Describe what Access means

by the term macro.

Solution Instead of defi ning macros as VBA procedures, Access uses the term macro to

describe a technology unique to Access. You create these Access “macros” by clicking the

Macro button on the Create tab (in the Macros And Code section of the Ribbon) to open

the Macro Designer window.

An Access “macro” is a historical entity—a holdover from the early days of this database

system. Access macros are limited to a subset of the available programming statements.

Using the Macro Designer, you enter a list of actions that you want to perform. You

choose these actions from a list and then type in arguments in the next cell in a table dis-

played by the Macro Designer.

Open and close databases. Access permits you to open a database in several ways.

Master It Two common commands that open a database in Access are

OpenCurrentDatabase and OpenDatabase. What is the difference between these two

commands?

Solution Instead of using the OpenCurrentDatabase method to open a database as the

current database, you can use the OpenDatabase method of the Workspace object to open

another database and return a reference to the Database object representing it. Using this

method, you can open multiple databases. The OpenCurrentDatabase method, by con-

trast, can open only a single database at a time.

Work with the Screen object. You became familiar with using ActiveDocument

objects in Word to access the document that currently has the focus. Or you used the

ActivePresentation object to work with whichever presentation happened to be active in

PowerPoint. Access, however, employs the Screen object as the parent of whatever object has

the focus.

Master It The Screen object represents the screen object that currently has the focus in

Access (that is, the object that is receiving input or ready to receive input). Three types of

884 | APPENDIX THE BOTTOM LINE

common Access objects can have the focus when you employ the Screen object. What are

they?

Solution The object can be a form, a report, or a control.

Use the DoCmd object to run Access commands. Many of the tools that Access makes

available to users, such as printing a report or maximizing a window, are also available to

the programmer via the methods of the DoCmd object.

Master It The DoCmd object has 66 methods in Offi ce 2013. Describe the purpose of the

DoCmd object’s Beep method.

Solution The Beep method makes the computer emit a sound. This can be used in con-

junction with an error message to alert the user that an error has occurred.

Chapter 29: Manipulating the Data in an Access
Database via VBA

Open a recordset. You can open an ADO recordset in two different ways.

Master It One way to open an ADO recordset is to provide an argument list following

the Open method. What is the other way to open an ADO recordset, which doesn’t involve

using arguments? Some people say that this second approach makes their code easier

to read.

Solution Instead of specifying arguments for the Open method, you can set the Source,

ActiveConnection, CursorType, and LockType properties of the RecordSet object you’re

opening and then use the Open method without arguments. You may agree with those

who feel this approach makes the code easier to read.

Access a particular record in a recordset. Both ADO and DAO technologies have methods

that allow you to move around within a recordset.

Master It One method you can use to traverse a recordset is the MoveFirst method. It

takes you to the fi rst record in the recordset. What does the fi rst record mean in a recordset

in a relational database? Is it the record that’s the lowest numerically, the lowest alpha-

betically, or what?

Solution The concept of a “fi rst record” within a relational database is essentially mean-

ingless, unless you sort the records in some fashion. You can sort them by any of their

fi elds and either ascending (the default) or descending (specify DESC). Which record is

fi rst depends on the fi eld by which you sort the recordset. But you must sort them. They

can’t be assumed to be sorted in any way within the database itself.

Search for a record. Both ADO and DAO offer methods to directly search for a particular

record.

Master It ADO offers a Find method. How many methods does DAO offer, and what

are they?

Solution There are four Find methods for DAO: FindFirst, FindNext, FindPrevious,

and FindLast.

CHAPTER 30: ACCESSING ONE APPLICATION FROM ANOTHER APPLICATION | 885

Edit a record. When editing a record, you fi rst use the Edit method, and then you can

change the value in a fi eld.

Master It After you have made a change to a value in a record, what method do you use

to save this change to make it part of the database?

Solution You use the Update method to save the changes you made to a recordset.

Insert and delete records. It’s not diffi cult to insert new records or delete existing ones.

In both situations, you use the Update method when fi nished to save the changes to the

database.

Master It To insert a new record into a recordset, what method do you use before you

can assign data to the fi elds in the new record?

Solution You use the AddNew method of the RecordSet object to create a new, empty

record.

Chapter 30: Accessing One Application from Another
Application

Use Automation to transfer information. Automation sets up communication between

two applications, designating one of them as the server and the other as the client.

Master It Of the various ways to communication between applications, which is gener-

ally the most effective?

Solution Automation is the most powerful and effi cient way to communicate between

applications.

Use the Shell function to run an application. Although the Shell function can prove

useful in a variety of inter-application communication situations, Shell can also present the

programmer with a timing problem.

Master It Describe the timing issues that the Shell function raises, and describe a good

solution to this problem.

Solution The Shell function runs other programs asynchronously rather than synchro-

nously. In other words, Shell doesn’t halt all other activity until it has fi nished with its

job. So when VBA executes a Shell statement, it registers the statement as an action to be

performed—but that action may not necessarily be fi nished before the next statement in

the procedure executes.

This asynchrony can cause errors in your procedures if subsequent commands depend

on the Shell statement having already been executed. If you run into this type of prob-

lem, a crude but often-effective fi x is to just allow extra time for the Shell function to

execute before taking any dependent action. You can employ the Sleep function to pause

execution of your procedure to allow any necessary commands to be carried out.

Use data objects to store and retrieve information. This book has described a variety of

ways to store and retrieve information when working with the VBA language. Using data

objects is one of these useful techniques.

886 | APPENDIX THE BOTTOM LINE

Master It How is the data-object technology special as a way of storing and retrieving

information; what can a data object do that’s unique?

Solution The data object has the ability to copy information to and retrieve information

from the Windows Clipboard.

Communicate via DDE. Dynamic Data Exchange (DDE) is a technology introduced back

in May 1990 with Windows 3.0. Use it if other, more effi cient communication technologies are

unavailable to the applications you are working with.

Master It Not all applications support DDE. Which Offi ce 2013 applications don’t sup-

port DDE communication?

Solution PowerPoint and Outlook do not support DDE.

Communicate via SendKeys. Using SendKeys is a fairly simple but rather awkward and

limited way to communicate between applications. It imitates typing in keystrokes, thereby

allowing you to manipulate an application by accessing some of its features using, for exam-

ple, Alt+key combinations, such as Alt+F to open the File tab on the Ribbon.

Master It SendKeys was historically most often employed to open an application’s

menus and select an option from the menus. Since Vista, Windows applications have

largely done away with traditional menus, so is SendKeys of even more limited use now

than in the past?

Solution No, SendKeys must simply send some different keystrokes to access recent

Offi ce applications’ features. Many of the features of the Ribbon, for example, are ac-

cessible via key combinations. For example, pressing the sequence Alt, W, Q, 2, and the

Enter key in Word will switch to the View tab on the Ribbon, select the Zoom option, and

switch to a 200% zoom. The difference here is that instead of employing the older ap-

proach of simultaneously pressing the Alt key while pressing other keys (such as Alt+V to

open a View menu), in today’s applications you press and release Alt by itself to activate

the Ribbon, then you press the W key to switch to the View tab on the Ribbon. At this

point, additional keystrokes can be sent to trigger the various options on the View tab.

Chapter 31: Programming the Offi ce 2013 Ribbon

Hide a tab on the Ribbon. Modifying the Ribbon involves employing XML attributes—

similar to methods and properties—of various Ribbon elements such as tabs, groups, and

buttons.

Master It Some Ribbon-related attributes include the suffi x Mso. Examples include

idMso and imageMso. What does the Mso mean, and what kind of attributes’ names are

appended with Mso?

Solution Mso stands for Microsoft Offi ce, and it means that a tab, icon, or other element

is built in—such as a tab that is, by default, visible on the Ribbon.

CHAPTER 31: PROGRAMMING THE OFFICE 2013 RIBBON | 887

Hide a group. You might want to make an entire Ribbon group invisible. For example, the

Editing group on the Home tab includes three options that most people launch via shortcut

keys: Find, Replace, and Select. So what’s the point of having this group take up space on the

Ribbon?

Master It What XML attribute of a group do you set to false to remove that group from

the Ribbon?

Solution You can set any group’s visible attribute to false, thereby hiding it from the

user.

Create callbacks for event handling. To execute VBA code, you insert a callback in the

XML code that will run whatever VBA macro you specify. When the user clicks a control,

such as a button, the XML code that services this control sends a message to the Offi ce appli-

cation, telling it that a response is needed.

Master It What XML attribute do you use to create a callback?

Solution You use the onAction attribute to create a callback.

Manipulate the Access Ribbon. Access often does things differently from the majority of

Offi ce applications, and Ribbon programming is no different. You can manipulate the Access

Ribbon as freely as in the other applications, but several of the programming techniques

differ.

Master It Where can you store the XML code when programming the Access Ribbon?

Solution You store the XML code when programming the Access Ribbon in a special

table you create, named USysRibbons.

Debug Ribbon programming. Most Ribbon programming involves writing two types of

code: XML and VBA. Strategies for fi xing bugs in XML include validation.

Master It What is XML validation?

Solution XML validation is a feature built into XML code editors that checks to ensure

that the XML is well formed (free of certain kinds of errors). A validation looks for tags that

are missing, out of order, improperly punctuated, use the wrong capitalization, are not

part of the schema (aren’t listed as attributes or elements in the document that defi nes

the particular XML version being used), and so on. Some errors can’t be detected during

validation (such as pointing an onAction attribute to a VBA procedure that doesn’t exist).

But many common errors—such as typos—can be spotted by validation, which is an au-

tomatic scan of XML code.

bindex.indd 10:34:46:AM 07/26/2013 Page 889

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic.

Italicized page numbers indicate illustrations.

A
a in date formats, 211

A/P in time formats, 212

Abs function, 226

absolute cell addresses, 632

absolute cell ranges, 633

Accelerator property, 351

check boxes, 357

command buttons, 360

option buttons, 358

toggle buttons, 358

AcceptAllRevisions method,

174

Access, 739
creatable objects, 747
databases. See databases

DoCmd. See DoCmd

object

functions, 251–252, 252,

741
Macro Builder utility, 105,

490, 741–743, 742
macros, 739–740

creating, 741–742, 742
translating, 743–744

modules, 741
object model, 746, 746
Option Compare Database

statement, 745–746
overview, 739–740
procedures, 105–106, 740

recordsets. See recordsets

Ribbon, 836–840, 838
Screen object, 753–755
SingleStep method, 490
subprocedures, 745

Access Object Model

Reference, 746, 746
Access Options dialog box,

743, 839

accessing

headers and formats, 590
recordset data, 775–777,

775

ADO, 767–771
DAO, 771–775

slides, 671
ActionX values, 429–430
ActionY values, 429–430
Activate event, 420, 425–426,

730

ActivateNext method, 648

ActivatePrevious method, 648

activating and Activate

method

cells, 631
documents, 121

windows

presentations, 666
workbooks, 648

active cells, 631–633
active documents, 15

active error handlers, 499

Active Inspector, 704
active presentations, 664
ActiveCell object, 617, 631–632
ActiveCell property, 632

ActiveConnection method,

767

ActiveControl property, 754

ActiveDataAccessPage

property, 754

ActiveDatasheet property, 754

ActiveDocument object, 112,

552, 565–566
ActiveExplorer method, 703

ActiveForm property, 754

ActiveInspector method, 703

ActivePresentation object, 100,

100, 656, 664

ActivePresentation property,

664

ActiveReport property, 754

ActiveSheet object, 617, 631

ActiveWindow method, 703

ActiveWindow object

Excel, 617

PowerPoint, 656, 665

Word, 552

ActiveWorkbook object, 617,

626
ActiveX controls, 526

ActiveX Data Objects (ADO)

recordsets, 763–764

accessing, 767–771
opening, 765–767
searching, 777–778

Add Animation pane, 688

add-ins

Developer tab, 10

security issues, 526

Add_Item_to_AutoCorrect

procedure, 178–180

Add method

Attachments, 711

Cells, 609

ChartObjects, 642

Charts, 642

collections, 176

Columns, 606–607

Documents, 114, 177,

552–553

Folders, 702

NamedSlideShows, 693

Names, 633–634

Outlook items, 704

PageNumbers, 592

PowerPoint windows,

665

Presentations, 657

Recipients, 715

Rows, 608

Sections, 595

SeriesCollection, 643–644,

645
Sheets, 626–627

Slides, 101, 668

Tables, 601–602

Word windows, 597

Workbooks, 617–618

Add Procedure dialog box,

239, 239

890 | ADD REFERENCE DIALOG BOX • APPLICATION OBJECT

bindex.indd 10:34:46:AM 07/26/2013 Page 890

Add Reference dialog box, 185

Add_Slide_and_Format_

Placeholder procedure,

79–84
Add_Title_Slide procedure,

99–105, 100–103
Add Watch dialog box,

493–494, 493
AddBaseLine method, 174

AddCallout method, 678, 680

AddChart method, 678

AddComment method, 678

AddConnector method, 678

AddControl event, 420,

431–432
AddCurve method, 678

AddDiagram method, 680

AddItem method, 373

addition character (+)

number formats, 210

SendKeys, 808

string concatenation, 463

addition with dates, 227,

230
Additional Controls dialog

box, 60–61, 61
AddLabel method, 678

AddLine method, 678

AddMediaObject method, 678

AddMediaObject2 method,

678

AddMediaObjectFrom

EmbedTag method, 679

AddMenu method, 755

AddNew method, 780

AddOLEObject method, 679,

681
AddOne procedure, 780

AddPageNumbersTo

AllHeadersAndSections

procedure, 592–593

AddPicture method, 679

AddPlaceholder method, 679

AddPolyline method, 679

addresses

cells, 632

passing to functions, 237,

240

AddShape method, 653,

679–682

AddSmartArt method, 679

AddTable method, 679

AddTextbox method, 679, 682
AddTextEffect method, 679,

681–682
AddTitle method, 679

AddTitleMaster method, 674

ADO (ActiveX Data Objects)

recordsets, 763–764

accessing, 767–771
opening, 765–767
searching, 777–778

Advanced Track Changes

Options dialog box, 90–92,

90
AdvancedSearch method, 707,

715–716, 725

AdvancedSearchComplete

event, 724–725
AdvancedSearchStopped

event, 724–725
AdvanceMode property, 688,

692

AdvanceOnClick property,

673

AdvanceOnTime property,

673

AdvanceTime property, 673,

688

AfterUpdate event, 420,

435–436
Age procedure, 207
alerts, suppressing, 505
Align Controls To Grid

feature, 53, 334, 340

aligning and Alignment

property

controls, 53, 334, 340, 348,

366
images, 417
message-box text, 321

page numbers,

592–593
text in shapes, 686

All Local Variables As Statics

option, 239

Alphabetic page, 44, 44,

335–336, 336
AM/PM in time formats, 212

ampersands (&)

concatenation operator,

116

string formats, 212

type-declaration

character, 129

AMPM in time formats, 212

And operator, 257

Animate property, 688

AnimateTextInReverse

property, 688

animating shapes, 688–690
AnimationSettings object,

688–689

AnimationSettings property,

688

antivirus software, 540

APIs (Application

Programming Interfaces),

700

apostrophes (‘)

comments, 57, 69–70, 507

macros, 12

appearance of controls,

348–350
Application_

AdvancedSearchComplete

procedure, 725

Application_

AdvancedSearchStopped

procedure, 725

Application_ItemSend

procedure, 723

application-level Outlook

events, 720–726, 721
Application_

MAPILogonComplete

procedure,

725

application-modal message

boxes, 318

Application_NewMail

procedure, 723

Application_NewMailEx

procedure, 724

Application object, 172–173

Access, 747

Excel, 95, 637
Outlook, 699, 720–721, 721
PowerPoint, 656–657

Word, 552

bindex.indd 10:34:46:AM 07/26/2013 Page 891

APPLICATION PROGRAMMING INTERFACES • .BAS FILE EXTENSION | 891

Application Programming

Interfaces (APIs), 700

Application property, 176

Application_Quit procedure,

722–723

Application_Startup

procedure, 721–722
applications, communication

between. See

communication between

applications

Apply method, 684

ApplyFilter method, 755

Applying_Arial_Font

procedure, 457–458

ApplyTemplate method, 663,

671

AppointmentItem object, 699,

712–713

arguments

data types, 240
defi ned, 113

functions, 200–201

input boxes, 324

labeled vs. implied, 103

message boxes, 322
methods, 174–175

names, 119, 202–203

optional, 115, 118–119, 118,

240
overview, 118–119, 118
parentheses, 120
passing, 202–203, 203,

236–237, 239–240,

464–468
arithmetic operators, 116

Arrange Buttons settings, 367

Arrange method, 599,

648–649, 666

ArrangeStyle argument, 666

arranging windows

documents, 599
presentations, 666
workbooks, 648–649

Array function, 671

arrays

bounds, 154
checking for, 154
declaring, 149–153,

150–152

description, 147–148
dynamic, 152–153
erasing contents, 154
multidimensional, 152,

152
redimensioning, 153
returning information

from, 153
searches in

binary, 163–168,

166–167
linear, 158–162, 161–162

slides, 671

sorting, 154–158, 157
values, 151, 151

As keyword, 115

Asc function, 205–206
Assign method, 715

assignment operator (=), 113

asterisks (*) in searches, 182

asynchronous processing, 799

at signs (@)

string formats, 212

type-declaration

character, 129, 139

Atn function, 226

AttachmentAdd event, 728

AttachmentRead event, 728

Attachments collection, 711

attachments in messages, 711
Attachments property, 711

AttachmentSelectionChange

event, 730

attributes. See properties

Auto Data Tips feature, 50, 492

Auto Indent feature, 50
Auto List Members feature,

41–42, 41
description, 50

enumerated constants, 145

user-created objects, 478,

478
working with, 189–191,

190
Auto_Open procedure, 95–99
Auto Quick Info feature

Add method, 102

argument lists, 118

description, 50

MsgBox syntax, 313, 313

Auto Syntax Check feature,

49, 484
AutoComplete feature, 126

AutoCorrect dialog box, 178

AutoExec macro, 744
AutoExec procedures,

134–136
AutoFit method, 607

automatic operations, 3

Automation, 785

binding, 787–788
Excel spreadsheets for

Word documents,

789–792, 790
objects, 788–789
PowerPoint slides in

Outlook messages,

795–798
Word documents for Excel

workbooks, 792–795
working with, 786–787

automation support, 185

AutoRecover feature, 638

AutoShapes procedure, 653

AutoSize property, 348

AutoTab property

combo boxes and list

boxes, 354

text boxes, 352

AutoWordSelect property

combo boxes and list

boxes, 354

text boxes, 352

axes in charts, 646–647
Axes method, 646

B
BackColor property, 349

Background Compile option,

55

background for slides,

671–672
Background property, 671

backslashes (\)

in formats, 210

in XML, 814

BackStyle property, 349

backups, 74–75
.bas fi le extension, 246

892 | BASIC • CALENDAR ITEMS

bindex.indd 10:34:46:AM 07/26/2013 Page 892

BASIC (Beginner’s All-

Purpose Symbolic

Instruction Code) language,

4

BCC property, 710

Beep method, 112, 755

BeforeAttachmentSave event,

728

BeforeCheckNames event, 729

BeforeDelete event, 729

BeforeDragOver event, 420,

441–442
BeforeDropOrPaste event, 420,

442–444
BeforeFolderSwitch event, 730

BeforeItemCopy event, 730

BeforeItemCut event, 730

BeforeItemPaste event, 730

BeforeMaximize event, 731

BeforeMinimize event, 731

BeforeMove event, 731

BeforeReminderShow event,

734

BeforeSize event, 731

BeforeUpdate event, 421,

435–436
BeforeViewSwitch event, 730

Beginner’s All-Purpose

Symbolic Instruction Code

(BASIC) language, 4

behavior

code. See well-behaved

code

control properties, 351
BillingInformation property,

714

binary comparisons, 219–220

Binary_Search_of_Array

procedure, 164–168, 166–167
binary searches, 163–168,

166–167
binding in Automation,

787–788
Bing dictionary, 542–543

black screens for slide shows,

695
blank lines in code, 463
BlankSheetsInWorkbook

function, 248–249

block-comments, 507

block If statements, 260–262
blocks, conditional, 260

Body property

calendar items, 712

messages, 710

tasks, 714

BodyFormat property, 710

BOF property, 768, 776

Bohr bugs, 488

Book class

methods, 476
properties, 471–475
working with, 477–478,

478
Bookmark Text option, 52

bookmarks

color, 52

paragraph moves, 374–377

vs. ranges, 575

recordsets, 776

Bookmarks dialog box,

374–377

Boolean data type and

variables

conversion functions, 204

description and memory

requirements, 137

overview, 138–139
toggling, 259, 371

BorderColor property, 349

Borders collection, 601

borders for group controls,

365

BorderStyle property, 349

Bottom command, 367

Bottoms option, 366

BoundColumn property,

354

bounds for arrays, 148, 154
BoundValue property, 347

braces ({}) for SendKeys, 807

brackets ([])

function arguments,

200–201

optional arguments, 115,

118, 118
Break In Class Module option,

53

Break mode, 45, 66–67,

488–490, 489–490

Break On All Errors option, 53

Break On Unhandled Errors

option, 53

Break When Value Changes

option, 493–494

Break When Value Is True

option, 493–494

breaking

long lines, 462–463
strings, 112

Breakpoint Text option, 52

breakpoints

color, 52

conditional, 493–494
infi nite loops, 498

setting, 68–69, 69, 489
BrowseTo method, 755

btnOK_Click procedure, 369

bubble sorts, 154–158, 157
bugs

debugging. See debugging

defi ned, 481

Bullet property, 687

BulletFormat object, 686–687

bullets, 686–688
BusyStatus property, 712

buttons

message boxes, 312,

315–318, 316, 318
names, 16–17

ByRef keyword and by-

reference argument-

passing, 237, 240, 464–465

Byte data type

conversion functions, 204

description and memory

requirements, 137, 139

ByVal keyword and by-value

argument-passing, 237, 240,

423, 464–465

C
C in date formats, 210

Calculate_Weekly_Salary

procedure, 139

Calculation property, 637

calculations in Excel, 637

calendar items

creating, 712

CALL RETURN TEXT COLOR OPTION • CLASSES | 893

bindex.indd 10:34:46:AM 07/26/2013 Page 893

working with, 712–713
Call Return Text color option,

52

Call Stack dialog box, 460–461,

461, 491, 497
call statement and calling

functions, 200–201,

242–243
procedures, 453–454
properties, 174

callbacks for Ribbon, 826–828,

840, 842–843, 843
callers, 242

Callout shape, 678

Cancel buttons, 360
Cancel property, 360

CancelEvent method, 755

CancelKey_Example

procedure, 506

captions and Caption

property

controls, 345–346, 345, 349

forms, 336

frames, 357

labels, 352

capturing images, 363

carets (̂)

SendKeys, 808

wildcards in searches, 585

carriage-return characters, 314

CAs (certifi cate authorities),

530–531
case of strings, 224–225
case sensitivity

InStr, 219–220

XML, 819–820, 842

Case statements, 272–274, 460
Categories dialog box, 712

Categories property, 712

Categorized page, 44, 44,

335–336, 336
CBool function, 204

CByte function, 204

CC property, 710

CCur function, 204

CDate function, 204

CDbl function, 204

Cell object, 601

cells

active, 631–633

deleting, 610–611
formulas in, 636

inserting, 609
ranges

creating, 633–634
deleting, 635

selecting, 611
working with, 635

selections, 633
text within, 610

Cells collection, 609

Center In Form command, 367

CenterOwner property, 419

Centers option, 366

CenterScreen property, 419

centuries in dates, 140

certifi cate authorities (CAs),

530–531
Certifi cate Details dialog box,

537–538, 538–539
Certifi cate Export Wizard, 535

Certifi cate Import Wizard,

532–534, 533–534
Certifi cate Store page, 533, 534
certifi cates

description, 529
details, 537–538, 538
exporting, 534–535
installing, 531–534,

532–534
obtaining, 530–531
removing, 535

Certifi cates dialog box, 532,

532, 535

Certifi cation Path page, 538

Change event, 421, 434–435
changes, undoing, 522–523
ChapterPageSeparator

property, 593

character codes

determining, 205–206
special characters, 213

Character Map applet, 687

Character property, 687

Characters method, 685

Chart object, 641

Chart shape, 678

chart sheets, 642
Chart2 shape, 678

ChartObject object, 641

ChartObjects collection, 642

charts

axes, 646–647
creating, 618, 641–643
headers and footers, 647
legends, 646
series, 643–646, 645
source data, 643
titles, 646
type, 643

Charts collection, 642

ChartType property, 643

ChDir function, 232

check boxes

creating, 339

names, 335

properties, 355–357,

356–357
values returned from, 372

Check_Password procedure,

266–268

Check_Typing_Speed

procedure, 272–274

Check_Workbook_for_Blank_

Worksheets procedure,

248–249

CheckBox button, 338, 339

CheckMinFontSize function,

249–251

CheckPassword procedure,

222–223

chkArtNames_Click

procedure, 403–405

Choose A Macro menu, 831,

831
choosemacro procedure, 832

Chr function, 205, 212–214,

314

CInt function, 204, 206–207
circular references, 455

Class Module command, 470

Class_Test procedure, 477–478

classes, 468
creating, 470
Instancing property,

470–471
methods, 476
names, 470
Object Browser for, 180,

182–183, 186

894 | CLEAN_UP_DOCUMENT_FOR_CONVERSION FUNCTION • COM

bindex.indd 10:34:46:AM 07/26/2013 Page 894

overview, 468–469
planning, 469–470
properties, 471–475
variables and constants

declarations, 471
working with, 477–478,

478
Clean_Up_Document_for_

Conversion function, 247

cleaning up after procedures,

522–524
ClearFormatting method,

587–588

clearing recently-used-fi les

list, 637
ClearMacroError method, 755

Click event, 369, 421, 433–434
client applications for

Automation, 786

ClientHeight property, 361

ClientLeft property, 361

ClientTop property, 361

ClientWidth property, 361

Clipboard

data objects, 799–802
Object Browser, 182

CLng function, 204

Close event in Outlook,

729–730

CloseCurrentDatabase

method, 748, 750

CloseDatabase method, 755

CloseMode value, 424

closing and Close method

databases, 748, 750, 752
DDE applications, 806

DoCmd, 755

documents, 113–114, 118,

121, 562–563
Outlook, 706

presentations, 662, 665

recordsets, 781
windows

documents, 597
Outlook, 706
presentations, 665–666
workbooks, 648

Word documents, 120

workbooks, 624

Workspace, 753

cloud storage

documents, 559
presentations, 659
recordsets, 781–782
workbooks, 621–622

cmbSelectEmployee_Change

procedure, 405

cmbZoom_Change procedure,

431

cmdAddControl_Click

procedure, 432

cmdCancel_Click procedure,

389–390, 403–405

cmdClose_Click procedure,

427–428

cmdMore_Click procedure,

402–404

cmdNarrowForm_Click

procedure, 427–428

cmdOK_Click procedure,

285–286, 301–302, 384–385,

403–405

cmdOpen_Click procedure,

389–390

cmdSelectEmployee_Change

procedure, 335

cmdWidenForm_Click

procedure, 427–428

code

color, 51–52
debugging. See debugging

displaying, 36
documenting, 507–508
locking, 544–546, 545
macro, 6

modular. See modular

code

well-behaved. See well-

behaved code

Code Execution Has Been

Interrupted dialog box, 498

code modules, 28

Code window, 36, 39–40, 39
Auto List Members

feature, 41–42, 41
Complete Word feature,

40, 40
Data Tips feature, 43, 43

List Constants feature,

42, 42
Margin Indicators feature,

43
maximizing, 34
Quick Info feature, 40–41,

41
state in, 33

CodeData object, 747

CodeProject object, 747

Collapse method, 575

Collapse Proj. Hides Windows

option, 55
collapsing Word selections,

574–575
collections

Access, 739–740

defi ned, 76

For Each...Next loops for,

287–288
objects in, 177
overview, 120–121, 176

colons (:)

arguments, 119

labels, 269

multiple statements, 261

number formats, 210

Rem, 508

time formats, 210

color

bullets, 687–688

code, 51–52
keywords, 115

slides, 672
Colors method, 672

ColorScheme object, 672

ColorScheme property, 672

Column object, 601

ColumnCount property, 354

ColumnHeads property, 354

Columns collection, 601

columns in tables

adding, 606–607
deleting, 607
selecting, 608
width, 607–608

ColumnWidths property, 354

COM (Component Object

Model) objects, 786

COMADDIN OBJECT • CONTROLS | 895

bindex.indd 10:34:46:AM 07/26/2013 Page 895

COMAddIn object, 699

COMAddIns collection, 699

combo boxes

Click event, 433

creating, 339

DropButtonClick event,

446

names, 335

properties, 354–355
values returned from, 374

ComboBox button, 338, 339

command buttons

Click events, 369, 433–434

creating, 339

defaults, 370
names, 335

properties, 360
command line, 786

CommandButton button, 338,

339

commands, 36

Commands page, 58, 58
commas (,)

arguments, 119, 239, 322,

464

enumerations, 145

functions, 200–201, 203

number formats, 210

slides, 671

variable declarations,

130

Comment Block command,

57–58, 69–70
Comment shape, 678

Comment Text option, 52

comments

color, 52

commenting out lines,

69–70
in debugging, 507

in macros, 12

commercial certifi cation

authorities, 531
common dialog boxes, 330,

391

communication between

applications, 785
Automation. See

Automation

data objects, 799–802
DDE, 803–806
SendKeys, 806–811
Shell function, 798–799
tools, 785–786

Companies property, 714

comparing strings, 225
comparison operators, 116,

255–257
Compatibility Inspector

Excel, 616

Word, 551

CompatibilityMode

argument, 554
compile errors, 483–485,

484–486
Compile On Demand option,

54–55
Compile settings, 54–55
Complete Word feature, 40, 40
Completing the Certifi cate

Import Wizard dialog box,

533

complex dialog boxes. See

dynamic dialog boxes

Component Object Model

(COM) objects, 786

concatenation of strings, 116,

463

concatenation operator (&),

116

conditional blocks, 260

conditional breakpoints,

493–494
confl icts, name, 337

connections

databases, 764–765
DDE, 803–804

Connector shape, 678

Const statement, 143–144

constants, 143
declaring, 143–144, 471
defi ned, 125
dialog boxes, 391–392
displaying, 42, 42
enumerations, 144–145
Object Browser, 181, 660

overview, 117–118
scope and lifetime, 144

special characters,

212–214
special effects, 321

Word objects, 556

ContactItem object, 699

Contacts Details dialog box,

251, 252
Contacts dialog box, 707

containers, 428–433
Contemporary Photo Album

template, 99

contents view, 37, 37
context menus, 58–59
contexts

help system, 187–189, 188
macros, 22
message boxes, 312

states, 457

Continue button, 70

controlling applications in

Automation, 786

controls

adding, 337–341, 338,

341–342
aligning, 53, 334, 340, 348,

366
captions, 345–346, 345
deleting, 340

Developer tab, 10

double-clicking, 345

events, 420–423
AfterUpdate, 436
BeforeDragOver,

441–442
BeforeDropOrPaste,

442–444
BeforeUpdate, 436
Change, 434–435
Click, 433–434
DblClick, 444–445
DropButtonClick, 446
Enter and Exit, 435
Error, 445–446
KeyDown and KeyUp,

436–437
KeyPress, 437–438
MouseDown and

MouseUp, 438–439
MouseMove, 439–440

896 | CONTROLSOURCE PROPERTY • CURRENTUSER PROPERTY

bindex.indd 10:34:46:AM 07/26/2013 Page 896

SpinDown and

SpinUp, 447
grouping, 342, 363–365,

364–365
moving, 343, 343–344
names, 335, 342–343, 347

position, 366–367
properties

appearance, 348–350
behavior, 351
check boxes, 355–357,

356–357
combo boxes and list

boxes, 354–355
command buttons, 360
frames, 358–359
general, 347–348
image controls,

362–363
labels, 352
option buttons,

357–358
Page object, 363
scroll bars and spin

buttons, 362
setting, 346
size and position, 348
tab strips and multi-

page controls, 361
tabs, 363

text boxes, 352–353
toggle buttons, 358

renaming, 342–343
resizing, 340

tab order, 367–368, 368
Toolbox

adding, 60–61, 60–61
pictures, 62
removing, 62
renaming, 61

ControlSource property, 351

ControlTipText property, 351

ConvertCase procedure, 831

converting

functions for, 203–207
Offi ce documents, 10

tables and rows to text,

612–613
text to tables, 602–604

Word fi les, 557

ConvertToTable method,

602–604

ConvertToText method,

612–613

Copy To Clipboard button,

182

CopyDatabaseFile method,

755

copying and Copy method

controls, 344–345
macros, 29

presentations, 661
project items, 37–38
ranges, 576–577

shape formatting, 684
slides, 670
worksheets, 628

CopyObject method, 755

Cos function, 226

Count property

collections, 176

columns, 606–607

PageNumbers, 593

PowerPoint windows,

664

Sentences, 121

CountBlank function, 248

counter variables

For...Next loops, 280–281,

303

for repetitious user errors,

504
creatable objects

Access, 747
defi ned, 173
Excel, 616–617
Outlook, 698–699
PowerPoint, 656–657
Word, 551–552

Create Digital Certifi cate

dialog box, 530, 530
Create_Log_File procedure,

519–521

Create New Employee Web

Page dialog box, 405,

406–407
Create_Rejection_Letter

procedure, 463

Create_Worksheets

procedure, 297–298

CreateForm method, 751

CreateItem method, 704–705,

710, 712, 714

CreateItemFromTemplate

method, 704–705
CreateObject function, 786,

788–789
CreatePresentations

procedure, 283–284

CreateReceiptLetter

procedure, 454

CreateReport method, 751

CreateReportControl method,

751

CreateWorkspace method, 753

Creating_a_Document

procedure, 265–266

Creator property, 176

criteria in Outlook searches,

715

cropping code, 457

CSng function, 204

CStr function, 204

Ctrl+Break keys, 22, 303, 489,

489
Ctrl+Clicking hyperlinks, 577

CtrlClickHyperlinkToOpen

property, 577

CurDir function, 232
Currency data type

conversion functions, 204

description and memory

requirements, 137

overview, 139
type-declaration

character, 129

Currency format, 209

current path, 232
CurrentData object, 747

CurrentDb method, 748, 750

CurrentProject object, 747

CurrentRegion object, 632

CurrentRegion property,

632–633

CurrentShowPosition

property, 695

CurrentUser property, 700

CURSOR MANIPULATION • DEBUGGING. SEE ALSO EDITING MACROS | 897

bindex.indd 10:34:46:AM 07/26/2013 Page 897

cursor manipulation, 517
Cursor property, 517

cursor-type constants in

recordsets, 766

Curve shape for slides, 678

Custom Icons dialog box, 829

Custom UI Editor, 815–816,

818

icons, 829

menus, 830–831

nesting structure, 843–

844, 844
XML code, 836

CustomAction event, 729

Customize dialog box

menus and toolbars,

57–58, 58
time-outs, 396

Customize Control dialog

box, 61–62

Customize Keyboard dialog

box, 18, 19
CustomPropertyChange

event, 729

Cut method, 670

CVar function, 204

Cycle property, 358

D
D in date formats, 210–211

DAO (Data Access Objects),

763–764

record searches, 778–779
recordset opening,

771–775
DAOSearch procedure, 779

DAOSelect procedure,

774–775

DAOTest procedure, 774

Data Access Objects (DAO),

763–764

record searches, 778–779
recordset opening,

771–775
data objects

Clipboard, 799–802
creating, 800
formats, 802

returning information

from, 801
storing information in,

800–801
Data Tips feature, 43, 43
data types

arguments, 240
Boolean, 138–139
Byte, 139

choosing, 142
conversion functions,

203–207
Currency, 139
Date, 139–140
Decimal, 140

descriptions and memory

requirements, 137–138
Double, 140
functions, 200

Integer, 140–141
Long, 141
memory requirements,

455–456
Object, 141

prefi xes, 135
Single, 141
specifying, 137–138
String, 141–142
Variant, 142

DataAccessPage objects, 747

DataAccessPages collection,

747

Database object, 748

Database Tools tab, 9

databases

closing, 748, 750, 752
connections, 764–765
creating, 751
DAO and ADO for,

763–764
object libraries, 764
opening, 748–752
recordsets. See recordsets

workspaces, 753
DataObject object, 801

DataSurfer dialog box,

412–415, 413
Date function, 227

DateAdd function, 227, 230

DateAndTime property, 690

DateDiff function, 229–230
DatePart function, 228–229
dates and Date data type,

139–140
components, 228–229
conversion functions, 204

description and memory

requirements, 137

formatting, 210–213
functions, 227–230
headers and footers,

691–692
intervals between,

229–230
macro for, 105

DateSerial function, 203, 227

DateValue function, 227

Day function, 227

days in date formats, 211

DBEngine object, 747

DblClick event, 421, 444–445
DCOM (Distributed

Component Object Model),

788

Dd in date formats, 210

DDE (Dynamic Data

Exchange), 785, 803–806
DDEExecute method, 805–806
DDEInitiate method, 803–804
DDEPoke method, 805
DDEPokeExcel procedure, 805

DDERequest method, 804–805
DDETerminate method, 806
DDETerminateAll method,

806
DDEtoExcel procedure,

804

Deactivate event

form controls, 420

Outlook, 731

UserForm, 426
Debug.Print statement, 46,

496–497

Debug toolbar, 70, 487–488,

488
debugging. See also editing

macros

alerts, suppressing, 505

898 | DECIMAL DATA TYPE • DIALOG BOXES

bindex.indd 10:34:46:AM 07/26/2013 Page 898

Break mode, 488–490,

489–490
call stack, 497
documenting code for,

507–508
error handlers for, 498

error types, 483–487,

484–486
Immediate window, 46,

495–497
infi nite loops, 498
Locals window, 491, 491
principles, 481–482
Run mode, 45

runtime errors, 498–505
Step Over and Step Out

commands, 490–491
tools, 487–488, 488
user interrupts, 505–507
Watch window, 492–495,

492–495
Decimal data type, 137, 140

decisions, 255
comparison operators,

255–257
If statements. See If

statements

logical operators, 257–259
loops. See loops

order, 274–275
Select Case statements,

272–274
declaring

argument data types,

240
arrays, 149–153, 150–152
constants, 143–144, 471
objects, 727–728
variables, 117, 127

explicit declarations,

129–130, 455–456
implicit declarations,

127–129
Default property for

command buttons, 360

Default to Full Module View

option, 50

DefaultFilePath property

Application, 637

Options, 577–578

defaults

command buttons, 370
Excel fi le locations, 637

input-box text, 324

message-box buttons,

317–318, 318
Outlook folders, 700–701
templates, 99

Word fi le locations, 553,

577–578
DefaultTab property, 393

DefaultType property, 753

defi ning named ranges,

575–576
defi nitions of objects, 186
Delay property, 362

Delete Page option, 62

DeletedTextEntry property,

92, 93
DeleteObject method, 756

deleting and Delete method,

174. See also removing

cells, 610–611
columns in tables, 607
controls, 340

folders, 702–703
grouped controls, 365

macros, 27–29, 28
MAPIFolder, 702

named ranges, 635

Outlook items, 706–707
pages, 410

recordset records, 781
rows in tables, 608
shapes, 683
slide shows, 694
slides, 670

title masters and handout

masters, 675

watch expressions, 494
worksheets, 627, 628

delimits for arrays, 148

Demo_of_GoTo procedure,

269

Description property, 504

descriptions

data types, 137–138

errors, 502, 504

macros, 9, 9, 11–13, 23

projects, 46

Design Mode button, 10

Design mode for Visual Basic

Editor, 44, 66–67

design templates for slides,

671

design time, 283

Details page for certifi cates,

538, 538
Details pane in Object

Browser, 183
determinants, loop, 278

Developer tab, 6, 9–10, 9
dialog boxes, 329

buttons checked in,

395–398
creating, 330–331
default command buttons,

370
designing, 332
displaying, 370, 392–394
dynamic. See dynamic

dialog boxes

for For...Next loops,

284–286
form events. See forms

hiding, 370
linking to procedures,

368–369
loading and unloading,

369–370
names and constants,

391–392
options, 395
for procedures, 517–518
removing, 382

returning values from

check boxes, 372
combo boxes, 374
list boxes, 372–373
option buttons,

371–372
text boxes, 371

tab order, 367–368, 368
time-outs, 396
user forms. See user forms

uses, 329–330
Word examples

DIALOGBOXLAUNCHER CONTROL • DOLLAR SIGNS | 899

bindex.indd 10:34:46:AM 07/26/2013 Page 899

Move-Paragraph

procedure, 374–385,

378–379
opening fi les from list

boxes, 385–391, 385
DialogBoxLauncher control,

834–835
Dialogs collection, 392

dictionaries, 542–543
DifferentFirstPageHeader

Footer property, 591

digital certifi cates. See

certifi cates

Digital Signature dialog box,

536–537, 536
digital signatures, 529

certifi cates. See certifi cates

removing, 537
signing, 535–537, 537

Dim keyword

arrays, 149–150

declaration, 208

description, 115

instances, 477

objects, 191–192

private scope, 133

variables, 130

dimensions, array, 149–153,

150–152
Dir function, 230–232, 231
Disable All Macros With

Notifi cation option, 8

disabling

error traps, 501
screen updating,

515–516
user input, 506–507

Display_Dialog procedure,

370

DisplayAlerts property, 505,

621, 627

DisplayFormulaBar property,

650

DisplayFullScreen property,

650

displaying and Display

method

dialog boxes, 370, 392–395
headers and footers, 691

inspector windows, 703

message boxes, 313–314,

313
Outlook items, 706
status-bar messages,

309–311, 310
variables, 46

DisplayMasterShapes

property, 672

DisplayScrollBars

property, 650

DisplayStatusBar property,

650

DISTINCT keyword, 770

Distributed Component

Object Model (DCOM), 788

Do loops, 288–289
Do...Loop Until, 297–298,

297
Do...Loop While, 293–294,

293
Do Until...Loop, 294–296,

295
Do While...Loop, 289–293,

289
Exit Do statements,

298–300
Docking page, 55–56, 56, 88

docking windows, 491

.docm fi le extension, 526, 815

DoCmd object, 251–252, 252,

747

methods, 755–758
OpenForm method, 759
PrintOut method, 759–760
RunMacro method, 760
SetWarnings method, 505

single-stepping, 490

Document_Close procedure,

123

document maps, 598
document windows in

PowerPoint, 664

documentation

code, 507–508
errors from, 487

DocumentMap property, 598

DocumentMapPercent

Width property, 598

documents and Document

object, 120, 552

ActiveDocument, 565–566
closing, 113–114, 118, 121,

562–563
cloud storage, 559
creating, 552–553
Find and Replace features,

583–589
headers and footers,

589–595
hyperlinks, 577
locking, 557

methods, 121

OneNote, 579, 580
opening, 559–562
Overtype mode, 577
page setup, 596
printing, 563–565
ranges, 575–577
read mode, 600
saving, 113–114, 121, 174,

554–559
sections, 595–596
selections. See selections

styles, 573
tables. See tables

templates, 14–15, 552–553,

563
Track Changes, 578
transferring data to

workbooks, 792–795
transferring spreadsheet

data to, 789–792, 790
undoing changes, 522
views, 600
windows. See windows

Documents collection,

120–121, 176, 552

DocumentWindow objects,

664

DocumentWindows

collection, 664

.docx fi le extension, 526

Does_File_Exist procedure,

231–232

DoEvents command, 281–282

dollar signs ($)

number formats, 210

900 | DOMENUITEM METHOD • EVENT HANDLERS

bindex.indd 10:34:46:AM 07/26/2013 Page 900

type-declaration

character, 129, 142

DoMenuItem method, 756

.dot fi lename extension, 14

.dotm fi lename extension, 8,

14

dots (.)

number formats, 210

object members, 189–190

.dotx fi lename extension,

8, 14

double-clicking

controls, 345

modules, 36

Double data type, 140
conversion functions, 204

description and memory

requirements, 137

type-declaration

character, 129

Drag-And-Drop Text Editing

option, 50

DragBehavior property,

352

DragState values, 442

DropButtonClick event, 421,

446
DropDown List controls,

832–834
dual monitors, 110

DueDate property, 714

Duplicate method, 670

Duplicate property, 576–577

duplicating slides, 670
dynamic arrays, 152–153
Dynamic Data Exchange

(DDE), 785, 803–806
dynamic dialog boxes, 399

hidden parts, revealing,

400–405, 401–402
modeless, 418–419
multipage, 409–412,

410–411
pictures in, 415–418, 416
positioning, 419
procedure tracking,

405–407, 406–407
tab strips, 412–415, 413
updating, 400

E
E in number formats, 210

early binding, 787–788
Echo method, 516, 756

Edit And Continue settings,

53

edit boxes, 338, 339

Edit Image dialog box, 62

Edit method, 780

Edit Watch dialog box, 494,

494
editing groups, hiding,

814–819
editing macros, 65

breakpoints, 68–69, 69
commenting out lines,

69–70
Excel, 76–79
PowerPoint, 79–84
stepping out of, 70, 70
stepping through, 67–68,

68
testing, 66, 66
Word, 71–74

editing recordsets, 780
Editor page, 49–51, 49
Editor Format page

keyword color, 115

options, 51–52, 51
Effect values, 442

effi ciency of fi xed-point

numbers, 139

Electronic_Book_Critic

procedure, 263

elegance in code, 451

elements in XML, 820

ellipsis (...) in dialog boxes,

406

Else statements, 262–266
ElseIf statements, 264–266
Empty value, 128

Enable All Macros option, 21,

540, 720

EnableAutoRecover property,

638

EnableCancelKey property,

506, 515

enabled error handlers, 499

Enabled property, 351

encapsulation, 194, 468

encryption, 528

End Function statement, 111,

115, 238

End If statement, 260, 269–270

End property, 712

End Sub statement, 111, 115

end variables in For...Next

loops, 280

End With statement, 81

ending paragraph marks, 573

EndingSlide property, 694

endless loops, 303–304, 498
EndNamedShow method, 696

EndOf method, 573–574
Enter event, 421, 435
EnterFieldBehavior property,

352

EnterKeyBehavior property,

353

EntryEffect property, 673, 688

enumerations, 125, 144–145
EOF property, 768, 776

equal signs (=)

arguments, 119

assignments, 113

comparisons, 256

strings, 225

Eqv operator, 258

Erase command, 154

erasing array contents, 154
Err object, 505

Error event, 421, 445–446
Error object, 747

Error Trapping settings, 53
errors

compile, 483–485,

484–486
debugging. See debugging

language, 483
macros, 22
numbers and descriptions,

502, 504
Ribbon reporting feature,

841

runtime. See runtime

errors

even pages, headers for, 591
event handlers, 369

EVENTS • FILES | 901

bindex.indd 10:34:46:AM 07/26/2013 Page 901

vs. macros, 719

testing, 732–733
events, 35, 121–122

Excel, 98

forms, 420–423
AfterUpdate, 436
BeforeDragOver,

441–442
BeforeDropOrPaste,

442–444
BeforeUpdate, 436
Change, 434–435
Click, 433–434
containers, 428–433
DblClick, 444–445
DropButtonClick, 446
Enter and Exit, 435
Error, 445–446
KeyDown and KeyUp,

436–437
KeyPress, 437–438
MouseDown and

MouseUp, 438–439
MouseMove, 439–440
SpinDown and

SpinUp, 447
UserForm, 423–433

Object Browser for, 181

Outlook, 719–720
application-level,

720–726, 721
item-level, 726–735

trigger order, 434

evil macros, 525–526

Excel

charts. See charts

creatable objects, 616–617
cursor manipulation, 517
functions, 248–249
macros

editing, 76–79
recording example,

25–27, 26
run methods, 20
storing, 13

object model, 615, 616
objects, 120

options, 637–638
procedures, 94–99, 96–97

Ribbon, 821–822
status-bar messages,

309–311, 310
user-environment

restoration, 513

user interrupts, 505–506
workbooks. See

workbooks

worksheets. See cells;

worksheets

Excel Object Model Reference,

615, 616
Excel Options dialog box, 617

exclamation points (!)

string formats, 212

type-declaration

character, 129

Execute method, 583, 585–587
Execution mode for Visual

Basic Editor, 66

Execution Point Text color

option, 52

existence testing

fi les, 230–232, 231
headers and footers, 590
page numbers, 593

Exists property, 590

Exit Do statement, 298–300
Exit event, 421, 435
Exit For statement, 280, 288
Exit Function statement, 500

Exit method in View, 696

Exit Property statement,

500

Exit Sub statement, 500

exiting slide shows, 696

Exp function, 226

explicit declarations, 117,

129–130, 455–456
explorer events, 730–732
Explorer object, 699, 703–704
ExploreRecordset procedure,

768

Explorers collection, 699

Export File dialog box, 67

Export Page dialog box, 63

exporting and Export method

digital certifi cates,

534–535

macros, 67

modules, 246

presentations, slides, and

range of slides, 662–663
Toolbox pages, 63

expressions, 115
formatting. See Format

function

Locals window, 491, 491
Watch window, 492–495,

492–495
Extend method, 644–645

extending

chart series, 644–645
Word selections, 573–574

extensible markup language

(XML), 814–816
case sensitivity, 819–820,

842

emergence, 10
special characters,

816–818
terminology, 820–821

extensible programs, 172

extensions, fi lename, 8, 14,

526, 544, 798

F
F1 key, 187–189, 188
F5 key, 70, 313

F8 key, 68, 136, 313, 489

False value, 259

Field object, 779

Fields collection, 779

fi elds in recordsets, 779
File Block Settings page,

543–544, 543
fi le-management functions,

230–232, 231
File tab

Ribbon, 815

status bar, 311

FileFormat values, 660
fi lename extensions, 8, 14, 526,

544, 798

fi les

backups, 74–75
converters, 557

902 | FILL OBJECT • FORMATTING

bindex.indd 10:34:46:AM 07/26/2013 Page 902

existence, 230–232, 231
log, 518–521
opening from list boxes,

385–391, 385
paths. See paths

scratch, 523–524
Fill object, 672

Find And Replace dialog box

and features, 583
Excel, 650–653
hidden parts, revealing,

400–401, 401
modeless, 418

persistent settings, 513,

587–588, 651
Word

Execute method,

585–587
Find properties,

583–585
working with, 588–589

Find dialog box for Ribbon,

814

Find method

Range, 650–651

Recordset, 775, 777

Find object, 583–587
Find Whole Word Only

option, 182

FindBySlideID method, 669

FindFirst method, 778

FindFormat property, 653

fi nding

array items

binary searches,

163–168, 166–167
linear searches,

158–162, 161–162
location of characters

within strings, 217

objects, 177
Auto List Members

feature, 189–191, 190
in collections, 177
help system, 186–189,

187–189
Macro Recorder for,

178–180

Object Browser for,

180–186, 181, 185
Outlook items, 715–716
recordset records, 777–779
settings for. See Find And

Replace dialog box and

features

slides by ID number, 669

strings within strings,

219–221
FindLast method, 779

FindNext method

DoCmd, 756

Range, 652
Recordset, 778

FindNextHeading procedure,

296

FindPrevious method

Range, 652
Recordset, 779

FindRecord method, 756

First method, 695

fi rst-page headers, 591
fi rst records in Access tables,

769
First Time Setup dialog box,

736, 736
Fix function, 226

Fixed format, 209

fi xed-iteration loops, 278–279

fi xed-length strings

characteristics, 141

description and memory

requirements, 138

fi xed-point numbers, 139

fi xed-size arrays, 152

fl oating-point numbers, 140

fl oating windows, 491

focus

controls, 367

PowerPoint windows, 665

Word windows, 92

folder view, 37, 37
FolderAdd event, 734

FolderChange event, 734

FolderRemove event, 734

folders

Outlook, 700–701

creating, 702
deleting, 702–703
events, 733–735

scratch, 523–524
Folders collection, 700–701

FolderSwitch event, 730

FollowMasterBackground

property, 672

Font_Check function, 250–251

Font dialog box, 356, 356, 408

Font object, 686

fonts and Font property

bullets, 687

chart legends, 646

code text, 52

description, 349

Find, 584

text in shapes, 686

Footer property, 690

footers. See headers and

footers

For...Next loops

Exit For statements, 288
input boxes for, 283–286
nesting, 303

with step values, 282–283
straightforward, 280–282
syntax, 279–280

For Each...Next loops, 287–288
ForeColor property, 349

foreground windows, 321

Form Grid Settings options,

53
Form object, 747

Format function, 205, 208
dates and times, 210–213
numbers, 209–210
strings, 212

formats and Format property

data objects, 802
documents, 555–557
headers and footers,

691–692
presentations, 660
workbooks, 619–620

FormatTabular procedure,

213–214

formatting

FORMS • GROUPS | 903

bindex.indd 10:34:46:AM 07/26/2013 Page 903

chart headers and footers,

647
expressions. See Format

function

page numbers, 594
searching for and

replacing, 653
shapes, 684
slides, 671–672
text in shapes, 686–688

forms, 326
Access

creating, 751
opening, 759

events. See events

Outlook, 704

user. See user forms

Forms collection, 747

Forms object, 333

Formula property, 636

formulas in cells, 636

Forward event, 729

Forward property, 584

Found property, 584

Frame button, 338, 339

frames and Frame controls,

357

BeforeDragOver events,

441

creating, 339

names, 335

properties, 358–359
shape text, 684

tab order, 367

fraOptions_AddControl

procedure, 432

FROM keyword, 770

Full Module view, 50

Function statement, 111, 115,

236–237

functions, 111, 199
Access, 251–252, 252,

741
arguments

data types, 240
optional, 240–241
passing, 202–203, 203,

239–240

calling, 200–201, 242–243
components, 236–237
data conversion, 203–207
date and time, 227–230
Excel, 248–249
fi le management, 230–232,

231
mathematical, 226
nesting, 202

overview, 199–200, 235
PowerPoint, 249–251
scope, 241
special characters,

212–214
starting, 238–239, 238–239
strings. See strings and

String data type

vs. subroutines, 199, 235

Word, 246–247
working with, 200–202,

201

G
General Declarations area,

131, 134

General Number format, 209

General page

digital certifi cates, 538

Options dialog box, 52–55,

52
Project Properties, 46
user form grids, 333–334,

334
GenerateGlossary procedure,

290–293

GetClipboardText procedure,

802

GetCustomerInfo procedure,

465–466

GetDefaultFolder method, 700

GetDocCount procedure, 176

GetFormat method, 802

GetFromClipboard method,

802

GetInspector property, 703

GetLinesPage procedure, 174

GetMetaData method, 639

GetNameSpace method, 700

GetObject function, 750, 786,

788–789
getSelectedItemIndex

attribute, 833

GetTempDir command,

523

GetTempFileName command,

523

GetText method, 801

getting properties, 173

global variables, passing to

procedures, 467

Go Back button in Object

Browser, 182

Go Forward button in Object

Browser, 182

GotFocus event, 435

GoTo statements

with If, 268–269
with On Error,

499–501
GoToControl method, 756

GotoNamedShow method,

696

GoToPage method, 756

GoToRecord method, 252,

756

GotoSlide method, 695

graphics

capturing, 363

exporting presentations

to, 662–663
for macros, 415

searches, 586

greater-than signs (>)

comparisons, 256

string formats, 212

grids

controls, 340, 341, 367

user forms, 53, 333–334,

334
GroupName property, 357

groups

controls, 342, 363–365,

364–365
Ribbon, 823–825,

824

904 | H IN TIME FORMATS • IMPORTING

bindex.indd 10:34:46:AM 07/26/2013 Page 904

H
h in time formats, 211

Handle_Error_Opening_File

procedure, 503–504

handout masters, 675
HandoutMaster property, 675

hard-coding, 83, 278

HasLegend property, 646

HasText property, 684

HasTextFrame property, 684

HasTitle property, 646

HasTitleMaster property, 674

Header And Footer dialog

box, 690

Header property, 690

HeaderFooter object, 591, 690

HeaderFooters collection, 591

HeaderFooters property, 690

headers and footers

charts, 647
PowerPoint, 690–692
Word

accessing, 590
existence, 590
fi rst-page, 591
implementing, 589–590
linking to sections,

590–591
odd and even pages,

591
page numbers, 591–595

height and Height property

chart legends, 646

controls, 348, 366, 431

dialog boxes, 401

grids, 334

shapes, 683

slide shows, 692, 695

table rows, 609
user forms, 53

windows

documents, 599

presentations, 666

workbooks, 649

HeightRule property, 609

heisenbugs, 488

help and Help dialog box

Access, 746, 746

context, 47, 324

Excel, 615

fi nding objects, 186–189,

187–189
input boxes, 324

message boxes, 312,

320–321
Outlook, 697

overview, 114–115
PowerPoint, 655, 656
presentations, 100

projects, 47

Word, 549–551, 550
Help button

message boxes, 320, 321
Object Browser, 182

HelpContextID property, 347

hex character code problem,

687

Hex function, 205

hidden parts in dialog boxes,

revealing, 400–405, 401–402
Hide method, 370

HideSelection property, 353

HideStatusBar function, 309
hiding

dialog boxes, 370
fi lename extensions, 544

headers and footers, 691
procedure parts, 515

Ribbon editing groups,

814–819
status-bar messages, 309

Highlight property, 584

Horizontal Spacing

command, 367

Horizontally command, 367

Hour function, 227

Hourglass method, 756

hours in time formats, 211

hyperlinks, Ctrl+clicking, 577

I
icons

creating, 829, 829
message boxes, 316–317,

316
Object Browser, 183–184

Ribbon, 821, 829, 829
Toolbox controls, 62

ID numbers for slides, 667, 669
Identifi er Text color choice, 52

Identify_Current_User

procedure, 136

idMso identifi ers, 816,

823–825, 826
If statements, 259–260

with GoTo, 268–269
If...Then...Else, 262–263
If...Then...ElseIf, 266–268
If...Then...ElseIf...Else,

264–266
If...Then, 260–262
nesting, 269–271

Image button, 338, 340

image controls

creating, 340

pictures for, 415–418, 416
properties, 362–363

images

capturing, 363

exporting presentations

to, 662–663
for macros, 415

searches, 586

IMEMode property, 353

Immediate window, 495
entering code in, 496
limitations, 495
overview, 45–46, 46
printing in, 496–497
toolbar button for, 59

Imp operator, 258

implicit declarations, 117,

127–129
implied argument lists,

103

Import File dialog box, 67

Import Page dialog box, 63

Importance property

messages, 710

tasks, 714

ImportFromFile method,

673, 689

importing

macros, 67

Toolbox pages, 63

INCLUDECHAPTERNUMBER PROPERTY • LAST METHOD | 905

bindex.indd 10:34:46:AM 07/26/2013 Page 905

IncludeChapterNumber

property, 593–594

IncrementLeft method, 81, 683

IncrementRotation method,

683

IncrementTop method, 81, 683

indefi nite loops, 303–304, 498
indenting code, 50, 462
index numbers for arrays,

147–148
Index property

MultiPage, 429

Page, 363

infi nite loops, 269, 303–304,

498
Infi niteLoop procedure,

303–304

Information property,

569–572, 604–605

Initialize event, 372–374, 421,

423–424

initializing events, 727–728
InlineResponse event, 731

InlineResponseClose event,

731

input boxes, 307, 323, 323
For...Next loops, 283–286
input retrieval from,

325–326
syntax, 324–325, 325

InputBox function, 324–325
Insert Custom Icons dialog

box, 829

Insert mode for documents,

577

Insert UserForm button, 332

InsertAfter method, 572

InsertBefore method, 572

InsertBreak method, 595–596

InsertFromFile method, 668

inserting

cells, 609
recordset records, 780
slides, 668–669
user forms, 332–333, 333
Word

paragraphs, 573
text, 572–573

worksheets, 626–627

insertion cursor, 7

insertion points, 570–571
InsertParagraph method, 573

InsertParagraphAfter method,

573

InsertParagraphBefore

method, 573

InsertRowsAbove method,

608

InsertRowsBelow method, 608

InsideHeight property, 358

InsideWidth property, 359

Inspector object, 699, 703–704
inspectors

events, 730–732
returning, 703–704

Inspectors collection, 699

installing digital certifi cates,

531–534, 532–534
instances, 468, 477

Instancing property, 470–471
instantiated objects, 468

InStr function, 214, 218–221
InStrRev function, 214,

219–221
Int function, 162–163, 200, 226

Integer data type, 116, 140–141
conversion functions, 204

description and memory

requirements, 137

type-declaration

character, 129

IntegralHeight property, 353

interrupts, 505–507
intervals between dates,

229–230
intrinsic constants, 117–118

invalid macro names, 12, 12
invariants, loop, 278

invoking

functions, 200–201,

242–243
properties, 174

is operator, 256–257
IsArray function, 154

IsFullScreen property, 695

IsNumeric function, 160

IsWordMail property, 709

italics in Help fi les, 115

item-level Outlook events, 726
all message items, 728–730
explorers, inspectors, and

views, 730–732
folders, 733–735
initializing, 727–728
items and results, 734
reminders, 734–735
synchronization, 735

Item property, 176

ItemAdd event, 724, 734

ItemChange event, 732, 734

ItemRemove event, 734

Items collection, 707

ItemSend event, 723

J
JournalItem object, 699

K
KeepScrollBarsVisible

property, 359

keyboard shortcuts, 24

KeyDown event, 421, 436–437
KeyPress event, 422, 437–438
KeyUp event, 422, 436–437
Keyword Text option, 52

keywords, 115
color, 52, 115

shadowing, 127

L
Label button, 338, 339

labeled argument lists, 103

labels, 160

buttons, 16–17

creating, 339

error trapping, 499–500

with GoTo, 268–269

indenting, 462

names, 335

properties, 352
slides, 678

language errors, 483
LargeChange property, 362

LargeScroll method, 598

Last method, 695

906 | LATE BINDING • LOWERCASE

bindex.indd 10:34:46:AM 07/26/2013 Page 906

late binding, 787–788
layout

slides, 670
Visual Basic Editor

window, 56
Layout event

form controls, 422

UserForm and containers,

431
Layout property, 670

LayoutEffect property, 348

LBound function, 154

LCase function, 214, 225
leading spaces, trimming

from strings, 221–222
Left function, 111, 201–202,

201, 215–216
Left$ function, 216

Left property, 348

chart titles, 646

shapes, 683

slide shows, 692, 695

windows

documents, 599

presentations, 666

workbooks, 649

Lefts option, 366

legacy code

Excel, 616

PowerPoint, 656

Word, 551
legacy templates, 14

Legend object, 646

legends in charts, 646
Len function, 215, 222–223
length of strings, 222–223
less than signs (<)

comparisons, 256

string formats, 212

level of security, 539–540

libraries

functions, 246
object, 181–182, 184–185,

185, 764
type, 46

lifetime

constants, 144
variables, 130–132, 136

line-continuation character,

112, 462

line-feed characters, 314

line numbers in editor, 156

Line shape for slides, 678

Linear_Search_of_Array

procedure, 159–162, 161–162
linear searches, 158–162,

161–162
LineRuleAfter property, 686

LineRuleBefore property, 686

LineRuleWithin property, 686

lines

blank, 463
breaking, 462–463
commenting out, 69–70

Lines method, 685

linking

dialog boxes to

procedures, 368–369
headers and footers to

sections, 590–591
LinkToPrevious property,

590–591

List_All_NameSpace_Folders

procedure, 702

list boxes

Click events, 433

creating, 339

names, 335

opening fi les from,

385–391, 385
properties, 354–355
values returned from,

372–373
List Constants feature, 42, 42
ListBox button, 338, 339

ListRows property, 354

ListStyle property, 354

ListWidth property, 355

literals

date values, 140

description, 118
Load Picture dialog box, 362,

416

Load statement, 369–370

loading

dialog boxes, 369–370
pictures into image

controls, 416
LoadPicture statement, 416

local variables, 132–133, 136

Locals window, 143

expressions, 491, 491
Object variables, 193, 193
toolbar button for, 59

Lock Project For Viewing

option, 47, 544, 546

Locked property, 349

locking

code, 544–546, 545
documents, 557

projects, 47–48

recordsets, 766, 773

windows, 45

LockNavigationPane method,

756

log fi les, 518–521
Log function, 226

logic errors, 487
logical operators, 116, 257–259
Long data type, 141

conversion functions, 204

description and memory

requirements, 137

type-declaration

character, 129

long lines, breaking, 462–463
LookAt setting, 651

loop determinants, 278

loop invariants, 278

loops, 277
benefi ts, 277–278
bubble sorts, 155

Do. See Do loops

For...Next. See For...Next

loops

with If and GoTo, 268–269
infi nite, 269, 303–304, 498
nesting, 301–303, 301, 591

types, 278–279
While...Wend, 300

LoopSoundUntilNext

property, 674, 689

LoopUntilStopped property,

692

LostFocus event, 435

Lottery_1 procedure, 296

Lottery_2 procedure, 298–299

lower bounds for arrays, 148,

154

lowercase

LTRIM FUNCTION • MESSAGE BOXES | 907

bindex.indd 10:34:46:AM 07/26/2013 Page 907

string conversion to, 225
string format for, 212

LTrim function, 215, 221–222

M
m in date formats, 211

Macro Builder utility, 105, 490,

741–743, 742
Macro Commands folder, 742

macro-enabled fi le types, 84,

526, 815

Macro Project Items page, 28,

28
Macro Recorder, 6–10, 9

advantages and

disadvantages, 84–85
for fi nding objects,

178–180
recording actions in, 21
simplifying code from,

457–458
Macro Security button, 10

Macro Settings page, 540–541,

541
macro sheets, 618
Macro Single Step dialog box,

490

macros

Access, 739–740

creating, 741–742, 742
translating, 743–744

copying, 29

deleting, 27–29, 28
descriptions, 11–13, 23

editing. See editing

macros

errors and contexts, 22
vs. event handler

procedures, 719

exporting, 67

graphics fi les for, 415

importing, 67

modules for, 15–16

moving, 29

names, 9, 9, 11–12, 12, 29

navigating to, 33, 34
opening, 75–76
organizing, 28–29, 28
overview, 5–6

pausing, 7

recording. See recording

macros

renaming, 29

running, 16–22, 17–19,

27, 72
saving, 74–75, 79

scope, 95

security, 7–8, 525–526

signing. See certifi cates;

digital signatures

stepping through, 67–68,

68, 72
storing

Excel, 13
PowerPoint, 9

Word, 13
testing, 66, 66
viruses, 540

Macros button, 10

Macros dialog box, 10

deleting macros, 27

displaying, 66

procedure selection in, 308

running macros, 21

subprocedures, 111

MailItem object, 699, 710

main text story, 568

Make Equal command, 367

Make Same Size settings, 366

makefolders procedure, 285

malicious code, 526–527

Malwarebytes software, 540

mandelbugs, 488

Manual property, 419

MAPI (Messaging Application

Programming Interface),

700

MAPIFolder object, 700, 726

MAPILogonComplete event,

725
Margin Indicators feature, 43
Master object, 672–674

Master property, 674

masters, slide, 674
MatchAllWordForms

property, 584

MatchCase property, 584

MatchEntry property, 355

MatchRequired property, 355

MatchSoundsLike property,

584

MatchWholeWord property,

584

MatchWildcards property, 584

mathematical functions, 226
Max property, 362

Maximize method, 756

maximizing Code window, 34
Maximum property, 637

Media object shape, 678

Media object 2 shape, 678

Media object from embed tag

shape, 679

members

Auto List Members

feature, 41–42, 41
description, 50

enumerated constants,

145

user-created objects,

478, 478
working with, 189–191,

190
Auto Quick Info feature,

313, 313
objects, 122, 122

Members Of list, 183
memory

data types, 137–138,

455–456
public variables, 136

menu bar in Visual Basic

Editor, 56–59, 58
menus

names, 335

Ribbon, 830–832, 831
Visual Basic Editor, 58–59

Merriam-Webster dictionary,

542

message boxes, 307, 311
advantages and

disadvantages, 311–312
arguments, 322
buttons, 315–318, 316, 318
displaying, 313–314, 313
help, 320–321, 321
icons, 316–317, 316
modality, 318–319
multiline, 314, 315

908 | MESSAGES • MULTIPAGE CONTROLS

bindex.indd 10:34:46:AM 07/26/2013 Page 908

for procedures, 517–518
retrieving values from,

322–323
syntax, 312
title bars, 320, 320
titles, 319

messages

attachments, 711
contents, 710
creating, 710
sending, 712
slides in, 795–798

Messaging Application

Programming Interface

(MAPI), 700

meta keys in SendKeys, 808

methods, 81, 121
classes, 469, 476
Object Browser for, 181

overview, 174–175
Microsoft ActiveX Data

Objects Object 6.1 Library,

764

Microsoft DAO 3.6 Object

Library, 764

Microsoft documentation,

errors from, 487

Microsoft Offi ce

Compatibility Pack, 10

Mid function, 215, 217–219
Mid$ function, 215–216

Middles option, 366

migrating legacy code

Excel, 616

PowerPoint, 656

Word, 551
Min property, 362

Minimize method, 756

minus signs (-) in number

formats, 210

Minute function, 227

minutes in time formats, 211

Mixed values for properties,

668

MkDir command, 523

modality of message boxes,

318–319
modeless dialog boxes,

418–419

modes in Visual Basic Editor,

44–45, 66–67
Modify Button dialog box,

17, 18
modular code, 451

advantages, 452
approach to, 452–453
classes. See classes

description, 451–452
explicit variables, 455–456
procedures, 453–454
recorded code, 457–458
Select Case statements,

460
settings checks, 460
unused element removal,

460–461, 461
visual improvements,

462–468
With statements, 459–460

modules

Access, 741
code, 28, 36

defi nitions, 186
exporting, 246

macros, 15–16

names, 453

Modules collection, 747

monitors, dual, 110

Month function, 227

MonthName function, 227

months in date formats, 211

most recently used fi les

documents, 557, 562

Excel, clearing, 637
Mouse Properties dialog box,

517

MouseDown event, 422,

438–439
MouseIcon property, 350

MouseMove event, 422,

439–440
MousePointer property, 350

MouseUp event, 422, 438–439
Move Current Paragraph

dialog box, 378–385,

378–379
Move Down button, 410, 410
Move method

Recordset, 775–777
Sheet, 628

Move_Paragraph procedure,

374–385, 378–379
Move Up button, 410, 410
MoveFirst method, 775–776
MoveLast method, 775–776
MoveNext method, 775–776,

775
MovePrevious method,

775–776, 775
MoveSize method, 756

MoveTo method, 670–671

MoveToNew function, 251–252

moving

active cell, 631–633
controls, 343, 343–344
macros, 29

pages, 410

paragraphs, 374–385,

378–379
project items, 37–38
slides, 670–671
between slides, 695
Toolbox pages, 63

worksheets, 628
MsgBox function, 201–202

arguments, 117

message boxes, 313–314,

313
overview, 113

syntax, 312
mso prefi x, 680

MsoTriState values, 657–658

multidimensional arrays, 148,

152, 152
multiline message boxes, 314,

315
MultiLine property, 353, 371

multiline text boxes, 371

MultiPage button, 338, 339

multipage controls

BeforeDragOver events,

441

BeforeDropOrPaste

events, 443

Click events, 434

creating, 339

DblClick events, 444

MULTIPAGE DIALOG BOXES • OBJECT APPLICATIONS | 909

bindex.indd 10:34:46:AM 07/26/2013 Page 909

MouseMove events, 439

properties, 361
multipage dialog boxes,

409–412, 410–411
multiple conditions, testing,

257–259
multiple-line If statements,

260

multiple pages, displaying,

600–601
MultiRow property, 412

MultiSelect property, 355, 373

multitasking, 281–282

MultiUserEditing property,

625

MVBA_New_Workbook_

with_12_Sheets procedure,

617–618

myInspector_Activate

procedure, 732

myInspectors_NewInspector

procedure, 731–732

mySyncObject_OnError

procedure, 735

myTaskItem_BeforeDelete

procedure, 729–730

N
N in time formats, 211

named ranges

cells

creating, 633–634
deleting, 635

working with, 635
defi ning, 575–576

NamedSlideShows collection,

693

NamedSlideShows property,

693

names and Name property,

173–174

arguments, 119, 202–203

buttons, 16–17

classes, 470
controls, 335, 342–343, 347

dialog boxes, 391–392
documents, 177, 554, 558

enumerations, 145

forms, 739

macros, 9, 9, 11–12, 12, 29

modules, 453

objects, 191, 334–335
pages, 409–410

presentations, 174, 661
projects, 35, 46

slides, 667

SoundEffect, 688

Toolbox controls, 61
Toolbox pages, 62

user forms, 335–337, 336,

346

variables, 126–127
workbooks, 618–619

worksheets, 627

Names collection, 633

NameSpace object, 699–702,

701
NavigateTo method, 756

navigating

to macros, 33, 34
Object Browser, 185–186

Navigation Options dialog

box, 837

NeedsSmog function, 244–245

nesting

functions, 202

If statements, 259, 269–271
loops, 301–303, 301, 591

With statements, 82,

459–460

XML, 820, 843–844, 844
NetProfi t function, 241–243

New dialog box, 396

New keyword, 477

New Page command, 409

new windows, opening, 597
New_Workbook_with_

Months macro

editing, 76–79
recording, 25–27, 26

NewCurrentDatabase

method, 751

NewExplorer event, 731

NewInspector event, 731

NewMacros folder, 13

NewMacros module, 33

NewMail event, 723–724

NewMailEx event, 723–724
NewSeries method, 643

NewWindow method, 648,

665

Next method, 695

Next statement. See For...Next

loops

Next Window feature,

823–824, 824
“No current record” error, 775

NoMatch property, 779

Normal.dot fi le, 24

normal.dotm fi le, 8–9, 13–15
Normal templates, 24, 553

Normal Text color option, 51

Not operator, 257, 259
NoteItem object, 699

Notepad

with SendKeys, 809

special characters, 816

notes masters, 675

Notes pane, 667

NotesMaster property, 675

Notifi cation For All Macros

option, 21, 720

Notify Before State Loss

option, 53

Notify_of_New_Presentation

procedure, 795–797

Now function, 228

null values

string functions, 216

testing for, 372

numbers

converting strings to,

206–207
converting to strings,

207
errors, 502

formatting, 209–210
page. See page numbers

random, 162–163, 200, 226

NumberStyle property, 594

O
o in date formats, 211

object applications,

Automation, 786

910 | OBJECT BROWSER • OPENVIEW METHOD

bindex.indd 10:34:46:AM 07/26/2013 Page 910

Object Browser, 38–39, 38, 95,

96, 180
components, 180–184, 181
constants and objects, 660

navigating, 185–186
object libraries, 184–185,

185
Word, 556

Object data type, 137, 141

object libraries

adding and removing,

184–185, 185
databases, 764

Object Linking and

Embedding (OLE), 785

object models, 172

Access, 746, 746
Excel, 615, 616
Outlook, 697, 698
PowerPoint, 655–656, 656
Word, 549–551, 551

object-oriented programming

(OOP), 171–173, 194–195
Object property, 347

objects, 4, 116, 120
Automation, 788–789
and classes, 468

Code window, 39, 39
collections, 176
comparing, 256–257
constants, 556

creatable, 173
data. See data objects

dog example, 175
fi nding. See fi nding

headers and footers,

690–691
members, 122, 122
methods, 174–175
names, 191, 334–335
Object Browser, 660

overview, 171–173
properties, 173–174
team programming,

194–195
variables

declaring, 727–728
slides, 667

working with, 191–193,

193

viewing, 36–37
XML, 820

Oct function, 205

ODBC (Open Database

Connectivity), 763

odd pages, headers for, 591
OddAndEvenPagesHeader

Footer property, 591

Offi ce 365 subscription model,

541

Offi ce apps, 542–543
Offi ce Code Compatibility

Inspector

Excel, 616

Word, 551

Offi ce SelfCert program, 532

Offi ce Trust Center, 21,

526–528, 527
macros, 7

Outlook, 720

security threats, 539–544,

541–543
Offi cial Certifi cate icon, 537,

538
Offset property, 632

OldHeight property, 348

OldLeft property, 348

OldTop property, 348

OldWidth property, 348

OLE (Object Linking and

Embedding), 785

OLE object shape for slides,

679

On Error statement, 499–501
On/Off format, 209

one-dimensional arrays,

149–151, 150–151
one-line If statements,

260–261
OneNote

accessing, 579, 580
workbooks, 638–639

OnError event, 735

onscreen position of dialog

boxes, 419
OOP (object-oriented

programming), 171–173,

194–195
Open Database Connectivity

(ODBC), 763

Open dialog box

constants for, 392

options, 395

sandbox mode, 527

templates, 29

Open event, 729–730

Open In Protected View

option, 527

OpenCurrentDatabase

method, 748, 750

OpenDataAccessPage

method, 756

OpenDatabase method,

750–751

OpenDiagram method, 756

OpenForm method,

756, 759
OpenFunction method, 756

OpenIE procedure, 798

opening and Open method

databases, 748–752
documents, 113, 118,

559–562
fi les from list boxes,

385–391, 385
forms, 759
inspector windows, 703

macros, 75–76
new windows, 597
Outlook items, 706

presentations, 659
recordsets

ADO, 765–767
DAO, 771–775

Visual Basic Editor, 32–33,

32
windows

documents, 597
presentations, 665
workbooks, 647

workbooks, 622–624
OpenModule method, 757

OpenQuery method, 757

OpenRecordset method,

771–773
OpenReport method, 757

OpenStoredProcedure

method, 757

OpenTable method, 757

OpenView method, 757

OPERATORS • PASSING ARGUMENTS | 911

bindex.indd 10:34:46:AM 07/26/2013 Page 911

operators, 116
Option Base 1 statement,

148–151
option buttons

Click events, 433

creating, 339

description, 380
names, 335

properties, 357–358
values returned from,

371–372
Option Compare Binary

statement, 745

Option Compare Database

statement, 745–746
Option Compare Text

statement, 746

Option Explicit statement, 88,

131–132, 134, 470

optional arguments, 115,

118–119, 118
functions, 200–201, 237,

240–241
message boxes, 322

Optional keyword, 240–241

OptionButton button, 338, 339

Options dialog box

Developer tab, 6

Docking page, 55–56, 56,

88

Editor page, 49–51, 49
Editor Format page, 51–52,

51
error messages, 843–844
explicit declarations, 131,

470

General page, 52–55, 52
keyword color, 115

Outlook, 726

security, 540

status bar, 311

user form grids, 333–334,

334
workbooks, 619

Options object, 552, 577–579
OptionsPagesAdd event, 726
Or operator, 257

order

control tabs, 367–368, 368
event triggers, 434

library references, 184

ORDER BY keyword, 770

Organizer dialog box, 28–29,

28
out-of-order arguments, 203

Outline pane, 667

Outlook

Application object,

699–702
creatable objects, 698–699
events, 719–720

application-level,

720–726, 721
item-level, 726–735

inspectors and explorers,

703–704
items

calendar, 712–713
creating, 704–705
displaying, 706
manipulating, 706–709
searching for, 715–716

macro run methods in,

21–22
messages, 709–712
object model, 697, 698
Quick Steps feature, 736,

736
quitting, 706
tasks, 714–715

Outlook Object Model

Reference, 697, 698
Outlook Options dialog box,

720

OutputTo method, 757

Overtype mode in

documents, 577

Overtype property for

Options, 577

overwriting fi les

Word, 554

workbooks, 619

P
page numbers, 591

adding, 592–593
existence, 593
formatting, 594
headers and footers, 591

page X of Y numbers, 595
removing, 593
sections, 593–594
suppressing, 594

Page object, 363
Page Order dialog box, 63,

410, 410
page setup

documents and sections,

596
headers and footers, 589

Page Setup dialog box, 589

PageChange event, 731

PageColumns property, 600

PageNumberAlignment

values, 592

PageNumbers collection,

591–592

PageRows property, 600

pages

limiting, 409
multipage dialog boxes,

409–412, 410–411
vs. tabs, 408

Toolbox, 62–63
PageSetup object, 174, 596

PageSetup property, 174

Pane object, 667

panes

PowerPoint, 667
unlocking, 45

paragraph marks, 573

Paragraph object, 120

ParagraphFormat object, 684

ParagraphFormat property,

584

paragraphs

inserting, 573
moving, 374–385, 378–379

Paragraphs method, 685

Parent property, 176, 347

parentheses ()

argument lists, 120
code execution with, 202

function arguments, 201

number formats, 210

SendKeys, 808

passing arguments, 202–203,

203, 236–237, 239–240,

464–468

912 | PASSWORD PROPERTY • PRESENTATIONS

bindex.indd 10:34:46:AM 07/26/2013 Page 912

Password property, 638

Password To View Project

Properties setting, 47

PasswordChar property, 353

passwords

code, 544–545, 622

documents, 557

length, 222–223

macros, 529

projects, 47

workbooks, 638
Paste method, 670

pasting

controls, 344–345
slides, 670

Path property, 661

paths

Outlook items, 708

presentations, 660–661

retrieving, 232
Shell, 798

Word, 577–578
workbooks, 619

Pause Recording button, 21, 23

pausing

macro recording, 7, 21, 23

slide shows, 695
Percent format, 209

percent signs (%)

number formats, 210

SendKeys, 808

type-declaration

character, 129

PercentComplete property,

714

periods (.)

number formats, 209

object members, 189–190

persistent settings, 513,

587–588, 651
persistent variables, 136

personal information,

removing from workbook

properties, 638

Personal Macro workbook,

8–9, 13, 21, 25
Personal.xlsb fi le, 9, 13, 20, 25,

74, 94–95

phantom records, 775

physical objects, 175

PickUp method, 684

Picture method, 688

Picture property, 350, 362, 416

Picture shape for slides, 679

PictureAlignment property

constants, 417
frames, 359

image controls, 363

PicturePosition property, 350,

417–418
pictures

bullets, 688

dialog boxes, 415–418, 416
Toolbox controls, 62

PictureSizeMode property

forms, 417

frames, 359

image controls, 363

PictureTiling property

forms, 417

frames, 359

image controls, 363

Placeholder shape for slides,

679

placing. See position

planning

classes, 469–470
macros, 7

Play method, 673, 688

PlaySettings object, 689

PlaySettings property, 689

plus signs (+)

number formats, 210

SendKeys, 808

string concatenation, 463

Polyline shape, 679

position

chart legends, 646

controls, 348, 366–367
dialog boxes, 419
images, 417–418
input boxes, 324
shapes, 683–684
slide shows, 692, 695
windows, 599

Position property, 646

positional arguments, 202

pound signs (#)

number formats, 209

type-declaration

character, 129, 140

PowerPoint

creatable objects, 656–657
functions, 249–251
headers and footers,

690–692
macros

editing, 79–84
run methods, 21

object model, 655–656, 656
objects, 120

presentations. See

presentations

procedures, 99–105,

100–103
Ribbon, 821–822
shapes. See shapes

slide shows. See slide

shows

slides. See slides

storing macros in, 9

user-environment

restoration, 512

views, 666–667
windows, 664–667

PowerPoint Object Model

Reference, 655–656, 656
ppLayoutTitle constant, 103,

103
.pptm fi le extension, 83–84,

526

.pptx fi le extension, 526

precedence of library

references, 184

predefi ned numeric formats,

208–209
prefi xes

names, 334–335

variable data types, 135
Presentation object, 100–101,

120, 176, 656

presentations

active, 664
closing, 175, 662, 665–666
creating, 657
exporting, 662–663
opening, 659

PRESENTATIONS COLLECTION • QUIT METHOD | 913

bindex.indd 10:34:46:AM 07/26/2013 Page 913

printing, 663
saving, 659–661
slides. See slide shows;

slides

templates, 663–664
Presentations collection, 176,

656

Preserve statement, 153

Previous method, 695

PreviousControl property,

754

Print method, 496–497

printing and PrintOut

method

Access, 759–760
DoCmd, 757

documents, 563–565
in Immediate window,

496–497
Outlook items, 708
presentations, 663
worksheets, 628–630

priority of library references,

184

privacy, 528

private scope and Private

keyword

constants, 144

functions, 236, 241

macros, 95

variables, 133–134, 133
private variables, passing to

procedures, 467–468
procedure-level scope,

131–133
Procedure Separator option,

51

procedures

Access, 105–106, 740

arranging, 453
call stack, 497
calling, 453–454
Code window, 39–40, 39
Excel, 94–99, 96–97
linking dialog boxes to,

368–369
overview, 110–111
passing arguments

between, 464–468

PowerPoint, 99–105,

100–103
properties, 472–474
setup for, 87–88
tracking, 405–407,

406–407
well-behaved. See well-

behaved code

Word, 89–94, 90, 93
program logic errors, 487
programming code, 36

Progress event, 735

progress indicators, 311

Project Explorer pane, 33–37,

35, 37
Project/Library list, 181–182,

186

Project Password dialog box,

545, 545
Project Properties dialog box,

35, 46–47, 47–48, 544–546,

545
projects

descriptions, 46

locking, 47–48

names, 46

passwords, 47, 544–545,

545
renaming, 35

prompts

input boxes, 324

message boxes, 312–313,

313
Normal template changes,

24, 558

propercase, 224

properties

classes, 469, 471–475
controls. See controls

Find objects, 583–585
Object Browser for, 180

overview, 121, 173–174
procedures, 472–474
Ribbon, 828–829, 829
setting, 46–47, 47–48
XML, 820

Properties button, 10

Properties window, 43–45, 44,

335–336, 336, 342–343

Property Get procedure,

473–474
Property Let procedure,

472–473
Property Set procedure, 474
PropertyChange event, 729

ProportionalThumb property,

362

Protected View, 527–528, 527
Protected View option, 543,

543
protecting and Protect

method

documents, 557

workbooks, 625
worksheets, 630–631

Protection page, 47, 48,

544–545, 545
public scope and Public

keyword

constants, 144

functions, 236, 241

variables, 134–136
passing to procedures,

467–468
for properties, 472

PutInClipboard method,

801

Q
q in date formats, 211

QBColor function, 205

QueryClose event, 422,

424–425
question marks (?) in

searches, 182

Quick Access Toolbar, 16–18,

17–18, 27
Quick Info feature, 40–41,

41, 50

Quick Steps feature, 736, 736
Quick Watch dialog box, 495,

495
Quit event, 722–723
Quit method

DoCmd, 757

Outlook, 706, 722

Word, 114

914 | RADIO BUTTONS • REPLACEFORMAT PROPERTY

bindex.indd 10:34:46:AM 07/26/2013 Page 914

R
radio buttons, 339, 380
Raise method, 505

raising errors, 505
random numbers, 162–163,

200, 226

Range method

Document, 575

Slides, 671

Range object, 601

ranges and Range property,

575
vs. bookmarks, 575

cells

creating, 633–634
deleting, 635

selecting, 611
working with, 635

documents, 575–576
slides, 671

exporting, 662–663
templates, 663–664

RangeSelection property, 633

RangeType property, 694

Read event, 729–730

read mode for documents, 600
read-only documents, 557

read-only properties, 173

read-only workbooks, 638

read/write properties, 173

readability of log fi les, 518

ReadOnlyRecommended

property,

638

RecentFiles collections, 97–98

RecentFiles object, 637

RecentFiles property, 97

recently used fi les

documents, 557, 562

Excel, clearing, 637
Record Macro button, 10

Record Macro dialog box

closing, 21

descriptions, 23, 23
names, 8–11, 9
procedures, 89

sample macro, 25, 26
recorded code, simplifying,

457–458

recording macros, 6
Developer tab, 6
Excel example, 25–27, 26
Macro Recorder, 7–10, 9
planning, 7
Word example, 22–24, 23

RecordSet object, 775

recordsets

accessing, 775–777, 775
ADO, 767–771
DAO, 771–775

closing, 781
cloud, 781–782
deleting, 781
editing, 780
fi elds, 779
inserting, 780
opening

ADO, 765–767
DAO, 771–775

searching, 777–779
red error lines, 49

Red X symbol, 537, 538
RedEdit controls, 341

redefi ning ranges, 576
ReDim statement, 153

redimensioning arrays, 153
references and References

dialog box

argument passing by,

236–237,

240, 464–465

binding, 787

circular, 455

data objects, 801

databases, 764
object libraries, 184–185,

185
References collection, 747

RefreshRecord method, 757

regular mode, 10

relative cell addresses, 632

relative ranges, 633

Rem keyword, 69–70, 507–508

Reminder event, 726
Reminder object, 699

ReminderAdd event, 734

ReminderChange event, 734

ReminderFire event, 735

ReminderMinutesBeforeStart

property, 712

ReminderRemove event, 735

reminders, 734–735
Reminders collection, 699

ReminderSet property, 712

RemoveControl event, 422,

432–433
RemovePageNumbers

FromCurrentSection

procedure, 593

RemovePersonalInformation

property, 638

removing. See also deleting

and Delete method

certifi cates, 535
dialog boxes, 382

digital signatures, 537
object libraries, 184–185,

185
page numbers, 593
personal information from

workbook properties,

638

scratch fi les and folders,

523–524
Toolbox controls, 62
Toolbox pages, 62

unused elements,

460–461, 461
window splits, 598

workspaces, 753
Rename dialog box

buttons, 16

pages, 409, 410
Rename method, 757

renaming

controls, 342–343
macros, 29

pages, 409–410, 410
projects, 35
Toolbox controls, 61
Toolbox pages, 62

user forms, 335–337, 336
RepaintObject method, 757

repeating actions. See loops

Replace dialog box, 814

Replace method, 652
ReplaceFormat property, 653

REPLACEMENT OBJECT • SAVED PROPERTY | 915

bindex.indd 10:34:46:AM 07/26/2013 Page 915

Replacement object, 583

Replacement property, 584

Reply event, 729

ReplyAll event, 729

Report object, 747

Reports collection, 747

reports in Access, 751
repositioning shapes, 683–684
Requery method, 757

Require Variable Declaration

option, 49–50, 88, 131, 470

required arguments, 119
Resize event, 422, 426–428,

427
resizing

controls, 340, 341
shapes, 683–684
user forms, 340

windows for

presentations,

666
RestartNumberingAtSection

property, 593

Restore method, 757

restoring user environment,

512–513
results of functions, 202

Resume line statement,

503–504
Resume Next statement,

502–503
Resume Recorder button, 21,

23

Resume statement, 501–502
resuming macro recording,

23

retaining user environment,

512–513
Return_a_Value_from_Excel

procedure, 791

ReturnBoolean object, 423

ReturnEffect object, 423

ReturnInteger object, 423

ReturnString object, 423

RGB function, 205

RGBColor object, 672

Ribbon, 812–813
Access, 836–840, 838
attributes, 828–829, 829

callbacks, 826–828, 840,

842–843, 843
Developer tab, 6, 9–10

DialogBoxLauncher

control, 834–835
DropDown List controls,

832–834
Excel and PowerPoint,

821–822
groups

adding, 823–825, 824
hiding, 814–819

guidelines, 819
icons, 821, 828–829, 829
menus, 830–832, 831
running macros from, 16
scope of customization,

822–823
testing, 839–840, 839
Toggle Button Control,

835–836
troubleshooting, 841–844,

841, 843–844
undoing modifi cations,

822
XML code, 820–821

right-aligning message-box

text, 321

Right function, 111, 201–202,

215–217, 367

Right$ function, 216

Rights option, 366

RmDir statement, 524

Rnd function, 162–163, 200,

226

Roaming Offi ce controls, 341

Row object, 601

Rows collection, 601

rows in tables

adding, 608
converting to text, 612–613
deleting, 608
height, 609
selecting, 608

RowSource property, 355

RTrim function, 215, 221–222
Run Macro button, 10

Run Macro dialog box,

742–743

Run method, 694

Run mode in Visual Basic

Editor, 45, 66

Run Sub/UserForm button,

66, 66
Run To Cursor command, 490

RunCode action, 741

RunCommand method, 757

RunDataMacro method, 757

RunMacro method, 757, 760
running macros, 16–22, 17–19,

27, 72
Runs method, 685

RunSavedImportExport

method, 757

RunSQL method, 757

runtime, 283

runtime errors

error-handler

requirements, 498

overview, 486, 486
raising, 505
resuming after, 501–504
trapping, 499–501

S
S in time formats, 211

Sample_Advanced_Search

procedure, 716

sandbox mode, 527–528, 527
Save_All_Presentations

procedure, 661

Save_All_Workbooks

procedure, 621

Save As dialog box, 83, 113

Save_in_Out_Folder

procedure, 220

Save page for workbooks, 619

SaveAndRestoreCursor

procedure, 514

SaveAs method

documents, 121, 174

Outlook, 708–709
presentations, 659

workbooks, 618–619, 625

SaveAs2 method, 554
SaveCopyAs method, 661

Saved property, 173, 559

916 | SAVELINKVALUES PROPERTY • SETORDERBY METHOD

bindex.indd 10:34:46:AM 07/26/2013 Page 916

SaveLinkValues property, 638

SaveToCloud method, 781–782

saving and Save method

DoCmd, 757

documents, 113–114, 121,

174, 554–559
macros, 74–75, 79

Outlook items, 708–709
presentations, 659–661,

665

workbooks, 617–621
scalar variables, 154

schroedinbugs, 488

Scientifi c format, 209

scope

constants, 144
functions, 241
macros, 95

variables, 127, 130–132
scratch fi les and folders,

523–524
Screen object, 747, 753–755
screen updating, disabling,

515–516
ScreenRefresh method, 516

ScreenTips

Data Tips, 43

option, 50

Quick Info, 40–41

Ribbon, 828, 829
ScreenUpdating property, 516

scroll bars

creating, 340

properties, 362
Scroll event, 422, 428–430
ScrollBar button, 338, 340

ScrollBars property, 353, 371

scrolling windows, 598–599
ScrollIntoView method, 599

Search Results list, 182–183

SearchADO procedure, 778

SearchForRecord method, 758

searching. See fi nding

Second function, 228

seconds in date formats, 211

sections

documents, 595–596
linking headers and

footers to, 590–591
page numbers, 592–594

page setup, 596
security, 525

implementation, 525–529,

527
locking code, 544–546, 545
macros, 7–8
new features, 541–544
real-world, 527–528
settings, 540–541, 541
signing. See certifi cates;

digital signatures

threats, 539–544
Trust Center settings,

541–543, 541–543
workbooks, 638

See_All_Workbook_Names

procedure, 497

Seek method, 775, 777

Select Case statements, 272
example, 272–274
optimizing, 460
syntax, 272

Select Certifi cate dialog box,

536

Select Certifi cate Store dialog

box, 533, 534
Select Objects button, 338,

339–340

Select Objects control, 62

SELECT statements

ADO recordsets, 770–771
DAO recordsets, 774–775

SelectAll method, 683

Selected Items Only option, 61

SelectedItem property, 361

selecting and Select method

cell ranges, 611
columns in tables, 608
page numbers, 594

rows in tables, 609
shapes, 683
slides, 671

tables, 602
Selection object, 112, 552, 566
Selection Text color option, 51

SelectionChange event, 730

SelectionMargin property

combo boxes and list

boxes, 355

text boxes, 353

selections

cells, 633
documents, 566

collapsing, 574–575
extending, 573–574
information about,

569–572
inserting text near,

572–573
location in tables,

604–605
paragraph insertion,

573
story types, 567–569
types, 566–567

SelectObject method, 758

self-signed certifi cates, 537

SelfCert application, 530

Send event, 729

Send method, 712

Send_to_Excel procedure, 811

Send_to_Notepad procedure,

809–810

Send_Word_Count_to_Excel_

Spreadsheet procedure,

792–794

sending messages, 712
SendKeys statement, 436, 785,

806–811
SendObject method, 758

Sent property, 712

Sentences method, 685

serial modal dialog boxes, 419

series in charts, 643–646, 645
SeriesCollection collection,

644–645

server applications for

Automation, 786

Set statement

data objects, 800

objects, 192–193, 788–789

recordsets, 767

SetDisplayedCategories

method, 758

SetFilter method, 758

setfi rst macro, 833

SetFooter method, 692

SetHeight method, 609

SetMenuItem method, 758

SetOrderBy method, 758

SETPARAMETER METHOD • SLIDESHOWSETTINGS OBJECT | 917

bindex.indd 10:34:46:AM 07/26/2013 Page 917

SetParameter method, 758

SetProperty method, 758

SetRange method, 576

SetSourceData method, 643

SetText method, 800

SetWarnings method, 505, 758

SetWidth method, 607

Sgn function, 226

Shading object, 601

shadowing keywords, 127

Shape object, 120, 677

ShapeRange object, 671, 688

shapes, 677
animating, 688–690
deleting, 683
formatting, 684
repositioning and

resizing, 683–684
selecting, 683
slides, 677–682
text in, 684
in worksheets, 653

Shapes collection, 677

sharing workbooks, 625
sheets. See worksheets

Sheets collection, 172, 176,

616

SheetsInNewWorkbook

property, 617

Shell function, 798–799
Shift values, 437, 439

short-circuit evaluation,

258–259
shortcut keys, macros run

from, 18–19, 19, 27
Show Add-in User Interface

Errors option, 837, 841

Show Grid option, 53, 334

Show/Hide Search Results

button, 182

Show method, 369–370,

393–395
Show System Objects option,

837

Show The Start Screen When

This Application Starts

option, 99

Show ToolTips option, 55
Show Windows Side By Side

option, 67, 110

Show Windows Stacked

option, 67, 110

ShowAllRecords method, 758

ShowCategoriesDialog

method, 713

ShowDate macro, 105

ShowDropButtonWhen

property

combo boxes and list

boxes, 355

text boxes, 353

ShowFirstPageNumber

property, 594

ShowInfo procedure, 476

ShowModal property, 418

ShowProfi t function, 242–243

ShowToolbar method, 758

ShowType property, 692

ShowWithAnimation

property, 692

ShowWithNarration property,

692

signing. See certifi cates; digital

signatures

Sin function, 226

Single data type, 141
conversion functions, 204

description, 137

memory requirements,

137, 456

type-declaration

character, 129

single-dimensional arrays,

149–151, 150–151
single-line If statements,

260–261
single-quote symbol (‘)

comments, 57, 69–70, 507

macros, 12

single-stepping, 488–490
SingleStep method, 490, 758

size

bullets, 687

code text, 52

controls, 340, 341, 348, 365,

365
shapes, 683–684
slide shows, 695
user forms, 340

windows

documents, 599
presentations, 666

Size To Fit command, 366

Size To Grid command, 367

SkyDrive

documents on, 559
workbooks on, 621–622

slashes (/) in formats, 210

Sleep function, 799
slide masters, 674
Slide object, 657, 663

Slide pane, 667

slide shows

creating, 693–694
deleting, 694
exiting, 696

size and position, 695
starting, 694
stopping, 696
types, 692–693
windows, 664

SlideID property, 669

SlideMaster property, 674

SlideNumber property,

690

SlideRange object, 663, 671

slides

accessing, 671
adding, 668
backgrounds, 671–672
color, 672
copying and pasting, 670
duplicating, 670
exporting, 662–663
ID numbers, 667, 669
inserting, 668–669
layout, 670
in messages, 795–798
moving, 670–671
range, 671
sample procedure, 99–105,

100–103
shapes in. See shapes

templates, 663–664
transitions, 672–674

Slides collection, 657, 667

Slides object, 101, 101
SlideShowName property, 694

SlideShowSettings object,

692–694

918 | SLIDESHOWSETTINGS PROPERTY • STRINGS AND STRING DATA TYPE

bindex.indd 10:34:46:AM 07/26/2013 Page 918

SlideShowSettings property,

692

SlideShowTransition object,

674

SlideShowTransition property,

672

SlideShowWindow object,

656, 664, 695

SlideShowWindow property,

694

SlideShowWindows

collection, 656, 664, 694

SmallChange property, 362

SmallScroll method, 598

Smart Art shape, 679

smart quotes, 816–818
snapping windows, 598

Snooze event, 735

social engineering, 540

Sort_an_Array procedure,

155–158, 157
Sort method, 606, 707

SortContacts procedure, 707

sorting

arrays, 154–158, 157
collection items, 707
tables, 606

SoundEffect object, 688

SoundEffect property, 673, 688

source code, 36, 44

source data for charts, 643
Space function, 215

SpaceAfter property, 686

SpaceBefore property, 686

spaces

in modular code, 462

trimming from strings,

221–222
variable names, 126

SpaceWithin property, 686

spacing controls, 367

spaghetti code, 268

Spc function, 496

special characters

entering, 212–214
searching for, 585

titles, 320

XML, 816–818
special-effects constants, 321

SpecialCells method, 633,

635–636
SpecialEffect property

check boxes, 356–357, 357
description, 350

option buttons, 358

Speed property, 673

spin buttons

creating, 340

properties, 362
SpinButton button, 338, 340

SpinDown event, 422, 447
SpinUp event, 423, 447
split bars in Object Browser,

183

Split property, 597–598

SplitHorizontal property, 667

splitting windows, 597–598
SplitVertical property, 598, 667

spreadsheets. See worksheets

SQL SELECT statement

ADO recordsets, 770–771
DAO recordsets, 774–775

Sqr function, 226

Standard format, 209

Standard_Setup function, 741

Start property

calendar items, 712

tasks, 714

start value in For...Next loops,

280

starting slide shows, 694
StartingNumber property, 593

StartingSlide property, 694

Startup event, 721–722
StartUpPosition property, 419

State property, 695

state variables, 404

statements, 112–114
states of contexts, 457

static dialog boxes, 369

static functions, 236

Static keyword, 136–137, 236

static variables, 136–137
status bar messages, 309–311,

310
Status property, 714

StatusBar property, 310–311

Step Into command, 490

Step Out command, 70,

490–491
Step Over command, 490–491
step values in For...Next loops

with, 282–283
stepping out of macros, 70, 70
stepping through macros,

67–68, 68, 72
stepsize value in For...Next

loops, 280–282

Stop Recording button, 8, 21,

23

Stop statement, 112

stopping

recording macros, 8, 21

running macros, 22

slide shows, 696
StoreText procedure, 801

storing

array values, 151, 151
certifi cates, 533

in data objects, 800–801
macros

Excel, 13
PowerPoint, 9

Word, 13
Outlook items, 698
ranges, 576–577

story type selections, 567–569
StoryType property, 568

Str function, 205–207
str prefi x, 135

StraightenQuotes procedure,

816–818

StrComp function, 215, 225
StrConv function, 215, 224
String function, 215

strings and String data type,

141–142
breaking, 112

concatenating, 463

converting numbers to,

207
converting to numbers,

206–207
description and memory

requirements, 138

formatting, 212

functions, 214–215

STRIP_HYPERLINKS_BOOKMARKS_FIELDS FUNCTION • TAG PROPERTY | 919

bindex.indd 10:34:46:AM 07/26/2013 Page 919

case, 224–225
comparing, 225
left part returned, 216
length, 222–223
mid part returned,

217–219
retrieving, 243–245, 244
right part returned,

216–217
strings within strings,

219–221
trimming spaces from,

221–222
memory requirements,

456

purpose, 116

in text boxes, 371
type-declaration

character, 129

Strip_Hyperlinks_

Bookmarks_Fields function,

246–247

Stripped_Down_Procedure_

Applying_Arial_Font

procedure, 458

strongly typed object

variables, 192–193, 193
StrReverse function, 215

Style property

Find, 584

MultiPage, 412
Paragraph, 573

StyleError procedure, 501–502

styles in Word, 573
Sub keyword, 5, 33, 111, 115

Subject property

calendar items, 712

Item, 723

messages, 710

tasks, 714

subroutines, 5

Access, 745
description, 111
vs. functions, 199, 235

subscripts for arrays, 149

SubSet procedure, 771

subtraction with dates,

230
suppressing

alerts, 505
page numbers, 594

Switch Windows drop-down

list, 823

Symbol dialog box, 687

symbols, searching for, 585

SyncEnd event, 735

synchronization events, 735
synchronous processing, 799

SyncObject object, 735

SyncObjects property, 735

SyncStart event, 735

syntax, 109–110
arguments, 118–119, 118
collections, 120–121
constants, 117–118,

143–144
enumerations, 144–145
errors, 483
events, 121–122
expressions, 116
keywords, 115
methods, 121
objects, 120
operators, 116
procedures, 110–111
properties, 121
statements, 112–114
variables, 116–117

Syntax Error Text color

option, 51

system-modal message boxes,

318

T
t in time formats, 211

tab characters, printing, 496

Tab function, 496

tab keys with SendKeys, 808

Tab Order dialog box, 368, 368
tab order of controls, 367–368,

368
tab strips, 408

BeforeDragOver events,

441

BeforeDropOrPaste

events, 443

benefi ts, 408

Click events, 434

creating, 339

DblClick events, 444

MouseMove events, 439

programming, 412–415,

413
properties, 361

Tab Width setting, 50

TabFixedHeight property, 361

TabFixedWidth property, 361

TabIndex property, 351

TabKeyBehavior property, 353

Table object, 120, 601

Table shape for slides, 679

tables

documents, 601
cells. See cells

columns, 607–608
converting text to,

602–604
converting to text,

612–613
creating, 601–602
information about,

571–572
rows, 608
selecting, 602
selection location,

604–605
sorting, 606

multidimensional arrays

for, 152, 152
recordset data

ADO, 767–769
DAO, 774

Tables collection, 601

TabOrientation property, 361,

412
tabs

displaying, 393
in modular code, 462

vs. pages, 408

properties, 363

Ribbon, 823

TabStop property, 351

TabStrip button, 338, 339

tabSurfer_Change procedure,

414–415

Tag property, 347

920 | TAGS IN XML • TOP PROPERTY

bindex.indd 10:34:46:AM 07/26/2013 Page 920

tags in XML, 814, 820

TakeFocusOnClick property,

360

Tan function, 226

Task Manager for infi nite

loops, 303

TaskItem object, 699, 713

tasks

assigning to colleagues,

715
creating, 713
working with, 714–715

team programming in OOP,

194–195
templates

default, 99

displaying, 29

documents, 552–553
changing, 563
creating, 553

macros, 14–15
presentations, 657,

663–664

slides, 671

types, 14–15
workbooks, 618

Terminate event, 423, 428

test case in Select Case

statements, 272–274
TestForSmog function,

243–245, 244
testing

event handlers, 732–733
macros, 66, 66
multiple conditions,

257–259
for null values, 372

Ribbon, 839–840, 839
text and Text property

cells, 610
chart titles, 646

color options, 51–52
converting tables to,

612–613
converting to tables,

602–604
displaying, 113–114

Find, 584

headers and footers, 691
inserting, 572–573
in shapes, 684–688
text boxes, 371

TextRange, 684

text boxes

creating, 339

DropButtonClick event,

446

names, 335

properties, 352–353
strings returned from, 371

Text Effect shape, 679

text runs, 685

TextAlign property, 352

TextBox button, 338, 339

Textbox shape, 679

TextFrame object, 684

TextFrame property, 684

TextLevelEffect property, 688

TextRange object, 684–685

TextRange property, 684

textual comparisons, 220

TextUnitEffect property, 688

ThisDocument object, 35, 123

ThisOutlookSession class, 720,

727, 733

ThisWorkbook object, 35

threats, security, 539–544
tildes (~) with SendKeys, 808

time

formatting, 210–213
functions, 227–230
in headers and footers,

691–692
macro for, 105

Time function, 228

time-outs in dialog boxes, 396
Timer function, 228

TimeSerial function, 228

TimeValue function, 228

timing issues in SendKeys,

809

title bars in message boxes,

312, 320, 320
title case, 224

title masters, 674–675
Title shape, 679

title slides, 99–105, 100–103
TitleMaster property, 674

titles

charts, 646
input boxes, 324

message boxes, 319
special characters in, 320

To Grid option, 366

To property, 710

Toggle Breakpoint button, 69

toggle buttons, 358
Click events, 433

creating, 339

working with, 835–836
Toggle Folders button, 37
Toggle_Track_Changes_

between_Hidden_and_

Strikethrough procedure,

92–93

Toggle_Track_Changes_

between_Hidden_and_

Strikethrough_2 procedure,

94

ToggleButton button, 338, 339

ToggleItal procedure, 136–137

toggling

Boolean variables, 259, 371

Toggle Button controls,

835–836
toolbars, 56–59, 58
Toolbox, 59

buttons, 338–340, 338
controls, 60–62, 60–61
displaying, 337

pages, 62–63
ToolTips, 55

Top property

chart titles, 646

description, 348

shapes, 683

slide shows, 692, 695

windows

documents, 599

presentations, 666

workbooks, 649

TOPS OPTION • USER INPUT | 921

bindex.indd 10:34:46:AM 07/26/2013 Page 921

Tops option, 366

Track Changes feature

procedure for, 89–94, 90,

93
turning off, 578

tracking procedures, 405–407,

406–407
TrackRevisions option, 578
trailing spaces, trimming

from strings, 221–222
TransferDatabase method, 758

transferring data between

applications. See

communication between

applications

TransferSharePointList

method, 758

TransferSpreadsheet method,

758

TransferSQLDatabase

method, 758

TransferText method, 758

transitions for slides, 672–674
Transpose_Word_Left macro,

72–74
Transpose_Word_Right macro

editing, 71–72
navigating to, 33, 34
opening, 32, 32
recording, 22–24, 23

trapping errors, 499–501
trees in XML, 820

tri-state values in

presentations, 657–658, 680

triggers, 505

trigonometric functions, 226

Trim function, 215, 221–222
trimming spaces from strings,

221–222
TripleState property

check boxes, 356, 356, 372

option buttons, 358, 372

toggle buttons, 358

troubleshooting Ribbon,

841–844, 841, 843–844
True/False format, 209

True value, 257, 259

Trust Center, 21, 526–528, 527
macros, 7

Outlook, 720

security threats, 539–544,

541–543
trust technology, 7

Trusted App Catalogs page,

541, 542
trusted publishers, 526, 529

twips, 324–325

.txt fi les, viruses in, 544

Type argument for shapes,

679–680
type-declaration characters,

128–129, 138–142

type libraries, 46

Type property

bullets, 686–687

Selection, 568

View, 600

TypeParagraph method, 573

types. See data types

TypeText method, 114, 572–573

Typing Replaces Selected Text

option, 114

U
UBound function, 154

UCase function, 215, 225
UI Editor, 815–816, 818

icons, 829

menus, 830–831

XML code, 836

Uncomment Block command,

57–58, 69–70
underscores (_)

line-continuation

character, 112, 462

variable names, 126

undoing

changes, 522–523
Ribbon modifi cations, 822

ungrouping controls, 363–365
Unhide dialog box, 25

unhiding Personal Macro

Workbook, 74

Unload statement, 369

unloading dialog boxes,

369–370
unlocking projects, 545–546

unsigned decimal data type,

140

Untable procedure, 613

unused elements, 460–461,

461
Update method, 780

UpdateLinks values, 623

UpdateRemoteReferences

property, 638

updating

dialog boxes, 400
recordsets, 780

screen, disabling, 515–516
upper bounds for arrays, 148,

154

uppercase

string conversion to, 225
string format for, 212

UsableHeight property, 649

UsableWidth property, 649

UsedRange property, 633, 635

UseFormat property, 692

user-defi ned constants, 117

user environment, retaining

and restoring, 512–513
user forms, 28

building, 386–388
coding, 388–391
controls. See controls

grids, 53, 333–334, 334
inserting, 332–333, 333
names, 335

overview, 330–331
renaming, 335–337, 336
resizing, 340

user input

disabling, 506–507
forms, 326
input boxes, 307, 323, 323

For...Next loops,

283–286
input retrieval from,

325–326

922 | USER INTERRUPTS • VISUAL BASIC EDITOR

bindex.indd 10:34:46:AM 07/26/2013 Page 922

syntax, 324–325, 325
message boxes. See

message boxes

methods, 307–308
user interrupts, 505–507
UserForm_Activate

procedure, 425–426

UserForm_Deactivate

procedure, 426

UserForm_Initialize

procedure, 373, 389–390,

402, 404

UserForm object, 423–433, 800

UserForm_QueryClose

procedure, 424–425

UserForm_Resize event

procedure, 426–427

UserForm_Scroll procedure,

428–429

UserForm_Terminate

procedure, 428

users, informing, 514–515,

517–518

V
Val function, 206–207
values and Value property,

347

active cells, 631–632

arrays, 151, 151
check boxes, 356, 372

from functions, 199

list boxes, 373

Locals window, 491, 491
from message boxes,

322–323
MultiPage controls, 410

option buttons, 357–358

passing to functions, 237,

240, 464–465

text boxes, 371

ToggleButton controls, 358

variables, 126

Watch window, 492–495,

492–495
variable-length strings,

141–142
variables

arrays. See arrays

classes, 469

for code simplifi cation,

463–464
data types. See data types

declaring, 117, 127, 471
explicit declarations,

129–130, 455–456
implicit declarations,

127–129
defi ned, 125–126
displaying, 46
function results assigned

to, 201

Locals window, 491, 491
for message boxes,

322–323

names, 126–127
objects, 191–193, 193
overview, 116–117
for properties, 472
scope and lifetime,

130–132
unused, 461

Watch window, 492–495,

492–495
Variant data type, 116

arrays, 148

characteristics, 142
conversion functions, 204

description, 138

effi ciency, 150

implicit variables, 128

memory requirements,

138, 456

types assigned for, 143
VBA Editor. See Visual Basic

Editor

VbaProject.OTM project, 698

vbMsgBoxRight constant,

321

vbMsgBoxRtlReading

constant, 321

vbMsgBoxSetForeground

constant, 321

Vertical Spacing command,

367

Vertically command, 367

View Code button, 36

View Defi nition command,

182, 186

View Object button, 36–37
View property, 696

View tab on Ribbon, 823

ViewAdd event, 731

ViewRemove event, 731

views

documents, 600
events, 730–732
PowerPoint, 666–667

ViewSwitch event, 730

ViewType property, 666

virtual objects, 175

viruses

in macros, 7, 540
in .txt fi les, 544

overview, 527–528

Visible property, 350

BulletFormat, 686

dialog boxes, 401

headers and footers,

690

Visual Basic button, 10

Visual Basic Editor, 5, 31
Code window, 39–43,

39–43
compile errors, 483–485,

484–486
context menus, 59

Docking page, 55–56, 56
Editor page, 49–51, 49
Editor Format page, 51–52,

51
General page, 52–55, 52
Immediate window,

45–46, 46
macros

editing. See editing

macros

navigating to, 33, 34
running from, 6, 21

modes, 44–45, 66–67
Object Browser, 38–39, 38
opening, 32–33, 32
procedures. See

procedures

Project Explorer pane,

33–37, 35, 37

VISUAL BASIC .NET • WORDS METHOD | 923

bindex.indd 10:34:46:AM 07/26/2013 Page 923

project properties, 46–47,

47–48
Properties window, 43–45,

44
toolbars and menu bar,

56–59, 58
Toolbox, 60–62, 60–61
user forms, 332–333, 333
window layout, 56

Visual Basic .NET, 5
Visual Basic vs. Visual Basic

for Applications, 4–5
visual improvements,

modular code for, 462–468

W
w in date formats, 211

Watch window

expressions in, 492–494,

492
deleting, 494
editing, 494, 495
setting, 493–494, 493

infi nite loops, 498

toolbar button for, 59

WdSaveFormat values,

555–557
weakly typed variables, 194
Weekday function, 228

WeekdayName function, 228

weeks in date formats, 211

well-behaved code, 511
best possible position

after, 513–514
cleaning up, 522–524
cursor manipulation, 517
description, 511–512
log fi les, 518–521
suitable conditions, 522
user-environment

restoration, 512–513
user information, 514–515,

517–518
When Creating New

Workbooks settings,

617

WHERE keyword, 770

While...Wend loops, 300

white screens for slide shows,

695
width and Width property

chart legends, 646

columns, 607–608
controls, 348, 366, 431

dialog boxes, 401

grids, 334

shapes, 683

slide shows, 692, 695

user forms, 53

windows

documents, 599

presentations, 666

workbooks, 649

wildcards in searches, 182, 585

Window object

Excel, 648

PowerPoint, 664

windows

docking, 55–56, 56, 491

documents

arranging, 599
closing, 597
document maps, 598
items displayed in,

599–600
opening, 597
positioning and sizing,

599
scrolling, 598–599
splitting, 597–598

fl oating, 491

locking, 45

Outlook, 706
PowerPoint, 664–667
Visual Basic Editor, 56
workbooks, 647–650

Windows collection

Document object and

Application object,

597

Excel, 617, 647

PowerPoint, 664

Word, 552

Windows Defender, 540

Windows object, 617

WindowsDefault property,

419

WindowState property, 599,

649, 666, 731

With statements

benefi ts, 81

Find and Replace, 588–589

limiting, 459–460
nesting, 82, 459–460

overview, 458–459
WithEvents keyword, 727, 732

Word

cursor manipulation, 517
dialog boxes

Move_Paragraph

procedure, 374–385,

378–379
opening fi les from list

boxes, 385–391, 385
documents. See

documents and

Document object

fi le paths, 577–578
functions, 246–247
macros

editing, 71–74
recording example,

22–24, 23
storing, 13

migrating legacy code, 551
object model, 549–551, 551
objects, 120

procedures, 89–94, 90, 93
status-bar messages,

309–311, 310
tables. See tables

user-environment

restoration, 512

user interrupts, 505–506
Word Object Model Reference,

549–551, 551
Word Options dialog box

collapsed sections, 114

fi le locations, 553

macros, 9

Ribbon, 823

running macros, 16–18,

17–18
Word Ribbon editing groups,

814–819
Words method, 685

924 | WORDWRAP PROPERTY • ZOOMING AND ZOOM PROPERTY

bindex.indd 10:34:46:AM 07/26/2013 Page 924

WordWrap property, 350

Workbook object, 120, 172, 616

Workbook_Open procedure,

96–97
workbooks

ActiveWorkbook object,

626
closing, 624
creating, 617–618
OneNote, 638–639
opening, 622–624
options, 638
passwords, 638
protecting, 625
saving, 617–621
security, 638
sharing, 625
windows, 647–650

Workbooks collection, 173,

176, 616–617

Worksheet object, 172, 616

WorksheetFunction object,

650

worksheets, 626
ActiveSheet object, 631

cells. See cells

copying and moving,

628
creating, 618

deleting, 627, 628
Find and Replace feature,

650–653
inserting, 626–627
printing, 628–630
protecting, 630–631
shapes in, 653
transferring data to

documents, 789–792,

790
transferring document

data to, 792–795
undoing changes, 523

Workspace object, 747, 750

workspaces for databases, 753
wrap options in searches,

585–586

Wrap property, 584

Write event, 729

X
XlFileFormat values, 620

.xlsm fi le extension, 526, 815

.xlsx fi le extension, 526

XML (extensible markup

language), 814–816
case sensitivity, 819–820,

842

emergence, 10
special characters,

816–818
terminology, 820–821

XML buttons, 10

XOr operator, 257

xpos argument for input

boxes, 324

Y
y in date formats, 211

Yes/No format, 209

ypos argument for input

boxes, 324

Z
zero-based arrays, 148

zero-based collections, 177,

739–740

0 in number formats,

209

Zoom event, 423

zooming and Zoom property

UserForm and containers,

430–431
views, 600–601, 650,

667

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Part 1 Recording Macros and Getting Started with VBA���
	Chapter 1 Recording and Running Macros in the Office Applications��
	What Is VBA and What Can You Do with It?���
	The Difference between Visual Basic and Visual Basic for Applications��

	Understanding Macro Basics���������������������������������
	Recording a Macro������������������������
	Displaying the Developer Tab on the Ribbon���
	Planning the Macro�������������������������
	Starting the Macro Recorder����������������������������������
	Naming the Macro�����������������������
	Choosing How to Run a New Macro��������������������������������������

	Running a Macro����������������������
	Recording a Sample Word Macro������������������������������������
	Recording a Sample Excel Macro�������������������������������������
	Create a Personal Macro Workbook If You Don’t Have One Yet���
	Record the Macro�����������������������

	Specifying How to Trigger an Existing Macro��
	Assigning a Macro to a Quick Access Toolbar Button in Word���
	Assigning a Macro to a Shortcut Key Combination��

	Deleting a Macro�����������������������
	The Bottom Line����������������������

	Chapter 2 Getting Started with the Visual Basic Editor���
	Opening the Visual Basic Editor��������������������������������������
	Opening the Visual Basic Editor with a Macro Selected��
	Opening the Visual Basic Editor Directly���
	Navigating to a Macro����������������������������

	Using the Visual Basic Editor’s Main Windows���
	The Project Explorer���������������������������
	The Object Browser�������������������������
	The Code Window����������������������
	The Properties Window����������������������������
	The Immediate Window���������������������������

	Setting Properties for a Project���������������������������������������
	Customizing the Visual Basic Editor��
	Choosing Editor and View Preferences���
	Choosing and Laying Out the Editor Windows���
	Customizing the Toolbar and Menu Bar���
	Customizing the Toolbox������������������������������

	The Bottom Line����������������������

	Chapter 3 Editing Recorded Macros��
	Testing a Macro in the Visual Basic Editor���
	Stepping through a Macro�������������������������������
	Setting Breakpoints��������������������������
	Commenting Out Lines���������������������������
	Stepping Out of a Macro������������������������������

	Editing the Word Macro�����������������������������
	Stepping Through the Transpose_Word_Right Macro��
	Running the Transpose_Word_Right Macro���
	Creating a Transpose_Word_Left Macro���
	Save Your Work���������������������

	Editing the Excel Macro������������������������������
	Unhiding the Personal Macro Workbook���
	Opening the Macro for Editing������������������������������������
	Editing the Macro������������������������
	Save Your Work���������������������

	Editing a PowerPoint Macro���������������������������������
	Save Your Work���������������������

	The Bottom Line����������������������

	Chapter 4 Creating Code from Scratch in the Visual Basic Editor��
	Setting Up the Visual Basic Editor for Creating the Procedures���
	Creating a Procedure for Word������������������������������������
	Creating a Procedure for Excel�������������������������������������
	Creating a Procedure for PowerPoint��
	Creating a Procedure for Access��������������������������������������
	The Bottom Line����������������������

	Part 2 Learning How to Work with VBA���
	Chapter 5 Understanding the Essentials of VBA Syntax���
	Getting Ready��������������������
	Procedures�����������������
	Functions����������������
	Subprocedures��������������������

	Statements�����������������
	Keywords���������������
	Expressions������������������
	Operators����������������
	Variables����������������
	Constants����������������
	Arguments����������������
	Specifying Argument Names vs. Omitting Argument Names��
	When to Include the Parentheses around the Argument List���

	Objects��������������
	Collections������������������
	Properties�����������������
	Methods��������������
	Events�������������
	The Bottom Line����������������������

	Chapter 6 Working with Variables, Constants, and Enumerations��
	Working with Variables�����������������������������
	Choosing Names for Variables�����������������������������������
	Declaring a Variable���������������������������
	Choosing the Scope and Lifetime of a Variable��
	Specifying the Data Type for a Variable��

	Working with Constants�����������������������������
	Declaring Your Own Constants�����������������������������������
	Choosing the Scope and Lifetime for Your Constants���

	Working with Enumerations��������������������������������
	The Bottom Line����������������������

	Chapter 7 Using Array Variables��������������������������������������
	What Is an Array?������������������������
	Declaring an Array�������������������������
	Storing Values in an Array���������������������������������
	Multidimensional Arrays������������������������������
	Declaring a Dynamic Array��������������������������������
	Redimensioning an Array������������������������������
	Returning Information from an Array��
	Erasing an Array�����������������������
	Finding Out Whether a Variable Is an Array���
	Finding the Bounds of an Array�������������������������������������
	Sorting an Array�����������������������
	Searching through an Array���������������������������������
	Performing a Linear Search through an Array��
	Performing a Binary Search through an Array��

	The Bottom Line����������������������

	Chapter 8 Finding the Objects, Methods, and Properties You Need��
	What Is an Object?�������������������������
	The Benefits of OOP��������������������������
	Understanding Creatable Objects��������������������������������������
	Properties�����������������
	Methods��������������

	Working with Collections�������������������������������
	Working with an Object in a Collection���
	Adding an Object to a Collection���������������������������������������

	Finding the Objects You Need�����������������������������������
	Using the Macro Recorder to Add Code for the Objects You Need��
	Using the Object Browser�������������������������������
	Using the Auto List Members Feature��

	Using Object Variables to Represent Objects��
	Team Programming and OOP�������������������������������
	The Bottom Line����������������������

	Part 3 Making Decisions and Using Loops and Functions��
	Chapter 9 Using Built-in Functions���
	What Is a Function?��������������������������
	Using Functions����������������������
	Passing Arguments to a Function��������������������������������������

	Using Functions to Convert Data��������������������������������������
	Using the Asc Function to Return a Character Code��
	Using the Val Function to Extract a Number from the Start of a String��
	Using the Str Function to Convert a Number into a String���
	Using the Format Function to Format an Expression��
	Using the Chr Function and Constants to Enter Special Characters in a String���

	Using Functions to Manipulate Strings��
	Using the Left, Right, and Mid Functions to Return Part of a String��
	Using InStr and InStrRev to Find a String within Another String��
	Using LTrim, RTrim, and Trim to Remove Spaces from a String��
	Using Len to Check the Length of a String��
	Using StrConv, LCase, and UCase to Change the Case of a String���
	Using the StrComp Function to Compare Apples to Apples���

	Using VBA’s Mathematical Functions���
	Using VBA’s Date and Time Functions��
	Using the DatePart Function to Parse Dates���
	Using the DateDiff Function to Figure Out a Time Interval��
	Using the DateAdd Function to Add or Subtract Time from a Date���

	Using File-Management Functions��������������������������������������
	Using the Dir Function to Check Whether a File Exists��
	Returning the Current Path���������������������������������

	The Bottom Line����������������������

	Chapter 10 Creating Your Own Functions���
	Components of a Function�������������������������������
	Creating a Function��������������������������
	Starting a Function Manually�����������������������������������
	Starting a Function by Using the Add Procedure Dialog Box��
	Passing Arguments to a Function��������������������������������������
	Declaring the Data Types of Arguments��
	Specifying an Optional Argument��������������������������������������
	Controlling the Scope of a Function��

	Examples of Functions for Any VBA-Enabled Office Application���
	How Functions Return Information���������������������������������������
	Returning Text Data from a Function��

	Creating a Function for Word�����������������������������������
	Creating a Function for Excel������������������������������������
	Creating a Function for PowerPoint���
	Creating a Function for Access�������������������������������������
	The Bottom Line����������������������

	Chapter 11 Making Decisions in Your Code���
	How Do You Compare Things in VBA?��
	Testing Multiple Conditions by Using Logical Operators���
	If Blocks����������������
	If… Then���������������
	If… Then… Else Statements��������������������������������
	If… Then… ElseIf… Else Statements��
	Creating Loops with If and GoTo��������������������������������������
	Nesting If Blocks������������������������

	Select Case Blocks�������������������������
	Syntax�������������
	Example��������������
	When Order Matters�������������������������

	The Bottom Line����������������������

	Chapter 12 Using Loops to Repeat Actions���
	When Should You Use a Loop?����������������������������������
	Understanding the Basics of Loops��
	Using For… Loops for Fixed Repetitions���
	For… Next Loops����������������������
	For Each… Next Loops���������������������������
	Using an Exit For Statement����������������������������������

	Using Do… Loops for Variable Numbers of Repetitions��
	Do While… Loop Loops���������������������������
	Do… Loop While Loops���������������������������
	Do Until… Loop Loops���������������������������
	Do… Loop Until Loops���������������������������
	Using an Exit Do Statement���������������������������������
	Is the Exit Do Statement Bad Practice?���

	While… Wend Loops������������������������
	Nesting Loops��������������������
	Avoiding Infinite Loops������������������������������
	The Bottom Line����������������������

	Part 4 Using Message Boxes, Input Boxes, and Dialog Boxes��
	Chapter 13 Getting User Input with Message Boxes and Input Boxes���
	Opening a Procedure to Work On�������������������������������������
	Displaying Status Bar Messages in Word and Excel���
	Message Boxes��������������������
	The Pros and Cons of Message Boxes���
	Message Box Syntax�������������������������
	Displaying a Simple Message Box��������������������������������������
	Displaying a Multiline Message Box���
	Choosing Buttons for a Message Box���
	Choosing an Icon for a Message Box���
	Setting a Default Button for a Message Box���
	Controlling the Modality of a Message Box��
	Specifying a Title for a Message Box���
	Title Bars Can Provide Useful Information��
	Adding a Help Button to a Message Box��
	Specifying a Help File for a Message Box���
	Using Some Arguments without Others��
	Retrieving a Value from a Message Box��

	Input Boxes������������������
	Input Box Syntax�����������������������
	Retrieving Input from an Input Box���

	Forms: When Message Boxes and Input Boxes Won’t Suffice��
	The Bottom Line����������������������

	Chapter 14 Creating Simple Custom Dialog Boxes���
	When Should You Use a Custom Dialog Box?���
	Creating a Custom Dialog Box�����������������������������������
	Designing a Dialog Box�����������������������������
	Inserting a User Form����������������������������
	Renaming a User Form���������������������������
	Adding Controls to the User Form���������������������������������������
	Grouping Controls������������������������
	Renaming Controls������������������������
	Moving a Control�����������������������
	Changing the Caption on a Control��
	Key Properties of the Toolbox Controls���
	Working with Groups of Controls��������������������������������������
	Aligning Controls������������������������
	Placing Controls�����������������������
	Adjusting the Tab Order of a Form��

	Linking a Form to a Procedure������������������������������������
	Loading and Unloading a Form�����������������������������������
	Displaying and Hiding a Form�����������������������������������
	Setting a Default Command Button���������������������������������������

	Retrieving the User’s Choices from a Dialog Box��
	Returning a String from a Text Box���
	Returning a Value from an Option Button��
	Returning a Value from a Check Box���
	Returning a Value from a List Box��
	Returning a Value from a Combo Box���

	Examples of Connecting Forms to Procedures���
	Word Example: The Move-Paragraph Procedure���
	General Example: Opening a File from a List Box��
	Creating the Code for the User Form��

	Using an Application’s Built-in Dialog Boxes from VBA��
	Displaying a Built-in Dialog Box���������������������������������������
	Setting and Restoring Options in a Built-in Dialog Box���
	Which Button Did the User Choose in a Dialog Box?��
	Specifying a Time-Out for a Dialog Box���

	The Bottom Line����������������������

	Chapter 15 Creating Complex Forms��
	Creating and Working with Complex Dialog Boxes���
	Updating a Dialog Box to Reflect the User’s Choices��
	Revealing a Hidden Part of a Form��
	Tracking a Procedure in a Form�������������������������������������
	Using Multipage Dialog Boxes and Tab-Strip Controls��
	Creating a Modeless Dialog Box�������������������������������������
	Specifying a Form’s Location on Screen���

	Using Events to Control Forms������������������������������������
	Events Unique to the UserForm Object���
	Events That Apply to Both UserForms and Container Controls���
	Events That Apply to Many or Most Controls���
	Events That Apply Only to a Few Controls���

	The Bottom Line����������������������

	Part 5 Creating Effective Code�������������������������������������
	Chapter 16 Building Modular Code and Using Classes���
	Creating Modular Code����������������������������
	What Is Modular Code?����������������������������
	Advantages of Using Modular Code���������������������������������������
	How to Approach Creating Modular Code��
	Arranging Your Code in Modules�������������������������������������
	Calling a Procedure��������������������������
	Making Logical Improvements to Your Code���
	Making Visual Improvements to Your Code��

	Creating and Using Classes���������������������������������
	What Can You Do with Class Modules?��
	A Brief Overview of Classes����������������������������������
	Planning Your Class��������������������������
	Creating a Class Module������������������������������
	Naming the Class�����������������������
	Setting the Instancing Property��������������������������������������
	Declaring Variables and Constants for the Class��
	Adding Properties to the Class�������������������������������������
	Adding Methods to a Class��������������������������������
	Using Your Class�����������������������

	The Bottom Line����������������������

	Chapter 17 Debugging Your Code and Handling Errors���
	Principles of Debugging������������������������������
	The Different Types of Errors������������������������������������
	Language Errors����������������������
	Compile Errors���������������������
	Runtime Errors���������������������
	Program Logic Errors���������������������������

	VBA’s Debugging Tools����������������������������
	Break Mode�����������������
	The Step Over and Step Out Commands��
	The Locals Window������������������������
	The Watch Window�����������������������
	The Immediate Window���������������������������
	The Call Stack Dialog Box��������������������������������

	Dealing with Infinite Loops����������������������������������
	Dealing with Runtime Errors����������������������������������
	When Should You Write an Error Handler?��
	Trapping an Error������������������������
	Disabling an Error Trap������������������������������
	Resuming after an Error������������������������������
	Getting a Description of an Error��
	Raising Your Own Errors������������������������������

	Suppressing Alerts�������������������������
	Handling User Interrupts in Word, Excel, and Project���
	Disabling User Input While a Procedure Is Running��
	Disabling User Input While Part of a Procedure Is Running��

	Documenting Your Code����������������������������
	The Bottom Line����������������������

	Chapter 18 Building Well-Behaved Code��
	What Is a Well-Behaved Procedure?��
	Retaining or Restoring the User Environment��
	Leaving the User in the Best Position to Continue Working��
	Keeping the User Informed during the Procedure���
	Manipulating the Cursor������������������������������
	Displaying Information at the Beginning of a Procedure���
	Communicating with the User via a Message Box or Dialog Box at the End of a Procedure��
	Creating a Log File��������������������������

	Making Sure a Procedure Is Running under Suitable Conditions���
	Cleaning Up after a Procedure������������������������������������
	Undoing Changes the Procedure Has Made���
	Removing Scratch Files and Folders���

	The Bottom Line����������������������

	Chapter 19 Securing Your Code with VBA’s Security Features���
	Understanding How VBA Implements Security��
	Signing Your Macro Projects with Digital Signatures��
	What Is a Digital Certificate?�������������������������������������
	Getting a Digital Certificate������������������������������������

	Choosing a Suitable Level of Security��
	Understanding the Security Threats Posed by VBA��
	Protecting against Macro Viruses���������������������������������������
	Specifying a Suitable Security Setting���
	Additional Trust Center Settings���������������������������������������

	Locking Your Code������������������������
	The Bottom Line����������������������

	Part 6 Programming the Office Applications���
	Chapter 20 Understanding the Word Object Model and Key Objects���
	Examining the Word Object Model��������������������������������������
	Working with the Documents Collection and the Document Object��
	Creating a Document��������������������������
	Creating a Template��������������������������
	Saving a Document������������������������
	Opening a Document�������������������������
	Closing a Document�������������������������
	Changing a Document’s Template�������������������������������������
	Printing a Document��������������������������
	Working with the ActiveDocument Object���

	Working with the Selection Object��
	Checking the Type of Selection�������������������������������������
	Checking the Story Type of the Selection���
	Getting Other Information about the Current Selection��
	Inserting Text at, after, or before the Selection��
	Inserting a Paragraph in a Selection���
	Applying a Style�����������������������
	Extending a Selection����������������������������
	Collapsing a Selection�����������������������������

	Creating and Using Ranges��������������������������������
	Defining a Named Range�����������������������������
	Redefining a Range�������������������������
	Using the Duplicate Property to Store or Copy Formatting���

	Manipulating Options���������������������������
	Making Sure Hyperlinks Require Ctrl+Clicking���
	Turning Off Overtype���������������������������
	Setting a Default File Path����������������������������������
	Turning Off Track Changes��������������������������������
	Accessing OneNote������������������������

	The Bottom Line����������������������

	Chapter 21 Working with Widely Used Objects in Word��
	Using Find and Replace via VBA�������������������������������������
	Understanding the Syntax for the Execute Method��
	Putting Find and Replace to Work���������������������������������������

	Working with Headers, Footers, and Page Numbers��
	Understanding How VBA Implements Headers and Footers���
	Getting to a Header or Footer������������������������������������
	Checking to See If a Header or Footer Exists���
	Linking to the Header or Footer in the Previous Section��
	Creating a Different First-Page Header���
	Creating Different Odd- and Even-Page Headers��
	Adding Page Numbers to Your Headers and Footers��

	Working with Sections, Page Setup, Windows, and Views��
	Adding a Section to a Document�������������������������������������
	Changing the Page Setup������������������������������
	Opening a New Window Containing an Open Document���
	Closing All Windows for a Document Except the First��
	Splitting a Window�������������������������
	Displaying the Document Map for a Window���
	Scrolling a Window�������������������������
	Arranging Windows������������������������
	Positioning and Sizing a Window��������������������������������������
	Making Sure an Item Is Displayed in the Window���
	Changing a Document’s View���������������������������������
	Switching to Read Mode�����������������������������
	Zooming the View to Display Multiple Pages���

	Working with Tables��������������������������
	Creating a Table�����������������������
	Selecting a Table������������������������
	Converting Text to a Table���������������������������������
	Ensuring That a Selection Is within a Table��
	Finding Out Where a Selection Is within a Table��
	Sorting a Table����������������������
	Adding a Column to a Table���������������������������������
	Deleting a Column from a Table�������������������������������������
	Setting the Width of a Column������������������������������������
	Selecting a Column�������������������������
	Adding a Row to a Table������������������������������
	Deleting a Row from a Table����������������������������������
	Setting the Height of One or More Rows���
	Selecting a Row����������������������
	Inserting a Cell�����������������������
	Returning the Text in a Cell�����������������������������������
	Entering Text in a Cell������������������������������
	Deleting Cells���������������������
	Selecting a Range of Cells���������������������������������
	Converting a Table or Rows to Text���

	The Bottom Line����������������������

	Chapter 22 Understanding the Excel Object Model and Key Objects��
	Getting an Overview of the Excel Object Model��
	Understanding Excel’s Creatable Objects��
	Managing Workbooks�������������������������
	Creating a Workbook��������������������������
	Saving a Workbook������������������������
	Accessing Cloud Storage������������������������������
	Opening a Workbook�������������������������
	Closing a Workbook�������������������������
	Sharing a Workbook�������������������������
	Protecting a Workbook����������������������������
	Working with the ActiveWorkbook Object���

	Working with Worksheets������������������������������
	Inserting a Worksheet����������������������������
	Deleting a Worksheet���������������������������
	Copying or Moving a Worksheet������������������������������������
	Printing a Worksheet���������������������������
	Protecting a Worksheet�����������������������������
	Working with the ActiveSheet Object��

	Working with the Active Cell or Selection��
	Working with the Active Cell�����������������������������������
	Working with the User’s Selection��

	Working with Ranges��������������������������
	Working with a Range of Cells������������������������������������
	Creating a Named Range�����������������������������
	Deleting a Named Range�����������������������������
	Working with a Named Range���������������������������������
	Working with the Used Range����������������������������������
	Working with the Special Cells�������������������������������������
	Entering a Formula in a Cell�����������������������������������

	Setting Options����������������������
	Setting Options in the Application Object��
	Setting Options in a Workbook������������������������������������
	Accessing OneNote������������������������

	The Bottom Line����������������������

	Chapter 23 Working with Widely Used Objects in Excel���
	Working with Charts��������������������������
	Creating a Chart�����������������������
	Specifying the Source Data for the Chart���
	Specifying the Chart Type��������������������������������
	Working with Series in the Chart���������������������������������������
	Adding a Legend to the Chart�����������������������������������
	Adding a Chart Title���������������������������
	Working with a Chart Axis��������������������������������
	Formatting Headers and Footers�������������������������������������

	Working with Windows���������������������������
	Opening a New Window on a Workbook���
	Closing a Window�����������������������
	Activating a Window��������������������������
	Arranging and Resizing Windows�������������������������������������
	Zooming a Window and Setting Display Options���

	Working with Find and Replace������������������������������������
	Searching with the Find Method�������������������������������������
	Continuing a Search with the FindNext and FindPrevious Methods���
	Replacing with the Replace Method��
	Searching for and Replacing Formatting���

	Adding Shapes��������������������
	The Bottom Line����������������������

	Chapter 24 Understanding the PowerPoint Object Model and Key Objects���
	Getting an Overview of the PowerPoint Object Model���
	Understanding PowerPoint’s Creatable Objects���
	Working with Presentations���������������������������������
	Creating a New Presentation Based on the Default Template��
	Creating a New Presentation Based on a Template��
	Opening an Existing Presentation���������������������������������������
	Opening a Presentation from the Cloud��
	Saving a Presentation����������������������������
	Closing a Presentation�����������������������������
	Exporting a Presentation or Some Slides to Graphics��
	Printing a Presentation������������������������������
	Applying a Template to a Presentation, to a Slide, or to a Range of Slides���
	Working with the Active Presentation���

	Working with Windows and Views�������������������������������������
	Working with the Active Window�������������������������������������
	Opening a New Window on a Presentation���
	Closing a Window�����������������������
	Activating a Window��������������������������
	Arranging and Resizing Windows�������������������������������������
	Changing the View������������������������
	Working with Panes�������������������������

	Working with Slides��������������������������
	Adding a Slide to a Presentation���������������������������������������
	Inserting Slides from an Existing Presentation���
	Finding a Slide by Its ID Number���������������������������������������
	Changing the Layout of an Existing Slide���
	Deleting an Existing Slide���������������������������������
	Copying and Pasting a Slide����������������������������������
	Duplicating a Slide��������������������������
	Moving a Slide���������������������
	Accessing a Slide by Name��������������������������������
	Working with a Range of Slides�������������������������������������
	Formatting a Slide�������������������������
	Setting a Transition for a Slide, a Range of Slides, or a Master���

	Working with Masters���������������������������
	Working with the Slide Master������������������������������������
	Working with the Title Master������������������������������������
	Working with the Handout Master��������������������������������������
	Working with the Notes Master������������������������������������
	Deleting a Master������������������������

	The Bottom Line����������������������

	Chapter 25 Working with Shapes and Running Slide Shows���
	Working with Shapes��������������������������
	Adding Shapes to Slides������������������������������
	Deleting a Shape�����������������������
	Selecting All Shapes���������������������������
	Repositioning and Resizing a Shape���
	Copying Formatting from One Shape to Another���
	Working with Text in a Shape�����������������������������������
	Animating a Shape or a Range of Shapes���

	Working with Headers and Footers���������������������������������������
	Returning the Header or Footer Object You Want���
	Displaying or Hiding a Header or Footer Object���
	Setting the Text in a Header or Footer���
	Setting the Format for Date and Time Headers and Footers���

	Setting Up and Running a Slide Show��
	Controlling the Show Type��������������������������������
	Creating a Custom Show�����������������������������
	Deleting a Custom Show�����������������������������
	Starting a Slide Show����������������������������
	Changing the Size and Position of a Slide Show���
	Moving from Slide to Slide���������������������������������
	Pausing the Show and Using White and Black Screens���
	Starting and Stopping Custom Shows���
	Exiting a Slide Show���������������������������

	The Bottom Line����������������������

	Chapter 26 Understanding the Outlook Object Model and Key Objects��
	Getting an Overview of the Outlook Object Model��
	Understanding Where Outlook Stores VBA Macros��
	Understanding Outlook’s Most Common Creatable Objects��

	Working with the Application Object��
	Working with the NameSpace Object��
	Working with Inspectors and Explorers��
	Understanding Inspectors and Explorers���
	Creating Items���������������������
	Quitting Outlook�����������������������

	Understanding General Methods for Working with Outlook Objects���
	Using the Display Method�������������������������������
	Using the Close Method�����������������������������
	Using the Delete Method������������������������������
	Using the PrintOut Method��������������������������������
	Using the Save Method����������������������������
	Using the SaveAs Method������������������������������

	Working with Messages����������������������������
	Creating a New Message�����������������������������
	Working with the Contents of a Message���
	Adding an Attachment to a Message��
	Sending a Message������������������������

	Working with Calendar Items����������������������������������
	Creating a New Calendar Item�����������������������������������
	Working with the Contents of a Calendar Item���

	Working with Tasks and Task Requests���
	Creating a Task����������������������
	Working with the Contents of a Task Item���
	Assigning a Task to a Colleague��������������������������������������

	Searching for Items��������������������������
	The Bottom Line����������������������

	Chapter 27 Working with Events in Outlook��
	Working with Application-Level Events��
	Using the Startup Event������������������������������
	Using the Quit Event���������������������������
	Using the ItemSend Event�������������������������������
	Using the NewMail and NewMailEx Events���
	Using the AdvancedSearchComplete and the AdvancedSearchStopped Events��
	Using the MAPILogonComplete Event��
	Using the Reminder Event�������������������������������
	Using the OptionsPagesAdd Event��������������������������������������

	Working with Item-Level Events�������������������������������������
	Declaring an Object Variable and Initializing an Event���
	Understanding the Events That Apply to All Message Items���
	Understanding the Events That Apply to Explorers, Inspectors, and Views��
	Understanding the Events That Apply to Folders���
	Understanding the Events That Apply to Items and Results���
	Understanding the Events That Apply to Reminders���
	Understanding the Events That Apply to Synchronization���

	Understanding Quick Steps��������������������������������
	The Bottom Line����������������������

	Chapter 28 Understanding the Access Object Model and Key Objects���
	Getting Started with VBA in Access���
	Creating a Module in the VBA Editor��
	Creating a Function��������������������������
	Using the Macro Builder������������������������������
	Creating an Access-Style Macro to Run a Function���
	Translating an Access-Style Macro into a VBA Macro���
	Using an AutoExec Macro to Initialize an Access Session��
	Running a Subprocedure�����������������������������
	Understanding the Option Compare Database Statement��

	Getting an Overview of the Access Object Model���
	Understanding Creatable Objects in Access��
	Opening and Closing Databases������������������������������������
	Using the CurrentDb Method to Return the Current Database��
	Closing the Current Database and Opening a Different Database��
	Opening Multiple Databases at Once���
	Closing a Database�������������������������
	Creating and Removing Workspaces���������������������������������������

	Working with the Screen Object�������������������������������������
	Using the DoCmd Object to Run Access Commands��
	Using the OpenForm Method to Open a Form���
	Using the PrintOut Method to Print an Object���
	Using the RunMacro Method to Run an Access-Style Macro���

	The Bottom Line����������������������

	Chapter 29 Manipulating the Data in an Access Database via VBA���
	Understanding How to Proceed�����������������������������������
	Preparing to Manage the Data in a Database���
	Adding a Reference to the Appropriate Object Library���
	Establishing a Connection to the Database��

	Opening a Recordset��������������������������
	Opening a Recordset Using ADO������������������������������������
	Choosing How to Access the Data in an ADO Recordset��

	Accessing a Particular Record in a Recordset���
	Using the MoveFirst, MoveNext, MovePrevious, and MoveLast Methods��
	Using the Move Method to Move by Multiple Records��

	Searching for a Record�����������������������������
	Searching for a Record in an ADO Recordset���
	Searching for a Record in a DAO Recordset��

	Returning the Fields in a Record���������������������������������������
	Editing a Record�����������������������
	Inserting and Deleting Records�������������������������������������
	Closing a Recordset��������������������������
	Saving a Recordset to the Cloud��������������������������������������
	The Bottom Line����������������������

	Chapter 30 Accessing One Application from Another Application��
	Understanding the Tools Used to Communicate between Applications���
	Using Automation to Transfer Information���
	Understanding Early and Late Binding���
	Creating an Object with the CreateObject Function��
	Returning an Object with the GetObject Function��
	Examples of Using Automation with the Office Applications��

	Using the Shell Function to Run an Application���
	Using Data Objects to Store and Retrieve Information���
	Creating a Data Object�����������������������������
	Storing Information in a Data Object���
	Returning Information from a Data Object���
	Assigning Information to the Clipboard���
	Returning Information from the Clipboard to a Data Object��
	Finding Out Whether a Data Object Contains a Given Format��

	Communicating via DDE����������������������������
	Using DDEInitiate to Start a DDE Connection��
	Using DDERequest to Return Text from Another Application���
	Using DDEPoke to Send Text to Another Application��
	Using DDEExecute to Have One Application Execute a Command in Another��
	Using DDETerminate to Close a DDE Channel��
	Using DDETerminateAll to Close All Open DDE Channels���

	Communicating via SendKeys���������������������������������
	The Bottom Line����������������������

	Chapter 31 Programming the Office 2013 Ribbon��
	What Is XML?�������������������
	Hiding the Editing Group on the Word Ribbon��
	A Word of Warning������������������������
	XML Terminology����������������������
	Using Built-In Icons���������������������������

	Working with Excel and PowerPoint��
	Undoing Ribbon Modifications�����������������������������������
	Selecting the Scope of Your Ribbon Customization���
	Adding a New Group�������������������������
	Cautions about Customizing���������������������������������
	Two Ways to Find the Correct idMso���

	Adding Callbacks�����������������������
	Adding Attributes������������������������
	Using Built-In Icons and ScreenTips��
	Creating Your Own Icons������������������������������

	Using Menus and Lists����������������������������
	Adding Menus�������������������
	Adding a DropDown List Control�������������������������������������
	Using a DialogBoxLauncher��������������������������������

	Toggling with a Toggle Button Control��
	Modifying the Ribbon in Access�������������������������������������
	Testing Your New Ribbon������������������������������

	Adding a Callback in Access����������������������������������
	What to Look For If Things Go Wrong��
	Employ Error Message Tools���������������������������������
	Cure Common User Interface Programming Problems��

	Where to Go from Here����������������������������
	The Bottom Line����������������������

	Appendix The Bottom Line
	Chapter 1: Recording and Running Macros in the Office Applications���
	Chapter 2: Getting Started with the Visual Basic Editor��
	Chapter 3: Editing Recorded Macros���
	Chapter 4: Creating Code from Scratch in the Visual Basic Editor���
	Chapter 5: Understanding the Essentials of VBA Syntax��
	Chapter 6: Working with Variables, Constants, and Enumerations���
	Chapter 7: Using Array Variables���������������������������������������
	Chapter 8: Finding the Objects, Methods, and Properties You Need���
	Chapter 9: Using Built-in Functions��
	Chapter 10: Creating Your Own Functions��
	Chapter 11: Making Decisions in Your Code��
	Chapter 12: Using Loops to Repeat Actions��
	Chapter 13: Getting User Input with Message Boxes and Input Boxes��
	Chapter 14: Creating Simple Custom Dialog Boxes��
	Chapter 15: Creating Complex Forms���
	Chapter 16: Building Modular Code and Using Classes��
	Chapter 17: Debugging Your Code and Handling Errors��
	Chapter 18: Building Well-Behaved Code���
	Chapter 19: Securing Your Code with VBA’s Security Features��
	Chapter 20: Understanding the Word Object Model and Key Objects��
	Chapter 21: Working with Widely Used Objects in Word���
	Chapter 22: Understanding the Excel Object Model and Key Objects���
	Chapter 23: Working with Widely Used Objects in Excel��
	Chapter 24: Understanding the PowerPoint Object Model and Key Objects��
	Chapter 25: Working with Shapes and Running Slide Shows��
	Chapter 26: Understanding the Outlook Object Model and Key Objects���
	Chapter 27: Working with Events in Outlook���
	Chapter 28: Understanding the Access Object Model and Key Objects��
	Chapter 29: Manipulating the Data in an Access Database via VBA��
	Chapter 30: Accessing One Application from Another Application���
	Chapter 31: Programming the Office 2013 Ribbon���

	Index������������

