Steven F. Daniel

VENEdale

Xamarin Ul
Development

Build stunning, maintainable, cross-platform mobile
application user interfaces with the power of Xamarin

L] Packty

Mastering Xamarin UI Development

Table of Contents

Mastering Xamarin Ul Development
Credits

About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Why subscribe?
Customer Feedback
Dedication
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Creating the TrackMyWalks Native App

Creating the TrackMyWalks solution

Updating the TrackMyWalks solution packages
Creating the TrackMyWalks model
Creating the walks main page
Creating the new walk entry content page
Creating the walk trail content page

Adding the Xamarin.Forms.Maps NuGet package
Creating the DistanceTravelledPage content page
Creating the Splash screen content page

Updating the Xamarin.Forms App class
Differences between Xamarin Studio and Visual Studio
Running the TrackMyWalks app using the simulator
Summary

2. MVVM and Data Binding

Understanding the MVVM pattern architecture
Implementing the MVVM ViewModels within your app
Creating the WalkBaseViewModel for the TrackMyWalks app
Implementing the WalksPageViewModel

Updating the walks main page to use the MVVM model

Implementing the walks entry page ViewModel

Updating the WalksEntryPage to use the MVVM model
Implementing the walk trail page ViewModel

Updating the WalksTrailPage to use the MVVM model
Implementing the DistanceTravelled ViewModel

Updating the DistanceTravelledPage to use the MVVM model

Summary
3. Navigating within the MVVM Model - The Xamarin.Forms Way

Understanding the Xamarin.Forms Navigation API

Differences between the navigation and ViewModel approaches

Implementing the navigation service within your app
Creating the navigation service interface for the TrackMyWalks app
Creating a navigation service to navigate within our ViewMaodels
Updating the WalkBaseViewModel to use our navigation service

Updating the walks main page ViewModel and navigation service
Updating the walks main page to use the updated ViewModel

Updating the walks entry page ViewModel and navigation service
Updating the WalksEntryPage to use the updated ViewModel
Updating the walks trail page ViewModel and navigation service
Updating the WalksTrailPage to use the updated ViewModel
Updating the distance travelled ViewModel and navigation service
Updating the DistanceTravelledPage to use the updated ViewModel
Updating the Xamarin.Forms.App class to use the navigation service

Summary

4. Adding Location-Based Features within Your App

Creating and using platform-specific services

Creating the Location Service Interface for the TrackMyWalks app

Creating the Location Service class for the Android platform
Creating the Location Service class for the iOS platform
Enabling background updates and getting the user's current location

Updating the WalkEntryViewModel to use the location service
Updating the DistanceTravelled ViewModel to use the location service

Updating the SplashPage to register our ViewModels

Updating the MainActivity class to use Xamarin.Forms.Maps
Updating the Xamarin.Forms App class to use platform specifics

Summary
5. Customizing the User Interface

Creating the DataTemplate class for the TrackMyWalks app
Updating the walks main page to use the data template
Creating a TableView EntryCell custom picker for the iOS platform

Creating the custom picker renderer class for the iOS platform
Updating the WalksEntryPage to use the custom picker renderer

Creating PlatformEffects using the Effects API for the iOS platform

Creating PlatformEffects using the Effects API for the Android platform

Implementing value converters within the TrackMyWalks app

Updating the WalkBaseViewModel to use our Boolean converter
Updating the WalksPageViewModel to use our Boolean converter
Updating the walks main page to use the updated ViewModel
Updating the WalksTrailPage to use the updated ViewModel
Updating the DistanceTravelledPage to use the updated ViewModel
Updating the WalkCellDataTemplate class to use PlatformEffects

Summary

6. Working with Razor Templates
Understanding the Razor template engine
Creating and implementing Razor templates within Xamarin Studio

Adding the SQLite.Net package to the BookLibrary solution
Creating and implementing the book library database model

Creating and implementing the book database wrapper
Creating and implementing the BookLibrary database wrapper

Creating and implementing the book listing main page
Creating and implementing the BookLibraryAdd Razor template

Creating and implementing the BookLibraryEdit Razor template
Creating and implementing the WebView Controller class
Updating the book library Cascading Style Sheet (CSS)

Summary
7. Incorporating API Data Access Using Microsoft Azure App Services

Setting up our TrackMyWalks app using Microsoft Azure
Adding the Json.Net NuGet package to the TrackMyWalks app
Adding the HttpClient NuGet package to the TrackMyWalks app
Updating the WalkEntries model to use the Json.Net framework
Creating the HTTP web service class for the TrackMyWalks app
Creating the DataService API for the TrackMyWalks app
Creating the DataService API class for the TrackMyWalks app
Updating the WalkBaseViewModel to use our DataService API
Updating the WalkEntryViewModel to use our DataService API
Updating the WalksPageViewModel to use our DataService API
Updating the WalksPage to use the updated ViewModel
Updating the custom picker renderer class for the iOS platform
Updating the WalksEntryPage to use the updated custom picker
Summary
8. Making Our App Social - Using the Facebook API
Setting up and registering the TrackMyWalks app with Facebook
Adding the Xamarin.Auth NuGet package to the TrackMyWalks app
Adding the FaceBook SDK library to the TrackMyWalks app
Creating a Facebook user model for the TrackMyWalks app
Creating a FacebookCredentials class for the TrackMyWalks app
Creating the Facebook Sign In to use within our TrackMyWalks app
Creating the Facebook Sign In Class for TrackMyWalks (iOS) app
Updating the NavigationService Interface for the TrackMyWalks app

Updating the NavigationService class for the TrackMyWalks app
Updating the WalksPage to properly handle Facebook Sign In

Updating the WalksPage ViewModel to use our FaceBookApiUser

Updating the DistanceTravelledPage for the TrackMyWalks app

Updating the Xamarin.Forms App class to handle Facebook Sign In
Enabling Facebook functionality within the TrackMyWalks app
Summary
9. Unit Testing Your Xamarin.Forms Apps Using the NUnit and UlTest Frameworks
Creating a unit test solution folder using Xamarin Studio
Creating a unit test project using Xamarin Studio

Adding the Mog NuGet package to the unit test project
Adding the TrackMyWalks project to TrackMyWalks.UnitTests

Creating and implementing the WalksTrail ViewModel NUnit test class
Creating and implementing the WalkEntryViewModel NUnit test class
Running the TrackMyWalks.UnitTests using Xamarin Studio
Creating a Ul test project using Xamarin Studio
Understanding the commonly used UlTest methods
Setting up and initializing our TrackMyWalks app for UlTest
Implementing the CreateNew WalkEntry using the UlTest.Framework
Adding the Xamarin Test Cloud Agent to the iOS project
Updating the TrackMyWalks AppDelegate class to handle Xamarin Test Cloud Agent
Running the TrackMyWalks UlTests using Xamarin Studio
Summary

10. Packaging and Deploying Your Xamarin.Forms Applications
Creating and setting up your iOS development team

Creating the TrackMyWalks iOS development certificate

Obtaining the iOS development certificate from Apple
Creating the App ID for the TrackMyWalks (iOS) application

Creating the TrackMyWalks development provisioning profile
Preparing the TrackMyWalks (iOS) app for submission

Submitting the TrackMyWalks (iOS) app to iTunes Connect using Xamarin Studio
Summary

Mastering Xamarin UI Development

Mastering Xamarin UI Development

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: January 2017
Production reference: 1130117
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-200-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

Steven F. Daniel

Copy Editor

Safis Editing

Reviewers
Lance McCarthy

Engin Polat

Project Coordinator

Izzat Contractor

Commissioning Editor

Proofreader

Amarabha Banerjee Safis Editing
Acquisition Editor Indexer

Shweta Pant Tejal Daruwale Soni
Content Development Editor)|Graphics

Priyanka Mehta Abhinash Sahu
Technical Editor Production Coordinator]
Abhishek Sharma Deepika Naik

e IR EE—S——————E—————.

About the Author

Steven F. Daniel is the CEO and founder of GENIESOFT STUDIOS, a software development
company based in Melbourne, Victoria, that focuses primarily on developing games and business
applications for the iOS, Android, and Mac OS X platforms. He is an experienced software
developer with more than 17 years of experience in developing desktop and web-based
applications for several companies and startups.

Steven is extremely passionate about making people employable by helping them bridge the gap
between using their existing skills in iOS, Android, and Xamarin to get the job done. To achieve
this, he writes books to help novice and advanced programmers succeed within the industry.
Steven is extremely passionate about, and loves being at the forefront of, technology. He is a
member of the SQL Server Special Interest Group (SQLSIG), Melbourne CocoaHeads, and the
Java Community. He was the cofounder and Chief Technology Officer (CTO) at SoftMpire Pty
Ltd., a company that is focused primarily on developing business applications for the iOS and
Android platforms.

Steven is the author of various book titles, some of which are as follows:

Apple Watch App Development

Android Wearable Programming

Xcode 4 Cookbook

iPad Enterprise Application Development Blueprints
iOS 5 Essentials

Xcode 4 iOS Development Beginner’s Guide

Check out his blog at http://www.geniesoftstudios.com/blog/, or follow him on twitter at
http://twitter.com/GenieSoftStudio.

http://www.geniesoftstudios.com/blog/
http://twitter.com/GenieSoftStudio

Acknowledgments

No book is the product of just the author; he just happens to be the one with his name on the cover.
Several people contributed to the success of this book, and it would take more space than
thanking each one individually.

I would personally like to thank three special people who have been an inspiration and who have
provided me with so much support during the writing of this book, Reshma Raman, my Senior
Acquisition Editor, who is the reason that this book exists; Shweta Pant, my Acquisition Editor;
and Priyanka Mehta for her understanding and support, as well as her brilliant suggestive
approaches during the chapter rewrites. I would like to thank each of you for everything, and
making the writing process enjoyable.

Lastly, to my reviewers, thank you so much for your valued suggestions and improvements to
make this book what it is; I am truly grateful to each one of you.

Thank you also to the entire PACKT Publishing team for working so diligently to help bring out a
high-quality product. Finally, a big shout out to the engineers at Xamarin, Inc. for creating
Xamarin Studio and the Mono Platform to provide developers with the tools to create fun and
sophisticated applications with the power of Xamarin.Forms.

Finally, I would like to thank all my friends for their support, understanding, and encouragement
during the book writing process. I am extremely grateful to have you as my friends, and it is a
privilege to know each one of you.

About the Reviewers

Lance McCarthy is an exceptional community leader with an acute expertise for all things .NET
and C#, especially on the XAML stack, including WPF, Silverlight, Windows Phone, and
Windows store apps. He is very helpful online, guiding and answering questions from Microsoft
developers on Twitter as @lancewmccarthy; he blogs on his own time as well, with a strong
focus on Windows Universal apps, at WinPlatform.wordpress.com. He organizes and hosts events
in the Boston area, such as user group nights, mini-code camps, and full hackathons.

During the day, Lance is a senior technical support engineer at Telerik, where he supports
developers with their Classic Windows, Universal Windows, web and mobile (Xamarin,
Android and iOS native) application development.

On the side, Lance writes blog posts for blogs.windows.com/buildingapps/, creates resources for
developers (tutorials, sample source code, tips of the week, and so on), and helps the developer
community in any way possible.

Previously, Lance worked for Nokia and Microsoft as a Developer Ambassador, where he sought
out and engaged developers through outreach programs and provides them with technical support
and resources to make them successful on the Windows platforms.

Lance was also an assistant professor at Harvard University, helping students build, market, and
publish successful Windows Phone apps. He has also appeared on podcasts, such as the Windows
Developer Show, has been a technical editor for publications and books, has won several app
building contests and hackathons (including first place in the Microsoft Build 2013 hackathon),
and is a published developer with over a million downloads in the Windows Store.

Some of the books that he has reviewed are as follows:

e Netdunio Home Automation Projects by Matt Cavanaugh
e Mastering Cross-Platform Development with Xamarin by Can Bilgin
¢ Begin to Code with C# by Rob Miles

Engin Polat has been involved in many large and medium-scale projects on .NET technologies as
a developer, architect, and consulting, and he has won many awards since 1999. Since 2008, he
has been training many large enterprises in Turkey on Windows development, web development,
distributed application development, software architecture, mobile development, cloud
development, and so on. Apart from this, he organizes seminars and events in many universities in
Turkey about .NET technologies, Windows platform development, cloud development, web
development, game development, and so on. He shares his experiences on his personal blog
(http://www.enginpolat.com). He has MCP, MCAD, MCSD, MCDBA, and MCT certifications.
Since 2012, he is recognized as a Windows Development MVP by Microsoft; since 2017, he is
recognized as a Visual Studio and Development Technologies MVP too. Between 2013 and 2015,

https://winplatform.wordpress.com/
https://blogs.windows.com/buildingapps/
http://www.enginpolat.com

he was recognized as a Nokia Developer Champion-very few people in the world are given this
award. Since 2015, he has been recognized as a Regional Director by Microsoft.

He has reviewed a few books for Packt, some of which are as follows:

e Mastering Cross-Platform Development with Xamarin
e Xamarin Blueprints
e Xamarin 4 by Example

I'd like to thank my dear wife, Yeliz, and my beautiful daughter, Melis Ada, for all the
support they gave me while I was working on this book project.

I also want to extend a warm welcome to the newest member of my family, my dear son,
Utku Ege.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

A Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books

and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thank you for purchasing this Packt book. We take our commitment to improving our content and
products to meet your needs seriously-that's why your feedback is so valuable. Whatever your
feelings about your purchase, please consider leaving a review on this book's Amazon page. Not
only will this help us, more importantly it will also help others in the community to make an
informed decision about the resources that they invest in to learn. You can also review for us on a
regular basis by joining our reviewers' club. If you're interested in joining, or would like to
learn more about the benefits we offer, please contact us: customerreviews@packtpub.com.

Dedication

To my favorite uncle, Benjamin Jacob Daniel, thank you for always making me smile and
for inspiring me to work hard and achieve my dreams; you are a true inspiration and I
couldn’t have done this without your love, support, and guidance. Thank you.

As always, to Chan Ban Guan, for the continued patience, encouragement, and support,
and most of all for believing in me during the writing of this book. I would like to thank
my family for their continued love and support, and for always believing in me throughout
the writing of this book.

This book would not have been possible without your love and understanding and I would
like to thank you from the bottom of my heart.

Preface

Xamarin is the most powerful cross-platform mobile development framework. If you are
interested in creating stunning user interfaces for the iOS and Android mobile platforms using the
power of Xamarin and Xamarin.Forms, then this is your ticket.

This book will provide you with the practical skills required to develop real-world Xamarin
applications. You will learn how to implement user interface structures and layouts, create
customized elements, and write C# scripts to customize layouts. You’ll learn how to create User
Interface layouts from scratch and customize these layouts to suit your needs by using Data
Templates and Custom Renderers.

You’ll be introduced to the architecture behind the Model-View-ViewModel (MVVM) pattern,
and how to implement this within your application so that you can navigate between each of your
ViewModels and ContentPages.

We will then move on to discuss more advanced topics, such as how to incorporate platform-
specific features within your apps that are dependent on the mobile platform being run, and you
will learn how to properly perform location updates, whether the application's state is in the
foreground or background, by registering the app as a background-necessary application.

We discuss more advanced topics, such as working with Microsoft Azure App services to create
your very first cloud-based backend HTTP web service to handle communication between the
cloud and the app, by creating a DataService API that will allow our app to consume the API so
that it can retrieve, store, and delete walk trail information from the cloud.

We will also cover how you can work with the Facebook SDK to incorporate social networking
features to obtain information about a Facebook user, as well as post information to their
Facebook wall and use the Open Graph API to retrieve certain information about the user.

Moving on, you will learn how to use third-party libraries, such as the Razor template engine,
which allows you to create your own HTMLS5 templates, within the Xamarin Studio environment
to build a book library Hybrid solution that uses the SQLite.Net library to store, update, retrieve,
and delete information within a SQLite local database. You’ll also implement key data binding
techniques that will make your user interfaces dynamic and create personalized animations and
visual effects within your user interfaces using custom renderers and the PlatformEffects API to
customize and change the appearance of control elements.

At the end of this book, you will learn how to create and run unit tests using the NUnit and UlTest
testing frameworks right within the Xamarin Studio IDE. You'll learn how to write unit tests for
your ViewModels that will essentially test the business logic to validate that everything is
working correctly, before moving on to test the user interface portion using automated UI testing.

In this book, I have tried my best to keep the code simple and easy to understand by providing a

step-by-step approach, with lots of screenshots at each step to make it easier to follow. You will
soon master the different aspects of Xamarin.Forms, and the technology and skills needed to
create your own applications for the Xamarin.Forms platform.

Feel free to contact me at support@geniesoftstudios.com with any queries, or just drop me an e-
mail to say a friendly "Hello".

What this book covers

Chapter 1, Creating the TrackMyWalks Native App, focuses on how to set up a basic cross-
platform native app structure using Xamarin.Forms before proceeding with adding new, and
updating existing, packages within your solution.

You’ll learn how to create C# classes that will act as the model for our app, and will create
content pages that will form the user interface. We will also cover the differences between
developing apps using Xamarin Studio and Microsoft Visual Studio.

Chapter 2, MVVM and Data Binding, introduces you to the architecture behind the MVVM
pattern, and how you can implement this within your application by adding new Views and the
associated Models.

You’ll learn how to create the underlying C# class files that will act as the ViewModels for your
app, and update existing content pages to data-bind with the ViewModels to represent the
information that will be displayed within the user interface for our application.

Chapter 3, Navigating within the MVVM Model - The Xamarin.Forms Way, builds upon your
working knowledge of the MVVM design pattern architecture to show you how you can navigate
through the ViewModels by creating a C# class that acts as the navigation service for our app, and
updates our existing WalkBase ViewModel class to include additional abstract class methods each
of our ViewModels will inherit; in turn, you'll update content pages to bind with the ViewModels
to allow navigation between these Views to happen.

Chapter 4, Adding Location-Based Features within Your App, focuses on how you can
incorporate platform-specific features within the TrackMyWalks app, which is dependent on the
mobile platform, by creating a location service C# class that will include several class methods
for both the iOS and Android platforms.

You’ll learn how to properly perform location updates whether the application's state is in the
foreground or background by registering the app as a background-necessary application.

Chapter 5, Customizing the User Interface, shows you how you can work with DataTemplates to
lay out your views neatly within your applications user interface by creating a C# class. You’ll
get accustomed to working with platform-specific APIs to extend the default behavior of
Xamarin.Forms controls using custom renderers to create a custom picker, before moving on to
learn how to use the Xamarin.Forms Effects API to customize the appearance and styling of native
control elements for each platform by implementing a CustomRenderer class.

Finally, you will learn how to manipulate the visual appearance of data bound using value and
image converters.

Chapter 6, Working with Razor Templates, introduces you to the Razor HTML templating engine,

and how you can use it to create a hybrid mobile solution. You'll learn how to build a book
library mobile solution using the power of Razor templates, how to create and use models within
your application, and how to connect this up to a SQLite database to store, retrieve, update, and
delete book details.

Chapter 7, Incorporating API Data Access using Microsoft Azure App Services, shows you how
you can use Microsoft Azure App services to create your very first live, cloud-based backend
HTTP web service to handle all the communication between the cloud and the app. You’ll learn
how to create a DataService API that will allow the app to consume the API so that it can
retrieve, store, and delete walk trail information from the cloud, all from within the
TrackMyWalks app.

Chapter 8, Making our App Social — Using the Facebook API, shows you how you can use both
Xamarin.Auth and the Facebook SDK to incorporate social networking features within the
TrackMyWalks app to obtain information about a Facebook user, as well as post information to
their Facebook wall.

You’ll learn how to create a sign-in page that allows users to log in to your app using their
Facebook credentials, and how to create a FacebookApiUser class that will be used to store
information about the logged-in user, and use the Open Graph API to retrieve certain information
about the user.

Finally, you will see how you can leverage the Facebook library to post walk data to your
Facebook profile page, so you can show off your Walk Trail progress to your friends and/or work
colleagues.

Chapter 9, Unit Testing your Xamarin.Forms App using the NUnit and UlTest Frameworks,
focuses on showing you how to create and run unit tests using the NUnit and UlTest testing
frameworks right within the Xamarin Studio IDE. You'll learn how to write unit tests for our
ViewModels that will essentially test the business logic to validate that everything is working
correctly before testing the user interface's portion using automated UI testing.

Chapter 10, Packaging and Deploying your Xamarin.Forms Applications, focuses on how to
submit your TrackMyWalks iOS app to the Apple App Store, and share your creations with the
rest of the community. You'll learn the steps required to set up your iOS development team, as
well as certificates for both development and distribution, and you will learn how to create the
necessary provisioning profiles for both your development and distribution builds and create the
necessary app IDs for your application.

Finally, you will learn how to register your iOS devices so that your users can download and test
your apps on their iOS devices and learn how to prepare your TrackMyWalks iOS app for
submission to iTunes Connect using the Xamarin Studio IDE.

What you need for this book

The minimum requirement for this book is an Intel-based Macintosh computer running OS X El
Capitan 10.11. We will be using Xamarin Studio 6.1.2, which is the Integrated Development
Environment (IDE) used for creating Xamarin.Forms applications using C#, as well as Xcode
8.2.1 to compile our iOS app and run this within the simulator.

Almost all the projects that you create with the help of this book will work and run on the i0S
simulator. However, some projects will require an iOS or Android device to work correctly. You
can download the latest versions of Xamarin Studio and Xcode at:

Xamarin Studio: http://xamarin.com/download

Xcode: https://itunes.apple.com/au/app/xcode/id497799835?mt=12

http://xamarin.com/download
https://itunes.apple.com/au/app/xcode/id497799835?mt=12

Who this book is for

This book is intended for developers who have a working experience of application development
principles, as well as a basic knowledge of Xamarin and C# coding and wish to expand their
knowledge and develop applications using Xamarin.Forms. It is assumed that you are familiar
with Object-Oriented Programming (OOP), and have some experience developing C#
applications using Xamarin Studio.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLSs, user input, and Twitter handles are shown as follows: "One thing you will notice is
that our solution contains a file called TrackMywalks.cs which is part of the TrackMywalks
Portable Class Library."

A block of code is set as follows:

//
//
//
//
//
//
//

WalkEntryViewModel.cs
TrackMywWalks ViewModels

Created by Steven F. Daniel on 22/08/2016.

Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using Xamarin.Forms;

namespace TrackMyWalks

public class WalkEntryViewModel : WalkBaseViewModel
{

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

//
//
//
//
//
//
//

WalksPage.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System.Collections.Generic;
using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;
namespace TrackMyWalks

{

public class WalksPage : ContentPage

{
public WalksPage()

{

Any command-line input or output is written as follows:

Last login: Sun Nov 6 10:48:41 on console
GENIESOFT-MAC-Mini:~ stevendaniel$ curl
https://trackmywalks.azurewebsites.net/tables/walkentries

--header "ZUMO-API-VERSION:2.0.0"

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "if you click on the Proceed With
... button, it will navigate to the walks Trail Details page where you can begin your trail, by
clicking on the Begin this Trail button."

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what
you liked or disliked. Reader feedback is important for us as it helps us develop titles that you
will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your message. If there
is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Login or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nk wLnN

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WIinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

https://github.com/PacktPublishing/Mastering- Xamarin-Ul-Development. We also have other

code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Xamarin-UI-Development
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list
of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will appear under the
Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any illegal
copies of our works in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Creating the TrackMyWalks Native
App

Since Xamarin made its appearance several years ago, developers have been delighted with
being able to create native mobile applications that target non-Microsoft platforms, and with
having the option of developing apps using either C# or F# programming languages, which
enables developers to distribute their app ideas on iOS and Android platforms.

As you progress through this book, you will learn how to apply best practice principles when
developing cross-platform mobile applications and design patterns using the Xamarin.Forms
platform, which allows developers to build cross-platform user interface layouts that can be
shared across Android, iOS, and Windows Phone mobile platforms.

Since each of these apps can be written using a single programming language, it makes sense to
write a single codebase that would compile and build separate apps for each of these different
platforms.

This chapter will begin by setting up a basic structure of an app built using Xxamarin.Forms,
which will be the foundation for the subsequent chapters, where we will continually build upon
this, applying new concepts. In this chapter, you will see how to create an initial cross-platform
native app using Xamarin.Forms and how to go about adding new, and updating existing,
packages within your solution.

You'll learn how to create C# classes that will act as the model for our app, as well as creating
content pages that will form the user interface. To end the chapter, you will learn about the
differences between developing apps using Xamarin Studio and/or Microsoft Visual Studio.

This chapter will cover the following points:

e Creating the Xamarin.Forms TrackMywalks mobile app solution

Updating the TrackMywalks solution packages using the NuGet package manager
Creating the TrackMywalks data model

Creating the contentPages for the TrackMywalks solution

Understanding the differences between Xamarin Studio and Visual Studio

Creating the TrackMyWalks solution

In this section, we will take a look at how we can go about creating a new Xamarin.Forms
solution for the first time. We will begin by developing the basic structure for our application, as
well as by adding the necessary entity models and designing the user interface files.

Before we can proceed, we need to create our TrackMywWalks project. It is very simple to create
this using Xamarin Studio. Simply follow the steps listed below:

1. Launch the Xamarin Studio application. You will be presented with the following screen:

€D xomarin swucio

|-| New Solution...

I Open..

Building Custom Animations in Xamarin.Forms

Xamarin Forms includes s own animation infrastnuciung that allows for sasy creation
of simple animations, while also being versatile enough 1o create complex
animatons. Previously, we exploned creating. .

Nanoservices for Mobile Apps with Azure Functions

Arurg Funclions A A serveress, evanl-driven deveiopmant expenance Mat can
wasily integrale inbo any mobde app or Azurg Mobila App backend. This maans you

Can nun NENcEnIcEs in Azure that scale. ..

Performing OCR for 1038, Android, and Windows with
Microsoft Cognitive Services

Owatical character recognition, commanly known as OCR, datects the 1ex found in an
Image or video and sxiracts the recognized words. By using OCA. we can provide our
LSArS & Much Bathar ufar expenancs;.

Creating Animations with Xamarin.Forms

Animatons are a great way 10 aod polish 10 your user inlenace and make your 8pp
stand out. Xamarin. Forms includes its own animation indrastructure that aliows for
easy creation of simple animations, ..

Acquaint

Sport

—

2. Next, click on the New Solution... button, or alternatively choose the File | New | Solution...
or simply press Shift + Command + N.
3. Next, choose the Forms App option which is located under the Multiplatform | App section.
Ensure you have selected C# as the programming language to use:

Choose a template for your new project

Mative (I0S, Android)
B ios “
D Single View App
App .
Library
Tests Games (105, Mac)
Forms App
= oS D R e Creates a Xamarin. Forms app using a
Shared Project or Portable Class Librany
App D Scenekit Game Praject for code sharing,
Library
This template also includes a basic test
Android fixture and configuration Tor automated LI
testing.
App
Library Xamarin subscribers and trial users can run
tests on over 1,000 devices on Xamarin
Tests Test Cloud.
0 Mac Ul tests can also be run locally using
connected devices and simulators.
App
Library
® other
MET
Gance | —-—

4. Next, enter TrackMyWalks to use as the name for your app in the App Name field.

5. Then, specify a name for the Organization Identifier field.

6. Next, ensure that both the Android and iOS checkboxes have been selected in the Target
Platforms fields.

7. Then, ensure that the Use Portable Class Library option has been selected in the Shared
Code section, as shown in the following screenshot.

Tip

The difference between using a Portable Class Library versus a Shared Library is
essentially that a Portable Class Library enables developers to write code once, so that it
can be used within different platform projects such as Websites, Android, and iOS. A Shared
Library enables developers to copy all the files within the library project to all the projects
that are contained within the solution during compilation for the various platforms that will
use it.

eCe® Mew Project

Configure your Forms App

App Name: [TrackMyWalks f—
Organization Identifier. | com.geniasoftstudios h | @

% com geniesoftstudios trackmywaiks

I com.geniesoftstudios trackmywalks

Target Platforms: [Android

@ os G

Shared Code: ommcmum ~— ﬂ
' Use Shared Library

[Use XAML for user interface fles

Note

The Organization Identifier option for your app needs to be unique. Xamarin Studio
recommends that you use the reverse domain style (for example,
com.domainName.appName).

8. Next, ensure that the Use XAML for user interface files option has not been selected.
9. Then, click on the Next button to proceed to the next step in the wizard.

eC e Mew Project

Configure your new project
PREVIEW
0 MUsersistevendanielProjects
B8 TrackMyWalks
[TrackMyWalks.sin
Project Name: | IFEIITIETE | B TrackMyWalks

] TrackMyWalks.csproj
Solution Name: | TrackMyWalks | L o

Location: |Msursfmrmnmu‘l’m]wts | Browsa...

Create a project directory within the solution directory. h

Version Control: Use git for version control.
W I
Xamarin Test Cloud: Add an automated U test project. Learn More
Cancel Previous -

10. Next, ensure that the Create a project directory within the solution directory. checkbox

has been selected.
11. Then, click on the Create button to save your project to the specified location.

Once your project has been created, you will be presented with the Xamarin development
environment along with several project files that the template has created for you, as shown in the

following screenshot:

[]] k= M Debug » [] iPhone s i0S 8.3 ¥amarin Studio Community

[Solution S
- TrackMyWalks
L4 References
hd Packages (1 update)
EI Xamarin.Forms (2.3.0.107 available)
4 Properties
@ packages.config
[} TrackMyWalks.cs
[TrackMyWalks.Crroid
» TrackMyWalks.i0OS

As you can see from the preceding screenshot, the TrackMywalks solution has been divided into
three main areas. The following table provides a brief description of what each area is used for:

Plat.form specific Description

project
This is the Portable Class Library (PCL) project that will be
responsible for acting as the main architectural layer for the
TrackMywalks solution.

TrackMywWalks This project contains all of the business logic, data objects,

Xamarin.FormsPages, views, and other non-platform specific code.

Any code that you create within this project can be shared across
multiple platform-specific projects.

This project is an Android specific project that contains all of the code
and assets required to build and deploy the Android app contained
TrackMywWalks.Droid within the solution.

By default, this project contains a reference to the
TrackMywalks Portable Class Library.

This project is an iOS specific project that contains all of the code and
assets required to build and deploy the iOS app contained within the
solution.

TrackMyWalks.1i0S |IBy default, this project contains a reference to the TrackMyWalks
Portable Class Library.

One thing you will notice is that our solution contains a file called TrackMywalks.cs whichis
part of the TrackMywalks Portable Class Library. The TrackMywalks.cs file contains a class
named App that inherits from the Xxamarin.Forms.Application class hierarchy, as can be seen
in the following code snippet:

//

// TrackMyWalks.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

namespace TrackMyWalks

{
public class App : Application

{
public App()
{

// The root page of your application
var content = new ContentPage

{
Title = "TrackMywalks",
Content = new StackLayout {
VerticalOptions = LayoutOptions.Center,
Children = { new Label {
HorizontalTextAlignment =
TextAlignment.Center,
Text = "Welcome to Xamarin Forms!"
}
}
}
3
MainPage = new NavigationPage(content);
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}
protected override void OnResume()
{

// Handle when your app resumes

}
}
}

The App constructor method sets up the MainPage property to a new instance of the ContentPage
that will simply display some default text as created by the project wizard. Throughout this
chapter, we will be building the initial user interface page views and then modifying the
MainPage property for our App class, contained within the TrackMywalks.cs file.

Updating the TrackMyWalks solution packages

In this section, we will take a look at how to update the xamarin.Forms packages contained
within our TrackMywalks solution. Basically, you will notice that each project contained within
our solution contains a Packages folder.

The Xamarin.Forms package is essentially a NuGet package that gets automatically included in
our solution whenever we specify that we want to create a Xamarin.FormsApp project template.

From time to time, you will notice that Xamarin will notify you whenever a package is out of date
and needs to be updated to ensure that you are running the latest version.

Note

A NuGet package, is essentially the package manager for the Microsoft Development Platform
that contains the client tools that provide the capability for producing and consuming .NET
packages.

Let's take a look at how to go about updating the NuGet packages within our TrackMywalks
solution to ensure that we are running the latest Xxamarin.Forms packages. Perform the following
steps:

1. Right-click on the TrackMywalks solution and choose the Update NuGet Packages menu
option, as shown in the following screenshot:

[Mol [2 [Debug = [iPhone 65 i0S 8.3 ¥amarin Studio Community O

|| Sehution A

Bulld TrackMyWalks K |

¥ L TrackMyWalli pahyjld TrackhMyWalks ~38K
¥ [References’ Clean TrackMyWalks 38K
- Fackages [
e P
’ \ it View Archives
] packages.c
[} TrackMyd Run Item
» [Trackmywand Start Debugging item
L TrackMyWalk

Add ¥
noate Mus ckane:
Restore NuGet Packages

Tools »

Version Control []

Find in Files... {r36F

Reveal in Finder , Search Resulls

Cut 3¢ | Project File L Path o
Renama ¥R

Close o
Options

Display Options »

Reafrash

@ Erors o Tasks B Application Outpat B Package Console [L] ResGan

Once you have selected this option, Xamarin Studio will proceed to update each package
that is contained within the TrackMywalks solution for each of the platform-specific

projects, and will display a progress indicator similar to the one shown in the following
screenshot:

209 p [Debug » [] iPhone 65105 9.3 %2 Updating packages in solution...

[&] Solution 5 i

During the package update process, some packages that are contained as part of each
platform-specific project require you to accept their license terms prior to installing, which
is shown in the following screenshot:

[NN License Acceptance

The following packages require that you accept their license terms before installing.

Xamarin.Android.Support.vd Authaor: Xamarin Inc.

View License

Xamarin.Android.Support.Vector.Drawable
Author: Xamarin Inc.
View License

Xamarin.Android.Support.Animated.Vector.Drawable
Author: Xamarin Inc.

AT F=10 T e o]
view License

Xamarin.Android.Support.v7.AppCompat
Author: Xamarin Inc.

AT F=10 T e o]
view License

Xamarin.Android.Support.v7.MediaRouter
By clicking Accept you agree to the license terms for the packages listed above.
If you do not agree to the license terms click Decline.

Decline Accept

2. Click on the Accept button to accept the license terms and conditions for the packages
displayed within the dialog box and to install the packages, as shown in the preceding
screenshot.

Now that you have successfully updated the Xxamarin.Forms packages within your solution, we
can now proceed with building the user interface files for the TrackMywalks solution.

Creating the TrackMyWalks model

In this section, we will proceed to create our TrackMyWalks model that will represent our walk
entries. As we progress throughout this chapter, we will see how we can use this model to set up
and initialize some walk entries for our main WalksPage using a ListView control so that we
can display walk entry for each row within the ListView.

Let's take a look at how we can achieve this, by following the steps below:

1. Create a new folder within the TrackMywalks Portable Class Library project solution,
called Models as shown in the following screenshot:

@ [] = M Debug » [] iPhone s i0S 8.3 @ Items saved.

[Solution s

¥ 5 TrackMyWalks

m Build TrackMyWalks 4 '

> [0 Referel pebuild TrackMyWalks — ~ 3K
b [Packag Clean TrackMyWalks — {+38K
* Bl Proped ynipad

[+#] packag
[0 Trackm View Archives

b] TrackMyW
» TrackMy!
B e Fie..
Add Files... CHA
Tools
Version Control > Add Web Reference
Find in Files... {+38F Add NuGet Packages...

Reveal in Finder ;
Add Files from Folder...

Copy #C Add Existing Folder...
Cut 3 X New Folder

Dl et

2. Next, create a new class file within the Models folder, as shown in the following screenshot:

T @ = M Debug » [] iPhone s i0S 8.3 & Project saved.

[Solution O > B

v [5] TrackMyWalks
v [TrackMyWalks
» [1] References

» [5] Packages
Model :
N - “ Add > New File...
. | Add Files... A
[¢¥] packages.config Tools >
[} TrackMyWalks.cs Version Control > Add Files from Folder...
: | g
. TrackMyWalks.Droid Add Existing Folder...
. g ::mmm - FindinFiles.. O%F | poo rorier
; Reveal in Finder |~

3. Then, choose the Empty Class option under the General section and enter in
wWalkEntries for the name of the new class file to be created as shown in the following
screenshot:

| NON | Mew File

Forms ¢‘ Empty Class Empty Class
General Creates an empty class.

Gtk _13" Empty Enurneration

Misc :

Text Templating ‘_EE' Empty File

Web . -

XML O Fmpty Interface
;' Empty Struct

Mame: |WalkEntries

Cancel Mew

4. Next, click on the New button to allow the wizard to proceed and create the new file, as
shown in the preceding screenshot.

Congratulations, you have created your first folder and C# class file for our solution. We can
now proceed with adding the property descriptors that will be used to define our model.

5. Ensure that the walkEntries.cs file is displayed, then locate the walkEntries class
constructor and enter the following highlighted code sections:

//
//
//
//
//
//
//

WalkEntries.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

namespace TrackMyWalks.Models

{

}

public class WalkEntries

{

public string Title { get; set; }

public
public
public
public
public
public

public

string
double
double
double
string
double

string

Notes { get; set; }
Longitude { get; set; }
Latitude { get; set; }
Kilometers { get; set; }
Difficulty { get; set; }
Distance { get; set; }

ImageUrl { get; set; }

In the preceding code snippet, we have successfully defined the model that will be used to
represent our walk entries. In the next section, we will use this model to set up and initialize some
walk entries for our main WalksPage using a ListView control, then use a DataTemplate to
describe how the model data should be displayed for each row within the ListView.

Creating the walks main page

As mentioned in the previous section, the walksPage will essentially serve as the main entry
point for our application. We will use our walkEntries model to populate some static walks
information data, then display this information within a Listview control using a DataTemplate.
So let's get started by following these steps:

1. Firstly, create a new folder within the TrackMywalks Portable Class Library project
solution called Pages, as you did in the previous section.

Next, from the New File screen, select the Forms section within the left section pane.
Then, select the Forms ContentPage option in the right pane.

Next, enter WwalksPage for the name of the new class to be created.

Finally, click on the New button, as shown in the following screenshot:

kW

@ @ Mew File

Jrome] (73] Forme Conentage Forms ContentPage
"

General Creates a Forms ContentPage.
Gtk <_>' Farms ContentPage Xaml

Misc :

Text Templating {} Forms ContentView

Web - _

XML <S> Forms Content\fiew Xaml

Mame: |WalksPage

Cancel Mew

6. Next, ensure that the walksPage.cs file is displayed within the code editor and enter in the
following highlighted code sections.

//

// WalksPage.cs

// TrackMywWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Collections.Generic;

using Xamarin.Forms;

using TrackMyWalks.Models;

namespace TrackMyWalks

{
public class WalksPage : ContentPage

{
public WalksPage()

{

var newWalkItem = new ToolbarItem

{
Text = "Add Walk"

};

newWalkItem.Clicked += (sender, e) =>

{

Navigation.PushAsync(new WalkEntryPage());
};

ToolbarItems.Add(newWalkItem);

var walkItems = new List<WalkEntries>

{
new WalkEntries {
Title = "10 Mile Brook Trail, Margaret River",

Notes = "The 10 Mile Brook Trail starts in the Rotary Park
near 0ld Kate, a preserved steam " +

"engine at the northern edge of Margaret River. ",
Latitude = -33.9727604,

Longitude = 115.0861599,

Kilometers = 7.5,

Distance = 0,

Difficulty= "Medium",

ImageUrl = "http://trailswa.com.au/media/cache/media/
images/trails/_mid/FullSizeRenderl_600_4860_c1.jpg"
}

new WalkEntries {

Title = "Ancient Empire Walk, Valley of the Giants",
Notes = "The Ancient Empire is a 450 metre walk trail
that takes you around and through some of " +

"the giant tingle trees including the most popular
of the gnarled veterans, known as Grandma Tingle.",
Latitude = -34.9749188,

Longitude = 117.3560796,

Kilometers = 450,

Distance = 0,

Difficulty = "Hard",

ImageUrl = "http://trailswa.com.au/media/cache/media/

images/trails/_mid/Ancient_Empire_534_480_c1.jpg"

},
};

var itemTemplate = new DataTemplate(typeof(ImageCell));

itemTemplate.SetBinding(TextCell.TextProperty, "Title");

itemTemplate.SetBinding(TextCell.DetailProperty, "Notes");

itemTemplate.SetBinding(ImageCell.ImageSourceProperty,
"ImageUrl");

var walksList = new ListView {

HasUnevenRows = true,

ItemTemplate = itemTemplate,
ItemsSource = walkItems,

SeparatorColor = Color.FromHex("#ddd"),

};

// Set up our event handler
walksList.ItemTapped += (object sender,
ItemTappedEventArgs e) =>

{
var item = (WalkEntries)e.Item;
if (item == null) return;

Navigation.PushAsync(new WalkTrailPage(item));
item = null;

};

Content = walksList;

}
}
}

In the preceding code snippet, we began by declaring our newwalkItem variable that instantiates
from the ToolbarItem class which will be used to attach a new Add Walk button to the main
toolbar of the base contentPage.ToolbarItems collection to provide a way for users to add
new walk trail information within the app.

Next, we create an event for our new WalkItem usingthe Clicked event of the ToolbarItem
class, which will be used to navigate to the new WalksEntryPage.

In our next step, we declare a new variable walkItems thatis a collection of list items to store
each of our walk entries within our model and then use the bataTemplate class to describe how
we want our model data to be displayed within each of the rows declared within the ListView.

Finally, we set up an event handler for our ListView that will be used to move to the
wWalksTrailPage to display information about the item selected.

Creating the new walk entry content page

In this section, we will begin building the user interface for our new walkentryPage. This page
is called when the user clicks on the Add Walk button from the main page and will be used to
allow the user a means of adding new walk information to be used within the application.

There are a number of ways you can go about presenting this information to collect data. For the
purpose of this app, we will be using a TableView, but you could quite easily use a
StackLayout and present this information as a series of Labels and EntrycCells.

Let's begin by creating the new WalkEntryPage by performing the following steps:

1. Create a new ContentPage called walkEntryPage, as you did in the section
entitled Creating the walks main page, located within this chapter.

2. Next, ensure that the walkEntryPage.cs file is displayed within the code editor and enter in
the following highlighted code sections:

//

// WalkEntryPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using System.Collections.Generic;

namespace TrackMyWalks

{
public class WalkEntryPage : ContentPage

{
public WalkEntryPage()

{
// Set the Content Page Title
Title = "New Walk Entry";

// Define our New Walk Entry fields
var walkTitle = new EntryCell
{
Label = "Title:",
Placeholder = "Trail Title"

}
var walkNotes = new EntryCell
{
Label = "Notes:",
Placeholder = "Description"
}
var walkLatitude = new EntryCell
{

Label = "Latitude:",

Placeholder = "Latitude",
Keyboard = Keyboard.Numeric

};

var walkLongitude = new EntryCell
{

Label = "Longitude:",

Placeholder = "Longitude",
Keyboard = Keyboard.Numeric

};

var walkKilometers = new EntryCell
{

Label = "Kilometers:",

Placeholder ="Kilometers",
Keyboard = Keyboard.Numeric

};

var walkDifficulty = new EntryCell
{

Label = "Difficulty Level:",
Placeholder ="Walk Difficulty"
};

var walkImageUrl = new EntryCell
{

Label = "ImageUrl:",

Placeholder ="Image URL"

};

// Define our TableView
Content = new TableView

{

Intent = TableIntent.Form,
Root = new TableRoot

{

new TableSection()

walkTitle,
walkNotes,
walkLatitude,
walkLongitude,
walkKilometers,
walkDifficulty,
walkImageUrl

}

}

}

var saveWalkItem = new ToolbarItem {
Text = "Save"

}

saveWalkItem.Clicked += (sender, e) => {
Navigation.PopToRootAsync(true);

};

ToolbarItems.Add(saveWalkItem);

}
}

In the preceding code snippet, we began by declaring a number of Entrycell labels for our user
interface to capture information entered by the user for-Title, Notes, Latitude, Longitude,
Kilometers, Difficulty and ImageURL. As you progress through this book, you will learn how
to customize the look and feel of the EntrycCells by creating a customized platform-specific
picker for the walk Difficulty and Kilometers.

Next, we define our TableVview and add each of our EntrycCell fields to the TableSection
property of the Tableview control. Each TableSection that is defined within a

TableView consists of a heading and one or more ViewCells, which, in our case, are the
EntrycCell fields.

Finally, we declare and add a ToolbarItem called savewalkItem to our
ContentPageToolbarItems collection, then create an event that, when clicked, will save the
walk information entered to the main walks page. Obviously, we will be refactoring the new
walkEntryPage throughout this book, which, when the Save button is pressed, will actually send
this information to the server using a RESTful API and refresh the main TrackMywalks page.

Creating the walk trail content page

In this section, we will begin building the user interface for our walksTrailPage. This page is
called when the user clicks on an entry within the ListView on our TrackMywWalks main content
page and will be used to display information associated with the chosen trail:

1. Create a new ContentPage called walkTrailPage as you did in the section
entitled Creating the walks main page, located within this chapter.

2. Next, ensure that the walkTrailPage.cs file is displayed within the code editor and enter
the following highlighted code sections:

//

// WalkTrailPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

namespace TrackMyWalks

{
public class WalkTrailPage : ContentPage
{
public WalkTrailPage(WalkEntries walkItem)
{

Title = "Walks Trail";

var beginTrailWalk = new Button

{

BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,

Text = "Begin this Trail"

};

// Set up our event handler
beginTrailWalk.Clicked += (sender, e) =>

if (walkItem == null) return;

Navigation.PushAsync(new DistanceTravelledPage (walkItem));
Navigation.RemovePage(this);

walkItem = null;

}

var walkTrailImage = new Image()
{

Aspect = Aspect.AspectFill,
Source = walkItem.ImageUrl

}

var trailNameLabel = new Label()

FontSize = 28,

FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,

Text = walkItem.Title

};

var trailKilometersLabel = new Label()

{

FontAttributes = FontAttributes.Bold,
FontSize = 12,

TextColor = Color.Black,

Text = $"Length: { walkItem.Kilometers } km"

};

var trailDifficultyLabel = new Label()

{

FontAttributes = FontAttributes.Bold,

FontSize = 12,

TextColor = Color.Black,

Text = $"Difficulty: { walkItem.Difficulty } "

};

var trailFullDescription = new Label()

{

FontSize = 11,

TextColor = Color.Black,

Text = $"{ walkItem.Notes }",

HorizontalOptions = LayoutOptions.FillAndExpand

}

this.Content = new ScrollView
{

Padding = 10,

Content = new StackLayout

{

Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children =

walkTrailImage,
trailNamelLabel,
trailKilometersLabel,
trailbifficultylLabel,
trailFullDescription,
beginTrailwWalk

SN I P T
~-w

In the preceding code snippet, we began by importing our TrackMywalks.Models class as we
will be using this to extract the information passed in from our walksPage.

Next, we declare our beginTrailwalk variable that inherits from the But ton class; then we set
up the clicked event of the Button class, which will be used to navigate to the
DistanceTravelledPage content page when clicked to display information about our trail after
removing our walks trail content page from the NavigationPage hierarchy.

In the next step, we declare an image variable walkTrailImage and set the Source property of
the image to be the image of the selected walkItem fromthe ListVview. We then declare and
initialize a number of label objects that will contain the walkItem information that has been
passed from the WwalksPage content page ListView control and displayed.

Next, we define a Scrollview control that is part of the Xxamarin.Forms.Core base class, then
add each of our form Image and Label fields to the StackLayout control. The Scrollview
control is a fantastic control that allows our ContentPage to scroll its contents should the
information be too big to fit within the actual device's screen real estate.

Adding the Xamarin.Forms.Maps NuGet package

In this section, we will need to add the Xxamarin.Forms.Maps NuGet package to our core project,
as well as for each of the platform-specific projects for both iOS and Android platforms. This
package is required in order to use the Xamarin.FormsMap control in the DistanceTravelled
content page that we will be building in the next section.

1. Right-click on the TrackMywalks solution and choose the Add Packages... menu option, as
shown in the following screenshot:

@ @] k= M Debug » [] iPhone s i0S 8.3 Xamarin Studio Community

[Solution w0
¥ [&| TrackMyWalks
¥ [TrackhMyWalks
L4 References
B3 Packages

- Add Packages...
[x] Xamarin.Forms = 2
b Update
[zl Xamarin.Forms.h
Restore

L4 Models

. Pages Refresh

» Properties

@ packages.config

[} TrackMyWalks.cs
b | TrackMyWalks Droid
» TrackMyWalks.iOS

2. This will display the Add Packages dialog. Enter in maps within the Search dialog and then
select and click the Xamarin.Forms.Maps option within the list, as shown in the following
screenshot:

Add Packages

Official NuGet Gallery - sl Q. maps ®)

Xamarin Forms.Maps 231114

Maps models and renderars for
Xamarin.Forms

id Xamarin. Forms.Maps
Xamarin Google Play Services - Base Authar Xamarin, Inc.
O B € XamarinAndrid Bindings for Google Play Sarvices - do not installdirectly P ——
Dawnloads
License Vieny License
Project Page Visit Page
Xamarin Google Play Services - Base Dependencies
0 - Xamarin.Androld Bindings for Google Play Servicas - do not install directly Wamarin.Forms (= 2.3.1,114)
Xamarin Google Play Services - Basement
0 l C Xamarin. Android Bindings for Geogle Play Sarvicas - Basamant - do not install directly
Xamarin Google Play Services - Basement
D l ‘ Xarmarin. Android Bindings for Google Play Sarvices - Basemant - do not install directly
Xamarin Google Play Services - Maps
D ’\ Xamarin. Android Bindings for Google Play Services - Maps
Y
Show pre-release packages Closs Add Package

3. Finally, click on the Add Package button to add the Xxamarin.Forms.Maps NuGet package
to the TrackMywalks core solution.

4. Repeat the same process to add the Xamarin.Forms.Maps NuGet package for both the iOS
and Android projects that are contained within the TrackMywalks solution.

Now that you have added the NuGet Package for the Xamarin.Forms Map, we can begin to utilize
this control within the DistanceTravelled content page that we will be covering in the next
section.

Creating the DistanceTravelledPage content
page

In this section, we will begin building the user interface for our

DistanceTravelledPage content page. This page is called when the user clicks on the Begin
this Trail button from the walksTrailPage content page, which will be used to display
information about the chosen trail, as well as placing a pin placeholder within the
Xamarin.Forms.Maps control and calculating the distance travelled, and time taken:

1. Create a new ContentPage called DistanceTravelledPage as you did in the previous
section.

2. Next, ensure that the DistanceTravelledPage.cs file is displayed within the code editor
and enter the following highlighted code sections:

//

// DistanceTravelledPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using Xamarin.Forms.Maps;

using TrackMyWalks.Models;

namespace TrackMywWalks

{

public class DistanceTravelledPage : ContentPage

{

3. Then, update the DistanceTravelledPage method constructor to include the walkItem
parameter for the chosen walk, as shown by the following highlighted code sections:

public DistanceTravelledPage(WalkEntries walkItem)
{

Title = "Distance Travelled";

4. Next, we declare a trailMap variable that will point to an instance of the
Xamarin.Forms.Maps control to create a placeholder pin marker within the map control.
Using the latitude and longitude coordinates, enter the following highlighted code sections:

// Instantiate our map object

var trailMap = new Map();
// Place a pin on the map for the chosen walk type
trailMap.Pins.Add(new Pin
{

Type = PinType.Place,

Label = walkItem.Title,

Position = new Position(walkItem.Latitude, walkItem.Longitude)

1)

// Center the map around the list of walks entry's location

trailMap.MoveToRegion(MapSpan.FromCenterAndRadius (new
Position(walkItem.Latitude, walkItem.Longitude),
Distance.FromKilometers(1.0)));

5. Then, we declare a number of Label objects that contain our walkItem information, which
has been passed from the walkTrailPage content page so that we can trail related
information. Enter in the following highlighted code sections:

var trailNameLabel = new Label()

{
FontSize = 18,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
Text = walkItem.Title
}
var trailDistanceTravelledLabel = new Label()
{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
Text = "Distance Travelled",
HorizontalTextAlignment = TextAlignment.Center
}
var totalDistanceTaken = new Label()
{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
Text = $"{ walkItem.Distance } km",
HorizontalTextAlignment = TextAlignment.Center
}
var totalTimeTakenLabel = new Label()
{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
Text = "Time Taken:",
HorizontalTextAlignment = TextAlignment.Center
}
var totalTimeTaken = new Label()
{

FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,

Text = "0h Om 0s",
HorizontalTextAlignment = TextAlignment.Center

};

6. Next, we declare our walksHomeButton variable that inherits from the Button class and
proceed to set up our click handler, which will be used to navigate our app to the main
walksPage content page when clicked. Enter the following highlighted code sections:

var walksHomeButton = new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "End this Trail"

}

// Set up our event handler
walksHomeButton.Clicked += (sender, e) =>

{

if (walkItem == null) return;
Navigation.PopToRootAsync(true);
walkItem = null;

};

7. Then, we define a Scrollview control that is part of the Xamarin.Forms.Core base class
and proceed to add each of our form Button and Label fields to the StackLayout control.
Enter the following highlighted code sections:

this.Content = new ScrollView

{
Padding = 10,
Content = new StackLayout
{
Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children = {
trailMap,
trailNamelLabel,
trailDistanceTravelledLabel,
totalDistanceTaken,
totalTimeTakenLabel,
totalTimeTaken,
walksHomeButton
}
}
}
}
}
}

In the preceding code snippet, we began by importing our TrackMywalks.Models class as we
will be using this to extract the information passed in from our walksPage. The
Xamarin.Forms.Maps NuGet package is a cross-platform library that allows developers to
display and annotate information within the map. We will be using this control to create a pin
placeholder within the map control, along with additional details associated with the trail.

Next, we declare our trailMap variable that points to an instance of the Xxamarin.Forms.Maps
control and create a placeholder pin marker within the map containing the details for the chosen
trail, then center in on the map to show the area for our walks location, derived by the latitude
and longitude coordinates. We then declare and initialize a number of Label objects that
contain the walkItem information that has been passed from the walkTrailPage content page and

declare our walksHomeButton variable that inherits from the But ton class, then set up the
Clicked event for the Button class, which will be used to navigate back to the TrackMywalks
when clicked.

Finally, we define a Scrollview control that is part of the Xamarin.Forms.Core base class,
then add each of our form Button and Label fields to the StackLayout control.

In our next section, we will need to initialize the Xamarin.Forms.Maps NuGet package library
within each of our platform-specific start up classes (for example, AppDelegate.cs for iOS and
MainActivity.cs for Android). Let's take a look at how we can achieve this by following the
steps below.

1. Ensure that the AppDelegate.cs file is displayed within the code editor and enter the
following highlighted code sections:

//

// AppDelegate.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Foundation;

using UIKit;

namespace TrackMyWalks.iOS

{
[Register ("AppDelegate")]
public partial class AppDelegate
global: :Xamarin.Forms.Platform.i0S.FormsApplicationDelegate

{
public override bool FinishedLaunching(UIApplication app,
NSDictionary options)

global::Xamarin.Forms.Forms.Init();
Xamarin.FormsMaps.Init();
LoadApplication(new App());

return base.FinishedLaunching(app, options);

}

In the preceding code snippet, we began by initializing our AppDelegate class to use the
Xamarin.Forms.Maps library, by adding the Xamarin.FormsMaps.Init which initializes the
Xamarin.Forms platform, so that our TrackMywalks solution can use the maps. If this is omitted
from this class, the DistanceTravelledPage content page will not display the map and will not
work as expected.

Note

For more information on Xxamarin.Forms.Maps library, as well as the various types of different

classes available, please refer to the Xamarin developer documentation at
https://developer.xamarin.com/api/namespace/Xamarin.Forms.Maps/ .

https://developer.xamarin.com/api/namespace/Xamarin.Forms.Maps/

Creating the Splash screen content page

In this section, we will begin building the user interface for our Splash page which will only be
used for the Android platform, since iOS already contains a method of achieving this. The splash
page will simply display the default Xamarin icon, but as we progress throughout this book, we
will be refactoring this page to include a more suitable image for our app:

1. Create a new ContentPage called SplashPage as you did in the previous section.
2. Next, ensure that the SplashPage.cs file is displayed within the code editor and enter the
following highlighted code sections:

//

// SplashPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using System.Threading.Tasks;

using Xamarin.Forms;

namespace TrackMywWalks

{
public class SplashPage : ContentPage

{

3. Then, locate the SplashPage constructor method and enter the following highlighted code
sections:

public SplashPage()

{
AbsolutelLayout splashLayout = new AbsolutelLayout

{
HeightRequest = 600
}

var image = new Image()
{

Source

Aspect

};

AbsolutelLayout.SetLayoutFlags(image, AbsoluteLayoutFlags.All);
AbsoluteLayout.SetLayoutBounds(image, new Rectangle(0f, Of,
1f, 1f));

ImageSource.FromFile("icon.png"),
Aspect.AspectFill,

splashLayout.Children.Add(image);
Content = new StackLayout()

Children = { splashLayout }
}

}
4. Next, locate the onAppearing method and enter the following highlighted code sections:

protected override async void OnAppearing()

{
base.OnAppearing();

// Delay for a few seconds on the splash screen
await Task.Delay(3000);

// Instantiate a NavigationPage with the MainPage
var navPage = new NavigationPage(new WalksPage()

{
Title = "Track My Walks"

});
Application.Current.MainPage = navPage;
}

}

In the preceding code snippet, we began by importing our System.Threading.Tasks class. This
class will be used to perform a slight delay to allow our user to see the splash screen, as defined
within the onAppearing class method.

We then create a splashLayout variable of type AbsoluteLayout that will be used to position
and size each of the child elements proportionally within our view, and then set the
HeightRequest property.

Next, we declare an image variable that inherits from the Image class; then assign the Source
property to the image that we would like to use and set the images Aspect property so that the
image fills the view.

In our final steps, we define values for both of the LayoutFlags and LayoutBounds properties
on the AbsoluteLayout class so that the image resizes within the view. Then we add our
splashLayout to the content page using the StackLayout control. Finally, we override the
onAppearing class method of the Xxamarin.Forms.Page page life cycle, which gets called
immediately prior to the page becoming visible on the screen, and then specify a delay of three
seconds prior to instantiating a new instance of the NavigationPage, which will call our
wWalksPage to be the main content root page.

Updating the Xamarin.Forms App class

In this section, we need to initialize the App class of Xxamarin.Forms library to call our
SplashPage and set the root page for our application if the detected OS device is Android. Let's
take a look at how we can achieve this:

1. Open the TrackMywalks.cs located within the TrackMywalks group and ensure that it is
displayed within the code editor.

2. Next, locate the App method and enter the following highlighted code sections, as shown in
the following code snippet:

//

// TrackMyWalks.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright ©02016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

namespace TrackMyWalks

{
public class App : Application

{
public App()
{

// Check the Target 0S Platform
if (Device.0S == TargetPlatform.Android)

{
}

else

{

MainPage = new SplashPage();

// The root page of your application
var navPage = new NavigationPage(new TrackMyWalks.
WalksPage()

Title = "Track My Walks"
1)/

MainPage = navPage;

}

In the preceding code snippet, we began checking the Device.0S class to determine what OS
Xamarin.Forms is running on, then used the TargetPlatform class to determine whether our
app is being run on Google'sAndroid OS platform. If our app is running on Android, we set the
App constructor methods MainPage to a new instance of the ContentPage that will simply use the
SplashPage as the root page. Alternatively, we create a new instance of the NavigationPage
class and set this to our walksPage to be the main content root page for our ContentPage.

Differences between Xamarin Studio and Visual
Studio

When developing cross-platform mobile apps, you currently have a choice of using either
Xamarin Studio or Microsoft's Visual Studio development environments. It is worth noting that,
although the screenshots and example code used throughout this book have been developed using
Xamarin Studio running on an Apple Macintosh computer, the code should compile fine on a
Windows machine running Microsoft Visual Studio 2015.

However, there are some differences that you need to be aware of before embarking on the
journey of building your mobile development solutions. If you are running Xamarin Studio on a
Windows machine, you will get an Android project solution whenever you create a new
Xamarin.Forms solution.

If you want to integrate and develop apps for Windows Phone, you will need to ensure that you
are running Microsoft Visual Studio on a Windows machine. When developing apps for iOS
applications, you will need to prepare your Mac to be the Xamarin build host by firstly enabling
Remote Login on your Mac within the System Preferences section, and then selecting the Mac
to be the build host from within the Microsoft Visual Studio environment on your Windows
machine.

Note

For more information on how to prepare your Mac to be the Xamarin build host, refer to the
Xamarin developer documentation at

https://developer.xamarin.com/guides/ios/getting started/installation/windows/connecting-to-

mac/.

Now that you have an understanding of the differences between Xamarin Studio and Microsoft
Visual Studio, our next step is to compile, build and run the TrackMywalks application within the
i0OS simulator.

https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/

Running the TrackMyWalks app using the
simulator

In this section, we will take a look at how to compile and run the TrackMywalks application. You
have the option of choosing to run your application using an actual device, or choosing from a list
of simulators available for an iOS device.

The version number of the simulator is dependent on the version of the iOS SDK that is installed
on your computer. Perform the following steps:

1. To run the app, choose your preferred device from the list of available iOS simulators and
select the Run menu option, as shown in the following screenshot:

Xamarin Studio Communlty File Edit View Search Project Build m Version Control Tools Window Help

@0 ® P [TeckMyWaksi0s > [» [] iPhone SE /08 10.2 xamaringl Stert Without Debugging A%
| Start Debugging e
& salution &] > Custom Configuration...

Debug Applicaticn...

MNew Breakpoint

Mew Function Breakpoint

New Excaption Catchpaint

View Breakpoints B

Show Disassembly

2. Next, choose the Run With sub-menu item, and then choose the Custom Configuration...
then click on the Run button from the Custom Parameters dialog, as shown in the following
screenshot:

@ @ Custom Parameters

Execution Mode

© Default

Background Fetch

Arguments:

Environment Variables

Variable Value

Add

Run Action: Run - Default

Cancel Run

3. Alternatively, you can also build and run the TrackMywalks application by pressing
Command + Return key combinations.

When the compilation is complete, the iOS simulator will appear automatically and the
TrackMywalks application will be displayed, as shown in the following screenshot:

The 10 Mile Brook Trail starts in the Rotary Par

Ancient Empire Walk, Valley of the...

The Ancient Empire is a 450 metre walk trail tha

10 Mile Brook Trail, Margaret Rivev

Title:

Notes:
Latitude:
Longitude:
Kilometers:
Difficulty Level:

ImageUrl:

Phone 65 - Phone 65 /08 8.3 (13£230) : Phone 6 - IPhone 85 /108 8.3 (13E230)
Carrier & 12:25 PM | Carrier ¥ 8:40 PM ¢
Track My Walks Add Walk | € Track My Walks New Walk Entry Save

As you can see from the preceding screenshot, this currently displays a list of static walk trail
entries, that are displayed within our ListVview. When the user clicks on the Add Walk button

link, this will display the new walkEntry content page, so they can begin entering new Walk trail

information.

Currently, this page doesn't save entered information, but as we progress throughout this book, we

will be refactoring these pages to allow for this to happen. Upon clicking the Save button, the
user will be redirected back to the main Track My Walks page.

Carrigr ¥ 12:25 PM | Carricr ¥ 12:28 PM | Carrier ¥ 2113 PM -
Track My Walks Add Walk | € Track My Walks Walks Trail £ Track My Walks Distance Travelled

10 Mile Brook Trail, Margaret River _

Thia 10 Mile Broak Tradl starts n the

: Ancient Empire Walk, Valley of the...

The Ancient Empire 5 8 450 metre walk trall the

10 Mile Brook Trail, Margaret River

w

v e

.

10 Mile Brook Trail,
Margaret River

Length: 7.5 km ﬁ'
Ditficulty: Madium 21

The 10 Mie Broak Trail starts in the Rotary Park near Old Kate, a
preserved sleam angine al the northern edge of Margarel River

10 Mile Brook Trail, Margaret River
Distance Travelled

/ 0 km
Time Taken:

Oh Om Os

\ End this Trail

The preceding screenshot shows you the navigation flow between each of the pages when a trail
has been selected from the list, with the final screen showing the distance travelled page along
with the placeholder pin marker showing the trail location within the map view.

Congratulations, you have successfully built the foundation for the TrackMywalks application, as
well as the user interface for each of the content pages that will be used by our app. As we
progress through this book, we will be enhancing our app to include better architectural design
patterns, nicer looking user interface elements, as well as real-time data being synchronized
through the use of RESTful web service APIs.

Summary

In this chapter we explored how to go about creating a Xxamarin.Forms cross-platform
application for both iOS and Android platforms. We then moved on to building a series of content
pages with static data.

Next, we looked at how to use the default Xxamarin.Forms navigation APIs to help move between
each of the content pages, which we will refactor quite a bit when we cover this in Chapter 3,
Navigating within the MVVM Model - The Xamarin.Forms Way to use a more flexible,
customized navigation service. Finally, we talked about some of the differences between using
Xamarin Studio and Microsoft Visual Studio for development, before running our TrackMywalks
app within the simulator.

In the next chapter, you will learn about the concepts behind the Model-View-View-Model
(MVVM) pattern architecture, how to implement the MVVM model within your application, and
the process of how to add new ViewModels to your Xamarin solution.

Chapter 2. MVVM and Data Binding

In the previous chapter, we explored how to go about creating a native Xxamarin.Forms Cross-
platform application for both the iOS and Android platforms, and learned how to add new
packages to your solution using the NuGet package manager. We also looked at how to go about
adding and creating several ContentPages to your solution, as well as how to run and test your
app within the simulator.

The Model-View-View Model (MVVM) architectural pattern was invented with the Extensible
Application Markup Language (XAML) in mind that was created by Microsoft back in 2008 and
is particularly well suited for use with the MVVM application architectural pattern, because it
enforces a separation of the XAML user interface from the underlying data model through a class
that will act as a connection between both the View and the Model. The View and the ViewModel
can then be connected through data bindings that have been defined within the XAML file.

XAML has also been integrated into the Xxamarin.Forms platform that allows for the creation of
cross-platform, natively-based programming interfaces for iOS, Android, and Windows Phone
mobile devices. This allows developers to define user interfaces using all the Xxamarin.Forms
views, layouts, and pages, as well as custom classes.

XAML enforces the separation between the application's user interface from the underlying data,
through a class that will act as the communication layer between the View and the ViewModel,
which are connected through data-bindings that are defined in either the XAML or underlying
code file, along with the binding context for the View, that points to an instance of the
ViewModel.

This chapter will begin by introducing you to the architecture behind the MVVM pattern
architecture, and how you can implement these within your application, by adding new Views and
the associated Models.

You'll learn how to create the underlying C# class files that will act as the ViewModels for our
app, as well as updating the existing content pages to data-bind with the ViewModels to represent
the information that will be displayed within the user-interface for our application.

This chapter will cover the following points:

e Understanding the MVVM pattern architecture and data-binding

e Implementing the MVVM base model within the TrackMywalks solution
e Implementing the MVVM ViewModels within the app

e Implementing the MVVM data-bindings to our user interface pages

Understanding the MVVM pattern architecture

In this section we will be taking a look at the MVVM pattern architecture and the communication
between the components that make up the architecture.

The MVVM design pattern is designed to control the separation between the user interfaces
(views), the ViewModels that contain the actual binding to the Model, and the models that contain
the actual structure of the entities representing information stored on a database or from a web
service.

The following screenshot shows the communication between each of the components contained
within the MVVM design pattern architecture:

s "\ Model change [)
Ul events events
PropertyChanged E -
events 3 0
,E Update E
ViewModel data :} Read
<4
L - N v

The MVVM design pattern is divided into three main areas, as you can see from the preceding
screenshot, and these are explained in the following table:

MVVM

Description
type

The Model is basically a representation of business related entities used by an
Model application, and is responsible for fetching data from either a database, or web
service, and then de-serialized to the entities contained within the Model.

The View component of the MVVM model basically represents the actual screens
that make up the application, along with any custom control components, and
control elements, such as buttons, labels, and text fields.

View
The views contained within the MVVM pattern are platform-specific and are

dependent on the platform APIs that are used to render the information that is

"contained within the application's user interface.

The ViewModel essentially controls, and manipulates the views by acting as their
main data context. The ViewModel contains a series of properties that are bound to
the information contained within each Model. Those properties are then bound to
each of the views to represent this information within the user interface.

ViewModels can also contain command objects that provide action-based events
that can trigger the execution of event methods that occur within the View. For

ViewModel example, when the user taps on a toolbar item, or a button.

ViewModels generally implement the INotifyPropertyChanged and
INotifyCollectionChanged interfaces. Such a class fires a PropertyChanged
and INotifyCollectionChanged event whenever a collection has changed (such
as, adding an item, removing an item, or when a change occurs to one of the items,
properties) changes. The data binding mechanism in Xamarin.Forms attaches a
handler to this PropertyChanged and CollectionChanged events so it can be
notified when a property changes and keep the target updated with the new value.

Now that you have a good understanding of the components that are contained within MVVM
design pattern architecture, we can begin to create our entity models and update our user interface
files.

Note
In Xamarin.Forms, the term View is used to describe form controls, such as buttons and labels,

and uses the term Page to describe the user interface or screen. Whereas, in MVVM, Views are
used to describe the user interface, or screen.

Implementing the MVVM ViewM odels within
your app

In this section, we will begin by setting up the basic structure for our TrackMywalks solution to
include the folder that will be used to represent our ViewModels. Let's take a look at the
following steps to achieve this:

1. Launch the Xamarin Studio application and ensure that the TrackMywalks solution is loaded
within the Xamarin Studio IDE.

2. Next, create a new folder within the TrackMywalks PCL project, called viewModels as
shown in the following screenshot:

[NON | = O] Debug » [] iPhone Bsi0S 9.3

[Solution

- TrackMyWalks

- TrackMyWalks
References
Packages
Models
Pages

¥y ¥ ¥ v v

Properties
@ packages.config
[} TrackMyWalks.cs
[TrackMyWalks.Crroid
4 TrackMyWalks.i0OS

Creating the WalkBaseViewModel for the
TrackMyWalks app

In this section, we will begin by creating a base MVVM ViewModel that will be used by each of
our ViewModels when we create these, the Views (pages) will then implement those
ViewModels and use them as their BindingContext.

Tip
We will start by creating a base ViewModel class that will essentially be an abstract class,

containing basic functionality that each of our ViewModels will inherit from, and will implement
the INotifyPropertyChanged Interface.

Let's take a look at how we can achieve this, by following these steps:

1. Create an empty class within the viewModels folder, shown in the following screenshot:

@] = M Debug » [] iPhone s i0S 8.3 ¥amarin Studid

[Solution s

¥ |5 TrackMyWalks
* [TrackMyWalks

» References
» Packages
» Models
4 Pages
» Properties
[¢+] packages.config Add s New “E -
. Add Files... CEA
[} TrackMyWalks.cs Toaols >
» [| TrackMyWalks. Croid Version Control > Add Files from Folder...
» [TrackMyWalks.iOS R Add Existing Folder...
Find in Files... {+38F Mow Eolder

Reveal in Finder

2. Next, choose the Empty Class option located within the General section, and enter in
walkBaseViewModel for the name of the new class file to be created, as shown in the
following screenshot:

Forms

Gtk

Misc

Text Templating
Web

XML

Mew File

@L Empty Class Empty Class
C# Creates an empty class.

Le) [¢]) [l &)

Empty Enurneration

Empty File

Empty Interface

Empty Struct

Name: |WalkBaseViewMode|

Cancel

Mew

3. Next, click on the New button to allow the wizard to proceed and create the new empty class

file, as shown in the preceding screenshot.

Up until this point, all we have done is create our walkBaseViewModel class file. This

abstract class will act as the base ViewModel class that will contain the basic functionality

that each of our ViewModels will inherit from.

As we start to build the base class, you will see that it contains a couple of members and it

will implement the INotifyPropertyChangedInterface. As we progress through this

book, we will build to this class, which will be used by the TrackMywalks application. To

proceed with creating the base ViewModel class.

Ensure that the walkBaseviewModel.cs file is displayed within the code editor, and enter in

the following code snippet:

//

// WalkBaseViewModel.cs
// TrackMywWalks Base ViewModel

//

// Created by Steven F. Daniel on 22/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace TrackMyWalks.ViewModels

{

public abstract class WalkBaseViewModel
INotifyPropertyChanged

{
protected WalkBaseViewModel()

{
}

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged
([CallerMemberName] string propertyName = null)

var handler = PropertyChanged;
if (handler != null)

{
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
}
}

In the preceding code snippet, we begin by creating a new abstract class for our
wWalkBaseViewModel that implements from the INotifyPropertyChanged interface class, which
allows the View or page to be notified whenever properties contained within the ViewModel
have changed. Next, we declare a variable PropertyChanged that inherits from the
PropertyChanged EventHandler that will be used to indicate whenever properties on the
object have changed. Finally, within the onPropertyChanged method, this will be called when it
has determined that a change has occurred on a property within the ViewModel from a child
class.

Note

The INotifyPropertyChanged interface is used to notify clients, typically binding clients, when
the value of a property has changed.

Implementing the WalksPageViewM odel

In the previous section, we built our base class ViewModel for our TrackMywalks application.
This will act as the main class that will allow our View or pages to be notified whenever changes
to properties within the ViewModel have been made.

In this section, we will need to begin building the ViewModel for our walksPage. This model
will be used to store the walkEntries, which will later be used and displayed within the
ListView on the WalksPage content page.

Let's take a look at how we can achieve this by following these steps:

1. First, create a new class file within the viewModels folder called walksPageviewModel, as
you did in the previous section, entitled Creating the WalkBaseViewModel located within

this chapter.

2. Next, ensure that the walksPageViewModel.cs file is displayed within the code editor, and
enter in the following code snippet:

//
//
//
//
//
//
//

WalksPageViewModel.cs
TrackMywWalks ViewModels

Created by Steven F. Daniel on 22/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System.Collections.ObjectModel;
using TrackMywWalks.Models;

namespace TrackMyWalks.ViewModels

{

public class WalksPageViewModel : WalkBaseViewModel
{

ObservableCollection<WalkEntries> _walkEntries;

public ObservableCollection<WalkEntries> walkEntries
{
get { return _walkEntries; }
set { _walkEntries = value;
OnPropertyChanged();

}
}

In the preceding code snippet, we begin by ensuring that our ViewModel inherits from the
walkBaseViewModel class. Next, we create an ObservableCollection variable
_walkentries whichis very useful when you want to know when the collection has
changed, and an event is triggered that will tell the user what entries have been added or
removed from the walkEntries model.

In our next step, we create the ObservableCollection constructor WwalkEntries, thatis
defined within the System.Collections.0ObjectModel class, and accepts a List

parameter containing our Walkentries model. The walkEntries property will be used to
bind to the I1temSource property of the Listview within the walksMainPage. Finally, we
define the getter (get) and setter (set) methods that will return and set the content of our
_walkEntries when it has been determined whether a property has been modified or not.

3. Next, locate the walksPageViewModel class constructor, and enter the following highlighted
code sections:

public WalksPageViewModel()

{

walkEntries = new ObservableCollection<WalkEntries>() {

new WalkEntries {

Title = "10 Mile Brook Trail, Margaret River",

Notes = "The 10 Mile Brook Trail starts in the
Rotary Park near 0ld Kate, a preserved steam " +
"engine at the northern edge of Margaret River. ",
Latitude = -33.9727604,

Longitude = 115.0861599,

Kilometers = 7.5,

Distance = 0,

Difficulty = "Medium",

ImageUrl = "http://trailswa.com.au/media/
cache/media/images/trails/_mid/" +

"FullSizeRenderl1_600_4860_c1.jpg"

}

new WalkEntries {

Title = "Ancient Empire Walk, Valley of the Giants",

Notes = "The Ancient Empire is a 450 metre walk trail

that takes you around and through some of " +

"the giant tingle trees including the most popular of
the gnarled veterans, known as " + "Grandma Tingle.",
Latitude = -34.9749188,

Longitude = 117.3560796,

Kilometers = 450,

Distance = 0,

Difficulty = "Hard",

ImageUrl = "http://trailswa.com.au/media/cache/media/
images/trails/_mid/" + "Ancient_Empire_534_480_c1.jpg"
}

};

}

}

}

In the preceding code snippet, we began by creating a new ObservableCollection for our
walkEntries method and then added each of the walk list items that we would like to store
within our Model. As each item is added, the observableCollection, constructor is called, and
the setter (set) method is invoked to add the item, then the INotifyPropertyChanged event will
be triggered to notify that a change has occurred.

Updating the walks main page to use the MVVM model

Now that we have created the MVVM ViewModel that will be used for our main walksPage, we
need to modify the Walks main page. In this section, we will be taking a look at how to bind the
WalksPageBindingContext to the walksPageViewModel so that the walk entry details can be
displayed.

Let's take a look at how we can achieve this, by following these steps:

1. Ensure that the walksPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// WalksPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Collections.Generic;

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

namespace TrackMywWalks

{
public class WalksPage : ContentPage

{
public WalksPage()

{
var newWalkItem = new ToolbarItem
{
Text = "Add walk"
1

// Set up our click event handler
newwWwalkItem.Clicked += (sender, e) =>

{
+;

// Add the ToolBar item to our ToolBar
ToolbarItems.Add(newWalkItem);

Navigation.PushAsync(new WalkEntryPage());

2. Next, we need to declare and create a new BindingContext instance for the walksPage,
and set this to a new instance of the walksPageViewModel so that it knows where to get the
wWalkEntries so that we can populate these within the ListVview. Proceed and enter in the
following highlighted code sections:

// Declare and initialize our Model Binding Context

BindingContext = new WalksPageViewModel();

// Define our Item Template

var itemTemplate = new DataTemplate(typeof(ImageCell));

itemTemplate.SetBinding(TextCell.TextProperty, "Title");

itemTemplate.SetBinding(TextCell.DetailProperty, '"Notes");

itemTemplate.SetBinding(ImageCell.ImageSourceProperty,
"ImageUrl"),;

3. Then, change the way in which our ListView gets the walkEntries variable items, by
updating the ListView class and setting the binding property for the walk entries, by
initializing the ITtemsview<Cell>.ItemsSourceProperty property and using the
SetBinding method to bind the contents. Proceed and enter in the following highlighted
code sections:

var walksList = new ListView

{

HasUnevenRows = true,
ItemTemplate = itemTemplate,
SeparatorColor = Color.FromHex("#ddd"),
};
// Set the Binding property for our walks Entries

walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,
"walkEntries");

// Initialize our event Handler to use when the item is tapped
walksList.ItemTapped += (object sender, ItemTappedEventArgs e) =>

{
var item = (WalkEntries)e.Item;
if (item == null) return;
Navigation.PushAsync(new WalkTrailPage(item));
item = null;

}i

Content = walksList;

}

In this section, we looked at the steps involved in modifying our walksPage so that it can take
advantage of our WwalksPageViewModel. We looked at how to set our content page to an instance
of our walksPageViewModel so that it knows where to get the list of walk entries to be used and
displayed within the ListVview control. The SsetBinding property creates and applies a binding
to a specific property. As you can see, by using ViewModels within your application, you can see
that the result is both clean and elegant, and makes your code a lot more readable when
supporting code modifications.

Implementing the walks entry page ViewModel

We have created the ViewModel that will be used by our walksPage so that the walk entries can
be displayed within the ListView control. The next step is to build the ViewModel that will be
used to create new walk entries and have this information saved back to our

walkBaseViewModel, which we will be covering in a later chapter as we progress through this
book.

In this section, we will be taking a look at the steps required to create the ViewMaodel for our
WalksEntryViewModel so that we can initialize, and capture information entered within this
screen.

Let's take a look at how we can achieve this, by following these steps:

1. Create a new class file within the viewModels folder called walksEntryVviewModel, as you
did in the previous section, entitled Creating the WalkBaseViewModel located within this
chapter.

2. Next, ensure that the walksEntryviewModel.cs file is displayed within the code editor, and
enter in the following code snippet.

//

// WalkEntryViewModel.cs

// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
// using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{
public class WalkEntryViewModel : WalkBaseViewModel

{

3. Then, create the following Title property and its associated getters and setter qualifiers.
The onPropertyChanged method, as we mentioned previously, will be called when our
property determines that the contents have been changed. A call is made to the
SaveCommand.ChangeCanExecute method that will validate the form fields, and then
determine whether the SaveToolBarItem should be enabled or not to allow the user to save
the walk entry details. Proceed and enter in the following code snippet:

string _title;
public string Title
{
get { return _title; }
set
{
_title = value;
OnPropertyChanged();

SaveCommand.ChangeCanExecute();

}

4. Next, create the remaining ViewModel properties and the associated getters and setter
qualifiers that will be used to bind the values entered on the walkEntryPage, as shown in
the following code snippets:

string _notes;
public string Notes

{
get { return _notes; }
set
{
_nhotes = value;
OnPropertyChanged();
}
}

double _latitude;
public double Latitude

{
get { return _latitude; }
set
{
_latitude = value;
OnPropertyChanged();
}
}

double _longitude;
public double Longitude

{
get { return _longitude; }
set
{
_longitude = value;
OnPropertyChanged();
}
}

double _kilometers;
public double Kilometers

{
get { return _kilometers; }
set
{
_kilometers = value;
OnPropertyChanged();
}
}

string _difficulty;
public string Difficulty

{
get { return _difficulty; }

set

_difficulty = value;
OnPropertyChanged();

}

double _distance;
public double Distance

{
get { return _distance; }
set
{
_distance = value;
OnPropertyChanged();
}
}

string _imageUrl;
public string ImageUrl

{
get { return _imageUrl; }
set
{
_imageUrl = value;
OnPropertyChanged();
}
}

5. Next, we need to initialize our ViewModel class constructor with default values for our
Title, Difficulty and Distance properties. Locate the walkEntryVviewModel class
constructor, and enter the following highlighted code sections:

public WalkEntryViewModel()

{
Title = "New Walk";
Difficulty = "Easy";
Distance = 1.0;
}

6. Then, we need to create a Command property for our class. This will be used within our
walkEntryPage and will be used to bind to the SaveToolBarItem. The Command property
will run an action upon being pressed, then execute a class instance method to determine
whether the command can be executed. Proceed and enter the following highlighted code
sections:

Command _saveCommand;
public Command SaveCommand
{
get
{
return _saveCommand ?? (_saveCommand = new
Command (ExecuteSaveCommand, ValidateFormDetails));

}

7. Next, we need to create the ExecuteSaveCommand instance method. This will be used to
store the walk information that we enter, which will be written to each of the properties as
defined within the walkEntries model. The saving portion will not be covered in this
chapter, as this will be covered in a later chapter. For now, proceed and enter in the
following highlighted code sections:

void ExecuteSaveCommand()

{

var newWalkItem = new WalkEntries

{
Title = this.Title,
Notes = this.Notes,
Latitude = this.Latitude,
Longitude = this.Longitude,
Kilometers = this.Kilometers,
Difficulty = this.Difficulty,
Distance = this.Distance,
ImageUrl this.ImageUrl

};

// Here, we will save the details entered in a later chapter.

}

8. Finally, create the validateFormDetails instance method. This will be used to determine
whether or not we can save our new walk information. This method is pretty basic, but you
could add additional checks depending on your needs. For this example, we'll use the
IsNullorwhiteSpace method onthe string class, and pass in the Tit1le property, which
checks to see if the Tit1le property contains any blank spaces, or is an empty field. To
proceed, enter in the following highlighted code section:

// method to check for any form errors
bool ValidateFormDetails()

{
}
}

return !string.IsNullOrWhiteSpace(Title);

In this section, we began by ensuring that our ViewModel inherits from the walkBaseviewModel
class and then moved on to create a Title property and its associated getters and setter
qualifiers. We also created the onPropertyChanged method, as we defined previously so that it
will be called when the property determines that the contents have been changed.

Next, we added a reference to the method SaveCommand.ChangeCanExecute that will validate
the form fields to determine if the SaveToolBarItem should be enabled to allow the user to save
the walk entry details. We then created the remaining properties for our ViewModel with their
associated getters and setters, which will be used to bind the values entered on the
WalkEntryPage.

In the next steps, we initialized the class constructor with default values for the Tit1le,
Difficulty and Distance properties and then created a Command property to our class so that it
can be used within the walkeEntryPage and will be used to bind to the SaveToolBarItem.

Finally, we needed to create the ExecuteSaveCommand instance method so that it can store our
walk information to each of the properties as defined within the walkEntries model.

Updating the WalksEntryPage to use the MVVM model

In this section, we need to bind our model binding context BindingContext to the
wWalkEntryViewModel so that the new walk information that will be entered within this page can
be stored within the walkEntries model. Let's take a look at how we can achieve this, by
following these steps:

1. Ensure that the walkEntryPage.cs file is displayed within the code editor.

//

// WalkEntryPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using System.Collections.Generic;

namespace TrackMywWalks

{
public class WalkEntryPage : ContentPage

{
public WalkEntryPage()

{
// Set the Content Page Title

Title = "New Walk Entry";

2. Next, we need to declare and create a new BindingContext instance for the
walksEntryPage, and set this to a new instance of the walkEntryViewModel so that it
knows where to get the walkEntries so that we can bind it to the associated properties
contained within our model. Proceed and enter in the following highlighted code sections:

// Declare and initialize our Model Binding Context
BindingContext = new WalkEntryViewModel();

3. Next, create the remaining EntryCell objects, as well as the SetBinding properties to
their matched property name as contained within the ViewModel, as shown in the following
code snippets:

// Define our New Walk Entry fields
var walkTitle = new EntryCell

{
Label = "Title:",

Placeholder = "Trail Title"
3
walkTitle.SetBinding(EntryCell.TextProperty, "Title",
BindingMode.TwoWay);

var walkNotes = new EntryCell

{

Label = "Notes:",
Placeholder = "Description"

i
walkNotes.SetBinding(EntryCell.TextProperty, "Notes",
BindingMode.TwoWay) ;

var walkLatitude = new EntryCell

{
Label = "Latitude:",
Placeholder = "Latitude",
Keyboard = Keyboard.Numeric
3

walkLatitude.SetBinding(EntryCell.TextProperty,
"Latitude", BindingMode.TwoWay);

var walkLongitude = new EntryCell

{
Label = "Longitude:",
Placeholder = "Longitude",
Keyboard = Keyboard.Numeric
Iy

walkLongitude.SetBinding(EntryCell.TextProperty,
"Longitude", BindingMode.TwoWay);

var walkKilometers = new EntryCell

{
Label = "Kilometers:",
Placeholder = "Kilometers",
Keyboard = Keyboard.Numeric
Iy

walkKilometers.SetBinding(EntryCell.TextProperty,
"Kilometers", BindingMode.TwoWay);

var walkDifficulty = new EntryCell
{
Label = "Difficulty Level:",
Placeholder = "walk Difficulty"

3
walkDifficulty.SetBinding(EntryCell.TextProperty,
"Difficulty", BindingMode.TwoWay);

var walkImageUrl = new EntryCell

Label = "ImageUrl:",
Placeholder = "Image URL"
3
walkImageUrl.SetBinding(EntryCell.TextProperty,
"ImageUrl", BindingMode.TwoWay);

// Define our TableView
Content = new TableView
{
Intent = TableIntent.Form,
Root = new TableRoot

{

new TableSection()

{
walkTitle,

walkNotes,

walkLatitude,
walkLongitude,
walkKilometers,
walkDifficulty,
walkImageUrl
3
}
i
var saveWalkItem = new ToolbarItem
{
Text = "Save"
i

saveWalkItem.SetBinding(MenuItem.CommandProperty,
"SaveCommand") ;
ToolbarItems.Add(saveWalkItem);

saveWalkItem.Clicked += (sender, e) =>

{
+;

Navigation.PopToRootAsync(true);

In this section, we looked at the steps involved in modifying our WalksEntryPage so that it can
take advantage of our WwalksEntryviewModel. We looked at how to set the content page to an
instance of the walksEntryviewModel so that it points to the walkEntries model. We then used
the setBinding method on each of our EntryCells so that it can bind to the appropriate
ViewModel property. Finally, we updated the SaveToolbarItem on the walkEntryPage to bind
to the walksEntryViewModelSaveCommand property.

The following table provides a brief description of the different binding types, and when these
should be used within your applications:

Binding mode [|Description

This type of binding indicates that the binding should only propagate changes
OneWay from source (usually the ViewModel) to target (the BindableObject). This
is the default mode for most BindableProperty values.

This type of binding indicates that the binding only propagates changes from
OneWayToSource|jthe target BindableObject to the ViewModel and is mainly used for read-
only BindableProperty values.

This type of binding indicates that the binding should propagate the changes
TwoWay from the ViewModel to the target BindableObject in both directions.

One thing to notice is that, if you don't specify a value for the BindingMode property, it will use
the default BindingMode . 0Oneway which is defined in the
BindableProperty.DefaultBindingMode property.

Implementing the walk trail page ViewModel

In this section, we will be taking a look at the steps required to create the ViewModel for our
wWalksTrailViewModel so that we can obtain the walk entry information associated with the
chosen walk that has been selected from the main walksPage.

Let's take a look at how we can achieve this, by following these steps:

1. Create a new class file within the viewModels folder called walksTrailviewModel, as you
did in the previous section entitled Creating the WalkBaseViewModel, located within this

chapter.

2. Next, ensure that the walksTrailviewModel.cs file is displayed within the code editor, and
enter the following code snippet:

//
//
//
//
//
//
//

WalksTrailViewModel.cs
TrackMywWalks ViewModels

Created by Steven F. Daniel on 22/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using TrackMywWalks.Models;

namespace TrackMyWalks.ViewModels

{

public class WalksTrailViewModel : WalkBaseViewModel

{
WalkEntries _walkEntry;

public WalkEntries WalkEntry

{
get { return _walkEntry; }
set
{
_walkEntry = value;
OnPropertyChanged();
}
}

public WalksTrailViewModel(WalkEntries walkEntry)
{

}

WalkEntry = walkEntry;

In this section, we began by ensuring that our ViewModel inherits from the walkBaseviewModel
class and then we created an walkEntries variable walkEntries that will be used to store our
walkEntries. Next, we created a walkEntry property and its associated getters and setter

qualifiers and the onPropertycChanged method, so that it will be called when our property
determines that the contents have been changed. In the final step, we created the
wWalksTrailViewModel constructor, that accepts a List parameter containing our WwalkEntries
model.

Updating the WalksTrailPage to use the MVVM model

In this section we need to bind our model binding context BindingContext to the
WalksTrailViewModel so that the walk information details will be displayed from the
walkeEntries model when a walk has been clicked on within the main walksPage. Let's take a
look at how we can achieve this, by following these steps:

1. Ensure that the walkTrailPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// WalkTrailPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

namespace TrackMywWalks

{
public class WalkTrailPage : ContentPage

{
public WalkTrailPage(WalkEntries walkItem)

{
Title = "walks Trail";

2. Next, we need to declare and create a new BindingContext instance for the
walksTrailPage, and set this to a new instance of the walksTrailVviewModel so that it
knows where to get the walkEntries so that we can bind it to the associated properties
contained within our Model and display this within the View. Proceed and enter the
following highlighted code sections:

// Declare and initialize our Model Binding Context
BindingContext = new WalksTrailViewModel(walkItem);

var beginTrailwWalk = new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "Begin this Trail"

Iy

// Declare and initialize our Event Handler
beginTrailwWalk.Clicked += (sender, e) =>
{
if (walkItem == null) return;
Navigation.PushAsync(new DistanceTravelled(walkItem));
Navigation.RemovePage(this);
walkItem = null;

+;

3. Next, create the remaining Image and Label control objects, as well as the SetBinding
properties to their matched property name as contained within the ViewMaodel, as shown in
the following code snippets:

var walkTrailImage = new Image()

{
};

walkTrailImage.SetBinding(Image.SourceProperty,
"WalkEntry.ImageUrl");

Aspect = Aspect.AspectFill

var trailNamelLabel = new Label()

{
FontSize = 28,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black

I¥

trailNamelLabel.SetBinding(Label.TextProperty,
"WalkEntry.Title");

var trailKilometersLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.Black,

Iy

trailKilometersLabel.SetBinding(Label.TextProperty,
"WalkEntry.Kilometers", stringFormat: "Length: {0} km");

var trailDifficultylLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.Black

I¥

trailDifficultyLabel.SetBinding(Label.TextProperty,
"WalkEntry.Difficulty", stringFormat: "Difficulty: {0}");

var trailFullDescription = new Label()

{

FontSize = 11,

TextColor = Color.Black,

HorizontalOptions = LayoutOptions.FillAndExpand
3

trailFullDescription.SetBinding(Label.TextProperty,
"WalkEntry.Notes");

this.Content = new ScrollView

{
Padding = 10,
Content = new StackLayout
{

Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children =

walkTrailImage,
trailNamelLabel,
trailKilometersLabel,
trailDifficultylLabel,
trailFullDescription,
beginTrailwalk

}
+;

In this section, we looked at the steps involved in modifying our WalksTrailPage so that it can
take advantage of the walksTrailviewModel. We looked at how to set the content page to an
instance of our walksTrailvViewModel so that it knows where to get the list of walk entries to be
used and displayed within our StackLayout control. We used the SetBinding property to create
and bind each of our model values to a specific property.

Finally, we defined a Scrollview control, then added each of our form Image and Label fields
to the StackLayout control.

Implementing the DistanceTravelledViewModel

In this section, we will be taking a look at the steps required to create the ViewModel for our
DistTravelledViewModel so that we can calculate how long the chosen walk from the main
walksPage took to complete.

Let's take a look at how we can achieve this, by following these steps:

1. Create a new class file within the viewModels folder called DistTravelledViewModel, as
you did in the previous section entitled Creating the WalkBaseViewModel, located within
this chapter.

2. Next, ensure that the DistTravelledviewModel.cs file is displayed within the code editor,
and enter the following code snippet:

//

// DistTravelledViewModel.cs

// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

namespace TrackMyWalks.ViewModels

{
public class DistTravelledViewModel : WalkBaseViewModel

{
WalkEntries _walkEntry;

3. Then, create the following WwalkEntry property and its associated getters and setter
qualifiers. The onPropertyChanged method, as we mentioned previously, will be called
when our property determines that the contents have been changed. Proceed and enter in the
following code snippet:

public WalkEntries WalkEntry

{
get { return _walkEntry; }
set
{
_walkEntry = value;
OnPropertyChanged();
}
}

4. Next, create the remaining ViewModel properties and the associated getters and setter
qualifiers that will be used to bind the values entered on the DistanceTravelledPage, as
shown in the following code snippets:

double _travelled;
public double Travelled

{

get { return _travelled; }

set
{
_travelled = value;
OnPropertyChanged();
3

}

double _hours;
public double Hours

{
get { return _hours; }
set
{
_hours = value;
OnPropertyChanged();
}
}

double _minutes;
public double Minutes

{
get { return _minutes; }
set
{
_minutes = value;
OnPropertyChanged();
}
}

double _seconds;
public double Seconds

{
get { return _seconds; }
set
{
_seconds = value;
OnPropertyChanged();
}
}
public string TimeTaken
{
get
{
return string.Format("{0:00}:{1:00}:{2:00}", this.Hours,
this.Minutes, this.Seconds);
}
}

public DistTravelledViewModel(WalkEntries walkEntry)
{
this.Hours = 0;
this.Minutes = 0;
this.Seconds = 0;
this.Travelled

INoNo]

100,

WalkEntry = walkEntry;

In this section, we began by ensuring that our ViewModel inherits from the walkBaseviewModel
class and then we created an walkEntries variable walkEntries that will be used to store our
WalkEntries.

Next, we created a WalkEntry property and its associated getters and setter qualifiers and the
onPropertyChanged method, so that it will be called when our property determines that the
contents have been changed.

In our final step, we created the DistTravelledVviewModel constructor, that accepts a List
parameter containing our WwalkEntries model, prior to initializing our class constructor with
default values for the Hours, Minutes, Seconds, and Travelled properties.

Updating the DistanceTravelledPage to use the MVVM model

In this section we need to bind our model binding context BindingContext to the
DistTravelledViewModel so that the walk information details and the calculations of distance
travelled will be displayed from the walkEntries model.

Let's take a look at how we can achieve this, by following these steps:
1. Ensure that the DistanceTravelledPage.cs file is displayed within the code editor.

//

// DistanceTravelledPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using Xamarin.Forms.Maps;

using TrackMyWalks.Models;

namespace TrackMywWalks

{

public class DistanceTravelledPage : ContentPage

{

2. Next, we need to update the map to get its values from the DistTravelledViewModel soO
that it correctly plots these within the map view. We need to do this because the
Xamarin.Forms.Map control doesn't provide support for binding directly to the map, so we
have to set these directly within our ViewModel instead. Therefore, we need to create a
private _viewModel variable within the content page to return the value from the page's
BindingContext.

3. Proceed and enter the following highlighted code sections:

DistTravelledViewModel viewModel

{

get { return BindingContext as DistTravelledViewModel; }

}

public DistanceTravelledPage(WalkEntries walkItem)
{

Title = "Distance Travelled";

4. Next, create a new BindingContext instance for the DistanceTravelledPage, and set this
to a new instance of the DistTravelledViewModel so that it knows where to get the
wWalkEntries to bind it to the associated properties contained within our model and display
this within the View. Proceed and enter in the following highlighted code sections:

// Declare and initialize our Model Binding Context

BindingContext = new DistTravelledViewModel(walkItem);

// Instantiate our map object
var trailMap = new Map();

5. Next, update the map to grab the name of the chosen walk and the Latitude and Longitude
values from the DistTravelledviewModel. Proceed and enter the following highlighted
code sections:

// Place a pin on the map for the chosen walk type
trailMap.Pins.Add(new Pin
{
Type = PinType.Place,
Label = _viewModel.WalkEntry.Title,
Position = new Position(_viewModel.WalkEntry.Latitude,
_viewModel.WalkEntry.Longitude)

1)

// Center the map around the list of walks entry's location
trailMap.MoveToRegion(MapSpan.FromCenterAndRadius(new
Position(_viewModel.WalkEntry.Latitude,
_viewModel.WalkEntry.Longitude),

Distance.FromKilometers(1.0)));

6. Next, create the remaining Label control objects, as well as the SetBinding properties to
their matched property name as contained within the ViewModel, as shown in the following
code snippets:

var trailNamelLabel = new Label()

{
FontSize = 18,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center
3

trailNamelLabel.SetBinding(Label.TextProperty,
"WalkEntry.Title");

var trailDistanceTravelledLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center
3

trailDistanceTravelledLabel.SetBinding(Label.TextProperty,
"Travelled", stringFormat: "Distance Travelled: {0} km");

var totalTimeTakenLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center
3

totalTimeTakenLabel.SetBinding(Label.TextProperty, "TimeTaken",

stringFormat: "Time Taken: {0}");

var walksHomeButton = new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "End this Trail"

Iy

// Set up our event handler
walksHomeButton.Clicked += (sender, e) =>

{
if (walkItem == null) return;
Navigation.PopToRootAsync(true);
walkItem = null;
i
this.Content = new ScrollView
{
Padding = 10,
Content = new StackLayout
{
Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children = {
trailMap,
trailNamelLabel,
trailDistanceTravelledLabel,
totalTimeTakenLabel,
walksHomeButton
3
}
i
3
3

In this section, we looked at the steps involved in modifying the DistanceTraveledPage so that
it can take advantage of the DistTravelledviewModel. We looked at how to set the content page
to an instance of our DistTravelledviewModel. We used the SetBinding property to create and
bind each of our model values to a specific property. Finally, we defined a Scrollview control,
then added each of the form Image and Label fields to the StackLayout control.

Now that you have created all of the MVVM ViewModels and have updated the associated
content pages, our next step is to finally build and run the TrackMywalks application within the
iOS simulator.

When compilation completes, the iOS Simulator will appear automatically and the
TrackMywalks application will be displayed, as shown in the following screenshot:

“iPhone Bs - iPhane 65 1 108 8.3 (136230) #Phons B - iPhone 65 /108 9.3 (136230)
Carrier ¥ 5:54 PM | Carrier ¥ 5:54 PM L B

Track My Walks Add Walk | € Track My Walks New Walk Entry Save

10 Mile Brook Trail, Margaret River

Y Mile Brook @ Rotary

Ancient Empire Walk, Valley of the... Title: New Walk
The Ancient Empire is a 450 metre walk trail tha
Notes:
Latitude: O
Longitude: 0O

Kilometers: 0
Difficulty Level: Easy

ImageUrl:

As you can see from the preceding screenshot, this currently displays a list of static trail entries,
that are displayed within the ListVview. When the user clicks on the Add Walk button link, this
will display the New Walk Entry content page.

As you can see from the New Walk Entry screen, we have successfully binded each of

the EntryCell properties to our WalkEntryViewModel and have displayed this information
beside each of the content page properties. If you clear out the information associated with the
Title property, you will notice that the Save button will dim. This is because the
ValidateFormDetails instance method performs a check, then the SaveCommand command
event is triggered, and handles it accordingly.

- — : == — s

Carrber ¥ 204 AM s Carrier ¥ 2:04 AM | Carier ¥ 2:08% AM —
Track My Walks Add Walk | € Track My Walks Walks Trail € Track My Walks Distance Travelled
10 Mile Brook Trail, Margaret River

The 10 Mie Brook Trad starts i the RBokary Par

¢ Ancient Empire Walk, Valley of the...

10 Mile Brook Trail, Margaret River

Nl
10 Mile Brook Trail,

Margaret River

Length: 7.6 km

Difficalty: Medium

The 1 WEe Brock Trad starts in the Rotary Park nesr Did Kate, & E

preserved stoam sngire at the northam sdage of Warganel Raaer

Al

10 Mile Brook Trail, Margaret River
Distance Travelled: 100 km
Time Taken: 00:00:00

The preceding screenshot shows you the navigation flow between each of the pages when a trail
has been selected from the list, with the final screen showing the Distance Travelled page along
with the placeholder pin marker showing the trail location within the map view.

Summary

In this chapter, we updated our TrackMywalks application and created a number of ViewModels.
We then removed and migrated our data and logic from each of our pages, then added binding to
those pages so that they point directly to the ViewModels associated with the page.

In the next chapter, you will learn about the different navigation techniques that can be used within
the MVVM model architecture, to navigate between ViewModels by creating and implementing a
navigation service between each of the Views, so that you can easily navigate between them.

Chapter 3. Navigating within the MVVM Model
- The Xamarin.Forms Way

Up to this point, you have seen how to incorporate the MVVM architectural pattern into your
applications, so that it enforces the separation between the application's user interface, or
presentation layer, from the underlying data. This is done by using a class that acts as the
communication layer between both the View and the ViewModel, and is connected through data
bindings along with the binding context for the View, pointing to an instance of the ViewModel.

In this chapter, you will see how you can leverage what you already know about the MVVM
design pattern, and we will learn how to move navigation into the ViewModels. You'll learn how
to create a C# class that will act as the navigation service for our app, as well as how to

update our existing walkBaseViewModel class file. This will include a number of abstract class
methods that each of our ViewModels will inherit, and in turn update the content pages to bind
with the ViewModels to allow navigation between these Views to happen.

This chapter will cover the following topics:

Understanding the Xxamarin.Forms Navigation API pattern architecture

Creating a navigation service using the Xamarin.Forms.Navigation class
Updating the TrackMywalks application to use the navigation service

Updating the MVVM ViewModels to use the navigation service interface
Updating the user interface content pages to use the updated MVVM ViewModels

Understanding the Xamarin.Forms Navigation
API

In this section, we will take a look at the Xamarin.Forms Navigation API pattern architecture and
gain an understanding into the different types of navigation patterns that are available.

The Xamarin.Forms Navigation API is exposed through the Xxamarin.Forms.INavigation
interface, and is implemented via the Navigation property. The Navigation property can be
called from any Xamarin.Forms object, typically the Xxamarin.Forms.Page that inherits from the
ContentPage class that is part of the Xamarin.Forms.Core assembly.

The Xamarin.Forms Navigation API supports two different types of navigation-hierarchical and
modal, and these are explained in the following table:

Navigation

Description
page

The hierarchical navigation type is essentially a stack-based navigation pattern that
enables users to move iteratively through each of the screens within the hierarchy,
and then navigate back out again, one screen at a time, removing them from the
navigation stack.

Hierarchical

The modal navigation type is a single pop-up or screen that interrupts the
Modal hierarchical navigation by requiring the user to respond to an action, prior to the
screen or popup from being dismissed.

The hierarchical navigation pattern provides a means of navigating through the navigational
structure and is typically the most used. This involves the user tapping their way forward through
a series of pages, and then navigating backwards through the stack using the navigation methods
on Android or iOS devices.

The following screenshot shows the process when moving from one page to another within the
hierarchical navigation model, and popping pages from the NavigationStack. Whenever a new
page is pushed onto the navigation stack, this will become the active page.

push Push_
W -
Pop Pop
ﬁ ﬁ
& T

Alternatively, when you want to return back to the previous page, the application will start by
popping the current page from the navigation stack, and the new topmost page will then become
the active page. The modal navigation pattern displays a page on top of the current page that
prevents the user from any interaction from the page underneath it, and provides the user with
choices for what they want to do before the modal page can be closed.

The INavigation interface, which is part of the Xamarin.Forms.NavigationPage, implements
and exposes two separate read-only properties-NavigationStack and ModalStack. This will
allow you to view both the hierarchical and modal navigation stacks.

The Xamarin.FormsINavigation interface provides you with several methods that will allow
you to asynchronously push (add) and pop (remove) pages onto the navigation and modal stacks,
and these are explained in the table below:

Navigation methods [Description
PushAsync (Page This method adds a new page at the top of the NavigationStack that
page) enables users to move deeper within the screen hierarchy.

This method allows you to navigate back through the
NavigationStack to the previous page, if one has been previously
added to the NavigationStack.

PopAsync ()

This method allows you to display a page modally when you need to
either display some informational information or request information

PushModalAsync(Page|ifrom the user. A good example of a modal page would be a sign-on
page) page, where you need to get user credentials.

This method will dismiss the currently displayed modal page and return

PopModalA
opModalAsync () you to the page displayed underneath.

As well as the above mentioned navigation methods, the Xamarin.Forms.INavigation interface
provides you with a number of additional methods that will help you manipulate the
NavigationStack, and these are explained in the following table:

Navigation methods Description

InsertPageBefore(PagelThis method allows you to insert a page before a specific page that
page, Page before) lhas already been added to the NavigationStack.

This method allows you to remove a specific page within the

RemovePage (Page page) . .
NavigationStack.

This method navigates you back to the first page that is contained
PopToRootAsync() within the NavigationStack whilst removing all of the other pages
that are contained within the NavigationStack.

Now that you have a good understanding of the components that are contained within the
Navigation API pattern architecture, we can begin to take a look at some of the different
approaches to navigating between pages and ViewModels.

Differences between the navigation and
ViewModel approaches

In this section, we will take a look at the approaches when performing navigation within
ViewModels contained within an Xamarin.Forms solution. When performing navigation within
your ViewModels, there are a couple of approaches that you should consider before going down
this path. An approach would be to use the page navigation approach, which involves navigating
to another page using a direct reference to that page.

The page navigation approach can be accomplished in Xamarin.Forms by essentially passing the
current INavigation instance into a ViewModel's object constructor, which will force the
ViewModel to use the Xxamarin.Forms default navigation mechanism to navigate to other pages.

If you wanted to use the ViewModel approach to navigate to a page using the associated pages
ViewModel, you would need to form some sort of mapping between each of the pages, as well as
their associated ViewModels. This would be done by creating a dictionary or key-value type
property in the navigation service that will maintain a one-to-one mapping for each of the pages
and their type.

In MVVM, actions taken by the user on a particular page are bound to commands that are part of
the pages, ViewModel, and so this process needs to be thought through differently when
navigating to another page, or even the previous page, when performing tasks such as saving data
or updating a maps location. As such, we need to rethink how to achieve navigation that leverages
the MVVM design pattern within our app, so that it can be controlled by the ViewModels and not
by the underlying pages.

When using the ViewModels to handle the navigation, this alleviates the need for a ViewModel to
have any dependencies on the specific implementation of a page, and because the ViewModel
doesn't navigate directly to a page via the ContentPage's ViewModel, this means that when you
implement this approach, there is a need for a relationship or mapping to be done between each of
the pages and their associated vViewModels.

In the next section, we will be taking a look at how to navigate through our TrackMywalks app by
creating a navigation service that will include ViewModel and page type mappings.

Implementing the navigation service within your
app

In this section, we will begin by setting up the basic structure for our TrackMywalks solution to
include the folder that will be used to represent our Services. Let's take a look at how we can
achieve this, by performing following the steps:

1. Launch the Xamarin Studio application and ensure that the TrackMywalks solution is loaded
within the Xamarin Studio IDE.

2. Next, create a new folder within the TrackMywalks Portable Class Library project, called
Services, as shown in the following screenshot:

@ = O] Debug » [] iPhone Bsi0S 9.3

[Solution

- TrackMyWalks
- TrackMyWalks
References
Packages
Models
Pages
Properties
Services _
ViewModels
@ packages.config
[} TrackMyWalks.cs
[TrackMyWalks.Crroid
4 TrackMyWalks.i0S

¥y ¥ ¥ ¥ vy v w

Now that we have created the folder structure that will be used to store our navigation services,
we can begin to start building the Navigation Service Interface class that will be used by
our Navigation Service class and in turn used by our ViewModels.

Creating the navigation service interface for the TrackMyWalks
app

In this section, we will begin by creating a navigation service interface class that will extend
from the Xamarin.Forms navigation abstraction layer. This is so that we can perform ViewModel
to ViewModel navigation within our MVVM design pattern, and in turn bind with our content
pages to allow navigation between these Views to happen.

We will first need to define the interface for our navigation service, as this will contain and
define its methods, and will make it a lot easier if we ever wanted to add new method
implementations for our service, without the need to change each of our ViewModels.

Let's take a look at how we can achieve this, by performing the following steps:

1. Create an empty class within the services folder, as shown in the following screenshot:

[NON | = O] Debug » [] iPhone Bsi0S 9.3

[Solution s

¥ |5 TrackMyWalks
* [TrackMyWalks

4 References
L4 Packages
4 Models
L4 Pages
L4 Properties
B e Add > NewFile...
= Miawhioe Add Files... N
[+5] packages.config Tools [2
[[}] TrackMyWalks.cs Version Control > Add Files from Folder...
i Add Existing Folder...
NPt Fndmbler. oRrf oo CC
AR e Reveal in Finder
Copy 8C
Cut i
Remove
Rename #R
Refresh

2. Next, choose the Empty Interface option located within the General section, and enter in
IwalkNavsService for the name of the new interface file to create, as shown in the following
screenshot:

@ @ Mew File

Forms | ;‘ Empty Class | .Empty Interface
— Creates an empty interface.
Gtk ' _@,' Empty Enurneration
Misc :
Text Templating A_EE‘ Empty File

Web

Empty Interface
XML]

i

L9

Empty Struct

=

Name: |IWalkMNavService] |

3. Next, click on the New button to allow the wizard to proceed and create the new empty class
file, as shown in the preceding screenshot.

Up until this point, all we have done is create our IwalkNavService class file. This Interface
class will be used and will act as the base NavigationService class that each of our
ViewModels will inherit from. As we start to build the Navigation Service Interface class,
you will see that it contains a couple of class members that will be used by our content pages and
ViewModels, as we will be using this as our base class within our ViewModels used by the
TrackMywalks application.

To proceed with creating the base IwalkNavService interface, ensure that the
IwalkNavService.cs file is displayed within the code editor, and enter in the following code
snippet:

//

// IWalkNavService.cs

// TrackMyWalks Navigation Service Interface
//

// Created by Steven F. Daniel on 03/09/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Threading.Tasks;

using TrackMyWalks.ViewModels;

namespace TrackMyWalks.Services

{

public interface IWalkNavService

{

// Navigate back to the Previous page in
the NavigationStack
Task PreviousPage();

// Navigate to the first page within
the NavigationStack
Task BackToMainPage();

// Navigate to a particular ViewModel within
our MVVM Model,
// and pass a parameter
Task NavigateToViewModel<ViewModel,
TParameter>(TParameter parameter)
where ViewModel : WalkBaseViewModel;

}

In the preceding code snippet, we started by creating a new Interface class for our
IwalkNavService that allows the ability to navigate to each of our ViewModels, as well as
navigating back to the PreviousPage method, and back to the first page within our hierarchical
model, as determined by the BackToMainPage method.

Note

An interface contains only the methods, properties, and event signature definitions. Any class that
implements the interface must implement all members of the interface that are specified in the
interface definition.

The NavigateToViewModel method declares a generic type which is used to restrict the
ViewModel to its use to objects of the walkBaseviewModel base class, and a strongly-typed
TParameter parameter to be passed along with the navigation.

Note

The term strongly-typed means that, if a variable has been declared of a specific type (string,
integer, or defined as a user-defined type), it cannot be assigned a value of a different type later

on, as this will result in the compiler notifying you of an error. An example would be: int i =
10; 1 = "Ten"

The Task class is essentially used to handle asynchronous operations. This is done by ensuring
that the asynchronous method you initiated will eventually finish, thus completing the task. The

Task object is used to return back information once it has finished by returning back a Task
object almost instantaneously, although the underlying work within the method would likely finish
later.

To handle this, you can use the await keyword to wait for the task to complete which will block
the current thread and wait until the asynchronous method has completed.

Creating a navigation service to navigate within our ViewModels

In the previous section, we created our base interface class for our navigation service and defined
a number of different methods, which will be used to navigate within our MVVM ViewModel.

These will be used by each of our ViewModels, and the Views (pages) will implement these
ViewModels and use them as their BindingContext.

Let's take a look at how we can achieve this, by performing the following the steps:

1. Create an empty class within the Services folder, as shown in the next screenshot.

2. Next, choose the Empty Class option located within the General section, and enter in
WalkNavService for the name of the new class file to create, as shown in the following
screenshot:

@ @ Mew File

Forms % Empty Class Empty Class

@

Gtk _@,' Empty Enumeration

Misc :

Text Templating A_EE‘ Empty File

Web :

XML 0 Empty Interface
;' Empty Struct

Name: |WalkNavServicel |

3. Next, click on the New button to allow the wizard to proceed and create the new empty class
file, as shown in the preceding screenshot.

4. Up until this point, all we have done is create our walkNavService class file. This class
will be used and will act as the base NavigationService class that will contain the
functionality required that each of our ViewModels will inherit from, in order to navigate
between each of the ViewModels within our MVVM model.

5. As we start to build our Navigation class, you will see that it contains a number of method
members that will be used to enable navigation between each of our ViewModels and it will
implement the TwalkNavService Interface. To proceed with creating the base
walkNavService class, perform the following steps:

6. Ensure that the walkNavService.cs file is displayed within the code editor, and enter in the
following code snippet:

//

// WalkNavService.cs

// TrackMyWalks Navigation Service Class

//

// Created by Steven F. Daniel on 03/09/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using Xamarin.Forms;

using System.Collections.Generic;

using System.Threading.Tasks;

using System.Reflection;

using System.Linq;

using TrackMyWalks.ViewModels;

using TrackMyWalks.Services;

First, we need to initialize our navigation class to be marked as a dependency, by adding the
Dependency metadata attribute so that it can be resolved by the
Xamarin.FormsDependencyService class. This will enable so that it to find and use our
method implementation as defined by our interface.

7. Next, we also need to need to ensure that our walkNavService class inherits from the
IwalkNavService navigation interface class, so that it can access the method getters and
setters. Proceed and enter in the following code snippet as shown here:

[assembly: Dependency(typeof(WalkNavService))]
namespace TrackMyWalks.Services

{

public class WalkNavService : IWalkNavService

{
8. Next, we need to create a public INavigation property named navigation. The
navigation property will provide our class with a reference to the current

Xamarin.Forms.INavigation instance, and this will need to be set when the navigation
service is first initialized. We will see how this is done as we progress through updating our

TrackMywalks app. Proceed and enter in the following code snippet:

public INavigation navigation { get; set; }

9. Then we need to register the navigation service to handle ContentPage to ViewModel
mappings by declaring a dictionary _viewMapping property variable that inherits from the

10.

11.

12.

13.

IDictionary interface. Proceed and enter in the following code snippet:

readonly IDictionary<Type, Type> _viewMapping =
new Dictionary<Type, Type>();
Next, we need to declare a new method called RegisterviewMapping which will be used
to populate our ViewModel and contentPage (View) within the _viewMapping dictionary
property object. Proceed and enter in the following code sections:

// Register our ViewModel and View within our Dictionary
public void RegisterViewMapping(Type viewModel, Type view)

{
}

Then, we need to create the PreviousPage instance method for our walkNavService class.
This will be used to navigate back to the previous page contained within our
NavigationStack, by first checking the NavigationStack property of the navigation
property INavigation interface to ensure that it is not null and that we have more than one
ViewModel contained within our NavigationStack to navigate back to. If we don't perform
this check, it could result in our application crashing. Finally, we use the PopAsync method
to remove the last view added to our NavigationStack, thus returning back to the previous
ViewModel. Proceed and enter in the following code sections:

_viewMapping.Add(viewModel, view);

// Instance method that allows us to move back to the
// previous page.
public async Task PreviousPage()

{
// Check to see if we can move back to the previous page
if (navigation.NavigationStack != null &&
navigation.NavigationStack.Count > Q)
{
await navigation.PopAsync(true);
}
}

Next, we need to create the BackToMainPage instance method for our walkNavService
class. This will be used to take us back to the first ContentPage contained within our
NavigationStack. We use the PopToRootAsync method of our navigation property and
use the await operator to wait until the task completes, before removing all ViewModels
contained within our NavigationStack and returning back a Task object. Proceed and enter
the following code:

// Instance method that takes us back to the main
// Root WalksPage
public async Task BackToMainPage()

{
}

Then, we need to create the NavigateToViewModel instance method for our
walkNavService class. This will be used to navigate to a specific ViewModel that is
contained within our _viewMapping dictionary object. Next, we use the TryGetVvalue

await navigation.PopToRootAsync(true);

method of the _viewMapping dictionary object to check to see if our ViewModel does
indeed exist within our dictionary, and return the name of the ViewModel.

14. The name of the returned view will be stored within the viewType object, and we then use
the PushAsync method to navigate to that view. Finally, we set the BindingContext for the
last pushed view that is contained within our NavigationStack, and then navigate to the
view, passing in any parameters required. Proceed and enter in the following code sections:

// Instance method that navigates to a specific ViewModel
// within our dictionary viewMapping
public async Task NavigateToViewModel<ViewModel,
WalkParam>(WalkParam parameter)
where ViewModel : WalkBaseViewModel

Type viewType;

if (_viewMapping.TryGetValue(typeof(ViewModel), out
viewType))
{

var constructor = viewType.GetTypeInfo()
.DeclaredConstructors

.FirstOrDefault(dc => dc.GetParameters()
.Count() <= 0);

var view = constructor.Invoke(null) as Page;
await navigation.PushAsync(view, true);

}

if (navigation.NavigationStack.Last().BindingContext is
WalkBaseViewModel<WalkParam>)
await ((WalkBaseViewModel<WalkParam>) (
navigation.NavigationStack.Last().BindingContext)).
Init(parameter);

In the preceding code snippet, we began by ensuring that our walkNavService class inherits from
our IWalkNavService class, and then moved on to create a navigation property that inherits
from our INavigation class. We then created its associated getter and setter qualifiers.

Finally, we created the instance methods required for our walkNavService class.

Updating the WalkBaseViewModel to use our navigation service

In this section we will proceed to update our walkBaseViewModel class to include references to
our IWalkNavService. Since our WalkBaseViewModel inherits and is used by each of our
ViewModels, it makes sense to place it within this class. That way, if we need to add additional
methods, we can just add them within this class. To proceed, perform the following steps:

1. Ensure that the walkBaseVviewModel.cs file is displayed within the code editor, and enter in
the following code snippet:

//

// WalkBaseViewModel.cs

// TrackMyWalks Base ViewModel

//

// Created by Steven F. Daniel on 22/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.ComponentModel;

using System.Runtime.CompilerServices;

using System.Threading.Tasks; using TrackMyWalks.Services;

namespace TrackMyWalks.ViewModels

{

public abstract class WalkBaseViewModel
INotifyPropertyChanged

{

2. Next, we need to create a protected IWwalkNavService property named NavService. The
NavService property will provide our class with a reference to the current navigation
instance that is contained within our IwalkNavService interface class. Proceed and enter in
the following code section:

protected IWalkNavService NavService { get; private set; }

3. Then, we need to modify the class constructor and declare a navService parameter that
inherits from our IwalkNavService interface class. Next, we set the NavService property
for our walkBaseVviewModel base class, to an instance of the navService parameter.
Proceed and enter in the following highlighted code sections:

protected WalkBaseViewModel(IWalkNavService navService)

{
}

4. Next, we need to create the Init abstract method for our walkBaseViewModel class that
returns back an asynchronous Task object. This will be used to initialize our
walkBaseViewModel. Proceed and enter in the following highlighted code sections:

NavService = navService;

public abstract Task Init();
public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(

[CallerMemberName] string propertyName = null)

{

var handler = PropertyChanged;
if (handler != null)

handler(this, new PropertyChangedEventArgs(propertyName));

}
}
}

5. Then, we need to create a secondary abstract class for our walkBaseViewModel that inherits
from the walkBaseVviewModel and defines a generic-typed TParameter object. We then
proceed to overload the walkBaseViewModel class constructor, and set this class to inherit
from our navService base class. Proceed and enter in the following highlighted code

sections:
public abstract class WalkBaseViewModel<WalkParam> :
WalkBaseViewModel
{
protected WalkBaseViewModel(IWalkNavService navService)
base(navService)
{
}

6. Next, we need to override the Init method for our walkBaseViewModel<wWalkParam> that
accepts a default walkParam value for our walkDetails model. Proceed and enter in the
following highlighted code sections:

public override async Task Init()

{
await Init(default(WalkParam));

}
public abstract Task Init(WalkParam walkDetails);

e

In the preceding code snippet, we began by creating a NavService property that inherits from our
IwalkNavService class, and then created its associated getter and setter qualifiers.

Next, we update the walkBaseViewModel class constructor to set the NavService property to an
instance of our navService, before creating our Init abstraction method that will be used to
initialize our class.

In the next step, we create a new abstract class for our walkBaseviewModel that implements from
the walkBaseViewModel class, and then overloads our class constructor so that it inherits from
our navService class.

Next, we'll override the Init method for our walkBaseViewModel<walkParam> that accepts a
default walkParam value for our walkDetails model.

Updating the walks main page ViewModel and navigation

service

We have created our IwalkNavService Interface class and updated the NavService class to
include all of the necessary class instance methods. We also made some changes to our
wWalkBaseViewModel class to inherit from our IwalkNavService navigation service. We have
also included an additional abstraction class that will be used to initialize our
WalkBaseViewModel when navigating between ViewModels within our MVVM model.

Our next step is to modify the walks main page. In this section, we will be taking a look at how to
update our WwalksPageViewModel so that it can take advantage of our navigation service.

Let's take a look at how we can achieve this, by performing the following steps:

1. Ensure that the walksPageViewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections:

//

// WalksPageViewModel.cs
// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using
using
using
using
using
using

System;
System.Collections.ObjectModel;
System.Threading.Tasks;
TrackMyWalks.Models;
TrackMyWalks.Services;
Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{

public class WalksPageViewModel : WalkBaseViewModel

{

ObservableCollection<WalkEntries> _walkEntries;

public ObservableCollection<WalkEntries> walkEntries

{

get { return _walkEntries; }
set

{

_walkEntries = value;
OnPropertyChanged();

}

2. Now we need to modify the walksPageViewModel class constructor, which will need to
include a parameter navservice that is included within our IwalkNavService interface
class. Then we need to set the ViewModel's class constructor to access all instance class
members contained within the navService within the walksPageViewModel by using the

base keyword. We then set up an ObservableCollection called walkentries. This
accepts a list parameter containing our WwalkEntries model, which will be used to
determine whenever the collection has changed within the walkEntries model.

. Next, we create the Init method within our walksPageView model, and a method called
LoadwalkDetails to populate the walkDetails. Proceed and enter in the following
highlighted code sections:

public WalksPageViewModel(IWalkNavService navService)
base(navService)
walkEntries = new ObservableCollection<WalkEntries>();
public override async Task Init()

await LoadwalkDetails();

o T

. Next, we need to create a new async method called LoadwalkDetails that will be used to
add each of the walk entries within our model. We use the Task.Factory.StartNew to start
and execute our task, and then proceed to populate each of our lists of walkEntries
asynchronously. We then use and specify the await keyword to wait until our Task
completes. Proceed and enter in the following highlighted code sections:

public async Task LoadWalkDetails()

await Task.Factory.StartNew(() =>
{
walkEntries = new ObservableCollection<WalkEntries>() {
new WalkEntries {
Title = "10 Mile Brook Trail, Margaret River",
Notes = "The 10 Mile Brook Trail starts in the
Rotary Park near 0ld Kate, a preserved steam " +
"engine at the northern edge of Margaret River. ",
Latitude = -33.9727604,
Longitude = 115.0861599,

Kilometers = 7.5,
Distance = 0,
Difficulty = "Medium",
ImageUrl =

"http://trailswa.com.au/media/cache/media/images/
trails/_mid/" +
"FullSizeRenderl1_600_4860_c1.jpg"
}

new WalkEntries
{
Title = "Ancient Empire Walk, Valley of the Giants",
Notes = "The Ancient Empire is a 450 metre walk trail
that takes you around and through some of " +

"the giant tingle trees including the most popular
of the gnarled veterans, known as " +

"Grandma Tingle.",
Latitude = -34.9749188,
Longitude = 117.3560796,
Kilometers = 450,
Distance = 0,
Difficulty = "Hard",
ImageUrl ="http://trailswa.com.au/media/cache
/media/images/trails/_mid/" +

"Ancient_Empire_534_480_c1.jpg"

},
};
1),
}

5. Next, we need to create a Command property for our class. This will be used within our
walksPage and will be used to bind to the Add WalkToolBarItem. The Command property
will run an action upon being pressed, and then execute a class instance method, to

determine whether the command can be executed. Proceed and enter in the following
highlighted code sections:

Command _createNewWalk;
public Command CreateNewWalk

{
get
{
return _createNewWalk
?? (_createNewWalk =
new Command(async () =>
await NavService.NavigateToViewModel<WalkEntryViewMod
el, walkEntries>(null)));
}
}

6. Then, create a Command property to our class. This will be used within the walksPage and
will be used to handle clicks on a walk item within the ListVview. The Command property
will run an action upon being pressed, and then execute a class instance method to determine
whether the command can be executed or not, prior to navigating to the
WalksTrailViewModel and passing in the trailbDetails for the chosen walk within the
ListView. Proceed and enter in the following highlighted code sections:

Command<WalkEntries> _trailDetails;
public Command<WalkEntries> WalkTrailDetails

{
get

{
return _trailDetails
?? (_trailDetails =

new Command<WalkEntries>(async (trailDetails) =>
await NavService.NavigateToViewModel
<WalksTrailVi
ewModel, WalkEntries>(trailDetails)));

Now that we have modified our walksPageViewModel to include the navigation service class,
which will be used by our main walksPage, our next step is to modify our walks main page so
that it points to a reference of our walksPageViewModel, and ensures that all of the necessary
command bindings and BindingContexts have been set up correctly.

Updating the walks main page to use the updated ViewModel

Now that we have modified our MVVM ViewModel to take advantage of the navigation service,
we need to modify our walks main page to bind the walksPageBindingContext to the
wWalksPageViewModel so that the walk entry details can be displayed and all of the navigational
aspects are working as expected.

Let's take a look at how we can achieve this, by performing the following steps:

1. Ensure that the walksPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// WalksPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Collections.Generic;

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using TrackMyWalks.Services;

namespace TrackMywWalks

{
public class WalksPage : ContentPage

{

2. Next, we need to create a new private property named _viewModel within our walksPage
class. This is of the walksPageViewModel type, and will essentially provide us with access
to the ContentPage's BindingContext object. Proceed and enter in the following highlighted
code sections:

WalksPageViewModel _viewModel

get { return BindingContext as WalksPageViewModel;

}
}

public WalksPage()
{

var newWalkItem = new ToolbarItem

{
+;

3. Then, we need to set up a Binding to the Command property that we defined within our
walksPageViewModel class. This will be called when the user chooses the Add Walk

Text = "Add walk"

button. Proceed and enter in the following highlighted code sections:
// Set up our Binding click event handler
newWalkItem.SetBinding(ToolbarItem.CommandProperty,
"CreateNewwWalk");

// Add the ToolBar item to our ToolBar
ToolbarItems.Add(newWalkItem);

4. Next, we need to declare and initialize our walksPageViewModelBindingContext to
include our IwalkNavService constructor, which is used by the walkBaseViewModel class,
and is retrieved from the Xxamarin.Forms DependencyService class. Proceed and enter in
the following highlighted code sections:

// Declare and initialize our Model Binding Context

BindingContext = new WalksPageViewModel(DependencyService.Get
<IwWalkNavs
ervice>());
// Define our Item Template
var itemTemplate = new DataTemplate(typeof(ImageCell));
itemTemplate.SetBinding(TextCell.TextProperty, "Title");
itemTemplate.SetBinding(TextCell.DetailProperty, "Notes");
itemTemplate.SetBinding(ImageCell.ImageSourceProperty,
"ImageUrl"),;

var walksList = new ListView

{
HasUnevenRows = true,
ItemTemplate = itemTemplate,
SeparatorColor = Color.FromHex("#ddd"),
Iy

// Set the Binding property for our walks Entries
walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,
"walkEntries");

5. Then, we need to change the way in which an item gets selected from the Listview. We
need to make a call to the walksTrailDetails command that is included within our
wWalksPageViewModel class, so that it can navigate to the walksTrailViewModel, whilst
passing in the chosen item from within the ListVview. Proceed and enter the following
highlighted code sections:

// Initialize our event Handler to use when
the item is tapped
walksList.ItemTapped += (object sender,
ItemTappedEventArgs e) =>
{
var item = (WalkEntries)e.Item;
if (item == null) return;
_viewModel.WalkTrailDetails.Execute(item);
item = null;

};

Content = walksList;

}

6. Finally, we need to create an OnAppearing instance method of the navigation hierarchy that
will be used to display our walksEntries prior to the ViewModel appearing on screen.

7. We need to ensure that our ViewModel has been properly initialized by checking to see that
itisn't null, prior to calling the Init method of our walksPageviewModel. Proceed and
enter the following highlighted code sections:

protected override async void OnAppearing()

{

base.OnAppearing();
// Initialize our WalksPageViewModel

if (_viewModel != null)

await _viewModel.Init();

In this section, we looked at the steps involved in modifying the walksPage so that it can take
advantage of our updated walksPageViewModel. We looked at how to set the content page to an
instance of the walksPageViewModel so that it knows where to get the list of walk entries. The
list will be used and displayed within the ListView control, and will then update the
BindingContext property for the walksPage to point to an instance of the IwalkNavService
interface. As you can see, by using a navigation service within your ViewModels, it makes
navigating between each of the ViewModels quite easy.

Updating the walks entry page ViewModel and navigation

service

Now that we have modified the MVVM ViewModel that will be used for the main walksPage,
our next step is to begin modifying the walkEntryVviewModel to take advantage of the navigation
service, which will be used to create new walk entries, and save this information back to the

WalkBaseViewModel.

book.

This will be covered in a later chapter as we progress throughout this

Let's take a look at how we can achieve this, by performing the following steps:

1. Ensure that the walkEntryVviewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections:

//

// WalkEntryViewModel.cs
// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//
using
using

using
using
using
using
using

System;
System.Diagnhostics.Contracts;

System.Threading.Tasks;
TrackMyWalks.Models;
TrackMyWalks.Services;
TrackMyWalks.ViewModels;
Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{

public class WalkEntryViewModel : WalkBaseViewModel

{

string _title;
public string Title

{
get { return _title; }
set
{
_title = value;
OnPropertyChanged();
SaveCommand.ChangeCanExecute();
}
}

string _notes;

public string Notes

{
get { return _notes; }
set

{

_notes = value;

OnPropertyChanged();
}

double _latitude;
public double Latitude

{
get { return _latitude; }
set
{
_latitude = value;
OnPropertyChanged();
}
}

double _longitude;
public double Longitude

{
get { return _longitude; }
set
{
_longitude = value;
OnPropertyChanged();
}
}

double _kilometers;
public double Kilometers
{
get { return _kilometers; }
set
{
_kilometers = value;
OnPropertyChanged();

}

string _difficulty;

public string Difficulty

{
get { return _difficulty; }
set

_difficulty = value;
OnPropertyChanged();

}

double _distance;
public double Distance
{
get { return _distance; }
set
{
_distance = value;
OnPropertyChanged();

}

string _imageUrl;
public string ImageUrl
{

get { return _imageUrl; }
set

{
_imageUrl = value;
OnPropertyChanged();

}

2. In the next step, we need to modify the walksEntryviewModel class constructor which will
now need to include a parameter navService that is included within the IwalkNavService
interface class. Then we'll set the ViewModel's class constructor to access all instance class
members contained within the navService within the walksEntryviewModel, by using the
base keyword. Next, we'll initialize the constructor with default values for our Tit1le,
Difficulty and Distance properties.

3. Locate the walkEntryViewModel class constructor, and enter the following highlighted code
sections:

public WalkEntryViewModel(IWalkNavService navService)

base(navService)

{
Title = "New Walk";
Difficulty = "Easy";
Distance = 1.0;

}

4. Next, we need to modify the SaveCommand command property to include the async and
await keywords. This command property will be used to bind to the SaveToolBarItem and
will run an action upon being pressed. It will then execute a class instance method to
determine whether the command can be executed. Proceed and enter in the following
highlighted code sections:

Command _saveCommand;
public Command SaveCommand

{
get
{
return _saveCommand ?? (_saveCommand =
new Command(async () => await ExecuteSaveCommand(),
ValidateFormDetails));
}
}

5. Next, we locate and modify the ExecuteSaveCommand instance method to include the async
Task keywords to the method definition, and then include a reference to our PreviousPage
method that is defined within our IwalkNavService interface to allow our walkEntryPage

to be dismissed upon the user clicking on the Save button. Proceed and enter in the
following highlighted code sections:

async Task ExecuteSaveCommand()

{

var newWalkItem = new WalkEntries
{

Title = this.Title,

Notes = this.Notes,

Latitude = this.Latitude,
Longitude = this.Longitude,
Kilometers = this.Kilometers,
Difficulty = this.Difficulty,
Distance = this.Distance,
ImageUrl this.ImageUrl

};

// Here, we will save the details entered in a later chapter.
await NavService.PreviousPage();

}

// method to check for any form errors
bool ValidateFormDetails()

{
return !string.IsNullOrWhiteSpace(Title);

}

6. Finally, create the Init method within the walkEntryviewModel. This will be used to
initialize the walkEntryPage when it is called. We use the Task.Factory.StartNew
method to give the ViewModel enough time to display the page on screen, prior to
initializing the ContentPage contents. Proceed and enter in the following highlighted code

sections:

public override async Task Init()
{
await Task.Factory.StartNew(() =>
{
Title = "New Walk";
Difficulty = "Easy";
Distance = 1.0;
1)
}

}

}

In this section, we began by ensuring that our ViewModel inherits from the walkBaseviewModel
class and then modifies the walksEntryVviewModel class constructor to include the parameter
navService which is included within the TwalkNavService interface class. In our next step,
we'll initialize the class constructor with default values for the Title, Difficulty, and
Distance properties and then modify the SaveCommand command method to include a reference

to the NavService.PreviousPage method. This is declared within the IwalkNavService
interface class to allow our walkEntryPage to navigate back to the previous calling page when
the Save button is clicked.

Updating the WalksEntryPage to use the updated ViewModel

In this section, we need to bind our model binding context, BindingContext, to the
wWalkEntryviewModel so that the new walk information, which will be entered within this page,
can be stored within the walkEntries model. Let's take a look at how we can achieve this, by
performing the following steps:

1. Ensure that the walkEntryPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// WalkEntryPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using System.Collections.Generic;

namespace TrackMywWalks

{
public class WalkEntryPage : ContentPage

{

2. Next, we need to create a new private property named _viewModel within the
walkEntryPage class that is of the walksEntryVviewModel type, and which will essentially
provide us with access to the ContentPage's BindingContext object. Proceed and enter in
the following highlighted code sections:

WalkEntryViewModel _viewModel

{
get
{ return BindingContext as WalkEntryViewModel;
}
}
public WalkEntryPage()
{

// Set the Content Page Title
Title = "New Walk Entry";

3. Next, we need to declare and initialize our walkEntryViewModelBindingContext to
include the IwalkNavService constructor, which is used by the walkBaseViewModel class,

and is retrieved from the Xamarin.FormsDependencyService class. Proceed and enter in
the following highlighted code sections:

// Declare and initialize our Model Binding Context

BindingContext = new WalkEntryViewModel(
DependencyService.
Get<IWalkNavService>());

// Define our New Walk Entry fields
var walkTitle = new EntryCell

{
Label = "Title:",

Placeholder = "Trail Title"
Iy
walkTitle.SetBinding(EntryCell.TextProperty,
"Title", BindingMode.TwoWay);

var walkNotes = new EntryCell

{

Label = "Notes:",

Placeholder = "Description"
3
walkNotes.SetBinding(EntryCell.TextProperty,
"Notes", BindingMode.TwoWay);

var walkLatitude = new EntryCell

{
Label = "Latitude:",
Placeholder = "Latitude",
Keyboard = Keyboard.Numeric
3

walkLatitude.SetBinding(EntryCell.TextProperty,
"Latitude", BindingMode.TwoWay);

var walkLongitude = new EntryCell

{
Label = "Longitude:",
Placeholder = "Longitude",
Keyboard = Keyboard.Numeric
3

walkLongitude.SetBinding(EntryCell.TextProperty,
"Longitude", BindingMode.TwoWay);

var walkKilometers = new EntryCell

{
Label = "Kilometers:",
Placeholder = "Kilometers",
Keyboard = Keyboard.Numeric
Iy

walkKilometers.SetBinding(EntryCell.TextProperty,
"Kilometers", BindingMode.TwoWay);

var walkDifficulty = new EntryCell

{
Label = "Difficulty Level:",

Placeholder = "Walk Difficulty"

3
walkDifficulty.SetBinding(EntryCell.TextProperty,
"Difficulty", BindingMode.TwoWay);

var walkImageUrl = new EntryCell
{

Label = "ImageUrl:",

Placeholder = "Image URL"
Iy
walkImageUrl.SetBinding(EntryCell.TextProperty,
"ImageUrl", BindingMode.TwoWay);

// Define our TableView
Content = new TableView

{
Intent = TableIntent.Form,
Root = new TableRoot
{
new TableSection()
{
walkTitle,
walkNotes,
walkLatitude,
walkLongitude,
walkKilometers,
walkDifficulty,
walkImageUrl
}
3
I¥
var saveWalkItem = new ToolbarItem
{
Text = "Save"
I¥

saveWalkItem.SetBinding(MenuItem.CommandProperty,
"SaveCommand");

ToolbarItems.Add(saveWalkItem); }

In this section, we looked at the steps involved in modifying the walkEntryPage so that it can
take advantage of our updated walkEntryviewModel. We looked at how to set the content page to
an instance of the walkEntryviewModel so that the BindingContext property for the
walkEntryPage will now point to an instance of the IwalkNavService interface.

Updating the walks trail page ViewModel and navigation service

Now that we have modified the MVVM ViewModel that will be used for our walkEntry page,
our next step is to begin modifying the walksTrailviewModel to take advantage of the navigation
service, so that it will be used to display the walk entry information that has been associated with
the chosen walk.

Let's take a look at how we can achieve this, by performing the following the steps:

1. Ensure that the walksTrailviewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections:

//

// WalksTrailViewModel.cs

// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Threading.Tasks;

using TrackMyWalks.Models;

using TrackMyWalks.Services;

using Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{
public class WalksTrailViewModel

WalkBaseViewModel<WalkEntries>

{
WalkEntries _walkEntry;

public WalkEntries WalkEntry

{
get { return _walkEntry; }
set
{
_walkEntry = value;
OnPropertyChanged();
}
}

2. Next, we need to create a Command property for our class. This will be used within our
wWalkTrailPage and will be used to handle when the user clicks on the Begin This Trial
button. The command property will run an action upon being pressed, and then execute a
class instance method to determine whether the command can be executed or not, prior to
navigating to the DistTravelledViewModel, and passing in the trailDetails for the
chosen walk from the walksPage. Proceed and enter in the following highlighted code
sections:

Command<WalkEntries> _command;
public Command<WalkEntries> DistanceTravelled

{
get

return _command

?? (_command =

new Command<WalkEntries>(async (trailDetails) =>
await NavService.NavigateToViewModel
<DistTravelledViewModel, WalkEntries>(trailDetails)));

3. Next, we need to declare and initialize our walksTrailViewModelBindingContext to
include the IwalkNavService constructor, which is used by the walkBaseViewModel class,
and is retrieved from the Xamarin.FormsDependencyService class. Proceed and enter in
the following highlighted code sections:

public WalksTrailViewModel(IWalkNavService navService)
base(navService)

{
}

4. Finally, create the I1nit method within the walksTrailviewModel. This will be used to
initialize the walkTrailPage when it is called. We use the Task.Factory.StartNew
method to give the ViewModel enough time to display the page on screen, prior to
initializing the ContentPage contents, using the passed in walkDetails for our model.
Proceed and enter in the following highlighted code sections:

public override async Task Init(WalkEntries walkDetails)

{
await Task.Factory.StartNew(() =>
{
WalkEntry = walkDetails;
});

}

¥

¥

In this section, we begin by ensuring that our ViewModel inherits from the walkBaseViewModel
class, and that it accepts the walkEntries dictionary as its parameter. In our next step, we'll
create a DistanceTravelledCommand method that will navigate to the
DistanceTravelledPage content page within our NavigationStack that passes the WalkEntry
dictionary to the DistTravelledViewModel ViewModel and pass a parameter containing the
trailDetails of the chosen walk.

Updating the WalksTrailPage to use the updated ViewModel

In this section, we need to bind our model binding context, BindingContext, to the
WalksTrailViewModel so that the walk information details will be displayed from the
walkeEntries model when a walk has been clicked on within the main walksPage. Let's take a
look at how we can achieve this, by performing the following steps:

1. Ensure that the walkTrailPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// WalkTrailPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using TrackMyWalks.Services;

namespace TrackMywWalks

{
public class WalkTrailPage : ContentPage

{
public WalkTrailPage(WalkEntries walkItem)

{
Title = "walks Trail";

2. Next, we need to declare and initialize our walkEntryViewModelBindingContext to
include the IwalkNavService constructor, which is used by the walkBaseViewModel class,
and is retrieved from the Xxamarin.FormsDependencyService class. Proceed and enter in
the following highlighted code sections:

// Declare and initialize our Model Binding Context
BindingContext = new WalksTrailViewModel(DependencyService.
Get<IWalkNavService>());

var beginTrailwWalk = new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "Begin this Trail"

Iy

3. Next, we need to modify the beginTrailwalk.Clicked handler for our button, so that upon
being clicked, it will navigate to the DistTravelledviewModel and pass in the walkEntry
dictionary for the chosen walk from the walksPage. Proceed and enter in the following
highlighted code sections:

// Declare and initialize our Event Handler
beginTrailwalk.Clicked += (sender, e) =>

{
if (_viewModel.wWalkEntry == null) return;

_viewModel.DistanceTravelled.Execute(_viewModel.WalkEntry);

};

var walkTrailImage = new Image()

{
};

walkTrailImage.SetBinding(Image.SourceProperty,
"WalkEntry.ImageUrl");

Aspect = Aspect.AspectFill

var trailNamelLabel = new Label()

{
FontSize = 28,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black

I¥

trailNamelLabel.SetBinding(Label.TextProperty,
"WalkEntry.Title");

var trailKilometersLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.Black,

Iy

trailKilometersLabel.SetBinding(Label.TextProperty,
"WalkEntry.Kilometers",

stringFormat: "Length: {0} km");

var trailDifficultylLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.Black

I¥

trailDifficultylLabel.SetBinding(Label.TextProperty,
"WalkEntry.Difficulty", stringFormat: "Difficulty: {0}");

var trailFullDescription = new Label()

{

FontSize = 11,

TextColor = Color.Black,

HorizontalOptions = LayoutOptions.FillAndExpand
3

trailFullDescription.SetBinding(Label.TextProperty,
"WalkEntry.Notes");

this.Content = new ScrollView

{

Padding = 10,
Content = new StackLayout
{

Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children =

walkTrailImage,
trailNamelLabel,
trailKilometersLabel,
trailDifficultylLabel,
trailFullDescription,
beginTrailwalk

}
+;

In this section, we looked at the steps involved in modifying the walksTrailPage so that it can
take advantage of the walksTrailviewModel. We looked at how to set the content page to an
instance of the walksTrailviewModel so that the BindingContext property for the
WalkTrailPage will now point to an instance of the IwalkNavService interface.

We also slightly modified our clicked handler for the beginTrailwalk button so that it will
now navigate to the DistanceTravelledPage content page within the NavigationStack, and
pass in the walkEntry dictionary object to the DistTravelledviewModel ViewModel.

Updating the distance travelled ViewModel and navigation

service

Now that we have modified the MVVM ViewModel that will be used for our walkTrailPage,
our next step is to update the DistTravelledviewModel to take advantage of the navigation
service, so that it can display the walk entry information that has been associated with the chosen

walk.

Let's take a look at how we can achieve this, by performing the following steps:

1. Ensure that the DistTravelledviewModel.cs file is displayed within the code editor, and
enter in the following highlighted code sections:

//

//
//
//
//
//
//

DistTravelledViewModel.cs
TrackMywWalks ViewModels

Created by Steven F. Daniel on 22/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System;

using System.Threading.Tasks;
using TrackMyWalks.Models;
using TrackMyWalks.Services;
using TrackMyWalks.ViewModels;
using Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{

public class DistTravelledViewModel :
WalkBaseViewModel<WalkEntries>
{

WalkEntries _walkEntry;

public WalkEntries WalkEntry

{
get { return _walkEntry; }
set
{
_walkEntry = value;
OnPropertyChanged();
}
}

double _travelled;
public double Travelled
{
get { return _travelled; }
set
{
_travelled = value;
OnPropertyChanged();

}

double _hours;
public double Hours

{
get { return _hours; }
set
{
_hours = value;
OnPropertyChanged();
}
}

double _minutes;
public double Minutes

{
get { return _minutes; }
set
{
_minutes = value;
OnPropertyChanged();
}
}

double _seconds;
public double Seconds

{
get { return _seconds; }
set
{
_seconds = value;
OnPropertyChanged();
}
}
public string TimeTaken
{
get
{
return string.Format("{0:00}:{1:00}:{2:00}",
this.Hours, this.Minutes, this.Seconds);
}
}

2. Next, we need to modify the DistTravelledViewModel class constructor, which will now
need to include a navService parameter that is included within the IwalkNavService
interface class. We then set the ViewModel's class constructor to access all instance class
members contained within the navService by using the base keyword and initialize the
constructor with default values for the Hours, Minutes, Seconds, and Travelled
properties.

3. Locate the DistTravelledVviewModel class constructor, and enter the following highlighted
code:

public DistTravelledViewModel(IWalkNavService navService)

base(navService)

{
this.Hours = 0;
this.Minutes = 0;
this.Seconds = 0;
this.Travelled = 100;
}

4. Then, create the Init method within the DistTravelledviewModel, which will be used to
initialize the DistanceTravelledPage content page when it is called. We need to specify
and use the Task.Factory.StartNew method to give the ViewModel enough time to display
the page on screen, prior to initializing the ContentPage contents, using the passed in
walkDetails for our model. Proceed and enter in the following highlighted code sections:

public override async Task Init(WalkEntries walkDetails)

{

await Task.Factory.StartNew(() =>

{
1)

WalkEntry = walkDetails;

}

5. Next, we need to create the BackToMainPage command property that will be used to bind to
the End This Trail button that will run an action upon being pressed. This action will
execute a class instance method, to determine whether the Command can be executed.

6. If the command can be executed, a call will be made to the BackToMainPage method on the
NavService navigation service class to take the user back to the TrackMywalks main page,
by removing all existing ViewModels within the NavigationStack, except the first page.
Proceed and enter in the following highlighted code sections:

Command _mainPage;
public Command BackToMainPage

{

get

return _mainPage
?? (_mainPage = new
Command(async () => await

NavService.BackToMainPage()));

In this section, we updated the DistanceTravelledViewModel to inherit from our

walkBaseViewModel Interface class and then modify the DistTravelledviewModel class
constructor to point to an instance of the IwalkNavService interface class.

We then created the Init method that will initialize the DistanceTravelledViewModel when it
is called and use the Task.Factory.StartNew method to give the ViewModel enough time to
display the DistanceTravelledPage content page on screen, prior to initializing the
ContentPage contents, using the passed in walkDetails for our model.

We also created the BackToMainPage command property that will be used to bind to the End
This Trail button that will run an action to execute a class instance method, to determine
whether the command can be executed, and then a call will be made to BackToMainPage method
on the NavService navigation service class to take the user back to the first page within the
NavigationStack.

Updating the DistanceTravelledPage to use the updated
ViewModel

Now that we have modified the MVVM ViewModel that will be used by our
DistanceTravelledPage content page, our next step is to begin modifying the
DistanceTravelledPage page to take advantage of our navigation service, and display walk
information details. The calculations and distance travelled will be displayed from the
walkEntries model.

Let's take a look at how we can achieve this, by performing the following steps:

1. Ensure that the DistanceTravelledPage.cs file is displayed within the code editor, and
enter in the following highlighted code sections:

//

// DistanceTravelledPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using Xamarin.Forms.Maps;

using TrackMyWalks.Models;

using TrackMyWalks.Services;

namespace TrackMywWalks

{

public class DistanceTravelledPage : ContentPage

{

2. Next, we need to create a new private property named _viewModel within the
DistanceTravelledPage class, which is of our DistTravelledViewModel type, and will
essentially provide us with access to the ContentPage's BindingContext object. Proceed
and enter in the following highlighted code sections:

DistTravelledViewModel viewModel

{
get { return BindingContext as DistTravelledViewModel; }
}
public DistanceTravelledPage()
{

Title = "Distance Travelled";

3. Next, we need to declare and initialize the DistTravelledViewModelBindingContext to
include our IwalkNavService constructor, which is used by the walkBaseViewModel class,
and is retrieved from the Xxamarin.Forms DependencyService class. Proceed and enter in

the following highlighted code sections:

// Declare and initialize our Model Binding Context
BindingContext = new DistTravelledViewModel
(DependencyService.
Get<IWalkNavService>());

. Then, we need to create a new method called LoadDetails which will be used to grab the
name of the chosen walk and the Latitude and Longitude values from the
DistTravelledViewModel as well as zoom into the user entry location, using the
MoveToRegion method. Proceed and enter in the following highlighted code sections:

public void LoadDetails()

{
// Instantiate our map object
var trailMap = new Map();

// Place a pin on the map for the chosen
// walk type
trailMap.Pins.Add(new Pin

¢ Type = PinType.Place,
Label = _viewModel.WalkEntry.Title,
Position = new Position(_viewModel.WalkEntry.Latitude,
. _viewModel.WalkEntry.Longitude)
’

// Center the map around the list of
// walks entry's location
trailMap.MoveToRegion(MapSpan.FromCenterAndRadius (
new Position(_viewModel.WalkEntry.Latitude,
_viewModel.WalkEntry.Longitude),
Distance.FromKilometers(1.0)));

var trailNamelLabel = new Label()

{
FontSize = 18,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center
3

trailNamelLabel.SetBinding(Label.TextProperty,
"WalkEntry.Title");

var trailDistanceTravelledLabel = new Label()

{
FontAttributes = FontAttributes.Bold,

FontSize = 20,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center

+;

trailDistanceTravelledLabel.SetBinding(Label.TextProperty,
"Travelled", stringFormat: "Distance Travelled: {0} km");

var totalTimeTakenLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 20,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center
3

totalTimeTakenLabel.SetBinding(Label.TextProperty,
"TimeTaken", stringFormat: "Time Taken: {0}");

var walksHomeButton new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "End this Trail"

Iy

5. Next, we need to modify the walksHomeButton.Clicked handler for our button so that,
upon being clicked, it will allow the DistanceTravelledPage to navigate back to the first
page within the NavigationStack. Proceed and enter in the following highlighted code
sections:

// Set up our event handler
walksHomeButton.Clicked += (sender, e) =>

{
if (_viewModel.wWalkEntry == null) return;

_viewModel.BackToMainPage.Execute(0);

+;

this.Content = new ScrollView

{
Padding

Ccontent

{

10,
new StackLayout

Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children = {

trailMap,

trailNamelLabel,

trailDistanceTravelledLabel,
totalTimeTakenLabel,

walksHomeButton

}
+;

6. Finally, we need to create an OnAppearing instance method of the navigation hierarchy that
will be used to correctly plot the walk's Longitude and Latitude coordinates within the
map, along with the walk information, prior to the ViewModel appearing on screen. We need
to ensure that the ViewModel has properly been initialized by checking to see that it isn't
null, prior to calling the Init method of the DistTravelledviewModel. Proceed and enter
in the following highlighted code sections:

protected override async void OnAppearing()

{
base.OnAppearing();
// Initialize our DistanceTravelledViewModel
if (_viewModel != null)
{
await _viewModel.Init();
LoadDetails();
}
}
}

In this section, we looked at the steps involved in modifying the DistanceTraveledPage so that
it can take advantage of the DistTravelledviewModel. We looked at how to set the content page
to an instance of the DistTravelledVviewModel so that the BindingContext property for the
DistanceTravelledPage will now point to an instance of the IwalkNavService interface.

We also slightly modified our clicked handler for the walksHomeButton button, so that it will
now navigate to the NavService.BackToMainPage method, which is declared within the
IwalkNavService interface class to allow the DistanceTravelledPage to navigate back to the
first page within the NavigationStack.

Updating the Xamarin.Forms.App class to use the navigation
service

In this section, we need to update our Xamarin.Forms.App class, by modifying the constructor in
the main App class to create a new instance of the navigation service and register the application's
ContentPage to ViewModel mappings.

Let's take a look at how we can achieve this, by performing the following steps:

1. Openthe TrackMywalks.cs file and ensure that it is displayed within the code editor.
2. Next, locate the App method and enter in the following highlighted code sections:

//
// TrackMyWalks.cs
// TrackMyWalks
//
// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using TrackMyWalks.Services;

using TrackMyWalks.ViewModels;
using Xamarin.Forms;

namespace TrackMywWalks

{
public class App : Application

{
public App()
{

// Check the Target 0S Platform
if (Device.0S == TargetPlatform.Android)

{
MainPage = new SplashPage();
}

else

{

// The root page of your application
var walksPage = new NavigationPage(new
wWalksPage()

Title = "Track My Walks"
});
var navService = DependencyService.
Get<IWalkNavService>() as WalkNavService;

navService.navigation = walksPage.Navigation;

navService.RegisterViewMapping(typeof
(WwalksPageViewModel
), typeof(WalksPage));

navService.RegisterViewMapping(
typeof (WalkEntryViewModel

),
typeof (WalkEntryPage));

navService.RegisterViewMapping(
typeof (WalksTrailViewModel

),
typeof(wWalkTrailPage));

navService.RegisterViewMapping(
typeof (DistTravelledViewMo

del),
typeof(DistanceTravelledPage));
MainPage = walksPage;
}
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}
protected override void OnResume()
{
// Handle when your app resumes
}
}
}

In the preceding code snippet, we begin by declaring a navService variable that points to an
instance of the navigation service as defined by our assembly attribute for the
Xamarin.FormsDependencyService, as declared in the walkNavService class.

In our next step, we set the navService.navigation property to point to an instance of the
NavigationPage class that the walksPage.navigation property currently points to, and will be
used as the main root page.

Finally, we call the RegisterVviewMapping instance method for each of the ViewModels and
specify the associated ContentPage for each.

Summary

In this chapter, we updated our TrackMywalks application and created a navigation service class
that extends the default xamarin.Forms.Navigation API, which provides us with a better
method of performing ViewModel navigation. This separates the presentation aspects and
business logic that are contained within the ViewModels.

In the next chapter, you'll learn how to create a location services class that will allow our
TrackMywalks app to retrieve location-based information, and determine the user's current
location. You'll also learn how to set up our app to handle background location updates. You will
also learn how to incorporate platform-specific features within your app, depending on the
platform that is being run.

Chapter 4. Adding Location-Based Features
within Your App

In our previous chapter, we looked at how we can apply what we already know about the MVVM
design pattern, and how we can navigate between our ViewModels, by creating a navigation
service C# class that acts as the navigation service for our app, using the
Xamarin.FormsDependencyService class.

In this chapter, you'll learn how to go about incorporating platform-specific features within the
TrackMywalks app, depending on the mobile platform. You'll learn how to create a C# class,
which will act as the Location Service for our app, as well as creating a
IWalkLocationService interface class file, which will include a number of class methods that
both our iOS and Android platforms will inherit, and, in turn, update the content pages to bind
with the ViewModels to allow location-based information between these Views to happen.

We will also be covering how to properly perform location updates while the application is
either in the foreground or background, and we will also be touching on some key background
concepts, which include registering an app as a background-necessary application.

This chapter will cover the following topics:

e Creating a location-based class that utilizes the native platform capabilities that come as part
of the iOS and Android platforms

Enabling background location updates as well as getting the user's current location

Updating the TrackMywalks application to use the Location Service

Updating the walkEntryviewModel to use the Location Service Interface

Updating the DistanceTravelledViewModel to use the Location Service Interface

Creating and using platform-specific services

As mentioned in the introduction to this chapter, we created a customized navigation service,
which provided an 1walkNavservice Interface class for which our walkBaseviewModel
contained a property of that interface type, so that any implementations of the ITwalkNavService
can be provided to each of the ViewModels, as required.

The benefit of using an Interface to define platform-specific services is that it can be used within
the viewModels and the implementations of the service can be provided via dependency
injection, using the DependencyService, with those implementations being actual services, or
even mocked-up services for unit testing the ViewModels, which we will be covering in Chapter
9, Unit Testing Your Xamarin.Forms Apps Using the NUnit and UlTest Frameworks.

In addition to the navigation service, we can use a couple of other platform-specific feature
services within our TrackMywalks app to enrich its data and user experience. In this section, we
will be taking a look at how to create a Location Service class that allows us to get the
specific geolocation coordinates from the actual device for both our iOS and Android platforms.

Creating the Location Service Interface for the TrackMyWalks
app

Before we can begin allowing our TrackMywalks app to take advantage of the device's
geolocation capabilities for both our iOS and Android platforms, we will need to create an
Interface within the TrackMywalks Portable Class Library, which can then be used by the
ViewModels for each platform.

We will need to define the interface for our location service, as this will contain method
implementations, as well as a data structure that will be used to represent our latitude and
longitude coordinates.

Let's take a look at how we can achieve this through the following steps:

1. Launch the Xamarin Studio application, and ensure that the TrackMywalks solution is
loaded within the Xamarin Studio IDE.

2. Next, create a new empty interface within the TrackMywalks PCL project solution, under the
Services folder.

3. Then, choose the Empty Interface option located within the General section and enter
IWalkLocationService for the name of the new interface file to be created, as shown in
the following screenshot:

@ @ Mew File

Forms ;‘ Empty Class Empty Interface
General S Creates an empty interface.
Gtk _@,' Empty Enumeration
Misc :

" A=) Empty File
Text Templating =
. ‘,L Empty Interface
XML | | o]

|¢‘| Empty Struct

Mame:; IWaIkLocatianServicd |

Cancel Mew

. Next, click on the New button to allow the wizard to proceed and create the new Empty
Interface class file, as shown in the preceding screenshot.

. Our wizard has created our IwalkLocationService class file, which will be used by our
ViewModels and content page Views to display geolocation coordinates. As we start to
build the Location Service Interface class, you will see that it contains a couple of
class members that will allow us to get the user's location as well as determining the
distance that the user has travelled from point A to point B.

. It also contains a data structure IwalkLocationCoords that will be used to hold our
latitude and longitude geolocation coordinates. To proceed with creating the base
IwalkLocationService Interface, perform the following steps:

. Ensure that the IwalkLocationService.cs file is displayed within the code editor and
enter the following code snippet:

//

// IWalkLocationService.cs

// TrackMyWalks Location Service Interface
//

// Created by Steven F. Daniel on 16/09/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;

namespace TrackMyWalks.Services

{
// Define our Walk Location Service Interface
public interface IWalkLocationService
{
// Define our Location Service Instance Methods
void GetMyLocation();
double GetDistanceTravelled(double lat, double lon);
event EventHandler<IWalkLocationCoords> MylLocation;
}
// Walk Location Coordinates Obtained
public interface IWalkLocationCoords
{
double latitude { get; set; }
double longitude { get; set; }
}
}

In the preceding code snippet, we start by defining the implementation for our
IwalkLocationService, which will provide our TrackMywalks app with the ability to get the
user's current location, calculating the distance travelled from the user's current location to the
trail goal. We also define an EventHandlermyLocation, which will be called whenever the
platform obtains a new location.

The IwalkLocationCoords interface defines a class that contains two properties that will be
used by our EventHandler to return the latitude and longitude values.

Note

An Interface contains only the methods, properties, and events signature definitions. Any class
that implements the interface must implement all members of the interface that are specified in the
interface definition.

Now that we have defined the property and method implementations that will be used by our
IwalkLocationService, our next step will be to create the required Location Service class
implementations for each of our platforms, as they are defined quite differently.

Creating the Location Service class for the Android platform

In this section, we will begin by setting up the basic structure for our TrackMywalks.Droid
solution to include the folder that will be used to represent our Services. Let's take a look at
how we can achieve this through the following steps:

1. Launch the Xamarin Studio application, and ensure that the TrackMywalks solution is
loaded within the Xamarin Studio IDE.

2. Next, create a new folder within the TrackMywalks.Droid project, called Services, as
shown in the following screenshot:

Saad0 1d m]

[] & e [TrackiMyWalks.Droid » 1 s [¥amarin Studio Community (a0
] Solution A
b TrackhlyWalks
» T TrackMyWalks
BT R - tackywaksDroid 3K
* [Roferences Rebuild TrackMyWalks.Droid — ~ 3K
Compaonents Clean TrackMyWalks.Droid ~ {+3K
¥ Pa.c-k:!geg:li Iat s Unluad
* Assots
» B Properies Archive for Publishing
B Feeiie View Archives
k[0 Services Run Item
[Mainacthity.cs Start Debugging Item
[+# packages.config Run With >
3 TrackidyWalka 105 Set As Startup Project
B Now Fil...
Add Files... LHA
Tools
Version Control 3 Add Web Reference
Add NuGet Packages...
Analyze Source
Find in Files... 11 36F Add Files from Folder...
Reveal in Finder Add Existing Folder...
ey e
Cut BX
Delete ®aE
Rename... ¥R € Errors

3. Next, create an empty class within the Services folder. If you can't remember how to do
this, you can refer to the section entitled Creating the Navigation Service Interface for the
TrackMyWalks app, within Chapter 3 , Navigating within the MVVM Model - The
Xamarin.Forms Way.

4. Then, choose the Empty Class option located within the General section and enter
wWalkLocationService for the name of the new class file to be created, as shown in the
following screenshot:

@ @ Mew File

Android % Empty Class Empty Class

Forms 2 Creates an empty class.
General Empty Enumeration

Gtk

Nilsis Empty File

Text Templating
Web
XML

Empty Interface

Empty Struct

(o) (=] [(&) |2

Mame:; WalkLacationSeruice{ |

Cancel Mew

5. Next, click on the New button to allow the wizard to proceed and create the new empty class
file, as shown in the preceding screenshot.

Up until this point, all we have done is create our walkLocationService class file. This
class will be used and will act as the base Location Service class that will contain the
functionality required by our ViewModels.

As we start to build our Location Class, you will see that it contains a number of method
members that will be used to help us get the user's current geolocation coordinates from their
device, so that we can display this within each of our ViewModels, and it will implement
the IwalkLocationService Interface.

To proceed with creating and implementing the base WalkLocationService class, perform the
following steps:

1. Ensure that the walkLocationService.cs file is displayed within the code editor, and enter
the highlighted code sections shown in the following code snippet:

//

// WalkLocationService.cs

// TrackMyWalks Location Service Class (Android)

//

// Created by Steven F. Daniel on 16/09/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using Android.Content;

using Android.Locations;
using TrackMyWalks.Droid;
using TrackMyWalks.Services;

using Xamarin.Forms;

2. First, we initialize our walkLocationService class, which is to be marked as a
dependency, by adding the Dependency metadata attribute just as we did for our navigation
service. This is so that it can be resolved by the Xamarin.FormsDependencyService to
allow it to find and use our method implementations as defined within our Interface. We also
need to implement the IwalkCoordinates interface using the LocationEventArgs class
that contains our latitude and longitude properties, which will be populated whenever a
new location is obtained:

[assembly: Xamarin.Forms.Dependency(
typeof (WalkLocationService))]
namespace TrackMywWalks.Droid
{
// Event arguments containing latitude and longitude
public class Coordinates : EventArgs, IWalkCoordinates
{
public double latitude { get; set; }
public double longitude { get; set; }

}

3. Next, we need to modify our walkLocationService class constructor signature, so that it
inherits from the IwalkLocationService Interface class, as well as implementing an
ILocationListener interface class, which will be used to indicate whenever the user's
location changes, by implementing four methods-OnLocationChanged,
OonProviderDisabled, OnProviderEnabled, and OnStatusChanged:

public class WalkLocationService : Java.lLang.Object,
IWalkLocationService, ILocationListener {
LocationManager locationManager;
Location newLocation;

// Create the four methods for our LocationListener
// interface.

public void OnProviderDisabled(string provider) { }
public void OnProviderEnabled(string provider) { }
public void OnStatusChanged(string provider,
Availability status, Android.O0S.Bundle extras) { }

Note

We need to ensure that our WwalkLocationService class inherits from the Android-specific
Java.lLang.Object class, so that we can provide access to the system location services, in
order to obtain periodic updates on the device's geographical location.

Whenever your classes inherit from the ILocationListener API, the
ILocationListener Interface supports several different method types, which are explained
in the following table:

Method name Description

This method is fired up whenever the location service provider has

OnProviderDisabled
been disabled by the user.

This method is fired up whenever the location service provider has

OnProviderEnabled
been enabled by the user.

This method is fired up whenever the location service provider
OnStatusChanged status has been changed, that is, the location services have been
disabled by the user.

This method is fired up whenever a change in location has been

OnLocationChanged
g detected.

4. Then, we need to set up an EventHandler delegate object that will be called whenever the
location has been obtained or changed:

// Set up our EventHandler delegate that is called
// whenever a location has been obtained
public event EventHandler<IWalkCoordinates> MyLocation;

5. Next, we create the onLocationChanged method that will be fired up whenever the user's
location has been changed since the last time. This method accepts the user's current
location, and we need to add a check to ensure that our location is not empty prior to
creating an instance of our Coordinates class data structure, and then assigning the new
location details for our latitude and longitude, before finally passing a copy of the
Coordinates to the MyLocationEventHandler:

// Fired whenever there 1is a change in location
public void OnLocationChanged(Location location)

{

if (location != null)

// Create an instance of our Coordinates
var coords = new Coordinates();

// Assign our user's Latitude and Longitude
// values

coords.latitude = location.Latitude;
coords.longitude = location.Longitude;

// Update our new location to store the
// new details.

newLocation = new Location("Point A");
newLocation.Latitude = coords.latitude;
newLocation.Longitude = coords.longitude;

// Pass the new location details to our
// Location Service EventHandler.
MyLocation(this, coords);

i
}

6. Then, we create the GetMyLocation method that will be used to start getting the user's
location. We then set up our locationManager to request location updates. This is because,
when dealing with Android, these services require a Context object in order for them to
work. Xamarin.Forms comes with the Forms.Context object, and we use the
NetworkProvider method to obtain the location using the cellular network and Wi-Fi.
Consider the following code:

// Method to call to start getting location
public void GetMyLocation()

{
locationManager = (LocationManager)
long minTime = 0O; // Time in milliseconds
float minDistance = O; // Distance in metres
Forms.Context.GetSystemService(Context.LocationService);
locationManager.RequestLocationUpdates(
LocationManager .NetworkProvider,
minTime,
minDistance,
this);
}

7. Next, create the GetDistanceTravelled method, which accepts two parameters containing
our latitude and longitude values. We create a new location, and set the Latitude and
Longitude values that contain the ending coordinates for our trail. We then declare a
variable distance, which calls the DistanceTo method on our newLocation object, to
determine our current distance from the end goal. We divide the distance by 1000 to convert
the distance travelled to meters:

// Calculates the distance between two points
public double GetDistanceTravelled(double lat, double lon)

{

Location locationB = new Location("Trail Finish");

locationB.Latitude = lat;
locationB.Longitude = lon;

float distance = newLocation.DistanceTo(locationB) / 1000;
return distance;

}

8. Finally, create the walkLocationService class finalizer; this will be used to stop all
update listener events when our class has been set to null.

// Stop the location update when the object is set to null
~WalkLocationService()

{

}
}
}

locationManager.RemoveUpdates(this);

Now that we have created the walkLocationService class for the Android portion of our
TrackMywWalks app, our next step is to create the same class for the iOS portion, which will be
covered in the next section.

Creating the Location Service class for the iOS platform

In the previous section, we created the class for our walkLocationService. We also defined a
number of different methods that will be used to provide location-based information within our
MVVM ViewModel.

In this section, we will build the iOS portion for our walkLocationService, just like we did for
our Android portion. You will notice that the implementations for both of these classes are quite

similar; however, these implement different methods, as you will see once we start implementing
them.

Let's take a look at how we can achieve this through the following steps:

1.

2.

Create an empty class within the Services folder for our TrackMywalks.i0S project, and
enter WalkLocationService for the name of the new class file to create.

Once you have created the walkLocationService class file, ensure that the
wWalkLocationService.cs file is displayed within the code editor and enter the highlighted
code sections shown in the following code snippet:

//

// WalkLocationService.cs

// TrackMyWalks Location Service Class (1i0S)

//

// Created by Steven F. Daniel on 16/09/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using CorelLocation;

using TrackMyWalks.ioOS;
using TrackMyWalks.Services;
using UIKit;

Next, we initialize our walkLocationService class, which is to be marked as a
dependency, by adding the Dependency metadata attribute just as we did for our navigation
service. This is so that it can be resolved by the Xxamarin.FormsDependencyService to
allow it to find and use our method implementations as defined within our Interface. We also
need to implement the IwalkCoordinates interface using the Coordinates class, which
contains the latitude and longitude properties that will be populated whenever a new
location is obtained:

[assembly: Xamarin.Forms.Dependency(typeof(WalkLocationService))]
namespace TrackMyWalks.iOS
{
// Event arguments containing latitude and longitude
public class Coordinates : EventArgs, IWalkCoordinates
{
public double latitude { get; set; }
public double longitude { get; set; }

}

4. Then, we need to modify our walkLocationService class constructor signature, so that it
inherits from the IwalkLocationService Interface class. We also need to declare our
locationManager object, which will be used to obtain the user's location. We also create a
newLocation object of type CLLocation, which will be used to convert the latitude and
longitude coordinates from the locationManager object into a CLLocation object:

// Walk Location Service class that inherits from our
// IWalkLocationService interface
public class WalkLocationService : IWalkLocationService

{

// Declare our Location Manager
CLLocationManager locationManager;
CLLocation newLocation;

5. Next, we need to set up an EventHandler delegate object that will be called whenever the
location has been obtained or changed:

// Set up our EventHandler delegate that is called
// whenever a location has been obtained
public event EventHandler<IWalkCoordinates> MyLocation;

6. Then, we create the GetMyLocation method that will be used to start getting the user's
location. Next, we set up our locationManager using the iOS CLLocationManager class to
allow our class to request location updates. We then perform a check, using the
LocationServicesEnabled property of the CLLocationManager class, to ensure that
location services have been enabled on the user's device.

7. This is a good check to enforce prior to requesting the getting of the user's location, and if
our CLLocationManager class determines that location services have been disabled, we
display a message to the user, using the UIAlertView class:

// Method to call to start getting location
public void GetMyLocation()

{

locationManager = new CLLocationManager();

// Check to see if we have location services
// enabled
if (CLLocationManager.LocationServicesEnabled)

{

// Set the desired accuracy, in meters
locationManager.DesiredAccuracy = 1;

// CLLocationManagerDelegate Methods

8. Next, we set up an event handler, LocationsUpdated, that will start firing up whenever
there is a change in the user's current location, and we call the locationUpdated instance
method, passing in the location geo-coordinates:

// Fired whenever there is a change in

// location

locationManager.LocationsUpdated += (object sender,
CLLocationsUpdatedEventArgs e) =>

{
+;

9. Then, we set up an event handler, AuthorizationChanged, which will be called whenever
it detects a change made to the authorization of location-based services. For example, this
will be called if, for some reason, the user decides to turn off location-based services:

locationUpdated(e);

// This event gets fired whenever it

// detects a change, i.e., if the user

// has turned off or disabled location

// based services.
locationManager.AuthorizationChanged += (object
sender, CLAuthorizationChangedEventArgs e) =>

{
didAuthorizationChange(e);
// Perform location changes within the
// foreground.
locationManager.RequestWhenInUseAuthorization();
Iy
}

}

10. Next, we create the locationUpdated method that will be fired up whenever the user's
location has been changed since the last time. This method accepts the user's current
location, which is defined by the CLLocationsUpdatedEventArgs in a variable called e.
Next, we create an instance of our Coordinates class data structure, and then assign the
new location details for the latitude and longitude, before finally passing a copy of the
Coordinates to the MyLocationEventHandler:

// Method is called whenever there is a change in
// location
public void locationUpdated(CLLocationsUpdatedEventArgs e)
{
// Create our Location Coordinates
var coords = new Coordinates();

// Get a list of our locations found
var locations = e.Locations;

// Extract our Latitude and Longitude values

// from our locations array.

coords.latitude = locations[locations.Length - 1].
Coordinate.Latitude;

coords.longitude = locations[locations.Length - 1].
Coordinate.Longitude;

// Then, convert both our Latitude and Longitude

// values to a CLLocation object.

newLocation = new CLLocation(coords.latitude,
coords.longitude);

MyLocation(this, coords);

11. Then, we create the didAuthorizationChange method, which will be called whenever the
CLLocationManager delegate detects a change in the authorization status; you will be
notified about those changes. To handle any changes in the authorization status while your
app is running, and to prevent your application from crashing unexpectedly, you will need to
ensure that the proper authorization is handled accordingly.

12. If we detect that the user has restricted or denied access to location services on the device,
we will need to alert the user to this, and display an alert dialog popup:

public void didAuthorizationChange(
CLAuthorizationChangedEventArgs authStatus)

{
switch (authStatus.Status) {

case CLAuthorizationStatus.AuthorizedAlways:
locationManager.RequestAlwaysAuthorization();
break;

case CLAuthorizationStatus.AuthorizedWhenInUse:
locationManager.StartUpdatingLocation();
break;

case CLAuthorizationStatus.Denied:
UIAlertView alert = new UIAlertView();
alert.Title = "Location Services Disabled";
alert.AddButton("OK");
alert.AddButton("Cancel");
alert.Message = "Enable locations for this app
via\nthe Settings app on your iPhone";
alert.AlertViewStyle = UIAlertViewStyle.Default;
alert.Show();
alert.Clicked += (object s,

UIButtonEventArgs ev) =>
{
var Button = ev.ButtonIndex;

}i
break;

default:
break;

}
}

13. The didAuthorizationChange method contains a number of authorization status codes, and
these are explained, along with their descriptions, in the following table:

Authorization status [[Description

Either of these cases can occur whenever the user has granted
.AuthorizedAlways or [jaccess for your app to use location services. These statuses are
.AuthorizedwhenInUse[both mutually exclusive, as you can only receive one type of
authorization at a time.

This generally happens whenever the user hasn't made a choice
regarding whether your iOS app can begin accepting location
updates, and can be caused if the user has installed your app for
the first time and has not run it yet.

.NotDetermined

whenever the user has explicitly denied access to your app for
the use of location services, or when location services are
currently unavailable.

.Restricted or

You will generally receive this type of authorization status state
.Denied

Note

If you are interested in finding out more information on the CLLocationManager class,
please refer to the Xamarin developer documentation located at

https://developer.xamarin.convapi/type/CorelLocation.CLLocationManager/ .

14. Next, create the GetDistanceTravelled method, which accepts two parameters containing
our lat and lon values, and declares a variable distance, which calls the bistanceFrom
method on our newLocation object, to determine our current distance from the end goal. We
divide the distance by 1000 to convert the distance travelled to meters:

// Calculates the distance between two points
public double GetDistanceTravelled(double lat, double lon)

{
// Get the distance travelled from
// current location to the previous location.
var distance = newLocation.DistanceFrom(new
CLLocation(lat, lon)) / 1000;
return distance;
}

15. Finally, create the walkLocationService class finalizer, which will be used to stop all
update listener events and free the memory used when our class has been set to nul1l:

// Stops performing location updates when the
// object has been set to null.
~WalkLocationService()

{

}
}
}

locationManager.StopUpdatingLocation();

Now that we have created the walkLocationService class for the iOS portion of our
TrackMywWalks app, our next step is to learn how to provide our iOS app with the functionality to
perform continuous location updates in the background.

https://developer.xamarin.com/api/type/CoreLocation.CLLocationManager/

Enabling background updates and getting the user's current
location

This relates to working with background location updates to continuously monitor changes to the
user location in the background.

Let's take a look at how we can achieve this through the following steps:

1. Double-click on the Info.plist file, which is contained within the TrackMywalks.i0S

2.

project, and ensure that the Application tab is showing.

Next, scroll down to the bottom of the page and select Enable Background Modes from

under the Background Modes section to enable background updates.

Then, ensure that the Location Updates option has been selected, so that Xcode can
provision your app to monitor location-based updates in the background:

- Trackhly'Walks

- Trackivy'Walks
Rliafernms
Packages
Modeals
Pages
Properties
Services
Viswhodels

[5 packages.contig
; * Background Modes
[[] TrackivyWalks.cs °

» [TrackiviyWalles Droid d

- TrackMyWalks_iDS Modes:
E Rlaferances
Componants q
» Packages
Ansels NCASLs

w w vy v v w w

Regources
L Services
[AppDelegate.cs
[3 Entitlemants.plist
Ei LaunchSensen storyboard
[main.cs

[¥] packages.config

Enable Maps Integration

Enable Background Modes
Audio and AirPlay

Location updates
Volca aver IP
MNewsstand downloads
External accassory communication
Uses Bluetooth LE accessories
Acts as Bluetooth LE accessory
Background fetch

Remate notifications

Now that we have modified our TrackMywalks.i0S project to monitor location updates in
the background, we need to do one more thing and tell Xcode to handle Location updates.

So let's do that now.

Ensure that the Info.plist file is displayed within the Xamarin IDE, and that the Source

tab is showing.
Next, create the keys NSLocationAlwaysUsageDescription and

NSLocationWhenInUseUsageDescription by clicking within the Add new entry section

of the Info.plist.

[& solution € 3 Info.plist
™] -TrackiyVakks Property Type Walue
L Trackbhy'\Walks : &
5 iPhone OS required Boolean Yes
» BIReforances 000 e e A
» [Packages B RN
» 0 Modeis 4 TargE1Ed :FE\ru:e Family Array
* [N Pages Launch screen mlerface *lle base name Strin-g LauncP'Sc:reer
* I Properties ¢ Required dcwce capabilities Amray
T
= E Suﬂ'pnrted iniar'ace arigntations Array
[} packages.config ﬁ.S”FFD”E”'"‘E”“E?ﬂ”e"‘a“°"s‘Pad' “_""_muff?i.m. i
[TrackMyWalks.ce XSApplconAssets String .ﬂussets p:cassets.uﬁ.pplcuns applco'\s&t
» [] TrackMyWalks.Drold #Locatmn When In Use Usagu Description String Track My Walks would like to obtain your location.
¥] TrackMyWalks.l03 3 Re-qu':ed :Jal::kgrl:h.md "nudes Array
» B3 Aafars s e
ﬁ Location .ﬁlwagﬁ Ur..age Der..crlplum String Tra:k My W’alkr. wmld IlkP 5] nbraln ynur In:atlnn.
» P e T | B undle duf'ﬂl_ay name String Track MyWalks _____
[Assets xcassets Bundle name String Track Mywalks
¥ Resources EundIE |dent|f|er String com. genlesnhstudlos trackmywalks
] Services Bund!e versions string (short) String '-C'
W ol
L. AppDeiegate.cs Bundie version String 1.0
[Entitlements. plist
f# LaunchScroen.storyboard
[} Main.cs
[¥] packages.config
Appiication Advanced h

7. Then, add Track My Walks would like to obtain your location as the string description for
the Value field, as shown in the preceding screenshot.

Next, we need to provide our app with the ability to monitor location updates in the background
for our TrackMywalks.i0S project. Let's take a look at how we can achieve this through the
following steps:

1. Ensure that the walkLocationService.cs file is displayed within the code editor.
2. Next, locate the GetMyLocation method and enter the following code snippet:

// Method to call to start getting location
public void GetMyLocation()

{

locationManager = new CLLocationManager();

// Check to see if we have location services
// enabled
if (CLLocationManager.LocationServicesEnabled)

{
// Set the desired accuracy, in meters
locationManager.DesiredAccuracy = 1;

// 10S 8 has additional permission

// requirements
if (UIDevice.CurrentDevice.CheckSystemVersion(8, 0))

// Perform location changes within the

// background
locationManager.RequestAlwaysAuthorization();

}

// 10S 9, comes with a new method that

// allows us to receive location updates

// within the back, when the app has

// suspended.

if (UIDevice.CurrentDevice.CheckSystemVersion(9, 0))

{

locationManager.AllowsBackgroundLocationUpdates =

true;

}

// CLLocationManagerDelegate Methods

// Fired whenever there is a change in

// location

locationManager.LocationsUpdated += (object sender,
CLLocationsUpdatedEventArgs e) =>

{
+;

// This event gets fired whenever it

// detects a change, i.e., if the user has

// turned off or disabled Location Based

// Services.
locationManager.AuthorizationChanged += (object
sender, CLAuthorizationChangedEventArgs e) =>

{

locationUpdated(e);

didAuthorizationChange(e);

// Perform location changes within
// the foreground.
locationManager.RequestWhenInUseAuthorization();
Iy

In the preceding code snippet, we check the iOS version currently running on the user's device,
and use the RequestAlwaysAuthorization method call on the locationManager class to
request the user's permission to obtain their current location. IniOS 9, Apple decided to add a
new method called AllowsBackgroundLocationUpdates, which allows the handling of
background location updates. Next, we also need to configure our Android portion of our
TrackMyWalks.Droid project by modifying the AndroidManifest.xml file.

Let's take a look at how we can achieve this through the following steps:

1. Double-click on the AndroidManifest.xml file, which is contained within the

TrackMywalks.Droid project, and ensure that the Source tab is selected, as shown in the
following screenshot:

] [] [3 [TrackhtyWalks.iS » [Debug » [Xamarin Studic Commur &
| Solution £ ¥ Andreddanifast, xml *» B
* 5| TrackhyWiaks ;;'
» 7 TrackiyWoiks 1 |e?xml version="1,8" encoding="utf-8"7=> %
* 7 TrackMyWaiks Droid 2= =manifest xmlns:android="http://schemas.android.com/apk/res/android” android:versi =
* 3 References 3 <uses-sdk android:minSdkVersion="15" /=
‘Gomponants 4 <uses—permission android:name="android.permission.ACCESS_FINE_LOCATION" /=
* [3 Packages 5 <uses—permission android:name="android.permission.ACCESS_COARSE_LOCATION" /=
Apsaly 6 <uses—permission android:name="android.permission.INTERNET" /=
~ [Properies 7 <gpplication android:label="TrackMyWalks"=>
il] </application=
[[1] Asmambtyinte.ca 9 =/manifests
L3 a1 Ui
L3 Sarsicnn
[IF MainActivisg.ca
E-L packnges config
L3 TrackMy'Walks. 08
Apolcatian m h
& Freovs

2. Ensure that the AndroidManifest.xml file is displayed within the code editor, and enter the
following highlighted code sections:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.
android.com/apk/res/android"
android:versionCode="1" android:versionName="1.0"
package="com.geniesoftstudios.trackmywalks">
<uses-sdk android:minSdkvVersion="15" />
<uses-permission android:name="android.
permission.ACCESS_FINE_ LOCATION" />

<uses-permission android:name="android.
permission.ACCESS_COARSE_LOCATION" />

<uses-permission android:name="android.
permission.INTERNET" />

<application android:label="TrackMywalks'">

</application>

</manifest>

In the preceding code snippet, we begin by adding permissions that will allow our

TrackMywalks Android app to access location information for location updates, as well as the
Internet. Google is pretty strict about which permissions are allowed, and these must be approved
prior to your app being accepted into the Google Play Store.

Updating the WalkEntryViewModel to use the location service

Now that we have created our walkLocationService for both our Andreid and iOS
implementations, we need to begin modifying our ViewMaodel, which will be used by our
wWalkEntry page, to take advantage of our Location Service.

Let's take a look at how we can achieve this through the following steps:

1. Ensure that the walkEntryVviewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections:

//
// WalkEntryViewModel.cs
// TrackMyWalks ViewModels
//
// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;
using System.Diagnostics.Contracts;
using System.Threading.Tasks;
using TrackMyWalks.Models;
using TrackMyWalks.Services;
using TrackMyWalks.ViewModels;
using Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{
public class WalkEntryViewModel : WalkBaseViewModel

{

2. Next, we declare a locationService variable that will be used to provide a reference to
our IWalkLocationService and provide our class with a reference to the EventHandler,
which is contained within our IwalkLocationService interface class; this will contain our
location coordinate information whenever the location changes. To proceed, enter the
following highlighted code sections:

IWalkLocationService locationService;

string _title;
public string Title

{
get { return _title; }
set
{
_title = value;
OnPropertyChanged();
SaveCommand.ChangeCanExecute();
}
}

string _notes;
public string Notes

get { return _notes; }

set
{
_nhotes = value;
OnPropertyChanged();
3

}

double _latitude;
public double Latitude

{
get { return _latitude; }
set
{
_latitude = value;
OnPropertyChanged();
}
}

double _longitude;
public double Longitude

{
get { return _longitude; }
set
{
_longitude = value;
OnPropertyChanged();
}
}

double _kilometers;
public double Kilometers

{

get { return _kilometers; }

set
{
_kilometers = value;
OnPropertyChanged();
3

}

string _difficulty;
public string Difficulty

{
get { return _difficulty; }

set

_difficulty = value;
OnPropertyChanged();

}

double _distance;
public double Distance

{

get { return _distance; }
set

{

_distance = value;
OnPropertyChanged();

}

string _imageUrl;
public string ImageUrl

{
get { return _imageUrl; }
set
{
_imageUrl = value;
OnPropertyChanged();
}
}

3. Inour next step, we will need to modify the contents of our walksEntryViewModel class
constructor to declare and initialize our locationService variable, which will include our
IwalkLocationService constructor that is retrieved from the
Xamarin.FormsDependencyService class. We then proceed to call the MyLocation
method on our EventHandler, which is defined within the IwalkLocationService
interface; this will return the geographical location coordinates defined by their Latitude
and Longitude values.

4. Locate the walksEntryViewModel class constructor and enter the following highlighted
code sections:

public WalkEntryViewModel(IWalkNavService navService)
base(navService)

{
Title = "New Walk";

Difficulty = "Easy";
Distance = 1.0;
// Get our Location Service
locationService
= DependencyService.Get<IWalkLocationService>();
// Check to ensure that we have a value
// for our object

if (locationService != null)

{

locationService.MyLocation += (object sender,
IWalkCoordinates e) =>

// Obtain our Latitude and Longitude
// coordinates

Latitude = e.latitude;
Longitude = e.longitude;
}
}

// Call our Service to get our GPS location

locationService.GetMyLocation();

}

Command _saveCommand;
public Command SaveCommand

{
get
{
return _saveCommand ?? (
_saveCommand = new Command(async () =>
await ExecuteSaveCommand(), ValidateFormDetails));
}
}
async Task ExecuteSaveCommand()
{
var newWalkItem = new WalkEntries
{
Title = this.Title,
Notes = this.Notes,
Latitude = this.Latitude,
Longitude = this.Longitude,
Kilometers = this.Kilometers,
Difficulty = this.Difficulty,
Distance = this.Distance,
ImageUrl = this.ImageUrl
Iy

5. Then, we locate and modify the ExecuteSaveCommand instance method to free the memory
used by our locationService variable when the Save button is pressed. This is achieved
by setting this to null, which in turn will call the ~GetMyLocation () within the iOS and
Android class de-constructor. Proceed to enter the following highlighted code sections:

// Upon exiting our New Walk Entry Page,
// we need to stop checking for location
// updates

locationService = null;

// Here, we will save the details entered
// in a later chapter.
await NavService.PreviousPage();

}

// method to check for any form errors
bool ValidateFormDetails()

{
}

return !string.IsNullOrWhiteSpace(Title);

public override async Task Init()

{
await Task.Factory.StartNew(() =>
{
Title = "New Walk";
Difficulty = "Easy";
Distance = 1.0;
1)
}
}

In this section, we looked at the steps involved in modifying our WalkEntryViewModel so that it
can take advantage of our walkLocationService.

We then declared a locationService variable that will be used to provide a reference to our
IWalkLocationService and provide our class with a reference to the EventHandler, which is
contained within our IwalkLocationService interface class; this will contain our location
coordinate information whenever the location changes.

We also modified our walkEntryVviewModel class constructor to initialize our
locationService variable, to point to the IwalkLocationService constructor that is retrieved
from the Xamarin.FormsDependencyService class, which needs to be done prior to calling the
MyLocation method on our EventHandler, so that it can return the geographical location
coordinates, defined by their Latitude and Longitude values.

Finally, we set our locationService object to null to stop checking for location updates.

Updating the DistanceTravelledViewModel to use the location

service

Now that we have modified our MVVM ViewModel for our walkEntryVviewModel, our next step
is to begin modifying our bistTravelledviewModel to take advantage of our
wWalkLocationService class, that will be used to calculate the distance travelled, and save this
information back to our DistTravelledViewModel.

Let's take a look at how we can achieve this through the following steps:

1. Ensure that the DistTravelledVviewModel.cs file is displayed within the code editor.

//

// DistTravelledViewModel.cs
// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using
using
using
using
using
using

System;
System.Threading.Tasks;
TrackMyWalks.Models;
TrackMywWalks.Services;
TrackMyWalks.ViewModels;
Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{

public class DistTravelledViewModel

{

WalkBaseViewModel<WalkEntries>

WalkEntries _walkEntry;

2. Next, we declared a locationService variable that will be used to provide a reference to
our IWalkLocationService and provide our class with a reference to the EventHandler,
which is contained within our IwalkLocationService interface class; this will contain our
location coordinate information whenever the location changes. To proceed, enter the
following highlighted code sections:

IWalkLocationService locationService;

public WalkEntries WalkEntry

{
get { return _walkEntry; }
set
{
_walkEntry = value;
OnPropertyChanged();
}
}

double _travelled;
public double Travelled

get { return _travelled; }
set

{

_travelled = value;
OnPropertyChanged();

}

double _hours;
public double Hours

{
get { return _hours; }
set
{
_hours = value;
OnPropertyChanged();
}
}

double _minutes;
public double Minutes

{
get { return _minutes; }
set
{
_minutes = value;
OnPropertyChanged();
}
}

double _seconds;
public double Seconds

{
get { return _seconds; }
set
{
_seconds = value;
OnPropertyChanged();
}
}
public string TimeTaken
{
get
{
return string.Format("{0:00}:{1:00}:{2:00}",
this.Hours, this.Minutes, this.Seconds);
}
}

3. Next, we need to modify the DistTravelledVviewModel class constructor to declare and
initialize our locationService variable; this will include our IwalkLocationService
constructor, which is retrieved from the Xamarin.FormsDependencyService class. We
then proceed to call the MyLocation method on our EventHandler, which is defined within

the IWwalkLocationService interface; this will return the geographical location
coordinates, defined by their Latitude and Longitude values.

4. Locate the DistTravelledViewModel class constructor and enter the following highlighted
code:

public DistTravelledViewModel(IWalkNavService navService)

base(navService)

{
this.Hours = 0;
this.Minutes = 0;
this.Seconds = 0;
this.Travelled = 100;

locationService = DependencyService.Get
<IWalkLocationService>();

locationService.MyLocation += (object sender,

IWalkCoordinates e) =>

{
// Determine Distance Travelled
if (_walkEntry != null)
{
var distance = locationService.GetDistanceTravelled(
_walkEntry.Latitude, _walkEntry.Longitude);
this.Travelled = distance;
}
};

locationService.GetMyLocation();

}

5. Then, we create the I1nit method within our bistTravelledviewModel, which will be
used to initialize the DistanceTravelled when it is called. We need to specify and use the
Task.Factory.StartNew method to give the ViewModel enough time to display the page
on screen, prior to initializing the ContentPage contents and using the passed-in
walkDetails for our model:

public override async Task Init(WalkEntries walkDetails)

{
await Task.Factory.StartNew(() =>
{
WalkEntry = walkDetails;
1)

6. Next, we need to create the BackToMainPage command property that will be used to bind to
the End This Trail button, which will run an action upon being pressed. This action will
execute a class instance method to determine whether the command can be executed.

7. If the command can be executed, a call will be made to the BackToMainPage method on the
NavService navigation service class to take the user back to the TrackMywalks main page;
this is done by removing all existing ViewModels within the NavigationStack, except the
first page:

Command _mainPage;
public Command BackToMainPage

{
get
{
return _mainPage ?? (_mainPage = new Command(
async () => await
NavService.BackToMainPage()));
}
}
}

In this section, we looked at the steps involved in modifying our DistanceTravelledViewModel
so that it can take advantage of our walkLocationService. We then declared a
locationService variable that will be used to provide a reference to our
IWalkLocationService and provide our class with a reference to the EventHandler, which is
contained within our IwalkLocationService interface class; this will contain our location
coordinate information whenever the location changes.

We also modified our DistTravelledviewModel class constructor to initialize our
locationService variable to point to the IwalkLocationService constructor that is retrieved
from the Xamarin.Forms DependencyService class; this needs to be done prior to calling the
MyLocation method on our EventHandler, so that it can return the geographical location
coordinates, defined by their Latitude and Longitude values.

Updating the SplashPage to register our ViewModels

In this section, we need to update our SplashPage to register our ViewModels for our Android
platform; this will involve creating a new instance of the navigation service, and registering the
application ContentPage and ViewModel mappings:

1. Ensure that the SplashPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//

// SplashPage.cs
// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using
using
using

using
using

System;
System.Threading.Tasks;
TrackMyWalks.Services;

TrackMyWalks.ViewModels;
Xamarin.Forms;

namespace TrackMywWalks

{

public class SplashPage : ContentPage

{

public SplashPage()

{

}

AbsoluteLayout splashLayout = new AbsolutelLayout

{
HeightRequest = 600

3

var image = new Image()

{
Source = ImageSource.FromFile("icon.png"),
Aspect = Aspect.AspectFill,

3

AbsolutelLayout.SetLayoutFlags(image,
AbsolutelLayoutFlags.All);

AbsolutelLayout.SetLayoutBounds(image,
new Rectangle(0f, of, 1f, 1f));

splashLayout.Children.Add(image);
Content = new StackLayout()

Children = { splashLayout }
3

2. Next, locate the onAppearing method and enter the following highlighted code sections:

protected override async void OnAppearing()

base.OnAppearing();

// Delay for a few seconds on the splash screen
await Task.Delay(3000);

// Instantiate a NavigationPage with the
// MainPage
var navPage = new NavigationPage(new WalksPage()

{
Title = "Track My Walks - Android"
1)

navPage.BarBackgroundColor = Color.FromHex("#4C5678");
navPage.BarTextColor = Color.White;
// Declare our DependencyService Interface
var navService = DependencyService.Get<IWalkNavService>()
as WalkNavService;
navService.navigation = navPage.Navigation;
// Register our View Model Mappings between
// our ViewModels and Views (Pages).
navService.
RegisterViewMapping(typeof (WalksPageViewModel),
typeof(WalksPage));
navService.RegisterViewMapping(
typeof (WalkEntryViewModel),
typeof (WalkEntryPage));
navService.RegisterViewMapping(
typeof (WalksTrailViewModel),
typeof(WalkTrailPage));

navService.RegisterViewMapping(
typeof (DistTravelledViewModel)

typeof(DistanceTravelledPage));
// Set the MainPage to be our Walks Navigation Page

Application.Current.MainPage = navPage;

In the preceding code snippet, we begin by customizing our NavigationBar, by setting the
Background and TextColor attributes, and then declaring a variable navService that points to

an instance of our navigation service as defined by our assembly attribute for our
Xamarin.FormsDependencyService, which is declared in our walkNavService class.

In our next step, we set the navService.navigation property to point to an instance of the
NavigationPage class that our walksPage.navigation property currently points to, and this
will be used as the main root page.

Finally, we call the RegisterVviewMapping instance method for each of our ViewModels and
specify the associated ContentPage for each.

Updating the MainActivity class to use Xamarin.Forms.Maps

In this section, we need to update our MainActivity Class to integrate with the
Xamarin.Forms.Maps package for our Andreid platform, so that our ViewModels can use this to
display mapping capabilities:

1. Openthe MainActivity.cs file and ensure that it is displayed within the code editor.
2. Next, locate the onCreate method and enter the following highlighted code sections:

//
//
//
//
//
//
//

MainActivity.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Android.App;
using Android.Content.PM;
using Android.O0S;

namespace TrackMywWalks.Droid

{

[Activity(Label = "TrackMywWalks.Droid",

Icon = "@drawable/icon", Theme = "@style/MyTheme",

MainLauncher = true, ConfigurationChanges =
ConfigChanges.ScreenSize |
ConfigChanges.Orientation)]

public class MainActivity

global: :Xamarin.Forms.Platform.Android.FormsAppCompatActivity

{

protected override void OnCreate(Bundle

savedInstanceState)

{

TabLayoutResource = Resource.Layout.Tabbar;
ToolbarResource = Resource.lLayout.Toolbar;

base.OnCreate(savedInstanceState);

global::Xamarin.Forms.Forms.Init(this,
savedInstanceState);

// Integrate Xamarin Forms Maps

Xamarin.FormsMaps.Init(this, savedInstanceState);
LoadApplication(new App());

In the preceding code snippet, we begin by initializing our MainActivity class to use the
Xamarin.Forms.Maps library, so that our TrackMywalks solution can use the maps. If this is
omitted from the class, the DistanceTravelledPage content page will not display the map, and

therefore will not work as expected.

Updating the Xamarin.Forms App class to use platform specifics

In this section, we need to update our Xamarin.Forms.App class by modifying the constructor in
the main App class to set the MainPage instance, depending on the TargetPlatform that our
device is running. This is extremely easy when using xamarin.Forms.

Let's take a look at how we can achieve this by following these steps:

1. Openthe TrackMywalks.cs file and ensure that it is displayed within the code editor.
2. Next, locate the App method and enter the following highlighted code sections:

//
//
//
//
//
//
//

TrackMywWalks.cs
TrackMywalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using TrackMyWalks.Services;

using TrackMyWalks.ViewModels;
using Xamarin.Forms;

namespace TrackMywWalks

{

WalksPage()

public class App : Application

{
public App()
{

// Check the Device Target 0S Platform
if (Device.0S == TargetPlatform.Android)

// The root page of your application
MainPage = new SplashPage();

else if (Device.0S == TargetPlatform.iOS)
{

// The root page of your application
var walksPage = new NavigationPage(new

{
1)

// Set the NavigationBar TextColor and

// Background Color

walksPage.BarBackgroundColor =
Color.FromHex("#440099");

Title = "Track My walks - 1i0S"

walksPage.BarTextColor = Color.White;

// Declare our DependencyService Interface

var navService = DependencyService.
Get<IWalkNavService>() as WalkNavService;

navService.navigation = walksPage.Navigation;

// Register our View Model Mappings

// between our ViewModels and Views (Pages)

navService.RegisterViewMapping(

typeof(wWalksPageViewModel), typeof(WalksPage));

navService.RegisterViewMapping(

typeof(WalkEntryViewModel),

typeof (WalkEntryPage));

navService.RegisterViewMapping(

typeof(WalksTrailViewModel),
typeof(wWalkTrailPage));

navService.RegisterViewMapping(typeof(

DistTravelledViewModel),
typeof(DistanceTravelledPage));

// Set the MainPage to be our
// Walks Navigation Page
MainPage = walksPage;

}
}
protected override void OnStart()
{

// Handle when your app starts
}
protected override void OnSleep()
{

// Handle when your app sleeps
}
protected override void OnResume()
{

// Handle when your app resumes
}

In the preceding code snippet, we use the TargetPlatform class that comes as part of the
Xamarin.Forms.Core library, and we check this against the Device.0s class and handle it
accordingly.

The TargetPlatform method contains a number platform codes, which are explained along with
their descriptions in the following table:

Platform . .
Description
name

This indicates that the Xamarin.Forms platform is running on a device that is

Android running the Android operating system.

iOS This indicates that the Xxamarin.Forms platform is running on a device that is
running the Apple iOS operating system.

This indicates that the Xxamarin.Forms platform is running on a device that is

Windows running the Windows platform.

This indicates that the Xxamarin.Forms platform is running on a device that is

WinPhone running the Microsoft WinPhone OS.

Note

For more information on the Device class, refer to the Xamarin documentation at
https://developer.xamarin.conv/guides/xamarin-forms/platform-features/device/ .

Now that we have updated the necessary MVVM ViewModels to take advantage of our
WalkLocationService, our next step is to finally build and run the TrackMywalks application
within the iOS simulator. When compilation completes, the iOS simulator will appear
automatically and the TrackMywalks application will be displayed, as shown in the following
screenshot:

i 10 Mile Brook Trail, Margaret River E
19 bl il y Bistary 7
Ancient Empire Walk, Valiey of the... Title: Mew Walk
MNotes:;
Latitude: 3733020047
Longitude: -122.02543057 ®
Kilometers: 0

Difficulty Level: Easy

ImageUrl:

Ancient Empire Walk, Valley of the Giants

Distance Travelled:
491.926081632384 meters

-» Time Taken: 00:00:00

Enid this Trad

https://developer.xamarin.com/guides/xamarin-forms/platform-features/device/

As you can see from the preceding screenshot, this displays our current list of walk trail entries,
which are displayed within our ListVview. When the user clicks on the Add Walk button link, this
will display the New Walk Entry content page, and will display the current user's geolocation
coordinates for the Latitude and Longitude EntryCell properties contained within our
walkEntryviewModel. The preceding screenshot, this shows the distance travelled page along
with the placeholder pin marker showing the trail location within the map View. You will notice
that the Distance Travelled section has been updated and shows the distance travelled by the user
that is calculated by the GetDistanceTravelled method contained within our
IwalkLocationService interface.

Summary

In this chapter, we updated our TrackMywWalks application, and created a Location Service
class that extended the default native core Location Services classes for iOS and Android, which
provides us with a better method of capturing geolocation coordinates within the ViewModel.

In the next chapter, you'll learn about custom renderers and how you can use them to change the
appearance of the control elements within the user interface that target a specific platform.

You will learn how to work with DataTemplates by creating a C# class to layout your views
beautifully throughout your application, and work with the platform-specific APIs to extend the
default behavior of Xxamarin.Forms controls through the use of custom renderers, by creating a
custom picker control for iOS.

We will also be covering how you can use the Xamarin.Forms EffectsAPI to customize the
appearance and styling of native control elements for each platform, by implementing a custom
renderer class, and manipulate the visual appearance of data that is bound, through the use of
Value and Image Converters.

Chapter 5. Customizing the User Interface

In our previous chapter, we looked at how we can incorporate platform-specific features within

the TrackMywalks app, which is dependent on the mobile platform. You learned how to create a
C# class, which acted as a location service that included a number of class methods for both iOS
and Android platforms.

We also covered how to properly perform location updates whether the application's state is in
the foreground or background by registering the app as a background-necessary application.

In this chapter, you'll learn how to work with the bataTemplateCustomRenderer by creating a
C# class to lay out your views beautifully within your applications, and you will also get
accustomed to working with platform-specific APIs to extend the default behavior of
Xamarin.Forms' controls through the use of custom renderers, by creating a custom picker.

We will also be covering how to use the Xamarin.Forms Effects API to customize the
appearance and styling of native control elements for each platform, by implementing a
CustomRenderer class. We'll look at how to manipulate the visual appearance of data that is
bound, through the use of value and image converters.

This chapter will cover the following points:

e Creating a custom DataTemplate class which utilizes native platform capabilities, that
come as part of the iOS and Android platforms

Working with custom renderers to change the appearance of control elements

Using the platform Effects API to change the appearance of control elements

Working with Boolean and string to image value converters

Updating the walks content page application to use the data template

Updating the walkEntry content page to use the CustomRenderer

Updating the bistanceTravelled content page to use the Effects API

Creating the DataTemplate class for the
TrackMyWalks app

One of the features of the xamarin.Forms toolkit is the ability to manipulate the user interface by
leveraging the various platform-specific APIs that are available, whether it be manipulating the
appearance of controls and their elements using custom renderers, or changing the appearance and
styling of native control elements.

In this section, we will be working with the Xxamarin.Forms data templates, which will provide
the ability to define the presentation of data. Let's begin by creating a new folder called bata
Templates, within our TrackMywalks solution, which will be used to represent our Data
Templates, by following these steps:

1. Launch the Xamarin Studio application, and ensure that the TrackMywalks solution is
loaded within the Xamarin Studio IDE.

2. Next, create a new folder, within the TrackMywalks Portable Class Library project, called
Data Templates as shown in the following screenshot:

]] | [TrackhMyWalks.i0s » [Dabug » [& ems saved. (%
&| Solution =S|
=
v & TrackMyWalks g
R = a
Build TrackMyWalks 3K 2
¢ [Raferonces Rebuild TrackMyWalks ~BK :
b Packages Clean TrackMyWalks 18K
3 Data Templates Unload
» [Models : :
u B View Archives
» 8 Properties
r [Services
L Viewhiodels Run With F
5] packages.config :
I TrackhtyWalks.cs B ew File...
X Add Files. . THEA
[Trackity\Walks. Dirpid Tools »
k| TrackMyWalks.i0S Version Control * Add Web Reference
Analyze Source Add NuGet Packages...
Find in Files... {+iF =
Reveal in Finder Add Files from Folder...
Copy BC
Cut X
Delete ¥
Rename.,.. BR
Options
Refresh
& Errors

3. Next, create an empty class within the bata Templates folder. If you can't remember how
to do this, you can refer to the section entitled Creating the Navigation Service Interface

for the TrackMyWalks app, within Chapter 3 , Navigating within the MVVM model - The
Xamarin.Forms Way.

4. Then, choose the Empty Class option located within the General section, and
enter walkCellDataTemplate as the name of the new class file, as shown in the following
screenshot:

[NN Mew File
Forms | || Empty Class Empty Class
C# Creates an empty class.
Gtk _@,' Empty Enumeration
Misc :
A=) Empty File
Text Templating =\ e
. ;' Empty Interface
XML] L
e
©

Empty Struct

Name: |WalkCellDataTemplate] |

Cancel Mew

5. Next, click on the New button to allow the wizard to create the new empty class file, as
shown in the preceding screenshot.

6. Our next step is to begin creating and implementing the code for our
wWalkCellDataTemplate class; perform the following steps.

7. Ensure that the walkCellDataTemplate.cs file is displayed within the code editor, and
enter the following code snippet:

//

// WalkCellDataTemplate.cs

// TrackMyWalks DataTemplate for Cells
//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using TrackMyWalks.Converters;
using Xamarin.Forms;

namespace TrackMyWalks.Controls

{

public class WalkCellDataTemplate : ViewCell

{

public wWalkCellDataTemplate()

{

var walkTrailImage = new Image

{
wWidthRequest = 140,
HeightRequest = 140,
HorizontalOptions = LayoutOptions.FillAndExpand,
VerticalOptions = LayoutOptions.FillAndExpand,
Aspect = Aspect.Fill

3

walkTrailImage.SetBinding(Image.SourceProperty,
"ImageUrl");

var TrailNamelLabel new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 16,
TextColor = Color.Black

I¥

TrailNamelLabel.SetBinding(Label.TextProperty,
"Title"),;

var totalKilometersLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.FromHex("#666")
I¥

totalKilometersLabel.SetBinding(Label.TextProperty,
"Kilometers", stringFormat: "Kilometers: {0}");

var trailDifficultylLabel = new Label()

{
FontAttributes = FontAttributes.Bold,
FontSize = 12,
TextColor = Color.Black
I¥

trailDifficultylLabel.SetBinding(Label.TextProperty,
"Difficulty", stringFormat: "Difficulty: {0}");

var trailDifficultyImage = new Image
{

HeightRequest = 50,

widthRequest = 50,

Aspect = Aspect.AspectFill,

HorizontalOptions = LayoutOptions.Start

+;

trailDifficultyImage.SetBinding(Image.SourceProperty,
"Difficulty", converter: new
TrailImageConverter());

var notesLabel = new Label()

{
FontSize = 12,

TextColor = Color.Black
3
notesLabel.SetBinding(Label.TextProperty, '"Notes");

var notesStack = new StackLayout()

{
Spacing = 3,
Orientation = StackOrientation.Vertical,
VerticalOptions = LayoutOptions.FillAndExpand,
Children = { noteslLabel }
3
var statusLayout = new StackLayout
{
Orientation = StackOrientation.Vertical,
Children = { totalKilometersLabel,
trailDifficultylLabel,
trailDifficultyImage
3
3
var DetailsLayout = new StackLayout
{
Padding = new Thickness(10, 0, 0, 0),
Spacing = 0,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children = { TrailNamelLabel, statuslLayout,
notesStack
3
3
var celllLayout = new StackLayout
{
Spacing = 0,
Padding = new Thickness(10, 5, 10, 5),
Orientation = StackOrientation.Horizontal,
HorizontalOptions = LayoutOptions.FillAndExpand,
Children = { walkTrailImage, DetailslLayout }
3

this.View = celllLayout;

In the preceding code snippet, we began by ensuring that our class inherits from the
Xamarin.FormsViewCell class renderer, and is essentially a cell that can be added to any
ListView or TableView control that contains a defined view. When working with
Xamarin.Forms, and the viewCell class, every cell has an accompanying renderer that is
associated with each platform that creates an instance of a native control. Whenever a ViewCell
class is rendered under the iOS platform, the viewCellRenderer class will instantiate the native
UITableViewCell control. Alternatively, under the Android platform, the viewCellRenderer
class instantiates a native View control.

Finally, on the Windows Phone platform, the viewCellRenderer class instantiates a native
DataTemplate control. Next, we create the cell layout information using the StackLayout
control, and then use the SetBinding property to create and bind each of our model values to a
specific property. Finally, we define a cellLayout variable that uses the StackLayout control,
to add each of our child elements and then assign the resulting cellLayout to the class View.

Note
If you are interested in finding out more information about bataTemplates, please refer to the

Xamarin developer documentation located at https://developer.xamarin.com/guides/xamarin-
forms/templates/data-templates/.

Now that we have created our walkCellDataTemplate, the next step is to modify the walks main
page so that it can make use of this class.

https://developer.xamarin.com/guides/xamarin-forms/templates/data-templates/

Updating the walks main page to use the data template

In the previous section, we created the class for our walkCellbataTemplate, as well as defining
the layout information for each of the control elements that we would like to have displayed
within our View.

In this section, we will take a look at how to implement the necessary code changes so that the
wWalksPageContentPage can take advantage of our walkCellDataTemplate class.

Let's take a look at how we can achieve this, by following the steps:

1. Ensure that the walksPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections as shown in the following code snippet:

//

// WalksPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using TrackMyWalks.Services;

using TrackMyWalks.DataTemplates;

namespace TrackMywWalks

¢ public class WalksPage : ContentPage
¢ WalksPageViewModel _viewModel
¢ get { return BindingContext as WalksPageViewModel; }
}
public WalksPage()
¢ var newWalkItem = new ToolbarItem
¢ Text = "Add walk"

+;

// Define our Data Template Class
var walksList = new ListView

{

HasUnevenRows = true,
ItemTemplate = new DataTemplate(typeof(

WalkCellDataTemplate)),

SeparatorColor = (Device.O0S
== TargetPlatform.iOS) ?

Color.Default : Color.Black
1

In the preceding code snippet, we began by including a reference to our bataTemplates class,
via the using statement. Then we passed in the walkCellDataTemplate data template to the
DataTemplate class object, which will be assigned to the ItemTemplate property of the
ListView class. Next, depending on the operating system we are running on, we'll set the
separator color for our TableView.

Xamarin Andrgid Player - [Nexus b (Loliipop]]

¥ @633

iPhone B8 - 108 100 (14A345)

Track My Walks - i0S Add Walk :
dasd A e ibe Track My Walks - Android ~ ADDWALK

10 Mile Brook Trail,
Margaret River

Kilometers: 7.5

10 Mile Brook Trail,
Margaret River
Kilometers: 7.5

Difficulty: Moderate

Difficulty: Moderate

Ak

The 10 Mile Brook Trail starts in the
Rotary Park near Old Kate, a
preserved steam engine at the
northern edge of Margaret River.

The 10 Mile Brook Trail starts in the
Rotary Park near Old Kate, a
preserved steam engine at the
northern edge of Margaret River.

Ancient Empire Walk,
Valley of the Giants

Kilometers: 450

Difficulty: Challenging

Ancient Empire Walk,

Valley of the Giants
Kilometers: 450

Difficulty: Challenging

5

The Ancient Empire is a 450 metre
walk trail that takes you around and
through some of the giant tingle
trees including the most popular of
the gnarled veterans, known as
Grandma Tingle.

B

The Ancient Empire is a 450 metre
walk trail that takes you around
and through some of the giant
tingle trees including the most
popular of the gnarled veterans,
known as Grandma Tingle.

As you can see from the preceding screenshot, this will show you a list of our current walks trail
entries, which are nicely rendered using the bataTemplate, and displayed within the ListVview
control.

In our next section, you will see how we can go about creating a custom picker for our
walkEntry content page, so that we can display a list of difficulty choices for the user to choose
from.

Creating a TableView EntryCell custom picker
for the iOS platform

Our TrackMywalks app uses a TableView with EntryCells to present a form to the user to add
new walk entries within the walkEntryPage. Currently, the difficulty field within the form is
using the regular Entrycell control, which presents the user with an editable text field using the
default keyboard.

As you can imagine, this is not the ideal user experience that we are after, as this can cause issues
when it comes to validating the information entered. Our goal is to present the user with a
standard, custom platform-specific picker that contains a number of choices the user can choose
from.

In this section, we will be creating a custom renderer that will extend the EntryCellRenderer to
display an Entrycell that will behave much like the standard picker control. Since we don't
want our picker to render all of the Entrycells within the walkEntryPage, we will need to
create a custom EntryCell control that the custom renderer will associated with.

Let's take a look at how we can achieve this, by following the steps:

1. Create a new folder within the TrackMywalks Portable Class Library project, called
Controls and then create an empty class within the Controls folder.

2. Next, choose the Empty Class option located within the General section, and
enter DifficultyPickerEntryCell as the name of the new class file to create.

3. Next, once you have created the DifficultyPickerEntryCell class file, ensure that the
DifficultyPickerEntryCell.cs file is displayed within the code editor, and enter in the
following code snippet:

//

// DifficultyPickerEntryCell.cs

// TrackMyWalks CustomRenderer for Difficulty Entry Cells
//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;
using Xamarin.Forms;

namespace TrackMywWalks.Controls

{

4. Then, we need to modify the DifficultyPickerEntryCell class constructor signature, so
that it inherits from the Xxamarin.Forms.Entry EntryCell class, since the walkEntryPage
contains a number of EntryCell controls:

public class DifficultyPickerEntryCell : EntryCell {

5. Next, we need to create a string BindableProperty so that the custom control can be data-

bound just like our other controls:

public static readonly BindableProperty DifficultyProperty =
BindableProperty.Create<DifficultyPickerEntryCell,

String>(p => p.Difficulty, "Easy", propertyChanged:

new BindableProperty.BindingPropertyChangedDelegate<String>
(DifficultyPropertyChanged));

6. Then, we create a Difficulty property so that, when the values changes within the custom
control, it can return the value back to our EntryCell:

public String Difficulty

{
get { return (String)GetValue(DifficultyProperty); }
set { SetValue(DifficultyProperty, value); }

}

7. Next, we create a CompletedEventHandler that will be used in relation to the
DifficultyPropertyChanged event, so we canrespond to the Completed events on our
DifficultyPickerEntryCell:

public new event EventHandler Completed;

static void DifficultyPropertyChanged(BindableObject bindable,
String oldvalue, String newValue)

{
var @this = (DifficultyPickerEntryCell)bindable;
if (@this.Completed != null)
@this.Completed(bindable, new EventArgs());
}
}

Now that we have created the DifficultyPickerEntryCell class for the iOS portion of our
TrackMywWalks app, our next step is to create the custom picker renderer for the iOS platform,
which we will be covering in the next section.

Creating the custom picker renderer class for the
iOS platform

In the previous section, we created a class for the DifficultyPickerEntryCell, as well as
defining a number of different data-bindable property methods that will be used to handle the user
choosing an item within our custom picker.

In this section, we will build the custom picker renderer model that will be used by the iOS
portion of the DifficultyPickerEntryCell. Let's take a look at how we can achieve this, by
following these steps:

1. Create a new folder within the TrackMywalks.i0S project, called Renderers.

2. Next, create an empty class within the Renderers folder for our TrackMywalks.i0S
project, and enter DifficultyPickerModel as the name of the new class file to create.

3. Then, ensure that the DifficultyPickerModel.cs file is displayed within the code editor,
and enter in the following code snippet:

//

// DifficultyPickerModel.cs

// TrackMyWalks Level Model for UIPickerViewModel (10S)

//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using UIKit;

namespace TrackMyWalks.iO0S.Renderers

{

4. Next, we need to modify the DifficultyPickerModel class constructor signature, so that it
inherits from the UIPickerVviewModel interface class, as well as declaring our
difficultyString object which contains a valid list of choices for the user to choose
from:

// Declare our Difficulty Picker Model Class
public class DifficultyPickerModel : UIPickerViewModel
{
// Define our list of difficulty levels
static public string[] difficulty = new string[]
{

IIEaSyII ,

"Moderate",

"Challenging",

"Difficult",

"Very Difficult",

"Extreme"

i
5. Then, we need to create the GetComponentCount method, which accepts a pickerview

object that tells the UIPickerVview how many components we are expecting our custom
picker to contain:

public override nint GetComponentCount(UIPickerView pickerView)

{
}

6. Next, we need to create the GetRowsInComponent method that accepts a pickerVview object
and a component value. This method works out how many rows to display within our
UIPickerView custom control, which is derived from the difficulty string array. The
component parameter determines which section to display those values in:

return 1;

public override nint GetRowsInComponent(UIPickerView pickerView,
nint component)
{

}

7. Finally, we need to create the GetTit1le method, which accepts a pickerview object, a row
parameter, and a component value. This method is used to display the title information for
each row contained within our difficulty array:

return difficulty.Length;

public override string GetTitle(UIPickerView pickerView,
nint row, nint component)

{

}
}
}

return difficulty[row];

Up until this point, all we have done is create our model for our bifficultyPicker, which acts
as the base model needed by our DifficultyPickerCellRenderer class. Our next step is to
create the DifficultyPickercellRenderer that will use the model for the iOS platform to
display a custom list of entries for the user to choose from.

1. Create an empty class within the Renderers folder for the TrackMywalks.i0S project, and
enter in DifficultyPickerCellRenderer as the name of the new class file to create.

2. Next, ensure that the DifficultyPickerCellRenderer .cs file is displayed within the
code editor, and enter the following code snippet:

//

// DifficultyPickerCellRenderer.cs

// TrackMyWalks CustomRenderer for UIPickerView Entry Cells
(10S)

//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using Xamarin.Forms.Platform.iOS;

using UIKit;

using TrackMyWalks.Controls;

using Xamarin.Forms;
using TrackMyWalks.iO0S.Renderers;

3. Then, we need to initialize our DifficultyCellRenderer class to be marked as an
ExportRenderer by including the ExportRenderer assembly attribute at the top of our
class definition. This lets our class know that it inherits from the viewRenderer class:

[assembly: ExportRenderer(typeof(DifficultyPickerEntryCell),
typeof(DifficultyPickerCellRenderer))]
namespace TrackMyWalks.iO0S.Renderers

{

4. Next, we need to modify the DifficultyCellRenderer class constructor signature, so that
it can inherit from the EntryCellRenderer class:

public class DifficultyPickerCellRenderer : EntryCellRenderer
{

5. Then, we need to override the EntryCellRendererGetCell method so that it can override
the default behavior of the Entrycell for iOS by setting the InputView of the UITextField
to a UIPickerView class instance:

public override UITableViewCell GetCell(Cell item,
UITableViewCell reusableCell, UITableView tv)

{

var cell = base.GetCell(item, reusableCell, tv);
var entryPickerCell = (EntryCell)item;

UITextField textField = null;

if (cell '= null)
textField = (UITextField)cell.ContentView.Subviews[O];

6. Next, we create an instance to our iOS UIPickerView native control, that points to the
DifficultyPickerModel; and then we create a toolbar that will contain a Done button and
will provide us with a mechanism to update the EntryCellUITextField with the chosen
value from the difficultyPicker object. Then dismiss the custom picker control:

// Create our 1i0S UIPickerView Native Control
var difficultyPicker = new UIPickerView

{
AutoresizingMask = UIViewAutoresizing.Flexiblewidth,
ShowSelectionIndicator = true,
Model = new DifficultyPickerModel(),
BackgroundColor = UIColor.White,
Iy

// Create a toolbar with a done button that will

// set the selected value when closed.

var done = new UIBarButtonItem("Done",
UIBarButtonItemStyle.Done, (s, e) =>

// Update the value of the UITextField within
// the Cell.
if (textField != null)

textField.Text = DifficultyPickerModel.difficulty
[difficultyPicker.SelectedRowInComponent(0)];
textField.ResignFirstResponder();

}

1)

var toolbar = new UIToolbar

{
BarStyle = UIBarStyle.BlackTranslucent,
Translucent = true

+;

toolbar.SizeToFit();
toolbar.SetItems(new[] { done }, true);

7. Then, we set the input view and toolbar and an initial default value for the EntryCell's
TextField if nothing has been chosen. This is done by setting the InputVview of the
UITextField to a UIPickerView class instance:

// Set the input view, toolbar and initial value

// for the Cell's UITextField.

if (textField != null)

{
textField.InputView = difficultyPicker;
textField.InputAccessoryView = toolbar;
textField.Font = UIFont.FromName("Courier", 16);
textField.BorderStyle = UITextBorderStyle.Bezel;
textField.TextColor = UIColor.Red;

8. Finally, if we have selected a difficulty value from our UIPickerVview control, we first need
to ensure that we have chosen a value, and then assign this value to the
DifficultyEntrycCell field within the entry form:

if (entryPickerCell != null)

{
textField.Text = DifficultyPickerModel.difficulty
[difficultyPicker.SelectedRowInComponent(0)];

}

}

return cell;

}
}

}
Note

If you are interested in finding out more information about the UIPickerView class, please refer
to the Xamarin developer documentation at

https://developer.xamarin.convapi/type/MonoTouch.UIKit.UIPickerView/ .

Now that we have created the bifficultyPickerCellRenderer class for the iOS portion of our
TrackMywWalks app, our next step is to implement this within the walkEntry content page.

https://developer.xamarin.com/api/type/MonoTouch.UIKit.UIPickerView/

Updating the WalksEntryPage to use the custom picker renderer

In the previous section, we created the class for our bifficultyPickerCellRenderer, as well
as defining the various methods that will handle the display of the UIPickerVview control when an
EntryCell within the ViewModel has been tapped.

In this section, we will take a look at how to implement the code changes required so that the
wWalkEntryPage content page can take advantage of the DifficultyPickerCellRenderer class.

Let's take a look at how we can achieve this, by following these steps:

Ensure that the walkEntryPage.cs file is displayed within the code editor, and enter the
following highlighted code sections as shown in the following code snippet:

//
//
//
//
//
//
//

WalkEntryPage.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Xamarin.Forms;
using TrackMywWalks.Services;
using TrackMyWalks.Controls;

namespace TrackMyWalks

{

public class WalkEntryPage : ContentPage

{
WalkEntryViewModel _viewModel

{
}

public WalkEntryPage()
{

get { return BindingContext as WalkEntryViewModel; }

// Set the Content Page Title
Title = "New Walk Entry";

// Declare and initialize our Model Binding Context
BindingContext = new WalkEntryViewModel

(DependencyService
.Get<IWalkNavService>());

var walkDifficulty = new DifficultyPickerEntryCell

{

Label = "Difficulty Level:",

Placeholder = "walk Difficulty"
}

walkDifficulty.SetBinding(
DifficultyPickerEntryCell.DifficultyProperty,
"Difficulty", BindingMode.TwoWay);

}

In this section, we looked at the steps involved in modifying our WalkEntryPage to take
advantage of the DifficultyPickerEntrycCell class custom renderer. We looked at updating the
walkDifficulty object variable, to reference the DifficultyPickerEntrycCell class, and
updated the setBinding to return the value fromthe DifficultyProperty that is implemented
within the DifficultyPickerEntryCell class.

iPhone Bs - P0S 100 (14A345)

< Back New Walk Entry

Title: New Walk
Notes:

Latitude: 37.3335218
Longitude: -122.04152496
Kilometers: 0

Difficulty Level: | Moderate|

ImageUri:

Moderate

As you can see from the preceding screenshot, this shows our custom UIPickerVview control,
populated with the entries from the DifficultyPickerModel, as well as the Done button
displayed as the header. Scrolling through the list of choices operates in the same way as you
would expect under iOS; clicking on the Done button will populate the Difficulty Level
UITextField with the highlighted choice within the UIPickerView control.

In our next section, we will focus on how we can use the Xamarin.Forms Effects API to
customize the appearance and styling of native control elements for both the iOS and Android
platforms by implementing a custom renderer class. You will notice that the implementations for
both of these classes are quite similar. However, these implement different methods, as you will
see once we start implementing them.

Creating PlatformEffects using the Effects API
for the iOS platform

In this section, we will build the iOS portion of our Platformeffects, which will allow us to
customize the appearance of the Xxamarin.Forms control elements. We will be creating two
completely different platform effects-LabelShadow and ButtonShadow, for both the iOS and
Android platforms.

Let's take a look at how we can achieve this, by following these steps:

1. Create a new folder within the TrackMywalks.i0S project, called Platformeffects.

2. Next, create an empty class within the Platformeffects folder for our TrackMywalks.i0S
project.

3. Then, enter ButtonShadowEffect as the name of the new class file to create, ensure that the
ButtonShadowEffect.cs file is displayed within the code editor, and enter the following
code snippet:

//

// ButtonShadowEffect.cs

// TrackMyWalks Button Shadow Effect (10S)

//

// Created by Steven F. Daniel on 02/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using TrackMyWalks.iOS.PlatformEffects;

using UIKit;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

4. Next, we initialize the ButtonShadowEffect class assembly to be marked with two
important attributes for our class so that it can be used as an effect within the TrackMywalks
application:

[assembly: ResolutionGroupName('"com.geniesoftstudios")]
[assembly: ExportEffect(typeof(ButtonShadowEffect),

"ButtonShadowEffect")]
namespace TrackMyWalks.iOS.Platformgffects

{

5. Then, we need to modify our ButtonShadowEffect class constructor so that it can inherit
fromthe PlatformEffect class and access each of the platform-specific implementations of
the Platformeffect class:

public class ButtonShadowEffect : PlatformEffect
{

6. Next, we create the onAttached method that will be called whenever an affect is attached to
a Xamarin.Forms control and then use the Container property to reference the platform-
specific control that is used to implement the layout:

protected override void OnAttached()

{
Container.Layer.ShadowOpacity = 0.5f;
Container.Layer.ShadowColor = UIColor.Black.CGColor;
Container.Layer.ShadowRadius = 2;

}

7. Then, we create the onbetached method, which will be called whenever an effect is
detached from a Xamarin.Forms control to perform any effect clean-up. Here, in this
method, we set the ShadowOpacity of the Container property to zero:

protected override void OnDetached()

{

}
}
}

Container.Layer.ShadowOpacity = 0;

Each platform-specific PlatformEffect class exposes a number of properties and these are
explained in the following table:

Platform Description

effect P

Container This particular type references the platform-specific control that is being used to
implement the layout.

Control This type references the platform-specific control that is being used to implement
the Xamarin.Forms control.

Element |This type references the Xamarin.Forms control that is currently being rendered.

Whenever you create your own Platformeffects, these inherit from the PlatformEffect class,
which is dependent on the platform that is being run. However, the API for an effect is pretty
much identical across each of the platforms as they derive from the PlatformEffect<T, T>and
contain different generic parameters. There are also two very important attributes that you need to
set for each class that subclasses from the PlatformEffect class, and these are explained in the
following table:

Attribute type Description

This attribute sets a company-wide namespace for effects, preventing
collisions with other effects with the same name. It is worth mentioning

ResolutionGroupName

that, if you create multiple PlatformEffects, you can only apply this
attribute once per project.

This attribute registers the effect using a unique ID and is used by the
Xamarin.Forms platform along with the group name. The attribute
takes two parameters: the type name of the effect, and a unique string
that will be used to locate the effect prior to applying it to a control.

ExportEffect

Note

If you are interested in finding out more information about the PlatFormeffect class, please
refer to the Xamarin developer documentation at https://developer.xamarin.com/guides/xamarin-
forms/effects/ .

Now that we have created the But tonShadowEffect class, our next step is to create the
LabelShadowEffect for the iOS portion of our TrackMywalks app:

1. Next, create an empty class within the Platformeffects folder for the TrackMywalks.i0S
project and enter LabelShadowEffect as the name of the new class file to create.

2. Then, ensure that the LabelShadowEffect.cs file is displayed within the code editor, and
enter the following code snippet:

//

// LabelShadowEffect.cs

// TrackMyWalks Label Shadow Effect (1i0S)

//

// Created by Steven F. Daniel on 02/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using CoreGraphics;

using TrackMywWalks.iOS.PlatformEffects;

using Xamarin.Forms;

using Xamarin.Forms.Platform.iOS;

3. Next, we initialize the LabelShadowEffect class assembly to be marked with the
ExportEffect attribute so that it can be used as an effect within the TrackMywalks
application:

[assembly: ExportEffect(typeof(LabelShadowEffect),

"LabelShadowEffect")]
namespace TrackMyWalks.iOS.Platformgffects

{

4. Then, we need to modify the LabelShadowEffect class constructor so that it can inherit
fromthe PlatformEffect class, and access each of the platform-specific implementations
of the PlatformEffect class:

public class LabelShadowEffect : PlatformEffect {

https://developer.xamarin.com/guides/xamarin-forms/effects/

5. Next, we create the onAttached method that will be called whenever an affect is attached to
a Xamarin.Forms control and then use the Control property to reference the platform-
specific control that will be used to change the appearance of the control.

protected override void OnAttached()

{
try
{
Control.Layer.CornerRadius = 5;
Control.Layer.ShadowColor = Device.OnPlatform(
Color.Black, Color.wWhite, Color.Black).ToCGColor();
Control.Layer.ShadowOffset = new CGSize(4, 4);
Control.Layer.ShadowOpacity = 0.5f;
}
catch (Exception ex)
{
Console.WriteLine("Cannot set property on attached
control.Error: ", ex.Message);
}
}

6. Then, we create the onDetached method, which will be called whenever an effect is
detached from a Xamarin.Forms control to perform any effect cleanup. Here, in this method,
we don't need to do anything, but we still need to implement this to conform with the
PlatformEffect class protocol implementations:

protected override void OnDetached()

{
}
}
}

Now that we have created the PlatformEffects for the iOS platform, we need to implement the
same PlatformEffects for the Android platform, which we will be covering in the next section.

Creating PlatformEffects using the Effects API
for the Android platform

In this section, we will build the Android portion of our Platformeffects that will allow us to
customize the appearance of Xamarin.Forms control elements just like we did for the iOS
portion, and we will be implementing the same Platformeffects--LabelShadow and
ButtonShadow to show you how these implementations differ on each platform, even though the
resulting rendering is the same.

Let's take a look at how we can achieve this, by following the steps:

1. Create a new folder within the TrackMywalks.Droid project, called PlatformEffects.

2. Next, create an empty class within the Platformeffects folder for our
TrackMywWalks.Droid project.

3. Then, enter ButtonShadowEffect as the name of the new class file to create, ensure that the
ButtonShadowEffect.cs file is displayed within the code editor, and enter the following
code snippet:

//

// ButtonShadowEffect.cs

// TrackMyWalks Button Shadow Effect (Droid)
//

// Created by Steven F. Daniel on 02/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using TrackMyWalks.Droid.Platformgffects;
using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

using System;

4. Next, we initialize the ButtonShadowEffect class assembly to be marked with the same

two attributes for our class, just like we did for the iOS portion, so that it can be used as an
effect within the TrackMywalks application:

[assembly: ResolutionGroupName('"com.geniesoftstudios")]

[assembly: ExportEffect(typeof(ButtonShadowEffect),
"ButtonShadowEffect")]

namespace TrackMyWalks.Droid.PlatformEffects

{

5. Then, we need to modify the ButtonShadowEffect class constructor so that it can inherit
fromthe PlatformEffect class, and access each of the platform-specific implementations
of the PlatformEffect class:

public class ButtonShadowEffect : PlatformEffect
{

6. Next, we create the onAttached method that will be called whenever an affect is attached to
a Xamarin.Forms control and then use the Control property to reference the platform-
specific control that will be used to change the appearance of the control. Under Android we

need to create a control object and convert the Button into a Control object, and then
apply the customizations to the Control. We wrap this withina try...catch() block, to
catch any errors that may occur if, for some reason, we can't apply the color or
shadowLayer for our control:

protected override void OnAttached()

{

try

{
var control = Control as Android.wWidget.Button;
Android.Graphics.Color color =
Android.Graphics.Color.Red;
control.SetShadowLayer (12, 4, 4, color);

}

catch (Exception ex)

{
Console.WriteLine("Cannot set property on attached
control. Error: ", ex.Message);

}

}

7. Then, we create the onbetached method, which will be called whenever an effect is
detached from a Xamarin.Forms control to perform any effect cleanup. Here in this method,
we don't need to do anything, but we still need to implement this to conform with the
PlatformEffect class protocol implementations:

protected override void OnDetached()

{

}
}
}

throw new NotImplementedException();

Now that we have created the But tonShadowEffect class, our next step is to create the
LabelShadowEffect for the Android portion of our TrackMywalks app:

1. Next, create an empty class within the PlatformEffects folder for the
TrackMyWalks.Droid project and enter LabelShadowEffect as the name of the new class
file to create.

2. Then, ensure that the LabelShadowEffect.cs file is displayed within the code editor, and
enter the following code snippet:

//

// LabelShadowEffect.cs

// TrackMyWalks Label Shadow Effect (Droid)

//

// Created by Steven F. Daniel on 02/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using TrackMyWalks.Droid.Platformgffects;

using Xamarin.Forms;

using Xamarin.Forms.Platform.Android;

3. Next, we initialize our LabelShadowEffect class assembly to be marked with the
ExportEffect attribute so that it can be used as an effect within the TrackMywalks
application:

[assembly: ExportEffect(typeof(LabelShadowEffect),

"LabelShadowEffect")]
namespace TrackMyWalks.Droid.PlatformEffects

{

4. Then, we need to modify the LabelShadowEffect class constructor so that it can inherit
fromthe PlatformEffect class, and access each of the platform-specific implementations
of the PlatformEffect class:

public class LabelShadowEffect : PlatformEffect
{

5. Next, we create the onAttached method that will be called whenever an affect is attached to
a Xamarin.Forms control and then use the Control property to reference the platform-
specific control that will be used to change the appearance of the control. In Android we
need to create a control object, convert the TextView into a Control object, and then
apply the customizations to the Control. We wrap this withina try...catch() block, to
catch any errors that may occur if, for some reason, we can't apply the color or
shadowLayer for our control:

protected override void OnAttached()

{
try
{
var control = Control as Android.wWidget.TextView;
float radius = 5;
float distanceX = 4;
float distanceY = 4;
Android.Graphics.Color color = Device.OnPlatform(
Color.Black, Color.wWhite, Color.Black).ToAndroid();
control.SetShadowLayer (
radius, distanceX, distanceY, color);
}
catch (Exception ex)
{
Console.WriteLine("Cannot set property on attached
control.
Error: ", ex.Message);
}
}

6. Then, we create the onDetached method that will be called whenever an effect is detached
from a Xamarin.Forms control to perform any effect cleanup in this method. As what we did
in the iOS implementation, we don't need to do anything, but we still need to implement this
to conform with the PlatformEffect class protocol implementations:

protected override void OnDetached()

{

Now that we have created PlatformEffects for both the iOS and Android implementations, our
next step is to begin creating two value converters that will be used by our application, before we
can start modifying the content pages, and this will be covered in the next section.

Implementing value converters within the
TrackMyWalks app

As mentioned in the previous section, value converters form an important concept in data binding
as they allow you to customize the appearance of a data property at the time it is bound. This
process is quite similar to WPF (Windows Presentation Foundation) on the Windows
application development platform. Xxamarin.Forms provides you with a number of value
converter interfaces as part of its APL

Value converters are extremely helpful when working with the Xxamarin.Forms platform, as they
allow you to toggle the visibility of elements, based on a Boolean property.

In this section, we will create a BooleanConverter that we will use to hide controls until the
ViewModel has completely finished loading. We will also create a converter that converts a
string value into a URL property that will be used to display an image for our difficulty rating.

Let's take a look at how we can achieve this, by following the steps:

1. Create a new folder, within the TrackMywalks Portable Class Library project, called
valueConverters and then create an empty class within the valueConverters folder.

2. Next, choose the Empty Class option located within the General section, and
enter BooleanConverter as the name of the new class file to create.

3. Next, ensure that the BooleanConverter.cs file is displayed within the code editor, and
enter the following code snippet:

//

// BooleanConverter.cs

// TrackMyWalks ValueConverter for converting Boolean values
//

// Created by Steven F. Daniel on 02/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using Xamarin.Forms;

namespace TrackMyWalks.ValueConverters

{

4. Then, we need to modify the BooleanConverter class constructor so that it can inherit from
the IvalueConverter class:

public class BooleanConverter : IValueConverter

{

5. Next, create the Convert and ConvertBack methods of the IvalueConverter class, so that
the converter will return the opposite of a given Boolean value:

public object Convert(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)

if (!(value is Boolean))
return value;
return !((Boolean)value);

}

public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)

if (!(value is Boolean))
return value;

return !((Boolean)value);

In the preceding code snippet, we began by modifying the BooleanConverter class constructor
so that it can inherit from the IvalueConverter class. Then we proceeded to create the Convert
and ConvertBack methods of the IvalueConverter class. This is so that the converter will
return the opposite of a given Boolean value; for example, if the value is True, it will return
False, and convert it from False back to True.

Now that we have created the BooleanConverter class, our next step is to begin creating the
TrailImageConverter that will be used by the TrackMywalks app. This class will be used to
convert a string value into a URL property that will be used to display an image for our difficulty
rating:

1. Create an empty class within the valueConverters folder, which is located within the
TrackMywalks Portable Class Library project.

2. Next, choose the Empty Class option located within the General section, and enter
TrailImageConverter as the name of the new class file to create.

3. Next, ensure that the TrailImageConverter.cs file is displayed within the code editor, and
enter the following code snippet:

//

// TraillmageConverter.cs

// TrackMyWalks ValueConverter for converting difficulty value
// to an image.

//

// Created by Steven F. Daniel on 02/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//

using System;

using Xamarin.Forms;

namespace TrackMyWalks.ValueConverters

{

4. Then, we need to modify our TrailImageConverter class constructor so that it can inherit
from the IvalueConverter class:

public class TrailImageConverter : IValueConverter

{

5. Next, create the Convert and ConvertBack methods of the IvalueConverter class, so that
the converter will return back an image URL based on the difficulty level:

public object Convert(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
{

// Return back the relevant image based on the
// difficulty level.
switch ((string)value)
{
case "Easy":
return "http://www.yourdomain.com/gl.jpeg";
case "Moderate":
return "http://www.yourdomain.com/g2.jpeg";
case "Challenging":
case "Difficult":
return "http://www.yourdomain.com/g3.jpeg";
case "Very Difficult":
case "Extreme":
return "http://www.yourdomain.com/g5.jpeg";
default:
return "http://www.yourdomain.com/gl.jpeg";

}

public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)

{

}
}
}

throw new NotImplementedException();

In the preceding code snippet, we began by modifying our TrailImageConverter class
constructor so that it can inherit from the IvalueConverter class. In our next step, we'll proceed
to create the Convert and ConvertBack protocol methods of the IvalueConverter class. This
is so that the converter will return back an image URL based on the difficulty level and will be
displayed within our TrackMywalks app.

Updating the WalkBaseViewModel to use our Boolean converter

In this section, we will proceed to update our walkBaseViewModel class to include references to
our Boolean value converter. Since the walkBaseViewModel already inherits and is used by each
of the viewModels, it makes sense to place it within this class. That way, if we need to add
additional methods, we can just add them within this class. To proceed, perform the following
steps, as shown here.

Ensure that the walkBaseviewModel.cs file is displayed within the code editor, and enter the
following highlighted code sections, as shown in the following code snippet:

//
//
//
//
//
//
//

WalkBaseViewModel.cs
TrackMywWalks Base ViewModel

Created by Steven F. Daniel on 22/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System.ComponentModel;
using System.Runtime.CompilerServices;
using System.Threading.Tasks;
using TrackMywWalks.Services;

namespace TrackMywWalks.ViewModels

{

public abstract class WalkBaseViewModel
INotifyPropertyChanged
{

protected IWalkNavService NavService
{ get; private set; }

bool _isProcessBusy;
public bool IsProcessBusy
{
get { return _isProcessBusy; }
set
{
_isProcessBusy = value;
OnPropertyChanged();

OnIsBusyChanged();

protected virtual void OnIsBusyChanged()
{

// We are processing our Walks Trail Information

}
}

public abstract class WalkBaseViewModel<WalkParam>
WalkBaseViewModel

{
protected WalkBaseViewModel(

IwWalkNavService navService)
base(navService)

{
}

public override async Task Init()

{
}

public abstract Task Init(WalkParam walkDetails);

await Init(default(wWalkParam));

}
}

In the preceding code snippet, we began by creating a Boolean property, called isProcessBusy,
which we will only set to True while we are in the process of actually loading data within our
ListView, or doing some other process that takes quite a long time. The IsProcessBusy
property contains both the getter (get) and setter (set) implementations. When we set the
IsProcessBusy property, we assign this value to our _isProcessBusy variable, and then call
the onPropertyChanged and OnIsBusyChanged instance methods to tell the viewModels that a
change has been made.

Updating the WalksPageViewMaodel to use our Boolean
converter

In this section, we will proceed to update the walksPageViewModel ViewModel to reference our
Boolean value converter. Since the walksPageViewModel is used to display information from
the walkEntries model, we will need to update the Loadwalks instance method to toggle
between the IsProcessBusy value while it is loading data within the ListVview. To proceed,
perform the following steps, as shown here:

Ensure that the walksPageViewModel.cs file is displayed within the code editor, and enter the
following highlighted code sections, as shown in the following code snippet:

//

// WalksPageViewModel.cs

// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Collections.ObjectModel;

using System.Threading.Tasks;

using TrackMyWalks.Models;

using TrackMywWalks.Services;

using Xamarin.Forms;

namespace TrackMywWalks.ViewModels

{
public class WalksPageViewModel : WalkBaseViewModel

{

ObservableCollection<wWalkEntries> _walkEntries;

public ObservableCollection<WalkEntries> walkEntries

{
get { return _walkEntries; }
set
{
_walkEntries = value;
OnPropertyChanged();
}
}

public WalksPageViewModel(IWalkNavService navService)
base(navService)

{
walkEntries = new ObservableCollection<WalkEntries>();
}
public override async Task Init()
{
await LoadWalkDetails();
}

public async Task LoadWalkDetails()

// Check to see if we are already processing our
// Walk Trail Items
if (IsProcessBusy) {

return;

}

// If we aren't currently processing, we need to

// initialise our variable to true.
IsProcessBusy = true;

// Add a temporary timer, so that we can see

// our progress indicator working
await Task.Delay(1000);

// Re-initialise our process busy value back to false

IsProcessBusy = false;

}

In the preceding code snippet, we began by updating the Loadwalks method to toggle between the
Boolean property called IsProcessBusy. We set this to True while we are in the process of
actually loading data within the ListVview. We then added a temporary timer so we can see this
process in action, but we will be removing this in Chapter 7, Incorporating API Data Access,
when we load the Trail information from an API. Finally, we re-initialized our IsProcessBusy
state value by setting this to False to tell the walkBaseViewModel that we have completed
processing of the walk trail items.

Now that the ViewModel is aware of when it is busily processing items within the ListView, our
next step is to modify the user interface for the walks page to include an activity indicator that
inherits from the Xamarin.Forms.Core platform. We will also be modifying our
DistanceTravelled and WalksTrailPage to include the PlatFormEffects classes.

Updating the walks main page to use the updated ViewModel

In this section, we will proceed to update the walksPage content page, which will include an
activity process indicator that will display a text string to the user, letting them know that the trail
walks are being populated within the ListView control. We will also be making use of our
PlatformEffects classes for the Labelshadow. To proceed, perform the following steps:

1. Ensure that the walksPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections, as shown in the following code snippet:

//

// WalksPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;

using TrackMyWalks.Services;

using TrackMyWalks.DataTemplates;

using TrackMyWalks.ValueConverters;

namespace TrackMywWalks

{
public class WalksPage : ContentPage {
WalksPageViewModel _viewModel

{

get {

return BindingContext as WalksPageViewModel; }

}
public WalksPage()
{

var newWalkItem = new ToolbarItem

{

Text = "Add wWalk"
Iy

// Declare and initialize our Model Binding Context
BindingContext = new WalksPageViewModel(DependencyService
.Get<IWalkNavService>());

// Define our Item Template

var walksList = new ListView

{
HasUnevenRows = true,
ItemTemplate = new DataTemplate(typeof(
WalkCellDataTemplate)),

SeparatorColor = (Device.0S == TargetPlatform.i0S) ?
Color.Default : Color.Black

+;

// Set the Binding property for our walks Entries
walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,
"walkEntries");

2. Next, we need to set up the Binding to the IsvisibleProperty that we defined within the
wWalkBaseViewModel class. This will be called when this property has been set True to
display our WwalkEntries withinthe ListView and is handled by the IsProcessBusy
property. Proceed and enter the following highlighted code sections, as shown in the code
snippet:

walksList.SetBinding(ItemsView<Cell>.IsVisibleProperty,
"IsProcessBusy", converter: new BooleanConverter());

// Initialize our event Handler to use when the item
// 1is tapped
walksList.ItemTapped += (object sender,
ItemTappedEventArgs e) =>
{
var item = (WalkEntries)e.Item;
if (item == null) return;
_viewModel.WalkTrailDetails.Execute(item);
item = null;

+;

3. Then, we declare and initialize a new progressLabel control, which will be used to
display instructive information to the user when the ListView is being populated. Proceed
and enter in the following highlighted code sections, as shown in the code snippet:

// Declare our Progress Label
var progressLabel = new Label()

{
FontSize = 14,
FontAttributes = FontAttributes.Bold,
TextColor = Color.Black,
HorizontalTextAlignment = TextAlignment.Center,
Text = "Loading Trail Walks..."

};

4. Next, we apply the PlatformEffectLabelShadowEffect class to our progressLabel
control, instantiate and initialize the ActivityIndicator class, and set the IsRunning
property to True, before creating a StackLayout variable progressIndicator and adding
both the activityIndicator and progressLabel items. Finally, we set up the Binding
for our ProgressIndicator using the isvisibleProperty of the StackLayout control.
This will use the IsProcessBusy property to determine whether or not to show the
ActivityIndicator. Proceed and enter in the following highlighted code sections, as
shown in the code snippet:

// Apply PlatformEffects to our Progress Label

progressLabel.Effects.Add(Effect.Resolve("com.geniesoftst
udios.LabelShadowEffect"));
// Instantiate and initialise our Activity Indicator.

var activityIndicator = new ActivityIndicator()

{

IsRunning = true

};
var progressIndicator = new StackLayout
{
Orientation = StackOrientation.Vertical,
HorizontalOptions = LayoutOptions.CenterAndExpand,
VerticalOptions = LayoutOptions.CenterAndExpand,
Children = {
activityIndicator,
progressLabel
}
};

progressIndicator.SetBinding(StackLayout.IsVisibleProperty,
"IsProcessBusy");

var mainLayout = new StackLayout

Children =
{
walksList,
progressIndicator
}
3

Content = mainLayout;

protected override async void OnAppearing()

{
base.OnAppearing();

// Initialize our WalksPageViewModel

if (_viewModel != null)
await _viewModel.Init();

In the preceding code snippet, we began by setting up the Binding to our IsvVisibleProperty,
which we defined within the walkBaseViewModel class; this will be called when the property
has been set to True to display the walkEntries within the ListView, and is handled by the
IsProcessBusy property. In our next step, we declared and initialized a new progressLabel
control, which will be used to display instructive information to the user when the ListView is
being populated.

Then we applied the LabelshadowEffect class to the progressLabel control, instantiated and
initialized the ActivityIndicator class, and set the IsRunning property to True, before
creating a StackLayout variable progressIndicator and adding both the activityIndicator
and progressLabel items.

Next, we set up the Binding for the ProgressIndicator using the isvisibleProperty of our
StackLayout control, which will use the IsProcessBusy property to determine whether or not
to show the ActivityIndicator. Finally, we added the ProgressIndicator to our
mainLayout as part of the Children property, so that this can be displayed as part of the main
content page.

Tip

If you don't export an Effect for a particular platform, the Effect.Resolve will return a non-
null value that effectively doesn't do anything, and you won't see any rendering happen on your
controls. You will need to ensure that, within your Platformeffect classes, you include the
ExportEffect assembly attribute at the top of your class implementations.

Updating the WalksTrailPage to use the updated ViewModel

In this section, we will proceed to update our walksTrailPage content page will make use of the
PlatformEffects classes for the ButtonShadow. To proceed, perform the following steps:

Ensure that the walksTrailPage.cs file is displayed within the code editor, and enter the
following highlighted code sections, as shown in the code snippet:

//

// WalkTrailPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.ViewModels;

using TrackMywWalks.Services;

using TrackMywWalks.ValueConverters;

namespace TrackMyWalks

{
public class WalkTrailPage : ContentPage

{

WalksTrailViewModel _viewModel

{

get { return BindingContext
as WalksTrailViewModel; }

}

public WalkTrailPage()

{
Title = "walks Trail";

beginTrailWalk.Effects.Add(Effect.Resolve
("com.geniesofts
tudios.ButtonShadowEffect"));

trailDifficultylLabel.SetBinding(Label.TextProperty,
"WalkEntry.Difficulty", stringFormat: "Difficulty: {0}");

var trailDifficultyImage = new Image
{

HeightRequest = 50,

wWidthRequest = 50,

Aspect = Aspect.AspectFill,

HorizontalOptions = LayoutOptions.Start

};
trailDifficultyImage.SetBinding(Image.SourceProperty,
"WalkEntry.Difficulty",

converter: new TrailImageConverter());

}
}
}

In the preceding code snippet, we began by applying the ButtonShadowEffect class to our
beginTrailwalk button, and then updated the binding of thetrailDifficultyImage to use the
TrailImageConverter value converter. This will convert the string representation for the
chosen difficulty, and return back an image URL that will be displayed within the content page.

Updating the DistanceTravelledPage to use the updated
ViewModel

In this section, we will proceed to update an other DistanceTravelledPage content page that
will make use of the PlatformEffects classes for our But tonShadow. To proceed, perform the
following steps:

Ensure that the DistanceTravelledPage.cs file is displayed within the code editor, and enter
the following highlighted code sections, as shown in the code snippet:

//
//
//
//
//
//
//

DistanceTravelledPage.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Xamarin.Forms;
using Xamarin.Forms.Maps;
using TrackMywWalks.Services;

namespace TrackMyWalks

{

public class DistanceTravelledPage : ContentPage

{

DistTravelledViewModel _viewModel

{

get { return BindingContext as
DistTravelledViewModel; }

}

public DistanceTravelledPage()

{

Title = "Distance Travelled";

var walksHomeButton = new Button

{
BackgroundColor = Color.FromHex("#008080"),
TextColor = Color.White,
Text = "End this Trail"

}

walksHomeButton.Effects.Add(Effect.Resolve
("com.geniesoft

studios.ButtonShadowEffect"));

}

In the preceding code snippet, we begin by applying the ButtonShadowEffect class to our
walksHomeButton control so that it can take advantage of the nice platform-specific rendering
effects to visual control elements.

Updating the WalkCellDataTemplate class to use
PlatformEffects

In this section, we will proceed to update the walkCellDataTemplate class, which will make
use of the PlatformEffects classes for our LabelShadow, so that the DataTemplate will
inherit some of the nice visual representations that your users will love. To proceed, perform the
following steps, as shown here:

Ensure that the walkCellDataTemplate.cs file is displayed within the code editor, and enter the
following highlighted code sections, as shown in the code snippet:

//

// WalkCellDataTemplate.cs

// TrackMyWalks DataTemplate for Cells

//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using TrackMywWalks.ValueConverters;
using Xamarin.Forms;

namespace TrackMyWalks.DataTemplates

{
public class WalkCellDataTemplate : ViewCell

{
public WalkCellDataTemplate()

{

// Apply PlatformEffects to our TrailNamelLabel Control

TrailNameLabel.Effects.Add(Effect.Resolve
("com.geniesofts

tudios.LabelShadowEffect"));
TrailNamelLabel.SetBinding(Label.TextProperty, "Title");

trailDifficultyImage.SetBinding(Image.SourceProperty,

"Difficulty", converter: new TrailImageConverter());

this.View = celllLayout;
3

}
}

In the preceding code snippet, we began by applying the LabelShadowEffect class to our
TrailNameLabel control, and then updated the binding of the trailDifficultyImage to use the

TrailImageConverter value converter. This will convert the string representation for our
chosen difficulty, and return back an image URL that will be displayed within the content page.

Now that you have updated the necessary ViewModels and ContentPages to take advantage of
our PlatFormEffects and ValueConverters, our next step is to finally build and run the
TrackMywalks application within the iOS simulator.

When the compilation is complete, the iOS simulator will appear automatically, and the
TrackMywalks application will be displayed, as shown in the following screenshot:

#hone 88 - 108 W0 1AAIEE)

Track My Walks - iI05 Add Walk

Track My Walks - i05 Add Walk lack New Walk Entry

10 Mile Brook Trail,
Margaret River

Difficulty: Moderate

.gg Notes:

The 10 Mile Brook Trail starts in the Latitude: 373335218

Title: MNew Walk

Rotary Park near Oid Eate, a

presaryed steam angne al 1he

northern edge of Margaret River Longitude: -122.04152496
I A Ancient Empire Walk,
1 3 Valley of the Giants Kilometers: 0

1 Ditteculty: Challenging I:'iffi(:'u”',l' Level: | Moderat o

Imagelrl:

The Ancient Empire i3 & 450 metre
B walk trail that takes you anound and
through some of the giant tingle
treses inchuding the most popular of
1he GRArisl vBTErARE, Known AL
Grandma Tingle

Loading Trail Walks. ..

Moderate

As you can see from the preceding screenshot, this currently displays our ActivityIndicator
spinner control, with the associated Looading Trail Walks... text. After this the ListView
containing the list of trail walks from the bataTemplate control will display. You will notice that
it displays a nice image associated with the difficulty for the trail walk, which is pulled directly
from the TrailImagevalueConverter class.

When the Add Walk button is pressed from the main Track My Walks content page, this displays
the New Walk Entry screen, with the Difficulty Level custom picker showing the list of choices
as defined within our DifficultyPickerModel:

< Track My Walks - iOS Walks Trail € Walks Trail Distance Travelled

10 Mile Brook Trail, Margaret River

Length: 7.5 km
Difficulty: Moderate

Ak

The 10 Mile Brook Trail starts in the Rotary Park Rear Old Kate, a
preserved steam engine at the northern edge of Mg

Leaal
10 Mile Brook Trail, Margaret River

Distance Travelled:
14916.8739998665 meters

Begin this Trail End this Trail

The preceding screenshot shows the updated ViewModel and ContentPages that make use of the
PlatformEffects classes for the ButtonShadow effects, as well as the valueConverters for
the TrailImagevalueConverter. As you can see, by using the power of
Xamarin.FormsPlatformEffects and ValueConverters within your own applications, you
can really create some stunning user interfaces that will show off your apps and that your users
will love.

Summary

In this chapter, we updated the TrackMywalks application to use CustomRenderers to change the
appearance of control elements that are displayed within the user interface for each specific
platform. Next, you learned how to work with DataTemplates, by creating a custom class to
represent the information that is presented within the ListView class, as well as creating two
ValueConverter classes BooleanvalueConverter that are used to determine when information
is currently being displayed within the user interface. You also created a
TrailImageValueConverter that returns an image URL based on the string passed into it.
Finally, you learned how to work with the PlatformEffects class, to create a LabelShadow and
ButtonShadow, and updated the ViewModel and ContentPages to apply those effects to control
elements.

In the next chapter, you'll learn about the Razor Templating Engine and how you can use it to
create a hybrid mobile solution. You'll learn how to create, and use models within your
application, as well as calling JavaScript code using C# to execute method calls.

Chapter 6. Working with Razor Templates

In our previous chapter, we looked at how to work with the bataTemplateCustomRenderer by
creating a C# class to layout your views beautifully within your applications, and how you will
also get accustomed to working with the platform-specific APIs to extend the default behavior of
Xamarin.Forms controls using custom renderers, by creating a custom picker.

You also learned how to use the Xamarin.Forms Effects API to customize the appearance and
styling of native control elements for each platform, by implementing a custom renderer class, and
looked at how to manipulate the visual appearance of data that is bound, using value and image
converters.

In this chapter, you'll learn about the Razor HTML template engine and how you can use it to
create a hybrid mobile solution. You'll learn how to build a book library mobile solution using the
power of Razor templates, and learn how to create, and use models within your application and
connect this up to an SQLite database to store, retrieve, update, and delete book details.

This chapter will cover the following topics:

Introduction to the Razor HTML template engine

How to build a hybrid mobile solution using Xamarin Studio
Incorporating sQLite.Net and creating a SQLite database wrapper
Creating the book database model

Creating the book listing main page

Creating the book listing add page

Creating the book listing edit page

Understanding the Razor template engine

The Razor templating engine was first introduced as part of the ASP.Net MVC architecture, and
was originally designed to run on a web server to generate HTML files to be served to web
browsers.

Since Razor made its first appearance on the development scene, the Razor templating engine has
come a long way and now extends the standard HTML syntax, so that you can use C# to express
the layout of your HTML files, and incorporate CSS style sheets and JavaScript easily.

Each Razor template has the ability to reference a Model class which can be of any custom type,
and properties can be accessed directly from the template, by having the ability to mix HTML and
C# syntax easily.

As you work through this chapter, you will see how, by working with Xamarin Studio, you can
utilize the Razor HTML templating engine and be equipped with the flexibility of building cross-
platform templated HTML views that use both JavaScript and CSS, as well as having access to
the underlying platform APIs using the power of C#.

Note

For more information on using Razor syntax (C#) with ASP.NET web programming refer to the

following URL: https://www.asp.net/web-pages/overview/getting-started/introducing-razor-
syntax-c.

https://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-c

Creating and implementing Razor templates
within Xamarin Studio

In this section, we will look at how to go about creating a new Razor template solution using
Xamarin Studio. We will begin by developing the basic structure for our application, as well as
adding all the necessary database models and user interface files.

Before we can proceed, we need to create the BookLibrary project. It is very simple to create
this using Xamarin Studio. Simply follow the given steps:

1. Launch the Xamarin Studio application, and choose the New Solution... option, or
alternatively choose File | New | Solution... or simply press Shift + Command + N .

2. Next, choose the WebView App option which is located under the iOS | App section, ensure
that you have selected C# as the programming language to use, and click Next:

L NN] Mew Project

Choose a template for your new project

4% pMultiplatform General
A.pp f 1 | Single View App
Library |
Tests i||'=§| Master-Detail App @
N ios II W' Tabbed App .
Library e
Tests g
@ WebView App
= tv0S Creates a web view app that uses the
Razor templating engine.
App
Library - A
Iﬁ. SpriteKit Gamea
Android
I i I Secenekit Game
App R
Library II h\l Metal Game
Tests
Eg‘l OpenGL Game
& Mac
App
Library
(%) Other

[l s

3. Then, enter in BookLibrary as the name for your app in the App Name field as well as
specifying a name for the Organization Identifier field.

Next, ensure that both the iPad and iPhone checkboxes have been selected for the Devices
field, as well as ensuring that you have chosen iOS 10.0 for the Target field to support the
minimum iOS version that we want our app to support:

L] @ Mew Project

Configure your IOS app

App Name: |BookLibrary
Organization identifier: | com.geniesoftstudios

Bundla identifier:

Carrielf

—

Carrier =

Devices: iPad @ irhone
Select the minimum iDS version you want to BookLibrary
suppart.

Target: |05 10.0

Cancel Previous

Click on the Next button to proceed to the next step in the wizard:

eCe® Mew Project

Configure your new project
PREVIEW
0 fusersjstevendanielfProjects
B BookLibrary
(7 BookLibrary.sin
Project Name: | BookLibrary _ Be BookLibeary

Solution Name: chthibrarv [} BookLibrary.csproj

Location: | /Users/stevendaniel/Projects Browse...

Create a project directory within the solution directory. h

Version Contrel: | | Use git for version control.

Xamarin Test Cloud: Add an automated Ul test project. Learn More

6. Next, ensure that the Create a project directory within the solution directory. checkbox
has been selected and click on the Create button to save your project at the specified
location.

Once your project has been created, you will be presented with the Xamarin Studio development
environment, along with several project files that the template created for your Razor template
Solution, as shown in the following screenshot:

]] | [Debug + [iPhone SE 105 10.0 ¥ararin Studio Community

[& Solution £k

Bookd rary
¥ | BookLibrary
L3 Aatarances
Components
Packages
Assets xcassals
v Mok

[Model.ce

saiuadolg “.-_:

* [Fescurces
F| atyle.ces
- Vimws

* [RazorView,cshiml
[1}] Razariew cs
[} AppDelagate.ca
[3] Entitlements plist
[z3] info.paist
[=] LaunchScreen storyboard
|:_] Main.cs
I"_"i Main storybaand
» (17 webviewCaontroler.ce

As you can see from the preceding screenshot, the BookLibrary solution has been divided into
three separate folders. The following table provides a brief description of what each area is used

for:

Folder

Description
type

This section is responsible for representing the model that our views will use, and
Models contains a structure of fields that will be displayed and/or written to by our Razor

templates.

This section contains a place for you to add the images and CSS, or JavaScript files

Resources o ,
that your application will use.

This section is responsible for containing all of the HTML5 Razor templates that
Views your application will be referencing, and they need to contain and be prefixed with
the .cshtml extension.

One thing you will notice is that our solution contains a file called style.css. This is because
our application is essentially a hybrid mobile solution, and contains the files you might expect
from a web solution, as can be seen in the following code snippet:

/* This is a minimal style sheet intended to demonstrate

how to include static content in your hybrid app.

Other static content, such as javascript files and images,

can be included in this same folder(Resources on 10S or Assets

on Android), with the same Build Action(BundleResource on 1i0S

or AndroidAsset on Android), to be accessible from a path starting
at the root of your hybrid application. */

#page {
margin-top:10px;

}

As you can see, this file doesn't contain much information, but as we work our way through this
chapter, we will be adding to this file, and building the Razor template user-interface files.

Adding the SQLite.Net package to the BookLibrary solution

Now that we have created our BookLibrary solution, the next step is to add the SQLite.Net
NuGet package to our solution, since this doesn't get added automatically for us. The sQLite.Net
package will essentially provide us with the ability to have our application write to an SQLite
database, to store our book details.

Note

A NuGet package is essentially the package manager for the Microsoft development platform that
contains the client tools that provide our solution with the ability to produce and consume .NET
packages.

Let's look at how to add the sSQLite.NETNuGet package within our BookLibrary solution, by
performing the following steps:

1. Right-click on the Packages folder that is contained within the BookLibrary solution, and
choose the Add Packages... menu option, as shown in the following screenshot.

e p O] Debug » [iPhene SE 10S 10.0 amarin Studio Community o7

[& solution L

i BookLErary

sanado.d (7]

b BookLibrary
L Aalarancas
Componants
Assets xcassets
b Modals
[Modeli.cs
- Ratoirsas Refresh

I_'-‘ style.css
* [Views
» 7% Razoriew.cahtmi
11 Fazorview.ca
]| AppDalagata.cs
[zz] Entitlements.plist
5] Info.plist
[+ LaunchScreen storyboard
:__‘.i Maincs
:i Main storyboand
» [1i] webViewControlier.cs

2. This will display the Add Packages... dialog. Enter in SQLite.Net within the search
dialog, and then click on the sqlite-net option within the list, as shown in the following
screenshot:

[NN] Add Packages

nuget.org

QsaliteNet — ®)

sqlite-net

solite-rel is an open source, minimal library
to aliow .NET and Mono applications 1o
slore data in SCLie databasas. It is writlen
in C# 3.0 and is maant o be simply
compiled in with your projects. It was first

sqlite-net-wps 45,221 designed 10 work with MonoTouch on the
A i ,) iPhona, but should work in any other CLI
A C++/CX wrapper for SQLite functions that sglite-net depends on. Can be used ervironment.
as an alternative to csharp-sqglite on Windows Phone B, This library is released
under the MIT licensa. id sqlita-ne
Author Frank Krueger
SOLite.Net-PCL-Silverlight 2,629 Published SRO2E014
e A NET client library to access SOLite embedded database files in a LINGQ manner. Downloads 183,023
License View License
Project Page Visit Page
Extension for sqlite-net 23 SRES—— i
This package contains an extension for salite-net that ket you query database
with a reader.
SQLite-net PCL 165,986
The official portable version of sglite-net: the easy way to access sglite
from .NET apps.
SQLite.Net.Async PCL 189,770 Version |1.0.8 l 2
& NET client library to access S0Lite embedded database files in a LING manner. T
Thie narkans nrovides Asune avtansinne tn the rore S0 ita Mat nacrkans

| Show pre-release packages Close | Add Package |

3. Finally, click on the Add Package button to add the sqlite-netNuGet package to the
Packages folder, contained within the BookLibrary solution.

When you click on the Add Package button, you will notice that the package manager will create
two new files for us within our solution. These are called sQLite.cs and SQLiteAsync.cs, and
are basically wrapper convenience classes that allow .NET and Mono applications to store data
within a SQLite 3 database.

Now that you have added the NuGet package for the sqlite-net library, we can begin to utilize this
library within the BookLibrary solution that we will be covering in the next section.

Creating and implementing the book library
database model

In this section, we will begin by building the database model that will be used by our
BookLibrary project solution that will be used by our Razor templates when we create these,
and then the webviewController.cs file will communicate and interact with each of the Razor
template views and handle the actions within them.

Let's look at how we can achieve this, by performing following steps:

1. Create an empty class within the Models folder, by choosing Add | NewFile..., as shown in
the following screenshot:

0@ | 2 [Debug » [] iPhone SE 05 10.0 A

= Solution e

Ad BookLiorary
b BookLibrary
* Refarences

Compornents

> Packages
Assats woassats

m mi-.-:t-

L5 Resources

Add Files... A
* [views Tools B
[AppDelegate.ce Version Control 3 Add Files from Folder...
[[}] BookLibraryD8.ca = Add Existing Folder...
3 Entitioments.plat Find in Files... {r3eF Mew Eolder

Reveal in Finder

2 into.pEst

[+ LaunchScreenstoryboa Copy E

[} Main.cs Cut Eh

[=4 Main.storyboard Remove #E
[packages.canfig Rename... ¥R

[saLie.cs

Refresh
[soLitassync.cs

» [} Web\MiewControllar.ca

2. Next, choose the Empty Class option, located within the General section, and enter in
BookItem, as shown in the following screenshot:

Farms

Gtk

Misc

Web
XML
ios

Text Templating

05 Scenekit Particle Systems :

i0S Spritekit Particle Effects

MNew File
Y Empty Class Empty Class
sl Creates an empty class.
Empty Enumeration
Empty File

Empty Interface

Empty Struct

(o) (=] [(&)X

Name: | Boaklter]|

Cancel Mew

3. Next, click on the New button to allow the wizard to proceed and create the new empty class

file.

Up until now, all we have done is create our BookItem class file. This class will be used by each
of our Razor template views, as well as our WwebviewController.cs file that will eventually
allow communication to happen between each of the Razor template views, as well as being able
to handle actions within them, whenever the user interacts with them.

Let's now start to implement the code required for our BookItem class model, by performing the

following steps:

1. Ensure that the BookItem.cs file is displayed within the code editor, and enter the following

code snippet:

//
//
//
//
//
//

BookItem.cs
BookLibrary Database Model

Created by Steven F. Daniel on 20/10/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

//
using SQLite;

namespace BookLibrary {
public class BookItem

{
public BookItem()

{
}

[PrimaryKey, AutoIncrement]

public int Id { get; set; }

public string Title { get; set; }
public string Author { get; set; }
public string Isbn { get; set; }
public string Synopsis { get; set; }

In the preceding code snippet, we have successfully defined our database model that will be used
to represent our book items. You will notice something that is different within our model to what
you would have seen within our TrackMywalks app: here we have defined a [PrimaryKey,
AutoIncrement] item for our id field, this will tell our BookLibrary database to set the id
property to automatically increment whenever we add a new item to our database.

If you have used relational databases in the past, such as Microsoft SQLServer, Oracle, or
Microsoft Access, this should be quite familiar to you. In the next section, we will use this model
to set up and initialize our database, by creating a database library wrapper to handle connections
to our database, as well as Creation, Retrieval, Updating, and Deletion (CRUD), of each of our
book entries.

Note

The Android version of the BookItem class model is available in the companion source code for
this book.

Creating and implementing the book database
wrapper

In the previous section, we successfully created and implemented our BookItem database model
that will be used by our BookLibrary application. Our next step is to begin implementing the
code required for our BookItemDatabase class model, by performing the following steps:

1. Create a new folder within the BookLibrary project solution, called batabase as shown in
the following screenshot:

| NN | B ™ Debug » [iPhone SE i0S 10.0

[] Selution O [
b BookLibrary
_ L Build BookLibrary 3B K

» [} References Rebuild BookLibrary —~38K

S Clean BookLibrary — {3K
L4 Packages Unload
Assets xcassets
» [0 Database Archive for Publishing
» B Modals View Archives
*/8 Breolee Run Item
- Start Debugging Item
@ AppDelegate.cs Run With >

[(]] BookLibraryDB.¢ Set As Startup Project
@ Entitlements.plist

B mopist AN New File...

B LaunchScreenst Tools ", Add Files... A
[Main.cs Version Control > Add Web Reference
@ Main.storyboard
[packages.config Analyze Source Add Native Reference
[0] saLite.cs Find in Files... {+38F Add NuGet Packages...
[soLteasymecs| Revealin Finder Add Files from Folder...
*/[ill wekvimwCnneet Copy %2C Add Existing Folder...
Cut sX
Delete 36 <=l
Rename... HER
Options |
= Watch 8E Locals < | (&) Breakpoints
Refresh
~Aame Value

2. Next, create an empty class within the Database folder, by choosing Add | New File..., as
you did when creating the model in the previous section entitled Creating and implementing

the book library database model, located within this chapter.

3. Then, enter in BookDatabase for the name of the new class that you want to create, and click
on the New button to allow the wizard to proceed and create the new file.

4. Next, ensure that the BookDatabase.cs file is displayed within the code editor window, and
then enter in the following code snippet:

//

// BookDatabase.cs

// BookLibrary Database to handle performing database

// Creation, Retrieval, Updating and Deletion of Book Items.
//

// Created by Steven F. Daniel on 20/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System.Collections.Generic;

using System.Linq;

using SQLite;

namespace BookLibrary

{

public class BookDatabase

{

5. Next, we need to create a 1ocker variable that will be used to create a mutually-exclusive
lock on the database while we are either creating, updating, retrieving, or deleting book
items. We do this so that no other operation can interfere while we are processing, and this
will prevent issues from arising. We also need to declare a database variable, that points to
an instance of our sQLiteConnection located within our SQLite library, so that we can
perform database operations:

static object locker = new object();
SQLiteConnection database;

6. Then, we need to create the BookDatabase(SQLiteConnection conn) method that accepts
a conn object, which is an instance of our SQLiteConnection class, and this instance
method will be used to create the necessary database table structure, based on our BookItem
model:

/// <summary>

/// Initializes a new instance of the BookLibrary
/// Database class.

/// </summary>

/// <param name="conn">Conn.</param>

public BookDatabase(SQLiteConnection conn)

{
database = conn;
// Create the tables within our Book Library Database
database.CreateTable<BookItem>();

}

7. Next, we need to create the GetItems () method that will be used to extract all of the
existing book entries that have been saved to the database. We use the LINQ language syntax

to iterate and retrieve all items from our BookItem table, and convert this collection to a list
instance, as determined by the . ToList () method:

/// <summary>

/// Gets all of the book library items from our database.
/// </summary>

/// <returns>The items.</returns>

public IEnumerable<BookItem> GetItems()

{
// Set a mutual-exclusive lock on our database, while
// retrieving items.
lock (locker)
{
return (from i in database.Table<BookItem>()
select i).ToList();
}
}

8. Then, we need to create the GetItem() method that will extract the selected book entry from
the BookItem database table, using their id as the key. Again, we use the LINQ language
syntax to retrieve the first item from the BookItem table that matches the id of the book item:

/// <summary>

/// Gets a specific book item from the database.
/// </summary>

/// <returns>The item.</returns>

/// <param name="id">Identifier.</param>

public BookItem GetItem(int id)

{
// Set a mutual-exclusive lock on our database, while
// retrieving the book item.
lock (locker)
{
return database.Table<BookItem>().FirstOrDefault(x =>
x.Id == id);
}
}

9. Next, we need to create the SaveItem() method that will save the book item to the
BookItem database table. In this instance method, we are handling two case scenarios: one
if the item we are saving is an existing item, we check the id of the book item, and if it is a
non-zero value, we proceed to update the book item using the Update method on the
database object, and return the book item id back.

10. However, if the item is a new book record, that is all new books that get created will have

an id of o, this will be directly inserted into the BookItem table, using the Insert method

on the database object:

/// <summary>

/// Saves the book item currently being edited.
/// </summary>

/// <returns>The item.</returns>

/// <param name="item">Item.</param>

public int SaveItem(BookItem item)

{

// Set a mutual-exclusive lock on our database, while
// saving/updating our book item.
lock (locker)

{
if (item.Id != 0)
{
database.Update(item);
return item.Id;
}
else {
return database.Insert(item);
}
}

}

11. Finally, we create the DeleteItem() method that will, as you might have guessed, delete a
book item from the BookItem database table using the book's item id and then calling the
Delete method on the database object:

/// <summary>
/// Deletes a specific book item from the database.
/// </summary>
/// <returns>The item.</returns>
/// <param name="id">Identifier.</param>
public int DeleteItem(int id)

{
// Set a mutual-exclusive lock on our database, while
// deleting our book item.
lock (locker)
{
return database.Delete<BookItem>(id);
}
}
}
}

Now that we have created our BookDatabase class, we can proceed and create our
BookLibraryDB database wrapper that will use our BookDatabase class to handle all the
operations for creating, retrieving, updating, and deletion of book items from our database. That
will be used by our webviewController.cs class to interact with our Razor template Views.

Note

The Android version of the BookDatabase class is available in the companion source code for
this book.

Creating and implementing the BookLibrary
database wrapper

In the previous section, we successfully created and implemented our BookDatabase database
class that will be used by our BookLibrary application. Our next step is to begin implementing
the code required for our BookLibraryDB class that will act as a wrapper for our BookDatabase
class, to perform all database actions for our BookLibrary application.

Let's begin by performing the following steps:

1.

Create an empty class within the BookLibrary solution, by choosing Add | New File..., as
you did when creating the model in the previous section entitled Creating and implementing
the book library database model, located within this chapter.

. Then, enter in BookLibraryDB for the name of the new class that you want to create, and

click on the New button to allow the wizard to proceed and create the new file.
Next, ensure that the BookLibraryDB.cs file is displayed within the code editor window,
and then enter in the following code snippet:

//

// BookLibraryDB.cs

// BookLibrary Database Layer

//

// Created by Steven F. Daniel on 20/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using SQLite;

namespace BookLibrary

{
public class BookLibraryDB

{

Next, we need to create a conn variable that will be used to set a connection to our
BookLibrary database, and we also need to declare a database variable, that points to an
instance of our BookDatabase that contains each of the operations for handling and
performing the insertion, updating, and deletion of book entries:

static SQLiteConnection conn;
static BookDatabase database;

Then, we need to create the SetDatabaseConnection() method that will set a connection
to our BookDatabase database class, so that it can access each of our instance methods for
handling the creation, updating, retrieval, and deletion of our book entries, within our
BookItem database table. Within this instance method, we set up and initialize the conn
variable that contains the value of our connection parameter, and then instantiates a
connection to our BookDatabase class, passing in the conn connection object so that the
class can return our database object:

/// <summary>

/// Sets a connection to our BookDatabase database class.
/// </summary>

/// <param name="connection">Connection.</param>

public static void SetDatabaseConnection(SQLiteConnection

connection)
{
conn = connection;
database = new BookDatabase(conn);
3
6. Finally, we create the Database method that gets a reference to our BookLibrary database

to use:

/// <summary>
/// Gets a reference to our BookLibrary database.
/// </summary>
/// <value>The database.</value>
public static BookDatabase Database

{

}
}
}

get { return database; }

Now that we have created our BookLibraryDB class, we can create our Razor template user
interface files that will connect to our BookLibrary database, and allow the user to interact with
the database model to create, retrieve, update, and delete book items from the database.

Note

The Android version of the BookLibraryDB class is available in the companion source code for
this book.

Creating and implementing the book listing main
page

In the previous section, we created and implemented our BookLibraryDB database wrapper class
that will be used by our BookLibrary application. The next step is to begin creating each of the
Razor templates that will connect to our database model allowing the user to interact with the
database visually by entering in book details, and having this information presented back to them,
so they can make changes, or delete the book item altogether.

Let's begin by performing the following steps:

1. Create an empty class within the views folder, by choosing Add | NewFile..., as you did
when creating the model in the previous section entitled Creating and implementing the
book library database model, located within this chapter.

2. Next, choose the Preprocessed Razor Template option, located within the Text
Templating section, and enter in BookLibraryListing, as shown in the following

screenshot:
@ @ Mew File

7 Preprocessed Razor Template

i || Preprocessed Razor Template B o

General A Razor template that will be
w preprocessed into a C# class.

Gtk |{}| Preprocessed T4 Template

Misc %

Text Templating |{}| T4 Template

Web

XML

i0s

05 Scenekit Particle Systems

i0S Spritekit Particle Effects

Mame: |BookLibraryListing |

Cancel Mew

3. Next, click on the New button to allow the wizard to proceed and create the new empty
Razor template file.

Congratulations, you have created your first Razor template! This file will be used to list all the
book entries that are stored within our BookItem database table, contained within our
BookLibrary database. The next step is to start to implement the code required for our
BookLibraryListing Razor template, by performing the following step:

1. Ensure that the BookLibraryListing.cshtml file is displayed within the code editor, and
enter in the following code snippet:

@using BookLibrary

@model List<BookItem>

<html>

<head><link rel="stylesheet" href="style.css" /></head>
<body>

<p></p>

<h1>Book Library Database Listing</h1>

<table border="1" cellpadding="8">
@foreach (var book in @Model) {
<tr>
<td>@book.Id</td>
<td>@book.Title</td>
<td>@book.Author</td>
<td>@book.Isbn</td>
<td>

Edit
</td>
</tr>
}
<tr>
<td colspan="8">

<input type="submit" name="Button"
value="Add New Book"/>
</td>
</tr>
</table>
</body>
</html>

In the preceding code snippet, we define the HTML layout information that will be used by our
BookLibraryListing Razor template. We firstly specify that we are using the
BookLibrary.i0S namespace, so that we can have access to our database model as specified by
the @model directive, and this must be the very first line preceding the <htm1> tag within a Razor
template file. You will notice that the @model directive has the type of List. This is because we
are iterating through each of our book items within our Model, and displaying the id, title,

author, and isbn details for each book.

Next, we set up a <a href tag, that points to our WebViewController.cs class, and in-turn will
call the BookLibraryEdit.cshtml Razor template to retrieve and display the book entry details
for the associated identifier. The hybrid tag, used to identify if the URL is not our own custom
scheme, and will just let the WebView load the URL as usual. Finally, we set up another <a href
tag, that points to our WwebViewController.cs class, and in-turn will call the
BookLibraryAdd.cshtml Razor template to allow the user to create another book. You will
notice that we don't need to pass in an id for the book, as this will be automatically assigned once
the book has successfully been written to the database.

Creating and implementing the
BookLibraryAdd Razor template

In the previous section, we created and implemented the BookLibraryListing Razor template
that will be used to display a list of all books that have been previously added to the
BookLibrary application. Our next step is to begin creating the Razor template that will allow
the user to create a new book and save this to our database model.

Let's begin by performing the following steps:

1. Create an empty class within the views folder, by choosing Add | NewFile..., as you did
when creating the BookLibraryListing in the previous section entitled Creating and
implementing the book listing main page, located within this chapter.

2. Next, choose the Preprocessed Razor Template option, located within the Text
Templating section, and enter in BookLibraryAdd.

3. Next, click on the New button to allow the wizard to proceed and create the new empty
Razor template file.

Our next step is to start to implement the code required for our BookLibraryAdd Razor template,
by performing the following steps:

Ensure that the BookLibraryAdd.cshtml file is displayed within the code editor, and enter in the
following code snippet:

@using BookLibrary
@model BookItem

<html>
<head>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<h1>Add New Book Details</h1>
<table border="1" cellpadding="8">
<form action="hybrid:SaveBookDetails" method="GET">
<input name="id" type="hidden" value="@Model.Id" />
<tr>
<td>Title:
<input name="Title" value="@Model.Title" /></td>
<tr>
<td>Author:
<input name="Author" value="@Model.Author" /></td>
<tr>
<td>Book ISBN:
<input name="ISBN" value="@Model.Isbn" /></td>
<tr>
<td>Synopsis:
<textarea name="Synopsis" rows="5" cols="40">

@Model.Synopsis
</textarea>
</td>
<tr>
<td colspan="8">
<input type="submit" name="Button" value="Save'"/>
<input type="submit" name="Button" value="Cancel"/>
</td>
</tr>
</form>
</table>
</body>
</html>

In the preceding code snippet, we defined the HTML layout information that will be used by our
BookLibraryAdd Razor template. We firstly specified that we are using the BookLibrary.i0S
namespace, so that we can have access to our database model as specified by the @model
directive. We've already explained that this must be the very first line preceding the <htm1> tag
within a Razor template file.

Next, we set up a <form action tag so that when the form gets submitted, the Save or cancel
buttons are pressed, our WebViewController.cs class will be called, and the appropriate action
will take place. We specify the hybrid tag here again to identify if the URL is not our own custom
scheme, and will just let the WebView load the URL as usual.

Creating and implementing the BookLibraryEdit
Razor template

In the previous section, we created and implemented the BookLibraryAdd Razor template that
will be used to allow the user to add new book entries to the BookLibrary application. Our next
step is to begin creating the Razor template that will allow the user to edit an existing book and
save this back to our database model.

Let's begin by performing the following steps:

1. Create an empty class within the views folder, by choosing Add | NewFile..., as you did
when creating the BookLibraryListing in the previous section entitled Creating and
implementing the book listing main page, located within this chapter.

2. Next, choose the Preprocessed Razor Template option, located within the Text
Templating section, and enter in BookLibraryEdit.

3. Next, click on the New button to allow the wizard to proceed and create the new empty
Razor template file.

Our next step is to start to implement the code required for our BookLibraryEdit Razor
template, by performing the following steps:

Ensure that the BookLibraryEdit.cshtml file is displayed within the code editor, and enter in
the following code snippet:

@using BookLibrary
@model BookItem
<html>
<head>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<h1>Edit Book Details</h1>
<table border="1" cellpadding="8">
<form action="hybrid:SaveBookDetails" method="GET">
<input name="id" type="hidden" value="@Model.Id" />
<tr>
<td>Title:
<input name="Title" value="@Model.Title" /></td>
<tr>
<td>Author:
<input name="Author" value="@Model.Author" /></td>
<tr>
<td>Book ISBN:
<input name="ISBN" value="@Model.Isbn" /></td>
<tr>
<td>Synopsis:
<textarea name="Synopsis" rows="5" cols="40">
@Model.Synopsis

</textarea></td>
<tr>
<td colspan="8">
<input type="submit" name="Button" value="Save'"/>
<input type="submit" name="Button" value="Cancel"/>
@if (Model.Id > 0) {
<input type="submit" name="Button" value="Delete"/>

</td>
</tr>
</form>
</table>
</body>
</html>

In the preceding code snippet, we define the HTML layout information that will be used by our
BookLibraryEdit Razor template. We firstly specify that we are using the BookLibrary.i0S
namespace, so that we can have access to our database model as specified by the @model
directive, which and we have said that this must be the very first line preceding the <htm1> tag
within a Razor template file.

Next, we setup a <form action tag, so that when the form gets submitted the Save or Cancel
buttons are pressed, our WebviewController.cs class will be called, and the appropriate action
will take place. We specify the hybrid tag here again to identify if the URL is not our own custom
scheme, and will just let the WebView load the URL as usual. You will notice that this
implementation is quite similar to that of our BookLibraryAdd. The only thing that this Razor
template does differently, is if we have a value for our book id, we display the Delete button so
that the user can choose to delete the book entry.

Note

The Android version of the Razor templates are available in the companion source code for this
book.

Creating and implementing the
WebViewController class

In the previous section, we successfully created and implemented each of our Razor templates
that will be used by our BookLibrary application. Our next step is to begin implementing the
code for our application, that will be responsible for interacting with our Razor templates, and
handling the actions associated with each model. It will use our BookDatabase class, to handle
the performance of all the database actions for our BookLibrary application.

Let's begin by performing the following steps:

1. Ensure that the webviewController.cs file is displayed within the code editor window,
and then enter in the following highlighted code sections, as shown in the following code

snippet:

//
//
//

//
//
//
//

WebViewController.cs
Web Container for representing Razor Templates
within a Web View

Created by Steven F. Daniel on 20/10/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System;

using System.Linq;

using Foundation;

using UIKit;

using System.Collections.Specialized;

namespace BookLibrary

{

public partial class WebViewController
UIViewController

{

static bool UserInterfaceIdiomIsPhone

{

get { return

UIDevice.CurrentDevice.UserInterfaceIdiom

== UIUserInterfaceIdiom.Phone; }

}

2. Next, we declare a webVview object that will point to our UIWebView instance, and then
declare our webviewController () class constructor method that will be instantiated from
our AppDelegate class, as you will see once we begin implementing the necessary changes.

3. Enter in the following highlighted code sections, as shown in the following code snippet:

UIWebView webView;

public WebViewController()

{

}
protected WebViewController(IntPtr handle) : base(handle)

{
// Note: this constructor should not contain any
// initialization logic.

}

public override void ViewDidLoad()

{

base.ViewDidLoad();

4. Then, we define and specify the screen dimensions that we would like our webVview to
contain. In this case, we set this to take up the whole region of our screen and then add this to
our existing view container. In the next step, we call the GetItems instance method on our
BookLibraryDB.Database to return all existing book entries within the database, and
assign this to our model.

5. Inthe next step, we specify the BookLibraryListing Razor template, and pass in the model
that will be used to populate the ViewModel. Next, we call the GenerateString() method
on our template, to execute the template within the main application bundle and return the
output as a string, and then load this within our webView, using the LoadHtm1String
method:

webView = new UIWebView(UIScreen.MainScreen.Bounds);
View.Add(webView);

// Intercept URL loading to handle native calls from
// browser
webView.ShouldStartLoad += HandleShouldStartLoad;

// Render the view to use our BookList.cshtml file
var model = BookLibraryDB.Database.GetItems().ToList();

var template = new BookLibraryListing()
{ Model = model };

var page = template.GenerateString();

// Load the rendered HTML into the view with a base URL

// that points to the root of the bundled Resources

// folder

webView.LoadHtmlString(page, NSBundle.MainBundle.BundleUrl);

// Perform any additional setup after loading the view,
// typically from a nib.

}

public override void DidReceiveMemoryWarning()

{
base.DidReceiveMemoryWarning();
// Release any cached data, images, etc that aren't
// 1in use.

bool HandleShouldStartLoad(UIWebView webView, NSUrlRequest
request, UIWebViewNavigationType navigationType)
{

// If the URL is not our own custom scheme, just
// let the webView load the URL as usual
const string scheme = "hybrid:";

if (request.Url.Scheme != scheme.Replace(":", ""))
return true;

// This handler will treat everything between the

// protocol and "?" as the method name. The querystring
// has all of the parameters.

var resources = request.Url.ResourceSpecifier.Split('?"');
var method = resources[0];

var parameters = System.Web.HttpUtility.ParseQueryString(
resources[1]);

6. Next, we create a switch statement to handle the type of method operation that we obtained
from the Razor template directly after the hybrid: tag, and handle accordingly:

switch (method)
{
case "CreateNewBook":
CreateNewBook (webView);
break;
case "EditBookDetails":
EditBookDetails(webView, parameters);
break;
case "SaveBookDetails":
SaveBookDetails(webView, parameters);
break;
default:
// Cases not covered are handled here.
break;

}

return false;

}

7. Then, we need to create the CreateNewBook () instance method that will be responsible for
handling the creation of our new book entry. This method accepts the name of the webview to

display its content and we specify the BookLibraryAdd Razor template, and pass in the
model that will be used to populate the ViewModel. Next, we call the GenerateString()
method on our template, to execute the template within the main application bundle and
return the output as a string, and then load this within our webView, using the
LoadHtm1lString method:

/// <summary>

/// Handles the creation of our new book entry.

/// </summary>

/// <param name="webView">Web view.</param>

void CreateNewBook(UIWebView webView,
NameValueCollection parameters)

{

var template = new BookLibraryAdd()
{Model = new BookItem()};
var page = template.GenerateString();
webView.LoadHtmlString(page,
NSBundle.MainBundle.BundleUrl);

}

. Next, we need to create the EditBookDetails() instance method that will be responsible
for handling the editing of our book entry. This method accepts the name of the webview to
display its content as well as any parameters. Next, we specify the BookLibraryEdit Razor
template, and pass in the model as well as the id value for the selected book entry to be
used to populate the ViewModel. Next, we call the GenerateString() method on our
template, to execute the template within the main application bundle and return the output as
a string, and then load this within our webView, using the LoadHtm1String method:

/// <summary>

/// Handles the editing of our book details.

/// </summary>

/// <param name="webView">Web view.</param>

/// <param name="parameters'">Parameters.</param>

void EditBookDetails(UIWebView webView,

System.Collections.Specialized.NameValueCollection parameters)

{
var model = BookLibraryDB.Database.GetItem(
Convert.ToInt32(parameters["Id"]));
var template = new BookLibraryEdit() { Model = model };
var page = template.GenerateString();
webView.LoadHtmlString(page,

NSBundle.MainBundle.BundleUrl);

}

. Then, we need to create the SaveBookDetails() instance method that will be responsible
for handling the saving of our book entry. This method accepts the name of the webview to

display its content as well as any parameters. Next, we grab the name of the button that we
pressed from the relevant Razor template and use a switch statement to handle the type of
button operation and handle accordingly. Once the operation has completed successfully,

we return, and load the BookLibraryListing page within the webView container:

/// <summary>
/// Saves the book details to the SQLite BookDetails Database.

/// </summary>

/// <param name="webView">Web view.</param>

/// <param name="parameters'">Parameters.</param>

void SaveBookDetails(UIWebView webView,
System.Collections.Specialized.NameValueCollection parameters)

{
// Points to our Edit Book Details HTML page.
var button = parameters["Button"];
switch (button)
{
case '"Save":
SaveDetailsToDatabase(parameters);
break;
case "Delete":
DeleteBookDetails(parameters);
break;
case "Cancel":
break;
default:
// Cases not covered are handled here.
break;
}
var model = BookLibraryDB.Database.GetItems().ToList();
var template = new BookLibraryListing() { Model = model };
webView.LoadHtmlString(template.GenerateString(),
NSBundle.MainBundle.BundleUrl);
}

10. Next, we need to create the SaveDetailsToDatabase () instance method that will be
responsible for handling the saving of our book entry to the SQLite database. This method
accepts a list of parameters that have been entered within the BookLibraryAdd or
BookLibraryEdit Razor template screens, and creates a BookItem database model. This
then gets passed to the SaveItem method that our BookLibraryDB wrapper class calls the
BookDatabase class:

/// <summary>

/// Saves the book details to our SQLite database.

/// </summary>

/// <returns>The details to database.</returns>

/// <param name="parameters'">Parameters.</param>

void SaveDetailsToDatabase(System.Collections.Specialized.NameV
alueCollection parameters)

{
var book = new BookItem
{
id = Convert.ToInt32(parameters["Id"]),
title = parameters["Title"],
author = parameters["Author"],
isbn = parameters["Isbn"],
synopsis = parameters["Synopsis"]
};
BookLibraryDB.Database.SaveItem(book);
}

11. Then, we need to create the DeleteBookDetails() instance method that will be

12.

13.

responsible for handling the saving of our book entry to the SQLite database. This method
accepts a list of parameters that have been entered within the BookLibraryEdit Razor
template screen, and passes the id of the book entry to the DeleteItem method that our
BookLibraryDB wrapper class calls the BookDatabase:

/// <summary>

/// Handle when the Delete button has been pressed

/// </summary>

/// <returns>The book details.</returns>

/// <param name="parameters'">Parameters.</param>

void DeleteBookDetails(System.Collections.Specialized.NameValue
Collection parameters)

{
BookLibraryDB.Database.DeleteItem(Convert.ToInt32(
parameters["Id"]));

}

Now we have successfully added the necessary code to our webviewController.cs class
to allow it to communicate with our Razor templates when book entries have been created,
updated, retrieved, deleted, and saved.

Note

The Android version of the webviewController.cs class is available in the companion
source code for this book.

Next, we need to initialize our books library SQLite library database within each of our
platform-specific start-up classes (for example, AppDelegate.cs for iOS and
MainActivity.cs for Android).

Ensure that the AppDelegate.cs file is displayed within the code editor window, and then
enter in the following highlighted code sections, as shown in the following code snippet:

using System;
using System.IO;
using Foundation;
using UIKit;
using SQLite;

namespace BookLibrary
{
// The UIApplicationDelegate for the application.
This class
// 1is responsible for launching the User Interface of the
// application, as well as listening
(and optionally responding)
// to application events from 1iO0S.
[Register ("AppDelegate")]
public class AppDelegate : UIApplicationDelegate
{
// class-level declarations
public override UIWindow Window

{

get;
set;

}

public override bool FinishedLaunching(UIApplication

application, NSDictionary launchOptions)

// Override point for customization after application

// launch. If not required for your application you can

// safely delete this method

// create a new window instance based on the screen size

Window = new UIWindow(UIScreen.MainScreen.Bounds);

// Declare the name to use for our database name

var sqliteFilename = "BookLibrary.db";

string documentsPath = Environment.GetFolderPath(
Environment.SpecialFolder.Personal);

string libraryPath = Path.Combine(documentsPath, "..",
"Library");

var databasePath = Path.Combine(libraryPath, sqliteFilename);

// Set a connection to our database
var databaseConn = new SQLiteConnection(databasePath);

BookLibraryDB.SetDatabaseConnection(databaseConn);
// Set our RootViewController to be the instance of
// our BookViewController class and make it visible.
Window.RootViewController = new WebViewController();
Window.MakeKeyAndVisible();

return true;

-

In the preceding code snippet, we began by importing both the SQLite and System.I0
classes, and then modified the FinishedLaunching method to create a new Window instance

based on the screen size of the device. Since we have specified that we want our project to
work on both iPad and iPhone devices, this will take up the full screen dimensions.

Next, we declared the name to use for our database name and specified the location of where to
save the BookLibrary.db database to, as determined by the databasePath string. In our next
step, we set up a connection to our database, and then set the RootViewController to be the
instance of our BookVviewController class, before finally making this become visible on screen.

Note

The Android version of the MainActivity.cs class is available in the companion source code
for this book.

Updating the book library Cascading Style Sheet (CSS)

In this section, we need to make some final changes to the styles.css file. This file is
essentially a CSS, and any Razor templates that utilize this style sheet will inherit everything that
it contains. We will basically be making some minor changes to the body or our HTML pages,
applying padding to margins, setting font sizes, and colors of web links when they are pressed.
Let's begin by performing the following step:

1. Ensure that the Style.css file is displayed within the code editor window, and then enter in
the following highlighted code sections, as shown in the following code snippet:

/* This is a minimal style sheet intended to demonstrate
how to include static content in your hybrid app.
Other static content, such as javascript files and images,
can be included in this same folder (Resources on 1i0S
or Assets on Android), with the same Build Action
(BundleResource on i10S or AndroidAsset on Android),
to be accessible from a path starting at the root
of your hybrid application. */

#page {
margin-top:10px;
}

html,
body {

margin: 7px;
padding: Opx;
border: 0px;

color: #000;
background: #ffffeo;

}
html, body, p, th, td, 1li, dd, dt

{

font: 1em Arial, Helvetica, sans-serif;
}
hi {
font-family: Arial, Helvetica, sans-serif;
font-size: 18;
o
a:link {

color: #00f;

a:visited {

color: #009;
}

a:hover {

color: #06f;
}

a:active {

color: #0cf;

Now that we have finished building all the necessary components for our BookLibrary
application, our next step is to finally build and run the BookLibrary application within the iOS
simulator. When compilation completes, the iOS Simulator will appear automatically and the
BookLibrary application will be displayed, as shown in the following screenshot:

IPhone 5E = 05 10.0 {14A345) IPhone 5E - 05 10.0 (14A345)
Carrier ¥ 9:35 PM ’ M Carrier ¥ 9:28 PM -
Book Library Database Listing Add New Book Details

Title: [Andmid Wearable F-‘rugra]

Author: [Eﬂeven F. Daniel]

Book ISBN: [97s-1-78528-0153 |

%

Synopsis:

f
| Expand on your Android development capabilities
by building applications for Android Wear,

5

C Save) {:Cancal)

As you can see from the preceding screenshot, this currently displays our Book Library
Database Listing page. Since we don't have any details added yet, this will show up as blank,
and you must press the Add New Book button to display the Add New Book Details screen:

iPhone SE - i05 10.0 (14A345) iPhone SE - 105 10.0 (14A345)

Carrier ¥ 9:38 PM B Carrier ¥ 9:35 PM -
Book Library Database Listing Edit Book Details

Android Steven | 978-1-
1 | Wearable E. 78528- | Edit
Programming | Daniel |015-3

Add New Book

Title: [Andmid Wearable Pn:-gra]

Author; [Steven F. Daniel]

Book ISBN: [978-1-78528-015-3]

Synopsis:

Expand on your Android development capabilities
by building applications for Android Wear.

(Save) (Cancel) (Delete)

The preceding screenshot shows the updated Book Library Database Listing Razor template
page ViewModel with the information saved from the previous screen. Clicking on the Edit link
will display the Edit Book Details screen with all the previously entered book details populated.

Summary

In this chapter, you learned about the Razor templating engine and how you can use it to create a
hybrid mobile solution. You also learned how to create and use models within your application,
and have the information saved to an SQLite database, and retrieved later. Finally, you learned
how you can use JavaScript code using C# to execute method calls.

In the next chapter, you'll learn how to create and consume a RESTful web service API, so that it
can be used within the TrackMywalks application to save and retrieve information entered within
the ViewModels.

Chapter 7. Incorporating API Data Access Using
Microsoft Azure App Services

In the previous chapter, we learned about the Razor templating engine and how you can use it to
create a hybrid mobile solution. You learned how to create and use models within your
application, and how to save the information to a SQLite database and retrieve it later. Towards
the end of the chapter, you learned how you can use JavaScript code using C# to execute method
calls.

Up until this point, you have been building the TrackMywalks app with static walk trail
information that has been hard-coded within the TrackMywalks app. However, in the real world,
it is very rare that your app will depend purely on local static data, and you will need to source
your information from a remote data source, typically using a RESTful API. In some cases, your
app may even communicate with a third-party API, for example Facebook.

In this chapter, you'll learn how you can use Microsoft Azure App services to create your very
first live, cloud-based backend HTTP web service to handle all the communication between the
cloud and the app. You will also learn how to create a DataService API that will allow the app
to consume the API so that we can retrieve, store, and delete walk trail information from the
cloud all within the TrackMywalks app.

This chapter will cover the following points:

Gain an understanding of what Microsoft Azure App services are
Setting up the TrackMywalks app within the Microsoft Azure portal
Adding the Httpclient and JSON.Net NuGet packages to the solution
Creating the TrackMywalks base HTTP service

Creating the TrackMywalks API data service

Updating the TrackMywalksViewModels to use the API data service
Running the TrackMywalks app within the simulator

Setting up our TrackMyWalks app using
Microsoft Azure

In this section, we will look at the steps required to set up the TrackMywalks application within
Microsoft Azure. Nearly all mobile applications that you will develop will require the ability to
communicate with an API to store, retrieve, update, and delete information. This API can be an
existing one that someone within your organization has already created, but sometimes you will
need to create your own API for your application.

Microsoft Azure, or ("Azure" as it's best known for), is essentially a cloud-based platform that
was created by Microsoft back in February 2010. Azure was designed for building, deploying,
and managing several applications and their associated services, such as SaaS, PaaS, and IaaS.

Each of the Microsoft Azure specific associated services are explained in the following table:

Azure

. __|[Description
service

Software as a Service provides software licensing and delivery models where

SaaS o . . .
software is licensed on a subscription basis and is centrally hosted.

Platform as a Service provides customers with a platform to develop, run, and manage
PaaS [lapplications without the complexities of maintaining the infrastructure when developing
and launching an app.

[aaS [[Infrastructure as a Service provides virtualized computing resources over the Internet.

One of the main benefits of using Microsoft Azure Mobile Apps is that they provide you with a
very quick and easy way to get a fully functional backend service up and running within a matter
of minutes. Before we can proceed with setting up and creating our TrackMywalks database
within the cloud, you will need to have a Microsoft Azure account. If you don't already have one,

you can create one for free at https://azure.microsoft.com/en-us/pricing/free-trial/ .

Once you have created your Microsoft Azure account, you will need to log into the Microsoft
Azure portal using your web browser. Let's ook at how to do this, by performing the following
steps:

1. Launch your web browser with the following URL https://portal.azure.comy/ and log in to the
Microsoft Azure portal using your credentials.

2. Next, from the main Microsoft Azure portal dashboard, click the + button in the top-left hand
corner from the New section, and select the Web + Mobile option, and then choose the

https://azure.microsoft.com/en-us/pricing/free-trial/
https://portal.azure.com/

Mobile App option as shown in the following screenshot:

0 portal azure.com

Web + Mobile

* App name
FEATURED APPS

Trackhy\Walks

. arurewebsites net
Compute } Web App

- ¥ Subscoripbion
Metworking ;) @ nr eployment, and Free Trial w

* Resource Group @

Storage

Lreate new Lise pwistin
Muohile App e 9
Web = Mobile ___:=' : SELIF " | Defautt-Web-Eastall
Databases i I V

¥ App Service plan/Location
ServicePlan9df9adas-aecBSouth |

Application Insights @& Oy m

Eb

Intelligence + anakytics

Internet of Things {A}

Enterprise Integration

Security + Identity @

Developer tools P PREVIEW

Logic App

Web App On Linux (preview)

Monitering + management

Add-ons y i

Containers

' Pinto dashboard

0 &« ® ¢ - & § 8

Then, enter in TrackMyWalks to use as the name for our app for the App name field.

Next, either choose your Subscription type, or leave the default of Free Trial.

Then, provide a name for your Resource Group, either by creating a new one, or choosing
from an existing one.

6. Next, ensure that the Pin to dashboard option has been selected, so that you can have your

Mobile App displayed on the Microsoft Azure Dashbeard. This is particularly useful, and

provides easy access.

kW

Now that we have successfully created our Mobile App within Microsoft Azure, our next step is
to begin setting up the database that will allow our app to store walk entry information. Let's look
at how we can achieve this with the following steps:

1. From the Dashboard, click on the TrackMyWalks service, as shown in the following
screenshot:

aoe < m i] # portal azure.com [} i 2

Da [h b 0a rd ' + mewdashboard &° Editdashhoard 03 Share o Fullscreen (R Clone 3 Delete

Service health App Services
MY RESOURCES ALL SUBECRIPTHING

B mecknywalis

Karketplace

Discover, purchase, and manage add-ons
and services from Microsoft partners

' Feedback

What's ne
~ W == Azure classic

— poita

2. Next, choose the Data connections option from the MOBILE section under the
TrackMyWalks App Service section, as shown in the following screenshot:

Sughs coplions

Hidat [P Dat

g TrachMyWaksy

Dovtal A2ure.com

Bl Apid
Manitanrg
1 il B
I TR SRR i BLEETS

3. Then, within the TrackMyWalks - Data connections screen, click on the + Add button, to
display the Add data connection screen, as shown in the following screenshot:

@ =
8
8
"
o
t s
&
€
’-
O a

4. Next, ensure that you have selected SQL Database from the Type dropdown, and proceed
to configure your SQL Database.

5. Then, click on the OK button to save your changes and create the new data connection for
our TrackMywalks SQL server database.

Once you have created your TrackMywalks mobile app and SQL database within Microsoft
Azure, by default, your database won't contain any database tables or data. Before we can start
communicating with and consuming the API within our TrackMywalks app, we need to create a
new table that will store our walk trail entries.

Let's look at the following steps to achieve this:

1. From the Dashboard, click on the TrackMyWalks service, then choose the Easy tables
option from the MOBILE section under the TrackMyWalks App Service section.

2. Next, within the TrackMyWalks - Easy tables screen, click on the + Add button, to display
the Add a table screen, as shown in the following screenshot:

808 < il T (0] portal azure.com o il 1 .

Ir':."wl steven.dar

STEVENDAN

‘F Add from C5V

e MNAME
mmm X Mo results.
HH % Advanced Tools

' App Service Editor Praview)
' & Performance test

=) Resource explorer
Fd PHP Debugging

= Testing in production

L
Extensions

WMOBILE

1 Easy tables

&' Easy APls

& Data connections

3. Then, enter inwalkEntries to use as the name for our table for the Name field.

4. Next, leave the default permissions that have been set for our Insert permission, Update
permission, Delete permission, Read permission, and Undelete permission dropdown
entries:

ac @ < M & 0] portalazure.com . | =}

TrackMyWalks - Easy tables > Add a table

NS ert permission

Allow anonymous access W

Update ETTTISSI0N

Allow anonymous access W

Dielete permissio

Allow ANONYIMOUS eSS W

Read permission
Allow anonymous access W
Undelete permission

Allow anonymous access b

5. Then, click on the OK button to save your changes, and your new WalkEntries table will be
added to the list of Easy Tables entries.

Note

Whenever you choose the Allow anonymous access permission during the creation of your
table, you are essentially making the API available without providing any specific
authentication headers as part of the HTTP request.

Before we can start making calls to our API and consuming this within our TrackMywalks
app, we'll run a quick check to see if our API endpoint is working correctly. This is
achieved by issuing a GET HTTP request using the command line, or if you'd prefer, you can
use a REST console client.

6. Open your terminal window, and type in the following statement from the command line as
follows:

Last login: Sun Nov 6 10:48:41 on console

GENIESOFT-MAC-Mini:~ stevendaniel$ curl
https://trackmywalks.azurewebsites.net/tables/
walkentries --header "ZUMO-API-VERSION:2.0.0"

If you have set everything up correctly within the Microsoft Azure portal, you should receive
back a 200 (Success) status code, along with an empty collection in the response body as
follows:

Last login: Sun Nov 6 10:48:41 on console
GENIESOFT-MAC-Mini:~ stevendaniel$ curl
https://trackmywalks.azurewebsites.net/tables/
walkentries --header "ZUMO-API-VERSION:2.0.0"
[] GENIESOFT-MAC-Mini:~ stevendaniel$

Note

There are several REST console clients that exist for you to choose from, if you don't
already have one installed. I tend to use Postman for handling REST APIs, which you can

download from http://www.getpostman.cony.

Now that we have successfully created our TrackMywalks API and walkEntries data table
within the service, we can begin making calls to our API and receiving those response messages
directly back from the API. In the next section, we will begin to add the Json.Net and
HttpCclient .NET Framework libraries that will be responsible for handling the REST API
requests to save and retrieve our walk entry details.

http://www.getpostman.com/

Adding the Json.Net NuGet package to the TrackMyWalks app

Now that you have set up and created the TrackMywalks database within the Microsoft Azure
platform, our next step is to add the Json.Net NuGet package to our TrackMywalks Portable Class
Library solution. The Json.Net package is a high-performance JSON framework for the .NET
platform that allows you to serialize and deserialize any type of .NET object with help of the
JSON serializer.

When we start to incorporate this framework within our TrackMywalks solution, we will have
the ability of performing LINQ to JSON capabilities that will enable us to create, parse, query,
and modify the JSON structure that we receive back from our Microsoft Azure TrackMywalks
database table.

Let's ook at how to add the Json.Net NuGet package to our TrackMywalks Portable Class
Library, by performing the following steps:

1. Right-click on the Packages folder that is contained within the TrackMywalks Portable
Class Library solution, and choose Add Packages... menu option, as shown in the following
screenshot:

o8 p [TrackMyWalks.i05 » = Debug » []

= Salution L
» TrackhMyWalks
- Trackhhy\Walks

sapuadn [[T)

L4 Aefarances

Cantrols Update
DataTemplates Restora
Models
PagpeE

Proparties

Refresh

Sarvicas
ValueGonverers
Viewtdodels

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ W

[packages.config

:__‘ TrackbdyWalks.cs
] Trackhy\WWalke Droid

TrazHNyWalks /DS

@ Emors [T ResGen

2. This will display the Add Packages dialog, enter in Json.Net within the search dialog, and
select the Json.Net option within the list, as shown in the following screenshot:

nuget.org

Add Packages

i

Json.NET.Web 3,938
Json NET web client

Fluent Configuration for Json.MET by MASBicudo 216

Fluent configuration for Json.NET library. Tried to follow Fiuent MHibernate
mapping classes style. Implemented as converter and contract resolver.

TagCache.Redis.Json.Met 622
JSOM.NET seriallzation for TagCache.Redis

HanoMessageBus Newtonsoft Json.MET Serialization Plugin 6,627
Mewtonsoft Json MET Serializer for NanoMessageBus.

SOLIDplate.Json.Net 339
A set of boilerplate code libraries that facilitate implementation of 5.0.L.LD

mrinrindes in ket cnlntinne

| Show pre-release packages

(Q Json.nef ®)

Json.NET

Json MET is a popular high-performance
JSON framework for NET

Id

Author
Published
Downloads
License

Project Page
Dependencies

Version

Close

2.0.1

NewtonsofiJscn
James Newton-King
22/D62016
39,703,451

Yiew Licanse

Visit Page

Nene

G

| Add Package |

3. Finally, click on the Add Package button to add the NuGet package to the Packages folder,
contained within the TrackMywalks Portable Class Library solution.

Now that you have added the Json.Net NuGet package, our next step is to add the HttpClient
framework to our TrackMywalks Portable Class Library, which we will be covering in the next

section.

Adding the HttpClient NuGet package to the TrackMyWalks
app

In the previous section, we added the Json.Net NuGet package to our TrackMywWalks solution.
Our next step is to add the HTTP library to our TrackMywalks solution to enable it to
communicate with an API over HTTP.

Since we are using both .NET and C# to build our Xxamarin.Forms application, we can leverage
a library within the .NET Framework called System.Net.Http.HttpClient. This HttpClient
framework provides us with a mechanism of sending and receiving data using standard HTTP
methods, such as GET and POST.

Let's ook at how to add the HttpClient NuGet package to our TrackMywWalks Portable Class
Library, by performing the following steps:

1. Right-click on the Packages folder that is contained within the TrackMywalks Portable
Class Library solution, and choose the Add Packages... menu option. If you can't remember
how to do this, you can refer to the section entitled Adding the Json.Net NuGet package to
the TrackMywalks app located within this chapter.

2. This will display the Add Packages dialog. Here, enter in Ht t p within the search dialog,
and select the System.Net.Http option, as shown in the following screenshot:

[NN Add Packages

nuget.org L Hitp @

Microsoft HTTP Client Libraries 12,524,798 System. Net.Hitp
MNET This package provides a programming interface for modern HTTP/REST based Provides a programming interface for
' applications. modarn HTTP applications, including
HTTP client componants that allow
applications to consume web sarvices
over HTTP and HTTP componants that

can be usad by both cliants and sarvers
for parsing HTTP headears.

Commonly Used Typas:

System.Nat Hitp HitpResponseMessage
System.Met. Hiip. DelegatingHandler
System.Met Hitp. HitpRequestExcaption

RestSharp 3,179,947 g_.»gtum.nm.l-m;. Ellmllj":"?-:ct:m
Nat i il
Simple REST and HTTB API Client ki sy O
System. Nat Hip. HitpClientHandler

System. Net. Hitp. StreamContent
System. Net.Hitp. Form Ur|Encoded Content
System. Net Hitp. HitpMessageHandler

Microsoft. Owin.Host. HttpListener 1,543,080 i :
OWIN server built on the .NET Framework's HtpListener class. Currently the s, oot oot e
default server used for self-hosting.
Id Systam.MNet Htip
Author Microsof
Microsoft ASP.NET SignalR 1,951,943 Published STBS01E
Incredibly simple real-time web for .NET. This package pulls in the server Downloads 3,153 467
components and JavaScript client required to use SignalR in an ASP.NET u ik Licaes
application. . e Licanss
Project Page Visil Page
Microsoft.Net.Hitp.Headers 2,297,461 Version |4.1.0
MET HTTR header parser implementations. T

Show pre-release packages Close Add Package

3. Finally, click on the Add Package button to add the NuGet package to the Packages folder,
contained within the TrackMywalks Portable Class Library solution.

Now that you have added both the Json.Net and System.Net.HttpNuGet packages to our
solution, we can begin utilizing these framework libraries as we progress throughout this chapter.

Updating the WalkEntries model to use the Json.Net framework

In this section, we will begin by updating the walkEntries data model to take advantage of our
backend service calls, when we create these, and then the walkDataService.cs and
walkwebService.cs files will communicate and interact with our Microsoft Azure
TrackMywalks database to store, delete, and retrieve walk entry information.

Let's now start to modify and implement the code required for our walkEntries class model, by
performing the following steps:

Ensure that the walkEntries.cs file is displayed within the code editor, and enter in the
following highlighted code sections:

//
// WalkEntries.cs
// TrackMyWalks
//
// Created by Steven F. Daniel on 04/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;
using Newtonsoft.Json;
namespace TrackMyWalks.Models

{
public class WalkEntries
{
[JsonProperty("id")]
public string Id { get; set; }
public string Title { get; set; }
public string Notes { get; set; }
public double Latitude { get; set; }
public double Longitude { get; set; }
public double Kilometers { get; set; }
public string Difficulty { get; set; }
public double Distance { get; set; }
public Uri ImageUrl { get; set; }
}
}

In the preceding code snippet, we have successfully modified the database model that will be
used to store walk entry information within our Microsoft Azure database. You will notice that
we have defined a [JsonProperty("id")] item, as well as a string property named Id that
will serve as a unique primary key for each record that we store within the database. We have
also updated our ImageUrl property to include the uri type that will be used to convert the URL
entered within the walk entry page, so that it is stored correctly within the database.

Note

If you are interested in finding out more information about the JsonProperty and the
Newtonsoft.Json classes, please refer to the Json.NET documentation located at

http://www.newtonsoft.com/json/help/html/T_Newtonsoft Json_Serialization JsonProperty.htm .

http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Serialization_JsonProperty.htm

Creating the HT'TP web service class for the
TrackMyWalks app

In the previous section, we successfully modified the walkEntries database model that will be
used by our TrackMywalks application. This will allow us to have a live backend service that
will enable our application to communicate over HTTP so that it can send requests to the API to
retrieve, add, and delete trail walk entries. In this section, we will need a means for our app to
communicate with our API over HTTP, and therefore it will require an HTTP library.

Since we are using .NET and C#, we can use a library within the .NET Framework, called
System.Net.Http.HttpClient. This Framework provides a mechanism for allowing our app to
send and receive data using standard HT TP methods such as GET and POST. We will begin by
creating a base service class within our TrackMywalks Portable Class Library that will be
responsible for handling all the HTTP communications for us.

Let's now start to implement the code required for our walkwebService base-class model, by
performing the following steps:

1. Create an empty class within the Services folder, by choosing Add | New File..., as you did
in the section entitled, Creating the navigation service interface for the TrackMyWalks app
within Chapter 3 , Navigating within the MVVM Model - The Xamarin.Forms Way.

2. Then, enter in walkwebService for the name of the new class that you want to create, and
click on the New button to allow the wizard to proceed and create the new file.

3. Next, ensure that the walkwebService.cs file is displayed within the code editor, and enter
in the following code snippet:

//
// WalkWebService.cs
// TrackMyWalks Http Web Service Class
//
// Created by Steven F. Daniel on 30/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;
using System.Collections.Generic;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json;

namespace TrackMyWalks.Services

{

public abstract class WalkWebService

{

4. Then, we need to create a protected async method called SendRequestAsync<T> that
accepts a Uri named url as well a Ht tpMethod named httpMethod, and finally a
Dictionary<string, string> object named headers, as well as an object named

requestData, that will be used to construct the HTTP request. Proceed and enter in the
following code snippet:

protected async Task<T> SendRequestAsync<T>(
Uri url, HttpMethod httpMethod = null,
IDictionary<string, string> headers = null,
object requestData = null)

{

5. Next, we'll set up the result to the default(T) type that will return a default value to a
parameterized type since we don't know what our result will contain at this point. We'll then
declare our method variable to contain the GET HttpMethod. This will be used to return the
content and then create a request variable that will set up an instance of our
HttpRequestMessage class and then serialize our requested data to our request object and
return the information back in Json format as defined by the application/json type.
Proceed and enter in the following code snippet:

var result default(T);
var method httpMethod ?? HttpMethod.Get;
var request = new HttpRequestMessage(method, url);

// Serialize our request data
var data = requestData == null ? null
JsonConvert.SerializeObject(requestData);

if (data != null)

{
// Add the serialized request data to our request
// object.
request.Content = new StringContent(data,
Encoding.UTF8, "application/json");
}

6. Then, we'll begin iterating through our headers collection to add each of our specific
headers to the request object that will be sent along with the Ht tpRequestMessage class.
Proceed and enter in the following code snippet:

// Add each of the specified headers to our request
if (headers != null)

{
foreach (var h in headers)
{
request.Headers.Add(h.Key, h.Vvalue);
}
}

7. Next, we'll set up and declare a handler variable that instantiates an instance of the
HttpClientHandler class which is essentially a Ht tpMessageHandler that contains a
common set of properties that work across the Ht tpwebRequest API. In the next step, we'll
declare a client variable that instantiates our Ht tpClient class that accepts our handler
variable to begin sending our request over HTTP.

8. Next, we'll declare our response object that performs a SendAsync and accepts our
request object, along with our HttpCompletionOption.ResponseContentRead that

completes after reading the entire response content.

9. Finally, we'll perform a comparison check to see if we have successfully read our content
and have a response code of 200 (Success) returned, before deserializing our content into
Json format, using the JsonConvert method. Proceed and enter in the following code

snippet:
// Get a response from our Web Service
var handler = new HttpClientHandler();
var client = new HttpClient(handler;
var response = await client.SendAsync(request,
HttpCompletionOption.ResponseContentRead);
if (response.IsSuccessStatusCode &&
response.Content != null)
{
var content = await response.Content.
ReadAsStringAsync();
result = JsonConvert.DeserializeObject<T>(content);
}
return result;
}
}
3

Now that we have successfully created our base HTTP service class, we can begin to use this
within our ViewModels as well as our WalkEntries database model, by creating a base sub-
class within our batasService API which we will be covering in the next section.

Note

If you are interested in finding out more information about the Ht tpClientHandler and
HttpClient classes, please refer to the Microsoft developer documentation located at
https://msdn.microsoft.comv/en-us/library/system.net.http.httpclient(v=vs.118).aspx .

https://msdn.microsoft.com/en-us/library/system.net.http.httpclient(v=vs.118).aspx

Creating the DataService API for the
TrackMyWalks app

In the previous section, we created a walkWebService class that provides us with a means of
sending HTTP requests to our TrackMywWalks Microsoft Azure database. In this section, we will
begin by creating a data service class that will allow us to send and receive responses back from
our API, in Json format which will update the walkEntries database model so our application
can use this.

We will begin by creating the interface for our data service that can be used to communicate with
each of the viewModels that our TrackMywalks application utilizes. Let's now start to implement
the code required for our IwalkDataService base-class model, by performing the following
steps:

1. Create an empty interface within the services folder. If you can't remember how to do this,
you can refer to the section entitled Creating the navigation service interface for the
TrackMyWalks app within Chapter 3 , Navigating within the MVVM Model - The
Xamarin.Forms Way.

2. Next, enter in IWalkDataService for the name of the new interface that you want to create,
and click on the New button to allow the wizard to proceed and create the file.

3. Then, ensure that the IwalkDataService.cs file is displayed within the code editor, and
enter in the following code snippet:

//

// IWalkDataService.cs

// TrackMyWalks Data Service Interface

//

// Created by Steven F. Daniel on 30/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using System.Threading.Tasks;

using System.Collections.Generic;

using TrackMyWalks.Models;

namespace TrackMyWalks.Services

{

public interface IWalkDataService

{
Task <IList<WalkEntries>> GetWalkEntriesAsync();

Task AddwWalkEntryAsync(WalkEntries entry);
Task DeleteWalkEntryAsync(WalkEntries entry);

}

In the preceding code snippet, we begin by implementing the methods that will be required to
retrieve, update, and delete our walkEntries information. The GetWalkEntriesAsync instance

method uses a generic type which is used to restrict the walkEntries to use objects of the IList
class.

The AddwalkEntryAsync instance method accepts an entry parameter that contains the walk
entry details to be added of type walkEntries, and our DeleteWalkEntryAsync instance
method accepts an entry parameter that needs to be deleted from our database. We use the Task
class to essentially handle all asynchronous operations, by ensuring that the asynchronous
methods that we initiate will eventually finish, thus completing the task in hand.

Creating the DataService API class for the
TrackMyWalks app

In the previous section, we created our data service base interface class for our data service, and
we defined several different instance methods that our class will be utilizing. This will
essentially be used by each of our viewModels along with the Views (pages). Let's now start to
implement the code required for our walkDataService class, by performing the following steps:

1.

Create an empty class within the services folder, by choosing Add | New File..., as you did
when creating the DataService interface in the previous section entitled Creating the
DataService API for the TrackMyWalks app located within this chapter.

Then, enter in WwalkDataService for the name of the new class that you want to create, and
click on the New button to allow the wizard to proceed and create the new file.

Next, ensure that the walkDataService.cs file is displayed within the code editor, and
enter the following code snippet:

//

// WalkDataService.cs

// TrackMyWalks API Data Service Class

//

// Created by Steven F. Daniel on 30/10/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

using System.Net.Http;

using TrackMyWalks.Models;

using Newtonsoft.Json;

namespace TrackMyWalks.Services

{

Next, we need to modify our walkDataService class constructor, so that it can inherit from
both our walkwebService base-class as well as the IwalkDataService class:

public class WalkDataService : WalkWebService, IWalkDataService

{

Next, we'll declare two private class properties, baseUri and headers. The baseUri
property will be used to store the base URL and the _headers property of the
IDictionary<string, string> type that will be used to store the header information that
we want to pass to our WalkWebService class.

The zumo-api-version is basically a special header value that is used by the HTTP client
when communicating with Microsoft Azure databases. Proceed and enter in the following
code snippet.

readonly Uri _baseUri;
readonly IDictionary<string, string> _headers;

10.

11.

12.

// 0ur Class Constructor that accepts the Azure Database
// Uri path
public WalkDataService(Uri baseUri)

{

_baseUri = baseUri;
_headers = new Dictionary<string, string>();
_headers.Add("zumo-api-version", "2.0.0");

}

Next, we'll implement the GetwalkEntriesAsync instance method that will retrieve all
walkEntries that are contained within our database. We'll define a url variable that
constructs a new Uri object using our _baseUri URL and combining this with our
walkEntries database table within the tables section of our TrackMywalks Azure
database and call the SendRequestAsyncwalkWebService base-class instance method.
We'll pass in the Ht tpMethod. Get method type to tell our base class that we are ready to
retrieve our WalkEntries. Proceed and enter in the following code snippet:

// API to retrieve our Walk Entries from our database
public async Task<IList<WalkEntries>> GetWalkEntriesAsync()

{
var url = new Uri(_baseUri, "/tables/walkentries");
return await SendRequestAsync<WalkEntries[]>
(url, HttpMethod.Get, _headers);

}

Next, we'll implement the AddwalkEntryAsync instance method that will add walk entry
information to the walkEntries table contained within our database. We define a url
variable that constructs a new Uri object using our _baseUri URL and combining this with
the walkEntries database table within the tables section of our TrackMywalks Azure
database and call the SendrRequestAsyncwalkWebService base-class instance method.
We'll pass in the Ht tpMethod.Post method type that will tell our base class that we are
ready to submit information to our walkEntries database table. Proceed and enter in the
following code snippet:

// API to add our Walk Entry information to the database
public async Task<WalkEntries> AddWalkEntryAsync(
WalkEntries entry)

{
var url = new Uri(_baseUri, "/tables/walkentries");
await SendRequestAsync<WalkEntries>(url,HttpMethod.Post,
_headers, entry);

}

Next, we'll implement the DeletewalkEntryAsync instance method that will permanently
delete associated walk entry information from our walkEntries table contained within our
database. We'll define a ur1l variable that constructs a new Uri object using our _baseUri
URL and combining this with our walkEntries database table, and pass in the 1d value of
our selected walk entry within the walksPagelListView.

We'll then call the SendRequestAsyncwalkWebService base class instance method. We'll
pass in the HttpMethod.Delete method type that will tell our base class that we are ready
to permanently delete the walk entry within our walkEntries database table. Proceed and

enter in the following code snippet:

// API to delete our Walk Entry from the database
public async Task DeleteWalkEntryAsync(WalkEntries entry)

{

var url = new Uri(_baseUri, string.Format("/tables/walken
tries/{0}", entry.Id));

await SendRequestAsync<WalkEntries>(url,HttpMethod.Delete
, _headers);

}

3
3

In the preceding code snippet, we began by implementing each of the instance methods that we
defined within our IwalkDataService interface class. We used the SendrRequestAsync method
on our base class, and passed in the API details, along with the Ht tpMe thod type, and the zumo -
api-version header information. You will have noticed that we passed in the walkEntries data
model object. This is so that the object can be serialized and added to the HTTP request message
content.

Note

If you are interested in learning more HTTP, please refer to the Hypertext Transfer Protocol guide
located at https://en.wikipedia.org/wiki/Hypertext Transfer Protocol .

The HTTP class exposes several different types of HTTP methods that are used by the
HttpMethod class, which are explained in the following table.

HTTP Description

methods P
This type tells the Ht tpMethod class protocol that we are ready to request message

GET content over HTTP to retrieve information from our API, and return this information
back, based on the representation format specified within the API.

post [[This type tells the HttpMethod class protocol that we want to create a new entry
within our table, as specified within our APL

peLeTe |[Fhis type tells the HttpMethod class protocol that we want to delete an existing entry
within our table, as specified within our APL

Note

If you are interested in learning more about client and server versioning in Mobile Apps and

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Mobile Services, please refer to the Microsoft Azure documentation located at

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-client-and-server-
versioning/.

In the next section, we will update our walkBaseViewModel so that it can use our DataService
API class, and initialize our Microsoft Azure TrackMywalks database.

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-client-and-server-versioning/

Updating the WalkBaseViewMaodel to use our DataService API

In the previous sections, we created the interfaces classes that will be used by our
walkwWebService and WalkDataService class to enable our TrackMywalks application to
communicate with the database that is stored within the Microsoft Azure platform.

Our next step is to begin implementing the code that will be required to make a connection to our
TrackMywalks Microsoft Azure database so that our app uses live data instead of the local, hard-
coded data that we currently have in place.

Let's look at how we can achieve this, by following the steps:

1. Ensure that the walkBaseVviewModel.cs file is displayed within the code editor, and enter in
the following highlighted code sections as shown in the code snippet:

//
// WalkBaseViewModel.cs
// TrackMyWalks Base ViewModel
//
// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using System.Threading.Tasks;
using TrackMyWalks.Services;
namespace TrackMyWalks.ViewModels
{
public abstract class WalkBaseViewModel
INotifyPropertyChanged
{

protected IWalkNavService NavService {
get; private set; }

bool _isProcessBusy;
public bool IsProcessBusy

{
get { return _isProcessBusy; }
set
{
_isProcessBusy = value;
OnPropertyChanged();
OnIsBusyChanged();
}
}

2. Next, we'll create a IwalkDataService interface property called
_azureDatabaseService. Tis will store and retrieve the value of our TrackMywalks Azure
database URL. The AzureDatabaseService property contains both the getter (get) and
setter (set) implementations that. When we set the AzureDatabaseService property, we
assign this value to our _azurebatabaseService variable, and then call the

onPropertyChanged instance methods to tell the viewModels that a change has been made:

IWalkDataService _azureDatabaseService;
public IwWalkDataService AzureDatabaseService

{
get { return _azureDatabaseService; }
set
{
_azureDatabaseService = value;
OnPropertyChanged();
}
}

3. Then, we'll need to modify the walkBaseVviewModel class constructor and create an instance
to our WalkDataService class, that inherits from the IwalkDataService interface class,
and then assign this to our AzurebDatabaseService property so that it can be used
throughout each of our ViewModels:

protected WalkBaseViewModel(IWalkNavService navService)

¢ // Declare our Navigation Service and Azure Database URL
var WALKS_URL = "https://trackmywalks.azurewebsites.net";
NavService = navService;
AzureDatabaseService = new WalkDataService(nhew

, Uri(WALKS_URL, UriKind.RelativeOrAbsolute));

public abstract Task Init();
public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged([CallerMemberName]
string propertyName = null)

{
var handler = PropertyChanged;
if (handler != null)
handler(this, new PropertyChangedEventArgs(
propertyName));
}
}
protected virtual void OnIsBusyChanged()
{
// We are processing our Walks Trail Information
}
}
public abstract class WalkBaseViewModel<WalkParam>

WalkBaseViewModel {
protected WalkBaseViewModel(IWalkNavService navService)
base(navService)

{
}

public override async Task Init()

{
}

public abstract Task Init(WalkParam walkDetails);

}
}

await Init(default(WalkParam));

In the preceding code snippet, we begin by creating a AzureDatabaseService property that
inherits from our IwalkDataService class, and then created its associated getter and setter
qualifiers. Next, we updated the walkBaseViewModel class constructor to set the
AzureDatabaseService property to an instance of walkDataService class so that it can be
used throughout each of our viewModels.

Updating the WalkEntryViewModel to use our DataService API

Now that we have modified our walkBaseVviewModel class so that it will be used by any
ViewModel that inherits from this base class, our next step is to begin modifying the
wWalkEntryViewModel that will utilize our walkDataService class, so that any new walk
information that is entered will be saved back to our Azure database. Once that's done we can
begin storing walk entry information when the Save button is pressed.

Let's look at how we can achieve this with the following steps:

1. Ensure that the walkEntryVviewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections as shown in the code snippet:

//
// WalkEntryViewModel.cs
// TrackMyWalks ViewModels
//
// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System.Threading.Tasks;
using TrackMyWalks.Models;
using TrackMyWalks.Services;
using TrackMyWalks.ViewModels;
using Xamarin.Forms;
using System;

namespace TrackMywWalks

{
public class WalkEntryViewModel : WalkBaseViewModel

{

IWalkLocationService mylLocation;

string _title;
public string Title

{
get { return _title; }
set

{
_title = value;
OnPropertyChanged();
SaveCommand.ChangeCanExecute();

2. Next, locate and modify the ExecuteSaveCommand instance method to include a check to see
if our Imageur1 field contains a value, otherwise store an empty placeholder image for the
ImageUrl property when the SaveToolBarItem has been pressed. Proceed and enter in the
following highlighted code sections:

async Task ExecuteSaveCommand()

// Check to see if we are in the middle of processing
// a request.
if (IsProcessBusy)

return;

// Initialise our Walk Entry Model to state that we are
// in the middle of updating details to the database.
IsProcessBusy = true;

// Set up our New Walk item model
var newWalkItem = new WalkEntries
{
Title = this.Title,
Notes = this.Notes,
Latitude = this.Latitude,
Longitude = this.Longitude,
Kilometers = this.Kilometers,
Difficulty = this.Difficulty,
Distance this.Distance,
ImageUrl (this.ImageUrl == null ?

new Uri("https://heuft.com/upload/image/4
00x267/no_image_placeholder.png")

new Uri(this.ImageUrl))
3

// Upon exiting our New Walk Entry Page, we need to
// stop checking for location updates
myLocation = null;

3. Then, we'll make a call to our AddwalkEntryAsync instance method, contained within
the AzureDatabaseService class to store the newly entered information. We'll include a
reference to our NavService.PreviousPage method, which is declared within the
IwalkNavService interface class to allow our walkEntryPage to navigate back to the
previous calling page, before finally initializing our IsProcessBusy indicator to false to
inform our ViewModel that we are no longer processing. Proceed and enter in the following
highlighted code sections:

try

{
// Save the details entered to our Azure Database
await AzureDatabaseService.AddWalkEntryAsync(newWalkItem);
await NavService.PreviousPage();

}
finally

// Re-Initialise our Process Busy Indicator

IsProcessBusy = false;

}

// method to check for any form errors
bool ValidateFormDetails()

{
return !string.IsNullOrWhiteSpace(Title);
}
public override async Task Init()
{
await Task.Factory.StartNew(() =>
{
Title = "New Walk";
Difficulty = "Easy";
Distance = 1.0;
3);
}
3
3

In the preceding code snippet, we modified the ExecuteSaveCommand instance method to include
a check to see if our Imageur1l field contains a value prior to storing the information within the
ImageUrl property. If we have determined that this property is empty, we proceed to assign an
empty placeholder image for the ImageuUrl property to avoid our application performing
unexpected results.

In the next step, we attempt to make a call to our AddwalkEntryAsync instance method, contained
within our AzureDatabaseService class to store the newly entered information.

Next, we'll include a reference to our NavService.PreviousPage method, which is declared
within the IwalkNavService interface class to allow our walkEntryPage to navigate back to the
previous calling page when the Save button has been pressed. Finally, we'll initialize our
IsProcessBusy indicator to false to inform our ViewModel that we are no longer processing.

Updating the WalksPageViewMaodel to use our DataService API

In this section, we will proceed to update our walksPageViewModel ViewModel to reference our
wWalkDataService class. Since our walksPageViewModel is used to display information from
our WalkEntries model, we will need to update this so that it retrieves this information from the
TrackMywalks database, located within our Microsoft Azure platform, and display this within the

ListView control.

Let's look at how we can achieve this with the following steps:

1. Ensure that the walksPageViewModel.cs file is displayed within the code editor, and enter
in the following highlighted code sections as shown in the following code snippet:

//
//
//
//
//
//
//

WalksPageViewModel.cs
TrackMywWalks ViewModels

Created by Steven F. Daniel on 22/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using
using
using
using
using
using

System;
System.Collections.ObjectModel;
System.Threading.Tasks;
TrackMyWalks.Models;
TrackMyWalks.Services;
Xamarin.Forms;

namespace TrackMyWalks.ViewModels

{

public class WalksPageViewModel : WalkBaseViewModel

{

ObservableCollection<WalkEntries> _walkEntries;

public ObservableCollection<WalkEntries> walkEntries
{
get { return _walkEntries; }
set
{
_walkEntries = value;
OnPropertyChanged();

}

2. Next, locate and modify the LoadwalkDetails instance method to check to see if we are
already in the middle of processing walk trail items within the ListVview. Next we'll
proceed to populate our WalkEntries array with items retrieved from our
GetWalkEntriesAsync Azure web service instance method call to populate our
WalkEntries asynchronously and use the await keyword to wait until the Task completed.
Finally, we'll initialize our IsProcessBusy indicator to false to inform our ViewModel
that we are no longer processing. Proceed and enter in the following highlighted code

sections:

public async Task LoadWalkDetails()

{
// Check to see if we are already processing our
// Walk Trail Items
if (IsProcessBusy)
{ return; }
// If we aren't currently processing, we need to
// initialise our variable to true
IsProcessBusy = true;
try
{
// Populate our Walk Entries array with items
// from our Azure Web Service
walkEntries = new ObservableCollection<WalkEntries>
(await AzureDatabaseService.GetWalkEntriesAsync());
}
finally
{
// Re-initialise our process busy value back to false
IsProcessBusy = false;
}

3. Then, create the DeletewalkItem command property within our class, that will be used
within our walksPage to handle whenever we click on a walk item within our ListView.
The DeletewalkItem property will then run an action, whenever the Delete option has
been chosen from the ActionSheet, to delete the chosen item as determined by our
trailDetails to permanently remove the record from our TrackMywalks database located
within our Microsoft Azure platform. Proceed and enter in the following highlighted code
sections:

Command _deleteWalkItem;

public Command DeleteWalkItem

{

get

return _deleteWalkItem
?? (_deleteWalkItem =

new Command(async
(trailDetails) =>

await AzureDatabaseService.

DeleteWalkEntryAsync((WalkEntries)trailDetails)));

In the preceding code snippet, we modified our LoadwalkDetails instance method to check to
see if we are already in the middle of processing walk trail items within the ListVview. Then, we
proceeded to populate our WwalkEntries array with items retrieved from our
GetWalkEntriesAsync Azure web service instance method call to populate our walkEntries
asynchronously and use the await keyword to wait until the Task completed.

In the next step, we initialized the IsProcessBusy indicator to false, to inform our ViewModel
that we are no longer processing.

Finally, we created a Command property within our class that will be used to permanently handle
the deletion of the chosen walk entry within our ListVview and our TrackMywalks Microsoft
Azure database.

Updating the WalksPage to use the updated ViewModel

In this section, we need to update our walksPage ContentPage so that it can reference the
updated changes within our walksPageViewModel. We will need to apply additional logic to
handle deletions of walk entry information from our walkEntries model so that it canretrieve
newly updated information from our TrackMywalks database located within our Microsoft Azure
platform, and display this within the ListView control.

Let's look at how we can achieve this with following steps:

1. Ensure that the walksPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections as shown in the code snippet:

//
//
//
//
//
//
//

WalksPage.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;
using TrackMyWalks.Services;

using TrackMyWalks.DataTemplates;
using TrackMyWalks.ValueConverters;
using System.Diagnostics;

namespace TrackMywWalks

{

public class WalksPage : ContentPage

{
WalksPageViewModel _viewModel
{
get { return BindingContext as
WalksPageViewModel; }
}

2. Next, modify the newwalkItem variable, which is within the walksPage class constructor

and update the Text property for our ToolbarItem. Proceed and enter in the following
highlighted code sections:

public WalksPage()

{

var newWalkItem = new ToolbarItem

{

Text = "Add"
};

// Set up our Binding click event handler

newWalkItem.SetBinding(ToolbarItem.CommandProperty,
"CreateNewwalk");

// Add the ToolBar item to our ToolBar
ToolbarItems.Add(newWalkItem);

// Declare and initialise our Model Binding Context
BindingContext = new WalksPageViewModel(DependencyService
.Get<IWalkNavService>());

3. Then, we need to modify our walksList.ItemTapped method whenever an item within the
ListView has been selected. Here, we need to display a selection of choices for the user to
choose from, using the DisplayActionSheet method. When the user chooses the Proceed
with option, the user will be navigated to the walksTrail page within our ViewModel, and
pass in the item that has been selected. Alternatively, if the user chooses the belete button, a
call is made to our DeletewalkItem command that is included within our
wWalksPageViewModel class, so that it can then permanently delete the Walk Entry from our
TrackMywalks Azure database. Once the walk entry has been deleted from the database, the
user will receive a pop-up notification telling them that the item has been deleted. Proceed
and enter in the following highlighted code sections:

// Initialize our event Handler to use when the
// item is tapped

walksList.ItemTapped += async (object sender,
ItemTappedEventArgs e) =>

{
// Get the selected item by the user

var item = (WalkEntries)e.Item;

// Check to see if we have a value for our item
if (item == null) return;

// Display an action sheet with choices
var action = await DisplayActionSheet("Track My Walks
- Trail Details", '"Cancel", "Delete",
"Proceed With " + item.Title + " Trail");
if (action.Contains("Proceed"))

{

_viewModel.WalkTrailDetails.Execute(item);

}

// If we have chosen Delete, delete the item from

// our database and refresh the ListView

else if (action.Contains("Delete"))

{

_viewModel.DeleteWalkItem.Execute(item);

await DisplayAlert("Track My Walks - Trail Details",
item.Title +

" has been deleted from the database.", "OK");

await _viewModel.Init();

}

// Initialise our item variable to null
item = null;

+;

In the preceding code snippet, we modified our newwalkItem variable, which is within the
walksPage class constructor and updated the Text property for our ToolbarItem.

Next, we modified our walksList.ItemTapped method to handle situations when an item has
been selected from the ListView, which will display a selection of choices for the user to choose
from. We accomplished this by using the DisplayActionSheet method. When the user chooses
the Delete button, a call is made to our DeletewalkItem command that is included within our
wWalksPageViewModel class, so that it can then permanently delete the walk entry from our
TrackMywWalks Azure database, and use the await keyword to wait until the Task has completed
before displaying a pop-up notification telling them that the item has been deleted.

Updating the custom picker renderer class for the iOS platform

Now that we have modified our walkEntries database model, we will need to update the
DifficultyPickercellRenderer class which will be used by our iOS portion of the
DifficultyPickerEntryCell class.

This custom picker will be used to obtain the item chosen from the custom list of entries defined
within the DifficultyPicker class and store this within the bifficulty property that will then
be written to our TrackMywalks Microsoft Azure database.

Let's look at how we can achieve this with the following steps:

1. Openthe TrackMywalks.1i0S project located within our TrackMywalks solution, and
expand the Renderers folder.

2. Next, select the DifficultyPickercellRenderer.cs file and ensure that it is displayed
within the code editor, and enter in the following highlighted code sections in the code

snippet:

//

// DifficultyPickerCellRenderer.cs

// TrackMyWalks CustomRenderer for UIPickerView Entry Cells
(10S)

//

// Created by Steven F. Daniel on 01/10/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms.Platform.iOS;

using UIKit;

using TrackMyWalks.Controls;

using Xamarin.Forms;

using TrackMywWalks.iOS.Renderers;

[assembly: ExportRenderer(typeof(
DifficultyPickerEntryCell),
typeof(DifficultyPickerCellRenderer))]
namespace TrackMyWalks.iO0S.Renderers
{
public class DifficultyPickerCellRenderer
EntryCellRenderer
{
public override UITableViewCell GetCell(
Cell item, UITableViewCell reusableCell,
UITableView tv)
{

var cell = base.GetCell(item, reusableCell, tv);
var entryPickerCell = (EntryCell)item;

UITextField textField = null;
if (cell != null)

textField =
(UITextField)cell.ContentView.Subviews[0O];

// Create our 1i0S UIPickerView Native Control
var difficultyPicker = new UIPickerView

{
AutoresizingMask =
UIViewAutoresizing.FlexibleWidth,
ShowSelectionIndicator = true,
Model = new DifficultyPickerModel(),
BackgroundColor = UIColor.White,
3

3. Next, we need to modify the EntryCellRendererGetCell method so that it can update the
Difficulty property for the EntryCell we are currently on when the Done button has been
pressed. It will update it with the value from the difficultyPicker object and then
dismiss the custom picker control. Proceed and enter in the following highlighted code
sections:

// Create a toolbar with a done button that will

// set the selected value when closed.

var done = new UIBarButtonItem("Done",
UIBarButtonItemStyle.Done, (s, e) =>

// Update the Difficulty property on the Cell
if (entryPickerCell != null)
entryPickerCell.Text = DifficultyPickerModel.
difficulty[difficultyPicker.
SelectedRowInComponent(0)];

// Update the value of the UITextField within the
// Cell
if (textField != null)

{
textField.Text = DifficultyPickerModel.difficulty

[difficultyPicker.SelectedRowInComponent(0)];
textField.ResignFirstResponder();

1)

Now that we have applied the code changes required to the DifficultyPickerCellRenderer
class for our iOS portion of our TrackMywalks app, the next step is to make changes to our
wWalkEntryContentPage so that it will retrieve the correct difficulty value that is returned from
our custom picker, and the Difficulty property value.

Updating the WalksEntryPage to use the updated custom picker

In the previous section, we modified our DifficultyPickerCellRenderer class, as well as
defining the various methods that will handle the display of the UTPickerVview control when an
EntryCell within the ViewModel has been tapped.

In this section, we'll look at making the necessary code changes required so that our
walkEntryPageContentPage correctly retrieves the level of difficulty chosen from our custom
UIPickerViewDifficultyPickerCellRenderer class.

Let's look at how we can achieve this with the following steps:

1. Ensure that the walkEntryPage.cs file is displayed within the code editor, and enter in the
following highlighted code sections as shown in the code snippet:

//

// WalkEntryPage.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 04/08/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using Xamarin.Forms;

using TrackMyWalks.Services;

using TrackMyWalks.Controls;

namespace TrackMywWalks

¢ public class WalkEntryPage : ContentPage
¢ WalkEntryViewModel _viewModel
¢ get { return BindingContext as WalkEntryViewModel; }
}
?ublic WalkEntryPage()

// Set the Content Page Title
Title = "New Walk Entry";

// Declare and initialise our Model Binding Context
BindingContext = new WalkEntryViewModel(
DependencyService.Get<IWalkNavService>());

// Define our New Walk Entry fields
var walkTitle = new EntryCell
{
Label = "Title:",
Placeholder = "Trail Title"
Iy
walkTitle.SetBinding(EntryCell.TextProperty, "Title",
BindingMode.TwoWay);

2. Next, locate and modify the walkDifficultyEntryCell property so that it can correctly
return the value of the Difficulty property from our walkEntries ViewModel, that is
updated by our DifficultyPickerEntryCell class. Proceed and enter in the following
highlighted code sections:

var walkDifficulty = new DifficultyPickerEntryCell

{

Label = "Difficulty Level:",

Placeholder = "walk Difficulty"
};
walkDifficulty.SetBinding(EntryCell.TextProperty,

"Difficulty", BindingMode.TwoWay);

In this section, we looked at the steps involved in modifying our walkEntryPage so that it
correctly returns the level of difficulty that has been chosen from our
DifficultyPickerEntryCell class custom renderer. We looked at updating our
walkDifficulty object variable to reference the DifficultyPickerEntryCell class, and
updated the setBinding to return the value of the Difficulty property that is implemented
within the walkEntries ViewModel class.

Now that we have finished building all the necessary components for our TrackMywalks
application, the next step is to finally build and run the TrackMywalks application within the iOS
simulator. When compilation completes, the iOS Simulator will appear automatically and the
TrackMywalks application will be displayed, as shown in the following screenshot:

Prone B - 105 101 (BT Prone B - 105 109 (VBT 2 T B - S WLV [TRET]

Track My Walks - i0S ¢ Back New Walk Entry

Title: 10 Mile Brook Trail, Margaret R..
Notes: The 10 Mile Brook Trail starts i...
Latitude: -33.9727604

Longitude: 115.0861599

Kilometers: 7.5

Difficulty Level: |Moderate

Loading Trail Walks... ImageUrl: http://trailswa.com.au/media/

As you can see from the preceding screenshot, this currently displays our ActivityIndicator
spinner control, with the associated Looading Trail Walks... text, after which this will display the
ListView that will contain our list of trail walks from our DataTemplate control. Since we don't
have any walk entries contained within our Microsoft Azure TrackMywalks database, the New
Walk Entry screen displays entries being entered:

Prose B - 108 100 (4872 (Phore fis - 015 WL (BT Prone B3 - K05 W1 {METE

Track My Walks - Trail Details

10 Mile Brook Trail, Margaret River has
been deleted from the database.

OK

10 Mile Brook Trail, Margaret River
i ength: 7.5 km
Difficulty: Moderate

The 10 Mile Brock Trad starts in the Rotary Park resr Did Kate, a
prasareed staam

Begin this Trail

The preceding screenshot, shows the updated ListView control displaying information from our
TrackMywalks Microsoft Azure database. You will notice, that upon selecting a Walk entry item
from the ListVview control, it will pop up with several choices for you to choose from. If you
click on the Delete button, it will call the beletewalkEntryAsync API and pass in the Identifier
for the selected item that is to be permanently deleted from the database.

Upon successful deletion, you will be presented with a dialog box telling you that the walk entry
has been deleted. When clicking on the OK button, the ListView control will be refreshed and
display all entries, except for the one that you had just deleted. Alternatively, if you click on the
Proceed With ... button, it will navigate to the walks Trail Details page where you can begin
your trail, by clicking on the Begin this Trail button.

Summary

In this chapter, you learned about Microsoft Azure App services and how you can use this
platform to get information from a remote data source by creating your very first API within the
cloud to connect to, and store and retrieve information from, all within the TrackMywalks app.
You learned how to create a live, cloud-based backend service and API using the Microsoft's
Azure App services platform to store and retrieve walkEntry information, as well as creating a
DataService class that will be used to handle all the communication between the cloud and the
TrackMyWalks app.

In the next chapter, you'll learn how to create a sign-in page that will allow the user to sign into
the TrackMywalks app using their Facebook credentials. You'll learn how you can take advantage
of the Facebook SDK and essentially post walk data to your Facebook profile page so you can
show off your progress to your friends and/or work colleagues.

Chapter 8. Making Our App Social - Using the
Facebook API

In the previous chapter, you learned how you can use Microsoft Azure App services to create
your very first live, cloud-based, backend HTTP web service to handle all the communication
between the cloud and our app. Now, you will also learn how to create a DataService API that
will allow our app to consume the API, so that we can have the ability to retrieve, store, and
delete walk trail information from the cloud, all within the TrackMywalks app.

On May 24th, 2007, Mark Zuckerberg announced the Facebook platform, a development platform
for programmers to create social applications within Facebook. When Facebook launched the
development platform, numerous applications had been built and already had millions of users
playing them. The social networking application utilizes the Facebook collection of APIs that
enables developers to connect to the Facebook platform and send application requests.

In this chapter, you'll learn how you can use both Xxamarin.Auth and Facebook SDK, which will
allow you to incorporate social networking features within the TrackMywalks app to obtain
information about a Facebook user, as well as post information to their Facebook wall.

You'll learn how to create a sign-in page that will allow the user to sign in to the TrackMywalks
app using their Facebook credentials. You will also create a FacebookApiUser class that will be
used to store information about the logged-in user, as well as using the Open Graph API to
retrieve certain information about the user and display this within the TrackMywalks app. To end
this chapter, you will see how you can leverage the Facebook library, essentially to post walk
data to your Facebook profile page, so you can show off your progress to your friends and/or
work colleagues.

This chapter will cover the following points:

Setting up our TrackMywWalks app within the Facebook Developer portal
Adding the xamarin.Auth and Facebook SDK packages to the solution
Creating the FacebookApiUser and FacebookCredentials class
Creating the FBSignInPage and FBSignInPageRenderer classes
Updating the TrackMywalks ViewModels to use the Facebook API
Using the Open Graph API to read JSON data

Run the TrackMywalks app within the simulator

Setting up and registering the TrackMyWalks
app with Facebook

In this section, we will begin by setting up our TrackMywalks app and registering it with the
Facebook platform, so that we can begin communicating and interacting with Facebook, and have
the ability to retrieve user information, as well as allowing the user to post walk information to
their Facebook wall.

Let's now start to implement the code required for our FacebookApiUser class model, by
performing the following steps:

1. Launch your web browser and type in https://developers.facebook.com/apps .

2. Next, either sign up for Facebook if you are not a registered user, or enter your Facebook
account credentials.

3. Then, click on the Create a New App button, which will display the Create a New App ID
screen, as shown in the following screenshot:

Create a New App ID

Display Name

[TrackMy¥Walks

Contact Ema

slaven.daniel @ ganiesonsiutios. com

Category

Choose a Category » h

Facebook Platform Policies Cancel Create App ID

4. Next, enter TrackMywWalks for the Display Name field and provide your Contact Email
address so that Facebook can contact you if they need to.

5. Then, within the Category section, select a category from the Choose a Category
dropdown, and click on the Create App ID button to create our TrackMywalks app, as
shown in the preceding screenshot.

6. Next, you will be prompted to enter the Security Check answer before you can proceed to
the next step:

https://developers.facebook.com/apps

EOEER

Text in the box

if you think you're sesing this by mistake, please ot us know

7. Then, enter the text displayed on your screen and click on the Submit button to continue.
Note

If you enter the text incorrectly, you may end up with your account being blocked. If this is
the case, you will need to contact Facebook directly to have this unblocked.

Now that we have created our TrackMywalks Facebook App ID, our next step is to begin
setting up the Client O Auth Settings, which will be used by our 0Auth2Authenticator
class within our TrackMywalks app:

8.

10.

@ TrackMyWalks APP ID: - \figw Anafytics # Tools & Support Docs

Dashboard

Client OAuth Settings

Client Chauth Login

App Review

Weh Otwth Login = Forca Web OAuth Reauthentication
Yes N

Facebook Login

¢ Embedded Browser OAuth Login
= E 1l T

Add Product Valid DALt rediract UFIS

hitpeAevew facebook coméconnactogin_success. himl h

Login fram Devices

Deauthorize

G Save Changes I

Next, from the Valid O Auth redirect URISs section located within the Client O Auth Setting
screen, enter https://www.facebook.com/connect/login_success.html as the URLto
use whenever we detect that we have successfully signed into Facebook from within our
app.

Then, click on the Save Changes button to save our changes within this screen.

Next, choose the App Review menu item located under the Dashboard, as can be seen in the
following screenshot:

@ TrackMyWalks - AFPP ID: = Wigw Analytics % Tools & Support Docs

Dashboard

Make TrackMyWalks public?

Settings

Rales Yes Your app ks currently live and avallable to the public

Alers

App Review

Submit Items for Approval

] Start a Submission
r Platform

Facebook Login b VEILIF &
Policy Review Guidelines
+ Add Product
Approved ltems
LOWGEIN PEAMISSIONS
@ email
Provides abcess 10 the person's primany email address, This permission is approsed by delsull

@ public_profile
Provides sccess ko a person's basic information. ncluding first nama, last name, profile picture, gendar ard age rangsa This
Efmissa0n |8 aparoved by detault

@ user_friends

Provicis a0cass 10 8 person's list of rends ha also use your &p. This pemmissaon is approved by default

11. Then, ensure that you have chosen Yes for the Make TrackMyWalks public? question.
Note

Essentially, the APP ID is an important field that we will use within our iOS and Android
application to communicate with Facebook.

Whenever you enable the Make TrackMyWalks public? option, this will make your app live to
the public on Facebook, so that your friends and family can see your walk information posted on
your Facebook wall. You will notice that, when you enable this option, the list of Approved
Items will be enabled by default, as well as their login permissions.

Note

If you are interested in learning more about the various types of login permissions, please refer to
the Permissions Reference - Facebook Login which can be accessed at

https://developers.facebook.com/docs/facebook-login/permissions .
Now that we have successfully setup our TrackMywalks app name within the Facebook platform,

we can begin making our app communicate with the Facebook APIs to obtain user information, as
well as posting messages to the currently logged-in user's Facebook wall. In our next section, we

https://developers.facebook.com/docs/facebook-login/permissions

will begin to add the Xxamarin.Auth .NET Framework library, as well as the Facebook SDK, to
connect our TrackMywWalks app to Facebook and authenticate users with Facebook, so that we
can post status messages directly from within our app and more.

Adding the Xamarin.Auth NuGet package to the TrackMyWalks
app

Now that we have setup our Facebook App ID, our next step is to add the Xxamarin.Auth NuGet
package to our TrackMywWalks Portable Class Library project. The Xxamarin.Auth package will
allow our app to authenticate a user who requires access to use the Facebook platform by using
OAuth 2.0 authentication.

These Authenticators are responsible for managing the user interface and communicating with
authentication services. Authenticators take a variety of parameters; in this case, the application's
ID, its authorization scope, as well as Facebook's various service locations are required.

Let's look at how to add the Xamarin.AuthNuGet package to our TrackMywalks Portable Class
Library by performing the following steps:

1. Right-click on the Packages folder, which is contained within the TrackMywalks Portable
Class Library project, and choose the Add Packages... menu option, as shown in the
following screenshot:

aCce p O TrackMyWalks.ioS + = Debug » []
= Salution £ 2 B
]
w |G| TrackiyWalks g
L4 Trackhhy\Walks E
[
L Aefarances -
L Controls Update
* B DataTempiates Restore
L Models
» BN Pages Refresh
L] Proparies
L] Sarvicas
L] ValueGonverers
[Vieatdodels
[packages.config
:__‘ TrackbdyWalks.cs
¥ TrackhyWalke Droid
] TrackMyWalks. l0S
@ emors I ResGan

2. This will display the Add Packages dialog. Enter Xxamarin.Auth within the search dialog
and select the Xamarin.Auth option within the list, as shown in the following screenshot:

nuget.org

Add Packages

£

Xamarin.Auth with UWP 2,895
Modified Xamarin Auth

Xamarin.Auth 7.439
A cross-platform API for authenticating users and storing their accounts.

HolisticWare.Core.Reflection package 592
System.Reflection extensions and utliities for Portable Class Libraries.

HolisticWare.Core..Json package 507
System.tson was initally implemented for Sitverlight.

| Show pre-release packages

Q. Xamarin.Auth @)

Xamarin. Auth

A cross-plattorm AP| for authenticating
users and stoning their accounts.

Id

Author
Published
Downloads
License

Project Page
Dependencies

PCLCryplo

Version

Close

1.3

Xamarin.Auth
Xamarin
17/0B2016
24,370

Yiew Licanse
Visit Page

s

| Add Package |

3. Finally, click on the Add Package button to add the NuGet package to the Packages folder,
which is contained within the TrackMywalks Portable Class Library project.

Now that we have added the Xxamarin.Auth NuGet Package, our next step is to add the Facebook
Framework to our TrackMywalks Portable Class Library, which we will be covering in the next
section.

Adding the FaceBook SDK library to the TrackMyWalks app

In the previous section, we added our Xamarin.AuthNuGet package to our TrackMywalks
solution; this means that our next step is to add the Facebook library to our TrackMywalks
solution.

Since we are using both .NET and C# to build our Xxamarin.Forms application, we can leverage
a library developed by a company called The Outercurve Foundation. This library is essentially
a Facebook SDK that helps .NET developers build applications that integrate with Facebook.

The Facebook SDK framework contains all the method objects and APIs that are required to
enable you to interact with Facebook and send notification requests, or simply post messages to
the current user's wall page using the single sign-on feature of Facebook SDK. This simply lets
your users sign in to your app using their Facebook identity, and will display an inline dialog box
comprising a WebView container in which the authorization UI will be shown to the user, which
requires them to enter their credentials to gain access to your app.

Let's look at how we can add the Facebook SDK library to our TrackMywalks Portable Class
Library by performing the following steps:

1. Launch your web browser, and type the following URL,
https://components.xamarin.com/view/facebook-sdk, and log in to the Xamarin portal using
your Xamarin credentials.

2. Next, from the Facebook SDK section, ensure that you have selected version 6.2.2 as the
latest version to download from under the Versions section.

3. Then, proceed to click on the Download button to download the Facebook SDK library, as
shown in the following screenshot:

https://components.xamarin.com/view/facebook-sdk

a8 < i @l = # components.xamarin.com (of il s

9 xamarin Praducts Customers Pricing Dre Ipers Support -

Suggest a Component Submit a Component

Components = Facebook SDK

21 ridings Compatible with

Facebook SDK - T]

The Qutercurve Foundation

Build great social experiences and get more installs by adding Facebook to your app.

P fa - i 5
ublisher Getting Started License Website Download
The Outercurve Foundation

Category
Libraries
The Facebook SDK helps .Net developers build applications that integrate with Facebook
Price
Firgl Leamn how to use the Facebook SDK to connect your mobile app or game to Facebook. You can use the Facebook SDK
Versions to authenticate your users with Facebook or past status messages directly from your app and more,
——
622)
Samples
Published On
January 12, 2015 (671 days agal Here are some examples to demostrate how simple is to use Facebook SDK once you have obtained a token.

Note

Once you have downloaded the Facebook SDK, extract the Zip archive package contents.
The default download location is ~/Downloads/facebook-sdk-6.2.2.zip.

Next, right-click on the References folder, which is contained within the TrackMywalks
Portable Class Library project, and choose the Edit References... menu option, as shown in
the following screenshot:

ece »

w (5 TrackhhyWalke
* [TrackMyWalks
* [T} .NET Portable/
» (3 From Packags Refresh
» [Packages
» I8 Controls
* [DataTemplates
» B Modeis
* I Pages
* [Properties
» I8 Services
¥ 8 ValueConverters
» I viewModels
[} FacebookCredantlale.ce
[5] packages.config
[[i] TrackMyWalks.cs
¥ [TrackMyWalks. Droid
» [TrackMyWalks iDS

[& Solution ox

O TrackMyWalks.ios » [» [J

>

@ Project saved.

m |

5. Then, ensure that the .Net Assembly tab has been selected, and click on the Browse button
to choose the Facebook.d11 for either the Android or iOS platform:

= [TrackMyWalks i0S » [Debug » []

Salution o

Xamarin Studio Community

v |5 TrackMyWalks et e
v [TrackbdyiValks

s - Assambly

» B8 Controls

¥ [OotaTempats B Facebook.dll

¥ B Modais « 8 Newtonsoft.Json.dll
* BN Pages < I PCLCrypro.dil

' o ¥ B Pinvaoke BCrypt.dil
» B Sarices

~| B8 Pinvoke Xernel32.dll

| [Pinvoke NCryptdil

| B8 Pinvoke. Windows.Core.dll

BB system Met, Hitp Extensions.dll
B Systam.Met.Hitp Primitives.dil
B8 validatien.dll

B Xamarin, Auth.dil

< I ¥amarin Forms, Core.dil

~| I8 XamarinForms. Maps.dil

| [Xamarin.Forms.Platfcrm.dil

7| B8 Xamarin,Ferms, Xaml.dll

Version

B.0.0.0
2.0.0.0
D.3.0.0
0.3.00
0.3.0.0
0.3.0.0
1.5.0.0
43,200
2.3.0.0
1.3.0.0
2.0.0.0
2.0.0.0
1.0.0.0
2.0.0.0

Edit References

Path
JUsers/stevendeniel/Dewninads facebook-sdk-6.

{Users/stevendaniel/Projects| TrackMyWalks/packs
{Users/stevandaniel/Projects| TrackMyWalks/packs
{Users/stevendaniel/Projects| TrackMyWalks/packs
fUsers/stevendaniel/Projects| TrackMyWalksjpacks
{Users/stevendaniel/Projects| TrackMyWalks /packs
{Usersistevandaniel/Projects/ TrackMyWalks/packs
Users/stevendaniel/Projects TrackMyWalkspacks
fUsers/stevendaniel/Projects| TrackMyWalkspacks
fUsers/stevendaniel/Projects/ TrackMyWalks/packs
fUsersistevendaniel/Projects) TrackMyWalks/packs
Users/stevendaniel/Projects TrackMyWalks[packs
(Users/stevendaniel/[Projects| TrackMyWalks/packs
{Users/stevandanial/Projects/TrackMyWalks/packs
Usersistevendaniel/Projects/ TrackMyWalks/pack

Salected references:

D II’C'ITCryl':dn_

D Validatian

D Karnarin Auth

D Xal.'nari!'l.Fmrm.Curs

| iNamarin.Fnrnw.Pialfnrm
| ixamrin.me.MI

D Warmarin, Forms Maps

D Plnvoke, Windows.Core

D Pinvoke.Kernet32

| iPln'.luha.BCrwt
| iPIn'.'nlte.Nt:r}-pt

I a—— I DFatgbﬂa&

Cancel

6. Finally, ensure that you have selected the Facebook.d11 assembly within the .Net
Assembly tab, click on the OK button add the new assembly to the references section of
your TrackMywalks Portable Class Library, and close the Edit References dialog.

Incorporating and using the Facebook SDK within your applications allows you to do what is
described in the following table:

FACEBOOK

SDK Types Description

Authenticatio
and
authorization

This prompts your users to sign in to Facebook and grant permissions to your
application.

Make API This allows you to fetch user-profile data, as well as any information that relates
calls to the user's friends, using the JSON API calls.

This allows you to interact with the user via a WebView container object, which
is extremely useful for enabling interactions with Facebook, without the need for
requiring upfront permissions.

Display
dialog

Now that we have added both the Xxamarin.Auth NuGet package and Facebook Dynamic-Link
Library (DLL) packages to our solution, we can now begin utilizing these framework libraries as
we progress throughout this chapter.

Creating a Facebook user model for the
TrackMyWalks app

In the previous section, we added both of our Xxamarin.Auth and Facebook SDK .NET Assembly
packages to our TrackMywalks Portable Class Library. This will essentially be used by each of
our ViewModels along with the Views (pages).

In this section, we will begin by creating our FacebookApiUser data model, which will be used
to store our Facebook login information from when we create our backend service calls, and then
the FacebookCredentials.cs and FBSignInRenderer.cs files will communicate and interact
with our Facebook TrackMyWalks App ID to retrieve Facebook related information, as well as
allowing the user to post walk information to their Facebook wall.

Let's now start to implement the code required for our FacebookApiUser class model by
performing the following steps:

1. Create an empty class within the Models folder by choosing Add | New File.... If you can't
remember how to do this, you can refer to the section entitled Creating the Track My Walks
Model within Chapter 1, Creating the TrackMyWalks Native App.

2. Then, enter FacebookApiUser for the name of the new class that you want to create, and
click on the New button to allow the wizard to proceed and create the new file.

3. Next, ensure that the FacebookApiUser.cs file is displayed within the code editor, and
enter the following code snippet:

//

// FacebookApiUser.cs

// TrackMyWalks

//

// Created by Steven F. Daniel on 07/11/2016.

// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using Xamarin.Auth;

using Newtonsoft.Json.Linq;

namespace TrackMyWalks.Facebook

{

4. Next, we need to implement the FacebookApiUser class that will contain the various
property methods used to store the currently logged-in user, their Facebook Id, and the
properties that will be used to store and retrieve the user's Facebook details. To proceed,
enter the following code snippet:

public class FacebookApiUser

{

// Store the currently logged in user
public static bool IsLoggedIn

{

get { return !string.IsNullOrWhiteSpace
(FaceBookApiAuthToken.GetAuthToken);

}
3
// Define our Facebook Id property
public static string FacebookId

{
}

// Retrieve our user details
static JObject _userDetails;
public static JObject GetUserDetails

{
¥

// Store our user details
public static void SaveUserDetails(JObject userDetails)

{
}

get { return "<YOUR_FACEBOOK_ID>"; }

get { return _userDetails; }

_userDetails = userDetails;

}

5. Next, we need to implement the FacebookApiAuthToken class that will contain the various
property methods that will be used to store and retrieve our Facebook authentication Token
on successfully logging in to our TrackMywalks app. These properties will be used
throughout our application to retrieve our Facebook user details, and when we post walk
information to our Facebook wall. To proceed, enter the following code snippet:

// Facebook API authentication Token

public class FacebookApiAuthToken

{
// Property to point to the Api user
public FacebookApiUser User { get; set; }

// Get our Facebook authentication Token
static string _authToken;
public static string GetAuthToken

{
¥

// Store our authentication Token
public static void StoreAuthToken(string authToken)

{
¥

// Get our Facebook authentication Account Details
static AuthenticatorCompletedEventArgs _authAccount;
public static EventArgs GetAuthAccount

{
¥

// Store our Facebook authentication Account Details

public static void StoreAuthAccount
(AuthenticatorCompletedEventArgs authAccount)

{

get { return _authToken; }

_authToken = authToken;

get { return _authAccount; }

_authAccount = authAccount;

In the preceding code snippet, we begin by implementing the various property methods that will
be required to handle communication between our TrackMywalks app and Facebook, to allow
our app to successfully log in. The FacebookApiUser class method is responsible for handling
the information relating to the Facebook user who will be logging in. It contains a property called
IsLoggedIn that will be used throughout our app to determine if the user has logged in; this is
determined by checking to see if we have received a valid authentication token back from
Facebook.

The FacebookId property is essentially the user's Facebook Id. You will need to replace this
with your own Facebook ID so that you can post walk trail information to your Facebook wall.
The GetUserDetails and SaveUserDetails properties are used to store the user information
that will be displayed within the bistanceTravelled page. The FaceBookApiAuthToken
method contains the various properties that will be used to handle the storing of the user token
details, when our app determines that we have successfully been authenticated with Facebook.

Creating a FacebookCredentials class for the TrackMyWalks
app

In our previous section, we created our FacebookApiUser class model, which will provide us
with a mechanism for storing our Facebook credentials, that we can use throughout our
TrackMyWalks app.

In this section, we will begin by creating a FacebookCredentials class that will allow us to
make API calls, so that we can retrieve user profile information back from our API, in JSON
format, and store this information to be used later. Our FacebookCredentials class contains a
method that allows our app to post walk trail information to the user's Facebook page wall.

Let's now start to implement the code required for our FacebookCredentials class by
performing the following steps:

1. Create an empty class within the services folder. If you can't remember how to do this, you
can refer to the section entitled Creating the Navigation Service Interface for the
TrackMyWalks app within Chapter 3, Navigating within the MVVM Model - The
Xamarin.Forms Way.

2. Next, enter the FacebookCredentials for the name of the new class that you want to create,
and click on the New button to allow the wizard to proceed and create the file.

3. Then, ensure that the FacebookCredentials.cs file is displayed within the code editor,
and enter the following code snippet:

//
// FacebookCredentials.cs
// Stores the credentials to be used for Facebook
//
// Created by Steven F. Daniel on 09/11/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using TrackMyWalks.Models;
using Facebook;
using Xamarin.Auth;
using System;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;
using System.Collections.Generic;
using TrackMywWalks.Facebook;

namespace TrackMywWalks

{

public class FacebookCredentials

{

4. Next, implement the PostwWalkInformation instance method that will be used to post
information relating to the currently active walk trail to the user's Facebook page wall. We
define an fb variable that instantiates a new FacebookClient object using the authorization
token GetAuthToken from our FacebookAuthToken class, which we obtained upon

achieving a successful login from Facebook.

5. We use the PostTaskAsync method and pass in the Graph API me/feed syntax value as the
first parameter, followed by a message parameter, along with the message details that we
want to post to the user's Facebook wall. To proceed, enter the following code snippet:

// Post information to the user's Facebook Wwall

public static void PostWalkInformation(string Title,
double Kilometers, string Difficulty,
string Notes, string trailPictureUrl)

FacebookClient fb = new FacebookClient(FacebookApiAuthToken.
GetAuthToken);

// The message to post as a key/value pair

string postMessage = "TrackMyWalks App - Trail Completed -
Results.";

postMessage +="\n\nTitle: " + Title;

postMessage +="\nKilometers: " + Kilometers;

postMessage +="\nDifficulty: " + Difficulty;

postMessage +="\nNotes: " + Notes;

postMessage +="\nTrail Image: " + trailPictureUrl;

fb.PostTaskAsync("me/feed", new { message = postMessage }).
ContinueWith(t =>

{
if (t.IsFaulted)

{
}

// Catch any errors that occur here.

1)

Note

The Graph API is the primary way in which we can get data in and out of Facebook's social
graph, and is essentially a low-level HTTP-based API that is used to query data, post new
stories, and upload photos. If you are interested in finding our more information about the
Facebook Graph API framework classes, please refer to the Facebook Developer

documentation located at https://developers.facebook.com/docs/graph-api/using-graph-api/ .

6. Then, implement the GetProfileInformation instance method that will be used to retrieve
information relating to the currently active Facebook user. We define a request object that
initializes a new instance of the 0Auth2Request class, and accepts the HTTP method type,
along with the URL, and a list of parameters. The final parameter is our obtained Facebook
account details that will be used to authenticate our request.

7. We then use the GetResponseAsync method to make an asynchronous web request call to
retrieve the information, as specified by our request object, and then use the
GetReponseText method to return a JSON object, containing the Facebook user details as
specified in our URL string, and then parse this using the Jobject.Parse method to convert
the details to a JSON object and assign this to our obj variable.

8. Next, we check to ensure that we have the information returned by our web request, and then

https://developers.facebook.com/docs/graph-api/using-graph-api/

pass the JSON object details, as defined by our obj variable, to our SaveUserDetails
property, which is contained within our FacebookApiUser class. To proceed, enter the
following code snippet:

// Retrieve Facebook information pertaining to the user.
public static async Task GetProfileInformation(AuthenticatorCompl
etedEventArgs eventArgs)

// Make a request to retrieve our items based on the list of
// parameters below.

var request = new OAuth2Request("GET",

new Uri("https://graph.facebook.com/me?fields=id, name,

first_name, last_name, gender, picture,email, devices, education"),
null, eventArgs.Account);
var response = await request.GetResponseAsync();
var obj = JObject.Parse(response.GetResponseText());

// Check to see if we have returned any information
if (obj !'= null)

{
try
{
// Store our user profile information into our
property.
FacebookApiUser.SaveUserDetails(obj);
}
catch (Exception e)
// Handle any errors that fall in here.
}
}
}
}
}

In the preceding code snippet, we begin by implementing the methods that are required to post and
retrieve our Facebook information using the FacebookClient class that is used to make
synchronous requests to the Facebook server. The PostwWalkInformation instance method is
used to post information relating to the currently active user to the user's Facebook page wall.

The GetProfileInformation instance method is used to retrieve information associated with
the currently logged-in Facebook user, using the 0Auth2Request class and the Facebook Graph
API, which accepts a URL, containing a list of parameters that we would like our method to
return and that will be stored within our SaveUserDetails property, which is defined within our
FacebookApiUser class.

Note

If you are interested in finding out more information about the 0Auth2Request and the
Xamarin.Auth classes, please refer to the Xamarin developer documentation located at

https://components.xamarin.comy/gettingstarted/xamarin.auth .

https://components.xamarin.com/gettingstarted/xamarin.auth

Creating the Facebook Sign In to use within our TrackMyWalks

app

In our previous section, we created and implemented our FacebookCredentials wrapper class
that will be used by our TrackMywalks application to handle the retrieving of our Facebook user
details, as well as providing the ability to post walk trail information directly to our Facebook
wall so that our friends and family can track our progress.

Our next step is to begin creating a Facebook Sign In page that will be hooked up to a custom
renderer page that will be used to display the Facebook login page within a web container.

Let's now start to implement the code required for our FBSignInPageContentPage by
performing the following steps:

1. Create an empty Forms ContentPage within the Pages folder. If you can't remember how to
do this, you can refer to the section entitled Creating the walks main page within Chapter 1,
Creating the TrackMyWalks Native App.

2. Next, enter FBSignInPage for the name of the new ContentPage that you want to create,
and click on the New button to allow the wizard to proceed and create the file.

3. Then, ensure that the FBSignInPage.cs file is displayed within the code editor and enter the
following code snippet:

//
//
//
//
//
//
//

FBSignInPage.cs
TrackMywWalks Facebook SignIn Page

Created by Steven F. Daniel on 09/11/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Xamarin.Forms;

namespace TrackMywWalks

{
public class FBSignInPage : ContentPage
{
}
}

In the preceding code snippet, our ContentPage contains the bare-bones implementation. This is
intentional, as, in our next section, we will be creating a custom class renderer that will use our
FBSignInPageContentPage to instantiate an instance of the Facebook login web page.

Creating the Facebook Sign In Class for TrackMyWalks (i0S)

app

In our previous section, we created our FBSignInPage content page that will be used as a
placeholder for our Facebook Sign In class custom renderer. In this section, we will build the
custom Facebook sign-in page renderer, which will be used by the iOS and Android portions of
our app to handle the signing in to Facebook via the FacebookApiAuthToken model, to store the
received Facebook token that will be used throughout the TrackMywalks application.

Let's look at how we can achieve this by performing the following steps:

1. Create an empty class within the Renderers folder for our TrackMywalks.i0S project. If
you can't remember how to do this, you can refer to the section entitled Creating the custom
picker renderer class for the iOS platform within Chapter 5, Customizing the User

Interface.

2. Next, enter FBSignInPageRenderer for the name of the new class that you want to create,
and click on the New button to allow the wizard to proceed and create the file.

3. Then, ensure that the FBSignInPageRenderer.cs file is displayed within the code editor
and enter the following code snippet:

//
//
//
//
//
//
//

FBSignInPageRenderer.cs
TrackMywWalks Facebook SignIn Page (i0S)

Created by Steven F. Daniel on 09/11/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using
using
using
using
using
using

System;

Xamarin.Forms;
TrackMywWalks;
Xamarin.Forms.Platform. i0S;
Xamarin.Auth;
TrackMyWalks.Facebook;

4. Next, we need to initialize our FBSignInPageRenderer class being marked as an
ExportRenderer by including the ExportRenderer assembly attribute to the top of our
class definition. This lets our class know that it inherits from the viewRenderer class.

[assembly:

ExportRenderer (typeof(FBSignInPage),

typeof(TrackMywWalks.i0S.FBSignInPageRenderer))]
namespace TrackMywWalks.iOS

{

public class FBSignInPageRenderer : PageRenderer

{

Then, we declare an Isverified Boolean variable that will be used to determine if a
successful to Facebook has happened. Next, we implement the ViewDidAppear method that
will be launched upon the contentPage becoming visible, and then call the
FacebookSignIn instance method:

bool IsVerified = false;
public override void ViewDidAppear(bool animated)
{

base.ViewDidAppear (animated);

if (!'IsVerified)
{

}

FacebookSignIn();

}

5. Next, we need to create the FacebookSignIn instance method that will be called whenever
the user hasn't signed in to Facebook. We use the 0Auth2Authenticator method, which
will be responsible for managing the user interface and handling the communication with the
Facebook authentication services.

6. The oAuth2Authenticator class accepts the user's Facebook ID, which is stored within
the FacebookId property that is declared within the FacebookApiUser class. The
OAuth2Authenticator class also accepts the authorization scope and the Facebook service
locations to authenticate and determine what to do when a successful login happens:

void FacebookSignIn()

{

string AccessToken = String.Empty;

var auth = new
OAuth2Authenticator (FaceBookApiUser.FacebookId,
"publish_actions",
new Uri("https://m.facebook.com/dialog/oauth/"),
new
Uri("https://www.facebook.com/connect/login_success.html")

);

// Prevent our form from being dismissed by the user.
auth.AllowCancel = false;

7. Then, before we present the Facebook UI to the user, we need to start listening to the
Completed event of the 0Auth2Authenticator instance, which fires up whenever the user
successfully authenticates or cancels, and then check the IsAuthenticated property of the
eventArgs property to properly determine if the authentication has succeeded.

8. If we have determined that a successful login has happened, we make a call to the
DismissViewController method to dismiss the currently presented Facebook Ul and then
call the RemoveFBSignInPage instance method from our TrackMywalks app class, within
Portable Class Library, to remove our FBSignInPage from memory:

auth.Completed += async (sender, eventArgs) =>

{
if (eventArgs.IsAuthenticated)

{

// Dismiss our Facebook Authentication UI Dialog
DismissViewController(true, null);

// Remove our Facebook SignIn Page View from memory.

App.RemoveFBSignInPage();

9. Next, we proceed to retrieve the access token from the Facebook session of the successfully
logged-in user, and proceed to store the values within the StoreAuthToken and
StoreAuthAccount details within our FacebookApiAuthToken class. Finally, we call our
NavigateTowWalksPage Action within our TrackMywalks App class:

// Retrieve our access token for our Facebook session.
eventArgs.Account.Properties.TryGetValue("access_token",
out AccessToken);
FacebookApiAuthToken.StoreAuthToken(AccessToken);
FacebookApiAuthToken.StoreAuthAccount(eventArgs);

// Navigate To Walks List method from our main class.
await App.NavigateToWalksPage();

}
else
// The user cancelled the Facebook Login UI
Console.WritelLine("You are not authorised to use
the TrackMywWalks app");
IsVerified = false;
return;
}
3

10. Then, we present the Facebook login Ul by using the PresentViewController method, and
call the GetUI method returns UINavigationControllers oniOS and intents on Android.
On Android, we would write the following code to present the Ul from the onCreate
method:

IsVerified = true;
PresentViewController(auth.GetUI(), true, null);

}
}
}

In the preceding code snippet, we begin by initializing our FBSignInPageRenderer class, being
marked as an ExportRenderer, to let our class know that it inherits from the viewRenderer
class, and then declare an Isverified Boolean variable that will be used to determine if a
successful login to Facebook has happened. We then proceed and implement the ViewDidAppear
method, which will be launched when the ContentPage becomes visible, and then call the
FacebookSignIn instance method, which will be called whenever the user hasn't signed in to
Facebook, and use the 0Auth2Authenticator method, which will be responsible for managing
the user interface and handling the communication with the Facebook authentication services.

Finally, we present the Facebook login UL, retrieve the access token from the Facebook session of
the successfully logged-in user, and proceed to store the values within the StoreAuthToken and
StoreAuthAccount details within our FacebookApiAuthToken class:

Note

The Android version of the FBSignInPageRenderer class is available in the companion source
code for this book, which can be located within the TrackMywalks.Droid project.

Updating the NavigationService Interface for the
TrackMyWalks app

In this section, we will proceed to update our IwalkNavService Interface to contain a new
method of implementation that will allow our app to clear all previously created views from the
NavigationStack. Since this abstract Interface class will act as the base NavigationService
class that each of our ViewModels will inherit from, they will be able to access each of the class
members contained within this Interface.

Let's look at how we can achieve this by performing the following steps:

Ensure that the IwalkNavService.cs file is displayed within the code editor and enter the
highlighted code sections shown in the following code snippet:

//
// IWalkNavService.cs
// TrackMyWalks Navigation Service Interface
//
// Created by Steven F. Daniel on 03/09/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System.Threading.Tasks;
using TrackMyWalks.ViewModels;

namespace TrackMyWalks.Services

{

public interface IWalkNavService
{
// Navigate back to the Previous page
in the NavigationStack
Task PreviousPage();

// Navigate to the first page within
the NavigationStack
Task BackToMainPage();

// Navigate to a particular ViewModel
within our MVVM Model,

// and pass a parameter

Task NavigateToViewModel<ViewModel,
WalkParam>(WalkParam parameter)
where ViewModel : WalkBaseViewModel;

// Clear all previously created views
from the NavigationStack

void ClearAllviewsFromStack();

}

In the preceding code snippet, we implement a new class member ClearAllViewsFromStack

method that will be used to clear all previously created views from the NavigationStack. This
is because, upon successfully logging in to our TrackMywalks app after the Facebook UI login
has been dismissed, we need to have the ability to remove the FBSignInPage from the
NavigationStack.

Updating the NavigationService class for the TrackMyWalks
app

In the previous section, we updated the base Interface class for our NavigationService, as well
as defining a new class member that will be used to handle the removing of all previously created
views from our NavigationStack within our MVVM ViewModel.

These will be used by each of our viewModels, and the Views (pages) will implement those
ViewModels and use them as their BindingContext.

Let's look at how we can achieve this by performing the following steps:

1. Ensure that the walkNavService.cs file is displayed within the code editor, and enter the
highlighted code sections shown in the following code snippet:

//
// WalkNavService.cs
// TrackMyWalks Navigation Service Class
//
// Created by Steven F. Daniel on 03/09/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using System;
using Xamarin.Forms;
using System.Collections.Generic;
using System.Threading.Tasks;
using System.Reflection;
using System.Linq;
using TrackMyWalks.ViewModels;
using TrackMyWalks.Services;

[assembly: Dependency(typeof(WalkNavService))]
namespace TrackMyWalks.Services

{

public class WalkNavService : IWalkNavService
{
public INavigation navigation { get; set; }
readonly IDictionary<Type, Type>
_viewMapping = new
Dictionary<Type, Type>();

// Register our ViewModel and View within our Dictionary
public void RegisterViewMapping(
Type viewModel, Type view)

{
}

// Instance method that allows us to move back to
the previous page
public async Task PreviousPage()

_viewMapping.Add(viewModel, view);

// Check to see if we can move back to the previous page

if (navigation.NavigationStack != null &&
navigation.NavigationStack.Count > Q)

{
}

await navigation.PopAsync(true);

}

// Instance method that takes us back to the
main Root WalksPage
public async Task BackToMainPage()

{
}

// Instance method that navigates to a specific ViewModel
// within our dictionary viewMapping.

public async Task NavigateToViewModel

<ViewModel, WalkParam> (WalkParam parameter)
where ViewModel : WalkBaseViewModel

{

await navigation.PopToRootAsync(true);

Type viewType;

if (_viewMapping.TryGetValue(typeof(ViewModel),
out viewType))
{

var constructor = viewType.GetTypeInfo()
.DeclaredConstructors
.FirstOrDefault(dc => dc.GetParameters()
.Count() <= 0);

var view = constructor.Invoke(null) as Page;
await navigation.PushAsync(view, true);

}

if (navigation.NavigationStack.Last().BindingContext is
WalkBaseViewModel<WalkParam>)
await ((wWalkBaseViewModel<WalkParam>)
(navigation.Navigation
Stack.Last().BindingContext)).Init(parameter);
}

. Next, we need to create the ClearAllViewsFromStack instance method for our
walkNavService class, which will be used to remove all previously created views from the
NavigationStack by first checking the NavigationStack property for the navigation
property INavigation interface to see if any items already have been pushed onto the
NavigationStack. This is to ensure that a crash doesn't happen within our app.

. In our next step, we proceed to iterate through each item that is contained in our
NavigationStack and call the RemovePage, method to remove each page:

// Instance method to remove all previously created views from
// the Navigation Stack.

public void ClearAllViewsFromStack()

// Check to see if any items have already been pushed
// onto the NavigationStack.
if (navigation.NavigationStack.Count <= 1)
return;

for (var 1 = 0; i < navigation.NavigationStack.Count - 1;
i++)

navigation.RemovePage(nhavigation.NavigationStack[i]);

In the preceding code snippet, we implement a new class member ClearAllViewsFromStack
instance method within our walkNavService class, to handle the clearing of all previously
created Views (pages) from the NavigationStack.

Updating the WalksPage to properly handle
Facebook Sign In

In this section, we need to update our walksPageContentPage so that it can reference the
updates within our walksPageViewModel. We will need to apply additional logic to update the
NavigationBar Title once we have dismissed our Facebook Sign In dialog.

Let's look at how we can achieve this by performing the following steps:

Ensure that the walksPage.cs file is displayed within the code editor, and enter the highlighted
code sections shown in the following code snippet:

//
//
//
//
//
//
//

WalksPage.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Xamarin.Forms;

using TrackMyWalks.Models;

using TrackMyWalks.ViewModels;
using TrackMywWalks.Services;

using TrackMyWalks.DataTemplates;
using TrackMywWalks.ValueConverters;

namespace TrackMyWalks

{

public class WalksPage : ContentPage

{
WalksPageViewModel _viewModel
{
get { return BindingContext
as WalksPageViewModel; }
}
public WalksPage()
{
var newwWalkItem = new ToolbarItem
{
Text = "Add"
Iy
if (Device.0S == TargetPlatform.iOS)
{
Title = "Track My Walks - i0S";
}

else if (Device.0S == TargetPlatform.Android)

Title = "Track My Walks - Android";

In the preceding code snippet, we begin by checking the Device.0s class, to determine what OS
Xamarin.Forms is running on, and then use the TargetPlatform class to determine if our app is
running on the Android or iOS platform. If we have determined that our app is running on
Android, we set the Tit1le property for our ContentPage; alternatively, if we are running on
iOS, we set the Title property as well.

Updating the WalksPage ViewMaodel to use our
FaceBookApiUser

In this section, we will proceed to update our walksPageViewModel ViewModel, so that it has
the ability to display our Facebook Sign In page if it determines that we haven't already logged in.

Let's look at how we can achieve this by performing the following steps:

Ensure that the walksPageViewModel.cs file is displayed within the code editor, and enter the
highlighted code sections shown in the following code snippet:

//

// WalksPageViewModel.cs

// TrackMyWalks ViewModels

//

// Created by Steven F. Daniel on 22/08/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//

using System;

using System.Collections.ObjectModel;

using System.Threading.Tasks;

using TrackMyWalks.Models;

using TrackMywWalks.Services;

using Xamarin.Forms;

using TrackMywWalks.Facebook;

namespace TrackMyWalks.ViewModels

{
public class WalksPageViewModel

WalkBaseViewModel
{

ObservableCollection<WalkEntries>
_walkEntries;

public ObservableCollection<WalkEntries>

walkEntries
{
get { return _walkEntries; }
set
{
_walkEntries = value;
OnPropertyChanged();
}
}

public WalksPageViewModel
(IWalkNavService navService)
base(navService)
{
walkEntries = new ObservableCollection
<WalkEntries>();

public override async Task Init()
// Check if we have logged in and that we are running our
// device on 1i0S

if (!FacebookApiUser.IsLoggedIn &&
Device.0S == TargetPlatform.iOS)

{

await App.Current.MainPage.Navigation
.PushModalAsync (new
FBSignInPage());

}
else {
await LoadwWalkDetails();
await NavService.ClearAllvViewsFromStack();

In the preceding code snippet, we begin by modifying the Init method to include a check to see if
we have already logged in to Facebook, by checking the IsLoggedIn property of the
FacebookApiUser class, and whether we are running on a device running iOS. If we determine
that the IsLoggedIn property doesn't contain a value, we call the PushModalAsync method on
the Navigation property from the MainPage to display our FBSignInPageContentPage.
Alternatively, if the user has logged in, we proceed to load our walk entry details using the
LoadwalkDetails instance method, and call the ClearAllviewsFromStack instance method that
is located within our walkNavService class.

Updating the DistanceTravelledPage for the TrackMyWalks app

In this section, we need to update our DistanceTravelledPageContentPage, so that it can
make use of our Facebook API and retrieve the currently logged-in Facebook user, as well as
providing the ability to post Walk Trail information to the user's Facebook wall.

Let's look at how we can achieve this by performing the following steps:

1. Ensure that the DistanceTravelledPage.cs file is displayed within the code editor, and
enter the highlighted code sections shown in the following code snippet:

var postToFacebook = new Button

{
BackgroundColor = Color.FromHex("#455c9f"),
TextColor = Color.White,
Text = "Post to Facebook"

}

postToFacebook.Effects.Add(Effect.Resolve(
"com.geniesoftstudi
os.ButtonShadowEffect"));

2. Next, we create a Clicked handler method for our postToFacebook button, so that
whenever the Post to Facebook is pressed we display a selection of choices for the user to
choose from, using the DisplayActionSheet method:

// Set up our event handler
postToFacebook.Clicked += async (sender, e) =>
{
if (_viewModel.wWalkEntry == null) return;
// Display our list of choices to choose from
var action = await DisplayActionSheet (
"Track My Walks - Trail Details",
"Cancel",
"Display User Details",
"Post to Facebook Wwall");

3. Then, we use the Contains property of the action variable to determine if the Post option
has been selected, and, if so, we call the PostwalkInformation instance method of our
FacebookCredentials class; pass inthe Title, Kilometers, Difficulty, Notes, and
ImageUrl as parameters to the class; and then display an alert dialog box telling the user that
their walk information has been posted to their Facebook wall:

if (action.Contains("Post"))

{
// Declare an instance to our Facebook Credentials Class
FacebookCredentials.PostWalkInformation(
_viewModel.WalkEntry.Title,
_viewModel.WalkEntry.Kilometers,
_viewModel.WalkEntry.Difficulty,
_viewModel.WalkEntry.Notes,
_viewModel.WalkEntry.ImageUrl.AbsoluteUri);
// Display an alert dialog letting the user know that
// their information has been posted to their Facebook

// Wall.
await DisplayAlert("Post to Facebook","Trail
information has been posted to your wall!", "OK");

}

4. Next, we use the Contains property of the action variable to determine if the User
Details option has been selected, and, if so, we call the GetProfileInformation instance
method of our FacebookCredentials class, and pass in the GetAuthAccount property
from our FacebookApiAuthToken class to retrieve our currently logged-in Facebook user's
details and assign the value to our objUserDetails variable. We then proceed to construct
our userDetails string with the information extracted from the objUserDetails
dictionary, and display the information within an alert dialog box:

else if (action.Contains("User Details"))
{

// Declare an instance to our Facebook Credentials Class
await FacebookCredentials.GetProfileInformation((Xamarin
.Auth.AuthenticatorCompletedEventArgs)

FacebookApiAuthToken.GetAuthAccount);
// Construct our Facebook User details based on
// information stored within each of the properties
var objUserDetails = FacebookApiUser.GetUserDetails;
var userDetails = objUserDetails.GetValue("id").ToString();

userDetails
+="\n"+objUserDetails.GetValue("name").ToString();

userDetails +="\n"+ objUserDetails.GetValue("first_name")
ToString();

userDetails +="\n"+ objUserDetails.GetValue("last_name")

.ToString();

userDetails +="\n"+ objUserDetails.GetValue('"gender")

.ToString();

userDetails += "\n"+ objUserDetails.GetValue("devices")

.ToString();

// Display an Alert Dialog that will display

// information from our user properties

await DisplayAlert("Facebook User Details",

userDetails, "OK");

}
+;

In the preceding code snippet, we create our postToFacebook button and begin applying the
ButtonShadowEffect class to our control, so that it can take advantage of the nice platform-
specific rendering effects for visual control elements.

Next, we modify the c1icked method to handle each press of the button, so that we can display a
selection of options for the user to choose from. We accomplish this by using the
DisplayActionSheet method. When the user chooses the Post button, a call is made to our
FacebookCredentials class and the PostWalkInformation method to submit the current walk
information to the user's Facebook page. Alternatively, if the user chooses the User Details
option, we make a call to our FacebookCredentials class, but this time we call the
GetProfileInformation method to return a JSON dictionary that contains the currently logged-
in Facebook user's details, which we assign to an object variable called objuserDetails.

Finally, we create a userDetails variable that we construct by extracting each of the values for
name, last_name, first_name, etc. and display this information within an alert dialog box
using the bisplayAlert method.

Updating the Xamarin.Forms App class to handle Facebook

Sign In

In this section, we need to update our Xamarin.Forms.App class by modifying the constructor in
the main App class to include additional property and action methods that will help with
navigating to our walksPageContentPage after our TrackMywalks app has successfully signed

in to Facebook.

Let's look at how we can achieve this by performing the following steps:

1. Open the TrackMywalks.cs file, located within the TrackMywalks Portable Class Library
project solution.

2. Next, ensure that the TrackMywalks.cs file is displayed within the code editor, locate the
App method, and enter the highlighted code sections shown in the following code snippet:

//
//
//
//
//
//
//

TrackMywWalks.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using System;

using System.Threading.Tasks;
using TrackMyWalks.Services;
using TrackMyWalks.ViewModels;
using Xamarin.Forms;

namespace TrackMywWalks

{
public class App : Application

{
public App()
{

// Check the Device Target 0S Platform
if (Device.0S == TargetPlatform.Android)

// Set the root page of your application
MainPage = new SplashPage();

else if (Device.0S == TargetPlatform.iOS)
{
// Set our Walks Page to be the root page of our
// application.
var mainPage = new NavigationPage(new WalksPage()
{
Title = "Track My Walks - 1i0S",

1)

}

3. Next, create the RemoveFBSignInPage action property method, which will be used to
handle the removal of the FBSignInPage once we have successfully signed in to Facebook,
as determined by the FBSignInPageRenderer class. We then call the PopModalAsync
property of the Navigation property on the MainPage to pop the last page off the
NavigationStack:

// Property method instance to remove our FBSignInPage
public static Action RemoveFBSignInPage

{
get

{

return new Action(() => App.Current.
MainPage.Navigation.
PopModalAsync());
}

}

4. Then, create the NavigateTowalksPage instance method; this will be used to handle
navigating to the walksPage ViewModel within the NavigationStack by calling the
PushAsync property on the Navigation property on the MainPage:

// Handle navigating to our Walks Page when
we have successfully

// signed into Facebook.

public async static Task NavigateToWalksPage()

{

await App.Current.MainPage.Navigation.PushAsync
(new WalksPage());

In the preceding code snippet, we begin by implementing the methods that will be required to
remove an instance of FBSignInPage, as determined by the RemoveFBSignInPage property
Action method that will be used to handle removal of the FBSignInPage once we have
successfully signed into Facebook, as determined by the FBSignInPageRenderer class. We then
call the PopModalAsync property of the Navigation property on the MainPage to pop the last
page off the NavigationStack.

The NavigateTowalksPage instance method will be used to handle the navigation to our walks
Page ViewModel upon successfully being logged in to Facebook via the TrackMywalks app; this
is done by using the PushAsync property on the Navigation property.

Enabling Facebook functionality within the TrackMyWalks app

When working with the Facebook SDK and the Xxamarin.Auth framework, we need to make
some additional changes to our iOS project solution property list to enable SSO (Single Sign-
On) support when the application runs.

Let's look at how we can achieve this by performing the following steps:

1. Double-click onthe Info.plist file thatis contained within the TrackMywalks.i0S
project, and ensure that the Advanced tab is showing.

2. Next, scroll down to the bottom of the page, and expand the URL Types section.

3. Then, within the Identifier field, provide your Facebook Id whilst prefixing it with fb as the
first two characters that is fb1234567890:

[& salution iV Into.plist L]
Ad TrackhyWWalks * Document Types
* Trase kb Wilailion
L TrackhiyWalks Droid Ma Dacument Types
- TrackMyWalka iDS
s Ralerences Add Documant Typa
Components
S e ¥ Exportad UTls
Asseis acassets
. PlatfomENacts Mo Exported UTls
L] Randerers
Add Exparted LTI
Rasoircag
L] ic
Bl * Imported UTis
1l AppDedagate.cs
+4 Entitlerners.plist iz
= LaunchScreen storyboard Add Imparted UTI
_Z_f Main ca
-'__: packages config + URL Types

v E3

Idenifier; h‘_ﬁ[}ﬂ{!g:
con: i Role: Mome
Add URL Type /
Appdcation m Source

Note

The URL types section is a single array sub-item that needs your Facebook App ID to be prefixed
with fb. This is used to ensure the application will receive the call-back methods of the URL and
the web-based OAuth flow.

Now that we have modified our TrackMywalks.i0S project to allow our app to receive the call-
back methods of the URL and the web-based OAuth flow, we need to do one more thing, and set

up our Facebook App ID and application name that we configured within the app dashboard:

1. Ensure that the Info.plist file is displayed within the Xamarin IDE, and that the Source
tab is showing.

2. Next, create the FacebookAppID and FacebookDisplayName keys by clicking within the
Add new entry section of the Info.plist.

3. Then, enter your Facebook App ID as the string description for the Value field, as shown in
the following screenshot. You will notice here that we don't need to provide the fb prefix as
we did for our URL types section.

4. Next, enter TrackMyWalks as the string description for the Value field, as shown in the
following screenshot:

| Salution K= Info.plist L
¥ |5l TrackbdyiWalks Property Type Value
» [TrackMyWalks
Y FacebookAppiD String G
[Trackily'alks Diroid e e Ve R A S o s A e e e g s S g ey PSR PR - B e s e i e i
E, 1 3 £ - (] =
* [TrackMyWabsios " TN i Sing TrackMyWalks dpeeee——
L4 Peferences * URL types Array
Componants Phane 05 fﬁqlli.‘ed Bota gy Yas

L4 Packages (1 updabe
" AGSSNE.NCABIEE

L] PlatformEfects

g Randarars

Minimum system varsion

Tergeted device family

Rasourons * Required device capabilities
3 Banvices » Supported interlace orentations

T AppDelegate cs
=% Entitlamants piist

o LaunchSomeen storyboand

Suppaortad interface orientations (iPad)

Location When In Lse Usage Description S

T Main.ce * Reguired background modes
7V packnges.config Location Alweys Usage Description Track My Walks would like 1o abtain your location,

v LSAppiicationQueriesSchemes
foapi

Thauth?
foshareaxtension

* NSAppTransport Security

NSAllowssbitraryloads ~ Boolean

Apphication Advanced h

5. Then, create the LSApplicationQueriesScenes array keys, and add the string description
fields and their values, using fbapi, fbauth2, and fbshareextension as the Value fields, as
shown in the preceding screenshot.

Apple introduced the App Transport Security protocol with iOS 9 to enforce secure
connections between Internet connections, as well as with any app that communicates using
the HTTPS protocol. It requires that information is encrypted using the TLS version 1.2. We
need to disable and opt out of ATS entirely by configuring our local Info.plist file within
the TrackMywalks.i0S project solution, so that it can communicate over HTTPS without
any issues.

6. Next, with the Info.plist file still open within the Xamarin IDE environment, create the
NSAppTransportSecurity dictionary array.

7. Next, add the NSAllowArbitraryLoads Boolean value, setting it to Yes, as shown in the
preceding screenshot.

Note
If you are interested in finding out more information on the App Transport Security and

NSAppTransportSecurity class, refer to the Xamarin developer documentation located at
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/ .

Now that we have finished building all the components for our TrackMywalks application
necessary to enable integration with Facebook, we can build and run the TrackMywalks
application within the iOS simulator. When compilation completes, the iOS Simulator will
appear automatically and the TrackMywalks application will be displayed, as shown in the
following screenshot:

iPhone 52 - W05 L1 (BAETZ} Phone 5E - K05 1000 (148725 Prors SE - 105 10,0 (14873
Carrier = 4:25 PM e Carrier T 337 PM L&
Authenticate Authenticate Track My Walks - i0S Add

10 Mile Brook Trail,
Margaret River

Kilameters: 7.5

L]
A . &
[“

Sulbmit for Login Review
Somae of the permissions below have not been
approved for use by Facebook
Subrmit for reveid now OF BEAm Mo,
TrackMyWalks would like to post to
Facebook for you. Who do you want to

share these posts with?

Ditficulty: Moderate

Ak

The 10 Mile Brook Trail
starts in the Rolary Park
naar Old Katae, a
preserved steam

48 Fr ; w

As you can see from the preceding screenshot, this currently displays our Facebook Sign In page,
which tells the user to Log in to your Facebook account to connect to TrackMyWalks
application. To proceed, provide your Email address or phone number and your Facebook
password, and click on the Log In button.

https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/

Upon successfully determining that your details have been validated by Facebook, you will be
presented with a Post to Facebook authentication screen, asking you who you would like to share
your posts with; you have the option to choose either Friends, Public, or Only Me. Once you
have made your choice, click on the OK button to dismiss the Post to Facebook dialog and
display the ListView that will contain our list of walk trails from our bataTemplate control:

Phona SE - 605 10 (14873) Phore BE - 108 W1 (M4ETZ)

#hone SE - i05 10,1 114072)

£ Walks Trail Distance Travelled

Facebook User Details
1792179727 720225
Steven Daniel
Steven
Daniel
male

{
hardware: iPhone,
os: IDS

}
1

10 Mile Brook Trail, Margaret River
Distance Travelled: 0 meters

Display User Details OK

Post to Facebook Wall

End this Trail

Post to Facebook

The preceding screenshot shows the Distance Travelled page that includes our Post to
Facebook button, and you will notice that, upon clicking on this button, several choices will pop
up for you to choose from. If you proceed and click on the Display User Details button, this will
make a call to the GetProfileInformation method that is located within our
FacebookCredentials class, and will pass the GetAuthAccount account information to obtain
the user details, which are located within our FacebookApiAuthToken, using the Open Graph
API platform. Upon successfully obtaining the user's Facebook details, you will be presented
with a dialog box containing each of our user's field details:

Paona 51 - 06 W11 O Wwes 51 - 06 W11 | WATR Frans 5 - rd ¥ £ (1EAFY
Carrier ¥ 4:26 PM -

@ Tacebook com
& hid Friend & Add Friend

Steven Daniel

TrackbyWallcs App - Trail Complated -
Results,

Tithe: 10 Mide Brook Trail, Margaret Rives
Kilomaters: 7.5

Defficulty: Moderate

Hates: The 10 Mile Brook Trail starts in the
Rotary Park near Oid Kate, a preserved staam
Trad Image:

hatp:] firatlswa com. s fmeda)icachs fmedialhim

gestrails)_midFullSizeRendsr]_B00_4B0 cl.jp

Post to Facebook

Trail infarmation has begn posted 1o
your veall!

0K

10 Mile Brook Trail, Margaret River
Distance Travelled: 0 meters

Display User Details

e Like W Cemment

Post to Facebook Wall
r'F__-"‘I
=t

Posts from 1973

The preceding screenshot shows the Distance Travelled page that includes our Post to
Facebook button, and you will notice that, upon clicking on this button, several choices will pop

up for you to choose from. If you click on the Post to Facebook Wall button, this will make a call

to the PostwalkInformation method that is located within our FacebookCredentials class,

and will pass the currently chosen walk trail information, as determined by our ViewModel. Upon

successfully posting to the user's Facebook wall, you will be presented with a dialog box telling
you that the walk entry has been posted to the user's Facebook wall.

Summary

In this chapter, we updated our TrackMywalks application to allow us to use Facebook to sign in
to our app. You learned how you can use both the xamarin.Auth and the Facebook SDK to
authenticate whether the user is a valid Facebook user. Next, you learned how to create a custom
FacebookApiUser model and a FacebookCredentials class that are used to store the user's
credentials, so that these can be used throughout our app to obtain information about the user.

As we progressed throughout the chapter, you created a Facebook Sign In content page and a
custom page renderer class that will allow the user to sign in to the TrackMywalks app using
their Facebook credentials, and updated the ViewModel and content pages so that they can utilize
the Facebook functionality appropriately. You learned how to take advantage of the Facebook
SDK and post walk data to your Facebook profile page, so you can show off your progress to
your friends and/or work colleagues.

In the next chapter, you'll learn how to create and run unit tests within the Xamarin Studio IDE,
using the UlTest framework, before moving on to learn how to profile our application using the
Xamarin Profiler, and how to use the Xamarin Inspector to inspect and debug our user interfaces
visually, and fix Ul-related problems.

Chapter 9. Unit Testing Your Xamarin.Forms
Apps Using the NUnit and UITest Frameworks

In our previous chapter, we updated our TrackMywalks application to allow us to use Facebook
to sign into our app. You learned how you can use both the xamarin.Auth and Facebook SDK to
authenticate if the user is a valid Facebook user. Next, you learned how to create a custom
FacebookApiUser model and FacebookCredentials class that will be used to store the user's
credentials, so that these can be used throughout our app to obtain information about the user, as
well as post information to their Facebook wall.

During the development of our TrackMywalks app, we have designed and implemented various
design patterns and best practices, with the intention of making it easier to maintain and test our
app by separating the user interface and business logic.

In this chapter, you'll learn how to create and run unit tests using the NUnit and UITest testing
frameworks right within the Xamarin Studio IDE. You'll learn how to write unit tests for our
ViewModels that will essentially test the business logic to validate that everything is working
correctly, before moving on to testing the user interfaces portion using automated UI testing.

This chapter will cover the following topics:

Creating a unit testing solution using the popular NUnit testing framework
Adding the Moq NuGet package to the unit testing solution

Adding the Xamarin Test Cloud Agent NuGet package to the UlTest solution
Successfully learning how to test your ViewModels

Running unit tests and UlTests using the Xamarin Studio IDE

Understanding the common types of UlTest testing methods

Creating a unit testing solution using the UlTest framework

Successfully learning how to test your ContentPages (Views)

Creating a unit test solution folder using
Xamarin Studio

During the development of our TrackMywalks application, we have designed the user interfaces,
ViewModels, and ContentPages. As developers, there may be times when we would like to
obtain feedback to let us know when our application logic is working as expected. We can use the
NUnit testing framework to provide us with that confirmation.

In this section, you'll begin by adding a new solution folder to our existing TrackMywalks
Portable Class Library solution. This new solution folder will be used to separate each of our
NUnit and UlTests from our main solution.

The good news is that Xamarin Studio has built in support for the NUnit framework that we can
run our unit tests from, and then have our results displayed, right within the Xamarin Studio IDE.

Let's look at how to add a new Solution folder to our TrackMywalks Portable Class Library, by
performing the following steps:

1. Right-click on the TrackMywalks solution project and choose the Add | Add Solution
Folder menu option, as shown in the following screenshot:

[BoN | 1 TrackMywalks.i0s » [Debug » [] & Clean suesessful,

= Solution L

MR Build TrackMyWalks K

. TrackMy pebuild TrackMyWalks ~3K
3 Trackdyl pjaan TrackMyWalks T3k

L3 Trackiy

sa(Lad0 i [[T]

Archive All
View Archives

HI58L JUN

Run Item
Start Debugging Item

Add New Project...
Update NuGet Packages Add Existing Project...
Restore NuGet Packages

Tools »
Version Control »

Add Files... A

Analyze Source
Find in Files... +3F
Reveal in Finder

Cut Ei
Rename... #R
Close

Options

Display Options 2
Refresh

2. Next, enter in TrackMywalks.Tests for the name of the solution folder.

Now that you have created the TrackMywalks.Tests solution within the main TrackMywalks
solution project, our next step is to create a new unit test project solution, that will be responsible
for testing the business logic within our TrackMywalksViewModels.

Creating a unit test project using Xamarin

Studio

In the previous section, we created the unit testing Solution folder within our TrackMywalks
main project solution that will be used to separate the unit tests from our main iOS and Android
project solutions. This is so that we can run these independently from the main solution.

One of the great benefits of using Xamarin Studio to handle your tests is that it leverages the
popular NUnit testing framework for performing unit tests. We will begin by creating the NUnit
test project within the TrackMywalks.Tests solution that we've previously created.

Let's start by creating a new NUnit project within our TrackMywalks.Tests project solution, by

performing the following steps:

1. Right-click on the TrackMywalks.Tests solution project and choose the Add | Add New
Project... menu option, as shown in the following screenshot:

) [] [2 1 TrackMyWalks.ios » [Debug » [& Workspace saved.

=| Solution Lt
hd TrackhyWalks

| Es Tackywaiks Tests (PSP kMyWalks. Tests K

£ Tkt ilics Rebulld TrackMyWalks.Tests =~ 38K
» | TrackMyWalks.Lroid Clean TrackMyWalks Tests 38K
L Trmhﬂy‘wnllﬁ.ll:ﬁ

View Archives

Add istin f]ct

Tools 3

Version Control > Add Solution Folder
Find in Files... {+3EF

Reveal in Finder Add Files...

Cut HX

Delete ¥E

Rename... ¥R

Options

Refresh

sa{Ladn g [[|

5196 TUF

2. Next, choose the NUnit Library Project option located within the General section under

the Other | .NET section; ensure you have selected C# as the programming language to use,

as shown in the following screenshot:

Choose a template for your new project

New Project

ibrary
Tests
] watchDS
App
Library
= wos

App
Extension
Library

Android

App
Library
Tests

App
Extension
Library

(%) Other

ASP.NET
Miscellaneous

Cancel

Library

Fit Tutorial

NUnit Library Project

+

NUnit Library Project

Creates an MUnit library

=]

o

Then, click on the Next button to proceed to the next step in the wizard.

4. Next, enter TrackMyWalks.UnitTests to use as the name for your new project in the

Project Name field.

5. Then, ensure that the Create a project directory within the solution directory. has been
selected, as shown in the following screenshot:

L NN] Mew Project

Configure your new project

PREVIEW
0 fusersjstevendan...ckMyWalks Tests
[TrackhyWalks.UnitTests
[TrackMyWalks.UnitTests.csproj

Project Name: | TrackMyWalks, UnitTests] h

Solution Name:

Location: |.ILIsersfstﬂendaniel,.'F'miects.n’Tr&ckMyWalks.lTrackMyWall Browse...

Create a project directory within the solution directory. h

Version Control: Use git f

6. Finally, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Xamarin Studio development
environment, with your new projected created within the TrackMywalks.Tests solution folder.

In the next section, we will begin to add the Moq (pronounced as mock) framework library that
will be responsible for allowing us to test our ViewModels within the TrackMywalks solution.

Adding the Moq NuGet package to the unit test project

Now that you have set up and created a new unit test project, our next step is to add the Moq
(pronounced as Mock) NuGet package to the TrackMywalks.UnitTests solution. This library is
essentially one of the most popular and friendly mocking framework libraries for the .NET
platform, and we will use this to test some of our ViewModels within our TrackMywalks app.

Let's look at how to add the Mog NuGet package to our TrackMyWalks.UnitTests project
solution, by performing the following steps:

1. Right-click on the Packages folder that is contained within the TrackMywalks.UnitTests
solution, and choose the Add Packages... menu option, as shown in the following

screenshot:

[] 5] [[TrackmyWalks.ios » [Debug » [& Packages successhully adced.,

= Solution L Test.cs L E
kd TrackhyWalks Mo selection

b TrackhtyWalks. Teets
b TrackhdyWalka.UnitTests

saisado g

[y

using NUnit.Framework:;

using System;

namespace TrackMyWalks.UnitTests
{

[(1]
public class Test

{

Update
Restore

BiSa] U 4

» 7 TrackMywalks
» TrackMywaks.0 Refresh
k TrackMyWalks, |05

[(11

public void TestCase()
{

1

o T
BlWKE2E S WO oo bWk

(=1

2. This will display the Add Packages dialog, enter in mogq within the search dialog, and select
the Moq: an enjoyable mocking library option within the list, as shown in the following
screenshot:

[NN] Add Packages

o

nuget.org

Moqg.Contrib 58,815
Contributed features and third-party integration for Mog.

—
o
~D

Grace.Moaq 4,904
Grace.Moq is a companion library for Grace and Mog

this.Log Logging Extension (Mog Plugin) 805
this.Log-Meq - this.Log logging extension using Mog

ScriptCs.Mog 54
This provides an implementation of the Moqg library for Script CS.

Ninject.MockingKernel.Mog 122,478
k Automock implementation for Mog using Ninject to create the objects under test,

| Show pre-release packages

Q. mog ®)

Meoq: an enjoyable mocking library

Moq is the most papular and friendly
mocking framework for NET

id Mog
Author Daniel Cazzuling, kzu
Published 11112016
Downloads 8,780 563
License Yiew Licanse
Project Page Visit Page
Dependencies

Castle.Cora (>= 3.3.3)

Version | 4528 -

Close Add Package

3. Finally, click on the Add Package button to add the NuGet package to the Packages folder

contained within the TrackMywalks.UnitTests solution.

Now that you have added the Moq NuGet package, our next step is to begin writing the test case
scenarios for our ViewModels, which we will be covering in the next section.

Adding the TrackMyWalks project to TrackMyWalks.UnitTests

In the previous section, we added the Moq NuGet package to our TrackMywalks solution. The
next step is to add a reference to the TrackMywalks core library to our
TrackMywalks.UnitTests solution.

Since we will be testing our viewModels, you will need to ensure that you have applied all of the
cumulative code changes to the TrackMywalks solution project throughout this book to avoid any
issues, as we will essentially need to break each of the tests into individual classes representing
each ViewModel and the accompanying unit test class that we want to test the business logic on.
To successfully test our ViewModels, we will first need to include a reference to the
TrackMywWalks project within our TrackMywalks.UnitTests solution project.

Let's look at how we can achieve this, by performing the following steps:

1. Right-click on the References folder that is contained within the
TrackMywWalks.UnitTests project solution, and choose the Edit References... menu
option, as shown in the following screenshot:

i@ & 53 [TrackMyWalks.i0os ») Debug » [] @ Items saved. g 7!

&| Solution -
- TrackhyWalks
b4 TrackMy'Walks Tests

sarpado iy E

b Trackkh'Walks LinifTests

Packages [u

[o] packagescon Refresh
L3 Trackhy¥Walks
L Trackhy¥Wallke. Droid
L TrachMyWalks.i0S

E150] Juf 4

2. Then, ensure that the Projects tab has been selected and choose the TrackMyWalks project
to include our Android and iOS platform solution projects within our
TrackMywWalks.UnitTests project solution:

[TrackMyWalks.i0S » [Debug » [& Iterns saved. i3

& o9 Edit Referances
[=] Salution
v ; (0]
5 Trackhhyialos A ackages -Net Assermbly . < Selected references:
* 1] TrackbdyWalks Tests
Proje Director
S ik a System
o T TrackMyWalks h [Users sy
b 5 Packages (1 update) TrackhyWalks Dreid (Incompatible target framewark: MonaAndsoid Version=v7 0) [Usersfsy l Y nunit. frameswark
E packayes.config TrackhyWalks. 0S5 [Incompatible target Framewark: Xamarin QS Version=y1,0) FINESTE TR
b [TrackbdyWalks D TrackMyWalks
¥ [TrackblyWalks.Droid T
b [TrackMyWalksJ0S | Casthe.Core

Dmm

Cancel Ok

3. Next, ensure that you have selected the TrackMywalks project within the Projects tab, click
on OK to add the project reference to your References section of your
TrackMyWalks.UnitTests project solution, and close the Edit References dialog.

In the next section, we will begin by creating our first unit test which will be responsible for
validating the walkEntry model to ensure that after the ViewModel has been initialized, it will
contain walk information.

Creating and implementing the WalksTrailViewModel NUnit
test class

Now that you have incorporated the TrackMywalks project into the TrackMywalks.UnitTests
solution, our next step is to create the unit test for our WalksTrailviewModel. These tests will be
used to help us check to see when our ViewModel passes or fails under these test conditions.

Let's now start to implement the code required for our walksTrailvViewModelTest class, by
performing the following steps:

1. Create an empty class within the TrackMywalks.UnitTests project solution folder, by
choosing Add | New File.... If you can't remember how to do this, you can refer to the section
entitled Creating the TrackMyWalks model, within Chapter 1, Creating the TrackMyWalks
Native App.

2. Then, enter WwalksTrailViewModelTest for the name of the new class that you want to
create, and click on the New button to allow the wizard to proceed and create the new file.

3. Next, ensure that the walksTrailViewModelTest.cs file is displayed within the code
editor, and enter in the following code snippet:

//
// WalksTrailViewModelTest.cs
// WalksTrailViewModel Testing Framework
//
// Created by Steven F. Daniel on 23/09/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using NUnit.Framework;
using TrackMyWalks.ViewModels;
using TrackMyWalks.Services;
using Mogq;
using System.Threading.Tasks;

namespace TrackMyWalks.Tests

{

4. Next, we need to modify the walksTrailvViewModelTest class constructor by adding the
[TestFixture] attribute which sets up our class to be an instance of the TestFixture
testing class. Proceed and enter in the following code snippet:

[TestFixture]
public class WalksTrailViewModelTest

{

WalksTrailViewModel _vm;

5. Then, create the Setup instance method that will be responsible for creating a new instance
of our ViewModel for each of the tests that are declared within the class. This is to ensure
that each test is run using a clean instance of the ViewModel. We then proceed to declare a
navMock variable instance of the Mock class from our Moq library to create a new instance
of the IwalkNavService and instantiate the walksTrailViewModel, using the navMock
instance. Proceed and enter in the following code snippet:

[SetUp]
public void Setup()

{

var navMock = new Mock<IWalkNavService>().0Object;
_vm = new WalksTrailViewModel(navMock);

}

6. Next, we need to implement the CheckIfwalkEntryIsNotNull instance method that will
check to see if our walksTrailviewModel has been properly initialized when the Init
method is called. We declare the [Test] attribute which is essentially an abstract class that
represents a test within the Nunit.Test framework. We proceed to initialize our WalkEntry
model to null, and then call the Init method to check to see if the walkEntry model has
been properly set to the value provided in the Init method's parameter and then use the
IsNotNull method on the Assert class to display a message should the test fail. This is so
that you can troubleshoot the code at a later point. Proceed and enter in the following code

snippet:
[Test]
public async Task CheckIfWalkEntryIsNotNull()
{
// Arrange
_vm.WalkEntry = null;
// Act
await _vm.Init();
// Assert
Assert.IsNotNull(_vm.WalkEntry, "WalkEntry is null
after being initialized with a valid WalkEntries object.");
}
3
}

In the preceding code snippet, we began by implementing the various instance methods that will
be required to perform each test for our walksTrailviewModel. We added the [TestFixture]
attribute at the beginning of our class constructor so that it will be an instance of the
TestFixture testing class. We then proceeded to create the Setup instance method so that it will
be responsible for creating a new instance of our ViewModel for each of the tests that are
declared within the class, using the [Test] attribute. This is essentially an abstract class that
represents a test within the NUnit.Test framework, and ensures that each test is run using a clean
instance of the ViewModel.

Next, we used the Mock class from our Moq library to create a new instance of the
IwalkNavService when instantiating the walksTrailViewModel.

In the next step, we implemented the CheckIfwalkEntryIsNotNull instance method that will
perform a check to see if our walksTrailviewModel has been properly initialized whenever the
Init method has been called. Again, we declared the [Test] attribute prior to initializing our
WalkEntry model to null, and prior to calling the Init method to check to see if the walkEntry

model has been properly set to the value provided in the Init method's parameter. After that, we
used the IsNotNull method on the Assert class to display a message should the test fail. This is
so that you can troubleshoot the code at a later point.

In the next section, we will begin by creating the second unit test which will be responsible for
validating information contained within our walkEntryviewModel to ensure that after our
ViewModel has been initialized, we receive the expected results returned.

Creating and implementing the WalkEntryViewModel NUnit
test class

In the previous section, we created the NUnit test for our WwalksTrailviewModel which checked
to ensure that the walksEntry model was properly initialized after the Init method was called.
In this section, we will create another NUnit test that will check to see if certain properties within
our WalksEntryviewModel have been set up and initialized.

Let's now start to implement the code required for our walkEntryviewModelTest class by
performing the following steps:

1. Create an empty class within the TrackMywalks.UnitTests project solution folder, by
choosing Add | New File.... If you can't remember how to do this, you can refer to the section
entitled Creating and implementing the WalksTrailViewModel NUnit test class, within this
chapter.

2. Then, enter inwalkEntryviewModelTest for the name of the new class that you want to
create, and click on the New button to allow the wizard to proceed and create the new file.

3. Next, ensure that the walkEntryviewModelTest.cs file is displayed within the code editor,
and enter in the following code snippet:

//
// WalkEntryViewModelTest.cs
// WalkEntryViewModel Testing Framework
//
// Created by Steven F. Daniel on 23/09/2016.
// Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.
//
using NUnit.Framework;
using TrackMyWalks.ViewModels;
using TrackMyWalks.Services;
using Mogq;
using System.Threading.Tasks;

namespace TrackMyWalks.UnitTests

{

4. Next, we need to modify the walkEntryViewModelTest class constructor by adding the
[TestFixture] attribute just as we did in the previous section. This sets up our class to be
an instance of the TestFixture testing class. Proceed and enter in the following code
snippet:

[TestFixture]
public class WalkEntryViewModelTest

{
WalkEntryViewModel _vm;

5. Then, create the Setup instance method that will be responsible for creating a new instance
of our ViewModel for each of the tests that are declared within the class. This is to ensure
that each test is run using a clean instance of the ViewModel. We then use the Mock class
from our Moq library to create a new instance of the IwalkNavService when instantiating

the walkEntryVviewModel. Proceed and enter in the following code snippet:

[SetUp]
public void Setup()

{

var navMock = new Mock<IWalkNavService>().Object;
_vm = new WalkEntryViewModel(navMock);

}

. Next, we need to implement the CheckIfEntryTitleIsEqual instance method that will
check to see if our Title property has been properly initialized when the Init method has
been called. We'll declare the [Test] attribute just as we did in the previous test, and then
we'll proceed to initialize the Tit1le property and call the Init method to check whether the
Title property has been initialized correctly to the value provided in the Init method's
parameter.

. Next, we use the AreEqual method on the Assert class to check to see if the Tit1le property
has been initialized correctly, and then display a message containing the value of the Title
property from the ViewModel, should the test fail. Proceed and enter in the following code
snippet:

[Test]
public async Task CheckIfEntryTitleIsEqual()

{
// Arrange

_vm.Title = "New Walk";

// Act
await _vm.Init();

// Assert
Assert.AreEqual("New wWalk", _vm.Title);

}

. Then, we need to implement the CheckIfDifficultyIsEqual instance method and declare
the [Test] attribute, prior to initializing our Difficulty property to a string value, and then
calling the Init method. In the next step, we use the AreEqual method on the Assert class
to check whether the Difficulty property has been initialized correctly, and display a
message containing the value of the Difficulty property from the ViewModel, should the
test fail. Proceed and enter in the following code snippet:

[Test]
public async Task CheckIfDifficultyIsEqual()

{
// Arrange

_vm.Difficulty = "Easy";

// Act
await _vm.Init();

// Assert
Assert.AreEqual("Easy", _vm.Difficulty);

9. Next, we need to implement the CheckIfKilometersIsNotEqual instance method that
declares the [Test] attribute just as we did in the previous test. We then initialize our
Kilometers property to a Double value, and call the I1nit method. In the next step, we use
the AreEqual method on the Assert class to check to see if the Kilometers property has
been initialized correctly, and display a message containing the value of the Kilometers
property from the viewModel, should the test fail. Proceed and enter in the following code

snippet:
[Test]
public async Task CheckIfKilometersIsNotEqual()
{
// Arrange
_vm.Kilometers = 40.0;
// Act
await _vm.Init();
// Assert
Assert.AreNotEqual(40.0, _vm.Kilometers);
}
}
}

In the preceding code snippet, we began by implementing the various instance methods that will
be required to perform each test for our walkEntryviewModel. We added the [TestFixture]
attribute at the beginning of the class constructor so that it will be an instance of the TestFixture
testing class; and then proceeded to create the Setup instance method so that it will be
responsible for creating a new instance of our ViewModel for each of the tests that is declared
within the class, using the [Test] attribute which is essentially an abstract class that represents a
test within the NUnit.Test framework, and ensures that each test is run using a clean instance of
the ViewModel.

Next, we used the Mock class from our Moq library to create a new instance of the
IwalkNavService when instantiating the walkEntryVviewModel. In the next step, we
implemented the CheckIfEntryTitleIsEqual instance method that will perform a check to see
if the Title property has been properly initialized whenever the 1nit method has been called.
Again, we declare the [Test] attribute prior to initializing the Tit1le property of the walksEntry
model, and prior to calling the AreEqual method on the Assert class to check to see if the Title
property has been initialized correctly. We then displayed a message containing the value of the
Title property from the ViewModel, should the test fail.

Next, we implemented the CheckIfDifficultyIsEqual instance method that will initialize the
Difficulty property to a string value, and then call the Init method of the
walkEntryViewModel. We called the AreEqual method on the Assert class to confirm that, after
we call the Init method, the value of the Difficulty property from the ViewModel is the value
that we expect to come back from the provided Mock instance. If the value is not what we expect,

the test will fail and will display a message containing the value of the Difficulty property
from the viewModel.

In our final step, we implemented the CheckIfKilometersIsNotEqual instance method that
initializes our Kilometers property to a Double value, and then calls the Init method. Just as
we did in our CheckIfDifficultyIsEqual instance method, we used the AreNotEqual method
on the Assert class to confirm that, after we call the I1nit method, the value of the Kilometers
property from the ViewModel is the value that we expect to come back from the provided mock
instance. If the value is not what we expect, the test will fail and will display a message
containing the value of the Kilometers property from the ViewModel.

For each test method that you create that will be represented by the NUnit [Test] attribute, the
Arrange-Act-Assert pattern will follow. This is described in the following table:

Test Description
pattern
Arrange This will essentially perform all the setting up and initialization conditions for your
8 test.
Act This ensures that your test will successfully interact with the application.
This will examine the results of the actions that were initially performed within the
Assert :
Act step to verify the results.

You can now see, that by incorporating the NUnit.Framework within your applications, as well
as adopting the Arrange-Act-Assert pattern, you can essentially perform tests on your
ViewModels to ensure that the results you are expecting are returned.

Note

If you are interested in learning more about the NUnit .Framework.Test class, and its associated
methods, please refer to the information contained at

https://developer.xamarin.convapi/type/NUnit. Framework.Internal. Test/ .

To learn more about the NUnit.Framework.Assert class and other methods that you can use to
handle the different types of assertions, please refer to the information located at

https://developer.xamarin.convapi/type/NUnit.Framework.Assert/ .

Now that you have created your unit tests, our next step is to begin running our tests right within
the Xamarin Studio IDE, which we will be covering in the next section.

https://developer.xamarin.com/api/type/NUnit.Framework.Internal.Test/
https://developer.xamarin.com/api/type/NUnit.Framework.Assert/

Running the TrackMyWalks.UnitTests using Xamarin Studio

In our previous section, we created and implemented unit tests for both the
wWalksTrailViewModel and the walkEntryViewModel. These contained sets of various test
conditions that we checked against.

Our next step is to begin running these unit tests directly from within the Xamarin Studio

development environment.

Let's look at how we can achieve this with the following steps:

1. To run a unit test, right-click on the TrackMywalks.UnitTests project within the Solution
pane, and choose the Run Item option, as shown in the following screenshot:

L

i) > O TracksyWalks.ios » [Debug » []

[salution

Trackhy'Walks
TrackMyiValks Tasts

L]
L]

Relerences
Packapes (1 updabe)
[packages.contig
Z_:'| WaEEninyVirwddode Tast ca
1] Wb T rdlVinswidnonTast.cs
TrackhtyWakes
Trac kihy'Wabcs Dircied
TrackhyWalks i05

i WalkEntry ViewModel Test.cs

Mo selection
lE i
Build TrackMyWalks.UnitTests
Rebuild TrackMyWalks.UnitTests

Clean TrackMyWalks UnitTests
Unkoad

View Archives

Run ltem
Start Debugging em
Rurn With
Set As Startup Project

Add

Tools
version Control

Analyze Source
Find in Files...
Rewveal in Finder

Copy

Cut
Delete
Rename...

Options

Refresh

HE
~ 8K
i BK

{+3EF

®C
BX

whModelTest.cs
wModel Testing Framework

iteven F. Daniel on 23/09/2016.
2016 GENIESOFT STUDIOS. All rights reserved.

ework;
ks.ViewModels;
ks.Services;
‘eading. Tasks;

lyWalks.Tests

1]

i WalkEntryViewModelTest

yViewModel _wm;

gaold Setupl)

wR

navMock = new Mock<IWalkMavServices().Object;
= new WalkEntryViewModel({navMock);

A Errors [Application Output

4 TestResults

saipadod [T

S15] P

2. Alternatively, you can also run the unit test by selecting the TrackMywalks.UnitTests
solution project and then navigating to the Run menu option and choosing the Run Unit
Tests sub-menu item.

When the compilation of the unit tests has completed, you will be presented with a list showing
each of your test results that have passed, failed, or were ignored. These are displayed within the
Test Results pane, as shown in the following screenshot:

% Tast Resulis

& Buccessful Tests meanchsive Tests | @ Failed Teas lgrored Tests @ Qutput ‘v Rerun Tests

40 Test results for TrackMyWalks.UnitTests configuration Debug

@ TrackMyWalks. TrackMyWalks. Tasts, TrackiyWalks, Liri Tests. Track by Walks, Tasts. WalkEntryViswhode Test. ChackIf DifficultylsEgual

& TrackMy'Walcs. TrackkyWalks Tests. TrackMy'Walks. Uit Tesis Trackbly Walles Tests WalkEntryViewhModeTest. CheckIFErmry TitleisEgqua
* 0 TrackMy'Wwalks TrackhyWalks Tasts TrackhMy'Walks, UniTests. TrackhyWalks. Tests, WalkEntryViewhodel Test. CheckilKiometersiapetE qual
* D TrackMyWalis, TrackMyWalks. Tests, TrackhMyWalks, UnaTests. Trackhy Walks, Tasts, Walks TrailviswModel Tast. CheckiTWalkEnirylsMothull

Pasaed: 2 Failed: 2 Errors: 0 Inconclusive: 0 invalid: 0 lgnored: 0 Skipped: 0 Time: 00:00:00.5150000

A Erors B Application Output 4 Test Results

Should any of your tests fail, these will be displayed within the Test Results pane, along with
their associated Stack Trace. You will also notice that the message that we provided within the
Assert.AreEqual method will also be displayed as part of the failure result:

4 Test Results

& Sucoesshd Tasts Inconclsive Tests | @ Failed Tests igriored Tests @ Ouipus » Fanun Tasts

) Test results for TrackMyWalks. UnitTests configuration Debug
* @ TrackMy'Walks. TrackbiyWalks Tests TrackhMy'Walks, UnitTests, TrackbyWalks. Tests WalkEriryViewbdodel Test. CheckifKilemetarsisNatEqus

Expected: not 48.0d
But was: +48.8d
= Stack Trace

Al WUriL Framevoek Assen That (System.Obgect actual, Hunit Framewark Constraimts. IResolveConstrainl exprassion, System. Siring message, System.Obiect[] args) [0x00035] in <a?tE04361
at WUt Framewors. Asser AraMatEqual (System.Doulle expacted, System.Double actual] [0x00017] in <aM60J36Mc2e4 M6380a2 619401514200
at TrackMyWalks, Tests. WalkEntryViewhModel Tast+ «ChackifKilometersisMatEqual»c__async? MaveMext [[OxDD0sE] in (Usersistevandaniel/Projects/ Trackby'walks| TrackMyWalks, Linit Test s/
at WUnit. Framework Asynclmeocationfegion+Async TaskinvocationRegion. WaitForPending Operations ToCamplete [System.Object invocationResult) [0x00045] in <7461 cbfdcB477 20409728
&t WUt Core NUnitAsyne TestMethod RunTestMethod () [0x00046] in <7463 1chide6477abdcB7 2560 2al 206> 0

* @ TrackMyWalks. TrackbyWalks. Tasts, TrackMyWalis, LinitTests, Track My Walks. Tasts, Walks TralViewhodal Test, ChackitWalkEnbrylsMatkull

WalkEntry 1% null after being initialised with & valid WalkEntries shject.
Expected: pat aull
But was: null

B Sack Trace

Pagged: 2 Falled: 2 Ervors: 0 Inconclusive: O invalid: 0 lgnored: 0 Skipped: 0 Timec D0-00-00. 3150000

£ Errors 3 Application Outpat 4 Test Results

From this screen, you have the option of filtering your test results or re-running your unit test
conditions again. These are explained in more detail in the following table:

Test result

. Description
option

Successful [[This will display all the successfully executed tests which passed the conditions
Tests as specified within the test case.

Inconclusive
Tests

This will display any test results that were found to be inconclusive, meaning that
a firm result could not be determined.

This option displays a list of any tests that did not meet the conditions as specified

Failed Tests|| . ..)
within the test case scenario.

Ignored This option displays a list of any tests that were ignored as specified by the
Tests [Ignore] attribute.

This option displays a console output for each of the tests that are executed and
Output will contain any tests that have successfully passed, failed, been ignored, or were
found to be inconclusive.

This option enables you to re-run your tests again, without the need for

Rerun Tests -
recompiling your test cases.

Now that you have a good understanding of how to create your own unit tests using the NUnit
testing framework, we can now look at how to create another form of unit testing, which is called
automated UI testing. This time we will be leveraging the UlTest framework which will enable us
to perform tests on the user interface portion of our TrackMywalks app which we will be
covering over the next sections.

Creating a Ul test project using Xamarin Studio

In the previous section, we saw how easy it is to create a set of unit tests that enable us to test our
ViewModels within the TrackMywalks project. Whilst unit testing ensures that a significant
amount of code is tested, it is primarily focused on testing the actual business logic within the
app. This leaves the user interface portions of the app still untested, but the beauty of using UI
testing allows us to automate specific actions within our app's user interface to ensure that it is
working as expected.

Fortunately, Xamarin Studio provides you with a rich set of tools for performing automated Ul
tests, and these can be both written in C# and make use of the UlTest framework. Let's start by
creating a new UlTest project within our TrackMywalks.Tests project solution, by performing
the following steps:

1. Right-click on the TrackMywalks.Tests solution project and choose the Add | Add New
Project... menu option. If you can't remember how to do this, you can refer to the section
entitled Creating a unit test project using Xamarin Studio, located within this chapter.

2. Next, choose the UI Test App option located within the Xamarin Test Cloud section, under
the Multiplatform | Tests section. Ensure that you have selected C# as the programming
language to use, as shown in the following screenshot:

o

L NN] Mew Project

Choose a template for your new project

5% Multiplatform Xamarin Test Cloud
App
Library ‘s
B ios ‘. ,
App .
Extension
Library
Ul Test A
Tests P
This template includes a basic test fixture
[watchOS and configuration for automated Ul
testing.
A_ip Xamarin subscribers and trial users can
Library run tests on over 1,000 devieas on
Xamarin Test Cloud.
= tv0S
Ul tests can also be run locally using
App connected devices and simulators.
Extension
Library
Android
App
Library
Tests
Canml m E

Then, click on the Next button to proceed to the next step in the wizard.

Next, enter TrackMyWalks.UITests to use as the name for your new project as the Project
Name field.

Then, ensure that the Create a project directory within the solution directory. has been
selected, as shown in the following screenshot:

eC e Mew Project

Configure your new project

PREVIEW
0 usersjstevendan...yWalks UnitTests
0 TrackMyWalks. UITests
[TrackMyWalks.UITests.csproj

Project Name: TrackMyWalks.UlTemsl h

Solution Name:

Location: E.IUsers.’stﬂendaniel,.'Pmiects.fTrackMyWalks.fTrackMyWall Browse...

Create a project directory within the solution directory. h

Version Control:

6. Finally, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Xamarin Studio development
environment, with your new project created within the TrackMywalks.Tests solution folder.

You will notice that by default our project has created a file named Test . cs that we can use to
write our UlTests, as well as a class named AppInitializer.cs thatis essentially used by the
Test.cs class to create an IApp instance and start the app for each test condition. Since we will
only be creating one UlTest for this chapter, we can essentially just use the Test .cs file for now.

In an ideal world, you would be creating various tests, one for each test condition, so it would
make sense to break each of your UlTests into individual files. In the next section, we will learn
about some of the commonly used UlTest methods that we can use while performing UlTests for
our application's user interface.

Understanding the commonly used UITest
methods

As mentioned previously, in this section, we will learn about some of the commonly used methods
that we can use with the UlTest framework. The UlTest framework provides you with a way of
automating the interactions between your iOS, or Android apps using C# and the NUnit testing
platform.

We will be using an instance of the TApp and ConfigureApp classes that will be used to create
our iOS and Android IApp instances to handle all the interactions within the UL

As we progress throughout the next couple of sections, we will be taking a closer look at how to
create IApp instances using the ConfigureApp class. The UlTest framework provides you with
several APIs that you can use to interact with an app's user interface.

The following table describes some of the more commonly used methods and the ones that we
will be using to test the TrackMywalks app:

UlITest methods [|Description
Screenshot() This will essentially take a screenshot of the current state of the app.
Tap() This is used to send a tap interaction to a specific element on the app's

current screen.

EnterText() and [[These methods are used to add and remove text from input elements such as
ClearText() the entry views used within Xamarin.Forms.

This method is essentially used to locate or find elements that are currently

Query() displayed within the app's screen.

This command is commonly used to interact in real-time with the app

Repl
epi0) through the terminal using the UITest APL

This method is used to pause the test until a specific element appears on the

WaitForElement () ; R R .
app's current screen within a specific timeout period.

Methods such as the Query and waitForElement return an AppResult[] object that you can

essentially use to determine the results of the call. An example would be that if you used the
Query method call that returns an empty result set, we can be sure that the element does not exist
within the app's current screen.

Note

It is worth mentioning that currently the UlTest framework only provides support for both the iOS
and Android platforms and doesn't yet provide support for the Windows Phone platform.

As you will see from the methods displayed in the following table, these are essentially all the
members pertaining to the AppQuery class that are used by the Query and WaitForElement
method members of the IApp methods:

AppQuery class .
Description

methods P

Class() Finds elements on the app's current screen, based on their class type.

Marked () Finds elements within the app's current screen, based on their text or
identifier.

css() Performs CSS selector operations on the contents of a WebView on the
app's current screen.

Note

If you are interested in learning more about the various types of UlTest methods, please refer to
the Introduction to Xamarin.UITest at https://developer.xamarin.com/guides/testcloud/uitest/intro-
to-uitest/ .

Now that you understand some of the most commonly used UlTest methods, we can start to
implement some tests which we will be covering over the next couple of sections within this
chapter.

https://developer.xamarin.com/guides/testcloud/uitest/intro-to-uitest/

Setting up and initializing our TrackMyWalks app for UlTest

Prior to starting an app and interacting with it using the UlTest framework, we need to do some
preliminary initialization steps for which we'll make some modifications within the
AppInitializer class. The AppInitializer class contains a static method called StartApp.

This static method is called each time the test's Setup method is called to get an IApp instance. It
currently supports both the 10SApp and AndroidApp as defined by the ConfigureApp class.

One thing that you will notice within the AppInitializer class is that the ApkFile and the
AppBundle have both been commented out. You will need to uncomment these if you would like
to run the tests locally within the unit test pane using Xamarin Studio.

using System;

using System.IO;

using System.Linq;

using Xamarin.UITest;

using Xamarin.UITest.Querlies;

namespace TrackMyWalks.UITests

{

public class AppInitializer

{
public static IApp StartApp(Platform platform)

{

if (platform == Platform.Android)
{
return ConfigureApp.Android
// TODO: Update this path to point
to your Android
// app and uncomment the code if the
app is not
// included in the solution.
// .ApkFile("../../../Droid/bin/Debug
/TrackMyWalks.apk").StartApp();

}

return ConfigureApp.i0S

// TODO: Update this path to point to
your 1i0S app and

// uncomment the code if the app 1is
not included in the

// solution.

// .AppBundle("../../../10S/bin/
iPhoneSimulator/Debug/TrackM

// yWalks.iO0S.app").StartApp();

As you can see from the preceding code snippet, the AppInitializer class contains several
different methods that are part of the ConfigureApp method. The following table provides a brief
description of what each one is used for:

Configure App methods [[Description

This method is used for specifying the path to the app bundle to use

AppBundle() during testing

StartApp() This method essentially launches the app within the simulator.

This method is essentially used to enable debugging and logging of
messages and is particularly useful if you need to troubleshoot
problems when running the application using the simulator.

Debug()

This can be used to detect iOS simulators using the following

DevicelIdentifier () command line statement:

This method configures the device to use with the device identifier.
xcrun instruments -s devices

This method is used to enable screenshots when you're running tests
EnablelLocalScreenshotsfllocally. By default, screenshots are always enabled whenever tests
are being run using Xamarin Test Cloud.

This method will essentially pause the test execution and invoke the

Repl
epl() REPL in a terminal prompt.

As you can see, the AppInitializer file doesn't contain much information, but as we work our
way through this chapter, we will be adding the Xxamarin.TestCloud.Agent to the iOS portion
of the TrackMywalks app so that we will be able to run our UlTests.

Implementing the CreateNewWalkEntry using the
UlTest.Framework

In the previous section, we looked at some of the different types of methods that we can use to
customize the AppInitializer class so that we can specify different app bundles to use during
testing, as well as to enable screenshots, and provide the ability to debug our unit tests within the
Xamarin Studio environment.

In this section, we will begin by implementing a UlTest that we can use to handle signing into
Facebook and creating a new walk entry using the UlTest framework.

Let's now start to implement the code required for our class by performing the following steps:

1. Openthe Test.cs file which can be located within the TrackMywalks.UITests project as
part of the TrackMywalks.Tests solution folder.

2. Next, ensure that the Test.cs file is displayed within the code editor, and enter in the
following highlighted code sections, as shown in the code snippet:

using System;

using System.IO;

using System.Linq;

using NUnit.Framework;

using Xamarin.UITest;

using Xamarin.UITest.Querlies;

namespace TrackMyWalks.UITests

{
[TestFixture(Platform.Android)]

[TestFixture(Platform.i0S)]
public class Tests

{
IApp app;
Platform platform;

3. Then, modify the Tests instance method that will be responsible for creating a new instance
of our IApp instance. We update our entryCellPlatformClassName string variable to
return the type of TextField, dependent on the platform that we are testing on. Under iOS,
we use the UITextField, whereas under Android it will use the default
EntryCellEditText class. Proceed and enter in the highlighted code sections within the
following code snippet:

string entryCellPlatformClassName;
public Tests(Platform platform)
{

this.platform = platform;

entryCellPlatformClassName = platform
== Platform.1i0S

? "UITextField"
"EntryCellEditText";

}
[SetUp]

public void BeforeEachTest()

{
app = AppInitializer.StartApp(platform);

}
[Test]

public void AppLaunches()
{

}

4. Next, create the SignInToFacebook instance method that will be responsible for handling
the test's steps specifically to the Facebook sign-in process. This uses the user's login
credentials to automate the login process prior to carrying out other steps within the UIL.
Proceed and enter in the highlighted code sections within the following code snippet:

app.Screenshot("First screen.");

// Perform signing in to Facebook
public void SignInToFacebook()

{
// Set up our Facebook credentials
var FaceBookEmail = "<Your-Facebook-Email-Address> ";
var FaceBookPassword = "<Your-Facebook-Password>";
// Wait for Login button within Facebook oAuth webview
// to appear.
app.wWaitForElement(x => x.WebView().Css("[name=login]"));
// Enter text within the webview with name="email"
app.EnterText(x => x.WebView().Css("[name=email]"),
FaceBookEmail);
// Enter text within the webview with name="email"
app.EnterText(x => x.WebView().Css("[name=pass]"),
FaceBookPassword);
app.ScrollbownTo(x => x.WebView().Css("[name=login]"));
// Tap the button in the webview with name="login"
app.Tap(x => x.WebView().Css("[name=1login]"));
}

5. Then, create the PopulateEntryCellFields instance method that will be responsible for
handling the test steps specifically for the creation of a new walk entry. In this method, we
make use of both the ClearText and EnterText methods of the UlTest framework that will
locate each entry field within the New Walk Entry form and populate it with the necessary
information. The DismissKeyboard method will, as the name suggests, dismiss the
keyboard from the view and continue to the next step. Proceed and enter in the highlighted
code sections within the following code snippet:

// Populate our EntryCell Fields
void PopulateEntryCellFields()

// Clear the default text entry for our Title EntryCell
app.ClearText(x => x.Class

(entryCellPlatformClassName).Index(0));
app.DismissKeyboard();

// Enter in some default text for our Title EntryCell

}

app.EnterText(x => x.Class

(entryCellPlatformClassName).Index(0),

"This is a new walk Entry");
app.DismissKeyboard();
// Enter in some default text for our Notes EntryCell
app.EnterText(x => x.Class(entryCellPlatformClassName).Index(1),
"New Note Entry For Walk Entry");
app.DismissKeyboard();
// Clear the default text for our Image Url EntryCell
app.ClearText(x => x.Class(entryCellPlatformClassName).Index(6));
app.DismissKeyboard();
// Enter in some default text Image Url EntryCell
app.EnterText(x => x.Class(entryCellPlatformClassName).Index(6),"
https://heuft.com/upload/image/

400x267/no_image_placeholder.png");

app.DismissKeyboard();

6. Next, create the ChooseDifficultyPicker instance method that will be responsible for
displaying the difficulty picker that contains various choices of difficulty for the user to
choose from. All we are doing here is displaying the picker when the user taps into the cell
entry, and dismissing the picker from the view when then user taps the Done or 0K buttons.
Proceed and enter the highlighted code sections, as shown within the following code
snippet:

// Automatically tap into the Difficulty Cell to display the
// Difficulty Picker, and dismiss it by pressing the Done or
// OK button.
public void ChooseDifficultyPicker()

{

}

// Tap into Difficulty EntryCell
app.Tap(x => x.Class(entryCellPlatformClassName).Index(5));
// Tap Done located within the Difficulty Picker Cell
if (platform == Platform.iOS)
app.Tap(x => x.Marked("Done"));
else
app.Tap(x => x.Marked("OK"));

7. Then, create the createNewwalkEntry UlTest method that includes the [Test] attribute.
This is an abstract class that represents a test within the UlTest and NUnit.Test framework.
This method will essentially be the main test driver and will call each of the other instance
methods that we've previously declared. Within this method, we call our
SignInToFacebook method to perform the sign-in to Facebook, using the user's Facebook
credentials.

Upon successful login, we use the WaitForElement method to wait until the main Track My

wWalks screen has been displayed, prior to using the Assert.IsTrue method to check to see
if the Track My walks screen is displayed. If it's not displayed, our test will fail and
display the assigned error message within the Test Results screen. Proceed and enter the
following code sections shown within the following code snippet:

10.

[Test]
public void CreateNewWalkEntry()

{

// Sign in to Facebook

SignInToFacebook();

// Wait for main screen to appear and check for our

// navigation title.

var navigationBarTitle = (platform == Platform.iOS ?
"Track My Walks - ios"

"Track My Walks - Android");
var mainScreen = app.WaitForElement(x => x.Marked
(navigationBarTitle).Class("UINavigationBar"));

// Check to see if the Track My Walks - i0S main screen is
// displayed.
Assert.IsTrue(mainScreen.Any(), navigationBarTitle + " screen
wasn't shown after signing in.");

Next, we use the Tap method of the app class instance and the Marked method to find the Add
element within the app's current screen, and wait until the New walk Entry page is
displayed within the screen. We then proceed to use the Assert.IsTrue method to check to
see if the New Walk Entry screen has been successfully displayed. Alternatively, our test
will fail and display the assigned error message within the Test Results screen. Proceed
and enter in the highlighted code sections shown within the following code snippet:

// Click on the Add button from our main screen and wait for

// the New Walk Entry screen to appear.

app.Tap(x => x.Marked("Add"));

var newWalkEntryBarTitle = "New Walk Entry";

var newWalkEntryScreen = app.WaitForElement(x => x.Marked(newWalk
EntryBarTitle));

// Check to ensure that our New Walk Entry screen was displayed.
Assert.IsTrue(newWalkEntryScreen.Any(), newWalkEntryBarTitle + "
screen was not shown after tapping the Add button.");

Then, we call the PopulateEntryCellFields and ChooseDifficultyPicker instance
methods to populate our entry cell fields and handle the display of the difficulty picker
selector. In our final steps, we use the Tap method of the app class instance, and we use the
Marked method to find the Save element within the app's current screen. We'll wait until the
Track My Walks page is displayed, before using the Assert.IsTrue method to check to
see if the Track My Walks screen has been successfully displayed. Alternatively, our test
will fail and display the assigned error message within the Test Results screen. Proceed
and enter the following highlighted code sections, as shown within the following code
snippet:

// Populate our Entry Cell Fields
PopulateEntryCellFields();

// Display our Difficulty Picker selector.
ChooseDifficultyPicker();

// Then tap on the Save button to save the details and exit

// the screen.
app.Tap(x => x.Marked("Save"));

// Next, wait for main screen to appear

mainScreen = app.WaitForElement(x => x.Marked
(navigationBarTitle).
Class("UINavigationBar"));

// Check to see if the Track My Walks - i0S main screen is
// displayed.

Assert.IsTrue(mainScreen.Any(), navigationBarTitle
+ " screen wasn't shown after signing in.");

In the preceding code snippet, we began by implementing the various instance methods that will
be required to perform each test for our CreateNewwalkEntry. We added the [Test] attribute to
our CreateNewwWalkEntry instance method. This method will essentially be the main test driver
and call each of the other instance methods that we've previously declared. Within this method,
we call our SignInToFacebook method to perform the sign-in to Facebook, using the user's
Facebook credentials. Upon successful login, we use the waitForElement method to wait until
the main Track My Walks screen has been displayed.

In the next step, we used the Tap method of the App class instance, and use the Marked method to
find the Add element within the App's current screen, and wait until the New Walk Entry page is
displayed within the screen. We then proceed to use the Assert.IsTrue method to check to see if
the New Walk Entry screen was successfully displayed. Alternatively, our test will fail and
display the assigned error message within the Test Results screen.

Adding the Xamarin Test Cloud Agent to the
i0S project

Now that you have created your UlTest, the next step is to add the Xamarin Test Cloud Agent
NuGet package to our TrackMywWalks.i0S project. This library allows you to execute your
Xamarin.UITest, using C# and the NUnit framework to validate the functionality of iOS and
Android apps within the Xamarin Studio development environment.

Let's look at how to add the Xamarin Test Cloud NuGet package to our TrackMywalks.i0S
project, by performing the following steps:

1. Right-click on the Packages folder that is contained within the TrackMywalks.i0S project,
and choose the Add Packages... menu option, as you did in the section entitled, Adding the
Moq NuGet package to the unit test project, located within this chapter.

2. This will display the Add Packages dialog. Enter in Cloud Agent within the search dialog,
and select the Xamarin Test Cloud Agent option within the list, as shown in the following

screenshot:
08 Add Packages
nuget.org 1 Cloud Agent]

Appinternals Agent Cloud Support 323 Yamarin Test Cloud Agent

Configure an Azure Cloud Service solution for Appinternais application Xamarin Test Cloud Agant

performance monitaring.
Id Xamarin. TestCloud. Agent
Authaor Xamarin Inc.
Published A0/052016
Downloads 288 008
License View Licanse
Project Page Visil Page
Dependencies Mone

Microsoft Azure Configuration Manager 6,493,128

Microsoft Azure Configuration Manager provides a unified API to load
configuration settings regardless of where the application is hosted - whether on-
premises or in @ Cloud Service.

FSharp.CloudAgent 1.179
Allows the use of distributed Fg Agerts in Arure.

Agent ServiceBus 286

De agent voor de servicebus

DeCoAgentLib.Net 275 Version 0.20.3
DeCoAgentLib provides an application programming interface (AP} for T

manlamantinn tha dalinerative coheranca-driven anant MMaCnlaant] whickh

Show pre-release packages Close | Add Package l

3. Finally, click on the Add Package button to add the NuGet package to the Packages folder

contained within the TrackMywalks.i0S project.

Now that you have added the Xamarin Test Cloud Agent NuGet package, our next step is to begin
by modifying the AppDelegate class within the TrackMywalks.i0S portion of our project. We
will be covering this in the next section.

Updating the TrackMyWalks AppDelegate class to handle
Xamarin Test Cloud Agent

Prior to running UlTests within Xamarin Studio, we will need to add the Xamarin Test Cloud

Agent NuGet package to the iOS portion of our TrackMywalks app. Under Android, this is not

required as the Xamarin Test Cloud Agent is provided by the UlTest framework.

In this section, we need to update the AppDelegate class, by modifying the FinishLaunching
method located within our TrackMywalks.i0S project. This will include a compiler directive

that will start the Xamarin Test Cloud Agent.

Let's look at how we can achieve this with the following steps:

1. Openthe AppDelegate.cs file located within the TrackMywalks.i0S project.

2. Next, ensure that the AppDelegate.cs file is displayed within the code editor, and locate

the FinishLaunching method and enter in the following highlighted code sections:

//
//
//
//
//
//
//

AppDelegate.cs
TrackMywWalks

Created by Steven F. Daniel on 04/08/2016.
Copyright © 2016 GENIESOFT STUDIOS. All rights reserved.

using Foundation;
using UIKit;

namespace TrackMyWalks.iOS

{

[Register ("AppDelegate")]
public partial class AppDelegate : global::Xamarin.Forms.
Platform.i0S.FormsApplicationDelegate

{

public override bool FinishedLaunching
(UIApplication app, NSDictionary options)

global: :Xamarin.Forms.Forms.Init();

// Integrate Xamarin Forms Maps
Xamarin.FormsMaps.Init();

#if USE_TEST_CLOUD
Xamarin.Calabash.Start();
#endif

LoadApplication(new App());

return base.FinishedLaunching(app, options);

Note

Calabash is basically an Automated UI Acceptance Testing framework that allows you to write
and execute tests that validate the functionality of your iOS and Android apps.

In the preceding code snippet, you will notice that we have defined the USE_TEST_CLOUD
compiler variable that is wrapped within the #if and #endif directive and includes a call to the
Xamarin.Calabash.Start () method that will only be started when it has been defined under
specific configurations as defined within the compiler configuration settings for the project.

Note
If you are interested in learning more about the Calabash framework, please refer to the section

on an Introduction to Calabash which is located at
https://developer.xamarin.convguides/testcloud/calabash/introduction-to-calabash/ .

We have just added in the code that will essentially start our Xamarin Test Cloud functionality.
However, for this to work, we will need to perform one additional step, which is to modify the
compiler configurations for our TrackMywalks.i0S project. Perform the following to achieve
this:
1. Right-click on the TrackMywalks.i0S project, and choose the Options menu option.
2. Next, within the Project Options - TrackMyWalks.iOS dialog, choose the Compiler
option located under the Build section.
3. Then, ensure that you have chosen debug from the Configuration dropdown and that you
have chosen iPhone Simulator from the Platform dropdown.
4. Next, add the USE_TEST_cLOUD; to the list of existing Define Symbols, as shown in the
following screenshot:

https://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/

-] Project Options = TrackMyWalks i0S

* General
Compiler
i Main Settings
¥ Build 3 7 . - -
Configuration: | Debug (Active) | Platform: iPhoneSimulator]
I» General e e

& Custom Commands General Options

& Configurations

e

% Assembly Signing Enabie optimizations
& Output - 3 :
- Generate xml documentation: | TrackMyWalks, i0S, om| Brawse...
Code Analysis : :
B 05 Buid Debug information: Full |
e

IiﬂSDebug : — rwva— e ————————TT————

Define Symbaols: __UMIFIED_;_MOBILE_;_|05_;DEBUG;USE_TEST_CLOUD;|
! 05 On-Demand Resources
B 05 Bundle Signing Platform target: *BE
B 05 IPA Options Warnings

* Run

* & Configurations Worning Levek: |4

P Default lgnore warnings: |
¥ Source Code
EH .MET Naming Policies
»] Code Formatting
[# Standard Header
[i# Mame Conventions

Treal warnings as errors

* Version Control

& Commit Message Style

5. Then, click on OK to save your changes and close the Project Options -
TrackMyWalks.iOS dialog.

Now that you have modified the compiler configurations for our iOS portion of the
TrackMywalks app, we can finally build and run our UlTests using Xamarin Studio, similarly to
what we did when executing our NUnit tests. However, this needs to be handled very differently,
and we will be covering this in the next section.

Running the TrackMyWalks UITests using
Xamarin Studio

Prior to running your UlTests within Xamarin Studio, you will need to add your iOS or Android
apps to the Test Apps node of the Unit Tests pane, or alternatively specifying a path to your app
within the AppInitializer class. If you don't do this, your tests will continue to fail until you
add these projects to your solution.

In this section, we will look at how to go about adding your apps to the Test Apps node within
the Unit Tests pane. Let's look at how we can achieve this with the following steps:

1. To add your iOS and Android apps to your TrackMywWalks.UITests project, select the
View menu option, then choose the Pads sub-menu item, and then the Unit Tests option, as
shown in the following screenshot:

® Xamarin Studio File Edit Search Project Build Run Version Control Tools
& & -3 O » [Debug » Az
| + Code
[&] Solution Debug
v |5 TrackMyWalks i '
rackhyW Test intry() o)
v [TrackMyWalks Tests san. Difamdasicashnard() ;
v | TrackMyWalks.UlTests Solution
v [] References Debug Pads [Classes Fficulty
» [7] From Pack
pR ey Save Current Layout... Toolbox +Class (ef
[7] System i
: _ Properties
t) TrackMyWalks Droid) Document Outline Cated wif
7] TrackMyWalks.iOS Editor Columns = Platfol
» B3 Packages Inling Messages > Errors => x.Marh
[f] Applnitializer.cs Folding > Tasks
/] packages.config ol w+ TR > X.Marl
Zoom Out 3%- Test Results
» | TrackMyWalks.UnitTests efault tq
b [TrackMyWalks Device Log K == x,C]
b [TrackMyWalks.Droid Enter Full Screen ~2eF F# Interactive soard|(; .
b [TrackMyWalks.i0S ' é%l i ‘
98 Application Output .
Package Console |- fcta
99 Kk => X.(]
100 Help poard();
1811

2. Next, right-click on the Test Apps item within the Unit Tests pane and click on the Add App
Project. This will display the Select a project or solution dialog that allows you to select
each of your projects for the various platforms, as shown in the following screenshot:

@ i [B0 : £ Debug » Dafault Fi) p _

] @ Xamarin Studio

=| Solution : LI * Unit Tests Select a projact or solution:

b TrackibyiWallcs
Run All TrackMyWalks
r Trackhy'Walks. Tests

TrackMyWalks

ki TrackMyWalks LHTests ¥ Trackiy\Walis
¥ Aeferences bd TrackbdyWalks Tes o TrackMyWalks.i0S
¥ (3] From Packages v & TrackhyWaks.Ll + T TrackMyWalks.Droid
(X} Systam » E1 TrackMyWalks. Tests
71 TrackhtyWalks Droid ¥ & TrackMy\Walks
I TrackMyWalke 08 TrackidyWalks.LI
¥ I3 Packages
[} Appinitiaizer.ce
[packages.config

* Trackhy'¥Walke. UnitTeats
L TrackMy'Walls
L] Trackhy'Walles. Droid
L Trackhy'Walles. 105

Cance 0K

A\ Errors B Application Output 3 Package Console 4 Test Resulis -

3. Once you have selected the projects that you would like to add to your
TrackMyWalks.UITests solution, click OK and dismiss the dialog.

Note

If for some reason, you don't see your iOS app project listed, you may have forgotten to add
the Xamarin Test Cloud Agent NuGet package to your iOS project.

Once you have successfully added your projects to the TrackMywalks.UITests solution
project, our next step is to run our app and see the results:

4. To run your UlTests, select the Run menu option, then choose the Run Unit Tests menu item,
as shown in the following screenshot.

@ Xamarin Studio File Edit View Search Project Build m Version Control Tools Windoy

o 2 F O » O Debug » Default Xamarin Studio Ent Start Without DEbquing A e
Start Debugging 3 3
Solution =] &> I Run With (3
v [&] TrackMyWaiks
¥ [} TrackMyWalks.Tests
Doug Apphcation...
* | References
» 7 Packages
[} Appinitializer.cs
[%] packages.config
@ Tests.cs

New Breakpoint

New Function Breakpoint

New Exception Catchpoint

View Breakpoints 3B

3 TrackMyWalks. UnitTests
3 Trackhy\Walks
P | TrackMyWalks.Droid
b [TrackMyWalks.iOS

Enable or Disable All Breakpoints
Clear All Breakpoints {+¥ro

Show Disassembly

| RunUnitTests

When your app starts to run, the UlTest framework will automatically deploy your app to the iOS
or Android simulator, and then run the app and process through each of the steps that you have
specified within your test methods. The results from each of the tests will appear within the Test
Results pane within Xamarin Studio.

Summary

In this chapter, we updated the TrackMywalks application by adding a new project solution,
TrackMyWalks.Tests, so that we can separate our tests from the main Portable Class Library.
This gives us the ability to write test cases. We added the Mock framework so that it will provide
us with the ability to successfully test our ViewModels as well as to provide the business logic
behind them.

We then moved onto considering how we can leverage the UlTest framework to write, test, and
execute Ul tests locally by using the Xamarin Test Cloud Agent and the Calabash framework, by
adding the iOS and Android projects to the UlTest solution project.

In the final chapter, you'll learn how to prepare your iOS app for submission to iTunes Connect,
and learn how to set up internal and external users within TestFlight so that your users can
download and test your apps on their iOS devices. To end the chapter, you will learn how to
code-sign your Android apps before publishing, and releasing your Android APK file to the
Google Play Store.

Chapter 10. Packaging and Deploying Your
Xamarin.Forms Applications

In our previous chapter, we updated our TrackMywalks application to allow us to create and run
unit tests using the NUnit and UlTest testing frameworks right within the Xamarin Studio IDE. You
learned how to write unit tests for our viewModels to test the business logic to validate that
everything is working correctly, before moving on to testing the user interfaces portion using
automated Ul testing,

In this chapter, you'll look at what is required to submit your TrackMywalks iOS app to the Apple
App Store, and share your creations with the rest of the community.

You'll learn the steps required to set up your iOS development team, as well as the certificates for
both development and distribution, and learn how to create the necessary provisioning profiles
for both your development and distribution builds, and create the necessary app IDs for your
application.

At the end of the chapter, you will learn how to register your iOS devices so that your users can
download and test your apps on their iOS devices and learn how to prepare your TrackMywalks
iOS app for submission to iTunes Connect, using the Xamarin Studio IDE.

This chapter will cover the following topics:

Setting up your iOS development team

Creating the TrackMywalks iOS development certificate

Obtaining the development certificate from Apple

Registering your iOS devices for testing

Creating your TrackMywalks iOS App ID

Creating the development provisioning profiles

Preparing your TrackMywalks iOS app for submission

Using the provisioning profiles to install the app on the iOS device

Building and archiving your app for publishing using Xamarin Studio

Using Xamarin Studio to submit your TrackMywWalks iOS app to iTunes Connect

Creating and setting up your iOS development
team

You have finally completed building your TrackMywalks app and are ready to release it to the
rest of the world; all you need to do is decide how to deploy and market it. Before you can begin
submitting your iOS applications to the Apple App Store for approval, you will need to first set
up your iOS development team, which can be achieved by following these steps:

1. Loginto the iOS developer portal website at http://developer.apple.conv .

2. Click on the Member Center link that is located right at the top of the screen.

3. Sign into your account using your Apple ID and password. This will then display the
developer program resources page, as shown in the following screenshot:

) ® il = {I} B Apole inc) 4 5 "
@ Developer Member Center
Servers PFrograms & Add-ons Your Account
Hi, 5 n Da | Sig E
SDKs e Forums
Certificates, |dentifiers & Profiles

Bug Reporting

=, iTunes Connect
@ ; ! : : Lac A \{, Technical Support

Copyrighs © 2016 Appke ine. Al fghts resened, Tenms of Lse

4. Next, click on the iTunes Connect button, as highlighted in the preceding screenshot. This is
where you can check on various things such as SalesandTrends, Payments and Financial
Reports, and App Analytics. Take a look at the following image:

http://developer.apple.com/

App Anailytics Sales and Trends Payments and
Financial Reports

5. Next, click on the Users and Roles button, as highlighted in the preceding screenshot. This
will bring up the Users and Roles option pane from where you can add a new user, as
shown in the following screenshot:

aEee (< > D =1 @ i Apple Inc (v t ul ﬂ

Stevan Danlal ~ 6y
Sterven Daniel .

iTunes Connect Lisars and Holes ~
[Tunes Connect Lisers lestFight Beta Testers Sandbox Testers
User (1) ® h Q, Searcl Al bpps v Al Roles + Edit

Apple ID Mama ~ Role Apps

steven.danslifgeneschistudios.com Steven Daniel 1 Admin, Legal All Apps

Note

The Users and Roles screen allows you to add yourself or the people within your
organization who will be able to log in to the iOS developer program portal, test apps on
iOS devices, and add additional iOS devices to the account.

6. Ensure that you are within the iTunes Connect Users section, as highlighted in the preceding
screenshot. Then, click on the + button to bring up the Add New User screen that is shown in
the following screenshot.

7. Next, fill in the User Information section for the person that you will be adding to your
development team. Once you have finished, click on the Next button, as shown in the

following screenshot:

ece I a @© -

iTunes Connect

Add iTunes Connect User

User Inform

First Name
Joseph

Last Nams

Bioggs

Ermiail (T

i Josenh, F-.:|._'|_|-‘.'.t-_|--l'u--'v"'r'-|.. fiOs. com

8. Next, under the Role section, from the list of roles available, choose what roles the user can
perform and then click on the Next button, as shown in the following screenshot:

@ e [@ " 4 [: |

iTunes Connect

Add iTunes Connect User

e

L] L] L] - - L] L]

9. Next, from under the Notifications and Settings sections, this is where you will be assigning
the ways in which you want the user to be notified. From this screen, you also have the
ability of specifying what information relating to a list of territories you want the user to be
notified about, as shown in the following screenshot:

e e 8 @ &

iTunes Connect

Add iTunes Connect User

10. Once you have finished specifying each of the different types of notification methods, click
on the Save button, as shown in the preceding screenshot. The new user account will then be
created, along with a confirmation e-mail that will be sent to the users, accounts, requesting
them to activate their account:

oo ®] =]

|_E]

iTunes Connect | = 1d Rol

Daniel ‘1 i, |

Now that we have covered the necessary steps required to create and assign roles to new users,

as well as setting up which user roles can log into the iOS developer portal to manage new and
existing users, view Sales and Trends reports, as well as Payments and Financial statements,
our next step is to look at the steps involved to generate an iOS development certificate.

This certificate is encrypted and serves the purpose as your digital identification signature, and
you must sign your apps using this certificate before you can submit your apps to the Apple App
Store.

Creating the TrackMyWalks 10S development
certificate

In this section, you will learn how to create the iOS development certificate that will enable us to
run and test our TrackMywalks app on the iOS device. We will begin by generating the iOS
development certificate, which will be encrypted and will serve the purpose of identifying you
digitally.

You will then need to sign your apps using this certificate before you can run and test any
application that you develop on your iOS device. To begin, perform the following simple steps:

1. Launch the Keychain Access application, which can be found in the
/Applications/Utilities folder.

2. Next, choose the Request a Certificate From a Certificate Authority... menu option from
the Keychain Access | Certificate Assistant, as shown in the following screenshot:

LG ETL RS- File Edit View Window Help

About Keychain Access

Preferences... 88,
Certificate Assistant [] Open...
Ticket Viewer X HK Create a Certificate...
? Create a Certificate Authority...
Services

Create a Certificate For Someone Else as a Certificate Authority...
T ol 11 Request a Certificate From a Certificate Authority...

Hide Others v 8H Set the default Certificate Authority...

Show Al Evaluate a Certificate...

Quit Keychain Access #Q

3. Then, we need to provide some information before the certificate can be generated under the
Certificate Information section.

4. Next, enter in the required information, as shown in the following screenshot, whilst
ensuring that you have selected the Saved to disk and the Let me specify key pair
information options:

Certificate Assistant
Certificate Information

Enter information for the certificate you are reguesting. Click
Continue to reguest a certificate from the CA.

User Email Address: Steven.Daniel@gen'esoﬂstudins.cord H

Common Name: | Steven Daniel

CA Email Address:

Reqguest is: Emailed to the CA
@ Saved to disk

Let me specify key pair information

Continue

5. Once all the information has been filled out, click on the Continue button. You will then be
asked to specify a name for the certificate. Accept the default suggested name, and click on
the Save button.

Note

At this point the certificate is being created at the location specified. You will then be asked
to specify the Key Size and Algorithm to use.

6. Next, accept the default of 2048 bits and RSA algorithm. We need to provide some
information before the certificate can be generated under the Certificate Information
section, as shown in the following screenshot:

@ Certificate Assistant

Key Pair Information

Specify the key size and algorithm used to create your key pair.

The key pair is made up of your private and public keys. The
private key is the secret part of the key pair and should be kept
secret. The public key is made publicly available as part of the
digital certificate.

Key Size: 2048 bits d h
Algorithm: = RSA [T] "—
Learn Mare...
Continue

7. Click on the Continue button and then click on the Done button when the final screen
appears.

Up until now, you learned how to generate a certificate request for iOS development, using the
Certificate Signing Request (CSR) using the pre-installed Mac OS X Keychain Access
application, so that we have the ability of code-signing our applications, which will enable us to
deploy our applications to the iOS device for both development and testing.

In our next step, we will learn how to request a development certificate from Apple that will
provide us with the ability of code-signing our applications using our generated certificate
information file that we created in this section.

Obtaining the i0S development certificate from Apple

In this section, we will learn how to obtain the development certificate from Apple, to enable us
to begin developing apps.

Before you can begin submitting your application to the Apple App Store, you will need to obtain
your own copy of the iOS development certificate. This certificate is basically your unique
identity for each of your apps that you submit for approval, so let's get started:

1. Loginto the iOS developer portal website at http://developer.apple.conv .

2. Click on the Member Center link that is located right at the top of the screen.

3. Signinto your account using your Apple ID and password. This will then display the
developer program resources page, as shown in the following screenshot:

@ 8 ¢ B - ® & - [} ol i
® Developer Member Center
] Servers Programs & Add-ons Your Account
Hi, Stewen Dansel | Sign out
SDKs Farums

, '

Certificates, Identifiers & Profiles
i Bug Reporting

iTunes Connect
@ » Technical Support

Copymght & Z016 Appie Imc. All nights eserved. Terms of Lise | Fraacy Policy

4. Next, click on the Certificates, Identifiers & Profiles button, as highlighted in the
preceding screenshot.

http://developer.apple.com/

a @

® Developer

05, w05, watchO5

o Certificates
Al
Pending
Development

Praduction

i ldentifiers
App 105
Fass Type IDs
‘Website Push IDs
iClowd Containers
App Groups

Merchant IDs

Platforms

Certificates, ldentifiers & Profiles

i Apple Ins &
Resources Program Support Member Center Q
Steven Daniel =
i0S Certificates (Development) +|[a

/

Getting Started with i05 Certificates

You will need to set up digital certificates to develop and distribute 105 apps.
To install your app on a development device or submit it ta the App Store, it
muwst first be signed with an Apple-issued certificate. Certificates allow the
system to identify who signed the app.

Request Certificates with Xcode

Then, click on the + button, as highlighted in the preceding screenshot.

@ Developer

i05, tv0S, watchO5

 Certificates
All
Pending
Development

Praduction

i Identifiers
App IDs
Pass Type IDs
Website Push IDs
ICIowd Containers
App Groups

Merchant IDs5

[0 Devices

a @
Platforms

Certificates, ldentifiers & Profiles

& Apple Inc. W
Resources Program Support Member Center Q

Steven Daniel =

Add i0S Certificate

m Regquest Generate .+ Download

What type of certificate do you need?

Development

© 05 App Development
Sign development versions of your i05 app.

Apple Push Notification service 55L (Sandbox)

Establish connectivity between your notification server and the Apple Push Natification service
sandbox environment to deliver remote notifications to your app. A separate certificate is
required for each app yvou develop.

Next, choose the iOS App Development option under the Development section, as
highlighted in the preceding screenshot, and click on the Continue button to proceed to the
next step, as displayed further down the page:

- @ & Appla in e
i0S, tvOS, watchOS - Add i0S Certificate

' Certificates Select Type Request Generate Dovniload
All
Pending . ﬁ

About Creating a Certifica igning Requ R

Development - out Creating a Certificate Signing Request (CSR)
Production

& |dentifiers
App 1Ds To manually generate a Certificate, you need a Certificate Signing Request (CSR) file from your

Mac. To create a CSR file, follow the instructions below to create one using Keychain Access.

Pass Type IDs
Website Push IDs Create a CSR file.

loud Containers In the Applications folder on your Mac, open the Utilities folder and launch Keychain Access.

App Groups Within the Keychain Access drop down menu, select Keychain Access > Certificate Assistant >
Merchant IDs Request a Certificate from a Certificate Authority.

- : ¢ In the Certificate Information window, enter the following infoarmation

W Devices
- In the User Email Address field, enter your email address.

In the Commaon Mame field, create a name for your private key (e.q., John Doe Dev
Apple TV Keyl,
The CA Email Address field should be left empty.

Apple Watch s A 5 -
In the "Reguest is” group, select the "Saved o disk”™ option.
Pad
; ¢ Click Continue within Keychain Access to complete the CS5R generating process
iPhOne
iPod Touch

| Provisioning Profiles
All
Development

Distribution

ORI ... |

Then, click on the Continue button, as highlighted in the preceding screenshot, to proceed to
the next step.

10.

In this section, we considered the steps involved in requesting a certificate from Apple that will
be used to provide us with the ability of code-signing our applications required to deploy onto the

i05, tvO5, watchD5S

4 Certificates
All
Pending
Development

Production

B ldentifiers
App 105
Fass Type IDs
Website Push IDs
iCloud Containers
App Lroups

Merchant IDs

.| Devices
Al
Apple TV
Apple Watch
IFad
iPhone

iPod Touch

Provisioning Profiles
all
Development

Distribution

Add i0S Certificate

Download

R

Generate your certificate.

When your CSR file is created, a public and private key pair is automatically generated. Your
private key is stored on your computer. On a Mac, it is stored in the login Keychain by default
and can be viewed in the Keychain Access app under the "Keys” category. Your requested
certificate is the public half of your key pair.

Upload C5R file.
Select certSigningRequest file saved on your Mac.

Choose File..

Cancel Back [

Next, click on the Choose File... button, as highlighted in the preceding screenshot.

Then, select the CertificateSigningRequest.certSigningRequest file that you created
in the previous sections and click on the Continue button to proceed to the next step in the
wizard.
After a few seconds, the page will refresh and the certificate will be ready and you will be
able to download it.

iOS device and the Apple App Store.

We then moved on to learn how to use the generated certificate request file that we created in our
previous section, Creating the TrackMyWalks iOS development certificate, to generate the

development certificate.

Creating the App ID for the TrackMyWalks (i0S) application

In previous sections, we have learned how to request a certificate from Apple to provide us with
the ability of code-signing our applications, as well as learning how to use the generated
certificate request file to generate our deployment certificate.

In this section, we will be looking at how to create the application App IDs so that we can use
these to deploy our applications to test on an iOS device:

1. Loginto the iOS developer portal website at http://developer.apple.conv .

2. Click on the Member Center link that is located right at the top of the screen.

3. Signinto your account using your Apple ID and password. This will then display the
developer program resources page, as shown in the following screenshot:

L.

L] [s

W Developer

Servers Programs & Add-ons Your Account

SDKs

Certificates, Identifiers & Profiles

IIE)] Tunes Connect

Cognyright © 2016 Apale nc. All Figiis resenve

Member Center

Forums

Bug Reporting

\r‘ Technical Support

d ¢

4. Next, click on the Certificates, Identifiers & Profiles button, as highlighted in the
preceding screenshot.

5. Then, click on the App IDs item located underneath the Identifiers group at the left-hand
side of the page and click on the + button to display the Register iOS App IDs section, as
highlighted in the following screenshot:

http://developer.apple.com/

i05, w0Ss, watchQ5S -

 Certificates
All
Pending
Development

Production

n ldentifiers
App IDs h
Pass Type IDs

Website Push IDs
iCloud Containers
App Groups

Merchant |Ds

. Devices
Al
Apple TV
Apple Watch
Pad
iPhone

iPad Tauwch

Certificates, Identifiers & Profiles Steven Daniel *

Register i0S App IDs .

|D Registering an App ID

The App ID string contains two parts separated by a period (.) — an App ID Prefix that is
defined as your Team ID by default and an App ID Suffix that is defined as a Bundle ID search
string. Each part of an App ID has different and important uses for your app. Learn More
App ID Description
Name:
You cannot use special characters such as @, &,

App ID Prefix

Value: 4C39JMMXBM (Team ID)

6. Next, provide a description for the App ID Description field that will be used to identify
your app, as shown in the preceding screenshot.

Then, provide a name for the Bundle ID field. This needs to be the same as your
application's bundle identifier.

7.

Note

The Bundle ID for your app needs to be unique. Apple recommends that you use the reverse
domain style (for example, com.domainName.appName).

Consider the following screenshot:

To create an explicit App ID, enter a unigue string in the Bundle ID field. This string
should match the Bundle ID of your app.

.ﬂ Bundle ID:

We recommend using a reverse-domain name style string (i.e.,
com.domainname.appname). It cannot contain an asterisk (*).

Wildcard App ID

This allows you to use a single App ID to match multiple apps. To create a wildcard App
ID, enter an asterisk (*) as the last digit in the Bundle ID field.

8. Next, choose from the list of App Services that you would like to enable for your app, and
then click on the Continue button, as shown in the following screenshot:

App Services

Select the services you would like to enable in your app. You can edit your choices after this
App ID has been registered.

Enable Services: App Groups
Associated Domains
Data Protection

Game Center

HealthKit

HomeKit

Wireless Accessory Configuration
Apple Pay

iCloud

nclude CloudKit support
(requires Xcode 6)
n-App Purchase
Inter-App Audio
Wallet
Push Notifications
Personal VPN

Cancel

9. Then, from the Confirm your App ID screen, click on the Register button.

In this section, we covered the necessary steps required to create the App ID for our application.
Creation of App IDs are required for each application that you create and must contain a unique
application ID that identifies itself. The App ID is part of the provisioning profile and identifies
an App or a suite of related applications.

These are used when your applications communicate with the iOS hardware accessories, the
Apple Push Notification Service (APNS), and when sharing of data happens between each of
your applications.

Creating the TrackMyWalks development
provisioning profile

In this section, we will learn how to create the development provisioning profiles so that your
applications can be installed on the iOS device so that you can deploy and test your applications
prior to deploying your app to the Apple App Store:

1. Log back in to the iOS developer portal at http://developer.apple.cony .

2.
3.

i

Click on the Member Center link that is located right at the top of the screen.
Sign in to your account using your Apple ID and password. This will then display the
developer program resources page, as shown in the following screenshot:

ene I a @ A
@ Developer Member Center
Servers Programs & Add-ons Your Account
Hi, Sseven Dardel | Sig it
SDKs " Forums

Certificates, Identifiers & Profiles
P Bug Reporting

o~ iTunes Connect
@ ‘ e A \/ Technical Support

Copymghs © 2016 Appie inc. Al righas reserved

Next, click on the Certificates, Identifiers & Profiles button, as done previously.

Then, click on the All item located under the Provisioning Profiles section located at the
left-hand side of the page.

Next, click on the + button to display the Add iOS Provisioning Profiles section, as
highlighted in the following screenshot:

http://developer.apple.com/

i05, tv0S, watchOS v Add i0S Provisioning Profiles * ’

¢ Ceruficates Select Type Conhgure Generate Downioed
Al
Pending
Development

@ What type of provisioning profile do you need?

Producton

@ identihers
App 103 Development

Pass Type IDs
© i0S App Development

website Push IDs
Create a provisioning profile to install development apps on test devices.

iChoud Containers

App Groups tv05 App Development

Create a provisioning profile to install development apps on tvOS5 test devices

Merchant 1Dy
Ll Devices
Al A &
Distribution
Appie TV
Apple Watch App Store
#ad Create a distribution provisioning profile to submit your app to the App Store
Phone
tvi0S App Store
Pod Touwch

Create a distribution provisioning profile to submit your twOS app to the App Store.

Provisioning Profiles

= Ad Hoc
Al h Create a distribution provisioning profile to install your app on a limited number of registered
Development devices.
Desrribution t\ﬂs M H.g{
Create a distribution provisioning profile to install your app on a limited number of registered
w05 devices

Then, choose the i0S App Development option from the Development section, and then
click on the Continue button to proceed to the next step, as shown in the preceding
screenshot.

Certificates, |dentifiers & Profiles

Stevan Danisl »

i05, tvD5, watchO5 - Add i0S Provisioning Profiles y
All
Pending @.
Development e Select App ID.
Production

@ identifiers

App iDs If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,
Pass Type 105 or want a Bundle ID unique to a single app. use an explicit App ID. If you want to create one
provisioning profile far multiple apps or don't need a specific Bundle ID, select a wildcard
App ID. Wildcard App 1Ds use an asterisk (*) as the last digit in the Bundie ID field. Please
Pload Contaiiems note that i05 App IDs and Mac App IDs cannot be used interchangeably.

Website Push 1D

App Groups

App ID: | GEMESOFTSTUDIOS Products (4C30IMMXEM.com geniegottetudion
Merchant IDs pp ; il : B

[Devices /
All

Apple TV
Apple Watch
iPad

IMhone

iPod Touch

Provisioning Profiles
All

Development

8. Next, select your App ID from the drop-down list available, as shown in the preceding
screenshot, and click on the Continue button to proceed to the next step in the wizard:

Certificates, |ldentifiers & Profiles Steven Daniel *

i0S, tv0S, watchOS = Add i0S Provisioning Profiles

¥ Certificates Select Type Configure Generate © Download

All
Pending @‘
Select certificates.
Development FROV
Production

i Identifiers
Select the certificates you wish ta include in this provisioning profile. To use this profile to

App I0s
install an app, the certificate the app was signed with must be included.

Pass Type IDs

Website Push IDs Select All 1 of 1itemis) selected

ICloud Containers
Steven Danlel (105 Development)
App Groups

Merchant IDs

L] Devices
All
Apple TV
Apple Watch
iPad
IPhone

iPod Touch

L1 Provisioning Profiles

All

Development

Then, choose your certificate from the list of available certificates that you would like to
include to be part of the Provisioning Profiles, and click on the Continue button to proceed
to the next step, as shown in the preceding screenshot.

Certificates, Ildentifiers & Profiles Steven Daniel =

i0S, tvOS, watchOS - Add i0S Provisioning Profiles
all
Pending ﬁ‘
Select devices.
Development PR
Production

o |dentifiers

App IDs Select the devices you wish to include in this provisioning profile. To install an app signed with
A" this profile on a device, the device must be Included.

Fass Type IDs
Website Push IDs select All & of 4 iternds) selecred
ICloud Containers
CENIESTUDIOS iPAD AIR 2
App Groups
Merchant IDs

CENIESTUDIOS AppleWatch (Stainless Steel)

a2
B GCEMIESTUDIOS iPhane 65
a

| Devices

&

Al CERIESTUDIOS AppleWatch (5port)

Apple TV
Apple Watch
iFad

iPhane

Pod Touch

| Provisioning Profiles
Adl

Development

10. Next, choose from the list of devices that you would like to include as part of the
Provisioning Profiles that you are about to create, and click on the Continue button to
proceed to the next step, as shown in the preceding screenshot.

Note

For more information about how to register iOS devices using the Member Center, please
refer to the Apple distribution guide documentation using the following link:

https://developer.apple.convlibrary/ios/documentation/IDEs/Conceptual/AppDistributionGu
CH30-SW10.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW10

Certificates, |dentifiers & Profiles Steven Daniel v

i0S, OS5, watchOS = Add i0S Provisioning Profiles 7
¥ Certificatas Select Type Configure Generate Download
All
Panding {ﬁ'
Name this profile and generate.
Development oV
Production

B2 Identifiers

App IDs The name you provide will be used to identify the profile in the portal.

Pass Type IDs ;
i =l Profile Name: My Development Profile|
‘Website Push I1Ds

; Type: i05 Development
ICloud Containers

App ID: GENIESOFTSTUDIOS Products (4C39]MMXEM.

App Groups . "
com.geniesoftstudios.®)

Merchant IDs
Certificates: 1 Included

[] Devices :
4 Devices: 4 Included

All

Apple TV

Apple Watch

iPad

iPhone

IPod Touch

| Provisioning Profiles
All

Drevelopment

Then, specify a name for the Profile Name field to be used to identify the provisioning
profile within the iOS developer portal, and click on the Continue button to proceed to the
next step, as shown in the preceding screenshot.

Certificates, Identifiers & Profiles Steven Daniel =

i0S, tvDS, watchOS e Add i0S Provisioning Profiles
+ Certificates Select Type Configure Generate Download
Al
Pending {é‘
R Nt Your provisioning profile is ready.
Production
o |dentifiers
App D%

Download and Install
Pass Type IDs Dawnload and double click the following file to install your Provisioning Profile.
Website Push IDs

ICloud Containers
MName My Development Profle

Ap
A Surecen Type 05 Development
Merchant IDs App 1D 4CIYMMXEM.com.geniesoftstudios.
PROV Expires: Mar 29, 2017
Devices

'J ==
Al
Apple TV
Apple Watch
iPad &
Documentation
iFhone For more information on using and managing your Provisioning Profile read
iPod Touch A

App Distribution Guide
| Provisioning Profiles

Al

Development

Distribution Add Ancther Dane

12. Finally, your provisioning profile has been created and is ready to be used. You can choose
to Download your provisioning profile from here, or you can let Xcode handle this for you,
which we will be covering in the next sections.

13. To close this screen, and take you back to the list of Provisioning Profiles, click on the
Done button, as shown in the preceding screenshot.

In this section, we learned how to create a provisioning profile that will allow your applications
to be installed onto a real iOS device. This will give you the ability to assign team members who
are authorized to install and test an application onto each of their devices.

Note

Whenever you deploy an application onto an iOS device, this will contain the iOS development
certificate for each team member, as well as the Unique Device Identifier (UDID), which is a

sequence of 40 letters and numbers that are specific to your device, and the App id.

Preparing the TrackMyWalks (i0S) app for
submission

Now that you have tested your application to ensure that everything works fine and is free from
errors, you will want to start preparing your application so that it is ready for submission to the
Apple App Store.

In this section, we will need to use Xcode and sign in with our Apple ID so that we can download
our provisioning profiles for both development and distribution. This is mainly since Xamarin
Studio uses Xcode to perform its compilation, and if we don't set this up, we won't be able to
submit our TrackMywalks iOS app to the App Store and iTunes Connect.

To begin preparing your application using Xcode, follow these simple steps:

1. Ensure that you have launched the Xcode development IDE and it is displayed.
2. Next, choose the Preferences... menu option from the Xcode | Preferences... menu, or
alternatively press command + , as shown in the following screenshot:

L0 @ Accounts

@ - ¢ » / B MW &

General Accounts Behaviors Mavigation Fonts & Colors Text Editing Key Bindings Source Control Components Locations
Sign in to iCloud with your Apple ID.

Sign in to iCloud with your Apple |1D. Don't have an Apple ID? You can create one for free.

Apple ID Password Forgot?

Create Apple ID Cancel

4 &3

Add Apple ID...
* Add Repository...

Add Server...

3. Next, ensure that the Accounts button has been selected, then click on the + button, and
choose the Add Apple ID... menu option, as shown in the preceding screenshot.

4. Then, enter in your Apple Developer credentials by specifying both the Apple ID and
Password, as can be seen in the preceding screenshot.

O @ Accounts

1@ @ ¢ v /B W b

General Accounts Behaviors Mavigation Fonts & Colors Text Editing Key Bindings Source Control Components Locations

LY AppleID

MIStUdIDS. .,

B steven.daniel@geniesoftstud...

Apple 1D: steven.daniel@geniesoftstudios.com

Description: | steven.daniel@geniesoftstudios.com

Steven Daniel Agent

View Details...

Note

Once Xcode has validated your Apple credentials, you will be presented with a screen like
the one shown in the preceding screenshot. This screen shows you the team that you belong
to, as well as your role within the team. You can also add multiple Apple IDs to this screen.

Now that we have set up our Xcode development IDE to use our iOS development and
distribution provisioning profiles, our next step is to create an entry for our application within
iTunes Connect.

This is so that when we begin to submit our app using Xamarin Studio and the Application
Loader application to the Apple App Store using iTunes Connect, we won't run in to any issues:

1. Log back in to the iOS developer portal at http://developer.apple.cony .

2. Click on the Member Center link that is located right at the top of the screen.

3. Signin to your account using your Apple ID and password. This will then display the
developer program resources page.

4. Next, click on the My Apps button, as shown in the following screenshot:

T>

My Apps App Analytics Sales and Trends Payments and
Financial Reporis

x M B

INg Sanking

5. Then, click on the + button and then choose the New App menu option, as shown in the
following screenshot:

http://developer.apple.com/

eCe il @ i Appie Inc b ! u]

iTunes Connect My Apps

MatchUp Puzzle
Game

i0S 107 Ready for Sake

6. Next, proceed to enter in the application details for the application that we are uploading.
The SKU number field is a unique identifier that you create for your app:

N

oh

PO ® < 0 M @ & Apple | .]

3

iTunes Connect My Apps -

Stewven Daniel

o
o
(=]
i1l

New App

Platforms
~ 05

Name
TrackMyWalks

Primary Language

English (Australia)
MatchUp Puzzle
GGame Bundie ID

GENIESOFTSTUDIOS Products - com.geniesoftsty
05 1.01 Ready tor Sale

trackmywalks
r Bundle 1D com.genesofistudios.trac

SKU

TrackhMyWalks.iOS

Note

The Bundle ID suffix that you provide must match the same one that you used within your
TrackMywWalks.i0S app's info.plist; otherwise, you will run into issues when submitting
your apps to the App Store and iTunes Connect.

Then, click on the Create button to create your app and proceed to the next step.

Next, choose the Pricing and Availability menu option, located underneath the APP STORE
INFORMATION section, on the left-hand side panel.

Then, from the Pricing and Availability section, specify the values for our Price Schedule
as well as the Start Date and End Date for our application. This will determine when our
application will be made available for download, as shown in the following screenshot:

@09 I ()]
iTunes Connect /1y [lrackMyWalks ~

App Stare TestFlight

Pricing and Availability

10. Next, click on the Save button to save any changes made within this screen.

There are more than 100 pricing tiers to choose from, including an option for selling your
application for free.

In this section, we learned the steps involved in preparing our application for submission to the
Apple App Store using iTunes Connect. We also learned that before submitting our apps for
approval, you must ensure that everything works properly, and is free from problems, and the iOS
simulator is a good place to start.

Although, not everything can be tested within the iOS simulator, it proves a good starting point.
Apple suggests that you should always deploy your apps to a real iOS device running the latest
iOS release, so that you can test your app for a few days to ensure that all issues are ironed out,
prior to submitting your app to the Apple App Store. Next, we looked at how to create a new
application ID for the application that will be uploaded to the Apple App Store, as well as
providing detailed information about the application, and specifying a date when the application
will become available.

Note

For more information on how to go about submitting and managing your apps using iTunes
Connect, you can refer to the following link at this location:

https://developer.apple.convlibrary/ios/documentation/IDEs/Conceptual/AppDistributionGuide/U
CH22-SW3 .

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/UsingiTunesConnect/UsingiTunesConnect.html#//apple_ref/doc/uid/TP40012582-CH22-SW3

Submitting the TrackMyWalks (10S) app to iTunes Connect
using Xamarin Studio

In the previous section, we began by creating the TrackMywalks App within iTunes Connect and
learned that before submitting apps for approval, you must ensure that everything is working
properly, and is free from problems.

In this section, we will begin getting our TrackMywalks.1i0S app ready for submission to the
Apple App Store, using Xamarin Studio IDE.

To begin submitting your application, follow these simple steps:

1. Ensure that the TrackMywalks.s1n project is already open within Xamarin Studio IDE.

2. Next, right-click on the TrackMywalks.i0S project, choose the Options menu option, and
choose the i0OS Bundle Signing located under the Build section within the left pane.

3. Then, within the iOS Bundle Signing section, choose Release for the Configuration and
iPhone for the Platform and ensure that you have chosen the Distribution (Automatic)
option within the Signing Identity dropdown that will be used to sign our TrackMywalks
app with.

4. Next, ensure that you have chosen the Automatic option to use for our Provisioning Profile,
and click on the OK button to save the settings and dismiss the Project Options -
TrackMyWalks.iOS dialog.

o Project Options = TrackMyWalks.i0S

Ge I ! —
- rmra i0S Bundle Sig mny /
& Main Settings

* Build

I+ General

e O Signing ldentity; Distribution (Automatic) _
¥ Configurations =
Prowvisioning Profile: Automatic _

Configuration: Release Platform: iPhone

Compiler
& Assembly Signing Custom Entitlements: Entitlernents.plist
¥ Qutput
Code Analysis Custom Resource Rules:
105 Build
. o Additional Argurments: o
B o5 Debug

f 05 On-Demand Resources
0 105 Bundie Signing
105 IPA Options
* Run
v & Configurations
» Default
* Source Code
FH MET Naming Palicies
* [Code Formatting
[#) standard Header
[E Mame Conventions
* Warsion Control
i€ Commit Message Style

Note

Your iOS provisioning certificate will be shown in bold, with your provisioning profile in
gray. If you don't import a valid provisioning certificate, you won't be able to deploy or
upload your TrackMywalks iOS application to the Apple App Store.

Then, ensure that you have chosen Release | iPhone to use as the iOS device prior to
choosing the Archive for Publishing option within the Build menu, as shown in the
following screenshot:

@ Xamarin Studio Community File Edit View Search Project m Run Version Control Tools

2 . . & Build All 3B
e | O TrackMyWalks.iOS » [J Release | iPhone Device !
_ L : ' . Rebuild All ~%8B
& solution o x [Clean All [
¥ [TrackMyWalks Build TrackMyWalks.i0S HK
b [55 TrackMyWalks Tests Rebuild TrackMyWalks.iDS ~ 3K
» [TrackMyWalks Clean TrackMyWalks.iOS {r3K

Ahive o pubishing
» B3 Refarances Archive All
View Archives
1 Components
» [Packages (2 updates)
11 Assets.xcassets
» [PlatformEffects
» [Renderars

~ I]

%

6. Next, provide a comment for your application, by clicking within the Comment field, and
then click on the Sign and Distribute... button to have Xamarin sign and prepare your app
for submission, as shown in the following screenshot:

o8 P O TrackiiyWalks i0s » [0 » || Device & Project saved. s [s}
£ Archibses w
TrackMyWalks
Platform Name: Version Code Crestion Dote Comment v
TrackMyWalks

s TrackbyWalcs 1 December 14, 2018 3:83 PM Track My Walks i08 Application

Trachivy'W sl

Creation Date: December 14, 2016 3:53 PM
Version: 1.0
Wersion Code: NJA

Identifier; com.geniesoftstudios. trackmywalks
Estimated App Store Size: 53,15 MA

Build Comment:

Insights: Insights not enabled

Validata... Sign and Distributa.

"~ Show all srchives

Note

Once you click on the Sign and Distribute... button, you will be presented with the Select

iOS Distribution Channel dialog, where you can choose your distribution channel to create
a package for your app.

7. Then, since we want to publish our TrackMywalks app to the App Store, choose the App
Store option within the list and click on the Next button to proceed to the next step within
the wizard, as shown in the following screenshot:

L] Sign and Distribute

Select iOS Distribution Channel

Choose a distribution channel.

App Store

Save 10 Disk and open Application Loader

Enterprise
Save to disk

Cancel Mgt

8. Next, you will be presented with the Provisioning profile screen where you can select your
signing identity and provisioning profile, or re-sign using a different identity. Click on the
Next button to proceed to the next step within the wizard, as shown in the following
screenshot.

@ Sign and Distribute

Provisioning profile

Select signing identity and provisioning profile.

Signing Identity Fingerprint
Distribution: Steven Daniel () T . —

Please select the app that you would like to set a Provisioning Profile for:

App Provisioning Profile

Q TrackMyWalks.i05.app GEMIESTUDIOS - i05 Distribution

Select the Provisioning Profile for TrackMyWalks.i0S.app:

Provisioning Profile Created Expiration Entitlements

GENIESTUDIOS - i0S Distribution 14/12/2016 4:27 AM 14/12/2017 415 AM T, (B &

9. Upon clicking on the Next button, Xamarin Studio will proceed to collect all the necessary
files, and create a TrackMywalks.ipa file which, by default, will be saved within your
TrackMywalks folder.

10. You will be presented with the Publish to App Store dialog, where you will be presented
with the ability of publishing your app to the app store, as shown in the following
screenshot:

L3} Sign and Distribute

Publish to App Store

Upload to App Store

TrackMyWalks

Creation Date: December 14, 2016 3:53 PM
Version: 1.0

Identifier: com.geniesoftstudios.trackmywalks
Estimated Store Size: 63.15 MB

All required information has been collected.
Your app is ready to be published.

Cancel Back Publish

11. Then, click on the Publish button to proceed to the next step within the wizard where you can
then upload your binary archive.

@ Sign and Distribute

Publishing Succeeded

Your app is ready to go

Your app has been published and saved to disk. Use Application Loader
to upload on App Store.

Open Application Loader

Close

12. Once you have clicked on the Publish button, and everything passes, you will be presented
with the Publishing Succeeded dialog where you can begin uploading your binary archive
by clicking on the Open Application Loader button, as can be seen in the preceding
screenshot.

Note

For more information on how to go about deploying your Xxamarin.Forms Android app,
please refer to the section on Preparing an Application for Release at the following link:

https://developer.xamarin.comv/guides/android/deployment,_testing, and metrics/publishing
preparing an_application for release/ .

https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/

13.

This will then launch the Application Loader application, as shown in the following
screenshot, where you will need to sign-in to iTunes Connect using your iTunes Connect
credentials.

Next, choose the Deliver Your App option and click on the Choose button, as shown in the
following screenshot:

| Steven Daniel | Template Chooser

Deliver Your App New In-App purchases

| E :-:I
_Dpen Recent ~ _Impnrt

14. Once you have clicked on the Choose button, you will be presented with the Deliver Your

App dialog where you will need to choose the TrackMywalks.ipa file that was generated
during the Sign and Distribute process within the Submitting the TrackMyWalks (iOS) app
to iTunes Connect using Xamarin Studio section located within this chapter.

oy Deliver Your App

E b= @ Bl TrackMyWalks 2 Qs

W components

29 Droid

[facebook-sdk-6.2.2

| ics

[0 packages

[TrackMyWalks

h TrackMyWalks.ipa
TrackhMyWalks.sln

[TrackMyWalks.UnitTests B

TrackMyWalks. userprefs | PA

TrackMyWalks.ipa

i0s App - 16 MB
Created Today, 5:28 pm
Modified Today, 5:28 pm
Last opened Today, 5:28 pm
Add Tags...

15. Then, select and choose the TrackMyWalks.ipa file, and click on the Open button, as
shown in the preceding screenshot.

eC e Deliver Your App

TrackMyWalks 1.0 (iOS App)

Application rackMyWalks
Version Number 1.0

SKU Number TrackMyWalks.iOS
Primary Language en-Al

Type i0S App

Apple ID 1186141732

A steven.daniel@geniesoftstudios.com Activity... Cancel

The Application Loader will read the information contained within the TrackMywalks.ipa
binary file, populated from iTunes Connect, and display the Application name, Version
Number, SKU Number, Primary Language, Type, and the user's Apple ID, as shown in
the preceding screenshot.

. Next, click on the Next button to proceed to the next step within the wizard, as shown in the
preceding screenshot.

eC e Deliver Your App

Adding application...

Software: /Users/stevendaniel/Projects/TrackMyWalks/TrackMyWalks.ipa

Authenticating with the App Store...

Activity...

In the preceding screenshot, the Application Loader application will begin by authenticating your
app with the Apple App Store and iTunes Connect, and then validating to ensure that everything
passes, at which point your binary archive will begin uploading.

Note

For information on how to use the Application Loader to publish your Xamarin.i0S apps, you
can refer to Publishing to the App Store Guide from the Xamarin developer documentation,
which can be accessed by using the following link:

https://developer.xamarin.com/guides/ios/deployment, _testing, and_metrics/app_distribution/app
store-distribution/publishing to_the_app_store/ .

https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution/app-store-distribution/publishing_to_the_app_store/

Summary

In this chapter, you learned how to create and set up your iOS development team and the
associated iOS development certificate that will enable you to run and test your apps on an iOS
device. We then moved on to describe how to create an App ID for our TrackMywalks app.

These special App IDs are used both within Xamarin and Xcode to associate your app with the
one assigned as part of your iOS provisioning profiles. Once we created all the necessary
development certificates and provisioning profiles, you learned how to package, sign, and
distribute your app using Xamarin Studio IDE, and deploy it to iTunes Connect using the
Application Loader application, where you can then download and test your app on a real iOS
device.

This was the final chapter, and I sincerely hope that you had lots of fun developing apps
throughout our journey working through this book. You now have enough knowledge and expertise
to understand what it takes to build rich and engaging apps for the Xxamarin.Forms platform, by
using a host of exciting concepts and techniques that are unique to the Xxamarin.Forms platform.

You have enough knowledge to get your Xxamarin.Forms projects off to a great start, and I can't
wait to see what you build. Thank you so much for purchasing this book and I wish you the very
best of luck with your Xamarin.Forms adventures.

	Mastering Xamarin UI Development
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Dedication
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Creating the TrackMyWalks Native App
	Creating the TrackMyWalks solution
	Updating the TrackMyWalks solution packages
	Creating the TrackMyWalks model
	Creating the walks main page
	Creating the new walk entry content page
	Creating the walk trail content page
	Adding the Xamarin.Forms.Maps NuGet package
	Creating the DistanceTravelledPage content page
	Creating the Splash screen content page
	Updating the Xamarin.Forms App class
	Differences between Xamarin Studio and Visual Studio
	Running the TrackMyWalks app using the simulator
	Summary
	2. MVVM and Data Binding
	Understanding the MVVM pattern architecture
	Implementing the MVVM ViewModels within your app
	Creating the WalkBaseViewModel for the TrackMyWalks app
	Implementing the WalksPageViewModel
	Updating the walks main page to use the MVVM model
	Implementing the walks entry page ViewModel
	Updating the WalksEntryPage to use the MVVM model
	Implementing the walk trail page ViewModel
	Updating the WalksTrailPage to use the MVVM model
	Implementing the DistanceTravelledViewModel
	Updating the DistanceTravelledPage to use the MVVM model
	Summary
	3. Navigating within the MVVM Model - The Xamarin.Forms Way
	Understanding the Xamarin.Forms Navigation API
	Differences between the navigation and ViewModel approaches
	Implementing the navigation service within your app
	Creating the navigation service interface for the TrackMyWalks app
	Creating a navigation service to navigate within our ViewModels
	Updating the WalkBaseViewModel to use our navigation service
	Updating the walks main page ViewModel and navigation service
	Updating the walks main page to use the updated ViewModel
	Updating the walks entry page ViewModel and navigation service
	Updating the WalksEntryPage to use the updated ViewModel
	Updating the walks trail page ViewModel and navigation service
	Updating the WalksTrailPage to use the updated ViewModel
	Updating the distance travelled ViewModel and navigation service
	Updating the DistanceTravelledPage to use the updated ViewModel
	Updating the Xamarin.Forms.App class to use the navigation service
	Summary
	4. Adding Location-Based Features within Your App
	Creating and using platform-specific services
	Creating the Location Service Interface for the TrackMyWalks app
	Creating the Location Service class for the Android platform
	Creating the Location Service class for the iOS platform
	Enabling background updates and getting the user's current location
	Updating the WalkEntryViewModel to use the location service
	Updating the DistanceTravelledViewModel to use the location service
	Updating the SplashPage to register our ViewModels
	Updating the MainActivity class to use Xamarin.Forms.Maps
	Updating the Xamarin.Forms App class to use platform specifics
	Summary
	5. Customizing the User Interface
	Creating the DataTemplate class for the TrackMyWalks app
	Updating the walks main page to use the data template
	Creating a TableView EntryCell custom picker for the iOS platform
	Creating the custom picker renderer class for the iOS platform
	Updating the WalksEntryPage to use the custom picker renderer
	Creating PlatformEffects using the Effects API for the iOS platform
	Creating PlatformEffects using the Effects API for the Android platform
	Implementing value converters within the TrackMyWalks app
	Updating the WalkBaseViewModel to use our Boolean converter
	Updating the WalksPageViewModel to use our Boolean converter
	Updating the walks main page to use the updated ViewModel
	Updating the WalksTrailPage to use the updated ViewModel
	Updating the DistanceTravelledPage to use the updated ViewModel
	Updating the WalkCellDataTemplate class to use PlatformEffects
	Summary
	6. Working with Razor Templates
	Understanding the Razor template engine
	Creating and implementing Razor templates within Xamarin Studio
	Adding the SQLite.Net package to the BookLibrary solution
	Creating and implementing the book library database model
	Creating and implementing the book database wrapper
	Creating and implementing the BookLibrary database wrapper
	Creating and implementing the book listing main page
	Creating and implementing the BookLibraryAdd Razor template
	Creating and implementing the BookLibraryEdit Razor template
	Creating and implementing the WebViewController class
	Updating the book library Cascading Style Sheet (CSS)
	Summary
	7. Incorporating API Data Access Using Microsoft Azure App Services
	Setting up our TrackMyWalks app using Microsoft Azure
	Adding the Json.Net NuGet package to the TrackMyWalks app
	Adding the HttpClient NuGet package to the TrackMyWalks app
	Updating the WalkEntries model to use the Json.Net framework
	Creating the HTTP web service class for the TrackMyWalks app
	Creating the DataService API for the TrackMyWalks app
	Creating the DataService API class for the TrackMyWalks app
	Updating the WalkBaseViewModel to use our DataService API
	Updating the WalkEntryViewModel to use our DataService API
	Updating the WalksPageViewModel to use our DataService API
	Updating the WalksPage to use the updated ViewModel
	Updating the custom picker renderer class for the iOS platform
	Updating the WalksEntryPage to use the updated custom picker
	Summary
	8. Making Our App Social - Using the Facebook API
	Setting up and registering the TrackMyWalks app with Facebook
	Adding the Xamarin.Auth NuGet package to the TrackMyWalks app
	Adding the FaceBook SDK library to the TrackMyWalks app
	Creating a Facebook user model for the TrackMyWalks app
	Creating a FacebookCredentials class for the TrackMyWalks app
	Creating the Facebook Sign In to use within our TrackMyWalks app
	Creating the Facebook Sign In Class for TrackMyWalks (iOS) app
	Updating the NavigationService Interface for the TrackMyWalks app
	Updating the NavigationService class for the TrackMyWalks app
	Updating the WalksPage to properly handle Facebook Sign In
	Updating the WalksPage ViewModel to use our FaceBookApiUser
	Updating the DistanceTravelledPage for the TrackMyWalks app
	Updating the Xamarin.Forms App class to handle Facebook Sign In
	Enabling Facebook functionality within the TrackMyWalks app
	Summary
	9. Unit Testing Your Xamarin.Forms Apps Using the NUnit and UITest Frameworks
	Creating a unit test solution folder using Xamarin Studio
	Creating a unit test project using Xamarin Studio
	Adding the Moq NuGet package to the unit test project
	Adding the TrackMyWalks project to TrackMyWalks.UnitTests
	Creating and implementing the WalksTrailViewModel NUnit test class
	Creating and implementing the WalkEntryViewModel NUnit test class
	Running the TrackMyWalks.UnitTests using Xamarin Studio
	Creating a UI test project using Xamarin Studio
	Understanding the commonly used UITest methods
	Setting up and initializing our TrackMyWalks app for UITest
	Implementing the CreateNewWalkEntry using the UITest.Framework
	Adding the Xamarin Test Cloud Agent to the iOS project
	Updating the TrackMyWalks AppDelegate class to handle Xamarin Test Cloud Agent
	Running the TrackMyWalks UITests using Xamarin Studio
	Summary
	10. Packaging and Deploying Your Xamarin.Forms Applications
	Creating and setting up your iOS development team
	Creating the TrackMyWalks iOS development certificate
	Obtaining the iOS development certificate from Apple
	Creating the App ID for the TrackMyWalks (iOS) application
	Creating the TrackMyWalks development provisioning profile
	Preparing the TrackMyWalks (iOS) app for submission
	Submitting the TrackMyWalks (iOS) app to iTunes Connect using Xamarin Studio
	Summary

