

Mastering	Xamarin	UI	Development

Table	of	Contents

Mastering	Xamarin	UI	Development
Credits
About	the	Author
Acknowledgments
About	the	Reviewers
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Dedication
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Creating	the	TrackMyWalks	Native	App
Creating	the	TrackMyWalks	solution

Updating	the	TrackMyWalks	solution	packages
Creating	the	TrackMyWalks	model
Creating	the	walks	main	page
Creating	the	new	walk	entry	content	page
Creating	the	walk	trail	content	page

Adding	the	Xamarin.Forms.Maps	NuGet	package
Creating	the	DistanceTravelledPage	content	page
Creating	the	Splash	screen	content	page

Updating	the	Xamarin.Forms	App	class
Differences	between	Xamarin	Studio	and	Visual	Studio
Running	the	TrackMyWalks	app	using	the	simulator
Summary

2.	MVVM	and	Data	Binding
Understanding	the	MVVM	pattern	architecture
Implementing	the	MVVM	ViewModels	within	your	app
Creating	the	WalkBaseViewModel	for	the	TrackMyWalks	app
Implementing	the	WalksPageViewModel

Updating	the	walks	main	page	to	use	the	MVVM	model
Implementing	the	walks	entry	page	ViewModel

Updating	the	WalksEntryPage	to	use	the	MVVM	model
Implementing	the	walk	trail	page	ViewModel

Updating	the	WalksTrailPage	to	use	the	MVVM	model
Implementing	the	DistanceTravelledViewModel

Updating	the	DistanceTravelledPage	to	use	the	MVVM	model
Summary

3.	Navigating	within	the	MVVM	Model	-	The	Xamarin.Forms	Way
Understanding	the	Xamarin.Forms	Navigation	API
Differences	between	the	navigation	and	ViewModel	approaches
Implementing	the	navigation	service	within	your	app

Creating	the	navigation	service	interface	for	the	TrackMyWalks	app
Creating	a	navigation	service	to	navigate	within	our	ViewModels
Updating	the	WalkBaseViewModel	to	use	our	navigation	service
Updating	the	walks	main	page	ViewModel	and	navigation	service
Updating	the	walks	main	page	to	use	the	updated	ViewModel
Updating	the	walks	entry	page	ViewModel	and	navigation	service
Updating	the	WalksEntryPage	to	use	the	updated	ViewModel
Updating	the	walks	trail	page	ViewModel	and	navigation	service
Updating	the	WalksTrailPage	to	use	the	updated	ViewModel
Updating	the	distance	travelled	ViewModel	and	navigation	service
Updating	the	DistanceTravelledPage	to	use	the	updated	ViewModel
Updating	the	Xamarin.Forms.App	class	to	use	the	navigation	service

Summary
4.	Adding	Location-Based	Features	within	Your	App

Creating	and	using	platform-specific	services
Creating	the	Location	Service	Interface	for	the	TrackMyWalks	app
Creating	the	Location	Service	class	for	the	Android	platform
Creating	the	Location	Service	class	for	the	iOS	platform
Enabling	background	updates	and	getting	the	user's	current	location
Updating	the	WalkEntryViewModel	to	use	the	location	service
Updating	the	DistanceTravelledViewModel	to	use	the	location	service
Updating	the	SplashPage	to	register	our	ViewModels
Updating	the	MainActivity	class	to	use	Xamarin.Forms.Maps
Updating	the	Xamarin.Forms	App	class	to	use	platform	specifics

Summary
5.	Customizing	the	User	Interface

Creating	the	DataTemplate	class	for	the	TrackMyWalks	app
Updating	the	walks	main	page	to	use	the	data	template

Creating	a	TableView	EntryCell	custom	picker	for	the	iOS	platform
Creating	the	custom	picker	renderer	class	for	the	iOS	platform

Updating	the	WalksEntryPage	to	use	the	custom	picker	renderer
Creating	PlatformEffects	using	the	Effects	API	for	the	iOS	platform
Creating	PlatformEffects	using	the	Effects	API	for	the	Android	platform
Implementing	value	converters	within	the	TrackMyWalks	app

Updating	the	WalkBaseViewModel	to	use	our	Boolean	converter
Updating	the	WalksPageViewModel	to	use	our	Boolean	converter
Updating	the	walks	main	page	to	use	the	updated	ViewModel
Updating	the	WalksTrailPage	to	use	the	updated	ViewModel
Updating	the	DistanceTravelledPage	to	use	the	updated	ViewModel
Updating	the	WalkCellDataTemplate	class	to	use	PlatformEffects

Summary
6.	Working	with	Razor	Templates

Understanding	the	Razor	template	engine
Creating	and	implementing	Razor	templates	within	Xamarin	Studio

Adding	the	SQLite.Net	package	to	the	BookLibrary	solution
Creating	and	implementing	the	book	library	database	model
Creating	and	implementing	the	book	database	wrapper
Creating	and	implementing	the	BookLibrary	database	wrapper
Creating	and	implementing	the	book	listing	main	page
Creating	and	implementing	the	BookLibraryAdd	Razor	template
Creating	and	implementing	the	BookLibraryEdit	Razor	template
Creating	and	implementing	the	WebViewController	class

Updating	the	book	library	Cascading	Style	Sheet	(CSS)
Summary

7.	Incorporating	API	Data	Access	Using	Microsoft	Azure	App	Services
Setting	up	our	TrackMyWalks	app	using	Microsoft	Azure

Adding	the	Json.Net	NuGet	package	to	the	TrackMyWalks	app
Adding	the	HttpClient	NuGet	package	to	the	TrackMyWalks	app
Updating	the	WalkEntries	model	to	use	the	Json.Net	framework

Creating	the	HTTP	web	service	class	for	the	TrackMyWalks	app
Creating	the	DataService	API	for	the	TrackMyWalks	app
Creating	the	DataService	API	class	for	the	TrackMyWalks	app

Updating	the	WalkBaseViewModel	to	use	our	DataService	API
Updating	the	WalkEntryViewModel	to	use	our	DataService	API
Updating	the	WalksPageViewModel	to	use	our	DataService	API
Updating	the	WalksPage	to	use	the	updated	ViewModel
Updating	the	custom	picker	renderer	class	for	the	iOS	platform
Updating	the	WalksEntryPage	to	use	the	updated	custom	picker

Summary
8.	Making	Our	App	Social	-	Using	the	Facebook	API

Setting	up	and	registering	the	TrackMyWalks	app	with	Facebook
Adding	the	Xamarin.Auth	NuGet	package	to	the	TrackMyWalks	app
Adding	the	FaceBook	SDK	library	to	the	TrackMyWalks	app

Creating	a	Facebook	user	model	for	the	TrackMyWalks	app
Creating	a	FacebookCredentials	class	for	the	TrackMyWalks	app
Creating	the	Facebook	Sign	In	to	use	within	our	TrackMyWalks	app
Creating	the	Facebook	Sign	In	Class	for	TrackMyWalks	(iOS)	app

Updating	the	NavigationService	Interface	for	the	TrackMyWalks	app

Updating	the	NavigationService	class	for	the	TrackMyWalks	app
Updating	the	WalksPage	to	properly	handle	Facebook	Sign	In

Updating	the	WalksPage	ViewModel	to	use	our	FaceBookApiUser
Updating	the	DistanceTravelledPage	for	the	TrackMyWalks	app
Updating	the	Xamarin.Forms	App	class	to	handle	Facebook	Sign	In
Enabling	Facebook	functionality	within	the	TrackMyWalks	app

Summary
9.	Unit	Testing	Your	Xamarin.Forms	Apps	Using	the	NUnit	and	UITest	Frameworks

Creating	a	unit	test	solution	folder	using	Xamarin	Studio
Creating	a	unit	test	project	using	Xamarin	Studio

Adding	the	Moq	NuGet	package	to	the	unit	test	project
Adding	the	TrackMyWalks	project	to	TrackMyWalks.UnitTests
Creating	and	implementing	the	WalksTrailViewModel	NUnit	test	class
Creating	and	implementing	the	WalkEntryViewModel	NUnit	test	class
Running	the	TrackMyWalks.UnitTests	using	Xamarin	Studio

Creating	a	UI	test	project	using	Xamarin	Studio
Understanding	the	commonly	used	UITest	methods

Setting	up	and	initializing	our	TrackMyWalks	app	for	UITest
Implementing	the	CreateNewWalkEntry	using	the	UITest.Framework

Adding	the	Xamarin	Test	Cloud	Agent	to	the	iOS	project
Updating	the	TrackMyWalks	AppDelegate	class	to	handle	Xamarin	Test	Cloud	Agent

Running	the	TrackMyWalks	UITests	using	Xamarin	Studio
Summary

10.	Packaging	and	Deploying	Your	Xamarin.Forms	Applications
Creating	and	setting	up	your	iOS	development	team
Creating	the	TrackMyWalks	iOS	development	certificate

Obtaining	the	iOS	development	certificate	from	Apple
Creating	the	App	ID	for	the	TrackMyWalks	(iOS)	application

Creating	the	TrackMyWalks	development	provisioning	profile
Preparing	the	TrackMyWalks	(iOS)	app	for	submission

Submitting	the	TrackMyWalks	(iOS)	app	to	iTunes	Connect	using	Xamarin	Studio
Summary

Mastering	Xamarin	UI	Development

Mastering	Xamarin	UI	Development
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,
except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and
distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing
cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2017

Production	reference:	1130117

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-200-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

Steven	F.	Daniel

Copy	Editor

Safis	Editing

Reviewers

Lance	McCarthy

Engin	Polat

Project	Coordinator

Izzat	Contractor

Commissioning	Editor

Amarabha	Banerjee

Proofreader

Safis	Editing

Acquisition	Editor

Shweta	Pant

Indexer

Tejal	Daruwale	Soni

Content	Development	Editor

Priyanka	Mehta

Graphics

Abhinash	Sahu

Technical	Editor

Abhishek	Sharma

Production	Coordinator

Deepika	Naik

About	the	Author
Steven	F.	Daniel	is	the	CEO	and	founder	of	GENIESOFT	STUDIOS,	a	software	development
company	based	in	Melbourne,	Victoria,	that	focuses	primarily	on	developing	games	and	business
applications	for	the	iOS,	Android,	and	Mac	OS	X	platforms.	He	is	an	experienced	software
developer	with	more	than	17	years	of	experience	in	developing	desktop	and	web-based
applications	for	several	companies	and	startups.

Steven	is	extremely	passionate	about	making	people	employable	by	helping	them	bridge	the	gap
between	using	their	existing	skills	in	iOS,	Android,	and	Xamarin	to	get	the	job	done.	To	achieve
this,	he	writes	books	to	help	novice	and	advanced	programmers	succeed	within	the	industry.
Steven	is	extremely	passionate	about,	and	loves	being	at	the	forefront	of,	technology.	He	is	a
member	of	the	SQL	Server	Special	Interest	Group	(SQLSIG),	Melbourne	CocoaHeads,	and	the
Java	Community.	He	was	the	cofounder	and	Chief	Technology	Officer	(CTO)	at	SoftMpire	Pty
Ltd.,	a	company	that	is	focused	primarily	on	developing	business	applications	for	the	iOS	and
Android	platforms.	

Steven	is	the	author	of	various	book	titles,	some	of	which	are	as	follows:

Apple	Watch	App	Development
Android	Wearable	Programming
Xcode	4	Cookbook
iPad	Enterprise	Application	Development	Blueprints
iOS	5	Essentials
Xcode	4	iOS	Development	Beginner’s	Guide

Check	out	his	blog	at	http://www.geniesoftstudios.com/blog/,	or	follow	him	on	twitter	at
http://twitter.com/GenieSoftStudio.

http://www.geniesoftstudios.com/blog/
http://twitter.com/GenieSoftStudio

Acknowledgments
No	book	is	the	product	of	just	the	author;	he	just	happens	to	be	the	one	with	his	name	on	the	cover.
Several	people	contributed	to	the	success	of	this	book,	and	it	would	take	more	space	than
thanking	each	one	individually.

I	would	personally	like	to	thank	three	special	people	who	have	been	an	inspiration	and	who	have
provided	me	with	so	much	support	during	the	writing	of	this	book,	Reshma	Raman,	my	Senior
Acquisition	Editor,	who	is	the	reason	that	this	book	exists;	Shweta	Pant,	my	Acquisition	Editor;
and	Priyanka	Mehta	for	her	understanding	and	support,	as	well	as	her	brilliant	suggestive
approaches	during	the	chapter	rewrites.	I	would	like	to	thank	each	of	you	for	everything,	and
making	the	writing	process	enjoyable.

Lastly,	to	my	reviewers,	thank	you	so	much	for	your	valued	suggestions	and	improvements	to
make	this	book	what	it	is;	I	am	truly	grateful	to	each	one	of	you.

Thank	you	also	to	the	entire	PACKT	Publishing	team	for	working	so	diligently	to	help	bring	out	a
high-quality	product.	Finally,	a	big	shout	out	to	the	engineers	at	Xamarin,	Inc.	for	creating
Xamarin	Studio	and	the	Mono	Platform	to	provide	developers	with	the	tools	to	create	fun	and
sophisticated	applications	with	the	power	of	Xamarin.Forms.

Finally,	I	would	like	to	thank	all	my	friends	for	their	support,	understanding,	and	encouragement
during	the	book	writing	process.	I	am	extremely	grateful	to	have	you	as	my	friends,	and	it	is	a
privilege	to	know	each	one	of	you.

About	the	Reviewers
Lance	McCarthy	is	an	exceptional	community	leader	with	an	acute	expertise	for	all	things	.NET
and	C#,	especially	on	the	XAML	stack,	including	WPF,	Silverlight,	Windows	Phone,	and
Windows	store	apps.	He	is	very	helpful	online,	guiding	and	answering	questions	from	Microsoft
developers	on	Twitter	as	@lancewmccarthy;	he	blogs	on	his	own	time	as	well,	with	a	strong
focus	on	Windows	Universal	apps,	at	WinPlatform.wordpress.com.	He	organizes	and	hosts	events
in	the	Boston	area,	such	as	user	group	nights,	mini-code	camps,	and	full	hackathons.

During	the	day,	Lance	is	a	senior	technical	support	engineer	at	Telerik,	where	he	supports
developers	with	their	Classic	Windows,	Universal	Windows,	web	and	mobile	(Xamarin,
Android	and	iOS	native)	application	development.

On	the	side,	Lance	writes	blog	posts	for	blogs.windows.com/buildingapps/,	creates	resources	for
developers	(tutorials,	sample	source	code,	tips	of	the	week,	and	so	on),	and	helps	the	developer
community	in	any	way	possible.

Previously,	Lance	worked	for	Nokia	and	Microsoft	as	a	Developer	Ambassador,	where	he	sought
out	and	engaged	developers	through	outreach	programs	and	provides	them	with	technical	support
and	resources	to	make	them	successful	on	the	Windows	platforms.

Lance	was	also	an	assistant	professor	at	Harvard	University,	helping	students	build,	market,	and
publish	successful	Windows	Phone	apps.	He	has	also	appeared	on	podcasts,	such	as	the	Windows
Developer	Show,	has	been	a	technical	editor	for	publications	and	books,	has	won	several	app
building	contests	and	hackathons	(including	first	place	in	the	Microsoft	Build	2013	hackathon),
and	is	a	published	developer	with	over	a	million	downloads	in	the	Windows	Store.

Some	of	the	books	that	he	has	reviewed	are	as	follows:

Netdunio	Home	Automation	Projects	by	Matt	Cavanaugh
Mastering	Cross-Platform	Development	with	Xamarin	by	Can	Bilgin
Begin	to	Code	with	C#	by	Rob	Miles

	

Engin	Polat	has	been	involved	in	many	large	and	medium-scale	projects	on	.NET	technologies	as
a	developer,	architect,	and	consulting,	and	he	has	won	many	awards	since	1999.	Since	2008,	he
has	been	training	many	large	enterprises	in	Turkey	on	Windows	development,	web	development,
distributed	application	development,	software	architecture,	mobile	development,	cloud
development,	and	so	on.	Apart	from	this,	he	organizes	seminars	and	events	in	many	universities	in
Turkey	about	.NET	technologies,	Windows	platform	development,	cloud	development,	web
development,	game	development,	and	so	on.	He	shares	his	experiences	on	his	personal	blog
(http://www.enginpolat.com).	He	has	MCP,	MCAD,	MCSD,	MCDBA,	and	MCT	certifications.
Since	2012,	he	is	recognized	as	a	Windows	Development	MVP	by	Microsoft;	since	2017,	he	is
recognized	as	a	Visual	Studio	and	Development	Technologies	MVP	too.	Between	2013	and	2015,

https://winplatform.wordpress.com/
https://blogs.windows.com/buildingapps/
http://www.enginpolat.com

he	was	recognized	as	a	Nokia	Developer	Champion-very	few	people	in	the	world	are	given	this
award.	Since	2015,	he	has	been	recognized	as	a	Regional	Director	by	Microsoft.

He	has	reviewed	a	few	books	for	Packt,	some	of	which	are	as	follows:

Mastering	Cross-Platform	Development	with	Xamarin
Xamarin	Blueprints
Xamarin		4	by	Example

I'd	like	to	thank	my	dear	wife,	Yeliz,	and	my	beautiful	daughter,	Melis	Ada,	for	all	the
support	they	gave	me	while	I	was	working	on	this	book	project.

I	also	want	to	extend	a	warm	welcome	to	the	newest	member	of	my	family,	my	dear	son,
Utku	Ege.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book
customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books
and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development
and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thank	you	for	purchasing	this	Packt	book.	We	take	our	commitment	to	improving	our	content	and
products	to	meet	your	needs	seriously-that's	why	your	feedback	is	so	valuable.	Whatever	your
feelings	about	your	purchase,	please	consider	leaving	a	review	on	this	book's	Amazon	page.	Not
only	will	this	help	us,	more	importantly	it	will	also	help	others	in	the	community	to	make	an
informed	decision	about	the	resources	that	they	invest	in	to	learn.	You	can	also	review	for	us	on	a
regular	basis	by	joining	our	reviewers'	club.	If	you're	interested	in	joining,	or	would	like	to
learn	more	about	the	benefits	we	offer,	please	contact	us:	customerreviews@packtpub.com.

Dedication
To	my	favorite	uncle,	Benjamin	Jacob	Daniel,	thank	you	for	always	making	me	smile	and
for	inspiring	me	to	work	hard	and	achieve	my	dreams;	you	are	a	true	inspiration	and	I
couldn’t	have	done	this	without	your	love,	support,	and	guidance.	Thank	you.

As	always,	to	Chan	Ban	Guan,	for	the	continued	patience,	encouragement,	and	support,
and	most	of	all	for	believing	in	me	during	the	writing	of	this	book.	I	would	like	to	thank
my	family	for	their	continued	love	and	support,	and	for	always	believing	in	me	throughout
the	writing	of	this	book.

This	book	would	not	have	been	possible	without	your	love	and	understanding	and	I	would
like	to	thank	you	from	the	bottom	of	my	heart.

Preface
Xamarin	is	the	most	powerful	cross-platform	mobile	development	framework.	If	you	are
interested	in	creating	stunning	user	interfaces	for	the	iOS	and	Android	mobile	platforms	using	the
power	of	Xamarin	and	Xamarin.Forms,	then	this	is	your	ticket.

This	book	will	provide	you	with	the	practical	skills	required	to	develop	real-world	Xamarin
applications.	You	will	learn	how	to	implement	user	interface	structures	and	layouts,	create
customized	elements,	and	write	C#	scripts	to	customize	layouts.	You’ll	learn	how	to	create	User
Interface	layouts	from	scratch	and	customize	these	layouts	to	suit	your	needs	by	using	Data
Templates	and	Custom	Renderers.

You’ll	be	introduced	to	the	architecture	behind	the	Model-View-ViewModel	(MVVM)	pattern,
and	how	to	implement	this	within	your	application	so	that	you	can	navigate	between	each	of	your
ViewModels	and	ContentPages.

We	will	then	move	on	to	discuss	more	advanced	topics,	such	as	how	to	incorporate	platform-
specific	features	within	your	apps	that	are	dependent	on	the	mobile	platform	being	run,	and	you
will	learn	how	to	properly	perform	location	updates,	whether	the	application's	state	is	in	the
foreground	or	background,	by	registering	the	app	as	a	background-necessary	application.

We	discuss	more	advanced	topics,	such	as	working	with	Microsoft	Azure	App	services	to	create
your	very	first	cloud-based	backend	HTTP	web	service	to	handle	communication	between	the
cloud	and	the	app,	by	creating	a	DataService	API	that	will	allow	our	app	to	consume	the	API	so
that	it	can	retrieve,	store,	and	delete	walk	trail	information	from	the	cloud.

We	will	also	cover	how	you	can	work	with	the	Facebook	SDK	to	incorporate	social	networking
features	to	obtain	information	about	a	Facebook	user,	as	well	as	post	information	to	their
Facebook	wall	and	use	the	Open	Graph	API	to	retrieve	certain	information	about	the	user.

Moving	on,	you	will	learn	how	to	use	third-party	libraries,	such	as	the	Razor	template	engine,
which	allows	you	to	create	your	own	HTML5	templates,	within	the	Xamarin	Studio	environment
to	build	a	book	library	Hybrid	solution	that	uses	the	SQLite.Net	library	to	store,	update,	retrieve,
and	delete	information	within	a	SQLite	local	database.	You’ll	also	implement	key	data	binding
techniques	that	will	make	your	user	interfaces	dynamic	and	create	personalized	animations	and
visual	effects	within	your	user	interfaces	using	custom	renderers	and	the	PlatformEffects	API	to
customize	and	change	the	appearance	of	control	elements.

At	the	end	of	this	book,	you	will	learn	how	to	create	and	run	unit	tests	using	the	NUnit	and	UITest
testing	frameworks	right	within	the	Xamarin	Studio	IDE.	You'll	learn	how	to	write	unit	tests	for
your	ViewModels	that	will	essentially	test	the	business	logic	to	validate	that	everything	is
working	correctly,	before	moving	on	to	test	the	user	interface	portion	using	automated	UI	testing.

In	this	book,	I	have	tried	my	best	to	keep	the	code	simple	and	easy	to	understand	by	providing	a

step-by-step	approach,	with	lots	of	screenshots	at	each	step	to	make	it	easier	to	follow.	You	will
soon	master	the	different	aspects	of	Xamarin.Forms,	and	the	technology	and	skills	needed	to
create	your	own	applications	for	the	Xamarin.Forms	platform.

Feel	free	to	contact	me	at	support@geniesoftstudios.com	with	any	queries,	or	just	drop	me	an	e-
mail	to	say	a	friendly	"Hello".

What	this	book	covers
Chapter	1,	Creating	the	TrackMyWalks	Native	App,	focuses	on	how	to	set	up	a	basic	cross-
platform	native	app	structure	using	Xamarin.Forms	before	proceeding	with	adding	new,	and
updating	existing,	packages	within	your	solution.

You’ll	learn	how	to	create	C#	classes	that	will	act	as	the	model	for	our	app,	and	will	create
content	pages	that	will	form	the	user	interface.	We	will	also	cover	the	differences	between
developing	apps	using	Xamarin	Studio	and	Microsoft	Visual	Studio.

Chapter	2,	MVVM	and	Data	Binding,	introduces	you	to	the	architecture	behind	the	MVVM
pattern,	and	how	you	can	implement	this	within	your	application	by	adding	new	Views	and	the
associated	Models.

You’ll	learn	how	to	create	the	underlying	C#	class	files	that	will	act	as	the	ViewModels	for	your
app,	and	update	existing	content	pages	to	data-bind	with	the	ViewModels	to	represent	the
information	that	will	be	displayed	within	the	user	interface	for	our	application.

Chapter	3,	Navigating	within	the	MVVM	Model	-	The	Xamarin.Forms	Way,	builds	upon	your
working	knowledge	of	the	MVVM	design	pattern	architecture	to	show	you	how	you	can	navigate
through	the	ViewModels	by	creating	a	C#	class	that	acts	as	the	navigation	service	for	our	app,	and
updates	our	existing	WalkBaseViewModel	class	to	include	additional	abstract	class	methods	each
of	our	ViewModels	will	inherit;	in	turn,	you'll	update	content	pages	to	bind	with	the	ViewModels
to	allow	navigation	between	these	Views	to	happen.

Chapter	4,	Adding	Location-Based	Features	within	Your	App,	focuses	on	how	you	can
incorporate	platform-specific	features	within	the	TrackMyWalks	app,	which	is	dependent	on	the
mobile	platform,	by	creating	a	location	service	C#	class	that	will	include	several	class	methods
for	both	the	iOS	and	Android	platforms.

You’ll	learn	how	to	properly	perform	location	updates	whether	the	application's	state	is	in	the
foreground	or	background	by	registering	the	app	as	a	background-necessary	application.

Chapter	5,	Customizing	the	User	Interface,	shows	you	how	you	can	work	with	DataTemplates	to
lay	out	your	views	neatly	within	your	applications	user	interface	by	creating	a	C#	class.	You’ll
get	accustomed	to	working	with	platform-specific	APIs	to	extend	the	default	behavior	of
Xamarin.Forms	controls	using	custom	renderers	to	create	a	custom	picker,	before	moving	on	to
learn	how	to	use	the	Xamarin.Forms	Effects	API	to	customize	the	appearance	and	styling	of	native
control	elements	for	each	platform	by	implementing	a	CustomRenderer	class.

Finally,	you	will	learn	how	to	manipulate	the	visual	appearance	of	data	bound	using	value	and
image	converters.

Chapter	6,	Working	with	Razor	Templates,	introduces	you	to	the	Razor	HTML	templating	engine,

and	how	you	can	use	it	to	create	a	hybrid	mobile	solution.	You'll	learn	how	to	build	a	book
library	mobile	solution	using	the	power	of	Razor	templates,	how	to	create	and	use	models	within
your	application,	and	how	to	connect	this	up	to	a	SQLite	database	to	store,	retrieve,	update,	and
delete	book	details.

Chapter	7,	Incorporating	API	Data	Access	using	Microsoft	Azure	App	Services,	shows	you	how
you	can	use	Microsoft	Azure	App	services	to	create	your	very	first	live,	cloud-based	backend
HTTP	web	service	to	handle	all	the	communication	between	the	cloud	and	the	app.	You’ll	learn
how	to	create	a	DataService	API	that	will	allow	the	app	to	consume	the	API	so	that	it	can
retrieve,	store,	and	delete	walk	trail	information	from	the	cloud,	all	from	within	the
TrackMyWalks	app.

Chapter	8,	Making	our	App	Social	–	Using	the	Facebook	API,	shows	you	how	you	can	use	both
Xamarin.Auth	and	the	Facebook	SDK	to	incorporate	social	networking	features	within	the
TrackMyWalks	app	to	obtain	information	about	a	Facebook	user,	as	well	as	post	information	to
their	Facebook	wall.

You’ll	learn	how	to	create	a	sign-in	page	that	allows	users	to	log	in	to	your	app	using	their
Facebook	credentials,	and	how	to	create	a	FacebookApiUser	class	that	will	be	used	to	store
information	about	the	logged-in	user,	and	use	the	Open	Graph	API	to	retrieve	certain	information
about	the	user.

Finally,	you	will	see	how	you	can	leverage	the	Facebook	library	to	post	walk	data	to	your
Facebook	profile	page,	so	you	can	show	off	your	Walk	Trail	progress	to	your	friends	and/or	work
colleagues.

Chapter	9,	Unit	Testing	your	Xamarin.Forms	App	using	the	NUnit	and	UITest	Frameworks,
focuses	on	showing	you	how	to	create	and	run	unit	tests	using	the	NUnit	and	UITest	testing
frameworks	right	within	the	Xamarin	Studio	IDE.	You'll	learn	how	to	write	unit	tests	for	our
ViewModels	that	will	essentially	test	the	business	logic	to	validate	that	everything	is	working
correctly	before	testing	the	user	interface's	portion	using	automated	UI	testing.

Chapter	10,	Packaging	and	Deploying	your	Xamarin.Forms	Applications,	focuses	on	how	to
submit	your	TrackMyWalks	iOS	app	to	the	Apple	App	Store,	and	share	your	creations	with	the
rest	of	the	community.	You'll	learn	the	steps	required	to	set	up	your	iOS	development	team,	as
well	as	certificates	for	both	development	and	distribution,	and	you	will	learn	how	to	create	the
necessary	provisioning	profiles	for	both	your	development	and	distribution	builds	and	create	the
necessary	app	IDs	for	your	application.

Finally,	you	will	learn	how	to	register	your	iOS	devices	so	that	your	users	can	download	and	test
your	apps	on	their	iOS	devices	and	learn	how	to	prepare	your	TrackMyWalks	iOS	app	for
submission	to	iTunes	Connect	using	the	Xamarin	Studio	IDE.

What	you	need	for	this	book
The	minimum	requirement	for	this	book	is	an	Intel-based	Macintosh	computer	running	OS	X	El
Capitan	10.11.	We	will	be	using	Xamarin	Studio	6.1.2,	which	is	the	Integrated	Development
Environment	(IDE)	used	for	creating	Xamarin.Forms	applications	using	C#,	as	well	as	Xcode
8.2.1	to	compile	our	iOS	app	and	run	this	within	the	simulator.

Almost	all	the	projects	that	you	create	with	the	help	of	this	book	will	work	and	run	on	the	iOS
simulator.	However,	some	projects	will	require	an	iOS	or	Android	device	to	work	correctly.	You
can	download	the	latest	versions	of	Xamarin	Studio	and	Xcode	at:

Xamarin	Studio:	http://xamarin.com/download

Xcode:	https://itunes.apple.com/au/app/xcode/id497799835?mt=12

http://xamarin.com/download
https://itunes.apple.com/au/app/xcode/id497799835?mt=12

Who	this	book	is	for
This	book	is	intended	for	developers	who	have	a	working	experience	of	application	development
principles,	as	well	as	a	basic	knowledge	of	Xamarin	and	C#	coding	and	wish	to	expand	their
knowledge	and	develop	applications	using	Xamarin.Forms.	It	is	assumed	that	you	are	familiar
with	Object-Oriented	Programming	(OOP),	and	have	some	experience	developing	C#
applications	using	Xamarin	Studio.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"One	thing	you	will	notice	is
that	our	solution	contains	a	file	called	TrackMyWalks.cs	which	is	part	of	the	TrackMyWalks
Portable	Class	Library."

A	block	of	code	is	set	as	follows:

				//

				//		WalkEntryViewModel.cs

				//		TrackMyWalks	ViewModels

				//	

				//		Created	by	Steven	F.	Daniel	on	22/08/2016.

				//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

				//		using	TrackMyWalks.Models;

								using	TrackMyWalks.ViewModels;

								using	Xamarin.Forms;

								namespace	TrackMyWalks

							{

											public	class	WalkEntryViewModel	:	WalkBaseViewModel

											{

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

				//

				//		WalksPage.cs

				//		TrackMyWalks

				//

				//		Created	by	Steven	F.	Daniel	on	04/08/2016.

				//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

				//

				using	System.Collections.Generic;

				using	Xamarin.Forms;

				using	TrackMyWalks.Models;

				using	TrackMyWalks.ViewModels;

				namespace	TrackMyWalks

				{

								public	class	WalksPage	:	ContentPage

								{

												public	WalksPage()

												{

Any	command-line	input	or	output	is	written	as	follows:

				Last	login:	Sun	Nov	6	10:48:41	on	console

				GENIESOFT-MAC-Mini:~	stevendaniel$	curl

				https://trackmywalks.azurewebsites.net/tables/walkentries	

				--header	"ZUMO-API-VERSION:2.0.0"

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"if	you	click	on	the	Proceed	With
...	button,	it	will	navigate	to	the	walks	Trail	Details	page	where	you	can	begin	your	trail,	by
clicking	on	the	Begin	this	Trail	button."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what
you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you
will	really	get	the	most	out	of.	To	send	us	general	feedback,	simply	e-
mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject	of	your	message.	If	there
is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get
the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Mastering-Xamarin-UI-Development.	We	also	have	other
code	bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Xamarin-UI-Development
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If
you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list
of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support
and	enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the
Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,
we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal
copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	Creating	the	TrackMyWalks	Native
App
Since	Xamarin	made	its	appearance	several	years	ago,	developers	have	been	delighted	with
being	able	to	create	native	mobile	applications	that	target	non-Microsoft	platforms,	and	with
having	the	option	of	developing	apps	using	either	C#	or	F#	programming	languages,	which
enables	developers	to	distribute	their	app	ideas	on	iOS	and	Android	platforms.

As	you	progress	through	this	book,	you	will	learn	how	to	apply	best	practice	principles	when
developing	cross-platform	mobile	applications	and	design	patterns	using	the	Xamarin.Forms
platform,	which	allows	developers	to	build	cross-platform	user	interface	layouts	that	can	be
shared	across	Android,	iOS,	and	Windows	Phone	mobile	platforms.

Since	each	of	these	apps	can	be	written	using	a	single	programming	language,	it	makes	sense	to
write	a	single	codebase	that	would	compile	and	build	separate	apps	for	each	of	these	different
platforms.

This	chapter	will	begin	by	setting	up	a	basic	structure	of	an	app	built	using	Xamarin.Forms,
which	will	be	the	foundation	for	the	subsequent	chapters,	where	we	will	continually	build	upon
this,	applying	new	concepts.	In	this	chapter,	you	will	see	how	to	create	an	initial	cross-platform
native	app	using	Xamarin.Forms	and	how	to	go	about	adding	new,	and	updating	existing,
packages	within	your	solution.

You'll	learn	how	to	create	C#	classes	that	will	act	as	the	model	for	our	app,	as	well	as	creating
content	pages	that	will	form	the	user	interface.	To	end	the	chapter,	you	will	learn	about	the
differences	between	developing	apps	using	Xamarin	Studio	and/or	Microsoft	Visual	Studio.

This	chapter	will	cover	the	following	points:

Creating	the	Xamarin.Forms	TrackMyWalks	mobile	app	solution
Updating	the	TrackMyWalks	solution	packages	using	the	NuGet	package	manager
Creating	the	TrackMyWalks	data	model
Creating	the	ContentPages	for	the	TrackMyWalks	solution
Understanding	the	differences	between	Xamarin	Studio	and	Visual	Studio

Creating	the	TrackMyWalks	solution
In	this	section,	we	will	take	a	look	at	how	we	can	go	about	creating	a	new	Xamarin.Forms
solution	for	the	first	time.	We	will	begin	by	developing	the	basic	structure	for	our	application,	as
well	as	by	adding	the	necessary	entity	models	and	designing	the	user	interface	files.

Before	we	can	proceed,	we	need	to	create	our	TrackMyWalks	project.	It	is	very	simple	to	create
this	using	Xamarin	Studio.	Simply	follow	the	steps	listed	below:

1.	 Launch	the	Xamarin	Studio	application.	You	will	be	presented	with	the	following	screen:

2.	 Next,	click	on	the	New	Solution...	button,	or	alternatively	choose	the	File	|	New	|	Solution...
or	simply	press	Shift	+	Command	+	N.

3.	 Next,	choose	the	Forms	App	option	which	is	located	under	the	Multiplatform	|	App	section.
Ensure	you	have	selected	C#	as	the	programming	language	to	use:

4.	 Next,	enter	TrackMyWalks	to	use	as	the	name	for	your	app	in	the	App	Name	field.
5.	 Then,	specify	a	name	for	the	Organization	Identifier	field.
6.	 Next,	ensure	that	both	the	Android	and	iOS	checkboxes	have	been	selected	in	the	Target

Platforms	fields.
7.	 Then,	ensure	that	the	Use	Portable	Class	Library	option	has	been	selected	in	the	Shared

Code	section,	as	shown	in	the	following	screenshot.

Tip

The	difference	between	using	a	Portable	Class	Library	versus	a	Shared	Library	is
essentially	that	a	Portable	Class	Library	enables	developers	to	write	code	once,	so	that	it
can	be	used	within	different	platform	projects	such	as	Websites,	Android,	and	iOS.	A	Shared
Library	enables	developers	to	copy	all	the	files	within	the	library	project	to	all	the	projects
that	are	contained	within	the	solution	during	compilation	for	the	various	platforms	that	will
use	it.

Note

The	Organization	Identifier	option	for	your	app	needs	to	be	unique.	Xamarin	Studio
recommends	that	you	use	the	reverse	domain	style	(for	example,
com.domainName.appName).

8.	 Next,	ensure	that	the	Use	XAML	for	user	interface	files	option	has	not	been	selected.
9.	 Then,	click	on	the	Next	button	to	proceed	to	the	next	step	in	the	wizard.

10.	 Next,	ensure	that	the	Create	a	project	directory	within	the	solution	directory.	checkbox
has	been	selected.

11.	 Then,	click	on	the	Create	button	to	save	your	project	to	the	specified	location.

Once	your	project	has	been	created,	you	will	be	presented	with	the	Xamarin	development
environment	along	with	several	project	files	that	the	template	has	created	for	you,	as	shown	in	the
following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	the	TrackMyWalks	solution	has	been	divided	into
three	main	areas.	The	following	table	provides	a	brief	description	of	what	each	area	is	used	for:

Platform	specific
project Description

TrackMyWalks

This	is	the	Portable	Class	Library	(PCL)	project	that	will	be
responsible	for	acting	as	the	main	architectural	layer	for	the
TrackMyWalks	solution.

This	project	contains	all	of	the	business	logic,	data	objects,
Xamarin.FormsPages,	views,	and	other	non-platform	specific	code.

Any	code	that	you	create	within	this	project	can	be	shared	across
multiple	platform-specific	projects.

TrackMyWalks.Droid

This	project	is	an	Android	specific	project	that	contains	all	of	the	code
and	assets	required	to	build	and	deploy	the	Android	app	contained
within	the	solution.

By	default,	this	project	contains	a	reference	to	the
TrackMyWalks	Portable	Class	Library.

This	project	is	an	iOS	specific	project	that	contains	all	of	the	code	and
assets	required	to	build	and	deploy	the	iOS	app	contained	within	the
solution.

TrackMyWalks.iOS By	default,	this	project	contains	a	reference	to	the	TrackMyWalks
Portable	Class	Library.

One	thing	you	will	notice	is	that	our	solution	contains	a	file	called	TrackMyWalks.cs	which	is
part	of	the	TrackMyWalks	Portable	Class	Library.	The	TrackMyWalks.cs	file	contains	a	class
named	App	that	inherits	from	the	Xamarin.Forms.Application	class	hierarchy,	as	can	be	seen
in	the	following	code	snippet:

				//	

				//		TrackMyWalks.cs	

				//		TrackMyWalks	

				//	

				//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

				//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

				//	

				using	Xamarin.Forms;	

	

				namespace	TrackMyWalks	

				{	

								public	class	App	:	Application	

							{	

												public	App()	

												{													

				//	The	root	page	of	your	application

																var	content	=	new	ContentPage	

																{	

																				Title	=	"TrackMyWalks",

																						Content	=	new	StackLayout	{	

																										VerticalOptions	=	LayoutOptions.Center,	

																												Children	=	{	new	Label	{	

																																HorizontalTextAlignment	=	

																																TextAlignment.Center,	

																																Text	=	"Welcome	to	Xamarin	Forms!"	

																												}	

																								}	

																				}	

																};	

	

																MainPage	=	new	NavigationPage(content);	

												}	

	

												protected	override	void	OnStart()	

											{	

																//	Handle	when	your	app	starts	

												}	

												protected	override	void	OnSleep()	

												{	

																//	Handle	when	your	app	sleeps	

												}	

												protected	override	void	OnResume()	

												{	

																//	Handle	when	your	app	resumes	

												}	

									}	

							}	

The	App	constructor	method	sets	up	the	MainPage	property	to	a	new	instance	of	the	ContentPage
that	will	simply	display	some	default	text	as	created	by	the	project	wizard.	Throughout	this
chapter,	we	will	be	building	the	initial	user	interface	page	views	and	then	modifying	the
MainPage	property	for	our	App	class,	contained	within	the	TrackMyWalks.cs	file.

Updating	the	TrackMyWalks	solution	packages
In	this	section,	we	will	take	a	look	at	how	to	update	the	Xamarin.Forms	packages	contained
within	our	TrackMyWalks	solution.	Basically,	you	will	notice	that	each	project	contained	within
our	solution	contains	a	Packages	folder.

The	Xamarin.Forms	package	is	essentially	a	NuGet	package	that	gets	automatically	included	in
our	solution	whenever	we	specify	that	we	want	to	create	a	Xamarin.FormsApp	project	template.

From	time	to	time,	you	will	notice	that	Xamarin	will	notify	you	whenever	a	package	is	out	of	date
and	needs	to	be	updated	to	ensure	that	you	are	running	the	latest	version.

Note

A	NuGet	package,	is	essentially	the	package	manager	for	the	Microsoft	Development	Platform
that	contains	the	client	tools	that	provide	the	capability	for	producing	and	consuming	.NET
packages.

Let's	take	a	look	at	how	to	go	about	updating	the	NuGet	packages	within	our	TrackMyWalks
solution	to	ensure	that	we	are	running	the	latest	Xamarin.Forms	packages.	Perform	the	following
steps:

1.	 Right-click	on	the	TrackMyWalks	solution	and	choose	the	Update	NuGet	Packages	menu
option,	as	shown	in	the	following	screenshot:

Once	you	have	selected	this	option,	Xamarin	Studio	will	proceed	to	update	each	package
that	is	contained	within	the	TrackMyWalks	solution	for	each	of	the	platform-specific
projects,	and	will	display	a	progress	indicator	similar	to	the	one	shown	in	the	following
screenshot:

During	the	package	update	process,	some	packages	that	are	contained	as	part	of	each
platform-specific	project	require	you	to	accept	their	license	terms	prior	to	installing,	which
is	shown	in	the	following	screenshot:

2.	 Click	on	the	Accept	button	to	accept	the	license	terms	and	conditions	for	the	packages
displayed	within	the	dialog	box	and	to	install	the	packages,	as	shown	in	the	preceding
screenshot.

Now	that	you	have	successfully	updated	the	Xamarin.Forms	packages	within	your	solution,	we
can	now	proceed	with	building	the	user	interface	files	for	the	TrackMyWalks	solution.

Creating	the	TrackMyWalks	model
In	this	section,	we	will	proceed	to	create	our	TrackMyWalks	model	that	will	represent	our	walk
entries.	As	we	progress	throughout	this	chapter,	we	will	see	how	we	can	use	this	model	to	set	up
and	initialize	some	walk	entries	for	our	main	WalksPage	using	a	ListView	control	so	that	we
can	display	walk	entry	for	each	row	within	the	ListView.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	the	steps	below:

1.	 Create	a	new	folder	within	the	TrackMyWalks	Portable	Class	Library	project	solution,
called	Models	as	shown	in	the	following	screenshot:

2.	 Next,	create	a	new	class	file	within	the	Models	folder,	as	shown	in	the	following	screenshot:

3.	 Then,	choose	the	Empty	Class	option	under	the	General	section	and	enter	in
WalkEntries	for	the	name	of	the	new	class	file	to	be	created	as	shown	in	the	following
screenshot:

4.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file,	as
shown	in	the	preceding	screenshot.

Congratulations,	you	have	created	your	first	folder	and	C#	class	file	for	our	solution.	We	can
now	proceed	with	adding	the	property	descriptors	that	will	be	used	to	define	our	model.

5.	 Ensure	that	the	WalkEntries.cs	file	is	displayed,	then	locate	the	WalkEntries	class
constructor	and	enter	the	following	highlighted	code	sections:

								//	

								//		WalkEntries.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

	

								namespace	TrackMyWalks.Models	

								{	

												public	class	WalkEntries	

												{	

																public	string	Title	{	get;	set;	}

		

																public	string	Notes	{	get;	set;	}

		

																public	double	Longitude	{	get;	set;	}

			

																public	double	Latitude	{	get;	set;	}

				

																public	double	Kilometers	{	get;	set;	}

				

																public	string	Difficulty	{	get;	set;	}

			

																public	double	Distance	{	get;	set;	}

	

																public	string	ImageUrl	{	get;	set;	}	

												}	

									}	

In	the	preceding	code	snippet,	we	have	successfully	defined	the	model	that	will	be	used	to
represent	our	walk	entries.	In	the	next	section,	we	will	use	this	model	to	set	up	and	initialize	some
walk	entries	for	our	main	WalksPage	using	a	ListView	control,	then	use	a	DataTemplate	to
describe	how	the	model	data	should	be	displayed	for	each	row	within	the	ListView.

Creating	the	walks	main	page
As	mentioned	in	the	previous	section,	the	WalksPage	will	essentially	serve	as	the	main	entry
point	for	our	application.	We	will	use	our	WalkEntries	model	to	populate	some	static	walks
information	data,	then	display	this	information	within	a	ListView	control	using	a	DataTemplate.
So	let's	get	started	by	following	these	steps:

1.	 Firstly,	create	a	new	folder	within	the	TrackMyWalks	Portable	Class	Library	project
solution	called	Pages,	as	you	did	in	the	previous	section.

2.	 Next,	from	the	New	File	screen,	select	the	Forms	section	within	the	left	section	pane.
3.	 Then,	select	the	Forms	ContentPage	option	in	the	right	pane.
4.	 Next,	enter	WalksPage	for	the	name	of	the	new	class	to	be	created.
5.	 Finally,	click	on	the	New	button,	as	shown	in	the	following	screenshot:

6.	 Next,	ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor	and	enter	in	the
following	highlighted	code	sections.

								//

								//	WalksPage.cs

								//	TrackMyWalks

								//

								//	Created	by	Steven	F.	Daniel	on	04/08/2016.

								//	Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

								//

								using	System.Collections.Generic;

								using	Xamarin.Forms;

								using	TrackMyWalks.Models;

								namespace	TrackMyWalks

								{

									public	class	WalksPage	:	ContentPage

									{

									public	WalksPage()

									{

									var	newWalkItem	=	new	ToolbarItem

									{

									Text	=	"Add	Walk"

									};

									newWalkItem.Clicked	+=	(sender,	e)	=>

									{

										Navigation.PushAsync(new	WalkEntryPage());

									};

									ToolbarItems.Add(newWalkItem);

									var	walkItems	=	new	List<WalkEntries>	

									{

									new	WalkEntries	{

									Title	=	"10	Mile	Brook	Trail,	Margaret	River",

									Notes	=	"The	10	Mile	Brook	Trail	starts	in	the	Rotary	Park

								near	Old	Kate,	a	preserved	steam	"	+

									"engine	at	the	northern	edge	of	Margaret	River.	",

									Latitude	=	-33.9727604,

									Longitude	=	115.0861599,

									Kilometers	=	7.5,

									Distance	=	0,

									Difficulty=	"Medium",

									ImageUrl	=	"http://trailswa.com.au/media/cache/media/

									images/trails/_mid/FullSizeRender1_600_480_c1.jpg"

									},

									new	WalkEntries	{

									Title	=	"Ancient	Empire	Walk,	Valley	of	the	Giants",

									Notes	=	"The	Ancient	Empire	is	a	450	metre	walk	trail	

									that	takes	you	around	and	through	some	of	"	+

									"the	giant	tingle	trees	including	the	most	popular

								of	the	gnarled	veterans,	known	as	Grandma	Tingle.",

									Latitude	=	-34.9749188,

									Longitude	=	117.3560796,

									Kilometers	=	450,

									Distance	=	0,

									Difficulty	=	"Hard",

									ImageUrl	=	"http://trailswa.com.au/media/cache/media/

								images/trails/_mid/Ancient_Empire_534_480_c1.jpg"

									},

									};

									var	itemTemplate	=	new	DataTemplate(typeof(ImageCell));

									itemTemplate.SetBinding(TextCell.TextProperty,	"Title");

									itemTemplate.SetBinding(TextCell.DetailProperty,	"Notes");

									itemTemplate.SetBinding(ImageCell.ImageSourceProperty,

											"ImageUrl");

									var	walksList	=	new	ListView	{

													HasUnevenRows	=	true,

													ItemTemplate	=	itemTemplate,	

													ItemsSource	=	walkItems,

													SeparatorColor	=	Color.FromHex("#ddd"),

													};

									//	Set	up	our	event	handler

									walksList.ItemTapped	+=	(object	sender,	

									ItemTappedEventArgs	e)	=>

									{

									var	item	=	(WalkEntries)e.Item;

									if	(item	==	null)	return;

									Navigation.PushAsync(new	WalkTrailPage(item));

									item	=	null;

									};

									Content	=	walksList;

									}

									}

								}	

In	the	preceding	code	snippet,	we	began	by	declaring	our	newWalkItem	variable	that	instantiates
from	the	ToolbarItem	class	which	will	be	used	to	attach	a	new	Add	Walk	button	to	the	main
toolbar	of	the	base	ContentPage.ToolbarItems	collection	to	provide	a	way	for	users	to	add
new	walk	trail	information	within	the	app.

	Next,	we	create	an	event	for	our	new	WalkItem	using	the	Clicked	event	of	the	ToolbarItem
class,	which	will	be	used	to	navigate	to	the	new	WalksEntryPage.

In	our	next	step,	we	declare	a	new	variable	walkItems	that	is	a	collection	of	list	items	to	store
each	of	our	walk	entries	within	our	model	and	then	use	the	DataTemplate	class	to	describe	how
we	want	our	model	data	to	be	displayed	within	each	of	the	rows	declared	within	the	ListView.	

Finally,	we	set	up	an	event	handler	for	our	ListView	that	will	be	used	to	move	to	the
WalksTrailPage	to	display	information	about	the	item	selected.

Creating	the	new	walk	entry	content	page
In	this	section,	we	will	begin	building	the	user	interface	for	our	new	WalkEntryPage.	This	page
is	called	when	the	user	clicks	on	the	Add	Walk	button	from	the	main	page	and	will	be	used	to
allow	the	user	a	means	of	adding	new	walk	information	to	be	used	within	the	application.

There	are	a	number	of	ways	you	can	go	about	presenting	this	information	to	collect	data.	For	the
purpose	of	this	app,	we	will	be	using	a	TableView,	but	you	could	quite	easily	use	a
StackLayout	and	present	this	information	as	a	series	of	Labels	and	EntryCells.

Let's	begin	by	creating	the	new	WalkEntryPage	by	performing	the	following	steps:

1.	 Create	a	new	ContentPage	called	WalkEntryPage,	as	you	did	in	the	section
entitled	Creating	the	walks	main	page,	located	within	this	chapter.

2.	 Next,	ensure	that	the	WalkEntryPage.cs	file	is	displayed	within	the	code	editor	and	enter	in
the	following	highlighted	code	sections:

								//

								//	WalkEntryPage.cs

								//	TrackMyWalks

								//

								//	Created	by	Steven	F.	Daniel	on	04/08/2016.

								//	Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

								//

								using	Xamarin.Forms;

								using	TrackMyWalks.Models;

								using	System.Collections.Generic;

								namespace	TrackMyWalks

								{

									public	class	WalkEntryPage	:	ContentPage

									{

									public	WalkEntryPage()

									{

									//	Set	the	Content	Page	Title	

									Title	=	"New	Walk	Entry";

									//	Define	our	New	Walk	Entry	fields

										var	walkTitle	=	new	EntryCell

									{

										Label	=	"Title:",

								Placeholder	=	"Trail	Title"

									};

								var	walkNotes	=	new	EntryCell

								{

									Label	=	"Notes:",

									Placeholder	=	"Description"

									};

									var	walkLatitude	=	new	EntryCell

									{

									Label	=	"Latitude:",

									Placeholder	=	"Latitude",

									Keyboard	=	Keyboard.Numeric

									};

									var	walkLongitude	=	new	EntryCell

									{

									Label	=	"Longitude:",

									Placeholder	=	"Longitude",

									Keyboard	=	Keyboard.Numeric

									};

									var	walkKilometers	=	new	EntryCell

									{

									Label	=	"Kilometers:",

									Placeholder	="Kilometers",

									Keyboard	=	Keyboard.Numeric

									};

									var	walkDifficulty	=	new	EntryCell

									{

									Label	=	"Difficulty	Level:",

									Placeholder	="Walk	Difficulty"

									};

									var	walkImageUrl	=	new	EntryCell

									{

									Label	=	"ImageUrl:",

									Placeholder	="Image	URL"

									};

									//	Define	our	TableView

									Content	=	new	TableView

									{

									Intent	=	TableIntent.Form,

									Root	=	new	TableRoot

									{

									new	TableSection()

									{

									walkTitle,

									walkNotes,

									walkLatitude,

									walkLongitude,

									walkKilometers,

									walkDifficulty,

									walkImageUrl

									}

									}

									};

									var	saveWalkItem	=	new	ToolbarItem	{

									Text	=	"Save"

									};

									saveWalkItem.Clicked	+=	(sender,	e)	=>	{

									Navigation.PopToRootAsync(true);

									};

									ToolbarItems.Add(saveWalkItem);

									}

									}

								}	

		

In	the	preceding	code	snippet,	we	began	by	declaring	a	number	of	EntryCell	labels	for	our	user
interface	to	capture	information	entered	by	the	user	for-Title,	Notes,	Latitude,	Longitude,
Kilometers,	Difficulty	and	ImageURL.	As	you	progress	through	this	book,	you	will	learn	how
to	customize	the	look	and	feel	of	the	EntryCells	by	creating	a	customized	platform-specific
picker	for	the	Walk	Difficulty	and	Kilometers.

Next,	we	define	our	TableView	and	add	each	of	our	EntryCell	fields	to	the	TableSection
property	of	the	TableView	control.	Each	TableSection	that	is	defined	within	a
TableView	consists	of	a	heading	and	one	or	more	ViewCells,	which,	in	our	case,	are	the
EntryCell	fields.

Finally,	we	declare	and	add	a	ToolbarItem	called	saveWalkItem	to	our
ContentPageToolbarItems	collection,	then	create	an	event	that,	when	clicked,	will	save	the
walk	information	entered	to	the	main	walks	page.	Obviously,	we	will	be	refactoring	the	new
WalkEntryPage	throughout	this	book,	which,	when	the	Save	button	is	pressed,	will	actually	send
this	information	to	the	server	using	a	RESTful	API	and	refresh	the	main	TrackMyWalks	page.

Creating	the	walk	trail	content	page
In	this	section,	we	will	begin	building	the	user	interface	for	our	WalksTrailPage.	This	page	is
called	when	the	user	clicks	on	an	entry	within	the	ListView	on	our	TrackMyWalks	main	content
page	and	will	be	used	to	display	information	associated	with	the	chosen	trail:

1.	 Create	a	new	ContentPage	called	WalkTrailPage	as	you	did	in	the	section
entitled	Creating	the	walks	main	page,	located	within	this	chapter.

2.	 Next,	ensure	that	the	WalkTrailPage.cs	file	is	displayed	within	the	code	editor	and	enter
the	following	highlighted	code	sections:

								//

								//	WalkTrailPage.cs

								//	TrackMyWalks

								//

								//	Created	by	Steven	F.	Daniel	on	04/08/2016.

								//	Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

								//

								using	Xamarin.Forms;

								using	TrackMyWalks.Models;

								namespace	TrackMyWalks

								{

									public	class	WalkTrailPage	:	ContentPage

									{

									public	WalkTrailPage(WalkEntries	walkItem)

									{

									Title	=	"Walks	Trail";

									var	beginTrailWalk	=	new	Button

									{

									BackgroundColor	=	Color.FromHex("#008080"),

									TextColor	=	Color.White,

									Text	=	"Begin	this	Trail"

									};

									//	Set	up	our	event	handler

									beginTrailWalk.Clicked	+=	(sender,	e)	=>

									{

									if	(walkItem	==	null)	return;

									Navigation.PushAsync(new	DistanceTravelledPage	(walkItem));

									Navigation.RemovePage(this);

									walkItem	=	null;

									};

		

									var	walkTrailImage	=	new	Image()

									{

									Aspect	=	Aspect.AspectFill,

									Source	=	walkItem.ImageUrl

									};

									var	trailNameLabel	=	new	Label()

								{

									FontSize	=	28,

									FontAttributes	=	FontAttributes.Bold,

									TextColor	=	Color.Black,

									Text	=	walkItem.Title

								};

									var	trailKilometersLabel	=	new	Label()

									{

									FontAttributes	=	FontAttributes.Bold,

									FontSize	=	12,

									TextColor	=	Color.Black,

									Text	=	$"Length:	{	walkItem.Kilometers	}	km"

									};

									var	trailDifficultyLabel	=	new	Label()

									{

									FontAttributes	=	FontAttributes.Bold,

									FontSize	=	12,

									TextColor	=	Color.Black,

									Text	=	$"Difficulty:	{	walkItem.Difficulty	}	"

									};

									var	trailFullDescription	=	new	Label()

									{

								FontSize	=	11,

									TextColor	=	Color.Black,

									Text	=	$"{	walkItem.Notes	}",

									HorizontalOptions	=	LayoutOptions.FillAndExpand

									};

									this.Content	=	new	ScrollView

									{

									Padding	=	10,

									Content	=	new	StackLayout

									{

									Orientation	=	StackOrientation.Vertical,

									HorizontalOptions	=	LayoutOptions.FillAndExpand,

									Children	=

									{

									walkTrailImage,

									trailNameLabel,

									trailKilometersLabel,

									trailDifficultyLabel,

									trailFullDescription,

									beginTrailWalk

									}

									}

									};

									}

									}

								}	

	

In	the	preceding	code	snippet,	we	began	by	importing	our	TrackMyWalks.Models	class	as	we
will	be	using	this	to	extract	the	information	passed	in	from	our	WalksPage.

Next,	we	declare	our	beginTrailWalk	variable	that	inherits	from	the	Button	class;	then	we	set
up	the	Clicked	event	of	the	Button	class,	which	will	be	used	to	navigate	to	the
DistanceTravelledPage	content	page	when	clicked	to	display	information	about	our	trail	after
removing	our	walks	trail	content	page	from	the	NavigationPage	hierarchy.

In	the	next	step,	we	declare	an	image	variable	walkTrailImage	and	set	the	Source	property	of
the	image	to	be	the	image	of	the	selected	walkItem	from	the	ListView.	We	then	declare	and
initialize	a	number	of	label	objects	that	will	contain	the	walkItem	information	that	has	been
passed	from	the	WalksPage	content	page	ListView	control	and	displayed.

Next,	we	define	a	ScrollView	control	that	is	part	of	the	Xamarin.Forms.Core	base	class,	then
add	each	of	our	form	Image	and	Label	fields	to	the	StackLayout	control.	The	ScrollView
control	is	a	fantastic	control	that	allows	our	ContentPage	to	scroll	its	contents	should	the
information	be	too	big	to	fit	within	the	actual	device's	screen	real	estate.

Adding	the	Xamarin.Forms.Maps	NuGet	package
In	this	section,	we	will	need	to	add	the	Xamarin.Forms.Maps	NuGet	package	to	our	core	project,
as	well	as	for	each	of	the	platform-specific	projects	for	both	iOS	and	Android	platforms.	This
package	is	required	in	order	to	use	the	Xamarin.FormsMap	control	in	the	DistanceTravelled
content	page	that	we	will	be	building	in	the	next	section.

1.	 Right-click	on	the	TrackMyWalks	solution	and	choose	the	Add	Packages...	menu	option,	as
shown	in	the	following	screenshot:

2.	 This	will	display	the	Add	Packages	dialog.	Enter	in	maps	within	the	Search	dialog	and	then
select	and	click	the	Xamarin.Forms.Maps	option	within	the	list,	as	shown	in	the	following
screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	Xamarin.Forms.Maps	NuGet	package
to	the	TrackMyWalks	core	solution.

4.	 Repeat	the	same	process	to	add	the	Xamarin.Forms.Maps	NuGet	package	for	both	the	iOS
and	Android	projects	that	are	contained	within	the	TrackMyWalks	solution.

Now	that	you	have	added	the	NuGet	Package	for	the	Xamarin.Forms	Map,	we	can	begin	to	utilize
this	control	within	the	DistanceTravelled	content	page	that	we	will	be	covering	in	the	next
section.

Creating	the	DistanceTravelledPage	content
page
In	this	section,	we	will	begin	building	the	user	interface	for	our
DistanceTravelledPage	content	page.	This	page	is	called	when	the	user	clicks	on	the	Begin
this	Trail	button	from	the	WalksTrailPage	content	page,	which	will	be	used	to	display
information	about	the	chosen	trail,	as	well	as	placing	a	pin	placeholder	within	the
Xamarin.Forms.Maps	control	and	calculating	the	distance	travelled,	and	time	taken:

1.	 Create	a	new	ContentPage	called	DistanceTravelledPage	as	you	did	in	the	previous
section.

2.	 Next,	ensure	that	the	DistanceTravelledPage.cs	file	is	displayed	within	the	code	editor
and	enter	the	following	highlighted	code	sections:

								//	

								//		DistanceTravelledPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Maps;

								using	TrackMyWalks.Models;	

	

								namespace	TrackMyWalks	

								{	

												public	class	DistanceTravelledPage	:	ContentPage	

												{	

3.	 Then,	update	the	DistanceTravelledPage	method	constructor	to	include	the	walkItem
parameter	for	the	chosen	walk,	as	shown	by	the	following	highlighted	code	sections:

				public	DistanceTravelledPage(WalkEntries	walkItem)

				{

							Title	=	"Distance	Travelled";

4.	 Next,	we	declare	a	trailMap	variable	that	will	point	to	an	instance	of	the
Xamarin.Forms.Maps	control	to	create	a	placeholder	pin	marker	within	the	map	control.
Using	the	latitude	and	longitude	coordinates,	enter	the	following	highlighted	code	sections:

								//	Instantiate	our	map	object

								var	trailMap	=	new	Map();

				//	Place	a	pin	on	the	map	for	the	chosen	walk	type

				trailMap.Pins.Add(new	Pin

				{

							Type	=	PinType.Place,

							Label	=	walkItem.Title,

							Position	=	new	Position(walkItem.Latitude,	walkItem.Longitude)

					});

					//	Center	the	map	around	the	list	of	walks	entry's	location

					trailMap.MoveToRegion(MapSpan.FromCenterAndRadius(new	

Position(walkItem.Latitude,	walkItem.Longitude),	

Distance.FromKilometers(1.0)));

5.	 Then,	we	declare	a	number	of	Label	objects	that	contain	our	walkItem	information,	which
has	been	passed	from	the	WalkTrailPage	content	page	so	that	we	can	trail	related
information.	Enter	in	the	following	highlighted	code	sections:

				var	trailNameLabel	=	new	Label()

				{

								FontSize	=	18,

								FontAttributes	=	FontAttributes.Bold,

								TextColor	=	Color.Black,

								Text	=	walkItem.Title

				};

				var	trailDistanceTravelledLabel	=	new	Label()

				{

								FontAttributes	=	FontAttributes.Bold,

								FontSize	=	20,

								TextColor	=	Color.Black,

								Text	=	"Distance	Travelled",

								HorizontalTextAlignment	=	TextAlignment.Center

				};

				var	totalDistanceTaken	=	new	Label()

				{

								FontAttributes	=	FontAttributes.Bold,

								FontSize	=	20,

								TextColor	=	Color.Black,

								Text	=	$"{	walkItem.Distance	}	km",

								HorizontalTextAlignment	=	TextAlignment.Center

				};

				var	totalTimeTakenLabel	=	new	Label()

				{

								FontAttributes	=	FontAttributes.Bold,

								FontSize	=	20,

								TextColor	=	Color.Black,

								Text	=	"Time	Taken:",

								HorizontalTextAlignment	=	TextAlignment.Center

				};

				var	totalTimeTaken	=	new	Label()

				{

								FontAttributes	=	FontAttributes.Bold,

												FontSize	=	20,	

												TextColor	=	Color.Black,

												Text	=	"0h	0m	0s",

												HorizontalTextAlignment	=	TextAlignment.Center

									};

6.	 Next,	we	declare	our	walksHomeButton	variable	that	inherits	from	the	Button	class	and
proceed	to	set	up	our	click	handler,	which	will	be	used	to	navigate	our	app	to	the	main
WalksPage	content	page	when	clicked.	Enter	the	following	highlighted	code	sections:

				var	walksHomeButton	=	new	Button

				{

								BackgroundColor	=	Color.FromHex("#008080"),

								TextColor	=	Color.White,

								Text	=	"End	this	Trail"

				};

					//	Set	up	our	event	handler

					walksHomeButton.Clicked	+=	(sender,	e)	=>

					{

									if	(walkItem	==	null)	return;

									Navigation.PopToRootAsync(true);

									walkItem	=	null;

						};

7.	 Then,	we	define	a	ScrollView	control	that	is	part	of	the	Xamarin.Forms.Core	base	class
and	proceed	to	add	each	of	our	form	Button	and	Label	fields	to	the	StackLayout	control.
Enter	the	following	highlighted	code	sections:

								this.Content	=	new	ScrollView

							{

											Padding	=	10,

											Content	=	new	StackLayout

											{

															Orientation	=	StackOrientation.Vertical,

															HorizontalOptions	=	LayoutOptions.FillAndExpand,

															Children	=	{

																			trailMap,

																			trailNameLabel,

																			trailDistanceTravelledLabel,

																			totalDistanceTaken,

																			totalTimeTakenLabel,

																			totalTimeTaken,

																			walksHomeButton

																}

														}

													};

												}

											}

								}	

In	the	preceding	code	snippet,	we	began	by	importing	our	TrackMyWalks.Models	class	as	we
will	be	using	this	to	extract	the	information	passed	in	from	our	WalksPage.	The
Xamarin.Forms.Maps	NuGet	package	is	a	cross-platform	library	that	allows	developers	to
display	and	annotate	information	within	the	map.	We	will	be	using	this	control	to	create	a	pin
placeholder	within	the	map	control,	along	with	additional	details	associated	with	the	trail.

Next,	we	declare	our	trailMap	variable	that	points	to	an	instance	of	the	Xamarin.Forms.Maps
control	and	create	a	placeholder	pin	marker	within	the	map	containing	the	details	for	the	chosen
trail,	then	center	in	on	the	map	to	show	the	area	for	our	walks	location,	derived	by	the	latitude
and	longitude	coordinates.	We	then	declare	and	initialize	a	number	of	Label	objects	that
contain	the	walkItem	information	that	has	been	passed	from	the	WalkTrailPage	content	page	and

declare	our	walksHomeButton	variable	that	inherits	from	the	Button	class,	then	set	up	the
Clicked	event	for	the	Button	class,	which	will	be	used	to	navigate	back	to	the	TrackMyWalks
when	clicked.

Finally,	we	define	a	ScrollView	control	that	is	part	of	the	Xamarin.Forms.Core	base	class,
then	add	each	of	our	form	Button	and	Label	fields	to	the	StackLayout	control.

In	our	next	section,	we	will	need	to	initialize	the	Xamarin.Forms.Maps	NuGet	package	library
within	each	of	our	platform-specific	start	up	classes	(for	example,	AppDelegate.cs	for	iOS	and
MainActivity.cs	for	Android).	Let's	take	a	look	at	how	we	can	achieve	this	by	following	the
steps	below.

1.	 Ensure	that	the	AppDelegate.cs	file	is	displayed	within	the	code	editor	and	enter	the
following	highlighted	code	sections:

								//	

								//		AppDelegate.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Foundation;	

								using	UIKit;	

	

								namespace	TrackMyWalks.iOS	

								{	

												[Register("AppDelegate")]	

												public	partial	class	AppDelegate	:		

								global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate	

												{	

																public	override	bool	FinishedLaunching(UIApplication	app,		

								NSDictionary	options)	

																{	

																				global::Xamarin.Forms.Forms.Init();	

																				Xamarin.FormsMaps.Init();	

																				LoadApplication(new	App());	

																				return	base.FinishedLaunching(app,	options);	

																}	

												}	

								}	

In	the	preceding	code	snippet,	we	began	by	initializing	our	AppDelegate	class	to	use	the
Xamarin.Forms.Maps	library,	by	adding	the	Xamarin.FormsMaps.Init	which	initializes	the
Xamarin.Forms	platform,	so	that	our	TrackMyWalks	solution	can	use	the	maps.	If	this	is	omitted
from	this	class,	the	DistanceTravelledPage	content	page	will	not	display	the	map	and	will	not
work	as	expected.

Note

For	more	information	on	Xamarin.Forms.Maps	library,	as	well	as	the	various	types	of	different

classes	available,	please	refer	to	the	Xamarin	developer	documentation	at
https://developer.xamarin.com/api/namespace/Xamarin.Forms.Maps/	.

https://developer.xamarin.com/api/namespace/Xamarin.Forms.Maps/

Creating	the	Splash	screen	content	page
In	this	section,	we	will	begin	building	the	user	interface	for	our	Splash	page	which	will	only	be
used	for	the	Android	platform,	since	iOS	already	contains	a	method	of	achieving	this.	The	splash
page	will	simply	display	the	default	Xamarin	icon,	but	as	we	progress	throughout	this	book,	we
will	be	refactoring	this	page	to	include	a	more	suitable	image	for	our	app:

1.	 Create	a	new	ContentPage	called	SplashPage	as	you	did	in	the	previous	section.
2.	 Next,	ensure	that	the	SplashPage.cs	file	is	displayed	within	the	code	editor	and	enter	the

following	highlighted	code	sections:

								//	

								//		SplashPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Threading.Tasks;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks	

								{	

												public	class	SplashPage	:	ContentPage	

												{	

3.	 Then,	locate	the	SplashPage	constructor	method	and	enter	the	following	highlighted	code
sections:

								public	SplashPage()

								{

											AbsoluteLayout	splashLayout	=	new	AbsoluteLayout

									{

											HeightRequest	=	600

									};

											var	image	=	new	Image()

									{

											Source	=	ImageSource.FromFile("icon.png"),

											Aspect	=	Aspect.AspectFill,

									};

									AbsoluteLayout.SetLayoutFlags(image,	AbsoluteLayoutFlags.All);

									AbsoluteLayout.SetLayoutBounds(image,	new	Rectangle(0f,	0f,

										1f,	1f));

									splashLayout.Children.Add(image);

									Content	=	new	StackLayout()

									{

											Children	=	{	splashLayout	}

									};

									}

4.	 Next,	locate	the	OnAppearing	method	and	enter	the	following	highlighted	code	sections:

								protected	override	async	void	OnAppearing()

								{

											base.OnAppearing();

									//	Delay	for	a	few	seconds	on	the	splash	screen

									await	Task.Delay(3000);

									//	Instantiate	a	NavigationPage	with	the	MainPage

									var	navPage	=	new	NavigationPage(new	WalksPage()

									{

											Title	=	"Track	My	Walks"

									});

											Application.Current.MainPage	=	navPage;

											}

									}

							}	

In	the	preceding	code	snippet,	we	began	by	importing	our	System.Threading.Tasks	class.	This
class	will	be	used	to	perform	a	slight	delay	to	allow	our	user	to	see	the	splash	screen,	as	defined
within	the	OnAppearing	class	method.

We	then	create	a	splashLayout	variable	of	type	AbsoluteLayout	that	will	be	used	to	position
and	size	each	of	the	child	elements	proportionally	within	our	view,	and	then	set	the
HeightRequest	property.

Next,	we	declare	an	image	variable	that	inherits	from	the	Image	class;	then	assign	the	Source
property	to	the	image	that	we	would	like	to	use	and	set	the	images	Aspect	property	so	that	the
image	fills	the	view.

In	our	final	steps,	we	define	values	for	both	of	the	LayoutFlags	and	LayoutBounds	properties
on	the	AbsoluteLayout	class	so	that	the	image	resizes	within	the	view.	Then	we	add	our
splashLayout	to	the	content	page	using	the	StackLayout	control.	Finally,	we	override	the
OnAppearing	class	method	of	the	Xamarin.Forms.Page	page	life	cycle,	which	gets	called
immediately	prior	to	the	page	becoming	visible	on	the	screen,	and	then	specify	a	delay	of	three
seconds	prior	to	instantiating	a	new	instance	of	the	NavigationPage,	which	will	call	our
WalksPage	to	be	the	main	content	root	page.

Updating	the	Xamarin.Forms	App	class
In	this	section,	we	need	to	initialize	the	App	class	of	Xamarin.Forms	library	to	call	our
SplashPage	and	set	the	root	page	for	our	application	if	the	detected	OS	device	is	Android.	Let's
take	a	look	at	how	we	can	achieve	this:

1.	 Open	the	TrackMyWalks.cs	located	within	the	TrackMyWalks	group	and	ensure	that	it	is
displayed	within	the	code	editor.

2.	 Next,	locate	the	App	method	and	enter	the	following	highlighted	code	sections,	as	shown	in
the	following	code	snippet:

								//	

								//		TrackMyWalks.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks	

								{	

												public	class	App	:	Application	

												{	

																public	App()	

																{	

																				//	Check	the	Target	OS	Platform	

																				if	(Device.OS	==	TargetPlatform.Android)	

																				{	

																								MainPage	=	new	SplashPage();	

																				}	

																				else	

																				{	

																								//	The	root	page	of	your	application		

																								var	navPage	=	new	NavigationPage(new	TrackMyWalks.

																									WalksPage()	

																									{	

																												Title	=	"Track	My	Walks"	

																								});	

																								MainPage	=	navPage;	

																				}	

																}	

												}	

								}	

In	the	preceding	code	snippet,	we	began	checking	the	Device.OS	class	to	determine	what	OS
Xamarin.Forms	is	running	on,	then	used	the	TargetPlatform	class	to	determine	whether	our
app	is	being	run	on	Google'sAndroid	OS	platform.	If	our	app	is	running	on	Android,	we	set	the
App	constructor	methods	MainPage	to	a	new	instance	of	the	ContentPage	that	will	simply	use	the
SplashPage	as	the	root	page.	Alternatively,	we	create	a	new	instance	of	the	NavigationPage
class	and	set	this	to	our	WalksPage	to	be	the	main	content	root	page	for	our	ContentPage.

Differences	between	Xamarin	Studio	and	Visual
Studio
When	developing	cross-platform	mobile	apps,	you	currently	have	a	choice	of	using	either
Xamarin	Studio	or	Microsoft's	Visual	Studio	development	environments.	It	is	worth	noting	that,
although	the	screenshots	and	example	code	used	throughout	this	book	have	been	developed	using
Xamarin	Studio	running	on	an	Apple	Macintosh	computer,	the	code	should	compile	fine	on	a
Windows	machine	running	Microsoft	Visual	Studio	2015.

However,	there	are	some	differences	that	you	need	to	be	aware	of	before	embarking	on	the
journey	of	building	your	mobile	development	solutions.	If	you	are	running	Xamarin	Studio	on	a
Windows	machine,	you	will	get	an	Android	project	solution	whenever	you	create	a	new
Xamarin.Forms	solution.

If	you	want	to	integrate	and	develop	apps	for	Windows	Phone,	you	will	need	to	ensure	that	you
are	running	Microsoft	Visual	Studio	on	a	Windows	machine.	When	developing	apps	for	iOS
applications,	you	will	need	to	prepare	your	Mac	to	be	the	Xamarin	build	host	by	firstly	enabling
Remote	Login	on	your	Mac	within	the	System	Preferences	section,	and	then	selecting	the	Mac
to	be	the	build	host	from	within	the	Microsoft	Visual	Studio	environment	on	your	Windows
machine.

Note

For	more	information	on	how	to	prepare	your	Mac	to	be	the	Xamarin	build	host,	refer	to	the
Xamarin	developer	documentation	at
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-
mac/.

Now	that	you	have	an	understanding	of	the	differences	between	Xamarin	Studio	and	Microsoft
Visual	Studio,	our	next	step	is	to	compile,	build	and	run	the	TrackMyWalks	application	within	the
iOS	simulator.

https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/

Running	the	TrackMyWalks	app	using	the
simulator
In	this	section,	we	will	take	a	look	at	how	to	compile	and	run	the	TrackMyWalks	application.	You
have	the	option	of	choosing	to	run	your	application	using	an	actual	device,	or	choosing	from	a	list
of	simulators	available	for	an	iOS	device.

The	version	number	of	the	simulator	is	dependent	on	the	version	of	the	iOS	SDK	that	is	installed
on	your	computer.	Perform	the	following	steps:

1.	 To	run	the	app,	choose	your	preferred	device	from	the	list	of	available	iOS	simulators	and
select	the	Run	menu	option,	as	shown	in	the	following	screenshot:

2.	 Next,	choose	the	Run	With	sub-menu	item,	and	then	choose	the	Custom	Configuration...
then	click	on	the	Run	button	from	the	Custom	Parameters	dialog,	as	shown	in	the	following
screenshot:

3.	 Alternatively,	you	can	also	build	and	run	the	TrackMyWalks	application	by	pressing
Command	+	Return	key	combinations.	

When	the	compilation	is	complete,	the	iOS	simulator	will	appear	automatically	and	the
TrackMyWalks	application	will	be	displayed,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	a	list	of	static	walk	trail
entries,	that	are	displayed	within	our	ListView.	When	the	user	clicks	on	the	Add	Walk	button
link,	this	will	display	the	new	WalkEntry	content	page,	so	they	can	begin	entering	new	Walk	trail
information.

Currently,	this	page	doesn't	save	entered	information,	but	as	we	progress	throughout	this	book,	we
will	be	refactoring	these	pages	to	allow	for	this	to	happen.	Upon	clicking	the	Save	button,	the
user	will	be	redirected	back	to	the	main	Track	My	Walks	page.

The	preceding	screenshot	shows	you	the	navigation	flow	between	each	of	the	pages	when	a	trail
has	been	selected	from	the	list,	with	the	final	screen	showing	the	distance	travelled	page	along
with	the	placeholder	pin	marker	showing	the	trail	location	within	the	map	view.

Congratulations,	you	have	successfully	built	the	foundation	for	the	TrackMyWalks	application,	as
well	as	the	user	interface	for	each	of	the	content	pages	that	will	be	used	by	our	app.	As	we
progress	through	this	book,	we	will	be	enhancing	our	app	to	include	better	architectural	design
patterns,	nicer	looking	user	interface	elements,	as	well	as	real-time	data	being	synchronized
through	the	use	of	RESTful	web	service	APIs.

Summary
In	this	chapter	we	explored	how	to	go	about	creating	a	Xamarin.Forms	cross-platform
application	for	both	iOS	and	Android	platforms.	We	then	moved	on	to	building	a	series	of	content
pages	with	static	data.

Next,	we	looked	at	how	to	use	the	default	Xamarin.Forms	navigation	APIs	to	help	move	between
each	of	the	content	pages,	which	we	will	refactor	quite	a	bit	when	we	cover	this	in	Chapter	3,
Navigating	within	the	MVVM	Model	-	The	Xamarin.Forms	Way	to	use	a	more	flexible,
customized	navigation	service.	Finally,	we	talked	about	some	of	the	differences	between	using
Xamarin	Studio	and	Microsoft	Visual	Studio	for	development,	before	running	our	TrackMyWalks
app	within	the	simulator.

In	the	next	chapter,	you	will	learn	about	the	concepts	behind	the	Model-View-View-Model
(MVVM)	pattern	architecture,	how	to	implement	the	MVVM	model	within	your	application,	and
the	process	of	how	to	add	new	ViewModels	to	your	Xamarin	solution.

Chapter	2.	MVVM	and	Data	Binding
In	the	previous	chapter,	we	explored	how	to	go	about	creating	a	native	Xamarin.Forms	cross-
platform	application	for	both	the	iOS	and	Android	platforms,	and	learned	how	to	add	new
packages	to	your	solution	using	the	NuGet	package	manager.	We	also	looked	at	how	to	go	about
adding	and	creating	several	ContentPages	to	your	solution,	as	well	as	how	to	run	and	test	your
app	within	the	simulator.

The	Model-View-View	Model	(MVVM)	architectural	pattern	was	invented	with	the	Extensible
Application	Markup	Language	(XAML)	in	mind	that	was	created	by	Microsoft	back	in	2008	and
is	particularly	well	suited	for	use	with	the	MVVM	application	architectural	pattern,	because	it
enforces	a	separation	of	the	XAML	user	interface	from	the	underlying	data	model	through	a	class
that	will	act	as	a	connection	between	both	the	View	and	the	Model.	The	View	and	the	ViewModel
can	then	be	connected	through	data	bindings	that	have	been	defined	within	the	XAML	file.

XAML	has	also	been	integrated	into	the	Xamarin.Forms	platform	that	allows	for	the	creation	of
cross-platform,	natively-based	programming	interfaces	for	iOS,	Android,	and	Windows	Phone
mobile	devices.	This	allows	developers	to	define	user	interfaces	using	all	the	Xamarin.Forms
views,	layouts,	and	pages,	as	well	as	custom	classes.

XAML	enforces	the	separation	between	the	application's	user	interface	from	the	underlying	data,
through	a	class	that	will	act	as	the	communication	layer	between	the	View	and	the	ViewModel,
which	are	connected	through	data-bindings	that	are	defined	in	either	the	XAML	or	underlying
code	file,	along	with	the	binding	context	for	the	View,	that	points	to	an	instance	of	the
ViewModel.

This	chapter	will	begin	by	introducing	you	to	the	architecture	behind	the	MVVM	pattern
architecture,	and	how	you	can	implement	these	within	your	application,	by	adding	new	Views	and
the	associated	Models.

You'll	learn	how	to	create	the	underlying	C#	class	files	that	will	act	as	the	ViewModels	for	our
app,	as	well	as	updating	the	existing	content	pages	to	data-bind	with	the	ViewModels	to	represent
the	information	that	will	be	displayed	within	the	user-interface	for	our	application.

This	chapter	will	cover	the	following	points:

Understanding	the	MVVM	pattern	architecture	and	data-binding
Implementing	the	MVVM	base	model	within	the	TrackMyWalks	solution
Implementing	the	MVVM	ViewModels	within	the	app
Implementing	the	MVVM	data-bindings	to	our	user	interface	pages

Understanding	the	MVVM	pattern	architecture
In	this	section	we	will	be	taking	a	look	at	the	MVVM	pattern	architecture	and	the	communication
between	the	components	that	make	up	the	architecture.

The	MVVM	design	pattern	is	designed	to	control	the	separation	between	the	user	interfaces
(views),	the	ViewModels	that	contain	the	actual	binding	to	the	Model,	and	the	models	that	contain
the	actual	structure	of	the	entities	representing	information	stored	on	a	database	or	from	a	web
service.

The	following	screenshot	shows	the	communication	between	each	of	the	components	contained
within	the	MVVM	design	pattern	architecture:

The	MVVM	design	pattern	is	divided	into	three	main	areas,	as	you	can	see	from	the	preceding
screenshot,	and	these	are	explained	in	the	following	table:

MVVM
type Description

Model
The	Model	is	basically	a	representation	of	business	related	entities	used	by	an
application,	and	is	responsible	for	fetching	data	from	either	a	database,	or	web
service,	and	then	de-serialized	to	the	entities	contained	within	the	Model.

View

The	View	component	of	the	MVVM	model	basically	represents	the	actual	screens
that	make	up	the	application,	along	with	any	custom	control	components,	and
control	elements,	such	as	buttons,	labels,	and	text	fields.

The	views	contained	within	the	MVVM	pattern	are	platform-specific	and	are
dependent	on	the	platform	APIs	that	are	used	to	render	the	information	that	is

contained	within	the	application's	user	interface.

ViewModel

The	ViewModel	essentially	controls,	and	manipulates	the	views	by	acting	as	their
main	data	context.	The	ViewModel	contains	a	series	of	properties	that	are	bound	to
the	information	contained	within	each	Model.	Those	properties	are	then	bound	to
each	of	the	views	to	represent	this	information	within	the	user	interface.

ViewModels	can	also	contain	command	objects	that	provide	action-based	events
that	can	trigger	the	execution	of	event	methods	that	occur	within	the	View.	For
example,	when	the	user	taps	on	a	toolbar	item,	or	a	button.

ViewModels	generally	implement	the	INotifyPropertyChanged	and
INotifyCollectionChanged	interfaces.	Such	a	class	fires	a	PropertyChanged
and	INotifyCollectionChanged	event	whenever	a	collection	has	changed	(such
as,	adding	an	item,	removing	an	item,	or	when	a	change	occurs	to	one	of	the	items,
properties)	changes.	The	data	binding	mechanism	in	Xamarin.Forms	attaches	a
handler	to	this	PropertyChanged	and	CollectionChanged	events	so	it	can	be
notified	when	a	property	changes	and	keep	the	target	updated	with	the	new	value.

Now	that	you	have	a	good	understanding	of	the	components	that	are	contained	within	MVVM
design	pattern	architecture,	we	can	begin	to	create	our	entity	models	and	update	our	user	interface
files.

Note

In	Xamarin.Forms,	the	term	View	is	used	to	describe	form	controls,	such	as	buttons	and	labels,
and	uses	the	term	Page	to	describe	the	user	interface	or	screen.	Whereas,	in	MVVM,	Views	are
used	to	describe	the	user	interface,	or	screen.

Implementing	the	MVVM	ViewModels	within
your	app
In	this	section,	we	will	begin	by	setting	up	the	basic	structure	for	our	TrackMyWalks	solution	to
include	the	folder	that	will	be	used	to	represent	our	ViewModels.	Let's	take	a	look	at	the
following	steps	to	achieve	this:

1.	 Launch	the	Xamarin	Studio	application	and	ensure	that	the	TrackMyWalks	solution	is	loaded
within	the	Xamarin	Studio	IDE.

2.	 Next,	create	a	new	folder	within	the	TrackMyWalks	PCL	project,	called	ViewModels	as
shown	in	the	following	screenshot:

Creating	the	WalkBaseViewModel	for	the
TrackMyWalks	app
In	this	section,	we	will	begin	by	creating	a	base	MVVM	ViewModel	that	will	be	used	by	each	of
our	ViewModels	when	we	create	these,	the	Views	(pages)	will	then	implement	those
ViewModels	and	use	them	as	their	BindingContext.

Tip

We	will	start	by	creating	a	base	ViewModel	class	that	will	essentially	be	an	abstract	class,
containing	basic	functionality	that	each	of	our	ViewModels	will	inherit	from,	and	will	implement
the	INotifyPropertyChanged	Interface.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Create	an	empty	class	within	the	ViewModels	folder,	shown	in	the	following	screenshot:

2.	 Next,	choose	the	Empty	Class	option	located	within	the	General	section,	and	enter	in
WalkBaseViewModel	for	the	name	of	the	new	class	file	to	be	created,	as	shown	in	the
following	screenshot:

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty	class
file,	as	shown	in	the	preceding	screenshot.

Up	until	this	point,	all	we	have	done	is	create	our	WalkBaseViewModel	class	file.	This
abstract	class	will	act	as	the	base	ViewModel	class	that	will	contain	the	basic	functionality
that	each	of	our	ViewModels	will	inherit	from.

As	we	start	to	build	the	base	class,	you	will	see	that	it	contains	a	couple	of	members	and	it
will	implement	the	INotifyPropertyChangedInterface.	As	we	progress	through	this
book,	we	will	build	to	this	class,	which	will	be	used	by	the	TrackMyWalks	application.	To
proceed	with	creating	the	base	ViewModel	class.

Ensure	that	the	WalkBaseViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	in
the	following	code	snippet:

								//

								//	WalkBaseViewModel.cs

								//	TrackMyWalks	Base	ViewModel

								//

								//	Created	by	Steven	F.	Daniel	on	22/08/2016.

								//	Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.

								//

								using	System.ComponentModel;

								using	System.Runtime.CompilerServices;

								namespace	TrackMyWalks.ViewModels

								{

									public	abstract	class	WalkBaseViewModel	:

											INotifyPropertyChanged

									{

									protected	WalkBaseViewModel()

									{

									}

									public	event	PropertyChangedEventHandler	PropertyChanged;

									protected	virtual	void	OnPropertyChanged

											([CallerMemberName]	string	propertyName	=	null)

									{

									var	handler	=	PropertyChanged;

									if	(handler	!=	null)

									{

									handler(this,	new	PropertyChangedEventArgs(propertyName));

									}

									}

									}

								}

	

In	the	preceding	code	snippet,	we	begin	by	creating	a	new	abstract	class	for	our
WalkBaseViewModel	that	implements	from	the	INotifyPropertyChanged	interface	class,	which
allows	the	View	or	page	to	be	notified	whenever	properties	contained	within	the	ViewModel
have	changed.	Next,	we	declare	a	variable	PropertyChanged	that	inherits	from	the
PropertyChanged	EventHandler	that	will	be	used	to	indicate	whenever	properties	on	the
object	have	changed.	Finally,	within	the	OnPropertyChanged	method,	this	will	be	called	when	it
has	determined	that	a	change	has	occurred	on	a	property	within	the	ViewModel	from	a	child
class.

Note

The	INotifyPropertyChanged	interface	is	used	to	notify	clients,	typically	binding	clients,	when
the	value	of	a	property	has	changed.

Implementing	the	WalksPageViewModel
In	the	previous	section,	we	built	our	base	class	ViewModel	for	our	TrackMyWalks	application.
This	will	act	as	the	main	class	that	will	allow	our	View	or	pages	to	be	notified	whenever	changes
to	properties	within	the	ViewModel	have	been	made.

In	this	section,	we	will	need	to	begin	building	the	ViewModel	for	our	WalksPage.	This	model
will	be	used	to	store	the	WalkEntries,	which	will	later	be	used	and	displayed	within	the
ListView	on	the	WalksPage	content	page.

Let's	take	a	look	at	how	we	can	achieve	this	by	following	these	steps:

1.	 First,	create	a	new	class	file	within	the	ViewModels	folder	called	WalksPageViewModel,	as
you	did	in	the	previous	section,	entitled	Creating	the	WalkBaseViewModel	located	within
this	chapter.

2.	 Next,	ensure	that	the	WalksPageViewModel.cs	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	code	snippet:

								//	

								//		WalksPageViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Collections.ObjectModel;	

								using	TrackMyWalks.Models;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalksPageViewModel	:	WalkBaseViewModel	

												{	

																ObservableCollection<WalkEntries>	_walkEntries;	

	

																public	ObservableCollection<WalkEntries>	walkEntries	

																{	

																				get	{	return	_walkEntries;	}	

																				set	{	_walkEntries	=	value;	

																						OnPropertyChanged();	

																				}	

																}	

In	the	preceding	code	snippet,	we	begin	by	ensuring	that	our	ViewModel	inherits	from	the
WalkBaseViewModel	class.	Next,	we	create	an	ObservableCollection	variable
_walkEntries	which	is	very	useful	when	you	want	to	know	when	the	collection	has
changed,	and	an	event	is	triggered	that	will	tell	the	user	what	entries	have	been	added	or
removed	from	the	WalkEntries	model.

In	our	next	step,	we	create	the	ObservableCollection	constructor	WalkEntries,	that	is
defined	within	the	System.Collections.ObjectModel	class,	and	accepts	a	List

parameter	containing	our	WalkEntries	model.	The	WalkEntries	property	will	be	used	to
bind	to	the	ItemSource	property	of	the	ListView	within	the	WalksMainPage.	Finally,	we
define	the	getter	(get)	and	setter	(set)	methods	that	will	return	and	set	the	content	of	our
_walkEntries	when	it	has	been	determined	whether	a	property	has	been	modified	or	not.

3.	 Next,	locate	the	WalksPageViewModel	class	constructor,	and	enter	the	following	highlighted
code	sections:

								public	WalksPageViewModel()

								{

								walkEntries	=	new	ObservableCollection<WalkEntries>()	{

								new	WalkEntries	{

								Title	=	"10	Mile	Brook	Trail,	Margaret	River",

								Notes	=	"The	10	Mile	Brook	Trail	starts	in	the

									Rotary	Park	near	Old	Kate,	a	preserved	steam	"	+

									"engine	at	the	northern	edge	of	Margaret	River.	",

								Latitude	=	-33.9727604,

								Longitude	=	115.0861599,

								Kilometers	=	7.5,

								Distance	=	0,

								Difficulty	=	"Medium",

								ImageUrl	=	"http://trailswa.com.au/media/

									cache/media/images/trails/_mid/"	+

										"FullSizeRender1_600_480_c1.jpg"

								},

								new	WalkEntries	{

								Title	=	"Ancient	Empire	Walk,	Valley	of	the	Giants",

								Notes	=	"The	Ancient	Empire	is	a	450	metre	walk	trail

								that	takes	you	around	and	through	some	of	"	+

								"the	giant	tingle	trees	including	the	most	popular	of	

									the	gnarled	veterans,	known	as	"	+	"Grandma	Tingle.",

								Latitude	=	-34.9749188,

								Longitude	=	117.3560796,

								Kilometers	=	450,

								Distance	=	0,

								Difficulty	=	"Hard",

								ImageUrl	=	"http://trailswa.com.au/media/cache/media/

									images/trails/_mid/"	+	"Ancient_Empire_534_480_c1.jpg"

								},

								};

								}

								}

							}

	

In	the	preceding	code	snippet,	we	began	by	creating	a	new	ObservableCollection	for	our
walkEntries	method	and	then	added	each	of	the	walk	list	items	that	we	would	like	to	store
within	our	Model.	As	each	item	is	added,	the	ObservableCollection,	constructor	is	called,	and
the	setter	(set)	method	is	invoked	to	add	the	item,	then	the	INotifyPropertyChanged	event	will
be	triggered	to	notify	that	a	change	has	occurred.

Updating	the	walks	main	page	to	use	the	MVVM	model
Now	that	we	have	created	the	MVVM	ViewModel	that	will	be	used	for	our	main	WalksPage,	we
need	to	modify	the	Walks	main	page.	In	this	section,	we	will	be	taking	a	look	at	how	to	bind	the
WalksPageBindingContext	to	the	WalksPageViewModel	so	that	the	walk	entry	details	can	be
displayed.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Collections.Generic;	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalksPage	:	ContentPage	

												{	

																public	WalksPage()	

																{	

																				var	newWalkItem	=	new	ToolbarItem	

																				{	

																								Text	=	"Add	Walk"	

																				};	

	

																				//	Set	up	our	click	event	handler	

																				newWalkItem.Clicked	+=	(sender,	e)	=>	

																				{	

																								Navigation.PushAsync(new	WalkEntryPage());	

																				};	

	

																				//	Add	the	ToolBar	item	to	our	ToolBar	

																				ToolbarItems.Add(newWalkItem);	

2.	 Next,	we	need	to	declare	and	create	a	new	BindingContext	instance	for	the	WalksPage,
and	set	this	to	a	new	instance	of	the	WalksPageViewModel	so	that	it	knows	where	to	get	the
WalkEntries	so	that	we	can	populate	these	within	the	ListView.	Proceed	and	enter	in	the
following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context

											BindingContext	=	new	WalksPageViewModel();	

	

											//	Define	our	Item	Template	

											var	itemTemplate	=	new	DataTemplate(typeof(ImageCell));	

											itemTemplate.SetBinding(TextCell.TextProperty,	"Title");	

											itemTemplate.SetBinding(TextCell.DetailProperty,	"Notes");	

											itemTemplate.SetBinding(ImageCell.ImageSourceProperty,

													"ImageUrl");	

3.	 Then,	change	the	way	in	which	our	ListView	gets	the	WalkEntries	variable	items,	by
updating	the	ListView	class	and	setting	the	binding	property	for	the	walk	entries,	by
initializing	the	ItemsView<Cell>.ItemsSourceProperty	property	and	using	the
SetBinding	method	to	bind	the	contents.	Proceed	and	enter	in	the	following	highlighted
code	sections:

								var	walksList	=	new	ListView

	

								{

	HasUnevenRows	=	true,

										ItemTemplate	=	itemTemplate,

	

										SeparatorColor	=	Color.FromHex("#ddd"),

								};

	

								//	Set	the	Binding	property	for	our	walks	Entries

								walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,

									"walkEntries");	

	

								//	Initialize	our	event	Handler	to	use	when	the	item	is	tapped

								walksList.ItemTapped	+=	(object	sender,	ItemTappedEventArgs	e)	=>		

								{	

													var	item	=	(WalkEntries)e.Item;	

													if	(item	==	null)	return;	

													Navigation.PushAsync(new	WalkTrailPage(item));	

													item	=	null;	

								};

								Content	=	walksList;	

								}	

						}	

				}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalksPage	so	that	it	can	take
advantage	of	our	WalksPageViewModel.	We	looked	at	how	to	set	our	content	page	to	an	instance
of	our	WalksPageViewModel	so	that	it	knows	where	to	get	the	list	of	walk	entries	to	be	used	and
displayed	within	the	ListView	control.	The	SetBinding	property	creates	and	applies	a	binding
to	a	specific	property.	As	you	can	see,	by	using	ViewModels	within	your	application,	you	can	see
that	the	result	is	both	clean	and	elegant,	and	makes	your	code	a	lot	more	readable	when
supporting	code	modifications.

Implementing	the	walks	entry	page	ViewModel
We	have	created	the	ViewModel	that	will	be	used	by	our	WalksPage	so	that	the	walk	entries	can
be	displayed	within	the	ListView	control.	The	next	step	is	to	build	the	ViewModel	that	will	be
used	to	create	new	walk	entries	and	have	this	information	saved	back	to	our
WalkBaseViewModel,	which	we	will	be	covering	in	a	later	chapter	as	we	progress	through	this
book.

In	this	section,	we	will	be	taking	a	look	at	the	steps	required	to	create	the	ViewModel	for	our
WalksEntryViewModel	so	that	we	can	initialize,	and	capture	information	entered	within	this
screen.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Create	a	new	class	file	within	the	ViewModels	folder	called	WalksEntryViewModel,	as	you
did	in	the	previous	section,	entitled	Creating	the	WalkBaseViewModel	located	within	this
chapter.

2.	 Next,	ensure	that	the	WalksEntryViewModel.cs	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	code	snippet.

								//	

								//		WalkEntryViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//		using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalkEntryViewModel	:	WalkBaseViewModel	

												{	

3.	 Then,	create	the	following	Title	property	and	its	associated	getters	and	setter	qualifiers.
The	OnPropertyChanged	method,	as	we	mentioned	previously,	will	be	called	when	our
property	determines	that	the	contents	have	been	changed.	A	call	is	made	to	the
SaveCommand.ChangeCanExecute	method	that	will	validate	the	form	fields,	and	then
determine	whether	the	SaveToolBarItem	should	be	enabled	or	not	to	allow	the	user	to	save
the	walk	entry	details.	Proceed	and	enter	in	the	following	code	snippet:

								string	_title;	

								public	string	Title	

								{	

												get	{	return	_title;	}	

												set	

												{	

																_title	=	value;	

																OnPropertyChanged();	

																SaveCommand.ChangeCanExecute();	

												}	

								}	

4.	 Next,	create	the	remaining	ViewModel	properties	and	the	associated	getters	and	setter
qualifiers	that	will	be	used	to	bind	the	values	entered	on	the	WalkEntryPage,	as	shown	in
the	following	code	snippets:

								string	_notes;	

								public	string	Notes	

								{	

												get	{	return	_notes;	}	

												set	

												{	

																_notes	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_latitude;	

								public	double	Latitude	

								{	

												get	{	return	_latitude;	}	

												set	

												{	

																_latitude	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_longitude;	

								public	double	Longitude	

								{	

												get	{	return	_longitude;	}	

												set	

												{	

																_longitude	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_kilometers;	

								public	double	Kilometers	

								{	

												get	{	return	_kilometers;	}	

												set	

												{	

																_kilometers	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								string	_difficulty;	

								public	string	Difficulty	

								{	

												get	{	return	_difficulty;	}	

												set	

												{	

																_difficulty	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_distance;	

								public	double	Distance	

								{	

												get	{	return	_distance;	}	

												set	

												{	

																_distance	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								string	_imageUrl;	

								public	string	ImageUrl	

								{	

												get	{	return	_imageUrl;	}	

												set	

												{	

																_imageUrl	=	value;	

																OnPropertyChanged();	

												}	

								}	

5.	 Next,	we	need	to	initialize	our	ViewModel	class	constructor	with	default	values	for	our
Title,	Difficulty	and	Distance	properties.	Locate	the	WalkEntryViewModel	class
constructor,	and	enter	the	following	highlighted	code	sections:

								public	WalkEntryViewModel()	

								{	

												Title	=	"New	Walk";

												Difficulty	=	"Easy";

													Distance	=	1.0;	

								}	

6.	 Then,	we	need	to	create	a	Command	property	for	our	class.	This	will	be	used	within	our
WalkEntryPage	and	will	be	used	to	bind	to	the	SaveToolBarItem.	The	Command	property
will	run	an	action	upon	being	pressed,	then	execute	a	class	instance	method	to	determine
whether	the	command	can	be	executed.	Proceed	and	enter	the	following	highlighted	code
sections:

				Command	_saveCommand;

				public	Command	SaveCommand

				{

								get

								{

												return	_saveCommand	??	(_saveCommand	=	new

																Command(ExecuteSaveCommand,	ValidateFormDetails));

								}

					}

7.	 Next,	we	need	to	create	the	ExecuteSaveCommand	instance	method.	This	will	be	used	to
store	the	walk	information	that	we	enter,	which	will	be	written	to	each	of	the	properties	as
defined	within	the	WalkEntries	model.	The	saving	portion	will	not	be	covered	in	this
chapter,	as	this	will	be	covered	in	a	later	chapter.	For	now,	proceed	and	enter	in	the
following	highlighted	code	sections:

				void	ExecuteSaveCommand()

					{

								var	newWalkItem	=	new	WalkEntries

								{

												Title	=	this.Title,

												Notes	=	this.Notes,

												Latitude	=	this.Latitude,

												Longitude	=	this.Longitude,

												Kilometers	=	this.Kilometers,

												Difficulty	=	this.Difficulty,

												Distance	=	this.Distance,

												ImageUrl	=	this.ImageUrl

									};

												//	Here,	we	will	save	the	details	entered	in	a	later	chapter.

					}

8.	 Finally,	create	the	ValidateFormDetails	instance	method.	This	will	be	used	to	determine
whether	or	not	we	can	save	our	new	walk	information.	This	method	is	pretty	basic,	but	you
could	add	additional	checks	depending	on	your	needs.	For	this	example,	we'll	use	the
IsNullOrWhiteSpace	method	on	the	string	class,	and	pass	in	the	Title	property,	which
checks	to	see	if	the	Title	property	contains	any	blank	spaces,	or	is	an	empty	field.	To
proceed,	enter	in	the	following	highlighted	code	section:

				//	method	to	check	for	any	form	errors

								bool	ValidateFormDetails()

							{

												return	!string.IsNullOrWhiteSpace(Title);

								}

		}

							}

In	this	section,	we	began	by	ensuring	that	our	ViewModel	inherits	from	the	WalkBaseViewModel
class	and	then	moved	on	to	create	a	Title	property	and	its	associated	getters	and	setter
qualifiers.	We	also	created	the	OnPropertyChanged	method,	as	we	defined	previously	so	that	it
will	be	called	when	the	property	determines	that	the	contents	have	been	changed.

Next,	we	added	a	reference	to	the	method	SaveCommand.ChangeCanExecute	that	will	validate
the	form	fields	to	determine	if	the	SaveToolBarItem	should	be	enabled	to	allow	the	user	to	save
the	walk	entry	details.	We	then	created	the	remaining	properties	for	our	ViewModel	with	their
associated	getters	and	setters,	which	will	be	used	to	bind	the	values	entered	on	the
WalkEntryPage.

In	the	next	steps,	we	initialized	the	class	constructor	with	default	values	for	the	Title,
Difficulty	and	Distance	properties	and	then	created	a	Command	property	to	our	class	so	that	it
can	be	used	within	the	WalkEntryPage	and	will	be	used	to	bind	to	the	SaveToolBarItem.

Finally,	we	needed	to	create	the	ExecuteSaveCommand	instance	method	so	that	it	can	store	our
walk	information	to	each	of	the	properties	as	defined	within	the	WalkEntries	model.

Updating	the	WalksEntryPage	to	use	the	MVVM	model
In	this	section,	we	need	to	bind	our	model	binding	context	BindingContext	to	the
WalkEntryViewModel	so	that	the	new	walk	information	that	will	be	entered	within	this	page	can
be	stored	within	the	WalkEntries	model.	Let's	take	a	look	at	how	we	can	achieve	this,	by
following	these	steps:

1.	 Ensure	that	the	WalkEntryPage.cs	file	is	displayed	within	the	code	editor.

								//	

								//		WalkEntryPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	System.Collections.Generic;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalkEntryPage	:	ContentPage	

												{	

																public	WalkEntryPage()	

																{	

																				//	Set	the	Content	Page	Title		

																				Title	=	"New	Walk	Entry";	

2.	 Next,	we	need	to	declare	and	create	a	new	BindingContext	instance	for	the
WalksEntryPage,	and	set	this	to	a	new	instance	of	the	WalkEntryViewModel	so	that	it
knows	where	to	get	the	WalkEntries	so	that	we	can	bind	it	to	the	associated	properties
contained	within	our	model.	Proceed	and	enter	in	the	following	highlighted	code	sections:

//	Declare	and	initialize	our	Model	Binding	Context

				BindingContext	=	new	WalkEntryViewModel();

3.	 Next,	create	the	remaining	EntryCell	objects,	as	well	as	the	SetBinding	properties	to
their	matched	property	name	as	contained	within	the	ViewModel,	as	shown	in	the	following
code	snippets:

								//	Define	our	New	Walk	Entry	fields	

								var	walkTitle	=	new	EntryCell	

								{	

												Label	=	"Title:",	

												Placeholder	=	"Trail	Title"	

								};	

								walkTitle.SetBinding(EntryCell.TextProperty,	"Title",

										BindingMode.TwoWay);	

	

								var	walkNotes	=	new	EntryCell	

								{	

												Label	=	"Notes:",	

												Placeholder	=	"Description"	

								};	

								walkNotes.SetBinding(EntryCell.TextProperty,	"Notes",

									BindingMode.TwoWay);	

	

								var	walkLatitude	=	new	EntryCell	

								{	

												Label	=	"Latitude:",	

												Placeholder	=	"Latitude",	

												Keyboard	=	Keyboard.Numeric	

								};	

								walkLatitude.SetBinding(EntryCell.TextProperty,

										"Latitude",	BindingMode.TwoWay);	

	

								var	walkLongitude	=	new	EntryCell	

								{	

												Label	=	"Longitude:",	

												Placeholder	=	"Longitude",	

												Keyboard	=	Keyboard.Numeric	

								};	

								walkLongitude.SetBinding(EntryCell.TextProperty,

										"Longitude",	BindingMode.TwoWay);	

	

								var	walkKilometers	=	new	EntryCell	

								{	

												Label	=	"Kilometers:",	

												Placeholder	=	"Kilometers",	

												Keyboard	=	Keyboard.Numeric	

								};	

								walkKilometers.SetBinding(EntryCell.TextProperty,

										"Kilometers",	BindingMode.TwoWay);	

	

								var	walkDifficulty	=	new	EntryCell	

								{	

												Label	=	"Difficulty	Level:",	

												Placeholder	=	"Walk	Difficulty"	

								};	

								walkDifficulty.SetBinding(EntryCell.TextProperty,

										"Difficulty",	BindingMode.TwoWay);	

	

								var	walkImageUrl	=	new	EntryCell	

										

												Label	=	"ImageUrl:",	

												Placeholder	=	"Image	URL"	

								};	

								walkImageUrl.SetBinding(EntryCell.TextProperty,

										"ImageUrl",	BindingMode.TwoWay);	

	

								//	Define	our	TableView		

								Content	=	new	TableView	

								{	

												Intent	=	TableIntent.Form,	

												Root	=	new	TableRoot	

												{	

																new	TableSection()	

																{	

																				walkTitle,	

																				walkNotes,	

																				walkLatitude,	

																				walkLongitude,	

																				walkKilometers,	

																				walkDifficulty,	

																				walkImageUrl	

																}	

												}	

								};	

								var	saveWalkItem	=	new	ToolbarItem	

								{	

												Text	=	"Save"	

								};	

	

								saveWalkItem.SetBinding(MenuItem.CommandProperty,

										"SaveCommand");	

	

								ToolbarItems.Add(saveWalkItem);	

	

								saveWalkItem.Clicked	+=	(sender,	e)	=>	

								{	

												Navigation.PopToRootAsync(true);	

								};	

							}	

						}	

					}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalksEntryPage	so	that	it	can
take	advantage	of	our	WalksEntryViewModel.	We	looked	at	how	to	set	the	content	page	to	an
instance	of	the	WalksEntryViewModel	so	that	it	points	to	the	WalkEntries	model.	We	then	used
the	SetBinding	method	on	each	of	our	EntryCells	so	that	it	can	bind	to	the	appropriate
ViewModel	property.	Finally,	we	updated	the	SaveToolbarItem	on	the	WalkEntryPage	to	bind
to	the	WalksEntryViewModelSaveCommand	property.

The	following	table	provides	a	brief	description	of	the	different	binding	types,	and	when	these
should	be	used	within	your	applications:

Binding	mode Description

OneWay
This	type	of	binding	indicates	that	the	binding	should	only	propagate	changes
from	source	(usually	the	ViewModel)	to	target	(the	BindableObject).	This
is	the	default	mode	for	most	BindableProperty	values.

OneWayToSource
This	type	of	binding	indicates	that	the	binding	only	propagates	changes	from
the	target	BindableObject	to	the	ViewModel	and	is	mainly	used	for	read-
only	BindableProperty	values.

TwoWay
This	type	of	binding	indicates	that	the	binding	should	propagate	the	changes
from	the	ViewModel	to	the	target	BindableObject	in	both	directions.

One	thing	to	notice	is	that,	if	you	don't	specify	a	value	for	the	BindingMode	property,	it	will	use
the	default	BindingMode.OneWay	which	is	defined	in	the
BindableProperty.DefaultBindingMode	property.

Implementing	the	walk	trail	page	ViewModel
In	this	section,	we	will	be	taking	a	look	at	the	steps	required	to	create	the	ViewModel	for	our
WalksTrailViewModel	so	that	we	can	obtain	the	walk	entry	information	associated	with	the
chosen	walk	that	has	been	selected	from	the	main	WalksPage.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Create	a	new	class	file	within	the	ViewModels	folder	called	WalksTrailViewModel,	as	you
did	in	the	previous	section	entitled	Creating	the	WalkBaseViewModel,	located	within	this
chapter.

2.	 Next,	ensure	that	the	WalksTrailViewModel.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		WalksTrailViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.Models;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalksTrailViewModel	:	WalkBaseViewModel	

	

												{	

																	WalkEntries	_walkEntry;	

	

																	public	WalkEntries	WalkEntry	

																	{	

																					get	{	return	_walkEntry;	}	

																					set	

																					{	

																										_walkEntry	=	value;	

																										OnPropertyChanged();	

																					}	

																	}	

	

																public	WalksTrailViewModel(WalkEntries	walkEntry)	

																{	

																				WalkEntry	=	walkEntry;	

																}	

												}	

								}	

In	this	section,	we	began	by	ensuring	that	our	ViewModel	inherits	from	the	WalkBaseViewModel
class	and	then	we	created	an	WalkEntries	variable	_walkEntries	that	will	be	used	to	store	our
WalkEntries.	Next,	we	created	a	WalkEntry	property	and	its	associated	getters	and	setter

qualifiers	and	the	OnPropertyChanged	method,	so	that	it	will	be	called	when	our	property
determines	that	the	contents	have	been	changed.	In	the	final	step,	we	created	the
WalksTrailViewModel	constructor,	that	accepts	a	List	parameter	containing	our	WalkEntries
model.

Updating	the	WalksTrailPage	to	use	the	MVVM	model
In	this	section	we	need	to	bind	our	model	binding	context	BindingContext	to	the
WalksTrailViewModel	so	that	the	walk	information	details	will	be	displayed	from	the
WalkEntries	model	when	a	walk	has	been	clicked	on	within	the	main	WalksPage.	Let's	take	a
look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Ensure	that	the	WalkTrailPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalkTrailPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalkTrailPage	:	ContentPage	

												{	

																public	WalkTrailPage(WalkEntries	walkItem)	

																{	

																				Title	=	"Walks	Trail";	

2.	 Next,	we	need	to	declare	and	create	a	new	BindingContext	instance	for	the
WalksTrailPage,	and	set	this	to	a	new	instance	of	the	WalksTrailViewModel	so	that	it
knows	where	to	get	the	WalkEntries	so	that	we	can	bind	it	to	the	associated	properties
contained	within	our	Model	and	display	this	within	the	View.	Proceed	and	enter	the
following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context

	

								BindingContext	=	new	WalksTrailViewModel(walkItem);	

	

								var	beginTrailWalk	=	new	Button	

								{	

												BackgroundColor	=	Color.FromHex("#008080"),	

												TextColor	=	Color.White,	

												Text	=	"Begin	this	Trail"	

								};	

	

								//	Declare	and	initialize	our	Event	Handler	

								beginTrailWalk.Clicked	+=	(sender,	e)	=>	

								{	

												if	(walkItem	==	null)	return;	

												Navigation.PushAsync(new	DistanceTravelled(walkItem));	

												Navigation.RemovePage(this);	

												walkItem	=	null;	

								};	

3.	 Next,	create	the	remaining	Image	and	Label	control	objects,	as	well	as	the	SetBinding
properties	to	their	matched	property	name	as	contained	within	the	ViewModel,	as	shown	in
the	following	code	snippets:

								var	walkTrailImage	=	new	Image()	

								{	

												Aspect	=	Aspect.AspectFill	

								};	

								walkTrailImage.SetBinding(Image.SourceProperty,

										"WalkEntry.ImageUrl");	

	

								var	trailNameLabel	=	new	Label()	

								{			

												FontSize	=	28,	

												FontAttributes	=	FontAttributes.Bold,	

												TextColor	=	Color.Black	

								};	

								trailNameLabel.SetBinding(Label.TextProperty,	

									"WalkEntry.Title");	

	

								var	trailKilometersLabel	=	new	Label()	

								{	

												FontAttributes	=	FontAttributes.Bold,	

												FontSize	=	12,	

												TextColor	=	Color.Black,	

								};	

												trailKilometersLabel.SetBinding(Label.TextProperty,

											"WalkEntry.Kilometers",	stringFormat:	"Length:	{0}	km");	

	

								var	trailDifficultyLabel	=	new	Label()	

								{	

												FontAttributes	=	FontAttributes.Bold,	

												FontSize	=	12,	

												TextColor	=	Color.Black	

								};	

												trailDifficultyLabel.SetBinding(Label.TextProperty,	

											"WalkEntry.Difficulty",	stringFormat:	"Difficulty:	{0}");	

	

								var	trailFullDescription	=	new	Label()	

								{	

												FontSize	=	11,	

												TextColor	=	Color.Black,	

												HorizontalOptions	=	LayoutOptions.FillAndExpand	

								};	

												trailFullDescription.SetBinding(Label.TextProperty,

													"WalkEntry.Notes");	

	

								this.Content	=	new	ScrollView	

								{	

												Padding	=	10,	

												Content	=	new	StackLayout	

												{	

																Orientation	=	StackOrientation.Vertical,	

																HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																Children	=	

																{	

																walkTrailImage,	

																trailNameLabel,	

																trailKilometersLabel,	

																trailDifficultyLabel,	

																trailFullDescription,	

																beginTrailWalk	

																}	

												}	

										};	

									}	

								}	

							}				

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalksTrailPage	so	that	it	can
take	advantage	of	the	WalksTrailViewModel.	We	looked	at	how	to	set	the	content	page	to	an
instance	of	our	WalksTrailViewModel	so	that	it	knows	where	to	get	the	list	of	walk	entries	to	be
used	and	displayed	within	our	StackLayout	control.	We	used	the	SetBinding	property	to	create
and	bind	each	of	our	model	values	to	a	specific	property.

Finally,	we	defined	a	ScrollView	control,	then	added	each	of	our	form	Image	and	Label	fields
to	the	StackLayout	control.

Implementing	the	DistanceTravelledViewModel
In	this	section,	we	will	be	taking	a	look	at	the	steps	required	to	create	the	ViewModel	for	our
DistTravelledViewModel	so	that	we	can	calculate	how	long	the	chosen	walk	from	the	main
WalksPage	took	to	complete.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Create	a	new	class	file	within	the	ViewModels	folder	called	DistTravelledViewModel,	as
you	did	in	the	previous	section	entitled	Creating	the	WalkBaseViewModel,	located	within
this	chapter.

2.	 Next,	ensure	that	the	DistTravelledViewModel.cs	file	is	displayed	within	the	code	editor,
and	enter	the	following	code	snippet:

								//	

								//		DistTravelledViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	DistTravelledViewModel	:	WalkBaseViewModel	

												{	

																WalkEntries	_walkEntry;	

3.	 Then,	create	the	following	WalkEntry	property	and	its	associated	getters	and	setter
qualifiers.	The	OnPropertyChanged	method,	as	we	mentioned	previously,	will	be	called
when	our	property	determines	that	the	contents	have	been	changed.	Proceed	and	enter	in	the
following	code	snippet:

								public	WalkEntries	WalkEntry	

								{	

												get	{	return	_walkEntry;	}	

												set	

												{	

																_walkEntry	=	value;	

																OnPropertyChanged();	

												}	

								}	

4.	 Next,	create	the	remaining	ViewModel	properties	and	the	associated	getters	and	setter
qualifiers	that	will	be	used	to	bind	the	values	entered	on	the	DistanceTravelledPage,	as
shown	in	the	following	code	snippets:

								double	_travelled;	

								public	double	Travelled	

								{	

												get	{	return	_travelled;	}	

												set	

												{	

																_travelled	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_hours;	

								public	double	Hours	

								{	

												get	{	return	_hours;	}	

												set	

												{	

																_hours	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_minutes;	

								public	double	Minutes	

								{	

												get	{	return	_minutes;	}	

												set	

												{	

																_minutes	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_seconds;	

								public	double	Seconds	

								{	

												get	{	return	_seconds;	}	

												set	

												{	

																_seconds	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								public	string	TimeTaken	

								{	

												get	

												{	

																return	string.Format("{0:00}:{1:00}:{2:00}",	this.Hours,

																	this.Minutes,	this.Seconds);	

												}	

								}	

	

								public	DistTravelledViewModel(WalkEntries	walkEntry)	

								{	

												this.Hours	=	0;	

												this.Minutes	=	0;	

												this.Seconds	=	0;	

												this.Travelled	=	100;	

	

												WalkEntry	=	walkEntry;	

								}	

							}	

						}	

In	this	section,	we	began	by	ensuring	that	our	ViewModel	inherits	from	the	WalkBaseViewModel
class	and	then	we	created	an	WalkEntries	variable	_walkEntries	that	will	be	used	to	store	our
WalkEntries.

Next,	we	created	a	WalkEntry	property	and	its	associated	getters	and	setter	qualifiers	and	the
OnPropertyChanged	method,	so	that	it	will	be	called	when	our	property	determines	that	the
contents	have	been	changed.

In	our	final	step,	we	created	the	DistTravelledViewModel	constructor,	that	accepts	a	List
parameter	containing	our	WalkEntries	model,	prior	to	initializing	our	class	constructor	with
default	values	for	the	Hours,	Minutes,	Seconds,	and	Travelled	properties.

Updating	the	DistanceTravelledPage	to	use	the	MVVM	model
In	this	section	we	need	to	bind	our	model	binding	context	BindingContext	to	the
DistTravelledViewModel	so	that	the	walk	information	details	and	the	calculations	of	distance
travelled	will	be	displayed	from	the	WalkEntries	model.	

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Ensure	that	the	DistanceTravelledPage.cs	file	is	displayed	within	the	code	editor.

								//	

								//		DistanceTravelledPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Maps;	

								using	TrackMyWalks.Models;	

	

								namespace	TrackMyWalks	

								{	

												public	class	DistanceTravelledPage	:	ContentPage	

												{	

2.	 Next,	we	need	to	update	the	map	to	get	its	values	from	the	DistTravelledViewModel	so
that	it	correctly	plots	these	within	the	map	view.	We	need	to	do	this	because	the
Xamarin.Forms.Map	control	doesn't	provide	support	for	binding	directly	to	the	map,	so	we
have	to	set	these	directly	within	our	ViewModel	instead.	Therefore,	we	need	to	create	a
private	_viewModel	variable	within	the	content	page	to	return	the	value	from	the	page's
BindingContext.

3.	 Proceed	and	enter	the	following	highlighted	code	sections:

								DistTravelledViewModel	_viewModel

								{

									get	{	return	BindingContext	as	DistTravelledViewModel;	}

								}

								public	DistanceTravelledPage(WalkEntries	walkItem)

								{

								Title	=	"Distance	Travelled";

4.	 Next,	create	a	new	BindingContext	instance	for	the	DistanceTravelledPage,	and	set	this
to	a	new	instance	of	the	DistTravelledViewModel	so	that	it	knows	where	to	get	the
WalkEntries	to	bind	it	to	the	associated	properties	contained	within	our	model	and	display
this	within	the	View.	Proceed	and	enter	in	the	following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context

	

											BindingContext	=	new	DistTravelledViewModel(walkItem);	

	

								//	Instantiate	our	map	object	

											var	trailMap	=	new	Map();	

5.	 Next,	update	the	map	to	grab	the	name	of	the	chosen	walk	and	the	Latitude	and	Longitude
values	from	the	DistTravelledViewModel.	Proceed	and	enter	the	following	highlighted
code	sections:

								//	Place	a	pin	on	the	map	for	the	chosen	walk	type

								trailMap.Pins.Add(new	Pin

								{

										Type	=	PinType.Place,

										Label	=	_viewModel.WalkEntry.Title,

										Position	=	new	Position(_viewModel.WalkEntry.Latitude,

										_viewModel.WalkEntry.Longitude)

								});

								//	Center	the	map	around	the	list	of	walks	entry's	location

										trailMap.MoveToRegion(MapSpan.FromCenterAndRadius(new

										Position(_viewModel.WalkEntry.Latitude,

										_viewModel.WalkEntry.Longitude),

											Distance.FromKilometers(1.0)));

6.	 Next,	create	the	remaining	Label	control	objects,	as	well	as	the	SetBinding	properties	to
their	matched	property	name	as	contained	within	the	ViewModel,	as	shown	in	the	following
code	snippets:

								var	trailNameLabel	=	new	Label()	

								{	

												FontSize	=	18,	

												FontAttributes	=	FontAttributes.Bold,	

												TextColor	=	Color.Black,	

												HorizontalTextAlignment	=	TextAlignment.Center	

								};	

								trailNameLabel.SetBinding(Label.TextProperty,

									"WalkEntry.Title");	

	

								var	trailDistanceTravelledLabel	=	new	Label()	

								{	

												FontAttributes	=	FontAttributes.Bold,	

												FontSize	=	20,	

												TextColor	=	Color.Black,	

												HorizontalTextAlignment	=	TextAlignment.Center	

								};	

	

								trailDistanceTravelledLabel.SetBinding(Label.TextProperty,

									"Travelled",	stringFormat:	"Distance	Travelled:	{0}	km");	

	

								var	totalTimeTakenLabel	=	new	Label()	

								{	

												FontAttributes	=	FontAttributes.Bold,	

												FontSize	=	20,	

												TextColor	=	Color.Black,	

												HorizontalTextAlignment	=	TextAlignment.Center	

								};	

	

								totalTimeTakenLabel.SetBinding(Label.TextProperty,	"TimeTaken",	

									stringFormat:	"Time	Taken:	{0}");	

	

								var	walksHomeButton	=	new	Button	

								{	

												BackgroundColor	=	Color.FromHex("#008080"),	

												TextColor	=	Color.White,	

												Text	=	"End	this	Trail"	

								};	

	

								//	Set	up	our	event	handler	

								walksHomeButton.Clicked	+=	(sender,	e)	=>	

								{	

												if	(walkItem	==	null)	return;	

												Navigation.PopToRootAsync(true);	

												walkItem	=	null;	

								};	

	

								this.Content	=	new	ScrollView	

								{	

												Padding	=	10,	

												Content	=	new	StackLayout	

												{	

																Orientation	=	StackOrientation.Vertical,	

																HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																Children	=	{	

																trailMap,	

																trailNameLabel,	

																trailDistanceTravelledLabel,	

																totalTimeTakenLabel,	

																walksHomeButton	

																}	

														}	

											};	

										}	

									}	

							}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	the	DistanceTraveledPage	so	that
it	can	take	advantage	of	the	DistTravelledViewModel.	We	looked	at	how	to	set	the	content	page
to	an	instance	of	our	DistTravelledViewModel.	We	used	the	SetBinding	property	to	create	and
bind	each	of	our	model	values	to	a	specific	property.	Finally,	we	defined	a	ScrollView	control,
then	added	each	of	the	form	Image	and	Label	fields	to	the	StackLayout	control.

Now	that	you	have	created	all	of	the	MVVM	ViewModels	and	have	updated	the	associated
content	pages,	our	next	step	is	to	finally	build	and	run	the	TrackMyWalks	application	within	the
iOS	simulator.

When	compilation	completes,	the	iOS	Simulator	will	appear	automatically	and	the
TrackMyWalks	application	will	be	displayed,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	a	list	of	static	trail	entries,
that	are	displayed	within	the	ListView.	When	the	user	clicks	on	the	Add	Walk	button	link,	this
will	display	the	New	Walk	Entry	content	page.

As	you	can	see	from	the	New	Walk	Entry	screen,	we	have	successfully	binded	each	of
the	EntryCell	properties	to	our	WalkEntryViewModel	and	have	displayed	this	information
beside	each	of	the	content	page	properties.	If	you	clear	out	the	information	associated	with	the
Title	property,	you	will	notice	that	the	Save	button	will	dim.	This	is	because	the
ValidateFormDetails	instance	method	performs	a	check,	then	the	SaveCommand	command
event	is	triggered,	and	handles	it	accordingly.

The	preceding	screenshot	shows	you	the	navigation	flow	between	each	of	the	pages	when	a	trail
has	been	selected	from	the	list,	with	the	final	screen	showing	the	Distance	Travelled	page	along
with	the	placeholder	pin	marker	showing	the	trail	location	within	the	map	view.

Summary
In	this	chapter,	we	updated	our	TrackMyWalks	application	and	created	a	number	of	ViewModels.
We	then	removed	and	migrated	our	data	and	logic	from	each	of	our	pages,	then	added	binding	to
those	pages	so	that	they	point	directly	to	the	ViewModels	associated	with	the	page.

In	the	next	chapter,	you	will	learn	about	the	different	navigation	techniques	that	can	be	used	within
the	MVVM	model	architecture,	to	navigate	between	ViewModels	by	creating	and	implementing	a
navigation	service	between	each	of	the	Views,	so	that	you	can	easily	navigate	between	them.

Chapter	3.	Navigating	within	the	MVVM	Model
-	The	Xamarin.Forms	Way
Up	to	this	point,	you	have	seen	how	to	incorporate	the	MVVM	architectural	pattern	into	your
applications,	so	that	it	enforces	the	separation	between	the	application's	user	interface,	or
presentation	layer,	from	the	underlying	data.	This	is	done	by	using	a	class	that	acts	as	the
communication	layer	between	both	the	View	and	the	ViewModel,	and	is	connected	through	data
bindings	along	with	the	binding	context	for	the	View,	pointing	to	an	instance	of	the	ViewModel.

In	this	chapter,	you	will	see	how	you	can	leverage	what	you	already	know	about	the	MVVM
design	pattern,	and	we	will	learn	how	to	move	navigation	into	the	ViewModels.	You'll	learn	how
to	create	a	C#	class	that	will	act	as	the	navigation	service	for	our	app,	as	well	as	how	to
update	our	existing	WalkBaseViewModel	class	file.	This	will	include	a	number	of	abstract	class
methods	that	each	of	our	ViewModels	will	inherit,	and	in	turn	update	the	content	pages	to	bind
with	the	ViewModels	to	allow	navigation	between	these	Views	to	happen.

This	chapter	will	cover	the	following	topics:

Understanding	the	Xamarin.Forms	Navigation	API	pattern	architecture
Creating	a	navigation	service	using	the	Xamarin.Forms.Navigation	class
Updating	the	TrackMyWalks	application	to	use	the	navigation	service
Updating	the	MVVM	ViewModels	to	use	the	navigation	service	interface
Updating	the	user	interface	content	pages	to	use	the	updated	MVVM	ViewModels

Understanding	the	Xamarin.Forms	Navigation
API
In	this	section,	we	will	take	a	look	at	the	Xamarin.Forms	Navigation	API	pattern	architecture	and
gain	an	understanding	into	the	different	types	of	navigation	patterns	that	are	available.

The	Xamarin.Forms	Navigation	API	is	exposed	through	the	Xamarin.Forms.INavigation
interface,	and	is	implemented	via	the	Navigation	property.	The	Navigation	property	can	be
called	from	any	Xamarin.Forms	object,	typically	the	Xamarin.Forms.Page	that	inherits	from	the
ContentPage	class	that	is	part	of	the	Xamarin.Forms.Core	assembly.

The	Xamarin.Forms	Navigation	API	supports	two	different	types	of	navigation-hierarchical	and
modal,	and	these	are	explained	in	the	following	table:

Navigation
page Description

Hierarchical

The	hierarchical	navigation	type	is	essentially	a	stack-based	navigation	pattern	that
enables	users	to	move	iteratively	through	each	of	the	screens	within	the	hierarchy,
and	then	navigate	back	out	again,	one	screen	at	a	time,	removing	them	from	the
navigation	stack.

Modal
The	modal	navigation	type	is	a	single	pop-up	or	screen	that	interrupts	the
hierarchical	navigation	by	requiring	the	user	to	respond	to	an	action,	prior	to	the
screen	or	popup	from	being	dismissed.

The	hierarchical	navigation	pattern	provides	a	means	of	navigating	through	the	navigational
structure	and	is	typically	the	most	used.	This	involves	the	user	tapping	their	way	forward	through
a	series	of	pages,	and	then	navigating	backwards	through	the	stack	using	the	navigation	methods
on	Android	or	iOS	devices.

The	following	screenshot	shows	the	process	when	moving	from	one	page	to	another	within	the
hierarchical	navigation	model,	and	popping	pages	from	the	NavigationStack.	Whenever	a	new
page	is	pushed	onto	the	navigation	stack,	this	will	become	the	active	page.

Alternatively,	when	you	want	to	return	back	to	the	previous	page,	the	application	will	start	by
popping	the	current	page	from	the	navigation	stack,	and	the	new	topmost	page	will	then	become
the	active	page.	The	modal	navigation	pattern	displays	a	page	on	top	of	the	current	page	that
prevents	the	user	from	any	interaction	from	the	page	underneath	it,	and	provides	the	user	with
choices	for	what	they	want	to	do	before	the	modal	page	can	be	closed.

The	INavigation	interface,	which	is	part	of	the	Xamarin.Forms.NavigationPage,	implements
and	exposes	two	separate	read-only	properties-NavigationStack	and	ModalStack.	This	will
allow	you	to	view	both	the	hierarchical	and	modal	navigation	stacks.

The	Xamarin.FormsINavigation	interface	provides	you	with	several	methods	that	will	allow
you	to	asynchronously	push	(add)	and	pop	(remove)	pages	onto	the	navigation	and	modal	stacks,
and	these	are	explained	in	the	table	below:

Navigation	methods Description

PushAsync(Page

page)

This	method	adds	a	new	page	at	the	top	of	the	NavigationStack	that
enables	users	to	move	deeper	within	the	screen	hierarchy.

PopAsync()

This	method	allows	you	to	navigate	back	through	the
NavigationStack	to	the	previous	page,	if	one	has	been	previously
added	to	the	NavigationStack.

This	method	allows	you	to	display	a	page	modally	when	you	need	to
either	display	some	informational	information	or	request	information

PushModalAsync(Page

page)
from	the	user.	A	good	example	of	a	modal	page	would	be	a	sign-on
page,	where	you	need	to	get	user	credentials.

PopModalAsync()
This	method	will	dismiss	the	currently	displayed	modal	page	and	return
you	to	the	page	displayed	underneath.

As	well	as	the	above	mentioned	navigation	methods,	the	Xamarin.Forms.INavigation	interface
provides	you	with	a	number	of	additional	methods	that	will	help	you	manipulate	the
NavigationStack,	and	these	are	explained	in	the	following	table:

Navigation	methods Description

InsertPageBefore(Page

page,	Page	before)

This	method	allows	you	to	insert	a	page	before	a	specific	page	that
has	already	been	added	to	the	NavigationStack.

RemovePage(Page	page)
This	method	allows	you	to	remove	a	specific	page	within	the
NavigationStack.

PopToRootAsync()

This	method	navigates	you	back	to	the	first	page	that	is	contained
within	the	NavigationStack	whilst	removing	all	of	the	other	pages
that	are	contained	within	the	NavigationStack.

Now	that	you	have	a	good	understanding	of	the	components	that	are	contained	within	the
Navigation	API	pattern	architecture,	we	can	begin	to	take	a	look	at	some	of	the	different
approaches	to	navigating	between	pages	and	ViewModels.

Differences	between	the	navigation	and
ViewModel	approaches
In	this	section,	we	will	take	a	look	at	the	approaches	when	performing	navigation	within
ViewModels	contained	within	an	Xamarin.Forms	solution.	When	performing	navigation	within
your	ViewModels,	there	are	a	couple	of	approaches	that	you	should	consider	before	going	down
this	path.	An	approach	would	be	to	use	the	page	navigation	approach,	which	involves	navigating
to	another	page	using	a	direct	reference	to	that	page.

The	page	navigation	approach	can	be	accomplished	in	Xamarin.Forms	by	essentially	passing	the
current	INavigation	instance	into	a	ViewModel's	object	constructor,	which	will	force	the
ViewModel	to	use	the	Xamarin.Forms	default	navigation	mechanism	to	navigate	to	other	pages.

If	you	wanted	to	use	the	ViewModel	approach	to	navigate	to	a	page	using	the	associated	pages
ViewModel,	you	would	need	to	form	some	sort	of	mapping	between	each	of	the	pages,	as	well	as
their	associated	ViewModels.	This	would	be	done	by	creating	a	dictionary	or	key-value	type
property	in	the	navigation	service	that	will	maintain	a	one-to-one	mapping	for	each	of	the	pages
and	their	type.

In	MVVM,	actions	taken	by	the	user	on	a	particular	page	are	bound	to	commands	that	are	part	of
the	pages,	ViewModel,	and	so	this	process	needs	to	be	thought	through	differently	when
navigating	to	another	page,	or	even	the	previous	page,	when	performing	tasks	such	as	saving	data
or	updating	a	maps	location.	As	such,	we	need	to	rethink	how	to	achieve	navigation	that	leverages
the	MVVM	design	pattern	within	our	app,	so	that	it	can	be	controlled	by	the	ViewModels	and	not
by	the	underlying	pages.

When	using	the	ViewModels	to	handle	the	navigation,	this	alleviates	the	need	for	a	ViewModel	to
have	any	dependencies	on	the	specific	implementation	of	a	page,	and	because	the	ViewModel
doesn't	navigate	directly	to	a	page	via	the	ContentPage's	ViewModel,	this	means	that	when	you
implement	this	approach,	there	is	a	need	for	a	relationship	or	mapping	to	be	done	between	each	of
the	pages	and	their	associated	ViewModels.

In	the	next	section,	we	will	be	taking	a	look	at	how	to	navigate	through	our	TrackMyWalks	app	by
creating	a	navigation	service	that	will	include	ViewModel	and	page	type	mappings.

Implementing	the	navigation	service	within	your
app
In	this	section,	we	will	begin	by	setting	up	the	basic	structure	for	our	TrackMyWalks	solution	to
include	the	folder	that	will	be	used	to	represent	our	Services.	Let's	take	a	look	at	how	we	can
achieve	this,	by	performing	following	the	steps:

1.	 Launch	the	Xamarin	Studio	application	and	ensure	that	the	TrackMyWalks	solution	is	loaded
within	the	Xamarin	Studio	IDE.

2.	 Next,	create	a	new	folder	within	the	TrackMyWalks	Portable	Class	Library	project,	called
Services,	as	shown	in	the	following	screenshot:

Now	that	we	have	created	the	folder	structure	that	will	be	used	to	store	our	navigation	services,
we	can	begin	to	start	building	the	Navigation	Service	Interface	class	that	will	be	used	by
our	Navigation	Service	class	and	in	turn	used	by	our	ViewModels.

Creating	the	navigation	service	interface	for	the	TrackMyWalks
app
In	this	section,	we	will	begin	by	creating	a	navigation	service	interface	class	that	will	extend
from	the	Xamarin.Forms	navigation	abstraction	layer.	This	is	so	that	we	can	perform	ViewModel
to	ViewModel	navigation	within	our	MVVM	design	pattern,	and	in	turn	bind	with	our	content
pages	to	allow	navigation	between	these	Views	to	happen.

We	will	first	need	to	define	the	interface	for	our	navigation	service,	as	this	will	contain	and
define	its	methods,	and	will	make	it	a	lot	easier	if	we	ever	wanted	to	add	new	method
implementations	for	our	service,	without	the	need	to	change	each	of	our	ViewModels.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Services	folder,	as	shown	in	the	following	screenshot:

2.	 Next,	choose	the	Empty	Interface	option	located	within	the	General	section,	and	enter	in
IWalkNavService	for	the	name	of	the	new	interface	file	to	create,	as	shown	in	the	following
screenshot:

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty	class
file,	as	shown	in	the	preceding	screenshot.

Up	until	this	point,	all	we	have	done	is	create	our	IWalkNavService	class	file.	This	Interface
class	will	be	used	and	will	act	as	the	base	NavigationService	class	that	each	of	our
ViewModels	will	inherit	from.	As	we	start	to	build	the	Navigation	Service	Interface	class,
you	will	see	that	it	contains	a	couple	of	class	members	that	will	be	used	by	our	content	pages	and
ViewModels,	as	we	will	be	using	this	as	our	base	class	within	our	ViewModels	used	by	the
TrackMyWalks	application.

To	proceed	with	creating	the	base	IWalkNavService	interface,	ensure	that	the
IWalkNavService.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the	following	code
snippet:

								//	

								//		IWalkNavService.cs	

								//		TrackMyWalks	Navigation	Service	Interface	

								//	

								//		Created	by	Steven	F.	Daniel	on	03/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.ViewModels;	

	

								namespace	TrackMyWalks.Services	

								{	

												public	interface	IWalkNavService	

												{	

																//	Navigate	back	to	the	Previous	page	in	

																	the	NavigationStack	

																Task	PreviousPage();	

	

																//	Navigate	to	the	first	page	within	

																	the	NavigationStack		

																Task	BackToMainPage();	

	

																//	Navigate	to	a	particular	ViewModel	within

																	our	MVVM	Model,	

																//	and	pass	a	parameter	

																Task	NavigateToViewModel<ViewModel,		

																					TParameter>(TParameter	parameter)									

																						where	ViewModel	:	WalkBaseViewModel;	

												}	

								}		

In	the	preceding	code	snippet,	we	started	by	creating	a	new	Interface	class	for	our
IWalkNavService	that	allows	the	ability	to	navigate	to	each	of	our	ViewModels,	as	well	as
navigating	back	to	the	PreviousPage	method,	and	back	to	the	first	page	within	our	hierarchical
model,	as	determined	by	the	BackToMainPage	method.

Note

An	interface	contains	only	the	methods,	properties,	and	event	signature	definitions.	Any	class	that
implements	the	interface	must	implement	all	members	of	the	interface	that	are	specified	in	the
interface	definition.

The	NavigateToViewModel	method	declares	a	generic	type	which	is	used	to	restrict	the
ViewModel	to	its	use	to	objects	of	the	WalkBaseViewModel	base	class,	and	a	strongly-typed
TParameter	parameter	to	be	passed	along	with	the	navigation.

Note

The	term	strongly-typed	means	that,	if	a	variable	has	been	declared	of	a	specific	type	(string,
integer,	or	defined	as	a	user-defined	type),	it	cannot	be	assigned	a	value	of	a	different	type	later
on,	as	this	will	result	in	the	compiler	notifying	you	of	an	error.	An	example	would	be:	int	i	=
10;	i	=	"Ten"

The	Task	class	is	essentially	used	to	handle	asynchronous	operations.	This	is	done	by	ensuring
that	the	asynchronous	method	you	initiated	will	eventually	finish,	thus	completing	the	task.	The

Task	object	is	used	to	return	back	information	once	it	has	finished	by	returning	back	a	Task
object	almost	instantaneously,	although	the	underlying	work	within	the	method	would	likely	finish
later.

To	handle	this,	you	can	use	the	await	keyword	to	wait	for	the	task	to	complete	which	will	block
the	current	thread	and	wait	until	the	asynchronous	method	has	completed.

Creating	a	navigation	service	to	navigate	within	our	ViewModels
In	the	previous	section,	we	created	our	base	interface	class	for	our	navigation	service	and	defined
a	number	of	different	methods,	which	will	be	used	to	navigate	within	our	MVVM	ViewModel.

These	will	be	used	by	each	of	our	ViewModels,	and	the	Views	(pages)	will	implement	these
ViewModels	and	use	them	as	their	BindingContext.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	the	steps:

1.	 Create	an	empty	class	within	the	Services	folder,	as	shown	in	the	next	screenshot.
2.	 Next,	choose	the	Empty	Class	option	located	within	the	General	section,	and	enter	in

WalkNavService	for	the	name	of	the	new	class	file	to	create,	as	shown	in	the	following
screenshot:

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty	class
file,	as	shown	in	the	preceding	screenshot.

4.	 Up	until	this	point,	all	we	have	done	is	create	our	WalkNavService	class	file.	This	class
will	be	used	and	will	act	as	the	base	NavigationService	class	that	will	contain	the
functionality	required	that	each	of	our	ViewModels	will	inherit	from,	in	order	to	navigate
between	each	of	the	ViewModels	within	our	MVVM	model.

5.	 As	we	start	to	build	our	Navigation	class,	you	will	see	that	it	contains	a	number	of	method
members	that	will	be	used	to	enable	navigation	between	each	of	our	ViewModels	and	it	will
implement	the	IWalkNavService	Interface.	To	proceed	with	creating	the	base
WalkNavService	class,	perform	the	following	steps:

6.	 Ensure	that	the	WalkNavService.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	code	snippet:

								//	

								//		WalkNavService.cs	

								//		TrackMyWalks	Navigation	Service	Class	

								//	

								//		Created	by	Steven	F.	Daniel	on	03/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Xamarin.Forms;	

								using	System.Collections.Generic;	

								using	System.Threading.Tasks;	

								using	System.Reflection;	

								using	System.Linq;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;

First,	we	need	to	initialize	our	navigation	class	to	be	marked	as	a	dependency,	by	adding	the
Dependency	metadata	attribute	so	that	it	can	be	resolved	by	the
Xamarin.FormsDependencyService	class.	This	will	enable	so	that	it	to	find	and	use	our
method	implementation	as	defined	by	our	interface.

7.	 Next,	we	also	need	to	need	to	ensure	that	our	WalkNavService	class	inherits	from	the
IWalkNavService	navigation	interface	class,	so	that	it	can	access	the	method	getters	and
setters.	Proceed	and	enter	in	the	following	code	snippet	as	shown	here:

								[assembly:	Dependency(typeof(WalkNavService))]	

								namespace	TrackMyWalks.Services	

								{	

												public	class	WalkNavService	:	IWalkNavService	

												{	

8.	 Next,	we	need	to	create	a	public	INavigation	property	named	navigation.	The
navigation	property	will	provide	our	class	with	a	reference	to	the	current
Xamarin.Forms.INavigation	instance,	and	this	will	need	to	be	set	when	the	navigation
service	is	first	initialized.	We	will	see	how	this	is	done	as	we	progress	through	updating	our
TrackMyWalks	app.	Proceed	and	enter	in	the	following	code	snippet:

								public	INavigation	navigation	{	get;	set;	}	

9.	 Then	we	need	to	register	the	navigation	service	to	handle	ContentPage	to	ViewModel
mappings	by	declaring	a	dictionary	_viewMapping	property	variable	that	inherits	from	the

IDictionary	interface.	Proceed	and	enter	in	the	following	code	snippet:

								readonly	IDictionary<Type,	Type>	_viewMapping	=	

										new	Dictionary<Type,	Type>();	

10.	 Next,	we	need	to	declare	a	new	method	called	RegisterViewMapping	which	will	be	used
to	populate	our	ViewModel	and	ContentPage	(View)	within	the	_viewMapping	dictionary
property	object.	Proceed	and	enter	in	the	following	code	sections:

								//	Register	our	ViewModel	and	View	within	our	Dictionary	

								public	void	RegisterViewMapping(Type	viewModel,	Type	view)	

								{	

												_viewMapping.Add(viewModel,	view);	

								}	

11.	 Then,	we	need	to	create	the	PreviousPage	instance	method	for	our	WalkNavService	class.
This	will	be	used	to	navigate	back	to	the	previous	page	contained	within	our
NavigationStack,	by	first	checking	the	NavigationStack	property	of	the	navigation
property	INavigation	interface	to	ensure	that	it	is	not	null	and	that	we	have	more	than	one
ViewModel	contained	within	our	NavigationStack	to	navigate	back	to.	If	we	don't	perform
this	check,	it	could	result	in	our	application	crashing.	Finally,	we	use	the	PopAsync	method
to	remove	the	last	view	added	to	our	NavigationStack,	thus	returning	back	to	the	previous
ViewModel.	Proceed	and	enter	in	the	following	code	sections:

								//	Instance	method	that	allows	us	to	move	back	to	the	

								//	previous	page.	

								public	async	Task	PreviousPage()	

								{	

												//	Check	to	see	if	we	can	move	back	to	the	previous	page	

												if	(navigation.NavigationStack	!=	null	&&	

																navigation.NavigationStack.Count	>	0)	

												{	

																await	navigation.PopAsync(true);	

												}	

								}	

12.	 Next,	we	need	to	create	the	BackToMainPage	instance	method	for	our	WalkNavService
class.	This	will	be	used	to	take	us	back	to	the	first	ContentPage	contained	within	our
NavigationStack.	We	use	the	PopToRootAsync	method	of	our	navigation	property	and
use	the	await	operator	to	wait	until	the	task	completes,	before	removing	all	ViewModels
contained	within	our	NavigationStack	and	returning	back	a	Task	object.	Proceed	and	enter
the	following	code:

								//	Instance	method	that	takes	us	back	to	the	main	

								//	Root	WalksPage	

								public	async	Task	BackToMainPage()	

								{	

												await	navigation.PopToRootAsync(true);	

								}	

13.	 Then,	we	need	to	create	the	NavigateToViewModel	instance	method	for	our
WalkNavService	class.	This	will	be	used	to	navigate	to	a	specific	ViewModel	that	is
contained	within	our	_viewMapping	dictionary	object.	Next,	we	use	the	TryGetValue

method	of	the	_viewMapping	dictionary	object	to	check	to	see	if	our	ViewModel	does
indeed	exist	within	our	dictionary,	and	return	the	name	of	the	ViewModel.

14.	 The	name	of	the	returned	view	will	be	stored	within	the	viewType	object,	and	we	then	use
the	PushAsync	method	to	navigate	to	that	view.	Finally,	we	set	the	BindingContext	for	the
last	pushed	view	that	is	contained	within	our	NavigationStack,	and	then	navigate	to	the
view,	passing	in	any	parameters	required.	Proceed	and	enter	in	the	following	code	sections:

								//	Instance	method	that	navigates	to	a	specific	ViewModel		

								//	within	our	dictionary	viewMapping	

								public	async	Task	NavigateToViewModel<ViewModel,		

															WalkParam>(WalkParam	parameter)	

															where	ViewModel	:	WalkBaseViewModel	

								{	

												Type	viewType;	

	

												if	(_viewMapping.TryGetValue(typeof(ViewModel),	out		

																viewType))	

												{	

														var	constructor	=	viewType.GetTypeInfo()

														.DeclaredConstructors

														.FirstOrDefault(dc	=>	dc.GetParameters()

														.Count()	<=	0);	

	

																var	view	=	constructor.Invoke(null)	as	Page;	

																await	navigation.PushAsync(view,	true);	

												}	

	

												if	(navigation.NavigationStack.Last().BindingContext	is		

																WalkBaseViewModel<WalkParam>)	

																await	((WalkBaseViewModel<WalkParam>)(

																navigation.NavigationStack.Last().BindingContext)).	

																Init(parameter);	

												}	

										}	

								}	

In	the	preceding	code	snippet,	we	began	by	ensuring	that	our	WalkNavService	class	inherits	from
our	IWalkNavService	class,	and	then	moved	on	to	create	a	navigation	property	that	inherits
from	our	INavigation	class.	We	then	created	its	associated	getter	and	setter	qualifiers.

Finally,	we	created	the	instance	methods	required	for	our	WalkNavService	class.

Updating	the	WalkBaseViewModel	to	use	our	navigation	service
In	this	section	we	will	proceed	to	update	our	WalkBaseViewModel	class	to	include	references	to
our	IWalkNavService.	Since	our	WalkBaseViewModel	inherits	and	is	used	by	each	of	our
ViewModels,	it	makes	sense	to	place	it	within	this	class.	That	way,	if	we	need	to	add	additional
methods,	we	can	just	add	them	within	this	class.	To	proceed,	perform	the	following	steps:

1.	 Ensure	that	the	WalkBaseViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	in
the	following	code	snippet:

								//	

								//		WalkBaseViewModel.cs	

								//		TrackMyWalks	Base	ViewModel	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.ComponentModel;	

								using	System.Runtime.CompilerServices;	

								using	System.Threading.Tasks;	using	TrackMyWalks.Services;		

	

								namespace	TrackMyWalks.ViewModels	

								{	

										public	abstract	class	WalkBaseViewModel	:	

INotifyPropertyChanged	

										{	

2.	 Next,	we	need	to	create	a	protected	IWalkNavService	property	named	NavService.	The
NavService	property	will	provide	our	class	with	a	reference	to	the	current	navigation
instance	that	is	contained	within	our	IWalkNavService	interface	class.	Proceed	and	enter	in
the	following	code	section:

protected	IWalkNavService	NavService	{	get;	private	set;	}

3.	 Then,	we	need	to	modify	the	class	constructor	and	declare	a	navService	parameter	that
inherits	from	our	IWalkNavService	interface	class.	Next,	we	set	the	NavService	property
for	our	WalkBaseViewModel	base	class,	to	an	instance	of	the	navService	parameter.
Proceed	and	enter	in	the	following	highlighted	code	sections:

								protected	WalkBaseViewModel(IWalkNavService	navService)

						{

											NavService	=	navService;

						}

4.	 Next,	we	need	to	create	the	Init	abstract	method	for	our	WalkBaseViewModel	class	that
returns	back	an	asynchronous	Task	object.	This	will	be	used	to	initialize	our
WalkBaseViewModel.	Proceed	and	enter	in	the	following	highlighted	code	sections:

								public	abstract	Task	Init();		

	

								public	event	PropertyChangedEventHandler	PropertyChanged;	

	

								protected	virtual	void	OnPropertyChanged(

									[CallerMemberName]	string	propertyName	=	null)	

								{	

											var	handler	=	PropertyChanged;	

											if	(handler	!=	null)	

											{	

													handler(this,	new	PropertyChangedEventArgs(propertyName));	

											}	

									}	

							}	

5.	 Then,	we	need	to	create	a	secondary	abstract	class	for	our	WalkBaseViewModel	that	inherits
from	the	WalkBaseViewModel	and	defines	a	generic-typed	TParameter	object.	We	then
proceed	to	overload	the	WalkBaseViewModel	class	constructor,	and	set	this	class	to	inherit
from	our	navService	base	class.	Proceed	and	enter	in	the	following	highlighted	code
sections:

public	abstract	class	WalkBaseViewModel<WalkParam>	:

										WalkBaseViewModel

				{

								protected	WalkBaseViewModel(IWalkNavService	navService)	:	

										base(navService)

								{

								}

6.	 Next,	we	need	to	override	the	Init	method	for	our	WalkBaseViewModel<WalkParam>	that
accepts	a	default	WalkParam	value	for	our	walkDetails	model.	Proceed	and	enter	in	the
following	highlighted	code	sections:

				public	override	async	Task	Init()

							{

								await	Init(default(WalkParam));

				}

					public	abstract	Task	Init(WalkParam	walkDetails);

}	

}

In	the	preceding	code	snippet,	we	began	by	creating	a	NavService	property	that	inherits	from	our
IWalkNavService	class,	and	then	created	its	associated	getter	and	setter	qualifiers.

Next,	we	update	the	WalkBaseViewModel	class	constructor	to	set	the	NavService	property	to	an
instance	of	our	navService,	before	creating	our	Init	abstraction	method	that	will	be	used	to
initialize	our	class.

In	the	next	step,	we	create	a	new	abstract	class	for	our	WalkBaseViewModel	that	implements	from
the	WalkBaseViewModel	class,	and	then	overloads	our	class	constructor	so	that	it	inherits	from
our	navService	class.

Next,	we'll	override	the	Init	method	for	our	WalkBaseViewModel<WalkParam>	that	accepts	a
default	WalkParam	value	for	our	walkDetails	model.

Updating	the	walks	main	page	ViewModel	and	navigation
service
We	have	created	our	IWalkNavService	Interface	class	and	updated	the	NavService	class	to
include	all	of	the	necessary	class	instance	methods.	We	also	made	some	changes	to	our
WalkBaseViewModel	class	to	inherit	from	our	IWalkNavService	navigation	service.	We	have
also	included	an	additional	abstraction	class	that	will	be	used	to	initialize	our
WalkBaseViewModel	when	navigating	between	ViewModels	within	our	MVVM	model.

Our	next	step	is	to	modify	the	walks	main	page.	In	this	section,	we	will	be	taking	a	look	at	how	to
update	our	WalksPageViewModel	so	that	it	can	take	advantage	of	our	navigation	service.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	WalksPageViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections:

								//	

								//		WalksPageViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Collections.ObjectModel;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalksPageViewModel	:	WalkBaseViewModel	

												{	

																ObservableCollection<WalkEntries>	_walkEntries;	

	

																public	ObservableCollection<WalkEntries>	walkEntries	

																{	

																				get	{	return	_walkEntries;	}	

																				set	

																				{	

																								_walkEntries	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

2.	 Now	we	need	to	modify	the	WalksPageViewModel	class	constructor,	which	will	need	to
include	a	parameter	navService	that	is	included	within	our	IWalkNavService	interface
class.	Then	we	need	to	set	the	ViewModel's	class	constructor	to	access	all	instance	class
members	contained	within	the	navService	within	the	WalksPageViewModel	by	using	the

base	keyword.	We	then	set	up	an	ObservableCollection	called	walkEntries.	This
accepts	a	list	parameter	containing	our	WalkEntries	model,	which	will	be	used	to
determine	whenever	the	collection	has	changed	within	the	WalkEntries	model.

3.	 Next,	we	create	the	Init	method	within	our	WalksPageView	model,	and	a	method	called
LoadWalkDetails	to	populate	the	WalkDetails.	Proceed	and	enter	in	the	following
highlighted	code	sections:

				public	WalksPageViewModel(IWalkNavService	navService)	:

										base(navService)

				{

												walkEntries	=	new	ObservableCollection<WalkEntries>();

				}

						public	override	async	Task	Init()

				{

								await	LoadWalkDetails();

				}

4.	 Next,	we	need	to	create	a	new	async	method	called	LoadWalkDetails	that	will	be	used	to
add	each	of	the	walk	entries	within	our	model.	We	use	the	Task.Factory.StartNew	to	start
and	execute	our	task,	and	then	proceed	to	populate	each	of	our	lists	of	WalkEntries
asynchronously.	We	then	use	and	specify	the	await	keyword	to	wait	until	our	Task
completes.	Proceed	and	enter	in	the	following	highlighted	code	sections:

								public	async	Task	LoadWalkDetails()

				{

								await	Task.Factory.StartNew(()	=>

								{

												walkEntries	=	new	ObservableCollection<WalkEntries>()	{

												new	WalkEntries	{

																Title	=	"10	Mile	Brook	Trail,	Margaret	River",

																Notes	=	"The	10	Mile	Brook	Trail	starts	in	the	

																				Rotary	Park	near	Old	Kate,	a	preserved	steam	"	+

																				"engine	at	the	northern	edge	of	Margaret	River.	",

																				Latitude	=	-33.9727604,

																				Longitude	=	115.0861599,

																				Kilometers	=	7.5,

																				Distance	=	0,

																				Difficulty	=	"Medium",

																				ImageUrl	=

																									

"http://trailswa.com.au/media/cache/media/images/

																										trails/_mid/"	+

"FullSizeRender1_600_480_c1.jpg"

												},

												new	WalkEntries

												{

																Title	=	"Ancient	Empire	Walk,	Valley	of	the	Giants",

																Notes	=	"The	Ancient	Empire	is	a	450	metre	walk	trail

																				that	takes	you	around	and	through	some	of	"	+

																				"the	giant	tingle	trees	including	the	most	popular

																					of	the	gnarled	veterans,	known	as	"	+

																					"Grandma	Tingle.",

																				Latitude	=	-34.9749188,

																				Longitude	=	117.3560796,

																				Kilometers	=	450,

																				Distance	=	0,

																				Difficulty	=	"Hard",

																				ImageUrl	="http://trailswa.com.au/media/cache

																									/media/images/trails/_mid/"	+

																									"Ancient_Empire_534_480_c1.jpg"

												},

												};

								});

				}

5.	 Next,	we	need	to	create	a	Command	property	for	our	class.	This	will	be	used	within	our
WalksPage	and	will	be	used	to	bind	to	the	Add	WalkToolBarItem.	The	Command	property
will	run	an	action	upon	being	pressed,	and	then	execute	a	class	instance	method,	to
determine	whether	the	command	can	be	executed.	Proceed	and	enter	in	the	following
highlighted	code	sections:

Command	_createNewWalk;

				public	Command	CreateNewWalk

				{

								get

								{

												return	_createNewWalk

																??	(_createNewWalk	=	

																new	Command(async	()	=>

																await	NavService.NavigateToViewModel<WalkEntryViewMod

																el,	WalkEntries>(null)));

								}

				}	

6.	 Then,	create	a	Command	property	to	our	class.	This	will	be	used	within	the	WalksPage	and
will	be	used	to	handle	clicks	on	a	walk	item	within	the	ListView.	The	Command	property
will	run	an	action	upon	being	pressed,	and	then	execute	a	class	instance	method	to	determine
whether	the	command	can	be	executed	or	not,	prior	to	navigating	to	the
WalksTrailViewModel	and	passing	in	the	trailDetails	for	the	chosen	walk	within	the
ListView.	Proceed	and	enter	in	the	following	highlighted	code	sections:

				Command<WalkEntries>	_trailDetails;

				public	Command<WalkEntries>	WalkTrailDetails

				{

								get

								{

												return	_trailDetails

??	(_trailDetails	=

	

new	Command<WalkEntries>(async	(trailDetails)	=>

															await	NavService.NavigateToViewModel

																			<WalksTrailVi

ewModel,	WalkEntries>(trailDetails)));

								}

							}

				}

}	

Now	that	we	have	modified	our	WalksPageViewModel	to	include	the	navigation	service	class,
which	will	be	used	by	our	main	WalksPage,	our	next	step	is	to	modify	our	walks	main	page	so
that	it	points	to	a	reference	of	our	WalksPageViewModel,	and	ensures	that	all	of	the	necessary
Command	bindings	and	BindingContexts	have	been	set	up	correctly.

Updating	the	walks	main	page	to	use	the	updated	ViewModel
Now	that	we	have	modified	our	MVVM	ViewModel	to	take	advantage	of	the	navigation	service,
we	need	to	modify	our	walks	main	page	to	bind	the	WalksPageBindingContext	to	the
WalksPageViewModel	so	that	the	walk	entry	details	can	be	displayed	and	all	of	the	navigational
aspects	are	working	as	expected.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Collections.Generic;	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;		

	

	

								namespace	TrackMyWalks		

								{	

												public	class	WalksPage	:	ContentPage	

											{	

2.	 Next,	we	need	to	create	a	new	private	property	named	_viewModel	within	our	WalksPage
class.	This	is	of	the	WalksPageViewModel	type,	and	will	essentially	provide	us	with	access
to	the	ContentPage's	BindingContext	object.	Proceed	and	enter	in	the	following	highlighted
code	sections:

								WalksPageViewModel	_viewModel

	{

		

										get	{	return	BindingContext	as	WalksPageViewModel;

										}

				

								}		

	

								public	WalksPage()	

								{	

												var	newWalkItem	=	new	ToolbarItem	

												{	

																Text	=	"Add	Walk"	

												};	

3.	 Then,	we	need	to	set	up	a	Binding	to	the	Command	property	that	we	defined	within	our
WalksPageViewModel	class.	This	will	be	called	when	the	user	chooses	the	Add	Walk

button.	Proceed	and	enter	in	the	following	highlighted	code	sections:

								//	Set	up	our	Binding	click	event	handler

	

										newWalkItem.SetBinding(ToolbarItem.CommandProperty,

	

										"CreateNewWalk");		

	

								//	Add	the	ToolBar	item	to	our	ToolBar	

								ToolbarItems.Add(newWalkItem);	

4.	 Next,	we	need	to	declare	and	initialize	our	WalksPageViewModelBindingContext	to
include	our	IWalkNavService	constructor,	which	is	used	by	the	WalkBaseViewModel	class,
and	is	retrieved	from	the	Xamarin.Forms	DependencyService	class.	Proceed	and	enter	in
the	following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context

	

											BindingContext	=	new	WalksPageViewModel(DependencyService.Get

											<IWalkNavS

ervice>());	

							//	Define	our	Item	Template	

								var	itemTemplate	=	new	DataTemplate(typeof(ImageCell));	

								itemTemplate.SetBinding(TextCell.TextProperty,	"Title");	

								itemTemplate.SetBinding(TextCell.DetailProperty,	"Notes");	

								itemTemplate.SetBinding(ImageCell.ImageSourceProperty,	

"ImageUrl");	

	

												var	walksList	=	new	ListView	

												{	

																HasUnevenRows	=	true,	

																ItemTemplate	=	itemTemplate,	

																SeparatorColor	=	Color.FromHex("#ddd"),	

												};	

	

												//	Set	the	Binding	property	for	our	walks	Entries	

												walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,		

												"walkEntries");	

5.	 Then,	we	need	to	change	the	way	in	which	an	item	gets	selected	from	the	ListView.	We
need	to	make	a	call	to	the	WalksTrailDetails	command	that	is	included	within	our
WalksPageViewModel	class,	so	that	it	can	navigate	to	the	WalksTrailViewModel,	whilst
passing	in	the	chosen	item	from	within	the	ListView.	Proceed	and	enter	the	following
highlighted	code	sections:

								//	Initialize	our	event	Handler	to	use	when

										the	item	is	tapped	

								walksList.ItemTapped	+=	(object	sender,	

									ItemTappedEventArgs	e)	=>	

								{	

												var	item	=	(WalkEntries)e.Item;	

												if	(item	==	null)	return;	

												_viewModel.WalkTrailDetails.Execute(item);		

												item	=	null;	

								};	

										Content	=	walksList;	

								}	

6.	 Finally,	we	need	to	create	an	OnAppearing	instance	method	of	the	navigation	hierarchy	that
will	be	used	to	display	our	WalksEntries	prior	to	the	ViewModel	appearing	on	screen.

7.	 We	need	to	ensure	that	our	ViewModel	has	been	properly	initialized	by	checking	to	see	that
it	isn't	null,	prior	to	calling	the	Init	method	of	our	WalksPageViewModel.	Proceed	and
enter	the	following	highlighted	code	sections:

								protected	override	async	void	OnAppearing()

	

								{

		

											base.OnAppearing();

		//	Initialize	our	WalksPageViewModel

											if	(_viewModel	!=	null)

											await	_viewModel.Init();

	

									}		

								}	

							}		

In	this	section,	we	looked	at	the	steps	involved	in	modifying	the	WalksPage	so	that	it	can	take
advantage	of	our	updated	WalksPageViewModel.	We	looked	at	how	to	set	the	content	page	to	an
instance	of	the	WalksPageViewModel	so	that	it	knows	where	to	get	the	list	of	walk	entries.	The
list	will	be	used	and	displayed	within	the	ListView	control,	and	will	then	update	the
BindingContext	property	for	the	WalksPage	to	point	to	an	instance	of	the	IWalkNavService
interface.	As	you	can	see,	by	using	a	navigation	service	within	your	ViewModels,	it	makes
navigating	between	each	of	the	ViewModels	quite	easy.

Updating	the	walks	entry	page	ViewModel	and	navigation
service
Now	that	we	have	modified	the	MVVM	ViewModel	that	will	be	used	for	the	main	WalksPage,
our	next	step	is	to	begin	modifying	the	WalkEntryViewModel	to	take	advantage	of	the	navigation
service,	which	will	be	used	to	create	new	walk	entries,	and	save	this	information	back	to	the
WalkBaseViewModel.	This	will	be	covered	in	a	later	chapter	as	we	progress	throughout	this
book.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	WalkEntryViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections:

								//	

								//		WalkEntryViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Diagnostics.Contracts;

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalkEntryViewModel	:	WalkBaseViewModel	

												{	

																string	_title;	

																public	string	Title	

																{	

																				get	{	return	_title;	}	

																				set	

																				{	

																								_title	=	value;	

																								OnPropertyChanged();	

																								SaveCommand.ChangeCanExecute();	

																				}	

																}	

	

																string	_notes;	

																public	string	Notes	

																{	

																				get	{	return	_notes;	}	

																				set	

																				{	

																								_notes	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_latitude;	

																public	double	Latitude	

																{	

																				get	{	return	_latitude;	}	

																				set	

																				{	

																								_latitude	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_longitude;	

																public	double	Longitude	

																{	

																				get	{	return	_longitude;	}	

																				set	

																				{	

																								_longitude	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_kilometers;	

																public	double	Kilometers	

																{	

																				get	{	return	_kilometers;	}	

																				set	

																				{	

																								_kilometers	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																string	_difficulty;	

																public	string	Difficulty	

																{	

																				get	{	return	_difficulty;	}	

																				set	

																				{	

																								_difficulty	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_distance;	

																public	double	Distance	

																{	

																				get	{	return	_distance;	}	

																				set	

																				{	

																								_distance	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																string	_imageUrl;	

																public	string	ImageUrl	

																{	

																				get	{	return	_imageUrl;	}	

																				set	

																				{	

																								_imageUrl	=	value;	

																								OnPropertyChanged();	

																				}	

																	}	

2.	 In	the	next	step,	we	need	to	modify	the	WalksEntryViewModel	class	constructor	which	will
now	need	to	include	a	parameter	navService	that	is	included	within	the	IWalkNavService
interface	class.	Then	we'll	set	the	ViewModel's	class	constructor	to	access	all	instance	class
members	contained	within	the	navService	within	the	WalksEntryViewModel,	by	using	the
base	keyword.	Next,	we'll	initialize	the	constructor	with	default	values	for	our	Title,
Difficulty	and	Distance	properties.

3.	 Locate	the	WalkEntryViewModel	class	constructor,	and	enter	the	following	highlighted	code
sections:

				public	WalkEntryViewModel(IWalkNavService	navService)	:	

								base(navService)

				{

								Title	=	"New	Walk";

								Difficulty	=	"Easy";

								Distance	=	1.0;

				}

4.	 Next,	we	need	to	modify	the	SaveCommand	command	property	to	include	the	async	and
await	keywords.	This	command	property	will	be	used	to	bind	to	the	SaveToolBarItem	and
will	run	an	action	upon	being	pressed.	It	will	then	execute	a	class	instance	method	to
determine	whether	the	command	can	be	executed.	Proceed	and	enter	in	the	following
highlighted	code	sections:

								Command	_saveCommand;	

								public	Command	SaveCommand	

								{	

												get	

												{	

																return	_saveCommand	??	(_saveCommand	=	

																new	Command(async	()	=>	await	ExecuteSaveCommand(),	

	

																ValidateFormDetails));	

												}	

								}	

5.	 Next,	we	locate	and	modify	the	ExecuteSaveCommand	instance	method	to	include	the	async
Task	keywords	to	the	method	definition,	and	then	include	a	reference	to	our	PreviousPage
method	that	is	defined	within	our	IWalkNavService	interface	to	allow	our	WalkEntryPage

to	be	dismissed	upon	the	user	clicking	on	the	Save	button.	Proceed	and	enter	in	the
following	highlighted	code	sections:

								async	Task	ExecuteSaveCommand()

								{

								var	newWalkItem	=	new	WalkEntries

								{

								Title	=	this.Title,

								Notes	=	this.Notes,

								Latitude	=	this.Latitude,

								Longitude	=	this.Longitude,

								Kilometers	=	this.Kilometers,

								Difficulty	=	this.Difficulty,

								Distance	=	this.Distance,

								ImageUrl	=	this.ImageUrl

								};

							//	Here,	we	will	save	the	details	entered	in	a	later	chapter.

								await	NavService.PreviousPage();

								}

								//	method	to	check	for	any	form	errors

								bool	ValidateFormDetails()

								{

									return	!string.IsNullOrWhiteSpace(Title);

								}

6.	 Finally,	create	the	Init	method	within	the	WalkEntryViewModel.	This	will	be	used	to
initialize	the	WalkEntryPage	when	it	is	called.	We	use	the	Task.Factory.StartNew
method	to	give	the	ViewModel	enough	time	to	display	the	page	on	screen,	prior	to
initializing	the	ContentPage	contents.	Proceed	and	enter	in	the	following	highlighted	code
sections:

								public	override	async	Task	Init()

								{

								await	Task.Factory.StartNew(()	=>

								{

								Title	=	"New	Walk";

								Difficulty	=	"Easy";

								Distance	=	1.0;

								});

								}

							}

						}

In	this	section,	we	began	by	ensuring	that	our	ViewModel	inherits	from	the	WalkBaseViewModel
class	and	then	modifies	the	WalksEntryViewModel	class	constructor	to	include	the	parameter
navService	which	is	included	within	the	IWalkNavService	interface	class.	In	our	next	step,
we'll	initialize	the	class	constructor	with	default	values	for	the	Title,	Difficulty,	and
Distance	properties	and	then	modify	the	SaveCommand	command	method	to	include	a	reference

to	the	NavService.PreviousPage	method.	This	is	declared	within	the	IWalkNavService
interface	class	to	allow	our	WalkEntryPage	to	navigate	back	to	the	previous	calling	page	when
the	Save	button	is	clicked.

Updating	the	WalksEntryPage	to	use	the	updated	ViewModel
In	this	section,	we	need	to	bind	our	model	binding	context,	BindingContext,	to	the
WalkEntryViewModel	so	that	the	new	walk	information,	which	will	be	entered	within	this	page,
can	be	stored	within	the	WalkEntries	model.	Let's	take	a	look	at	how	we	can	achieve	this,	by
performing	the	following	steps:

1.	 Ensure	that	the	WalkEntryPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalkEntryPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	System.Collections.Generic;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalkEntryPage	:	ContentPage	

												{	

2.	 Next,	we	need	to	create	a	new	private	property	named	_viewModel	within	the
WalkEntryPage	class	that	is	of	the	WalksEntryViewModel	type,	and	which	will	essentially
provide	us	with	access	to	the	ContentPage's	BindingContext	object.	Proceed	and	enter	in
the	following	highlighted	code	sections:

								WalkEntryViewModel	_viewModel

	

							{

	

											get	

											{	return	BindingContext	as	WalkEntryViewModel;

											}

			

							}		

	

								public	WalkEntryPage()	

								{	

												//	Set	the	Content	Page	Title		

												Title	=	"New	Walk	Entry";

3.	 Next,	we	need	to	declare	and	initialize	our	WalkEntryViewModelBindingContext	to
include	the	IWalkNavService	constructor,	which	is	used	by	the	WalkBaseViewModel	class,
and	is	retrieved	from	the	Xamarin.FormsDependencyService	class.	Proceed	and	enter	in
the	following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context		

										

	BindingContext	=	new	WalkEntryViewModel(

												DependencyService.

Get<IWalkNavService>());		

	

												//	Define	our	New	Walk	Entry	fields	

												var	walkTitle	=	new	EntryCell	

												{	

																Label	=	"Title:",	

																Placeholder	=	"Trail	Title"	

												};	

												walkTitle.SetBinding(EntryCell.TextProperty,		

												"Title",	BindingMode.TwoWay);	

	

												var	walkNotes	=	new	EntryCell	

												{	

																Label	=	"Notes:",	

																Placeholder	=	"Description"	

												};	

												walkNotes.SetBinding(EntryCell.TextProperty,		

												"Notes",	BindingMode.TwoWay);	

	

												var	walkLatitude	=	new	EntryCell	

												{	

																Label	=	"Latitude:",	

																Placeholder	=	"Latitude",	

																Keyboard	=	Keyboard.Numeric	

												};	

												walkLatitude.SetBinding(EntryCell.TextProperty,	

												"Latitude",	BindingMode.TwoWay);	

	

												var	walkLongitude	=	new	EntryCell	

												{	

																Label	=	"Longitude:",	

																Placeholder	=	"Longitude",	

																Keyboard	=	Keyboard.Numeric	

												};	

												walkLongitude.SetBinding(EntryCell.TextProperty,		

												"Longitude",	BindingMode.TwoWay);	

	

												var	walkKilometers	=	new	EntryCell	

												{	

																Label	=	"Kilometers:",	

																Placeholder	=	"Kilometers",	

																Keyboard	=	Keyboard.Numeric	

												};	

												walkKilometers.SetBinding(EntryCell.TextProperty,		

												"Kilometers",	BindingMode.TwoWay);	

	

												var	walkDifficulty	=	new	EntryCell	

												{	

																Label	=	"Difficulty	Level:",	

																Placeholder	=	"Walk	Difficulty"	

												};	

												walkDifficulty.SetBinding(EntryCell.TextProperty,		

												"Difficulty",	BindingMode.TwoWay);	

	

												var	walkImageUrl	=	new	EntryCell	

												{	

																Label	=	"ImageUrl:",	

																Placeholder	=	"Image	URL"	

												};	

												walkImageUrl.SetBinding(EntryCell.TextProperty,		

												"ImageUrl",	BindingMode.TwoWay);	

	

												//	Define	our	TableView		

												Content	=	new	TableView	

												{	

																Intent	=	TableIntent.Form,	

																Root	=	new	TableRoot	

																{	

																				new	TableSection()	

																				{	

																								walkTitle,	

																								walkNotes,	

																								walkLatitude,	

																								walkLongitude,	

																								walkKilometers,	

																								walkDifficulty,	

																								walkImageUrl	

																				}	

																}	

												};	

	

												var	saveWalkItem	=	new	ToolbarItem	

												{	

																Text	=	"Save"	

												};	

	

												saveWalkItem.SetBinding(MenuItem.CommandProperty,	

																"SaveCommand");	

	

												ToolbarItems.Add(saveWalkItem);									}	

								}	

				}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	the	WalkEntryPage	so	that	it	can
take	advantage	of	our	updated	WalkEntryViewModel.	We	looked	at	how	to	set	the	content	page	to
an	instance	of	the	WalkEntryViewModel	so	that	the	BindingContext	property	for	the
WalkEntryPage	will	now	point	to	an	instance	of	the	IWalkNavService	interface.

Updating	the	walks	trail	page	ViewModel	and	navigation	service
Now	that	we	have	modified	the	MVVM	ViewModel	that	will	be	used	for	our	WalkEntry	page,
our	next	step	is	to	begin	modifying	the	WalksTrailViewModel	to	take	advantage	of	the	navigation
service,	so	that	it	will	be	used	to	display	the	walk	entry	information	that	has	been	associated	with
the	chosen	walk.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	the	steps:

1.	 Ensure	that	the	WalksTrailViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections:

								//	

								//		WalksTrailViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalksTrailViewModel	:

														WalkBaseViewModel<WalkEntries>	

												{	

																WalkEntries	_walkEntry;	

	

																public	WalkEntries	WalkEntry	

																{	

																				get	{	return	_walkEntry;	}	

																				set	

																				{	

																								_walkEntry	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

2.	 Next,	we	need	to	create	a	Command	property	for	our	class.	This	will	be	used	within	our
WalkTrailPage	and	will	be	used	to	handle	when	the	user	clicks	on	the	Begin	This	Trial
button.	The	Command	property	will	run	an	action	upon	being	pressed,	and	then	execute	a
class	instance	method	to	determine	whether	the	command	can	be	executed	or	not,	prior	to
navigating	to	the	DistTravelledViewModel,	and	passing	in	the	trailDetails	for	the
chosen	walk	from	the	WalksPage.	Proceed	and	enter	in	the	following	highlighted	code
sections:

								Command<WalkEntries>	_command;

								public	Command<WalkEntries>	DistanceTravelled

								{

												get

												{

																return	_command

																??	(_command	=	

																new	Command<WalkEntries>(async	(trailDetails)	=>

																await	NavService.NavigateToViewModel

																<DistTravelledViewModel,	WalkEntries>(trailDetails)));	

													}

									}

	

3.	 Next,	we	need	to	declare	and	initialize	our	WalksTrailViewModelBindingContext	to
include	the	IWalkNavService	constructor,	which	is	used	by	the	WalkBaseViewModel	class,
and	is	retrieved	from	the	Xamarin.FormsDependencyService	class.	Proceed	and	enter	in
the	following	highlighted	code	sections:

				public	WalksTrailViewModel(IWalkNavService	navService)	:	

						base(navService)

				{

				}

4.	 Finally,	create	the	Init	method	within	the	WalksTrailViewModel.	This	will	be	used	to
initialize	the	WalkTrailPage	when	it	is	called.	We	use	the	Task.Factory.StartNew
method	to	give	the	ViewModel	enough	time	to	display	the	page	on	screen,	prior	to
initializing	the	ContentPage	contents,	using	the	passed	in	walkDetails	for	our	model.
Proceed	and	enter	in	the	following	highlighted	code	sections:

								public	override	async	Task	Init(WalkEntries	walkDetails)

			

								{

	await	Task.Factory.StartNew(()	=>

									{

			

													WalkEntry	=	walkDetails;

										

});

		

									}	

								}	

							}		

In	this	section,	we	begin	by	ensuring	that	our	ViewModel	inherits	from	the	WalkBaseViewModel
class,	and	that	it	accepts	the	WalkEntries	dictionary	as	its	parameter.	In	our	next	step,	we'll
create	a	DistanceTravelledCommand	method	that	will	navigate	to	the
DistanceTravelledPage	content	page	within	our	NavigationStack	that	passes	the	WalkEntry
dictionary	to	the	DistTravelledViewModel	ViewModel	and	pass	a	parameter	containing	the
trailDetails	of	the	chosen	walk.

Updating	the	WalksTrailPage	to	use	the	updated	ViewModel
In	this	section,	we	need	to	bind	our	model	binding	context,	BindingContext,	to	the
WalksTrailViewModel	so	that	the	walk	information	details	will	be	displayed	from	the
WalkEntries	model	when	a	walk	has	been	clicked	on	within	the	main	WalksPage.	Let's	take	a
look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	WalkTrailPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalkTrailPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

							//	

							using	Xamarin.Forms;	

							using	TrackMyWalks.Models;	

							using	TrackMyWalks.ViewModels;

							using	TrackMyWalks.Services;		

	

							namespace	TrackMyWalks	

							{	

											public	class	WalkTrailPage	:	ContentPage	

											{	

															public	WalkTrailPage(WalkEntries	walkItem)	

															{	

																				Title	=	"Walks	Trail";	

2.	 Next,	we	need	to	declare	and	initialize	our	WalkEntryViewModelBindingContext	to
include	the	IWalkNavService	constructor,	which	is	used	by	the	WalkBaseViewModel	class,
and	is	retrieved	from	the	Xamarin.FormsDependencyService	class.	Proceed	and	enter	in
the	following	highlighted	code	sections:

								//	Declare	and	initialize	our	Model	Binding	Context

	

								BindingContext	=	new	WalksTrailViewModel(DependencyService.

								Get<IWalkNavService>());		

	

								var	beginTrailWalk	=	new	Button	

								{	

												BackgroundColor	=	Color.FromHex("#008080"),	

												TextColor	=	Color.White,	

												Text	=	"Begin	this	Trail"	

								};	

3.	 Next,	we	need	to	modify	the	beginTrailWalk.Clicked	handler	for	our	button,	so	that	upon
being	clicked,	it	will	navigate	to	the	DistTravelledViewModel	and	pass	in	the	WalkEntry
dictionary	for	the	chosen	walk	from	the	WalksPage.	Proceed	and	enter	in	the	following
highlighted	code	sections:

								//	Declare	and	initialize	our	Event	Handler	

								beginTrailWalk.Clicked	+=	(sender,	e)	=>	

								{	

										if	(_viewModel.WalkEntry	==	null)	return;

										_viewModel.DistanceTravelled.Execute(_viewModel.WalkEntry);		

								};	

	

								var	walkTrailImage	=	new	Image()	

								{	

												Aspect	=	Aspect.AspectFill	

								};	

								walkTrailImage.SetBinding(Image.SourceProperty,		

								"WalkEntry.ImageUrl");	

	

								var	trailNameLabel	=	new	Label()	

								{	

												FontSize	=	28,	

												FontAttributes	=	FontAttributes.Bold,

													TextColor	=	Color.Black	

									};	

	

												trailNameLabel.SetBinding(Label.TextProperty,		

												"WalkEntry.Title");	

	

												var	trailKilometersLabel	=	new	Label()	

												{	

																FontAttributes	=	FontAttributes.Bold,	

																FontSize	=	12,	

																TextColor	=	Color.Black,	

												};	

												trailKilometersLabel.SetBinding(Label.TextProperty,		

												"WalkEntry.Kilometers",	

												stringFormat:	"Length:	{0}	km");	

												var	trailDifficultyLabel	=	new	Label()	

												{	

																FontAttributes	=	FontAttributes.Bold,	

																FontSize	=	12,	

																TextColor	=	Color.Black	

												};	

	

												trailDifficultyLabel.SetBinding(Label.TextProperty,		

												"WalkEntry.Difficulty",	stringFormat:	"Difficulty:	{0}");	

	

												var	trailFullDescription	=	new	Label()	

												{	

																FontSize	=	11,	

																TextColor	=	Color.Black,	

																HorizontalOptions	=	LayoutOptions.FillAndExpand	

												};	

											

												trailFullDescription.SetBinding(Label.TextProperty,		

												"WalkEntry.Notes");	

	

												this.Content	=	new	ScrollView	

												{	

																Padding	=	10,	

																Content	=	new	StackLayout	

																{	

																				Orientation	=	StackOrientation.Vertical,	

																				HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																				Children	=	

																				{	

																				walkTrailImage,	

																				trailNameLabel,	

																				trailKilometersLabel,	

																				trailDifficultyLabel,	

																				trailFullDescription,	

																				beginTrailWalk	

																				}	

																		}	

																};	

														}	

												}	

										}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	the	WalksTrailPage	so	that	it	can
take	advantage	of	the	WalksTrailViewModel.	We	looked	at	how	to	set	the	content	page	to	an
instance	of	the	WalksTrailViewModel	so	that	the	BindingContext	property	for	the
WalkTrailPage	will	now	point	to	an	instance	of	the	IWalkNavService	interface.

We	also	slightly	modified	our	Clicked	handler	for	the	beginTrailWalk	button	so	that	it	will
now	navigate	to	the	DistanceTravelledPage	content	page	within	the	NavigationStack,	and
pass	in	the	WalkEntry	dictionary	object	to	the	DistTravelledViewModel	ViewModel.

Updating	the	distance	travelled	ViewModel	and	navigation
service
Now	that	we	have	modified	the	MVVM	ViewModel	that	will	be	used	for	our	WalkTrailPage,
our	next	step	is	to	update	the	DistTravelledViewModel	to	take	advantage	of	the	navigation
service,	so	that	it	can	display	the	walk	entry	information	that	has	been	associated	with	the	chosen
walk.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	DistTravelledViewModel.cs	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	highlighted	code	sections:

									//	

								//		DistTravelledViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	DistTravelledViewModel	:	

													WalkBaseViewModel<WalkEntries>	

												{	

																WalkEntries	_walkEntry;	

	

																public	WalkEntries	WalkEntry	

																{	

																				get	{	return	_walkEntry;	}	

																				set	

																				{	

																								_walkEntry	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_travelled;	

																public	double	Travelled	

																{	

																				get	{	return	_travelled;	}	

																				set	

																				{	

																								_travelled	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_hours;	

																public	double	Hours	

																{	

																				get	{	return	_hours;	}	

																				set	

																				{	

																								_hours	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_minutes;	

																public	double	Minutes	

																{	

																				get	{	return	_minutes;	}	

																				set	

																				{	

																								_minutes	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																double	_seconds;	

																public	double	Seconds	

																{	

																				get	{	return	_seconds;	}	

																				set	

																				{	

																								_seconds	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																public	string	TimeTaken	

																{	

																				get	

																				{	

																								return	string.Format("{0:00}:{1:00}:{2:00}",		

																								this.Hours,	this.Minutes,	this.Seconds);	

																				}	

																}	

2.	 Next,	we	need	to	modify	the	DistTravelledViewModel	class	constructor,	which	will	now
need	to	include	a	navService	parameter	that	is	included	within	the	IWalkNavService
interface	class.	We	then	set	the	ViewModel's	class	constructor	to	access	all	instance	class
members	contained	within	the	navService	by	using	the	base	keyword	and	initialize	the
constructor	with	default	values	for	the	Hours,	Minutes,	Seconds,	and	Travelled
properties.

3.	 Locate	the	DistTravelledViewModel	class	constructor,	and	enter	the	following	highlighted
code:

								public	DistTravelledViewModel(IWalkNavService	navService)	:	

						base(navService)

				{

								this.Hours	=	0;

								this.Minutes	=	0;

								this.Seconds	=	0;

								this.Travelled	=	100;

				}

4.	 Then,	create	the	Init	method	within	the	DistTravelledViewModel,	which	will	be	used	to
initialize	the	DistanceTravelledPage	content	page	when	it	is	called.	We	need	to	specify
and	use	the	Task.Factory.StartNew	method	to	give	the	ViewModel	enough	time	to	display
the	page	on	screen,	prior	to	initializing	the	ContentPage	contents,	using	the	passed	in
walkDetails	for	our	model.	Proceed	and	enter	in	the	following	highlighted	code	sections:

						public	override	async	Task	Init(WalkEntries	walkDetails)

				{

									await	Task.Factory.StartNew(()	=>

								{

													WalkEntry	=	walkDetails;

								});

				}

5.	 Next,	we	need	to	create	the	BackToMainPage	command	property	that	will	be	used	to	bind	to
the	End	This	Trail	button	that	will	run	an	action	upon	being	pressed.	This	action	will
execute	a	class	instance	method,	to	determine	whether	the	Command	can	be	executed.

6.	 If	the	Command	can	be	executed,	a	call	will	be	made	to	the	BackToMainPage	method	on	the
NavService	navigation	service	class	to	take	the	user	back	to	the	TrackMyWalks	main	page,
by	removing	all	existing	ViewModels	within	the	NavigationStack,	except	the	first	page.
Proceed	and	enter	in	the	following	highlighted	code	sections:

								Command	_mainPage;

								public	Command	BackToMainPage

	

								{

	

												get

				

											{

			

															return	_mainPage

		??	(_mainPage	=	new	

															Command(async	()	=>	await	

															NavService.BackToMainPage()));

	

												}

						

											}	

										}	

									}	

In	this	section,	we	updated	the	DistanceTravelledViewModel	to	inherit	from	our

WalkBaseViewModel	Interface	class	and	then	modify	the	DistTravelledViewModel	class
constructor	to	point	to	an	instance	of	the	IWalkNavService	interface	class.

We	then	created	the	Init	method	that	will	initialize	the	DistanceTravelledViewModel	when	it
is	called	and	use	the	Task.Factory.StartNew	method	to	give	the	ViewModel	enough	time	to
display	the	DistanceTravelledPage	content	page	on	screen,	prior	to	initializing	the
ContentPage	contents,	using	the	passed	in	walkDetails	for	our	model.

We	also	created	the	BackToMainPage	command	property	that	will	be	used	to	bind	to	the	End
This	Trail	button	that	will	run	an	action	to	execute	a	class	instance	method,	to	determine
whether	the	Command	can	be	executed,	and	then	a	call	will	be	made	to	BackToMainPage	method
on	the	NavService	navigation	service	class	to	take	the	user	back	to	the	first	page	within	the
NavigationStack.

Updating	the	DistanceTravelledPage	to	use	the	updated
ViewModel
Now	that	we	have	modified	the	MVVM	ViewModel	that	will	be	used	by	our
DistanceTravelledPage	content	page,	our	next	step	is	to	begin	modifying	the
DistanceTravelledPage	page	to	take	advantage	of	our	navigation	service,	and	display	walk
information	details.	The	calculations	and	distance	travelled	will	be	displayed	from	the
WalkEntries	model.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Ensure	that	the	DistanceTravelledPage.cs	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	highlighted	code	sections:

								//	

								//		DistanceTravelledPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Maps;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

	

	

								namespace	TrackMyWalks	

								{	

												public	class	DistanceTravelledPage	:	ContentPage	

												{	

2.	 Next,	we	need	to	create	a	new	private	property	named	_viewModel	within	the
DistanceTravelledPage	class,	which	is	of	our	DistTravelledViewModel	type,	and	will
essentially	provide	us	with	access	to	the	ContentPage's	BindingContext	object.	Proceed
and	enter	in	the	following	highlighted	code	sections:

								DistTravelledViewModel	_viewModel

								{

	

											get	{	return	BindingContext	as	DistTravelledViewModel;	}

								}

			

								public	DistanceTravelledPage()	

								{	

												Title	=	"Distance	Travelled";	

3.	 Next,	we	need	to	declare	and	initialize	the	DistTravelledViewModelBindingContext	to
include	our	IWalkNavService	constructor,	which	is	used	by	the	WalkBaseViewModel	class,
and	is	retrieved	from	the	Xamarin.Forms	DependencyService	class.	Proceed	and	enter	in

the	following	highlighted	code	sections:

				//	Declare	and	initialize	our	Model	Binding	Context

					BindingContext	=	new	DistTravelledViewModel

								(DependencyService.

Get<IWalkNavService>());	

4.	 Then,	we	need	to	create	a	new	method	called	LoadDetails	which	will	be	used	to	grab	the
name	of	the	chosen	walk	and	the	Latitude	and	Longitude	values	from	the
DistTravelledViewModel	as	well	as	zoom	into	the	user	entry	location,	using	the
MoveToRegion	method.	Proceed	and	enter	in	the	following	highlighted	code	sections:

								public	void	LoadDetails()	

								{	

												//	Instantiate	our	map	object	

												var	trailMap	=	new	Map();	

	

												//	Place	a	pin	on	the	map	for	the	chosen		

												//	walk	type	

												trailMap.Pins.Add(new	Pin	

												{	

																Type	=	PinType.Place,

																Label	=	_viewModel.WalkEntry.Title,

	

																Position	=	new	Position(_viewModel.WalkEntry.Latitude,

	

																_viewModel.WalkEntry.Longitude)	

												});	

	

												//	Center	the	map	around	the	list	of

	

											//	walks	entry's	location

	

											trailMap.MoveToRegion(MapSpan.FromCenterAndRadius(

												new	Position(_viewModel.WalkEntry.Latitude,

	

													_viewModel.WalkEntry.Longitude),

	

														Distance.FromKilometers(1.0)));	

	

												var	trailNameLabel	=	new	Label()	

												{	

																FontSize	=	18,	

																FontAttributes	=	FontAttributes.Bold,	

																TextColor	=	Color.Black,	

																HorizontalTextAlignment	=	TextAlignment.Center	

												};	

	

												trailNameLabel.SetBinding(Label.TextProperty,		

												"WalkEntry.Title");	

	

												var	trailDistanceTravelledLabel	=	new	Label()	

												{	

																FontAttributes	=	FontAttributes.Bold,	

																FontSize	=	20,	

																TextColor	=	Color.Black,	

																HorizontalTextAlignment	=	TextAlignment.Center	

												};	

	

											trailDistanceTravelledLabel.SetBinding(Label.TextProperty,	

											"Travelled",	stringFormat:	"Distance	Travelled:	{0}	km");	

	

												var	totalTimeTakenLabel	=	new	Label()	

												{	

																FontAttributes	=	FontAttributes.Bold,	

																FontSize	=	20,	

																TextColor	=	Color.Black,	

																HorizontalTextAlignment	=	TextAlignment.Center	

												};	

	

												totalTimeTakenLabel.SetBinding(Label.TextProperty,		

												"TimeTaken",	stringFormat:	"Time	Taken:	{0}");	

	

												var	walksHomeButton	=	new	Button	

												{	

																BackgroundColor	=	Color.FromHex("#008080"),	

																TextColor	=	Color.White,	

																Text	=	"End	this	Trail"	

												};	

5.	 Next,	we	need	to	modify	the	walksHomeButton.Clicked	handler	for	our	button	so	that,
upon	being	clicked,	it	will	allow	the	DistanceTravelledPage	to	navigate	back	to	the	first
page	within	the	NavigationStack.	Proceed	and	enter	in	the	following	highlighted	code
sections:

												//	Set	up	our	event	handler	

												walksHomeButton.Clicked	+=	(sender,	e)	=>	

												{	

																if	(_viewModel.WalkEntry	==	null)	return;

																_viewModel.BackToMainPage.Execute(0);	

												};	

	

												this.Content	=	new	ScrollView	

												{	

																Padding	=	10,	

																Content	=	new	StackLayout	

																{	

																				Orientation	=	StackOrientation.Vertical,	

																				HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																				Children	=	{	

																				trailMap,	

																				trailNameLabel,	

																				trailDistanceTravelledLabel,	

																				totalTimeTakenLabel,	

																				walksHomeButton	

																				}	

																}	

												};	

								}		

6.	 Finally,	we	need	to	create	an	OnAppearing	instance	method	of	the	navigation	hierarchy	that
will	be	used	to	correctly	plot	the	walk's	Longitude	and	Latitude	coordinates	within	the
map,	along	with	the	walk	information,	prior	to	the	ViewModel	appearing	on	screen.	We	need
to	ensure	that	the	ViewModel	has	properly	been	initialized	by	checking	to	see	that	it	isn't
null,	prior	to	calling	the	Init	method	of	the	DistTravelledViewModel.	Proceed	and	enter
in	the	following	highlighted	code	sections:

protected	override	async	void	OnAppearing()

				{

								base.OnAppearing();

								//	Initialize	our	DistanceTravelledViewModel

								if	(_viewModel	!=	null)

								{

												await	_viewModel.Init();

												LoadDetails();

									}

						}

				}

}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	the	DistanceTraveledPage	so	that
it	can	take	advantage	of	the	DistTravelledViewModel.	We	looked	at	how	to	set	the	content	page
to	an	instance	of	the	DistTravelledViewModel	so	that	the	BindingContext	property	for	the
DistanceTravelledPage	will	now	point	to	an	instance	of	the	IWalkNavService	interface.

We	also	slightly	modified	our	Clicked	handler	for	the	WalksHomeButton	button,	so	that	it	will
now	navigate	to	the	NavService.BackToMainPage	method,	which	is	declared	within	the
IWalkNavService	interface	class	to	allow	the	DistanceTravelledPage	to	navigate	back	to	the
first	page	within	the	NavigationStack.

Updating	the	Xamarin.Forms.App	class	to	use	the	navigation
service
In	this	section,	we	need	to	update	our	Xamarin.Forms.App	class,	by	modifying	the	constructor	in
the	main	App	class	to	create	a	new	instance	of	the	navigation	service	and	register	the	application's
ContentPage	to	ViewModel	mappings.

Let's	take	a	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Open	the	TrackMyWalks.cs	file	and	ensure	that	it	is	displayed	within	the	code	editor.
2.	 Next,	locate	the	App	method	and	enter	in	the	following	highlighted	code	sections:

								//	

								//		TrackMyWalks.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//

using	TrackMyWalks.Services;

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks	

								{	

												public	class	App	:	Application	

												{	

																public	App()	

																{	

																				//	Check	the	Target	OS	Platform	

																				if	(Device.OS	==	TargetPlatform.Android)	

																			{	

																						MainPage	=	new	SplashPage();	

																				}	

																				else	

																				{	

																								//	The	root	page	of	your	application	

																								var	walksPage	=	new	NavigationPage(new	

WalksPage()

																								{

																												Title	=	"Track	My	Walks"

	

																									});

	

																								var	navService	=	DependencyService.

																								Get<IWalkNavService>()	as	WalkNavService;

																							navService.navigation	=	walksPage.Navigation;

	

																							navService.RegisterViewMapping(typeof

																							(WalksPageViewModel

),	typeof(WalksPage));

																							navService.RegisterViewMapping(

																							typeof(WalkEntryViewModel

),

																							typeof(WalkEntryPage));

																							navService.RegisterViewMapping(

																							typeof(WalksTrailViewModel

),

																							typeof(WalkTrailPage));

																							navService.RegisterViewMapping(

																							typeof(DistTravelledViewMo

del),

																							typeof(DistanceTravelledPage));

																							MainPage	=	walksPage;	

												}	

								}	

	

								protected	override	void	OnStart()	

								{	

												//	Handle	when	your	app	starts	

								}	

	

								protected	override	void	OnSleep()	

								{	

												//	Handle	when	your	app	sleeps	

								}	

	

								protected	override	void	OnResume()	

								{	

												//	Handle	when	your	app	resumes	

								}	

							}	

						}	

In	the	preceding	code	snippet,	we	begin	by	declaring	a	navService	variable	that	points	to	an
instance	of	the	navigation	service	as	defined	by	our	assembly	attribute	for	the
Xamarin.FormsDependencyService,	as	declared	in	the	WalkNavService	class.

In	our	next	step,	we	set	the	navService.navigation	property	to	point	to	an	instance	of	the
NavigationPage	class	that	the	walksPage.navigation	property	currently	points	to,	and	will	be
used	as	the	main	root	page.

Finally,	we	call	the	RegisterViewMapping	instance	method	for	each	of	the	ViewModels	and
specify	the	associated	ContentPage	for	each.

Summary
In	this	chapter,	we	updated	our	TrackMyWalks	application	and	created	a	navigation	service	class
that	extends	the	default	Xamarin.Forms.Navigation	API,	which	provides	us	with	a	better
method	of	performing	ViewModel	navigation.	This	separates	the	presentation	aspects	and
business	logic	that	are	contained	within	the	ViewModels.

In	the	next	chapter,	you'll	learn	how	to	create	a	location	services	class	that	will	allow	our
TrackMyWalks	app	to	retrieve	location-based	information,	and	determine	the	user's	current
location.	You'll	also	learn	how	to	set	up	our	app	to	handle	background	location	updates.	You	will
also	learn	how	to	incorporate	platform-specific	features	within	your	app,	depending	on	the
platform	that	is	being	run.

Chapter	4.	Adding	Location-Based	Features
within	Your	App
In	our	previous	chapter,	we	looked	at	how	we	can	apply	what	we	already	know	about	the	MVVM
design	pattern,	and	how	we	can	navigate	between	our	ViewModels,	by	creating	a	navigation
service	C#	class	that	acts	as	the	navigation	service	for	our	app,	using	the
Xamarin.FormsDependencyService	class.

In	this	chapter,	you'll	learn	how	to	go	about	incorporating	platform-specific	features	within	the
TrackMyWalks	app,	depending	on	the	mobile	platform.	You'll	learn	how	to	create	a	C#	class,
which	will	act	as	the	Location	Service	for	our	app,	as	well	as	creating	a
IWalkLocationService	interface	class	file,	which	will	include	a	number	of	class	methods	that
both	our	iOS	and	Android	platforms	will	inherit,	and,	in	turn,	update	the	content	pages	to	bind
with	the	ViewModels	to	allow	location-based	information	between	these	Views	to	happen.

We	will	also	be	covering	how	to	properly	perform	location	updates	while	the	application	is
either	in	the	foreground	or	background,	and	we	will	also	be	touching	on	some	key	background
concepts,	which	include	registering	an	app	as	a	background-necessary	application.

This	chapter	will	cover	the	following	topics:

Creating	a	location-based	class	that	utilizes	the	native	platform	capabilities	that	come	as	part
of	the	iOS	and	Android	platforms
Enabling	background	location	updates	as	well	as	getting	the	user's	current	location
Updating	the	TrackMyWalks	application	to	use	the	Location	Service
Updating	the	WalkEntryViewModel	to	use	the	Location	Service	Interface
Updating	the	DistanceTravelledViewModel	to	use	the	Location	Service	Interface

Creating	and	using	platform-specific	services
As	mentioned	in	the	introduction	to	this	chapter,	we	created	a	customized	navigation	service,
which	provided	an	IWalkNavService	Interface	class	for	which	our	WalkBaseViewModel
contained	a	property	of	that	interface	type,	so	that	any	implementations	of	the	IWalkNavService
can	be	provided	to	each	of	the	ViewModels,	as	required.

The	benefit	of	using	an	Interface	to	define	platform-specific	services	is	that	it	can	be	used	within
the	ViewModels	and	the	implementations	of	the	service	can	be	provided	via	dependency
injection,	using	the	DependencyService,	with	those	implementations	being	actual	services,	or
even	mocked-up	services	for	unit	testing	the	ViewModels,	which	we	will	be	covering	in	Chapter
9	,	Unit	Testing	Your	Xamarin.Forms	Apps	Using	the	NUnit	and	UITest	Frameworks.

In	addition	to	the	navigation	service,	we	can	use	a	couple	of	other	platform-specific	feature
services	within	our	TrackMyWalks	app	to	enrich	its	data	and	user	experience.	In	this	section,	we
will	be	taking	a	look	at	how	to	create	a	Location	Service	class	that	allows	us	to	get	the
specific	geolocation	coordinates	from	the	actual	device	for	both	our	iOS	and	Android	platforms.

Creating	the	Location	Service	Interface	for	the	TrackMyWalks
app
Before	we	can	begin	allowing	our	TrackMyWalks	app	to	take	advantage	of	the	device's
geolocation	capabilities	for	both	our	iOS	and	Android	platforms,	we	will	need	to	create	an
Interface	within	the	TrackMyWalks	Portable	Class	Library,	which	can	then	be	used	by	the
ViewModels	for	each	platform.

We	will	need	to	define	the	interface	for	our	location	service,	as	this	will	contain	method
implementations,	as	well	as	a	data	structure	that	will	be	used	to	represent	our	latitude	and
longitude	coordinates.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Launch	the	Xamarin	Studio	application,	and	ensure	that	the	TrackMyWalks	solution	is
loaded	within	the	Xamarin	Studio	IDE.

2.	 Next,	create	a	new	empty	interface	within	the	TrackMyWalks	PCL	project	solution,	under	the
Services	folder.

3.	 Then,	choose	the	Empty	Interface	option	located	within	the	General	section	and	enter
IWalkLocationService	for	the	name	of	the	new	interface	file	to	be	created,	as	shown	in
the	following	screenshot:

4.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	Empty
Interface	class	file,	as	shown	in	the	preceding	screenshot.

5.	 Our	wizard	has	created	our	IWalkLocationService	class	file,	which	will	be	used	by	our
ViewModels	and	content	page	Views	to	display	geolocation	coordinates.	As	we	start	to
build	the	Location	Service	Interface	class,	you	will	see	that	it	contains	a	couple	of
class	members	that	will	allow	us	to	get	the	user's	location	as	well	as	determining	the
distance	that	the	user	has	travelled	from	point	A	to	point	B.

6.	 It	also	contains	a	data	structure	IWalkLocationCoords	that	will	be	used	to	hold	our
latitude	and	longitude	geolocation	coordinates.	To	proceed	with	creating	the	base
IWalkLocationService	Interface,	perform	the	following	steps:

7.	 Ensure	that	the	IWalkLocationService.cs	file	is	displayed	within	the	code	editor	and
enter	the	following	code	snippet:

								//	

								//		IWalkLocationService.cs	

								//		TrackMyWalks	Location	Service	Interface	

								//	

								//		Created	by	Steven	F.	Daniel	on	16/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

	

								namespace	TrackMyWalks.Services	

								{	

												//	Define	our	Walk	Location	Service	Interface	

												public	interface	IWalkLocationService	

												{	

																//	Define	our	Location	Service	Instance	Methods	

																void	GetMyLocation();	

	

																double	GetDistanceTravelled(double	lat,	double	lon);	

																event	EventHandler<IWalkLocationCoords>	MyLocation;	

												}	

	

												//	Walk	Location	Coordinates	Obtained	

												public	interface	IWalkLocationCoords	

												{	

																double	latitude	{	get;	set;	}	

																double	longitude	{	get;	set;	}	

												}	

								}		

In	the	preceding	code	snippet,	we	start	by	defining	the	implementation	for	our
IWalkLocationService,	which	will	provide	our	TrackMyWalks	app	with	the	ability	to	get	the
user's	current	location,	calculating	the	distance	travelled	from	the	user's	current	location	to	the
trail	goal.	We	also	define	an	EventHandlermyLocation,	which	will	be	called	whenever	the
platform	obtains	a	new	location.

The	IWalkLocationCoords	interface	defines	a	class	that	contains	two	properties	that	will	be
used	by	our	EventHandler	to	return	the	latitude	and	longitude	values.

Note

An	Interface	contains	only	the	methods,	properties,	and	events	signature	definitions.	Any	class
that	implements	the	interface	must	implement	all	members	of	the	interface	that	are	specified	in	the
interface	definition.

Now	that	we	have	defined	the	property	and	method	implementations	that	will	be	used	by	our
IWalkLocationService,	our	next	step	will	be	to	create	the	required	Location	Service	class
implementations	for	each	of	our	platforms,	as	they	are	defined	quite	differently.

Creating	the	Location	Service	class	for	the	Android	platform
In	this	section,	we	will	begin	by	setting	up	the	basic	structure	for	our	TrackMyWalks.Droid
solution	to	include	the	folder	that	will	be	used	to	represent	our	Services.	Let's	take	a	look	at
how	we	can	achieve	this	through	the	following	steps:

1.	 Launch	the	Xamarin	Studio	application,	and	ensure	that	the	TrackMyWalks	solution	is
loaded	within	the	Xamarin	Studio	IDE.

2.	 Next,	create	a	new	folder	within	the	TrackMyWalks.Droid	project,	called	Services,	as
shown	in	the	following	screenshot:

3.	 Next,	create	an	empty	class	within	the	Services	folder.	If	you	can't	remember	how	to	do
this,	you	can	refer	to	the	section	entitled	Creating	the	Navigation	Service	Interface	for	the
TrackMyWalks	app,	within	Chapter	3	,	Navigating	within	the	MVVM	Model	-	The
Xamarin.Forms	Way.

4.	 Then,	choose	the	Empty	Class	option	located	within	the	General	section	and	enter
WalkLocationService	for	the	name	of	the	new	class	file	to	be	created,	as	shown	in	the
following	screenshot:

5.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty	class
file,	as	shown	in	the	preceding	screenshot.

Up	until	this	point,	all	we	have	done	is	create	our	WalkLocationService	class	file.	This
class	will	be	used	and	will	act	as	the	base	Location	Service	class	that	will	contain	the
functionality	required	by	our	ViewModels.

As	we	start	to	build	our	Location	Class,	you	will	see	that	it	contains	a	number	of	method
members	that	will	be	used	to	help	us	get	the	user's	current	geolocation	coordinates	from	their
device,	so	that	we	can	display	this	within	each	of	our	ViewModels,	and	it	will	implement
the	IWalkLocationService	Interface.

To	proceed	with	creating	and	implementing	the	base	WalkLocationService	class,	perform	the
following	steps:

1.	 Ensure	that	the	WalkLocationService.cs	file	is	displayed	within	the	code	editor,	and	enter
the	highlighted	code	sections	shown	in	the	following	code	snippet:

								//	

								//		WalkLocationService.cs	

								//		TrackMyWalks	Location	Service	Class	(Android)	

								//	

								//		Created	by	Steven	F.	Daniel	on	16/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Android.Content;	

	

								using	Android.Locations;

								using	TrackMyWalks.Droid;

								using	TrackMyWalks.Services;	

	

								using	Xamarin.Forms;	

2.	 First,	we	initialize	our	WalkLocationService	class,	which	is	to	be	marked	as	a
dependency,	by	adding	the	Dependency	metadata	attribute	just	as	we	did	for	our	navigation
service.	This	is	so	that	it	can	be	resolved	by	the	Xamarin.FormsDependencyService	to
allow	it	to	find	and	use	our	method	implementations	as	defined	within	our	Interface.	We	also
need	to	implement	the	IWalkCoordinates	interface	using	the	LocationEventArgs	class
that	contains	our	latitude	and	longitude	properties,	which	will	be	populated	whenever	a
new	location	is	obtained:

								[assembly:	Xamarin.Forms.Dependency(

										typeof(WalkLocationService))]	

								namespace	TrackMyWalks.Droid	

								{	

												//	Event	arguments	containing	latitude	and	longitude	

												public	class	Coordinates	:	EventArgs,	IWalkCoordinates	

												{	

																public	double	latitude	{	get;	set;	}	

																public	double	longitude	{	get;	set;	}	

												}	

3.	 Next,	we	need	to	modify	our	WalkLocationService	class	constructor	signature,	so	that	it
inherits	from	the	IWalkLocationService	Interface	class,	as	well	as	implementing	an
ILocationListener	interface	class,	which	will	be	used	to	indicate	whenever	the	user's
location	changes,	by	implementing	four	methods-OnLocationChanged,
OnProviderDisabled,	OnProviderEnabled,	and	OnStatusChanged:

								public	class	WalkLocationService	:	Java.Lang.Object,

										IWalkLocationService,	ILocationListener	{

														LocationManager	locationManager;

														Location	newLocation;	

	

														//	Create	the	four	methods	for	our	LocationListener		

														//	interface.	

														public	void	OnProviderDisabled(string	provider)	{	}	

														public	void	OnProviderEnabled(string	provider)	{	}	

														public	void	OnStatusChanged(string	provider,

														Availability	status,	Android.OS.Bundle	extras)	{	}	

Note

We	need	to	ensure	that	our	WalkLocationService	class	inherits	from	the	Android-specific
Java.Lang.Object	class,	so	that	we	can	provide	access	to	the	system	location	services,	in
order	to	obtain	periodic	updates	on	the	device's	geographical	location.

Whenever	your	classes	inherit	from	the	ILocationListener	API,	the
ILocationListener	Interface	supports	several	different	method	types,	which	are	explained
in	the	following	table:

Method	name Description

OnProviderDisabled
This	method	is	fired	up	whenever	the	location	service	provider	has
been	disabled	by	the	user.

OnProviderEnabled
This	method	is	fired	up	whenever	the	location	service	provider	has
been	enabled	by	the	user.

OnStatusChanged

This	method	is	fired	up	whenever	the	location	service	provider
status	has	been	changed,	that	is,	the	location	services	have	been
disabled	by	the	user.

OnLocationChanged
This	method	is	fired	up	whenever	a	change	in	location	has	been
detected.

4.	 Then,	we	need	to	set	up	an	EventHandler	delegate	object	that	will	be	called	whenever	the
location	has	been	obtained	or	changed:

								//	Set	up	our	EventHandler	delegate	that	is	called		

								//	whenever	a	location	has	been	obtained	

								public	event	EventHandler<IWalkCoordinates>	MyLocation;	

	

5.	 Next,	we	create	the	OnLocationChanged	method	that	will	be	fired	up	whenever	the	user's
location	has	been	changed	since	the	last	time.	This	method	accepts	the	user's	current
location,	and	we	need	to	add	a	check	to	ensure	that	our	location	is	not	empty	prior	to
creating	an	instance	of	our	Coordinates	class	data	structure,	and	then	assigning	the	new
location	details	for	our	latitude	and	longitude,	before	finally	passing	a	copy	of	the
Coordinates	to	the	MyLocationEventHandler:

								//	Fired	whenever	there	is	a	change	in	location	

								public	void	OnLocationChanged(Location	location)	

								{	

												if	(location	!=	null)	

	

												{	

																//	Create	an	instance	of	our	Coordinates	

																var	coords	=	new	Coordinates();	

																	

																//	Assign	our	user's	Latitude	and	Longitude			

																//	values	

																coords.latitude	=	location.Latitude;	

																coords.longitude	=	location.Longitude;	

	

																//	Update	our	new	location	to	store	the		

																//	new	details.	

																newLocation	=	new	Location("Point	A");	

																newLocation.Latitude	=	coords.latitude;	

																newLocation.Longitude	=	coords.longitude;	

	

																//	Pass	the	new	location	details	to	our		

																//	Location	Service	EventHandler.	

																MyLocation(this,	coords);	

												};	

								}		

6.	 Then,	we	create	the	GetMyLocation	method	that	will	be	used	to	start	getting	the	user's
location.	We	then	set	up	our	locationManager	to	request	location	updates.	This	is	because,
when	dealing	with	Android,	these	services	require	a	Context	object	in	order	for	them	to
work.	Xamarin.Forms	comes	with	the	Forms.Context	object,	and	we	use	the
NetworkProvider	method	to	obtain	the	location	using	the	cellular	network	and	Wi-Fi.
Consider	the	following	code:

								//	Method	to	call	to	start	getting	location	

								public	void	GetMyLocation()	

								{	

											locationManager	=	(LocationManager)	

	

											long	minTime	=	0;						//	Time	in	milliseconds	

											float	minDistance	=	0;	//	Distance	in	metres	

											Forms.Context.GetSystemService(Context.LocationService);	

											locationManager.RequestLocationUpdates(

																				LocationManager.NetworkProvider,	

																				minTime,	

																				minDistance,	

																				this);	

								}	

7.	 Next,	create	the	GetDistanceTravelled	method,	which	accepts	two	parameters	containing
our	latitude	and	longitude	values.	We	create	a	new	location,	and	set	the	Latitude	and
Longitude	values	that	contain	the	ending	coordinates	for	our	trail.	We	then	declare	a
variable	distance,	which	calls	the	DistanceTo	method	on	our	newLocation	object,	to
determine	our	current	distance	from	the	end	goal.	We	divide	the	distance	by	1000	to	convert
the	distance	travelled	to	meters:

								//	Calculates	the	distance	between	two	points	

								public	double	GetDistanceTravelled(double	lat,	double	lon)	

							{	

											Location	locationB	=	new	Location("Trail	Finish");	

											locationB.Latitude	=	lat;	

											locationB.Longitude	=	lon;	

	

											float	distance	=	newLocation.DistanceTo(locationB)	/	1000;	

											return	distance;	

								}		

8.	 Finally,	create	the	WalkLocationService	class	finalizer;	this	will	be	used	to	stop	all
update	listener	events	when	our	class	has	been	set	to	null.

								//	Stop	the	location	update	when	the	object	is	set	to	null	

									~WalkLocationService()		

									{	

												locationManager.RemoveUpdates(this);	

									}	

								}	

							}	

Now	that	we	have	created	the	WalkLocationService	class	for	the	Android	portion	of	our
TrackMyWalks	app,	our	next	step	is	to	create	the	same	class	for	the	iOS	portion,	which	will	be
covered	in	the	next	section.

Creating	the	Location	Service	class	for	the	iOS	platform
In	the	previous	section,	we	created	the	class	for	our	WalkLocationService.	We	also	defined	a
number	of	different	methods	that	will	be	used	to	provide	location-based	information	within	our
MVVM	ViewModel.

In	this	section,	we	will	build	the	iOS	portion	for	our	WalkLocationService,	just	like	we	did	for
our	Android	portion.	You	will	notice	that	the	implementations	for	both	of	these	classes	are	quite
similar;	however,	these	implement	different	methods,	as	you	will	see	once	we	start	implementing
them.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Create	an	empty	class	within	the	Services	folder	for	our	TrackMyWalks.iOS	project,	and
enter	WalkLocationService	for	the	name	of	the	new	class	file	to	create.

2.	 Once	you	have	created	the	WalkLocationService	class	file,	ensure	that	the
WalkLocationService.cs	file	is	displayed	within	the	code	editor	and	enter	the	highlighted
code	sections	shown	in	the	following	code	snippet:

								//	

								//		WalkLocationService.cs	

								//		TrackMyWalks	Location	Service	Class	(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	16/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	CoreLocation;

								using	TrackMyWalks.iOS;

								using	TrackMyWalks.Services;

								using	UIKit;

3.	 Next,	we	initialize	our	WalkLocationService	class,	which	is	to	be	marked	as	a
dependency,	by	adding	the	Dependency	metadata	attribute	just	as	we	did	for	our	navigation
service.	This	is	so	that	it	can	be	resolved	by	the	Xamarin.FormsDependencyService	to
allow	it	to	find	and	use	our	method	implementations	as	defined	within	our	Interface.	We	also
need	to	implement	the	IWalkCoordinates	interface	using	the	Coordinates	class,	which
contains	the	latitude	and	longitude	properties	that	will	be	populated	whenever	a	new
location	is	obtained:

								[assembly:	Xamarin.Forms.Dependency(typeof(WalkLocationService))]		

								namespace	TrackMyWalks.iOS	

								{	

												//	Event	arguments	containing	latitude	and	longitude	

												public	class	Coordinates	:	EventArgs,	IWalkCoordinates	

												{	

																public	double	latitude	{	get;	set;	}	

																public	double	longitude	{	get;	set;	}	

												}		

4.	 Then,	we	need	to	modify	our	WalkLocationService	class	constructor	signature,	so	that	it
inherits	from	the	IWalkLocationService	Interface	class.	We	also	need	to	declare	our
locationManager	object,	which	will	be	used	to	obtain	the	user's	location.	We	also	create	a
newLocation	object	of	type	CLLocation,	which	will	be	used	to	convert	the	latitude	and
longitude	coordinates	from	the	locationManager	object	into	a	CLLocation	object:

								//	Walk	Location	Service	class	that	inherits	from	our		

								//	IWalkLocationService	interface	

								public	class	WalkLocationService	:	IWalkLocationService	

								{	

												//	Declare	our	Location	Manager	

												CLLocationManager	locationManager;	

												CLLocation	newLocation;	

5.	 Next,	we	need	to	set	up	an	EventHandler	delegate	object	that	will	be	called	whenever	the
location	has	been	obtained	or	changed:

								//	Set	up	our	EventHandler	delegate	that	is	called		

								//	whenever	a	location	has	been	obtained	

								public	event	EventHandler<IWalkCoordinates>	MyLocation;	

6.	 Then,	we	create	the	GetMyLocation	method	that	will	be	used	to	start	getting	the	user's
location.	Next,	we	set	up	our	locationManager	using	the	iOS	CLLocationManager	class	to
allow	our	class	to	request	location	updates.	We	then	perform	a	check,	using	the
LocationServicesEnabled	property	of	the	CLLocationManager	class,	to	ensure	that
location	services	have	been	enabled	on	the	user's	device.

7.	 This	is	a	good	check	to	enforce	prior	to	requesting	the	getting	of	the	user's	location,	and	if
our	CLLocationManager	class	determines	that	location	services	have	been	disabled,	we
display	a	message	to	the	user,	using	the	UIAlertView	class:

								//	Method	to	call	to	start	getting	location	

								public	void	GetMyLocation()	

								{	

												locationManager	=	new	CLLocationManager();	

	

												//	Check	to	see	if	we	have	location	services		

												//	enabled	

												if	(CLLocationManager.LocationServicesEnabled)	

												{	

																//	Set	the	desired	accuracy,	in	meters	

																locationManager.DesiredAccuracy	=	1;			

	

																//	CLLocationManagerDelegate	Methods	

8.	 Next,	we	set	up	an	event	handler,	LocationsUpdated,	that	will	start	firing	up	whenever
there	is	a	change	in	the	user's	current	location,	and	we	call	the	locationUpdated	instance
method,	passing	in	the	location	geo-coordinates:

								//	Fired	whenever	there	is	a	change	in		

								//	location	

								locationManager.LocationsUpdated	+=	(object	sender,

								CLLocationsUpdatedEventArgs	e)	=>	

								{	

												locationUpdated(e);	

								};	

9.	 Then,	we	set	up	an	event	handler,	AuthorizationChanged,	which	will	be	called	whenever
it	detects	a	change	made	to	the	authorization	of	location-based	services.	For	example,	this
will	be	called	if,	for	some	reason,	the	user	decides	to	turn	off	location-based	services:

								//	This	event	gets	fired	whenever	it		

								//	detects	a	change,	i.e.,	if	the	user		

								//	has	turned	off	or	disabled	location		

								//	based	services.	

										locationManager.AuthorizationChanged	+=	(object

										sender,	CLAuthorizationChangedEventArgs	e)	=>	

										{	

														didAuthorizationChange(e);	

	

														//	Perform	location	changes	within	the		

														//	foreground.	

														locationManager.RequestWhenInUseAuthorization();	

										};	

									}	

								}		

10.	 Next,	we	create	the	locationUpdated	method	that	will	be	fired	up	whenever	the	user's
location	has	been	changed	since	the	last	time.	This	method	accepts	the	user's	current
location,	which	is	defined	by	the	CLLocationsUpdatedEventArgs	in	a	variable	called	e.
Next,	we	create	an	instance	of	our	Coordinates	class	data	structure,	and	then	assign	the
new	location	details	for	the	latitude	and	longitude,	before	finally	passing	a	copy	of	the
Coordinates	to	the	MyLocationEventHandler:

								//	Method	is	called	whenever	there	is	a	change	in		

								//	location	

								public	void	locationUpdated(CLLocationsUpdatedEventArgs	e)	

								{	

												//	Create	our	Location	Coordinates						

												var	coords	=	new	Coordinates();	

	

												//	Get	a	list	of	our	locations	found	

												var	locations	=	e.Locations;	

	

												//	Extract	our	Latitude	and	Longitude	values		

												//	from	our	locations	array.	

												coords.latitude	=	locations[locations.Length	-	1].

														Coordinate.Latitude;	

												coords.longitude	=	locations[locations.Length	-	1].

														Coordinate.Longitude;	

	

												//	Then,	convert	both	our	Latitude	and	Longitude		

												//	values	to	a	CLLocation	object.	

												newLocation	=	new	CLLocation(coords.latitude,	

														coords.longitude);	

												MyLocation(this,	coords);	

									}		

11.	 Then,	we	create	the	didAuthorizationChange	method,	which	will	be	called	whenever	the
CLLocationManager	delegate	detects	a	change	in	the	authorization	status;	you	will	be
notified	about	those	changes.	To	handle	any	changes	in	the	authorization	status	while	your
app	is	running,	and	to	prevent	your	application	from	crashing	unexpectedly,	you	will	need	to
ensure	that	the	proper	authorization	is	handled	accordingly.

12.	 If	we	detect	that	the	user	has	restricted	or	denied	access	to	location	services	on	the	device,
we	will	need	to	alert	the	user	to	this,	and	display	an	alert	dialog	popup:

								public	void	didAuthorizationChange(

																CLAuthorizationChangedEventArgs	authStatus)	

								{	

												switch	(authStatus.Status)	{	

																case	CLAuthorizationStatus.AuthorizedAlways:	

																				locationManager.RequestAlwaysAuthorization();	

																				break;	

																case	CLAuthorizationStatus.AuthorizedWhenInUse:	

																				locationManager.StartUpdatingLocation();	

																				break;	

																case	CLAuthorizationStatus.Denied:	

																				UIAlertView	alert	=	new	UIAlertView();	

	

																				alert.Title	=	"Location	Services	Disabled";	

																				alert.AddButton("OK");	

																				alert.AddButton("Cancel");	

																				alert.Message	=	"Enable	locations	for	this	app		

																				via\nthe	Settings	app	on	your	iPhone";	

																				alert.AlertViewStyle	=	UIAlertViewStyle.Default;	

	

																				alert.Show();	

	

																				alert.Clicked	+=	(object	s,		

																																						UIButtonEventArgs	ev)	=>	

																				{	

																								var	Button	=	ev.ButtonIndex;	

																				};	

																				break;	

																default:	

																				break;	

												}	

								}		

13.	 The	didAuthorizationChange	method	contains	a	number	of	authorization	status	codes,	and
these	are	explained,	along	with	their	descriptions,	in	the	following	table:

Authorization	status Description

.AuthorizedAlways	or

.AuthorizedWhenInUse

Either	of	these	cases	can	occur	whenever	the	user	has	granted
access	for	your	app	to	use	location	services.	These	statuses	are
both	mutually	exclusive,	as	you	can	only	receive	one	type	of
authorization	at	a	time.

.NotDetermined

This	generally	happens	whenever	the	user	hasn't	made	a	choice
regarding	whether	your	iOS	app	can	begin	accepting	location
updates,	and	can	be	caused	if	the	user	has	installed	your	app	for
the	first	time	and	has	not	run	it	yet.

.Restricted	or

.Denied

You	will	generally	receive	this	type	of	authorization	status	state
whenever	the	user	has	explicitly	denied	access	to	your	app	for
the	use	of	location	services,	or	when	location	services	are
currently	unavailable.

Note

If	you	are	interested	in	finding	out	more	information	on	the	CLLocationManager	class,
please	refer	to	the	Xamarin	developer	documentation	located	at
https://developer.xamarin.com/api/type/CoreLocation.CLLocationManager/	.

14.	 Next,	create	the	GetDistanceTravelled	method,	which	accepts	two	parameters	containing
our	lat	and	lon	values,	and	declares	a	variable	distance,	which	calls	the	DistanceFrom
method	on	our	newLocation	object,	to	determine	our	current	distance	from	the	end	goal.	We
divide	the	distance	by	1000	to	convert	the	distance	travelled	to	meters:

								//	Calculates	the	distance	between	two	points	

								public	double	GetDistanceTravelled(double	lat,	double	lon)	

								{	

												//	Get	the	distance	travelled	from		

												//	current	location	to	the	previous	location.	

												var	distance	=	newLocation.DistanceFrom(new		

																											CLLocation(lat,	lon))	/	1000;	

												return	distance;	

								}		

15.	 Finally,	create	the	WalkLocationService	class	finalizer,	which	will	be	used	to	stop	all
update	listener	events	and	free	the	memory	used	when	our	class	has	been	set	to	null:

								//	Stops	performing	location	updates	when	the		

								//	object	has	been	set	to	null.	

										~WalkLocationService()	

										{	

														locationManager.StopUpdatingLocation();	

										}	

									}	

								}	

Now	that	we	have	created	the	WalkLocationService	class	for	the	iOS	portion	of	our
TrackMyWalks	app,	our	next	step	is	to	learn	how	to	provide	our	iOS	app	with	the	functionality	to
perform	continuous	location	updates	in	the	background.

https://developer.xamarin.com/api/type/CoreLocation.CLLocationManager/

Enabling	background	updates	and	getting	the	user's	current
location
This	relates	to	working	with	background	location	updates	to	continuously	monitor	changes	to	the
user	location	in	the	background.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Double-click	on	the	Info.plist	file,	which	is	contained	within	the	TrackMyWalks.iOS
project,	and	ensure	that	the	Application	tab	is	showing.

2.	 Next,	scroll	down	to	the	bottom	of	the	page	and	select	Enable	Background	Modes	from
under	the	Background	Modes	section	to	enable	background	updates.

3.	 Then,	ensure	that	the	Location	Updates	option	has	been	selected,	so	that	Xcode	can
provision	your	app	to	monitor	location-based	updates	in	the	background:

4.	 Now	that	we	have	modified	our	TrackMyWalks.iOS	project	to	monitor	location	updates	in
the	background,	we	need	to	do	one	more	thing	and	tell	Xcode	to	handle	Location	updates.
So	let's	do	that	now.

5.	 Ensure	that	the	Info.plist	file	is	displayed	within	the	Xamarin	IDE,	and	that	the	Source
tab	is	showing.

6.	 Next,	create	the	keys	NSLocationAlwaysUsageDescription	and
NSLocationWhenInUseUsageDescription	by	clicking	within	the	Add	new	entry	section

of	the	Info.plist.

7.	 Then,	add	Track	My	Walks	would	like	to	obtain	your	location	as	the	string	description	for
the	Value	field,	as	shown	in	the	preceding	screenshot.

Next,	we	need	to	provide	our	app	with	the	ability	to	monitor	location	updates	in	the	background
for	our	TrackMyWalks.iOS	project.	Let's	take	a	look	at	how	we	can	achieve	this	through	the
following	steps:

1.	 Ensure	that	the	WalkLocationService.cs	file	is	displayed	within	the	code	editor.
2.	 Next,	locate	the	GetMyLocation	method	and	enter	the	following	code	snippet:

								//	Method	to	call	to	start	getting	location	

								public	void	GetMyLocation()	

								{	

												locationManager	=	new	CLLocationManager();	

	

												//	Check	to	see	if	we	have	location	services		

												//	enabled	

												if	(CLLocationManager.LocationServicesEnabled)	

												{	

																//	Set	the	desired	accuracy,	in	meters	

																locationManager.DesiredAccuracy	=	1;	

	

																//	iOS	8	has	additional	permission		

																//	requirements	

																if	(UIDevice.CurrentDevice.CheckSystemVersion(8,	0))	

																{	

																	//	Perform	location	changes	within	the		

																	//	background	

																				locationManager.RequestAlwaysAuthorization();	

																}	

	

																//	iOS	9,	comes	with	a	new	method	that		

																//	allows	us	to	receive	location	updates		

																//	within	the	back,	when	the	app	has		

																//	suspended.	

																if	(UIDevice.CurrentDevice.CheckSystemVersion(9,	0))	

																{	

																				locationManager.AllowsBackgroundLocationUpdates	=	

true;	

																}	

	

																//	CLLocationManagerDelegate	Methods	

																//	Fired	whenever	there	is	a	change	in		

																//	location	

																locationManager.LocationsUpdated	+=	(object	sender,		

																CLLocationsUpdatedEventArgs	e)	=>	

																{	

																				locationUpdated(e);	

																};	

	

																//	This	event	gets	fired	whenever	it		

																//	detects	a	change,	i.e.,	if	the	user	has		

																//	turned	off	or	disabled	Location	Based		

																//	Services.	

																locationManager.AuthorizationChanged	+=	(object		

																sender,	CLAuthorizationChangedEventArgs	e)	=>	

																{	

																				didAuthorizationChange(e);	

	

																				//	Perform	location	changes	within		

																//	the	foreground.	

																				locationManager.RequestWhenInUseAuthorization();	

																};	

												}	

								}		

In	the	preceding	code	snippet,	we	check	the	iOS	version	currently	running	on	the	user's	device,
and	use	the	RequestAlwaysAuthorization	method	call	on	the	locationManager	class	to
request	the	user's	permission	to	obtain	their	current	location.	In	iOS	9,	Apple	decided	to	add	a
new	method	called	AllowsBackgroundLocationUpdates,	which	allows	the	handling	of
background	location	updates.	Next,	we	also	need	to	configure	our	Android	portion	of	our
TrackMyWalks.Droid	project	by	modifying	the	AndroidManifest.xml	file.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Double-click	on	the	AndroidManifest.xml	file,	which	is	contained	within	the

TrackMyWalks.Droid	project,	and	ensure	that	the	Source	tab	is	selected,	as	shown	in	the
following	screenshot:

2.	 Ensure	that	the	AndroidManifest.xml	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections:

							<?xml	version="1.0"	encoding="utf-8"?>	

								<manifest	xmlns:android="http://schemas.

										android.com/apk/res/android"

										android:versionCode="1"	android:versionName="1.0"	

										package="com.geniesoftstudios.trackmywalks">	

								<uses-sdk	android:minSdkVersion="15"	/>	

								<uses-permission	android:name="android.

										permission.ACCESS_FINE_LOCATION"	/>

								<uses-permission	android:name="android.

										permission.ACCESS_COARSE_LOCATION"	/>

								<uses-permission	android:name="android.

										permission.INTERNET"	/>	

								<application	android:label="TrackMyWalks">	

								</application>	

								</manifest>		

In	the	preceding	code	snippet,	we	begin	by	adding	permissions	that	will	allow	our

TrackMyWalks	Android	app	to	access	location	information	for	location	updates,	as	well	as	the
Internet.	Google	is	pretty	strict	about	which	permissions	are	allowed,	and	these	must	be	approved
prior	to	your	app	being	accepted	into	the	Google	Play	Store.

Updating	the	WalkEntryViewModel	to	use	the	location	service
Now	that	we	have	created	our	WalkLocationService	for	both	our	Android	and	iOS
implementations,	we	need	to	begin	modifying	our	ViewModel,	which	will	be	used	by	our
WalkEntry	page,	to	take	advantage	of	our	Location	Service.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Ensure	that	the	WalkEntryViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections:

								//	

								//		WalkEntryViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	System.Diagnostics.Contracts;	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.Models;	

												using	TrackMyWalks.Services;	

												using	TrackMyWalks.ViewModels;	

												using	Xamarin.Forms;	

	

												namespace	TrackMyWalks.ViewModels	

												{	

																public	class	WalkEntryViewModel	:	WalkBaseViewModel	

																{	

2.	 Next,	we	declare	a	locationService	variable	that	will	be	used	to	provide	a	reference	to
our	IWalkLocationService	and	provide	our	class	with	a	reference	to	the	EventHandler,
which	is	contained	within	our	IWalkLocationService	interface	class;	this	will	contain	our
location	coordinate	information	whenever	the	location	changes.	To	proceed,	enter	the
following	highlighted	code	sections:

								IWalkLocationService	locationService;	

	

								string	_title;	

								public	string	Title	

								{	

												get	{	return	_title;	}	

												set	

												{	

																_title	=	value;	

																OnPropertyChanged();	

																SaveCommand.ChangeCanExecute();	

												}	

								}	

	

								string	_notes;	

								public	string	Notes	

								{	

												get	{	return	_notes;	}	

												set	

												{	

																_notes	=	value;	

																OnPropertyChanged();	

												}	

									}	

	

									double	_latitude;	

									public	double	Latitude	

									{	

													get	{	return	_latitude;	}	

													set	

													{	

																	_latitude	=	value;	

																	OnPropertyChanged();	

													}	

									}	

	

									double	_longitude;	

									public	double	Longitude	

									{	

													get	{	return	_longitude;	}	

													set	

													{	

																	_longitude	=	value;	

																	OnPropertyChanged();	

													}	

									}	

	

									double	_kilometers;	

									public	double	Kilometers	

									{	

													get	{	return	_kilometers;	}	

													set	

													{	

																	_kilometers	=	value;	

																	OnPropertyChanged();	

													}	

									}		

		

									string	_difficulty;	

									public	string	Difficulty	

									{	

													get	{	return	_difficulty;	}	

													set	

													{	

																	_difficulty	=	value;	

																	OnPropertyChanged();	

													}	

									}	

	

									double	_distance;	

									public	double	Distance	

									{	

													get	{	return	_distance;	}	

													set	

													{	

																	_distance	=	value;	

																	OnPropertyChanged();	

													}	

									}	

	

									string	_imageUrl;	

									public	string	ImageUrl	

									{	

													get	{	return	_imageUrl;	}	

													set	

													{	

																	_imageUrl	=	value;	

																	OnPropertyChanged();	

													}	

									}	

3.	 In	our	next	step,	we	will	need	to	modify	the	contents	of	our	WalksEntryViewModel	class
constructor	to	declare	and	initialize	our	locationService	variable,	which	will	include	our
IWalkLocationService	constructor	that	is	retrieved	from	the
Xamarin.FormsDependencyService	class.	We	then	proceed	to	call	the	MyLocation
method	on	our	EventHandler,	which	is	defined	within	the	IWalkLocationService
interface;	this	will	return	the	geographical	location	coordinates	defined	by	their	Latitude
and	Longitude	values.

4.	 Locate	the	WalksEntryViewModel	class	constructor	and	enter	the	following	highlighted
code	sections:

								public	WalkEntryViewModel(IWalkNavService	navService)	:

										base(navService)	

								{	

												Title	=	"New	Walk";	

												Difficulty	=	"Easy";	

												Distance	=	1.0;	

	

												//	Get	our	Location	Service

											locationService

=	DependencyService.Get<IWalkLocationService>();

												//	Check	to	ensure	that	we	have	a	value

	

												//	for	our	object

												if	(locationService	!=	null)

												{

																locationService.MyLocation	+=	(object	sender,

																		IWalkCoordinates	e)	=>

																{

																				//	Obtain	our	Latitude	and	Longitude	

																				//	coordinates

																				Latitude	=	e.latitude;

																				Longitude	=	e.longitude;

																};

												}

												//	Call	our	Service	to	get	our	GPS	location

												locationService.GetMyLocation();

								}	

								Command	_saveCommand;	

								public	Command	SaveCommand	

								{	

												get	

												{	

																return	_saveCommand	??	(

																	_saveCommand	=	new	Command(async	()	=>	

																await	ExecuteSaveCommand(),	ValidateFormDetails));	

												}	

								}	

	

								async	Task	ExecuteSaveCommand()	

								{	

												var	newWalkItem	=	new	WalkEntries	

												{	

																Title	=	this.Title,	

																Notes	=	this.Notes,	

																Latitude	=	this.Latitude,	

																Longitude	=	this.Longitude,	

																Kilometers	=	this.Kilometers,	

																Difficulty	=	this.Difficulty,	

																Distance	=	this.Distance,	

																ImageUrl	=	this.ImageUrl	

												};	

5.	 Then,	we	locate	and	modify	the	ExecuteSaveCommand	instance	method	to	free	the	memory
used	by	our	locationService	variable	when	the	Save	button	is	pressed.	This	is	achieved
by	setting	this	to	null,	which	in	turn	will	call	the	~GetMyLocation()	within	the	iOS	and
Android	class	de-constructor.	Proceed	to	enter	the	following	highlighted	code	sections:

												//	Upon	exiting	our	New	Walk	Entry	Page,	

												//	we	need	to	stop	checking	for	location	

												//	updates

													locationService	=	null;

												//	Here,	we	will	save	the	details	entered		

												//	in	a	later	chapter.	

												await	NavService.PreviousPage();	

									}	

	

									//	method	to	check	for	any	form	errors	

									bool	ValidateFormDetails()	

									{	

													return	!string.IsNullOrWhiteSpace(Title);	

									}	

	

										public	override	async	Task	Init()	

										{	

														await	Task.Factory.StartNew(()	=>	

														{	

																		Title	=	"New	Walk";	

																		Difficulty	=	"Easy";	

																		Distance	=	1.0;	

														});	

										}	

									}	

								}		

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalkEntryViewModel	so	that	it
can	take	advantage	of	our	WalkLocationService.

We	then	declared	a	locationService	variable	that	will	be	used	to	provide	a	reference	to	our
IWalkLocationService	and	provide	our	class	with	a	reference	to	the	EventHandler,	which	is
contained	within	our	IWalkLocationService	interface	class;	this	will	contain	our	location
coordinate	information	whenever	the	location	changes.

We	also	modified	our	WalkEntryViewModel	class	constructor	to	initialize	our
locationService	variable,	to	point	to	the	IWalkLocationService	constructor	that	is	retrieved
from	the	Xamarin.FormsDependencyService	class,	which	needs	to	be	done	prior	to	calling	the
MyLocation	method	on	our	EventHandler,	so	that	it	can	return	the	geographical	location
coordinates,	defined	by	their	Latitude	and	Longitude	values.

Finally,	we	set	our	locationService	object	to	null	to	stop	checking	for	location	updates.

Updating	the	DistanceTravelledViewModel	to	use	the	location
service
Now	that	we	have	modified	our	MVVM	ViewModel	for	our	WalkEntryViewModel,	our	next	step
is	to	begin	modifying	our	DistTravelledViewModel	to	take	advantage	of	our
WalkLocationService	class,	that	will	be	used	to	calculate	the	distance	travelled,	and	save	this
information	back	to	our	DistTravelledViewModel.

Let's	take	a	look	at	how	we	can	achieve	this	through	the	following	steps:

1.	 Ensure	that	the	DistTravelledViewModel.cs	file	is	displayed	within	the	code	editor.

								//	

								//		DistTravelledViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	DistTravelledViewModel	:		

														WalkBaseViewModel<WalkEntries>	

												{	

																WalkEntries	_walkEntry;	

2.	 Next,	we	declared	a	locationService	variable	that	will	be	used	to	provide	a	reference	to
our	IWalkLocationService	and	provide	our	class	with	a	reference	to	the	EventHandler,
which	is	contained	within	our	IWalkLocationService	interface	class;	this	will	contain	our
location	coordinate	information	whenever	the	location	changes.	To	proceed,	enter	the
following	highlighted	code	sections:

								IWalkLocationService	locationService;		

	

								public	WalkEntries	WalkEntry	

								{	

												get	{	return	_walkEntry;	}	

												set	

												{	

																_walkEntry	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_travelled;	

								public	double	Travelled	

								{	

												get	{	return	_travelled;	}	

												set	

												{	

																_travelled	=	value;	

																OnPropertyChanged();	

												}	

	

								}	

	

								double	_hours;	

								public	double	Hours	

								{	

												get	{	return	_hours;	}	

												set	

												{	

																_hours	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_minutes;	

								public	double	Minutes	

								{	

												get	{	return	_minutes;	}	

												set	

												{	

																_minutes	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								double	_seconds;	

								public	double	Seconds	

								{	

												get	{	return	_seconds;	}	

												set	

												{	

																_seconds	=	value;	

																OnPropertyChanged();	

												}	

								}	

	

								public	string	TimeTaken	

								{	

												get	

												{	

																return	string.Format("{0:00}:{1:00}:{2:00}",		

																this.Hours,	this.Minutes,	this.Seconds);	

												}	

								}	

3.	 Next,	we	need	to	modify	the	DistTravelledViewModel	class	constructor	to	declare	and
initialize	our	locationService	variable;	this	will	include	our	IWalkLocationService
constructor,	which	is	retrieved	from	the	Xamarin.FormsDependencyService	class.	We
then	proceed	to	call	the	MyLocation	method	on	our	EventHandler,	which	is	defined	within

the	IWalkLocationService	interface;	this	will	return	the	geographical	location
coordinates,	defined	by	their	Latitude	and	Longitude	values.

4.	 Locate	the	DistTravelledViewModel	class	constructor	and	enter	the	following	highlighted
code:

								public	DistTravelledViewModel(IWalkNavService	navService)	:		

								base(navService)	

								{	

												this.Hours	=	0;	

												this.Minutes	=	0;	

												this.Seconds	=	0;	

												this.Travelled	=	100;	

	

												locationService	=	DependencyService.Get

														<IWalkLocationService>();

												locationService.MyLocation	+=	(object	sender,

														IWalkCoordinates	e)	=>

												{

																//	Determine	Distance	Travelled

																if	(_walkEntry	!=	null)

																{

																				var	distance	=	locationService.GetDistanceTravelled(

																						_walkEntry.Latitude,	_walkEntry.Longitude);

																				this.Travelled	=	distance;

																}

												};

												locationService.GetMyLocation();		

									}	

5.	 Then,	we	create	the	Init	method	within	our	DistTravelledViewModel,	which	will	be
used	to	initialize	the	DistanceTravelled	when	it	is	called.	We	need	to	specify	and	use	the
Task.Factory.StartNew	method	to	give	the	ViewModel	enough	time	to	display	the	page
on	screen,	prior	to	initializing	the	ContentPage	contents	and	using	the	passed-in
walkDetails	for	our	model:

								public	override	async	Task	Init(WalkEntries	walkDetails)	

								{	

												await	Task.Factory.StartNew(()	=>	

												{	

																WalkEntry	=	walkDetails;	

												});	

								}	

6.	 Next,	we	need	to	create	the	BackToMainPage	command	property	that	will	be	used	to	bind	to
the	End	This	Trail	button,	which	will	run	an	action	upon	being	pressed.	This	action	will
execute	a	class	instance	method	to	determine	whether	the	command	can	be	executed.

7.	 If	the	command	can	be	executed,	a	call	will	be	made	to	the	BackToMainPage	method	on	the
NavService	navigation	service	class	to	take	the	user	back	to	the	TrackMyWalks	main	page;
this	is	done	by	removing	all	existing	ViewModels	within	the	NavigationStack,	except	the
first	page:

								Command	_mainPage;	

								public	Command	BackToMainPage	

								{	

												get	

												{	

														return	_mainPage	??	(_mainPage	=	new	Command(

																async	()	=>	await		

														NavService.BackToMainPage()));	

												}	

									}	

								}	

							}		

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	DistanceTravelledViewModel
so	that	it	can	take	advantage	of	our	WalkLocationService.	We	then	declared	a
locationService	variable	that	will	be	used	to	provide	a	reference	to	our
IWalkLocationService	and	provide	our	class	with	a	reference	to	the	EventHandler,	which	is
contained	within	our	IWalkLocationService	interface	class;	this	will	contain	our	location
coordinate	information	whenever	the	location	changes.

We	also	modified	our	DistTravelledViewModel	class	constructor	to	initialize	our
locationService	variable	to	point	to	the	IWalkLocationService	constructor	that	is	retrieved
from	the	Xamarin.Forms	DependencyService	class;	this	needs	to	be	done	prior	to	calling	the
MyLocation	method	on	our	EventHandler,	so	that	it	can	return	the	geographical	location
coordinates,	defined	by	their	Latitude	and	Longitude	values.

Updating	the	SplashPage	to	register	our	ViewModels
In	this	section,	we	need	to	update	our	SplashPage	to	register	our	ViewModels	for	our	Android
platform;	this	will	involve	creating	a	new	instance	of	the	navigation	service,	and	registering	the
application	ContentPage	and	ViewModel	mappings:

1.	 Ensure	that	the	SplashPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		SplashPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Services;

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks	

								{	

												public	class	SplashPage	:	ContentPage	

												{	

																public	SplashPage()	

																{	

																				AbsoluteLayout	splashLayout	=	new	AbsoluteLayout	

																				{	

																								HeightRequest	=	600	

																				};	

	

																				var	image	=	new	Image()	

																				{	

																								Source	=	ImageSource.FromFile("icon.png"),	

																								Aspect	=	Aspect.AspectFill,	

																				};	

																				AbsoluteLayout.SetLayoutFlags(image,

																						AbsoluteLayoutFlags.All);	

																				AbsoluteLayout.SetLayoutBounds(image,

																						new	Rectangle(0f,	0f,	1f,	1f));	

	

																				splashLayout.Children.Add(image);	

	

																				Content	=	new	StackLayout()	

																				{	

																								Children	=	{	splashLayout	}	

																				};	

																}	

2.	 Next,	locate	the	OnAppearing	method	and	enter	the	following	highlighted	code	sections:

								protected	override	async	void	OnAppearing()	

								{	

												base.OnAppearing();	

	

												//	Delay	for	a	few	seconds	on	the	splash	screen	

												await	Task.Delay(3000);	

	

												//	Instantiate	a	NavigationPage	with	the		

												//	MainPage	

												var	navPage	=	new	NavigationPage(new	WalksPage()	

												{	

																Title	=	"Track	My	Walks	-	Android"	

												});	

	

													navPage.BarBackgroundColor	=	Color.FromHex("#4C5678");

													navPage.BarTextColor	=	Color.White;

													//	Declare	our	DependencyService	Interface

													var	navService	=	DependencyService.Get<IWalkNavService>()

															as	WalkNavService;

													navService.navigation	=	navPage.Navigation;

													//	Register	our	View	Model	Mappings	between

			

													//	our	ViewModels	and	Views	(Pages).

navService.

																RegisterViewMapping(typeof(WalksPageViewModel),

																			typeof(WalksPage));

																		navService.RegisterViewMapping(

																		typeof(WalkEntryViewModel),

typeof(WalkEntryPage));

																		navService.RegisterViewMapping(

																		typeof(WalksTrailViewModel),	

typeof(WalkTrailPage));

																		navService.RegisterViewMapping(

																				typeof(DistTravelledViewModel)

,	

																						typeof(DistanceTravelledPage));

																		//	Set	the	MainPage	to	be	our	Walks	Navigation	Page

																		Application.Current.MainPage	=	navPage;	

														}	

											}	

									}		

In	the	preceding	code	snippet,	we	begin	by	customizing	our	NavigationBar,	by	setting	the
Background	and	TextColor	attributes,	and	then	declaring	a	variable	navService	that	points	to

an	instance	of	our	navigation	service	as	defined	by	our	assembly	attribute	for	our
Xamarin.FormsDependencyService,	which	is	declared	in	our	WalkNavService	class.

In	our	next	step,	we	set	the	navService.navigation	property	to	point	to	an	instance	of	the
NavigationPage	class	that	our	walksPage.navigation	property	currently	points	to,	and	this
will	be	used	as	the	main	root	page.

Finally,	we	call	the	RegisterViewMapping	instance	method	for	each	of	our	ViewModels	and
specify	the	associated	ContentPage	for	each.

Updating	the	MainActivity	class	to	use	Xamarin.Forms.Maps
In	this	section,	we	need	to	update	our	MainActivity	Class	to	integrate	with	the
Xamarin.Forms.Maps	package	for	our	Android	platform,	so	that	our	ViewModels	can	use	this	to
display	mapping	capabilities:

1.	 Open	the	MainActivity.cs	file	and	ensure	that	it	is	displayed	within	the	code	editor.
2.	 Next,	locate	the	OnCreate	method	and	enter	the	following	highlighted	code	sections:

								//	

								//		MainActivity.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Android.App;	

								using	Android.Content.PM;	

								using	Android.OS;	

	

								namespace	TrackMyWalks.Droid	

								{	

												[Activity(Label	=	"TrackMyWalks.Droid",

												Icon	=	"@drawable/icon",	Theme	=	"@style/MyTheme",

												MainLauncher	=	true,	ConfigurationChanges	=	

														ConfigChanges.ScreenSize	|

															ConfigChanges.Orientation)]	

												public	class	MainActivity	:

													

global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity	

												{	

																protected	override	void	OnCreate(Bundle	

savedInstanceState)	

																{	

																				TabLayoutResource	=	Resource.Layout.Tabbar;	

																				ToolbarResource	=	Resource.Layout.Toolbar;	

	

																				base.OnCreate(savedInstanceState);	

	

																				global::Xamarin.Forms.Forms.Init(this,

																						savedInstanceState);	

	

																				//	Integrate	Xamarin	Forms	Maps

																				Xamarin.FormsMaps.Init(this,	savedInstanceState);	

																				LoadApplication(new	App());	

																}	

												}	

								}		

In	the	preceding	code	snippet,	we	begin	by	initializing	our	MainActivity	class	to	use	the
Xamarin.Forms.Maps	library,	so	that	our	TrackMyWalks	solution	can	use	the	maps.	If	this	is
omitted	from	the	class,	the	DistanceTravelledPage	content	page	will	not	display	the	map,	and

therefore	will	not	work	as	expected.

Updating	the	Xamarin.Forms	App	class	to	use	platform	specifics
In	this	section,	we	need	to	update	our	Xamarin.Forms.App	class	by	modifying	the	constructor	in
the	main	App	class	to	set	the	MainPage	instance,	depending	on	the	TargetPlatform	that	our
device	is	running.	This	is	extremely	easy	when	using	Xamarin.Forms.

Let's	take	a	look	at	how	we	can	achieve	this	by	following	these	steps:

1.	 Open	the	TrackMyWalks.cs	file	and	ensure	that	it	is	displayed	within	the	code	editor.
2.	 Next,	locate	the	App	method	and	enter	the	following	highlighted	code	sections:

								//	

								//		TrackMyWalks.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.Services;

								using	TrackMyWalks.ViewModels;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks	

								{	

												public	class	App	:	Application	

												{	

																public	App()	

																{	

																				//	Check	the	Device	Target	OS	Platform	

																				if	(Device.OS	==	TargetPlatform.Android)	

																				{	

																								//	The	root	page	of	your	application		

																								MainPage	=	new	SplashPage();	

																				}	

																				else	if	(Device.OS	==	TargetPlatform.iOS)		

																				{	

																								//	The	root	page	of	your	application

																									var	walksPage	=	new	NavigationPage(new	

WalksPage()	

																								{	

																												Title	=	"Track	My	Walks	-	iOS"	

																								});	

	

																								//	Set	the	NavigationBar	TextColor	and		

																								//	Background	Color		

																									walksPage.BarBackgroundColor	=	

																											Color.FromHex("#440099");

																									walksPage.BarTextColor	=	Color.White;		

																								//	Declare	our	DependencyService	Interface		

																								var	navService	=	DependencyService.	

																										Get<IWalkNavService>()	as	WalkNavService;	

																								navService.navigation	=	walksPage.Navigation;	

	

																								//	Register	our	View	Model	Mappings		

																								//	between	our	ViewModels	and	Views	(Pages)		

																								navService.RegisterViewMapping(

																								typeof(WalksPageViewModel),	typeof(WalksPage));	

																								navService.RegisterViewMapping(

																								typeof(WalkEntryViewModel),	

typeof(WalkEntryPage));	

																								navService.RegisterViewMapping(

																								typeof(WalksTrailViewModel),	

																										typeof(WalkTrailPage));	

																								navService.RegisterViewMapping(typeof(

																								DistTravelledViewModel),

																										typeof(DistanceTravelledPage));	

	

																								//	Set	the	MainPage	to	be	our		

																								//	Walks	Navigation	Page		

																								MainPage	=	walksPage;	

																				}	

																}	

																protected	override	void	OnStart()	

																{	

																				//	Handle	when	your	app	starts	

																}	

	

																protected	override	void	OnSleep()	

																{	

																				//	Handle	when	your	app	sleeps	

																}	

	

																protected	override	void	OnResume()	

																{	

																				//	Handle	when	your	app	resumes	

																}	

												}	

								}		

In	the	preceding	code	snippet,	we	use	the	TargetPlatform	class	that	comes	as	part	of	the
Xamarin.Forms.Core	library,	and	we	check	this	against	the	Device.OS	class	and	handle	it
accordingly.

The	TargetPlatform	method	contains	a	number	platform	codes,	which	are	explained	along	with
their	descriptions	in	the	following	table:

Platform
name Description

Android This	indicates	that	the	Xamarin.Forms	platform	is	running	on	a	device	that	is
running	the	Android	operating	system.

iOS This	indicates	that	the	Xamarin.Forms	platform	is	running	on	a	device	that	is
running	the	Apple	iOS	operating	system.

Windows This	indicates	that	the	Xamarin.Forms	platform	is	running	on	a	device	that	is
running	the	Windows	platform.

WinPhone This	indicates	that	the	Xamarin.Forms	platform	is	running	on	a	device	that	is
running	the	Microsoft	WinPhone	OS.

Note

For	more	information	on	the	Device	class,	refer	to	the	Xamarin	documentation	at
https://developer.xamarin.com/guides/xamarin-forms/platform-features/device/	.

Now	that	we	have	updated	the	necessary	MVVM	ViewModels	to	take	advantage	of	our
WalkLocationService,	our	next	step	is	to	finally	build	and	run	the	TrackMyWalks	application
within	the	iOS	simulator.	When	compilation	completes,	the	iOS	simulator	will	appear
automatically	and	the	TrackMyWalks	application	will	be	displayed,	as	shown	in	the	following
screenshot:

https://developer.xamarin.com/guides/xamarin-forms/platform-features/device/

As	you	can	see	from	the	preceding	screenshot,	this	displays	our	current	list	of	walk	trail	entries,
which	are	displayed	within	our	ListView.	When	the	user	clicks	on	the	Add	Walk	button	link,	this
will	display	the	New	Walk	Entry	content	page,	and	will	display	the	current	user's	geolocation
coordinates	for	the	Latitude	and	Longitude		EntryCell	properties	contained	within	our
WalkEntryViewModel.	The	preceding	screenshot,	this	shows	the	distance	travelled	page	along
with	the	placeholder	pin	marker	showing	the	trail	location	within	the	map	View.	You	will	notice
that	the	Distance	Travelled	section	has	been	updated	and	shows	the	distance	travelled	by	the	user
that	is	calculated	by	the	GetDistanceTravelled	method	contained	within	our
IWalkLocationService	interface.

Summary
In	this	chapter,	we	updated	our	TrackMyWalks	application,	and	created	a	Location	Service
class	that	extended	the	default	native	core	Location	Services	classes	for	iOS	and	Android,	which
provides	us	with	a	better	method	of	capturing	geolocation	coordinates	within	the	ViewModel.

In	the	next	chapter,	you'll	learn	about	custom	renderers	and	how	you	can	use	them	to	change	the
appearance	of	the	control	elements	within	the	user	interface	that	target	a	specific	platform.

You	will	learn	how	to	work	with	DataTemplates	by	creating	a	C#	class	to	layout	your	views
beautifully	throughout	your	application,	and	work	with	the	platform-specific	APIs	to	extend	the
default	behavior	of	Xamarin.Forms	controls	through	the	use	of	custom	renderers,	by	creating	a
custom	picker	control	for	iOS.

We	will	also	be	covering	how	you	can	use	the	Xamarin.Forms	EffectsAPI	to	customize	the
appearance	and	styling	of	native	control	elements	for	each	platform,	by	implementing	a	custom
renderer	class,	and	manipulate	the	visual	appearance	of	data	that	is	bound,	through	the	use	of
Value	and	Image	Converters.

Chapter	5.	Customizing	the	User	Interface
In	our	previous	chapter,	we	looked	at	how	we	can	incorporate	platform-specific	features	within
the	TrackMyWalks	app,	which	is	dependent	on	the	mobile	platform.	You	learned	how	to	create	a
C#	class,	which	acted	as	a	location	service	that	included	a	number	of	class	methods	for	both	iOS
and	Android	platforms.

We	also	covered	how	to	properly	perform	location	updates	whether	the	application's	state	is	in
the	foreground	or	background	by	registering	the	app	as	a	background-necessary	application.

In	this	chapter,	you'll	learn	how	to	work	with	the	DataTemplateCustomRenderer	by	creating	a
C#	class	to	lay	out	your	views	beautifully	within	your	applications,	and	you	will	also	get
accustomed	to	working	with	platform-specific	APIs	to	extend	the	default	behavior	of
Xamarin.Forms'	controls	through	the	use	of	custom	renderers,	by	creating	a	custom	picker.

We	will	also	be	covering	how	to	use	the	Xamarin.Forms	Effects	API	to	customize	the
appearance	and	styling	of	native	control	elements	for	each	platform,	by	implementing	a
CustomRenderer	class.	We'll	look	at	how	to	manipulate	the	visual	appearance	of	data	that	is
bound,	through	the	use	of	value	and	image	converters.

This	chapter	will	cover	the	following	points:

Creating	a	custom	DataTemplate	class	which	utilizes	native	platform	capabilities,	that
come	as	part	of	the	iOS	and	Android	platforms
Working	with	custom	renderers	to	change	the	appearance	of	control	elements
Using	the	platform	Effects	API	to	change	the	appearance	of	control	elements
Working	with	Boolean	and	string	to	image	value	converters
Updating	the	walks	content	page	application	to	use	the	data	template
Updating	the	WalkEntry	content	page	to	use	the	CustomRenderer
Updating	the	DistanceTravelled	content	page	to	use	the	Effects	API

Creating	the	DataTemplate	class	for	the
TrackMyWalks	app
One	of	the	features	of	the	Xamarin.Forms	toolkit	is	the	ability	to	manipulate	the	user	interface	by
leveraging	the	various	platform-specific	APIs	that	are	available,	whether	it	be	manipulating	the
appearance	of	controls	and	their	elements	using	custom	renderers,	or	changing	the	appearance	and
styling	of	native	control	elements.

In	this	section,	we	will	be	working	with	the	Xamarin.Forms	data	templates,	which	will	provide
the	ability	to	define	the	presentation	of	data.	Let's	begin	by	creating	a	new	folder	called	Data
Templates,	within	our	TrackMyWalks	solution,	which	will	be	used	to	represent	our	Data
Templates,	by	following	these	steps:

1.	 Launch	the	Xamarin	Studio	application,	and	ensure	that	the	TrackMyWalks	solution	is
loaded	within	the	Xamarin	Studio	IDE.

2.	 Next,	create	a	new	folder,	within	the	TrackMyWalks	Portable	Class	Library	project,	called
Data	Templates	as	shown	in	the	following	screenshot:

3.	 Next,	create	an	empty	class	within	the	Data	Templates	folder.	If	you	can't	remember	how
to	do	this,	you	can	refer	to	the	section	entitled	Creating	the	Navigation	Service	Interface

for	the	TrackMyWalks	app,	within	Chapter	3	,	Navigating	within	the	MVVM	model	-	The
Xamarin.Forms	Way.

4.	 Then,	choose	the	Empty	Class	option	located	within	the	General	section,	and
enter	WalkCellDataTemplate	as	the	name	of	the	new	class	file,	as	shown	in	the	following
screenshot:

5.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	create	the	new	empty	class	file,	as
shown	in	the	preceding	screenshot.

6.	 Our	next	step	is	to	begin	creating	and	implementing	the	code	for	our
WalkCellDataTemplate	class;	perform	the	following	steps.

7.	 Ensure	that	the	WalkCellDataTemplate.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		WalkCellDataTemplate.cs	

								//		TrackMyWalks	DataTemplate	for	Cells	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.Converters;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.Controls	

								{	

												public	class	WalkCellDataTemplate	:	ViewCell	

												{	

																public	WalkCellDataTemplate()	

																{	

																				var	walkTrailImage	=	new	Image	

																				{	

																								WidthRequest	=	140,	

																								HeightRequest	=	140,	

																								HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																								VerticalOptions	=	LayoutOptions.FillAndExpand,	

																								Aspect	=	Aspect.Fill	

																				};	

																				walkTrailImage.SetBinding(Image.SourceProperty,

																						"ImageUrl");	

	

																				var	TrailNameLabel	=	new	Label()	

																				{	

																								FontAttributes	=	FontAttributes.Bold,	

																								FontSize	=	16,	

																								TextColor	=	Color.Black	

																				};	

	

																				TrailNameLabel.SetBinding(Label.TextProperty,

																						"Title");	

	

																				var	totalKilometersLabel	=	new	Label()	

																				{	

																								FontAttributes	=	FontAttributes.Bold,

																										FontSize	=	12,	

																								TextColor	=	Color.FromHex("#666")	

																				};	

																				totalKilometersLabel.SetBinding(Label.TextProperty,	

																						"Kilometers",	stringFormat:	"Kilometers:	{0}");	

	

																				var	trailDifficultyLabel	=	new	Label()	

																				{	

																								FontAttributes	=	FontAttributes.Bold,	

																										FontSize	=	12,	

																								TextColor	=	Color.Black	

																				};	

	

																				trailDifficultyLabel.SetBinding(Label.TextProperty,	

																						"Difficulty",	stringFormat:	"Difficulty:	{0}");	

	

																				var	trailDifficultyImage	=	new	Image	

																				{	

																								HeightRequest	=	50,	

																								WidthRequest	=	50,	

																								Aspect	=	Aspect.AspectFill,	

																								HorizontalOptions	=	LayoutOptions.Start

																				};	

	

																				trailDifficultyImage.SetBinding(Image.SourceProperty,

																						"Difficulty",	converter:	new	

TrailImageConverter());	

	

																				var	notesLabel	=	new	Label()	

																				{	

																								FontSize	=	12,	

																								TextColor	=	Color.Black	

																				};	

																				notesLabel.SetBinding(Label.TextProperty,	"Notes");	

	

																				var	notesStack	=	new	StackLayout()	

																				{	

																								Spacing	=	3,	

																								Orientation	=	StackOrientation.Vertical,

																										VerticalOptions	=	LayoutOptions.FillAndExpand,

																												Children	=	{	notesLabel	}	

																				};	

	

																				var	statusLayout	=	new	StackLayout	

																				{	

																								Orientation	=	StackOrientation.Vertical,	

																								Children	=	{	totalKilometersLabel,

																																					trailDifficultyLabel,	

																																					trailDifficultyImage		

																																			}	

																				};	

	

																				var	DetailsLayout	=	new	StackLayout	

																				{	

																								Padding	=	new	Thickness(10,	0,	0,	0),	

																								Spacing	=	0,	

																								HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																										Children	=	{	TrailNameLabel,	statusLayout,

																																							notesStack		

																																					}	

																				};	

	

																				var	cellLayout	=	new	StackLayout	

																			{	

																								Spacing	=	0,	

																								Padding	=	new	Thickness(10,	5,	10,	5),	

																								Orientation	=	StackOrientation.Horizontal,	

																								HorizontalOptions	=	LayoutOptions.FillAndExpand,	

																								Children	=	{	walkTrailImage,	DetailsLayout	}

																				};	

	

																				this.View	=	cellLayout;	

																}	

													}	

										}					

In	the	preceding	code	snippet,	we	began	by	ensuring	that	our	class	inherits	from	the
Xamarin.FormsViewCell	class	renderer,	and	is	essentially	a	cell	that	can	be	added	to	any
ListView	or	TableView	control	that	contains	a	defined	view.	When	working	with
Xamarin.Forms,	and	the	ViewCell	class,	every	cell	has	an	accompanying	renderer	that	is
associated	with	each	platform	that	creates	an	instance	of	a	native	control.	Whenever	a	ViewCell
class	is	rendered	under	the	iOS	platform,	the	ViewCellRenderer	class	will	instantiate	the	native
UITableViewCell	control.	Alternatively,	under	the	Android	platform,	the	ViewCellRenderer
class	instantiates	a	native	View	control.

Finally,	on	the	Windows	Phone	platform,	the	ViewCellRenderer	class	instantiates	a	native
DataTemplate	control.	Next,	we	create	the	cell	layout	information	using	the	StackLayout
control,	and	then	use	the	SetBinding	property	to	create	and	bind	each	of	our	model	values	to	a
specific	property.	Finally,	we	define	a	cellLayout	variable	that	uses	the	StackLayout	control,
to	add	each	of	our	child	elements	and	then	assign	the	resulting	cellLayout	to	the	class	View.

Note

If	you	are	interested	in	finding	out	more	information	about	DataTemplates,	please	refer	to	the
Xamarin	developer	documentation	located	at	https://developer.xamarin.com/guides/xamarin-
forms/templates/data-templates/.

Now	that	we	have	created	our	WalkCellDataTemplate,	the	next	step	is	to	modify	the	walks	main
page	so	that	it	can	make	use	of	this	class.

https://developer.xamarin.com/guides/xamarin-forms/templates/data-templates/

Updating	the	walks	main	page	to	use	the	data	template
In	the	previous	section,	we	created	the	class	for	our	WalkCellDataTemplate,	as	well	as	defining
the	layout	information	for	each	of	the	control	elements	that	we	would	like	to	have	displayed
within	our	View.

In	this	section,	we	will	take	a	look	at	how	to	implement	the	necessary	code	changes	so	that	the
WalksPageContentPage	can	take	advantage	of	our	WalkCellDataTemplate	class.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	the	steps:

1.	 Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections	as	shown	in	the	following	code	snippet:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.DataTemplates;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalksPage	:	ContentPage	

												{	

																WalksPageViewModel	_viewModel	

																{	

																				get	{	return	BindingContext	as	WalksPageViewModel;	}	

																}	

	

																public	WalksPage()	

																{	

																				var	newWalkItem	=	new	ToolbarItem	

																				{	

																								Text	=	"Add	Walk"	

																				};	

																				...	

																				...	

																				...	

	

																				//	Define	our	Data	Template	Class	

																				var	walksList	=	new	ListView	

																				{	

																								HasUnevenRows	=	true,	

																										ItemTemplate	=	new	DataTemplate(typeof(

	

																												WalkCellDataTemplate)),

	

																										SeparatorColor	=	(Device.OS

																												==	TargetPlatform.iOS)	?

												

														Color.Default	:	Color.Black	

																				};	

																				...	

																				...	

																				...	

														}	

										}	

In	the	preceding	code	snippet,	we	began	by	including	a	reference	to	our	DataTemplates	class,
via	the	using	statement.	Then	we	passed	in	the	WalkCellDataTemplate	data	template	to	the
DataTemplate	class	object,	which	will	be	assigned	to	the	ItemTemplate	property	of	the
ListView	class.	Next,	depending	on	the	operating	system	we	are	running	on,	we'll	set	the
separator	color	for	our	TableView.

As	you	can	see	from	the	preceding	screenshot,	this	will	show	you	a	list	of	our	current	walks	trail
entries,	which	are	nicely	rendered	using	the	DataTemplate,	and	displayed	within	the	ListView
control.

In	our	next	section,	you	will	see	how	we	can	go	about	creating	a	custom	picker	for	our
WalkEntry	content	page,	so	that	we	can	display	a	list	of	difficulty	choices	for	the	user	to	choose
from.

Creating	a	TableView	EntryCell	custom	picker
for	the	iOS	platform
Our	TrackMyWalks	app	uses	a	TableView	with	EntryCells	to	present	a	form	to	the	user	to	add
new	walk	entries	within	the	WalkEntryPage.	Currently,	the	difficulty	field	within	the	form	is
using	the	regular	EntryCell	control,	which	presents	the	user	with	an	editable	text	field	using	the
default	keyboard.

As	you	can	imagine,	this	is	not	the	ideal	user	experience	that	we	are	after,	as	this	can	cause	issues
when	it	comes	to	validating	the	information	entered.	Our	goal	is	to	present	the	user	with	a
standard,	custom	platform-specific	picker	that	contains	a	number	of	choices	the	user	can	choose
from.

In	this	section,	we	will	be	creating	a	custom	renderer	that	will	extend	the	EntryCellRenderer	to
display	an	EntryCell	that	will	behave	much	like	the	standard	picker	control.	Since	we	don't
want	our	picker	to	render	all	of	the	EntryCells	within	the	WalkEntryPage,	we	will	need	to
create	a	custom	EntryCell	control	that	the	custom	renderer	will	associated	with.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	the	steps:

1.	 Create	a	new	folder	within	the	TrackMyWalks	Portable	Class	Library	project,	called
Controls	and	then	create	an	empty	class	within	the	Controls	folder.

2.	 Next,	choose	the	Empty	Class	option	located	within	the	General	section,	and
enter	DifficultyPickerEntryCell	as	the	name	of	the	new	class	file	to	create.

3.	 Next,	once	you	have	created	the	DifficultyPickerEntryCell	class	file,	ensure	that	the
DifficultyPickerEntryCell.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	code	snippet:

								//	

								//		DifficultyPickerEntryCell.cs	

								//		TrackMyWalks	CustomRenderer	for	Difficulty	Entry	Cells	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.Controls	

								{	

4.	 Then,	we	need	to	modify	the	DifficultyPickerEntryCell	class	constructor	signature,	so
that	it	inherits	from	the	Xamarin.Forms.Entry	EntryCell	class,	since	the	WalkEntryPage
contains	a	number	of	EntryCell	controls:

								public	class	DifficultyPickerEntryCell	:	EntryCell		{	

5.	 Next,	we	need	to	create	a	string	BindableProperty	so	that	the	custom	control	can	be	data-

bound	just	like	our	other	controls:

								public	static	readonly	BindableProperty	DifficultyProperty	=	

								BindableProperty.Create<DifficultyPickerEntryCell,		

								String>(p	=>	p.Difficulty,	"Easy",	propertyChanged:		

								new	BindableProperty.BindingPropertyChangedDelegate<String>	

								(DifficultyPropertyChanged));	

6.	 Then,	we	create	a	Difficulty	property	so	that,	when	the	values	changes	within	the	custom
control,	it	can	return	the	value	back	to	our	EntryCell:

								public	String	Difficulty	

								{	

												get	{	return	(String)GetValue(DifficultyProperty);	}	

												set	{	SetValue(DifficultyProperty,	value);	}	

								}	

7.	 Next,	we	create	a	CompletedEventHandler	that	will	be	used	in	relation	to	the
DifficultyPropertyChanged	event,	so	we	can	respond	to	the	Completed	events	on	our
DifficultyPickerEntryCell:

								public	new	event	EventHandler	Completed;	

	

								static	void	DifficultyPropertyChanged(BindableObject	bindable,

										String	oldValue,	String	newValue)	

									{	

												var	@this	=	(DifficultyPickerEntryCell)bindable;	

	

												if	(@this.Completed	!=	null)	

																@this.Completed(bindable,	new	EventArgs());	

									}	

								}	

							}	

Now	that	we	have	created	the	DifficultyPickerEntryCell	class	for	the	iOS	portion	of	our
TrackMyWalks	app,	our	next	step	is	to	create	the	custom	picker	renderer	for	the	iOS	platform,
which	we	will	be	covering	in	the	next	section.

Creating	the	custom	picker	renderer	class	for	the
iOS	platform
In	the	previous	section,	we	created	a	class	for	the	DifficultyPickerEntryCell,	as	well	as
defining	a	number	of	different	data-bindable	property	methods	that	will	be	used	to	handle	the	user
choosing	an	item	within	our	custom	picker.

In	this	section,	we	will	build	the	custom	picker	renderer	model	that	will	be	used	by	the	iOS
portion	of	the	DifficultyPickerEntryCell.	Let's	take	a	look	at	how	we	can	achieve	this,	by
following	these	steps:

1.	 Create	a	new	folder	within	the	TrackMyWalks.iOS	project,	called	Renderers.
2.	 Next,	create	an	empty	class	within	the	Renderers	folder	for	our	TrackMyWalks.iOS

project,	and	enter	DifficultyPickerModel	as	the	name	of	the	new	class	file	to	create.
3.	 Then,	ensure	that	the	DifficultyPickerModel.cs	file	is	displayed	within	the	code	editor,

and	enter	in	the	following	code	snippet:

								//	

								//		DifficultyPickerModel.cs	

								//		TrackMyWalks	Level	Model	for	UIPickerViewModel	(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	UIKit;	

	

								namespace	TrackMyWalks.iOS.Renderers	

								{	

4.	 Next,	we	need	to	modify	the	DifficultyPickerModel	class	constructor	signature,	so	that	it
inherits	from	the	UIPickerViewModel	interface	class,	as	well	as	declaring	our
difficultyString	object	which	contains	a	valid	list	of	choices	for	the	user	to	choose
from:

								//	Declare	our	Difficulty	Picker	Model	Class	

								public	class	DifficultyPickerModel	:	UIPickerViewModel	

								{	

								//	Define	our	list	of	difficulty	levels	

								static	public	string[]	difficulty	=	new	string[]		

								{	

												"Easy",	

												"Moderate",	

												"Challenging",	

												"Difficult",	

												"Very	Difficult",	

												"Extreme"		

								};	

5.	 Then,	we	need	to	create	the	GetComponentCount	method,	which	accepts	a	pickerView

object	that	tells	the	UIPickerView	how	many	components	we	are	expecting	our	custom
picker	to	contain:

								public	override	nint	GetComponentCount(UIPickerView	pickerView)	

								{	

												return	1;	

								}	

6.	 Next,	we	need	to	create	the	GetRowsInComponent	method	that	accepts	a	pickerView	object
and	a	component	value.	This	method	works	out	how	many	rows	to	display	within	our
UIPickerView	custom	control,	which	is	derived	from	the	difficulty	string	array.	The
component	parameter	determines	which	section	to	display	those	values	in:

								public	override	nint	GetRowsInComponent(UIPickerView	pickerView,

										nint	component)	

								{	

												return	difficulty.Length;	

								}	

7.	 Finally,	we	need	to	create	the	GetTitle	method,	which	accepts	a	pickerView	object,	a	row
parameter,	and	a	component	value.	This	method	is	used	to	display	the	title	information	for
each	row	contained	within	our	difficulty	array:

										public	override	string	GetTitle(UIPickerView	pickerView,	

												nint	row,	nint	component)	

										{	

														return	difficulty[row];	

										}	

									}	

								}	

Up	until	this	point,	all	we	have	done	is	create	our	model	for	our	DifficultyPicker,	which	acts
as	the	base	model	needed	by	our	DifficultyPickerCellRenderer	class.	Our	next	step	is	to
create	the	DifficultyPickerCellRenderer	that	will	use	the	model	for	the	iOS	platform	to
display	a	custom	list	of	entries	for	the	user	to	choose	from.

1.	 Create	an	empty	class	within	the	Renderers	folder	for	the	TrackMyWalks.iOS	project,	and
enter	in	DifficultyPickerCellRenderer	as	the	name	of	the	new	class	file	to	create.

2.	 Next,	ensure	that	the	DifficultyPickerCellRenderer.cs	file	is	displayed	within	the
code	editor,	and	enter	the	following	code	snippet:

								//	

								//		DifficultyPickerCellRenderer.cs	

								//		TrackMyWalks	CustomRenderer	for	UIPickerView	Entry	Cells	

(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms.Platform.iOS;	

								using	UIKit;	

								using	TrackMyWalks.Controls;	

								using	Xamarin.Forms;	

								using	TrackMyWalks.iOS.Renderers;	

3.	 Then,	we	need	to	initialize	our	DifficultyCellRenderer	class	to	be	marked	as	an
ExportRenderer	by	including	the	ExportRenderer	assembly	attribute	at	the	top	of	our
class	definition.	This	lets	our	class	know	that	it	inherits	from	the	ViewRenderer	class:

								[assembly:	ExportRenderer(typeof(DifficultyPickerEntryCell),

								typeof(DifficultyPickerCellRenderer))]	

								namespace	TrackMyWalks.iOS.Renderers	

								{	

4.	 Next,	we	need	to	modify	the	DifficultyCellRenderer	class	constructor	signature,	so	that
it	can	inherit	from	the	EntryCellRenderer	class:

								public	class	DifficultyPickerCellRenderer	:	EntryCellRenderer	

								{	

5.	 Then,	we	need	to	override	the	EntryCellRendererGetCell	method	so	that	it	can	override
the	default	behavior	of	the	EntryCell	for	iOS	by	setting	the	InputView	of	the	UITextField
to	a	UIPickerView	class	instance:

								public	override	UITableViewCell	GetCell(Cell	item,	

										UITableViewCell	reusableCell,	UITableView	tv)	

								{	

												var	cell	=	base.GetCell(item,	reusableCell,	tv);	

												var	entryPickerCell	=	(EntryCell)item;	

	

												UITextField	textField	=	null;	

	

												if	(cell	!=	null)	

															textField	=	(UITextField)cell.ContentView.Subviews[0];	

6.	 Next,	we	create	an	instance	to	our	iOS	UIPickerView	native	control,	that	points	to	the
DifficultyPickerModel;	and	then	we	create	a	toolbar	that	will	contain	a	Done	button	and
will	provide	us	with	a	mechanism	to	update	the	EntryCellUITextField	with	the	chosen
value	from	the	difficultyPicker	object.	Then	dismiss	the	custom	picker	control:

								//	Create	our	iOS	UIPickerView	Native	Control	

											var	difficultyPicker	=	new	UIPickerView	

										{	

														AutoresizingMask	=	UIViewAutoresizing.FlexibleWidth,	

														ShowSelectionIndicator	=	true,	

														Model	=	new	DifficultyPickerModel(),	

														BackgroundColor	=	UIColor.White,	

										};	

	

										//	Create	a	toolbar	with	a	done	button	that	will		

										//	set	the	selected	value	when	closed.	

										var	done	=	new	UIBarButtonItem("Done",	

												UIBarButtonItemStyle.Done,	(s,	e)	=>	

										{	

														//	Update	the	value	of	the	UITextField	within		

														//	the	Cell.	

														if	(textField	!=	null)	

														{	

																		textField.Text	=	DifficultyPickerModel.difficulty	

																		[difficultyPicker.SelectedRowInComponent(0)];	

																		textField.ResignFirstResponder();	

														}	

										});	

	

										var	toolbar	=	new	UIToolbar	

										{	

														BarStyle	=	UIBarStyle.BlackTranslucent,		

														Translucent	=	true	

										};	

	

										toolbar.SizeToFit();	

										toolbar.SetItems(new[]	{	done	},	true);	

7.	 Then,	we	set	the	input	view	and	toolbar	and	an	initial	default	value	for	the	EntryCell's
TextField	if	nothing	has	been	chosen.	This	is	done	by	setting	the	InputView	of	the
UITextField	to	a	UIPickerView	class	instance:

								//	Set	the	input	view,	toolbar	and	initial	value		

								//	for	the	Cell's	UITextField.	

								if	(textField	!=	null)	

								{	

												textField.InputView	=	difficultyPicker;	

												textField.InputAccessoryView	=	toolbar;	

												textField.Font	=	UIFont.FromName("Courier",	16);	

												textField.BorderStyle	=	UITextBorderStyle.Bezel;	

												textField.TextColor	=	UIColor.Red;	

8.	 Finally,	if	we	have	selected	a	difficulty	value	from	our	UIPickerView	control,	we	first	need
to	ensure	that	we	have	chosen	a	value,	and	then	assign	this	value	to	the
DifficultyEntryCell	field	within	the	entry	form:

												if	(entryPickerCell	!=	null)	

												{	

																textField.Text	=	DifficultyPickerModel.difficulty	

																[difficultyPicker.SelectedRowInComponent(0)];	

												}	

												}	

												return	cell;	

										}	

									}	

								}	

Note

If	you	are	interested	in	finding	out	more	information	about	the	UIPickerView	class,	please	refer
to	the	Xamarin	developer	documentation	at
https://developer.xamarin.com/api/type/MonoTouch.UIKit.UIPickerView/	.

Now	that	we	have	created	the	DifficultyPickerCellRenderer	class	for	the	iOS	portion	of	our
TrackMyWalks	app,	our	next	step	is	to	implement	this	within	the	WalkEntry	content	page.

https://developer.xamarin.com/api/type/MonoTouch.UIKit.UIPickerView/

Updating	the	WalksEntryPage	to	use	the	custom	picker	renderer
In	the	previous	section,	we	created	the	class	for	our	DifficultyPickerCellRenderer,	as	well
as	defining	the	various	methods	that	will	handle	the	display	of	the	UIPickerView	control	when	an
EntryCell	within	the	ViewModel	has	been	tapped.

In	this	section,	we	will	take	a	look	at	how	to	implement	the	code	changes	required	so	that	the
WalkEntryPage	content	page	can	take	advantage	of	the	DifficultyPickerCellRenderer	class.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

Ensure	that	the	WalkEntryPage.cs	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections	as	shown	in	the	following	code	snippet:

								//	

								//		WalkEntryPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.Controls;	

				

								namespace	TrackMyWalks	

								{	

	

												public	class	WalkEntryPage	:	ContentPage	

												{	

																WalkEntryViewModel	_viewModel	

																{	

																				get	{	return	BindingContext	as	WalkEntryViewModel;	}	

																}	

	

																public	WalkEntryPage()	

																{	

																				//	Set	the	Content	Page	Title		

																				Title	=	"New	Walk	Entry";	

	

																				//	Declare	and	initialize	our	Model	Binding	Context	

																				BindingContext	=	new	WalkEntryViewModel

																						(DependencyService	

																				.Get<IWalkNavService>());	

																				...	

																				...	

																				...	

																				var	walkDifficulty	=	new	DifficultyPickerEntryCell

																				{

																								Label	=	"Difficulty	Level:",

																								Placeholder	=	"Walk	Difficulty"

																					};

																				walkDifficulty.SetBinding(

																						DifficultyPickerEntryCell.DifficultyProperty,

																								"Difficulty",	BindingMode.TwoWay);	

																				...	

																				...	

																				...	

																}	

												}	

								}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalkEntryPage	to	take
advantage	of	the	DifficultyPickerEntryCell	class	custom	renderer.	We	looked	at	updating	the
walkDifficulty	object	variable,	to	reference	the	DifficultyPickerEntryCell	class,	and
updated	the	setBinding	to	return	the	value	from	the	DifficultyProperty	that	is	implemented
within	the	DifficultyPickerEntryCell	class.

As	you	can	see	from	the	preceding	screenshot,	this	shows	our	custom	UIPickerView	control,
populated	with	the	entries	from	the	DifficultyPickerModel,	as	well	as	the	Done	button
displayed	as	the	header.	Scrolling	through	the	list	of	choices	operates	in	the	same	way	as	you
would	expect	under	iOS;	clicking	on	the	Done	button	will	populate	the	Difficulty	Level	
UITextField	with	the	highlighted	choice	within	the	UIPickerView	control.

In	our	next	section,	we	will	focus	on	how	we	can	use	the	Xamarin.Forms	Effects	API	to
customize	the	appearance	and	styling	of	native	control	elements	for	both	the	iOS	and	Android
platforms	by	implementing	a	custom	renderer	class.	You	will	notice	that	the	implementations	for
both	of	these	classes	are	quite	similar.	However,	these	implement	different	methods,	as	you	will
see	once	we	start	implementing	them.

Creating	PlatformEffects	using	the	Effects	API
for	the	iOS	platform
In	this	section,	we	will	build	the	iOS	portion	of	our	PlatformEffects,	which	will	allow	us	to
customize	the	appearance	of	the	Xamarin.Forms	control	elements.	We	will	be	creating	two
completely	different	platform	effects-LabelShadow	and	ButtonShadow,	for	both	the	iOS	and
Android	platforms.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	these	steps:

1.	 Create	a	new	folder	within	the	TrackMyWalks.iOS	project,	called	PlatformEffects.
2.	 Next,	create	an	empty	class	within	the	PlatformEffects	folder	for	our	TrackMyWalks.iOS

project.
3.	 Then,	enter	ButtonShadowEffect	as	the	name	of	the	new	class	file	to	create,	ensure	that	the

ButtonShadowEffect.cs	file	is	displayed	within	the	code	editor,	and	enter	the	following
code	snippet:

								//	

								//		ButtonShadowEffect.cs	

								//		TrackMyWalks	Button	Shadow	Effect	(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.iOS.PlatformEffects;	

								using	UIKit;	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Platform.iOS;	

4.	 Next,	we	initialize	the	ButtonShadowEffect	class	assembly	to	be	marked	with	two
important	attributes	for	our	class	so	that	it	can	be	used	as	an	effect	within	the	TrackMyWalks
application:

								[assembly:	ResolutionGroupName("com.geniesoftstudios")]	

								[assembly:	ExportEffect(typeof(ButtonShadowEffect),

										"ButtonShadowEffect")]	

								namespace	TrackMyWalks.iOS.PlatformEffects	

								{	

5.	 Then,	we	need	to	modify	our	ButtonShadowEffect	class	constructor	so	that	it	can	inherit
from	the	PlatformEffect	class	and	access	each	of	the	platform-specific	implementations	of
the	PlatformEffect	class:

								public	class	ButtonShadowEffect	:	PlatformEffect	

								{	

6.	 Next,	we	create	the	OnAttached	method	that	will	be	called	whenever	an	affect	is	attached	to
a	Xamarin.Forms	control	and	then	use	the	Container	property	to	reference	the	platform-
specific	control	that	is	used	to	implement	the	layout:

								protected	override	void	OnAttached()	

								{	

												Container.Layer.ShadowOpacity	=	0.5f;	

												Container.Layer.ShadowColor	=	UIColor.Black.CGColor;	

												Container.Layer.ShadowRadius	=	2;	

								}	

7.	 Then,	we	create	the	OnDetached	method,	which	will	be	called	whenever	an	effect	is
detached	from	a	Xamarin.Forms	control	to	perform	any	effect	clean-up.	Here,	in	this
method,	we	set	the	ShadowOpacity	of	the	Container	property	to	zero:

								protected	override	void	OnDetached()	

								{	

												Container.Layer.ShadowOpacity	=	0;	

								}	

							}	

						}		

Each	platform-specific	PlatformEffect	class	exposes	a	number	of	properties	and	these	are
explained	in	the	following	table:

Platform
effect Description

Container
This	particular	type	references	the	platform-specific	control	that	is	being	used	to
implement	the	layout.

Control
This	type	references	the	platform-specific	control	that	is	being	used	to	implement
the	Xamarin.Forms	control.

Element This	type	references	the	Xamarin.Forms	control	that	is	currently	being	rendered.

Whenever	you	create	your	own	PlatformEffects,	these	inherit	from	the	PlatformEffect	class,
which	is	dependent	on	the	platform	that	is	being	run.	However,	the	API	for	an	effect	is	pretty
much	identical	across	each	of	the	platforms	as	they	derive	from	the	PlatformEffect<T,	T>	and
contain	different	generic	parameters.	There	are	also	two	very	important	attributes	that	you	need	to
set	for	each	class	that	subclasses	from	the	PlatformEffect	class,	and	these	are	explained	in	the
following	table:

Attribute	type Description

ResolutionGroupName

This	attribute	sets	a	company-wide	namespace	for	effects,	preventing
collisions	with	other	effects	with	the	same	name.	It	is	worth	mentioning

that,	if	you	create	multiple	PlatformEffects,	you	can	only	apply	this
attribute	once	per	project.

ExportEffect

This	attribute	registers	the	effect	using	a	unique	ID	and	is	used	by	the
Xamarin.Forms	platform	along	with	the	group	name.	The	attribute
takes	two	parameters:	the	type	name	of	the	effect,	and	a	unique	string
that	will	be	used	to	locate	the	effect	prior	to	applying	it	to	a	control.

Note

If	you	are	interested	in	finding	out	more	information	about	the	PlatFormEffect	class,	please
refer	to	the	Xamarin	developer	documentation	at	https://developer.xamarin.com/guides/xamarin-
forms/effects/	.

Now	that	we	have	created	the	ButtonShadowEffect	class,	our	next	step	is	to	create	the
LabelShadowEffect	for	the	iOS	portion	of	our	TrackMyWalks	app:

1.	 Next,	create	an	empty	class	within	the	PlatformEffects	folder	for	the	TrackMyWalks.iOS
project	and	enter	LabelShadowEffect	as	the	name	of	the	new	class	file	to	create.

2.	 Then,	ensure	that	the	LabelShadowEffect.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		LabelShadowEffect.cs	

								//		TrackMyWalks	Label	Shadow	Effect	(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	CoreGraphics;	

								using	TrackMyWalks.iOS.PlatformEffects;	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Platform.iOS;		

3.	 Next,	we	initialize	the	LabelShadowEffect	class	assembly	to	be	marked	with	the
ExportEffect	attribute	so	that	it	can	be	used	as	an	effect	within	the	TrackMyWalks
application:

								[assembly:	ExportEffect(typeof(LabelShadowEffect),

										"LabelShadowEffect")]	

								namespace	TrackMyWalks.iOS.PlatformEffects	

								{	

4.	 Then,	we	need	to	modify	the	LabelShadowEffect	class	constructor	so	that	it	can	inherit
from	the	PlatformEffect	class,	and	access	each	of	the	platform-specific	implementations
of	the	PlatformEffect	class:

								public	class	LabelShadowEffect	:	PlatformEffect		{	

https://developer.xamarin.com/guides/xamarin-forms/effects/

5.	 Next,	we	create	the	OnAttached	method	that	will	be	called	whenever	an	affect	is	attached	to
a	Xamarin.Forms	control	and	then	use	the	Control	property	to	reference	the	platform-
specific	control	that	will	be	used	to	change	the	appearance	of	the	control.

								protected	override	void	OnAttached()	

								{	

												try	

												{	

																Control.Layer.CornerRadius	=	5;	

																Control.Layer.ShadowColor	=	Device.OnPlatform(

																Color.Black,	Color.White,	Color.Black).ToCGColor();	

																Control.Layer.ShadowOffset	=	new	CGSize(4,	4);	

																Control.Layer.ShadowOpacity	=	0.5f;	

												}	

												catch	(Exception	ex)	

												{	

																Console.WriteLine("Cannot	set	property	on	attached

																		control.Error:	",	ex.Message);	

												}	

								}		

6.	 Then,	we	create	the	OnDetached	method,	which	will	be	called	whenever	an	effect	is
detached	from	a	Xamarin.Forms	control	to	perform	any	effect	cleanup.	Here,	in	this	method,
we	don't	need	to	do	anything,	but	we	still	need	to	implement	this	to	conform	with	the
PlatformEffect	class	protocol	implementations:

								protected	override	void	OnDetached()	

								{	

								}	

						}	

					}	

Now	that	we	have	created	the	PlatformEffects	for	the	iOS	platform,	we	need	to	implement	the
same	PlatformEffects	for	the	Android	platform,	which	we	will	be	covering	in	the	next	section.

Creating	PlatformEffects	using	the	Effects	API
for	the	Android	platform
In	this	section,	we	will	build	the	Android	portion	of	our	PlatformEffects	that	will	allow	us	to
customize	the	appearance	of	Xamarin.Forms	control	elements	just	like	we	did	for	the	iOS
portion,	and	we	will	be	implementing	the	same	PlatformEffects--LabelShadow	and
ButtonShadow	to	show	you	how	these	implementations	differ	on	each	platform,	even	though	the
resulting	rendering	is	the	same.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	the	steps:

1.	 Create	a	new	folder	within	the	TrackMyWalks.Droid	project,	called	PlatformEffects.
2.	 Next,	create	an	empty	class	within	the	PlatformEffects	folder	for	our

TrackMyWalks.Droid	project.
3.	 Then,	enter	ButtonShadowEffect	as	the	name	of	the	new	class	file	to	create,	ensure	that	the

ButtonShadowEffect.cs	file	is	displayed	within	the	code	editor,	and	enter	the	following
code	snippet:

								//	

								//		ButtonShadowEffect.cs	

								//		TrackMyWalks	Button	Shadow	Effect	(Droid)	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.Droid.PlatformEffects;	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Platform.Android;	

								using	System;	

4.	 Next,	we	initialize	the	ButtonShadowEffect	class	assembly	to	be	marked	with	the	same
two	attributes	for	our	class,	just	like	we	did	for	the	iOS	portion,	so	that	it	can	be	used	as	an
effect	within	the	TrackMyWalks	application:

								[assembly:	ResolutionGroupName("com.geniesoftstudios")]	

								[assembly:	ExportEffect(typeof(ButtonShadowEffect),

										"ButtonShadowEffect")]	

								namespace	TrackMyWalks.Droid.PlatformEffects	

								{	

5.	 Then,	we	need	to	modify	the	ButtonShadowEffect	class	constructor	so	that	it	can	inherit
from	the	PlatformEffect	class,	and	access	each	of	the	platform-specific	implementations
of	the	PlatformEffect	class:

								public	class	ButtonShadowEffect	:	PlatformEffect	

								{	

6.	 Next,	we	create	the	OnAttached	method	that	will	be	called	whenever	an	affect	is	attached	to
a	Xamarin.Forms	control	and	then	use	the	Control	property	to	reference	the	platform-
specific	control	that	will	be	used	to	change	the	appearance	of	the	control.	Under	Android	we

need	to	create	a	control	object	and	convert	the	Button	into	a	Control	object,	and	then
apply	the	customizations	to	the	Control.	We	wrap	this	within	a	try...catch()	block,	to
catch	any	errors	that	may	occur	if,	for	some	reason,	we	can't	apply	the	color	or
shadowLayer	for	our	control:

								protected	override	void	OnAttached()	

								{	

												try	

												{	

																var	control	=	Control	as	Android.Widget.Button;	

																Android.Graphics.Color	color	=		

																Android.Graphics.Color.Red;	

																control.SetShadowLayer(12,	4,	4,	color);	

												}	

												catch	(Exception	ex)	

												{	

																Console.WriteLine("Cannot	set	property	on	attached		

																control.	Error:	",	ex.Message);	

												}	

										}	

7.	 Then,	we	create	the	OnDetached	method,	which	will	be	called	whenever	an	effect	is
detached	from	a	Xamarin.Forms	control	to	perform	any	effect	cleanup.	Here	in	this	method,
we	don't	need	to	do	anything,	but	we	still	need	to	implement	this	to	conform	with	the
PlatformEffect	class	protocol	implementations:

								protected	override	void	OnDetached()	

								{	

												throw	new	NotImplementedException();	

								}	

							}	

						}	

Now	that	we	have	created	the	ButtonShadowEffect	class,	our	next	step	is	to	create	the
LabelShadowEffect	for	the	Android	portion	of	our	TrackMyWalks	app:

1.	 Next,	create	an	empty	class	within	the	PlatformEffects	folder	for	the
TrackMyWalks.Droid	project	and	enter	LabelShadowEffect	as	the	name	of	the	new	class
file	to	create.

2.	 Then,	ensure	that	the	LabelShadowEffect.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		LabelShadowEffect.cs	

								//		TrackMyWalks	Label	Shadow	Effect	(Droid)	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	TrackMyWalks.Droid.PlatformEffects;	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Platform.Android;	

3.	 Next,	we	initialize	our	LabelShadowEffect	class	assembly	to	be	marked	with	the
ExportEffect	attribute	so	that	it	can	be	used	as	an	effect	within	the	TrackMyWalks
application:

								[assembly:	ExportEffect(typeof(LabelShadowEffect),

										"LabelShadowEffect")]	

								namespace	TrackMyWalks.Droid.PlatformEffects	

								{	

4.	 Then,	we	need	to	modify	the	LabelShadowEffect	class	constructor	so	that	it	can	inherit
from	the	PlatformEffect	class,	and	access	each	of	the	platform-specific	implementations
of	the	PlatformEffect	class:

								public	class	LabelShadowEffect	:	PlatformEffect	

								{	

5.	 Next,	we	create	the	OnAttached	method	that	will	be	called	whenever	an	affect	is	attached	to
a	Xamarin.Forms	control	and	then	use	the	Control	property	to	reference	the	platform-
specific	control	that	will	be	used	to	change	the	appearance	of	the	control.	In	Android	we
need	to	create	a	control	object,	convert	the	TextView	into	a	Control	object,	and	then
apply	the	customizations	to	the	Control.	We	wrap	this	within	a	try...catch()	block,	to
catch	any	errors	that	may	occur	if,	for	some	reason,	we	can't	apply	the	color	or
shadowLayer	for	our	control:

								protected	override	void	OnAttached()	

								{	

												try	

												{	

																var	control	=	Control	as	Android.Widget.TextView;	

																float	radius	=	5;	

																float	distanceX	=	4;	

																float	distanceY	=	4;	

																Android.Graphics.Color	color	=	Device.OnPlatform(

																Color.Black,	Color.White,	Color.Black).ToAndroid();	

																control.SetShadowLayer(

																		radius,	distanceX,	distanceY,	color);	

													}	

												catch	(Exception	ex)	

												{	

																Console.WriteLine("Cannot	set	property	on	attached	

control.

																		Error:	",	ex.Message);	

												}	

								}	

6.	 Then,	we	create	the	OnDetached	method	that	will	be	called	whenever	an	effect	is	detached
from	a	Xamarin.Forms	control	to	perform	any	effect	cleanup	in	this	method.	As	what	we	did
in	the	iOS	implementation,	we	don't	need	to	do	anything,	but	we	still	need	to	implement	this
to	conform	with	the	PlatformEffect	class	protocol	implementations:

									protected	override	void	OnDetached()	

									{	

									}	

								}	

							}	

Now	that	we	have	created	PlatformEffects	for	both	the	iOS	and	Android	implementations,	our
next	step	is	to	begin	creating	two	value	converters	that	will	be	used	by	our	application,	before	we
can	start	modifying	the	content	pages,	and	this	will	be	covered	in	the	next	section.

Implementing	value	converters	within	the
TrackMyWalks	app
As	mentioned	in	the	previous	section,	value	converters	form	an	important	concept	in	data	binding
as	they	allow	you	to	customize	the	appearance	of	a	data	property	at	the	time	it	is	bound.	This
process	is	quite	similar	to	WPF	(Windows	Presentation	Foundation)	on	the	Windows
application	development	platform.	Xamarin.Forms	provides	you	with	a	number	of	value
converter	interfaces	as	part	of	its	API.

Value	converters	are	extremely	helpful	when	working	with	the	Xamarin.Forms	platform,	as	they
allow	you	to	toggle	the	visibility	of	elements,	based	on	a	Boolean	property.

In	this	section,	we	will	create	a	BooleanConverter	that	we	will	use	to	hide	controls	until	the
ViewModel	has	completely	finished	loading.	We	will	also	create	a	converter	that	converts	a
string	value	into	a	URL	property	that	will	be	used	to	display	an	image	for	our	difficulty	rating.

Let's	take	a	look	at	how	we	can	achieve	this,	by	following	the	steps:

1.	 Create	a	new	folder,	within	the	TrackMyWalks	Portable	Class	Library	project,	called
ValueConverters	and	then	create	an	empty	class	within	the	ValueConverters	folder.

2.	 Next,	choose	the	Empty	Class	option	located	within	the	General	section,	and
enter	BooleanConverter	as	the	name	of	the	new	class	file	to	create.

3.	 Next,	ensure	that	the	BooleanConverter.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		BooleanConverter.cs	

								//		TrackMyWalks	ValueConverter	for	converting	Boolean	values	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ValueConverters	

								{	

4.	 Then,	we	need	to	modify	the	BooleanConverter	class	constructor	so	that	it	can	inherit	from
the	IValueConverter	class:

								public	class	BooleanConverter	:	IValueConverter	

								{	

5.	 Next,	create	the	Convert	and	ConvertBack	methods	of	the	IValueConverter	class,	so	that
the	converter	will	return	the	opposite	of	a	given	Boolean	value:

									public	object	Convert(object	value,	Type	targetType,

										object	parameter,	System.Globalization.CultureInfo	culture)	

									{	

													if	(!(value	is	Boolean))

																	return	value;

													return	!((Boolean)value);		

										}	

	

										public	object	ConvertBack(object	value,Type	targetType,

										object	parameter,	System.Globalization.CultureInfo	culture)	

										{	

														if	(!(value	is	Boolean))	

																return	value;	

	

														return	!((Boolean)value);	

											}	

										}	

									}	

In	the	preceding	code	snippet,	we	began	by	modifying	the	BooleanConverter	class	constructor
so	that	it	can	inherit	from	the	IValueConverter	class.	Then	we	proceeded	to	create	the	Convert
and	ConvertBack	methods	of	the	IValueConverter	class.	This	is	so	that	the	converter	will
return	the	opposite	of	a	given	Boolean	value;	for	example,	if	the	value	is	True,	it	will	return
False,	and	convert	it	from	False	back	to	True.

Now	that	we	have	created	the	BooleanConverter	class,	our	next	step	is	to	begin	creating	the
TrailImageConverter	that	will	be	used	by	the	TrackMyWalks	app.	This	class	will	be	used	to
convert	a	string	value	into	a	URL	property	that	will	be	used	to	display	an	image	for	our	difficulty
rating:

1.	 Create	an	empty	class	within	the	ValueConverters	folder,	which	is	located	within	the
TrackMyWalks	Portable	Class	Library	project.

2.	 Next,	choose	the	Empty	Class	option	located	within	the	General	section,	and	enter
TrailImageConverter	as	the	name	of	the	new	class	file	to	create.

3.	 Next,	ensure	that	the	TrailImageConverter.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		TrailImageConverter.cs	

								//		TrackMyWalks	ValueConverter	for	converting	difficulty	value		

								//		to	an	image.	

								//	

								//		Created	by	Steven	F.	Daniel	on	02/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ValueConverters	

								{	

4.	 Then,	we	need	to	modify	our	TrailImageConverter	class	constructor	so	that	it	can	inherit
from	the	IValueConverter	class:

								public	class	TrailImageConverter	:	IValueConverter	

								{	

5.	 Next,	create	the	Convert	and	ConvertBack	methods	of	the	IValueConverter	class,	so	that
the	converter	will	return	back	an	image	URL	based	on	the	difficulty	level:

								public	object	Convert(object	value,	Type	targetType,

										object	parameter,	System.Globalization.CultureInfo	culture)	

								{	

												//	Return	back	the	relevant	image	based	on	the		

												//	difficulty	level.	

											switch	((string)value)	

												{	

																case	"Easy":	

																				return	"http://www.yourdomain.com/g1.jpeg";	

																case	"Moderate":	

																				return	"http://www.yourdomain.com/g2.jpeg";	

																case	"Challenging":	

																case	"Difficult":	

																				return	"http://www.yourdomain.com/g3.jpeg";	

																case	"Very	Difficult":	

																case	"Extreme":	

																				return	"http://www.yourdomain.com/g5.jpeg";	

																default:	

																				return	"http://www.yourdomain.com/g1.jpeg";	

														}	

									}	

	

									public	object	ConvertBack(object	value,	Type	targetType,

									object	parameter,	System.Globalization.CultureInfo	culture)	

									{	

												throw	new	NotImplementedException();	

									}	

								}	

							}	

In	the	preceding	code	snippet,	we	began	by	modifying	our	TrailImageConverter	class
constructor	so	that	it	can	inherit	from	the	IValueConverter	class.	In	our	next	step,	we'll	proceed
to	create	the	Convert	and	ConvertBack	protocol	methods	of	the	IValueConverter	class.	This
is	so	that	the	converter	will	return	back	an	image	URL	based	on	the	difficulty	level	and	will	be
displayed	within	our	TrackMyWalks	app.

Updating	the	WalkBaseViewModel	to	use	our	Boolean	converter
In	this	section,	we	will	proceed	to	update	our	WalkBaseViewModel	class	to	include	references	to
our	Boolean	value	converter.	Since	the	WalkBaseViewModel	already	inherits	and	is	used	by	each
of	the	ViewModels,	it	makes	sense	to	place	it	within	this	class.	That	way,	if	we	need	to	add
additional	methods,	we	can	just	add	them	within	this	class.	To	proceed,	perform	the	following
steps,	as	shown	here.

Ensure	that	the	WalkBaseViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								//	

								//		WalkBaseViewModel.cs	

								//		TrackMyWalks	Base	ViewModel	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.ComponentModel;	

								using	System.Runtime.CompilerServices;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Services;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	abstract	class	WalkBaseViewModel	:

														INotifyPropertyChanged	

												{	

																protected	IWalkNavService	NavService

																{	get;	private	set;	}	

	

																bool	_isProcessBusy;

																public	bool	IsProcessBusy

																{

																				get	{	return	_isProcessBusy;	}

																				set

																				{

																								_isProcessBusy	=	value;

																								OnPropertyChanged();

																								OnIsBusyChanged();

																				}

																	}	

															...	

															...	

															...	

															protected	virtual	void	OnIsBusyChanged()

															{

																		//	We	are	processing	our	Walks	Trail	Information

															}	

													}	

	

												public	abstract	class	WalkBaseViewModel<WalkParam>	:		

												WalkBaseViewModel	

												{	

																protected	WalkBaseViewModel(

																		IWalkNavService	navService)	:		

															base(navService)	

																{	

																}	

	

																public	override	async	Task	Init()	

																{	

																				await	Init(default(WalkParam));	

																}	

	

																public	abstract	Task	Init(WalkParam	walkDetails);	

												}	

										}	

In	the	preceding	code	snippet,	we	began	by	creating	a	Boolean	property,	called	isProcessBusy,
which	we	will	only	set	to	True	while	we	are	in	the	process	of	actually	loading	data	within	our
ListView,	or	doing	some	other	process	that	takes	quite	a	long	time.	The	IsProcessBusy
property	contains	both	the	getter	(get)	and	setter	(set)	implementations.	When	we	set	the
IsProcessBusy	property,	we	assign	this	value	to	our	_isProcessBusy	variable,	and	then	call
the	OnPropertyChanged	and	OnIsBusyChanged	instance	methods	to	tell	the	ViewModels	that	a
change	has	been	made.

Updating	the	WalksPageViewModel	to	use	our	Boolean
converter
In	this	section,	we	will	proceed	to	update	the	WalksPageViewModel	ViewModel	to	reference	our
Boolean	value	converter.	Since	the	WalksPageViewModel	is	used	to	display	information	from
the	WalkEntries	model,	we	will	need	to	update	the	LoadWalks	instance	method	to	toggle
between	the	IsProcessBusy	value	while	it	is	loading	data	within	the	ListView.	To	proceed,
perform	the	following	steps,	as	shown	here:

Ensure	that	the	WalksPageViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								//	

								//		WalksPageViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Collections.ObjectModel;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.ViewModels	

								{	

												public	class	WalksPageViewModel	:	WalkBaseViewModel	

												{	

																ObservableCollection<WalkEntries>	_walkEntries;	

	

																public	ObservableCollection<WalkEntries>	walkEntries	

																{	

																				get	{	return	_walkEntries;	}	

																				set	

																				{	

																								_walkEntries	=	value;	

																								OnPropertyChanged();	

																				}	

																}	

	

																public	WalksPageViewModel(IWalkNavService	navService)	:		

																		base(navService)	

																{	

																				walkEntries	=	new	ObservableCollection<WalkEntries>();	

																}	

	

																public	override	async	Task	Init()	

																{	

																				await	LoadWalkDetails();	

																}	

	

																public	async	Task	LoadWalkDetails()	

																{	

																				//	Check	to	see	if	we	are	already	processing	our

	

																			//	Walk	Trail	Items

																			if	(IsProcessBusy)	{

	

																							return;

	

																			}

																			//	If	we	aren't	currently	processing,	we	need	to

	

																			//	initialise	our	variable	to	true.

																				IsProcessBusy	=	true;

																			//	Add	a	temporary	timer,	so	that	we	can	see

	

																		//	our	progress	indicator	working

																			await	Task.Delay(1000);	

																			...	

																			...		

																			...	

																			//	Re-initialise	our	process	busy	value	back	to	false

																			IsProcessBusy	=	false;	

																	}	

																	...	

																	...	

																	...	

													}	

										}		

In	the	preceding	code	snippet,	we	began	by	updating	the	LoadWalks	method	to	toggle	between	the
Boolean	property	called	IsProcessBusy.	We	set	this	to	True	while	we	are	in	the	process	of
actually	loading	data	within	the	ListView.	We	then	added	a	temporary	timer	so	we	can	see	this
process	in	action,	but	we	will	be	removing	this	in	Chapter	7,	Incorporating	API	Data	Access,
when	we	load	the	Trail	information	from	an	API.	Finally,	we	re-initialized	our	IsProcessBusy
state	value	by	setting	this	to	False	to	tell	the	WalkBaseViewModel	that	we	have	completed
processing	of	the	walk	trail	items.

Now	that	the	ViewModel	is	aware	of	when	it	is	busily	processing	items	within	the	ListView,	our
next	step	is	to	modify	the	user	interface	for	the	walks	page	to	include	an	activity	indicator	that
inherits	from	the	Xamarin.Forms.Core	platform.	We	will	also	be	modifying	our
DistanceTravelled	and	WalksTrailPage	to	include	the	PlatFormEffects	classes.

Updating	the	walks	main	page	to	use	the	updated	ViewModel
In	this	section,	we	will	proceed	to	update	the	WalksPage	content	page,	which	will	include	an
activity	process	indicator	that	will	display	a	text	string	to	the	user,	letting	them	know	that	the	trail
walks	are	being	populated	within	the	ListView	control.	We	will	also	be	making	use	of	our
PlatformEffects	classes	for	the	LabelShadow.	To	proceed,	perform	the	following	steps:

1.	 Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.DataTemplates;

								using	TrackMyWalks.ValueConverters;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalksPage	:	ContentPage				{	

														WalksPageViewModel	_viewModel	

												{	

																get	{

																		return	BindingContext	as	WalksPageViewModel;	}	

												}	

	

												public	WalksPage()	

												{	

																var	newWalkItem	=	new	ToolbarItem	

																{	

																				Text	=	"Add	Walk"	

																};	

	

														...	

														...	

														...				

												//	Declare	and	initialize	our	Model	Binding	Context	

												BindingContext	=	new	WalksPageViewModel(DependencyService	

												.Get<IWalkNavService>());	

	

												//	Define	our	Item	Template	

												var	walksList	=	new	ListView	

												{	

																HasUnevenRows	=	true,	

																ItemTemplate	=	new	DataTemplate(typeof(

																WalkCellDataTemplate)),	

																SeparatorColor	=	(Device.OS	==	TargetPlatform.iOS)	?	

																Color.Default	:	Color.Black		

		

												};	

	

												//	Set	the	Binding	property	for	our	walks	Entries	

												walksList.SetBinding(ItemsView<Cell>.ItemsSourceProperty,	

												"walkEntries");	

2.	 Next,	we	need	to	set	up	the	Binding	to	the	IsVisibleProperty	that	we	defined	within	the
WalkBaseViewModel	class.	This	will	be	called	when	this	property	has	been	set	True	to
display	our	WalkEntries	within	the	ListView	and	is	handled	by	the	IsProcessBusy
property.	Proceed	and	enter	the	following	highlighted	code	sections,	as	shown	in	the	code
snippet:

								walksList.SetBinding(ItemsView<Cell>.IsVisibleProperty,

	

									"IsProcessBusy",	converter:	new	BooleanConverter());	

	

												//	Initialize	our	event	Handler	to	use	when	the	item		

												//	is	tapped	

												walksList.ItemTapped	+=	(object	sender,		

												ItemTappedEventArgs	e)	=>	

												{	

																var	item	=	(WalkEntries)e.Item;	

																if	(item	==	null)	return;	

																_viewModel.WalkTrailDetails.Execute(item);	

																item	=	null;	

												};	

3.	 Then,	we	declare	and	initialize	a	new	progressLabel	control,	which	will	be	used	to
display	instructive	information	to	the	user	when	the	ListView	is	being	populated.	Proceed
and	enter	in	the	following	highlighted	code	sections,	as	shown	in	the	code	snippet:

								//	Declare	our	Progress	Label

								var	progressLabel	=	new	Label()

								{

												FontSize	=	14,

												FontAttributes	=	FontAttributes.Bold,

												TextColor	=	Color.Black,

												HorizontalTextAlignment	=	TextAlignment.Center,

												Text	=	"Loading	Trail	Walks..."

								};

4.	 Next,	we	apply	the	PlatformEffectLabelShadowEffect	class	to	our	progressLabel
control,	instantiate	and	initialize	the	ActivityIndicator	class,	and	set	the	IsRunning
property	to	True,	before	creating	a	StackLayout	variable	progressIndicator	and	adding
both	the	activityIndicator	and	progressLabel	items.	Finally,	we	set	up	the	Binding
for	our	ProgressIndicator	using	the	isVisibleProperty	of	the	StackLayout	control.
This	will	use	the	IsProcessBusy	property	to	determine	whether	or	not	to	show	the
ActivityIndicator.	Proceed	and	enter	in	the	following	highlighted	code	sections,	as
shown	in	the	code	snippet:

										//	Apply	PlatformEffects	to	our	Progress	Label

												progressLabel.Effects.Add(Effect.Resolve("com.geniesoftst

												udios.LabelShadowEffect"));

												//	Instantiate	and	initialise	our	Activity	Indicator.

												var	activityIndicator	=	new	ActivityIndicator()

												{

																IsRunning	=	true

												};

												var	progressIndicator	=	new	StackLayout

												{

																Orientation	=	StackOrientation.Vertical,

																HorizontalOptions	=	LayoutOptions.CenterAndExpand,

																VerticalOptions	=	LayoutOptions.CenterAndExpand,

																Children	=	{

																				activityIndicator,

																				progressLabel

																}

												};

												progressIndicator.SetBinding(StackLayout.IsVisibleProperty,

	

												"IsProcessBusy");	

	

												var	mainLayout	=	new	StackLayout	

												{	

																Children	=	

																{	

																				walksList,	

																					progressIndicator	

																}	

														};	

	

														Content	=	mainLayout;	

										}	

	

												protected	override	async	void	OnAppearing()	

												{	

																base.OnAppearing();	

	

																//	Initialize	our	WalksPageViewModel	

																if	(_viewModel	!=	null)	

																await	_viewModel.Init();	

												}	

											}	

										}	

In	the	preceding	code	snippet,	we	began	by	setting	up	the	Binding	to	our	IsVisibleProperty,
which	we	defined	within	the	WalkBaseViewModel	class;	this	will	be	called	when	the	property
has	been	set	to	True	to	display	the	WalkEntries	within	the	ListView,	and	is	handled	by	the
IsProcessBusy	property.	In	our	next	step,	we	declared	and	initialized	a	new	progressLabel
control,	which	will	be	used	to	display	instructive	information	to	the	user	when	the	ListView	is
being	populated.

Then	we	applied	the	LabelShadowEffect	class	to	the	progressLabel	control,	instantiated	and
initialized	the	ActivityIndicator	class,	and	set	the	IsRunning	property	to	True,	before
creating	a	StackLayout	variable	progressIndicator	and	adding	both	the	activityIndicator
and	progressLabel	items.

Next,	we	set	up	the	Binding	for	the	ProgressIndicator	using	the	isVisibleProperty	of	our
StackLayout	control,	which	will	use	the	IsProcessBusy	property	to	determine	whether	or	not
to	show	the	ActivityIndicator.	Finally,	we	added	the	ProgressIndicator	to	our
mainLayout	as	part	of	the	Children	property,	so	that	this	can	be	displayed	as	part	of	the	main
content	page.

Tip

If	you	don't	export	an	Effect	for	a	particular	platform,	the	Effect.Resolve	will	return	a	non-
null	value	that	effectively	doesn't	do	anything,	and	you	won't	see	any	rendering	happen	on	your
controls.	You	will	need	to	ensure	that,	within	your	PlatformEffect	classes,	you	include	the
ExportEffect	assembly	attribute	at	the	top	of	your	class	implementations.

Updating	the	WalksTrailPage	to	use	the	updated	ViewModel
In	this	section,	we	will	proceed	to	update	our	WalksTrailPage	content	page	will	make	use	of	the
PlatformEffects	classes	for	the	ButtonShadow.	To	proceed,	perform	the	following	steps:

Ensure	that	the	WalksTrailPage.cs	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections,	as	shown	in	the	code	snippet:

								//	

								//		WalkTrailPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.ValueConverters;	

	

								namespace	TrackMyWalks	

								{	

													public	class	WalkTrailPage	:	ContentPage	

												{	

																WalksTrailViewModel	_viewModel	

																{	

																				get	{	return	BindingContext

																						as	WalksTrailViewModel;	}	

																}	

	

																public	WalkTrailPage()

																{	

																				Title	=	"Walks	Trail";	

																				...	

																				...	

																				...			

												beginTrailWalk.Effects.Add(Effect.Resolve

											("com.geniesofts

tudios.ButtonShadowEffect"));	

												...	

												...	

												...		

												trailDifficultyLabel.SetBinding(Label.TextProperty,		

												"WalkEntry.Difficulty",	stringFormat:	"Difficulty:	{0}");	

	

												var	trailDifficultyImage	=	new	Image

												{

																HeightRequest	=	50,

																WidthRequest	=	50,

																Aspect	=	Aspect.AspectFill,

																HorizontalOptions	=	LayoutOptions.Start

													};

												trailDifficultyImage.SetBinding(Image.SourceProperty,

	

												"WalkEntry.Difficulty",

	

												converter:	new	TrailImageConverter());	

												...	

												...	

												...		

									}	

								}	

							}		

In	the	preceding	code	snippet,	we	began	by	applying	the	ButtonShadowEffect	class	to	our
beginTrailWalk	button,	and	then	updated	the	binding	of	thetrailDifficultyImage	to	use	the
TrailImageConverter	value	converter.	This	will	convert	the	string	representation	for	the
chosen	difficulty,	and	return	back	an	image	URL	that	will	be	displayed	within	the	content	page.

Updating	the	DistanceTravelledPage	to	use	the	updated
ViewModel
In	this	section,	we	will	proceed	to	update	an	other	DistanceTravelledPage	content	page	that
will	make	use	of	the	PlatformEffects	classes	for	our	ButtonShadow.	To	proceed,	perform	the
following	steps:

Ensure	that	the	DistanceTravelledPage.cs	file	is	displayed	within	the	code	editor,	and	enter
the	following	highlighted	code	sections,	as	shown	in	the	code	snippet:

								//	

								//		DistanceTravelledPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	Xamarin.Forms.Maps;	

								using	TrackMyWalks.Services;	

	

								namespace	TrackMyWalks	

								{	

												public	class	DistanceTravelledPage	:	ContentPage	

												{	

																DistTravelledViewModel	_viewModel	

																{	

																				get	{	return	BindingContext	as

																						DistTravelledViewModel;	}	

																}	

	

																public	DistanceTravelledPage()	

																{	

																				Title	=	"Distance	Travelled";	

	

																				...	

																				...		

																				...			

												var	walksHomeButton	=	new	Button

												{

																BackgroundColor	=	Color.FromHex("#008080"),

																TextColor	=	Color.White,

																Text	=	"End	this	Trail"

												};

												walksHomeButton.Effects.Add(Effect.Resolve

														("com.geniesoft

studios.ButtonShadowEffect"));	

	

												...	

												...	

												...	

												}	

										}		

In	the	preceding	code	snippet,	we	begin	by	applying	the	ButtonShadowEffect	class	to	our
walksHomeButton	control	so	that	it	can	take	advantage	of	the	nice	platform-specific	rendering
effects	to	visual	control	elements.

Updating	the	WalkCellDataTemplate	class	to	use
PlatformEffects
In	this	section,	we	will	proceed	to	update	the	WalkCellDataTemplate	class,	which	will	make
use	of	the	PlatformEffects	classes	for	our	LabelShadow,	so	that	the	DataTemplate	will
inherit	some	of	the	nice	visual	representations	that	your	users	will	love.	To	proceed,	perform	the
following	steps,	as	shown	here:

Ensure	that	the	WalkCellDataTemplate.cs	file	is	displayed	within	the	code	editor,	and	enter	the
following	highlighted	code	sections,	as	shown	in	the	code	snippet:

								//	

								//		WalkCellDataTemplate.cs	

								//		TrackMyWalks	DataTemplate	for	Cells	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	TrackMyWalks.ValueConverters;	

								using	Xamarin.Forms;	

	

								namespace	TrackMyWalks.DataTemplates	

								{	

												public	class	WalkCellDataTemplate	:	ViewCell	

												{	

																public	WalkCellDataTemplate()	

																{	

																				...	

																				...	

																				...		

												//	Apply	PlatformEffects	to	our	TrailNameLabel	Control

												TrailNameLabel.Effects.Add(Effect.Resolve

												("com.geniesofts

tudios.LabelShadowEffect"));	

												TrailNameLabel.SetBinding(Label.TextProperty,	"Title");	

													...	

													...	

													...	

												trailDifficultyImage.SetBinding(Image.SourceProperty,

	

												"Difficulty",	converter:	new	TrailImageConverter());	

													...	

													...	

													...	

												this.View	=	cellLayout;	

										}	

									}	

								}	

In	the	preceding	code	snippet,	we	began	by	applying	the	LabelShadowEffect	class	to	our
TrailNameLabel	control,	and	then	updated	the	binding	of	the	trailDifficultyImage	to	use	the

TrailImageConverter	value	converter.	This	will	convert	the	string	representation	for	our
chosen	difficulty,	and	return	back	an	image	URL	that	will	be	displayed	within	the	content	page.

Now	that	you	have	updated	the	necessary	ViewModels	and	ContentPages	to	take	advantage	of
our	PlatFormEffects	and	ValueConverters,	our	next	step	is	to	finally	build	and	run	the
TrackMyWalks	application	within	the	iOS	simulator.

When	the	compilation	is	complete,	the	iOS	simulator	will	appear	automatically,	and	the
TrackMyWalks	application	will	be	displayed,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	our	ActivityIndicator
spinner	control,	with	the	associated	Loading	Trail	Walks...	text.	After	this	the	ListView
containing	the	list	of	trail	walks	from	the	DataTemplate	control	will	display.	You	will	notice	that
it	displays	a	nice	image	associated	with	the	difficulty	for	the	trail	walk,	which	is	pulled	directly
from	the	TrailImageValueConverter	class.

When	the	Add	Walk	button	is	pressed	from	the	main	Track	My	Walks	content	page,	this	displays
the	New	Walk	Entry	screen,	with	the	Difficulty	Level	custom	picker	showing	the	list	of	choices
as	defined	within	our	DifficultyPickerModel:

The	preceding	screenshot	shows	the	updated	ViewModel	and	ContentPages	that	make	use	of	the
PlatformEffects	classes	for	the	ButtonShadow	effects,	as	well	as	the	ValueConverters	for
the	TrailImageValueConverter.	As	you	can	see,	by	using	the	power	of
Xamarin.FormsPlatformEffects	and	ValueConverters	within	your	own	applications,	you
can	really	create	some	stunning	user	interfaces	that	will	show	off	your	apps	and	that	your	users
will	love.

Summary
In	this	chapter,	we	updated	the	TrackMyWalks	application	to	use	CustomRenderers	to	change	the
appearance	of	control	elements	that	are	displayed	within	the	user	interface	for	each	specific
platform.	Next,	you	learned	how	to	work	with	DataTemplates,	by	creating	a	custom	class	to
represent	the	information	that	is	presented	within	the	ListView	class,	as	well	as	creating	two
ValueConverter	classes	BooleanValueConverter	that	are	used	to	determine	when	information
is	currently	being	displayed	within	the	user	interface.	You	also	created	a
TrailImageValueConverter	that	returns	an	image	URL	based	on	the	string	passed	into	it.
Finally,	you	learned	how	to	work	with	the	PlatformEffects	class,	to	create	a	LabelShadow	and
ButtonShadow,	and	updated	the	ViewModel	and	ContentPages	to	apply	those	effects	to	control
elements.

In	the	next	chapter,	you'll	learn	about	the	Razor	Templating	Engine	and	how	you	can	use	it	to
create	a	hybrid	mobile	solution.	You'll	learn	how	to	create,	and	use	models	within	your
application,	as	well	as	calling	JavaScript	code	using	C#	to	execute	method	calls.

Chapter	6.	Working	with	Razor	Templates
In	our	previous	chapter,	we	looked	at	how	to	work	with	the	DataTemplateCustomRenderer	by
creating	a	C#	class	to	layout	your	views	beautifully	within	your	applications,	and	how	you	will
also	get	accustomed	to	working	with	the	platform-specific	APIs	to	extend	the	default	behavior	of
Xamarin.Forms	controls	using	custom	renderers,	by	creating	a	custom	picker.

You	also	learned	how	to	use	the	Xamarin.Forms	Effects	API	to	customize	the	appearance	and
styling	of	native	control	elements	for	each	platform,	by	implementing	a	custom	renderer	class,	and
looked	at	how	to	manipulate	the	visual	appearance	of	data	that	is	bound,	using	value	and	image
converters.

In	this	chapter,	you'll	learn	about	the	Razor	HTML	template	engine	and	how	you	can	use	it	to
create	a	hybrid	mobile	solution.	You'll	learn	how	to	build	a	book	library	mobile	solution	using	the
power	of	Razor	templates,	and	learn	how	to	create,	and	use	models	within	your	application	and
connect	this	up	to	an	SQLite	database	to	store,	retrieve,	update,	and	delete	book	details.

This	chapter	will	cover	the	following	topics:

Introduction	to	the	Razor	HTML	template	engine
How	to	build	a	hybrid	mobile	solution	using	Xamarin	Studio
Incorporating	SQLite.Net	and	creating	a	SQLite	database	wrapper
Creating	the	book	database	model
Creating	the	book	listing	main	page
Creating	the	book	listing	add	page
Creating	the	book	listing	edit	page

Understanding	the	Razor	template	engine
The	Razor	templating	engine	was	first	introduced	as	part	of	the	ASP.Net	MVC	architecture,	and
was	originally	designed	to	run	on	a	web	server	to	generate	HTML	files	to	be	served	to	web
browsers.

Since	Razor	made	its	first	appearance	on	the	development	scene,	the	Razor	templating	engine	has
come	a	long	way	and	now	extends	the	standard	HTML	syntax,	so	that	you	can	use	C#	to	express
the	layout	of	your	HTML	files,	and	incorporate	CSS	style	sheets	and	JavaScript	easily.

Each	Razor	template	has	the	ability	to	reference	a	Model	class	which	can	be	of	any	custom	type,
and	properties	can	be	accessed	directly	from	the	template,	by	having	the	ability	to	mix	HTML	and
C#	syntax	easily.

As	you	work	through	this	chapter,	you	will	see	how,	by	working	with	Xamarin	Studio,	you	can
utilize	the	Razor	HTML	templating	engine	and	be	equipped	with	the	flexibility	of	building	cross-
platform	templated	HTML	views	that	use	both	JavaScript	and	CSS,	as	well	as	having	access	to
the	underlying	platform	APIs	using	the	power	of	C#.

Note

For	more	information	on	using	Razor	syntax	(C#)	with	ASP.NET	web	programming	refer	to	the
following	URL:	https://www.asp.net/web-pages/overview/getting-started/introducing-razor-
syntax-c.

https://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-c

Creating	and	implementing	Razor	templates
within	Xamarin	Studio
In	this	section,	we	will	look	at	how	to	go	about	creating	a	new	Razor	template	solution	using
Xamarin	Studio.	We	will	begin	by	developing	the	basic	structure	for	our	application,	as	well	as
adding	all	the	necessary	database	models	and	user	interface	files.

Before	we	can	proceed,	we	need	to	create	the	BookLibrary	project.	It	is	very	simple	to	create
this	using	Xamarin	Studio.	Simply	follow	the	given	steps:

1.	 Launch	the	Xamarin	Studio	application,	and	choose	the	New	Solution...	option,	or
alternatively	choose	File	|	New	|	Solution...	or	simply	press	Shift	+	Command	+	N	.

2.	 Next,	choose	the	WebView	App	option	which	is	located	under	the	iOS	|	App	section,	ensure
that	you	have	selected	C#	as	the	programming	language	to	use,	and	click	Next:

3.	 Then,	enter	in	BookLibrary	as	the	name	for	your	app	in	the	App	Name	field	as	well	as
specifying	a	name	for	the	Organization	Identifier	field.

4.	 Next,	ensure	that	both	the	iPad	and	iPhone	checkboxes	have	been	selected	for	the	Devices
field,	as	well	as	ensuring	that	you	have	chosen	iOS	10.0	for	the	Target	field	to	support	the
minimum	iOS	version	that	we	want	our	app	to	support:

5.	 Click	on	the	Next	button	to	proceed	to	the	next	step	in	the	wizard:

6.	 Next,	ensure	that	the	Create	a	project	directory	within	the	solution	directory.	checkbox
has	been	selected	and	click	on	the	Create	button	to	save	your	project	at	the	specified
location.

Once	your	project	has	been	created,	you	will	be	presented	with	the	Xamarin	Studio	development
environment,	along	with	several	project	files	that	the	template	created	for	your	Razor	template
Solution,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	the	BookLibrary	solution	has	been	divided	into
three	separate	folders.	The	following	table	provides	a	brief	description	of	what	each	area	is	used
for:

Folder
type Description

Models

This	section	is	responsible	for	representing	the	model	that	our	views	will	use,	and
contains	a	structure	of	fields	that	will	be	displayed	and/or	written	to	by	our	Razor
templates.

Resources
This	section	contains	a	place	for	you	to	add	the	images	and	CSS,	or	JavaScript	files
that	your	application	will	use.

Views

This	section	is	responsible	for	containing	all	of	the	HTML5	Razor	templates	that
your	application	will	be	referencing,	and	they	need	to	contain	and	be	prefixed	with
the	.cshtml	extension.

One	thing	you	will	notice	is	that	our	solution	contains	a	file	called	style.css.	This	is	because
our	application	is	essentially	a	hybrid	mobile	solution,	and	contains	the	files	you	might	expect
from	a	web	solution,	as	can	be	seen	in	the	following	code	snippet:

				/*	This	is	a	minimal	style	sheet	intended	to	demonstrate

					how	to	include	static	content	in	your	hybrid	app.

					Other	static	content,	such	as	javascript	files	and	images,

					can	be	included	in	this	same	folder(Resources	on	iOS	or	Assets

					on	Android),	with	the	same	Build	Action(BundleResource	on	iOS

					or	AndroidAsset	on	Android),	to	be	accessible	from	a	path	starting

					at	the	root	of	your	hybrid	application.	*/	

	

						#page	{	

						margin-top:10px;	

						}	

As	you	can	see,	this	file	doesn't	contain	much	information,	but	as	we	work	our	way	through	this
chapter,	we	will	be	adding	to	this	file,	and	building	the	Razor	template	user-interface	files.

Adding	the	SQLite.Net	package	to	the	BookLibrary	solution
Now	that	we	have	created	our	BookLibrary	solution,	the	next	step	is	to	add	the	SQLite.Net
NuGet	package	to	our	solution,	since	this	doesn't	get	added	automatically	for	us.	The	SQLite.Net
package	will	essentially	provide	us	with	the	ability	to	have	our	application	write	to	an	SQLite
database,	to	store	our	book	details.

Note

A	NuGet	package	is	essentially	the	package	manager	for	the	Microsoft	development	platform	that
contains	the	client	tools	that	provide	our	solution	with	the	ability	to	produce	and	consume	.NET
packages.

Let's	look	at	how	to	add	the	SQLite.NETNuGet	package	within	our	BookLibrary	solution,	by
performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder	that	is	contained	within	the	BookLibrary	solution,	and
choose	the	Add	Packages...	menu	option,	as	shown	in	the	following	screenshot.

2.	 This	will	display	the	Add	Packages...	dialog.	Enter	in	SQLite.Net	within	the	search
dialog,	and	then	click	on	the	sqlite-net	option	within	the	list,	as	shown	in	the	following
screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	sqlite-netNuGet	package	to	the
Packages	folder,	contained	within	the	BookLibrary	solution.

When	you	click	on	the	Add	Package	button,	you	will	notice	that	the	package	manager	will	create
two	new	files	for	us	within	our	solution.	These	are	called	SQLite.cs	and	SQLiteAsync.cs,	and
are	basically	wrapper	convenience	classes	that	allow	.NET	and	Mono	applications	to	store	data
within	a	SQLite	3	database.

Now	that	you	have	added	the	NuGet	package	for	the	sqlite-net	library,	we	can	begin	to	utilize	this
library	within	the	BookLibrary	solution	that	we	will	be	covering	in	the	next	section.

Creating	and	implementing	the	book	library
database	model
In	this	section,	we	will	begin	by	building	the	database	model	that	will	be	used	by	our
BookLibrary	project	solution	that	will	be	used	by	our	Razor	templates	when	we	create	these,
and	then	the	WebViewController.cs	file	will	communicate	and	interact	with	each	of	the	Razor
template	views	and	handle	the	actions	within	them.

Let's	look	at	how	we	can	achieve	this,	by	performing	following	steps:

1.	 Create	an	empty	class	within	the	Models	folder,	by	choosing	Add	|	NewFile...,	as	shown	in
the	following	screenshot:

2.	 Next,	choose	the	Empty	Class	option,	located	within	the	General	section,	and	enter	in
BookItem,	as	shown	in	the	following	screenshot:

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty	class
file.

Up	until	now,	all	we	have	done	is	create	our	BookItem	class	file.	This	class	will	be	used	by	each
of	our	Razor	template	views,	as	well	as	our	WebViewController.cs	file	that	will	eventually
allow	communication	to	happen	between	each	of	the	Razor	template	views,	as	well	as	being	able
to	handle	actions	within	them,	whenever	the	user	interacts	with	them.

Let's	now	start	to	implement	the	code	required	for	our	BookItem	class	model,	by	performing	the
following	steps:

1.	 Ensure	that	the	BookItem.cs	file	is	displayed	within	the	code	editor,	and	enter	the	following
code	snippet:

								//	

								//		BookItem.cs	

								//		BookLibrary	Database	Model	

								//	

								//		Created	by	Steven	F.	Daniel	on	20/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	SQLite;	

	

								namespace	BookLibrary	{

													public	class	BookItem

													{

																	public	BookItem()

																	{

																	}

																	[PrimaryKey,	AutoIncrement]

																	public	int	Id	{	get;	set;	}

																	public	string	Title	{	get;	set;	}

																	public	string	Author	{	get;	set;	}

																	public	string	Isbn	{	get;	set;	}

																	public	string	Synopsis	{	get;	set;	}

													}

									}		

In	the	preceding	code	snippet,	we	have	successfully	defined	our	database	model	that	will	be	used
to	represent	our	book	items.	You	will	notice	something	that	is	different	within	our	model	to	what
you	would	have	seen	within	our	TrackMyWalks	app:	here	we	have	defined	a	[PrimaryKey,
AutoIncrement]	item	for	our	id	field,	this	will	tell	our	BookLibrary	database	to	set	the	id
property	to	automatically	increment	whenever	we	add	a	new	item	to	our	database.

If	you	have	used	relational	databases	in	the	past,	such	as	Microsoft	SQLServer,	Oracle,	or
Microsoft	Access,	this	should	be	quite	familiar	to	you.	In	the	next	section,	we	will	use	this	model
to	set	up	and	initialize	our	database,	by	creating	a	database	library	wrapper	to	handle	connections
to	our	database,	as	well	as	Creation,	Retrieval,	Updating,	and	Deletion	(CRUD),	of	each	of	our
book	entries.

Note

The	Android	version	of	the	BookItem	class	model	is	available	in	the	companion	source	code	for
this	book.

Creating	and	implementing	the	book	database
wrapper
In	the	previous	section,	we	successfully	created	and	implemented	our	BookItem	database	model
that	will	be	used	by	our	BookLibrary	application.	Our	next	step	is	to	begin	implementing	the
code	required	for	our	BookItemDatabase	class	model,	by	performing	the	following	steps:

1.	 Create	a	new	folder	within	the	BookLibrary	project	solution,	called	Database	as	shown	in
the	following	screenshot:

2.	 Next,	create	an	empty	class	within	the	Database	folder,	by	choosing	Add	|	New	File...,	as
you	did	when	creating	the	model	in	the	previous	section	entitled	Creating	and	implementing

the	book	library	database	model,	located	within	this	chapter.
3.	 Then,	enter	in	BookDatabase	for	the	name	of	the	new	class	that	you	want	to	create,	and	click

on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.
4.	 Next,	ensure	that	the	BookDatabase.cs	file	is	displayed	within	the	code	editor	window,	and

then	enter	in	the	following	code	snippet:

								//	

								//		BookDatabase.cs	

								//		BookLibrary	Database	to	handle	performing	database		

								//		Creation,	Retrieval,	Updating	and	Deletion	of	Book	Items.	

								//	

								//		Created	by	Steven	F.	Daniel	on	20/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System.Collections.Generic;	

								using	System.Linq;	

								using	SQLite;	

	

								namespace	BookLibrary	

								{	

												public	class	BookDatabase	

												{	

5.	 Next,	we	need	to	create	a	locker	variable	that	will	be	used	to	create	a	mutually-exclusive
lock	on	the	database	while	we	are	either	creating,	updating,	retrieving,	or	deleting	book
items.	We	do	this	so	that	no	other	operation	can	interfere	while	we	are	processing,	and	this
will	prevent	issues	from	arising.	We	also	need	to	declare	a	database	variable,	that	points	to
an	instance	of	our	SQLiteConnection	located	within	our	SQLite	library,	so	that	we	can
perform	database	operations:

								static	object	locker	=	new	object();	

								SQLiteConnection	database;	

6.	 Then,	we	need	to	create	the	BookDatabase(SQLiteConnection	conn)	method	that	accepts
a	conn	object,	which	is	an	instance	of	our	SQLiteConnection	class,	and	this	instance
method	will	be	used	to	create	the	necessary	database	table	structure,	based	on	our	BookItem
model:

								///	<summary>	

								///	Initializes	a	new	instance	of	the	BookLibrary		

								///	Database	class.	

								///	</summary>	

								///	<param	name="conn">Conn.</param>	

								public	BookDatabase(SQLiteConnection	conn)	

								{	

												database	=	conn;	

	

												//	Create	the	tables	within	our	Book	Library	Database	

												database.CreateTable<BookItem>();	

								}	

7.	 Next,	we	need	to	create	the	GetItems()	method	that	will	be	used	to	extract	all	of	the
existing	book	entries	that	have	been	saved	to	the	database.	We	use	the	LINQ	language	syntax

to	iterate	and	retrieve	all	items	from	our	BookItem	table,	and	convert	this	collection	to	a	list
instance,	as	determined	by	the	.ToList()	method:

								///	<summary>	

								///	Gets	all	of	the	book	library	items	from	our	database.	

								///	</summary>	

								///	<returns>The	items.</returns>	

								public	IEnumerable<BookItem>	GetItems()	

								{	

												//	Set	a	mutual-exclusive	lock	on	our	database,	while		

												//	retrieving	items.	

												lock	(locker)	

												{	

																return	(from	i	in	database.Table<BookItem>()		

																								select	i).ToList();	

												}	

								}	

8.	 Then,	we	need	to	create	the	GetItem()	method	that	will	extract	the	selected	book	entry	from
the	BookItem	database	table,	using	their	id	as	the	key.	Again,	we	use	the	LINQ	language
syntax	to	retrieve	the	first	item	from	the	BookItem	table	that	matches	the	id	of	the	book	item:

								///	<summary>	

								///	Gets	a	specific	book	item	from	the	database.	

								///	</summary>	

								///	<returns>The	item.</returns>	

								///	<param	name="id">Identifier.</param>	

								public	BookItem	GetItem(int	id)	

								{	

												//	Set	a	mutual-exclusive	lock	on	our	database,	while		

												//	retrieving	the	book	item.	

												lock	(locker)	

												{	

																return	database.Table<BookItem>().FirstOrDefault(x	=>	

																							x.Id	==	id);	

												}	

								}	

9.	 Next,	we	need	to	create	the	SaveItem()	method	that	will	save	the	book	item	to	the
BookItem	database	table.	In	this	instance	method,	we	are	handling	two	case	scenarios:	one
if	the	item	we	are	saving	is	an	existing	item,	we	check	the	id	of	the	book	item,	and	if	it	is	a
non-zero	value,	we	proceed	to	update	the	book	item	using	the	Update	method	on	the
database	object,	and	return	the	book	item	id	back.

10.	 However,	if	the	item	is	a	new	book	record,	that	is	all	new	books	that	get	created	will	have
an	id	of	0,	this	will	be	directly	inserted	into	the	BookItem	table,	using	the	Insert	method
on	the	database	object:

								///	<summary>	

								///	Saves	the	book	item	currently	being	edited.	

								///	</summary>	

								///	<returns>The	item.</returns>	

								///	<param	name="item">Item.</param>	

								public	int	SaveItem(BookItem	item)	

								{	

												//	Set	a	mutual-exclusive	lock	on	our	database,	while		

												//	saving/updating	our	book	item.	

												lock	(locker)	

												{	

																if	(item.Id	!=	0)	

																{	

																				database.Update(item);	

																				return	item.Id;	

																}	

																else	{	

																				return	database.Insert(item);	

																}	

												}	

								}	

11.	 Finally,	we	create	the	DeleteItem()	method	that	will,	as	you	might	have	guessed,	delete	a
book	item	from	the	BookItem	database	table	using	the	book's	item	id	and	then	calling	the
Delete	method	on	the	database	object:

								///	<summary>	

								///	Deletes	a	specific	book	item	from	the	database.	

								///	</summary>	

								///	<returns>The	item.</returns>	

								///	<param	name="id">Identifier.</param>	

										public	int	DeleteItem(int	id)	

										{	

															//	Set	a	mutual-exclusive	lock	on	our	database,	while		

															//	deleting	our	book	item.	

															lock	(locker)	

														{	

																return	database.Delete<BookItem>(id);	

														}	

											}	

										}	

									}	

Now	that	we	have	created	our	BookDatabase	class,	we	can	proceed	and	create	our
BookLibraryDB	database	wrapper	that	will	use	our	BookDatabase	class	to	handle	all	the
operations	for	creating,	retrieving,	updating,	and	deletion	of	book	items	from	our	database.	That
will	be	used	by	our	WebViewController.cs	class	to	interact	with	our	Razor	template	Views.

Note

The	Android	version	of	the	BookDatabase	class	is	available	in	the	companion	source	code	for
this	book.

Creating	and	implementing	the	BookLibrary
database	wrapper
In	the	previous	section,	we	successfully	created	and	implemented	our	BookDatabase	database
class	that	will	be	used	by	our	BookLibrary	application.	Our	next	step	is	to	begin	implementing
the	code	required	for	our	BookLibraryDB	class	that	will	act	as	a	wrapper	for	our	BookDatabase
class,	to	perform	all	database	actions	for	our	BookLibrary	application.

Let's	begin	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	BookLibrary	solution,	by	choosing	Add	|	New	File...,	as
you	did	when	creating	the	model	in	the	previous	section	entitled	Creating	and	implementing
the	book	library	database	model,	located	within	this	chapter.

2.	 Then,	enter	in	BookLibraryDB	for	the	name	of	the	new	class	that	you	want	to	create,	and
click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	BookLibraryDB.cs	file	is	displayed	within	the	code	editor	window,
and	then	enter	in	the	following	code	snippet:

								//	

								//		BookLibraryDB.cs	

								//		BookLibrary	Database	Layer	

								//	

								//		Created	by	Steven	F.	Daniel	on	20/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	SQLite;	

	

								namespace	BookLibrary	

								{	

												public	class	BookLibraryDB	

												{	

4.	 Next,	we	need	to	create	a	conn	variable	that	will	be	used	to	set	a	connection	to	our
BookLibrary	database,	and	we	also	need	to	declare	a	database	variable,	that	points	to	an
instance	of	our	BookDatabase	that	contains	each	of	the	operations	for	handling	and
performing	the	insertion,	updating,	and	deletion	of	book	entries:

								static	SQLiteConnection	conn;	

								static	BookDatabase	database;	

5.	 Then,	we	need	to	create	the	SetDatabaseConnection()	method	that	will	set	a	connection
to	our	BookDatabase	database	class,	so	that	it	can	access	each	of	our	instance	methods	for
handling	the	creation,	updating,	retrieval,	and	deletion	of	our	book	entries,	within	our
BookItem	database	table.	Within	this	instance	method,	we	set	up	and	initialize	the	conn
variable	that	contains	the	value	of	our	connection	parameter,	and	then	instantiates	a
connection	to	our	BookDatabase	class,	passing	in	the	conn	connection	object	so	that	the
class	can	return	our	database	object:

								///	<summary>	

								///	Sets	a	connection	to	our	BookDatabase	database	class.	

								///	</summary>	

								///	<param	name="connection">Connection.</param>	

								public	static	void	SetDatabaseConnection(SQLiteConnection		

																											connection)	

								{	

												conn	=	connection;	

												database	=	new	BookDatabase(conn);	

								}	

6.	 Finally,	we	create	the	Database	method	that	gets	a	reference	to	our	BookLibrary	database
to	use:

								///	<summary>	

								///	Gets	a	reference	to	our	BookLibrary	database.	

								///	</summary>	

								///	<value>The	database.</value>	

												public	static	BookDatabase	Database	

												{	

																get	{	return	database;	}	

												}	

											}	

										}	

Now	that	we	have	created	our	BookLibraryDB	class,	we	can	create	our	Razor	template	user
interface	files	that	will	connect	to	our	BookLibrary	database,	and	allow	the	user	to	interact	with
the	database	model	to	create,	retrieve,	update,	and	delete	book	items	from	the	database.

Note

The	Android	version	of	the	BookLibraryDB	class	is	available	in	the	companion	source	code	for
this	book.

Creating	and	implementing	the	book	listing	main
page
In	the	previous	section,	we	created	and	implemented	our	BookLibraryDB	database	wrapper	class
that	will	be	used	by	our	BookLibrary	application.	The	next	step	is	to	begin	creating	each	of	the
Razor	templates	that	will	connect	to	our	database	model	allowing	the	user	to	interact	with	the
database	visually	by	entering	in	book	details,	and	having	this	information	presented	back	to	them,
so	they	can	make	changes,	or	delete	the	book	item	altogether.

Let's	begin	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Views	folder,	by	choosing	Add	|	NewFile...,	as	you	did
when	creating	the	model	in	the	previous	section	entitled	Creating	and	implementing	the
book	library	database	model,	located	within	this	chapter.

2.	 Next,	choose	the	Preprocessed	Razor	Template	option,	located	within	the	Text
Templating	section,	and	enter	in	BookLibraryListing,	as	shown	in	the	following
screenshot:

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty
Razor	template	file.

Congratulations,	you	have	created	your	first	Razor	template!	This	file	will	be	used	to	list	all	the
book	entries	that	are	stored	within	our	BookItem	database	table,	contained	within	our
BookLibrary	database.	The	next	step	is	to	start	to	implement	the	code	required	for	our
BookLibraryListing	Razor	template,	by	performing	the	following	step:

1.	 Ensure	that	the	BookLibraryListing.cshtml	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	code	snippet:

								@using	BookLibrary	

								@model	List<BookItem>	

								<html>	

								<head><link	rel="stylesheet"	href="style.css"	/></head>	

								<body>	

								<p></p>	

								<h1>Book	Library	Database	Listing</h1>	

	

											<table	border="1"	cellpadding="8">	

												@foreach	(var	book	in	@Model)	{	

														<tr>	

														<td>@book.Id</td>	

														<td>@book.Title</td>	

														<td>@book.Author</td>	

														<td>@book.Isbn</td>													

														<td>	

															

														Edit	

														</td>	

														</tr>	

														}	

														<tr>	

														<td	colspan="8">	

																

															<input	type="submit"	name="Button"		

															value="Add	New	Book"/>	

															</td>	

															</tr>	

											</table>	

								</body>	

								</html>	

In	the	preceding	code	snippet,	we	define	the	HTML	layout	information	that	will	be	used	by	our
BookLibraryListing	Razor	template.	We	firstly	specify	that	we	are	using	the
BookLibrary.iOS	namespace,	so	that	we	can	have	access	to	our	database	model	as	specified	by
the	@model	directive,	and	this	must	be	the	very	first	line	preceding	the	<html>	tag	within	a	Razor
template	file.	You	will	notice	that	the	@model	directive	has	the	type	of	List.	This	is	because	we
are	iterating	through	each	of	our	book	items	within	our	Model,	and	displaying	the	id,	title,

author,	and	isbn	details	for	each	book.

Next,	we	set	up	a	<a	href	tag,	that	points	to	our	WebViewController.cs	class,	and	in-turn	will
call	the	BookLibraryEdit.cshtml	Razor	template	to	retrieve	and	display	the	book	entry	details
for	the	associated	identifier.	The	hybrid	tag,	used	to	identify	if	the	URL	is	not	our	own	custom
scheme,	and	will	just	let	the	WebView	load	the	URL	as	usual.	Finally,	we	set	up	another	<a	href
tag,	that	points	to	our	WebViewController.cs	class,	and	in-turn	will	call	the
BookLibraryAdd.cshtml	Razor	template	to	allow	the	user	to	create	another	book.	You	will
notice	that	we	don't	need	to	pass	in	an	id	for	the	book,	as	this	will	be	automatically	assigned	once
the	book	has	successfully	been	written	to	the	database.

Creating	and	implementing	the
BookLibraryAdd	Razor	template
In	the	previous	section,	we	created	and	implemented	the	BookLibraryListing	Razor	template
that	will	be	used	to	display	a	list	of	all	books	that	have	been	previously	added	to	the
BookLibrary	application.	Our	next	step	is	to	begin	creating	the	Razor	template	that	will	allow
the	user	to	create	a	new	book	and	save	this	to	our	database	model.

Let's	begin	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Views	folder,	by	choosing	Add	|	NewFile...,	as	you	did
when	creating	the	BookLibraryListing	in	the	previous	section	entitled	Creating	and
implementing	the	book	listing	main	page,	located	within	this	chapter.

2.	 Next,	choose	the	Preprocessed	Razor	Template	option,	located	within	the	Text
Templating	section,	and	enter	in	BookLibraryAdd.

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty
Razor	template	file.

Our	next	step	is	to	start	to	implement	the	code	required	for	our	BookLibraryAdd	Razor	template,
by	performing	the	following	steps:

Ensure	that	the	BookLibraryAdd.cshtml	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	code	snippet:

								@using	BookLibrary	

								@model	BookItem	

	

								<html>	

								<head>	

												<link	rel="stylesheet"	href="style.css"	/>	

								</head>	

								<body>	

												<h1>Add	New	Book	Details</h1>	

												<table	border="1"	cellpadding="8">	

												<form	action="hybrid:SaveBookDetails"	method="GET">	

												<input	name="id"	type="hidden"	value="@Model.Id"	/>	

												<tr>	

												<td>Title:	

														<input	name="Title"	value="@Model.Title"	/></td>	

												<tr>	

												<td>Author:	

														<input	name="Author"	value="@Model.Author"	/></td>	

												<tr>	

												<td>Book	ISBN:	

														<input	name="ISBN"	value="@Model.Isbn"	/></td>	

												<tr>	

												<td>Synopsis:	

																<textarea	name="Synopsis"	rows="5"	cols="40">	

																@Model.Synopsis	

																</textarea>

												</td>	

												<tr>	

												<td	colspan="8">	

															<input	type="submit"	name="Button"	value="Save"/>	

															<input	type="submit"	name="Button"	value="Cancel"/>	

												</td>	

												</tr>	

												</form>	

								</table>	

								</body>	

								</html>	

In	the	preceding	code	snippet,	we	defined	the	HTML	layout	information	that	will	be	used	by	our
BookLibraryAdd	Razor	template.	We	firstly	specified	that	we	are	using	the	BookLibrary.iOS
namespace,	so	that	we	can	have	access	to	our	database	model	as	specified	by	the	@model
directive.	We've	already	explained	that	this	must	be	the	very	first	line	preceding	the	<html>	tag
within	a	Razor	template	file.

Next,	we	set	up	a	<form	action	tag	so	that	when	the	form	gets	submitted,	the	Save	or	Cancel
buttons	are	pressed,	our	WebViewController.cs	class	will	be	called,	and	the	appropriate	action
will	take	place.	We	specify	the	hybrid	tag	here	again	to	identify	if	the	URL	is	not	our	own	custom
scheme,	and	will	just	let	the	WebView	load	the	URL	as	usual.

Creating	and	implementing	the	BookLibraryEdit
Razor	template
In	the	previous	section,	we	created	and	implemented	the	BookLibraryAdd	Razor	template	that
will	be	used	to	allow	the	user	to	add	new	book	entries	to	the	BookLibrary	application.	Our	next
step	is	to	begin	creating	the	Razor	template	that	will	allow	the	user	to	edit	an	existing	book	and
save	this	back	to	our	database	model.

Let's	begin	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Views	folder,	by	choosing	Add	|	NewFile...,	as	you	did
when	creating	the	BookLibraryListing	in	the	previous	section	entitled	Creating	and
implementing	the	book	listing	main	page,	located	within	this	chapter.

2.	 Next,	choose	the	Preprocessed	Razor	Template	option,	located	within	the	Text
Templating	section,	and	enter	in	BookLibraryEdit.

3.	 Next,	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	empty
Razor	template	file.

Our	next	step	is	to	start	to	implement	the	code	required	for	our	BookLibraryEdit	Razor
template,	by	performing	the	following	steps:

Ensure	that	the	BookLibraryEdit.cshtml	file	is	displayed	within	the	code	editor,	and	enter	in
the	following	code	snippet:

								@using	BookLibrary	

								@model	BookItem	

								<html>	

								<head>	

												<link	rel="stylesheet"	href="style.css"	/>	

								</head>	

								<body>	

												<h1>Edit	Book	Details</h1>	

												<table	border="1"	cellpadding="8">	

												<form	action="hybrid:SaveBookDetails"	method="GET">	

												<input	name="id"	type="hidden"	value="@Model.Id"	/>	

																<tr>	

																<td>Title:	

																<input	name="Title"	value="@Model.Title"	/></td>	

																<tr>	

																<td>Author:	

																<input	name="Author"	value="@Model.Author"	/></td>	

																<tr>	

																<td>Book	ISBN:	

																<input	name="ISBN"	value="@Model.Isbn"	/></td>	

																<tr>	

																<td>Synopsis:	

																<textarea	name="Synopsis"	rows="5"	cols="40">	

																			@Model.Synopsis	

																			</textarea></td>	

																<tr>	

																<td	colspan="8">	

																<input	type="submit"	name="Button"	value="Save"/>	

																<input	type="submit"	name="Button"	value="Cancel"/>	

																@if	(Model.Id	>	0)	{	

																<input	type="submit"	name="Button"	value="Delete"/>	

																}	

																</td>	

																</tr>	

												</form>	

								</table>	

								</body>	

								</html>		

In	the	preceding	code	snippet,	we	define	the	HTML	layout	information	that	will	be	used	by	our
BookLibraryEdit	Razor	template.	We	firstly	specify	that	we	are	using	the	BookLibrary.iOS
namespace,	so	that	we	can	have	access	to	our	database	model	as	specified	by	the	@model
directive,	which	and	we	have	said	that	this	must	be	the	very	first	line	preceding	the	<html>	tag
within	a	Razor	template	file.

Next,	we	set	up	a	<form	action	tag,	so	that	when	the	form	gets	submitted	the	Save	or	Cancel
buttons	are	pressed,	our	WebViewController.cs	class	will	be	called,	and	the	appropriate	action
will	take	place.	We	specify	the	hybrid	tag	here	again	to	identify	if	the	URL	is	not	our	own	custom
scheme,	and	will	just	let	the	WebView	load	the	URL	as	usual.	You	will	notice	that	this
implementation	is	quite	similar	to	that	of	our	BookLibraryAdd.	The	only	thing	that	this	Razor
template	does	differently,	is	if	we	have	a	value	for	our	book	id,	we	display	the	Delete	button	so
that	the	user	can	choose	to	delete	the	book	entry.

Note

The	Android	version	of	the	Razor	templates	are	available	in	the	companion	source	code	for	this
book.

Creating	and	implementing	the
WebViewController	class
In	the	previous	section,	we	successfully	created	and	implemented	each	of	our	Razor	templates
that	will	be	used	by	our	BookLibrary	application.	Our	next	step	is	to	begin	implementing	the
code	for	our	application,	that	will	be	responsible	for	interacting	with	our	Razor	templates,	and
handling	the	actions	associated	with	each	model.	It	will	use	our	BookDatabase	class,	to	handle
the	performance	of	all	the	database	actions	for	our	BookLibrary	application.

Let's	begin	by	performing	the	following	steps:

1.	 Ensure	that	the	WebViewController.cs	file	is	displayed	within	the	code	editor	window,
and	then	enter	in	the	following	highlighted	code	sections,	as	shown	in	the	following	code
snippet:

								//	

								//		WebViewController.cs	

								//		Web	Container	for	representing	Razor	Templates

												within	a	Web	View	

								//	

								//		Created	by	Steven	F.	Daniel	on	20/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Linq;	

								using	Foundation;	

								using	UIKit;	

								using	System.Collections.Specialized;		

	

	

								namespace	BookLibrary	

								{	

													public	partial	class	WebViewController	:

															UIViewController	

													{	

																	static	bool	UserInterfaceIdiomIsPhone	

																{	

																				get	{	return	

UIDevice.CurrentDevice.UserInterfaceIdiom

																						==		UIUserInterfaceIdiom.Phone;	}	

																}	

2.	 Next,	we	declare	a	webView	object	that	will	point	to	our	UIWebView	instance,	and	then
declare	our	WebViewController()	class	constructor	method	that	will	be	instantiated	from
our	AppDelegate	class,	as	you	will	see	once	we	begin	implementing	the	necessary	changes.

3.	 Enter	in	the	following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								UIWebView	webView;

								public	WebViewController()

									{

									}	

								protected	WebViewController(IntPtr	handle)	:	base(handle)	

								{	

												//	Note:	this	constructor	should	not	contain	any		

												//	initialization	logic.	

								}	

	

								public	override	void	ViewDidLoad()	

								{	

												base.ViewDidLoad();	

4.	 Then,	we	define	and	specify	the	screen	dimensions	that	we	would	like	our	webView	to
contain.	In	this	case,	we	set	this	to	take	up	the	whole	region	of	our	screen	and	then	add	this	to
our	existing	view	container.	In	the	next	step,	we	call	the	GetItems	instance	method	on	our
BookLibraryDB.Database	to	return	all	existing	book	entries	within	the	database,	and
assign	this	to	our	model.

5.	 In	the	next	step,	we	specify	the	BookLibraryListing	Razor	template,	and	pass	in	the	model
that	will	be	used	to	populate	the	ViewModel.	Next,	we	call	the	GenerateString()	method
on	our	template,	to	execute	the	template	within	the	main	application	bundle	and	return	the
output	as	a	string,	and	then	load	this	within	our	webView,	using	the	LoadHtmlString
method:

												webView	=	new	UIWebView(UIScreen.MainScreen.Bounds);

												View.Add(webView);	

	

												//	Intercept	URL	loading	to	handle	native	calls	from		

												//	browser	

												webView.ShouldStartLoad	+=	HandleShouldStartLoad;	

	

												//	Render	the	view	to	use	our	BookList.cshtml	file

													var	model	=	BookLibraryDB.Database.GetItems().ToList();

													var	template	=	new	BookLibraryListing()	

															{	Model	=	model	};

													var	page	=	template.GenerateString();	

	

												//	Load	the	rendered	HTML	into	the	view	with	a	base	URL		

												//	that	points	to	the	root	of	the	bundled	Resources		

												//	folder	

												webView.LoadHtmlString(page,	NSBundle.MainBundle.BundleUrl);	

	

												//	Perform	any	additional	setup	after	loading	the	view,		

												//	typically	from	a	nib.	

								}	

	

								public	override	void	DidReceiveMemoryWarning()	

								{	

												base.DidReceiveMemoryWarning();	

												//	Release	any	cached	data,	images,	etc	that	aren't		

												//	in	use.	

								}	

	

								bool	HandleShouldStartLoad(UIWebView	webView,	NSUrlRequest		

											request,	UIWebViewNavigationType	navigationType)	

								{	

												//	If	the	URL	is	not	our	own	custom	scheme,	just		

												//	let	the	webView	load	the	URL	as	usual	

												const	string	scheme	=	"hybrid:";	

	

												if	(request.Url.Scheme	!=	scheme.Replace(":",	""))	

																return	true;	

	

												//	This	handler	will	treat	everything	between	the		

												//	protocol	and	"?"	as	the	method	name.	The	querystring	

												//	has	all	of	the	parameters.	

												var	resources	=	request.Url.ResourceSpecifier.Split('?');	

												var	method	=	resources[0];	

												var	parameters	=	System.Web.HttpUtility.ParseQueryString(

														resources[1]);	

6.	 Next,	we	create	a	switch	statement	to	handle	the	type	of	method	operation	that	we	obtained
from	the	Razor	template	directly	after	the	hybrid:	tag,	and	handle	accordingly:

												switch	(method)

												{

																case	"CreateNewBook":

																				CreateNewBook(webView);

																				break;

																case	"EditBookDetails":

																				EditBookDetails(webView,	parameters);

																				break;

																case	"SaveBookDetails":

																				SaveBookDetails(webView,	parameters);

																				break;

																default:

																				//	Cases	not	covered	are	handled	here.

																				break;

												}

												return	false;	

								}	

7.	 Then,	we	need	to	create	the	CreateNewBook()	instance	method	that	will	be	responsible	for
handling	the	creation	of	our	new	book	entry.	This	method	accepts	the	name	of	the	webView	to

display	its	content	and	we	specify	the	BookLibraryAdd	Razor	template,	and	pass	in	the
model	that	will	be	used	to	populate	the	ViewModel.	Next,	we	call	the	GenerateString()
method	on	our	template,	to	execute	the	template	within	the	main	application	bundle	and
return	the	output	as	a	string,	and	then	load	this	within	our	webView,	using	the
LoadHtmlString	method:

								///	<summary>

								///	Handles	the	creation	of	our	new	book	entry.

								///	</summary>

								///	<param	name="webView">Web	view.</param>

								void	CreateNewBook(UIWebView	webView,										

													NameValueCollection	parameters)

								{

												var	template	=	new	BookLibraryAdd()

																{Model	=	new	BookItem()};

												var	page	=	template.GenerateString();

												webView.LoadHtmlString(page,	

																		NSBundle.MainBundle.BundleUrl);

									}

8.	 Next,	we	need	to	create	the	EditBookDetails()	instance	method	that	will	be	responsible
for	handling	the	editing	of	our	book	entry.	This	method	accepts	the	name	of	the	webView	to
display	its	content	as	well	as	any	parameters.	Next,	we	specify	the	BookLibraryEdit	Razor
template,	and	pass	in	the	model	as	well	as	the	id	value	for	the	selected	book	entry	to	be
used	to	populate	the	ViewModel.	Next,	we	call	the	GenerateString()	method	on	our
template,	to	execute	the	template	within	the	main	application	bundle	and	return	the	output	as
a	string,	and	then	load	this	within	our	webView,	using	the	LoadHtmlString	method:

								///	<summary>

								///	Handles	the	editing	of	our	book	details.

								///	</summary>

								///	<param	name="webView">Web	view.</param>

								///	<param	name="parameters">Parameters.</param>

								void	EditBookDetails(UIWebView	webView,	

								System.Collections.Specialized.NameValueCollection	parameters)

								{

												var	model	=	BookLibraryDB.Database.GetItem(

												Convert.ToInt32(parameters["Id"]));

												var	template	=	new	BookLibraryEdit()	{	Model	=	model	};

												var	page	=	template.GenerateString();

												webView.LoadHtmlString(page,

																		NSBundle.MainBundle.BundleUrl);

								}

9.	 Then,	we	need	to	create	the	SaveBookDetails()	instance	method	that	will	be	responsible
for	handling	the	saving	of	our	book	entry.	This	method	accepts	the	name	of	the	webView	to
display	its	content	as	well	as	any	parameters.	Next,	we	grab	the	name	of	the	button	that	we
pressed	from	the	relevant	Razor	template	and	use	a	switch	statement	to	handle	the	type	of
button	operation	and	handle	accordingly.	Once	the	operation	has	completed	successfully,
we	return,	and	load	the	BookLibraryListing	page	within	the	webView	container:

								///	<summary>

								///	Saves	the	book	details	to	the	SQLite	BookDetails	Database.

								///	</summary>

								///	<param	name="webView">Web	view.</param>

								///	<param	name="parameters">Parameters.</param>

								void	SaveBookDetails(UIWebView	webView,	

								System.Collections.Specialized.NameValueCollection	parameters)

								{

												//	Points	to	our	Edit	Book	Details	HTML	page.

												var	button	=	parameters["Button"];

												switch	(button)

												{

																case	"Save":

																				SaveDetailsToDatabase(parameters);

																				break;

																case	"Delete":

																				DeleteBookDetails(parameters);

																				break;

																case	"Cancel":

																				break;

																default:

																				//	Cases	not	covered	are	handled	here.

																				break;

												}

												var	model	=	BookLibraryDB.Database.GetItems().ToList();

												var	template	=	new	BookLibraryListing()	{	Model	=	model	};

												webView.LoadHtmlString(template.GenerateString(),	

												NSBundle.MainBundle.BundleUrl);	

								}

10.	 Next,	we	need	to	create	the	SaveDetailsToDatabase()	instance	method	that	will	be
responsible	for	handling	the	saving	of	our	book	entry	to	the	SQLite	database.	This	method
accepts	a	list	of	parameters	that	have	been	entered	within	the	BookLibraryAdd	or
BookLibraryEdit	Razor	template	screens,	and	creates	a	BookItem	database	model.	This
then	gets	passed	to	the	SaveItem	method	that	our	BookLibraryDB	wrapper	class	calls	the
BookDatabase	class:

								///	<summary>

								///	Saves	the	book	details	to	our	SQLite	database.

								///	</summary>

								///	<returns>The	details	to	database.</returns>

								///	<param	name="parameters">Parameters.</param>

								void	SaveDetailsToDatabase(System.Collections.Specialized.NameV			

								alueCollection	parameters)

								{

												var	book	=	new	BookItem

												{

																id	=	Convert.ToInt32(parameters["Id"]),

																title	=	parameters["Title"],

																author	=	parameters["Author"],

																isbn	=	parameters["Isbn"],

																synopsis	=	parameters["Synopsis"]

												};

												BookLibraryDB.Database.SaveItem(book);

								}

11.	 Then,	we	need	to	create	the	DeleteBookDetails()	instance	method	that	will	be

responsible	for	handling	the	saving	of	our	book	entry	to	the	SQLite	database.	This	method
accepts	a	list	of	parameters	that	have	been	entered	within	the	BookLibraryEdit	Razor
template	screen,	and	passes	the	id	of	the	book	entry	to	the	DeleteItem	method	that	our
BookLibraryDB	wrapper	class	calls	the	BookDatabase:

				///	<summary>

				///	Handle	when	the	Delete	button	has	been	pressed	

				///	</summary>

				///	<returns>The	book	details.</returns>

				///	<param	name="parameters">Parameters.</param>

void	DeleteBookDetails(System.Collections.Specialized.NameValue

		Collection	parameters)

				{

								BookLibraryDB.Database.DeleteItem(Convert.ToInt32(

								parameters["Id"]));

				}

}	

Now	we	have	successfully	added	the	necessary	code	to	our	WebViewController.cs	class
to	allow	it	to	communicate	with	our	Razor	templates	when	book	entries	have	been	created,
updated,	retrieved,	deleted,	and	saved.

Note

The	Android	version	of	the	WebViewController.cs	class	is	available	in	the	companion
source	code	for	this	book.

12.	 Next,	we	need	to	initialize	our	books	library	SQLite	library	database	within	each	of	our
platform-specific	start-up	classes	(for	example,	AppDelegate.cs	for	iOS	and
MainActivity.cs	for	Android).

13.	 Ensure	that	the	AppDelegate.cs	file	is	displayed	within	the	code	editor	window,	and	then
enter	in	the	following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								using	System;	

								using	System.IO;	

								using	Foundation;	

								using	UIKit;	

								using	SQLite;

								namespace	BookLibrary	

								{	

												//	The	UIApplicationDelegate	for	the	application.

															This	class		

												//	is	responsible	for	launching	the	User	Interface	of	the	

												//	application,	as	well	as	listening	

															(and	optionally	responding)		

												//	to	application	events	from	iOS.	

													[Register("AppDelegate")]	

												public	class	AppDelegate	:	UIApplicationDelegate	

												{	

																//	class-level	declarations	

																public	override	UIWindow	Window	

																{	

																				get;	

																				set;	

																}	

	

								public	override	bool	FinishedLaunching(UIApplication

	

															application,	NSDictionary	launchOptions)

								{

												//	Override	point	for	customization	after	application

	

												//	launch.	If	not	required	for	your	application	you	can

												//	safely	delete	this	method

												//	create	a	new	window	instance	based	on	the	screen	size

												Window	=	new	UIWindow(UIScreen.MainScreen.Bounds);

												//	Declare	the	name	to	use	for	our	database	name

												var	sqliteFilename	=	"BookLibrary.db";

												string	documentsPath	=	Environment.GetFolderPath(

														Environment.SpecialFolder.Personal);

												string	libraryPath	=	Path.Combine(documentsPath,	"..",

														"Library");

												var	databasePath	=	Path.Combine(libraryPath,	sqliteFilename);

												//	Set	a	connection	to	our	database

													var	databaseConn	=	new	SQLiteConnection(databasePath);

												BookLibraryDB.SetDatabaseConnection(databaseConn);

												//	Set	our	RootViewController	to	be	the	instance	of

	

												//	our	BookViewController	class	and	make	it	visible.

												Window.RootViewController	=	new	WebViewController();

												Window.MakeKeyAndVisible();

												return	true;	

								}	

								...	

								...	

								...	

							}	

In	the	preceding	code	snippet,	we	began	by	importing	both	the	SQLite	and	System.IO
classes,	and	then	modified	the	FinishedLaunching	method	to	create	a	new	Window	instance

based	on	the	screen	size	of	the	device.	Since	we	have	specified	that	we	want	our	project	to
work	on	both	iPad	and	iPhone	devices,	this	will	take	up	the	full	screen	dimensions.

Next,	we	declared	the	name	to	use	for	our	database	name	and	specified	the	location	of	where	to
save	the	BookLibrary.db	database	to,	as	determined	by	the	databasePath	string.	In	our	next
step,	we	set	up	a	connection	to	our	database,	and	then	set	the	RootViewController	to	be	the
instance	of	our	BookViewController	class,	before	finally	making	this	become	visible	on	screen.

Note

The	Android	version	of	the	MainActivity.cs	class	is	available	in	the	companion	source	code
for	this	book.

Updating	the	book	library	Cascading	Style	Sheet	(CSS)
In	this	section,	we	need	to	make	some	final	changes	to	the	styles.css	file.	This	file	is
essentially	a	CSS,	and	any	Razor	templates	that	utilize	this	style	sheet	will	inherit	everything	that
it	contains.	We	will	basically	be	making	some	minor	changes	to	the	body	or	our	HTML	pages,
applying	padding	to	margins,	setting	font	sizes,	and	colors	of	web	links	when	they	are	pressed.

Let's	begin	by	performing	the	following	step:

1.	 Ensure	that	the	Style.css	file	is	displayed	within	the	code	editor	window,	and	then	enter	in
the	following	highlighted	code	sections,	as	shown	in	the	following	code	snippet:

								/*	This	is	a	minimal	style	sheet	intended	to	demonstrate

									how	to	include	static	content	in	your	hybrid	app.

										Other	static	content,	such	as	javascript	files	and	images,

									can	be	included	in	this	same	folder	(Resources	on	iOS

									or	Assets	on	Android),	with	the	same	Build	Action

									(BundleResource	on	iOS	or	AndroidAsset	on	Android),		

										to	be	accessible	from	a	path	starting	at	the	root

									of	your	hybrid	application.		*/	

	

								#page	{	

													margin-top:10px;	

								}	

								html,

								body	{

										margin:	7px;

										padding:	0px;

										border:	0px;

										color:	#000;

										background:	#ffffe0;

}

html,	body,	p,	th,	td,	li,	dd,	dt	

{

										font:	1em	Arial,	Helvetica,	sans-serif;

								}

								h1	{

										font-family:	Arial,	Helvetica,	sans-serif;

										font-size:	18;

}

a:link	{

	

											color:	#00f;	

}

a:visited	{

	

													color:	#009;	

}

a:hover	{

	

															color:	#06f;	

}

a:active	{

	

																	color:	#0cf;

									

}	

Now	that	we	have	finished	building	all	the	necessary	components	for	our	BookLibrary
application,	our	next	step	is	to	finally	build	and	run	the	BookLibrary	application	within	the	iOS
simulator.	When	compilation	completes,	the	iOS	Simulator	will	appear	automatically	and	the
BookLibrary	application	will	be	displayed,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	our	Book	Library
Database	Listing	page.	Since	we	don't	have	any	details	added	yet,	this	will	show	up	as	blank,
and	you	must	press	the	Add	New	Book	button	to	display	the	Add	New	Book	Details	screen:

The	preceding	screenshot	shows	the	updated	Book	Library	Database	Listing	Razor	template
page	ViewModel	with	the	information	saved	from	the	previous	screen.	Clicking	on	the	Edit	link
will	display	the	Edit	Book	Details	screen	with	all	the	previously	entered	book	details	populated.

Summary
In	this	chapter,	you	learned	about	the	Razor	templating	engine	and	how	you	can	use	it	to	create	a
hybrid	mobile	solution.	You	also	learned	how	to	create	and	use	models	within	your	application,
and	have	the	information	saved	to	an	SQLite	database,	and	retrieved	later.	Finally,	you	learned
how	you	can	use	JavaScript	code	using	C#	to	execute	method	calls.

In	the	next	chapter,	you'll	learn	how	to	create	and	consume	a	RESTful	web	service	API,	so	that	it
can	be	used	within	the	TrackMyWalks	application	to	save	and	retrieve	information	entered	within
the	ViewModels.

Chapter	7.	Incorporating	API	Data	Access	Using
Microsoft	Azure	App	Services
In	the	previous	chapter,	we	learned	about	the	Razor	templating	engine	and	how	you	can	use	it	to
create	a	hybrid	mobile	solution.	You	learned	how	to	create	and	use	models	within	your
application,	and	how	to	save	the	information	to	a	SQLite	database	and	retrieve	it	later.	Towards
the	end	of	the	chapter,	you	learned	how	you	can	use	JavaScript	code	using	C#	to	execute	method
calls.

Up	until	this	point,	you	have	been	building	the	TrackMyWalks	app	with	static	walk	trail
information	that	has	been	hard-coded	within	the	TrackMyWalks	app.	However,	in	the	real	world,
it	is	very	rare	that	your	app	will	depend	purely	on	local	static	data,	and	you	will	need	to	source
your	information	from	a	remote	data	source,	typically	using	a	RESTful	API.	In	some	cases,	your
app	may	even	communicate	with	a	third-party	API,	for	example	Facebook.

In	this	chapter,	you'll	learn	how	you	can	use	Microsoft	Azure	App	services	to	create	your	very
first	live,	cloud-based	backend	HTTP	web	service	to	handle	all	the	communication	between	the
cloud	and	the	app.	You	will	also	learn	how	to	create	a	DataService	API	that	will	allow	the	app
to	consume	the	API	so	that	we	can	retrieve,	store,	and	delete	walk	trail	information	from	the
cloud	all	within	the	TrackMyWalks	app.

This	chapter	will	cover	the	following	points:

Gain	an	understanding	of	what	Microsoft	Azure	App	services	are
Setting	up	the	TrackMyWalks	app	within	the	Microsoft	Azure	portal
Adding	the	HttpClient	and	JSON.Net	NuGet	packages	to	the	solution
Creating	the	TrackMyWalks	base	HTTP	service
Creating	the	TrackMyWalks	API	data	service
Updating	the	TrackMyWalksViewModels	to	use	the	API	data	service
Running	the	TrackMyWalks	app	within	the	simulator

Setting	up	our	TrackMyWalks	app	using
Microsoft	Azure
In	this	section,	we	will	look	at	the	steps	required	to	set	up	the	TrackMyWalks	application	within
Microsoft	Azure.	Nearly	all	mobile	applications	that	you	will	develop	will	require	the	ability	to
communicate	with	an	API	to	store,	retrieve,	update,	and	delete	information.	This	API	can	be	an
existing	one	that	someone	within	your	organization	has	already	created,	but	sometimes	you	will
need	to	create	your	own	API	for	your	application.

Microsoft	Azure,	or	("Azure"	as	it's	best	known	for),	is	essentially	a	cloud-based	platform	that
was	created	by	Microsoft	back	in	February	2010.	Azure	was	designed	for	building,	deploying,
and	managing	several	applications	and	their	associated	services,	such	as	SaaS,	PaaS,	and	IaaS.

Each	of	the	Microsoft	Azure	specific	associated	services	are	explained	in	the	following	table:

Azure
service Description

SaaS Software	as	a	Service	provides	software	licensing	and	delivery	models	where
software	is	licensed	on	a	subscription	basis	and	is	centrally	hosted.

PaaS
Platform	as	a	Service	provides	customers	with	a	platform	to	develop,	run,	and	manage
applications	without	the	complexities	of	maintaining	the	infrastructure	when	developing
and	launching	an	app.

IaaS Infrastructure	as	a	Service	provides	virtualized	computing	resources	over	the	Internet.

One	of	the	main	benefits	of	using	Microsoft	Azure	Mobile	Apps	is	that	they	provide	you	with	a
very	quick	and	easy	way	to	get	a	fully	functional	backend	service	up	and	running	within	a	matter
of	minutes.	Before	we	can	proceed	with	setting	up	and	creating	our	TrackMyWalks	database
within	the	cloud,	you	will	need	to	have	a	Microsoft	Azure	account.	If	you	don't	already	have	one,
you	can	create	one	for	free	at	https://azure.microsoft.com/en-us/pricing/free-trial/	.

Once	you	have	created	your	Microsoft	Azure	account,	you	will	need	to	log	into	the	Microsoft
Azure	portal	using	your	web	browser.	Let's	look	at	how	to	do	this,	by	performing	the	following
steps:

1.	 Launch	your	web	browser	with	the	following	URL	https://portal.azure.com/	and	log	in	to	the
Microsoft	Azure	portal	using	your	credentials.

2.	 Next,	from	the	main	Microsoft	Azure	portal	dashboard,	click	the	+	button	in	the	top-left	hand
corner	from	the	New	section,	and	select	the	Web	+	Mobile	option,	and	then	choose	the

https://azure.microsoft.com/en-us/pricing/free-trial/
https://portal.azure.com/

Mobile	App	option	as	shown	in	the	following	screenshot:

3.	 Then,	enter	in	TrackMyWalks	to	use	as	the	name	for	our	app	for	the	App	name	field.
4.	 Next,	either	choose	your	Subscription	type,	or	leave	the	default	of	Free	Trial.
5.	 Then,	provide	a	name	for	your	Resource	Group,	either	by	creating	a	new	one,	or	choosing

from	an	existing	one.
6.	 Next,	ensure	that	the	Pin	to	dashboard	option	has	been	selected,	so	that	you	can	have	your

Mobile	App	displayed	on	the	Microsoft	Azure	Dashboard.	This	is	particularly	useful,	and
provides	easy	access.

Now	that	we	have	successfully	created	our	Mobile	App	within	Microsoft	Azure,	our	next	step	is
to	begin	setting	up	the	database	that	will	allow	our	app	to	store	walk	entry	information.	Let's	look
at	how	we	can	achieve	this	with	the	following	steps:

1.	 From	the	Dashboard,	click	on	the	TrackMyWalks	service,	as	shown	in	the	following
screenshot:

2.	 Next,	choose	the	Data	connections	option	from	the	MOBILE	section	under	the
TrackMyWalks	App	Service	section,	as	shown	in	the	following	screenshot:

3.	 Then,	within	the	TrackMyWalks	-	Data	connections	screen,	click	on	the	+	Add	button,	to
display	the	Add	data	connection	screen,	as	shown	in	the	following	screenshot:

4.	 Next,	ensure	that	you	have	selected	SQL	Database	from	the	Type	dropdown,	and	proceed
to	configure	your	SQL	Database.

5.	 Then,	click	on	the	OK	button	to	save	your	changes	and	create	the	new	data	connection	for
our	TrackMyWalks	SQL	server	database.

Once	you	have	created	your	TrackMyWalks	mobile	app	and	SQL	database	within	Microsoft
Azure,	by	default,	your	database	won't	contain	any	database	tables	or	data.	Before	we	can	start
communicating	with	and	consuming	the	API	within	our	TrackMyWalks	app,	we	need	to	create	a
new	table	that	will	store	our	walk	trail	entries.

Let's	look	at	the	following	steps	to	achieve	this:

1.	 From	the	Dashboard,	click	on	the	TrackMyWalks	service,	then	choose	the	Easy	tables
option	from	the	MOBILE	section	under	the	TrackMyWalks	App	Service	section.

2.	 Next,	within	the	TrackMyWalks	-	Easy	tables	screen,	click	on	the	+	Add	button,	to	display
the	Add	a	table	screen,	as	shown	in	the	following	screenshot:

3.	 Then,	enter	in	WalkEntries	to	use	as	the	name	for	our	table	for	the	Name	field.
4.	 Next,	leave	the	default	permissions	that	have	been	set	for	our	Insert	permission,	Update

permission,	Delete	permission,	Read	permission,	and	Undelete	permission	dropdown
entries:

5.	 Then,	click	on	the	OK	button	to	save	your	changes,	and	your	new	WalkEntries	table	will	be
added	to	the	list	of	Easy	Tables	entries.

Note

Whenever	you	choose	the	Allow	anonymous	access	permission	during	the	creation	of	your
table,	you	are	essentially	making	the	API	available	without	providing	any	specific
authentication	headers	as	part	of	the	HTTP	request.

Before	we	can	start	making	calls	to	our	API	and	consuming	this	within	our	TrackMyWalks
app,	we'll	run	a	quick	check	to	see	if	our	API	endpoint	is	working	correctly.	This	is
achieved	by	issuing	a	GET	HTTP	request	using	the	command	line,	or	if	you'd	prefer,	you	can
use	a	REST	console	client.

6.	 Open	your	terminal	window,	and	type	in	the	following	statement	from	the	command	line	as
follows:

Last	login:	Sun	Nov	6	10:48:41	on	console

GENIESOFT-MAC-Mini:~	stevendaniel$	curl

								https://trackmywalks.azurewebsites.net/tables/

								walkentries	--header	"ZUMO-API-VERSION:2.0.0"

If	you	have	set	everything	up	correctly	within	the	Microsoft	Azure	portal,	you	should	receive
back	a	200	(Success)	status	code,	along	with	an	empty	collection	in	the	response	body	as
follows:

Last	login:	Sun	Nov	6	10:48:41	on	console

GENIESOFT-MAC-Mini:~	stevendaniel$	curl	

								https://trackmywalks.azurewebsites.net/tables/

								walkentries	--header	"ZUMO-API-VERSION:2.0.0"

[]	GENIESOFT-MAC-Mini:~	stevendaniel$	

Note

There	are	several	REST	console	clients	that	exist	for	you	to	choose	from,	if	you	don't
already	have	one	installed.	I	tend	to	use	Postman	for	handling	REST	APIs,	which	you	can
download	from	http://www.getpostman.com/.

Now	that	we	have	successfully	created	our	TrackMyWalks	API	and	WalkEntries	data	table
within	the	service,	we	can	begin	making	calls	to	our	API	and	receiving	those	response	messages
directly	back	from	the	API.	In	the	next	section,	we	will	begin	to	add	the	Json.Net	and
HttpClient	.NET	Framework	libraries	that	will	be	responsible	for	handling	the	REST	API
requests	to	save	and	retrieve	our	walk	entry	details.

http://www.getpostman.com/

Adding	the	Json.Net	NuGet	package	to	the	TrackMyWalks	app
Now	that	you	have	set	up	and	created	the	TrackMyWalks	database	within	the	Microsoft	Azure
platform,	our	next	step	is	to	add	the	Json.Net	NuGet	package	to	our	TrackMyWalks	Portable	Class
Library	solution.	The	Json.Net	package	is	a	high-performance	JSON	framework	for	the	.NET
platform	that	allows	you	to	serialize	and	deserialize	any	type	of	.NET	object	with	help	of	the
JSON	serializer.

When	we	start	to	incorporate	this	framework	within	our	TrackMyWalks	solution,	we	will	have
the	ability	of	performing	LINQ	to	JSON	capabilities	that	will	enable	us	to	create,	parse,	query,
and	modify	the	JSON	structure	that	we	receive	back	from	our	Microsoft	Azure	TrackMyWalks
database	table.

Let's	look	at	how	to	add	the	Json.Net	NuGet	package	to	our	TrackMyWalks	Portable	Class
Library	,	by	performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder	that	is	contained	within	the	TrackMyWalks	Portable
Class	Library	solution,	and	choose	Add	Packages...	menu	option,	as	shown	in	the	following
screenshot:

2.	 This	will	display	the	Add	Packages	dialog,	enter	in	Json.Net	within	the	search	dialog,	and
select	the	Json.Net	option	within	the	list,	as	shown	in	the	following	screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	NuGet	package	to	the	Packages	folder,
contained	within	the	TrackMyWalks	Portable	Class	Library	solution.

Now	that	you	have	added	the	Json.Net	NuGet	package,	our	next	step	is	to	add	the	HttpClient
framework	to	our	TrackMyWalks	Portable	Class	Library,	which	we	will	be	covering	in	the	next
section.

Adding	the	HttpClient	NuGet	package	to	the	TrackMyWalks
app
In	the	previous	section,	we	added	the	Json.Net	NuGet	package	to	our	TrackMyWalks	solution.
Our	next	step	is	to	add	the	HTTP	library	to	our	TrackMyWalks	solution	to	enable	it	to
communicate	with	an	API	over	HTTP.

Since	we	are	using	both	.NET	and	C#	to	build	our	Xamarin.Forms	application,	we	can	leverage
a	library	within	the	.NET	Framework	called	System.Net.Http.HttpClient.	This	HttpClient
framework	provides	us	with	a	mechanism	of	sending	and	receiving	data	using	standard	HTTP
methods,	such	as	GET	and	POST.

Let's	look	at	how	to	add	the	HttpClient	NuGet	package	to	our	TrackMyWalks	Portable	Class
Library,	by	performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder	that	is	contained	within	the	TrackMyWalks	Portable
Class	Library	solution,	and	choose	the	Add	Packages...	menu	option.	If	you	can't	remember
how	to	do	this,	you	can	refer	to	the	section	entitled	Adding	the	Json.Net	NuGet	package	to
the	TrackMyWalks	app	located	within	this	chapter.

2.	 This	will	display	the	Add	Packages	dialog.	Here,	enter	in	Http	within	the	search	dialog,
and	select	the	System.Net.Http	option,	as	shown	in	the	following	screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	NuGet	package	to	the	Packages	folder,
contained	within	the	TrackMyWalks	Portable	Class	Library	solution.

Now	that	you	have	added	both	the	Json.Net	and	System.Net.HttpNuGet	packages	to	our
solution,	we	can	begin	utilizing	these	framework	libraries	as	we	progress	throughout	this	chapter.

Updating	the	WalkEntries	model	to	use	the	Json.Net	framework
In	this	section,	we	will	begin	by	updating	the	WalkEntries	data	model	to	take	advantage	of	our
backend	service	calls,	when	we	create	these,	and	then	the	WalkDataService.cs	and
WalkWebService.cs	files	will	communicate	and	interact	with	our	Microsoft	Azure
TrackMyWalks	database	to	store,	delete,	and	retrieve	walk	entry	information.

Let's	now	start	to	modify	and	implement	the	code	required	for	our	WalkEntries	class	model,	by
performing	the	following	steps:

Ensure	that	the	WalkEntries.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections:

								//	

								//		WalkEntries.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

									using	System;	

									using	Newtonsoft.Json;

								namespace	TrackMyWalks.Models	

								{	

											public	class	WalkEntries	

										{	

												[JsonProperty("id")]

												public	string	Id	{	get;	set;	}	

												public	string	Title	{	get;	set;	}	

												public	string	Notes	{	get;	set;	}	

												public	double	Latitude	{	get;	set;	}	

												public	double	Longitude	{	get;	set;	}	

												public	double	Kilometers	{	get;	set;	}	

												public	string	Difficulty	{	get;	set;	}	

												public	double	Distance	{	get;	set;	}	

												public	Uri	ImageUrl	{	get;	set;	}	

										}	

								}	

In	the	preceding	code	snippet,	we	have	successfully	modified	the	database	model	that	will	be
used	to	store	walk	entry	information	within	our	Microsoft	Azure	database.	You	will	notice	that
we	have	defined	a	[JsonProperty("id")]	item,	as	well	as	a	string	property	named	Id	that
will	serve	as	a	unique	primary	key	for	each	record	that	we	store	within	the	database.	We	have
also	updated	our	ImageUrl	property	to	include	the	Uri	type	that	will	be	used	to	convert	the	URL
entered	within	the	walk	entry	page,	so	that	it	is	stored	correctly	within	the	database.

Note

If	you	are	interested	in	finding	out	more	information	about	the	JsonProperty	and	the
Newtonsoft.Json	classes,	please	refer	to	the	Json.NET	documentation	located	at

http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Serialization_JsonProperty.htm	.

http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Serialization_JsonProperty.htm

Creating	the	HTTP	web	service	class	for	the
TrackMyWalks	app
In	the	previous	section,	we	successfully	modified	the	WalkEntries	database	model	that	will	be
used	by	our	TrackMyWalks	application.	This	will	allow	us	to	have	a	live	backend	service	that
will	enable	our	application	to	communicate	over	HTTP	so	that	it	can	send	requests	to	the	API	to
retrieve,	add,	and	delete	trail	walk	entries.	In	this	section,	we	will	need	a	means	for	our	app	to
communicate	with	our	API	over	HTTP,	and	therefore	it	will	require	an	HTTP	library.

Since	we	are	using	.NET	and	C#,	we	can	use	a	library	within	the	.NET	Framework,	called
System.Net.Http.HttpClient.	This	Framework	provides	a	mechanism	for	allowing	our	app	to
send	and	receive	data	using	standard	HTTP	methods	such	as	GET	and	POST.	We	will	begin	by
creating	a	base	service	class	within	our	TrackMyWalks	Portable	Class	Library	that	will	be
responsible	for	handling	all	the	HTTP	communications	for	us.

Let's	now	start	to	implement	the	code	required	for	our	WalkWebService	base-class	model,	by
performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Services	folder,	by	choosing	Add	|	New	File...,	as	you	did
in	the	section	entitled,	Creating	the	navigation	service	interface	for	the	TrackMyWalks	app
within	Chapter	3	,	Navigating	within	the	MVVM	Model	-	The	Xamarin.Forms	Way.

2.	 Then,	enter	in	WalkWebService	for	the	name	of	the	new	class	that	you	want	to	create,	and
click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	WalkWebService.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	code	snippet:

								//	

								//		WalkWebService.cs	

								//		TrackMyWalks	Http	Web	Service	Class	

								//	

								//		Created	by	Steven	F.	Daniel	on	30/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	System.Collections.Generic;	

												using	System.Net.Http;	

												using	System.Text;	

												using	System.Threading.Tasks;	

												using	Newtonsoft.Json;	

	

												namespace	TrackMyWalks.Services	

												{	

																public	abstract	class	WalkWebService	

																{	

4.	 Then,	we	need	to	create	a	protected	async	method	called	SendRequestAsync<T>	that
accepts	a	Uri	named	url	as	well	a	HttpMethod	named	httpMethod,	and	finally	a
Dictionary<string,	string>	object	named	headers,	as	well	as	an	object	named

requestData,	that	will	be	used	to	construct	the	HTTP	request.	Proceed	and	enter	in	the
following	code	snippet:

								protected	async	Task<T>	SendRequestAsync<T>(

										Uri	url,	HttpMethod	httpMethod	=	null,

										IDictionary<string,	string>	headers	=	null,

										object	requestData	=	null)	

								{	

5.	 Next,	we'll	set	up	the	result	to	the	default(T)	type	that	will	return	a	default	value	to	a
parameterized	type	since	we	don't	know	what	our	result	will	contain	at	this	point.	We'll	then
declare	our	method	variable	to	contain	the	GET	HttpMethod.	This	will	be	used	to	return	the
content	and	then	create	a	request	variable	that	will	set	up	an	instance	of	our
HttpRequestMessage	class	and	then	serialize	our	requested	data	to	our	request	object	and
return	the	information	back	in	Json	format	as	defined	by	the	application/json	type.
Proceed	and	enter	in	the	following	code	snippet:

								var	result	=	default(T);	

								var	method	=	httpMethod	??	HttpMethod.Get;	

								var	request	=	new	HttpRequestMessage(method,	url);	

	

								//	Serialize	our	request	data	

								var	data	=	requestData	==	null	?	null	:		

										JsonConvert.SerializeObject(requestData);	

												

								if	(data	!=	null)	

								{	

											//	Add	the	serialized	request	data	to	our	request		

											//	object.	

											request.Content	=	new	StringContent(data,	

													Encoding.UTF8,	"application/json");	

									}	

6.	 Then,	we'll	begin	iterating	through	our	headers	collection	to	add	each	of	our	specific
headers	to	the	request	object	that	will	be	sent	along	with	the	HttpRequestMessage	class.
Proceed	and	enter	in	the	following	code	snippet:

								//	Add	each	of	the	specified	headers	to	our	request	

								if	(headers	!=	null)	

								{	

												foreach	(var	h	in	headers)	

												{	

																request.Headers.Add(h.Key,	h.Value);	

												}	

								}	

7.	 Next,	we'll	set	up	and	declare	a	handler	variable	that	instantiates	an	instance	of	the
HttpClientHandler	class	which	is	essentially	a	HttpMessageHandler	that	contains	a
common	set	of	properties	that	work	across	the	HttpWebRequest	API.	In	the	next	step,	we'll
declare	a	client	variable	that	instantiates	our	HttpClient	class	that	accepts	our	handler
variable	to	begin	sending	our	request	over	HTTP.

8.	 Next,	we'll	declare	our	response	object	that	performs	a	SendAsync	and	accepts	our
request	object,	along	with	our	HttpCompletionOption.ResponseContentRead	that

completes	after	reading	the	entire	response	content.
9.	 Finally,	we'll	perform	a	comparison	check	to	see	if	we	have	successfully	read	our	content

and	have	a	response	code	of	200	(Success)	returned,	before	deserializing	our	content	into
Json	format,	using	the	JsonConvert	method.	Proceed	and	enter	in	the	following	code
snippet:

								//	Get	a	response	from	our	Web	Service	

								var	handler	=	new	HttpClientHandler();	

								var	client	=	new	HttpClient(handler;

								var	response	=	await	client.SendAsync(request,		

										HttpCompletionOption.ResponseContentRead);	

	

												if	(response.IsSuccessStatusCode	&&		

												response.Content	!=	null)	

												{	

																var	content	=	await	response.Content.	

																														ReadAsStringAsync();	

																result	=	JsonConvert.DeserializeObject<T>(content);	

												}	

		

												return	result;	

									}	

								}	

							}	

Now	that	we	have	successfully	created	our	base	HTTP	service	class,	we	can	begin	to	use	this
within	our	ViewModels	as	well	as	our	WalkEntries	database	model,	by	creating	a	base	sub-
class	within	our	DataService	API	which	we	will	be	covering	in	the	next	section.

Note

If	you	are	interested	in	finding	out	more	information	about	the	HttpClientHandler	and
HttpClient	classes,	please	refer	to	the	Microsoft	developer	documentation	located	at
https://msdn.microsoft.com/en-us/library/system.net.http.httpclient(v=vs.118).aspx	.

https://msdn.microsoft.com/en-us/library/system.net.http.httpclient(v=vs.118).aspx

Creating	the	DataService	API	for	the
TrackMyWalks	app
In	the	previous	section,	we	created	a	WalkWebService	class	that	provides	us	with	a	means	of
sending	HTTP	requests	to	our	TrackMyWalks	Microsoft	Azure	database.	In	this	section,	we	will
begin	by	creating	a	data	service	class	that	will	allow	us	to	send	and	receive	responses	back	from
our	API,	in	Json	format	which	will	update	the	WalkEntries	database	model	so	our	application
can	use	this.

We	will	begin	by	creating	the	interface	for	our	data	service	that	can	be	used	to	communicate	with
each	of	the	ViewModels	that	our	TrackMyWalks	application	utilizes.	Let's	now	start	to	implement
the	code	required	for	our	IWalkDataService	base-class	model,	by	performing	the	following
steps:

1.	 Create	an	empty	interface	within	the	Services	folder.	If	you	can't	remember	how	to	do	this,
you	can	refer	to	the	section	entitled	Creating	the	navigation	service	interface	for	the
TrackMyWalks	app	within	Chapter	3	,	Navigating	within	the	MVVM	Model	-	The
Xamarin.Forms	Way.

2.	 Next,	enter	in	IWalkDataService	for	the	name	of	the	new	interface	that	you	want	to	create,
and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	file.

3.	 Then,	ensure	that	the	IWalkDataService.cs	file	is	displayed	within	the	code	editor,	and
enter	in	the	following	code	snippet:

								//	

								//		IWalkDataService.cs	

								//		TrackMyWalks	Data	Service	Interface	

								//	

								//		Created	by	Steven	F.	Daniel	on	30/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Threading.Tasks;	

								using	System.Collections.Generic;	

								using	TrackMyWalks.Models;	

	

								namespace	TrackMyWalks.Services	

								{	

												public	interface	IWalkDataService	

												{	

													Task	<IList<WalkEntries>>	GetWalkEntriesAsync();	

													Task	AddWalkEntryAsync(WalkEntries	entry);	

													Task	DeleteWalkEntryAsync(WalkEntries	entry);		

												}	

									}	

In	the	preceding	code	snippet,	we	begin	by	implementing	the	methods	that	will	be	required	to
retrieve,	update,	and	delete	our	WalkEntries	information.	The	GetWalkEntriesAsync	instance

method	uses	a	generic	type	which	is	used	to	restrict	the	WalkEntries	to	use	objects	of	the	IList
class.

The	AddWalkEntryAsync	instance	method	accepts	an	entry	parameter	that	contains	the	walk
entry	details	to	be	added	of	type	WalkEntries,	and	our	DeleteWalkEntryAsync	instance
method	accepts	an	entry	parameter	that	needs	to	be	deleted	from	our	database.	We	use	the	Task
class	to	essentially	handle	all	asynchronous	operations,	by	ensuring	that	the	asynchronous
methods	that	we	initiate	will	eventually	finish,	thus	completing	the	task	in	hand.

Creating	the	DataService	API	class	for	the
TrackMyWalks	app
In	the	previous	section,	we	created	our	data	service	base	interface	class	for	our	data	service,	and
we	defined	several	different	instance	methods	that	our	class	will	be	utilizing.	This	will
essentially	be	used	by	each	of	our	ViewModels	along	with	the	Views	(pages).	Let's	now	start	to
implement	the	code	required	for	our	WalkDataService	class,	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Services	folder,	by	choosing	Add	|	New	File...,	as	you	did
when	creating	the	DataService	interface	in	the	previous	section	entitled	Creating	the
DataService	API	for	the	TrackMyWalks	app	located	within	this	chapter.

2.	 Then,	enter	in	WalkDataService	for	the	name	of	the	new	class	that	you	want	to	create,	and
click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	WalkDataService.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		WalkDataService.cs	

								//		TrackMyWalks	API	Data	Service	Class	

								//	

								//		Created	by	Steven	F.	Daniel	on	30/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Collections.Generic;	

								using	System.Threading.Tasks;	

								using	System.Net.Http;	

								using	TrackMyWalks.Models;	

								using	Newtonsoft.Json;	

	

								namespace	TrackMyWalks.Services	

								{	

4.	 Next,	we	need	to	modify	our	WalkDataService	class	constructor,	so	that	it	can	inherit	from
both	our	WalkWebService	base-class	as	well	as	the	IWalkDataService	class:

								public	class	WalkDataService	:	WalkWebService,	IWalkDataService	

								{	

5.	 Next,	we'll	declare	two	private	class	properties,	_baseUri	and	_headers.	The	_baseUri
property	will	be	used	to	store	the	base	URL	and	the	_headers	property	of	the
IDictionary<string,	string>	type	that	will	be	used	to	store	the	header	information	that
we	want	to	pass	to	our	WalkWebService	class.

6.	 The	zumo-api-version	is	basically	a	special	header	value	that	is	used	by	the	HTTP	client
when	communicating	with	Microsoft	Azure	databases.	Proceed	and	enter	in	the	following
code	snippet.

								readonly	Uri	_baseUri;	

								readonly	IDictionary<string,	string>	_headers;	

	

								//	Our	Class	Constructor	that	accepts	the	Azure	Database	

								//	Uri	path		

								public	WalkDataService(Uri	baseUri)	

								{	

												_baseUri	=	baseUri;	

												_headers	=	new	Dictionary<string,	string>();	

												_headers.Add("zumo-api-version",	"2.0.0");	

								}	

7.	 Next,	we'll	implement	the	GetWalkEntriesAsync	instance	method	that	will	retrieve	all
WalkEntries	that	are	contained	within	our	database.	We'll	define	a	url	variable	that
constructs	a	new	Uri	object	using	our	_baseUri	URL	and	combining	this	with	our
walkEntries	database	table	within	the	tables	section	of	our	TrackMyWalks	Azure
database	and	call	the	SendRequestAsyncWalkWebService	base-class	instance	method.

8.	 We'll	pass	in	the	HttpMethod.Get	method	type	to	tell	our	base	class	that	we	are	ready	to
retrieve	our	WalkEntries.	Proceed	and	enter	in	the	following	code	snippet:

								//	API	to	retrieve	our	Walk	Entries	from	our	database		

								public	async	Task<IList<WalkEntries>>	GetWalkEntriesAsync()	

								{	

												var	url	=	new	Uri(_baseUri,	"/tables/walkentries");	

												return	await	SendRequestAsync<WalkEntries[]>	

												(url,	HttpMethod.Get,	_headers);	

								}	

9.	 Next,	we'll	implement	the	AddWalkEntryAsync	instance	method	that	will	add	walk	entry
information	to	the	walkEntries	table	contained	within	our	database.	We	define	a	url
variable	that	constructs	a	new	Uri	object	using	our	_baseUri	URL	and	combining	this	with
the	walkEntries	database	table	within	the	tables	section	of	our	TrackMyWalks	Azure
database	and	call	the	SendRequestAsyncWalkWebService	base-class	instance	method.

10.	 We'll	pass	in	the	HttpMethod.Post	method	type	that	will	tell	our	base	class	that	we	are
ready	to	submit	information	to	our	walkEntries	database	table.	Proceed	and	enter	in	the
following	code	snippet:

								//	API	to	add	our	Walk	Entry	information	to	the	database		

								public	async	Task<WalkEntries>	AddWalkEntryAsync(

										WalkEntries	entry)	

								{	

												var	url	=	new	Uri(_baseUri,	"/tables/walkentries");	

												await	SendRequestAsync<WalkEntries>(url,HttpMethod.Post,		

												_headers,	entry);	

								}	

11.	 Next,	we'll	implement	the	DeleteWalkEntryAsync	instance	method	that	will	permanently
delete	associated	walk	entry	information	from	our	walkEntries	table	contained	within	our
database.	We'll	define	a	url	variable	that	constructs	a	new	Uri	object	using	our	_baseUri
URL	and	combining	this	with	our	walkEntries	database	table,	and	pass	in	the	Id	value	of
our	selected	walk	entry	within	the	WalksPageListView.

12.	 We'll	then	call	the	SendRequestAsyncWalkWebService	base	class	instance	method.	We'll
pass	in	the	HttpMethod.Delete	method	type	that	will	tell	our	base	class	that	we	are	ready
to	permanently	delete	the	walk	entry	within	our	walkEntries	database	table.	Proceed	and

enter	in	the	following	code	snippet:

								//	API	to	delete	our	Walk	Entry	from	the	database	

								public	async	Task	DeleteWalkEntryAsync(WalkEntries	entry)	

								{	

												var	url	=	new	Uri(_baseUri,	string.Format("/tables/walken	

																														tries/{0}",	entry.Id));	

												await	SendRequestAsync<WalkEntries>(url,HttpMethod.Delete	

												,	_headers);	

								}		

							}	

						}		

In	the	preceding	code	snippet,	we	began	by	implementing	each	of	the	instance	methods	that	we
defined	within	our	IWalkDataService	interface	class.	We	used	the	SendRequestAsync	method
on	our	base	class,	and	passed	in	the	API	details,	along	with	the	HttpMethod	type,	and	the	zumo-
api-version	header	information.	You	will	have	noticed	that	we	passed	in	the	WalkEntries	data
model	object.	This	is	so	that	the	object	can	be	serialized	and	added	to	the	HTTP	request	message
content.

Note

If	you	are	interested	in	learning	more	HTTP,	please	refer	to	the	Hypertext	Transfer	Protocol	guide
located	at	https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol	.

The	HTTP	class	exposes	several	different	types	of	HTTP	methods	that	are	used	by	the
HttpMethod	class,	which	are	explained	in	the	following	table.

HTTP
methods Description

GET

This	type	tells	the	HttpMethod	class	protocol	that	we	are	ready	to	request	message
content	over	HTTP	to	retrieve	information	from	our	API,	and	return	this	information
back,	based	on	the	representation	format	specified	within	the	API.

POST
This	type	tells	the	HttpMethod	class	protocol	that	we	want	to	create	a	new	entry
within	our	table,	as	specified	within	our	API.

DELETE
This	type	tells	the	HttpMethod	class	protocol	that	we	want	to	delete	an	existing	entry
within	our	table,	as	specified	within	our	API.

Note

If	you	are	interested	in	learning	more	about	client	and	server	versioning	in	Mobile	Apps	and

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Mobile	Services,	please	refer	to	the	Microsoft	Azure	documentation	located	at
https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-client-and-server-
versioning/.

In	the	next	section,	we	will	update	our	WalkBaseViewModel	so	that	it	can	use	our	DataService
API	class,	and	initialize	our	Microsoft	Azure	TrackMyWalks	database.

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-client-and-server-versioning/

Updating	the	WalkBaseViewModel	to	use	our	DataService	API
In	the	previous	sections,	we	created	the	interfaces	classes	that	will	be	used	by	our
WalkWebService	and	WalkDataService	class	to	enable	our	TrackMyWalks	application	to
communicate	with	the	database	that	is	stored	within	the	Microsoft	Azure	platform.

Our	next	step	is	to	begin	implementing	the	code	that	will	be	required	to	make	a	connection	to	our
TrackMyWalks	Microsoft	Azure	database	so	that	our	app	uses	live	data	instead	of	the	local,	hard-
coded	data	that	we	currently	have	in	place.

Let's	look	at	how	we	can	achieve	this,	by	following	the	steps:

1.	 Ensure	that	the	WalkBaseViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	in
the	following	highlighted	code	sections	as	shown	in	the	code	snippet:

								//	

								//		WalkBaseViewModel.cs	

								//		TrackMyWalks	Base	ViewModel	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	System.ComponentModel;	

												using	System.Runtime.CompilerServices;	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.Services;

												namespace	TrackMyWalks.ViewModels	

												{	

															public	abstract	class	WalkBaseViewModel	:

																	INotifyPropertyChanged	

															{	

																			protected	IWalkNavService	NavService	{

																					get;	private	set;	}	

	

																			bool	_isProcessBusy;	

																			public	bool	IsProcessBusy	

																			{	

																								get	{	return	_isProcessBusy;	}	

																								set	

																								{	

																												_isProcessBusy	=	value;	

																												OnPropertyChanged();	

																												OnIsBusyChanged();	

																									}	

																			}	

2.	 Next,	we'll	create	a	IWalkDataService	interface	property	called
_azureDatabaseService.	Tis	will	store	and	retrieve	the	value	of	our	TrackMyWalks	Azure
database	URL.	The	AzureDatabaseService	property	contains	both	the	getter	(get)	and
setter	(set)	implementations	that.	When	we	set	the	AzureDatabaseService	property,	we
assign	this	value	to	our	_azureDatabaseService	variable,	and	then	call	the

OnPropertyChanged	instance	methods	to	tell	the	ViewModels	that	a	change	has	been	made:

								IWalkDataService	_azureDatabaseService;

								public	IWalkDataService	AzureDatabaseService

								{

												get	{	return	_azureDatabaseService;	}

												set

												{

																_azureDatabaseService	=	value;

																OnPropertyChanged();

												}

								}

3.	 Then,	we'll	need	to	modify	the	WalkBaseViewModel	class	constructor	and	create	an	instance
to	our	WalkDataService	class,	that	inherits	from	the	IWalkDataService	interface	class,
and	then	assign	this	to	our	AzureDatabaseService	property	so	that	it	can	be	used
throughout	each	of	our	ViewModels:

								protected	WalkBaseViewModel(IWalkNavService	navService)	

								{	

												//	Declare	our	Navigation	Service	and	Azure	Database	URL

												var	WALKS_URL	=	"https://trackmywalks.azurewebsites.net";

												NavService	=	navService;

												AzureDatabaseService	=	new	WalkDataService(new

														Uri(WALKS_URL,	UriKind.RelativeOrAbsolute));	

								}	

	

								public	abstract	Task	Init();	

	

								public	event	PropertyChangedEventHandler	PropertyChanged;	

	

								protected	virtual	void	OnPropertyChanged([CallerMemberName]		

																							string	propertyName	=	null)	

								{	

												var	handler	=	PropertyChanged;	

												if	(handler	!=	null)	

												{	

																handler(this,	new	PropertyChangedEventArgs(

																								propertyName));	

												}	

									}	

	

									protected	virtual	void	OnIsBusyChanged()	

									{	

													//	We	are	processing	our	Walks	Trail	Information	

									}	

								}	

	

									public	abstract	class	WalkBaseViewModel<WalkParam>	:		

												WalkBaseViewModel					{	

									protected	WalkBaseViewModel(IWalkNavService	navService)	:

											base(navService)	

									{	

									}	

	

									public	override	async	Task	Init()	

									{	

												await	Init(default(WalkParam));	

									}	

	

									public	abstract	Task	Init(WalkParam	walkDetails);	

							}	

						}	

In	the	preceding	code	snippet,	we	begin	by	creating	a	AzureDatabaseService	property	that
inherits	from	our	IWalkDataService	class,	and	then	created	its	associated	getter	and	setter
qualifiers.	Next,	we	updated	the	WalkBaseViewModel	class	constructor	to	set	the
AzureDatabaseService	property	to	an	instance	of	WalkDataService	class	so	that	it	can	be
used	throughout	each	of	our	ViewModels.

Updating	the	WalkEntryViewModel	to	use	our	DataService	API
Now	that	we	have	modified	our	WalkBaseViewModel	class	so	that	it	will	be	used	by	any
ViewModel	that	inherits	from	this	base	class,	our	next	step	is	to	begin	modifying	the
WalkEntryViewModel	that	will	utilize	our	WalkDataService	class,	so	that	any	new	walk
information	that	is	entered	will	be	saved	back	to	our	Azure	database.	Once	that's	done	we	can
begin	storing	walk	entry	information	when	the	Save	button	is	pressed.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 Ensure	that	the	WalkEntryViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections	as	shown	in	the	code	snippet:

								//	

								//		WalkEntryViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.Models;	

												using	TrackMyWalks.Services;	

												using	TrackMyWalks.ViewModels;	

												using	Xamarin.Forms;	

												using	System;	

	

												namespace	TrackMyWalks	

												{	

														public	class	WalkEntryViewModel	:	WalkBaseViewModel	

														{	

																		IWalkLocationService	myLocation;	

	

																		string	_title;	

																		public	string	Title	

																		{	

																					get	{	return	_title;	}	

																					set	

																					{	

																										_title	=	value;	

																										OnPropertyChanged();	

																										SaveCommand.ChangeCanExecute();	

																					}	

																}	

												...	

												...	

2.	 Next,	locate	and	modify	the	ExecuteSaveCommand	instance	method	to	include	a	check	to	see
if	our	ImageUrl	field	contains	a	value,	otherwise	store	an	empty	placeholder	image	for	the
ImageUrl	property	when	the	SaveToolBarItem	has	been	pressed.	Proceed	and	enter	in	the
following	highlighted	code	sections:

								async	Task	ExecuteSaveCommand()	

								{	

												//	Check	to	see	if	we	are	in	the	middle	of	processing		

												//	a	request.	

												if	(IsProcessBusy)	

																return;	

	

												//	Initialise	our	Walk	Entry	Model	to	state	that	we	are	

												//	in	the	middle	of	updating	details	to	the	database.	

												IsProcessBusy	=	true;	

	

												//	Set	up	our	New	Walk	item	model	

												var	newWalkItem	=	new	WalkEntries	

												{	

																Title	=	this.Title,	

																Notes	=	this.Notes,	

																Latitude	=	this.Latitude,	

																Longitude	=	this.Longitude,	

																Kilometers	=	this.Kilometers,	

																Difficulty	=	this.Difficulty,	

																Distance	=	this.Distance,	

																ImageUrl	=	(this.ImageUrl	==	null	?

																new	Uri("https://heuft.com/upload/image/4

																		00x267/no_image_placeholder.png")	:

																		new	Uri(this.ImageUrl))	

												};	

	

												//	Upon	exiting	our	New	Walk	Entry	Page,	we	need	to		

												//	stop	checking	for	location	updates	

												myLocation	=	null;	

3.	 Then,	we'll	make	a	call	to	our	AddWalkEntryAsync	instance	method,	contained	within
the	AzureDatabaseService	class	to	store	the	newly	entered	information.	We'll	include	a
reference	to	our	NavService.PreviousPage	method,	which	is	declared	within	the
IWalkNavService	interface	class	to	allow	our	WalkEntryPage	to	navigate	back	to	the
previous	calling	page,	before	finally	initializing	our	IsProcessBusy	indicator	to	false	to
inform	our	ViewModel	that	we	are	no	longer	processing.	Proceed	and	enter	in	the	following
highlighted	code	sections:

												try

												{

															//	Save	the	details	entered	to	our	Azure	Database

															await	AzureDatabaseService.AddWalkEntryAsync(newWalkItem);

															await	NavService.PreviousPage();

												}

												finally

												{

															//	Re-Initialise	our	Process	Busy	Indicator

	

															IsProcessBusy	=	false;

												}	

								}	

	

								//	method	to	check	for	any	form	errors	

								bool	ValidateFormDetails()	

								{	

												return	!string.IsNullOrWhiteSpace(Title);	

								}	

	

								public	override	async	Task	Init()	

								{	

												await	Task.Factory.StartNew(()	=>	

												{	

																Title	=	"New	Walk";	

																Difficulty	=	"Easy";	

																Distance	=	1.0;	

												});	

								}	

							}	

						}		

In	the	preceding	code	snippet,	we	modified	the	ExecuteSaveCommand	instance	method	to	include
a	check	to	see	if	our	ImageUrl	field	contains	a	value	prior	to	storing	the	information	within	the
ImageUrl	property.	If	we	have	determined	that	this	property	is	empty,	we	proceed	to	assign	an
empty	placeholder	image	for	the	ImageUrl	property	to	avoid	our	application	performing
unexpected	results.

In	the	next	step,	we	attempt	to	make	a	call	to	our	AddWalkEntryAsync	instance	method,	contained
within	our	AzureDatabaseService	class	to	store	the	newly	entered	information.

Next,	we'll	include	a	reference	to	our	NavService.PreviousPage	method,	which	is	declared
within	the	IWalkNavService	interface	class	to	allow	our	WalkEntryPage	to	navigate	back	to	the
previous	calling	page	when	the	Save	button	has	been	pressed.	Finally,	we'll	initialize	our
IsProcessBusy	indicator	to	false	to	inform	our	ViewModel	that	we	are	no	longer	processing.

Updating	the	WalksPageViewModel	to	use	our	DataService	API
In	this	section,	we	will	proceed	to	update	our	WalksPageViewModel	ViewModel	to	reference	our
WalkDataService	class.	Since	our	WalksPageViewModel	is	used	to	display	information	from
our	WalkEntries	model,	we	will	need	to	update	this	so	that	it	retrieves	this	information	from	the
TrackMyWalks	database,	located	within	our	Microsoft	Azure	platform,	and	display	this	within	the
ListView	control.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 Ensure	that	the	WalksPageViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter
in	the	following	highlighted	code	sections	as	shown	in	the	following	code	snippet:

								//	

								//		WalksPageViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	System.Collections.ObjectModel;	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.Models;	

												using	TrackMyWalks.Services;	

												using	Xamarin.Forms;	

	

												namespace	TrackMyWalks.ViewModels	

												{	

															public	class	WalksPageViewModel	:	WalkBaseViewModel	

															{	

																		ObservableCollection<WalkEntries>	_walkEntries;	

	

																		public	ObservableCollection<WalkEntries>	walkEntries	

																		{	

																						get	{	return	_walkEntries;	}	

																						set	

																						{	

																										_walkEntries	=	value;	

																										OnPropertyChanged();	

																							}	

																			}	

															...	

															...	

2.	 Next,	locate	and	modify	the	LoadWalkDetails	instance	method	to	check	to	see	if	we	are
already	in	the	middle	of	processing	walk	trail	items	within	the	ListView.	Next	we'll
proceed	to	populate	our	WalkEntries	array	with	items	retrieved	from	our
GetWalkEntriesAsync	Azure	web	service	instance	method	call	to	populate	our
WalkEntries	asynchronously	and	use	the	await	keyword	to	wait	until	the	Task	completed.
Finally,	we'll	initialize	our	IsProcessBusy	indicator	to	false	to	inform	our	ViewModel
that	we	are	no	longer	processing.	Proceed	and	enter	in	the	following	highlighted	code

sections:

								public	async	Task	LoadWalkDetails()

								{

												//	Check	to	see	if	we	are	already	processing	our

	

												//	Walk	Trail	Items

												if	(IsProcessBusy)

															{	return;	}

												//	If	we	aren't	currently	processing,	we	need	to

	

												//	initialise	our	variable	to	true

													IsProcessBusy	=	true;

												try

												{

																//	Populate	our	Walk	Entries	array	with	items

	

																//	from	our	Azure	Web	Service

																walkEntries	=	new	ObservableCollection<WalkEntries>

																(await	AzureDatabaseService.GetWalkEntriesAsync());

												}

												finally

												{

																//	Re-initialise	our	process	busy	value	back	to	false

																IsProcessBusy	=	false;

												}

								}	

								...	

								...	

3.	 Then,	create	the	DeleteWalkItem	command	property	within	our	class,	that	will	be	used
within	our	WalksPage	to	handle	whenever	we	click	on	a	walk	item	within	our	ListView.
The	DeleteWalkItem	property	will	then	run	an	action,	whenever	the	Delete	option	has
been	chosen	from	the	ActionSheet,	to	delete	the	chosen	item	as	determined	by	our
trailDetails	to	permanently	remove	the	record	from	our	TrackMyWalks	database	located
within	our	Microsoft	Azure	platform.	Proceed	and	enter	in	the	following	highlighted	code
sections:

									Command	_deleteWalkItem;

									public	Command	DeleteWalkItem

									{

													get

													{

																return	_deleteWalkItem

	??	(_deleteWalkItem	=	

																new	Command(async	

(trailDetails)	=>	

																await	AzureDatabaseService.

																DeleteWalkEntryAsync((WalkEntries)trailDetails)));

													}

									}	

								}	

							}	

In	the	preceding	code	snippet,	we	modified	our	LoadWalkDetails	instance	method	to	check	to
see	if	we	are	already	in	the	middle	of	processing	walk	trail	items	within	the	ListView.	Then,	we
proceeded	to	populate	our	WalkEntries	array	with	items	retrieved	from	our
GetWalkEntriesAsync	Azure	web	service	instance	method	call	to	populate	our	WalkEntries
asynchronously	and	use	the	await	keyword	to	wait	until	the	Task	completed.

In	the	next	step,	we	initialized	the	IsProcessBusy	indicator	to	false,	to	inform	our	ViewModel
that	we	are	no	longer	processing.

Finally,	we	created	a	Command	property	within	our	class	that	will	be	used	to	permanently	handle
the	deletion	of	the	chosen	walk	entry	within	our	ListView	and	our	TrackMyWalks	Microsoft
Azure	database.

Updating	the	WalksPage	to	use	the	updated	ViewModel
In	this	section,	we	need	to	update	our	WalksPage	ContentPage	so	that	it	can	reference	the
updated	changes	within	our	WalksPageViewModel.	We	will	need	to	apply	additional	logic	to
handle	deletions	of	walk	entry	information	from	our	WalkEntries	model	so	that	it	can	retrieve
newly	updated	information	from	our	TrackMyWalks	database	located	within	our	Microsoft	Azure
platform,	and	display	this	within	the	ListView	control.

Let's	look	at	how	we	can	achieve	this	with	following	steps:

1.	 Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections	as	shown	in	the	code	snippet:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.DataTemplates;	

								using	TrackMyWalks.ValueConverters;	

								using	System.Diagnostics;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalksPage	:	ContentPage	

												{	

																WalksPageViewModel	_viewModel	

																{	

																				get	{	return	BindingContext	as	

																						WalksPageViewModel;	}	

																}	

2.	 Next,	modify	the	newWalkItem	variable,	which	is	within	the	WalksPage	class	constructor
and	update	the	Text	property	for	our	ToolbarItem.	Proceed	and	enter	in	the	following
highlighted	code	sections:

								public	WalksPage()	

								{	

												var	newWalkItem	=	new	ToolbarItem

												{

																Text	=	"Add"

												};	

	

												//	Set	up	our	Binding	click	event	handler	

												newWalkItem.SetBinding(ToolbarItem.CommandProperty,		

												"CreateNewWalk");	

	

												//	Add	the	ToolBar	item	to	our	ToolBar	

												ToolbarItems.Add(newWalkItem);	

	

												//	Declare	and	initialise	our	Model	Binding	Context	

												BindingContext	=	new	WalksPageViewModel(DependencyService	

												.Get<IWalkNavService>());	

									...	

									...	

3.	 Then,	we	need	to	modify	our	walksList.ItemTapped	method	whenever	an	item	within	the
ListView	has	been	selected.	Here,	we	need	to	display	a	selection	of	choices	for	the	user	to
choose	from,	using	the	DisplayActionSheet	method.	When	the	user	chooses	the	Proceed
With	option,	the	user	will	be	navigated	to	the	WalksTrail	page	within	our	ViewModel,	and
pass	in	the	item	that	has	been	selected.	Alternatively,	if	the	user	chooses	the	Delete	button,	a
call	is	made	to	our	DeleteWalkItem	command	that	is	included	within	our
WalksPageViewModel	class,	so	that	it	can	then	permanently	delete	the	Walk	Entry	from	our
TrackMyWalks	Azure	database.	Once	the	walk	entry	has	been	deleted	from	the	database,	the
user	will	receive	a	pop-up	notification	telling	them	that	the	item	has	been	deleted.	Proceed
and	enter	in	the	following	highlighted	code	sections:

								//	Initialize	our	event	Handler	to	use	when	the		

								//	item	is	tapped	

								walksList.ItemTapped	+=	async	(object	sender,		

								ItemTappedEventArgs	e)	=>	

								{	

												//	Get	the	selected	item	by	the	user	

												var	item	=	(WalkEntries)e.Item;	

	

												//	Check	to	see	if	we	have	a	value	for	our	item	

												if	(item	==	null)	return;	

	

													//	Display	an	action	sheet	with	choices

																var	action	=	await	DisplayActionSheet("Track	My	Walks

																	-	Trail	Details",	"Cancel","Delete",

	

																"Proceed	With	"	+	item.Title	+	"	Trail");

																	if	(action.Contains("Proceed"))

																	{

																				_viewModel.WalkTrailDetails.Execute(item);

																	}

	

																//	If	we	have	chosen	Delete,	delete	the	item	from

	

																	//	our	database	and	refresh	the	ListView

																	else	if	(action.Contains("Delete"))

																	{

																				_viewModel.DeleteWalkItem.Execute(item);

																				await	DisplayAlert("Track	My	Walks	-	Trail	Details",

	

																			item.Title	+

	

																			"	has	been	deleted	from	the	database.",	"OK");

																				await	_viewModel.Init();

																	}	

																//	Initialise	our	item	variable	to	null	

																item	=	null;	

												};		

											...	

											...	

										}	

									}	

In	the	preceding	code	snippet,	we	modified	our	newWalkItem	variable,	which	is	within	the
WalksPage	class	constructor	and	updated	the	Text	property	for	our	ToolbarItem.

Next,	we	modified	our	walksList.ItemTapped	method	to	handle	situations	when	an	item	has
been	selected	from	the	ListView,	which	will	display	a	selection	of	choices	for	the	user	to	choose
from.	We	accomplished	this	by	using	the	DisplayActionSheet	method.	When	the	user	chooses
the	Delete	button,	a	call	is	made	to	our	DeleteWalkItem	command	that	is	included	within	our
WalksPageViewModel	class,	so	that	it	can	then	permanently	delete	the	walk	entry	from	our
TrackMyWalks	Azure	database,	and	use	the	await	keyword	to	wait	until	the	Task	has	completed
before	displaying	a	pop-up	notification	telling	them	that	the	item	has	been	deleted.

Updating	the	custom	picker	renderer	class	for	the	iOS	platform
Now	that	we	have	modified	our	WalkEntries	database	model,	we	will	need	to	update	the
DifficultyPickerCellRenderer	class	which	will	be	used	by	our	iOS	portion	of	the
DifficultyPickerEntryCell	class.

This	custom	picker	will	be	used	to	obtain	the	item	chosen	from	the	custom	list	of	entries	defined
within	the	DifficultyPicker	class	and	store	this	within	the	Difficulty	property	that	will	then
be	written	to	our	TrackMyWalks	Microsoft	Azure	database.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 Open	the	TrackMyWalks.iOS	project	located	within	our	TrackMyWalks	solution,	and
expand	the	Renderers	folder.

2.	 Next,	select	the	DifficultyPickerCellRenderer.cs	file	and	ensure	that	it	is	displayed
within	the	code	editor,	and	enter	in	the	following	highlighted	code	sections	in	the	code
snippet:

								//	

								//		DifficultyPickerCellRenderer.cs	

								//		TrackMyWalks	CustomRenderer	for	UIPickerView	Entry	Cells	

(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	01/10/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms.Platform.iOS;	

								using	UIKit;	

								using	TrackMyWalks.Controls;	

								using	Xamarin.Forms;	

								using	TrackMyWalks.iOS.Renderers;	

	

								[assembly:	ExportRenderer(typeof(

										DifficultyPickerEntryCell),

								typeof(DifficultyPickerCellRenderer))]	

								namespace	TrackMyWalks.iOS.Renderers	

								{	

											public	class	DifficultyPickerCellRenderer	:

													EntryCellRenderer	

												{	

																public	override	UITableViewCell	GetCell(

																	Cell	item,	UITableViewCell	reusableCell,

																			UITableView	tv)	

																{	

																				var	cell	=	base.GetCell(item,	reusableCell,	tv);	

																				var	entryPickerCell	=	(EntryCell)item;	

	

																				UITextField	textField	=	null;	

	

																				if	(cell	!=	null)	

																					textField	=	

(UITextField)cell.ContentView.Subviews[0];	

	

																			//	Create	our	iOS	UIPickerView	Native	Control	

																				var	difficultyPicker	=	new	UIPickerView	

																				{	

																								AutoresizingMask	=	

																										UIViewAutoresizing.FlexibleWidth,	

																								ShowSelectionIndicator	=	true,	

																								Model	=	new	DifficultyPickerModel(),	

																								BackgroundColor	=	UIColor.White,	

																				};	

3.	 Next,	we	need	to	modify	the	EntryCellRendererGetCell	method	so	that	it	can	update	the
Difficulty	property	for	the	EntryCell	we	are	currently	on	when	the	Done	button	has	been
pressed.	It	will	update	it	with	the	value	from	the	difficultyPicker	object	and	then
dismiss	the	custom	picker	control.	Proceed	and	enter	in	the	following	highlighted	code
sections:

												//	Create	a	toolbar	with	a	done	button	that	will		

												//	set	the	selected	value	when	closed.	

												var	done	=	new	UIBarButtonItem("Done",		

																							UIBarButtonItemStyle.Done,	(s,	e)	=>	

												{	

																//	Update	the	Difficulty	property	on	the	Cell

																	if	(entryPickerCell	!=	null)

																				entryPickerCell.Text	=	DifficultyPickerModel.

																				difficulty[difficultyPicker.

																				SelectedRowInComponent(0)];	

	

																//	Update	the	value	of	the	UITextField	within	the		

																//	Cell	

																if	(textField	!=	null)	

																{	

																				textField.Text	=	DifficultyPickerModel.difficulty		

																				[difficultyPicker.SelectedRowInComponent(0)];	

																				textField.ResignFirstResponder();	

																}	

														});	

														...	

														...	

													}	

												}	

											}	

Now	that	we	have	applied	the	code	changes	required	to	the	DifficultyPickerCellRenderer
class	for	our	iOS	portion	of	our	TrackMyWalks	app,	the	next	step	is	to	make	changes	to	our
WalkEntryContentPage	so	that	it	will	retrieve	the	correct	difficulty	value	that	is	returned	from
our	custom	picker,	and	the	Difficulty	property	value.

Updating	the	WalksEntryPage	to	use	the	updated	custom	picker
In	the	previous	section,	we	modified	our	DifficultyPickerCellRenderer	class,	as	well	as
defining	the	various	methods	that	will	handle	the	display	of	the	UIPickerView	control	when	an
EntryCell	within	the	ViewModel	has	been	tapped.

In	this	section,	we'll	look	at	making	the	necessary	code	changes	required	so	that	our
WalkEntryPageContentPage	correctly	retrieves	the	level	of	difficulty	chosen	from	our	custom
UIPickerViewDifficultyPickerCellRenderer	class.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 Ensure	that	the	WalkEntryPage.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections	as	shown	in	the	code	snippet:

								//	

								//		WalkEntryPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.Controls;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalkEntryPage	:	ContentPage	

												{	

																WalkEntryViewModel	_viewModel	

																{	

																				get	{	return	BindingContext	as	WalkEntryViewModel;	}	

																}	

	

																public	WalkEntryPage()	

																{	

																				//	Set	the	Content	Page	Title		

																				Title	=	"New	Walk	Entry";	

	

																				//	Declare	and	initialise	our	Model	Binding	Context	

																				BindingContext	=	new	WalkEntryViewModel(

																				DependencyService.Get<IWalkNavService>());	

	

																				//	Define	our	New	Walk	Entry	fields	

																				var	walkTitle	=	new	EntryCell	

																				{	

																								Label	=	"Title:",	

																								Placeholder	=	"Trail	Title"	

																				};	

																				walkTitle.SetBinding(EntryCell.TextProperty,	"Title",			

																				BindingMode.TwoWay);	

																				...	

																				...	

2.	 Next,	locate	and	modify	the	walkDifficultyEntryCell	property	so	that	it	can	correctly
return	the	value	of	the	Difficulty	property	from	our	WalkEntries	ViewModel,	that	is
updated	by	our	DifficultyPickerEntryCell	class.	Proceed	and	enter	in	the	following
highlighted	code	sections:

												var	walkDifficulty	=	new	DifficultyPickerEntryCell

												{

																Label	=	"Difficulty	Level:",

																Placeholder	=	"Walk	Difficulty"

												};

												walkDifficulty.SetBinding(EntryCell.TextProperty,

	

												"Difficulty",	BindingMode.TwoWay);	

	

												...	

												...	

										}	

									}	

								}	

In	this	section,	we	looked	at	the	steps	involved	in	modifying	our	WalkEntryPage	so	that	it
correctly	returns	the	level	of	difficulty	that	has	been	chosen	from	our
DifficultyPickerEntryCell	class	custom	renderer.	We	looked	at	updating	our
walkDifficulty	object	variable	to	reference	the	DifficultyPickerEntryCell	class,	and
updated	the	setBinding	to	return	the	value	of	the	Difficulty	property	that	is	implemented
within	the	WalkEntries	ViewModel	class.

Now	that	we	have	finished	building	all	the	necessary	components	for	our	TrackMyWalks
application,	the	next	step	is	to	finally	build	and	run	the	TrackMyWalks	application	within	the	iOS
simulator.	When	compilation	completes,	the	iOS	Simulator	will	appear	automatically	and	the
TrackMyWalks	application	will	be	displayed,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	our	ActivityIndicator
spinner	control,	with	the	associated	Loading	Trail	Walks...	text,	after	which	this	will	display	the
ListView	that	will	contain	our	list	of	trail	walks	from	our	DataTemplate	control.	Since	we	don't
have	any	walk	entries	contained	within	our	Microsoft	Azure	TrackMyWalks	database,	the	New
Walk	Entry	screen	displays	entries	being	entered:

The	preceding	screenshot,	shows	the	updated	ListView	control	displaying	information	from	our
TrackMyWalks	Microsoft	Azure	database.	You	will	notice,	that	upon	selecting	a	Walk	entry	item
from	the	ListView	control,	it	will	pop	up	with	several	choices	for	you	to	choose	from.	If	you
click	on	the	Delete	button,	it	will	call	the	DeleteWalkEntryAsync	API	and	pass	in	the	Identifier
for	the	selected	item	that	is	to	be	permanently	deleted	from	the	database.

Upon	successful	deletion,	you	will	be	presented	with	a	dialog	box	telling	you	that	the	walk	entry
has	been	deleted.	When	clicking	on	the	OK	button,	the	ListView	control	will	be	refreshed	and
display	all	entries,	except	for	the	one	that	you	had	just	deleted.	Alternatively,	if	you	click	on	the
Proceed	With	...	button,	it	will	navigate	to	the	walks	Trail	Details	page	where	you	can	begin
your	trail,	by	clicking	on	the	Begin	this	Trail	button.

Summary
In	this	chapter,	you	learned	about	Microsoft	Azure	App	services	and	how	you	can	use	this
platform	to	get	information	from	a	remote	data	source	by	creating	your	very	first	API	within	the
cloud	to	connect	to,	and	store	and	retrieve	information	from,	all	within	the	TrackMyWalks	app.
You	learned	how	to	create	a	live,	cloud-based	backend	service	and	API	using	the	Microsoft's
Azure	App	services	platform	to	store	and	retrieve	WalkEntry	information,	as	well	as	creating	a
DataService	class	that	will	be	used	to	handle	all	the	communication	between	the	cloud	and	the
TrackMyWalks	app.

In	the	next	chapter,	you'll	learn	how	to	create	a	sign-in	page	that	will	allow	the	user	to	sign	into
the	TrackMyWalks	app	using	their	Facebook	credentials.	You'll	learn	how	you	can	take	advantage
of	the	Facebook	SDK	and	essentially	post	walk	data	to	your	Facebook	profile	page	so	you	can
show	off	your	progress	to	your	friends	and/or	work	colleagues.

Chapter	8.	Making	Our	App	Social	-	Using	the
Facebook	API
In	the	previous	chapter,	you	learned	how	you	can	use	Microsoft	Azure	App	services	to	create
your	very	first	live,	cloud-based,	backend	HTTP	web	service	to	handle	all	the	communication
between	the	cloud	and	our	app.	Now,	you	will	also	learn	how	to	create	a	DataService	API	that
will	allow	our	app	to	consume	the	API,	so	that	we	can	have	the	ability	to	retrieve,	store,	and
delete	walk	trail	information	from	the	cloud,	all	within	the	TrackMyWalks	app.

On	May	24th,	2007,	Mark	Zuckerberg	announced	the	Facebook	platform,	a	development	platform
for	programmers	to	create	social	applications	within	Facebook.	When	Facebook	launched	the
development	platform,	numerous	applications	had	been	built	and	already	had	millions	of	users
playing	them.	The	social	networking	application	utilizes	the	Facebook	collection	of	APIs	that
enables	developers	to	connect	to	the	Facebook	platform	and	send	application	requests.

In	this	chapter,	you'll	learn	how	you	can	use	both	Xamarin.Auth	and	Facebook	SDK,	which	will
allow	you	to	incorporate	social	networking	features	within	the	TrackMyWalks	app	to	obtain
information	about	a	Facebook	user,	as	well	as	post	information	to	their	Facebook	wall.

You'll	learn	how	to	create	a	sign-in	page	that	will	allow	the	user	to	sign	in	to	the	TrackMyWalks
app	using	their	Facebook	credentials.	You	will	also	create	a	FacebookApiUser	class	that	will	be
used	to	store	information	about	the	logged-in	user,	as	well	as	using	the	Open	Graph	API	to
retrieve	certain	information	about	the	user	and	display	this	within	the	TrackMyWalks	app.	To	end
this	chapter,	you	will	see	how	you	can	leverage	the	Facebook	library,	essentially	to	post	walk
data	to	your	Facebook	profile	page,	so	you	can	show	off	your	progress	to	your	friends	and/or
work	colleagues.

This	chapter	will	cover	the	following	points:

Setting	up	our	TrackMyWalks	app	within	the	Facebook	Developer	portal
Adding	the	Xamarin.Auth	and	Facebook	SDK	packages	to	the	solution
Creating	the	FacebookApiUser	and	FacebookCredentials	class
Creating	the	FBSignInPage	and	FBSignInPageRenderer	classes
Updating	the	TrackMyWalks	ViewModels	to	use	the	Facebook	API
Using	the	Open	Graph	API	to	read	JSON	data
Run	the	TrackMyWalks	app	within	the	simulator

Setting	up	and	registering	the	TrackMyWalks
app	with	Facebook
In	this	section,	we	will	begin	by	setting	up	our	TrackMyWalks	app	and	registering	it	with	the
Facebook	platform,	so	that	we	can	begin	communicating	and	interacting	with	Facebook,	and	have
the	ability	to	retrieve	user	information,	as	well	as	allowing	the	user	to	post	walk	information	to
their	Facebook	wall.

Let's	now	start	to	implement	the	code	required	for	our	FacebookApiUser	class	model,	by
performing	the	following	steps:

1.	 Launch	your	web	browser	and	type	in	https://developers.facebook.com/apps	.
2.	 Next,	either	sign	up	for	Facebook	if	you	are	not	a	registered	user,	or	enter	your	Facebook

account	credentials.
3.	 Then,	click	on	the	Create	a	New	App	button,	which	will	display	the	Create	a	New	App	ID

screen,	as	shown	in	the	following	screenshot:

4.	 Next,	enter	TrackMyWalks	for	the	Display	Name	field	and	provide	your	Contact	Email
address	so	that	Facebook	can	contact	you	if	they	need	to.

5.	 Then,	within	the	Category	section,	select	a	category	from	the	Choose	a	Category
dropdown,	and	click	on	the	Create	App	ID	button	to	create	our	TrackMyWalks	app,	as
shown	in	the	preceding	screenshot.

6.	 Next,	you	will	be	prompted	to	enter	the	Security	Check	answer	before	you	can	proceed	to
the	next	step:

https://developers.facebook.com/apps

7.	 Then,	enter	the	text	displayed	on	your	screen	and	click	on	the	Submit	button	to	continue.

Note

If	you	enter	the	text	incorrectly,	you	may	end	up	with	your	account	being	blocked.	If	this	is
the	case,	you	will	need	to	contact	Facebook	directly	to	have	this	unblocked.

Now	that	we	have	created	our	TrackMyWalks	Facebook	App	ID,	our	next	step	is	to	begin
setting	up	the	Client	OAuth	Settings,	which	will	be	used	by	our	OAuth2Authenticator
class	within	our	TrackMyWalks	app:

8.	 Next,	from	the	Valid	OAuth	redirect	URIs	section	located	within	the	Client	OAuth	Setting
screen,	enter	https://www.facebook.com/connect/login_success.html	as	the	URL	to
use	whenever	we	detect	that	we	have	successfully	signed	into	Facebook	from	within	our
app.

9.	 Then,	click	on	the	Save	Changes	button	to	save	our	changes	within	this	screen.
10.	 Next,	choose	the	App	Review	menu	item	located	under	the	Dashboard,	as	can	be	seen	in	the

following	screenshot:

11.	 Then,	ensure	that	you	have	chosen	Yes	for	the	Make	TrackMyWalks	public?	question.

Note

Essentially,	the	APP	ID	is	an	important	field	that	we	will	use	within	our	iOS	and	Android
application	to	communicate	with	Facebook.

Whenever	you	enable	the	Make	TrackMyWalks	public?	option,	this	will	make	your	app	live	to
the	public	on	Facebook,	so	that	your	friends	and	family	can	see	your	walk	information	posted	on
your	Facebook	wall.	You	will	notice	that,	when	you	enable	this	option,	the	list	of	Approved
Items	will	be	enabled	by	default,	as	well	as	their	login	permissions.

Note

If	you	are	interested	in	learning	more	about	the	various	types	of	login	permissions,	please	refer	to
the	Permissions	Reference	-	Facebook	Login	which	can	be	accessed	at
https://developers.facebook.com/docs/facebook-login/permissions	.

Now	that	we	have	successfully	setup	our	TrackMyWalks	app	name	within	the	Facebook	platform,
we	can	begin	making	our	app	communicate	with	the	Facebook	APIs	to	obtain	user	information,	as
well	as	posting	messages	to	the	currently	logged-in	user's	Facebook	wall.	In	our	next	section,	we

https://developers.facebook.com/docs/facebook-login/permissions

will	begin	to	add	the	Xamarin.Auth	.NET	Framework	library,	as	well	as	the	Facebook	SDK,	to
connect	our	TrackMyWalks	app	to	Facebook	and	authenticate	users	with	Facebook,	so	that	we
can	post	status	messages	directly	from	within	our	app	and	more.

Adding	the	Xamarin.Auth	NuGet	package	to	the	TrackMyWalks
app
Now	that	we	have	setup	our	Facebook	App	ID,	our	next	step	is	to	add	the	Xamarin.Auth	NuGet
package	to	our	TrackMyWalks	Portable	Class	Library	project.	The	Xamarin.Auth	package	will
allow	our	app	to	authenticate	a	user	who	requires	access	to	use	the	Facebook	platform	by	using
OAuth	2.0	authentication.

These	Authenticators	are	responsible	for	managing	the	user	interface	and	communicating	with
authentication	services.	Authenticators	take	a	variety	of	parameters;	in	this	case,	the	application's
ID,	its	authorization	scope,	as	well	as	Facebook's	various	service	locations	are	required.

Let's	look	at	how	to	add	the	Xamarin.AuthNuGet	package	to	our	TrackMyWalks	Portable	Class
Library	by	performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder,	which	is	contained	within	the	TrackMyWalks	Portable
Class	Library	project,	and	choose	the	Add	Packages...	menu	option,	as	shown	in	the
following	screenshot:

2.	 This	will	display	the	Add	Packages	dialog.	Enter	Xamarin.Auth	within	the	search	dialog
and	select	the	Xamarin.Auth	option	within	the	list,	as	shown	in	the	following	screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	NuGet	package	to	the	Packages	folder,
which	is	contained	within	the	TrackMyWalks	Portable	Class	Library	project.

Now	that	we	have	added	the	Xamarin.Auth	NuGet	Package,	our	next	step	is	to	add	the	Facebook
Framework	to	our	TrackMyWalks	Portable	Class	Library,	which	we	will	be	covering	in	the	next
section.

Adding	the	FaceBook	SDK	library	to	the	TrackMyWalks	app
In	the	previous	section,	we	added	our	Xamarin.AuthNuGet	package	to	our	TrackMyWalks
solution;	this	means	that	our	next	step	is	to	add	the	Facebook	library	to	our	TrackMyWalks
solution.

Since	we	are	using	both	.NET	and	C#	to	build	our	Xamarin.Forms	application,	we	can	leverage
a	library	developed	by	a	company	called	The	Outercurve	Foundation.	This	library	is	essentially
a	Facebook	SDK	that	helps	.NET	developers	build	applications	that	integrate	with	Facebook.

The	Facebook	SDK	framework	contains	all	the	method	objects	and	APIs	that	are	required	to
enable	you	to	interact	with	Facebook	and	send	notification	requests,	or	simply	post	messages	to
the	current	user's	wall	page	using	the	single	sign-on	feature	of	Facebook	SDK.	This	simply	lets
your	users	sign	in	to	your	app	using	their	Facebook	identity,	and	will	display	an	inline	dialog	box
comprising	a	WebView	container	in	which	the	authorization	UI	will	be	shown	to	the	user,	which
requires	them	to	enter	their	credentials	to	gain	access	to	your	app.

Let's	look	at	how	we	can	add	the	Facebook	SDK	library	to	our	TrackMyWalks	Portable	Class
Library	by	performing	the	following	steps:

1.	 Launch	your	web	browser,	and	type	the	following	URL,
https://components.xamarin.com/view/facebook-sdk,	and	log	in	to	the	Xamarin	portal	using
your	Xamarin	credentials.

2.	 Next,	from	the	Facebook	SDK	section,	ensure	that	you	have	selected	version	6.2.2	as	the
latest	version	to	download	from	under	the	Versions	section.

3.	 Then,	proceed	to	click	on	the	Download	button	to	download	the	Facebook	SDK	library,	as
shown	in	the	following	screenshot:

https://components.xamarin.com/view/facebook-sdk

Note

Once	you	have	downloaded	the	Facebook	SDK,	extract	the	Zip	archive	package	contents.
The	default	download	location	is	~/Downloads/facebook-sdk-6.2.2.zip.

4.	 Next,	right-click	on	the	References	folder,	which	is	contained	within	the	TrackMyWalks
Portable	Class	Library	project,	and	choose	the	Edit	References...	menu	option,	as	shown	in
the	following	screenshot:

5.	 Then,	ensure	that	the	.Net	Assembly	tab	has	been	selected,	and	click	on	the	Browse	button
to	choose	the	Facebook.dll	for	either	the	Android	or	iOS	platform:

6.	 Finally,	ensure	that	you	have	selected	the	Facebook.dll	assembly	within	the	.Net
Assembly	tab,	click	on	the	OK	button	add	the	new	assembly	to	the	references	section	of
your	TrackMyWalks	Portable	Class	Library,	and	close	the	Edit	References	dialog.

Incorporating	and	using	the	Facebook	SDK	within	your	applications	allows	you	to	do	what	is
described	in	the	following	table:

FACEBOOK
SDK	Types Description

Authentication
and
authorization

This	prompts	your	users	to	sign	in	to	Facebook	and	grant	permissions	to	your
application.

Make	API
calls

This	allows	you	to	fetch	user-profile	data,	as	well	as	any	information	that	relates
to	the	user's	friends,	using	the	JSON	API	calls.

Display
dialog

This	allows	you	to	interact	with	the	user	via	a	WebView	container	object,	which
is	extremely	useful	for	enabling	interactions	with	Facebook,	without	the	need	for
requiring	upfront	permissions.

Now	that	we	have	added	both	the	Xamarin.Auth	NuGet	package	and	Facebook	Dynamic-Link
Library	(DLL)	packages	to	our	solution,	we	can	now	begin	utilizing	these	framework	libraries	as
we	progress	throughout	this	chapter.

Creating	a	Facebook	user	model	for	the
TrackMyWalks	app
In	the	previous	section,	we	added	both	of	our	Xamarin.Auth	and	Facebook	SDK	.NET	Assembly
packages	to	our	TrackMyWalks	Portable	Class	Library.	This	will	essentially	be	used	by	each	of
our	ViewModels	along	with	the	Views	(pages).

In	this	section,	we	will	begin	by	creating	our	FacebookApiUser	data	model,	which	will	be	used
to	store	our	Facebook	login	information	from	when	we	create	our	backend	service	calls,	and	then
the	FacebookCredentials.cs	and	FBSignInRenderer.cs	files	will	communicate	and	interact
with	our	Facebook	TrackMyWalks	App	ID	to	retrieve	Facebook	related	information,	as	well	as
allowing	the	user	to	post	walk	information	to	their	Facebook	wall.

Let's	now	start	to	implement	the	code	required	for	our	FacebookApiUser	class	model	by
performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Models	folder	by	choosing	Add	|	New	File....	If	you	can't
remember	how	to	do	this,	you	can	refer	to	the	section	entitled	Creating	the	Track	My	Walks
Model	within	Chapter	1,	Creating	the	TrackMyWalks	Native	App.

2.	 Then,	enter	FacebookApiUser	for	the	name	of	the	new	class	that	you	want	to	create,	and
click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	FacebookApiUser.cs	file	is	displayed	within	the	code	editor,	and
enter	the	following	code	snippet:

								//	

								//		FacebookApiUser.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	07/11/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	Xamarin.Auth;	

								using	Newtonsoft.Json.Linq;	

	

								namespace	TrackMyWalks.Facebook	

								{	

4.	 Next,	we	need	to	implement	the	FacebookApiUser	class	that	will	contain	the	various
property	methods	used	to	store	the	currently	logged-in	user,	their	Facebook	Id,	and	the
properties	that	will	be	used	to	store	and	retrieve	the	user's	Facebook	details.	To	proceed,
enter	the	following	code	snippet:

								public	class	FacebookApiUser	

								{	

												//	Store	the	currently	logged	in	user	

												public	static	bool	IsLoggedIn	

												{	

																get	{	return	!string.IsNullOrWhiteSpace

																	(FaceBookApiAuthToken.GetAuthToken);		

																}	

												}	

												//	Define	our	Facebook	Id	property	

												public	static	string	FacebookId	

												{	

																get	{	return	"<YOUR_FACEBOOK_ID>";	}	

												}	

	

												//	Retrieve	our	user	details	

												static	JObject	_userDetails;	

												public	static	JObject	GetUserDetails	

												{	

																get	{	return	_userDetails;	}	

												}	

												//	Store	our	user	details	

												public	static	void	SaveUserDetails(JObject	userDetails)	

												{	

																_userDetails	=	userDetails;	

												}	

								}	

5.	 Next,	we	need	to	implement	the	FacebookApiAuthToken	class	that	will	contain	the	various
property	methods	that	will	be	used	to	store	and	retrieve	our	Facebook	authentication	Token
on	successfully	logging	in	to	our	TrackMyWalks	app.	These	properties	will	be	used
throughout	our	application	to	retrieve	our	Facebook	user	details,	and	when	we	post	walk
information	to	our	Facebook	wall.	To	proceed,	enter	the	following	code	snippet:

								//	Facebook	API	authentication	Token	

								public	class	FacebookApiAuthToken	

								{	

												//	Property	to	point	to	the	Api	user	

												public	FacebookApiUser	User	{	get;	set;	}	

	

												//	Get	our	Facebook	authentication	Token		

												static	string	_authToken;	

												public	static	string	GetAuthToken	

												{	

																get	{	return	_authToken;	}	

												}	

												//	Store	our	authentication	Token	

												public	static	void	StoreAuthToken(string	authToken)	

												{	

																_authToken	=	authToken;	

												}	

												//	Get	our	Facebook	authentication	Account	Details	

												static	AuthenticatorCompletedEventArgs	_authAccount;	

												public	static	EventArgs	GetAuthAccount	

												{	

																get	{	return	_authAccount;	}	

												}	

												//	Store	our	Facebook	authentication	Account	Details	

												public	static	void	StoreAuthAccount

														(AuthenticatorCompletedEventArgs	authAccount)	

												{	

																_authAccount	=	authAccount;	

												}	

										}	

								}		

In	the	preceding	code	snippet,	we	begin	by	implementing	the	various	property	methods	that	will
be	required	to	handle	communication	between	our	TrackMyWalks	app	and	Facebook,	to	allow
our	app	to	successfully	log	in.	The	FacebookApiUser	class	method	is	responsible	for	handling
the	information	relating	to	the	Facebook	user	who	will	be	logging	in.	It	contains	a	property	called
IsLoggedIn	that	will	be	used	throughout	our	app	to	determine	if	the	user	has	logged	in;	this	is
determined	by	checking	to	see	if	we	have	received	a	valid	authentication	token	back	from
Facebook.

The	FacebookId	property	is	essentially	the	user's	Facebook	Id.	You	will	need	to	replace	this
with	your	own	Facebook	ID	so	that	you	can	post	walk	trail	information	to	your	Facebook	wall.
The	GetUserDetails	and	SaveUserDetails	properties	are	used	to	store	the	user	information
that	will	be	displayed	within	the	DistanceTravelled	page.	The	FaceBookApiAuthToken
method	contains	the	various	properties	that	will	be	used	to	handle	the	storing	of	the	user	token
details,	when	our	app	determines	that	we	have	successfully	been	authenticated	with	Facebook.

Creating	a	FacebookCredentials	class	for	the	TrackMyWalks
app
In	our	previous	section,	we	created	our	FacebookApiUser	class	model,	which	will	provide	us
with	a	mechanism	for	storing	our	Facebook	credentials,	that	we	can	use	throughout	our
TrackMyWalks	app.

In	this	section,	we	will	begin	by	creating	a	FacebookCredentials	class	that	will	allow	us	to
make	API	calls,	so	that	we	can	retrieve	user	profile	information	back	from	our	API,	in	JSON
format,	and	store	this	information	to	be	used	later.	Our	FacebookCredentials	class	contains	a
method	that	allows	our	app	to	post	walk	trail	information	to	the	user's	Facebook	page	wall.

Let's	now	start	to	implement	the	code	required	for	our	FacebookCredentials	class	by
performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Services	folder.	If	you	can't	remember	how	to	do	this,	you
can	refer	to	the	section	entitled	Creating	the	Navigation	Service	Interface	for	the
TrackMyWalks	app	within	Chapter	3,	Navigating	within	the	MVVM	Model	-	The
Xamarin.Forms	Way.

2.	 Next,	enter	the	FacebookCredentials	for	the	name	of	the	new	class	that	you	want	to	create,
and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	file.

3.	 Then,	ensure	that	the	FacebookCredentials.cs	file	is	displayed	within	the	code	editor,
and	enter	the	following	code	snippet:

								//	

								//		FacebookCredentials.cs	

								//		Stores	the	credentials	to	be	used	for	Facebook	

								//	

								//		Created	by	Steven	F.	Daniel	on	09/11/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	TrackMyWalks.Models;	

												using	Facebook;	

												using	Xamarin.Auth;	

												using	System;	

												using	System.Threading.Tasks;	

												using	Newtonsoft.Json.Linq;	

												using	System.Collections.Generic;	

												using	TrackMyWalks.Facebook;	

	

												namespace	TrackMyWalks	

												{	

																public	class	FacebookCredentials	

																{	

4.	 Next,	implement	the	PostWalkInformation	instance	method	that	will	be	used	to	post
information	relating	to	the	currently	active	walk	trail	to	the	user's	Facebook	page	wall.	We
define	an	fb	variable	that	instantiates	a	new	FacebookClient	object	using	the	authorization
token	GetAuthToken	from	our	FacebookAuthToken	class,	which	we	obtained	upon

achieving	a	successful	login	from	Facebook.
5.	 We	use	the	PostTaskAsync	method	and	pass	in	the	Graph	API	me/feed	syntax	value	as	the

first	parameter,	followed	by	a	message	parameter,	along	with	the	message	details	that	we
want	to	post	to	the	user's	Facebook	wall.	To	proceed,	enter	the	following	code	snippet:

								//	Post	information	to	the	user's	Facebook	Wall	

								public	static	void	PostWalkInformation(string	Title,		

																											double	Kilometers,	string	Difficulty,		

																											string	Notes,	string	trailPictureUrl)	

								{	

												FacebookClient	fb	=	new	FacebookClient(FacebookApiAuthToken.	

																																GetAuthToken);	

	

												//	The	message	to	post	as	a	key/value	pair	

												string	postMessage	=	"TrackMyWalks	App	-	Trail	Completed	-		

																																		Results.";	

												postMessage	+="\n\nTitle:	"	+	Title;	

												postMessage	+="\nKilometers:	"	+	Kilometers;	

												postMessage	+="\nDifficulty:	"	+	Difficulty;	

												postMessage	+="\nNotes:	"	+	Notes;	

												postMessage	+="\nTrail	Image:	"	+	trailPictureUrl;	

	

												fb.PostTaskAsync("me/feed",	new	{	message	=	postMessage	}).	

												ContinueWith(t	=>	

												{	

																if	(t.IsFaulted)	

																{	

																				//	Catch	any	errors	that	occur	here.	

																}	

												});	

										}	

Note

The	Graph	API	is	the	primary	way	in	which	we	can	get	data	in	and	out	of	Facebook's	social
graph,	and	is	essentially	a	low-level	HTTP-based	API	that	is	used	to	query	data,	post	new
stories,	and	upload	photos.	If	you	are	interested	in	finding	our	more	information	about	the
Facebook	Graph	API	framework	classes,	please	refer	to	the	Facebook	Developer
documentation	located	at	https://developers.facebook.com/docs/graph-api/using-graph-api/	.

6.	 Then,	implement	the	GetProfileInformation	instance	method	that	will	be	used	to	retrieve
information	relating	to	the	currently	active	Facebook	user.	We	define	a	request	object	that
initializes	a	new	instance	of	the	OAuth2Request	class,	and	accepts	the	HTTP	method	type,
along	with	the	URL,	and	a	list	of	parameters.	The	final	parameter	is	our	obtained	Facebook
account	details	that	will	be	used	to	authenticate	our	request.

7.	 We	then	use	the	GetResponseAsync	method	to	make	an	asynchronous	web	request	call	to
retrieve	the	information,	as	specified	by	our	request	object,	and	then	use	the
GetReponseText	method	to	return	a	JSON	object,	containing	the	Facebook	user	details	as
specified	in	our	URL	string,	and	then	parse	this	using	the	JObject.Parse	method	to	convert
the	details	to	a	JSON	object	and	assign	this	to	our	obj	variable.

8.	 Next,	we	check	to	ensure	that	we	have	the	information	returned	by	our	web	request,	and	then

https://developers.facebook.com/docs/graph-api/using-graph-api/

pass	the	JSON	object	details,	as	defined	by	our	obj	variable,	to	our	SaveUserDetails
property,	which	is	contained	within	our	FacebookApiUser	class.	To	proceed,	enter	the
following	code	snippet:

								//	Retrieve	Facebook	information	pertaining	to	the	user.	

								public	static	async	Task	GetProfileInformation(AuthenticatorCompl		

								etedEventArgs	eventArgs)	

								{	

												//	Make	a	request	to	retrieve	our	items	based	on	the	list	of			

												//	parameters	below.	

												var	request	=	new	OAuth2Request("GET",		

												new	Uri("https://graph.facebook.com/me?fields=id,name,	

												

first_name,last_name,gender,picture,email,devices,education"),		

												null,	eventArgs.Account);	

												var	response	=	await	request.GetResponseAsync();	

												var	obj	=	JObject.Parse(response.GetResponseText());	

	

												//	Check	to	see	if	we	have	returned	any	information		

												if	(obj	!=	null)	

												{	

																try	

																{	

																			//	Store	our	user	profile	information	into	our	

property.		

																						FacebookApiUser.SaveUserDetails(obj);	

																			}	

																			catch	(Exception	e)	

																			{	

																						//	Handle	any	errors	that	fall	in	here.	

																			}	

																}	

													}	

											}	

									}	

In	the	preceding	code	snippet,	we	begin	by	implementing	the	methods	that	are	required	to	post	and
retrieve	our	Facebook	information	using	the	FacebookClient	class	that	is	used	to	make
synchronous	requests	to	the	Facebook	server.	The	PostWalkInformation	instance	method	is
used	to	post	information	relating	to	the	currently	active	user	to	the	user's	Facebook	page	wall.

The	GetProfileInformation	instance	method	is	used	to	retrieve	information	associated	with
the	currently	logged-in	Facebook	user,	using	the	OAuth2Request	class	and	the	Facebook	Graph
API,	which	accepts	a	URL,	containing	a	list	of	parameters	that	we	would	like	our	method	to
return	and	that	will	be	stored	within	our	SaveUserDetails	property,	which	is	defined	within	our
FacebookApiUser	class.

Note

If	you	are	interested	in	finding	out	more	information	about	the	OAuth2Request	and	the
Xamarin.Auth	classes,	please	refer	to	the	Xamarin	developer	documentation	located	at

https://components.xamarin.com/gettingstarted/xamarin.auth	.

https://components.xamarin.com/gettingstarted/xamarin.auth

Creating	the	Facebook	Sign	In	to	use	within	our	TrackMyWalks
app
In	our	previous	section,	we	created	and	implemented	our	FacebookCredentials	wrapper	class
that	will	be	used	by	our	TrackMyWalks	application	to	handle	the	retrieving	of	our	Facebook	user
details,	as	well	as	providing	the	ability	to	post	walk	trail	information	directly	to	our	Facebook
wall	so	that	our	friends	and	family	can	track	our	progress.

Our	next	step	is	to	begin	creating	a	Facebook	Sign	In	page	that	will	be	hooked	up	to	a	custom
renderer	page	that	will	be	used	to	display	the	Facebook	login	page	within	a	web	container.

Let's	now	start	to	implement	the	code	required	for	our	FBSignInPageContentPage	by
performing	the	following	steps:

1.	 Create	an	empty	Forms	ContentPage	within	the	Pages	folder.	If	you	can't	remember	how	to
do	this,	you	can	refer	to	the	section	entitled	Creating	the	walks	main	page	within	Chapter	1,
Creating	the	TrackMyWalks	Native	App.

2.	 Next,	enter	FBSignInPage	for	the	name	of	the	new	ContentPage	that	you	want	to	create,
and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	file.

3.	 Then,	ensure	that	the	FBSignInPage.cs	file	is	displayed	within	the	code	editor	and	enter	the
following	code	snippet:

								//	

								//		FBSignInPage.cs	

								//		TrackMyWalks	Facebook	SignIn	Page	

								//	

								//		Created	by	Steven	F.	Daniel	on	09/11/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

	

												using	Xamarin.Forms;	

	

												namespace	TrackMyWalks	

												{	

														public	class	FBSignInPage	:	ContentPage	

														{	

															}	

													}		

In	the	preceding	code	snippet,	our	ContentPage	contains	the	bare-bones	implementation.	This	is
intentional,	as,	in	our	next	section,	we	will	be	creating	a	custom	class	renderer	that	will	use	our
FBSignInPageContentPage	to	instantiate	an	instance	of	the	Facebook	login	web	page.

Creating	the	Facebook	Sign	In	Class	for	TrackMyWalks	(iOS)
app
In	our	previous	section,	we	created	our	FBSignInPage	content	page	that	will	be	used	as	a
placeholder	for	our	Facebook	Sign	In	class	custom	renderer.	In	this	section,	we	will	build	the
custom	Facebook	sign-in	page	renderer,	which	will	be	used	by	the	iOS	and	Android	portions	of
our	app	to	handle	the	signing	in	to	Facebook	via	the	FacebookApiAuthToken	model,	to	store	the
received	Facebook	token	that	will	be	used	throughout	the	TrackMyWalks	application.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

1.	 Create	an	empty	class	within	the	Renderers	folder	for	our	TrackMyWalks.iOS	project.	If
you	can't	remember	how	to	do	this,	you	can	refer	to	the	section	entitled	Creating	the	custom
picker	renderer	class	for	the	iOS	platform	within	Chapter	5,	Customizing	the	User
Interface.

2.	 Next,	enter	FBSignInPageRenderer	for	the	name	of	the	new	class	that	you	want	to	create,
and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	file.

3.	 Then,	ensure	that	the	FBSignInPageRenderer.cs	file	is	displayed	within	the	code	editor
and	enter	the	following	code	snippet:

								//	

								//		FBSignInPageRenderer.cs	

								//		TrackMyWalks	Facebook	SignIn	Page	(iOS)	

								//	

								//		Created	by	Steven	F.	Daniel	on	09/11/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	Xamarin.Forms;	

												using	TrackMyWalks;	

												using	Xamarin.Forms.Platform.iOS;	

												using	Xamarin.Auth;	

												using	TrackMyWalks.Facebook;	

4.	 Next,	we	need	to	initialize	our	FBSignInPageRenderer	class	being	marked	as	an
ExportRenderer	by	including	the	ExportRenderer	assembly	attribute	to	the	top	of	our
class	definition.	This	lets	our	class	know	that	it	inherits	from	the	ViewRenderer	class.

								[assembly:	ExportRenderer(typeof(FBSignInPage),

								typeof(TrackMyWalks.iOS.FBSignInPageRenderer))]	

								namespace	TrackMyWalks.iOS	

								{	

												public	class	FBSignInPageRenderer	:	PageRenderer	

												{	

Then,	we	declare	an	IsVerified	Boolean	variable	that	will	be	used	to	determine	if	a
successful	to	Facebook	has	happened.	Next,	we	implement	the	ViewDidAppear	method	that
will	be	launched	upon	the	ContentPage	becoming	visible,	and	then	call	the
FacebookSignIn	instance	method:

								bool	IsVerified	=	false;	

	

								public	override	void	ViewDidAppear(bool	animated)	

								{	

												base.ViewDidAppear(animated);	

	

												if	(!IsVerified)	

												{	

																FacebookSignIn();	

												}	

									}	

5.	 Next,	we	need	to	create	the	FacebookSignIn	instance	method	that	will	be	called	whenever
the	user	hasn't	signed	in	to	Facebook.	We	use	the	OAuth2Authenticator	method,	which
will	be	responsible	for	managing	the	user	interface	and	handling	the	communication	with	the
Facebook	authentication	services.

6.	 The	OAuth2Authenticator	class	accepts	the	user's	Facebook	ID,	which	is	stored	within
the	FacebookId	property	that	is	declared	within	the	FacebookApiUser	class.	The
OAuth2Authenticator	class	also	accepts	the	authorization	scope	and	the	Facebook	service
locations	to	authenticate	and	determine	what	to	do	when	a	successful	login	happens:

								void	FacebookSignIn()	

								{	

												string	AccessToken	=	String.Empty;	

	

												var	auth	=	new	

OAuth2Authenticator(FaceBookApiUser.FacebookId,	

												"publish_actions",	

												new	Uri("https://m.facebook.com/dialog/oauth/"),	

												new	

Uri("https://www.facebook.com/connect/login_success.html")	

);	

	

												//	Prevent	our	form	from	being	dismissed	by	the	user.	

												auth.AllowCancel	=	false;	

7.	 Then,	before	we	present	the	Facebook	UI	to	the	user,	we	need	to	start	listening	to	the
Completed	event	of	the	OAuth2Authenticator	instance,	which	fires	up	whenever	the	user
successfully	authenticates	or	cancels,	and	then	check	the	IsAuthenticated	property	of	the
eventArgs	property	to	properly	determine	if	the	authentication	has	succeeded.

8.	 If	we	have	determined	that	a	successful	login	has	happened,	we	make	a	call	to	the
DismissViewController	method	to	dismiss	the	currently	presented	Facebook	UI	and	then
call	the	RemoveFBSignInPage	instance	method	from	our	TrackMyWalks	app	class,	within
Portable	Class	Library,	to	remove	our	FBSignInPage	from	memory:

								auth.Completed	+=	async	(sender,	eventArgs)	=>	

								{	

												if	(eventArgs.IsAuthenticated)	

												{	

																//	Dismiss	our	Facebook	Authentication	UI	Dialog	

																			DismissViewController(true,	null);	

	

																//	Remove	our	Facebook	SignIn	Page	View	from	memory.	

																			App.RemoveFBSignInPage();	

9.	 Next,	we	proceed	to	retrieve	the	access	token	from	the	Facebook	session	of	the	successfully
logged-in	user,	and	proceed	to	store	the	values	within	the	StoreAuthToken	and
StoreAuthAccount	details	within	our	FacebookApiAuthToken	class.	Finally,	we	call	our
NavigateToWalksPage	Action	within	our	TrackMyWalks	App	class:

								//	Retrieve	our	access	token	for	our	Facebook	session.	

								eventArgs.Account.Properties.TryGetValue("access_token",

										out	AccessToken);	

								FacebookApiAuthToken.StoreAuthToken(AccessToken);	

								FacebookApiAuthToken.StoreAuthAccount(eventArgs);	

	

								//	Navigate	To	Walks	List	method	from	our	main	class.	

									await	App.NavigateToWalksPage();	

									}	

									else	

									{	

												//	The	user	cancelled	the	Facebook	Login	UI	

															Console.WriteLine("You	are	not	authorised	to	use		

															the	TrackMyWalks	app");	

															IsVerified	=	false;	

															return;	

										}	

								};	

10.	 Then,	we	present	the	Facebook	login	UI	by	using	the	PresentViewController	method,	and
call	the	GetUI	method	returns	UINavigationControllers	on	iOS	and	intents	on	Android.
On	Android,	we	would	write	the	following	code	to	present	the	UI	from	the	OnCreate
method:

								IsVerified	=	true;	

								PresentViewController(auth.GetUI(),	true,	null);	

								}	

							}	

						}		

In	the	preceding	code	snippet,	we	begin	by	initializing	our	FBSignInPageRenderer	class,	being
marked	as	an	ExportRenderer,	to	let	our	class	know	that	it	inherits	from	the	ViewRenderer
class,	and	then	declare	an	IsVerified	Boolean	variable	that	will	be	used	to	determine	if	a
successful	login	to	Facebook	has	happened.	We	then	proceed	and	implement	the	ViewDidAppear
method,	which	will	be	launched	when	the	ContentPage	becomes	visible,	and	then	call	the
FacebookSignIn	instance	method,	which	will	be	called	whenever	the	user	hasn't	signed	in	to
Facebook,	and	use	the	OAuth2Authenticator	method,	which	will	be	responsible	for	managing
the	user	interface	and	handling	the	communication	with	the	Facebook	authentication	services.

Finally,	we	present	the	Facebook	login	UI,	retrieve	the	access	token	from	the	Facebook	session	of
the	successfully	logged-in	user,	and	proceed	to	store	the	values	within	the	StoreAuthToken	and
StoreAuthAccount	details	within	our	FacebookApiAuthToken	class:

Note

The	Android	version	of	the	FBSignInPageRenderer	class	is	available	in	the	companion	source
code	for	this	book,	which	can	be	located	within	the	TrackMyWalks.Droid	project.

Updating	the	NavigationService	Interface	for	the
TrackMyWalks	app
In	this	section,	we	will	proceed	to	update	our	IWalkNavService	Interface	to	contain	a	new
method	of	implementation	that	will	allow	our	app	to	clear	all	previously	created	views	from	the
NavigationStack.	Since	this	abstract	Interface	class	will	act	as	the	base	NavigationService
class	that	each	of	our	ViewModels	will	inherit	from,	they	will	be	able	to	access	each	of	the	class
members	contained	within	this	Interface.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

Ensure	that	the	IWalkNavService.cs	file	is	displayed	within	the	code	editor	and	enter	the
highlighted	code	sections	shown	in	the	following	code	snippet:

								//	

								//		IWalkNavService.cs	

								//		TrackMyWalks	Navigation	Service	Interface	

								//	

								//		Created	by	Steven	F.	Daniel	on	03/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.ViewModels;	

	

												namespace	TrackMyWalks.Services	

												{	

																public	interface	IWalkNavService	

																{	

																			//	Navigate	back	to	the	Previous	page

																						in	the	NavigationStack	

																			Task	PreviousPage();	

	

																			//	Navigate	to	the	first	page	within	

																						the	NavigationStack		

																				Task	BackToMainPage();	

	

																			//	Navigate	to	a	particular	ViewModel

																						within	our	MVVM	Model,	

																			//	and	pass	a	parameter	

																				Task	NavigateToViewModel<ViewModel,

																						WalkParam>(WalkParam	parameter)	

																					where	ViewModel	:	WalkBaseViewModel;	

	

																			//	Clear	all	previously	created	views

																					from	the	NavigationStack

	

																					void	ClearAllViewsFromStack();	

																}	

													}		

In	the	preceding	code	snippet,	we	implement	a	new	class	member	ClearAllViewsFromStack

method	that	will	be	used	to	clear	all	previously	created	views	from	the	NavigationStack.	This
is	because,	upon	successfully	logging	in	to	our	TrackMyWalks	app	after	the	Facebook	UI	login
has	been	dismissed,	we	need	to	have	the	ability	to	remove	the	FBSignInPage	from	the
NavigationStack.

Updating	the	NavigationService	class	for	the	TrackMyWalks
app
In	the	previous	section,	we	updated	the	base	Interface	class	for	our	NavigationService,	as	well
as	defining	a	new	class	member	that	will	be	used	to	handle	the	removing	of	all	previously	created
views	from	our	NavigationStack	within	our	MVVM	ViewModel.

These	will	be	used	by	each	of	our	ViewModels,	and	the	Views	(pages)	will	implement	those
ViewModels	and	use	them	as	their	BindingContext.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

1.	 Ensure	that	the	WalkNavService.cs	file	is	displayed	within	the	code	editor,	and	enter	the
highlighted	code	sections	shown	in	the	following	code	snippet:

								//	

								//		WalkNavService.cs	

								//		TrackMyWalks	Navigation	Service	Class	

								//	

								//		Created	by	Steven	F.	Daniel	on	03/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	Xamarin.Forms;	

												using	System.Collections.Generic;	

												using	System.Threading.Tasks;	

												using	System.Reflection;	

												using	System.Linq;	

												using	TrackMyWalks.ViewModels;	

												using	TrackMyWalks.Services;	

	

												[assembly:	Dependency(typeof(WalkNavService))]	

												namespace	TrackMyWalks.Services	

												{	

															public	class	WalkNavService	:	IWalkNavService	

															{	

																	public	INavigation	navigation	{	get;	set;	}	

																	readonly	IDictionary<Type,	Type>

																	_viewMapping	=	new		

																	Dictionary<Type,	Type>();	

	

												//	Register	our	ViewModel	and	View	within	our	Dictionary	

															public	void	RegisterViewMapping(

															Type	viewModel,	Type	view)	

															{	

																			_viewMapping.Add(viewModel,	view);	

															}	

	

												//	Instance	method	that	allows	us	to	move	back	to

															the	previous	page	

															public	async	Task	PreviousPage()	

															{	

												//	Check	to	see	if	we	can	move	back	to	the	previous	page	

															if	(navigation.NavigationStack	!=	null	&&	

																navigation.NavigationStack.Count	>	0)	

																{	

																				await	navigation.PopAsync(true);	

																}	

												}	

	

												//	Instance	method	that	takes	us	back	to	the

																main	Root	WalksPage	

															public	async	Task	BackToMainPage()	

															{	

																		await	navigation.PopToRootAsync(true);	

															}	

	

											//	Instance	method	that	navigates	to	a	specific	ViewModel		

											//	within	our	dictionary	viewMapping.	

														public	async	Task	NavigateToViewModel

														<ViewModel,	WalkParam>	(WalkParam	parameter)	

												where	ViewModel	:	WalkBaseViewModel	

												{	

															Type	viewType;	

	

												if	(_viewMapping.TryGetValue(typeof(ViewModel),

																out	viewType))	

												{	

																var	constructor	=	viewType.GetTypeInfo()	

																		.DeclaredConstructors	

																		.FirstOrDefault(dc	=>	dc.GetParameters()

																		.Count()	<=	0);	

	

																var	view	=	constructor.Invoke(null)	as	Page;	

																await	navigation.PushAsync(view,	true);	

												}	

	

												if	(navigation.NavigationStack.Last().BindingContext	is		

																WalkBaseViewModel<WalkParam>)	

																await	((WalkBaseViewModel<WalkParam>)

(navigation.Navigation	

																Stack.Last().BindingContext)).Init(parameter);	

									}	

2.	 Next,	we	need	to	create	the	ClearAllViewsFromStack	instance	method	for	our
WalkNavService	class,	which	will	be	used	to	remove	all	previously	created	views	from	the
NavigationStack	by	first	checking	the	NavigationStack	property	for	the	navigation
property	INavigation	interface	to	see	if	any	items	already	have	been	pushed	onto	the
NavigationStack.	This	is	to	ensure	that	a	crash	doesn't	happen	within	our	app.

3.	 In	our	next	step,	we	proceed	to	iterate	through	each	item	that	is	contained	in	our
NavigationStack	and	call	the	RemovePage,	method	to	remove	each	page:

								//	Instance	method	to	remove	all	previously	created	views	from

	

							//	the	Navigation	Stack.

											public	void	ClearAllViewsFromStack()

											{

													//	Check	to	see	if	any	items	have	already	been	pushed

	

												//	onto	the	NavigationStack.

													if	(navigation.NavigationStack.Count	<=	1)

																return;

													for	(var	i	=	0;	i	<	navigation.NavigationStack.Count	-	1;	

i++)

																navigation.RemovePage(navigation.NavigationStack[i]);

												}

											}	

										}		

In	the	preceding	code	snippet,	we	implement	a	new	class	member	ClearAllViewsFromStack
instance	method	within	our	WalkNavService	class,	to	handle	the	clearing	of	all	previously
created	Views	(pages)	from	the	NavigationStack.

Updating	the	WalksPage	to	properly	handle
Facebook	Sign	In
In	this	section,	we	need	to	update	our	WalksPageContentPage	so	that	it	can	reference	the
updates	within	our	WalksPageViewModel.	We	will	need	to	apply	additional	logic	to	update	the
NavigationBar	Title	once	we	have	dismissed	our	Facebook	Sign	In	dialog.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

Ensure	that	the	WalksPage.cs	file	is	displayed	within	the	code	editor,	and	enter	the	highlighted
code	sections	shown	in	the	following	code	snippet:

								//	

								//		WalksPage.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.ViewModels;	

								using	TrackMyWalks.Services;	

								using	TrackMyWalks.DataTemplates;	

								using	TrackMyWalks.ValueConverters;	

	

								namespace	TrackMyWalks	

								{	

												public	class	WalksPage	:	ContentPage	

												{	

																WalksPageViewModel	_viewModel	

																{	

																				get	{	return	BindingContext

																						as	WalksPageViewModel;	}	

																	}	

	

																public	WalksPage()	

																{	

																				var	newWalkItem	=	new	ToolbarItem	

																				{	

																								Text	=	"Add"	

																				};	

	

												if	(Device.OS	==	TargetPlatform.iOS)

												{

																Title	=	"Track	My	Walks	-	iOS";

												}

												else	if	(Device.OS	==	TargetPlatform.Android)

												{

																Title	=	"Track	My	Walks	-	Android";

												}	

									...	

									...	

									...	

									...	

In	the	preceding	code	snippet,	we	begin	by	checking	the	Device.OS	class,	to	determine	what	OS
Xamarin.Forms	is	running	on,	and	then	use	the	TargetPlatform	class	to	determine	if	our	app	is
running	on	the	Android	or	iOS	platform.	If	we	have	determined	that	our	app	is	running	on
Android,	we	set	the	Title	property	for	our	ContentPage;	alternatively,	if	we	are	running	on
iOS,	we	set	the	Title	property	as	well.

Updating	the	WalksPage	ViewModel	to	use	our
FaceBookApiUser
In	this	section,	we	will	proceed	to	update	our	WalksPageViewModel	ViewModel,	so	that	it	has
the	ability	to	display	our	Facebook	Sign	In	page	if	it	determines	that	we	haven't	already	logged	in.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

Ensure	that	the	WalksPageViewModel.cs	file	is	displayed	within	the	code	editor,	and	enter	the
highlighted	code	sections	shown	in	the	following	code	snippet:

								//	

								//		WalksPageViewModel.cs	

								//		TrackMyWalks	ViewModels	

								//	

								//		Created	by	Steven	F.	Daniel	on	22/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	System;	

								using	System.Collections.ObjectModel;	

								using	System.Threading.Tasks;	

								using	TrackMyWalks.Models;	

								using	TrackMyWalks.Services;	

								using	Xamarin.Forms;	

								using	TrackMyWalks.Facebook;	

	

									namespace	TrackMyWalks.ViewModels	

									{	

												public	class	WalksPageViewModel	:

														WalkBaseViewModel	

												{	

																ObservableCollection<WalkEntries>

																	_walkEntries;	

	

																	public	ObservableCollection<WalkEntries>

																			walkEntries	

																	{	

																				get	{	return	_walkEntries;	}	

																				set	

																				{	

																								_walkEntries	=	value;	

																								OnPropertyChanged();	

																				}	

																	}	

	

																public	WalksPageViewModel

																		(IWalkNavService	navService)	:		

																base(navService)	

																{	

																				walkEntries	=	new	ObservableCollection

																						<WalkEntries>();	

																	}	

	

																public	override	async	Task	Init()	

																{	

												//	Check	if	we	have	logged	in	and	that	we	are	running	our

	

												//	device	on	iOS

												if	(!FacebookApiUser.IsLoggedIn	&&

												Device.OS	==	TargetPlatform.iOS)

												{

																await	App.Current.MainPage.Navigation

																.PushModalAsync(new	

FBSignInPage());

												}	

												else	{	

															await	LoadWalkDetails();	

																await	NavService.ClearAllViewsFromStack();	

												}	

									}		

								...	

								...	

								...	

								...	

In	the	preceding	code	snippet,	we	begin	by	modifying	the	Init	method	to	include	a	check	to	see	if
we	have	already	logged	in	to	Facebook,	by	checking	the	IsLoggedIn	property	of	the
FacebookApiUser	class,	and	whether	we	are	running	on	a	device	running	iOS.	If	we	determine
that	the	IsLoggedIn	property	doesn't	contain	a	value,	we	call	the	PushModalAsync	method	on
the	Navigation	property	from	the	MainPage	to	display	our	FBSignInPageContentPage.
Alternatively,	if	the	user	has	logged	in,	we	proceed	to	load	our	walk	entry	details	using	the
LoadWalkDetails	instance	method,	and	call	the	ClearAllViewsFromStack	instance	method	that
is	located	within	our	WalkNavService	class.

Updating	the	DistanceTravelledPage	for	the	TrackMyWalks	app
In	this	section,	we	need	to	update	our	DistanceTravelledPageContentPage,	so	that	it	can
make	use	of	our	Facebook	API	and	retrieve	the	currently	logged-in	Facebook	user,	as	well	as
providing	the	ability	to	post	Walk	Trail	information	to	the	user's	Facebook	wall.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

1.	 Ensure	that	the	DistanceTravelledPage.cs	file	is	displayed	within	the	code	editor,	and
enter	the	highlighted	code	sections	shown	in	the	following	code	snippet:

var	postToFacebook	=	new	Button

				{

								BackgroundColor	=	Color.FromHex("#455c9f"),

								TextColor	=	Color.White,

								Text	=	"Post	to	Facebook"

				};

				postToFacebook.Effects.Add(Effect.Resolve(

										"com.geniesoftstudi

os.ButtonShadowEffect"));	

2.	 Next,	we	create	a	Clicked	handler	method	for	our	postToFacebook	button,	so	that
whenever	the	Post	to	Facebook	is	pressed	we	display	a	selection	of	choices	for	the	user	to
choose	from,	using	the	DisplayActionSheet	method:

			//	Set	up	our	event	handler

			postToFacebook.Clicked	+=	async	(sender,	e)	=>

			{

							if	(_viewModel.WalkEntry	==	null)	return;

							//	Display	our	list	of	choices	to	choose	from

							var	action	=	await	DisplayActionSheet(

									"Track	My	Walks	-	Trail	Details",

									"Cancel",

"Display	User	Details",

									"Post	to	Facebook	Wall");

3.	 Then,	we	use	the	Contains	property	of	the	action	variable	to	determine	if	the	Post	option
has	been	selected,	and,	if	so,	we	call	the	PostWalkInformation	instance	method	of	our
FacebookCredentials	class;	pass	in	the	Title,	Kilometers,	Difficulty,	Notes,	and
ImageUrl	as	parameters	to	the	class;	and	then	display	an	alert	dialog	box	telling	the	user	that
their	walk	information	has	been	posted	to	their	Facebook	wall:

				if	(action.Contains("Post"))

				{

							//	Declare	an	instance	to	our	Facebook	Credentials	Class

							FacebookCredentials.PostWalkInformation(

							_viewModel.WalkEntry.Title,

							_viewModel.WalkEntry.Kilometers,

							_viewModel.WalkEntry.Difficulty,

							_viewModel.WalkEntry.Notes,

							_viewModel.WalkEntry.ImageUrl.AbsoluteUri);

							//	Display	an	alert	dialog	letting	the	user	know	that

							//	their	information	has	been	posted	to	their	Facebook

							//	Wall.

							await	DisplayAlert("Post	to	Facebook","Trail	

							information	has	been	posted	to	your	wall!",	"OK");

					}

4.	 Next,	we	use	the	Contains	property	of	the	action	variable	to	determine	if	the	User
Details	option	has	been	selected,	and,	if	so,	we	call	the	GetProfileInformation	instance
method	of	our	FacebookCredentials	class,	and	pass	in	the	GetAuthAccount	property
from	our	FacebookApiAuthToken	class	to	retrieve	our	currently	logged-in	Facebook	user's
details	and	assign	the	value	to	our	objUserDetails	variable.	We	then	proceed	to	construct
our	userDetails	string	with	the	information	extracted	from	the	objUserDetails
dictionary,	and	display	the	information	within	an	alert	dialog	box:

								else	if	(action.Contains("User	Details"))

								{

										//	Declare	an	instance	to	our	Facebook	Credentials	Class

												await	FacebookCredentials.GetProfileInformation((Xamarin

												.Auth.AuthenticatorCompletedEventArgs)	

													FacebookApiAuthToken.GetAuthAccount);

										//	Construct	our	Facebook	User	details	based	on

	

									//	information	stored	within	each	of	the	properties

												var	objUserDetails	=	FacebookApiUser.GetUserDetails;

	

												var	userDetails	=	objUserDetails.GetValue("id").ToString();

	

												userDetails	

+="\n"+objUserDetails.GetValue("name").ToString();

	

												userDetails	+="\n"+	objUserDetails.GetValue("first_name")

												.

ToString();

												userDetails	+="\n"+	objUserDetails.GetValue("last_name")

	

												.ToString();

												userDetails	+="\n"+	objUserDetails.GetValue("gender")

												.ToString();

													userDetails	+=	"\n"+	objUserDetails.GetValue("devices")

		

												.ToString();

	

											//	Display	an	Alert	Dialog	that	will	display

	

										//	information	from	our	user	properties

	

													await	DisplayAlert("Facebook	User	Details",

	

												userDetails,	"OK");

	

													}	

											};		

In	the	preceding	code	snippet,	we	create	our	postToFacebook	button	and	begin	applying	the
ButtonShadowEffect	class	to	our	control,	so	that	it	can	take	advantage	of	the	nice	platform-
specific	rendering	effects	for	visual	control	elements.

Next,	we	modify	the	Clicked	method	to	handle	each	press	of	the	button,	so	that	we	can	display	a
selection	of	options	for	the	user	to	choose	from.	We	accomplish	this	by	using	the
DisplayActionSheet	method.	When	the	user	chooses	the	Post	button,	a	call	is	made	to	our
FacebookCredentials	class	and	the	PostWalkInformation	method	to	submit	the	current	walk
information	to	the	user's	Facebook	page.	Alternatively,	if	the	user	chooses	the	User	Details
option,	we	make	a	call	to	our	FacebookCredentials	class,	but	this	time	we	call	the
GetProfileInformation	method	to	return	a	JSON	dictionary	that	contains	the	currently	logged-
in	Facebook	user's	details,	which	we	assign	to	an	object	variable	called	objUserDetails.

Finally,	we	create	a	userDetails	variable	that	we	construct	by	extracting	each	of	the	values	for
name,	last_name,	first_name,	etc.	and	display	this	information	within	an	alert	dialog	box
using	the	DisplayAlert	method.

Updating	the	Xamarin.Forms	App	class	to	handle	Facebook
Sign	In
In	this	section,	we	need	to	update	our	Xamarin.Forms.App	class	by	modifying	the	constructor	in
the	main	App	class	to	include	additional	property	and	action	methods	that	will	help	with
navigating	to	our	WalksPageContentPage	after	our	TrackMyWalks	app	has	successfully	signed
in	to	Facebook.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

1.	 Open	the	TrackMyWalks.cs	file,	located	within	the	TrackMyWalks	Portable	Class	Library
project	solution.

2.	 Next,	ensure	that	the	TrackMyWalks.cs	file	is	displayed	within	the	code	editor,	locate	the
App	method,	and	enter	the	highlighted	code	sections	shown	in	the	following	code	snippet:

								//	

								//		TrackMyWalks.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	System;	

												using	System.Threading.Tasks;	

												using	TrackMyWalks.Services;	

												using	TrackMyWalks.ViewModels;	

												using	Xamarin.Forms;	

	

												namespace	TrackMyWalks	

												{	

															public	class	App	:	Application	

															{	

																		public	App()	

																		{	

																			//	Check	the	Device	Target	OS	Platform	

																			if	(Device.OS	==	TargetPlatform.Android)	

																			{	

																				//	Set	the	root	page	of	your	application	

																				MainPage	=	new	SplashPage();	

																			}	

																			else	if	(Device.OS	==	TargetPlatform.iOS)	

																			{	

																				//	Set	our	Walks	Page	to	be	the	root	page	of	our		

																				//	application.	

																			var	mainPage	=	new	NavigationPage(new	WalksPage()	

																			{	

																					Title	=	"Track	My	Walks	-	iOS",	

																			});	

																...	

																...	

																...	

																...	

														}	

												}	

3.	 Next,	create	the	RemoveFBSignInPage	action	property	method,	which	will	be	used	to
handle	the	removal	of	the	FBSignInPage	once	we	have	successfully	signed	in	to	Facebook,
as	determined	by	the	FBSignInPageRenderer	class.	We	then	call	the	PopModalAsync
property	of	the	Navigation	property	on	the	MainPage	to	pop	the	last	page	off	the
NavigationStack:

				//	Property	method	instance	to	remove	our	FBSignInPage

							public	static	Action	RemoveFBSignInPage

							{

										get

										{

													return	new	Action(()	=>	App.Current.

																	MainPage.Navigation.

PopModalAsync());

											}

								}

4.	 Then,	create	the	NavigateToWalksPage	instance	method;	this	will	be	used	to	handle
navigating	to	the	WalksPage	ViewModel	within	the	NavigationStack	by	calling	the
PushAsync	property	on	the	Navigation	property	on	the	MainPage:

								//	Handle	navigating	to	our	Walks	Page	when

											we	have	successfully

	

								//	signed	into	Facebook.

								public	async	static	Task	NavigateToWalksPage()

								{

												await	App.Current.MainPage.Navigation.PushAsync

												(new	WalksPage());

								}	

							}		

In	the	preceding	code	snippet,	we	begin	by	implementing	the	methods	that	will	be	required	to
remove	an	instance	of	FBSignInPage,	as	determined	by	the	RemoveFBSignInPage	property
Action	method	that	will	be	used	to	handle	removal	of	the	FBSignInPage	once	we	have
successfully	signed	into	Facebook,	as	determined	by	the	FBSignInPageRenderer	class.	We	then
call	the	PopModalAsync	property	of	the	Navigation	property	on	the	MainPage	to	pop	the	last
page	off	the	NavigationStack.

The	NavigateToWalksPage	instance	method	will	be	used	to	handle	the	navigation	to	our	Walks
Page	ViewModel	upon	successfully	being	logged	in	to	Facebook	via	the	TrackMyWalks	app;	this
is	done	by	using	the	PushAsync	property	on	the	Navigation	property.

Enabling	Facebook	functionality	within	the	TrackMyWalks	app
When	working	with	the	Facebook	SDK	and	the	Xamarin.Auth	framework,	we	need	to	make
some	additional	changes	to	our	iOS	project	solution	property	list	to	enable	SSO	(Single	Sign-
On)	support	when	the	application	runs.

Let's	look	at	how	we	can	achieve	this	by	performing	the	following	steps:

1.	 Double-click	on	the	Info.plist	file	that	is	contained	within	the	TrackMyWalks.iOS
project,	and	ensure	that	the	Advanced	tab	is	showing.

2.	 Next,	scroll	down	to	the	bottom	of	the	page,	and	expand	the	URL	Types	section.
3.	 Then,	within	the	Identifier	field,	provide	your	Facebook	Id	whilst	prefixing	it	with	fb	as	the

first	two	characters	that	is	fb1234567890:

Note

The	URL	types	section	is	a	single	array	sub-item	that	needs	your	Facebook	App	ID	to	be	prefixed
with	fb.	This	is	used	to	ensure	the	application	will	receive	the	call-back	methods	of	the	URL	and
the	web-based	OAuth	flow.

Now	that	we	have	modified	our	TrackMyWalks.iOS	project	to	allow	our	app	to	receive	the	call-
back	methods	of	the	URL	and	the	web-based	OAuth	flow,	we	need	to	do	one	more	thing,	and	set

up	our	Facebook	App	ID	and	application	name	that	we	configured	within	the	app	dashboard:

1.	 Ensure	that	the	Info.plist	file	is	displayed	within	the	Xamarin	IDE,	and	that	the	Source
tab	is	showing.

2.	 Next,	create	the	FacebookAppID	and	FacebookDisplayName	keys	by	clicking	within	the
Add	new	entry	section	of	the	Info.plist.

3.	 Then,	enter	your	Facebook	App	ID	as	the	string	description	for	the	Value	field,	as	shown	in
the	following	screenshot.	You	will	notice	here	that	we	don't	need	to	provide	the	fb	prefix	as
we	did	for	our	URL	types	section.

4.	 Next,	enter	TrackMyWalks	as	the	string	description	for	the	Value	field,	as	shown	in	the
following	screenshot:

5.	 Then,	create	the	LSApplicationQueriesScenes	array	keys,	and	add	the	string	description
fields	and	their	values,	using	fbapi,	fbauth2,	and	fbshareextension	as	the	Value	fields,	as
shown	in	the	preceding	screenshot.

Apple	introduced	the	App	Transport	Security	protocol	with	iOS	9	to	enforce	secure
connections	between	Internet	connections,	as	well	as	with	any	app	that	communicates	using
the	HTTPS	protocol.	It	requires	that	information	is	encrypted	using	the	TLS	version	1.2.	We
need	to	disable	and	opt	out	of	ATS	entirely	by	configuring	our	local	Info.plist	file	within
the	TrackMyWalks.iOS	project	solution,	so	that	it	can	communicate	over	HTTPS	without
any	issues.

6.	 Next,	with	the	Info.plist	file	still	open	within	the	Xamarin	IDE	environment,	create	the
NSAppTransportSecurity	dictionary	array.

7.	 Next,	add	the	NSAllowArbitraryLoads	Boolean	value,	setting	it	to	Yes,	as	shown	in	the
preceding	screenshot.

Note

If	you	are	interested	in	finding	out	more	information	on	the	App	Transport	Security	and
NSAppTransportSecurity	class,	refer	to	the	Xamarin	developer	documentation	located	at
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/	.

Now	that	we	have	finished	building	all	the	components	for	our	TrackMyWalks	application
necessary	to	enable	integration	with	Facebook,	we	can	build	and	run	the	TrackMyWalks
application	within	the	iOS	simulator.	When	compilation	completes,	the	iOS	Simulator	will
appear	automatically	and	the	TrackMyWalks	application	will	be	displayed,	as	shown	in	the
following	screenshot:

As	you	can	see	from	the	preceding	screenshot,	this	currently	displays	our	Facebook	Sign	In	page,
which	tells	the	user	to	Log	in	to	your	Facebook	account	to	connect	to	TrackMyWalks
application.	To	proceed,	provide	your	Email	address	or	phone	number	and	your	Facebook
password,	and	click	on	the	Log	In	button.

https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/

Upon	successfully	determining	that	your	details	have	been	validated	by	Facebook,	you	will	be
presented	with	a	Post	to	Facebook	authentication	screen,	asking	you	who	you	would	like	to	share
your	posts	with;	you	have	the	option	to	choose	either	Friends,	Public,	or	Only	Me.	Once	you
have	made	your	choice,	click	on	the	OK	button	to	dismiss	the	Post	to	Facebook	dialog	and
display	the	ListView	that	will	contain	our	list	of	walk	trails	from	our	DataTemplate	control:

The	preceding	screenshot	shows	the	Distance	Travelled	page	that	includes	our	Post	to
Facebook	button,	and	you	will	notice	that,	upon	clicking	on	this	button,	several	choices	will	pop
up	for	you	to	choose	from.	If	you	proceed	and	click	on	the	Display	User	Details	button,	this	will
make	a	call	to	the	GetProfileInformation	method	that	is	located	within	our
FacebookCredentials	class,	and	will	pass	the	GetAuthAccount	account	information	to	obtain
the	user	details,	which	are	located	within	our	FacebookApiAuthToken,	using	the	Open	Graph
API	platform.	Upon	successfully	obtaining	the	user's	Facebook	details,	you	will	be	presented
with	a	dialog	box	containing	each	of	our	user's	field	details:

The	preceding	screenshot	shows	the	Distance	Travelled	page	that	includes	our	Post	to
Facebook	button,	and	you	will	notice	that,	upon	clicking	on	this	button,	several	choices	will	pop
up	for	you	to	choose	from.	If	you	click	on	the	Post	to	Facebook	Wall	button,	this	will	make	a	call
to	the	PostWalkInformation	method	that	is	located	within	our	FacebookCredentials	class,
and	will	pass	the	currently	chosen	walk	trail	information,	as	determined	by	our	ViewModel.	Upon
successfully	posting	to	the	user's	Facebook	wall,	you	will	be	presented	with	a	dialog	box	telling
you	that	the	walk	entry	has	been	posted	to	the	user's	Facebook	wall.

Summary
In	this	chapter,	we	updated	our	TrackMyWalks	application	to	allow	us	to	use	Facebook	to	sign	in
to	our	app.	You	learned	how	you	can	use	both	the	Xamarin.Auth	and	the	Facebook	SDK	to
authenticate	whether	the	user	is	a	valid	Facebook	user.	Next,	you	learned	how	to	create	a	custom
FacebookApiUser	model	and	a	FacebookCredentials	class	that	are	used	to	store	the	user's
credentials,	so	that	these	can	be	used	throughout	our	app	to	obtain	information	about	the	user.

As	we	progressed	throughout	the	chapter,	you	created	a	Facebook	Sign	In	content	page	and	a
custom	page	renderer	class	that	will	allow	the	user	to	sign	in	to	the	TrackMyWalks	app	using
their	Facebook	credentials,	and	updated	the	ViewModel	and	content	pages	so	that	they	can	utilize
the	Facebook	functionality	appropriately.	You	learned	how	to	take	advantage	of	the	Facebook
SDK	and	post	walk	data	to	your	Facebook	profile	page,	so	you	can	show	off	your	progress	to
your	friends	and/or	work	colleagues.

In	the	next	chapter,	you'll	learn	how	to	create	and	run	unit	tests	within	the	Xamarin	Studio	IDE,
using	the	UITest	framework,	before	moving	on	to	learn	how	to	profile	our	application	using	the
Xamarin	Profiler,	and	how	to	use	the	Xamarin	Inspector	to	inspect	and	debug	our	user	interfaces
visually,	and	fix	UI-related	problems.

Chapter	9.	Unit	Testing	Your	Xamarin.Forms
Apps	Using	the	NUnit	and	UITest	Frameworks
In	our	previous	chapter,	we	updated	our	TrackMyWalks	application	to	allow	us	to	use	Facebook
to	sign	into	our	app.	You	learned	how	you	can	use	both	the	Xamarin.Auth	and	Facebook	SDK	to
authenticate	if	the	user	is	a	valid	Facebook	user.	Next,	you	learned	how	to	create	a	custom
FacebookApiUser	model	and	FacebookCredentials	class	that	will	be	used	to	store	the	user's
credentials,	so	that	these	can	be	used	throughout	our	app	to	obtain	information	about	the	user,	as
well	as	post	information	to	their	Facebook	wall.

During	the	development	of	our	TrackMyWalks	app,	we	have	designed	and	implemented	various
design	patterns	and	best	practices,	with	the	intention	of	making	it	easier	to	maintain	and	test	our
app	by	separating	the	user	interface	and	business	logic.

In	this	chapter,	you'll	learn	how	to	create	and	run	unit	tests	using	the	NUnit	and	UITest	testing
frameworks	right	within	the	Xamarin	Studio	IDE.	You'll	learn	how	to	write	unit	tests	for	our
ViewModels	that	will	essentially	test	the	business	logic	to	validate	that	everything	is	working
correctly,	before	moving	on	to	testing	the	user	interfaces	portion	using	automated	UI	testing.

This	chapter	will	cover	the	following	topics:

Creating	a	unit	testing	solution	using	the	popular	NUnit	testing	framework
Adding	the	Moq	NuGet	package	to	the	unit	testing	solution
Adding	the	Xamarin	Test	Cloud	Agent	NuGet	package	to	the	UITest	solution
Successfully	learning	how	to	test	your	ViewModels
Running	unit	tests	and	UITests	using	the	Xamarin	Studio	IDE
Understanding	the	common	types	of	UITest	testing	methods
Creating	a	unit	testing	solution	using	the	UITest	framework
Successfully	learning	how	to	test	your	ContentPages	(Views)

Creating	a	unit	test	solution	folder	using
Xamarin	Studio
During	the	development	of	our	TrackMyWalks	application,	we	have	designed	the	user	interfaces,
ViewModels,	and	ContentPages.	As	developers,	there	may	be	times	when	we	would	like	to
obtain	feedback	to	let	us	know	when	our	application	logic	is	working	as	expected.	We	can	use	the
NUnit	testing	framework	to	provide	us	with	that	confirmation.

In	this	section,	you'll	begin	by	adding	a	new	solution	folder	to	our	existing	TrackMyWalks
Portable	Class	Library	solution.	This	new	solution	folder	will	be	used	to	separate	each	of	our
NUnit	and	UITests	from	our	main	solution.

The	good	news	is	that	Xamarin	Studio	has	built	in	support	for	the	NUnit	framework	that	we	can
run	our	unit	tests	from,	and	then	have	our	results	displayed,	right	within	the	Xamarin	Studio	IDE.

Let's	look	at	how	to	add	a	new	Solution	folder	to	our	TrackMyWalks	Portable	Class	Library,	by
performing	the	following	steps:

1.	 Right-click	on	the	TrackMyWalks	solution	project	and	choose	the	Add	|	Add	Solution
Folder	menu	option,	as	shown	in	the	following	screenshot:

2.	 Next,	enter	in	TrackMyWalks.Tests	for	the	name	of	the	solution	folder.

Now	that	you	have	created	the	TrackMyWalks.Tests	solution	within	the	main	TrackMyWalks
solution	project,	our	next	step	is	to	create	a	new	unit	test	project	solution,	that	will	be	responsible
for	testing	the	business	logic	within	our	TrackMyWalksViewModels.

Creating	a	unit	test	project	using	Xamarin
Studio
In	the	previous	section,	we	created	the	unit	testing	Solution	folder	within	our	TrackMyWalks
main	project	solution	that	will	be	used	to	separate	the	unit	tests	from	our	main	iOS	and	Android
project	solutions.	This	is	so	that	we	can	run	these	independently	from	the	main	solution.

One	of	the	great	benefits	of	using	Xamarin	Studio	to	handle	your	tests	is	that	it	leverages	the
popular	NUnit	testing	framework	for	performing	unit	tests.	We	will	begin	by	creating	the	NUnit
test	project	within	the	TrackMyWalks.Tests	solution	that	we've	previously	created.

Let's	start	by	creating	a	new	NUnit	project	within	our	TrackMyWalks.Tests	project	solution,	by
performing	the	following	steps:

1.	 Right-click	on	the	TrackMyWalks.Tests	solution	project	and	choose	the	Add	|	Add	New
Project...	menu	option,	as	shown	in	the	following	screenshot:

2.	 Next,	choose	the	NUnit	Library	Project	option	located	within	the	General	section	under
the	Other	|	.NET	section;	ensure	you	have	selected	C#	as	the	programming	language	to	use,
as	shown	in	the	following	screenshot:

3.	 Then,	click	on	the	Next	button	to	proceed	to	the	next	step	in	the	wizard.
4.	 Next,	enter	TrackMyWalks.UnitTests	to	use	as	the	name	for	your	new	project	in	the

Project	Name	field.
5.	 Then,	ensure	that	the	Create	a	project	directory	within	the	solution	directory.	has	been

selected,	as	shown	in	the	following	screenshot:

6.	 Finally,	click	on	the	Create	button	to	save	your	project	at	the	specified	location.

Once	your	project	has	been	created,	you	will	be	presented	with	the	Xamarin	Studio	development
environment,	with	your	new	projected	created	within	the	TrackMyWalks.Tests	solution	folder.

In	the	next	section,	we	will	begin	to	add	the	Moq	(pronounced	as	mock)	framework	library	that
will	be	responsible	for	allowing	us	to	test	our	ViewModels	within	the	TrackMyWalks	solution.

Adding	the	Moq	NuGet	package	to	the	unit	test	project
Now	that	you	have	set	up	and	created	a	new	unit	test	project,	our	next	step	is	to	add	the	Moq
(pronounced	as	Mock)	NuGet	package	to	the	TrackMyWalks.UnitTests	solution.	This	library	is
essentially	one	of	the	most	popular	and	friendly	mocking	framework	libraries	for	the	.NET
platform,	and	we	will	use	this	to	test	some	of	our	ViewModels	within	our	TrackMyWalks	app.

Let's	look	at	how	to	add	the	Moq	NuGet	package	to	our	TrackMyWalks.UnitTests	project
solution,	by	performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder	that	is	contained	within	the	TrackMyWalks.UnitTests
solution,	and	choose	the	Add	Packages...	menu	option,	as	shown	in	the	following
screenshot:

2.	 This	will	display	the	Add	Packages	dialog,	enter	in	moq	within	the	search	dialog,	and	select
the	Moq:	an	enjoyable	mocking	library	option	within	the	list,	as	shown	in	the	following
screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	NuGet	package	to	the	Packages	folder
contained	within	the	TrackMyWalks.UnitTests	solution.

Now	that	you	have	added	the	Moq	NuGet	package,	our	next	step	is	to	begin	writing	the	test	case
scenarios	for	our	ViewModels,	which	we	will	be	covering	in	the	next	section.

Adding	the	TrackMyWalks	project	to	TrackMyWalks.UnitTests
In	the	previous	section,	we	added	the	Moq	NuGet	package	to	our	TrackMyWalks	solution.	The
next	step	is	to	add	a	reference	to	the	TrackMyWalks	core	library	to	our
TrackMyWalks.UnitTests	solution.

Since	we	will	be	testing	our	ViewModels,	you	will	need	to	ensure	that	you	have	applied	all	of	the
cumulative	code	changes	to	the	TrackMyWalks	solution	project	throughout	this	book	to	avoid	any
issues,	as	we	will	essentially	need	to	break	each	of	the	tests	into	individual	classes	representing
each	ViewModel	and	the	accompanying	unit	test	class	that	we	want	to	test	the	business	logic	on.
To	successfully	test	our	ViewModels,	we	will	first	need	to	include	a	reference	to	the
TrackMyWalks	project	within	our	TrackMyWalks.UnitTests	solution	project.

Let's	look	at	how	we	can	achieve	this,	by	performing	the	following	steps:

1.	 Right-click	on	the	References	folder	that	is	contained	within	the
TrackMyWalks.UnitTests	project	solution,	and	choose	the	Edit	References...	menu
option,	as	shown	in	the	following	screenshot:

2.	 Then,	ensure	that	the	Projects	tab	has	been	selected	and	choose	the	TrackMyWalks	project
to	include	our	Android	and	iOS	platform	solution	projects	within	our
TrackMyWalks.UnitTests	project	solution:

3.	 Next,	ensure	that	you	have	selected	the	TrackMyWalks	project	within	the	Projects	tab,	click
on	OK	to	add	the	project	reference	to	your	References	section	of	your
TrackMyWalks.UnitTests	project	solution,	and	close	the	Edit	References	dialog.

In	the	next	section,	we	will	begin	by	creating	our	first	unit	test	which	will	be	responsible	for
validating	the	WalkEntry	model	to	ensure	that	after	the	ViewModel	has	been	initialized,	it	will
contain	walk	information.

Creating	and	implementing	the	WalksTrailViewModel	NUnit
test	class
Now	that	you	have	incorporated	the	TrackMyWalks	project	into	the	TrackMyWalks.UnitTests
solution,	our	next	step	is	to	create	the	unit	test	for	our	WalksTrailViewModel.	These	tests	will	be
used	to	help	us	check	to	see	when	our	ViewModel	passes	or	fails	under	these	test	conditions.

Let's	now	start	to	implement	the	code	required	for	our	WalksTrailViewModelTest	class,	by
performing	the	following	steps:

1.	 Create	an	empty	class	within	the	TrackMyWalks.UnitTests	project	solution	folder,	by
choosing	Add	|	New	File....	If	you	can't	remember	how	to	do	this,	you	can	refer	to	the	section
entitled	Creating	the	TrackMyWalks	model,	within	Chapter	1	,	Creating	the	TrackMyWalks
Native	App.

2.	 Then,	enter	WalksTrailViewModelTest	for	the	name	of	the	new	class	that	you	want	to
create,	and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	WalksTrailViewModelTest.cs	file	is	displayed	within	the	code
editor,	and	enter	in	the	following	code	snippet:

								//	

								//		WalksTrailViewModelTest.cs	

								//		WalksTrailViewModel	Testing	Framework	

								//	

								//		Created	by	Steven	F.	Daniel	on	23/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	NUnit.Framework;	

												using	TrackMyWalks.ViewModels;	

												using	TrackMyWalks.Services;	

												using	Moq;	

												using	System.Threading.Tasks;	

	

												namespace	TrackMyWalks.Tests	

												{	

4.	 Next,	we	need	to	modify	the	WalksTrailViewModelTest	class	constructor	by	adding	the
[TestFixture]	attribute	which	sets	up	our	class	to	be	an	instance	of	the	TestFixture
testing	class.	Proceed	and	enter	in	the	following	code	snippet:

								[TestFixture]	

								public	class	WalksTrailViewModelTest	

								{	

												WalksTrailViewModel	_vm;	

5.	 Then,	create	the	Setup	instance	method	that	will	be	responsible	for	creating	a	new	instance
of	our	ViewModel	for	each	of	the	tests	that	are	declared	within	the	class.	This	is	to	ensure
that	each	test	is	run	using	a	clean	instance	of	the	ViewModel.	We	then	proceed	to	declare	a
navMock	variable	instance	of	the	Mock	class	from	our	Moq	library	to	create	a	new	instance
of	the	IWalkNavService	and	instantiate	the	WalksTrailViewModel,	using	the	navMock
instance.	Proceed	and	enter	in	the	following	code	snippet:

								[SetUp]	

								public	void	Setup()	

								{	

										var	navMock	=	new	Mock<IWalkNavService>().Object;	

										_vm	=	new	WalksTrailViewModel(navMock);	

								}	

6.	 Next,	we	need	to	implement	the	CheckIfWalkEntryIsNotNull	instance	method	that	will
check	to	see	if	our	WalksTrailViewModel	has	been	properly	initialized	when	the	Init
method	is	called.	We	declare	the	[Test]	attribute	which	is	essentially	an	abstract	class	that
represents	a	test	within	the	NUnit.Test	framework.	We	proceed	to	initialize	our	WalkEntry
model	to	null,	and	then	call	the	Init	method	to	check	to	see	if	the	WalkEntry	model	has
been	properly	set	to	the	value	provided	in	the	Init	method's	parameter	and	then	use	the
IsNotNull	method	on	the	Assert	class	to	display	a	message	should	the	test	fail.	This	is	so
that	you	can	troubleshoot	the	code	at	a	later	point.	Proceed	and	enter	in	the	following	code
snippet:

								[Test]	

								public	async	Task	CheckIfWalkEntryIsNotNull()	

								{	

										//	Arrange	

										_vm.WalkEntry	=	null;	

	

										//	Act	

										await	_vm.Init();	

	

										//	Assert	

										Assert.IsNotNull(_vm.WalkEntry,	"WalkEntry	is	null	

										after	being	initialized	with	a	valid	WalkEntries	object.");	

								}	

							}	

						}	

In	the	preceding	code	snippet,	we	began	by	implementing	the	various	instance	methods	that	will
be	required	to	perform	each	test	for	our	WalksTrailViewModel.	We	added	the	[TestFixture]
attribute	at	the	beginning	of	our	class	constructor	so	that	it	will	be	an	instance	of	the
TestFixture	testing	class.	We	then	proceeded	to	create	the	Setup	instance	method	so	that	it	will
be	responsible	for	creating	a	new	instance	of	our	ViewModel	for	each	of	the	tests	that	are
declared	within	the	class,	using	the	[Test]	attribute.	This	is	essentially	an	abstract	class	that
represents	a	test	within	the	NUnit.Test	framework,	and	ensures	that	each	test	is	run	using	a	clean
instance	of	the	ViewModel.

Next,	we	used	the	Mock	class	from	our	Moq	library	to	create	a	new	instance	of	the
IWalkNavService	when	instantiating	the	WalksTrailViewModel.

In	the	next	step,	we	implemented	the	CheckIfWalkEntryIsNotNull	instance	method	that	will
perform	a	check	to	see	if	our	WalksTrailViewModel	has	been	properly	initialized	whenever	the
Init	method	has	been	called.	Again,	we	declared	the	[Test]	attribute	prior	to	initializing	our
WalkEntry	model	to	null,	and	prior	to	calling	the	Init	method	to	check	to	see	if	the	WalkEntry

model	has	been	properly	set	to	the	value	provided	in	the	Init	method's	parameter.	After	that,	we
used	the	IsNotNull	method	on	the	Assert	class	to	display	a	message	should	the	test	fail.	This	is
so	that	you	can	troubleshoot	the	code	at	a	later	point.

In	the	next	section,	we	will	begin	by	creating	the	second	unit	test	which	will	be	responsible	for
validating	information	contained	within	our	WalkEntryViewModel	to	ensure	that	after	our
ViewModel	has	been	initialized,	we	receive	the	expected	results	returned.

Creating	and	implementing	the	WalkEntryViewModel	NUnit
test	class
In	the	previous	section,	we	created	the	NUnit	test	for	our	WalksTrailViewModel	which	checked
to	ensure	that	the	WalksEntry	model	was	properly	initialized	after	the	Init	method	was	called.
In	this	section,	we	will	create	another	NUnit	test	that	will	check	to	see	if	certain	properties	within
our	WalksEntryViewModel	have	been	set	up	and	initialized.

Let's	now	start	to	implement	the	code	required	for	our	WalkEntryViewModelTest	class	by
performing	the	following	steps:

1.	 Create	an	empty	class	within	the	TrackMyWalks.UnitTests	project	solution	folder,	by
choosing	Add	|	New	File....	If	you	can't	remember	how	to	do	this,	you	can	refer	to	the	section
entitled	Creating	and	implementing	the	WalksTrailViewModel	NUnit	test	class,	within	this
chapter.

2.	 Then,	enter	in	WalkEntryViewModelTest	for	the	name	of	the	new	class	that	you	want	to
create,	and	click	on	the	New	button	to	allow	the	wizard	to	proceed	and	create	the	new	file.

3.	 Next,	ensure	that	the	WalkEntryViewModelTest.cs	file	is	displayed	within	the	code	editor,
and	enter	in	the	following	code	snippet:

								//	

								//		WalkEntryViewModelTest.cs	

								//		WalkEntryViewModel	Testing	Framework	

								//	

								//		Created	by	Steven	F.	Daniel	on	23/09/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

												using	NUnit.Framework;	

												using	TrackMyWalks.ViewModels;	

												using	TrackMyWalks.Services;	

												using	Moq;	

												using	System.Threading.Tasks;	

	

												namespace	TrackMyWalks.UnitTests	

												{	

4.	 Next,	we	need	to	modify	the	WalkEntryViewModelTest	class	constructor	by	adding	the
[TestFixture]	attribute	just	as	we	did	in	the	previous	section.	This	sets	up	our	class	to	be
an	instance	of	the	TestFixture	testing	class.	Proceed	and	enter	in	the	following	code
snippet:

								[TestFixture]	

								public	class	WalkEntryViewModelTest	

								{	

										WalkEntryViewModel	_vm;	

5.	 Then,	create	the	Setup	instance	method	that	will	be	responsible	for	creating	a	new	instance
of	our	ViewModel	for	each	of	the	tests	that	are	declared	within	the	class.	This	is	to	ensure
that	each	test	is	run	using	a	clean	instance	of	the	ViewModel.	We	then	use	the	Mock	class
from	our	Moq	library	to	create	a	new	instance	of	the	IWalkNavService	when	instantiating

the	WalkEntryViewModel.	Proceed	and	enter	in	the	following	code	snippet:

								[SetUp]	

								public	void	Setup()	

								{	

										var	navMock	=	new	Mock<IWalkNavService>().Object;	

										_vm	=	new	WalkEntryViewModel(navMock);	

								}	

6.	 Next,	we	need	to	implement	the	CheckIfEntryTitleIsEqual	instance	method	that	will
check	to	see	if	our	Title	property	has	been	properly	initialized	when	the	Init	method	has
been	called.	We'll	declare	the	[Test]	attribute	just	as	we	did	in	the	previous	test,	and	then
we'll	proceed	to	initialize	the	Title	property	and	call	the	Init	method	to	check	whether	the
Title	property	has	been	initialized	correctly	to	the	value	provided	in	the	Init	method's
parameter.

7.	 Next,	we	use	the	AreEqual	method	on	the	Assert	class	to	check	to	see	if	the	Title	property
has	been	initialized	correctly,	and	then	display	a	message	containing	the	value	of	the	Title
property	from	the	ViewModel,	should	the	test	fail.	Proceed	and	enter	in	the	following	code
snippet:

								[Test]	

								public	async	Task	CheckIfEntryTitleIsEqual()	

								{	

										//	Arrange	

										_vm.Title	=	"New	Walk";	

	

										//	Act	

										await	_vm.Init();	

	

										//	Assert	

										Assert.AreEqual("New	Walk",	_vm.Title);	

								}	

8.	 Then,	we	need	to	implement	the	CheckIfDifficultyIsEqual	instance	method	and	declare
the	[Test]	attribute,	prior	to	initializing	our	Difficulty	property	to	a	string	value,	and	then
calling	the	Init	method.	In	the	next	step,	we	use	the	AreEqual	method	on	the	Assert	class
to	check	whether	the	Difficulty	property	has	been	initialized	correctly,	and	display	a
message	containing	the	value	of	the	Difficulty	property	from	the	ViewModel,	should	the
test	fail.	Proceed	and	enter	in	the	following	code	snippet:

								[Test]	

								public	async	Task	CheckIfDifficultyIsEqual()	

								{	

										//	Arrange	

										_vm.Difficulty	=	"Easy";	

	

										//	Act	

										await	_vm.Init();	

	

										//	Assert	

										Assert.AreEqual("Easy",	_vm.Difficulty);	

								}	

9.	 Next,	we	need	to	implement	the	CheckIfKilometersIsNotEqual	instance	method	that
declares	the	[Test]	attribute	just	as	we	did	in	the	previous	test.	We	then	initialize	our
Kilometers	property	to	a	Double	value,	and	call	the	Init	method.	In	the	next	step,	we	use
the	AreEqual	method	on	the	Assert	class	to	check	to	see	if	the	Kilometers	property	has
been	initialized	correctly,	and	display	a	message	containing	the	value	of	the	Kilometers
property	from	the	ViewModel,	should	the	test	fail.	Proceed	and	enter	in	the	following	code
snippet:

								[Test]	

									public	async	Task	CheckIfKilometersIsNotEqual()	

									{	

													//	Arrange	

																_vm.Kilometers	=	40.0;	

	

													//	Act	

																await	_vm.Init();	

	

													//	Assert	

																Assert.AreNotEqual(40.0,	_vm.Kilometers);	

										}		

	

									}	

								}	

In	the	preceding	code	snippet,	we	began	by	implementing	the	various	instance	methods	that	will
be	required	to	perform	each	test	for	our	WalkEntryViewModel.	We	added	the	[TestFixture]
attribute	at	the	beginning	of	the	class	constructor	so	that	it	will	be	an	instance	of	the	TestFixture
testing	class;	and	then	proceeded	to	create	the	Setup	instance	method	so	that	it	will	be
responsible	for	creating	a	new	instance	of	our	ViewModel	for	each	of	the	tests	that	is	declared
within	the	class,	using	the	[Test]	attribute	which	is	essentially	an	abstract	class	that	represents	a
test	within	the	NUnit.Test	framework,	and	ensures	that	each	test	is	run	using	a	clean	instance	of
the	ViewModel.

Next,	we	used	the	Mock	class	from	our	Moq	library	to	create	a	new	instance	of	the
IWalkNavService	when	instantiating	the	WalkEntryViewModel.	In	the	next	step,	we
implemented	the	CheckIfEntryTitleIsEqual	instance	method	that	will	perform	a	check	to	see
if	the	Title	property	has	been	properly	initialized	whenever	the	Init	method	has	been	called.
Again,	we	declare	the	[Test]	attribute	prior	to	initializing	the	Title	property	of	the	WalksEntry
model,	and	prior	to	calling	the	AreEqual	method	on	the	Assert	class	to	check	to	see	if	the	Title
property	has	been	initialized	correctly.	We	then	displayed	a	message	containing	the	value	of	the
Title	property	from	the	ViewModel,	should	the	test	fail.

Next,	we	implemented	the	CheckIfDifficultyIsEqual	instance	method	that	will	initialize	the
Difficulty	property	to	a	string	value,	and	then	call	the	Init	method	of	the
WalkEntryViewModel.	We	called	the	AreEqual	method	on	the	Assert	class	to	confirm	that,	after
we	call	the	Init	method,	the	value	of	the	Difficulty	property	from	the	ViewModel	is	the	value
that	we	expect	to	come	back	from	the	provided	Mock	instance.	If	the	value	is	not	what	we	expect,

the	test	will	fail	and	will	display	a	message	containing	the	value	of	the	Difficulty	property
from	the	ViewModel.

In	our	final	step,	we	implemented	the	CheckIfKilometersIsNotEqual	instance	method	that
initializes	our	Kilometers	property	to	a	Double	value,	and	then	calls	the	Init	method.	Just	as
we	did	in	our	CheckIfDifficultyIsEqual	instance	method,	we	used	the	AreNotEqual	method
on	the	Assert	class	to	confirm	that,	after	we	call	the	Init	method,	the	value	of	the	Kilometers
property	from	the	ViewModel	is	the	value	that	we	expect	to	come	back	from	the	provided	mock
instance.	If	the	value	is	not	what	we	expect,	the	test	will	fail	and	will	display	a	message
containing	the	value	of	the	Kilometers	property	from	the	ViewModel.

For	each	test	method	that	you	create	that	will	be	represented	by	the	NUnit	[Test]	attribute,	the
Arrange-Act-Assert	pattern	will	follow.	This	is	described	in	the	following	table:

Test
pattern Description

Arrange This	will	essentially	perform	all	the	setting	up	and	initialization	conditions	for	your
test.

Act This	ensures	that	your	test	will	successfully	interact	with	the	application.

Assert This	will	examine	the	results	of	the	actions	that	were	initially	performed	within	the
Act	step	to	verify	the	results.

You	can	now	see,	that	by	incorporating	the	NUnit.Framework	within	your	applications,	as	well
as	adopting	the	Arrange-Act-Assert	pattern,	you	can	essentially	perform	tests	on	your
ViewModels	to	ensure	that	the	results	you	are	expecting	are	returned.

Note

If	you	are	interested	in	learning	more	about	the	NUnit.Framework.Test	class,	and	its	associated
methods,	please	refer	to	the	information	contained	at
https://developer.xamarin.com/api/type/NUnit.Framework.Internal.Test/	.

To	learn	more	about	the	NUnit.Framework.Assert	class	and	other	methods	that	you	can	use	to
handle	the	different	types	of	assertions,	please	refer	to	the	information	located	at
https://developer.xamarin.com/api/type/NUnit.Framework.Assert/	.

Now	that	you	have	created	your	unit	tests,	our	next	step	is	to	begin	running	our	tests	right	within
the	Xamarin	Studio	IDE,	which	we	will	be	covering	in	the	next	section.

https://developer.xamarin.com/api/type/NUnit.Framework.Internal.Test/
https://developer.xamarin.com/api/type/NUnit.Framework.Assert/

Running	the	TrackMyWalks.UnitTests	using	Xamarin	Studio
In	our	previous	section,	we	created	and	implemented	unit	tests	for	both	the
WalksTrailViewModel	and	the	WalkEntryViewModel.	These	contained	sets	of	various	test
conditions	that	we	checked	against.

Our	next	step	is	to	begin	running	these	unit	tests	directly	from	within	the	Xamarin	Studio
development	environment.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 To	run	a	unit	test,	right-click	on	the	TrackMyWalks.UnitTests	project	within	the	Solution
pane,	and	choose	the	Run	Item	option,	as	shown	in	the	following	screenshot:

2.	 Alternatively,	you	can	also	run	the	unit	test	by	selecting	the	TrackMyWalks.UnitTests
solution	project	and	then	navigating	to	the	Run	menu	option	and	choosing	the	Run	Unit
Tests	sub-menu	item.

When	the	compilation	of	the	unit	tests	has	completed,	you	will	be	presented	with	a	list	showing
each	of	your	test	results	that	have	passed,	failed,	or	were	ignored.	These	are	displayed	within	the
Test	Results	pane,	as	shown	in	the	following	screenshot:

Should	any	of	your	tests	fail,	these	will	be	displayed	within	the	Test	Results	pane,	along	with
their	associated	Stack	Trace.	You	will	also	notice	that	the	message	that	we	provided	within	the
Assert.AreEqual	method	will	also	be	displayed	as	part	of	the	failure	result:

From	this	screen,	you	have	the	option	of	filtering	your	test	results	or	re-running	your	unit	test
conditions	again.	These	are	explained	in	more	detail	in	the	following	table:

Test	result
option Description

Successful
Tests

This	will	display	all	the	successfully	executed	tests	which	passed	the	conditions
as	specified	within	the	test	case.

Inconclusive
Tests

This	will	display	any	test	results	that	were	found	to	be	inconclusive,	meaning	that
a	firm	result	could	not	be	determined.

Failed	Tests This	option	displays	a	list	of	any	tests	that	did	not	meet	the	conditions	as	specified
within	the	test	case	scenario.

Ignored
Tests

This	option	displays	a	list	of	any	tests	that	were	ignored	as	specified	by	the
[Ignore]	attribute.

Output
This	option	displays	a	console	output	for	each	of	the	tests	that	are	executed	and
will	contain	any	tests	that	have	successfully	passed,	failed,	been	ignored,	or	were
found	to	be	inconclusive.

Rerun	Tests This	option	enables	you	to	re-run	your	tests	again,	without	the	need	forrecompiling	your	test	cases.

Now	that	you	have	a	good	understanding	of	how	to	create	your	own	unit	tests	using	the	NUnit
testing	framework,	we	can	now	look	at	how	to	create	another	form	of	unit	testing,	which	is	called
automated	UI	testing.	This	time	we	will	be	leveraging	the	UITest	framework	which	will	enable	us
to	perform	tests	on	the	user	interface	portion	of	our	TrackMyWalks	app	which	we	will	be
covering	over	the	next	sections.

Creating	a	UI	test	project	using	Xamarin	Studio
In	the	previous	section,	we	saw	how	easy	it	is	to	create	a	set	of	unit	tests	that	enable	us	to	test	our
ViewModels	within	the	TrackMyWalks	project.	Whilst	unit	testing	ensures	that	a	significant
amount	of	code	is	tested,	it	is	primarily	focused	on	testing	the	actual	business	logic	within	the
app.	This	leaves	the	user	interface	portions	of	the	app	still	untested,	but	the	beauty	of	using	UI
testing	allows	us	to	automate	specific	actions	within	our	app's	user	interface	to	ensure	that	it	is
working	as	expected.

Fortunately,	Xamarin	Studio	provides	you	with	a	rich	set	of	tools	for	performing	automated	UI
tests,	and	these	can	be	both	written	in	C#	and	make	use	of	the	UITest	framework.	Let's	start	by
creating	a	new	UITest	project	within	our	TrackMyWalks.Tests	project	solution,	by	performing
the	following	steps:

1.	 Right-click	on	the	TrackMyWalks.Tests	solution	project	and	choose	the	Add	|	Add	New
Project...	menu	option.	If	you	can't	remember	how	to	do	this,	you	can	refer	to	the	section
entitled	Creating	a	unit	test	project	using	Xamarin	Studio,	located	within	this	chapter.

2.	 Next,	choose	the	UI	Test	App	option	located	within	the	Xamarin	Test	Cloud	section,	under
the	Multiplatform	|	Tests	section.	Ensure	that	you	have	selected	C#	as	the	programming
language	to	use,	as	shown	in	the	following	screenshot:

3.	 Then,	click	on	the	Next	button	to	proceed	to	the	next	step	in	the	wizard.
4.	 Next,	enter	TrackMyWalks.UITests	to	use	as	the	name	for	your	new	project	as	the	Project

Name	field.
5.	 Then,	ensure	that	the	Create	a	project	directory	within	the	solution	directory.	has	been

selected,	as	shown	in	the	following	screenshot:

6.	 Finally,	click	on	the	Create	button	to	save	your	project	at	the	specified	location.

Once	your	project	has	been	created,	you	will	be	presented	with	the	Xamarin	Studio	development
environment,	with	your	new	project	created	within	the	TrackMyWalks.Tests	solution	folder.

You	will	notice	that	by	default	our	project	has	created	a	file	named	Test.cs	that	we	can	use	to
write	our	UITests,	as	well	as	a	class	named	AppInitializer.cs	that	is	essentially	used	by	the
Test.cs	class	to	create	an	IApp	instance	and	start	the	app	for	each	test	condition.	Since	we	will
only	be	creating	one	UITest	for	this	chapter,	we	can	essentially	just	use	the	Test.cs	file	for	now.

In	an	ideal	world,	you	would	be	creating	various	tests,	one	for	each	test	condition,	so	it	would
make	sense	to	break	each	of	your	UITests	into	individual	files.	In	the	next	section,	we	will	learn
about	some	of	the	commonly	used	UITest	methods	that	we	can	use	while	performing	UITests	for
our	application's	user	interface.

Understanding	the	commonly	used	UITest
methods
As	mentioned	previously,	in	this	section,	we	will	learn	about	some	of	the	commonly	used	methods
that	we	can	use	with	the	UITest	framework.	The	UITest	framework	provides	you	with	a	way	of
automating	the	interactions	between	your	iOS,	or	Android	apps	using	C#	and	the	NUnit	testing
platform.

We	will	be	using	an	instance	of	the	IApp	and	ConfigureApp	classes	that	will	be	used	to	create
our	iOS	and	Android	IApp	instances	to	handle	all	the	interactions	within	the	UI.

As	we	progress	throughout	the	next	couple	of	sections,	we	will	be	taking	a	closer	look	at	how	to
create	IApp	instances	using	the	ConfigureApp	class.	The	UITest	framework	provides	you	with
several	APIs	that	you	can	use	to	interact	with	an	app's	user	interface.

The	following	table	describes	some	of	the	more	commonly	used	methods	and	the	ones	that	we
will	be	using	to	test	the	TrackMyWalks	app:

UITest	methods Description

Screenshot() This	will	essentially	take	a	screenshot	of	the	current	state	of	the	app.

Tap()
This	is	used	to	send	a	tap	interaction	to	a	specific	element	on	the	app's
current	screen.

EnterText()	and
ClearText()

These	methods	are	used	to	add	and	remove	text	from	input	elements	such	as
the	entry	views	used	within	Xamarin.Forms.

Query()
This	method	is	essentially	used	to	locate	or	find	elements	that	are	currently
displayed	within	the	app's	screen.

Repl()
This	command	is	commonly	used	to	interact	in	real-time	with	the	app
through	the	terminal	using	the	UITest	API.

WaitForElement()
This	method	is	used	to	pause	the	test	until	a	specific	element	appears	on	the
app's	current	screen	within	a	specific	timeout	period.

Methods	such	as	the	Query	and	WaitForElement	return	an	AppResult[]	object	that	you	can

essentially	use	to	determine	the	results	of	the	call.	An	example	would	be	that	if	you	used	the
Query	method	call	that	returns	an	empty	result	set,	we	can	be	sure	that	the	element	does	not	exist
within	the	app's	current	screen.

Note

It	is	worth	mentioning	that	currently	the	UITest	framework	only	provides	support	for	both	the	iOS
and	Android	platforms	and	doesn't	yet	provide	support	for	the	Windows	Phone	platform.

As	you	will	see	from	the	methods	displayed	in	the	following	table,	these	are	essentially	all	the
members	pertaining	to	the	AppQuery	class	that	are	used	by	the	Query	and	WaitForElement
method	members	of	the	IApp	methods:

AppQuery	class
methods Description

Class() Finds	elements	on	the	app's	current	screen,	based	on	their	class	type.

Marked()
Finds	elements	within	the	app's	current	screen,	based	on	their	text	or
identifier.

Css()
Performs	CSS	selector	operations	on	the	contents	of	a	WebView	on	the
app's	current	screen.

Note

If	you	are	interested	in	learning	more	about	the	various	types	of	UITest	methods,	please	refer	to
the	Introduction	to	Xamarin.UITest	at	https://developer.xamarin.com/guides/testcloud/uitest/intro-
to-uitest/	.

Now	that	you	understand	some	of	the	most	commonly	used	UITest	methods,	we	can	start	to
implement	some	tests	which	we	will	be	covering	over	the	next	couple	of	sections	within	this
chapter.

https://developer.xamarin.com/guides/testcloud/uitest/intro-to-uitest/

Setting	up	and	initializing	our	TrackMyWalks	app	for	UITest
Prior	to	starting	an	app	and	interacting	with	it	using	the	UITest	framework,	we	need	to	do	some
preliminary	initialization	steps	for	which	we'll	make	some	modifications	within	the
AppInitializer	class.	The	AppInitializer	class	contains	a	static	method	called	StartApp.

This	static	method	is	called	each	time	the	test's	Setup	method	is	called	to	get	an	IApp	instance.	It
currently	supports	both	the	iOSApp	and	AndroidApp	as	defined	by	the	ConfigureApp	class.

One	thing	that	you	will	notice	within	the	AppInitializer	class	is	that	the	ApkFile	and	the
AppBundle	have	both	been	commented	out.	You	will	need	to	uncomment	these	if	you	would	like
to	run	the	tests	locally	within	the	unit	test	pane	using	Xamarin	Studio.

								using	System;	

								using	System.IO;	

								using	System.Linq;	

								using	Xamarin.UITest;	

								using	Xamarin.UITest.Queries;	

	

								namespace	TrackMyWalks.UITests	

								{	

												public	class	AppInitializer	

												{	

																public	static	IApp	StartApp(Platform	platform)	

																{	

																				...	

																				...	

																				...			

																				if	(platform	==	Platform.Android)	

																				{	

																								return	ConfigureApp.Android	

																												//	TODO:	Update	this	path	to	point

																															to	your	Android		

																												//	app	and	uncomment	the	code	if	the

																															app	is	not		

																												//	included	in	the	solution.	

																												//.ApkFile("../../../Droid/bin/Debug

																														/TrackMyWalks.apk").StartApp();	

																				}	

	

																				return	ConfigureApp.iOS	

																								//	TODO:	Update	this	path	to	point	to

																											your	iOS	app	and		

																								//	uncomment	the	code	if	the	app	is	

																											not	included	in	the	

																								//	solution.	

																								//.AppBundle("../../../iOS/bin/

																										iPhoneSimulator/Debug/TrackM	

																								//	yWalks.iOS.app").StartApp();	

																}	

												}	

								}	

As	you	can	see	from	the	preceding	code	snippet,	the	AppInitializer	class	contains	several
different	methods	that	are	part	of	the	ConfigureApp	method.	The	following	table	provides	a	brief
description	of	what	each	one	is	used	for:

ConfigureApp	methods Description

AppBundle()
This	method	is	used	for	specifying	the	path	to	the	app	bundle	to	use
during	testing.

StartApp() This	method	essentially	launches	the	app	within	the	simulator.

Debug()

This	method	is	essentially	used	to	enable	debugging	and	logging	of
messages	and	is	particularly	useful	if	you	need	to	troubleshoot
problems	when	running	the	application	using	the	simulator.

DeviceIdentifier()

This	method	configures	the	device	to	use	with	the	device	identifier.
This	can	be	used	to	detect	iOS	simulators	using	the	following
command	line	statement:

xcrun	instruments	-s	devices

EnableLocalScreenshots

This	method	is	used	to	enable	screenshots	when	you're	running	tests
locally.	By	default,	screenshots	are	always	enabled	whenever	tests
are	being	run	using	Xamarin	Test	Cloud.

Repl()
This	method	will	essentially	pause	the	test	execution	and	invoke	the
REPL	in	a	terminal	prompt.

As	you	can	see,	the	AppInitializer	file	doesn't	contain	much	information,	but	as	we	work	our
way	through	this	chapter,	we	will	be	adding	the	Xamarin.TestCloud.Agent	to	the	iOS	portion
of	the	TrackMyWalks	app	so	that	we	will	be	able	to	run	our	UITests.

Implementing	the	CreateNewWalkEntry	using	the
UITest.Framework
In	the	previous	section,	we	looked	at	some	of	the	different	types	of	methods	that	we	can	use	to
customize	the	AppInitializer	class	so	that	we	can	specify	different	app	bundles	to	use	during
testing,	as	well	as	to	enable	screenshots,	and	provide	the	ability	to	debug	our	unit	tests	within	the
Xamarin	Studio	environment.

In	this	section,	we	will	begin	by	implementing	a	UITest	that	we	can	use	to	handle	signing	into
Facebook	and	creating	a	new	walk	entry	using	the	UITest	framework.

Let's	now	start	to	implement	the	code	required	for	our	class	by	performing	the	following	steps:

1.	 Open	the	Test.cs	file	which	can	be	located	within	the	TrackMyWalks.UITests	project	as
part	of	the	TrackMyWalks.Tests	solution	folder.

2.	 Next,	ensure	that	the	Test.cs	file	is	displayed	within	the	code	editor,	and	enter	in	the
following	highlighted	code	sections,	as	shown	in	the	code	snippet:

								using	System;	

								using	System.IO;	

								using	System.Linq;	

								using	NUnit.Framework;	

								using	Xamarin.UITest;	

								using	Xamarin.UITest.Queries;	

		

								namespace	TrackMyWalks.UITests	

								{	

										[TestFixture(Platform.Android)]	

										[TestFixture(Platform.iOS)]	

										public	class	Tests	

										{	

												IApp	app;	

												Platform	platform;	

3.	 Then,	modify	the	Tests	instance	method	that	will	be	responsible	for	creating	a	new	instance
of	our	IApp	instance.	We	update	our	entryCellPlatformClassName	string	variable	to
return	the	type	of	TextField,	dependent	on	the	platform	that	we	are	testing	on.	Under	iOS,
we	use	the	UITextField,	whereas	under	Android	it	will	use	the	default
EntryCellEditText	class.	Proceed	and	enter	in	the	highlighted	code	sections	within	the
following	code	snippet:

								string	entryCellPlatformClassName;

								public	Tests(Platform	platform)

								{

										this.platform	=	platform;

										entryCellPlatformClassName	=	platform	

												==	Platform.iOS

	?	"UITextField"

	:	"EntryCellEditText";	

								}	

								[SetUp]	

								public	void	BeforeEachTest()	

								{	

										app	=	AppInitializer.StartApp(platform);	

								}	

								[Test]	

								public	void	AppLaunches()	

								{	

													app.Screenshot("First	screen.");	

								}	

4.	 Next,	create	the	SignInToFacebook	instance	method	that	will	be	responsible	for	handling
the	test's	steps	specifically	to	the	Facebook	sign-in	process.	This	uses	the	user's	login
credentials	to	automate	the	login	process	prior	to	carrying	out	other	steps	within	the	UI.
Proceed	and	enter	in	the	highlighted	code	sections	within	the	following	code	snippet:

//	Perform	signing	in	to	Facebook						

public	void	SignInToFacebook()

{

				//	Set	up	our	Facebook	credentials

								var	FaceBookEmail	=	"<Your-Facebook-Email-Address>	";

				var	FaceBookPassword	=	"<Your-Facebook-Password>";

								//	Wait	for	Login	button	within	Facebook	oAuth	webview	

								//	to	appear.

								app.WaitForElement(x	=>	x.WebView().Css("[name=login]"));

				//	Enter	text	within	the	webview	with	name="email"

				app.EnterText(x	=>	x.WebView().Css("[name=email]"),	

				FaceBookEmail);

								//	Enter	text	within	the	webview	with	name="email"

								app.EnterText(x	=>	x.WebView().Css("[name=pass]"),	

								FaceBookPassword);

								app.ScrollDownTo(x	=>	x.WebView().Css("[name=login]"));

								//	Tap	the	button	in	the	webview	with	name="login"

								app.Tap(x	=>	x.WebView().Css("[name=login]"));

}				

5.	 Then,	create	the	PopulateEntryCellFields	instance	method	that	will	be	responsible	for
handling	the	test	steps	specifically	for	the	creation	of	a	new	walk	entry.	In	this	method,	we
make	use	of	both	the	ClearText	and	EnterText	methods	of	the	UITest	framework	that	will
locate	each	entry	field	within	the	New	Walk	Entry	form	and	populate	it	with	the	necessary
information.	The	DismissKeyboard	method	will,	as	the	name	suggests,	dismiss	the
keyboard	from	the	view	and	continue	to	the	next	step.	Proceed	and	enter	in	the	highlighted
code	sections	within	the	following	code	snippet:

				//	Populate	our	EntryCell	Fields

		void	PopulateEntryCellFields()

		{

						//	Clear	the	default	text	entry	for	our	Title	EntryCell

						app.ClearText(x	=>	x.Class

												(entryCellPlatformClassName).Index(0));

						app.DismissKeyboard();

				//	Enter	in	some	default	text	for	our	Title	EntryCell

						app.EnterText(x	=>	x.Class

												(entryCellPlatformClassName).Index(0),

													"This	is	a	new	walk	Entry");

						app.DismissKeyboard();

						//	Enter	in	some	default	text	for	our	Notes	EntryCell

						app.EnterText(x	=>	x.Class(entryCellPlatformClassName).Index(1),

						"New	Note	Entry	For	Walk	Entry");

						app.DismissKeyboard();

						//	Clear	the	default	text	for	our	Image	Url	EntryCell

						app.ClearText(x	=>	x.Class(entryCellPlatformClassName).Index(6));

						app.DismissKeyboard();

						//	Enter	in	some	default	text	Image	Url	EntryCell

						app.EnterText(x	=>	x.Class(entryCellPlatformClassName).Index(6),"

						https://heuft.com/upload/image/

										400x267/no_image_placeholder.png");

						app.DismissKeyboard();

	}	

6.	 Next,	create	the	ChooseDifficultyPicker	instance	method	that	will	be	responsible	for
displaying	the	difficulty	picker	that	contains	various	choices	of	difficulty	for	the	user	to
choose	from.	All	we	are	doing	here	is	displaying	the	picker	when	the	user	taps	into	the	cell
entry,	and	dismissing	the	picker	from	the	view	when	then	user	taps	the	Done	or	OK	buttons.
Proceed	and	enter	the	highlighted	code	sections,	as	shown	within	the	following	code
snippet:

				//	Automatically	tap	into	the	Difficulty	Cell	to	display	the	

	//	Difficulty	Picker,	and	dismiss	it	by	pressing	the	Done	or	

	//	OK	button.

	public	void	ChooseDifficultyPicker()

	{

							//	Tap	into	Difficulty	EntryCell	

							app.Tap(x	=>	x.Class(entryCellPlatformClassName).Index(5));

							//	Tap	Done	located	within	the	Difficulty	Picker	Cell

							if	(platform	==	Platform.iOS)

									app.Tap(x	=>	x.Marked("Done"));

							else

									app.Tap(x	=>	x.Marked("OK"));

						}	

				}

7.	 Then,	create	the	CreateNewWalkEntry	UITest	method	that	includes	the	[Test]	attribute.
This	is	an	abstract	class	that	represents	a	test	within	the	UITest	and	NUnit.Test	framework.
This	method	will	essentially	be	the	main	test	driver	and	will	call	each	of	the	other	instance
methods	that	we've	previously	declared.	Within	this	method,	we	call	our
SignInToFacebook	method	to	perform	the	sign-in	to	Facebook,	using	the	user's	Facebook
credentials.

8.	 Upon	successful	login,	we	use	the	WaitForElement	method	to	wait	until	the	main	Track	My
Walks	screen	has	been	displayed,	prior	to	using	the	Assert.IsTrue	method	to	check	to	see
if	the	Track	My	Walks	screen	is	displayed.	If	it's	not	displayed,	our	test	will	fail	and
display	the	assigned	error	message	within	the	Test	Results	screen.	Proceed	and	enter	the
following	code	sections	shown	within	the	following	code	snippet:

				[Test]

		public	void	CreateNewWalkEntry()

				{

							//	Sign	in	to	Facebook

							SignInToFacebook();

							//	Wait	for	main	screen	to	appear	and	check	for	our	

							//	navigation	title.

							var	navigationBarTitle	=	(platform	==	Platform.iOS	?

						"Track	My	Walks	-	iOS"	:

"Track	My	Walks	-	Android");

						var	mainScreen	=	app.WaitForElement(x	=>	x.Marked

										(navigationBarTitle).Class("UINavigationBar"));

						//	Check	to	see	if	the	Track	My	Walks	-	iOS	main	screen	is	

						//	displayed.

						Assert.IsTrue(mainScreen.Any(),	navigationBarTitle	+	"	screen	

						wasn't	shown	after	signing	in.");

9.	 Next,	we	use	the	Tap	method	of	the	app	class	instance	and	the	Marked	method	to	find	the	Add
element	within	the	app's	current	screen,	and	wait	until	the	New	Walk	Entry	page	is
displayed	within	the	screen.	We	then	proceed	to	use	the	Assert.IsTrue	method	to	check	to
see	if	the	New	Walk	Entry	screen	has	been	successfully	displayed.	Alternatively,	our	test
will	fail	and	display	the	assigned	error	message	within	the	Test	Results	screen.	Proceed
and	enter	in	the	highlighted	code	sections	shown	within	the	following	code	snippet:

				//	Click	on	the	Add	button	from	our	main	screen	and	wait	for	

				//	the	New	Walk	Entry	screen	to	appear.

				app.Tap(x	=>	x.Marked("Add"));

				var	newWalkEntryBarTitle	=	"New	Walk	Entry";

				var	newWalkEntryScreen	=	app.WaitForElement(x	=>	x.Marked(newWalk

				EntryBarTitle));

				//	Check	to	ensure	that	our	New	Walk	Entry	screen	was	displayed.

				Assert.IsTrue(newWalkEntryScreen.Any(),	newWalkEntryBarTitle	+	"	

				screen	was	not	shown	after	tapping	the	Add	button.");

10.	 Then,	we	call	the	PopulateEntryCellFields	and	ChooseDifficultyPicker	instance
methods	to	populate	our	entry	cell	fields	and	handle	the	display	of	the	difficulty	picker
selector.	In	our	final	steps,	we	use	the	Tap	method	of	the	app	class	instance,	and	we	use	the
Marked	method	to	find	the	Save	element	within	the	app's	current	screen.	We'll	wait	until	the
Track	My	Walks	page	is	displayed,	before	using	the	Assert.IsTrue	method	to	check	to
see	if	the	Track	My	Walks	screen	has	been	successfully	displayed.	Alternatively,	our	test
will	fail	and	display	the	assigned	error	message	within	the	Test	Results	screen.	Proceed
and	enter	the	following	highlighted	code	sections,	as	shown	within	the	following	code
snippet:

								//	Populate	our	Entry	Cell	Fields

								PopulateEntryCellFields();

								//	Display	our	Difficulty	Picker	selector.

								ChooseDifficultyPicker();

								//	Then	tap	on	the	Save	button	to	save	the	details	and	exit

	

							//	the	screen.

app.Tap(x	=>	x.Marked("Save"));

								//	Next,	wait	for	main	screen	to	appear

											mainScreen	=	app.WaitForElement(x	=>	x.Marked

													(navigationBarTitle).

Class("UINavigationBar"));

								//	Check	to	see	if	the	Track	My	Walks	-	iOS	main	screen	is

	

							//	displayed.

	

									Assert.IsTrue(mainScreen.Any(),	navigationBarTitle

											+	"	screen	wasn't	shown	after	signing	in.");

}	

							}	

						}		

In	the	preceding	code	snippet,	we	began	by	implementing	the	various	instance	methods	that	will
be	required	to	perform	each	test	for	our	CreateNewWalkEntry.	We	added	the	[Test]	attribute	to
our	CreateNewWalkEntry	instance	method.	This	method	will	essentially	be	the	main	test	driver
and	call	each	of	the	other	instance	methods	that	we've	previously	declared.	Within	this	method,
we	call	our	SignInToFacebook	method	to	perform	the	sign-in	to	Facebook,	using	the	user's
Facebook	credentials.	Upon	successful	login,	we	use	the	WaitForElement	method	to	wait	until
the	main	Track	My	Walks	screen	has	been	displayed.

In	the	next	step,	we	used	the	Tap	method	of	the	App	class	instance,	and	use	the	Marked	method	to
find	the	Add	element	within	the	App's	current	screen,	and	wait	until	the	New	Walk	Entry	page	is
displayed	within	the	screen.	We	then	proceed	to	use	the	Assert.IsTrue	method	to	check	to	see	if
the	New	Walk	Entry	screen	was	successfully	displayed.	Alternatively,	our	test	will	fail	and
display	the	assigned	error	message	within	the	Test	Results	screen.

Adding	the	Xamarin	Test	Cloud	Agent	to	the
iOS	project
Now	that	you	have	created	your	UITest,	the	next	step	is	to	add	the	Xamarin	Test	Cloud	Agent
NuGet	package	to	our	TrackMyWalks.iOS	project.	This	library	allows	you	to	execute	your
Xamarin.UITest,	using	C#	and	the	NUnit	framework	to	validate	the	functionality	of	iOS	and
Android	apps	within	the	Xamarin	Studio	development	environment.

Let's	look	at	how	to	add	the	Xamarin	Test	Cloud	NuGet	package	to	our	TrackMyWalks.iOS
project,	by	performing	the	following	steps:

1.	 Right-click	on	the	Packages	folder	that	is	contained	within	the	TrackMyWalks.iOS	project,
and	choose	the	Add	Packages...	menu	option,	as	you	did	in	the	section	entitled,	Adding	the
Moq	NuGet	package	to	the	unit	test	project,	located	within	this	chapter.

2.	 This	will	display	the	Add	Packages	dialog.	Enter	in	Cloud	Agent	within	the	search	dialog,
and	select	the	Xamarin	Test	Cloud	Agent	option	within	the	list,	as	shown	in	the	following
screenshot:

3.	 Finally,	click	on	the	Add	Package	button	to	add	the	NuGet	package	to	the	Packages	folder

contained	within	the	TrackMyWalks.iOS	project.

Now	that	you	have	added	the	Xamarin	Test	Cloud	Agent	NuGet	package,	our	next	step	is	to	begin
by	modifying	the	AppDelegate	class	within	the	TrackMyWalks.iOS	portion	of	our	project.	We
will	be	covering	this	in	the	next	section.

Updating	the	TrackMyWalks	AppDelegate	class	to	handle
Xamarin	Test	Cloud	Agent
Prior	to	running	UITests	within	Xamarin	Studio,	we	will	need	to	add	the	Xamarin	Test	Cloud
Agent	NuGet	package	to	the	iOS	portion	of	our	TrackMyWalks	app.	Under	Android,	this	is	not
required	as	the	Xamarin	Test	Cloud	Agent	is	provided	by	the	UITest	framework.

In	this	section,	we	need	to	update	the	AppDelegate	class,	by	modifying	the	FinishLaunching
method	located	within	our	TrackMyWalks.iOS	project.	This	will	include	a	compiler	directive
that	will	start	the	Xamarin	Test	Cloud	Agent.

Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 Open	the	AppDelegate.cs	file	located	within	the	TrackMyWalks.iOS	project.
2.	 Next,	ensure	that	the	AppDelegate.cs	file	is	displayed	within	the	code	editor,	and	locate

the	FinishLaunching	method	and	enter	in	the	following	highlighted	code	sections:

								//	

								//		AppDelegate.cs	

								//		TrackMyWalks	

								//	

								//		Created	by	Steven	F.	Daniel	on	04/08/2016.	

								//		Copyright	©	2016	GENIESOFT	STUDIOS.	All	rights	reserved.	

								//	

								using	Foundation;	

								using	UIKit;	

	

								namespace	TrackMyWalks.iOS	

								{	

												[Register("AppDelegate")]	

												public	partial	class	AppDelegate	:	global::Xamarin.Forms.

														Platform.iOS.FormsApplicationDelegate	

														{	

																public	override	bool	FinishedLaunching

																	(UIApplication	app,	NSDictionary	options)	

																{	

																				global::Xamarin.Forms.Forms.Init();	

	

																				//	Integrate	Xamarin	Forms	Maps	

																				Xamarin.FormsMaps.Init();	

	

																				#if	USE_TEST_CLOUD

																				Xamarin.Calabash.Start();

																				#endif	

	

																				LoadApplication(new	App());	

	

																				return	base.FinishedLaunching(app,	options);	

																}	

													}	

									}		

Note

Calabash	is	basically	an	Automated	UI	Acceptance	Testing	framework	that	allows	you	to	write
and	execute	tests	that	validate	the	functionality	of	your	iOS	and	Android	apps.

In	the	preceding	code	snippet,	you	will	notice	that	we	have	defined	the	USE_TEST_CLOUD
compiler	variable	that	is	wrapped	within	the	#if	and	#endif	directive	and	includes	a	call	to	the
Xamarin.Calabash.Start()	method	that	will	only	be	started	when	it	has	been	defined	under
specific	configurations	as	defined	within	the	compiler	configuration	settings	for	the	project.

Note

If	you	are	interested	in	learning	more	about	the	Calabash	framework,	please	refer	to	the	section
on	an	Introduction	to	Calabash	which	is	located	at
https://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/	.

We	have	just	added	in	the	code	that	will	essentially	start	our	Xamarin	Test	Cloud	functionality.
However,	for	this	to	work,	we	will	need	to	perform	one	additional	step,	which	is	to	modify	the
compiler	configurations	for	our	TrackMyWalks.iOS	project.	Perform	the	following	to	achieve
this:

1.	 Right-click	on	the	TrackMyWalks.iOS	project,	and	choose	the	Options	menu	option.
2.	 Next,	within	the	Project	Options	-	TrackMyWalks.iOS	dialog,	choose	the	Compiler

option	located	under	the	Build	section.
3.	 Then,	ensure	that	you	have	chosen	debug	from	the	Configuration	dropdown	and	that	you

have	chosen	iPhoneSimulator	from	the	Platform	dropdown.
4.	 Next,	add	the	USE_TEST_CLOUD;	to	the	list	of	existing	Define	Symbols,	as	shown	in	the

following	screenshot:

https://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/

5.	 Then,	click	on	OK	to	save	your	changes	and	close	the	Project	Options	-
TrackMyWalks.iOS	dialog.

Now	that	you	have	modified	the	compiler	configurations	for	our	iOS	portion	of	the
TrackMyWalks	app,	we	can	finally	build	and	run	our	UITests	using	Xamarin	Studio,	similarly	to
what	we	did	when	executing	our	NUnit	tests.	However,	this	needs	to	be	handled	very	differently,
and	we	will	be	covering	this	in	the	next	section.

Running	the	TrackMyWalks	UITests	using
Xamarin	Studio
Prior	to	running	your	UITests	within	Xamarin	Studio,	you	will	need	to	add	your	iOS	or	Android
apps	to	the	Test	Apps	node	of	the	Unit	Tests	pane,	or	alternatively	specifying	a	path	to	your	app
within	the	AppInitializer	class.	If	you	don't	do	this,	your	tests	will	continue	to	fail	until	you
add	these	projects	to	your	solution.

In	this	section,	we	will	look	at	how	to	go	about	adding	your	apps	to	the	Test	Apps	node	within
the	Unit	Tests	pane.	Let's	look	at	how	we	can	achieve	this	with	the	following	steps:

1.	 To	add	your	iOS	and	Android	apps	to	your	TrackMyWalks.UITests	project,	select	the
View	menu	option,	then	choose	the	Pads	sub-menu	item,	and	then	the	Unit	Tests	option,	as
shown	in	the	following	screenshot:

2.	 Next,	right-click	on	the	Test	Apps	item	within	the	Unit	Tests	pane	and	click	on	the	Add	App
Project.	This	will	display	the	Select	a	project	or	solution	dialog	that	allows	you	to	select
each	of	your	projects	for	the	various	platforms,	as	shown	in	the	following	screenshot:

3.	 Once	you	have	selected	the	projects	that	you	would	like	to	add	to	your
TrackMyWalks.UITests	solution,	click	OK	and	dismiss	the	dialog.

Note

If	for	some	reason,	you	don't	see	your	iOS	app	project	listed,	you	may	have	forgotten	to	add
the	Xamarin	Test	Cloud	Agent	NuGet	package	to	your	iOS	project.

Once	you	have	successfully	added	your	projects	to	the	TrackMyWalks.UITests	solution
project,	our	next	step	is	to	run	our	app	and	see	the	results:

4.	 To	run	your	UITests,	select	the	Run	menu	option,	then	choose	the	Run	Unit	Tests	menu	item,
as	shown	in	the	following	screenshot.

When	your	app	starts	to	run,	the	UITest	framework	will	automatically	deploy	your	app	to	the	iOS
or	Android	simulator,	and	then	run	the	app	and	process	through	each	of	the	steps	that	you	have
specified	within	your	test	methods.	The	results	from	each	of	the	tests	will	appear	within	the	Test
Results	pane	within	Xamarin	Studio.

Summary
In	this	chapter,	we	updated	the	TrackMyWalks	application	by	adding	a	new	project	solution,
TrackMyWalks.Tests,	so	that	we	can	separate	our	tests	from	the	main	Portable	Class	Library.
This	gives	us	the	ability	to	write	test	cases.	We	added	the	Mock	framework	so	that	it	will	provide
us	with	the	ability	to	successfully	test	our	ViewModels	as	well	as	to	provide	the	business	logic
behind	them.

We	then	moved	onto	considering	how	we	can	leverage	the	UITest	framework	to	write,	test,	and
execute	UI	tests	locally	by	using	the	Xamarin	Test	Cloud	Agent	and	the	Calabash	framework,	by
adding	the	iOS	and	Android	projects	to	the	UITest	solution	project.

In	the	final	chapter,	you'll	learn	how	to	prepare	your	iOS	app	for	submission	to	iTunes	Connect,
and	learn	how	to	set	up	internal	and	external	users	within	TestFlight	so	that	your	users	can
download	and	test	your	apps	on	their	iOS	devices.	To	end	the	chapter,	you	will	learn	how	to
code-sign	your	Android	apps	before	publishing,	and	releasing	your	Android	APK	file	to	the
Google	Play	Store.

Chapter	10.	Packaging	and	Deploying	Your
Xamarin.Forms	Applications
In	our	previous	chapter,	we	updated	our	TrackMyWalks	application	to	allow	us	to	create	and	run
unit	tests	using	the	NUnit	and	UITest	testing	frameworks	right	within	the	Xamarin	Studio	IDE.	You
learned	how	to	write	unit	tests	for	our	ViewModels	to	test	the	business	logic	to	validate	that
everything	is	working	correctly,	before	moving	on	to	testing	the	user	interfaces	portion	using
automated	UI	testing.

In	this	chapter,	you'll	look	at	what	is	required	to	submit	your	TrackMyWalks	iOS	app	to	the	Apple
App	Store,	and	share	your	creations	with	the	rest	of	the	community.

You'll	learn	the	steps	required	to	set	up	your	iOS	development	team,	as	well	as	the	certificates	for
both	development	and	distribution,	and	learn	how	to	create	the	necessary	provisioning	profiles
for	both	your	development	and	distribution	builds,	and	create	the	necessary	app	IDs	for	your
application.

At	the	end	of	the	chapter,	you	will	learn	how	to	register	your	iOS	devices	so	that	your	users	can
download	and	test	your	apps	on	their	iOS	devices	and	learn	how	to	prepare	your	TrackMyWalks
iOS	app	for	submission	to	iTunes	Connect,	using	the	Xamarin	Studio	IDE.

This	chapter	will	cover	the	following	topics:

Setting	up	your	iOS	development	team
Creating	the	TrackMyWalks	iOS	development	certificate
Obtaining	the	development	certificate	from	Apple
Registering	your	iOS	devices	for	testing
Creating	your	TrackMyWalks	iOS	App	ID
Creating	the	development	provisioning	profiles
Preparing	your	TrackMyWalks	iOS	app	for	submission
Using	the	provisioning	profiles	to	install	the	app	on	the	iOS	device
Building	and	archiving	your	app	for	publishing	using	Xamarin	Studio
Using	Xamarin	Studio	to	submit	your	TrackMyWalks	iOS	app	to	iTunes	Connect

Creating	and	setting	up	your	iOS	development
team
You	have	finally	completed	building	your	TrackMyWalks	app	and	are	ready	to	release	it	to	the
rest	of	the	world;	all	you	need	to	do	is	decide	how	to	deploy	and	market	it.	Before	you	can	begin
submitting	your	iOS	applications	to	the	Apple	App	Store	for	approval,	you	will	need	to	first	set
up	your	iOS	development	team,	which	can	be	achieved	by	following	these	steps:

1.	 Log	in	to	the	iOS	developer	portal	website	at	http://developer.apple.com/	.
2.	 Click	on	the	Member	Center	link	that	is	located	right	at	the	top	of	the	screen.
3.	 Sign	in	to	your	account	using	your	Apple	ID	and	password.	This	will	then	display	the

developer	program	resources	page,	as	shown	in	the	following	screenshot:

4.	 Next,	click	on	the	iTunes	Connect	button,	as	highlighted	in	the	preceding	screenshot.	This	is
where	you	can	check	on	various	things	such	as	SalesandTrends,	Payments	and	Financial
Reports,	and	App	Analytics.	Take	a	look	at	the	following	image:

http://developer.apple.com/

5.	 Next,	click	on	the	Users	and	Roles	button,	as	highlighted	in	the	preceding	screenshot.	This
will	bring	up	the	Users	and	Roles	option	pane	from	where	you	can	add	a	new	user,	as
shown	in	the	following	screenshot:

Note

The	Users	and	Roles	screen	allows	you	to	add	yourself	or	the	people	within	your
organization	who	will	be	able	to	log	in	to	the	iOS	developer	program	portal,	test	apps	on
iOS	devices,	and	add	additional	iOS	devices	to	the	account.

6.	 Ensure	that	you	are	within	the	iTunes	Connect	Users	section,	as	highlighted	in	the	preceding
screenshot.	Then,	click	on	the	+	button	to	bring	up	the	Add	New	User	screen	that	is	shown	in
the	following	screenshot.

7.	 Next,	fill	in	the	User	Information	section	for	the	person	that	you	will	be	adding	to	your
development	team.	Once	you	have	finished,	click	on	the	Next	button,	as	shown	in	the

following	screenshot:

8.	 Next,	under	the	Role	section,	from	the	list	of	roles	available,	choose	what	roles	the	user	can
perform	and	then	click	on	the	Next	button,	as	shown	in	the	following	screenshot:

9.	 Next,	from	under	the	Notifications	and	Settings	sections,	this	is	where	you	will	be	assigning
the	ways	in	which	you	want	the	user	to	be	notified.	From	this	screen,	you	also	have	the
ability	of	specifying	what	information	relating	to	a	list	of	territories	you	want	the	user	to	be
notified	about,	as	shown	in	the	following	screenshot:

10.	 Once	you	have	finished	specifying	each	of	the	different	types	of	notification	methods,	click
on	the	Save	button,	as	shown	in	the	preceding	screenshot.	The	new	user	account	will	then	be
created,	along	with	a	confirmation	e-mail	that	will	be	sent	to	the	users,	accounts,	requesting
them	to	activate	their	account:

Now	that	we	have	covered	the	necessary	steps	required	to	create	and	assign	roles	to	new	users,

as	well	as	setting	up	which	user	roles	can	log	into	the	iOS	developer	portal	to	manage	new	and
existing	users,	view	Sales	and	Trends	reports,	as	well	as	Payments	and	Financial	statements,
our	next	step	is	to	look	at	the	steps	involved	to	generate	an	iOS	development	certificate.

This	certificate	is	encrypted	and	serves	the	purpose	as	your	digital	identification	signature,	and
you	must	sign	your	apps	using	this	certificate	before	you	can	submit	your	apps	to	the	Apple	App
Store.

Creating	the	TrackMyWalks	iOS	development
certificate
In	this	section,	you	will	learn	how	to	create	the	iOS	development	certificate	that	will	enable	us	to
run	and	test	our	TrackMyWalks	app	on	the	iOS	device.	We	will	begin	by	generating	the	iOS
development	certificate,	which	will	be	encrypted	and	will	serve	the	purpose	of	identifying	you
digitally.

You	will	then	need	to	sign	your	apps	using	this	certificate	before	you	can	run	and	test	any
application	that	you	develop	on	your	iOS	device.	To	begin,	perform	the	following	simple	steps:

1.	 Launch	the	Keychain	Access	application,	which	can	be	found	in	the
/Applications/Utilities	folder.

2.	 Next,	choose	the	Request	a	Certificate	From	a	Certificate	Authority...	menu	option	from
the	Keychain	Access	|	Certificate	Assistant,	as	shown	in	the	following	screenshot:

3.	 Then,	we	need	to	provide	some	information	before	the	certificate	can	be	generated	under	the
Certificate	Information	section.

4.	 Next,	enter	in	the	required	information,	as	shown	in	the	following	screenshot,	whilst
ensuring	that	you	have	selected	the	Saved	to	disk	and	the	Let	me	specify	key	pair
information	options:

5.	 Once	all	the	information	has	been	filled	out,	click	on	the	Continue	button.	You	will	then	be
asked	to	specify	a	name	for	the	certificate.	Accept	the	default	suggested	name,	and	click	on
the	Save	button.

Note

At	this	point	the	certificate	is	being	created	at	the	location	specified.	You	will	then	be	asked
to	specify	the	Key	Size	and	Algorithm	to	use.

6.	 Next,	accept	the	default	of	2048	bits	and	RSA	algorithm.	We	need	to	provide	some
information	before	the	certificate	can	be	generated	under	the	Certificate	Information
section,	as	shown	in	the	following	screenshot:

7.	 Click	on	the	Continue	button	and	then	click	on	the	Done	button	when	the	final	screen
appears.

Up	until	now,	you	learned	how	to	generate	a	certificate	request	for	iOS	development,	using	the
Certificate	Signing	Request	(CSR)	using	the	pre-installed	Mac	OS	X	Keychain	Access
application,	so	that	we	have	the	ability	of	code-signing	our	applications,	which	will	enable	us	to
deploy	our	applications	to	the	iOS	device	for	both	development	and	testing.

In	our	next	step,	we	will	learn	how	to	request	a	development	certificate	from	Apple	that	will
provide	us	with	the	ability	of	code-signing	our	applications	using	our	generated	certificate
information	file	that	we	created	in	this	section.

Obtaining	the	iOS	development	certificate	from	Apple
In	this	section,	we	will	learn	how	to	obtain	the	development	certificate	from	Apple,	to	enable	us
to	begin	developing	apps.

Before	you	can	begin	submitting	your	application	to	the	Apple	App	Store,	you	will	need	to	obtain
your	own	copy	of	the	iOS	development	certificate.	This	certificate	is	basically	your	unique
identity	for	each	of	your	apps	that	you	submit	for	approval,	so	let's	get	started:

1.	 Log	in	to	the	iOS	developer	portal	website	at	http://developer.apple.com/	.
2.	 Click	on	the	Member	Center	link	that	is	located	right	at	the	top	of	the	screen.
3.	 Sign	in	to	your	account	using	your	Apple	ID	and	password.	This	will	then	display	the

developer	program	resources	page,	as	shown	in	the	following	screenshot:

4.	 Next,	click	on	the	Certificates,	Identifiers	&	Profiles	button,	as	highlighted	in	the
preceding	screenshot.

http://developer.apple.com/

5.	 Then,	click	on	the	+	button,	as	highlighted	in	the	preceding	screenshot.

6.	 Next,	choose	the	iOS	App	Development	option	under	the	Development	section,	as
highlighted	in	the	preceding	screenshot,	and	click	on	the	Continue	button	to	proceed	to	the
next	step,	as	displayed	further	down	the	page:

7.	 Then,	click	on	the	Continue	button,	as	highlighted	in	the	preceding	screenshot,	to	proceed	to
the	next	step.

8.	 Next,	click	on	the	Choose	File...	button,	as	highlighted	in	the	preceding	screenshot.
9.	 Then,	select	the	CertificateSigningRequest.certSigningRequest	file	that	you	created

in	the	previous	sections	and	click	on	the	Continue	button	to	proceed	to	the	next	step	in	the
wizard.

10.	 After	a	few	seconds,	the	page	will	refresh	and	the	certificate	will	be	ready	and	you	will	be
able	to	download	it.

In	this	section,	we	considered	the	steps	involved	in	requesting	a	certificate	from	Apple	that	will
be	used	to	provide	us	with	the	ability	of	code-signing	our	applications	required	to	deploy	onto	the
iOS	device	and	the	Apple	App	Store.

We	then	moved	on	to	learn	how	to	use	the	generated	certificate	request	file	that	we	created	in	our
previous	section,	Creating	the	TrackMyWalks	iOS	development	certificate,	to	generate	the
development	certificate.

Creating	the	App	ID	for	the	TrackMyWalks	(iOS)	application
In	previous	sections,	we	have	learned	how	to	request	a	certificate	from	Apple	to	provide	us	with
the	ability	of	code-signing	our	applications,	as	well	as	learning	how	to	use	the	generated
certificate	request	file	to	generate	our	deployment	certificate.

In	this	section,	we	will	be	looking	at	how	to	create	the	application	App	IDs	so	that	we	can	use
these	to	deploy	our	applications	to	test	on	an	iOS	device:

1.	 Log	in	to	the	iOS	developer	portal	website	at	http://developer.apple.com/	.
2.	 Click	on	the	Member	Center	link	that	is	located	right	at	the	top	of	the	screen.
3.	 Sign	in	to	your	account	using	your	Apple	ID	and	password.	This	will	then	display	the

developer	program	resources	page,	as	shown	in	the	following	screenshot:

4.	 Next,	click	on	the	Certificates,	Identifiers	&	Profiles	button,	as	highlighted	in	the
preceding	screenshot.

5.	 Then,	click	on	the	App	IDs	item	located	underneath	the	Identifiers	group	at	the	left-hand
side	of	the	page	and	click	on	the	+	button	to	display	the	Register	iOS	App	IDs	section,	as
highlighted	in	the	following	screenshot:

http://developer.apple.com/

6.	 Next,	provide	a	description	for	the	App	ID	Description	field	that	will	be	used	to	identify
your	app,	as	shown	in	the	preceding	screenshot.

7.	 Then,	provide	a	name	for	the	Bundle	ID	field.	This	needs	to	be	the	same	as	your
application's	bundle	identifier.

Note

The	Bundle	ID	for	your	app	needs	to	be	unique.	Apple	recommends	that	you	use	the	reverse
domain	style	(for	example,	com.domainName.appName).

Consider	the	following	screenshot:

8.	 Next,	choose	from	the	list	of	App	Services	that	you	would	like	to	enable	for	your	app,	and
then	click	on	the	Continue	button,	as	shown	in	the	following	screenshot:

9.	 Then,	from	the	Confirm	your	App	ID	screen,	click	on	the	Register	button.

In	this	section,	we	covered	the	necessary	steps	required	to	create	the	App	ID	for	our	application.
Creation	of	App	IDs	are	required	for	each	application	that	you	create	and	must	contain	a	unique
application	ID	that	identifies	itself.	The	App	ID	is	part	of	the	provisioning	profile	and	identifies
an	App	or	a	suite	of	related	applications.

These	are	used	when	your	applications	communicate	with	the	iOS	hardware	accessories,	the
Apple	Push	Notification	Service	(APNS),	and	when	sharing	of	data	happens	between	each	of
your	applications.

Creating	the	TrackMyWalks	development
provisioning	profile
In	this	section,	we	will	learn	how	to	create	the	development	provisioning	profiles	so	that	your
applications	can	be	installed	on	the	iOS	device	so	that	you	can	deploy	and	test	your	applications
prior	to	deploying	your	app	to	the	Apple	App	Store:

1.	 Log	back	in	to	the	iOS	developer	portal	at	http://developer.apple.com/	.
2.	 Click	on	the	Member	Center	link	that	is	located	right	at	the	top	of	the	screen.
3.	 Sign	in	to	your	account	using	your	Apple	ID	and	password.	This	will	then	display	the

developer	program	resources	page,	as	shown	in	the	following	screenshot:

4.	 Next,	click	on	the	Certificates,	Identifiers	&	Profiles	button,	as	done	previously.
5.	 Then,	click	on	the	All	item	located	under	the	Provisioning	Profiles	section	located	at	the

left-hand	side	of	the	page.
6.	 Next,	click	on	the	+	button	to	display	the	Add	iOS	Provisioning	Profiles	section,	as

highlighted	in	the	following	screenshot:

http://developer.apple.com/

7.	 Then,	choose	the	iOS	App	Development	option	from	the	Development	section,	and	then
click	on	the	Continue	button	to	proceed	to	the	next	step,	as	shown	in	the	preceding
screenshot.

8.	 Next,	select	your	App	ID	from	the	drop-down	list	available,	as	shown	in	the	preceding
screenshot,	and	click	on	the	Continue	button	to	proceed	to	the	next	step	in	the	wizard:

9.	 Then,	choose	your	certificate	from	the	list	of	available	certificates	that	you	would	like	to
include	to	be	part	of	the	Provisioning	Profiles,	and	click	on	the	Continue	button	to	proceed
to	the	next	step,	as	shown	in	the	preceding	screenshot.

10.	 Next,	choose	from	the	list	of	devices	that	you	would	like	to	include	as	part	of	the
Provisioning	Profiles	that	you	are	about	to	create,	and	click	on	the	Continue	button	to
proceed	to	the	next	step,	as	shown	in	the	preceding	screenshot.

Note

For	more	information	about	how	to	register	iOS	devices	using	the	Member	Center,	please
refer	to	the	Apple	distribution	guide	documentation	using	the	following	link:	
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-
CH30-SW10	.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW10

11.	 Then,	specify	a	name	for	the	Profile	Name	field	to	be	used	to	identify	the	provisioning
profile	within	the	iOS	developer	portal,	and	click	on	the	Continue	button	to	proceed	to	the
next	step,	as	shown	in	the	preceding	screenshot.

12.	 Finally,	your	provisioning	profile	has	been	created	and	is	ready	to	be	used.	You	can	choose
to	Download	your	provisioning	profile	from	here,	or	you	can	let	Xcode	handle	this	for	you,
which	we	will	be	covering	in	the	next	sections.

13.	 To	close	this	screen,	and	take	you	back	to	the	list	of	Provisioning	Profiles,	click	on	the
Done	button,	as	shown	in	the	preceding	screenshot.

In	this	section,	we	learned	how	to	create	a	provisioning	profile	that	will	allow	your	applications
to	be	installed	onto	a	real	iOS	device.	This	will	give	you	the	ability	to	assign	team	members	who
are	authorized	to	install	and	test	an	application	onto	each	of	their	devices.

Note

Whenever	you	deploy	an	application	onto	an	iOS	device,	this	will	contain	the	iOS	development
certificate	for	each	team	member,	as	well	as	the	Unique	Device	Identifier	(UDID),	which	is	a

sequence	of	40	letters	and	numbers	that	are	specific	to	your	device,	and	the	App	id.

Preparing	the	TrackMyWalks	(iOS)	app	for
submission
Now	that	you	have	tested	your	application	to	ensure	that	everything	works	fine	and	is	free	from
errors,	you	will	want	to	start	preparing	your	application	so	that	it	is	ready	for	submission	to	the
Apple	App	Store.

In	this	section,	we	will	need	to	use	Xcode	and	sign	in	with	our	Apple	ID	so	that	we	can	download
our	provisioning	profiles	for	both	development	and	distribution.	This	is	mainly	since	Xamarin
Studio	uses	Xcode	to	perform	its	compilation,	and	if	we	don't	set	this	up,	we	won't	be	able	to
submit	our	TrackMyWalks	iOS	app	to	the	App	Store	and	iTunes	Connect.

To	begin	preparing	your	application	using	Xcode,	follow	these	simple	steps:

1.	 Ensure	that	you	have	launched	the	Xcode	development	IDE	and	it	is	displayed.
2.	 Next,	choose	the	Preferences...	menu	option	from	the	Xcode	|	Preferences...	menu,	or

alternatively	press	command	+	,	as	shown	in	the	following	screenshot:

3.	 Next,	ensure	that	the	Accounts	button	has	been	selected,	then	click	on	the	+	button,	and
choose	the	Add	Apple	ID...	menu	option,	as	shown	in	the	preceding	screenshot.

4.	 Then,	enter	in	your	Apple	Developer	credentials	by	specifying	both	the	Apple	ID	and
Password,	as	can	be	seen	in	the	preceding	screenshot.

Note

Once	Xcode	has	validated	your	Apple	credentials,	you	will	be	presented	with	a	screen	like
the	one	shown	in	the	preceding	screenshot.	This	screen	shows	you	the	team	that	you	belong
to,	as	well	as	your	role	within	the	team.	You	can	also	add	multiple	Apple	IDs	to	this	screen.

Now	that	we	have	set	up	our	Xcode	development	IDE	to	use	our	iOS	development	and
distribution	provisioning	profiles,	our	next	step	is	to	create	an	entry	for	our	application	within
iTunes	Connect.

This	is	so	that	when	we	begin	to	submit	our	app	using	Xamarin	Studio	and	the	Application
Loader	application	to	the	Apple	App	Store	using	iTunes	Connect,	we	won't	run	in	to	any	issues:

1.	 Log	back	in	to	the	iOS	developer	portal	at	http://developer.apple.com/	.
2.	 Click	on	the	Member	Center	link	that	is	located	right	at	the	top	of	the	screen.
3.	 Sign	in	to	your	account	using	your	Apple	ID	and	password.	This	will	then	display	the

developer	program	resources	page.
4.	 Next,	click	on	the	My	Apps	button,	as	shown	in	the	following	screenshot:

5.	 Then,	click	on	the	+	button	and	then	choose	the	New	App	menu	option,	as	shown	in	the
following	screenshot:

http://developer.apple.com/

6.	 Next,	proceed	to	enter	in	the	application	details	for	the	application	that	we	are	uploading.
The	SKU	number	field	is	a	unique	identifier	that	you	create	for	your	app:

Note

The	Bundle	ID	suffix	that	you	provide	must	match	the	same	one	that	you	used	within	your
TrackMyWalks.iOS	app's	info.plist;	otherwise,	you	will	run	into	issues	when	submitting
your	apps	to	the	App	Store	and	iTunes	Connect.

7.	 Then,	click	on	the	Create	button	to	create	your	app	and	proceed	to	the	next	step.
8.	 Next,	choose	the	Pricing	and	Availability	menu	option,	located	underneath	the	APP	STORE

INFORMATION	section,	on	the	left-hand	side	panel.
9.	 Then,	from	the	Pricing	and	Availability	section,	specify	the	values	for	our	Price	Schedule

as	well	as	the	Start	Date	and	End	Date	for	our	application.	This	will	determine	when	our
application	will	be	made	available	for	download,	as	shown	in	the	following	screenshot:

10.	 Next,	click	on	the	Save	button	to	save	any	changes	made	within	this	screen.

There	are	more	than	100	pricing	tiers	to	choose	from,	including	an	option	for	selling	your
application	for	free.

In	this	section,	we	learned	the	steps	involved	in	preparing	our	application	for	submission	to	the
Apple	App	Store	using	iTunes	Connect.	We	also	learned	that	before	submitting	our	apps	for
approval,	you	must	ensure	that	everything	works	properly,	and	is	free	from	problems,	and	the	iOS
simulator	is	a	good	place	to	start.

Although,	not	everything	can	be	tested	within	the	iOS	simulator,	it	proves	a	good	starting	point.
Apple	suggests	that	you	should	always	deploy	your	apps	to	a	real	iOS	device	running	the	latest
iOS	release,	so	that	you	can	test	your	app	for	a	few	days	to	ensure	that	all	issues	are	ironed	out,
prior	to	submitting	your	app	to	the	Apple	App	Store.	Next,	we	looked	at	how	to	create	a	new
application	ID	for	the	application	that	will	be	uploaded	to	the	Apple	App	Store,	as	well	as
providing	detailed	information	about	the	application,	and	specifying	a	date	when	the	application
will	become	available.

Note

For	more	information	on	how	to	go	about	submitting	and	managing	your	apps	using	iTunes
Connect,	you	can	refer	to	the	following	link	at	this	location:	
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/UsingiTunesConnect/UsingiTunesConnect.html#//apple_ref/doc/uid/TP40012582-
CH22-SW3	.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/UsingiTunesConnect/UsingiTunesConnect.html#//apple_ref/doc/uid/TP40012582-CH22-SW3

Submitting	the	TrackMyWalks	(iOS)	app	to	iTunes	Connect
using	Xamarin	Studio
In	the	previous	section,	we	began	by	creating	the	TrackMyWalks	App	within	iTunes	Connect	and
learned	that	before	submitting	apps	for	approval,	you	must	ensure	that	everything	is	working
properly,	and	is	free	from	problems.

In	this	section,	we	will	begin	getting	our	TrackMyWalks.iOS	app	ready	for	submission	to	the
Apple	App	Store,	using	Xamarin	Studio	IDE.

To	begin	submitting	your	application,	follow	these	simple	steps:

1.	 Ensure	that	the	TrackMyWalks.sln	project	is	already	open	within	Xamarin	Studio	IDE.
2.	 Next,	right-click	on	the	TrackMyWalks.iOS	project,	choose	the	Options	menu	option,	and

choose	the	iOS	Bundle	Signing	located	under	the	Build	section	within	the	left	pane.
3.	 Then,	within	the	iOS	Bundle	Signing	section,	choose	Release	for	the	Configuration	and

iPhone	for	the	Platform	and	ensure	that	you	have	chosen	the	Distribution	(Automatic)
option	within	the	Signing	Identity	dropdown	that	will	be	used	to	sign	our	TrackMyWalks
app	with.

4.	 Next,	ensure	that	you	have	chosen	the	Automatic	option	to	use	for	our	Provisioning	Profile,
and	click	on	the	OK	button	to	save	the	settings	and	dismiss	the	Project	Options	-
TrackMyWalks.iOS	dialog.

Note

Your	iOS	provisioning	certificate	will	be	shown	in	bold,	with	your	provisioning	profile	in
gray.	If	you	don't	import	a	valid	provisioning	certificate,	you	won't	be	able	to	deploy	or
upload	your	TrackMyWalks	iOS	application	to	the	Apple	App	Store.

5.	 Then,	ensure	that	you	have	chosen	Release	|	iPhone	to	use	as	the	iOS	device	prior	to
choosing	the	Archive	for	Publishing	option	within	the	Build	menu,	as	shown	in	the
following	screenshot:

6.	 Next,	provide	a	comment	for	your	application,	by	clicking	within	the	Comment	field,	and
then	click	on	the	Sign	and	Distribute...	button	to	have	Xamarin	sign	and	prepare	your	app
for	submission,	as	shown	in	the	following	screenshot:

Note

Once	you	click	on	the	Sign	and	Distribute...	button,	you	will	be	presented	with	the	Select

iOS	Distribution	Channel	dialog,	where	you	can	choose	your	distribution	channel	to	create
a	package	for	your	app.

7.	 Then,	since	we	want	to	publish	our	TrackMyWalks	app	to	the	App	Store,	choose	the	App
Store	option	within	the	list	and	click	on	the	Next	button	to	proceed	to	the	next	step	within
the	wizard,	as	shown	in	the	following	screenshot:

8.	 Next,	you	will	be	presented	with	the	Provisioning	profile	screen	where	you	can	select	your
signing	identity	and	provisioning	profile,	or	re-sign	using	a	different	identity.	Click	on	the
Next	button	to	proceed	to	the	next	step	within	the	wizard,	as	shown	in	the	following
screenshot.

9.	 Upon	clicking	on	the	Next	button,	Xamarin	Studio	will	proceed	to	collect	all	the	necessary
files,	and	create	a	TrackMyWalks.ipa	file	which,	by	default,	will	be	saved	within	your
TrackMyWalks	folder.

10.	 You	will	be	presented	with	the	Publish	to	App	Store	dialog,	where	you	will	be	presented
with	the	ability	of	publishing	your	app	to	the	app	store,	as	shown	in	the	following
screenshot:

11.	 Then,	click	on	the	Publish	button	to	proceed	to	the	next	step	within	the	wizard	where	you	can
then	upload	your	binary	archive.

12.	 Once	you	have	clicked	on	the	Publish	button,	and	everything	passes,	you	will	be	presented
with	the	Publishing	Succeeded	dialog	where	you	can	begin	uploading	your	binary	archive
by	clicking	on	the	Open	Application	Loader	button,	as	can	be	seen	in	the	preceding
screenshot.

Note

For	more	information	on	how	to	go	about	deploying	your	Xamarin.Forms	Android	app,
please	refer	to	the	section	on	Preparing	an	Application	for	Release	at	the	following	link:	
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-
_preparing_an_application_for_release/	.

https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/

This	will	then	launch	the	Application	Loader	application,	as	shown	in	the	following
screenshot,	where	you	will	need	to	sign-in	to	iTunes	Connect	using	your	iTunes	Connect
credentials.

13.	 Next,	choose	the	Deliver	Your	App	option	and	click	on	the	Choose	button,	as	shown	in	the
following	screenshot:

14.	 Once	you	have	clicked	on	the	Choose	button,	you	will	be	presented	with	the	Deliver	Your
App	dialog	where	you	will	need	to	choose	the	TrackMyWalks.ipa	file	that	was	generated
during	the	Sign	and	Distribute	process	within	the	Submitting	the	TrackMyWalks	(iOS)	app
to	iTunes	Connect	using	Xamarin	Studio	section	located	within	this	chapter.

15.	 Then,	select	and	choose	the	TrackMyWalks.ipa	file,	and	click	on	the	Open	button,	as
shown	in	the	preceding	screenshot.

The	Application	Loader	will	read	the	information	contained	within	the	TrackMyWalks.ipa
binary	file,	populated	from	iTunes	Connect,	and	display	the	Application	name,	Version
Number,	SKU	Number,	Primary	Language,	Type,	and	the	user's	Apple	ID,	as	shown	in
the	preceding	screenshot.

16.	 Next,	click	on	the	Next	button	to	proceed	to	the	next	step	within	the	wizard,	as	shown	in	the
preceding	screenshot.

In	the	preceding	screenshot,	the	Application	Loader	application	will	begin	by	authenticating	your
app	with	the	Apple	App	Store	and	iTunes	Connect,	and	then	validating	to	ensure	that	everything
passes,	at	which	point	your	binary	archive	will	begin	uploading.

Note

For	information	on	how	to	use	the	Application	Loader	to	publish	your	Xamarin.iOS	apps,	you
can	refer	to	Publishing	to	the	App	Store	Guide	from	the	Xamarin	developer	documentation,
which	can	be	accessed	by	using	the	following	link:	
https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution/app-
store-distribution/publishing_to_the_app_store/	.

https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution/app-store-distribution/publishing_to_the_app_store/

Summary
In	this	chapter,	you	learned	how	to	create	and	set	up	your	iOS	development	team	and	the
associated	iOS	development	certificate	that	will	enable	you	to	run	and	test	your	apps	on	an	iOS
device.	We	then	moved	on	to	describe	how	to	create	an	App	ID	for	our	TrackMyWalks	app.

These	special	App	IDs	are	used	both	within	Xamarin	and	Xcode	to	associate	your	app	with	the
one	assigned	as	part	of	your	iOS	provisioning	profiles.	Once	we	created	all	the	necessary
development	certificates	and	provisioning	profiles,	you	learned	how	to	package,	sign,	and
distribute	your	app	using	Xamarin	Studio	IDE,	and	deploy	it	to	iTunes	Connect	using	the
Application	Loader	application,	where	you	can	then	download	and	test	your	app	on	a	real	iOS
device.

This	was	the	final	chapter,	and	I	sincerely	hope	that	you	had	lots	of	fun	developing	apps
throughout	our	journey	working	through	this	book.	You	now	have	enough	knowledge	and	expertise
to	understand	what	it	takes	to	build	rich	and	engaging	apps	for	the	Xamarin.Forms	platform,	by
using	a	host	of	exciting	concepts	and	techniques	that	are	unique	to	the	Xamarin.Forms	platform.

You	have	enough	knowledge	to	get	your	Xamarin.Forms	projects	off	to	a	great	start,	and	I	can't
wait	to	see	what	you	build.	Thank	you	so	much	for	purchasing	this	book	and	I	wish	you	the	very
best	of	luck	with	your	Xamarin.Forms	adventures.

	Mastering Xamarin UI Development
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Dedication
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Creating the TrackMyWalks Native App
	Creating the TrackMyWalks solution
	Updating the TrackMyWalks solution packages
	Creating the TrackMyWalks model
	Creating the walks main page
	Creating the new walk entry content page
	Creating the walk trail content page
	Adding the Xamarin.Forms.Maps NuGet package
	Creating the DistanceTravelledPage content page
	Creating the Splash screen content page
	Updating the Xamarin.Forms App class
	Differences between Xamarin Studio and Visual Studio
	Running the TrackMyWalks app using the simulator
	Summary
	2. MVVM and Data Binding
	Understanding the MVVM pattern architecture
	Implementing the MVVM ViewModels within your app
	Creating the WalkBaseViewModel for the TrackMyWalks app
	Implementing the WalksPageViewModel
	Updating the walks main page to use the MVVM model
	Implementing the walks entry page ViewModel
	Updating the WalksEntryPage to use the MVVM model
	Implementing the walk trail page ViewModel
	Updating the WalksTrailPage to use the MVVM model
	Implementing the DistanceTravelledViewModel
	Updating the DistanceTravelledPage to use the MVVM model
	Summary
	3. Navigating within the MVVM Model - The Xamarin.Forms Way
	Understanding the Xamarin.Forms Navigation API
	Differences between the navigation and ViewModel approaches
	Implementing the navigation service within your app
	Creating the navigation service interface for the TrackMyWalks app
	Creating a navigation service to navigate within our ViewModels
	Updating the WalkBaseViewModel to use our navigation service
	Updating the walks main page ViewModel and navigation service
	Updating the walks main page to use the updated ViewModel
	Updating the walks entry page ViewModel and navigation service
	Updating the WalksEntryPage to use the updated ViewModel
	Updating the walks trail page ViewModel and navigation service
	Updating the WalksTrailPage to use the updated ViewModel
	Updating the distance travelled ViewModel and navigation service
	Updating the DistanceTravelledPage to use the updated ViewModel
	Updating the Xamarin.Forms.App class to use the navigation service
	Summary
	4. Adding Location-Based Features within Your App
	Creating and using platform-specific services
	Creating the Location Service Interface for the TrackMyWalks app
	Creating the Location Service class for the Android platform
	Creating the Location Service class for the iOS platform
	Enabling background updates and getting the user's current location
	Updating the WalkEntryViewModel to use the location service
	Updating the DistanceTravelledViewModel to use the location service
	Updating the SplashPage to register our ViewModels
	Updating the MainActivity class to use Xamarin.Forms.Maps
	Updating the Xamarin.Forms App class to use platform specifics
	Summary
	5. Customizing the User Interface
	Creating the DataTemplate class for the TrackMyWalks app
	Updating the walks main page to use the data template
	Creating a TableView EntryCell custom picker for the iOS platform
	Creating the custom picker renderer class for the iOS platform
	Updating the WalksEntryPage to use the custom picker renderer
	Creating PlatformEffects using the Effects API for the iOS platform
	Creating PlatformEffects using the Effects API for the Android platform
	Implementing value converters within the TrackMyWalks app
	Updating the WalkBaseViewModel to use our Boolean converter
	Updating the WalksPageViewModel to use our Boolean converter
	Updating the walks main page to use the updated ViewModel
	Updating the WalksTrailPage to use the updated ViewModel
	Updating the DistanceTravelledPage to use the updated ViewModel
	Updating the WalkCellDataTemplate class to use PlatformEffects
	Summary
	6. Working with Razor Templates
	Understanding the Razor template engine
	Creating and implementing Razor templates within Xamarin Studio
	Adding the SQLite.Net package to the BookLibrary solution
	Creating and implementing the book library database model
	Creating and implementing the book database wrapper
	Creating and implementing the BookLibrary database wrapper
	Creating and implementing the book listing main page
	Creating and implementing the BookLibraryAdd Razor template
	Creating and implementing the BookLibraryEdit Razor template
	Creating and implementing the WebViewController class
	Updating the book library Cascading Style Sheet (CSS)
	Summary
	7. Incorporating API Data Access Using Microsoft Azure App Services
	Setting up our TrackMyWalks app using Microsoft Azure
	Adding the Json.Net NuGet package to the TrackMyWalks app
	Adding the HttpClient NuGet package to the TrackMyWalks app
	Updating the WalkEntries model to use the Json.Net framework
	Creating the HTTP web service class for the TrackMyWalks app
	Creating the DataService API for the TrackMyWalks app
	Creating the DataService API class for the TrackMyWalks app
	Updating the WalkBaseViewModel to use our DataService API
	Updating the WalkEntryViewModel to use our DataService API
	Updating the WalksPageViewModel to use our DataService API
	Updating the WalksPage to use the updated ViewModel
	Updating the custom picker renderer class for the iOS platform
	Updating the WalksEntryPage to use the updated custom picker
	Summary
	8. Making Our App Social - Using the Facebook API
	Setting up and registering the TrackMyWalks app with Facebook
	Adding the Xamarin.Auth NuGet package to the TrackMyWalks app
	Adding the FaceBook SDK library to the TrackMyWalks app
	Creating a Facebook user model for the TrackMyWalks app
	Creating a FacebookCredentials class for the TrackMyWalks app
	Creating the Facebook Sign In to use within our TrackMyWalks app
	Creating the Facebook Sign In Class for TrackMyWalks (iOS) app
	Updating the NavigationService Interface for the TrackMyWalks app
	Updating the NavigationService class for the TrackMyWalks app
	Updating the WalksPage to properly handle Facebook Sign In
	Updating the WalksPage ViewModel to use our FaceBookApiUser
	Updating the DistanceTravelledPage for the TrackMyWalks app
	Updating the Xamarin.Forms App class to handle Facebook Sign In
	Enabling Facebook functionality within the TrackMyWalks app
	Summary
	9. Unit Testing Your Xamarin.Forms Apps Using the NUnit and UITest Frameworks
	Creating a unit test solution folder using Xamarin Studio
	Creating a unit test project using Xamarin Studio
	Adding the Moq NuGet package to the unit test project
	Adding the TrackMyWalks project to TrackMyWalks.UnitTests
	Creating and implementing the WalksTrailViewModel NUnit test class
	Creating and implementing the WalkEntryViewModel NUnit test class
	Running the TrackMyWalks.UnitTests using Xamarin Studio
	Creating a UI test project using Xamarin Studio
	Understanding the commonly used UITest methods
	Setting up and initializing our TrackMyWalks app for UITest
	Implementing the CreateNewWalkEntry using the UITest.Framework
	Adding the Xamarin Test Cloud Agent to the iOS project
	Updating the TrackMyWalks AppDelegate class to handle Xamarin Test Cloud Agent
	Running the TrackMyWalks UITests using Xamarin Studio
	Summary
	10. Packaging and Deploying Your Xamarin.Forms Applications
	Creating and setting up your iOS development team
	Creating the TrackMyWalks iOS development certificate
	Obtaining the iOS development certificate from Apple
	Creating the App ID for the TrackMyWalks (iOS) application
	Creating the TrackMyWalks development provisioning profile
	Preparing the TrackMyWalks (iOS) app for submission
	Submitting the TrackMyWalks (iOS) app to iTunes Connect using Xamarin Studio
	Summary

