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PREFACE

To understand the fundamentals of computer science it is essential for us to begin with study of
the related mathematical topics ranging from discrete mathematics, concepts of automata theory
and formal languages. It is high time to recognize the importance of discrete mathematics as it
finds various applications in the field of computer science. However, it requires a full fledged
study and its potential with respect to computer sciences and natural sciences have long been
well recognized. To understand the principles of computer science that is evenly acknowledged
as mathematical foundation of computer science, this book present a selection of topics both
from discrete mathematics and from automata theory and formal languages. The objective of
selection of topics was due to my aspiration to commence with most of the fundamental termi-
nology employed in higher courses in computer science as plausible. As per the requirements of
the study, the formal appearance of the discrete mathematics includes set theory, algebraic
systems, combinatorics, Boolean algebra, propositional logic, and other relevant issues. Like-
wise, abstract models of computations, models of computability, language theory concepts, and
the application of language theory ideas are the subject matter of the concepts of automata and
formal languages. These topics will also assist to understand the concepts and philosophies
used in advanced stages of computer learning such as computation theory and computability,
artificial intelligence, switching theory and logic design, design of softwares like high speed
compilers, sophisticated text processors and programming languages, assembly and rescue of
information.

The texts of this book are intended primarily for use in graduate as well as post graduate
courses in ‘Mathematical Foundation of Computer Science’, ‘Discrete Mathematics’ and
‘Automata Theory and Formal Languages’. Although, the topics discussed in the book primarily
focuses on the mathematical aspects of engineering in context of computer science, however it
is also suited to the technical professionals.
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MOTIVATION

The manuscript presented in this book is an outcome of the experience gained in the teaching
the courses like discrete mathematics, automata theory, and mathematical foundation of com-
puter science at Department of Computer Science & Engineering at I E T, UP Technical Uni-
versity, Lucknow and elsewhere for last ten years. I am hopeful that presentation of this text
imitates the planning of the lectures. I always tried to avoid the mathematical-rigors, compli-
cated concepts and formalisms and presented them in a more precise and interesting manner.
Moreover, I hope during my teaching students not only learned the courses as a powerful math-
ematical tool but also widened their ability and understanding to perceive, devise, and attempt
the mathematical problems with the application of the theory to computer science. The prolific
and valuable feedback from my students motivates me to prepare this manuscript. Ultimately,
I expect that this text would extend the understanding of mathematical theory of computer
science with the explosion of computer science, computer application, engineering, and infor-
mation technology.



FEATURE OF THE BOOK

The interesting feature of this book is its organization and structure. That consists of
systematizing of the definitions, methods, and results that something resembling a theory.
Simplicity, clarity, and precision of mathematical language makes theoretical topics more
appealing to the readers who are of mathematical or non-mathematical background. For quick
references and immediate attentions—concepts and definitions, methods and theorems, and
key notes are presented through highlighted points from beginning to end. Whenever, necessary
and probable a visual approach of presentation is used. The amalgamation of text and figures
make mathematical rigors easier to understand. Each chapter begins with the detailed contents
which are discussed inside the chapter and conclude with a summary of the material covered in
the chapter. Summary provides a brief overview of all the topics covered in the chapter. To
demonstrate the principles better, the applicability of the concepts discussed in each topic are
illustrated by several examples followed by the practice sets or exercises.

The material of this book is divided into 5 Units that are distributed among 12 chapters.

Unit I gives general overview of discrete objects theory its relations and functions, enu-
meration, recurrence relations and algebraic structures. It contains four chapters.

Chapter 1 is a discussion of discrete objects theory its relations and functions. We start
our discussion from the theory of discrete objects which is commonly known as algebra of sets.
The concepts of relations and functions are presented after a discussion of algebra of sets. This
chapter is concluded with the study of natural numbers, Peano axioms and mathematical in-
duction.

Chapter 2 discusses enumeration that includes discrete numeric functions and generat-
ing functions. This chapter covers a class of functions whose domain is the set of natural num-
bers and the range is the set of real numbers—Dbetter known as discrete numeric functions that
are widely used in digital computations. An alternative way to represent the numeric functions
efficiently and conveniently the reader will also find a discussion over generating function in
the chapter.

Chapter 3 is concerned with recurrence relation and the methods of finding the solution
of the recurrence relation (difference equation). A variety of common recurrences obtained from
the algorithms like divide & conquer and chip & conquer is given. The chapter concludes the
methods to obtain the solution of the recursive procedure codes.

Chapter 4 Latter in this unit we emphasized the algebraic structures where a thorough
discussion of group theory and brief discussion of other algebraic structures like rings and
fields are presented. This discussion is in fact very important in formal language theory and
automata. This chapter concludes with the discussion of class of group mappings like
homomorphism, isomorphism, and automorphism.

Unit II is devoted to the discussion of propositional logic and lattices that are presented
in two chapters.

Oaf! After a successful study of mathematical-rigors, readers find an interesting and
detail overview of logic in Chapter 5. An elementary introduction to logic not only enlightens
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the students who are eager to know the role of logic in computer science but equally to other
students of human sciences, philosophy, reasoning, and social sciences as well. A brief discus-
sion of the theory of inference persuades the criteria to investigate the validity of an argument
is included. In the chapter the stress is mainly on the natural deduction methods to investigate
the validity of an argument instead a lengthy and tedious approach using truth table. Further-
more, the introduction of predicate logic and inference theory of predicate logic along with a
number of solved examples conclude the chapter.

Chapter 6 deals the Order Theory that includes partial ordered sets (posets) and lat-
tices. This chapter also covers a detail discussion on lattice properties and its classification
along with a number of solved examples.

Unit III, IV, and V are concerned with automata theory and introduction to formal
languages, which comprises chapters 7, 8-9, and 10-12 correspondingly. Chapter 7 starts
with the study of introduction to the languages and finite automata. The class of finite automata -
deterministic and nondeterministic is included with the definition, representation, and the
discussion of the power of them.

Chapter 8 deals the relationship between the classes of finite automata. Examples are
given to explain better how one form of finite automata is converted to other form of automata
with preservance of power. Of course, a brief illustration of the state minimization problem of
deterministic finite automata concludes the chapter.

Chapter 9 discusses about the regular expressions. Since generalization of regular
expression gives regular language which is the language of the finite automaton. So this chapter
illustrates the relationship between finite automata and regular expressions and vice-versa.
This chapter also introduces another form of finite automata called finite automata with output
such as Melay and Moore machines, which operate on input string and returns some output
string. It also included the discussion on equivalence of Melay and Moore machines.

Chapter 10 deals with regular and non-regular languages. To prove whether any lan-
guage is regular or not we discuss a lemma called pumping lemma of regular language. This
lemma is necessarily checking the regularity of the language. The characterizations of regular
languages and decision problems of regular languages are also discussed here.

Chapter 11 begins with the study of grammars. Classification of grammars of type 0,
type 1, type 2, and type 3 are discussed here. A detailed discussion of non-regular grammar
such as context free grammar (type 2) and context free language its characteristics, ambiguity
features are presented in this chapter. The automaton which accepts the context free language
is called pushdown automata. This chapter also discusses about the pushdown automata. Reader
will also find the simplification method of any grammar including normal forms of grammars.
Pumping lemma for proving any language is context free language or not and a brief discussion
on decision problems concludes the chapter.

Chapter 12 deals the study of an abstract machine introduced by Allen Turing called
Turing machine. Turing machine is a more general model of computation in such a way that
any algorithmic procedure that can be carried by human could be possible by a Turing machine.
Chapter includes a brief discussion on this hypothesis usually referred as Church-Turing
hypothesis which laid the theoretical foundation for the modern computer. Variations of Turing
machines and its computing power concluded the study of this chapter.

In Appendix a discussion on Boolean algebra, where reader will find the basic theorems
of Boolean algebra and its most common postulates. A preamble to Boolean function, simplifica-
tion of Boolean function and its application in the logic deign of digital computers is presented
at last.



ATTENTIONS

Even after immense forethoughts a book covering this variety of text it is probable to contain
errors and lapses. I would appreciate you if you find any mistakes or have any constructive
suggestions it will be my pleasure to look into your suggestions. You can mail your comments to

Mathematical Foundation to Computer Science—Y N Singh
Department of Computer Science & Engineering

Institute of Engineering & Technology,

UP Technical University, Lucknow-226 021

Alternatively you can use e-mail ynsingh iet@yahoo.com to submit errors, lapses and
constructive suggestions.
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SEMESTER SCHEDULE

Topic Reading/Assignments
Set theory review & study of Group theory Chap 1
Ordered theory & Chap 2
Discrete Numeric Functions Chap 3

Assignment 1 given out & submit up to 4th week

Study or Recurrences Chap 4
Boolean Algebra Chap 5
Logic & Inference Theory Chap 6

Assignment 2 given out & submit up to 7th week

Concepts of Finite Automatons Chap 7

Equivalence of DFA & NFA Chap 8
Assignment 3 given out & submit up to 9th week

Study of Regular Expressions Chap 9

Regular or Non Regular languages Chap 10
Assignment 4 given out & submit up to 11th week

Study of Grammar, Classification of Grammar

Context free Grammar
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1 Discrete Theory, Relations
and Functions

1.1 INTRODUCTION

The major objective of the study of this subject is to study the theory of discrete objects and
relationship among them. The term discrete objects refers a variety of items that we frequently
seen and go through in our day today life such as students, books, programs, numbers, projects
etc. We study some of the basic concepts dealing with different kinds of discrete objects under
the theory of set algebra which we discussed next. Initially, the notation of set theory is intro-
duced and certain operations are defined. The concepts of relations and functions are pre-
sented after a discussion of algebra of sets. We conclude this chapter with the study of natural
numbers, Peano axioms and mathematical induction.

1.2 ELEMENTARY THEORY OF SETS

In this section we start our study to introduce the notation used for specifying sets. A set is the
known collection of objects that are distinct in nature.

For example,

A set of books,

A set of alphabets,

A set of real numbers,

A set of Ist semester of MCA students,

A group of students of UP Technical University, Lucknow,
A group of meritorious students of the university,

A collection of coins,

A aggregation of live projects,

The words ‘group’, ‘collection’, ‘aggregation’, are have similar meaning of set. The set is
recognizes by the uniqueness of its members. The important characteristic of the set is that its
members share some common, unique, and well defined property through which the set is
recognized or named. A set is represented by a symbol. We use the convention capital letter to
represent a set, and lower case letters to represent the members of the set. For example X is
the set of alphabets i.e. X = {a, b, ¢, ...., z}; the set of natural numbers N = {0, 1, 2, ....} etc. The
objects of the set are often called the members of the set or element of the set for example, a, b,
¢, ..., z are the members of the set X. It is discretionary that in the set the members occur in
any order.

Let set X = {x, y, z} then elements x, y, and z are the members of the set X, this can also
be represented by x € X, y € X and z € X but for the element a ¢ X it means that a is not the

2
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member of the set X. Since, the elements of the set are all unique so incident of repeated
elements doesn’t change the nature of the set.

The important aspect of the study of the sets is its representation such that how can we
describe the members of the sets conveniently. For example, assume a set S contains hundred
million natural numbers. We can represent this set by using the expression that describes its
members conveniently by,

S = {x/x is a natural number and x is upto hundred million}

Consider another example of a set X is the students of UP Technical University study-
ing in MCA program. It can be describe by the following expression by,

X = {x/x is studying in MCA program of UP Technical University}

Here x is the member of the set X and the it’s members share a unique and common
property ‘studying in MCA program’ through which the set X is recognized or by defining x the
set X is completely defined.

Alternatively, a set is well defined if it is possible to determine the members of the set
by means of certain statute.

Since, there is no restriction on the size of the objects that can be in a set. It may possi-

ble that a set contains themselves one or more sets for example,
X ={1,2,{a, b}, {p, 1, s}, $}

Here, sets {a, b} and {p, g, r} are the members of the set X i.e. {a, b} € X and {p,q,r} € X
but the element a, b ¢ X and also p, q, r ¢ X.

The cardinality of the set X is denoted by the | X |, which is the number of elements the
set contains or it also defines the size of the set. | X | may be finite or infinite depending upon
the set finite or infinite. For example, the size of the set X shown above is 5; because it contains
the first two elements 1 and 2, along with two elements that are sets {a, b} and {p, q, r} and one
element $. The cardinality of the empty setis | & | = 0. We set | X | =  whenever set X is
infinite. An infinite set has infinite number of distinct elements. An infinite set that can be put
into a one-to-one correspondence with the natural numbers is countable infinite (i.e. set of
integers) otherwise it is uncountable (i.e. set of reals). The sets have the same cardinality if
their elements shown one-to-one correspondence. A finite set X with | X | = n is called an n-
set. A 1-set is called a singleton.

1.3 SET RULES AND SETS COMBINATIONS

In this section we shall discuss the rules that are the basic tools for enumeration and the
diversity of sets combinations.

1.3.1 (S1) Rule of Equality
To discuss the concepts of equality between sets we first discuss the meaning of the subset.
Given two finite sets X and Y if every element of X is an element of Y, then set X is a subset of
Y and it is denoted by, X c Y. For example, set {a, b, ¢} is a subset of the set {p, q, r, a, b, w, c};
but not a subset of {p, q, , a, $, ¢}. Consider, another example, a set of first year MCA students
is a subset of the set of students that contains all year of MCA students.

Reader should note that,

e A set is subset to itselfi.e. X ¢ X (reflexive).

e If X c Y then it doesn’t necessarily mean Y c X.



4 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

e If X cYandY cZthen certainly, X ¢ Z (transitive).
e A set with no element (empty set) is the subset of all the sets i.e. { } X (for any set X)

e {a, b, c}is not a subset of {{a, b, c}}; because former set has the elements a, b, and ¢ but
the latter set has a element which is themselves a set {a, b, c}.

Hence, two sets X and Y are said to be equal if and only if (1) X is the subset of Y and also
(2) Y is a subset of X. Alternatively, if X and Y are two finite sets and if there exists a bijection
between them, then | X | = | Y | is called rule of equality.

For example, {a, b, ¢} ={a, a,b,c} =1{a,c, b} [ {a,a,b,c}={a, b, c}and so |{a, b, c}| =
3= |{a, c, b}|]. But {a, b, ¢} # {{a, b}, c}. Also {1} # {{1}} because {1}e {{1}} but {1} is not a subset
of the set {{1}}.

Rule of equality of sets is reflexive, symmetric, and transitive that is describes respectively
as,

o A set Xis equal to itselfi.e., A = A.

e For two sets X and Yif X =Y then also Y = X.

e ForanysetsX,Y,and Zif X=Y and Y = Z then also X = Z.

After describing the meaning of a subset we shall now define proper subset. Given two
sets X and Y if X ¢ Y and X is not equal to Y then, set X is called the proper subset of Y and is
denoted by X — Y. It means, the set Y contains at least one distinct and extra element than the
set X. Therefore, proper subset is not reflexive and symmetric but it is transitive i.e., if X ¢ Y
and Y c Z then X c Z.

Empty Set
A set with no elements is called an empty set. An empty set is also known as a null set and it
is denoted by { } or &. For example,
e O = {x/xis an integer and x2+ 5 = 0}
@ = {x/x are living beings who never die}
@ = {x/x is the MCA student of age below 15}
@ = { x/x is the set of persons of age over 200}
@ ={x/x +5=5and x > 5}

Remember a set {J} is not an empty set, because it contains an element &. Similarly the
set {{ }} # { ], because former set is not empty, it contains an element & but latter is an empty
set.

1.3.2 Study of Sets Combinations

The sets may be combined into a variety of ways so that new sets are formed. For example,
there is a set of student of girls which is combined with the other set of student of boys then we
get a set of student of either girls, or boys or both girls and boys. What is the set of the senior
students (both girls and boys)? To study these representations ‘union’ and ‘intersection’ are
the basic operations over which the sets are combined. In this section we shall discuss these
sets operations in detail.

Union

Given two sets X and Y, then X union Y denoted by X U Y is the set of all elements either (1)
from the set X, or (2) from the set Y, or (3) from both the set X as well as Y.
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ie.
XuY={xxe XORx e Y}
For example,
e {a, b,clull,2}={a,b,c 1,2} and others.
e {a,,b,clula,b,cl=1a,b,c}
e {a,b,cluf{lord={a,b,c}
e {a,, b,clulla, b}, c} ={a,bd, {a, b}} or {{a, b}} and others.

In general we conclude that elements of the union of the sets have at least one of the
property embraces by elements of set X or set Y.

Similar to the union of two sets, if there are n-sets X, X, ......... X, then there combina-
tion using union operator is denoted by,

XjUXyU e, X, =(..(XuX)uXy........ X)= u X
where, set X, is also called indexed-set.

Intersection
Given two sets X and Y, then intersection of X and Y denoted by X N'Y is the set that has all
the common elements of both the sets X and Y, i.e.,
XNY={x/xe Xandx e Y}
For example,
e {a,b,c}nia,b,c,d, e} ={a,b,c}
Two sets are said to be disjoint if they have no common element, i.e.,
e {a,b,cln{l,2}={}or
o {a,b,cln{}={}ord
o {D,a,b,cin{}l={}or D
e But{J, a, b, c} n{{}} = {J)} is not disjoint sets.

In general, the elements of the intersection of the sets embrace both the elements prop-
erty of the set X as well as the elements property of the set Y.

In the similar mode we can combine the n-sets (X, X,, ......... X ) using intersection
operations as,

where, set X, is an indexed-set.

We can also see that union and intersection operations are commutative and associative,
ie.

@OXuY=YuX and @(HXuXuZ)=XuY)UZ
also H)XNY=YNnX and @HXNnYNnZ)=XNnY)nZ

Example 1.1. Set X = {x/x is an integer s.t. x> 10}, Y={1,2,3,.....}] and Z=(3, 5,7, 9] find
XuY,XuZ XnYand XN Z.
Sol. XuY=1{123,...}
[This set contains all elements of set X and all elements of set Y].
XuZ=13,5,7,9,10,11,12, ...}
XnY={10,11,...... Jand XN Z = .
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Difference
Given two sets X and Y, then difference of X and Y denoted by X — Y is the set taken all those
elements of X that are notin Y i.e.,
X-Y={x/xe XAND x ¢ Y}
For example,
la,b,c, $} —{a, b, c} = {$}
{a,b,c}—1{a,b,c,$} =0
{la, b}, c,d} —{a, b, ¢, d} = {{a, b}}
{1,a,b}-1{1,a,b} =
{a,b,c}—{}=1a, b, c}
We can also define the symmetric difference of the two sets X and Y, which is denoted
by X ~ Y, is the set taken all the elements of X or Y but not in both i.e.,
X~Y=xixe X-Y)uxe (Y-X)}

For example,

o {a,b,c} ~{c,d}=1a,b,d)
e {a,b,c} ~{}={a,b,c}

e {a,b,c} ~{a,b,c}=0

Complement

Often all the sets are probably the subsets of a general larger set U called universal set. For
example, if we are considering various sets made up only of integers, thus the set S of integers
is an appropriate universal set. Given a universal set U, we define the complement of a set X
as,

X' =U-X
For any set X < U, we obtain following equivalence,
e X=X [De Morgan’s Law]
e XNnX'=0
e XUuX'=U

Assume X and Y are two sets (i.e. X, Y ¢ U) then De Morgan’s law can be written with
complements, i.e.

e XNnY)=X'UY
e XuY)=X'nY

1.3.3 Power Set
Given a set X, then power set of X is denoted by P(X), is the set take in all the subsets of X. For
a finite set X with | X | = n, then | P(X) | = 2" or number of elements in the power set is 2"
including the null set &.

For example,

o Letset X ={a, B, V], then power set of X will be P(X) = {&, {a, {B}, 1V}, {o, B}, {o, 11, {B, 71,

and {o, B, v}}

o Letset X ={1, 2, J}, then PX) = {J, {1}, {2}, {D}, {1, 2}, {1, O}, {2, T}, {1, 2, D}}.

o Let X =, then P(X) = {J} or power set of empty set is not empty.

e For any set X, @ € P(X) or & ¢ P(X).



DISCRETE THEORY, RELATIONS AND FUNCTIONS 7

(S2) Rule of Sums
Let X, {for £ = 1 to n}, is a finite family of finite pair wise disjoint sets, then

v X,

= X |X
k=1ton | kl

k=1ton

1.3.4 Multisets

Since, we know that the elements of the sets are all distinct, but often we see that the elements
are not necessarily distinct, we may say that there are repeated occurrence of some elements
in the set. Such sets may be pronounced as redundant representation of set called multiset.
For example, {a, b, b, ¢, b}, la, a, a, al,{a,b,c}, {} etc. are all multisets.

A multiset on X is a set X together with a function f: X — N, where N =1{0, 1, 2, .....}
giving the multiplicity of the elements of X. Multiplicity of the elements is given by the number
of times the element appears in the multiset. Multiset is a set where multiplicity of its ele-
ments are all 1 and it is a null set where element multiplicity is O.

We can denote the multiset M on Xis M = {a™* : @ € X} with m, = fla), a € X. The usual
operations for sets can be carried over to multisets. For instance, if M = {¢™* : a € X} and N =
{a" :a € X} then

e McN= m, < n, forallaceX,

e MUN = {@"="a") . g eX], and
e MAN = {g™"e") :qgeX] ;

e M—N-={a™ " . (m, —n,) >1anda e X};
[It also seen that multisets on a set X forms a lattice under inclusion ()] for lattice see
more in chapter 2.

1.3.5 Ordered Sets

In the sets the order of the elements are discretionary. So a set may be further defined as an
unordered aggregation of objects or elements. In this section we will concentrate on the ordered
set of objects. A couple (duo) of objects is said to be ordered if it is arranged distinctly. We can
denote the ordered couple by (x, y) where component x and y referring the first and second
objects of the ordered couple. Ordered couple is different from the set in the sense that ordering
of the objects is important simultaneously objects need not to be distinct in the ordered pair.
Because of distinct ordering of the objects (x, y) # (y, x) while sets {x, y} = {y, x}.

Resemblance, to that idea of ordered couple can be extended to ordered triple, ordered
quadruple, ...., and ordered n - tuples. Alternatively, an ordered triple e.g. (x, y, z) is an ordered
couple ((x, ), z) where first component is itself is an ordered couple. Likeness to that, an
ordered quadruple (w, x, y, z) has first component is an ordered triple e.g. (w, x, y), z) and so
(((w, x), y), 2). Therefore, an ordered n-tuples (x,, x,....... x,) has first component is an ordered
(n — 1) tuples e.g. ((x;, x,....... X, 1) X,).

1.3.6 Cartesian Products

Given two sets X and Y, then Cartesian product of sets X and Y denoted by X x Y, is the set of
all ordered couples (x, y) such that x € Xand y € Y.

ie. XxY={kx,y)xe Xandy € Y}
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For example,

e Forthe sets X = {x;, x,} and Y = {y, y,} then X x Y = {(x, ¥,), (x, ¥y), (x5, ¥), (X, ¥5)}.

e Due to distinct ordering X x Y # Y x X, hence these two sets are disjoints e.g.
XxY)n (Y xX)=@.

o LetsetsX=CandY=JthenXxY=CandalsoY x X=0.

(S3) Rule of Products

Let X, {for £ = 1 to n}, is a finite family of finite sets, then for the Cartesian product \ In X,,
=1ton

n X,
k=1ton

= II |X
k=1ton| kl

1.4 RELATIONS

The important aspect of the any set is the relationship between its elements. The association
of relationship established by sharing of some common feature proceeds comparing of related
objects. For example, assume a set of students, where students are related with each other if
their sir names are same. Conversely, if set is formed a class of students then we say that
students are related if they belong to same class etc. Hence, we say that a relation is a predefined
alliance of objects. The examples of relations are viz. husband and wife, brother and sister, and
mathematical relation such as less than, greater than, and equal etc. The relations can be
classifying on the basis of its association among the objects. For example, relations said above
are all association among two objects so these relations are called binary relation. Similarly,
relations of parent to their children, boss and subordinates, brothers and sisters etc. are the
examples of relations among three/more objects known as tertiary relation, quadratic rela-
tions and so on. In general an n-ary relation is the relation framed among n objects. In this
section we shall contemplate and study more about binary relation.

1.4.1 Binary Relation
A relation between two objects is a binary relation and it is given by a set of ordered couples.
Let X and Y are two sets then a binary relation from set X to Y, denoted by XRY is a subset of
XxY.
For example,
e Relation of husband and wife can be described by an ordered couple (A, w) i.e.
R = {(h, w)/h is husband of w}
e Let I* is positive integer, then relation R i.e.
R = {(J/x, x}/x € I*} defines the relation of square root of a positive integer.

Besides ordered couple representation, binary relations can also shown graphically and
through tabular form. Consider sets X = {x,, x,, x;}, Y = {y,, y,} and let a relation R = {(x,, y,),
(x4, ¥9)5 (X9, ¥5), (x5, y,)}. Then relation R can be shown as Fig. 1.1 (a) and (b).

Consider another example of binary relation, Let X = {MCA01, MCA11, MCA17, MCAZ28,
MCAA42} be a set of top five MCA students in a class and Y = {TCS, SAIL, HCL, OIL, WIPRO,
INFOSYS]} be another set of companies offering jobs through campus selections. We may describe
a binary relation R, (shown in Fig 1.2) from X to Y such that students are called for interview
by the companies.
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MY Yo
X, 1 1
X, 0 1
X, 1 0

(@)
(Tabular representation of relation R)
where cell entries 1’s (0’s) stands for
presence (absence) of the ordered couple
in the relation.

xlo
x2o Oyl
%, Ya

b)
(Graph of relation R)
where arrows shows the couple
ordering in the relation.

Fig 1.1
TCS SAIL HCL OIL WIPRO  INFOSYS
MCA 01 1 1 0 1 0 1
MCA11 0 1 1 0 1 0
MCA17 0 1 0 1 0 1
MCA28 0 0 1 0 0 1
MCA42 0 0 1 0 0 0

Fig. 1.2 Tabular representation of relation R,.

Fig. 1.3 shows another binary relation R, from X to Y that describes the jobs offer by the

companies to the students.

TCS SAIL HCL OIL WIPRO INFOSYS
MCA 01 1 1 0 0 0 0
MCA11 0 0 1 0 1 0
MCA17 0 1 0 1 0 1
MCA28 0 0 1 0 0 0
MCA42 0 0 0 0 0 0

Domain Set and Range Set of Binary Relation

Fig. 1.3 Tabular representation of relation R,.

Let R be a binary relation, then domain set (domain) of relation R denoted by D(R), contains all
first components of the ordered couples i.e.
D(R) = {x/(x, y) € R}

Further, if

R =X xY then D(R) c X.



10 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Similarly the range set (range) of relation R denoted by R(R), contains all second compo-
nents of the ordered couples i.e.

R(R) = {y/(x, y) € R}
Further, if R =X xY then R(R) c Y.
For example,

o Let arelation R = {(x,, y,), (x;, ¥5), (x5, y5), (x5, ¥,)} then its domain set and the range
set will be D(R) = {x;, x,, x5} and R(R) = {y,, y,} correspondingly.

o LetR={(Vx,x}xe I*) where I* = {1, 2,3, ...... } then

DR)=1{1,v2,V3, ..} and RR) = {1, 2,3, ......}.
o Let R ={(x, log; x}/x € N} where N, ={0, 1, 2, ...... } then
D®R)=N,;=1{0,1,2,....} and R(R) = { log, 0, log; 1, log, 2, ....... |3
If a relation is defined over same sets of objects then relation named as universal
relation i.e. if R, = X x X then R, is a universal relation over set X. A relation defines over

empty set named as void relation i.e. if R, = X x Y such that either X = @ or Y = & or both X
=Y = J then R, is a void relation.

Example 1.2. Let X = (1, 2, 3, 4, 5} and Y = {7, 11, 13} are two sets.
(i) Consider a relation Ri.e R = {(x, y)/x € X and y € Y and (y — x) is a perfect square}
then relation R contains the following ordered couples,
R=1{@8,7),(2,11), (4, 13)}
(i) Consider another relation R i.e. R = {(x, y)/x € X andy € Y and (y —x) is divisible by
6} then relation R’ will be,
R =1{1,7), (5, 11), (1, 13)}
(tir) RUR ={1,7),(1,13),(2,11),(3,7), (4, 13), (5, 11)}.
(iv) RnR ={}or@.

Properties of Binary Relation

Here we discuss the general properties hold by a binary relation such that reflexive, symmetric,
and transitive.
Let R be a binary relation defined over set X then
e Relation R is said to be reflexive if ordered couple (x, x) € R for Vx € X. (Conversely,
relation R is irreflexive if (x, x) ¢ R for Vx € X).
e Relation R is said to be symmetric if, ordered couple (x, y) € R and also ordered couple
(y, x) € R for Vx, Vy € X. (Conversely, relation R is antisymmetric if (x, y) € R but (y,
x) ¢ Runless x =y).
e Relation R is said to be transitive if ordered couple (x, z) € R whenever both ordered
couples (x, y) € Rand (y, z) € R.

1.4.2 Equivalence Relation

A binary relation on any set is said an equivalence relation if it is reflexive, symmetric, and
transitive. Further, if a relation is only reflexive and symmetric then it is called a compatibil-
ity relation. A table shown in Fig. 1.4 represents a compatibility relation. So, we can say that
every equivalence relation is a compatibility relation, but not every compatibility relation is
an equivalence relation.
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x y 4
x 1 1 1
y 1 1 —
z 1 — 1

Fig. 1.4 Compatibility relation.

Example 1.3. Let N={1, 2, 3, .....J then show that relation R = {(x, y)/ (x —y) is divisible by 2 for
every x and y € NJ is an equivalence relation.
Sol. Since,
e For any x € N, (x — x) is divisible by 2 therefore, relation R is reflexive.
e Foranyx,y e N, if (x —y) is divisible by 2 then also (y — x) is divisible by 2 therefore,
relation R is symmetric.
e Foranyx,y,and z € N, if (x — y) is divisible by 2 and (y — z) is divisible by 2 then also
(x — z) is divisible by 2; because (x —z) can be written as (x —y) + (y —z) and since both
(x —y) and (y — 2) is divisible by 2 then also (x — z). Therefore, relation R is reflexive.

Hence, relation R is an equivalence relation.

Equivalence Class

Let R be an equivalence relation on set X, then equivalence class denoted by [x] is generated by
the elements y € X such that,
[yl ={x/x e X and (y,x) e R}

Since, set [y] consists of all virtual ofy in the set X. Hence, [y]  X. A family of equivalence
classes generated by the elements of X defines a partition of set X. Such partition is a unique
partition. So, we may say that equivalence classes generated by any two elements are either
disjoint or equal. e.g.

lnlzl=3 or [yl=Iz
where [y] and [z] are equivalence classes respect to relation R.

Also, the unions of all the equivalence classes generated by the elements of set X (parti-
tions) respect to relation R return the set X.

Example 1.4. Consider a relation R = {(x, y)/x, y € I" and (x —y) is divisible by 3} where I' is the
set of positive integers. Find the set of equivalence classes generated by the elements of set I'.

Sol. The equivalence classes are,

e [01=1{0,3,6,9,....... } (when (x —y) % 3 = 0),

e [1]1=1{1,4,7,10,...... } (when (x —y) % 3 = 1), and

e [21=(2,5,8,11, ...... } (when (x —y) % 3 = 2)

See, unions of these equivalence classes return the set I*, i.e.

IF=[0lulllul2l=1{0,1,2,..... }

Let x and y are two elements from the set of integers I*, then the relation R is said to be

congruent relation such that,
R ={(x,y)/x,y € I and (x — ) is divisible by m(e I%)}
Hence, relation shown in example 1.4 is a congruent relation of modulo 3.
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1.4.3 Pictorial Representation of Relations

As shown in the fig. 1.1 (b), a relation can also be represented pictorially by drawing its graph
(directed graph). Consider a relation R be defined between two sets X = {x;, x,, ........ ,x}and Y
={ Y Ygs cvvvnnn , ¥l 1., x; Ry. , that is ordered couple (x,, y) € R where 1<i<1 and 1< j<m.
The elements of sets X and Y are represented by small circle called nodes. The existence of the
ordered couple such as (x,, y)is represented by means of an edge marked with an arrow in the

direction from x; to v, Le

X; Ry,
O »O
X Y
While all nodes related to the ordered couples in R are connected by proper arrows, we
get a directed graph of the relation R. For the ordered couples x; Ry, and y; Rx; we draw two
arcs between nodes x; and y, i.e.

YiRX;

1
X Ry,

If ordered couple is like x; Rx; or (x,, x;) € R then we get self loop over the node x,, i.e.

From the directed graph of a relation we can easily examine some of its properties. For
example if a relation is reflexive, then we must get a self loop at each node. Conversely if a
relation is irreflexive, then there is no self loop at any node. For symmetric relation if one node
is connected to another, then there must be a return arc from second node to the first node. For
antisymmetric relation there is no such direct return arc exist. Similarly we examine the tran-
sitivity of the relation in the directed graph.

1.4.4 Composite Relation
When a relation is formed over stages such that let R, be one relation defined from set X to Y,
and R, be another relation defined from set Y to Z, then a relation R denoted by R, 0 R, is a
composite relation, i.e
R =R, 0 R, ={(x, 2)/for any (x € X,y € Y,z € Z) such that (x,y) € R, and (y, 2) € R}
Composite relation R can also represented by a diagram shown in Fig 1.5
O >0 »O = O——0O
X Y VA X Y
Fig. 1.5

For example, let R, = {(p, q), (r, 5), (¢, u), (g, s)} and R, = {(q, 1), (s, v), (u, w)} are two
relations then,
R, OR, ={(p, r), (r,v), ¢, w), (g, v)}, and
R, 0 R, = {(q, s)}
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1.4.5 Ordering Relation (Partial Ordered Relation)
A binary relation R is said to be partial ordered relation if it is reflexive, antisymmetric, and
transitive. For example,

R ={w, w), x,x), (v, y), &, 2), W, x), (w,y), (W, 2), («,y), (x, 2)}

In a partial ordered relation objects are related through superior/inferior criterion.

For example,

e In the arithmetic relation ‘less than or equal to’ or ‘<’ (or ‘greater than or equal to’ or
>’) are partial ordered relations. Since, every number is equated to itself so it is re-
flexive. Also, if m and n are two numbers then ordered couple (m,n) e Rifm=n=n
£ m so (n, m) ¢ R hence, relation is antisymmetric. Further, if (m, n) € R and (n, k) €
R=>m=nandn=%F=m==~%so(m,k) e R hence, R is transitive.

In the next chapter we shall discuss the partial ordered relations in detail.

1.5 FUNCTION

Function is a relation. Function establishes the relationship between objects. For example, in
computer system input is fed to the system in form of data or objects and the system generates
the output that will be the function of input. So, function is the mapping or transformation of
objects from one form to other. In this section we will concentrate our discussion on function
and its classifications.

We are given two sets X and Y. A relation f/ from X to Y is called a function or mapping
ie.

[: XY,

where flx) =y, Vx € X and Vy € Y, and the triple (X, Y, /) is called morphism.

In general, sets X and Y in most instances are finite sets. Assume, | X | =mand | Y |
= n are the cardinalities of the sets. Then we may describe f by the expression,

...... Xevers
r=()
v (0. (xeX)
This we call as the standard representation of f: X — Y. Usually, the domain X and the

codomain (range) Y are totally ordered in some natural way, but , obviously any ordering is
possible. For example, the expressions

(xl Xy X3 Xy ] (x1 Xy Xy Xy ] (x4 X3 X Xy ]
Y1 Y1 Yo Y2 \¥1 Y2 Yo Y1) Y2 Y2 Y1 1
represents the same mapping f.

1.5.1 Classification of Functions

Let (X, Y, /) be a morphism. With f: X — Y we define image img (f) and the argument arg(f),
where

img (f) = uX f(x)
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argH= @ f'(y); A (symbol w indicates that the sets involved for union

x € img(f)
are disjoint to each other)
e The function is an empty function f, if img (f,) = & and undefined argument.
e The function is called identity function if img (f) = x, where f: X — X, for all x € X.

e The function is called surjective if img (f) = Y. Such that, every element of Y is the
image of one/more elements of X, i.e., | X | 2 | Y|. Otherwise it is not surjective.

e The function is called injective if arg(f) = 0, i.e., if x, #x, = flx,) # flx,) for all x, x,

€ X. Such that each element of X has a unique image in Y,ie., | X | =] Y |.
e Functions that are both surjective and injective are called bijective. It follows that
number of elements of both sets be strictly equal,ie., | X | = | Y |.

A function of finite set X into itself, i.e., f: X — X, the classes surjective, injective,
and bijective coincides. For the set of infinite size this is no longer true. For example, f: N
— N where N = {0, 1, 2, ..... } then fin) = 2n, is injective, but not surjective.

Suppose that both sets X and Y are endowed with a partial order. Function f: X — Y is
called monotone if it preserves the order relation. i.e., if x; = x, then flx,) = flx,) for all x,, x, € X,
and it is called antitone if x, = x, then flx,) = flx,) for all x, x, € X.

Observe that if X is totally unordered set then monotone function is an arbitrary function,
regardless of the order on Y.

Example 1.5. (A). Classify which of the following function is surjective, injective, and bijective.
(I) Let N={0,1,2,....} and f: N = N, where fix) = x? + 1. then
Since,
at, x=0; A0)=(02+1=1
at, x=1; A=(1)2+1=2
x=2 A2)=(22+1=5

So we observe that distinct elements of N are mapped into distinct elements of the
image set N, hence function is injective.

(II) Let f: N — {0, 1}, where flx) = 1, if x is even, otherwise 0.

Since, image set contains the elements 0 and 1, and all even numbers of N are mapped
to element 1 and all odd numbers are mapped to the element 0 of N. So, img (f) = {0, 1}, hence
mapping or function is surjective.

(ITT) Let f: N — N, where flx) = 1, if x is even, otherwise 0.

Here, img (f) = {0, 1} but there are other elements in the image set N that are nor the
image of any element of argument N. Hence, function is not surjective.

(IV) Let f: P —» P, where P = {0, 1, 2, 3, 4} and fix) = x % 5 or (x mod 5).

A If the function f: X — Y is surjective, then we can define inverse function 1, i.e.,
FfhY->X;
where, f "1(y) = x & flx) = y, for any x € X and y € Y. The composite of function f and £ -1 is an identity
function, i.e.,
0 f~1 =1 (Identity function) = f~1 0 f
(see example 1.5)



DISCRETE THEORY, RELATIONS AND FUNCTIONS 15

We find that at x =0 =>f0)=0%5=0;atx=1=>A1)=1%5=1;atx=2=£A2)=2%
5=2;atx=3=13)=3%5=3;andx =4 = fi4) =4 % 5 = 4. Since, img (f) = P and arg(f) = 0
(that is no element left in the argument set), therefore mapping is bijective, or function is
bijective.

B).Let X ={1<2<3 <4} and

are partial ordered sets. Then classify the following function (f: X — Y) expressions,

(i)f=(i b o fz) (ii)f=@ b - 3)

For the solution of (i) since we know that if function preserved the partial ordered rela-
tion then it is monotone, i.e., if x; < x, then flx,) < flx,) for all x,, x, € X. Since, first row of the
expression consists of the elements of X, i.e. there ordering is 1 < 2 < 3 < 4 and the second row
of the expression consists of image elements of Y, i.e. there ordering is ¢ < b < ¢ < d. Thus we
have,

1<2<3<4 = AD<AD<fB)<A4) = a<b<c<d

Therefore, function is monotone.

In the given function (if) we have the ordering of the elements shown in the first row of
the expression is 1 < 2 < 3 < 4 and the ordering of their corresponding image elements is d > b
> ¢ > a. Thus we have,

1<2<3<4 = fAL>A2)>f3)>f4) = d>b>c>a
Therefore, function is antitone.

Example 1.6. Let X = (1, 2, 3] _and Y = {a, b, ¢/_are partial ordered sets. Compute | f: X =Y |
when, (1) f is arbitrary, (2) fis surjective, (3) fis injective, (4) f is bijective, (5) f is monotone, and
(6) [ is antitone.

Sol. We first list the set of possible strings generated by the arbitrary function f, which is
shown in Fig. 1.6.

1 2 3,
aa a acc aba caa chJ ach
aab ccc baa cac ccb} bac
abb bbc bab cca cab
bbb bcc bba bcbd bca
aac abc aca cbbd cba

Fig. 1.6
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Thus,

1. | /: X > Y | =27, when fis arbitrary.

2. For surjective mapping img () = {a, b, c}. So, we have the last column and ‘a b ¢
givesthe | f: X > Y | =6.

3. Since, the last column together with ‘a b ¢’ gives that each element of X has a unique
imagein Y hence, | f: X >Y | =6.

4. The last column together with ‘@ b ¢’ gives the bijective mapping,so | f: X —>Y | =6.

(o)

. The monotone mapping are those in the first two columns, so | f: X > Y | = 10.
6. The antitone mapping are found in the columns three, four, fifth, and six are
| f:X>Y|=2+3+0+1=6.

1.5.2 Composition of Functions

Given two function f: X - Yand g:Y — Z, then g ¢ fis called composite function, where,

g0 f=g{fx) ={x,z)x e Xand z € Z and (y = flx) and z = g(y)) for any y € Y}.
Therefore, the necessary condition for g ¢ fis, img (f) ¢ arg (g), Otherwise g ¢ f= @.

Conversely, f 0 g may or may not exist. It exists if and only if img (g) < arg (f).

Example 1.7. Let f: R > R; flx) =-x>and g : R, > R ; g(x) = Jx where R is the set of real

numbers and R, is the set of positive real numbers. Determine f 0 g and g ¢ f.

Sol. We have mapping f ( """ ~24-10, 1’2"") and 0.12 ...
. Vi 1 = =
pping f=| ~4,-1,0,1,4,... E O NI .
To determine /0 g we must have img (g) c arg (f), because R, c R.
Since, fOg=Ffgx)=AfJx)=—(x)2=—x
Therefore, f0g =1k, —x)/x e R}

Similarly to determine g ¢ f; since img (f) & arg (f) because img (f) € R and arg (g) € R, so R
¢ R,. Hence, g 0 f does not exist.

Example 1.8. Let a function [ : R — R, where f(x) = x® — 2 and R is the set of real numbers, find
f1. Also show that fO f1 =1

Sol. Given mapping is represented by the expression, i.e.

e =2,-1,0,1,2..
f= (x3 —2...)x€R = f= (— 10,-3,-2,- 1, 6...)

Since f: R — R is surjective, so f ! exists, i.e.

f R->R
Since, flx) = x3 — 2 = y (assume); then ! (y) = x.
= x=(y+2)1/3
= y=(x+2)1/3 [replace x and y]

Therefore, inverse of flx) is (x + 2)1/3.

Let (x + 2)1/3 = g(x),

So, fOft=10g="Agk)
= fllx + 2)1/3)
=((x +2)1/3)3 - 2;
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=@x+2) -2
=x
Therefore, 0 F1!={(x, x)/x € R} is an identity or function.

1.5.3 Inverse Functions
If the function f: X — Y is surjective, then we can define inverse function -, i.e.,
FrY -X;
where, 1 (y) =x & f(x) =y, for any x € X and y € Y. The composite of function f and ! is an
identity function, i.e.,

70 1 =1 (Identity function) = f10 f

Reader must note that a function f: X — X is called Identity function if,
f=1x,x)/xe X}

such that, I0f=f01=F
Letf: X —>Yand g :Y — X are two functions then function g is equal to /! only if
g0 f=1=f0g
Example 1.9. Show that the function flix) = x 2 and g(x) = x2 for real x are inverse of one other.
Sol. Since,
fOg=fgl)=fa*)=x=1
and g0f=g(fx)=glxD=x=1
hence, f=glorg=F"L

1.5.4 Recursively Defined Functions

Consider the function which refers a function in terms of itself. For example, the factorial
function fin) = n!, for n as integer, is defined as,

1 for n<1

f(n):{n.f(n—l) for n>1

Above definition states that f(n) equals to 1 whenever n is less than or equal to 1. How-
ever, when n is more than 1, function f{n) is defined recursively (function invokes itself). In
loose sense the use of f on right side of equation result a circular definition for example, A2) =
2. fi1)=2.1=2and f(3) = 3.f(2) = 3*2 = 6.

Take another example of Fibonacci number series, which is defined as,

0=0; fi=1; fo=Ffq1+f, o for n>1

To compute the Fibonacci numbers series, f, and f; are the base component so that
computation can be initiated. f, = f, ; + 7, , is the recursive component that viewed as recur-
sive equations. In the previous function definition the base component is f(n) =1 for n = 1 and
recursive component is fin) = n . fln — 1) while for the second function, base components are f;
=0, f; = 1 and recursive component is f, =f, ; +f, , for n>1.

Recursive defined functions arise very naturally to express the resources used by recur-
sive procedures. A recurrence relation defines a function over the natural number, say fin) in
terms of its own value at one /more integers smaller than n. In others words, fin) defines
inductively. As with all inductions, there are base cases to be defined separately, and the
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recurrence relation only applies for n larger than the base cases. To study more about recursive
functions see chapter 3 section 3.5.

1.6 MATHEMATICAL INDUCTION AND PIANO’S AXIOMS

Induction is the mechanism for proving a statement about an infinite set of objects. In many
cases induction is done over set of natural numbersi.e., N={0,1,2, 3....... }. However induction
method is equally valid over more general sets which have following properties,

e The set is partial ordered, which means an ordered relationship is defined between
some pairs of elements of the set, and

e The set contains no infinite chain of decreasing elements.

Using the principal of mathematical induction we can prove a collection of statements
which can be put in one—to—one correspondence with the set of natural numbers. So in this
section we shall examine the set of natural numbers and study the important properties or
axioms of the set of natural numbers which leads us to formulate the principle of mathemati-
cal induction.

Let @ the empty set. The set of natural numbers N can be generated by the starting with
the empty set @ and its successor sets Gu{@}, GuU{BIU{BU(B}}, OU{BIU{BU{B}}

U{BUBI BV}, ......... These sets can be simplified to @, {3}, (@, {(B}}, (D, {3}, (@, (B}}},
.......... If the set @ be rename as 0 then {@} = 1, {@, {@}} = {0, 1}= 2, and {@, {D}, {D, {B}}} = {0,
1,2}=3,....... so we obtain the set {0, 1,2, 3, ........... } where each element is the successor set

of the previous element except for the element 0 which is assumed to be present in the set.
Thus we conclude that the set of natural numbers N can be obtained from the following axi-
oms,

e 0e N
e Ifn e N, then its successor, i.e. n U {n} € N.
o If a subset X ¢ N follows the properties
(i) 0e X, and
() ifne X,thenn u{n}e X
then, X =N.
These axioms are known as Peano axioms.
Last property of the Peano axioms provides the basis of the principle of mathematical
induction. This axiom can be expressed in an easy computational form as,
Assume n is the induction variable. Let P(n) be any proposition defined for all n € N and
(@) If P(0) is true, (it) If P(k) = P(k+1) or, its successor for any £ € N, then P(n) holds for all n
e N.
For example let proposition P(n) be defined as
Y ii+D/2=n(n+D(n+2)/6
i=1
Now show that P(n) is true for every n > 0.

Basic Step

The proof is by induction on n, the upper limit of the sum. The base case is n = 0. We
must show that P(0) is true. Proposition P(0) is 0 = 0(0 + 1) (0 + 2) /6, which is obviously true.
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Induction Hypothesis

For n greater then 0, assume that
Zk: G+D/2=k(k+1D(k+2)/6
holds for all £ > 0 such ths;t= lle <n.
(Induction Hypothesis with 2 =n — 1)
rili(i+ D/2=n-Dnn+1/6
i=1

n n—-1
Since Y i+1/2= iG+D/2+n+D/2
i=1 i=1
Therefore Nii+D/2=(n-Dnn+D/6+nn+1)/2

i=1
=nn+1) (n+2)/6. Proved
Example 1.10. Show that for any n >4, n! > 2",
Sol. Let P(n) is n! > 2. For 0 < n < 4, P(n) is not true. For n = 4, P(4) is 4! < 2* (i.e., 24 < 16) so
it is true. Assume that P(%) is true for any £ > 4, i.e.,
k! > 2k
or, 2% Bl > 9% ok
since, (¢ + 1) > 2 for any %k > 4, hence
(B+1)*k!>2% k! >2%2k
= (k + 1)! > 2k+1
Therefore, P(2 + 1) is true. Hence P(n) is true for any n > 4.
Example 1.11. Show that for every n >0, x* 1 — 1 is divisible by x — 1.
Sol. Let P(n)is x*~ ! — 1. We begin by checking that P(n) is true for the starting values of n,
ie.,forn=0,x"1-1=x"1-1=—(x— 1)/x which is divisible by (x —1). Forn=1,x"1 -1 =0, and
0 is divisible by (x — 1). Assume that P(k) is true for any £ > 0, i.e., x* =1 — 1 is divisible by (x — 1).
Since by division,
-1/ (x-—1D=xF1 +&F-1-Dx-1)
if (x*~1 - 1) is divisible by (x — 1), then (x* — 1) is also divisible by (x — 1). Therefore P(+ 1) is true.
Hence P(n) is true for all n > 0.
Example 1.12. Prove that for any n > 1,
Y i*2i=(n-D*2" 42
i=1

n

Sol. Let P(n): Z i*2 = (n-1*2"*1+92
i=1

Here the base case is n = 1. For this case both sides of the equation return value 2. For n
greater than 1, assume that



20 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

%
Y i*2 = (k- D*2" ! 12
i=1
true for all £ > 1 such that & < n.
Induction hypothesis with k =n — 1

n-1
D %2 = (n-2)%2" +2
=1
n n-1
Since, Zi*ZiZZi*2i+n*2"
=1 =1
7 .
Thus, D %2 ={(n-2)%2" +2)+n*2"
=1

=n-2+n)*2"+2=(n-1)*2"*1+ 2 Proved.
Example 1.13. Show that for any n > 0,

2 1/iG+D=n/(m+1)

i=1

Sol. Let P(n): Y 1/iG+D=n/(n+1
i=1

For n = 0, P(0) is true. For n greater than 0, assume that

k
2 1/iG+D=k/(k+1)

i=1
holds for all £ > 0 such that & < n.
Fork=n-1,
n-1
Y 1/i+D=(n-D/n
i=1
n n-1
Since Y 1/i+ D= 1/iG+D+1/n(n+1)
i=1 i=1
Y 1/iG+D=(-D/n+1/n(n+1)
i=1
=n?2-1+1)/n(n+1)=n/n+1). Proved.
EXERCISES
1.1 For the set X = {1, 2, 3, J}construct the following :
@) X uPX) @) X N PX)
(ii1) X - (iv) X — {T}

W Is e PX)?
(where P(X) is the power set of X)
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1.2 Define the finite set and infinite set; countable set and uncountable set. State which set is finite
or infinite, countable or uncountable?

@ ... 2BC, 1BC, 1AD, 2AD, ........ 2004AD, ....... }
@) {0,1,2,3,.......... }

(ii1) {x/x is positive integer}

(iv) x/x € {a, b, c, ...... v, z}}
(v) The set of living beings on the universe.

(vi) The set of lines passes through the origin.

(vii) X = {x/x% + 1 = 0}

(viti) X = {1/2, 8, 5, 2, 7, 9}.
1.3 Does every set have a proper subset?
1.4 Prove that if A is the subset of & then A = &.
1.5 Find the power set of the set X = {a, {a, b}, {J}}.
1.6 Proveif XnY=CthenX Y.

1.7 Consider the universal set U = {x/x is a integer}, and the set X = {x/x is a positive integer}, Z =
{x/x is a even integer}, and Y = {x / x is a negative odd integer}, then find,

@HXuY @)X uY
@) X-Y v)Z-Y
W XnNnY) -7
1.8 Define a binary relation. When a relation is said to be reflexive, symmetric, and transitive.
1.9 Distinguish between a relation and a mapping.

1.10 Let arelation R = {(x, y)/x,y ? R and 4x2 + 9y? = 36} then find the domain of R, the range of R, and
the R

1.11 State the condition when a relation R in a set X
(@) not reflexive (i) not symmetric
(iti) not antisymmetric (iv) not transitive.
1.12 Let R, and R, are two relations then in a set X then prove the following :
(@) If R,and R, is symmetric then R, U R, is also symmetric.
(i) If R, is reflexive then R; N R, is also reflexive.

1.13 Let a relation R = {(x, y)/x, y € N and (x —y) is divisible by 3}then Show that R is an equivalence
relation.

1.14 Comment on the relation Rie.,if R"R1=@ and if R = R
1.15 Let X be the set of people and R be the relation defined between the element of the set X, i.e.
(@) R = {(x, y)/x,y € X and ‘x is the husband of y’}
(@) R = {(x, y)/x, y € R and ‘x is poorer than y’}
(@ii) R = {(x, y)/x, y € R and ‘x is younger than y’}
(iv) R = {(x, ¥)/x, y € R and ‘x is thirsty than y’}
Find the inverse of each of the relation.
1.16 IfX=1{1,2},Y=1{a, b,c}and Z = {c, d}. Find (A x B) n (A x C).
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1.17 Which of the following graphs represents injective, surjective, and bijective function ?

y y y
A A A

/\bx | R >
NI

(i) Circle (ii) Cissoid (iii) Straight line
YA A
> >
(iv) Parabola (v) Hyperbola
1.18 Let a function /: R — R be defined i.e., flx) = 1 if x is rational and flx) = — 1 if x is irrational then

find

@) f2) @i7) f(1/2)
(i) A1/3) (iv) f(22/7)

) AJ2) i) A8)

1.19 Let a function f: R — R be defined as
1-2x? for —2<x<4

fx)=x* +4 for5<x<7
x—-3 for8<x<12

Find :
@) f-3) (i) f4)
(tii) A7) (iv) (12)
) flu—2)

1.20 Let f be a function such that ! exist then state properties of the function f.
1.21 Let a function f: R — R be defined as flix) = x2, then find
@ f1(=4) (i1) f1(25)
(iii) (4 <x < 25) ((0) fU =0 <x < 0)
1.22 Find the £ if function flx) = (4x2 — 9)/(2x +3) (by assuming f is surjective).
1.23 Let function f and g are surjective then show that
@op=(log"
1.24 Find x and y in the following ordered pair :
@) x+3,y—4)=(3,5) @) (x2,y+3) =@y +4,2c-1)
1.25 LetX={1,2,3,4}and Y = {a, b, ¢}, can a injective and surjective function
f: X — Y may be defined. Give reasons.
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1.26 Prove that the sum of cubes of the first n natural numbers is equal to {

1.27

1.28

1.29

1.30
1.31

n

e )
Prove that for every n >0, 1+ 2 i*il=(n+1!
i=1

n
1
Prove that for every n > 2 1+ 2 j >x
i=1

Prove by mathematical Induction for every n > 0,
2+224+23 4+ +2"=2(2"-1)

Show that n3 + 2n is divisible by 3 for every n > 0.

Prove by Induction that for every n > 1, the number of subsets of {1, 2,

2

ey N} 18 27,

n(n+1)}2
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2 Discrete Numeric Functions
and Generating Functions

2.1 INTRODUCTION

In Chapter 1 we have studied that function is a process of transformation of objects from one
form to other. Thus, function is binary relation from set of objects called domain to set of
objects called range and from the domain set each object has a unique value in the range set.
Present chapter discuss special purpose functions called numeric functions that are common
in computation theory and digital systems. In this context numeric functions over discrete set
of objects are of greater concern.

Discrete Numeric function is defined from set of natural numbers to set of real num-
bers. So, if fis a discrete numeric function then

f :{set of natural no.} — {set of real no.}

Here domain set consists of natural numbers and range set consists of real number.

Discrete numeric function can also be represented as,

f, =fn) forn=0,1,2, ......
where n is the natural number and function f, returns value f{n) that is an expression of n.
For example, if A, will be amount on initial deposit of Rs 100 after n years at interest
rate of 5% per annum then

A, =100 (1 + 5/100)" [using simple compound interest formula]
or A, =100 (1.05)" [ for n = 0]
Now Fig. 2.1 shows the output returned for various values of n (0, 1, 2, ..... ).
n 0 1 2 3 4 5 | ...
A, 100 105 110.25 115.76 121.55 127.63 | ......
Fig. 2.1

Consider another example, as we experience that due to policy decisions of the govern-
ment interest rates are fluctuating. Suppose a person credited Rs 1000 on rate of interest per
annum 15 %. After couple of years interest rate lifted to 18 % per annum and after 5 years
interest rate down to 10 %. Then the amount in the account appeared after each changing year
willbe A , i.e.,

A, =1000 (1 + 15/100)" = 1000 (1.15)" for 0<n<2

Since 1000(1.15)2 = Rs 1322.5, therefore

An =1322.5 + 1322.5 (1 + 18/100)" for 2<n<8

26
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Since 1322.5 + 1322.5 (1 + 18/100)5 = 1322.5 + 1322.5 (1.18)5 = Rs 4348.06
Therefore, A, =4348.06 + 4348.06 (1 + 10/100)" for8<n

Below in this section we will see couple of examples that concisely represent the nu-
meric functions. In general we use convention small letters to represent the numeric func-
tions.

Example 2.1.
*a,=3n>+1 for n20
(A simple expression of numeric function for every n is defined)
o b - {5n for 0<n<3
" 0 for n=>4
(Here two different numeric expressions are defined for different domain sets)

n-3 for 0<n<7
®c,=n+3 for n>8andn%8=0
n/3 for n>7andn%8#0

(Here different numeric expressions are defined for different domain sets)

Example 2.2. Consider an example of airplane, lets h,, be the altitude of the plane (in thousand

of feet) at nth minute. The plane land off after 10 minutes on the ground and ascend to an

altitude 10000 feet in 10 minutes at a uniform speed. Plane starts to descend uniformly after

one hour of flying and after 10 minutes it lands. Thus we have different numeric functions that

measure the altitude for different slices of the plane journey.

Sol.

0 for 0<n<10 [upto 10 minutes plane remain on ground]

n—-10 for 11<n<20 [Plane ascend uniformly at 1000 feet per
minute so altitude is proportional to time

or (n —10 )]
10 for 21<n<80 [next 1 hour plane will remain on altitude 10]
h =1 90-n for 81<n<90 [next 10 minutes plane returns to ground with

uniform speed, after first minute of time plane
will be at height 9000 feet and so on...]
0 for n>90 [Plane remain in ground so no altitude]

2.2 PROPERTIES OF NUMERIC FUNCTIONS

In this section we shall discuss the behavior of numeric functions over unary and binary

operations.

2.2.1 Leta, and b, are two numeric functions then its addition (a, + b,) given by c, is also a
numeric function. The value of ¢, at n will be the addition of values of numeric functions
a,and b, atn. (Addition property of numeric functions)

an={0 for 0<n<2 and b =2" for n=>0

For example, 9" for n>3 "

0+2"=2" for 0<n<2

then c =a +b =
oo {2”+2”:2”+1 for n>3
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Example 2.3. Add the numeric functions
0 for 0<n<5 1-3" for 0<n<2
4 =18"+2 for n=6 and b,=1,,5 for n>3
Sol. Let a, + b, = c,, then c, will be given as,
0+1-3"=1-3" for 0<n<2
c,=\0+n+5=n+5 for 3<n<5
3"+2+n+5=3"+n+7 for n>6

Example 2.4. Add the numeric functions

_Jo for 0<n<2 _13=-2" for 0<n<l1
a”_{2”+5 for n>3 and b”_{n+2 for n>2

Sol. Let a, + b, = c,, then c, will be given as,
0+3-2"=3-2" for 0<n<1
c, = 0+(2+2)=4 for n=2
2" +5+n+2=2"+n+7 for n>3
Addition property of numeric function can also be applied between two/ more numeric
functions. Lets we have numeric functions a,, a,, ....... a, then their addition a, +a, +...... +a,

will also a numeric function whose value at n is equal to the sum of values of all the numeric
functions at n. For example,

1 for n=0
a, =12 for n=1

0 for n=2
0 for 0<n<2 1 for n=0
b, = 1on for n>3 and  ¢,= 10 for n>1
1+0+1=2 for n=0
_]2+0+0=2 for n=1
then Gt byt 6= 0104020  for n=2
0+2"+0=2" for n=>3

2.2.2 Similar to additions of numeric functions, multiplication of numeric functions also
returns a numeric function. Let a, and b, are two numeric functions then its multiplica-
tion (a, * b,) will be a numeric function and its value at n will be the multiplication of
values of numeric functions at n. (Multiplication property of numeric functions).
For example, the numeric functions

{O for 0<n<2
a,=

9 for n>3 and b,=2" for n>0

y 0%2" =0 for 0<n<2
a, ™ b, = gnuxgn _gn+ for n>3
Example 2.5. The multiplication of numeric functions given in example 3.4, will be

0%@3-2")=0  for 0<n<l1
a,*b, =10%n+2)=0 for n=2
2™ +5)*(n+2) for n=3

then
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Example 2.6. Let a, be a numeric function such that a,, is equal to the reminder when integer
is divided by 17. Assume b be other numeric function such that b, is equal to 0 if integer n is
divisible by 3, and equal to 1 otherwise.

(i) Letc, =a, + b, , then for what values of n, c, =0 and c, = 1.
(i) Letd, =a, *b, , then for what values of n, d, = 0 and d, = 1.
Sol. Construct the numeric functions for a and b,

0 for n=0,17,34, ... =17k
1 for n=18,35 ... =17k +1
H 2 for n=19,36, ... =17k + 2
ere, a,=
16 for n=33,50, ... =17k+16
(fork=0,1,2,.....)
and b = 0 forn=0,3,6,...... =3k
n~ |1 otherwise
(i) Since ¢, = a, + b,, then ¢, = 0 only when both a, and b, equal to zero, at n = 0.
To determine other coincident points we observe that when a,, is also divisible by 3, ¢, =0,
ie, n=17k*3=51k (fork=0,1,2,...... )

Therefore, for n = 0, 51, 102, ....... ;¢,=0.
Likewise c, = 1,ifa,=0and b, =1, or a,=1 and b,6=0.
a,=0 forn=17%k and b, =1 fornisnotamultiple of 3. Therefore, c, = 1 when n is
divisible by 17 and not a multiple of 3.
Otherwise,a, = 1forn =17k + 1 and b, = 0 for n is a multiple of 3. Therefore, c, = 1 when
n =17k + 1 and multiple of 3.
(ii) Since, d, = a, * b,, and d,, = 0 on following conditions,
® a,=0and b, =0,whenn =51k
® a,=0andb, #0, when n = 17 k and not a multiple of 3
® a,#0andb, =0, when n is not a multiple of 17 and 3
2.2.3 Multiplication with a scalar factor to numeric function returns a numeric function.
For example, let a, be a numeric function and m be any scalar (real number), then m.a,
will be a numeric function whose value at n is equal to m times a,,.
For example, if numeric function a, = 2" + 3 for n > 0, then 5.a, = 5.(2" + 3) or 5.2" + 15
for n > 0 is a numeric function.
2.2.4 Let a, and b, are two numeric functions then the quotient of a, and b, is denoted by
a,/b, is also a numeric function, and its value at n is equal to the quotient of a /b,.
2.2.5 Let a, be a numeric function then modulus of a, is denoted by |a, |, and defined as,
-a, ifn<0
la, | = { a, otherwise
For example, let a, = (- 1)" (3/n?) for n 20, then
la,| = (8/n?) forn >0
2.2.6 Let a, be a numeric function and I is any integer positive, then S! a_ is a numeric
function and defined as,
o1 {O for0<n<I-1
%% =la,, forn>I

n
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Similarly we define numeric function STta ,ie,
Sta, =a, forn> 0

{1 for0<n<10

For example, let 2 forn>11

f <n<5-1(=4
$a,- [0 Lrospss-ley

a, 5 fornz5
Now determine a,_, for n > 5, so there exists two cases,

e Since a, = 1 (independent of n) for 0 < n < 10, now replace n by n — 5, therefore
a, ;=1for0<n-5<10 or 5<n<15.

e Similarly, a,;=2forn-5>11 or n=16.
0 for 0<n<4

Hence, SPa,=41 for 5<n<15
2 for n=>16

and S*%a,=a,,forn>0

To determine a,,, for n > 0, we obtain

1 for 0<n+5<10 or 0<n<5(sincen =0)
S_5an=an+5_

2 for n+5=11 or n=6

Example 2.7. Let a, be a numeric function such that
o - {2 for 0<n<3
+5 for n>4
Find S*a, and SZa,
Sol. Using definition S? @, we have

9 0 for 0<n<l=2-1
S*a, = o for n=2

Now to determine numeric function a,_,, for n > 2 we have,
® For2< n<3,a,=2(independent of n) thereforea, ,=2for2<n-2<3o0r4<n<5.
e Forn>4,a,=2"+5,s0a, ,=2""2+5forn-2>4 or n26.

Therefore,
0 for 0<n<1
2 for n=2
S?a, =12 for n=3
2 for 4<n<5
272 45 for n>6

From the definition of S a,, we have
S?a,=a,, forn>0
To determine the numeric function a,,,, , for n > 0 we have,
* Since a, = 2, for 0 <n < 3, thereforea,,,=2,for0<n+2<3o0or0<n<1
e Forn>4,a,=2" +5, thereforea,, ,=2"*2 +5,forn+2>4o0rn>2.

2 for 0<n<1

—2 —
Hence, 5%a, = {2“‘*2) +5 for n>2
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Example 2.8. Let a, be a numeric function s.t.
_J1 for 0<n<50
“%=13 for n251
Find S a,,

Sol. Using definition we have S-% a = a,,,. for n > 0. To determine the numeric function
@,,95 for n >0, we have

e Sincea,=1for0<n<50,alsoa,,,; =1for0<n+25<500r0<n<25.
e Forn>51,a,=3,alsoa,,, =3forn+25>51o0rn >26.

Therefore, 2, = {1 for 0<n<25

2 for n=>26

2.2.7. Let a, be a numeric function then accumulated sum of a, is defined by
Zan (for £ =0 to n)
)

is a numeric function. For example if a, describes the monthly income of worker then its
annual income is given by the accumulated sum (b,) of a, where,

12
bn = Z @n
k=0

Example 2.9. Let a, = P (1.11)" for n = 0. Find accumulated sum of a, for n = m.
Sol. Let b, be the accumulated sum of ¢, i.e.,

b, = Z a, = Z PA1D*  for m=>0
k=0 k=0
=P(1+111+1112+ ........ +1.11m)

=P (1111 -1y/(1.11-1)
=100 P (1.11™*1 - 1)/11 for m >0

2.2.8 Let a, be a numeric function then its forward difference is denoted by Aa,, and
defined as,

Aa,=a, ,—a,forn=0
Likewise, backward difference is denoted by Va,, and defined as,

_Ja, forn=0
Va, = {an -a, forn>1
For example, if an describes the annual income of a worker then,
* Aa, will describe the change in income from nth year to (n + 1)th year, and
* Va, will describe the change in income from nth year over (n — 1)th year.
Consider a numeric function a,. i.e.

_J0 for0<n<7
11 forn>8

n

then Aa,=a, ,—a, forn>0
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So determine a,,, for n >0,
e Sincea,=0for0<n<7,s0a,,,=0for0<n_,<70or0<n<6.
® Alsoa,=1forn>8,s0a, ,=1forn+1=8o0rn=7.
Therefore,

0-0=0 for0<n<6
,=91-0=1 forn="7

1-1=0 forn=8
Now to determine Va,, we first determine a, , for n > 1, since we have
®a,=0for0<n<7,s0a, ,=0for0<(n-1)<7o0or1<n<8§,and
®a,=1forn>8,s0a, ,=1forn-1>28o0rn=>9
Thus, putting these values in the definition of Va, we obtain,

0 for0<n<7
Va, =11 forn=38
0 forn=>9

0 for0<n<2
27" +5 forn=3
Determine Aa, and Va,.
Sol. Using definition of forward difference (Aa, ), we have
Aa, =a

Example 2.10 Let a, ={

ne1 — @, forn >0

We determine Aa,,, for n >0, using
®a,=0for0<n<2,s0a,,=0for0<n+1<20r0<n<1,and
® q,=2"+5 forn>3,s0a,,,=2""V+5forn+1230rn=2.
Therefore,

0-0=0 for0<n<1
Aa, =127 +5-0=41/8 forn=2
o b 45 9 _5=_9 D forn>3

Now From the definition of backward difference (Va,), we have

_Ja, forn=0
Va”_{a -a,, forn>1

So, find a,_, for n > 1, from given an,

®a,=0for0<n<2,s0a, ,=0alsofor0<n-1=2o0r1<n<3,and
*a =2"+5forn>3,s0a, ,=2""V+5forn-1230rn=>4.
Therefore,

0-0=0 for0<n<2
Va, =127 +5-0=41/8 forn=3
27" +5-2""Y_5=-2" forn>4
Example 2.11 Show that S7 (Va,) = Aa,,.
Sol. LHS, since we know that Va, =a, —a, ;, forn >1;and 0 for n = 0.
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Thus,
St (Va,)=S"'(@,-a, )=S"a,-S"a, forn>1.
St'a,=a, forn>1andSta, ,=a, ,  forn>1
Hence,
St'a,-S'a, ,=a,,,—a, forn>1=Aa, RHS
Example 2.12. Let a numeric function a , i.e.,
a,=n’-2n>+3n+2 forn=0
Then determine Aa,, Na,, Na,, ....... , A
Sol. Remember the asked terms Aa,, AQan, A3an, ....... , A"a, are known as first order, second
order, third order and so on the nth order forward difference.
Since, Aa, =a,,  —a,, for n >0, then we can determine ¢, , from a, as,
a,=n*-2n?+3n+2 forn=0
so a,,=m+1P3-20+12+3n+1)+2 for(n+1)200rn=0.
Therefore,
Aa,=a,  —a, ={n+172-n3%-2{n+1?-n?%+3{n+1)-n}
Aa_=3n’-n+2 forn20
Now find A%a, = A(Aa,),let Aa, =b,.
So A%a, =Ab,)=b, ,—b, forn=0
Since, b,=3n*-n+2,s0b,,,=3mn+1*-(n+1)+2, forn=0
Therefore, A(b,)=b,,,-b,=32n+1)-1=6n+2 forn=0.
Hence, A%a_=6n+2 forn20
Further assume that ¢, = A%a, =6n + 2soc,,; =6(n + 1) + 2 for n 2 0.
Then
Ada, = A(A%a,) = Alc,) =c,,,—c,=6(n +1)+2—-6n-2
A%a_ =6 forn > 0.
Similarly we can determine Ala_= 0 (wherei>4) forn 0.
Example 2.13. Let a numeric function a, be a polynomial of the form o, + o,n + oy, n? + ...... +
o, n*. Show that A**1a = 0.
Sol. From the previous example we have seen that increase in the degree of the forward differ-
ence then the degree of the polynomial is reduced by one on successive steps, i.e., if
a, = o.f*(n) where o is an scalar, then
Aa, = o f*(n)
A%a, = o f*4n)

Arg =0 fn) = o
Therefore if we go further and determine the forward difference of £ + 1th order then we
have,
Al = A(Ara ) = Ala) = 00— o= 0. [-. a,,=0candsoa, =ad]
Hence, proved.
Example 2.14 Let a, and b, are two numeric functions such that
a,=n+1andb, =a" for n > 0.

Determine Ala,b,).
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Sol. Recall the multiplication property of the numeric functions i.e., if @, and b, are two nu-

meric functions then a,b, will also be a numeric function.

So, ab,=mn+1).a* forn=0
=c, (let)
Now Alab,) = Alc,) =c,,;—c, forn=>0

=n+2)a"'-n+1)a"

=a"(@"-n+2a-1) forn>0.
Example 2.14 Letc, = a, . b,, then show that c, = a,, , (Ab,) + b, (Aa,).
Sol. From the definition of forward difference Ac, =, ., —c, for n >0,

where c,,, willbe a,,,.b,,, s0
Ac,=a, ,.b, ,—a,.b, forn>0
=04 bn+1 Q- bn Q. bn T, bn
=0, (bn+1 - bn) + bn (an+1 - an)

=q,,, (Ab)+b, (Aa,)
RHS

Example 2.15 Let a, and b, are two numeric functions let d, = a/b" is another numeric
function (whose value at n is equal to the quotient of a™/b™), then show that

Ad, ={b, (Aa,) - a,(Ab)I/b, b, .,
Sol. From the definition of forward difference of numeric function d, we have,
Ad, =d,  ,—d, forn>0
Since we have d, = a,/b,, sod,,; = a"*/b"*!
Therefore, Ad, 6 =a,, /b,  —a"/b® LHS
= (010, ~ @, by /b, b,y

n+l “n
= {an+1 bn —-a, bn + a, bn —-a, bn+1}/bn bn+1
= bn’ {an+1 - an} - an {bn+1 - bn}/bn bn+1
= b, (Aa,) —a, (Ab)Vb b, .
RHS

2.2.9 Let a, and b, are two numeric functions then convolution of a, and b, is denoted as
a,*b, is a numeric function and it is defined as,

& —
a,*b,=ayb, +a; b, | +a,b, o+ . +a,b, ... +a, b;+a,b,
n
= 2 ar, bnfx
k=0

which is a numeric function let it be c,.
For example, let a, = p” forn>0
b,=q" forn>0
Then convolution of @, & b, will be given as,

n
sk _ k _n-k
a,*b, = E p'q
k=0

Example 2.16 Let a, and b, are two numeric functions i.e.,

1 <n<2
for0<n and _

{1for0£n£2
a"_{O forn>3 .

0forn>3

Determine a,*b,,.
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Sol. Using the convolution formula,

n
c,=a, b, = 2 a,b,  =a,b, +a;b,  + ... +a, b, +a, b,
k=0
Since we have,
a,=a,=a,=1 and az=a,=...... =0
and by=b,=b,=1 and by=b,=...... =0
Hence, cp=ayb,=11=1

c,=ayb+a;by=11+11=2
cg=0ayby+a;b;+a,b,=11+11+11=3
cs=aybs+a, by +a,b;+a;6,=00+11+11+01=2
c,=apby+a,by+a,by+az;b,+a,b,=10+1.0+1.1+01+01=1
cg=aybs+a,b,+a,bs+a3b,+a,b,+azb,
=10+10+10+0.1+0.1+0.1=0
Similarly we find that rests of the values of ¢ for n > 5 are all zero.
Therefore, convolution is given as,

1 forn=0
2 forn=1
o = 3 forn=2
" 12 forn=3
1 forn=4

0 otherwise

Example 2.17 Let a, = I for n > 0 and

1 forn=1
2 forn=3
b,=13 forn=56
6 forn=7

0 otherwise

Determine a,*b,.
n

b,_
Sol. Let, ¢, =a b = k;“k -k

Forn=0,c,=a,b,=11=1

1
Forn=1,¢,= Y ayb,_, =ayb,+a,by=11+10=1
;
Forn=2c,=  ayby ; =agby+a, b, +a,b,=1.0+11+10=1
0
3
Forn=3,c3=2akb3,k =a,bs+a, b, +a,b, +a;6,)=12+0+11+0=3
0

4
Forn=4,c,= Y ayb,  =agb,+a;by+ayby+azb +a,by=0+12+0+11+0=3
0
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5
Forn=5,c5=2akb5,k =ayb;+a, b, +a,by+a;b,+a, b, +a;b,=6
0

6
Forn=6,ce=2akb67k =a,bg+a, by +a,b,+a;bs+a,b,+a;b,+azb,=6
0

Similarly, we find c,, cg, ...... =0
1 for0<n<2

3 for3<n<4
Therefore, % =16 for5<n<6

0 forn=>7

Example 2.18 Consider the numeric functions a, = 2", for all n and b, = 0, for 0 <n <2 and 2",
for n = 3. Determine the convolution a,*b,.

Sol. Let ¢, = a,*b,. Since we have the values for a, and b, for different values for 7 i.e.,
ay=2,0,=2,a,=4,a,=8, .c.oooeeiiiiiii
and by=0,b,=0,b,=0,b,=2%0b,=2%
Hence, cp=ayb,=2.0=0
ci,=ayb,+a;6,=2.0+1.0=0
c,=ayby+a, b, +a,b,=40+20+10=0
ca=agby+a;by+a,b, +a,b,=0+123=123
cu=agb,+a;by+a,by+a,b +a,by=22%+12=224
cg=aybs+a,b,+a,bs+a,b,+a,b,+a;b,
=4.23422%4+1.25+32°=32°
Or, in general c, = (n—-2)2"

Therefore, the convolution is given as,
0 for0<n<2
”z{(n—Z)Z” for n>3
Example 2.19 Let a,, b, and c, are the numeric functions, i.e., a,*b, = c,, where

1 forn=0 1 forn=0
a"_{O forn>2 and c"_{O forn>1
Determine b,
n
Sol. Since we have c, = a, *b, = 2 a,b,_;
k=0
Therefore,
Forn=0, c,=a,b, = 1=1b, = b,=1

1
Forn=1, ¢;= Y ayby =ayb,+a,by = 1.b,+2.b;=0.Usingb,=0,b, = (- 2).
0

2
For n =2, c2=2akb27k =ay,b,+a,b;+a,b,
0

= Lb,+2.b,+0.b,=0.S0b,=—2b, = b,=(-2)>~
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3
For n = 3, c3=2akb3,k =a,by+a;b,+a,b; +ayb,
0

= L1Lby+2.b,+0.b,+0=0.80b,;=—2b,=(-2)
In general, we obtain b, = (- 2)* for n>0.
Example 2.20 Let a,, b, and c, are the numeric functions, where

1 forn=0

3 forn=1 0 for0<n<10 2 for0<n<9
“Z\2 for2<n<b bn={1 forn>11 and cﬂz{s forn>10

0 forn>6

Determine c,* (a,*b,).

Sol. Let  a,*b, =¢, = Z apb,_;
k=0

Since,
® b, =0for 0<n<10, therefore ¢/, = 0 for 0 <n < 10, and
* b, =1for n>11, therefore
11
¢, = Zakbu,k =a,b,;+0=11=1
k=0
, 0 for0<n<10,and
So we have eV forns 1l
and given o - 2 for0<n<9,and
" 18 forn=10

Now we find the convolution of ¢, with ¢’, and let, ¢, * (¢’,) = d, i.e.,
n
— * ’ — ’
d,=c,*c, = chc n_k
k=0

*For0<n<10,d,=0 [.. ¢/,=0for0<n<10]

® For n > 11, d, can be determine as follows,
11

dy = 2 CrCy1p =€y +0=12
0
12

dig= D 4 Crap =CoCy+ e ¢y +0=21+21=22
0
13

dy = 2 ¢, €3 p = coCyg+c g t+cyc’; +0=32
0
Similarly we can determine d,,, upto n = 20, i.e. d,, = 10.2

And for n = 21,
21

— ’ —_
dy, = 2 Cp €91 p =(cp+cy+ .o +cg) +cqp
0 [

=(10.2) + 1.3

¢’y; to ¢’;; = 1 and rest are 0]
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22

’
doy = 2 CpCl99_p =(co+Cy+ .oco +Cg) + €+ Cyq
0

=(10.2) + 3.1+ 3.1 =(10.2) + 2.3
In general we can summarize the numeric function d, as,

0 for0<n<10
d, =<(n-10).2 for 11<n <20
102 +(n-20).3 forn=>21

2.3 ASYMPTOTIC BEHAVIOR (PERFORMANCE) OF NUMERIC FUNCTIONS

Let a, and b, are two numeric functions i.e.,
a,=C,n?+Cyn and
b,=Csn where C,, C,, and C, are constants
corresponding to the time taken by the two sorting algorithms to sort n numbers. Then we
compare the performance between two algorithms. Algorithm b, will be faster if n is suffi-
ciently large. For small value of n, either algorithm would be faster depending on constant C;,
Cy, and C,. If C, = 1, C, = 2 and C; = 100 then C, n? + C, n < C,y n for n <98 and C, n? + C,
n>Cynforn>99. IfC;=1,C,=2and C; = 1000thenCln2+CQnSC3nfornS998. Here our
point of interest is to see the behavior of the numeric functions a, and b, with large value of n.
We observe that no matter what the constants are there will be a limit of n beyond that the
numeric function b, is faster then a,. This limiting value of n is called threshold point. If
threshold point is zero, then b, is always faster or at least as fast than a,. In fact exact thresh-
old point can’t be determined analytically. To handling this situation we introduce asymptotic
notations that create a meaningful observation over inexactness statements.
The asymptotic notation describes the behavior of the numeric functions that is, how the
function propagates for large values of n.
Fig. 2.2 shows some of the commonly used asymptotic functions that typically contain a
single term in n with a multiplicative constant of one.

Asymptotic Function Name
1 Constant
log n Logarithmic
N Linear
nlog n nlog n
n? Quadratic
n3 Cubic
n Exponential
n! Factorial
1/n Inverse

Fig 2.2
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To illustrate more, let numeric function, a, = 7, for n > 0 then its behavior remain
constant for increase in n. If a, = 3 log n, for n > 0 then behavior of numeric function is of
logarithmic nature for increase in n. For a, = 5 n3, for n > 0 then its behavior is cubic. For a, =
7.2, for n > 0 then numeric function grows exponentially for increase in n. And for a, = 2°n,
for n > 0 then function is diminishing for increase in n and finally approach to zero for large n.

Continue to the previous discussion of comparing the behavior of numeric functions, a,
asymptotically dominates b, , if and only if there exist positive constants C and C, i.e.

|6, <C|a,| for n>=C,

(Ignore the sign of numeric functions)

a, asymptotically dominates b, signifies that a, grows faster then b, for n beyond (the thresh-
old point) the absolute value of b, lies under a fixed proportion of absolute a . For example, let

a, =n? forn>0and b, = n? + 5n, for n > 0 then a, asymptotically dominates b, for C = 2 and
C,=5,1ie.
0 b

| n2+5n |22 |n%| for n25
Consider another example let numeric functions are,
a, =2", forn>0 and
b,=2"+n? forn >0
Then a, asymptotically dominates b, for C =2 and C; =4, i.e.,
| 2"+n?| <2 | 20| forn=4

Alternatively we may say that b, doesn’t asymptotically dominates a,, for any constants
C and C, although there exists a constant n i.e.,
ny,=C, and |a, |>C|b, |
Latter in this section we will see the asymptotic dominance of numeric functions with
numeric function obtain after applying unary and binary operations.
(Assume a, and b, are numeric functions)

®*a,<Cla forn>C; (C and C are positive constants)

e if | b, | <C|a,| forn=C,then foranyscalark, | kb, | <C|a,|forn=C,

e if |b,|<C|a,| forn>C,then|S'd |<C|Sla, |forn=>C,

e if |6, | <Ci|a,| forn>Cyand|c,|<C,]|a,|forn=Cy then for any scalar
k and m,

| kb, +me,| <C; | a, | forn=Cy

(where C,, C,, C,, C,, C,, C4 are positive constants and a,, b, and c, are numeric functions)

e if | b, | <Ci|a,| forn>Cythenalso|a,|<C,]|0b, |

for n > C,.

(where C,, C,, C,, C,, are positive constants)

For example,

a,=n*+n+1 and b,=103n2-n"-11 forn>0

e Conversely,if | b, | £C, | a, | forn>C,, thenalso | a, | £C, | b, | for n > C,.
(where C,, C,, C,, C,, are positive constants)

For example,

n

1 forn0,2,4,...... (even)
10 forn=13,5,...... (odd)
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and b, = {0 forn=0,2,4,...... (even)

1 forn=13,5,.... (odd)
Then it is worthless to talk about asymptotic dominance among a, and b,,.
¢ Itisalso possible that,if | c, | <C, | a, | forn>Cy and | ¢, | <C, | b, | forn>C,,
then | b, | £C, | a, |forn>Cyand |a, | £C, | b, | forn=C,
(where C,, C,, C,, C,, C(;, Cp,, Cs, C, are positive constants)
For example,
{1 forn=38lor3I+1 (I=0)

% =10 forn=31+2 I1=0)
1 forn=38lor3l+2 (I1>0)
d =
an b, {0 forn=31+1 1=0)
and o = 1 forn=3I I>0)
" 10 otherwise
Then we see that both an and bn asymptotically dominates c,, i.e.,
|c,| <1l |a,| forn=0 (a, asymptotically dominates c,)
(for C=1, C, =3I or 3I + 1 or otherwise C;>0, we have 1<1.10r 0 <1.0)
Similarly, |c, | <1.|b, | forn=0

(b, asymptotically dominates c, for C =1 and C;,> 0)
Further we will see that a, doesn’t asymptotically dominates b,. So, for any choice of C
& C there exists a constant n i.e.
ny,=C, and | 6,0 | =C. | a, |
Since CO is zero so n, > 0, therefore | b, | > | a,, |. Likewise we would also see that b,
doesn’t asymptotically dominates a,.

2.3.1 Big-Oh (O) Notation
Big—Oh notation is the upper bound; it bounds the value of the numeric function from above.
Let a, be a numeric function then Big—Oh of a, denoted as O(a,) is the set of all numeric
functions b, that are asymptotically dominated by a,, i.e.,
b, = O(a,) = |6, <Cla,| forn>=C,

where C and C are positive constants. Here symbol ‘=’ is read as ‘is’ not as ‘equal’. So the
definition states that numeric function &, is at most C times the numeric function a, except
possibly when 7 is smaller than C,. Thus numeric function a, asymptotically dominant (an
upper bound) on b, for all suitably large values of ni.e.n >C,. O(a,) is also read as ‘order of a,,.

For example,

* Leta, =3n + 2; since 3n + 3 < 4n for n > 3, therefore a, = O(n).

* Let a, = 100n + 3; since 100n + 3 <1001 + n for n > C; = 3, therefore a, = O(n).

Hence these numeric functions are bounded from above by a linear function for suit-
ably large n.
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Consider other numeric functions,
* Let a, = 10n? + 2n + 2; since 10n? + 2n + 2 < 10n? + 3n for n > 2. For n > 3, 3n 2 n?
Hence for n > C, = 3, a, < 10n? + n? = 11n?. Therefore a, = O(n?).
* Let a, = 3. 2" + n?; since for n > 4, n? < 2". So, 3. 2" + n? < 4. 2" for n 2 4, therefore
a, = 0@2").
* Leta, =7, thena, = O(1). Because a, =7<7. 1, by setting C =7 and C, = 0.
It is also observed that for a, = 3n + 2 = O(n?), because of 3n + 2 < 3n? for n > 2. So, n? is
the upper bound (loose bound) for a,. For a, = 10n? + 2n + 2 = O(n*), because of 10n? + 2n + 2
<10n* for n > 2. Again, n* is not a tight upper bound for ,. Similarly, for a, = 3. 2" + n?
=0(n?2") is a loose bound comparison to O(n 2") and further O(2") is a tight bound for a,.

It can also observe that a, = 3n + 2 # O(1), because there is no C > 0 and C, i.e.
3n +3 < C for n > C. Similarly, a, = 10n? + 2n + 2 # O(n) and a, = 3. 2" + n? = O(2").
Consider another example of numeric functions that are given as,
a,=3n+2;b, =n>+1;andc,=9;
Then we formulate asymptotic relationship between the numeric functions that are
summaries as follows,
® a,=0(,),becauseforC=1and C,=4, | a, | <1. | b, | forn>4. Thus, b, asymptoti-
cally dominates a,,.
® ¢, =0(1), because for C=9and C;=0, | ¢, | <C. [ 1] or9<9.1forn=0.
* ¢, =0(a,), because for C=1and C;=3, | ¢, | <C. | a, | or 9<1.(3n + 2) for n > 3.
Thus, a, asymptotically dominates c,.

Also the order of the above numeric functions is given in the Fig 2.3 where column 1 of
the order shows the tight bound and rest of the column (2, 3, ..) shows loose bound for the
corresponding numeric functions.

Numeric Function Order
a,=3n+2 O(n) O(n?) omn?), ...
b,=n?+1 O(n?) O(n?) oY), ......
c,=9 o) — —
1 2 3
Fig. 2.3

Hence we reach to the following conclusions,

* a,is O(,).

® b, is not O(a,) and nor O(c,).

* ¢, is O(1), but ¢, is not O(a, ), nor O(b,).

Reader must also note that when a numeric function b, is O(n log n), it means that b
is asymptotically dominated by the numeric function 7 log n, let it be a,. Thus, b, is O(a,),

that is b, doesn’t grow faster than a , but it grow much slower than a,. However, if b, is O(2")
then it is rightly says that b, grows much slower than 2”.
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The features of asymptotic dominance of numeric function in terms of ‘Big—Oh’ nota-
tion is further states as follows, (let a,, b, and ¢, are numeric functions)

a, is O(|a,|).
e If b, is O(a,) then also k.0, is O(a,), for any scalar k.
e If b, is O(a,) then also SL.b, is O(S! @), where I is any integer.
e Ifb, is O(a,) and c, is O(a,) then also k.b, + m c, is O(a,), for any scalars k and m.
e Ifc, is O(b,) and b, is O(a,) then c, is O(a,).
e It is possible that if a, is O(b,) then also b, is O(a,). For example, the numeric
functions, a, = 3n? and b, = 2n” + 1, then a, is O(,) and b, is O(a,).
e It is possible that if @, # O(b,) then also b, # O(a,). For example, the numeric func-
tions, a, =n? + 1 and b, = 3 log n, then a, # O(b,) and also b, # O(a,,).
e It is possible that both c, is O(a,) and c, is O(b,) but a, # O(b,) and also b, # O(a,).
Example 2.21 Let a, be a numeric function such that

— m m—-1 m-2 —
a,=a,n"+a, n"+a, ;0" + . +a,n+ayand a, >0, then show that a, =
omn™).
. m k
Sol. Since, a, <% |a,|n
T k=0

my k-m
<nmX |a,| n
0

m
<n™X |a,| forn>1
0

Therefore, a, = O(n™), or a, is O(n™).
Example 2.22 Let a, = 3n° + 2n? + n, then show asymptotic behaviors of a,,.
Sol. For given numeric function a, = 3n3 + 2n? + n, it is clear that,

* a,is O(n?) for n > 3, because 3n? + 2n? + n < 3n? + n® or 2n® + n <n?forn > 3.

* Also, a, is 3n® + O(n?) for n > 2, because 2n? + n < 3n? for n > 2.

* And also, a,, is 3n® + 2n% + O(n) for n > 0, because n < 1.n for n. > 0.
Hence, we summarize the behavior of the numeric function a,, as,

{8n3 + 2n2l+ O(n) < {3n3}+ O(n?) < O(n3).
Example 2.23 Let a,= % k?
(i) Show a, = O(n?).
(it) Show a, = (n?/3) + O(n?).

Sol. (i) We have, a,= kio R2=02+12+22+ ... +n?
=nn+1) (2n+1)/6

or a,=1/3n3+1/2n?+1/6n

Since 1/3 n3 +1/2n%2+ 1/6 n <2/3 n® forn =2

Therefore, | a, | <2/3 | n3 | forn =2, hence a, = O(n?).

(i1) Since, a,=1/3n%+12n%+1/6n

sol/3n+{1/2n2+1/6n}<1/3n%+{1/2n2%2+1/2n2% forn=>0
<{1/3} n3 + n?



DISCRETE NUMERIC FUNCTIONS AND GENERATING FUNCTIONS 43

or a, <{1/3} n® + O(n?)
Hence, a, is {1/3} n? + O(n?).

Example 2.23 Simplify the expression
flog n + O(1/ )}k + O(Jk)} for any constant k.
Sol. Let a,={logn + ORIk + Ok )}
= {k. log n + £.O(1/k) + log n. O(Jk) + O(1/k). O )}
={k.log n + O(1) + log n. O(JE) + O(1/k)}

= {k + O(VE)}. log n + {O(1) + O/ )}
=C,logn +C, (where C, and C, are constants)

Therefore, a, = log n.
Example 2.24 Let a, = log, n, show that a, = O(n°) for e > 0.
Sol. Since, log,n<n® fornz>e
Therefore, | @, | <1.| n® | for n > e, hence a, is asymptotically denoted by n°.

Consequently, a, = O(n°).
Example 2.25 Given a numeric function a,, let

b= 10tz T Oyt +a,,i forn=2'
"o forn# 2"
if a, = O(\n), then show that b, = O(\Jn log n).

Sol. For n = 2! given numeric function

b, =, + @+ + . +a,l2
since a, = on ), therefore we have
b, =0(n)+0(n/2) + OWn/4) + ........ +0(/n/2)

=0Wn).1+0(n). 1/42 + O(n). & + ... +0(Wn). 1/J2¢
=0Wn). 1+ 12 + V& +......... +1/421)
=0(n). 1+ W2 + (/22 + ... + (1/42))

Find the sum and since n = 2/, so put i = log, n we get the required result, i.e.

b, = O(n log n)
Similar to the ‘Big—Oh’ notation other notations like Omega (Q2) and Theta (0) are also
commonly used.

2.3.2 Omega (Q) Notation
Omega notation is the lower bound; it bounds the value of numeric function from below. Let a,,
be a numeric function then Omega of a, denoted as Q(a,) is the set of all numeric functions b,
that grows at least as fast asa,, i.e.,
b, =Qa,)

It define as, | b, |=2C|a,]| fornz=C,),whereC and C, are constant.

Alternatively, we can say that numeric function b, is at least C times the numeric func-
tion a, except possibly when n is smaller than C,. Thus, a, is lower bound on the value of b, for
all suitably large n,i.e. n>C,,.
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For example,

* Leta, =3n + 2, then 3n + 2 > 3n for n > 0, therefore a, = Q(n).

* Leta, =100n + 3, then 100n + 3 > 100n for n > 0, therefore a, = Q(n).
Hence, above numeric functions are bounded from below by a linear function.
Consider other numeric functions,

* Leta, = 10n? + 2n + 2; since 10n? + 2n + 2 > 10n? for n > 0, therefore a, = Q(n?).

* Leta, =3.2" + n% since 3. 2" + n® > 3. 2" for n > 0, therefore a, = Q(2").
It is also observe that 3n+1=Q(1);10n2 + 2n + 2 = Qn); 10n2 + 2n + 2 = Q(1);

3. 2" + n? = Q(n'%); 3. 2" + n2 = Q(n?); 3. 2" + n? = Q(n); and also 3. 2" + n? = Q(1);

But 3n + 2 #Q(n?); We can prove this result by method of contradiction. Assume, 3n + 2 = Q(n?)
then there exist positive constants C and C; such that 3n + 2 > C. n? for all n > C,.
Therefore, C.n%*(3n + 2) < 1 for all n > C,. This equality can’t be true because,
C.n%/(3n + 2) grows faster and reaches to infinity for larger value of n. Therefore, C.n%(3n + 2)
4 1. Hence, 3n + 2 # Q(n?).

2.3.3 Theta (6) Notation
Theta notation is the average bound; it bounds the value of numeric function both from above
and below. Let a, be a numeric function then theta of a, denoted by 6(a,) is the set of all
numeric functions b, such that there exist positive constants C,, C,, and C, i.e.,
Cila,|<]0b,]<Cy|a,| forn=C,

That can be written as, b, =6,

It means, numeric function b, lies between C, times the numeric function a, and C,
times the numeric function a, except possibly when n is smaller then C,. Thus, a, is both a
lower bound and an upper bound on the value of a, for all suitably large n, i.e. n > C,,. In other
words, b, grows similar as a,,. From the definition, it is also concluded that a,, is both Q(b ) and
0®,).

For example,

* Leta, =3n+2;since 3n + 2> 3n for n > 0 and 3n + 2 < 4n for n > 3. Combining these
inequalities we have 3n < 3n + 2 < 4n for n > 3. Hence, a, = Q(n) and a, = O(n).
Therefore a, = 6(n).

* Leta, = 10n? + 2n + 2; since 10n? < 10n? + 2n + 2< 11n? for n > 2. Therefore a,, = 6(n?).

* Leta, =3.2" + n% since 3. 2" < 3. 2" + n? < 4. 2" for n > 4. Therefore a, = 8(2").

Consider another numeric function a, = 3 log, n + 5; since log, n < 3 log, n + 5 <4 log, n

for n > 32. Therefore a, = 6(log, n).
Previously we showed that 3n + 3 # O(1), therefore 3n + 3 # 6(1). Also we have shown
that 3n + 2 # Q(n?) so 3n + 2 #6(n?). Since, 10n2 + 2n + 2 # O(n) therefore 10n2 + 2n + 2 #6(n)
and also 1012 + 2n + 2 # 0(1).
Example 2.26 Let numeric functions a, = 3" and b, = 2" for n >0, then show that
(i) Does a, asymptotically dominates b,

(ii) Does a,*b, asymptotically dominates b,

(iii) Does a,*b, asymptotically dominates a,,.

Sol. () Numeric function a, asymptotically dominates b, if there exists positive constants C
and C i.e.,
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|6, <C|a,| for n>C,
So we have the equality
| 27| <C. | 3" | for n>C,

That is true for C = 1 and C; = 0, i.e. 2" < 1. 3" for n > 0. Hence a, asymptotically
dominates b,. (But its reverse is not true)

(i) Determine a,*b, i.e.,

= Y 3k onk
k=0
Since, T |2 |<5 |82k | forn=0
£=0 #=0

So, a,*b, asymptotically dominates b, .
(iii) Similarly we can show that a *b, asymptotically dominates a,.

2.4 GENERATING FUNCTIONS

Before going to start the exact discussion on generating functions let us begin our tour from
the origin of generating functions. Assume a seriesa, +a; + a, + ........ +a,, in which, from and
after a certain term is equal to the sum of a fixed number of preceding terms multiplied
respectively by certain constant is called recurring series. For example in the series 1 + 2z + 322
+ 423 + 5z* + .... , where each term after the second is equal to the sum of the two preceding
terms multiplied respectively by the constants 2z and — z2. These quantities being constants
because they are remain same for all values of n. Thus,
5z4 = (22). 42 + (- 22). 322
Therefore we assume that
a,=2z.a,—2% a,
In general when n is greater then 1, each term is represented by its two immediately

preceded terms through the equation,
a,=2z.a, -2%a,,
or a,-2z.a, +2%.a, ,=0 (2.1)
Equation 2.1 is called scale of relation in which coefficients a,, a, ;, and a, , are taken
with their proper signs. Thus the series 1 + 2z + 322 + 423 + 5z + .. ... has scale of relation 1 —
2z + 22. Consequently, if the scale of relation of a recurring series is given, then we could find

any term of the series, from sufficient number of known preceding terms.

For example, let 1-pz—qz2—wz? (2.2)

is the scale of relation of the series ay+ a,z + ay 2% + ........ +a, 2" (2.3)
n n—1 2 n—2 3 n—3.
Then we have, a,2"2p,.a, 2" +qz°. a, ,2" > +wz’. a, 42"

or a,=p.a, ,+q.a, ,+w.a, s (2.4)

Thus, any coefficient can be found when coefficients of the three preceding terms are
known.

Let us take a series shown in (2.3) and extended up to infinite terms, i.e.,
Ay +a; 2 +0ay2%+ ... +a zZ'+ . (2.5)
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and assume the scale of relation is 1 — pz — ¢z2. So we have

=P, 1798, 9= 0

Assume, A@)=ay+0a;2+ay2%+ oo e, +a, 2"t
-pzA@)=-payz—pa; 2> — ... Py t=pa, 2"
-z Alz) =—qayz® —................ -qa, ;2" '-qa, ,2"—qa, 2"
(1-pz—-qz>) A@) =ay+ (@, —pag z + ............ - (pa, | +qa, ) z"—qa, ;2"

For the coefficient of every other power of z is zero in consequence of the relation
an -p an—l -9 an—2 =0
ie., A@2) = lay + (a; - pay) 21/(1 — pz — qz?)
- pa, 1 + qa, 5 2" —qa,_; 2"1/(1 - pz — qz?) (2.6)
For large value of n series (2.5) is infinite and so second fraction of the equation (2.6)
decreases indefinitely. Thus we have the sum
Az) = lay + (@, — pay) 2)/(1 - pz — qz?) (2.7
If we develop this fraction in ascending powers of z, we shall obtain as many terms of
the original series as we please. Therefore, the expression (2.7) is called generating function
of the infinite series (2.5).
As we mention in the previous section that for a numeric function a, we uses a, a,, a,,
.ess @, .....to denote its values at 0, 1, 2, ...... B/ Here we introduce an alternative way to
represent numeric functions, such as for a numeric function (e, a,, a,, ...,a,, .....) we define an
infinite series,
Gy +a;z+ay2%+ ... +a 2V e,

Here z is a formal variable and powers of z is used as generator in the infinite series
such that the coefficient of 2" returns the value of the numeric function at n. For a numeric
function a, we write A(z) to denote its generating function and so the above infinite series can
be written in closed form as shown in equation (2.7), i.e.,

Az) = [ay + (@, — pay)el/(1 - pz — gz?)
(where (1 — pz — qz?) is the scale of relation)
For example, the numeric function (5, 51, 52, ..., 57, .....) we define an infinite series,
50+ 51245222+ ... +5% 2" + i

Therefore we obtain the summation of infinite series A(z) = 1/(1 — 5z). A(z) is the gener-
ating function that represent the numeric function in a compact way. Hence for a numeric
function we can easily obtain its generating function and vise - versa. In fact an alternate way
to representing numeric function leads to efficiency and easiness in some context that we wish
to carry out.

Consider a numeric function a, = 1 for n > 0, then its generating function A(z) =
1/(1 — 2). Similarly the generating function of the numeric function b, = £ for n > 0 will be
B(z) = 1/(1 - kz). It is quite often that generating function can be expressed as a group of
equivalent partial fractions and the general term of series may be easily found where the
coefficient of z" represent the corresponding numeric function. Thus, suppose generating
function can be decomposed into partial fractions,

P/(1-02)+ Q1+ Bz) + RI(1 —y2)
Then coefficient of the z" in the general term is
P.o*+=1"B.p*+(n+1DR. v} forn=>0
that will be equivalent to numeric function.
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Example 2.27 Find the numeric function for the generating function
A(z) =(1-82)/(1-2-62%)
Sol. Since A(z) can be expressed in partial fraction i.e.,
A(z) =2/(1 + 22) - 1/(1 - 32)
Then obtain the coefficient of z” in the general term and it will come out to be
(127137 forn =0
That is the required numeric function of A(z). Alternatively, we say a, = (- 1)* 2"+1 -3~
for n > 0.
Example 2.28 Find the generating function and the numeric function for the series
1+6+24+84+..............

Sol. The given series is transformed into another infinite series by introducing a formal pa-
rameter z and using power of z as generator in it, i.e.

1+6z+2422 +8423 + ...ooonan. (2.8)

The scale of relation of the above series is (1 — 5z + 6z2). To explain the method of
determining the scale of relation, let’s assume (1 — pz — gz?) is the scale of relation for the
series (2.8). Therefore to obtain p and ¢ we have the equations,

24-6p—-qg=0 and 84-24p-6g=0
whence, p = 5, and g = — 6, So the scale of relation is (1 — 5z + 6z2).
Hence, using equation (2.7) we obtain the generating function
Az) =1 +2)/(1 -5z + 622).
Since A(z) can be written as,
A(z) =4/ - 32) — 3/(1 — 22)
Now obtain the coefficient of z” in the general term of A(z) that will return the numeric
function a, i.e.
a,=43"-32" forn=0
Example 2.29 Find numeric function for generating function
A(z) =2/(1 -42%)
Sol. Since A(z) can be written as
Alz) =1/(1-22) + 1/(1 + 22)
Thus we obtain the numeric function a, as,
a,=2"+(=1.2" forn=0
or - {0 if n is odd
" 12" if niseven

Now we shall discuss the common features of generating function corresponding to the
features of numeric functions. Let a,, b,, and ¢, are numeric function and A(z), B(z), and C(z)
are their corresponding generating functions then,

e Ifc, =a, + b, then corresponding generating function C(z) = A(z) + B(z). For example,
Leta,=2"and b, = 3" forn > 0 then ¢, = 2" + 3" for n > 0. So C(2) = 1/(1 — 22) + 1/(1 -
32) = (2 + 3z — 629)/(1 — 22).

e If b, = ka,, where k is any arbitrary constant then corresponding generating func-
tion is B(z) = kA(z). For example let a, = 5.2" for n > 0 then A(z) = 5/(1 — 22) is the
numeric function.
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e If b, = k"a,, where k is any arbitrary constant then corresponding generating func-
tion is B(z) = A(kz) = 1/(1 — kz). Since numeric function b, is expressed in infinite
series as

ag+kaz+kraz?+ +k a2+ ...
=ay+a,(kz) +ay(kz)* + ... +a, (k2" + ...
Therefore, generating function B(z) = A(kz) = 1/(1 — k2).

* Since A(z) is the generating function of function @, so generating function of S'a, will
be z! A(z), for any positive integer 1. For example, let generating function B(z) =
28/(1 — 3z) then it can be written as,

B(z) =28 1/(1 -32)=2z' A(z)
Then its corresponding numeric function will be S® a, where @, is the numeric func-
tion for the function 1/(1 — 3z) that is equal to 3™.
Therefore, we obtain numeric function S8 37, i.e.,
gan |0 for0<n<7
53 _{3”8 forn>8

¢ Likewise, generating function for the numeric function S an for any integer I, will

be
-1 2 I-1
z7 [AR) —ay—az—az”—........ —a; ;2]
: — 2 I-1 I n
Since AR =ay+az+az”+ ... +a 2 +apz...... +a, 2"+ ...

2 -1 _ I+1 n
or, AR)-ay—az—apz®— ... —a 2 ' =a;z +a, 2+ +a 2"+
Multiplied both side by z !, hence we obtain

-1 2 -1 n-1
27 [Al) —ay—a;z—az” —....... —a 2l =a+a 2+ ... +a, 2"+

=a, 2" forn=0
That is equivalent to ST a,.

For example, let @, = 3"*5 for n > 0 which is equivalent to numeric function S=.3" and its
corresponding generating function can be computed by using the expression,

A@)=zT1[AGR) —ay—az—az?—........ —ap 2"
ie., A(z) =25 [1/(1 -32) — 39 — 31z — 3222 - 33 23 — 34 24
=275 [3525/(1 — 32)] = 3%/(1 — 32).
Example 2.30 Find the generating function for the numeric function a, such that

0 for0<n<5
1 forn=6
o = 2 forn=7
" |3 forn=8
4 forn=9
0 forn>10

Sol. Let A(2) is the generating function for a, where,
— 2 n
AR)=ay+az +agz’+........ +a 2"+ ...
Since values of a to a, and a,, onwards are equal to zero. So
— 6 7 8 9 10
AR)=az2° +a2" +agz® +agz’ +a 2
=128+227+328+429+0.21°
=28.(1 + 2z + 322 + 423)
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Note that Generating function to the convolution of numeric functions i.e. ¢, = a,*b, will be
A(2) . B(z). Since
c,=a b, =apb, +ab, |+ ...l +a, b, +ab,
which is the coefficient of z* in the product of series
(ayg+ a2 +a2? + ...... +a,2"+...) . (by+biz+ b+ . .+a 2"+ ..)
And it’s generating function is equal to the product of the generating functions of both
A(z) and B(2), i.e.
C) =A2) . B(2)
Example 2.31 Let a, = 3" and b, = 5" for n >0, then determine the generating function for the
convolution of numeric functions a, and b,.
Sol. Since generating function corresponding to numeric function a, and b, are A(z) = 1/(1 — 3z)
and 1/(1 — 52) respectively. Let ¢, = a,*b, then its generating function is given by C(z) = A(z) .
B(z). Therefore
Ciz)=1/(1-32).1/(1 -52)
Alternatively, C(z) can be written as using partial fraction
C(z) =-3/2(1 - 3z2) + 5/2(1 - 5z2)
Therefore its numeric function will be,
c,=—3/2.3"+5/2.5" or ¢, =(-1/2). 3" +(1/2) 5" forn =0

e Ifc,= Ii a; then its generating is C(z) = A(z) . 1/(1 — z) where A(z) is the generating
=0

function for function a, for I = 0 to n. To prove this fact we recall that if the convolu-
tion of numeric function a, and b, is c,, then
c, = EO a;.b
And its generating function is given as C(z) = A(z) . B(z)
Assume b, | =1 then

n-1

¢, = Ii ap.1
=0
Since generating function for function b, ;=1forn>0o0r (1,1, 1, ........ 1,...)is B(z) =

1/(1 — z). Therefore,
Ciz)=Ak).1/(1-2)

where A(z) is the generating function of the numeric function Ii a;
=0

Example 2.32 Determine the generating function for the numeric function (1, 2, 3, ....... , n,
e
Sol. Since /(1-2)=1+z+22+2%............. +2"+ 2"+ L
Differentiate both side w.r.t.z, i.e.,
/(1-22=1+22+322+ ............. +nz"l+(n+ 12"+ ...

Thus, we obtain the generating function 1/(1 — z)? for the numeric function (1, 2, 3, .....,

n, ....

Conversely, for generating function 1/(1 — z)?, the coefficient of z" (general term) will be,
=1 (=2)(=2-1)........ (=2-n+ D/n!
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=2.3....... (n + 1)/n!
=(n+1)

Therefore we obtain the numeric function a, = n + 1 for n > 0 for it values (1, 2, ..., n,..)
Example 2.33 Determine the generating function for the numeric function (0%12, 22, ....... , n?,
).

Sol. Since V1-2)=1+z+22+2%............. +2" + ...

Differentiate both sides w.r.t.z, i.e.,

V/(1-22=1+22+322+............. +nz" 4

Multiply both sides by z so we obtain

21/(1-22=1z2+222+323+............. +nz"+ ...

Differentiate again w.r.t.z and multiply both sides with z, i.e.,

2. (1+2)/1-282=02+122+2222+3228 + ............. +n2z2"+ ...

Thus, we obtain the generating function z. (1 + 2)/(1 — 2)3 for the numeric function (02,12,

Conversely, the coefficient of z, in z. (1 + 2)/(1 — 2)? is n?, therefore a, = n® for n > 0.
Example 2.34 Find generating functions of the following discrete numeric functions

(1) 1,2/3,3/19,4/27, ........ (n+1)/3% ......
(i1) 0.5, 1.5, 2.5, .......,n.6" ...........
Sol. (i) Let A(z) is the generating function of the series (1, 2/3, 3/9, 4/27, ........ (n+1)/3", ...... ),
ie.,
AR)=1+2.2/3 +223/9 +23.4/2T + ........ +2%(n+ /3" + .........
or AR) =1+ 2.(2/3) + 3.(2/3)%2 + 4.(2/3 + ........ +(n+1).2/3)" +......
Since, 1/(1—-2)2=1+22+32%+ ............. +(n+ 12"+ ...
Replace z by z/3 so above equation becomes
(1 —2/832=1+2.(2/3)+3.(2/3)% + ....on.... +(n+ 1.3+ ...
Therefore, 1/(1 — z/3) is the required generating function.
(i1) Let B(2) is the generating function of the series (0.5°, 1.51, 2.52, ........ 7% L ),
ie.,
B)=05%+151z+25%22+ ... +0.5% 2" +
Since, 1/1-2)=1+z+22+2%............. N L
Replace z by 5z thus we obtain the equation
/(1 -52)=1+5z+ 522+ (Bz)3............. +(B2) + e

T Since general term of 1/(1 — z)3, is given as

=D z"(=3). (4. ......... (-3—-n+1)n!
Thus, the coefficient of 2 in 1/(1 — 2)3 is
=(3). 4). ......... (2 + n)/n!

=(n+2)(n+1)1.2

Therefore the coefficient of 2 in the expansion of z.(1 + 2)1/(1 — 2)3 is
=n.n+12+n-1).n/2
=n .2n/2
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Differentiate w.r.t z

1.5/(1-522=0+5.1+25%+35%%2+ .......... O L
or 5/(1-52)2=0.5%+15'+25% +3.5%2+.......... +nb50 2 e
Multiply both sides with z, so we have
52/(1-52)2=0.5%2+ 1.5z +2.5%2+3.5%3 +.......... + 052+ e,
or 52/(1 -52)2=0.59+ 1.5z + 2.5%2 + 3.5%2% + .......... 052N e,
Therefore, 5z/(1 — 5z)? is the generating function for (0.5°, 1.51,2.52, ........ 8 T L ).

Example 2.35 Determine generating function and discrete numeric function of series
-3/2+2+0+8+........
Sol. Let scale of relation of the given series be 1 — pz — gz2. Obtain p and g from the equations,
0-2p +3/2¢g=0 and 8-0-29=0
So we obtain ¢ = 4 and p = 3. Whence, scale of relation is 1 — 3z — 422.

Hence, the generating function A(z) for series, — 3/2 + 2.z + 0.22 + 8.2 + ........ is
=[-3/2 + (2 + 3.3/2)2]/(1 — 3z — 42?) (using equation (2.7))
=(=3/2 +13/2z )/ (1 - 3z — 42?)

So, A@2) = (- 3/2 + 18/22)/(1 — 3z — 42?)

Since A(z) can be written as (using partial fraction)
= (8/5)/(1 + z) — (31/10)/(1 — 42)
So numeric function will be the coefficient of z, that will be,
a, = (8/5).(-= 1)*.1 - (31/10).4"
or a, = (=1 .(8/5)-(31/10).4" forn > 0.

2.5 APPLICATION OF GENERATING FUNCTION TO SOLVE COMBINATORIAL
PROBLEMS

The important application of generating function representation of numeric function is the
solving of combinatorial problems. Consider the numeric function a,, i.e.,

a, = (le for a fixed value of n

(:):1 forn=0
Since, G =
(n):O forn>m

we recall following definitions that are frequently used in solving of combinatorial problems,

e The expression n(n — 1) ..... 2 .1 is called n — factorial, and denoted by n!, with the
convention 0! = 1.

° (le is called binomial coefficient, i.e., (number of n — subsets of an m — set)
(mj = mln! (m — n)!
n

e Binomial coefficients ( j have no combinatorial meaning for negative values of m.
n
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But we formally extend its previous definition to negative arguments by using the
definition of lower factorials, i.e.,

(—’;n) =(-m)m-1)...(—m—-n-1)/n!

=1mm+1)..m+n-1/n!

The expressions m(m + 1) ... (m + n — 1) are called rising factorials of length n and its
value is 1 for n = 0.

Since different values derived from numeric function a, = ( ) are,
n

(L () (3) o (7)o}

Let us assume that A(z) is the generating function of @, i.e.,

2@ =)+ ()45 )2+t () e 1)

=1 +2)m

and for z = — 1, we have

= g(_l)k (m):o (form=1)

EXERCISES

2.1 Let a, be an numeric function such that a, is equal to the reminder when the integer n is divided
by 17. Let b, be a another numeric function such that is equal to 0 if the integer n is divisible by
3, and is equal to 1 otherwise,

® Letc,=a,+ bm, then for what values of n,c, =0 and ¢, = 1.
® Letd, = an*bm, then for what values of n,d, =0 and d, = 1.
2.2 Find the generating function for the following discrete numeric functions :
(1)1,1,2,2,3,3,4,4, e,
(i) 1, 2/8, 3/9, 4/27, ..coovvvvaeiis e,
(@7i) 1, 1% 30, 1% 31, 1* 32 1* 33, ......
(iv)3,3+3)3% 3 +3Y)75 3+3)5, ...
2.3 Determine generating function and discrete numeric function of the following series :
@D2+5+13+35 4. i,
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2.4

2.5

2.6

2.7

2.8

2.9

2.10

@) —1+6+30+ i,
@) 1+6+24+84+ ..oiiiiiiniiinn.
@U2+T7T+25+19+ oooiiiiiiiiinne.
Determine the generating function of the numeric function @, where

_ {5” for n is even
" |-5" fornisodd
Determine the discrete numeric functions corresponding to the following generating functions
(1) Az) = (1 + 32)/(1 + 11z + 28z?) @) AR)=2z+ DIE2+1) (z-1)
() Alz) = (1 -z + 222/(1 - 2)° () AR) =(T+2/(1 +2) (1 + 22

W AR =2 +2"+@2-2)™"
Determine the asymptotic order of the following numeric functions

(i) a, = 8n + C where C > 1024 (i) a, =3n%+2n? +1
({ii)a,=2"n*+n (iv) a, = n!
(v) @, = 3n + 2n% +1 (vi) a, = nlog n + n?
(vii) @, = n?" + 5%2" (viii) @, = n'® + n log n
(ix) a, = nl001 4 nlog n ) a,= éo k2
. _ n 3
(xi) @, = kleok

In how many ways can 3n men can be selected form 2n men of white hairs, 2n men of curly
hairs, and 2n men of silky hairs.

Let a, denote the number of ways to seat 7 students in a row of n chairs so that no two students
will occupy adjacent seats. Determine the generating function of the discrete numeric function.

Determine the numeric function and the generating function of the following series :

K1 R 1 e )
0 1 o] Fren [ S "
() (8) + 2(’11) + 22(3) F o + 2’{2) F o + 2"(2)
AN N 2n—k+ +2n—1+2n
(Lll) 0 """""" n _ k """""" n _ 1 n
. n 90T 3l il n
@@v) 2(0j+2/2(1j+2/3(2j+ ............ +2 /n+1(nj

) n\_(n), (n)" +(-1>k”2+ +(-1)"”2
S L I g e o [ "

Determine the time complexity of the following programs :
@) /la function which return the summati on of n nunbers placed in
the array A0, n — 1]
int Suml(int Al ], int n)
{
int sum = 0;
for (int I =0; I <n; | ++)
sum = sum + All];
return sum
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(i)

(ii1)

@iv)

(v)

[/function of summation of n nunbers using recursion
int Sun2(int Al ], int n)

{
if(n > 0)
return Sun2(A,n - 1) + A n-1];
return O;

}

/1 a function that adds two matrices Al O,n-1][0, m1]
and B[0O,n-1][0,m1] and result stored in the sanme size matrix C.
Void Add(int **A int **B, int **C int n, int m
{
for (int I =0; | <n; | ++)
for (int J 0; J <m J ++)
CRERRY ALTTTIT+B[1][J]

}
/la function that nultiplies two matrices A[0,n-1] [0, n-1]
and B[0O,n-1][0,n-1] and result stored in the sanme size matrix C.

Void Miltiply(int **A int **B, int **C, int n)
{
for (int I =0; | <n; | ++4)
for (int J 0; J < n; J +4)
{

int sum = 0;

for (int K=0; K< n; K++)
sum = sum + A[I][K +B[ K] [J]

drilfdl = sum

}

/la function to evaluate the polynom al of degree n i.e.,

p(x) = za x"

int Polyl(int a[],int n, const &x)

{
int T=1, val = a[0];
for (int I =1; | = n; |++)
{
T=T%* X,
val =val + T * a[l];
}
return val;
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(wt) 1/ a function for polynom al evaluation using Horner’'s rule
int Poly2(int a[],int n, const &x)

{
int val = a[n];
for (int I =1; | =n; |++4)
val =val * x + a[n - I];
return val;
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3 Recurrence Relations with
Constant Coefficients

3.1 INTRODUCTION

In mathematics, we often refer a function in terms of itself. For example, the factorial function
fin) = nl, for n as integer, is defined as,

1 for n<1
fin) = {n.f(n—l) for n>1 (3.1)

Above definition states that f{n) equals to 1 whenever n is less than or equal to 1. How-
ever, when n is more than 1, function f{n) is defined recursively (function invokes itself). In
loose sense the use of f on right side of equation (3.1) result a circular definition for example,
2)=2.f1)=21=2and f(3) =3.A2) =3%2 =6.

Take another example of Fibonacci number series, which is defined as,

fo=0; f1=1; fo=f 1+l o for n >1 (3.2)

To compute the Fibonacci numbers series, f, and f; are the base component so that
computation can be initiated. £, = f, , + f,_, is the recursive component that viewed as recur-
sive equations. In equation (3.1) the base component is fin) = 1 for n = 1 and recursive compo-
nentis fin)=n.f(n-1).

Recurrence equations arise very naturally to express the resources used by recursive
procedures. A recurrence relation defines a function over the natural number, say f(n) in terms
of its own value at one/more integers smaller than n. In others words, firn) defines inductively.
As with all inductions, there are base cases to be defined separately, and the recurrence rela-
tion only applies for n larger than the base cases.

For discrete numeric functions (a, a,, a,, ...... a ... ), an equation relating a, for any n
to one/more of as (i < n) is the recurrence relation of the numeric functions. A recurrence
relation is also called a difference equation.

For example, let a numeric function a, = (2%, 21, 2%, ... , 2% ), then the function
expression of a, = 2" for n > 0. Same numeric function can be specified by another way. Since
the value of a, is twice the value of a,_, for all n, so once we know the value of a, ; we can
compute a,. The value of a,_, is twice of @, , which is again twice of a, ; and so on. Thus we
reach to a, whose value is known to be 1. Hence we write the relation
el for n>0 (3.3)
provided that a, = 1 is the recurrence relation that specify the numeric function a,,.

a,=2.a

It is also clear that by recurrence relation, we can carry out step-by-step computation to
determine a, from a, ;,a, ,, ...... , to determine @, froma,, @, ,,......... and so on using base
conditions. We thus conclude that a numeric function can be described by a recurrence relation

58
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together with the base conditions. The numeric function is also referred to as the solution of the
recurrence relation.

In section 3.2 we will discuss a simple class of recurrence relations known as linear
recurrence relation with constant coefficients (LRRCC). Section 3.3 illustrates method for solving
of linear recurrence relation with constant coefficients. In this section we will discuss the
homogeneous solution and the particular solution of the differential equation along with an
alternate method discuss in section 3.4 where we will find out the solution through generating
function. We will also see that for a given set of base conditions the solution to a LRRCC is
unique. Common recurrences obtain from algorithms will be discussed in Section 3.5. We
describe several categories of recurrence equations obtain using algorithm paradigm such as
divide-and-conquer and chip-and-conquer and also the solution of these recurrences.

3.2 RECURRENCE RELATION FOR DISCRETE NUMERIC FUNCTIONS
(Linear Recurrence Relation with Constant Coefficients LRRCC)

A class of recurrence relation of the general form

Aja, +Aja,  +Aja, 5+ ... +A,a, = fln) (3.4)
where A’s are constant (some may be zero) is known as linear recurrence relation with con-
stant coefficients (LRRCC) for some constant 2 > 1.

For example, the Fibonacci recurrence equation (3.2) corresponds to £ = 2 and fin) = 0
with base conditions ¢, = 0 and a, = 1.

In the recurrence relation of equation (3.4) if coefficients A, and A, are not zero then it
is kth order recurrence relation. For example, the recurrence relation 3 a, + @, , = n is a first
order LRRCC.

Consider another example,

a,—2a, ; +3a, ,=n+1 (3.5)
and a,+a,, +5a, ,=2n
are second-order and fourth-order LRRCC respectively. Also, the recurrence relation viz.
a? +3a, ; =5isnot a LRRCC.

Let us take the recurrence relation in (3.5), with base conditions a; = 1 and a, = 2. We
can compute a; as,

a; =2a,-3a;+ (5% +1)
=2.2-3.1+ 26=27
we then compute a, accordingly as,
ag=2a,-3a,+(62+1)
=227-3.2+ 37= 85

Similarly we determine a., ag, ...... and so on. We can also compute a, as,
a, =(1/3) (a,— 2 a; — (4% +1))
=(1/3)(2-2.1-17) =-17/3
and so a, = 7/9 and a, = — 110/27. This way, we can completely specifiy the discrete numeric
function a,.
FACT

In general, for the k" order LRRCC

1. If, k consecutive values of a numeric function are known then numeric function return
unique solution.
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2. if, k" order LRRCC has fewer than k values of numeric function then numeric func-
tion does not return unique solution. For example, the recurrence relation,

a,+a, ;+a, ,=4 (3.6)
and base condition a, = 2, then we can determine many numeric functions (shown below) that
will satisfy both the recurrence relation and the base condition.

2,0,2,2022,0,...
2,2,0,2,2,0,2 2,......
2,5,-3,2,5-3,2,..

3. More than k values of numeric functions might be impossible for the existence of a
numeric function that satisfies the recurrence relation and the given base condition/s. For
example, the recurrence relation in (3.6), if we have the base conditions a,=2,a,=2and a, =2
then a, a, and a, doesn’t satisfy the recurrence relation simultaneously. Therefore, no numeric
function simultaneously satisfies the recurrence relation and the base condition both.

3.3 FINDING THE SOLUTION OF LRRCC

The discrete numeric function which is the solution of a linear difference equation is the sum
of two discrete numeric functions—the homogeneous solution and the particular solution. Con-
sider the linear recurrence relation with constant coefficients (LRRCC) equation (3.4)

Aja,+Aja, +Aya, o+ ...+ Aya, ,=f(n);
Then, the solution a ;,, = (@, @y Ty oo » @) ---) that satisfies the difference equa-
tion (3.7) is called homogeneous solution where subscript & denotes the homogenous solution
values.

Ay @y + A @y + Ay @y gy + et Ay, =0 3.7)
Simultaneously, a solution ag, = (ao(p), @1y Copyreeer Ay ...) that satisfies the equation,
Ag @yt A0, 1) H Ay A, oo+t Ay a, 0= (1) (3.8)

is called particular solution where subscript p denotes the particular solution values.
Thus we have,

A, (an(h) + an(p)) +A, (an_l(h) +a ) )+ A, (an_z(h) + an_z(p)) A, (an_k(h) +a, 40 )=f(n);

(3.9)

Clearly, the difference equation (3.4) has the complete solution a = a, + ag, which is
the summation of the homogeneous solution and the particular solution.

n-1(p

3.3.1 Method of Finding Homogenous Solution
Let Aja, +Aja, +Aya, o+ ... +A,a, ,=0; (3.10)
is the homogenous equation,

Step 1
Find the characteristic equation for the above recurrence relation. Therefore substitute
Ao for a, in equation (3.10). Thus we have
Ay (Ao )+ A (Ao 1) + Ay (Aa™2) + ...+ A, (Aa™F) =0 ;
or Ajo +A ot + A 02 + L+ A =0,
After simplification we obtain the equation
Ajof + A o1+ A o2 + L +A = 0; (3.11)
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So equation (3.11) is called characteristic equation.

If o0, is one of the roots of this equation then Aoc,” is a homogenous solution to the
difference equation.

Step 2

Solve the characteristic equation and find out the roots to satisfy the homogenous equa-
tion. A characteristic equation of kth degree has % characteristic roots. The roots are of
following nature,

Case 1. Let all roots are distinct s.t. o, 0., ...... oy, then homogenous solution is given as,
@, =Cr 0"+ Cyoy" + .t Cp oy (3.12)
where C/s (1 <i <k) are the constants to be determined (see example 3.1)

Case 2. Suppose some roots of the characteristic equation are multiple roots. Let o, be
a root of multiplicity m then homogenous solution is given as,

aypy = (Con™ 1+ Con™2 + . +C, n+C ) o (3.13)
(see example 3.2)
Case 3. If some roots of the characteristic equation are multiple roots and remaining

are distinct (combination of above cases 1 and 2), i.e., o; = 0, = 05 ; O # 05 #...... # a,;, then
homogenous solution is
_ 2 3
a,;,=Cn*+Cyn+Cy oy + Cio" +Cyxo ... +C, 0" (3.14)

(see example 3.3)

Step 3
Determine the constants C/  (1<i < k) using base conditions.
Example 3.1. Consider the Fibonacci number series recurrence equation (3.2), this recurrence
can be equivalently specifies as,
a,=a, ;+a,, (with base conditions are a,=0and a, = 1)
So, the homogenous equation isa, —a, ; —a, , = 0 and its corresponding characteristic
equation is obtain by substituting o2 for a,ie.,
o?—a—-1=0

Hence we obtain two distinct roots (1+ v5 /2 and (1- V5 )/2
Therefore, the homogenous solution
a,=C, (1+ 5 )2 +C,((1- V5 )20 ;
Coefficient C, and C, are determined by using base conditions such that put a, = 0 and
a, = 1 in the homogenous solution.
Thus, we obtain C; = 1/5 and C, = — 1/5;
Therefore, the homogenous solution is

a, = 1/5 (1+ 5 Y2y — 1/5 (1-V5 )2 ;
Example 3.2. Consider another recurrence of multiple roots
a,-9, ,+4a, 4+ 12a, ,=0.
Thus, we have the characteristic equation is
-9 +4a+12 =0; (here k = 4 and so substitute of for a,)
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After solving we obtain multiple roots — 3, — 3, — 3 and — 3. Therefore, the homogenous
solution is

a,=(C,n*1+ Cyn*2+Cyn*3+ C n*) (-3)%;
or, a,=(C;n*+ Cyn?+Cyn+Cy(-3)*;
Example 3.3. Consider the recurrence
a,-11a, ;+44a, ,—76a, ;+48a, ,=0
Thus, corresponding characteristic equation is
ot-1103+44 0% -760 +48=0 (here k& = 4 and so substitute o* for a,)
Hence we obtain the roots 2, 2, 3 and 4. Therefore, the homogenous solution is
a,=(Cn+ Cy (2)% + Cy(3)" + C,(4)".

3.3.2 Method of Finding Particular Solution

The particular solution of the linear difference equation with constant coefficients (or LRRCC)
shown in equation (3.4) is determined by method of inspection. In other words, there is no
general method known for finding out the particular solution of the linear difference equation
with constant coefficients. By inspection, we shall go through following steps,

Step 1

Let the linear difference equation with constant coefficients equation (3.4) is

Aja,+Aja, +Aa, o+ ... +A,a,,=f{0)
Assume that general form of particular solution is decided according to f{n)
Case 1. If f{n) is a polynomial of degree ¢ of n, i.e.,
fin)=F, n' +Fyntt+ ... +F n+F
(where F/s are the coefficients of the polynomial) then, corresponding particular solution will
be of the form
P, nf+P,nit+ ... +Pn+P (3.15)

where Ps are the constants to be determined.

Case 2. If f{n) is a constant, then particular solution is also a constant, let it be P.

Case 3. If fin) is of form ” where B is not the characteristic root, then corresponding
particular solution is of the form

Pp" (3.16)
Case 3.1. Further, if fin) is a polynomial of degree ¢ of n followed by " i.e.
(F,nt+Fyntt+ ... +F,n+F, ) p"
then corresponding particular solution is of the form
P, nt+Pyntt+ ... +P,n+P,)p" (3.17)

where P/s are the constants to be determined
Case 4. If fin) is a polynomial of degree ¢ of n followed by " , where B is a characteristic
root of multiplicity (m — 1) i.e.
F, nt+F,n1+ . +F,n+F, )"
then corresponding particular solution is of the form
n™ P, nf +Pynit 4 L +P,n+P, )" (3.18)
where Ps are the constants to be determined.
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Step 2

Substitute general form of the particular solution into difference equation (3.4) to ob-
tain the constant/s P/’s.

Step 3

Put values of constant/s Ps into the general form of particular solution we get the
required particular solution.

Example 3.4. Determine the particular solution for the following difference equations :
(@a,+5a, ,+6a, ,=3n*-2n+1; (bla,+5a, ,+6a, ,=1;

(ca,+b5a, ,+6a, ,=3.2"; (da,+a,; =2n.3";
a,-2a, ,=3.2"; Pa,-2a, ,+a, ,=m+1.2";
ga,=a,  +5; hWa,-2a, ,+ a, ,=7;
(ia,-5a, ,+6a, ,=3"+n.

Sol.

(a) Comparing the given recurrencea, + 5a, | + 6a, , = 3 n?-2n + 1 with the difference
equation (3.4) we find fin) = 3 n2 — 2n + 1 ; which is a polynomial of degree 2, thus we assume
the particular solution will be of the form

P, n?+Pyn + P, [From equation (3.15]
Substitute above expression into given recurrence/difference equation, we obtain
Pn2+Pn+P)—-5P,(n-12+P,(n—-1)+Py) +6 (P, (n-2)
+P,(n-2)+Py) =3n%—-2n +1;
which is simplifies to
12P, n% — (34P, — 12P,)n + (29P, — 17P, + 12P,) = 3n% — 2n +1; (3.19)
Coefficients P;, P, and P, are determine by comparing the coefficients of n%, n and n;in
the equation (3.19). Thus, we obtain the equations,
12 P, =3;
34P,—12P,=2;
29P, —17P,+12P, = 1;
which yields P, = 1/4, P, = 13/24, and P, = 71/288;
Therefore, the particular solution is
Q) = 1/4 n? + 13/24 n + 71/288;

(b) For the difference equation a, +5 a, ; + 6 a, , = 1; we find fin) = 1, which is a
constant. So particular solution will also a constant P. Substituting P into the difference equa-
tion we obtain,

P+5P+6P=1;
) P=1/12;
Hence, particular solution is
Ay = 1/12;
(c) Consider difference equation
a,+5a, +6a, ,=3.2"
Here, f{n) = 3.2, that is of form B" (where p = 2 and not a characteristic root). So, we
assume the general form of the particular solution is like expression (3.16), i.e.
Pp* or P27
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Substituting P. 2" into the difference equation we obtain,
P2+ 5P 21 + 6P 2" 2=3.2";
It simplifies to 5P 2" =3.2"% so P=3/5
Hence, particular solution is
Ay = 3/5. 27
(d) Consider the difference equation
a,+a, ; =2n.3%
Here, fin) = 2. n. 3" ; where n is a polynomial of degree 1 followed by 3" and 3 is not a
characteristic root then the particular solution is of the form of expression (3.17), i.e.
Pn+P,y.3"
Substituting (P;n + P,) . 3" into the difference equation, we obtain
Pn+P,).3"+P,(n-1)+Py).3"1=2n.3"
Then after simplification we obtain
P, =3/2 and P, = 3/8;
Hence, the particular solution is
Uiy = (3/2n + 3/8).3%;
(e) Consider the difference equation a, —2 a, , = 3.2" ; Here f(n) is 3.2" which is of the

form B, where 3 = 2. Since 2 is a characteristic root of multiplicity 1 therefore general form of
the particular solution is like expression (3.18) i.e.

P.n.2",
Substituting P.n.2" into the difference equation, we obtain
P.n.2"—2P.(n-1).2%1 =3.27;

that yields P=6.
Hence, the particular solution is
@) = 6.n.2",

(f) Consider difference equation a, -2 a, ;, + a, , = (n+ 1). 2" where, fin) = (n + 1).2"
which is a polynomial of degree 1 followed by 2". Since 2 is a characteristic root of multiplicity
2 so the general form of the particular solution will be like expression (3.18) i.e.

n? (P.n +P,).2%
Substituting above expression into the difference equation we obtain,
n?(Pin+P,).2"-2(n-12P, (n—-1)+P,).2" 1+ (n -2 (P,(n-2) + P,).2" 2= (n +1).2n ;
After simplifing and comparing the coefficients of 2" and the constant term we get the
values of P, & P,
Hence, particular solution will be
Uiy = n? (Pn +P,).2";
(g) Consider the difference equation a, — a, ; = 5 ; Since, 1 is the characteristic root of
the difference equation, so we can write fin) = 5.1"%. Thus the form of particular solution is
P.n.1"orPn;
Since expression P.n satisfies the difference equation so we obtain,
P.n.-Pn-1)=5; or P=5;
Hence, Particular solution is
) = 5. 10
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NOTE Here f(n) is a constant and accordingly if we assume the general form of the particular
solution to be P, then we obtain nonexistence form of the equation P — P = 5. Therefore the correct way to
assume the form of fin) is 5.1".

(h) Consider the difference equationa, —2a, ; + a, , =7 ; Since 1 is the characteristic
root of multiplicity 2 of the difference equation. So, fin) can be written as 7.1". Thus the particular
solution is of the form

n2P.1" or n2P;

Substitute n2.P into the difference equation and simplify it, thus we obtain

P=17/2
Hence, the particular solution is
Uy = n2.7/2

(i) For the difference equation a, -5 a, , + 6 a, , = 3" + n; since 2 and 3 are its charac-
teristic roots. Here, f(n) = 3" + n. So, the form of fin) is the combination of f* (where = 3) and
a polynomial of degree 1. Thus, corresponding form of particular solution is the combination of
P,.n.3" and (P,.n +P,) respectively.
or P,.n.3" + (Py.n +P,) ;

Substitute particular solution into the difference equation and after simplification we
obtain

P,=-3, P,=13 and P, = 7/9;

Hence, the particular solution is

Ay = (-=3).n.3"+(1/3).n + 7/9;

Now we summarize that section 3.3 discussed the method of finding the solution of
LRRCC in terms of the homogeneous solution and the particular solution. The complete solu-
tion of the LRRCC is the combination of both homogenous solution and the particular solution
which is a discrete numeric function. In the homogenous solution the unknown coefficients
can be determined using base condition/s. For a kth order difference equation the £-unknown
coefficients C,, C,, ...... C,, in the homogenous solution can be determined by using base condi-
tions a g, @1, ... a,, , (wWhere Q= for0<j<n, ).

Let complete solution is of the form

Oy = Quipy T Ay

I3
ie. a = 2, G +P(n) (3.20)

i=1
Substituting the values of base conditions in equation (3.20), we obtain % linear equa-
tions, i.e.
k
= ) Cio,"" +Png)

i=1

a ;

n0

k
a. =, Coa +Pny)

nl ™ ;
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B-1 -1k '
In general 2 = C,04” +P(j) (3.21)
= J=0 i=0

Thus, equation (3.21) yields the coefficients C/s (for i = 1 to k).
Example 3.5. Solve the difference equation a, -5 a, ; + 6 a, ,=3"+ n for base conditions a, =0
and a, = 1.
Sol. For the homogenous solution a,,), the characteristic equation is
o2-50+6=0;
So, characteristic roots are 2 and 3.
Thus a,q=C.2" +C,.3"%;
Find out the particular solution a,,)(see example 3.4 (i) that is,
Uiy = (- 3).n.3"+ (1/3).n + 7/9;
Therefore, the complete solution is,
A = Cyy + O
a,=C..2" + C,.3" + (= 3).n.3" + (1/3).n + 7/9 ; (3.22)
using base conditions we have the linear equations
C,+C,=-7/9 and 2C,+3C,=80/9;
that yields C,=-101/9 and C,=94/9
Putting these values of C,; and C, in the equation (3.22) we obtain complete solution
a, =(-101/9) 2" + (94/9) 3" = 3" n + (1/3).n + 7/9;

FACT

It should be noted that for a kth order LRRCC, uniqueness of the complete solution is depend
on the uniqueness of the homogenous solution. That is, the unique solution obtains after
solving k linear equations using base conditions that consist of k-consecutive values. Conse-
quently, the unknown coefficients can be determined uniquely by the value of the numeric
functions at k-consecutive points.

The non-uniqueness of the homogenous solution occurs under following conditions:

1. If number of linear equations is less than k this condition arises when given base
conditions are fewer than k.

2. If base conditions are more than k.

3. If k values of base conditions are non-consecutive.

4. If kth order recurrence relation is non-linear.

3.4 ALTERNATE METHOD (Finding Solution of LRRCC by Generating
Function)

In the last section we have seen that, more often we can determine the numeric function from
the generating function conveniently. To find out the solution of LRRCC, previously we solve
the difference equation and then determine the numeric function. An alternate method is
that we firstly determine the generating function for the difference equation and then find
the corresponding numeric function. The procedure is pictorially shown in Fig. 3.1.
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Difference Equation

!

Generating Function

!

Numeric Function

Fig. 3.1 Procedure to solve LRRCC (Alternate Method).

Let LRRCC be of equation (3.4), i.e.,

Aja, +Aja,  +A,a, o+ ... +A,a, ,= fn)
(forn—%k >0 or n >k because n— k should not be negative)
Multiplying equation (3.4) by z” and summing for 2 < n < oo,
Thus, we have

oo oo

D " Aya +Aa, +Aya b tAa )= D )

n=k n=
or Z [A, (@,2") + A (a, 2" + A, (a, 2" + ... +A, (a, ,2") = Z fin)z";
n=k n=~k
We know that, the numeric function a = (e, a,, a,, ...... @, 5 e ) can be expressed by
the generating function A(z),where
AR) = ay+az+ a2’ + ... + @, 2"+ ;
or az2"=Al)-ay-az—az’+ ... a, 2"
Thus, Z Ay (a,2") =A)[AlR)—ay—az —az® + ... -a, 2*1;
n=~k
similarly 2 Al(a, 20=Az[AR) -ay—az—az®+ ... —a, 2" ;
n=~k
and so on..... ... ..
2 Afa, 2" =AZFAGR) —ay—az —ap@? +.....— a, , 2" 5
n=~k

Add and solve above equations for A(z), so we obtain

A@) = 1Ay + Az +.....+A20) [ Z fin)z" + Ay (ay + @z + ...... + a;_2F1)
n=k
+Azlay+az+ ... +a;, 2" + Agay + az + ... +a;, 2"+
+AzMay +az + ... +a, , 2"
(3.23)
Example 3.6. Solve the difference equation a, +5a, ,+6 a, , =5 given in example 4.4 (b) for
n > 2 (using alternate method) and base conditions a,= 1 and a, = 2.
Sol. We first determine the generating function A(z) for the difference equation. Since differ-
ence equation is valid for n > 2, so multiply the difference equation to z" and take sum from n
= 2 to . Thus we obtain,
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oo

i a,z" +5.i a, 42" +62 a,_o2" =i 2" (3.24)
n=2 n=2 n

=2 n=2

Since, Zanz” =A@ -ay-a;, = AR)-1-22
n=2

Yoa, zr=2Ak) -a) = AR -1

n=2

Z a, 2" =22 Al2) = 22A(2)

n=2
and Zz”=22+z3+z4 ...... o = 1(1=2)-1-2z=2%1-=2);
n=2

putting these values in equation (3.24) and simplified for A(z),
AR)—1-22+52(AR) - 1) + 622 A(z) =2%/(1-2) ;
Thus, A(z) = (1+ 62 — 622)/(1 + 5z + 622) (1-2) ;
Equivalent to, A(z) = (1/12)/(1 — z) + (14/3)/(1+2z) + (— 15/4)/(1+32) ;
Therefore corresponding numeric equation a” is,
a, = (1/12) .1" + (14/3) (= 2)* —(15/4) (- 3)*;

3.5 COMMON RECURRENCES FROM ALGORITHMS

The purpose of this section is the study of the recurrence equation obtained from the proce-
dure codes, and describes some commonly occurring patterns from algorithms. Simultane-
ously, you will also find the methods to solve some of the typical recurrence equations obtain
by this way in the next section.

We can describe several categories of recurrence equations that occurs frequently and
can be solved (to some degree) by standard methods. In all cases sub problems refers to a
smaller instance of the main problem and that to be solved by recursive call.

Divide-and-Conquer

Divide-and-Conquer strategy is like modularization approach of the software design. A large
problem instance is divided into two/more smaller instance problems. Solve smaller instance
problems using divide-and-conquer strategy recursively. Finally, combine the solutions of the
smaller instance problems to get the solution of the original problem.

We can apply divide-and-conquer strategy to the sorting problems. Sorting problem is
the problem where we must sort n elements into non decreasing order. The divide-and-con-
quer paradigm suggests sorting algorithms with the following general structure :

If n is one, terminate; otherwise partition the set of elements into two/more subsets;
sort each; combine the sorted subsets into a single sorted set. Let one set gets a fraction n/k of
the elements and other set gets the rest (n — n/k). Now both slices are to be separately sorted
by recursive application of divide-and-conquer scheme. Then it merges the sorted fractions.
The procedure is shown in Fig. 3.2.
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Algorithm (divide-and-conquer sort)

I nput : Array S of n elenments; k is global;
Qut put : Sorted array S of same elenments;
void Sort (int S, int n)
{
if (n=k) {
I = nlk;
J=n-1;
// Assume array A consists of first | elenents of S
// Assume array B consists of rest J elenments of S
Sort (A 1);
Sort (B, J);
Merge(A, B, S, |, J); /1 nerge the sorted array A & B into S
}
return;
}
Fig. 3.2

Let T(n) be the worst case time of the divide-and-conquer sort algorithm then we ob-
tain the following recurrence for T

a for n<k
T) = \T(uk) + T(n —n/k) + f(n) for n>k (3.25)
where a and b are constants and f{n) is the nonrecursive cost function that required to split
the problems into subproblems and/or to merge the solutions of the subproblems into a solu-

tion of the original problem. T(n/k) and T(n — n/k) are the division time that depends upon the
size of the input.

Merge Sort

A procedure merge sort partition the set of elements into two halves (more balanced) and
sorts each halves separately (recursively). Then it merges the sorted halves partitions into
almost equal halves, which requires
nlk =n —nlk
that is only possible when % = 2. Substituting 2 = 2 in (3.25) the recurrence for T(n), we obtain
the recurrence relation for merge sort,
a for n<k
T(n) = {T( /2) + T(n/2 >
n/2)+T(n/2)+ f(n) for n>k
The presence of floor and selling operators makes this recurrence difficult to interpret.
To overcome this difficulty we assume that n is a power of 2

then ([n/2] ) =([n/2])
Thus, recurrence equation will be

a for n=1
Tin) = {2T(n/2)+f(n) for n>1
The generation of the recurrence equation (3.26) can be visualized in Fig. 3.3 called
recursion tree. Recursion tree provides a tool for analyzing the cost (time/ other factors) of the
recurrence equation.
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From the recursion tree shown in Fig. 3.3, we observe that size as a function of node
depth is given n/2, n/4, n/8, ...... n/2% for depth 1, 2, 3, ...... d (respectively). Thus, the base case
occur about at d = log (n). Since, sum of each row is n (total for the tree), therefore, recursion
tree evaluation obtains the value T(n) is about n log (n).

Latter, in this section we will see that the solution of this recurrence obtains using
fundamental methods is 6(n log n).

T(n) n

T(n/2) n/2 T(n2) | nr2

T(n/4) n/4 T(n/4) n/4 T(n/4) n/4 T(n/4) n/4

Fig. 3.3 Recursion tree.

Chip-and-Conquer
Let the main problem of size n can be ‘chipped-down’ to subproblems of size s and (n-s) (s > 0),
with nonrecursive cost f(n) (to split out the problem into subproblems and/or to combine the
solution of subproblems into a solution to main problem).
Then the recurrence equation is,
T(n)=T(s)+T(n-s)+ fin) for s>0 (3.27)

Quick Sort

Quick sort strategy is to rearrange the elements to be sorted such that all small elements
come first to large elements in the array. Then quick sort sorts the two subranges of small
and large keys recursively with the result that entire array is sorted. Quick sort algorithm is
shown in Fig. 3.4.

Algorithm (Quick Sort)

I nput : Array S of n elenents;
Qut put : Sorted array S of same elenments;

Select an elenment from array S 0:n-1]for middle;

Partition the remaining elenments into two segnent left and right, s.t.
Al elenents in left have |esser than that of niddle and

Al elements in right have larger than mniddle.

Sort left with quick sort recursively.

Sort right with quick sort recursively.

Result is left followed by nmiddle followd by right.

Fig. 3.4
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Let T(n) be the time needed to sort an n-element array. When n < 1, T(n) = a, for some
constant a. Assume n > 1, let s be the size of the left slice then size of the right slice will be
(n — s — 1) because pivot element is in middle. So the average time to sort the left slice is T(s)
and the right slice is T(n — s — 1) and the partitioning time f{n).

Since 0 <s <(n - 1), thus we obtain following recurrence

n-1
T(n) < Y, (1/n) [T(s) + Tn—s—1)] + fn)
s=0
That can be simplified to

n-1
T(r) = Y. (2/n) T(s)+ fin) ;
s=0
This recurrence is more complicated because value of T(n) depends on all earlier val-
ues. We can attempt some cleverness approach to solve this recurrence. We assume a case in
which quick sort works well such that on each time partition will split the set into two equal
halves (of size n/2). So we have more simplified recurrence equation,

T(n) =2 Tn/2) + fin) (3.28)
Therefore, T(n) is 6(n log n). [see example 3.9 (2)]

3.6 METHOD FOR SOLVING RECURRENCES

Since recurrences of the form of (3.26) or (3.28) arises frequently in analyzing recursive divide-
&-conquer algorithms. We shall discuss the methods of finding of the solution of recurrences
in general. This section presents three methods for solving the recurrences which return the
solution in asymptomatic ‘0’ or ‘O’ bounds. Theorem 3.1 illustrates Iteration method that
converts the recurrence into the summation of the terms then relies on techniques for bound-
ing summations to solve the recurrence. Master method (theorem 3.2) requires the memori-
zation of the cases that provides bounds for the recurrence of the form T(n) = a T(n/b) + fin)
(wherea > 1,b > 1) illustrated in theorem 3.2. At the end theorem 3.3 illustrates Substitution
method that guesses the bounds, corresponding to that it memorizes the appropriate bounds.

3.6.1 lteration Method
Theorem 3.1. Let a, b and ¢ are nonnegative constants then solution to the recurrence

a for n=1
T =10l + f(n) for n>1

where n is a power of b is

O(n) for a<b
T(n) = sO(nlogn) for a=5 (3.29)
O(n %) for a>b

Proof. Since n is a power of b, i.e. n = b* then
1ogbn

T(n) =n Y, x*; (where x = a/b) (3.30)
k=0
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Now analyze the equation (3.30) so we have following statements,
1.ifa < b = x < 1 ; then summation converge, therefore T(n) = O(n).
2.ifa = b = x = 1 ; then each term of the sum is unity, since there are O(log n) terms
therefore, T(n) = O(n log n).
3.ifa > b = x > 1; then sum terms grows exponentially and there summation is
n(x*ogn _ 1)/(x — 1) = O(a &) or equally O(n loesa).

The theorem states that dividing a problem into two subproblems of equal size results
an O(n log n) time. If number of subproblems are 3, 4 or 8 then algorithm time would be 7 lg23,
nlsz4 = n2 pn le28 = n3 respectively and so on. Dividing the problems into four subproblems of
size n/4 (case 2 when a = b) results an O(n log n) and 9 and 16 subproblems give O(n *4®) and
O(n 841%) = O(n?).

3.6.2 Master Theorem

Theorem 3.2. The solution of the recurrence equation
T(n) = a T(n/b) + fin)

(where @ 2 1, b >1 are constants) is given as,

o(n 198 %) if f(n)=0n log, a ¢
T(n) =16(n %% logn) if f(n)=6(n &%)
0(f(n)) if f(n)=Q(n'®* %) or
fin) = O(n'8**3) (3.31)

for some constant € > 0 and some & > €.

By careful observation of the results obtain using master theorem we find that the
solution of the recurrence is based on the dominance of the function n *6:¢ and f{n). As in case

1, function n 8¢ is dominant, so T(n) = 6(n *5:2). In case 3, function f{n) is dominant, so T(n)

= 0(fn)). And as in case 2, two functions are same, so we multiply by a logarithmic factor, and
we obtain the solution T(n) = 6(n *#:¢ log n).

3.6.3 Substitution Method
Theorem 3.3. The solution of the recurrence

a for n=1
T(n) = \aT(b) + f(n) for n>1
is given as T(n) = n e [T(1) + g(n)] (3.32)
where gn)= Y b)) and  A(n) = fin)/n Yesa
j=1

We obtain A(n) from the recurrence equation. Then find corresponding value of g(n)
from the table shown in Fig. 3.4. Entries of the table allows to obtain bounds of T(n) for many
recurrences we run-into using divide-and-conquer.

h(n) g(n)
O(n*) for k <0 0(1)
0( dog n)*) for k>0 0( (log n)*1)/(k + 1)
Q(n*) for 2 >0 0(h(n))

Fig. 3.4
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Example 3.9. Solve the following recurrence

1.Tn) =8Tn/2) +n? for n = 2 and n is a power of 2
2.Tn)=2Tn/2) +n for n =2 and n is a power of 2
3. T(n) =64 T(n/4) + n® for n =4 and n is a power of 4
4.Tn) =2Tmn/2) +cnlogn for n =2 and n is a power of 2

In each case assume T(1) = constant.

Sol. We can solve above recurrences by any of the method discussed above. We attempt the
solution of the recurences using both methods, first by master theorem and later by substitu-
tion method.

Master Theorem

1.

For the recurrence T(n) = 8 T(n/2) + n?; we have a = 3, b = 8 and fin) = n% Determine
n 1%60a = p 1828 — g(n3), Since filn) = O(n '*¥2°-¢), where € = 1 (case 1 of theorem 3.2) that

return the solution T(n) = 8(n '%2°) = B(n?).

For the recurrence T(n) = 2 T(n/2) + n ; we have @ = 2, b = 2 and fin) = n, thus n % =
n 622 = n. Since fin) = 6(n **22) = 8(n) (apply case 2 of theorem 3.2). Therefore, the
solution of the recurrence is T(n) = 0(n 622 log n) = 6(n log n).

In the recurrence T(n) = 64 T(n/4) + n®; we have a = 64, b = 4, and fin) =n® and so n s
=n 845 = 53 Since fln) = Q(n '8464¢+<) where € = 3 (case 3 of the theorem 3.2). Hence,
the solution T(n) = 6(f(n)) = 6(n).

Recurrence T(n) = 2 T(n/2) + cn log n; can not solved through master theorem. Since, f{n)
= cn log n is asymptotically dominant than n *®“ = n, but not polynomially dominant.

So, no case will determine the solution of this recurrence.

Substitution Method

1.

In the recurrence T(n) = 8 T(n/2) + n% a = 8,b = 2 and Ain) = n2. Thus, n '¥** =n3 and A(n)
=f(n)/ n '8 =n2/n3 =n"1= O(n*) where k = — 1 < 0. Therefore, g(n) = O(1).(from the table
Fig. 3.4). Hence the solution is

T(n) = n® [T(1) + O(1)] = 6(n?).
Recurrence T(n) = 2 T(n/2) + n ; we obtain n 18s@ = p 822 = and A(n) = n/n = 1=6((log n)°).
From Fig. 3.4 we obtain corresponding g(n) = 6(log n), hence, solution is

T(n) = n[T(1) + 6(log n)] = 6(n log n).
For the recurrence T(n) = 64 T(n/4) + n®; we obtain A(n) = né n 8464 = p3 = Q(n*) where
k =3 > 0. From the table we find corresponding g(n) = 6(A(n)) = 8(n3). Hence the solution

T(n) = n 4% [T(1) + 6(n3)] = 6(n").
Unsolved recurrence T(n) = 2 T(n/2) + cn log n ; can be solved using substitution method.
We obtain A(n) = cn log n/n 2% = ¢ log n = ¢ 8((log n)!). The corresponding g(n) will be
cO((log n)*2). Hence the solution

T(n) = n [T(1) + ¢ 6((log n)%2)] = 6(n log? n).
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3.7 MATRIX MULTIPLICATION

Let A and B are two n x n matrices and there product is another n x n matrix C, i.e.,

CI,K) = 2 A, J)* B(J, K) ; (3.33)
j=1
(where 1<I<n and 1<K<n)
From the equation (3.33), computation of each C(I,K) requires n multiplications and
(n — 1) additions. Thus, computation of all terms of matrix C required a total of n2.n + n2.(n — 1)
operations. Therefore the complexity of such straight forward matrix multiplication method is
of order 8(n3).

Let us assume n is a power of two viz. n = 1, 2, 4, 8,....... If n = 1 then we have single
element matrices A and B to multiply and we obtain matrix C of single element. Otherwise (n
> 1), we can divide the matrix A, B and C into 4 submatrices of each size n/2 x n/2 (since n is a
power of 2) say A’s, Bs and C/’s; for 1 <i <4.

RS SRR % |- P = ... [T
Az Ay B; B, C; :Cy

where C,=AB, +AB,
C,=AB,+AB,
C;=A,B, +AB,
C,=AB,+A,B,
The computations of all C;’s (for i = 1 to 4) required 8 multiplications and 4 additions of
n/2 x n/2 matrices using divide-&-conquer paradigm.

Now we discuss a better scheme for matrix multiplication known as Stressman’s method
that involves 7 multiplications and 18 additions/subtractions operations of n/2 x n/2 matrices.
The seven smaller products are matrices M, N, O, P, Q, R and S where,

M=A*B,-B,)

N=A*B;-B))

O=B*A;+A)

P=B,*A, +A,)

Q=(Az-A)*(By-By

R=(A,-A) *(B;+B)
and S=(A+A) *(B, +B,)
along with 6 additions and 4 subtractions of72/2 x n/2 matrices. The matrices C;’s will be computed
from above seven matrices as,

C;=N+R+S-P
C,=M+P
C;=N+0O
C,=M+Q+S-0
That requires another 6 additions and 2 subtractions of n/2 x n/2 matrices. Therefore

Stressman’s method requires a total of 7 multiplications and 18 addition/subtraction opera-
tions of n/2 x n/2 matrices. If we compare these two methods of matrix multiplication we
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conclude that for n = 8 Stressman’s method is more efficient. In general, let T(n) denotes the
time required by the Stressman’s divide-and-conquer method, thus the recurrence is,

3.1

3.2

3.3

3.4

3.5

3.6

o(1) for n<1
T(n) = {7T(n/2) +18n% for n>1
Solve this recurrence using theorem 3.3 (Method of substitution). Since, we have a = 7,
b =2 and fin) = 18 n2. That gives h(n) = fin)/n *%* = 18 n%/n '%627 = 18 p2-'827,
Since, 2 — log ,7 < 0 therefore g(n) = O(1) (from the table shown in Fig. 3.4).
Hence, the solution T(n) = n 627 [8(1) + O(1)] = 6(n '*#27) (assume 6(1) is constant).
=0(n= 2.81)

Therefore, the time complexity of the matrix multiplication problem is 8(n281),

EXERCISES

Solve the recurrence a, + 3 a, ; + 2 a, , = fln), where

1 forn=2
fln) = {0 otherwise

and the base conditions a, = a; = 0.
Solve the following recurrence relations :

@ a,+a, +a, ,=0,where a,=0and a; = 2.

(@) a,-a, ;—a,,=0, wherea,=0and a; = 1.
(iid) a, + 6a,_; +9a,_, = 5", where a; =0 and a, = 2.
@) a, + 3a, ; + 2a,_, = fln), where fin) = 6 for n = 2 and 0 otherwise with base conditions a;, =0

and a, = 0.

() a, + 5a,_, + 6a,_, = fin), where filn) =0 for n =0, 1, 5 and 6 otherwise with ¢, =0 and a, = 2.
(i) a, —4a, ; +4a, ,=2" where a,=0and a, = 0.
Solve the following difference equations :

@) a,? - 2a, ,*> = 1, where a, = 2.

@) na, + na, , —a, ;= 2" where a, = 273.
(iii) @, — 2a,_; = 0, where a, = 4.
(iv)a,—na, ; =n!,forn=>1anda,=2.

W) a, = Ja,_, +Ja, 5 +Ja, 5 + ..., where q; = 4.

Find the asymptotic order of the solutions for the following recurrence equations :
@) T(n) =T(n/2) + cnlogn (@) T(n) = a T(n/2) + ¢ n°

@i1) T(n) = 3T(n/2) + cn (iv) T(n) = 9T(n/2) + n? 2"

assume T(1) = 1, the recurrence is for n > 1 and ¢ is some positive constant.

Let a problem of input size n is subdivided into /n subproblems of size about /5 .
Show that the solution of the recurrence

T(n?2") = nT(n) + bn?  (where r is an integer, r > 1)
is O(n (log n)" log logn).

Equation (3.2) defined the Fibonacci sequence as f, = f, ; + f,_, for n >1, f; = 0 and f; = 1. Prove
the correct statement between the following :

@) for n > 1, f, <100 (3/2)" (@) forn > 1, f, > .01 (3/2)"
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3.7 Show that the solution of the Fibonacci recurrence i.e., f, = f, ; + [, ,forn >1,f,=0and f, = 1
is 6(2"), where & = (1 + /5).
3.8 Solve the following recurrences, given T(1) = 1.

(i) T(n) = 3T(n/8) + n2 2" logn, n > 8 and n is power of 8.
(i1) T(n) = 27T(n/3) + 11n3, n > 3 and n is power of 3.
(iii) T(n) = 128T(n/2) + 2"/n, n > 2 and n is power of 2.
(zv) T(n) = 128T(n/2) + log? n, n > 2 and n is power of 2.

3.9 Use Strassen’s algorithm to compute the product (; 3) (g ‘81)
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4 Algebraic Structure

4.1 INTRODUCTION

In the context of algebra a system consisting of a set and one or more n-ary operations on the
set is called an algebraic system. Let X be a finite and nonempty set then algebraic system is
denoted by (X, [, ®, ....), where [-], ®, ....are the operations on X. Since, the operations over
the set represent a structure between the elements; therefore an algebraic system is also known
as algebraic structure. Groups, rings, fields, vector spaces, etc. are the examples of the algebraic
systems.

As we said a set with number of operations over the set describes an algebraic system.
Here we restrict our study of algebraic systems to those operations that are only unary or
binary in nature. For example, consider the set of natural number N with usual addition
operation +. Hence, (N, +) represent an algebraic system. Clearly, (N, +, ) is an algebraic
system with two usual operations, addition and multiplication, + and . It is possible to consider
that more than one set together with different operations describe similar algebraic systems
if operations are of same degree. Conversely, two different algebraic systems (X, [, ®) and
(Y, a, o) are of same type if, the operations [] and a, and operations ® and e are of same
degree.

Since, every systems posses their own property that is obviously, the property holds by
any of its operations, so we now listed some common properties of an algebraic system (X, ®)
where ® is a binary operation on X, are as follows,

I. Closure. Operator ® is said to be closed, if, x ® y € X and unique for V(x and y) € X.

II. Commutative. Operator ® is commutative over set X, if,x ®y =y ® x, for V(x and y)
e X

II1. Associative. Operator ® is associative over set X, i.e. if x,y and z € X, then we
have,
xO@Y®z)=k ®y) ®z
IV. Existence of an unique Identity Element. There exists an identity element ¢ for
Vx € X with respect to operation ®, i.e.,
x®eg = ¢ ®x = x
right identity left identity
For example, 0 is the identity element for algebraic system (I, +), where I is the set of
integers and ‘+’ is the usual addition operation of integers, i.e., x + 0 =0 + x = x, for Vx € 1.
Therefore, 0 is called additive identity. (Reader self verify that 1 will be multiplicative identity).

V. Existence of Inverse Elements. There exists an inverse element y € X for every
x € X with respect to operation ®, i.e.,

x®y=¢g=y ®x
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For example, the additive inverse define the subtraction i.e., x + (— x) = ¢. Similarly,
the multiplication inverse defines division i.e., x x (1/x) = ¢.

Assume an algebraic system consists of two operators (X, ], ®), then

VL. Distributive Property. Since ] and ® are two binary operations on set X, and if

x,y and z € X then operator [J is said to be distributive over ® whenever,
xHy®z2)=x Dy ©®&Qz)

and also operator ® is distributive over [ whenever,
2Oy H2)=x®y) Dk ©®2)

For example field is an algebraic system. A field is defined by a set of elements, binary
operations + and x, a set of properties 1 to 5, and combination of both operations fulfilling
property 6. A field of real numbers is a common example consists of set of real numbers (R),
with binary operations + and x denoted by (R, +, ). It is the basis for ordinary algebra.

Example 4.1. Let X = {1, 2, 3, 4} and (X, X, f) is a morphism, where function f is represented
by the expression,
(1 2 3 4
f=l2 3 4 1

Prove that (F, O) is an algebraic system, where F is the set of unique composite functions
of f-
Sol. From the composite functions,
FOF=F%F207=F%F?0 =% and so on

Determine 2, f3, f4,.... so we obtain

ror=p=(3 3 i),f20f=f3=[i : §}f3°f=f4=(i > 3

Since, f* is an identity function or mapping, i.e, f* = {(x, x)/x € X) = f° (assume) and all
others composite of functions are repeated in the set F = {f, /2, /2, /°} or {f°, 1, /2, f3}. Since
operation ¢ is closed, commutative and associative together with the existence of an identity
functions, which results (F, 0) is an algebraic system.

4.2 GROUPS

Let X be an nonempty set and ® be an binary operation on X, then algebraic system (X, ®) is
called a group, if operation ® satisfies the following postulates,

1. ® is closed,

2. ® is associative,

3. Existence of an identity element, and
4. Existence of the unique inverse.
(Postulates 1 — 4 are called group axioms)

For example, algebraic system (X, ®), where X = {+, —} and binary operation ® is
defined in the table show in Fig. 4.1.

Fig. 4.1 Operation table
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Since,

Operation @ is associative and closed, because of, + ® + = + € X and similarly it is true
for others in the table.

Operation ® is also associative, because of,
+®(®+) =+ ®—=—;whichissame to (+ ®-) ® + =— ® + = —; and similarly
true for others in the table.
There exists an identity element for each element of X i.e.,
+®+=+®+=+ and - @ +=4+ ®—-=—
(For both operations + and — identity element is +)
For every element of X there exists a unique inverse, i.e.
— ® — = + (identity element) and + ® + = + (identity element)
Therefore, algebraic system (X, ®) is a group.

In a group (X, ®) the cardinality of the set X i.e. | X | gives the order of the group. If
| X | is finite and consists of n elements, then group is said to be a finite group of order =,
conversely if | X | = oo, then group is an infinite group.

N H Abel (in early 19’s) had make something their own and the group called Abelian
group, i.e., a group (X, ®) is said to be abelian if the binary operation is commutative as well.
For example, system (I, +), where I is the set of all integers and operation + is addition of
integers is an abelian group.

If an algebraic system (X, ®) follows only restrictions 1 and 2 such that, binary opera-
tion ® is closed and associative then (X. ®) is called a semigroup. For example, algebraic
system (I*, +) is a semigroup, where I* is the set of positive integers and operation + is usual
addition operations; because addition operation is closed and associative on I*. Similarly,
system (I*, x) is also a semigroup, where operation x is usual multiplication operation.

Consider another example, Let N be the set of natural numbers, i.e. N = {0, 1, 2, ....}
and + is an addition operation then algebraic system (N, +) and (N, x) are semigroup in
addition to that there exists an identity element 0 and 1 with respect to operations + and x
respectively. Such semigroups are called monoids. A semigroup there may or may not have
an identity element.

An algebraic system (X, ®) is called monoid, if operation & satisfies the following
postulates 1, 2, and 3 i.e.,

1. ® is closed,

2. ® is associative, and

3. Existence of an identity element,

For example, let X~ = {a, b, ¢} and X* = {¢,a, b,c,a b, bc,ca, ....... } is the set of all
possible strings form over the alphabets X then algebraic system (X*, .) is monoid, where . is a
binary concatenation operation, i.e., for any two strings x, y € ¥, x,y yields the string xy.

Since,
1. For any x any y € ¥, x . y = xy € X¥; hence operation . is closed.
2. Foranyx,y,andze X* (x.y).z=x.(y.z) = xyz € ¥ so operation . is associative.

3. Set X* contains an identity element ¢ called null string i.e. | € | = 0, then for any
x € T¥
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Therefore, algebraic system (X*, .) is a monoid. If we replace the set X* by =*, where **
= X* — {e}, where set X" contains all possible strings formed over the alphabet ¥ except null
string (¢) then algebraic system (X*, .) is not a monoid due to non existence of an identity
element with respect to operation concatenation but a semigroup.

Operation Table

The properties hold by an algebraic system can be easily observed from the operation table.
Let (X, ®) is an algebraic system, where ® is a binary operation on X, then operation table
presented an arrangement of values resulted after performing the binary operation ® over
the elements of set X. For example, the algebraic structure (X, @) is a monoid, where ® is a
binary operation defined over set X = {0, 1, 2, 3}, i.e.
a®b=a+b,ifa+b<3,otherwisea +b -4

Construct the transition table for algebraic system (X, ®)

@ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Fig. 4.2 Operation table.

From the operation table shown in Fig. 4.2 we derive following conclusions,
e Since each element in table belongs to set X, hence operation ® is closed.
e Operation is associative.

e Values of the first column are similar to the corresponding element of the set when
operated on ® over element 0, hence 0 is a unique identity element.

Therefore, algebraic system (X, ®) is a monoid. Further, we see that algebraic system

(X, @) is also a group.

e Since there is an occurrence of the identity element 0 in each row in the operation

table which shows the existence of the inverse element for every element of X, i.e.,
0©0=0;1®3=0;2®2=0; 3®1=0.

e Also corresponding rows and column are same in the table; hence operation @ holds
commutative property.

Therefore, algebraic system (X, ®) is an Abelian group.

Example 4.2. Let X = (p, q, r} and binary operation ® defines in the operation table shown in
Fig. 4.3 then algebraic system (X, ®) is a semi group but not monoid.

Sol.

)

p
p
q

= o ®
SRR T L
N QT

r

Fig. 4.3 Operation table.

e Operation ® is closed, since all elements in the table belong to set X.

e Operation is associative.
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Hence, (X, ®) is a semigroup. Further,

e Algebraic structure (X, ®) not posses a unique identity element for all elements of X.
Here elements identity elements are {p, ¢, r}.

e Since corresponding rows and columns are not same hence operation ® is not commu-
tative.

Therefore, (X, ®) is not monoid and also not a group.

Example 4.3. Let X = {1, - 1, i, — i} and the binary operation  is define in the operation table
(Fig. 4.4). Prove that algebraic system (X, x) is a group.

Sol.
* 1 -1 i -1i
1 1 -1 13 -1
-1 -1 1 -1 13
i 13 -1 -1 1
-1i -1 i 1 -1

Fig. 4.4 Operation table.
(Ready self verify that operation table holds all restrictions required by a group)

Modulo Operation
Now we define two special operations called additional modulo and multiplication modulo
over the set X, where
e Additional Modulo n if a, b € X then a addition & modulo n is defined as,
(@ +,b) =(a + b) mod n = r (where r > 0)
For example, let @ = 11 and b = 6 then its addition modulo 5 is given by (11 +; 6) = (11 + 6) mod
5 =2 (> 0). Consider another set of values such that ¢ = — 15 and b = 5, then
(—11+,5)=(-11+5) mod 5= (- 6) mod 5 = [(- 5 * 2) + 4] mod 5 = 4 (> 0).
Let a =—10 and b = — 7 then
(104, =(=10+(-7) mod 5 =(-17) mod 5 = [(- 5 * 4) + 3] mod 5 = 3 (> 0).
e Multiplication Modulo n if a, b € X then a multiplication b modulo n is defined as,
(a *, b) = (a * b) mod n = r (where r > 0)
Example 4.4. Let (X, x) be a group, where x is the multiplication operation on X, then for any
x, y € X prove that,
1. ()1 =x, and
2. (xxy) =y T x xTor(xxy) =HT!xx)l
Sol.

1. Recall the definition of the group, such that for every element x € X there exists an unique
inverse say x” € X i.e.,

x x x” = ¢ (identity element) = x” x «x;
From the symmetricity,

1 /-1

x'=x or «x'=x
Replace value of x’ by x~! in so, we get

xHl=x (Proved)
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2. From the result of equality (1), for any x € X, we have the inverse element x~!, where x x x~!
=¢;and alsoy x y~! = ¢ for any y € X. Since, operation x is closed so x x y € X,

Letu=xxyand w=y"'x x!, then
uxw=xxy) x@ylx x1

xx(yxyl)x x1 (by Associativity)
1

X XEXX™ (since y x y1 =¢)

1

X XX~

¢ (identity element)

Thus we have,
(xxy)x(yTx xH=e=(@T1xx1)x(x xy) also.
= (x xy) = (@1 x x1)1, and due to symmetricity
(xxy)l=(@1x x1). (Proved)
Example 4.5. Let W = {1, o, &%}, where o is cube root of unity i.e. @ =1and 1 + o+ o’ =0,
then show that algebraic system (W, x) is a group.
Sol. Since,

1. Operation x is closed for W, i.e.

Ixo=0e W,oxo?=wd=1ec W;1x o?=n?ec W; and others.

2. Operation x is associative over W, viz.
®? x (1 x o) =(®? x 1) x ®=w’ and others.

3. Existence of an identity element i.e.,
oxe=x=xx¢ foranyxe W
ifx=mwthen¢g=1,ie. 1 x0=0x1=
ifx=w?thene=1ie. 1x 0 =w?x1=0%

4. Existence of unique inverse element for every element of W, i.e.,
xxy=yxx=¢ wherex,ye Wand y is inverse of x.
ifx=1theny=1,s01x1=g¢;
ifx=ntheny=0?sooxo?=w0’=1=¢;
ifx=w?’theny=m,s0@®xn=w03=1=¢;

Therefore, Algebraic system (W, x) is a group.

4.3 SEMI SUBGROUP

Let algebraic system (X, ®) is a semi group and let Y < X, then (Y, ®) is said to be a semi
subgroup if, (Y, ®) is itself a semigroup, i.e.
Y, ® c X, ®)

For example, (I*, +) is semigroup, where binary operation + is defines over set of posi-
tive integers I*. Now consider two subsets of I* i.e., (1) positive integers that are all even (J)
and (2) positive integers that are all odd (K). Thus,

JcI* and KcI*

Now test whether (J, +) is a semigroup or (K, +) is a semigroup. Former, is a semigroup

because operation + is closed and associative over J but latter is not a semigroup due to violation
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of closure property by operation + over K (since addition of two positive odd integers must be
an even positive integer that is not in the set K). Therefore, (J, +) is a sub semigroup of (I*, +),
or

J, +) c T, +)

4.4 COMPLEXES

Let (X, ®) be a group, and Y < X then Y is called the complex of group (X, ®@). For example,
consider X = {1, — 1, i, — i} and operation is usual multiplication ‘x’ then (X, x) is a group. Now
{1, -1}, {1, 4}, {1, -4}, = 1, i}, (= 1, — i}, and {i, — i} are subsets of X are called complexes of the
group (X, x). Out of these complexes some complexes may form a group or may not form a
group under bounding operation ‘x’.

4.5 PRODUCT SEMIGROUPS

Let (X, ®), and (Y, ®) are two semigroups, define Z = X x Y such that the elements of Z are
ordered pair (x, y) where x € X and y € Y. Then (Z, #) is also a semigroup by assuming (a, b)
€ Zand(c,d)e Zie., (a,b)#(c,d)=(a ®c, b ®d). Hence, (Z, #) is called a product semigroup.

Consider an example, algebraic system (R*, x) where x is usual multiplication operation
defines over the set of positive real numbers R* forms a semigroup. Similarly (I, +,) where +,
is addition modulo 4 operation define over set of Integers forms a semigroup. Let S is the
direct product, i.e., S = R* x I, then check whether (S, #) is a semigroup or not. Assume
ordered pairs (a, b) € S and (¢, d) € S, where elements a, ¢ belongs to R*, and elements b, d
belongs to I then

(a,b) #(c,d)=(axc,b+,d)

Since operation x is closed in R* and operation +, is closed in I, hence operation # is
closed. Also, since operation x and +, are associative hence # also holds associativity. Therefore,
direct product is a semigroup.

4.6 PERMUTATION GROUPS

Let X be a group and p : X — X is a mapping to be permutation of X if p is bijective (one-one and
onto). Such groups are called permutation groups. Let X = {a, b, c,.....} be a set and let p
denotes a permutation of the elements of X; i.e., p : X — X is a bijective, then

a b C...... j
p= (p(a) p®)  plo)......
is called permutation group, where image of the element of X is entered below the element.
For example, let X = {1, 2, 3} and suppose p(1) = 2, p(2) = 3, p(3) = 1 then we may represent p as,

(12 3 13 2 3 1 2
P=1l2 3 1) %" (21 3) % (1 2 3

and so on. In general, a group of n-elements can have a total of n ! permutations that is called
order of permutation and the degree of permutation is the number of the elements of the set
X. In the said example, the degree of permutation is 3 and the order of permutation is 6.

Let py, pg, «vve-.. p,, are all possible permutations of a set of n elements then it is called
symmetric set of permutations. In the previous example {p,, p,, ...p4} are the symmetric set of
permutations that are shown below.
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123 (132 (312

Pi=l2 3 1)P27|2 1 3)P7(1 2 3

32 1) (2138 (231

and Py=|1 3 9)P57|3 9 1/Ps(3 1 2

Let p be the permutation where,

~ (al a, a3]
then, inverse of permutation is denoted by p~! and is defined as,

-1 _ bl b2 b3
p-= a; ay ag

Similarly, a permutation is said to be an identity permutation if image of every element
of set X is same to the corresponding element, i.e., if X = {a, b, ¢} then p(a) = a, p(b) = b, and
p(e) = ¢, then permutation p where,

p= (Z ’g Zj is called an identity permutation.

4.7 ORDER OF A GROUP

Let (X, ®) be a group, then order of the X is denoted by O(X) is the number of elements in
group X. For example if group X consisting of m elements then O(X) = m. If X is infinite then
OX) = oo

Let x € X then order of an element x, denoted as O(x) is n if a” = e (identity element).
For example, consider X = {1, — 1, i, — i} is a group under usual multiplication operation x i.e.
X, x).

Then order of the group is, i.e., O(X) = 4. The order of its elements is determined as
follows :

e O(1)=1 [+ 1! =1 (identity element)]
e O(-1)=2 [© (- 1)? =1 (identity element)]
e O()=4 [- (i)* = 1 (identity element)]
e O-i)=4 [+ (= * =1 (identity element)]

Example 4.6. Let X = (1, o, 0%} where o is cube root of unity, is a group (X, +). Determine the
order of the group X and order of its elements.
Sol. Since, set X contains three elements hence, O(X) = 3. The order of the elements is deter-
mined as follows :
From the operation table shown in Fig. 4.5 the group (X, x) has an identity element 1
Therefore,
e O(=1 [+ 11 =1 (identity element)]
e Olm =3 [© (0)® =1 (identity element)]
e O =3 [© (0?3 =1 (identity element)]
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x 1 ® 0>
® 0K

® ® 0K
0K o> 1 ®

Fig 4.5 Operation Table.

4.8 SUBGROUPS

Let algebraic system (X, ®) is a group, where X be a nonempty set and ® be a binary operation
on X. A subset Y of X such that (Y, ®) is said to be a subgroup of X if (Y, ®) is also a group
together following conditions are satisfie,

1. ® is closed,

2. ® is associative,

3. Existence of an identity element ¢ € Y, where ¢ is the identity element of (X, ®), and

4. Existence of unique an inverse for (X, ®) and also for (Y, ®).

We can use the following notation for a subgroup,

Y <X, where (Y, ®) is the subgroup of (X. ®).

For example, algebraic system (I, +), where I is the set of integers and operation + is

usual addition operations of integers, is a group. Also, I* < I (where I* is the set of all positive

integers) and since, (I*, +) is a group and satisfy all the restrictions 1 — 4 therefore, (I*, +) is a
subgroup.

We further define, if Y and Z are two subsets of a group X, then
o YZ=(zlye Y,ze Z} and
e Y!={yl/ye Y}; inverse of Y is also the subset of group X.
e We define, Yt (for =0, 1, 2, ....) i.e.
Y =Y;Y2=YY; ....... ; similarly Y**1 = Y*Y; and Y° = {e}
where,
Y2 = {yy/y1, ¥, € Y}, and so on.
The subset Y* is defined as (Y1)~
In particular, we write, for x € X,
Y x ={yxly € Y} or,
xY = {xyly € Y}
IfY # @, then we can see that
YX=XY=X; X!'=X; Xe=¢X=g¢;
Example 4.7. Let Y is a subgroup of X, i.e. Y < X if and only if YY1 C Y.
Sol. YY'cY = ifa,be Ythenab'eY.
Necessity is obvious.
For Sufficiency,
ifaeY = aale YY'lCY;
= aale Y, ie.eec Y.
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So, eale YY1CY, thus aleY.
Similarly, ifa,be Y = ble Yandab'leY;
So, (@b D) leYY 1Y, ie. a,beY

Thus, ae Y = a'eYanda,beY = abeY, henceY becomes a subgroup.

Example 4.8. Let Y and Z are two subgroups of X, then product of YZ is a subgroup of X if and
only of YZ = ZY.
Sol. Necessary Condition. Since, Y, Z, and YZ are subgroups of X, i.e.
Y<X, Z<X, and YZ<X
Therefore, Y1'=Y, Z1=12, YZ)1=YZ,
But YZ)t1=Z7Z1Y1 =7Y
Thus, ZY =YZ
(Sufficient condition) To claim YZ < X, from given Y < X, Z < X, and YZ = ZY
Since, we have Y2=Y=Y"'! and Z2=Z=71
Assume S=YZ
Then, S2=(Y2)YZ)=YZY)Z=Y (YZ)Z (Commutivity)
= (YY) (Z7)
— V272
=YZ (~. Y?2Z2=Y7)
=S
also, S1=2Z)'=7Z1Y"
- 7Y
=YZ (. ZY=YZ)
=S
So, we have S? = S = S71, therefore S is a subgroup of X, or YZ < X.

4.9 CYCLIC GROUPS

A group (X, x) is said to be cyclic group if Vx € X, there exists a, fixed elementg such that,g" =«
for some integer n, where g is called generator of the cycle. Alternatively, a group X is said to
be cyclic with generator g if every element of X is in g*, where g* is of the form,
gl=e;gl=g;82=g%xg; .ccoeon. 18T =g XEXG e, x g (n times)
(where n € I)
o Consider an example of group (X, x), where X = {1, — 1, i, — i}. Since every element of
X is generated from one of the element 7’ of the set, i.e.,
t=12=-1;3=1;i*=-1.
Since each element can be expressed in some power of i so i is one of the generator of
the cyclic group, hence,
g =1l
Similarly, other element ‘- i’ also generates all the elements of the set X, hence other
generator, i.e., g = [~ 7], where -i is the inverse element of i.
Hence, we can say that if a is the generator of the cyclic group X then a™! is also a
generator of X.
Therefore, g = [i] or [~ i] are two generators of the cyclic group X.
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e Consider another example of group (X, x), i.e. X = {1, ®, ®?}, where o is cube root of
unity. Then group is cyclic with the generator g = [0] because, the elements of X are
expressed in 3, o, ®? respectively for 1, o, and ®?. Further, the inverse element of
o i.e., ®? is also the generator. Therefore, g = [w] and [w?].

Example 4.9. Show that group (I, +) is a cyclic group. Find its generator (where I is the set of
integers)

Sol. Since, the set I =1{...... -2,-1,0,1,2, ...... }. The elements of I can be generated from on
of the element ‘1’ie., n =1+ 1+ ...... + 1 (n times) = n. g. Since + is closed operation on
generator g, so we can write as, g+ g + ....... + g (n times) = n. g, where,

(1)° = 0 (identity element),
(D! =1, (1 itself)

(12=1+1=2,
(1»=1+1+1=3, and so on.
Similarly,

O =D =M1]1=-1,
(12 =[(1)2"1=[2]"' =-2, and so on.
Therefore, g = [1] and also [- 1].
Example 4.10. Show that group X = ({1, 2, 3, 4, 5, 6/, x,) is a cyclic group, where x, is a
multiplication modulo 7 operator.
Sol. Since the elements of the group X are generated from the element 3 and 5, and there
generations are shown below.

(3)° = 1 (identity element), Also, (5)° = 1 (identity element),
(3)! = 3, (generator itself) (5)! = 5, (generator itself)
(32 =3x,3=2, (5)2 =5 x,5 =4,

(3 =8x,3x%x,3=6, (52 =5x,5x,5=86,
(3)*=3x;3x%x,3x,3=4, (5)*=5x,5x%x,5x,5=2,
(8P =8x,3x%x,3x%x,3x%x,3=5 (5 =5x,5x,5x%x,5x%x,5=3

Therefore, g = [3] and [5].
(here 5 is the inverse element of 3)

Facts
e We can denote the cyclic group X generated by g as,
X =<g>
e A cyclic group X = <g> of order m can be define as, i.e., it consists of the powers,
X=<g>=1{g%g, g% ... , 8™}, where g™ = ¢;

e Every subgroup of a cyclic group is cyclic.
e If a is the generator of the cyclic group X then inverse element of a is also the gen-
erator of X.

4.10 COSETS

For a group (X, ®) let (Y, ®) is a subgroup of X (i.e. Y ¢ X), then we define the cosets of Y for
any arbitrary x € X are,

(Left coset) x®Y={x ®ylye Y}, and
(Right coset) Y®Ox={y ®alye Y}
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Left cosets and right cosets may or may not be equal. They are equal only for commuta-
tive groups, otherwise they are unequal.

For example, let I be the additive group of integers, i.e. (I, +) now take a subset of I is J
where J =3I, s0dJ ={...... ,—6,-3,0,3,6, ....} [J 1]

Thus cosets of J in I generated by element 0, 1, 2 (.. 0, 1, 2 € I) are correspondingly
given as,

0+Jd={...... ,—6,-3,0,3,6,....},

1+d=1{.... ,—5,-2,1,4,7, ,

2+d=1{.... ,—4,-1,2,5,8, ...},

3+d={...... ,—6,-3,0,3,6, J=0+4d

4+J={... ,—5,-2,1,4,7, ...... J=1+4d

5+Jd=1{...... ,—4,-1,2,5,8,....}=2+d

6+Jd=1{..... ,—6,-3,0,3,6, ...} =0+J

and so on, hence cosets,

0+JdJ=3+d=6+J=...... ={..... ,—6,-3,0,3,6, ....}
l+d=4+J=7T+J=..... ={...... ,—5,-2,1,4,17, ...}
2+Jd=5+J=8+J=...... = {..... ,—4,-1,2,5,8, ...}

From these cosets we can easily find the entire set I, i.e.,
I=0+dHu@+dHu@+d)
Therefore, cosets are the way of partitioning the entire set into smaller sets.

/5

Fact

Let X is a group and Y is its subgroup then, number of distinct cosets of Y is called the index
of Y in X and is denoted by [X:Y], i.e.
[X :Y] = OX)/O(Y) (index formula)
Immediate consequence of the above discussed index formula resulted a theorem known
as Lagrange theorem.

Lagrange Theorem
If Y is the subgroup of finite group X, then order of Y and index of Y in X divides the order of

the group X.

ie., 0O(Y) is divisor of O(X), and [X: Y] is divisors of O(X).

Hints

Let order of group X is n, i.e., O(X) = n. Consider any element g in X. Let g be order m, then
Y=<g>=1{g% ghg? ....... , 8" ), where gl =cand g™ =¢

Whence, the subgroup of X in particular the cyclic group generated by n, i.e.,
m =0(g) =0()) =0 g>)
that concludes the theorem.
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Hence, from the theorem we obtain that, if X is finite group and g € X then O(X) is
divisors of O(g).

Example 4.11. If X be a finite group of order n, then for every x € X, x* = ¢.
Sol. Since, O(X) = n. let m = O(g), and from the conclusion of the previous theorem,
0(@)/0X) = m/n,
Putting n = m . k, since m = O(g), and we have, g™ = ¢
SO, g" = gm.k - (gm)k =¢
Thus gh=v¢, forall g e X.
Hence, g satisfies the equation x" = ¢.

Example 4.12. If X = < g > is a cyclic group of order m, then show that
O(g") = m/gcd(k, m), where gcd(k, m) = greatest common divisor of k and m.
Sol. LetY =< g* >, then O(g*) = O(Y)

Putting, Jj = ged(k, m)

Claim, Y=<gt>=<g>

Since, for j/k and j/m we can write k. =j .k and m =j . m’
So, gh=g®=@*"e<g >

Thus, <gft>c<gd>

In order to prove the reverse inclusion, we use the fact that ged of two numbers can be
expressed into the linear combination of these two numbers, i.e.

j=pk+qgm (where p and ¢ are integers)
so we have g/ = gPktam = gbh  gam = gbk ¢ = gPk  (since g™ = ¢)
s0, g=@gVe<g>

Therefore, <g > c < gk >
Hence, claim is proved. It resulted,

Y={, g g%.." m=j.m = m =ml
= OY) = m’ = mlj = mlged(k, m)

4.11 GROUP MAPPING

Suppose there are algebraic systems of the same types, defined on X and Y, e.g., groups, rings,
etc. A mapping /: X ® Y which preserves all operations is called homomorphism.

Let (X, ®) and (Y, [J) are two groups, then a mapping f: X — Y such that for any x,,

x,€ X
flx; ® x,) = fley) O Alxy)

is called a group homomorphism from (X, ®) to (Y, ).

e If group homomorphism fis surjective then, fis called epimorphism.

e If group homomorphism f is injective then, f is called monomorphism.

e If group homomorphism f is bijective then, fis called isomorphism.

We can also have, if Y = X, then a mapping

g:X->X

is called an automorphism of X if it is also isomorphism, otherwise it is called endomorphism
of X.
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Now we discuss the properties of a group homomorphism, that are,
(i) Preservance of identities

(i1) Protection of inverses

(it7) Shield of subgroups

Now we shall prove above facts,

(i) Let ¢, and ¢, are the identities of the groups X and Y correspondingly, then fig ) = Q-
To prove this fact, assume x € X then its image flx) € Y, so

flx) . ¢, = flx) (since ¢, is the identity element of Y)
=flx.¢) (since ¢, is the identity element of X)
=flx) . fle,)
flx) . ¢, = flx) . ﬂqy)
= ¢ =1lg)

(i1) To prove the fact that for any x € X, flx~!) = [flx)]!, assume x € X thus x1e X
therefore

flx ® x71) = fle) (. x®xl=g¢)
=g, (. flg)=¢)
= flo) 0 flxh) =g,
Conversely,
flat ® x) = fle,) (. x1Ox=¢)
= =g, (. flg)=¢)
= flrh) O flx) = ¢,

That implies, fleh) = [Rx)] !

(iit) Assume, (S, ®) is the subgroup of (X, ®) with identity element ¢ _ie., ¢ € S.
Since, fle,) = ¢, ie. ¢, € fS). Now, for any x € S, x 1 e S, and fix) e AS) and also Ax™1)
e fI8) = [fw]! e AS). Further for x,, x, € S, x; ® x, € S and so for flx,), flx,) € fS),
and flx; ® x,) = flx;) O flxy) € AS). Hence, (AS), [) is a subgroup of (Y, ) due to every
element of AS) must be written as flx,) for some x, € S.

Example 4.13 Consider two groups (R, x) and (R*, x) where R is the set of reals and R* is the
set of positive reals and there is a mapping f: R — R*, i.e., f(x) = e for all x € R. Then prove
that R and R* is not isomorphism to each other.

Sol. From the definition of group isomorphism if f is bijective (one — one and onto) and f{x x y)
= flx) x fly) then group R and R+ is isomorphism to each other.

e Assume x, and x, € R, then flx,) = e*! and flx,) = ™2 If flx,) = flx,) then e*! = &2, it
means, x; = X,. Hence, f'is one — one. Also, since flx) = e* =y (¢ R*) = log y = x or,
fllog y) = e1°8Y = y. It means, for every element y of set R* has a preimage log y, which
is real, hence it is in R. Thus, fis also onto.

Therefore, [ is surjective.

e® To prove second condition, let x, y € R, so flx x y) = &9 = (e*), and flx) x fy) = e* x
e’ =e*, So, flx +y) = flx) x fly).

Hence, we conclude that groups (R, x) and (R*, x) are not isomorphism to each other.
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Reader must note that if we change the first group as (R, +), then R and R+ are isomor-
phism to each other. Because, clearly mapping /: R — R* is surjective. Let x, y € R, so flx +y)
=" =¢¥eY, and flx) x fly) =e* x &¥ =e*W. So, flx + y) = flx) x f{y). Therefore, groups (R, +) and
(R*, x) are isomorphism to each other.

4.12 RINGS

In the previous sections we have discussed the algebraic systems that are defined with one
binary operation only. In this section we will discuss different algebraic systems viz. rings,
fields, etc. that are defined with the composition of two binary operations additions and mul-
tiplication denoted respectively by + and e.

Ring
Let X be an nonempty set and + and e are two binary addition and multiplication operations
on X, then algebraic system (X, +, o) is called a ring, if it holds following properties :

1. (X, +) is a Abelian group,

[Closure, Associative, identity and Inverse law for addition and Commuta-
tive]

2. (X, o) is a semigroup, and

[Closure and Associative law for multiplication]

3. The operation e is distributive over the operation +, i.e., for any x, y and z € X

xoe(y+z)=(xoy)+(xeo2) [Left Distributive law]

or, (y+z)ex=(yex)+(zex) [Right Distributive law]

Property 1 assert that algebraic structure (X, +) is a abelian or commutative group,
whose natural element will be denoted by 0, i.e.,

O=x+(—x)forallx e X, and x+0=xforallxe X.

So, (X, +) is marked as the additive group of the ring.

In addition to the properties 1, 2, and 3 if commutative law holds for multiplication
also, i.e.,

xey=yeoyx forallx,ye X

then (X, +, o) is called a commutative ring.

Further if (X, o) has an identity element 1. It means, once semigroup becomes monoid,
then ring (X, +, o) is called a ring with unity.

Assume X is the set of real numbers (R) or set of integers (I) then, algebraic system
(R, +, o) and (I, +, ®) are the examples of rings. Since, (I, +) is a Abelian group, (I, e) is a
semigroup and operation e is distributive over operation + in the set I. Hence, (I, +, o) is a
ring. Further, algebraic structure (I, o) has an identity element 1 so (I, ) is also a monoid.
Therefore, (I, +, o) is a ring with unity. It is also a commutative ring, because operation
multiplication (e) holds commutativity over L.
Example 4.14. Let set X = 21 where I is the set of integers, i.e., X ={....-4,-2,0, 2, 4, .....}, then
(X, +, .) is not a ring with unity, but it is a commutative ring.
Sol. Since X is the set of even integers. We first check whether algebraic system (I, +, o) is a
ring. Since, (X, +) is a Abelian group, (X, e) is a semigroup, and operation e is distributive over
+ hence, (X, +, o) is a ring.
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Now check whether (X, o) is a monoid or not. If (X, e) is a monoid then it should have an
identity element 1. It means, for all x € X, there exists an unique y, i.e., x ® y = x then y is
called an identity element. Since y =1 ¢ X or for no y, x ¢ y = x. So it has not an identity
element 1. Therefore, (X, +, o) is a ring without unity.

Further, (X, o) is commutative, i.e., for all x, y € X, x e y = y e x, hence a commutative
ring.

Example 4.15. Let Y = {0, 1, 2, 3, 4, 5}, then algebraic system (Y, +, x,) is a ring, a ring
without unity, and a commutative ring.

Sol. Construct the operation table for both the operation addition modulo 6 (+4) and multipli-
cation modulo 6 (x).

w|lo 1 2 3 4 5 xx|0o 1 2 3 4 5
oo 1 2 3 4 5 0olo 0 0o 0 0 0
11 2 3 4 5 0 1o 1 2 3 4 5
2|12 3 4 5 0 1 20 2 4 0 2 4
3|38 4 5 o0 1 2 3|10 3 0 3 0 3
414 5 0 1 2 3 410 4 2 0 4 2
5(15 0 1 2 3 4 510 5 4 3 2 1

Fig. 4.6 Operation Table.

From the operation table shown in Fig. 4.6 (Y, +4) is Abelian, because,
e Each element in the table belongs to set Y hence operation +
® +is associative.

e Element 0 is an identity element. (Shown in bold at first column).
°

Occurrence of 0 (identity) in each row of table +, implies existence of the inverse
element for each element of Y.

¢ 1s closed.

e Entries of corresponding rows and columns are same hence +; is commutative.

Also (Y, x,) is a semigroup, because,

® x. is closed.

e Since, 2 x4 (3 xc4) = 0 x4 2 =0. Also, (2 x4 3) =0, (2 x5 4) =250 (0 x4 2) = 0. So this is

true for all elements of Y, hence, operation x6 is associative.
Distributive law holds, i.e. x, is distributive over +, i.e., let a, b, ¢ € Y then
a xg (b +gc) =(axgb) +4(a xgc)

where, (b +¢ ¢) returns least nonnegative number when (b + ¢) is divisible by 6. So, LHS
returns least nonnegative number when a x (b + ¢) is divisible by 6, that is RHS.

Since (Y, x,) does not posses an identity element 1 hence, algebraic structure (Y, +¢, x,)
is not a ring with unity. Although it is a commutative ring, due to the correspondence be-
tween rows and columns of operation table for x..
Using definition of the ring we obtain following results,

o From the property of the additive group (X, +) of the ring, there is an existence of

zero — element of X i.e.
x+0=x forall x e X
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e There exists precisely one element — x, i.e.
x+(=x)=0 for all x € X, or
instead of y + (— x) we simply write y — x for any x, y € X.
e For a natural number n (1, 2, 3...... ) we put

NeX=X+X+....... + x (n times)

e For a negative number n’ (-1, -2, ....... ) we put

nNex=(Fn)ex=ne(=x)==x)+-x)+......... + (= x) (n times)
e For the number 0, we put, for any x € X

Oex=x (the zero — element of X)
o Let I is the set of all integers (0, +1, +2,........ ,tTn,...... ) then for all p, g € Tand x, y

e X, we have
P+q@ex=pex+qex; pelgex)=(pqx;

and gx+y)=qx+qy

o Therefore, it is easy to verify that,
xe(=y)==@y); x)ey=-@y); Cx)(y)=x.y;

also, Xe(y—2)=xey—xXez;(y—2)eX=yex—2ex
also, oy +yg+ .nnn. FY) =AY F XYy F e +xy,
also, Yy +Yg+ oo FY) X =Y XAV X+ +y,%

further we have,
xp.xQ=xp+Q=xQ.xp;

also, (xP)2 = xP4 ;
e If (X, +, ») is a commutative ring, i.e., x « y =y « x for all x, y € X then
oyl =uP eyl
Ring with zero divisors
Let (X, +, «) be a ring. If x, y ¢ X such that x . y = 0 (Additive identity) for x # 0 and y # 0, then
ring is zero divisor ring and the element x is called zero divisor of ring.

Consider the ring (Y, +4, x,) that was discussed in previous example, this is a zero
divisor ring. Because, searching of two elements x, y € Y i.e., x x4y should be zero provided x
# 0 and y # 0. If we take two elements 2 and 3 from set Y then (2 x4 3) = 0 (additive identity),
another pair of elements is 4 and 3 i.e., (4 x4 3) = 0.

Ring without zero divisor
Let (X, +, «) be a ring. If x, y € X such that x . y = 0 (Additive identity) for either x =0 ory = 0,
then (X, +, «) is a ring without zero divisor.

For example, (I, +, ) is a ring without zero divisor. Because, for any pair of elements x,
y € I, x € y = 0 only when either element x = 0 or y = 0, or both are zero.

Integral Domain

A ring (X, +, o) is called an integral domain if,
e It is a commutative ring,
e It is a ring with unity, and
e It is a ring without zero divisors.
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For example, ring (I, +, .) is an integral domain but ring (21, +, «) is not an integral
domain because it is not the ring with unity.

Also from the previous example ring (Y, +¢, x,) is not an integral domain because, (Y, +,
xg) is not a ring with unity. Although this a commutative ring and not a ring with zero divisors.

Invertible element
Let (X, +, ¢) be ring and an element x € X, then x is said to be invertible element if there exists
an element y € X i.e., x « y = 1 (multiplicative identity).

For example, consider a ring (I, +, «) of integers. Take an element 2 from I, now find an
elementyinl, ie., 2.y =1.Itis only possible wheny =1 ¢ 1. Hence, element 2 is not invertible
in this ring. Consider another element 1 € I, then 1 « y =1 « y =1 = I so 1 is invertible.
Similarly, — 1 is also invertible. Therefore, [- 1, 1] is the set of invertible elements for the ring
{T, +, o).

Consider another example of ring of reals i.e., (R, +, ). In the set R all elements are
invertible because, let a € R then there exists an element b € Rie.,a«b=1=5b=1/a € R.

Boolean ring
Aring (X, +, ) is called a Boolean ring if, for all x € X, we have x? = x (Law of Idempotent]. Form
the definition of Boolean ring if every element is idempotent then following conditions hold,
@)x+x=0forallxe X
@)x+y=0=x=yforx,ye X
(ii1) Ring X is commutative
(iv) Ring X with more than two elements contains divisors of zero.

Proof
(i) Since, x%=x = (x+xP=x+x [by replacing x by (x + x)]
LHS =  (c+x) @+
= xlx+x)+ x(x + x) [Distributive law]
=  2Z2+x?+x%+x2
= X+X+X+X=X+X [ x?2=x]
Hence by cancellation = x+x=0

[Such that every element of X is additive inverse to its own (- x = x)]
(i) Since, x+y=0 = x+y=x+x [.. x+x =0 from condition (i)]
= y=x [left cancellation law]
(iii) Let x, y € X so we have
x+y=@+y2=x+y) (x+y)

=  xlx+y)+ylx+y) [Distributive law]
= Z+xy+yx+y?
So, X+y=x+xy+yx+y [. 2=x&y%=}y]
By cancellation, we obtain
xy+yx=0
= Xy=—-yx=yx [.. —y =y self inverse]

= Xy=yX
Therefore, ring is a commutative ring.
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(iv) If ring X contains more than two elements then there exist distinct elements 0, x and
y. Since x +y # 0, if x + y = 0 then x = y which contradicts the facts that x and y are
distinct.

Now consider, x.y,if x oy =0 then x and y are zero divisors.

Conversely, ifx e y #0thenxy (x +y) = x y x + x y? [Distributive law]
=  xxy+xy? [. xy=yx]
=  xy+xy [ 2?=x&y? =yl
= 0 [from (77)]

Therefore, x y and x + y are zero divisors.
Example 4.16. Show that a Boolean ring with more than two elements has zero divisors.
Sol. Let a ring B in which every element is idempotent (.. x2 = x for any x € B) is called a
Boolean ring. A Boolean ring is commutative and also x + x = 0 for any x € B.
Let B contain more than two distinct elements these are 0, a, and b. Consider a + b and a b
a+b#0 for a+b=0 = a=b
If a b = 0, then a and b are zero divisors and if a b #0,thena b (@ + b) =a b a + a b?
= aba)+abd
= al@b)+abd
= a?b+abd
= ab+ab=0
Hence a b and a + b are zero divisors.

4.13 FIELDS

An algebraic system (X, +, «), where + and « are two usual binary addition and multiplication
operations, is called a field if,

1. X, +, ») is a commutative ring with unity and

2. Every nonzero element of X is invertible.

For example, let X is the set of real numbers (R) then (R, +, ¢) is a field. Consider
another examples, assume X is the set of all complex numbers (C) or set of rational numbers
(Q) then algebraic structure (C, +, «) and (Q, +, «) are fields. But, if X = I or set of integers then
algebraic structure (I, +, ) of integers is not a field, because (I, +, «) is a commutative ring and
a ring with unity but, not every nonzero element of I is invertible.

Example 4.17. Show that algebraic system (Y, +, x,) is a field, where Y = {0, 1, 2, 3, 4] and
the operations +, and +; are addition modulo 5 and multiplication modulo 5 respectively.
Sol. Since, algebraic system (Y, +;, x;) is a ring. Now we will show that this is a commutative
ring with unity and every nonzero element of Y is invertible. To prove that we construct the
operation table for the operation x, that is shown below (Fig. 4.7)

X 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Fig. 4.7 Operation table for X
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Form the operation table our observations is follows,

e It has an identity element 1, so it is a ring with unity.

e Rows are similar to the corresponding columns, i.e. row 1 = column 1, row 2 = col-

umn 2, and others. Hence, ring is commutative.

e Every nonzero element of Y is invertible, i.e.

Let 171 is y so, 1 x, y = 1(identity) = y = 1,s0 17! = 1.

Similarly, 2 will be 3 [.  2x,3 =1], 3 willbe 2 [. 3x; 2 =1], 4 will be 4 [.. 4x,
4 = 1]. Therefore, (Y, +;, x;) is a field.

This ring is an integral domain because it is a commutative ring with unity. Also it is a
ring without zero divisors, due to entries of the first column of the operation table which
shows that for all x € Y, x x, y = 0 when y = 0 and whatever the x is.

Example 4.18. Show that the algebraic system (Y, +,, x,) is not a field where Y = (0,1, 2, 3, 4,
5.

Sol. Since we have already saw that algebraic system (Y, +4, x,) is a ring (example 1.30). To
show that (Y, +4, x,) is a field then it should be a commutative ring with unity followed that
every nonzero element of Y is invertible. Observe the operation table for x,.

Xg 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

o Operation table posses an identity element 1 hence it is a ring with unity.

e Rowl = column 1, row 2 = column2, and so on hence ring is commutative.

e Every nonzero element is not invertible, for example 2, 3, and 4 are not invertible. It
means fornoy € Y, wehave 2 x,y =1,3 x,y=1,and 4 x,y = 1.

Therefore, (Y, +, x,) is not a field.

Skew Field

Let (X, +, ) be a field then it is called a skew field if it a ring with unity and where every
nonzero element has multiplicative inverse. Hence, if a skew field is commutative then it
becomes a field.

For example, let M be a set of matrices i.e.,

u+iv w+ix
M= (—w+ix u—iv)
where u, v, w, and x € R and the binary operations are usual addition (+) and multiplication
(o) then (M, +, ¢) is a ring. It is a ring with unity, where unity matrix of M is,

M. = 1 0y (1+0: 0+3i0

I7lo 1) \-0+0i 1-i0
and every nonzero element has a multiplicative inverse, since M~! exists if M is singular
matrix or | M | #0. Since, | M | = u? + v + w? + x% # 0. Therefore, (M, +, «) is a skew field.
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Example 4.19. Test the following statements are true or false.

1. Ifx is an element of ring and m, n € N, then (a™)* = a™". [Truel
2. Every subgroup of an abelian group is not necessarily abelian. [False]
3. The relation of isomorphism in the set of all groups is not an equivalence relation.
[False]
4. If ® is a binary operation on any set X, then x ® x = x for all x € X. [False]
5. If ® is any commutative binary operation on any set X, then
XYy ®2)=@Y ®2) ®x for all x, y, and z € X. [Truel
6. If ® is associative thenx ® (y ® z2) =(y ® z2) ® x forall x, y, and z I X. [False]

Example 4.20. Test the following statements are true or false.
1. Every binary operation defined over a set of one element is both commutative and

associative. [True]
2. A binary operation defined over a set X assigns at least one element of X to each or-
dered pair of elements of X. [False]
3. A binary operation defined over a set X assigns exactly one element of X to each or-
dered pair of elements of X. [Truel
Example 4.21. Prove that a group G is abelian, if for a, b € G
@) a*=¢ (i) (a b)? = a? b2
Gi)blalba=¢
Sol.
(1) Since, a?=c¢ = al=a

Further sincea!=aandb1=bthenab=alb1=({ba)l=5ba (because (ba)l=>a).
Hence G is abelian.

(i1) Since (a b)? = a2 b? = abab=aabbd
= ba=ab [by cancellation law]
Hence G is abelian.
(zii) Given, blalba=¢
Since a b can be written as a b ¢ or
ab=abe=abblalba [replace ¢ by b1 a1 b al
= abbdbV)(@'ba) [. bbl=¢]
= (aaDHba
= ba [« aal=g¢

Hence G is abelian.
Example 4.22. Examine whether the set of rational number (1 + 2p)/(1 + 2q), where p and q
are integers, forms a group under multiplication.
Sol. Assume two rational numbers are (1 + 2p)/(1 + 2g) and (1 + 2P)/(1 + 2Q), where p, q, P,
and Q are integers. So we find, [(1 + 2p)/(1 + 2¢)] - [(1 + 2P)/(1 + 2Q)] = (1 + 2p + 2P + 2pP)/(1
+ 29 + 2Q + 2qQ) that returns again a rational number. Therefore set is closed under multi-
plication. Associative property is also satisfied that can also verified. For identity,

1=1+2.0/1+2.0)

and the inverse of (1 + 2p)/(1 + 2q) is (1 + 2¢)/(1 + 2p).

Hence set of rational numbers of the form (1 + 2p)/(1 + 2¢q) forms an abelian group
under multiplication.
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EXERCISES

Let X = {0, 1, 2, 3, 4} then show that,
(i) Algebraic structure (X, +;) is an Abelian group and

(ii) Algebraic structure (X, *;) is also an Abelian group.

where binary operations ‘+;” and *,” are addition modulo 5 and multiplication modulo 5 respec-
tively.

Is the algebraic structure (X, *;) forms an finite Abelian group where the set X = {1, 2, 3, 4, 5,
6}. Determine the order of the group.

Define homomorphism on a semigroup. Explain when a homomorphism becomes an isomor-
phism.

Define a cyclic group. Show that following groups are cyclic,

(i) Algebraic structure ({1, — 1, i, — i}, ¥) where \/; =-1.

(i1) Algebraic structure X where ® is cube root of unity.

Show that group (C, *7) is a cyclic group, where set C = {1, 2, 3, 4, 5, 6}.

Define the order of an element in a group. Find the order of each element in the following
multiplicative group,

@1, -1,4,-1}, % @) (1, o, o, *).

Let (R*, ®) is an algebraic structure where operation ® is define as, a ® b = ab/2 for all a, b €
R*, then (R*, ®) is an Abelian group.

Consider M = A A
A A),
X2

Define a set of matrices, where A is nonzero real number. Then prove Algebraic structure (M,
*) where * is ordinary multiplication operation is a group.

Prove that nth root of unity forms a group under ordinary multiplication. Show also it is an
Abelian group.

Find all the subgroups of X generated by the permutations

1 2 3 4 d a b ¢ d
2 31 4) 304 (3 2 4 9
(@) (i)
Let (X, *) be a group and y € X. Let f : X — X be given by fix) =y * x * y~! for all x € X then show

that f is an isomorphism of X into X.

If an Abelian group has subgroups of orders m and n, then show that it has a subgroup whose
order is the least common multiple of m and n.

Define the left coset and the right coset. If (I, +) is a additive group of integers and the set
H=H{... -6,-3,0,3,6, ... } then show that

I=H+00uH+1 uUH + 2).
Define a ring with unity. Is the set of even integers i.e., J = 2I = {...... -4,-2,0,2,4, ...... }is a

ring with unity under the binary operation addition and multiplication. Is the ring (J, +, o) is
commutative also.

What do you understand by zero divisors of a ring? Give an example of ring with zero divisors
and without zero divisors.

Define a field. Prove that ({0, 1, 2, 3, 4}, +;, *;) is a finite field.
What is a skew field? Is every skew field is a field. If not, give an example.
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5 Propositional Logic

5.1 INTRODUCTION TO LOGIC

Study of logic is greatly concerned for the verification of reasoning. From a given set of state-
ments the validity of the conclusion drawn from the set of statements would be verified by the
rules provided by the logic. The domain of rules consists of proof of theorems, mathematical
proofs, conclusion of the scientific theories based on certain hypothesis and the theories of
universal laws. Logic is independent of any language or associated set of arguments. Hence,
the rules that encoded the logic are independent to any language so called rules of inference.

Human has feature of sense of mind. Logic provides the shape to the sense of mind.
Consequently, logic is the outcome of sense of mind. Rules of inference provide the computa-
tional tool through which we can check the validity of the argument framed over any lan-
guage. (Fig. 5.1) Logic is a system for formalizing natural language statement so that we can
reason more accurately.

Sense of Mind

Rules of Inference
Validation of the
Arguments

In this chapter we start our discussion from the beginning that, how we provide the
shape to the logic. In other words, how we represent the rules of inference. A formal language
will be used for this purpose. In a formal language, syntax is well defined and the statements
have not inherited any ambiguous meaning. It is easy to write and manipulate. These features
of the formal language are the prime necessities for the logic representation. Logic is

Fig. 5.1
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manuscripted in symbolic form (object language). Arguments are prepared in natural language
(English/Hindi) but their representation (symbolic logic) need object language and so they are
ready for validation checking computation.

Natural Language
A 4

Object Language

Fig. 5.2

Section 5.2 starts with discussion of statements and symbolization of statements.

5.2 SYMBOLIZATION OF STATEMENTS

A statement is a declarative sentence. It assigns one and only one of the two possible truth
values true or false. A statement is of two types. A statement is said to be atomic statement if it
can not be decomposable further into simple statement/s. Atomic statements are denoted by
distinct symbols like,

ABC, ..o X, Y, Z
a,b,c, i, X, ¥, 2
ALLA2, oo,
Bl1,B2,..ccccoiiiiii,
Etc

These symbols are called propositional variables. Second type of statements are com-
pound statements. If a statement is formed over composition of several statements through
connectives like conjunction, disjunction, negation and implication etc. then it is a compound
statement. In other words statements are closed under connectives. In the latter section, we
shall discuss the connectives in more detail. The compound statement is denoted by the string
of symbols, connectives and parenthesis. Parenthesis is used to restrict the scope of the con-
nective over symbols. The compound statement also assigns one and only one of the two possi-
ble truth values #rue or false. That will be the out come of the truth value attain from all the
statements of the compound statement.

Therefore, set of statements both atomic and composite, formed language called object
language so that we can symbolize the statements.
Example 5.1. Illustrates the meaning of the statement.
1. India is a developing country.
. L K Adwani is the leader of USA.
. Henry Nikolas will be the richest person after 10 years.
. False never encumbered truth.
. It will rain today.
. Leave the room

N O O A W

. Bring my coat and tie.
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The sentences 1, 2, 3, 4 and 5 are statements that have assigned the truth value either
truelfalse on there context. For example sentence 5 is a statement and has assign value true if
it will rain today and false if there will no rain today. The sentences 6 and 7 are command
sentences so they are not considered as statement as per the definition above.

Since, we admit only two possible truth values for a statement therefore our logic is
sometimes called a dual-value logic.

As we mention above, throughout the text we shall use capital letters A, B, .....X, Y, Z to
represent the statements in symbolic logic.

For example,

Statement (1):  Delhi is capital.

Symbolic logic: D

Here the statement definition ‘Delhi is capital’ is represented by the symbol‘D’. Conse-

quently symbol ‘D’ corresponds to the statement ‘Delhi is capital’. That is, the truth value of
the statement (2) is the truth value of the symbolD’.

Statement (2):  Hockey is our national game.

Symbolic Logic: H

The statement (2) is represented by the symbolic logic ‘H’ that is, the truth value of ‘H’
is the truth value of the statement (2).

Since, compound statements are formed by use of operator’s conjunction, disjunction,
negation and implication. These operators are equivalent to our everyday language connec-
tives such that ‘and’, ‘or’, ‘not’ and ‘if-then’ respectively.

Conjunction (AND/A)

Let A and B are two statements, then conjunction of A and B is denoted as A A B (read as “A
and B”) and the truth value of the statement A A B is true if, truth values of both the state-
ments A & B are true. Otherwise, it is false.

These conditions of the conjunction are specified in the truth table shown in Fig. 5.3.

A B AAB
F F F
F T F
T F F
T T T

Fig. 5.3 (Truth table for conjunction)

Conjunction may have more than two statements and by definition it returns ¢rue only
if all the statements are true. Consider the example,

Statement (1) : Passengers are waiting (symbolic logic) P

Statement (2) : Train comes late. (symbolic logic) T

Using conjunction connective we obtain the compound statement,

‘Passengers are waiting “and” train comes late’

Given statement can be equally written in symbolic logic as, P A T
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Take another example,

Statement (1) :  Stuart is an efficient driver (symbolic logic) K

Statement (2) : India is playing with winning spirit (symbolic logic) S

Then the compound statement will be ‘Stuart is an efficient driver “and” India is playing
with winning spirit’. We can also refer the compound statement in symbolic logic as, K A S. In
fact, the combination of statements (1) and (2) are appear unusual but logically they are repre-
sented correctly.

It must also be clear that, the meaning of the connective ‘and’ (in natural language) is
similar to the meaning of logical ‘AND’. Since conjunction is a binary operation s.t. truth val-
ues of KA S and of S A K are same (from the previous example). Then, the word ‘and’ of natural
language must have the similar meaning.

Consider another example,
‘T reach the station late “and” train left’.

Here conjunction ‘and’ is used in true sense of ‘then’ because one statement performs
action followed by another statement action. So, the true sense of the compound statement is,

‘I reach the station late “then” train left’.

So, readers are given advice to clearly understand the meaning of connective ‘and’.

Disjunction (OR/V)

Let A and B are two statements then disjunction of A and B is denoted as A v B (read as “A Or
B”) and the truth value of the statement A v B is true if the truth value of the statement A or
B or both are true. Otherwise it is false.

These conditions of the conjunction are specified in the truth table shown in Fig. 5.4.

Disjunction may have more than two statements and by definition it returns truth value
true if truth value of any of the statement is #rue.

A B AvB
F F F
F T T
T F T
T T T

Fig. 5.4 (Truth table for disjunction)

However the meaning of disjunction is logical ‘OR’ that is similar to the meaning of
connective “or” of natural language. In the next example we see the meaning of disjunction is
‘inclusive-OR’ (not ‘exclusive-OR).

For example, consider a composite statement-

‘Nicolas failed in university exam “or” he tells a lie’.

Here the connective “or” is used as its appropriate meaning. That is, either ‘Nicolas
failed in university exam’ or ‘he tells a lie’ or both situation occurs ‘Nicolas failed in univer-
sity exam’ and also ‘he tells a lie’. Equivalently, we represent above statement by symbolic
logic N v T. (where symbol ‘N’ stands for Nicolas failed in university exam; and symbol ‘T
stands for he tells a lie)
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Consider another example,
‘T will take the meal “or” I will go’.

Here sense of connective “or” is exclusive-OR. The statement means either ‘I will take
the meal’ or ‘I will go’ but both situations are not simultaneously occurs.

Negation (~)
Connective Negation is used with unary statement mode. The negation of the statement in-
verts its logic sense. That is similar to the introducing “not” at the appropriate place in the
statement so that its meaning is reverse or negate.

Let A be an statement then negation of A is denoted as ~ A (read as “negation of A” or

“not A”) and the truth value of ~ A is reverse to the truth value of A. Fig. 5.5 defines the
meaning of negation.

~A

F T

Fig. 5.5 (Truth table for negation)

For example, the statement,
‘River Ganges is now profane’. ‘G’ (symbolic representation)

Then negation of statement means ‘River Ganges is sacred’ or ‘River Ganges is not
profane now’. That is denoted by symbolic logic ~ G.

Implication (—)

Let A and B are two statements then the statement A — B (read as “A implies B” or “if A then
B”) is an implication statement (conditional statement) and the truth value of A — B is false
only when truth value of B is false; Otherwise it is ¢true. Truth values of implication are speci-
fied in the truth table shown in fig 5.6.

A A—>B

= 3 " W

Al = = =
Al = 8l 1l L

T

Fig. 5.6 (Truth table for Implication)

In the implicative statement (A — B), statement A is known as antecedent or predeces-
sor and statement B is known as consequent or resultant.
Example 5.2. Consider the following statements and their symbolic representation,

It rains : R

Picnic is cancelled P

Be wet : w

Stay at home : S
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Write the statement in symbolic form.
(i) If it rains but I stay home. I won’t be wet.
Given statement is equivalent to,
= (If it rains but I stay home) “then” (I won’t be wet).
= (Ifit rains “and” I stay home) “then” (I won’t be wet).
= RAS)—>-W)
so (R AS) - ~ W will be its symbolic representation.
(ii) I'll be wet if it rains.
Then the equivalent statement is
= If wet then rains (is a meaningless sentence)
So the meaningful sentence is,
= (If it rains) “then” (I will be wet).
= R — W will be its symbolic representation.
(iii) If it rains and the picnic is not cancelled or I don’t stazy home then I'll be wet.
Given statement is equivalent to,
= ((If it rains “and” the picnic is not cancelled) “or” (I don’t stay home)) “then” (I'll be
wet)
= (RA~P)v~8S)->W
(iv) Whether or not the picnic is cancelled, I'm staying home if it rains.
Above statement is equivalent to.
= (Picnic is cancelled “or” picnic is not cancelled), (I'm staying home if it rain).
= (If it rain “and” (picnic is cancelled “or” picnic is not cancelled)) “then” (I'm staying
home).
Now it is easier to symbolize the sentence.
= RAPvVv-~P))->S.
(v) Either, it doesn’t rain or I'm staying home.
= ~RvS
(vi) Picnic is cancelled or not, I will not stay at home so I'll be wet.
Above statement is equivalent to,
= (Picnic is cancelled “or” picnic is not cancelled) “but” (I will not stay home)
“s0” (I'll be wet).
= (If (picnic is cancelled “or” picnic is not cancelled) “and” (I will not stay home))
“then” (I'll be wet).
= (Pv~P)A~S)—>W

5.3. EQUIVALENCE OF FORMULA

Assume A and B are two statement formulas (symbolic logic) then formula A is equivalent to
formula B if and only if the truth values of formula A is same to the truth values of formula B
for all possible interpretations.

Equivalence of formula A and formula B is denoted as A < B (read as “A is equivalent
to B”).

Now we discuss a theorem that shows the equivalence of formulas. And, also purposely
we state the theorem here. As we see that basic connectors are conjunction (A), disjunction (v)



108 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

and negation (~). Other connectors like implication (—), equivalence (<) that are also used to
form a compound statement they are all represented using basic connectors ( A, v, ~).

Theorem 6.1

(i1)(A—>B) < (~AvB) (i) (A=B) & (AAB) v(~AA~B)
(iii) (A®B) & AA~B)v(~AAB) (ivV(A~B) (A —->B AB-A)
(WAAB) < ~(~Av~B) (wi)AvB) ~(~AA~B)

The equivalence of illustrated formulas (i) — (vi) can be proved by the truth table.

(for the truth table see section 5.4.5)

For example, verify the equivalence between the LHS and RHS of the Implication
formula shown in (7). Construct the truth table and compare the truth values of both the
formulas shown in column 3 and 5. We observe that for all possible interpretations of
propositional variables A and B truth values of both the formulas are same.

A B A->B| ~A|(~AVvB)

F F T T T

F T T T T

T F F F F

T T T F T

1 2 3 4 5 «— Column number
Fig. 5.7

Similarly verify other equivalence formulas.
(i) AB) o (AAB)v(~AA~B)
(Equivalence formula)

A B |(A=B)| (AAB) [FAA~B)|(AAB) v (~AAa~B)
F F T F T T
F T F F F F
T F F F F F
T T T T F T
Fig. 5.8

(i) A®@B) @ AA~B)v(~AAB)
(Exclusive-OR formula)

A B [(A@®B)|AA~B)|(~AAB) [AA~B)v (~AAB)
F F F F F F
F T T F T T
T F T T F T
T T F F F F

Fig. 5.9
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(iv) Here, the LHS formula (A <> B), which read as “A if and only if B” is called a
biconditional formula. The formula (A < B) return the truth value #rue if truth values of A
and B are identical ( that is either both #rue or both false).

A B A-B)|([A-B [ B->A|A-B AB-A)

F F

F T F T F F

T F F F T F

T T T T T T

1 2 3 4 5 6 «— Column number

Fig. 5.10

Truth table shown in Fig. 5.10 proves the equivalence formula i.e.
AcsB)esA—-BAB—-A
Similarly verify the equivalence formula listed (v) and (vi).

5.4. PROPOSITIONAL LOGIC

Continuation to the previous section 5.2 symbolization of the statements, we now define the
term propositional logic. Propositional logic has following character,

e It contains Atomic or Simple Statements called propositional variables.

viz. (A, B, C, ....... Jor(a,b,c, ........ )or (Al, A2, A3, ...... ) or (B1, B2, .....) etc.
e It contains Operator Symbols or Connectors.

viz. AV, ~, —>
e It contains Parenthesis.

i.e (,and )

e Nothing else is allowed.

Thus statements are represented by the propositional logic called statement formula. A
statement formula is an expression consisting of propositional variables, connectors and the
parenthesis. The scope of propositional variable/s is/are controlled by the parenthesis.

Let X is a set containing all statements and Y is another set consists of truth values
(true or false). Let we define the relation fi.e.,

[ X®X->Y
where, ® is a boolean operator viz. A, v, ......, then relation f illustrates the mapping of com-
pound statements that are formed over set X using operator ® to set Y that is either ¢true (T) or
false (F). Assume statements A & B are in X then,
f(A, B) - {T, F}
or, ® (A, B) - (T, F}

Now the question arises, how many different boolean operators are possible for ®. Since,
we are talking about dual-logic paradigm so each statement has two values T or F. For two
statements total numbers of possible different boolean operators are 22’ = 24 = 16. These are
shown in Fig. 5.11.
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A B ®l ®2 ®3 ®4 ®5 ®G ®7 ®8 ®9 ®10 ®ll ®12 ®13 ®14 ®15 ®16

F|F|F|F|F|F|T|F|F|[F|T|T|T|[F|T|T|T]|T

F|T|F|F|F|T|F|T|F|T|F|T|F|T|F|T|T]|T

T|F|F|F|T|F|F|F|T|T|T|F|F|T|T|F|T]|T

T|T|F|T|F|F|F|T|T|F|F|F|T|T|T|T|F|T
Fig. 5.11

In general if set X has n statements then there are as many as 22" different combina-
tions or formulas can be seen.

5.4.1 Well Formed Formula (wff)
That valid statement that has following characteristic is called well formed formula.
o Every atomic statement is a wff.
e If Ais a wffthen ~ A is also wff.
o If A and B are wff then (A ® B) is also wff . (where operator ® : ~, A, v, =)
For example statement formula A A B is not a wff while (A A B) is a wff.
o Nothing else is a wff.

Example 5.3
(i) (A A B) — C is not a wff (due to missing of parenthesis), while (A A B) — C) is a wff.
(i) (A A) is not a wff, because A A is not a wff.
(iii) ~ A v B is not a wff, while (~ A v B) is a wff.

5.4.2 Immediate Subformula
Let A & B are wff, then
(@) if A is a atomic statement then it has no immediate subformula.

(i) the formula ~ A has A as its only immediate subformula i.e. ~ (A A B) has (A A B) is
immediate subformula.

(ii1) the formula (A ® B) (where ® : ~, A, v ) has A and B as its immediate subformula. For
example,

((AvB)A~C)has (A v B) and ~ C are immediate subformula.

5.4.3. Subformula
(2) all immediate subformula of A are also subformula of A.
(i1) A 1s a subformula of itself.

(i17) if A is a subformula of B and B is a subformula of C then, A is also subformula of
C. For example,

Formula ((AvB)A~C)has (AvB)and ~C are immediate subformula.
Further, subformulas are:

(AvB)A~0) » (AvB)A~C)

———» (AvB),~C

——» A, Band C
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5.4.4. Formation Tree of a Formula
Let A be a formula, then

(i) put A at the root of the tree.

(i1) If a node in the tree has formula B as its label, then put all immediate subformula of
B as the son of this node.

Example 5.4. Fig. 5.12 shows the formation tree of the formula ((A v B) A ~ C).

(AvB)A~C)
(AvB) ~C
|
A B ©
Fig. 5.12

Example 5.6. Construct the formation tree of the formula (P v (~Q A (R — S)) = ~ Q).

(PvEQArR—S8)—»>~Q)
PvEQArR—Y)) ~Q
Q
P ~QAR—>Y))
~Q R—->S
Q R S
Fig. 5.13

All formula appearing at node/leaf in the formation tree are subformula of formula as
root and every formula appearing at parent node will be the immediate subformula to their
children.

Formation tree provide convenient way to determine the truth value of the formula over
particular set of truth values of its propositional variables.
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Consider the formation tree shown in Fig. 5.13. Determine the truth value of the for-
mula for the truth values of propositional variables (P, Q, R, S) are (T, F, F, T) respectively.

Putting truth values to corresponding variables shown at leaf and obtains the truth
value of its immediate subformula in that path and moves one level up in the tree. Continue,
this process until we reach to root node with truth value. Here we find the truth value of the
formula (at root) is T (Fig. 5.14).

(PvEQAR—>9) >~Q) T

Pv~QAR—>9) T ~Q | T
Q | F
P |T QAR —>Y)) T
~Q T RS |T
Q |F F| R F| s T
Fig. 5.14

5.4.5. Truth Table

A wff may consist of several propositional variables. In the dual-logic paradigm the propositional
variables have only possible truth value T or F. To determine the truth values of wff for all
possible combinations of the truth values of the propositional variables-a table is prepared-
called ¢ruth table.

Assume a formula contains two propositional variables then there are 22 possible com-
binations of truth values are to be considered in the truth table. In general, if a formula con-
tains n distinct propositional variables then, possible combination of truth values are 2" or
total number of possible different interpretation are 2".

The process of arbitrarily assignments of truth value (T/F) to the propositional vari-
ables is called atomic valuation. Thus, we get the truth values of the formula called valua-
tion. It can’t assign the truth values arbitrary.

There is another term frequently used in propositional logic that is boolean valua-
tion. Boolean valuation is a valuation under some restrictions.

Lets v’ be a boolean valuation, then

e If the formula X gets value T under v’ then v’ must assign F to ~ X. Conversely, if
formula X gets value F under v’ then ~ X must get value T under v’.

o The formula (X AY) can get value T under ‘v’ if and only if both X and Y get value T
under v’
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o The formula (X vY) can get value F under v’ if and only if both X and Y get value F
under v’.

o The formula (X — Y) can get value F under ‘v’ if and only if X get the value T and Y get
value F under v’.

Boolean valuation provides the truth value to the formula over connectives: ~, A, v, —.

For a formula, construction of truth table is a two step method.

Step 1. Prepare all possible combinations of truth values for propositional variables
(that gives the total number of rows in the truth table). Number of variables gives the initial
number of columns.

Step 2. Obtain the truth values of each connective and put these truth values in a new
column.

Entries of the final column show the truth values of the formula.

Example 5.7. Construct the truth value for (P A ~ Q)

Step 1. Since, formula (P A ~ Q) has two variables (2 columns), so there are four possible
combinations of truth values for P and Q (4 rows).

Step 2. Add column 3 (for connective negation) to determine truth values of ~ Q, add
column 4 (for connective conjunction) to determine truth values of (P A ~ Q).

Since there are no more connectives left, hence we get the truth table shown in Fig. 5.15
and the truth values of the formula (P A ~ Q) are shown in column 4.

P Q ~Q [PAr~Q

F | F T F

F | T F F

T | F T T

T | T F F

1 2 3 4
Fig. 5.15

Example 5.8. Construct the truth table for the formula,
(P>QQA(~PvQ)Vv(~(P>QA(~PvQ) : (letitbe X)

PIQP->Q~-P|I-PvQ|~-P->Q|~~PvQ|IP->QYPAr-PvQ [~-P->PAr~-PvQ) |X
F|F T T T F F T F T
F|T T T T F F T F T
T|F F F F T T F T T
T|T T F T F F T F T
1|2 3 4 5 6 7 8 9 10

Fig. 5.16
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5.5. TAUTOLOGY

A formula which is #rue (T) under all possible interpretation is called a tautology. Conversely,
a formula which is false (F) under all possible interpretation is called a contradiction. Hence,
negation of contradiction is a tautology.

As we know entries in the last column of the truth table shows the truth value to the
formula. If this column has all entries ¢rue (T) then the formula is a tautology. Consequently,
the truth value of the tautology is true (T) always.

For example, the formula (A v ~ A) is a tautology. Because truth value entries in the
truth table at last column are all T. (Fig. 5.17)

A ~A A v~ A)

F T

T F T
Fig. 5.17

Example 5.9. Show the formula (P > Q) A(~Pv Q) v (~(P— Q) A(~PvQ)is a tautology.

Truth values of the formula are shown in truth table (Fig. 5.16). From the truth table we
observe that truth values shown at column 10 are all T. Therefore, formula is a tautology.

5.6. THEORY OF INFERENCE

The objective of the study of logic is to determine the criterion so that validity of an argument
is determined. The criterion is nothing but the computational procedure based on rules of
inference and the theory associated such rules is known as inference theory. It is concerned
with the inferring a conclusion from set of given premises. The computation process of conclu-
sion from a set of premises by using rules of inference is called formal proof or deduction.

Assume that there are k statements S,, S,, S,,......... S,. These statements are facts/
premises/ hypothesis. Let these statements draw a conclusion C.
That is,
@) S,
(1) S,
(ii1) S,
(k) S,
C
For example, premises () S, : If it rains I will not go to Institute.
and @) S, : It is raining.

Conclusion, Therefore, I will not go to Institute. : C




PROPOSITIONAL LOGIC 115

Corresponding to above, symbolic logic of two premises & conclusion are shown below,
@ R->C where, { R : it rains
@) R C : I will not go to Institute

C

From given set of premises and the conclusion, we can justify that argument is valid or
invalid by formal proof. An argument is a valid argument if truth values of all premises is
true (T) and truth value of conclusion must also be true (T). Consequently, if particular set of
premises derived the conclusion then it is a valid conclusion.

If truth value of all premises is true (T) but truth value of the conclusion is false (F) then
argument is invalid argument. Consequently, if we find any one interpretation which makes
the premises true (T) but conclusion is false (F) then argument is an invalid argument. Simi-
larly, if set of premises not derived the conclusion correctly then it is an invalid conclusion.

To investigate the validity of an argument we take the preveious example, i.e.,

@) R—->C
(i1) R
C R|(C [R—>C
F|F+|T -
Form the table shown in Fig. 5.18 we find conclusion (C) is F
when, FIT T -
() RisFand R — Cis T; or T| P F
(i) RisTandR - Cis F Tt
Thus, we find no interpretation so that argument is invalid. Fig. 5.18
Hence, we have a valid conclusion and the argument is a valid argu-
ment.

Validity of an argument is also justified by assuming that particular set of premises and
the conclusion construct a formula (say X). Rule for constructing the formula X is as follows,

Let premises are S;, S,, S,,......... S, that derives the conclusion C then formula X will
be,
X (e, (83 A8 ASy)..nnnnnn. A S, = 0)
Here formula X is an implication formula that will be obtained by putting the conjunc-
tion of all premises as the antecedent part and the conclusion as the consequent part.
It means we have the only conclusion,

(G (S A8y) A Sy ~S,) — C)
o If antecedent part is T and also consequent part is T i.e.,
= T->T = T

Hence, argument is a valid argument.
o If antecedent part is F and consequent part is T i.e.,
= F>T = T
Again, argument is a valid argument.
o If antecedent part is T and consequent part is F i.e.,
= T->F = F
Hence, argument is invalid.
Thus, we conclude that formula X must be tautology for valid argument.
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In the next sections we will discuss several methods to test the validity of an argument.
A simple and straight forward method is truth table method discussed in section 5.6.1. That
method is based on construction of truth table. Truth table method is efficient when numbers
of propositional variables are less. This method is tedious if number of variables are more.
Natural deduction method is general and an efficient approach to prove the validity of the
argument that will illustrated in section 5.6.2.

5.6.1 Validity by Truth Table

Assuming a set S of premises (S;, S,, S,,......... S,) derives the conclusion C then we say that
conclusion C logically follows from S if and only if,
S—C
Or, (T (S A8y) A Sy ~S,) — C)
So we have the only conclusion i.e.,
(G (S A8y) A Sy ~S,) —C)
Thus, we obtain a formula ((......... ((S; A8 ASg)..eennnn. A S;) = C) let it be X. Now test

the tautology for X. If X is a tautology then argument is valid; Otherwise argument is invalid.
By use of truth table we test the tautology of the formula.

For example, given set of premises and conclusion,

@) R—-C
(i7) R
C

we obtain the formula,
(R—>C)AR)>C):(say) X
Construct the truth table for X (Fig. 5.19).

R C [R-C|R-OCAR |(R—-C)AR)—-C:X
F F T T T
F T T F T
T F F F T
T T T F T

Fig. 5.19 (Truth table for X)

Since, truth values of the formula X are all T therefore, X is a tautology. Hence argu-
ment is valid.

Example 5.10. Show that argument is invalid.

@) R—-C
(i7) C
R

Sol. From the given premises & conclusion, we obtain the formula,
(R->C)AC)—>R):(say) X
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Now construct the truth table for X, we observe that formula X is not a tautology. There-
fore, argument is invalid. (Fig. 5.20)

R C R-C|R-0C0AC| (R-CAC)->R:X
F F T F T
F T T T F
T F F F T
T T T T T

Fig. 5.20 Truth table for X.

You will also see that argument is invalid for,

@) R->C :T
(i1) C :T
R :F

Example 5.11. Demonstrate that following argument is invalid.

@ ((A—-B)AC)—>D
(1) AvC
(z11) (BvD)—(EAF)
(iv) (EAF) -G
) (GAA) —-H
H

Sol. An argument is invalid if and only if, frue (T) truth values of all premises must derive the

false (F) conclusion.

We assume that H is false (F),
if His F then (G A A) must be F = either GisFor Ais F:
if Gis F then (E A F) mustbe F = either EisFor Fis F:

® ®© ® ©

Since D is F, so antecedent part of premise (i) must be F =
(since Bis Fand (A - B)is Fso Ais F).

Above discussed situation will be seen in Fig. 5.21.
H — false
G A A — false

T~

G — false or A — false

T~

E — false or F — false

B — false
D — false

A > false or C — false

Fig. 5.21

ifEis Fthen (Bv D)mustbe F = BisF and D mustbe F:

from premise (v)

from premise (iv)
from premise (iii)
either CisFor Ais F
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Thus, for following truthvalues, argument is invalid,
A . T

T oOoHdEHODOOQW
5
3

Example 5.12. For what (truth) values of V, H and O following argument is invalid.
@) V-0
(1) H-O

V—-H

Sol. Form the truth table shown in Fig 5.22 for the given argument; we find one such condition
s.t. Vo> His Tand H — O is also T and conclusion V — H is F, so the argument is invalid. We
also observe from the truth table shown in Fig. 5.22 that the conclusion is F and premises are
both Twhen Vis T, His T and O is T.

<
o

v

e

H

e

v

o

HlR|N|1 == (==
HlR||="|R3 (==

Hl"|_R"|8(="|=|[=]|O
R R ECH RN N R RN N
HlE|IN|I18[=[3]3]l
R RGN

Fig. 5.22

Example 5.13. Justify the validity of the argument.

“If prices fall then sell will increase; if sell will increase then Stephen makes whole money.
But Stephen does not make whole money; therefore prices are not fall.”

Sol. Represent the statement into the symbolic form,
@) P—>S (by assuming) prices falls : P

(i) S—d sell will increase : S
(i11) ~d John makes whole money : J
~P

From the given premises & conclusion we obtain the formula i.e.,
(P>S)AS—>d)A~d)—>~P):(say) X
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and construct the truth table for X. From Fig. 5.23 we find that formula X is a tautology,
therefore argument is a valid argument. Hence, given statement is a valid statement.

S, (let) S, (let)

n
n
&
l
&

P->S)AS—->d)|S1A~d
T T

?
",

S2-5~P

I I T R
I I N
I I I I
I I I I I
I GG I I
I I R T
Q| RlE| =]

R T RN R R R

I G I
NININININ8INS

Fig. 5.23

As we observe that when number of propositional variables appeared in the formula are
increases then construction of truth table will become lengthy and tedious. To, overcome this
difficulty, we must go through some other possible methods where truth table is no more
needed.

5.6.2 Natural Deduction Method

Deduction is the derivation process to investigate the validity of an argument. When a conclu-
sion is derived from a set of premises by using rules of inference then, such a process of deriva-
tion is called a deduction or formal proof.

Natural deduction method is based on the rules of Inference that are shown in Fig 5.24.
The process of derivation can be describe by following two steps,
Step 1. From given set of premises, we derive new premises by using rules of inference.

Step 2. The process of derivation will continues until we reaches the required premise
that is the conclusion (every rule used at each stage in the process of derivation, will be
acknowledged at that stage).

1. Rules of Inference

Here we discuss 9 rules of inference, by truth table we can verify that the arguments followed
by these rules are valid arguments. (Assume P, Q, R and S are propositional variables)

Rule 1. Modes Ponens (MP) Rule 2. Modes Tollens (MT)
@) P->Q @) P—-Q
(i1) P (T1) ~Q
Q ~P
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Rule 3. Hypothetical Syllogism (HP) Rule 4. Disjunctive Syllogism (DS)
@) P->Q @) PvQ
(@) Q—R (1) ~P
P—->R - Q
Rule 5. Constructive Dilemma (CD) Rule 6. Destructive Dilemma (DD)
@) P->QAR->S) @) P—-QAR—>S)
(@) PvR (1) ~Qv~S
QVvR ~Pv~R

Rule 7. Simplification (Simp)
(@) PAQ
P

Rule 8. Conjunction (Conj)
@) P
@) Q
PAQ

Rule 9. Addition (Add)
(2) P

PvQ

Fig. 5.24

While derivation the rule will be acknowledge by its abbreviated name that was shown

in brackets.

Note. Reader must note that by applying rules of inference we extend the list of premises and
further all these premises including the new premises are equally participated in derivation process.

Example 5.14. Show that B — E is a valid conclusion drawn from the premises
Av(B —-D),~C —-(D —E),A—-Cand~C.

Sol. First, we list the premises,
1. Av(B—D)

2. ~C—-D-—-E)

3. A->C

4. ~C /.. B—=E
5. D>E 2 & 4, MP
6. ~A 3 &4, MT
7. B—D 1 & 6,DS
8. B—E 7 & 5,HS

(Apply rules of inference and obtain new
premises until we reach to conclusion)

Since we reach to conclusion therefore, derivation process stops. Hence, premises 1-4

derive the valid conclusion.
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Example 5.15. Show conclusion E follows logically from given premises:

A—-B,B—C,C—D,~Dand A Vv E.

Sol. Given premises are,

1. A—>B

2 B->C

3. C->D

4, ~D

5 AvE /.. E
(Apply rules of inference and obtain new
premises until we reach to conclusion)

6. A->C 1 & 2, HS

7. A—>D 6 & 3, HS

8. ~A 7 & 4, MT

9. E 5 & 8, DS

Thus we reach to conclusion; hence conclusion logically follows from given premises.

In fact, there are possibly several different deductions (derivation sequences) to reach
the conclusion. For this particular example, there is another possible deduction shown below.

We have 1 — 5 premises, (Apply rules of inference and obtain new
premises until we reach to conclusion)
6. ~C 3&4, MT
7. ~B 2 &6, MT
8. ~A 1&7, MT
9. E 5 &8, DS

Example 5.16. Show premisesA —-B,C > D, ~B -~ D, ~~A, and (E A F) — C will derive the
conclusion ~ (E A F).

Sol. List the premises,

1.

kRN

A—B

C—-D

~B—~D

~~A

EAF)->C /oo ~(EAF

® S

9.

(Apply rules of inference and obtain new
premises until we reach to conclusion)

(A->B)A(C—>D)1&2, Conj

~Av~C 6 &3, DD
~C 7 &4, DS
~(EAF) 5 &8, MT

Since, we get the conclusion hence deduction process stop. Therefore conclusion is valid.
Example 5.17. Show

1. AAB

/.. B

Sol. Deduction using rules of inference could not solve this problem. (From the list of rules of
inference no rule will applicable here). In other words the 9 rules of inference are not sufficient
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to solve the problem. Hence, we have another
ment that are listed in Fig. 5.25.

II. Rules of Replacement

10 rules. These rules are called rules of replace-

Rule 1. De Morgan’s (DeM)
@WD~PvQ e -~Par~Q,
()~ PArQ e -~Pv~Q

Rule 2. Commutation (Comm)
OPvQQeQvP
G PAQ QAP

Rule 3. Association (Assoc)
GOPvQVvRePv(QV R)
@) PAQ ARSPAQAR)

Rule 4. Distribution (Dist)
OPAQVRoPAQ VP AR)
GPvQAR &ePvQA®PVR)

Rule 5. Double Negation (DN)
~~P P

Rule 6. Transportation (Trans)
P-Qe~Q—~P

Rule 7. Material Implication (Imp)
P-Qe-~PvQ

Rule 8. Explanation (Exp)
PArQ >ReP—-(Q—R)

Rule 9. Tautology (Taut)
OPoPAP
@ PsPVvP

Rule 10. Equivalence (Equiv)
P->QrQ-PeoPrQvVv(~PAr~Q

Fig. 5.25

The major difference between rules of inference and the rules of replacement is that, rules
are inference applies over full line but rules of replacement apply on part of line also.

Now attempt the problem of example

5.17 and solve.

(Apply rules of inference and rules of
replacement whenever required and obtain
new premises until we reach to conclusion)

1. AAB /.. B
2. BAA 1, Comm
3. B 2, Simp

Thus, we obtain the required conclusion, hence deduction stop.

Example 5.18. Verify the argument

1. (AvB) - (CAD)

2. ~C /.. ~B
(Apply rules of inference and rules of replacement
whenever required and obtain new premises until
we reach to conclusion)

3. ~Cv~D 2, Add

4, ~(CAD) 3, DeM

5. ~(AvB) 1&4, MT

6. ~AA~B 5, DeM

7. ~BA~A 6, Comm

8. ~B 7, Simp
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Example 5.18.
1. Jv(~Kvd)
2. Kv(~JdAK) /o JAK)v(~JdA~K)
(Apply rules of inference and rules of replacement
whenever necessary and obtain new premises
until we reach to conclusion)

3. Jv~K)vd 1, Assoc

4, Jv(~Kvd) 3, Assoc

5. Jv(J v~K) 4, Comm

6. Jvd)v~K 5, Assoc

7. Jv~K 6, Taut

8. Kv~HDArEKVvEK) 2,Dist

9. Kv~Jd)AK 8, Taut
10. Kv~J) 9, Simp
11. ~JvK 10, Assoc
12. J—>K 11, Imp
13. ~Kvd 7, Comm
14. K—>J 13, Imp
15. Jo>KAK->J) 12, & 14, Conj
16. JAK)v(~dA~K) 15, Equiv

Thus given premises derived the valid conclusion. Hence argument is valid.

ITI. Rule of Conditional Proof (CP)

We shall now introduce another rule of inference known as conditional proof, which is only
applicable if the conclusion is an implicative statement.

Assume the argument,

1 X,

2 X,

k X,

A—B
So, we obtain the formula (X AKX A ~rX,) = (A —B)
Assume (X AK) A ~X,) : P
Thus, we have P—-(A—-B)
& PAA)—-B by rule Exp . (A)

We observe that, if antecedent part of conclusion goes to the set of premises then we will
have the consequent part as conclusion.
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That is,

L. X

2. X,

k. X,

k+1. A
B

So we construct the formula, (( ...... X, AXy) . ~AX,)AA) —>B
Assume (X AXY) AX,):P
Thus we have, PArA—B «.(B)

We will see that expression (A) and expression (B) are similar.
Hence we conclude that rule CP is applied when conclusion is of the form A — B. In such
a case, A is taken as an additional premise and B is derived from set of premises including A.

Example 5.19. Show that A — B derives the conclusion A — (A — B).

Sol. Here, we observe that the conclusion is of implication form. Hence, we can apply rule of
conditional proof, so the antecedent part of conclusion will be added to the list of premise,
therefore we have,

1. A—>B /.. A= (A AB)
2. A /.. AAB CcP

(Apply rules of inference and rules of replacement
whenever necessary and obtain new premises
until we reach to conclusion)

3. B 1 & 2, Imp

4, AAB 2 & 3, Conj

Since, we obtain the conclusion, therefore argument 2, is valid hence previous argu-
ment is valid.

Example 5.20. Show that (Av B) —» ((Cv D) - E) /.. A—(CAD)—E).

Sol. Since conclusion is of implication form, hence we proceed with conditional proof. That is,
instead of deriving A — ((C A D) — E), we shall include A as an additional premise and derive
the conclusion (C A D) — E. That is also an implication conclusion, so apply again Conditional
proof s.t. (C A D) as an additional premise and E will be the final conclusion.

s.t.
1. (AvB)—»>({(CvD)—E) /.. A= (CAD)—E)
2. A /.. (CAD)—E (0] o
3. CaAD /.. E (0] o
4. AvVB 2, Add
5. (CvD) —E 1 &4, MP
6. C 3, Simp
7. CvD 6, Add
8. E 5 &7, MP
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Since we find the conclusion; therefore conclusion is valid at stage 3. Thus, conclusion is
valid at stage 2 at hence old conclusion must be valid.

IV. Rule of Indirect Proof

Example 5.21. Show that
1. A /.. Bv~B

Sol. In order to show that a conclusion follows logically from the premise/s, we assume that
the conclusion is false. Take negation of the conclusion as the additional premise and start
deduction. If we obtain a contradiction (s.t. R A ~ R where, R is any formula) then, the negation
of conclusion is true doesn’t hold simultaneously with the premises being #rue. Thus negation
of conclusion is false. Therefore, conclusion is ¢frue whenever premises are ¢rue. Hence conclu-
sion follows logically from the premises. Such procedure of deduction is known as Rule of
Indirect Proof (IP) or Method of Contradiction or Reductio Ad Absurdum.

Therefore,
1. A /.. Bv~B
2. ~(Bv~B) P
3. ~BA~~B 2, Dem

Since, we get a contradiction, so deduction process stops. Therefore, the assumption
negation of conclusion is wrong. Hence, conclusion must be true.

Example 5.22. Show ~ (H v J) follows logically from (H — 1) A (J - K), (Iv K) - L and ~ L.
Sol.

1. H->DAWJ—>K)

2. IvK) —>L

3. ~L [o. ~HVI)

4. ~(IvEK 2 & 3, MT

5. ~IAr~K 4, Dem

6. ~1 5, Simp

7. ~KAa~1 5, Comm

8. ~K 7, Simp

9. H-oI 1, Simp
10. ~H 9 & 6, MT
11. J->KArH->D 1, Comm
12. J—->K 11, Simp
13. ~d 12 & 8, MT
14. ~HAa~d 13 & 10, Conj
15. ~HvJ) 14, DeM

There is alternate method to reach the conclusion using Indirect Proof
Since we have 1 — 3 premises; so

4, ~~({(HwvJ) Indirect Proof (IP)
5 Hvd 4, DeM

6. IvVK 1&5,CD

7. L 2 & 6, MP

8 LAa~L 7 & 3, Conj
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We obtain a contradiction therefore, our assumption is wrong at stage 4. Hence conclu-
sion must be true.

It will be seen that method of indirect proof may cut short the steps of deduction. There-
fore, we conveniently proved the conclusion is valid. Deduction through method of contradic-
tion also shows the inconsistency of premises. Alternatively, a set of given premises P,, P,
............ P, is inconsistence if formal proof obtain a contradiction (at any stage) i.e.,

1. P,
2 P,
n P,
n+1l. (PiAPya.. AP)
m. RA~R
We obtain a contradiction R A ~ R (where R is any formula), that is necessary and
sufficient to imply that (P, AP, A ............ A P,) be a contradiction.

Example 5.23. Prove that following statements are inconsistent.
1. If Nelson drives fast then he reaches the Institute in time.
2. If Nelson drives fast then he is not lazy.
3. If Nelson reaches the Institute then he is lazy.
4. Nelson drives fast.
Sol. Write the statement in symbolic logic,
Assume, D : Nelson drives fast
I : Nelson reaches the Institute in time
L : Nelson is very lazy
So the premises are,

1. DI

2. D—-L

3. I-~L

4, D

5. L 2 & 4 MP
6. I 1& 4 MP
7. ~L 3 & 6 MP
8. LAa~L 5 & 7 Conj

Since, we obtain a contradiction hence premises are inconsistent. Therefore statements
are inconsistent.

Example 5.24. Prove following statements are inconsistent.
1. Stephen loves Joyce since graduation and Matrye is not happy but their parents are

happy.
2. If Stephen marries with Joyce, his collegiate Shalezi and Matrye will be happy.
3. Stephen marries with Joyce if Joyce loves Stephen.
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Sol.

Assume,

S : Stephen loves Joyce

M : Matrye is happy

P : parents are happy

L : Shalezi will be happy

dJ : Stephen marries with Joyce

Then, symbolic representations of the statements are,

1. SAMAP)

2. J->LAM

3. S-—Jd

4. S—>LAM) 3 &2, HS
5. ~Sv(LAM) 4, Imp

6. (~SvL)A(~SVvM) 5, Dist

7. (~SvM)A(~SvL) 6, Comm
8. (~SvM) 7, Simp
9. ~SA~M 8, DeM
10. SA~M)AP 1, Assoc
11. SA~M) 10, Simp
12 SA~MA~ESA~M 11 & 9, Add

Since we obtain a

contradiction therefore given statements are inconsistent.

Example 5.25. Prove that the formula B v (B — C) is a tautology.
Sol. Apply method of contradiction and assume that negation of formula is ¢rue. Thus,

We have
/.. Bv(B-—>C)

1. ~BvB->0) IP (Indirect proof)
2. ~BAa~B-0 1, DeM
3. ~B 2, Simp
4, ~B—=>C)A~B 2, Comm
5. ~B-0C) 4, Simp
6. ~(~BvO(O 5, Imp
7. ~~Ba-~C 6, DeM
8 ~-~B 7, Simp
9. ~~BA-~B 9 & 3, Conj/Add

Since, we get a contradiction hence deduction process stops. Hence the assumption ne-
gation of conclusion is false. Therefore, Formula is ¢true or tautology.

Example 5.26. Prove that
/.. ((A—>B)AB-—>C)— (A - C)isa tautology.
Sol. Since formula is of implication form, hence we use method of conditional proof. So

we shall include antecedent part as an additional premise and (A — C) is the only conclusion.
Still we have the conclusion is of implicative type so apply again method of conditional proof.
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Thus we have,
/. (A—-BAB—-C)—-A-=C)

1. (A—-B)AB —>0) /.. A-=C)CP
2. A /.. C CP

Assume that the negation of formula is ¢rue and apply method of contradiction.

Therefore,

3. ~C 1P

4. A—>B 1, Simp

5. B 4 & 2, MP
6. B—-CAA—>B) 1, Comm
7. B->0) 6, Simp

8. C 7 & 5, MP
9. Ca-~C 8 & 3 Conj

Since we obtain a contradiction therefore our assumption must be wrong. Hence, for-
mula must be tautology.

So far our discussion to prove the validity of an argument using natural deduction method
we have complete our study with,

9-Inference Rules
10-Replacement Rules
1-Conditional Proof Method
1-Indirect Proof Method

This set of rules is called ‘Complete’. For any valid argument the complete must be
follow. Consequently, complete must be the basis for the valid argument.

2]
2]
2]
2]

5.6.3 Analytical Tableaux Method (ATM)

In section 5.6.2 we discussed the solution to the problem for validity is provided by the truth
table method. The method of natural deduction just discussed determines whether argument
is valid in finite number of steps. On the other hand, if the argument is invalid, then it is very
difficult to decide, after a finite number of steps. Also, Deduction a lot depends upon the practice,
familiarity and ingenuity of the person to make the right decision at each step. To overcome
these problems we shall now describe another method namely analytical tableaux method
which is based on the formation tree of the formula, that do allow one to determine after a
sequence of steps, whether an argument is valid or invalid.

Analytical tableaux method is based on the formation tree of the formula. There are two
categories of the formulas. One category of formula is called o-formula and other category is
B-formula. Fig 5.26 shows the list of o-formulas, where o, or o, and o, are its extended for-
mula/s; similarly other column shows the B-formulas and B, or B, are its extended formulas.
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o-formula B-formula
~~X: o XvY):B
X:oy By : X |Y:B,
XAY):a ~XAY): B
X:oy By:~X | ~Y:pB,
Y:o,
~XvY):a X->Y):8
~X:04 By:~X|Y: B,
~Y:o,
~X-=Y):o The literals like, X or ~ X not occurred in
e — either o or B-formula.
X:oy
~Y:o,

Fig. 5.26

Let X be any well formed formula (wff) then tableaux for formula X will be defined as

follows,

The tableaux is a tree, where each node of the tree is labeled by some formula the
tableaux has following characteristics.

I. Formula X will be at the label of root.
II. If a path in tableaux contains an a-formula then we may extend this path by putting

either o,-formula or o,,-formula as the son of the leaf (usually we put both formula o,
and o, one after other).

IIL. If a path in the tableaux contains a B-formula then we may extend this path by
putting formula 3, as the left child of the leaf of this path and formula B, as the right
child of the leaf of this path.

Suppose T is a tableaux (formation tree) for the formula X shown in Fig. 5.27. The
path in the tableaux contains one or more o and/or B-formula/s. If the path contains a o-
formula then this path will extended beyond leaf with additional o, and o,-formula. Either,
if the path contains a B-formula then this path will extend to B, and B,-formula as left and
right child respectively beyond leaf. Thus, we obtain the tableaux T, that is an immediate
extension of Tree T. Reader must note that in the tableaux T,-Rule II or Rule III may be

applied only once.
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Fig. 5.27

Now we shall define few terms of the tableaux on the basis of that we shall take the
decision about the validity of the formula.
Closed Path

If a path in the tableaux contains a formula R and ~ R then path is a closed path (where R is a
formula). A closed path is never extended. We will designate the closed path by putting sign x
under this path.

Closed Tableaux

If all paths in the tableaux are closed then tableaux is closed.

Open Path
A path that is not closed is an open path.

True Path

For a path if, there exists an interpretation v’ which makes all formulas of this path ¢rue then
path is a true path.

Complete Path

A path for which all its formulas are expended is a complete path.

True Tableaux under Interpretation ‘v’

If tableaux contain at least one true path under interpretation ‘v’ then tableaux is a ¢rue tableaux
under v’.

(where interpretation means, a particular combination of the truth value of the propositional
variables of the formula)
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For example, consider the formula X: (P-Q9AP)—>Q
Then tableaux of X will be,

(P-QAP)—>Q B
/\
(H) ~ (P>Q AP Q (B
/\
B ~(@-Q ~P (B

!

P (0117

]
~Q (0119)

Consider the same formula with negation of it then X will be ~ (P — Q) A P) —» Q). For
this formula we obtain different tableaux that is shown below.

~(P->QAP)>Q (o)
(P > lQ) A P) (o)
~|Q (o)
P —|> Q) (037)
p (at;2)
/\
B11) ~P Q B

Theorem 5.1. If T, is an “immediate extension” of T, then T is true under all those interpreta-
tion for which T, is true.

Proof. Fig. 5.28 shows tableaux T, is the immediate extension of tableaux T,. Assume that 6
and 0, are the paths of tableaux T,,. Also assume tableaux T, is true under interpretation v’. It
follows that, there exist at least one true path in tableaux T, under v’. Let this true path be 6.

Fig. 5.28

Now, extend the path of T, by assuming that it contains a B-formula or a o-formula.
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These possibilities are shown below in Fig. 5.29.

Fig. 5.29

Thus if v(o) = true;

then (v(oy) = true ) A (v(a,) = true );
else if v(B) = true;

then (v(B,) =true) v (v(By) = true );
Hence, T, is true.

That concludes the result.

Theorem 5.2. If formula at the root of the tableaux is true then tableaux is true.
Proof. The statement pronounced by the theorem is an implicative type.

le., (. ) then (............... );
that is, if ( formula at the root of the tableaux is true) then (tableaux is true) under v’
The statement is equivalently to its symbolic view,
if (P) then (Q); where antecedent part is P and consequent is Q
= P-Q
s ~Q—>~P (using transportation rule)

= if(~Q) then (~ P);
=  if ( tableaux is not true) then (formula at root is not ¢true) under ‘v’;

Since, a tableaux is not true, only when there is no true path in the tableaux; It follows
that tableaux is closed.

We already know that a formula which is false under all possible interpretations is
called as ‘contradiction’. Therefore we say that,

if ( X is a ‘contradiction’) then (~ X will be tautology);
< if (X is a tautology) then ( ~ X is a contradiction);
So, if tableaux is closed then formula at the root is a contradiction.

Example 5.26. Show
1. A—>B
2. A /.. B
Sol. From the given argument we can determine the formula say X,
where, X:((A—-B)AA) —B)
Put negation of X so we have, ~ (A —- B) AA)— B)
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Now construct the tableaux for this formula

~((A->B)AA) > B)

(A->B)AA

i
Moving according to this path X X moving according to this path we get
we get a contradiction (A & ~ A) we get a contradiction (B & ~ B)

So, both paths in the tableaux are closed, therefore tableaux is closed. It follows the
formula (~ X) labeled at the root is a contradiction. Therefore, X is a tautology and so argument
is a valid argument.

Example 5.27. Show that

1.M—>J

2.J->~H

3.~H—>~T

4. ~T—>M

5 M—~H /o. ~T
Sol. Assume premises 1, 2, 3, 4, 5 are denoted by X,, X,, X,, X,, X, respectively. So the argu-
ment has the formula (say X), where

X: (X, AaXy) AXg) AXy) AXy) — ~T);

So, ~X:~ (X AX)AX)AX)AX) —~T)
Fig. 5.30 shows the tableaux for ~ X. In which we find one open and complete (since all
formulas in this path are expended) path so tableaux is not closed. It implies that formula at

root ~ X is not a contradiction or X is a contradiction. Therefore, X is not a tautology and so
argument is invalid.
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~ (XA X) AX) AKX A Xs) —~T)
(X A X) AX) A X AXy)

~~T

(XA Xy) AX) AKX

M-—-~H
|

(XA Xy AKXy

~T—-M

XA Xy

~H—>-~T

~M ~H
(open path) x

Fig. 5.30

In this example, we will also determine the interpretation for which the argument is
invalid. Since we know that an argument is invalid when ¢rue premise/s derives a false conclu-
sion.
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That is,

1. X, :True

2. X, :True

3. X, :True

4. X, :True

5. X, :True /s, ~T:False
Therefore argument is invalid for following interpretation,
T : True
M : False (since T is true;so~T — M will be True only when M is false)
H : True (since T is true; so ~H — ~ T will be true only when H is true)
J . false (since H is true; so J — ~ H will be true only when J is false)

Example 5.28. Prove formula (P v ~ P) is a tautology.

Sol. We will see that by assuming negation of the formula we find a contradiction, which
concludes that X will be tautology.

Using ATM, expand the tableaux by assuming ~ (P v ~ P) will be labeled at root.
~Pv~P)

~P

~p
P

X
So, we find a closed path, therefore tableaux is closed. Hence formula is a tautology.

5.7 PREDICATE LOGIC

So far our discussion of symbolic logic and inference theory are concern statements and the
propositional variables are the basic units which are silent about the analysis of the state-
ments. In order to investigate the property in common between the constitute statements; the
concept of a predicate is introduced. The predicate is the property of the statement and the
logic based upon the analysis of the predicate of the statement is called predicate logic. Con-
sider an argument,

1. All human are mortal : A
2. John is a human : J
/. John is mortal : M

If we express these statements by symbols, then the symbols do not expose any common
feature of these statements. Therefore, particular to this symbolic representation inference
theory doesn’t derive the conclusion from these statements. But in course, conclusion appears
unthinkingly ¢rue. The reason for such deficiency is the fact that the statement “All human are
mortal” can’t be analyzed to say anything about an individual or person. If the statement is
slices from its property “are mortal” to the part “All human” then it might be possible to con-
sider any particular human.
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5.7.1 Symbolization of Statements Using Predicate
Since, predicate is used to describe the feature of the statement, therefore a statement could
be written symbolically in terms of the predicate symbol followed by the name to which, predicate
is applied.

To symbolize the predicate and the name of the object we shall use following convention,

o A predicate is symbolize by a capital letter (A, B, C, ....... 7).

o The name of the individual or object by small letter (a, b, c, ....... 2).

For example, consider the statement

“Rhodes is a good boy”

where the predicate is “good boy” and denoted symbolically by the predicate symbol G
and the name of the individual “Rhodes” by r. Then the statement can be written as G(r)
and read as “r is G”.

Similarly the statement “Stephen is a good boy” can be translated as G(s) where s stands
for the name “Stephen” and the predicate symbol G is used for “good boy”.

To translate the statement “Stephen is not a good boy” that is the negation of the previ-
ous statement which can be written as ~ G(s). In the similar sense it is possible that name of
the individual or objects may varies for the same predicate. In general, any statement of the
type “r is S” can be denoted as S(r) where r is the object and S is the predicate.

As we said earlier that every predicate describes something about one/more objects. Let
we define a set D called domain set of universe (never be empty). From the set D we may take
a set of objects of interests that might be infinite. Let’s consider the statement,

G(r) : where r is a good boy
then, GcD
That can be described as, G = {re D/ ris a good boy}
Since such type of predicate requiring single object is called one- place predicate.

When the number of names of the object associated with a predicate are two to form a
statement then predicate is two-place predicate. In true sense, the statement expressed by two
place predicate there exist a binary relation between the associated names. For example the
statement,

Glx, y) : (where x is greater than y)  is a two-place predicate
then, GcD x D; where G consists of sets of pairs
where, set G = {(x, y) € D/ x > y}. For example if D is the set of positive integers (I*) then
G={2,1,(,1),(@3,2), ..... 1.
Similarly, we can define a three-place predicate, for example the statement
P(x,y,z): (wherey and z are the parents of x)

then, PcDxDxD st.(a,b,c)e P

In general, a predicate with n objects is called n-place predicate.
then, PcDxDxD............ x D, n times
s.t. (g tgy gy vveneereereeanenen, t)eP

The truth values of the statement can also be determined on the basis of domain set D.
Assume set D is defined as,

D=1{1,2, 3,4}
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In order to determine the truth value of (one-place predicate) statement E(x) : where x is
a even number will be #rue, because
E =12, 4}.
The truth value for the statement M(x): where x is greater than 5, will be false because
set M find no element from given domain set D.
The truth value for 2-place predicate statement G (x, y) : where x > y will also be true
where, set G =1{(2, 1), (3, 1) (4, 1), (3, 2), (4, 2), (4, 3)}.

If G(x, y) i.e. x is greater or equal to y then its truth value also be true where, set G
contains all above elements including (1, 1), (2, 2), (3, 3) and (4, 4).

5.7.2 Variables and Quantifiers
Consider the statement discussed earlier,
“Rhodes is a good boy” : G (r), where G be the predicate “good boy”
and r is the name “Rhodes”

Consider another statement,

“Stephen is a good boy” : G(s), where predicate G “good boy” is same with
different name “Stephen” symbolizes by s.

Consider one more similar statement,

“George is a good boy” : G(g) with same predicate G and different name
“George” symbolizes by g.

These statements G(r), G(s), G(g) and possibly several other statements shared the prop-
erty in common that is predicate G “good boy” but subject is varies from one statement to the
other statement. If we write G(x) in general that states “x is G” or “x is a good boy” then the
statements G(r), G(s), G(g) and infinite many statements of same property can be obtained by
replacing x by the corresponding name. So, the role of x is a substitute called variable and G(x)
is a simple (atomic) statement function.

G(x)

Predicate Symbol TT Variable

We can obtain the statement from statement function G(x), when variable x is replaced
by the name of the object.

A compound statement function can be obtain from combining one/more atomic state-
ment function using connectives viz, A, v, ~, — etc. for example,

G(x) A M(x); Gx) v M(x); ~ G(x); G(x) — M(x); etc.
The idea of statement function of two/more variables is straightforward.

Quantifier

Consider the statement,
“Everyone is good boy”

The translation of the statement can be written by G(x) s.t. “x is a good boy”. To symbol-
ize the expression “every x” or “all x” or “for any x” we use the symbol “( Vx)” that is called
universal quantifier. So, given statement can be expressed by an equivalent statement ex-
pression,

(Vx) G(x) : read as “for all x, x is G” (where G stands for good boy)
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This expression is also called a predicate expression or predicate formula.
In true sense symbol “V” quantifies the variable x therefore, it is called quantifier.
Let’s take another statement

“Some boys are good”

To translate the statement we required to symbolize the expression like “there exists
some x” or “few x” or “for some x”. For that we use the symbol “(3x)” and this symbol is called
existential quantifier. Thus, the statement symbolize equivalently by the expression

(3x) G(x) : read as “there exists some x such that x is good boy”

It must also be noted that, quantifier symbols (“V” or “3”) always be placed before the
statement function to which it states.

To make things more clear we illustrated few examples to symbolize the statements
using quantifiers.
Example 5.29
1. “There are white Tigers”
We use the statement functions
T(x) :ie., “xisTiger”

and W(x) :i.e., “xis white”

Then, (T(x) A W(x)):translated as “x is white Tiger”. To translate the statement “There
are white Tigers” which is equivalent to the statement “There exists some white Tigers” or
“There are few white Tigers” we can write,

3x) (T) A W(x))

Reader should not worry about the unique predicate expression for a statement. Possi-
bly, a statement can be translated into several different predicate expressions. Like if G(x) s.t.
“x is white Tiger” then predicate expression (dx) G(x) is also a correct translation of the above
statement.

2. All human are mortal”
Assume, M(x) : i.e.,“x is mortal”
H(x) : i.e.,“x is human”
So, the sense of the statement “if human then mortal” can be translated using symbol
(H(x) — M(x)).

To symbolize “for all x”, quantify the variable x by introducing “(Vx)” and put before the

statement expression s.t.

(Vx) (H(x) — M(x))
(Expression is read as “for all x, if x is human then x is mortal” ? “All human are mortal”)
3. “John is human”
Simply translated by H(j), where H be the predicate “human” and j is the name “John”.
4. “For every number there is a number greater than it”
The statement can be equivalently expressed by,

“For all x, if x is a number then there must exist another number (say y) such that y is
greater than x”.

Assume, Glx,y) : i.e., “y is greater than x”
N(x) : ,, “x is a number”



PROPOSITIONAL LOGIC 139

N(y) :,, “y is a number”
Then we translate the statement straightforward by,
(vx) [N(x) — (@y) N@) A Gx, )]
5. “Gentleman prefers honesty to deceit.
Let, G(x) :“x is gentleman”
H(x) : “x is honest”
D(x) : “x is deceit”
And P(x,y, z) : “x prefers y over z”
Then, using the universal quantifiers the predicate expression of the statement will be,
(Vz) (Vy) (Vx) [(G(x) A H(x) A D(x)) — P(x, y, 2)
6. “There are no Holy Ganges in Purva”
Using the symbol expressions,
H(x) : “x is Holy”
G(x) : “x is Ganges”
P(x) : “x is Purva”
Then the statement can be expressed by equivalent expressions like as,
~ (Ix) [H) A Gx) A P(x)]; (there exists some x for that x is holy and x is
ganges and x is purva is not true)
or, (Vx) [(P(x) A G(x)) - ~ Hx)]; (for all x, if x is purva and x is ganges then x is
not holy)
or, (Vx) [(Hx) A G(x)) - ~ P)]; (for all x, if x is holy and x is ganges then x is not
purva)
or, (Vx) [(Hx) APx)) —» ~ Gx)]; (for all «x, if x is holy and x is purva then x is not
ganges)
or, (Vx)[ ~H(x) v ~G(x)) v ~P)]; (for all x, x is not holy or x is not ganges or x is not
purva)

In order to determine the truth values of the statements involving universal and/or
existential quantifier/s, one may be able to persuade the truth values of the statement func-
tions. Since statement functions don’t have the truth values, and when the name of the indi-
viduals is substituted in place of variables then the statement have a truth value. Of course,
we can determine the truth value of the statement on the basis of the domain set D.

For example, D ={1, 2, 3, 4}

o Then, truth value of the predicate expression

(Vx) 3y) [E(y) A G(y, x)] : where E(y) stands “y is a even number” and G(y, x)
stands “y > x”

will be true; because for all numbers of the set D, we can find at least a number greater than or
equal to that number.

e Truth value of the predicate expression
(Vx) (Fy) [~ E(y) A Gy, x)] :  where ~ E(y) stands “y is not a even number” and
G(x, y) stands “y > x”
will be false; because for the number 4 there is no odd number in the set which is greater than
or equal to it.
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e Similarly, the truth value of the expression
(Vx) (Fy) [E(y) A G(y, x)] : where E(y) stands “y is a even number” and
G(x, y) stands “y > x”
will also be false.
o IfsetD=1{1,2,3,.......... }
Then the truth value of the predicate expression
(Vx) G(x, y) : where G(x, y) stands for “y = x”

will be true, because every number is successor to their predecessor. The same expression will
have the truth value false if the set D = {1, 2, 3, 4}.

Therefore we shall conclude that the governing factors to determine the truth value of
the predicate expression are the domain set and the predicate.

5.7.3 Free and Bound Variables

The occurrence of free variables and bound variables are true for every object. The variable
occurring just after the quantifier symbol is a bound variable and the variable lying in the
scope of the quantifier is bounded by that quantifier.

Consider the predicate expression,

(V) (P(x) v Q(x))
ek S |

bounded by x

Here the variable x in P as well as in Q is a bound variable due to the variable lies in the
scope of the quantifier. Consider another expression,

(Vx) Px) v Q)

T—I T— x 1s not bounded

bounded by x

Here, the variable x in P is a bound variable that is lying in the scope of the universal
quantifier but x in Q is not a bound variable.

Any variable which is not bound is a free variable. A predicate formula may have both
free and bound variables.

In order to determine the scope of the quantifier involving in the predicate formula is
the smallest formula that follows the quantifier.

ie. « (Vo) (P A Q) = R(z)
-
A scope of the quantifier

« (V) (P) v Q) — R(2)
S scope of the quantifier

Conversely, the variables lies in the scope of the quantifier “V” or “3” are bound vari-
ables. i.e.,
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o (Vo) (P(x) A Q) — R(2)
r | r z1s free

x 18 bounded

vy 1s free
J x is free
o (Vy) (Gx, y) A QW)
1]

y is bounded

A statement could not have any free variable. For example,

e “Everything is P”: (Vx) P(x)

e “Everythingis Por Q”: (Vx) (P(x) v Qx))

e “For every number x there must exist another even number y s.t. y > x™:
x is bounded

Vx) 3y) [E(W) A G(y, x)]; where E(y) stands “y is a even number” and

Tt G(x, y) stands “y > x”

y is bounded

Example 5.30. Consider the predicate expression
(V2) [ (Vx) [Q(x, y) — (Fy) {P(x, y,2) A~ Qy, 2)}]]

determine the free and bound variables.

y is free

Sol.

< v

(V2) [(Vx) [Q, ¥
a

Here dashed lines shows the boundness of the variables.
e Variable z in P and in Q is bounded due to lying in the scope of the quantifier i.e.,
“Vz)
e Variable x in Q and in P is bounded due to lying in the scope of quantifier i.e., “(Vx)”
but another variable y of same Q is free.
e Variable y in P and in Q is bounded due to lying in the scope of quantifier i.e., “(3y)”.
A statement can be expressed by a predicate formula. A predicate formula is a valid
predicate formula (VPF) if and only if the truth value of the formula is true for all possible
interpretations. The possible interpretations for a predicate formula may be infinite. On the
other hand, if the predicate formula gets the truth value true for at least one interpretation

then formula is a satisfiable predicate formula (SPF). Thus, a VPF is also a SPF. Conversely, a
VPF be a tautology. For example,
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e.g.

o (Vx) P(x) v (3x) ~ P(x); is a valid predicate formula (VPF) and so a tautology. To
discuss the fact, let domain set D = {a, b, ¢} and arbitrary set P = {a, c}; also assume
P(a), P(b) and P(c) are all true then the formula

A & (Vx) P(x) is false (F)
and B < (3x) ~ P(x) is true (T) [the in universe there exists at least one item
for which ~ P(x) is true]

Therefore, FvT = T; Hence formula is a tautology.

e (Ix) P(x) v ~ (3x) P(x); is a valid predicate formula and also tautology due to the fact
that A v ~ A is a tautology [where A is (3x) P(x)].

5.8. INFERENCE THEORY OF PREDICATE LOGIC

Continuation to the section 5.6 where we were discussed the inference theory of symbolic logic
in this section we shall cover-up the inference theory of predicate logic or predicate calculus.
The importance fact to discuss inference theory is to check the validity of an argument that
symbolizes by using predicate logic. Since, we know from the inference theory of symbolic logic
that natural method of deduction is an important tool to justify the validity of an argument.
We can extend the deduction approach used earlier as in case of natural method of deduction
for the predicate logic also. As like the previous study for the validity of an argument we have
successfully applied method of deduction using following set of rules,

e 9-Rules if Inferences

o 10-Rules of Replacement

e 1-Rule of Conditional Proof

e 1-Rule of Indirect proof

To check the validity of the predicate formula we required few more rules, now we
discuss those additional rules.

Rule I. Universal Instantiation (UI)

Let (Vx) A be any predicate formula (premise), then it can conclude to a specific predicate
expression A(y) where variable x is replaced by y such that we can drop the quantifier in the
derivation. For example,

1.
k. (Vx)A
n. Axy
Or, (Vx) A
/.. Ayx

where, Ayx : in the predicate formula A whenever x occurs, replace x with y where y is any
variable/constant.
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This rule is called universal instantiation and is denoted by UI in the inference theory.
Therefore, according to rule UI, whenever universal quantifier exists it will drop with intro-
ducing other variable say j in place of x.

For example, consider the argument:

“All human are mortal. John is human. Therefore, John is mortal”.

The argument can be translated into predicate premises and conclusion e.g.

1.  (Vx) (H(x) - M(x))

2.  Hp /e M)
3.  H() - M() 1, Ul
4.  M() 3 & 2, MP

Hence, argument is valid.

Rule II. Universal Generalization (UG)
n. A

/o (Vx) AY
Let A be any predicate formula then it can conclude to (Vx) A Y i.e., whenever y occur-
ring put x provided following restriction,
e y is an arbitrary selected variable.
o A is not in the scope of any assumption, it contains free y.
eg.,

(evreennen ) free occurrence of y

n+m. (Vx) AY since it violate second restriction, hence wrong.

Above rule is called universal generalization and is denoted as UG. UG will permit to
add the universal quantifier in the conclusion and variable x is replaced by an arbitrary se-
lected variable y.

Consider an argument,

I. “No mortal are perfect. All human are mortal. Therefore, no human are perfect”.

(where we symbolize M(x): “x is mortal”; P(x): “x is perfect”; H(x): “x is human”)

Thus, we express the corresponding predicate premises and conclusion as,

1. (Vx) (M(x) = ~ P(x))

2. (Vx) (H(x) — M(x)) /oo (Vx) (H(x) = ~ P(x))
3. M(y) — ~P(y) 1, UI

4. H(y) — M(y) 2, Ul

5. H(y) — ~ P(y) 4 & 3, HS

6. (Vx) (H(x) — ~P(x)) 5, UG
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Hence argument is valid.
Consider another argument,
IL. “India is democratic. Therefore, anything is democratic”.

Thus, the corresponding predicate argument is,
1. D@) /oo (Vx)D(x)

2. (Vx) D(x) 1, UG x
Although, it proved valid but it violates the first restriction, hence argument is invalid.

ITI. “Not everything is edible, therefore nothing is edible”.
Thus we have the predicate expressions,

1. ~(Vx) E(x) or, @@x)~E(x) [ (Vx) ~ E(x)
— 2. E(y) Assume the predicate formula
3. (Vx) E(x) 2, UG x (violates the second restriction)
4. E(y) » (Vx) E(x) 2 & 3, CP (Conditional Proof)
5. ~E(y) 4 &1, MT
6. (Vx) ~ E(x) 5, UG

It seems that argument is valid but at step 3 it violates the restriction second, hence

argument is invalid.

Rule III. Existential Generalization (EG)

Let A by any predicate formula then it can conclude to (3x) A ”. The rule existential generali-
zation denoted as EG will permit us that when A be any premise found at any step of deduc-
tion, then add A with existential quantifier in the conclusion and whenever y occurs put x;
where y is a variable/ constant; without imposing any other additional restrictions. This rule is
called existential generalization or EG.

eg.,

A

/o (3x) AY [whenever y (variable/constant) occurrs put x]

Rule IV. Existential Instantiation (EI)

According to rule existential instantiation or EI, from the predicate formula (3x) A, we can

conclude A *

.5, such that variable x is replaced by a new constant & with restriction that %

doesn’t appeared in any of the previous derivation step.

eg.,

(3x) A
I AF
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For example, consider an argument,
I. “All dogs are barking. Some animals are dogs. Therefore, some animals are barking”.
Then corresponding predicate expressions are,

1. (Vx) (D(x) — B(x))
2. (3x) (A(x) A D(x)) /.. (Ax) (Alx) A B(x))
3. A(k) A D(k) 2, EI
4. D(k) — B(k) 1, UI
5. D(k) A A(R) 3, Comm
6. D(%) 5, Simp
7. B(k) 4 & 6, MP
8. A(k) 3, Simp
9. A(k) A B(k) 8 & 7, Conj
10. (3x) A(x) A B(x) 9, EG

It concludes that argument is valid.

II. “Some cats are animals. Some dogs are animals. Therefore, some cats are dogs”.
The statement can be translated into corresponding predicate premises and conclusion,

1. (3x) (Cx) A D(x))

2. (Gx) (D(x) A Alx)) / . (3x) (C(x) A D(x))

3. C(k) A Ak) 1, El

4. D(k) A A(k) 2, EI x [wrong, because k is used earlier
so, this violates the restriction of
rule EI]

5. D(k) 4, Simp

6. C(k) 3, Simp

7. C(k) A D) 6 & 5, Simp

8. (dx) (C(x) A D(x)) 7, EG

It proves valid, but truly given argument is invalid due to violation of Rule IV.
Therefore, now we have following set of rules -
o 9-Rules of Inferences
o 10-Rules of Replacement
o 1-Generalized Conditional Proof (CP/IP)
e Rules of UG, UI, EG and EI
These set of rules are essentially followed by a valid argument.
Some equivalence predicate formulas
@) ~ (Vx) Px) & (3x) ~ P(x)
(i7) ~ (Fx) P(x) & (Vx) ~ P(x)
(1i0) (Vx) Px) & ~ (3x) ~ P(x)
(iv) (Vx) Fy) [Px) v Q)] & (Fy) (Vx) [Px) v Qly)
(v) @y) [P(x) v Qly)] & [Px) v Ty) Q)]
(i) (Vx) [P(x) v Q(y)] & [ (Vx) Px) v Q(y)]
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We can prove above equivalence formulas. For example, to prove the (iii) equivalence
formula,we will prove that both of the following formulas be valid,

I. (Wx) Px) - ~(3x) ~Pkx) and,
II. -~ (3x) ~ Px) = (Vx) P(x)
/.. (Vx)Px) & ~ (3x) ~ P(x)

Proof.
— 1. (3x) ~ P(x) Premise (Assumed)

—> 2.~ P(y) ,, (Assumed)

3. (Vx) P(x) ,, (Assumed)
r 4. F(y) 3, Ul
5. (Vx) P(x) = P(y) 3-4,CP
6. ~ (Vx) P(x) 2 &5, MT
7.~ (Vx) P(x) 1,2-6, EI
8. (Ax) ~ P(x) —» ~ (Vx) P(x) 1-7,CP
9. ~(~ (Vx) P(x)) - ~ (@x) ~ P(x)) 8, Trans
10. (Vx) P(x) —» ~ (3x) ~P(x) 9, Dem

Hence equivalence formula is valid.

Alternatively, above equivalence can also be proved as follows,
/o ~(3x) ~ P(x) - (Vx) P(x)

Proof,

_F:

o N =

.~ (3x) ~ P(x)

.~ P@)
. (Ax) ~ P(x)

Premise (assumed)

” EX]

2, EG

O O

.~P@l) - @x) ~ Px)
.~~ P@y)

- P@)

. (Vx) P(x)

2-3,CP
1&4,MT
5, Dem

6, UG

8.

~ (3x) ~ P(x) = (Vx) P(x)

Hence, equivalence formula is valid.

EXERCISES

1-7,CP

5.1 Let A be “It is cloudy” and let B be “It is raining”. Give a simple verbal sentence which describes
each of the following statements :

@) ~A
@Gi)A—>~B
@ii) ~~B
@iv) ~AA~B

wWAA~B)—>B

(vi) B A
(i) A ~B

(viii) (A - B) & A.
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5.2 Let R be “He is richer” and let C be “He has a car”. Write each of the following statements in the
symbolic form using R and C.

(i) He is richer and has a car.
(it) He is richer but not has a car.
(i7) It is not true that he is poorer and has a car.
(iv) He is neither richer nor has a car.
(v) It is true that he is poorer and not has a car.
(vi) He is richer so he has a car therefore he is not poor.
5.3 Construct the truth tables of the following prepositions,
@) ~P->~Q @) ~PArQ v~(Q«P)
@ P->Q«< -PvQ ) PA@Q—-P)—>Q.
5.4 Find the truth values of the following propositions under the given truth values of P and Q as
True and R and S as False.

OP-Qv~Pe~Q) @WPvQ->Rv~P))QvV~S)
@) P—=>((~QAR)A~(QV(~P < Q).
5.5 Show the following equivalence,
(O P->Q >Re(~-PvQ 2R (PAQ >R
@G)P->QVvReeP—->QvEP—-R)
@) ~PAQ oPA~Q
() PVQAPARPAQ) = (-PAQ
W PAQeR ©PA(Q—->R AR —>Q))
W)P->QVvRePAr~Q —R
Wi) P>RAQ—->R o PvQ) —>R.
5.6 Show that following formulas are tautology :

@ ((R—=C)AR)—>OC) @) PAQ) —P
@i)Bv(B = C) ) (A-B)AB—-C)—>A->0)
) P> PvQ) vi)(A—>B)v(A—>-~B)

W) A5 B AC)) > (B —->DAE) - (A ->D)).
5.7 Determine the truth values of the following composite statements :
(i) If2 < 5, then 2 + 3 # 5.
(1) It is true that 6 + 6 =6 and 3 + 3 = 6.
(Zi7) If Delhi is the capital of India then Washington is the capital of US.
(fv) If 1 + 1 # 2, then it is not true that 3 + 3 =8 if and only if 2 + 2 = 4.

5.8 From the given premises show the validity of the following arguments, which drives the conclu-
sion shown on right.

(OHP-Q,Q—R /.. P—>R
@G)(A—-B)C,AAD,BAT /.. C

G P->QPAP—->R),~(QAR),SVP /S
(iv)A-B,(A—>(AAB)—>C /.. C

WQVR -8, R->RBRAS) > (TvU,(T->QAU->YV) /. (QvYV)
W)EVF)->GH->IAG), /. E->G AH->D
wi)M—>J,J>~H~H>~T,~T->M,M-—>~H /oo ~T
x)H->IHAJ—->K,IvK) »L,~L /oo ~H V)

X H->HDAT-=>K,HvVvI),H->~KAWJ—=>~D),IAr~K) L K->>OvM)
/.. LvM
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5.9

5.10

5.11
5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

For the given premises determine a suitable conclusion so that the argument is valid,
(O)P—-~Q,~P—>R GP->~QR—-P,Q
@) P,PAR,P>Q,Q—>S @W)P—->RAS),~RBAS),~P->S
Prove argument is valid
1H-IHvI—-K 2.IAK) —>L
3.~L /. ~MHVI
Prove formula (P — (P v Q) is a tautology.
Determine the interpretation for which argument is invalid
1.J-oK->L 2K—->-L->M
3.LYM) >N L~ ->N)
Prove argument is valid
1.QvR—>YS) 2R->RBAS) > (TvL)
3. T->QPAU->YV) L QvvV
(i) No academician is wealthy. Some scientists are wealthy.
*. (a) some scientists are academicians.

(b) Some academician is not scientists.

(i) All artists are interesting people. Some philosophers are mathematicians. Some agents are
salesmen. Only uninteresting people are salesmen.

.. (@) some philosophers are not salesmen.

(b) Salesmen are not mathematicians.

(c) Some agents are not philosophers.

(d) Artists are salesmen but they are not interesting people.

Let {1, 2, 3, 4, 5} be the universal set, determine the truth value of each of the statements,

@) @) (Vy), x2<y+1 (1) (Wx) (Fy), x2 +y2 =25
@) @) (Vy) (F2), 22>y + 2z (iv) (Fx) (Fy) (Fz), 22 + y? = 222

Negate the following statements :

(@) @) Px) = (Vy) Q) (1) (3x) P(x) A (Vy) Qly)
(@i7) ~ (3x) P(x) v (Vy) ~ Qy) (iv) (Vx) Qy) [Px) v Q)]

(v) ~ (Fx) ~ P(x) — (Vx) P(x) (vi) (Vx) [P(x) v Q(y)]

Show that following are valid formulas :

(@) @IE)F(x) — Fy)l @) @y)[P(y) — (Vx)P(x)]
(i) (I)H(x) v ~ (3x) H(x) (iv) (Vx)F(x) v (Vx)Gx)(x)] — (Vx) [Flx) v Gx)]
Show that from given premises drives the conclusion shown on right.

(@) (Vx)[H(x) — M(x)] /oo (3x0)[Hx) A M(x)]
(i1) (Vx)[H(x) - M(x)], Gy)H(y) /o (Fx0)[Hx) A M(x)]
(@ii) Gx)[H(x) A Mx)] — G)IPy) A Ql, GYIPY) A ~ Q)] /e (V2)[H(x) - ~ M(x)]

Symbolizes and prove the validity of the following arguments :
(1) No mortal are perfect. All human are mortal. Therefore no human are perfect.
(it) Himalaya is large. Therefore every thing is large.
(Zi7) All human are mortal. Jorge is human. Therefore Jorge is mortal.
(iv) Not every thing is edible. Therefore nothing is edible.
(v) All cats are animals. Some dogs are animals. Therefore some cats are dogs.
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6 Lattice Theory

6.1 INTRODUCTION

In this chapter we shall first discuss what is meant by a partial ordered set and how partial
ordered set is represented through a directed graph which is commonly known as Hasse diagram
by giving suitable examples. The role of partial ordered is significant while we study the algebraic
systems. In section 6.3 we will discuss the properties of partial ordered set. Section 6.4 covers
the important concept of partial ordered set that has additional characteristics called lattices.
In latter sections we will discuss the properties of lattices and the classifications of the lattices
where we study some special type of lattices like sublattices, distributed lattices, complemented
lattices, product of lattices and the lattice homomorphism.

6.2 PARTIAL ORDERED SET

Let us start our discussion with partial ordered relation. If a binary relation R defined over set
X is (1) reflexive, (2) antisymmetric, and (3) transitive then relation R is a partial ordered
relation. Conventionally, partial ordered relation is denoted by symbol “<” (the symbol “<”
doesn’t mean of ‘less than or equal to’), i.e.,
e A binary relation R over set X is reflexive iff, V x € X, i.e., (x, x) € R.
e A binary relation R over set X is antisymmetric iff, V x, y € X, whenever (x,y) € R
and (y, x) € R, then x = y.
e A binary relation R over set X is transitive iff, V x, y, and z € X whenever, (x,y) € R
and (y, z) € R then (x, z) € R.

Since, symbol “<” is a partial ordered relation defined over set X, so the ordered pair

(X, <) is called a partial ordered set. Partial ordered set is also known as poset. The
partial ordered set (X, <) will be called linearly ordered set if, V x and y € X, we have x <y
or y < x. A linearly ordered set is a special case of partial ordered set and it is also called
a chain.

If (X, <) is partial ordered set defined by relation R, then (X, >) will also be a partial
ordered set, and it is defined for inverse of relation R. Hence, poset (X, >) is dual of poset (X, <).
Some of the examples of posets are given below.

1. The relation “less than or equal to” defined over set of real numbers (R) is a partial

ordered relation i.e., (R, <).

2. The relation “greater than or equal to” defined over set of real numbers is a partial

ordered relation i.e., (R, ).

150
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3. Similarly the relation “less than” or relation “greater than” are also partial ordered
relation over set of real numbers i.e., (R, <) or (R, >).

4. The relation “c” (inclusion) defined over power set of X is a partial ordered relation
ie., (PX), ©). Let X = {a, b}; then power set of X is P(X) = {@, {a}, {b}, {a, b}}. Since,
every element of P(X) is subset of itself so relation “c” over P(X) is reflexive. It is also
antisymmetric and transitive i.e. for the element @ c {b} and {b}  {a, b} then, @ c {a, b}
and similarly true for all elements of P(X).

5. The relation “perfect division” or “integral multiple” defined over set of positive inte-
ger (I*) are partial ordered relation. For example let X = {2, 3, 4, 6} € I*; then partial
ordered relation ‘<’ is “perfect division” (i.e., for any x and y € X the relation “x
divides y”) over X will be given as,

<=1{(2,2),(3,3),4,4),(6,6),(2,4),(2,6), (3, 6)}
Similarly, partial ordered relation “integer multiple” (i.e., for any x and y € X, and any
integer k;y = x k; ‘y is an integer multiple of x’) will be given as,
>=1{(2,2), (3, 3), (4, 4), (6, 6), (4, 2), (6, 2), (6, 3)}

Here, we used partial ordered relation symbol >’ because; last poset is dual of previous

poset.

Comparability and Noncomparability

Let (X, <) be a poset, then elements x and y € X are said to be comparable if x =y or y = x. If x
and y are not related i.e., x £ y or y « x then they are called noncomparable. For example, the
elements of power set of X say P(X) are noncomparable with respect to partial ordered relation

[{p]

c

6.3 REPRESENTATION OF A POSET (HASSE DIAGRAM)

A poset (X, <) is represented by a diagram called Hasse diagram. Hasse diagram is a directed
graph, where ordered between the elements are preserved. Since, it is a directed graph which
consists of vertices and edges where, all elements of X are in set of vertices that are repre-
sented by a circle or dot and the connections between vertices (elements of X) called edges that
will be drawn as follows,
e For the element x, y € X if x > y and there is no element z € X i.e., x >z >y then circle
for y is putted below the circle for x and are connected by a direct edge.

e Otherwise, ifx >y and there exist at least an element z € X i.e.,x >z >y then they are
not connected by a direct edge, however they are connected by other elements of set
X.
Example 6.1. Consider set X = (2, 3, 4, 6, 8, 24] and the partial ordered relation ‘<’ be i.e.,
x <y = “x divides y” (perfect division)
then, poset (X, <) will be given as,
<={(2 2), (2, 4), (2 6), (2, 8), (2, 24), (3, 3), (3, 6), (3, 24), (4, 4), (4, 8), (4, 24),
(6, 6), (6, 24), (8, 8), (8, 24)}
Since, relation is understood to be reflexive, so we can leave the pairs of similar elements.
Since, relation is understood to be transitive, so we can leave the pairs that come in sequence
of pairs i.e. it need not to write the pair (2, 24), if the sequence of pairs (2, 6) and (6, 24) are
there.
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Thus, a simplified poset will be,
<=1{(2,4), (2, 6), (3, 6), (4, 8), (6,24), (8, 24)}
and there graphical representation is shown below in Fig. 6.1.

024

e

Oe

AN

O O
2 3

/O—>O
\

Fig. 6.1

To simplify further, since all arrows pointed in one direction (upward) so, we can omit
the arrows. Such a graphical representation of a partial ordered relation in which all arrow

heads are understood (to be pointed upward) is called Hasse diagram of the relation shown in
Fig. 6.2.

O24
7\
10O Qs
N N

Fig. 6.2 Hasse diagram.

Example 6.2. Let set X = {0, B, Y/ then draw the Hasse diagram for the poset (P(X), ©).
Sol. The P(x) is the power set of X. So we have,
PX) = {0, {a}, {B}, iV}, {o, B}, B, ¥, {o, ¥}, {o, B, Y1)

Therefore, the vertices in the Hasse diagram will corresponds to all elements of P(X)
and the edges are constructed according to the partial ordered relation inclusion (<) which are
given as,

c={3, {a}), (D, {BH, (D, {y), Hod, {a, B}, ({ou}, {ar, YD), (B}, o, B, (B, {B, ¥D), (I}, {o, YD),
(fy, B, v, (e, Bhtos, B, 2D), (B, ¥, {o, B, D), (o, 7, fa, B, YOI
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Q{ a, B, v} Odo B, v

Thus, the Hasse diagram is shown in Fig. 6.3.
{ Omm

{o, 1O Y}*O Owﬂ B. 7O @O ,
(o} O{a}
\ ‘{V \ ‘{V
Fig. 6.3 Hasse diagrams.

Note. For a given poset, Hasse diagram is not unique (e.g. in Fig. 6.3 the vertices order may
different on the same level). Conversely, Hasse diagram may be same for different poset. For example, the
Hasse diagram for the poset (X, <) i.e., for the set X = {1, 2, 3, 4, 6, 8, 12, 24} and the relation < be such that
x =y if x divides y; will be same as shown in Fig. 6.3.

The Hasse diagram of linearly ordered set (X, <) consisting of circles one above other is
called a chain. For example, if we define the partial ordered relation < is “less than or equal
to” over the set X = {1, 2, 3, 4, 5}; then Hasse diagram for poset (X, <) is shown in Fig. 6.4.

Os
O4
O3

Oz

O1
Fig. 6.4

We obtain the same Hasse diagram as above for the poset (X, <) where the relation < is
“divisibility” i.e., V x, y € X we have x = y & ‘x divides y’; over the set X = {1, 2, 4, 8, 16}.
Example 6.3. Draw the Hasse diagram for the poset (S, <), where set S = (1, 2, 3,4, 6, 8, 9, 12,
18, 24} and the relation “<” is “divisibility”.

Sol. The vertices of the Hasse diagram will corresponds to the elements of X and the edges will
be formed as,

<={{1, 2}, {1, 3}, {2, 4}, {2, 6}, {3, 6}, {3, 9}, {4, 8}, {4, 12}, {6, 12},
{6, 18}, {8, 24}, {9, 18}, {12, 24}}
that represent the poset.
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Hence the Fig. 6.5 shows the Hasse diagram for poset (S, <)

24
8 12
18
4C
9
9
2
3
1
Fig. 6.5

Example 6.4 1. Draw the Hasse diagram for factors of 6 under relation divisibility.
2. Draw the Hasse diagram for factors of 8 under relation divisibility.

Sol. 1. Let Dy is the set that contains possible elements that are factors of 6, i.e., Dy = {1,
2, 3, 6} then poset will be {{1, 2}, {1, 3}, {2, 6}, {3, 6} whose Hasse diagram is shown in Fig. 6.6.

6

1
Fig. 6.6

2. Similarly for Dg = {1, 2, 4, 8} under the relation divisibility the poset will be {1, 2}, {2, 4},
{4, 8}. Hence, its Hasse diagram will be a chain that is shown in Fig. 6.7. Here all elements are
comparable to each other such poset is called toset. Remember, all tosets must be posets but
all posets are not necessarily tosets.

Os
O4

02

O1
Fig. 6.7

Upper Bound

Let (X, <) be a poset and Y ¢ X, then an element x € X be the upper bound for Y if and only if,
Vye Ysty<x
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Lower Bound

Let (X, <) be a poset and Y ¢ X, then an element x € X be the lower bound for Y if and only if,
Vye Yst.y>x.

Least Upper Bound (LUB)

Let (X, <) be a poset and Y c X, then an element x € X be a least upper bound for Y if and only
if, x is an upper bound for Y and x < z for all upper bounds z for Y.

Greatest Lower Bound (GLB)
Let (X, <) be a poset and Y ¢ X, then an element x € X be a greatest lower bound for Y if and
only if, x is an lower bound for Y and z > x for all lower bounds z for Y.

Reader must note that for every subset of poset has a unique LUB and a unique GLB if
exists. For example, the GLB and LUB for the poset whose Hasse diagram shown in Fig. 6.3
will be @ and {a, B, ¥} respectively.

Well ordered set

A poset (X, <) is called well ordered set if every nonempty subset of X has a least element. This
definition of well ordered set follows that poset is totally ordered. Conversely, a totally ordered
set need not to be always well ordered.

Meet and Join of elements
Let (X, <) be a poset and x; and x, are elements € X, then greatest lower bound (GLB) of x; and
x, is called meet of elements x, and x, where meet of x, and x, is represented by (x; A x,) i.e.,
(xy A xy) = GLB (x, x,)
Similarly, the join of x; and x, is the least upper bound (LUB) of x, and x, where join of
x, and x, is represented by (x; v x,) i.e.,
(x; v x,) = LUB (x,, x,)

6.4 LATTICES

The purpose of the study of the previous sections was to understand the concept of ordered
relations. Partial ordered relations plays a significant role in the study of algebraic systems
that we shall discuss in the latter sections. Lattice is the partial ordered set that possesses
additional characteristics. The feature of lattice as an algebraic system is also significant. The
importance of lattice theory associated with Boolean algebra is not only to understand the
theoretical aspects and design of computers but many other fields of engineering and sciences.

Definition
A poset (X, <) is called a lattice if every pair of elements has a unique LUB and a unique GLB.
Let x; and x,, are two elements € X, then for a poset (X, <) we have,
GLB(xy, x5) = X, A X, and LUB(x,, x,) = x; v x,;
e Where the symbols A and v are binary operations ‘AND’ and ‘OR’ respectively over X.
e In certain cases, symbols A and v are also used as the abstraction of ‘~’ and ‘U’ respec-
tively.

For example, assume P(X) is the power set for a known set X then over the relation

‘inclusion’ poset (P(X), ©) is a lattice. To show it assume set X = {a, B}; so PX) = {{, {a}, {B},



156 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

{o, B}}. Then, poset (P(X), <) in which each pair have a unique LUB & a unique GLB e.g.
for the pair ({o, B}, {B}) meet and join will be,

GLB ({a, B}, {BD = {a, B} A {B} = {a, B} n {B} = {B}
LUB (o, B, {B) = {a, B} v {B} = {o, B} U {B} = {or, B}
(Reader can also verify these results from the Hasse diagram shown in Fig. 6.3)

Similarly we can determine the LUB & GLB for every pair of the poset (P(X), <) that are
listed in table shown in Fig. 6.5.

GLB o {a} {B} {o, B}
o 0] 4] 4] 4]
{o} 4] {o} 4] {o}
{B} 4] 4] {B} {B}

{a, B} 4] {o} {B} {o, B}

LUB (4] {o} {B} {o, B}
(4] 4} {o} {B} {a, B}
{o} {or} {od | fo, B} [ fo, B}
(B} B | {o, B | B} {a, B}

{o, B} |{o, B} [ fo, B} | {o, B} | {0, B}

Fig. 6.5

Example 6.5. Consider the poset (I*, <) where I* is the set of positive integers and the partial
ordered relation < is defined as i.e. if x and y € I* then x <y means ‘x divides y’. Then poset (I*,
<) is a lattice. Because,

GLB(x,y) = x Ay =lem(x, y) [lem: least common divisor]
and LUB(x, y) =x vy =ged(x, y) [ged: greatest common divisor]
Example 6.6. Let R be the set of real numbers in [0, 1] and the relation ‘<’ be defined as ‘less

than or equal to’ over the set R, then poset (R, <) is a lattice. Assume r; and r,, are the elements
€ Rs.t. 0 <r,, r, <1 then meet and join are given by,

GLB(ry, ry) = ry ATy = Min(ry, r,)
and LUB(ry, ry) =r, v r,=Max(r,, ry)
In the next section we will discuss the theorems that shows the relationship between
the partial ordered relation ‘<’ and the binary operations GLB & LUB in a lattice (X, <).

Theorem 6.4.1. Let (X, <) be a lattice, then for any x, y € X,
(i) x<y < GLB(x,y)=x
and, (i) x<y < LUB(x,y)=y
Proof. (Immediately follows from the definition of GLB and LUB)
Assume x <y, since we know that x < x = x < GLB(x, y).
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From the definition of GLB(x, y), we have GLB(x, y) < x.
Hence, x <y = GLB(x, y) = x.
Further assume, GLB(x, y) = x; but it is possible only if x < y.
So GLB(x,y) =x = x <y. It proved the equivalence (7).
To prove the equivalence (ii) x <y < LUB(x, y) = y; we proceed similarly.
Alternatively, since GLB(x, y) = x. so we have,
LUB(y, GLB(x, y)) = LUB(y, x) = LUB(x, y)
But LUB(y, GLB(x, y)) =y
Therefore, LUB(x, y) = y follows from GLB(x, y) = x.

Similarly we can show that GLB(x, y) = x follows from LUB(x, y) = y, that proved the
equivalence.

Theorem 6.4.2. Let (X, <) be a lattice, then for any x, y and z € X
y<z = [ GLB(x, y) < GLB(x, z) @)
{LUB(x, y) <LUB(x, z) (1)
Proof. From the result of the previous theorem y <z < GLB(y, z) = y;
To prove GLB(x, y) < GLB(x, z), we shall prove
GLB (GLB(x, y), GLB(x, z)) = GLB(x, y);
Since, GLB (GLB(x, y), GLB(x, z)) = GLB(x, GLB(y, 2));
= GLB(x, y) proved.
Similarly prove the (ii) equality.

Theorem 6.4.3. Let (X, <) be a lattice, then for any x, y and z € X

()x<yArx<z = x<GLB(y,z)

(i) x<yrx<z = x<LUB(@,z)
Proof. (i) Inequality can be proved from the definition of GLB and from the fact that both y
and z are comparable.

(i1) Inequality is obvious from the definition of LUB.

Since we know that poset (X, <) is dual to the poset (X, >). So, if A ¢ X then LUB of A
w.r.t. poset (X, <) is same as GLB for A w.r.t. poset (X, <) and vice-versa. Thus, if the relation
interchanges from ‘< to >’ then GLB and LUB are interchanged. Hence, we say that operation
GLB and LUB are duals to each other like as the relation ‘<’ and >’. Therefore, lattice (X, <)
and (X, >) are duals to each other. So, above theorem can be restated as,

@Hx2yrx>z = x2>LUB(y,2)
G)x>yArx>2z = x>GLB(y,z)

Theorem 6.4.4. Let (X, <) be a lattice, then for any x, y and z € X
(a) LUB(x, GLB(y, z)) = GLB (LUB(x, y), LUB(x, z));
(b) GLB(x, LUB(y, z)) = LUB (GLB(x, y), GLB(x, z));
(These are called distributive properties of a lattice)
Proof. (a) Since, x < LUB(x,y) and x < LUB(x, z);
Then, from (i) equality of theorem 6.4.3
x <GLB(y,z) = x<GLB(LUB(,y), LUB(x, 2)); (ii1)
Further, GLB(y, z) <y < LUB(x, y);
and GLB(y, z) <z < LUB(x, 2);
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Again using equality (i) we obtain,

GLB(y, z) < GLB (LUB(x, y), LUB(x, 2)); (iv)
Hence from (iii), (iv) and (i)" we get the required result that’s,

LUB(x, GLB(y, z)) < GLB (LUB(x, y), LUB(x, z)); Proved.
Similarly we can derive the equality (b).

Theorem 6.4.5. Let (X, <) be a lattice, then for any x, y and z € X
x<z & LUB(x, GLB(y, z)) < GLB (LUB(x, y), z).

Proof. Since, x <z < LUB(x, z) = z from (ii) inequality of theorem 6.4.1. Put z in place of
LUB(x, z) in the inequality (a) of theorem 6.4.4

Thus we have, LUB(x, GLB(y, z)) < GLB (LUB(x, y), 2);
& x<z.
(This inequality is also called modular inequality).

Example 6.7. In a lattice (X, <), for any x, yand z € X, if x <y <z then

(i) LUB(x, y) = GLB(y, z); and

(i) LUB(GLB(x, y), GLB(y, 2)) =y = GLB(LUB(x, y), LUB(x, 2));
Sol. () Since we know that if x <y < LUB(x, y) = y; and also if y = z & GLB(y, z) = y (see
theorem 6.4.1), therefore

x<y <z LUB(, y) =y = GLB(y, 2);
(1) Similarly, GLB(x, y) = x if x <y; and GLB(y, z) =y if y < 2.
So, put these values of x and y in (i), thus we have

LUB(GLB(x, y), GLB(y, 2)) = y (.. LUB,y)=y)
LHS
Further since, = LUB(x, y) =y (if x <y) and also LUB(x, z) = z (if x < 2).
From (i) GLB(y, z) = y;

Put the values of y and z in this equation we obtain,
GLB (LUB(x, y), LUB(x, 2)) = y
RHS
Hence, LHS = RHS; Proved.

6.4.1 Properties of Lattices
Let (X, <) be a lattice, than for any x, y and z € X we have,

(1) GLB(x, x) = x; and LUB(x, x) = x; [Rule of Idempotent]

(i1) GLB(x, y) = GLB(y, x); and LUB(x, y) = LUB(y, x) [Rule of Commutation]
(i) GLB(GLB(x, y), z) = GLB(x, GLB(y, 2)); and

LUB (LUB(, y), z) = LUB(x, LUB(y, 2)) [Rule of Association]

(iv) GLB(x, LUB(x, y)) = x; and LUB(x, GLB(x, y)) = x [Rule of Absorption]

We can prove above identities by using the definition of binary operation GLB and LUB.
(1) Since, we know that,
x<x < GLB(x,x)=x (from theorem 6.4.1)
and also x <x < LUB(x, x) =x (from theorem 6.4.1)

Similarly we can prove the other identities (i) and (ii7). To prove identity (iv) we recall
the definition of LUB that for any x € X, x <x and x < LUB(x, y).
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Therefore, x < GLB(x, LUB(x, y));

Conversely, from the definition of GLB, we have GLB(x, LUB(x, y) < x.
Hence, GLB(x, LUB(x, y) = x. Proved.

Similarly, LUB(x, GLB(x, y)) = x.

6.4.2 Lattices and Algebraic Systems
Let (X, <) be a lattice, then we can define an algebraic system (X, GLB, LUB) where GLB and
LUB are two binary operations on X that satisfies (1) commutative, (2) associative, and (3) rule
of absorption i.e. for any x,y € X

GLB&x,y)=x A Yy;
and LUB(x, y) =x vy.

6.4.3 Classes of Lattices

In this section we will study the classes of lattices that posses additional properties. To define
lattice as an algebraic system, that can anticipate introducing the verity of lattices in a natural
way.

6.4.3.1 Distributive Lattice
A lattice (X, GLB, LUB) is said to be distributive lattice if the binary operations GLB and LUB
holds distributive property i.e. for any x, y and z € X,
GLB(x, LUB(y, z)) = LUB (GLB(x, y), GLB(x, 2))

and LUB(x, GLB(y, z)) = GLB (LUB(x, y), LUB(x, 2))

e A lattice is a distributive lattice if distributive equality must be satisfied by all the

elements of the lattice.

e Not all lattices are distributive.

e Every chain is a distributive lattice.

For example, lattice shown below in Fig. 6.6 is a distributive lattice. Because if we take
the elements {a}, {o, B} and {y}) then

GLB(x LUB(y, z)) = GLB ({a}, LUB ({a, b}, {y}))
= GLB({a}, {0, B, ¥) = {o} LHS

Since GLB({al, {a, B}) = {0} and GLB({a}, {y}) = O

Thus, LUB(GLB ({a}, {o, B}), GLB({at}, {y)) = GLB({ai}, @) = {0} RHS.

Similarly it is true for all the elements. Hence, it is an example of distributive lattice.

O B, v

ST

{0, B} O L@ OB,

{o} O O

Fig. 6.6
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Example 6.8. Show that lattice of Fig. 6.7 is not a distributive lattice.

Sol. Since, we can see that all elements of the lattice doesn’t satisfies the distributive equalities.
For example, between the elements y, z and r

GLB(y, LUB (z, r))
= GLB(y, x) =y; RHS
and LUB(GLB(y, z), GLB(y, r) = LUB(s, s) = s; LHS
Therefore RHS = LHS, hence shown lattice is not a distributive lattice.

O <‘>z Or
O
S

AN

Fig. 6.7

Remember that lattices similar to the lattice of Fig. 6.7 are called ‘diamond lattices’ and
they are not distributive lattices.

Example 6.9. We can further see that lattice shown in the Fig. 6.8 is not a distributive lattice.

Sol. A lattice is distributive if all of its elements follow distributive property so let we verify
the distributive property between the elements n, [ and m.

T~

1O ?m
On
o

Fig. 6.8

GLB(n, LUB(, m)) = GLB(n, p) [... LUBW, m) = p]
=n (LHS)
also LUB(GLB(n, ), GLB(n, m)) = LUB(o, n); [.. GLB(n,[) = 0 and GLB(n, m) = n]
=n (RHS)
S0 LHS = RHS.
But GLB(m, LUB(, n)) = GLB(m, p) [... LUB(, n) = pl
=m (LHS)
also LUB(GLB(m, 1), GLB(m, n)) = LUB(o, n); [.. GLB(m, ) = 0 and GLB(m, n) = n]
=n (RHS)
Thus, LHS # RHS hence distributive property doesn’t hold by the lattice so lattice is not
distributive.

p
O
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Example 6.10. Consider the poset (X, <) where X = {1, 2, 3, 5, 30} and the partial ordered
relation <is defined as i.e. if x and y € X then x <y means ‘x divides y’. Then show that poset (I*,
<) is a lattice.

Sol. Since GLB(x, y) =x Ay = lem(x, y)
and LUB(x, y) =x vy = ged(x, y)

Now we can construct the operation table I and table II for GLB and LUB respectively
and the Hasse diagram is shown in Fig. 6.9.

Table I Table II

LUB 1 2 3 51 30 GLB 1 2 3 51 30
1 1 2 3 5 30 1 1 1 1 1 1

2 2 2 30 30 30 2 1 2 1 1 2

3 3 | 30 3130 | 30 3 1 1 3 1 3

5 5 [30 | 30 5 1 30 5 1 1 1 5 5

30 |30 |30 [ 30 (30 | 30 30 1 2 3 5| 30

30
2 3

1
Fig. 6.9 Hasse diagram.

Test for distributive lattice, i.e.,

GLB(x, LUB(y, z)) = LUB(GLB(x, y), GLB(x, 2))

Assume x = 2,y = 3 and z = 5, then

RHS: GLB(2, LUB(3, 5)) = GLB(2, 30) = 2

LHS: LUB(GLB(2, 3), GLB(2, 5)) = LUB(1,1) =1

Since RHS # LHS, hence lattice is not a distributive lattice.

6.4.3.2 Bounded Lattice
A lattice (X, GLB, LUB) is said to be bounded if there exist a greatest element ‘I’ and a least
element ‘O’ in the lattice, i.e.,
@ 0<x<I [for any x € X]
(71) LUB(x, O) = x and GLB(x, 0) =0
(@i1) LUB(x, D =1 and GLB(x, ) =«
(Element I and O are also known as universal upper and universal lower bound)

For example, lattice (P(X), <) is a bounded lattice where I is the set X itself and O is @.
Consider another example, a Hasse diagram shown in Fig. 6.10 is a bounded lattice. Because
its greatest element (I) is ‘a’ and least element (O) is 7.



162 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

a
b
c d
e
f
Fig. 6.10
Let x = ¢ then LUB(, H=c and GLB(c,H=f
and LUB(c,a) =a and GLB(c,a)=c

Similarly, these conditions holds for any x € X, hence lattice is bounded.
Example 6.12. Lattice discussed in the example 6.7 is also a bounded lattice.

Example 6.13. Show that lattice (X, GLB, LUB) is a bounded lattice, where poset (X = {1, 2, 5,
15, 30}, /) (here partial ordered relation is a ‘division’ operation,).

Sol. Reader self verify that the Hasse diagram for the given poset is same as the Hasse dia-
gram shown in Fig. 6.10. Since diagram is bounded whose greatest element is 30 and the least
element is 1 and the rest of the conditions are also satisfied therefore lattice is a bounded
lattice.

6.4.3.3 Complement Lattice

A lattice (X, GLB, LUB) is said to be complemented lattice if, every element in the lattice has
a complement. Or,
A bounded lattice with greatest element 1 and least element 0, then for the elements x,
y € X element y is said to be complement of x iff,
GLB(x, y) = 0; and LUB(,y)=1;
e In a complement lattice complements are always unique.
e Since operation GLB and LUB are commutative, so if y is complement of x then, x is
also complement of y also 0 is the unique complement of 1 and vice-versa.
e In the lattice it is possible that an element has more than one complement and on the
other hand it is also possible that an element has no complement.
For example consider the poset (P(X), ) where X = {a, B, vy} and so the lattice (P(X), GLB,
LUB) where operation GLB and LUB are m and U respectively is bounded with greatest element
{o, B, v} and least element (. (Fig. 6.11)
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Then we can find the complement of the elements that are listed in the table shown in
Fig. 6.12.

No. Element Complement Verification

1 (0] {a, B, 1} - GLB(@,{a, B, ) = {o, B, 7}; LUB@,{c, B, v) =D
2 {od} B, v} s GLB({a}, {B, v) = {a, B, v}; LUB({ad, B, YN =9

3 B) {o, v} - GLB({B}{a, v)) = {0, B, 7}; LUBUB}, {o, v}) = @

4 v {o, B} -~ GLB({yL{a, B) = {0, B, 7}; LUB({y, {o, B =D

5 {o, B} o s GLB(o, v}, iy) = {a, B, y); LUB(o, B}, (Y) =D

6 B, 1} {o} s GLBUB, v}, {o}) = {a, B, v}; LUBUB, v}, o) =@

7 {o, 7 {B} ~ GLB(o, v}, (B = {o, B, v}; LUBUa, v, (BH = O

8 {a, B, 7} 1] ~ GLB({o, B, v}, @) = {0, B, v}; LUB(«, B, 7}, @) =0

Fig. 6.12

Example 6.14. Lattices shown in Fig. 6.13 (a), (b) and (c) are complemented lattices.

AN /\ /\\

Sol.

a Ob
o \o
0 0
(@) (b) (c)
Fig. 6.13

For the lattice (a) GLB(a, ) = 0 and LUB(x, y) = 1. So, the complement « is b and vise
versa. Hence, a complement lattice.

For the lattice (b) GLB(a, b) = 0 and GLB(c, b) = 0 and LUB(a, b) = 1 and LUB(c, b) = 1;
so both a and ¢ are complement of 6. Hence, a complement lattice.

In the lattice (¢) GLB(a, ¢) = 0 and LUB(q, ¢) = 1; GLB(a, ) = 0 and LUB(a, b) = 1. So,
complement of a are b and c. Similarly complement of ¢ are a and b also a and ¢ are comple-
ment of 6. Hence lattice is a complement lattice.

Example 6.15. For example lattice (P(X), <) is a complemented lattice. Let us discuss the
existence of complement for each elements of the lattice. Since the GLB and LUB operations on
P(X) are n and U respectively and so the universal upper bound in the lattice is set X itself
(corresponds to symbol 1) and the universal lower bound in the lattice is @ (corresponds to
symbol 0). So, in the lattice (P(X), <) complement of any subset Y of X is the difference of X and
Y (ie. X-Y).

Example 6.16. Let (X, <) be a distributive lattice, then for any elements x, y € X if, y is comple-
ment of x then y is unique.
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Sol. We assume that element x has complement z other than x. So, we have,
LUB(x,y) =1 and GLB(x,y) = 0;
and LUB(x,2) =1 and GLB(x, z) = 0;
= GLB(, 1)
GLB(z, LUB(x, y))
LUB(GLB(z, x), GLB(z, y)) (distributive property)
LUB(0, GLB(z, y))
LUB(GLB(x, y), GLB(z, y))
GLB(LUB(x, 2), y) (distributive property)
GLB@, y)

y
Hence, complement of x is unique.

Further we write,

L

6.4.3.4 Sub Lattices
Let (X, <) be a lattice and if Y ¢ X then lattice (Y, <) is a sublattice of (X, <) if and only if Y is
closed under the binary operations GLB and LUB.

[In the true sense algebraic structure (Y, GLB, LUB) is a sublattice of (X, GLB, LUB). For

a lattice (X, <) let x, y € X s.t. x <y then, the closed interval [x, y] which contains the entire
elements z s.t. x <z <y will be a sublattice of X]

Example 6.17. Consider the lattice (I', <) where I is the set of positive integers and the rela-
tion ‘<’is “division” in I* s.t. for any a, b € I'; a <b = ‘a divides b’. Let A, be the set of all divisors
of k, for example set A, ={1, 2, 3, 6}; which is a subset of I*. Then lattice (A, <) is a sublattice of
I+, <).

Example 6.18. Let (X, <) be a lattice shown in Fig. 6.14, assume X = {x,, x4, X5, X, X, Xz). Let
subsets of X are X, = {x,, x5, x,, x5}, X, = (x4, x ) and X = {x, x5/ then lattice (X, <) is a sublattice
of (X, <) but not lattice (X,, <) and lattice (X,, <.

(.751
T
O

\O/

X3

Xy X

Fig. 6.14

Since,

e For the lattice (X, <); GLB(x,, x,) = x, € X;; GLB(x,, x,) = x5 € X; LUB(x,, x,) = x, €
X,; LUB(x,, x,) = x, € X, and others, we find that subset X, is closed under operations
GLB and LUB so a sublattice.

e For the lattice (X,, <); GLB(x,, x,) = x4 € X,;; LUB(x,, x,) = x, ¢ X,; so subset X, is not
closed under operations GLB and LUB therefore, (X,, <) is not a sublattice of (X, <).
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e Also, GLB(x;, x,) = x4 & X,; so subset X, is not closed under operations GLB and LUB
therefore (X, <) is not a sublattice of (X, <).

6.4.4 Product of Lattices
Let (X, GLB,, LUB,) and (Y, GLB,, LUB,) are two lattices, then the algebraic system (X x Y,
GLB, LUB) in which the binary operations GLB and LUB for any (x,, y,), (x,, y,) € X x Y are
such that

GLB ((x4, y,), (x5, y5)) = (GLB,(x,, y,), GLB,(x,, y,));
and LUB ((xy, y,), (x4, ¥5)) = (LUB,(x,, y,), LUB,(x,, ¥,));
is defined as the direct product of lattices (X, GLB,, LUB,) and (Y, GLB,, LUB,).

e The operations GLB, LUB on X x Y are (1) commutative, (2) associative and (3) hold
absorption law because these operations are defined over operations GLB,, LUB,
and GLB,, LUB,. Hence direct product (X x Y, GLB, LUB) is itself a lattice. In the
similar sense we can extend the direct product of more than two lattices and so obtain
large lattices from smaller ones. The order of lattice obtain by the direct product is
same to the product of the orders of the lattices occurring in the direct product.

6.4.5 Lattice Homomorphism
Let (X, GLB,, LUB,) and (Y, GLB,,, LUB,) are two lattices, then a mapping f/: X — Y i.e. for any
X, Xy € X,
f(GLB,(x,, x,)) = GLB, (flx,), flx,));
and f (LUB,(x,, x,)) = LUB, (flx,), flx,));
is called lattice homomorphism from lattice (X, GLB1, LUB1) to lattice (Y, GLB2, LUB2).

e From the definition of lattice homomorphism we find that both the operations of GLB
and LUB should be preserved.

e A lattice homomorphism f: X — Y is called a lattice isomorphism if, f is one-one onto
or bijective.

e A lattice homomorphism s.t. f: X — X is called a lattice endomorphism. Here, image
set, of f will be sublattice of X.

e Andif, f: X — X is a lattice isomorphism then fis called lattice automorphism.

EXERCISES

6.1 Draw the Hasse diagram of lattices (A,, <) for & = 6, 10, 12, 24; where A, be the set of all
divisors of & such that for any a, b € A;; @ <b = ‘a divides b’. Also find the sublattices of the
lattice (A,, < and (A,,, ).

6.2 Let X ={a, B, v, 6} then draw the Hasse diagram for poset (P(X), ©).

6.3 Draw the Hasse diagram of (X, <) where set X = {X,, X,, X;, X,} and the sets are given as,

X, ={o, B, v, 0 X, ={o, B,y Xy={o, Bl; X, ={o;
6.4 In a lattice show that LUB(x, y) = GLB(y, z) if x <y < z.
6.5 Show that lattice (X, <) is distributive iff for any x, y and z € X,
GLB(LUB(x, y), z) = LUB(x, GLB(y, 2))

6.6 For a distributive lattice (X, <) show that if,

GLB(o, x) = GLB(a, y) and LUB(0, x) = LUB(q, y)
for some o, then x = y.



166 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

6.7 Prove that every chain is a distributive lattice.
6.8 Prove De Morgan’s laws holds in a distributive, complemented lattice s.t.
GLB(x, y)’ = LUB(x", y) and LUB(x, y)’ = GLB(x’, y")
6.9 Show that in a distributive, complemented lattice
x<y< GLBk,y)=0s LUB,y) =1y <x
6.10 LetX = {0, 1} and the lattices (X, <) and (X2, <) are shown in Fig. 6.15 show that diagram of lattice
(X", <) is an n-cube.

1 1,1
O /o

1,00 O, 1)
O O
0 (0, 0)

Fig. 6.15

6.11 Show that there are only five distinct Hasse diagrams possible for the partial ordered sets
having three elements.
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Introduction to Languages
7 and Finite Automata

7.1 BASIC CONCEPTS OF AUTOMATA THEORY

Before begin to the study of automata theory we shall first introduce the basic concepts and
definitions used thereon. These concepts include the understanding of the terms ‘alphabet’,
‘string’, ‘language’, etc.

7.1.1 Alphabets

An alphabet is an atomic, finite and nonempty set of symbols. We use the convention X for an
alphabet. For example,

e X=1{a,b,...... , 2}, set of all lower case letters.

e X = {0, 1}, set of binary symbols.

e X=1{0,1,2, ...... , 9}, set of numeric symbols.

e X={0,1,2,...... 9,a,b, ...., z}, set of alphanumeric symbols.

7.1.2 Strings

A string is the finite ordering of symbols chosen from some alphabet . For example, abc, acb,
bea, abca, are some of the strings from the alphabet X = {a, b, c}. Note that a, b, and ¢ are also
the strings from the alphabet {a, b, c}. When we writea, b, and c as the elements of X then these
refers as symbols not strings. The strings can be usually classified by their length, that is, the
number of occurrences of the symbols in the string. The standard denotation for the length of

the string x is |x|. For example, | abc | =3 and | e | = 1.

A string of zero occurrences of symbols is called empty string or null string. We denote it
by € (read as “epsilon”) such that | € | = 0. Thus, € is a string chosen from any alphabet X
whatsoever.

7.1.3 Power of =

For any alphabet X, the power of £ i.e., X* where £ is any positive integer expresses the set of all
strings of length % formed over X. For example, let X = {0, 1} then

o X0={e}

o 31=1{0,1)

e 32=1{00, 01, 10, 11}

L

e X =1{00...... 0,0........ 1,1....... 0,1........ 1, ... }, each string is of length k.

168
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The set of all possible strings over X is denoted by X*, where operator * is called as

Kleeny-closure operator and the meaning of * is given by,
=0 UX U Z2 Ui

For example, if T = {0, 1}, then using the previous definitions of X0, X1, ¥2, ...
we have,

¥ ={e}u {0, 1} U {00, 01, 10, 11} U {000, 001, 010, 011, 011,...} U....

={e, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 011, ....cevvrvrrrnrrnrnnnnenn. }
(this set contains infinite many strings)
From the set X*, if we exclude the empty string (¢) then we have a set of nonempty

strings over alphabet X. That we denoted by X* (where + is called Positive-closure operator).
Therefore,

Tt =3* (e} [ ZTUZ2U i, ]
Conversely, we say =3t u e}

7.1.4 Languages

A language is the set of strings chosen from X*, for any alphabet X. If L is the language over
then L ¢ 2*. Hence, language L. may contains infinite many strings. Since languages are set of
strings, thus new languages can be constructed using set operations viz., union, intersections,
difference, and complement. For example, the complement of the language L over alphabet =
is given by
L' =x*-1,

where X* contains all possible set of strings formed over X that we take the universal set.
Hence, set L contains all those strings of X* that are not in the set L.

A new language can also be constructed using concatenation operation over strings. Let
x and y are two strings then concatenation of x and y is the string xy, that is ‘string x followed
by string y’. For example, let x is the string of n symbols i.e., a,a, as........ a, and y is the string
of m symbols i.e., b, b, ......... b,,, then xy is the string of (n + m) symbols i.e., a,a, as........ a, b,
by eoeennnnn b,,- Note that concatenation is not commutative, such that xy # yx until x #y. On the
other side concatenation is associative, such that for any strings «x, y, and z, (xy)z = x(yz). This
allows us to concatenate the strings without restricting the order in which various concatenation
operations are to be performed.

We can also apply the concatenation operation over set of strings called languages. For
example, let languages are L; ¢ X* and L, < *, then there concatenation is L, L,, i.e.,

L, L, ={xy/x € Ly and y € Ly}
Consider an example, Let L, = {e} and L, = {00, 01, 10, 11}, then
L, L, = {€} {00, 01, 10, 11} = {€ 00, € 01, € 10, € 11}
= {00, 01, 10, 11} [© € x=ux, for any string x]
e Remember, concatenation of two null strings or language containing null strings only
is a null string, i.e.,
€.€e =€
e Iflanguage set L, is empty i.e., L; = { } or &, then concatenation of L, L, will remain
empty for any language L,. For example, let L, = {ab, bc, abc}, then
L, L, = @ {ab, bc, abc} ={} or @
e Ifboth,L, =@ and L, =, then L, L, = @.
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Strings, by definition, are finite but the language contains infinite number of strings. So
the important constraint of these languages is to specify them in the ways that are finite. For
example, let X = {a}, then 2* = L = {e, q, aaq, aaa, .......... (infinite many strings)}. The infinite
strings of the language L can be equivalently represented in a finite way as, L = {a}*. Consider
another illustration, where language L = {0, 1}* U {a}{d}*. Then the language can be con-
structed, either by concatenating an arbitrary number of strings, each is either 0 or 1, or by
concatenating the string a with an arbitrary number of copies of the string 6. Similarly a
language L={0x 0/x € {a, b}*} that contains the strings x and add 0 to each end where x is an
arbitrary string formed using a and b.

o Since, we have

L0 = {e},

ILl=1,

I2=LL=L'L,

13=121,

Lk o Tk-11,
Then L¥=LOuULluLlZuU......... ulfu......
Or, Li= O L

Similarly we denote L* by,

L= L*=LL* or L*L

k

nrC 38

1

7.2 DETERMINISTIC FINITE STATE AUTOMATA (DFSA)/
DETERMINISTIC FINITE STATE MACHINE (DFSM)/
DETERMINISTIC FINITE AUTOMATA (DFA)

Deterministic Finite State Automata refers that abstract view of machine whose transition is
one and only one after reading the sequence of inputs from each state. The abstract view of
DFSA is shown in Fig. 7.1.

T
[alb]b]b]-]a]a]

o L

9o M

Fig. 7.1

M is the machine DFSA, has a tape T of finite length. Cells of the tape contain input
symbols of a string. Machine has a tape head H, the property of the head H is read only and its
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movement is restricted only in forward/ right direction. Once it moves forward it never returns
back or left. Suppose Automata M initially (time ¢ = O/no time) on state g,. Tape head reads
currently pointing symbol a, and automata goes to next state q,. Now the tape head pointed to
the symbol b. Now automata reads the symbol b and goes to next state g, (Fig. 7.2). In this way
automaton scans all the entries of the tape cells and reaches to the last cell. We assume that,
after time t automaton M reaches to final state (¢ ) after scanning the whole tape and it stops
(never moves).

T T T
lalb|b|b]~]afa]  [a[b[b]b]|..|a]a] [a]b[b][b]|..|a]a
H = H =

DFA DFA DFA H

@ M % iy q M

Fig. 7.2

So, after scanning the whole tape entries that contains the string, automaton M goes in
the state, which is final state, it means the string is accepted by the machine M otherwise
string is rejected by M (it means automata M not reaches to its end state while scanning the
whole string). These possible outcomes of a DFA are shown in Fig. 7.3.

Yes (String is Accepted)
String

No (String is Rejected)
Fig. 7.3

7.2.1 Definition
A deterministic finite state automata (DFA) has:
o A finite set of states Q
A finite set of input symbols X
A transition function 8", which defines the next transition (move) over an input symbol
A start state g, where g, € Q (any one of the state in the set Q is a start state).
A set of accepting state (final state) F. One or more state/s may acts as final state/s,
which is certainly a subset of Q or F ¢ Q.
So, a DFA M is defined by above discussed 5-tuples as:
M= (Q9 2, 9, q F)

2]
2]
2]
2]

tThe Transition function & is truly a mapping of a state (¢ Q) with an input symbol
(e X¥) and returns to a state (¢ Q) or,
3 QxX —-Q
For example, if q is a state (¢ Q) and a symbol a (e X) that returns state p(e Q), then transition
function & is,
6(q,a) - p
Or, automata M is in state g and after reading an input symbol ¢ M moves on next state p. State
p may be same as ¢ means automata remains in its state on consuming the input symbol, i.e.,

d(g,a) >q
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7.2.2 Representation of a DFA

Obviously, A Deterministic Finite State Automata has a finite set of states and the transition
between states are defined to a set of states over a set of input symbols, which returns a set of
states. We can represent the DFA either through states diagram and through transition table.

7.2.2.1 In state diagram, we use following convention;
e A state is shown by a circle, suppose p is a state then it is represented as,

)

e The transition between states shown by an arc between them which is loaded by
input symbol with direction mark by an arrow, for example

5 (q, @) = p is represented as,

(D))

where p and ¢ are states and the arc loaded with input symbol a shows the transition from
state g to state p.
e Start (initial) state is marked by an start arrow, for example if state ¢ is the start
state then it is represented as,

)

e Final/Accepting state is marked by double circle, for example if state p is the final/
accepting state then it is represented as,

Example 7.1. ADFAM = (Q, %, 6, q,, F) has @ ={q,, q,/, = {a, b}, F = {q,} and q,,is the initial
state and the transition function Jis defined as:

0(qpa)=q; 06(q,b)=q, 6(q,a)=q, 6(q,b)=q;
The transition diagram of above DFA M is shown below (Fig. 7.4)

a
Fig. 7.4

Note: From DFA we see that there is exactly one and only one transition (exit arc) from each state
on each input symbol so the automaton M is ‘Deterministic’ (DFA). Conversely, if the finite automata have
more than one transition/s (exit arc) from a state on single/same symbol then automata is
‘Nondeterministic’ (NFA).
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Example 7.2. A Deterministic Finite Automata M = (Q, % 6, q,, F) has set of states @ = {q,, q,/,
set of input symbols X = {a, b}, initial state = {q,} and the set of final state F contain a single
state q, i.e., F' = {q,} where F c Q and the transition function 0 1is defined as:

0(qpa)=q; 6(qyb=qy 6(q,a)=q, Oq,b =q;

MG

a
Fig. 7.5

The transition diagram of M is shown in Fig. 7.5. Here g, is the initial state marked by
arrow and it is also a final state marked by double circle. From given transition function 6 of
M, following conclusions will be drawn:

e Initial state is the final state; it means that there is no transition or the transition on
no input symbol which is impossible. For this purpose we assume a special string
called epsilon (¢) i.e.,d (q,, €) = q,: state remains unchanged.

Hence, string € is accepted by M.

or, e Any string containing one/more symbols of b is also accepted i.e., {b, bb, bbb...}

or, e If string contains a symbol a then it must contain another symbol a, so that automa-
ton M returns to its final states g, i.e., accepting strings are {aa, acaa, aaaaaa,

........... ).

or, e if starting symbol is zero/one/more b then accepting strings are:

{aa, aaaa, aaaaaa, ....... }or {baa, baaaa, baaaaaa, ....... } or
{bbaa, bbaaaa, bbaaaaaa, ...... Jor{ ........ e e }
or { bb.....baa, bb....baaaa, bb....aaaaaaaq, ....... }

or, e if any number of symbols & lies in between of a i.e., the accepting strings are:
{aba, abba, ...., abababa, abbabbabba, ....... ,abababababa,
abbabbabbabbabba, ...... , abb...babb..babb..ba......... ba }
So, we conclude that any string containing even number of a’s is accepted by M. Hence,
following set of strings is accepted by given DFA M
{e, b, bb, bbb, ........... , aq, aaaaq, ....... , aba, abba, ....... , abababa........... }

Example 7.3. Design a DFA that accepts the string of odd number of @’ and b’ (both,).
Sol. Let DFA M = (Q, %, 3, q,, F), where X = {a, b}, A finite set of states Q is assumed as {q,, q,,
Qo weoen qy), where gq, is the initial state, and one/more state(s) assumed € F those are final
state(s).
1. If string containing Ist symbol is @ (arrow 1) then next state onward there must
be odd number of 5 (1, 3, 5...) with even numbers of a’ (2, 4, 6......) such that all
a’® are odd. (Fig. 7.6)
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Fig. 7.6

2. If there is a string containing symbol a followed by one b (arrow 2) then it reaches to
q, which is an accepted state. It is also true for o, 3a*, 52 ....followed by b’, 30,
5b*, .... (Fig. 7.6)

Fig. 7.7

3. If string contains First symbol b (arrow 5) then next state (q;) onwards there must
be remaining symbols in the string is odd numbers of ¢’ (1,3,5...) with even no. of 5™
(2, 4, 6) s.t. all a”® in the string become odd, (Fig. 7.7).

4. Ifthere is a string containing First symbol b (arrow 5) followed by onea then (arrow 7)
it must reach to an accepted state (true for odd no. of ¢ and 67) (Fig. 7.7).

5. Combining Fig. 7.6 and Fig. 7.7 we get the final DFA that is shown in Fig. 7.8. So the
DFA M for the above language is represented as,

M = ({q()’ ql’ q2’ q3}7 {a’ b}a 6’ qo’ {ql})

a

Fig 7.8

7.2.2.2 Transition Table

In spite of complex transition diagram for many DFA’s there is a simpler representation of
transition functions by a table. In the table entries, rows contain all the states of the set Q and
columns contain all the input symbols of set S.
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For example, following transition function
8(q,a)=p;

O

has the transition diagram

then its transition table is

Input symbol
State L Y
a
q p

It shows automata is in state ¢ and after reading (consuming) symbol « its state changes
to g.
Note. In the transition table the initial state is marked by an arrow and the final state is marked

by circle. For example, the DFA shown in fig 7.8 can be represented using transition table that is shown
below in Fig. 7.9.

State Input symbol
a a
— Qq q, g3
q, 9o q;
® g qs q;
qs qs q,
Fig. 7.9

Example 7.4. Construct a DFA that accepts the string having the alphabet pattern 011.

Sol. We construct the DFA over set of alphabets X = {0, 1} by assuming g, is the initial state
then,

L. From the state g, onwards there must be a consumption of string 011 (which is
necessary a substring or substring containing pattern found in all acceptable string).

0 1 1
— ()
IT. Any string starting with symbol 0 followed by any number of 0’s before the pattern

011 is accepted s.t. {011, 0011, 00011, ....}. So there must be a repetitive transition
arc in the state g; on symbol 0.

(from the state g, the last symbol seen was 0)
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ITI. Similarly, any string starting with symbol 1 and followed by any number of 1’s be-
fore the pattern 011 is accepted s.t. {1011, 11011, 111011,...... }. So there must be
repetitions of symbol 1 on state g,

V. If the string containing 01 followed by pattern 011, then from the sate g, there is an
arc return to state ¢, on input symbol 0, so the automata reach to its accepted state
q, after reading the pattern 011.

(from the state g, last two symbol seen were 01)

VI. After the pattern 011 the string might contain any number of 0’s or/and 1’s, for that
there is a repetitive arc on state g, over symbol 0 or 1. (Fig. 7.10)

Fig. 7.10

In this automaton we observed that there is one and only one exit on each symbol from
each state. Due to this fact automaton is ‘Deterministic’.

Finally, the DFA M = ({q,, q,, 94, g3}, {0, 1}, 9§, q,, {g4}); where &’s are shown in the
transition table:

Input symbol
State
0 1
—» 9 q: 4y
9, 9, g
q, q, q;
® 4 qs qs

Fig. 7.11
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Example 7.5. Give a DFA that accepts the language over alphabet a and the string contains
zero/ multiples of 4 a’s. Or,

Construct the DFA that accepts the strings of the set (€, aaaa, aaaaaaaa, ...... 1.
Sol. Let M be a DFA and {q} is the initial state.
L. If first symbol is null string (€) then initial state (q,) is the final state also so state diagram

will be,

II. From the state g, onwards there is a consumption of 4-consecutive a’s followed by none/
more such sets of a’s, i.e.,

Fig. 7.12

So the final DFA M is ({q,, 94, 95, 95}, {a}, 8, g, {q,}) shown in Fig. 7.12; and the transition
function § is shown in the transition table in Fig. 7.13.

Input symbol
State

a

—P 049, q;
q, q;

q, 9o

q; 4o

Fig. 7.13

7.2.3 d-head

Instead of defining the behavior of transition function over a single symbol (alphabet), which
is a mapping of a state with a input symbol and returns a state i.e., 3: Q x S — Q, it is also
required to know the behavior of the transition function over an arbitrary string (s. t. au-
tomata not only read a single symbol but a sequence of symbols or string)) such characteristics
include in the definition of &-head.

7.2.3.1 Definition

Assume, if a string is defined over set of alphabet X then set of possible string is in £*, then &-
head is defined as:

§:Qx3* > Q
or we say that d-head is the transition function that map a state(e Q) with a string (¢ * ) and
returns a state (e Q).
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Let automata M is in state ¢, after reading the string x (tape cells entries contains the
string x) automaton reaches to state p. This situation is shown in Fig. 7.14 (a) and (b).

M

p
(®)

Fig. 7.14

So, the behavior of 6-head over string x is given as,

§ (g, %) =p;

where x is a string might be of single alphabet.
7.2.3.2 Properties of 5-head
From any state q,

I. If input string is a null string (€) then automaton state remains unchanged i.e.,

§(g.€)=q, VqeQ

If the string is of single symbol string or of length one then 6-head and 6 are same i.e.,
assume string x = a then,

§ (¢,2)=38(q,a)=p;

X X
k 4
—| =
M M
q p

I1. If string is not of single symbol string then assume string x is formed by a alphabet a
and substring y, i.e., x = ay, then

8 (q’ ay) = S (8 (qa a)ay) 5
For example if x = 1011 then ¢ = 1 and remaining string y = 011.
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a | e Yeeeerreeens a | e Yeeeonrreeans
A A
] - o]

M

q p

Here & (¢, a) = p and assume that after reading the remaining substring y automata

reaches to state r then S, x)=r
A | e Veeeeeeirnenn
A
= M

r
(In this way automaton complete the transitions over input string x)

Example 7.9. A DFA M =({q,, q,}, (a}, 6, q, {q,}) has following transition characteristics:

—(CI 1

Check behavior of the DFA over string aaa.

Sol. Assume autometer is in initial state {g,}. Now check the behaviour of DFA M over the
string aaa, i.e.

S (qy, aaa) = S (8(qy, @), aa) [Using II property of 8-head]
=5 (q,, a@) [.. 0O(gg @) =q4l
=5 (3(gy, @), @) [Using II property of 8-head]
=8 (gy @) [ d(qy, @) =gy
=8 (gpa.e) [-. a.e=dl
=35 (8(qy, @) [Using II property of 8-head]
=8(gy €) [.. 8(qqy @) =q,l
={q,} [Using Ist property of 8-head]

Since state (g,) is an accepted state, therefore string aaa is accepted by DFA M.
Example 7.10. Construct the DFA accepting the set of string having both odd number of a
and b*.

Sol. The following DFA M accepts odd no. of ¢ and b

where, M = ({q,, 9;, 95, 93}, {a, b}, 3, q, {g,}) and transition function shown in the transition
table (T'T) Fig. 7.15.
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Input symbol
State
a b
—» q q, qs
q, 9 qs
® 9 qs q,
q; q, q;
Fig. 7.15

Now we define the moves of DFA over the string abaabb (odd number of a” and b both)
which must be acceptable or after reading the whole string automata reaches to the final state

{gy).
So, compute & (qo, abaabb) :
L& (q,, abaabb) = S5 (5 (qg, @), baabb)

= & (q,, baabb) [ 8(qp @) =q,]
IL. § (q,, baabb) = § (8(q,, b), aabb)
= § (q,, aabb) [« 8(gyb) =g,
I1L § (q,, aabb) = § (3 (g, a), abb)
= & (g, abb) [ 8(gya)=qy]
IV. § (qq abb) = 3§ (5(gy, a), bb)
= & (gy, bb) [ 8(gya) =g,
V. § (g, bb) =8 (8(qy b), b)
=3 (q,,b) [ 8(gyb)=q,]
VL. § (g, b) =8 (g, b.e)=8" (g, b), €)
=8 (g €) [ 8(gy,b)=qyl
VIL § (qy, €) =0(q, €) [using Ist property of 6-head)
= {q,}

where {g,} is the accepted state of DFA M.

7.2.4 Language of a DFA
After knowing the behavior of the automata over an arbitrary string and finally over the set of
string we can easily define the language of a DFA. Let automata M be a DFA then language
accepted by M is Ly; where,

Ly={&/xeXZ* and S (qg, %) € F}

Alternatively, we say that any arbitrary string x from the set * will be the language of
DFA M if from initial state after reading the complete string x it reaches to final state. Now we
see that if X is the set of alphabet then set of all possible string formed over X is *. In the set
>* there exists two possible class of languages, i.e.,

L
Z*

T* — Ly
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where L,; contains those set of strings that are accepted by automaton M, and remaining
string (£* — L)) are those that are discarded or rejected by M. Hence, L,; and X*- L, are two
disjoint sets which never meet with reference to a particular automaton M, i.e.,
LynE*-Ly=®

Note. Set L, contains infinitely many strings or a language of a DFA contains infinite number of
strings but an automaton has a finite amount of space that is only available space to allocate to finite or
infinitely long strings. Hence, there is a mechanism used to describe a infinitely long string into a finite
number of symbols (detail discussion is out of scope of the topic) but for brief discussion see the topic
languages under section basic concepts of automata in the beginning of this chapter.

7.3 NON DETERMINISTIC FINITE STATE AUTOMATA (NDFSA)/
NON DETERMINISTIC FINITE STATE MACHINE (NDFSM)/
NON DETERMINISTIC FINITE AUTOMATA (NDFA)/NFA

In the previous section we have discussed deterministic finite state automata (DFA) whose
state transitions are deterministic which means that there is one and only one exit arc from
each state on an input symbol. So we can say that DFA gives somewhat static view of the finite
automata. Now we will discuss a dynamic/flexible view of the finite automata whose state
transitions are not of deterministic nature (non-deterministic), which means that there is the
possibility of multiple transitions on some input symbols from a single state. So, the automata
of such category are known as nondeterministic finite state automata (NDFSA/NDFSM/NDFA/
NFA). The feature of dynamism introduced in the finite automata provides more power to the
finite automata. The abstract view of the NFA shown in Fig. 7.16 is similar to the DFA.

T
a|blbb|-|aja]

H
o [

M

Fig. 7.16

7.3.1 Definition

We can define a nondeterministic finite automaton (NFA) with following tuples,
e Q, a finite set of states,

¥, a finite set of input symbols,

q,, an initial state, where q, € Q

F, a set of final state/s, where F is the subset of state Q i.e., (FF c Q),

d, a transition function which defines the next state reachable from current state
over an input symbol. It reaches to either no state or single state or two/more states.

e No state transition means, there is no actual transition define from a state on
that symbol or there is no exit arc from that state on that symbol.

e Single state transition means, there is a single transition define from a state on
that symbol or there is a single exit arc from that state.
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e More state transitions means, there is the possibility of two/more transitions from
a state on that single symbol or there are 2/more transitions arc exit from that
state.

So a NFA can be defined by these five tuples by,
N=(QX,3,qF)
where transition function () is the mapping of a state with an input symbol to power set of Q,
it means that function returns a state that will be in the power set of state Q.

QxS —->PQ

Note. Transition function returns the state/s that is in power set of @, so set of final state F is also
the subset of power set of Q. Power set includes all subset of @ including ® (no state element). ® defines
no state transition on any symbol.

Why & returns the state that is in power set, the reason is due to dynamic nature of automata NFA.
The transition arc on single symbol fall on either in one state(q,)/two state (g, q)/more states(q,.........
q) or possibly no state transition (®). These possibilities of set of states are included only in the power set

of Q.

7.3.2 Representation

The representation of a NFA is similar to a DFA representation that is, we can represent the
NFA either through a state diagram or through transition table (TT). I personally feel that
state diagram representation provides a comprehensive view of the automata at a moment. So
I always prefer state diagram over transition table representation. In the Fig. 7.17 we construct
a NFA that accepts all the strings which contains the substring 011 or a pattern of symbols 011.

Fig. 7.17

Above NFA N can be represented by following tuples,
N = ({qo’ 91,99 q3}, {0, 1}, §, 9y {q3})

And transition functions 8 are define as follows,

e 8(gy, 0) = {gy) and 8 (g4, 0) = {g,};

So, d(q,, 0) = {qy, q,} [.. There are two exit arcs from a state g, on symbol 0]
8(qq,1) = {qy);

3(q,, 0) = @ [.. no transition is defined on input symbol 0 from state q,]
8(qy, D =gk

3(qy, 0) = @;

8(gq, 1) = g3k
(g3, 0) = g3k
8(gg 1 = g3k

7.3.3 d-head

Like 6-head of DFA, 8-head of NFA defines the behavior of the transition function over an
arbitrary string. Assume that if the string is defined over alphabet X, then set of all possible
strings are X*. The 6-head is defined as,

§:QxI* > PQ

® ® ® ® ®© ® ©
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Thus, &-head is the transition function which is a mapping of a state (¢ Q) and a string
of input symbols (e X*) to power set of Q or P(Q).

7.3.4 Properties of 5-head

Let NFA N is in current state ¢ and its tape contains a string x shown in Fig. 7.18 then,
behavior of 8-head over string x is determine as follows:

q NFA

N
Fig. 7.18

I. If x is a null string (€) then,
5(q, €)= lg};
such that if input symbol is a null string then state remains unchanged.
II. If string x is composed of two/more symbols, then decompose string x into substring
y and a single symbol a such that, x =y a then,
8(g, x) = 8(g, y a);
=3( 8(q, ), @) (using definition of § and §)
Further, assume that $(q, ¥) = Py, Pgs Dgy evvene , p;}, that is, from the state g NFA
might be reaches to these possible states after consuming the string y, that is shown in
Fig. 7.19.

Fig. 7.19

Thus, S(S(q, y), a) = 8({p1’ p2’ p3’ ------- ) pi}, a);
=3(py, @) U d(p,, @) U d(pg, @) U ............ v 8(p;, a)
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kL=)18(pk, a)

=7, g gy e , rj}?t
Abstract view of the automata during scanning the string x = y @ is shown below in
Fig. 7.20.

............ Verrrrrreeees | @ Y a
A A
—| = li
NFA q NFA Pyl .....Ip;
state
N N
............ Verreeeeaann a

- NFA rifryl....Ir;
state
N
Fig. 7.20

Example7.11. Fig. 7.21 shows a NFA N (similar to the automaton discussed in previous exam-
ple), then check its nature of acceptance over the string 101101.

Sol. Above NFA N can be defined as,

N=( {qo’ 41,99 Q3}, {0, 1}, 3, o> {Q3}),
where &’s are shown in the following transition table (TT),

Input symbol
State
0 1
—» {qO, Q1} {qo}
a @ {a}
qs [ {CIs}
® g {Q3} {q3}

f Casel, j= i, when all the state have single transition on each symbol of the set X then, T it
returns to exactly similar number of state that is equal to I or { r,, 1, oy vevrvinnnns , T

Case II, j = 0, when there is no transition arc over symbol a from state p, (Vk = 1 to i).

Case I11, j < i or j > i, depending upon the nature of transition from state p, on input symbol a.

Above cases exists only because of dynamic nature of NFA.
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Then we check the behavior of N over the string 101101, from the starting state g,

L §(q,, 101101) = §(5(g,, 1), 01101);
[from TT check transition response of state q, on symbol 1]
= §(qy, 01101); [ 3(gy 1) = fgy)]
II. 3(gy, 01101) = (3 (q,, 0), 1101);
= 8(lqy ¢,), 1101 Lo 8(dp, 0)= [y, 4, )
II. 8({‘10’ g4}, 1101} = S(qo, 1101) v S(ql, 1101); [check each one separately]
IV(AL). §"(qq, 1101) = §(3 (g, 1), 101);
= § (g, 101} [ 8(g, 1) =q,)
IV(A2). 8(gy, 101) = §(3(gy, 1), 01);
= SA(CIO’ 01) [ S(qo’ 1) = qo]
IV(A3). 8(gy, 01) = §(3(gq, 0), 1;
= 3(lgy g4}, 1; [ 8(gy. 0 =gy, g1
IV(A4). 8Uqq a1}, 1) = 8Uqy, q,}, 1.€);

lin case of & when symbol is alone, to make it string , it
will multiply with the null string (€)]

= S(qo, le)u S(ql, l.e);
= §(8(gy, 1), €) L §(8(gy, 1), €);

= S(qo, €e)u S(q2, €); [see transitions of state in TT|

={qo U {g,); by applying Ist the property of &

={qg a5); ie., S(qo, €)=q,and 8(q, €) =g,

So we find none state is an acceptable state.

IV(B1). §(qy, 1101) = §(3(g,, 1),101);

= 5(g,, 101); [from the TT &(q,, 1) = q,)
IV(B2). 8(gy, 101) = §(8(g,, 1), 01};

= 8(q, 01); [from the TT &(q,, 1) = q,]
IV(B3). 3(q4 01) = 5(3(gg, 0), 1;

= 8((]3, 1); [from TT &(q, 1) = q;]
IV(B4). S(q3, 1= S(q3, l.e); [see IV(A) explanation]

=8B (gy 1), €);

= 8(q3, €); [from TT d(q,, 1) = q,l

= {qz}; An acceptable state
Hence, NFA N will move over the string 101101 according to following paths,

1 0 1 1 0 1
> qO :qo =q0 ....................




186 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Therefore, the only acceptable path from starting state g, is shown by dark line. Along
to this path NFA N reaches to the acceptable state g, at the end of the string 101101.

7.3.5 Language of an NFA

After determine the behavior of the NFA over an arbitrary string, we can easily define the
language of a NFA. Let N be a NFA i.e., N =(Q, %, §, q,, ), then language accepted by NFA is
Ly, where,

Ly={xk e =% and §(gy, %) € P(Q) s.t. §(gp, %) NF = @}
It means, language L contains an arbitrary string x, chosen from the set of possible
strings Z* such that NFA N, after reading the string x (from the initial state g,) reaches to the

state that is in power set of Q, such that its relation with set F is not disjoint. That is, at least
one state is common between set F and P(Q).

Example 7.12. From the NFA given in example 7.11, test the string 10101 whch is not in the
language of N.

Sol. Assign string 10101 to x, if x is a language of N (where x € X*, i.e., T = {0, 1}), then after
reading the string x, NFA N reaches to its final state, i.e. any state that belongs to the power
set of Q which contains the final state {g;}. Now we can construct the moves of NFA over the
string x = 10101, that is shown in Fig. 7.22.

1 0 1 0 1

:qo > qo » qo .................... > qo .......................... » qo ......................... » qo [;t q3]
o x

1

0 4@ ——» 4> [#4q;]
1 0
¢ —> @ ———> P [£q,]
Fig. 7.22

Since, 8" (g, 10101) = ® or {g,} or {g,}, so none of the set contains state {g,}. Hence, §"(q,,
10101) N {g4} = @. It concludes that string 10101 is not accepted by NFA N.

EXERCISES

7.1 Construct the DFA, which accept the following languages over {0, 1} :
(7) The set of all strings with two consecutive 0’s.
(1) The set of all strings ending with 101.
(ii1) The set of all strings that begin with 0 and ending with 01.
(iv) The set of all strings in which no 0 is followed immediately by 1.
7.2 Construct the NFA to accept the languages given in the example 7.1.
7.3 Describe the language accepted by the following finite automatons.

@ State  Input Symbol (i) State  Input Symbol
$ # $ #
—» A A B —>»® P Q P
®B B A ®Q R P
R R R
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(@iz) State  Input Symbol
0 1
— P P Q
Q PQ Q
® PQ P Q

7.4 Construct the finite automata for the language L, (for n > 1), i.e.,
L, = {x € {0, 1}*/|x| = n and the nth symbol from the right in x is 1}

7.5 Let x be a string in {0, 1}* of length n. describe the finite automata that accepts the string x and
no other strings. Also determine how many states are required.

7.6 Describe the language for each of the finite automatons shown in Fig. 7.23

0,1
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Fig. 7.23

7.7 In the given NFA shown in Fig. 7.24 determine each of the following :
() 81, ab) (i) § (I, abaab)

a,b
@22
—

Fig. 7.24
7.8 An NFA pictured in Fig. 7.25, calculate each of the following :
(i) (S, 0000) i) § (S, 11111)
(iii) §(S, 101010) (iv) §(S, 111000).
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8 Equivalence of NFA
and DFA

8.1 RELATIONSHIP BETWEEN NFA AND DFA

Now we will discuss the relationship between finite automatons DFA & NFA and simultane-
ously study how one form of finite automata is converted into another form of finite automata.
We know that the nondeterministic finite state automaton (NFA) provides flexibility in transi-
tions of state/s over the input symbol. But, a deterministic finite state automaton (DFA) pro-
vides the fixed or static view of transitions of states over input symbol. Hence, for the same
language it is comparatively easy to construct a NFA rather than a DFA, because DFA is the
limiting case of NFA, and each DFA must be the consisting part of a NFA.

In this section we will present the quantitative view of the relationship between a NFA
and a DFA by proving the following theorem.

Theorem 8.1. If there is an NFA accepting the language L then, there exist a DFA for the same
language L.
Proof. Let N be a NFA which is defined over following tuples: Qy, X, 8y, gy, Fy (Where the
subscripty stands for automaton NFA), i.e.,
N =(Qy, Z, Zy, o Fiy)
Since L is the language of a NFA N where L is given as,
Ly={x/xe £* and 0"g, x) N F = &}
Now define a DFA M on following set of tuples, Qp), 6, g, Ff, and same set of input
alphabet X, so
M=(@Qp,Z, 8y, qp > Fp)s [where subscript |, stands for automaton DFA]
Now, establish the correspondence between the tuples of both automatons, i.e.,

o Qp with Qu: The set Q[, contains the states that are in power set of Q. Thus, Q,
P(Qy). Alternatively, states of the DFA have been selected from the set of possible

states that contains a total number of states 2% .
o gy With gqg,: Assume both machine accelerate from same starting state hence,
{aop = lggn)s Let it be {g,}
e Suppose x is the input string so compare the moves §,(q,, x) with §\(qy.x):
1. If string x is a null string (€) then,
SN(qO, €)=q, and SD(qO, €)= qy [using Ist property of 6-head]
Hence, both automatons return to same state.

2. For rest of the cases of x we shall prove by using method of induction. Suppose,
string x = a,.a,4.a4........... a .a [~ ]x|=(m+1D]

192
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Now we shall prove that the theorem is true for string length (n + 1), hence through
induction it is true for string length n also and finally theorem is true for any length of the
string.

For that, break the string x into a symbol ‘@’ and the substring ‘y’, i.e.,

x =y.a, where y = a,.a,.a4........... a, and |y |=n
then, 8N(q0, x) = 5N(8N(q0, ¥), @)
= 0\({py, Pgs Pg o evvvvnnn D}, @); [Assume $N(q0, ¥) =1{py, Py, D5, - D}
= U (pyra) )
Now from DFA,
8Dy, Doy Py eoereene P a) = kul 8y (pa.0) (2
and {1 2 P D}« $D(q0, y);
Thus,  8p(@g *) = 8(Sp(ge ), @);
= 8(Dy> Dgy Dgerverrene p), a);
S p(@g, %) = kLiJISN (py, @) ..(3)

Compare the equations (1) and (3), we obtain,

dn(qy %) = 3(qy, X);

Which contains at least one state is in F, i.e., Fy < F[; ¢ Q. Hence, theorem is true for
string length (n + 1). Therefore, theorem is true for string length n also and finally theorem is
true for any length of the string.

Thus, proof of the theorem ends with the conclusion that language of a NFA can also be
the language of some DFA. So, if nondeterminism behavior from a NFA is removed then it
behaves like a DFA.

8.2 METHOD OF CONVERSION FROM NFA TO DFA

Consider an example of NFA N where N is given as,
N = ({qo’ 915 99 Q3}, {0, 1}, 5, 90 {q3})
where &’s are shown in the following transition table (TT) (Fig. 8.1).

Input symbols
States
0 1
— 1 » gy {90, 91} a0
{ai} @ {q.)
{as} {a,} @
o {g;} {a,} {a,}

Fig. 8.1 TTyen.
Then construct an equivalent DFA D i.e., D = (Qp,, Z, 8, q,, Fy) for the given NFA.
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I. Since, Q c P (Q) or power set of Q where Q = {q,, q;, ¢, g5}, hence
P(Q) = [@, {q,}, {g},{a 1 a0 a0, a{ay, a5hiag, ashiay, ashs {ays ashias, agh,
{90, 41> 951 1905 95 431, 1015 99, 45} 190, 415 451100, @45 995 951

From the set of P(Q) we will select the states for Q, that are used for the construction of
an equivalent DFA. It is possible that some of the states in the P(Q) might not be accessible
from starting state of DFA directly or indirectly, so leave those states. Remember that club of
the states shown inside the braces represents a single state. Transition from this club of state
over input symbols must be same the transitions from each states in the club over same input
symbol. For example, state {q,, q,, 95, q5} is a single state and the transitions from this state
satisfies all transitions of each state q, q,, q,, g5 over £ = {0,1}.

IT. Both automatons start from same state, hence start state of DFA, i.e., {g,} = {q,} of
NFA.

III. From NFA we know the final set of states is Fy. Certainly, the final set of states of
DFA is F[, (c Qp) that should contains at least one state in common with Fy i.e.,

FynFy # @
III. Now compute transition functions &, for DFA over input alphabet X for set of states
Qp.
o Transition from the state ® that is truly no state, over symbol 0 and 1 are nothing, so
return state will be ®.

o Next state in the set Q, is {g,}, so
dp(qq, 0) =gy, q;} and 38p(qy 1) ={qyh
o Transition from states {q,}, {q,}, {g;} over symbol 0 and 1 are same as shown in TT i.e.,
dp(q1, 0) =@ and 38(qq, 1) = {g,};
dp(qy, 0) ={g;} and Jp(g,, 1) =@
dp(q5, 0) ={g;} and dp(qy D = {qy);
o Transitions from the state {q, q,} is obtain as,
dpggs 91}, 0) = 8y (g, 0) L Sy(qy, 0)
={qy g, V@ =gy q,);
and 51)({%’ ql}, 1= 5N(q0, Dy 6N(qp 1)
={qot U lgy) =g, a5
o Similarly, transitions from all other states of the set P(Q) over input alphabets is
determine.

o For the final state {q,, q,, 9,5, q5} 6, Will be,
0pUags 915 995 @5} 0) = B(qy, 0) L By(q,, 0) L dy(gy, 0) L (g, 0)
={qy, 9} VP U gyl U lgs})
={qp 91> 93}
and  35{qy, 91, @9 5}, 1) = Sy(gy, 1) U S (g, 1) U 8y(gy, 1) U Sy(g,, 1)
={qy} U igyl v @ U gl
={qp 99 93}
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Hence, we obtain the following transition Table (TT) for all possible states of DFA.

Input Symbols
States
(] 1
@ @ @
—> gy} {gg 94} {q,)
{g,} D {q,)
{g,} {g,} @
® (g} {g,} ]
lgg a4} lgg a4} lgy, a,)
{gg 95} g, 91> a3} {q,)
® lgy g3 lgg, 91> g3} lg9, q5)
{gy, g5} {q,} {q,)
e {q,, q;} {g,} {g,, a5}
e {9, q;} {g,} {g,}
a9 915 95 a9 915 95} {g9> 955 95}
® {90, 95 g5 lgg, 91> g5} lg9, q5)
® {q9,,q, g3 {q,} {g, g5}
® {9y, 91, g5 {90,915 a5} lg9, 925 95}
® {9y 91 99 93 gy 915 a5} lay, 995 95}
Fig. 8.2. TTyea-

Note that all those states that contain {g,} as a state are considered as final states, these
states we marked with small circle along with the starting state {g,} which is marked with an
arrow.

Now, follow the procedure to construct the actual DFA from the TT, entries.

begi n
fromstarting state
r epeat
find new reachable state
until (while not found new reachable state)
end.

Applying the procedure we obtain a chain of reachable states from the starting state.

o From initial state {g}, only reachable state are {q,, q,} and {q,} over input symbol 0
and 1 respectively. These are new reachable states so find next transitions from these
states.

e From state {q,, q,} reachable states are {q,, q,} and {g,, g,} on symbol 0 and 1. Since
state {q,,q,} repeat itself so find next transitions from new reachable state {g,q,}.
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e From state {g,, q,} next reachable states are {q, q;, ¢5} and {g,} on symbol 0 and 1.
Among them {q,, q,, q;} state is the new reachable state hence find transitions from
state {q,, q;, g5} only.

o From state {q, q,, ¢;} next reachable states are {q,, q,, ¢5} and {q,, g5, g5} on symbol 0
and 1. From them {q, q,, ¢} is the new reachable state.

o From state {q,, q,, ¢;} next reachable states are {q,, q,, g5} and {q, g5} on symbol 0 and
1, where {g,, g} is only the new reachable state.

o From state {q,, g;} next reachable states are repeated states {q, q,, 5} and {q, g5}
Hence, procedure stops.

Hence, we obtain a DFA M which is shown in Fig. 8.3.

o/\
[

190> Qs QS}
// M~

1

Fig. 8.3 M.

From DFA state diagram we find that there is one and only one transition defined from
each state over each input symbol hence, finite automaton is deterministic finite automaton.
Example 8.1. Construct a DFA from given NFAN = ({q,, q,, 9, q5/, {0, 1}, 6, {q,}, {q,, q5}), where
transition functions 8 are shown in the state diagram in Fig. 8.4.
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Sol. Let DFA be M, where M = {Qy,, Z, &}, {g,p}, Fpp}. Now determine the tuples of M from
known tuples of N, as

® ® ® ©

Input Symbols
States
(] 1
@ @ @
—> g} {gy, g5} {g,}
® (g} {g,} lg1, g5}
{q,} {g,} {g,}
® {q.} e lgs}
® {q, q,} gy 25 a5} {g, a5}
{9y, a5} {9y, a3} {9y, a5}
® gy g3 {g1 g5} lgg, a4}
® {g, g5 lgy, g3} lg9, 915 95}
e {q,, q;} {g,} {99 91> @5}
e {9, q;} {g,} {g,}
® {q, 9y, g5} a1, 995 a3} {91, g5}
® (g, g, g3 lgy; g3} lag, 915 @5}
® {91, 95 g3 lgy, g3} lg9, 915 95}
® {9y 91, q3 {g, ,q3} g9 91, 95}
e {9y 955 9y 95} a1, 995 a3} gy, 91> 95}
Fig. 8.5 TT.

Now, Q,  P(Qup,) or power set of states of NFA. Since Qupa = {9, 91> 95> 95} hence
selection for Q, from the set that contains 16 states including state ® that are shown
in first column of TT (Fig. 8.4).

Set of input symbol X = {0, 1}.

Initial state of NFA is also the initial state of DFA, i.e., {q,,} = {q,}.

FpocQpie, FynFy#®.

Now compute the transition functions &, over input symbols 0 and 1.

Since, all those states that contain either {q,} or {g,} are considered as final state/s of
DFA. So, mark those states with small circle. Now scan the TT from starting state
{q,}.

Only reachable states from initial state are {q,, g5} and {q,} over the input symbols 0
and 1. Hence, find the next transitions from these states only.

From state {g,, 5} the reachable states are {q,} and {q,, q,, g,} and from state {q,} the
only new reachable state is {q,, q,}.
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o Reachable states from {g,} are : {q;} and {g,} that was earlier visited.
o Reachable states from {q,,q,,9,} : {q;, @5 @3} and {q,, g,}
o Reachable states from {q,,q,} :  {q, g3} and {q,,9,,9,} a repeated state.

0

Fig. 8.6. M

For next state transitions take only new reachable state.

o Reachable states from {g;} are : ® and {g,} which is a repeated state.

e Reachable states from {q,, q,, g5} : {g,, g5} a repeated state and {q,, q,, q,}

o Reachable states from {qg,, q;} : {g5} and {q,} both are repeated state.

o Reachable states from {q,, q,, ¢,} are: {q, g,,95} and {q,,q,} both are repeated state.
o Further, no new reachable state found hence process stop.

Thus, Fig. 8.6 shows the state diagram of final DFA.

8.3. FINITE AUTOMATA WITH € MOVES

We have seen so far that a finite automaton of either deterministic or nondeterministic which
changes their state transitions only over known input symbols. Experience shows that there
might be a need of state transitions over no input symbol. It means, there are few states in the
finite automaton such that it skips between these states without consumption of any input
symbol. For this purpose, we introduce a new symbol epsilon (e) that has a dimension and of
zero length, which is also called a null string.

Now we will discuss the nature of finite automata specifically, over null string (€ ). Since
automata changes their state/s over null string so these transitions occurs over no symbol. In
other words, automata skip between states spontaneously. For example, automata is in
state {g} and its state changes to {q} over symbol €.
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q > p

So it shows a spontaneous transition of state from state q to state p known as e-transi-
tion. This characteristic provides additional flexibility to the finite automaton. Hence, a finite
automaton with € moves is more powerful than either from Nondeterministic or deterministic
finite automata.

8.3.1 Non Deterministic Finite Automata (NFA) with € moves

A non deterministic finite automaton with € -moves is an extension of NFA. When some of the
transitions in the NFA are e -transitions such that, there are few transition/s of NFA are defined
over null string then NFA is called NFA with €-moves. It provides additional flexibility to the
NFA so that automaton skips between states spontaneously. Let N_ be an NFA with-€ moves,
whose tuples definition is given as,

N_=(Q, %3, {gy), )
where Q, %, {g,} and F holds similar meaning as an NFA and the transition function 6 is
defined as follows,

5.:Qx(Zufeh) -PQ
where, §_ is the partial mapping of a state with an input symbol including € that returns to the
state that are in the power set of Q. As we said earlier, the transitions over € are also known
as e- transitions.

For example, a NFA with e -moves is shown in Fig. 8.7 where set of states Q = {q;, q,, q5}

and set of alphabet X = {0, 1, 2}. The transition functions are shown in the TT Fig. 8.8.

Fig. 8.7 NFA with €-moves.

Input symbols
States
€ 0 1 2
— > qO q1 qO CD D
q; q, (0] 91 D
® 9, (O] () (o} qs

Fig 8.8 (TTNFA -e moves)
8.3.2 5_-head

As we discussed previously that transition function §_ gives the behavior of a ‘NFA with e-
moves’ over a single symbol including a null string (e). Whereas, §_-head shows the nature of
NFA with e-moves over a string. We will now discuss the role of §_-head over various possible
strings, i.e.,

e If string is a null string ( € ) then,

d_"(g, €) = {g} U {Set of all those states that can be reached from state g directly or
indirectly along any path whose transition/s are e-transition/s}
which is also called as e -closure (q);
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For example, consider the NFA with €-moves shown in Fig. 8.7 so we can find,
e-closure (q,) = {q,} U {q,, q,}
= {gp 91 95}
Similarly, e-closure (q,) = {g,} U {g,}
= {qp qz};
and, e-closure (q,) = {g,} U @
= {qz};
e Assume a string x i.e., x # €, then further assume that string x is form by a substring
9’ and a symbol ‘@’ i.e., x =y . a, then
§.(q,0)=58_(q,y.a) =5_58_1(q,y), )
or, §_(q, %) = e~closure [3_(5_(g, ), D)I'; (D
Thus, in general if P is the set of states, then
e-closure P) = U e-closure (q) ..(2)
VqeP
If string contains a single symbol ‘a’, then
5. (P,a)=_u 38.(q,a);
Yqgep
Similarly for a string x,
6P, x) = vslp d.(g, x);
If string contains a single symbol ‘@’ then,
§.(q,a)=8_(g,€.a)=8_(5_(q, €), )
= e-closure [SE(SE(q, €), al; ...(3)
For the NFA with €-moves shown in Fig. 8.7, Se(qo, 0) can be computed as follows,
d_.Mqy, 0) =3_Mq,, € .0)
=8_(8_qy, €), 0)
= e-closure [3_(igy, ;5 gy}, 0)]

= e-closure [6_(q, 0) U &_ (g4, 0) U 5_(q,, 0)]
= e-closure [{q,} U ® U D]

e-closure [{q,]
= {99 91 a5} [computed previously]

Note. If we compare the result obtained by §_ and 86 on same symbol we find that, 5_(q, 0) = {q,}
and Se(qo, 0) ={qy, q, q5} so both are different. Hence, we conclude that, 3_(q, 0) # Se(qo, 0).

1 Assume that, Se(q, Y) =Dy, Dy ceennnnn p,} L paths that may end with one or more e-transi-
tion/s from p; (for i = 1 to &)
let, V'U ) dc (pj,a) ={r,ry, ...... r,,} U {those states that can reach from r; by e-transition}
i=
A m
then, 5. (g, %)= L €—closure (r;)

Hence, Se(q, x) = e-closure [, (Se(q, y), al
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Similarly we can compute S(qo’ 1) as,
§.(qp D=38_(gpe. 1)

=3,(8.(gp€) 1)

e-closure [3_({q,, 9, 95}, DI

e-closure [3_(q,, 1) U d_(qy, 1) U §_ (g, D]
= e-closure [® U {g,} U D]

e-closure [ {q,}]
= {q;, 9.k [computed as previously]

8.3.3 Language of NFA with €-moves
In the previous section we have defined so far the nature of an NFA with €-moves over an
arbitrary string. Collection of all those strings over which ‘NFA with e-moves’ reaches to its
final state will be in its language set. Let Ly_ denotes the language of ‘NFA with e-moves’,
where L_ is defined as,

Ly ={x/xe* and §_(qpx) NF #®)
Alternatively for an string x, which is formed over alphabet X will be in the language such that

while accepting the string x automaton is in the e-closure of state/s returned by Se whose

intersection with the set of final states F will not be empty. Alternatively, §_-head over x
returns at least one accepting state that is in final set of state F.

8.3.4 Method of Conversion from NFA with e -moves to NFA

Theorem 8.2. If N_ be a NFA with €-moves, then there exists a NFA N (without €-moves) i.e.,
Ly =Ly (where Ly_ is the language of N_ and Ly is the language of N)

Proof. Alternatively theorem states that, language of an NFA with e-moves is also the lan-

guage of an NFA without e -moves. To prove this statement let N_ is defined as,

Ne = (Qe’ Z’ 66’ {qO}e’ Fe)
So, our objective is to construct an equivalent NFAN = (Q, , 9, {g,}, F) from the known
N_ such that,

e Q=Q_, both automatons operate on same set of states.
e {q,} = {q,l_, both automatons start operational on same state.

e F=F_ set of all final state/s of NFA with €-moves must also be the final state/s of
NFA f.

e Both automatons operate on same set of alphabets that is X.

e Now we find the relationship between transition function §_ and & over X.
Consider the same N_ that is shown in Fig. 8.7, here Q_ = {q, q,, q9,}, £={0, 1, 2},
F_ ={q,} and & is given as follows:

T F contains FU {q,] if €-closure (q,) return a state from set F_ otherwise F = F_.
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The definition of transition functions & for NFA (over each symbol of X) cover all the
definition of transition functions §_for NFA with e-moves including e-transition/s. Since,
e -transition/s can not be the part of 6 for NFA; hence all € -transition/s arcs can be replaced by
either of the symbol of X. This is because, the flexibility of spontaneous skip between e -transi-
tion states over no symbol (e)f. For example,

§.(qp 0) = §_(gy 0. €)
3_(8.Mqy, €), 1)
e -closure [5_*({q,, q1, @5}, 0)I; [applies €-closure pop.]
e-closure [3_(q,—, 0) U d_(q;, 0) U 3_(qy, 0)]
e-closure [{q,} v ® U D]
e-closure [ {q,}] [computed previously]
= {‘10’ q,, qz};
Hence, we say that on symbol 0 the state of the automaton will be either {g.} or {g,} or
{q,}. That is the requirement of the NFA. So, transition function 6 for NFA is given as,

8(qq, 0) = §_(qq, 0.
In general for any input symbol a¢ € X, we have

8(gy a) = §_(qy a)
It states that the behavior of both automatons N_ and N are same on same input sym-
bol. Hence, It concludes that in general if L_ is the language of a N_ then language of a NFA
Nis also Ly i.e.,

Ly =Ly
Hence, 8(qy, 0) = Se(qO’ 0) =199, 91> 955
Similarly 8(qp, 1) = 8_(qg, 1) = {gy, a5k

8(qq, 2) = 5_(qq, 2) = lg,); and so on.
Therefore, the TT for NFA will be looks like, (Fig. 8.9)

Input symbol
State
0 0 2
—» 9 {qu q,, Q2} {CIp (Iz} {qZ}
aq, @ {1, g5} {ay
® g, ) @ {g,}
Fig. 8.9 TT en-

T It explains how to remove €-transition/s from ‘NFA with €-moves’ so that it converts to NFA
(without €-moves).
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And the transition diagram for NFA is shown in Fig. 8.10.

Fig. 8.10

8.3.5 Equivalence of ‘NFA with € -moves’ to DFA

We have seen that automaton ‘NFA with e€-moves’ is an extension of an NFA (in terms of
flexibility). Since, in the previous section, theorem 8.2 we have proved the equivalence be-
tween NFA with €-moves and NFA and the theorem 8.1 proves the equivalence between NFA
and DFA. Therefore, it concludes that, there exists an equivalence between NFA with € -moves
and the DFA a static nature of finite automata. This equivalence is shown in Fig. 8.11.

NFA with € -moves
(NL)

DFA (M)

Fig. 8.11

Let N_ =(Q_, %, &_, {q,}., F_), then construct an equivalent DFA M where M is defined
as,
M=(Q, %, 3, {g,}, F).

Now the relationship between corresponding tuples are as follows,

e QcP(Q).

o Both automatons operate on same set of alphabet X.

o Starting state of DFA which is {g,} = e-closure{q}_. So, starting state of DFA will be
the set of state containing state {q}_.

e Set of final state F c Q, i.e. FNF_ = ®.

e Now we compute the transition functions 6 for DFA over input symbol a (for ¥V a € %)
as,

LetR = {ql’ q2, ............ ql} and VC)IS(qj’ a) = {pl’ Doseenens pk}
/j =

Then, O&(R, a)=u e-closure ({p, py, ..v...... o)
Let us solve one example so that method will become more clear.
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Example 8.2. Construct a DFA from given NFA (as shown in Fig. 8.7)

Sol. For the given NFA with -moves we assume that equivalent DFA M = (Q, Z, 6, {q,}, F)
whose tuples are determine as,

o Qc (@, {q,h {g,}.1a.hlay, a11ay, aohiay, a5}, (g, @45 @5} which is a power set of Q_.

o £=1{0,1,2)

e Starting state of DFA is {q,} where, {q,} = e-closure (q) = {q,, 9;, @5}

e All states of the set Q that contains {g,} as one of the state are considered as final

state/s.
e The transition functions of DFA are determine as follows,
Since starting state is {q, q;, ¢,} hence,
gy, 91> a5}, 0) = 8(3*(gy, 41, 95}, €), 0)
= e-closure [5_( §_"(q,, €) U 8*(q,, €)3™(qy, €)), O}

e-closure [3( ({g,, 94, 95} U {q;, 95} U {g,)), 0)] [using € -closure property]
e-closure [ d({q,, q,, g5}, 0)]
e -closure [3(q,, 0) U d(q;, 0) U d(g,, 0)]
e-closure [, U P U D] [from state diagram]

e-closurelq ]
={qy q,, g5} = A (let) [A repeated state]
and 8({g,, g, g5}, 1) = e-closure [8(g,, 1) U 8(g;, 1) U 8(gy, 1]
= e-closure [® U g, U D]
= e-closure [q,]
={q,, q,} = B (let)
d({agy, g1, 95}, 2) = e-closure [ 8(q,, 2) L d(q,, 2) U (g, 2)]
= e-closure [® U ® U g,]
= e-closure [g,]
={q,} = C (let)
Now compute transitions from new state {q,, g,} and {g,} as,
3y, g5}, 0) = 8(8* (g, gy, €), 0)
= e-closure [3(8M(g,, €) U (g, €)), 0}]
e-closure [ &( ({g,, 95} L {g,}), 0)]
e-closure [6({g;, g5}, 0)]

e -closure [3(q;, 0) U 8(q,, 0)]

e-closure [® U O]
=0



EQUIVALENCE OF NFA AND DFA 205

d(lq,, gy}, 1) = e-closure [3({g,, g,}, 1)]
= e-closure [3(g;, 1) U &(g,, 1)]
e-closure [q, U @]

e-closure [q,]
={g;, q,} =B [A repeated state]

e-closure [3({g,, q,}, 2)]
e-closure [3(q;, 2) U 8(g,, 2)]
= e-closure [® U g,]

6({(]1, qg}a 2)

= e-closure [q,]
={g,)=C [A repeated state]

Now compute transitions from the state {q,}.
8(qy, 0) = 8(8(gy, €), 0)
= e-closure [3( {g,}, 0)]
= e-closure [ ® ]
= @;
3(gy, 1) = 8(8%(qy, €), 1)
e-closure [3( {g,}, 1)

€ -closure[®]

= @y
3(q,, 2) = 8(8Mg,, €), 2)
e-closure [3( {g,}, 2)]

= e-closure [g,]
={g,}=C [A repeated state]
Further we haven’t got any new state so procedure stops and we obtain the transition
diagram of DFA that is shown in Fig. 8.12.

Fig. 8.12 DFA M.
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Example 8.3. Construct an equivalent DFA for given NFA with e-moves (Fig. 8.13).

Fig. 8.13

Sol. Let equivalent DFA M = (Q, Z, 3, {g,}, F). So the tuples of M are obtain according as,

o Q c [®, {Al, {B}, {C}, {D}, {AB}, {AC}, AD}, {BC}, {BD}, {CD}, {ABC}, {ABD}, {BCD},
{ACD}, {ABCD}] which is a power set of Q_.

e X={0,1}.
o Starting state of DFA is the €-closure (A) which is equal to {A, B, D}.

o All states of the set Q that contain {D} as one of the state are considered as final
states of DFA.

e Transition functions of DFA are as follows:
Find the e-closure of all the states, i.e., {A}, {B}, {C}, and {D}, i.e.,
e-closure (A) = {A, B, D};
e-closure (B) = {B, D};
e-closure (C) = {C};
e-closure (D) = {D};
Since, Starting state is {A, B, DJ; so find & over X from this state onwards,
d({A, B, D}, 0) = &({A, B, D}, €.0))

= e-closure [8(§(A, €) U §(B, ) U §(D, €)), 0}]
= e-closure [8( {A,B,D} u {B,D} {D}), 0)]
e-closure [6({A,B,D}, 0) ]

e-closure [3(A, 0) U &(B, 0) U 8(D,0)]
e-closure [A U C U D]

e-closure(A) U e-closure(C) € e-closure(D)
{A,B,D} U {C} L {D}
{A,B,C,D}; new state
d({A, B, D}, 1) = e-closure [3(A, 1) U &(B, 1) U &D,1)]
= e-closure [® U ® U D]

= e-closure (®)
= d);
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3({A, B, C,D}, 0) = e-closure [§({A,B,C,D}, 0)]
= e-closure [3(A, 0) U &B, 0) U &(C, 0) U &D, 0)]
=e-closure [A U C U ® U D]
= e-closure (A) U e-closure(C) U e -closure (D)
={A, B, D} u {C} U {D}
= {A, B, C, D}; a repeated state
3({A, B, C,D}, 1) = e-closure[ §({A,B,C,D}, 1)]
= e-closure [3(A, 1) U dB, 1) U (C, 1) U &D, 1)]
= e-closure [ U ® U B U @]
= e-closure (B)
= {B, D}; a new state
8((B, D), 0) = e-closure [8( {B, D}, 0)]
= e-closure [6(B, 0) U &(D, 0)]
= e-closure [C U D]
= e-closure (C) €-closure (D)
= {C, D}; a new state
8((B, D), 1) = e-closure [8( {B, D}, 1)]
e-closure [0(B, 1) U 6(D, 1)]
e-closure [® U D]

e-closure (®)
= d);
8((C, D), 0) = e-closure [8( {C, D}, 0)]

e-closure [0(C, 0) U &(D, 0)]

e-closure [® U D]

e-closure (D)

{D}; a new state

8((C, D), 1 = e-closure [6{C, D}, 1)]
e-closure [0(C, 1) U &(D, 1)]
e-closure [B U @]

e -closure (B)

{B,D}; repeated state
e-closure [ (D, 0)]
e-closure [D]

3(D, 0)

{D}; a new state
d(D, 1) = e-closure [6(D, 1)]
= e-closure [®]
= @;
Further there is no new state generated so we stop the process and finally we obtain the
DFA shown in Fig. 8.14.
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Fig. 8.14

Note. The nature of the state ® is such that, when automan reaches to this state then it will
disappear or it never returns back.

EXERCISES
8.1 Construct the equivalent NFA from the shown transition tables (Fig. 8.15) given for NFA with
€-moves.
@ State 0 € 1
—> 9 s {a} 195}
9, 9, a2 | gy a5}
® 9 {a0 a1} o @
g5 o o {as)
(@)
(w0 State 0 € 1
—> g o {ay} )
q, lav asb | gy {ay)
q: {a0 a4 @ la,)
® q; [ () ()
94 {as) o la,;

(b)
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(u11)

State 0 € 1
—> g, {ao} {a,} {0}
a, {q.} {as {qs)
q; {qass {as} {a.
® 4q; @ ) @
(©
Fig 8.15

8.2 Construct the equivalent DFA’s from the given NFA’s whose transition tables are shown in

Fig. 8.16.

@

(@)

(ui1)

8.3 Construct the equivalent DFA for all the given NFA’s with € moves in exercise 8.1.

State 0 1 2
—> 4 {90, a1} @ {a,}
a, {a,} {a,, a5} @
® 4 {90 a1} @ {q.}
(@)
State 0 1 2
—> o {20 a1} @ {a,}
a {a., a5} {qs} @
® 9 ({9,994 @ {q,}
® s @ @ {a,}
(b)
State 0 1
1> 9 ) {q.}
q, {91, g2} {a.}
q, {90 a1} {as)
® a; @ {as}
(©)
Fig 8.16
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0 Regular Expressions

9.1 INTRODUCTION TO REGULAR EXPRESSIONS

In the previous chapter we have studied that the power of a finite automaton is given by the
language it accepts, that contains finite or infinite many strings. So, Is there any convenient
way to express these set of strings. In this chapter we shall focus our attention to the descrip-
tion of a language by an algebraic expression called as regular expression. The operations
used in the formation of regular expressions are union, concatenation, and Kleeny closure.
The language generated by a regular expression is called regular language. Regular expres-
sions are capable to defining all and only the regular languages. The significance of the sym-
bols used to represent the regular expression is different than the symbol used to specify the
strings. So, we use bold symbols in representing the regular expressions while for the string
we uses the symbols as usual.

Regular language is the language depicted (expressed) by the regular expression.

9.2 DEFINITION OF REGULAR EXPRESSION

Assume the set of alphabets S = {a,, ay, a, ......... a,}, and r be a regular expression
defined over X and let the language generated by the regular expression r be L(r), then the
basis regular expressions are,

1. a; is the regular expression corresponding to the symbol a, € X for Vi = 1 to n. The
language generated by regular expression a; will be L(a,) i.e.,
L(a,) =f{a}, for Vi=1ton.
2. € is a regular expression corresponding to the null string (€), and the language
generated by the regular expression € will be L(e) i.e.,
L(e) = {e}.
3. @ is the regular expression corresponding to the nonexistence of any input symbol
and the language generated by the regular expression ® will be L(®) i.e.,
L(®) = o

Above definition of regular expression can be extended further by defining its behavior
over set of operators union (+), concatenation (.), and Kleeny closure (*) i.e.,

4. If r, and r, are two regular expressions, and their languages are L(r,) and L(r,)
respectively, then (r; + r,) will also be a regular expression and it generates the

212
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language L(r;) U L(r,). This property of regular expression is known as ‘addition
property of regular expressions’.T

5.If r, and r, are two regular expressions, and their languages are L( r;) and L(r,)
respectively, then (r; . r,) will also be a regular expression and it generates the
language L(r,) . L(r,). This property of regular expression is known as ‘concatenation
property of regular expressions’.k

6. If r be a regular expression, and its language is L(r), then r* will also be a regular
expression and it denotes the language L(r*) or L(r)*. This property of regular
expression is called ‘Kleeny closure property of regular expression’ where, L(r¥) is
Kleeny closure of language L, i.e.,

Let L(r*) = L¥,
then L¥= v LI
Vi=0
= LULlUL2U ., UL UL U, o
where L0 = {e} [language contains null string]
L'=L.L%=L.{e}=1L;
L? = L.L;
L3=L.L2?;
L/ = L.L,

For example, if a is the regular expression then its language will be given by L(a)
where, L(a) = {a} then,
L(a)* = {e, a, aa, aaa, .............. oo},
7. Nothing else is regular expression.
In the definition of regular expression we have discussed the nature of regular expres-
sion over following operators i.e.,
e + (addition) or U (union),
e (Concatenation), and
e * (Kleeny closure)
So for the study of regular expressions over these operators and the language generated

by these composite regular expressions, the precedence of operators is important, i.e., *, . , +
is the sequence of precedence from higher to lower.

Example 9.1. Now we discuss various regular expressions formed over X = {0, 1} and see the

importance of operators precedence while we enumerate the language from the composite regu-
lar expression.

T For example let L; = {00, 10} and L, = {0, 1, 00} then addition of two languages is,
L, uL, ={0, 1, 00, 10},
If L;” = {e, 00, 10} then its addition with language L, will be,
L/ ulL,={e,0,1, 00, 10}
i The concatenation of L, and L, is given as,
L, .L, = {000, 001, 0000, 100, 101, 1000} and,
Concatenation with L, is,
L, . L, = {0, 1, 00, 000, 001, 0000, 100, 101, 10000}.
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(a) (0 +1) is aregular expression, which generates the language {0, 1}. Because, L(0 ) = {0}
and L(1) = {1} and the addition of language i.e.,
L0+ 1) = L(0) u L(1) = {0, 1}; (which is either 0 or 1)
(b) (0. 1%) is a regular expression, which generates the language {0, 01, 011, 0111,....}.
Here, we assume regular expressionr, =0 and r, = 1* so L(r,) = {0} and L(r,) = {€, 1,

11, 111, ...... oo}, Therefore, the language generated by concatenation of regular ex-
pressions r, . r, will be L(r, . r,) i.e.,
L(r; . ry) = L(r,) . L(r,) = {0, 01, 011, 0111, ......... oo}

(c) (0 + 1%) is a regular expression, that generates the language which is the union of set
of all strings formed by regular expressions 0 or 1* i.e., L(0) U L(1%),
where, L(0) = {0} and L(1*%) = {e, 1, 11, 111,........ } hence,

L0) uL(1*) ={e, 0, 1,11, 111, ...... 1.

(d) (0 + 1)* is a regular expression, so its language is the set of all strings formed using
symbol 0 or 1. Here we assume regular expression r = (0 + 1) then L(r) = {0, 1}.
Therefore, L(r)* =L*=L0UL1ULZUL3 ......... where L ={e}; L1 =L.L%=€¢ . {0,
1}={0,1};L2=L.L'={0, 1} . {0, 1} = {00, 01, 10, 11}; L3 =L . L2 = {0, 1} . {00, 01, 10,
11} = {000, 001, 010, 011, 100, 101, 110, 111}; .....and so on.

Hence, L* ={¢, 0, 1, 00, 01, 10, 11, 000, ....... } or set of all possible strings formed over
symbols 0’s & 1’s including the null string.

(e) (0*%.1.1.0%)is aregular expression and its language will be L(0* . 1.1 . 0%). Since,
L(0*) = {€, 0, 00, 000,...}; L(1) = {1}; again L(1) = {1}; and L(0*%) = {e, 0, 00, 000, ...... }
therefore,

Lo*.1.1.0% ={e, 0, 00,...}.{1}.{1}.{€, 0, 00, .....}

= {11 (when first and last RET produces <), 011, 0011, ....(when first RE produces
maultiple 0’s and last RE produces <), 110, 1100, ...(when first RE produces € and
last RE produces multiple 0’s), 0110, 01100, ..., 00110, 001100, ............. oo},

Hence, language contains all strings of 0’s having two consecutive 1’s.

() For the regular expression (0 + 1)*.1.0.1. (0 + 1)* the language will be the set of
all strings formed over 0’s and 1’s consisting of pattern 101. Since the presence of RE
first and last produces all the strings of 0’s and 1’s including € but the essential part
of all the strings must be the presence of the substring 101 which is produced by the
concatenation of RE 2nd, 3rd and 4th.

Note that if the regular expression is constructed for the language consisting of the string x, then

its regular expression will be denoted by x.

In the previous example we saw how regular languages are to be generated from the

given regular expressions. In the next example we will see how the regular expressions are
constructed from given regular languages

Example 9.2. Consider regular languages are defined over {0, 1} then write regular expressions
for following regular languages.

1. The set of all strings containing at least one 0.

Since, we have seen previously that, regular expression (0 + 1)* generates set of all
strings over {0, 1}. For the occurrence of at least one zero in the set of all possible
strings, regular expression (0 + 1)* will be concatenate with another regular expres-
sion 0. Therefore, regular expression will be,

T RE stands for regular expression
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O0+1*.00or 0.0+1)*= (0+1*.0.(0+ D*

where, L[(0+1)*.0.(0+ 1)* ={0, 00, 01, 000,............ 1

2. The set of all strings containing at least one 0 or at least one 1.
Since the regular expression (0 + 1) generates the language either 0 or 1. So, if
(0 + 1) is concatenated with another regular expression (0 + 1)* then resulting
regular expression i.e.,
O+1.0+D*orO+1D*.0+1)=>(0+1)*.(0+1).(0+ 1)* will generates the
language L[(0 + 1)* . (0 + 1) . (0 + 1)*] where,
L0+ 1*0+1) 0+ 1* ={0, 00,01, ...... ,1,10, 11,...... |5

3. The set of all strings containing at least one 0 and at least one 1.

From 1 we see that regular expression (0 + 1)* . 0 . (0 + 1)* produces the language
that consists of all strings of 0’s and 1’s with confirmation of at least a single 0. If this
regular expression concatenate with 1 then resulting regular expression i.e.,

O0+1D*.0.1.0+D*or(0+1)*.1.0.(0+1)*

= O+1D*.(1.0+0.1).(0+1)*
will generates the language which confirms the presence of at least one 0 and at
least one 1. Hence, the language is L = {01, 10, 001, 100, 010, 101, 011, 110, ......... }

4. The set of all strings of even length.

Since, the strings of minimum length which is even are {00, 01, 10, 11} thus the
corresponding regular expression willbe (00 + 0 1 + 1 0 + 1 1). The next string of
higher even length can be obtained from the concatenation of strings of minimum
length 2 with zero /more times, i.e.,
00+01+10+11D*%00+01+10+11)

= 00+01+10+11)

Alternatively, (00 +01 +1 0 + 1 1) can also be written as [(0 + 1) . (0 + 1)], hence
00+01+10+11) can be written as [(0 + 1) . (0 + D]*

5. The set of all strings of length < 5.

First we form the regular expression that generates the language consists of all strings
of length 5 i.e.,

0+1).0+1).0+1D.0+1).(0+1)
We can reduce the length of the strings below five by introducing the null string in
each of the regular expression. Thus the resulting regular expression will be given
as, O+1+e€).0+1+€).0+1+€).0+1+€).0+1+¢€)

6. The set of all strings which ends with 1 and doesn’t contain the substring 00.
The minimum length strings satisfy this condition are {1, 01, 11, 101, 011, ...... }. For
the 1st and 2nd string of the language set the regular expression will be (1 + 0 1).
Kleeny closure of this regular expression i.e., (1 + 0 1)* produces all string formed
over {1,01}1i.e., {€, 1,01, 101, 011, ..... }. Since, € is not in the language, hence to drop
the possibility of string € we take the positive closuret of regular expression i.e.,

A+0DtorA+0D*1A1+01)
which generates the language {1, 01, 11, 101, ...... }.

T Positive closure property of regular expression says that if r is the regular expression then r+
will also be the regular expression, where r* is defined as,

rY=r*¥.r or r.r*
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9.3 EQUIVALENCE OF REGULAR EXPRESSION AND FINITE AUTOMATA

Every language which is accepted by either deterministic finite automaton (DFA) or
nondeterministic finite automaton (NFA) with or without € -moves is known as regular language.
It means that there exists a set of regular expressions that generates the strings of this class of
language. So, if a language is regular then certainly it can be expressed by regular expression/
s and conversely this language must be the out come from some finite automaton (Fig. 9.1).

Regular
Language

Finite

Autoiny<

A

Regular
Expression

v

A 4

NFA with
g-moves

Fig. 9.1

Alternatively we may say that,

I. A regular expression can be expressed in some form of finite automata either DFA/
NFA/NFA with €-moves (i.e., from Regular Expression to Finite Automata).

II. The acceptance power (language) of finite Automata can be expressed by regular

expression (i.e., from Finite automata to Regular Expression).

Now we study in detail about the points I and II such that the method of construction of
finite automaton from given regular expression and conversely the determination of regular
expression from finite automaton. What we have discuss so far it can be easily verified by
study of the following theorems.

9.3.1 Construction of NFA with €-moves from Regular Expression

Theorem 9.1. If r be a regular expression and its language is L(r) then there exists a NFA with
e-moves N_ i.e., LIN_) = L(r).
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(Provided that N_ has only one final state and there is no outgoing arc from the final
state)

Proof. We shall prove the theorem in this way that if r be a regular expression and its lan-
guage is L(r) then its all possible strings we can construct an equivalent NFA with €-moves
which accepts same set of strings. The proof of the theorem is preceded by method of induction.
First we construct the N_ for the basis regular expressions i.e. regular expressions without
any operator.

e Ifr = a, then L(r) = {a/a, € X for Vi =1 to n}, then equivalent automaton N_ that

accepts L(r) will be,

(By assuming that automaton N_ initially is in state q and after reading symbol a; it
reaches to state p and then stop)

e Ifr =€ then L(r) = {e} then automaton N_ that accepts € or null string will be,

COo——(

(Initially N_ is in state q and after reading € automaton think a meaningless symbol so
it remains in state q alternatively its state changes to p and then stop)

e Ifr = ® then L(r) = ®. The automaton N_ that accepts language ® will be,

—O @

(Initially N_ is in state q and there is no way (set of language consists nothing) to reach
to final state p).

Thus we have seen that we can construct the equivalent NFA with € moves for the basis
regular expressions. Further, we will see that N_ can also be constructed for the composite of
regular expressions, which are form over operators union, concatenation and Kleeny closure.
Assume that regular expression r is form using these n operators. By Induction hypothesis we
assume that theorem is true if r has < (n — 1) operators (for n > 1). Let r has exactly n operators
then construct an equivalent N_ for regular expression r. Here we will show that theorem is
true for composite of two regular expressions obtained using union, concatenation, and closure
operations.

Or,

Let r, and r, be two regular expressions then following are the possible regular expres-
sions,

1. if r = (r; + r,) then its language is L(r) = L(r,) € L(r,)

2. if r = (r, . ry) then its language is L(r) = L(r,) . L(r,)

3. if r = r,* then its language is L(r) = L(r,*)

Assume that corresponding to regular expression r; N_, be the equivalent automaton
accepting L(r,) then it looks like as,
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_4 All transitions  }_

’_’_’:_ _ | between states | _\_\_‘
- that accepts the .

~4 language L(r;) |-

Nsl

A similar structure for automata N_, for the language L(r,) can also be drawn.
Case 1 (Union operation) Construct the automaton N_ for the language L(r), where
L(r) = L(r; + r,) = L(r,) U L(ry)
ie., LN, =LIN_,)) U L(N_,)
Let N_; and N_, are define as,
N_,=(Qq, %4,8_4, 9, {p) and N_, = (Q,, Z,, 8_,, 95, {p,}) then automata N_
will be
N_=(Q,uQ,uqup, X, UL, 3, q, (p}) where,
e State g will be a new starting state, i.e., d_(q, €) = {q, g,}.
e States will be a new final state, i.e., 5_(p;, €) = _(py, €) = {p}.
e Definitions of transition function 6_ will cover,
d.=98_,uUd_,and d_(q, €) = {q,, q,} and 8_(p,, €) = 8_(p,, €) = {p}.
So, automaton N_ accepts the language which is accepted by automaton N_,; or the
language which is accepted by automaton N_,. It follows that for automaton N_ if there is a

path, labeled by some string x from state g to p if and only if, either there is a path labeled by
string x in N_, from g, to p, or there is a path labeled by string x in N_,, from g, to p,,

Therefore, LIN_) = L(N_,) U L(N_,).

(To implement this definition we precede from a new start state q. The initial states of
both automatons (g, and g,) are connected through e transitions from the new state q. Simi-
larly, old final states (p, and p,) will converge to a new final state p through e-transitions
provided that the acceptance power of N_, and N_, remains unchanged. So, we get the au-
tomaton N_ which is shown in Fig. 9.2.

€
X\‘ L(r,) ~’/'p_'\‘\ /

new final state

new start state
old start state old final state

Fig. 9.2. (N_).
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Case 2 (Concatenation operation) Construct the automaton N_ for the language L(r)

where,
L(r) = L(r, . ry) = L(r,) . L(r,)

ie., LIN_) = L(N_,) . L(N_,)

where automaton N_, and N_, were defined earlier, hence automaton N_ will be i.e.,
N_=(Q,uQ,, X, UL, d_,q,, {p,) where,

Starting state will be the starting state of N_, i.e. {g,}.

Final state will be the final state of N_, i.e. {p,}.

Definitions of &_ will cover,

d_(p,e)=1{g,yand 6_=3_, . d_,

Hence, the automaton N_ accepts the language which is accepted by automaton N_,
followed by the language accepted by N_,. It follows that, a path labeled by stringx for automaton
N_ will traverse from q, to p, which is equivalent to the path in N_, labeled by some string x’
from g, to p, followed by the path in N_, labeled by some other string x” from g, to p,. Thus,

LIN)) ={x".x"/x" e L(N_,) and x" € L(N_,)}

(To implement it, we assume that start state of automaton N_, will be the start state of
N_ then it passes all the transitions of N_, labeled by L(r,) and reaches to its final state p,. The
operator. is implemented by connecting state p, to the start state of N_, which is g, through e-

transition, then pass all transitions of N_, labeled by L(r,) and finally terminate on its final
state p,. (Fig. 9.3)

Fig. 9.3. (N_).

Case 3 (kleeny Closure) Now construct the automaton N_ for the language L(r) where,
L(r) = L(r;*)
ie., LIN,) = L(N_,)*
Let N_, be defined as,
Ney =@y, 2, 8.4, ¢35 {pyD)
then automaton N_ will be given as,
N_=(Q, Z;, 6., q, {p}) where,
e Q=Q,uliqluip}

e Where, g will be a new starting state and p will be a new final state,
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e and §_ will be defined as,

d_(q, €) ={q} or 6_(q, €)= {p} and,

d_(py, €) ={p}ord_(p,,e)={q,}
Hence, the path in automaton N_ from starting state g to p follows either, through
e c-transition from q to p for automaton N_, Or

e c-transition from q to g, in automaton N_, followed by a path from ¢, to p, in N_,
followed by e-transition from p, to p.

So, if x is the string labeled from q to p for automaton N_ iff, x = x;.x,.x5 ....... x; (for
Vi=0 ie,ifi=0thenx =¢), for Vx, e L(N_,) hence,
LN_) = L(N_,).

Hence, from the known automaton N_, that accepts the language L(r,) we can construct
the automaton N_ that accepts the language L(r,*). For N_ the nature of accepting strings will
be,

1.€,or

2. finite repetition of the string of L(r,),

So, both these possibilities must be incorporated when we construct the N_ such that,
for 1, start state is connected to the final state by -transition and for 2, the final state of
automata N_, is connected to its start state through e-transition that will allow the one or
more repetition of the strings of L(r,). (Fig. 9.4)

Fig. 9.4. (N_).

Hence, we see that the theorem is true for regular expressions using single operator.
Through method of induction we can also show that theorem is true for regular expressions
having n operators. Therefore, we conclude that theorem is true for regular expressions form
over any number of operators. So, we constructed NFA with €-moves for all possible forms of
regular expressions, hence theorem verification is over.

Using the statement of the above theorem we can conclude followings,

o A regular expression converges to NFA with €-moves,

e Since we know that, NFA with €-moves converges to NFA (without €-moves) and

e Finally, NFA converges to DFA



REGULAR EXPRESSIONS 221

Therefore, DFA converges to Regular Expression. There relationship is pictured in Fig. 9.5.

Fig. 9.5

Example 9.3. Construct the NFA with €-moves for regular expression

(a+b).a.b*. (a+b)*
Sol. Assumer=(a+b).a.b*.(a+b)* where ris formed by the concatenation of four regular
expressionsi.e,r=r,.r, .r; .r, wherer, =(a+b);r,=a;r; =b*and r, = (a + b)*. Now we
construct the NFA with € moves for r using theorem 9.1 in the following steps,

Step 1. Construction of the automaton for r, = (a + b) is the addition of two automatons
accepting the union of language {a} and {b} i.e., (Let it be N_")

N’
Step 2. Now regular expression r, is concatenated with regular expression r, = a so,
automaton N_” will be constructed, i.e., LIN_") = L(N_") . L(a), thus N_” will be obtain as,

Step 3. Next, regular expressionr,. r, is concatenated withr; =b*, so again concatenation
construction of L(N_") with automaton that accept L(ry). Thus we obtain N_"".
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1
Ne

Step 4. Do the concatenation construction with the previous automaton N_" to the
newly constructed automaton N_"” (for regular expression r, = (a + b)*) so we obtain the final
NFA with € moves N_.

Since N_"” will be,

a
N €

V4

Now automata N_"” will concatenate with N_"” that resulted N_ which is shown in Fig. 9.6.
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9.3.2 Construction of DFA from Regular Expression

Any regular expression can be expressed by an equivalent finite automaton. Since theorem 9.1
suggests the construction of NFA with e-moves from regular expression. NFA with e-moves is
an extension of NFA hence NFA is constructed from them. Since, NFA is an ease of DFA
therefore from regular expression we can construct an equivalent DFA. So, this process of
construction such that, from regular expression to NFA with e-moves, from NFA with -
moves to NFA, and then from NFA to a DFA is lengthy and tedious. To over comes this difficulty
we can alternatively constructed a DFA from known regular expression.

Example 9.4. Consider a regular expression r = (0 0 + 0 0 1)*.1 then construct a DFA accepts

the language L(r).

Sol. Concentrate on regular expression r = (0 0 + 0 0 1)*. 1 we will find that its language
L(r) can be subdivided like as,

{1}[when closure generates €]
L(r)

Any string formed over {00, 001}followed by 1

Assume A be the staring state of DFA, so from state A on symbol 1 automaton reaches to
accepting state B and on symbol 0 it reaches to a new state C.

For the acceptance of the string 001 we extend the state diagram as follows :

After state C return symbol is 0, therefore, from state C automaton reaches to the final
state E (return symbols on state E is 001) as shown below :

—( ()
0 00 001

Thus, automaton look like,
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(For the acceptance of the string 0011)

Since, at state E return string is 001, then for next symbol 1 automaton reaches to final
state. Hence state E connected to B by transition arc over symbol 1.

1

(Acceptance of the string formed over {00,001} followed by 1)

For repetitions of substring 00 one/more times, clearly an arc from state D comes back
to C on symbol 0 such that return symbols at D are multiple of 00.

0 00/0000 001/00001

(For repetition of 001 one/more times)
From state E (return symbols 001) an arc connected to C on symbol 0.

1

00/0000
0

001/00001

Therefore, from the starting state A over symbol 1, automaton reaches to B and halt.
There is no further possibility of acceptance of symbols {0, 1} from B onwards hence; we show
the transition on these symbols from B goes to state ®. Further, no string starting with symbol
0 followed any symbol 1 is in language so it reaches to state ®. Therefore we obtain the required
DFA shown in Fig. 9.7.
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Fig. 9.7

Since automaton shown in Fig. 9.7 fulfills the deterministic requirement of the finite
automaton such that from every state there is one and only one exit on each symbol hence it is

a DFA.

Example 9.5. Construct a DFA for the regular expression 1 (1 +10)*+10 (0 + 0 1)*
Sol. Let M be an equivalent DFA for regular expressionr=1(1+10)*+10 (0 + 0 1)*
i.e., L(M) = L(r). Since, the regular expression r is formed by addition of regular expressions r,;
andr,wherer; =1(1+10)*and r,=10(0+0 1)*ie., r=r, +r,and their language is L(r,)
= {1 or 1 followed by any string formed over (1, 10)} or L(r,) = {10 or 10 followed by any string
formed over (0, 01)}.

So, L(r) = L(r,) U L(r,)

Assume M, and M, are two DFA corresponding to the languages L(r,) and L(r,) hence,

L(M) = L(M,) u L(M,).

(Construction of DFA M)

Assume A is the start state of DFA then over symbol 1, M, reach to accepted state B.
Since, next to state B all strings of {1, 10} should be accepted. So, from state B over symbol 1 M,
reaches to another accepted state C, otherwise the string 1 followed by 0 is accepted by adding
an repetetion arc from state C to state B over symbol 0. All repetition of symbol 1’s are ab-
sorbed at state C itself. Since, there is no possibility of exit arc over symbol 0 from state A as
well as state B hence these arcs terminates to state @. (Fig. 9.8)

Fig. 9.8. (M,).

(Construction of DFA M,)

From starting state A string 10 is accepted (through P), so state Q will be accepted state.
Next to state Q all strings of {0, 01} should be accepted. So, from state Q an arc reaches to
another accepted state R over the symbol 0 and from R a returning arc over 1 reaches to
accepted state Q. An repetitions of symbols 0 are absorbed at state R itself. Transitions of 0
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from A, 1 from P and 1 from Q must terminate to state @. Thus we get the automaton M,
(Fig. 9.9)

Fig. 9.9

The automaton M,; and M, can be combined together so we obtain final automaton M
which is shown in Fig. 9.10.

Fig. 9.10 M.

(For a single regular expression (regular language) there might exists more than one

DFA)

9.4 FINITE AUTOMATA TO REGULAR EXPRESSION

(9.4.1 construction of DFA from regular expression)

Theorem 9.2. Let M be a DFA then there exists a regular expression r i.e., L(M) = L(r).

Proof. Theorem states that a finite automaton DFA can be equivalently expressed in some

form of regular expression. It means, that both DFA and regular expression concur on same

set of strings called regular language. The proof of the theorem illustrates how a regular ex-

pression can be constructed from a given DFA. Let M be a DFA that can be expressed as,
M=(Q,Z3,q,F) [where q, is the start state and F is the set of final states]

Assume set Q contains n states i.e., {q,, g, ........... q,}. Now we introduce a new term
iRjK, which contains set of strings. Assume, string x is derived from expression iRjK. Then,
expression iRjK is defined as,

iRjK ={xe X*/0g;, x) = a5 ie., Vq,, <q, (fori < Vm <j) and

(q; and/or qj) > q,, where g, is the intermediate state between g, and qj}
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Fig. 9.11

For example, consider a state diagram shown in Fig. 9.11 then,
¢R¢’ = laba, bab}, but aadb ¢ R’

Expression iRjK can be obtained by using methods of induction i.e.,
Initially there is no intermediate state between g, to q > SO k=0.
(For £ =0)
° iRj0 ={a, e 2/8(q;, a) = qj} if, i # j and state is connected by single arct.
e If, i =j then,

R =lq,e 2/8(q;, a)=q)uleli
e If there is no symbol between g, and q; then,

iRj0 =®i.e, 0(q,, ®) =P, [there is no path between them]
So, for the base cases of regular expression iRjK can be constructed.

Apply induction hypothesis (for general 2) and determine the expressioniRjK for the path
from state g, to state q; i.e., for all intermediate states q,,, where Vq, <q, and (q,, qj) =q,.

Fig. 9.12
7 If there are m multiple paths from state i — j over symbols a,, a,, ...... , a, then, regular
expression will be a, + a, + ...... a,.
i If there is no symbol (start state is the final state) then regular expression is €.
Ifa,a, ... , a,, are m multiple symbols i.e. transition on these symbols return back to same
state then regular expression will be @, + @, + ...... a,
Qyy Agy eenene e
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Consideration of paths are shown in Fig. 9.12, where following possibilities of paths
exist,
1. There are few paths where, intermediate states are always < k&, or states of upto (£ —1)
will be consider hence the expression for this path will be iRjK‘I.

2. There are few paths where, intermediate states are always > &, so skip those paths.
3. A path from g; to q; can be divided into g, to g, and then g, to a5 ie.,

In the path g; to q;, where all intermediate sates are < (k — 1) so, expression is iRkK‘l,
followed by

e The path where on state k, few transitions are return back to state k itself by
passing through all intermediate states< (% — 1) so, expression is (R, ¥1)*, followed

by,
e The path g, to q; where all-intermediate states < (k — 1) so, expression is kRjK‘l.
Thus, the combination of above possibilities we obtain the following expression,
RK = RK—I U R K-1 ( R K—l)* kR-K_l.
j
or, IRJK R K—1 + R’kK_ R K—l)* kRjK_l‘
Therefore, we could also ﬁnd the expression for any & = n i.e., iRjn.

Since, expression R expresses the language of DFA M so each R is associated with the
regular expression i.e.,
B T R i O R L A
Assume DFA M starts from state 1 and set of final states are {f}, f;, ...... fp} then,
LAM) = {{Ry™ U [ Rp™ eeeeeeen. U Rg,™
So the language set contains the union of the languages consists of each path from state
1 to each state of F (final state).
Then regular expression r = ;ry™ + Ip" + ... + "
Hence, the proof of the theorem is ended.
General rules for simplification of regular expressions
o (e +r)*=r*
L[(e +r)*] =€ +L(e +r)+ L(c +r) L(c +71) +......
=e +L(r) + L(r)L(r) +......
=L(r)*
o (c+r)*r=r*r=r*
o (c+r)r*=r*+rr*=r*

L(rr*) =L(r) .L(r*) = L(r). {¢ + L(r) + L(r).L(r) +...... }
=L(r) + L(r). L(r) +......
and L(r*) =€ + L(r) + L(r). L(r) +......
so L(rr*) + L(r) =€ + L(r) + L(r). L(r) +......
=L(r%
e O+r=9>0
e Or=9>0

o (r¥*=r
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Example 9.6. Construct the regular expression for the DFA shown in Fig. 9.13.
o/ /i
— ()=
Fig. 9.13

Sol. We construct the regular expression using the theorem 9.2. So for the base case i.e. con-
struct the expression from state 1 to the statej (wherej = 1 and 2), and assume that there is no
intermediate state (£ = 0) between 1 and j. Hence, expression leO is computed and shown in
Fig. 9.14.

State Language Regular
Transition Expression

from

1-1 1R10 Choices in between either no symbol or symbol 0 0+¢€

1-2 1R20 A single arc labeled by symbol 1 1

21 2R10 A single arc labeled by symbol 0 0

252 2R20 Choice in between either no symbol () or symbol 1 1+e

Fig. 9.14

e Now we construct the expression for inductive part (for & = 1), i.e., lel (forj=1, 2)
By using the rule \RK = \ R¥! + R K1, (R KD*. RKT
o R/'= R+ R°(R"* RS
[Put the value of 1R10 from table (forj = 1,j— 1 returns 0 but 0 is no such state so state
remains 1]
=0+e)+0+e€)0+€)*0+e)=0+¢€)+ 0+e€)0*0 +€)
=0+¢e +0*=0*
o R =R+ R (GRO* R,
=1+0+e)0+e)*.1=0*%1
o LR'=,R"+,R’(R"* R’
=0+0.0+e)*(0+€)=0+0.0*=0.0*
o LR, =,R +,R’(R,"* R
=(1+e)+00+e)*1=(1+€)+0 0*1

Hence we obtain the expression lel (for j =1, 2). Fig. 9.15.
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State Language Regular
Transition Expression
from
1-1 1R11 Choice in between either no symbol or finite 0*
number of 0’s
1-2 1R21 A single arc labeled by symbol 1 or Finite number 0* 1
of 0’s followed by 1
251 2R11 A single arc labeled by symbol 0 or followed by 0. 0%

one/more transition/s on 0’s

252 2R21 Choice in between either symbol 1 or no symbol or | 1+ € + 0 0¥1
through state 1

Fig. 9.15

Now we construct the expression for k = 2, i.e., 18j2 (forj = 1, 2).
o RZ= R+ R, GRH*,R!
= 0* + 0*1 (1 +€ +0 0*1)* 0 0*
o R?= R+ R, GR,D*,R,!
=01+ (0*D[1+€ +00*1]*[1+€ + 00 *1]
=0*1[1+e+0 0*1]*
o LR =R+, R, GRD* ,R,!
=0.0°+[1+€ +00¥1]1[1 +€ +00*1 ]*.00*
=[1+ e +00%*1 ]*. 0 0*
o LR, = R,! + R, GR,D* ,R,!
=[1+e +00*1]*

Hence the table for expression le2 (for j = 1, 2) is shown in Fig. 9.16.

State Transition Language Regular Expression
from

1-1 1Ry 0* +0*1 (1 +€ +00%1L)*00*
152 1Ry 0*1[1+e€ +0 0*1]*
21 oR,2 [1+e +00%1]%.00*

2Ry [1+e+00%1]*

22

Fig. 9.16

Now the final regular expression for the DFA shown in Fig. 9.13 will be constructed by
taking the unions of all the expression whose state 1 is the starting state and state 2 is the
final state, i.e. ;R,2

Where, RZ=0%1[1+€ +00 *1]*
Therefore the regular expression is 0%1 [1 + € + 00*1]*.
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9.5 CONSTRUCTION OF REGULAR EXPRESSION FROM DFA
(By Eliminating States)
From a given DFA a regular expression can be constructed directly through step-by-step

eliminations of states from the state diagram. A state can be eliminated equivalently by the
regular expression which is constructed in the following sequence, i.e.,

e Find the regular expression for all incoming arcs to that state,

e Find the regular expression for all repetition arcs that returns to that state itself, and
e Find the regular expression for all outgoing arcs from that state.

Consider an example of a DFA shown in Fig. 9.17.

Fig. 9.17

(Let us eliminate state 2)

Regular expression for the incoming arc (from state 1 on symbol 1) is 1. Regular expres-
sion for the repetition arc (on state 2 itself on symbol 1) is 1* and then the regular expression
for outgoing arc (from state 2 to state 3) is 0. Hence, the transition arc from state 1 to state 3
after eliminating state 2 will be labeled by regular expression 1 . 1* . 0 which is shown in
Fig. 9.18.

» »
» >

0 1,0
1.1%.0
N :

Fig. 9.18

(Now eliminate state 1)

State has an repetition arc labeled by symbol 0 so, the regular expression is 0%, followed
by an outgoing arc, which is labeled by regular expression 1. 1% . 0. So, elimination of state 1
will result the regular expression 0%, (1 .1%.0). (Fig. 9.19)

0%.(1.1%.0) @7
> 1,0

Fig. 9.19

Now the incoming arc labeled by the regular expression 0*. (1 . 1* . 0) reaches to state
3, which is the accepting state and regular expression for the repetition arc over symbol 0 or 1
is (1 + 0)*. Thus we obtain the final regular expression i.e.,

0*.(1.1*%.0).(1 +0)*



232 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Example 9.7. Convert the following DFA to regular expression.

DFA shown in Fig. 9.20 has state 1 is the starting state as well as the final state. So, let
us select the state 4 is eliminated first.

e The regular expression for the incoming arc (from state 2 to 4 on symbol 1) is 1,

e The regular expression for an repetitive arc (state 4 to itself on symbol 0) 0%,

e The regular expression for an outgoing arc (from state 4 tol on symbol 1) is 1.

Hence, the equivalent regular expression after eliminating the state 4 will be 1.0*. 1. So
a new arc shown in Fig. 9.21 will be labeled by this regular expression (let it be r) from state 2
to state 3. Thus, we obtain a now DFA i.e.,

(Now eliminate state 3)

Observe the incoming and the outgoing arcs of state 3, corresponding to them we find
the equivalent regular expressions i.e.,

e The regular expression for the incoming arc from state 2 to 3 which is labeled by r
and then the regular expression for the out going arc from state 3 to 1 on symbol 0 is
0. So, through this path regular expression will be, r . 0.

e The regular expression for the incoming arc from state 2 to 3 labeled by r and then
from the regular expression for the path from state 3 to 2 to 3 on symbol 1 followed by
0, is 1. 0 with possibility of zero/more times repetition of this path hence regular
expression will be (1. 0)*and then the regular expression for the outgoing arc from
state 3 to 1is 0. Hence, through this path regular expression will be r . (1. 0 )* 0

The possibilities of both discussed cases can be equivalently represented by the regular

expression r . (1. 0 )* 0.

e The regular expression for the incoming arc from state 2 to 3 on symbol 0 is 0 and the
regular expression for the outgoing arc from state 3 to 1 on symbol 0 is again 0. So, we
obtain the regular expression 0.0.
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e The regular expression for the incoming arc from state 2 to 3 on symbol 0 is 0 and the
regular expression for the outgoing arc from state 3 to 1 on symbol 0 is again 0. The
regular expression for the path 3 - 2 — 3 is 1. 0 and also with the possibility of zero/
more repetitions of this path will have the regular expression (1. 0)* followed by the
regular expression 0 for an out going arc from state 3 to 1. Hence, the regular expres-
sion will be 0 .(1. 0 )* 0.

Now these two regular expressions can be equivalently expressed by the regular expres-

sion 0.(1. 0 )* 0. So we have the remaining states of DFA which is looking as,

0.(1.0)*0 +r.(1.0)*0

(Now eliminate the state 2)

After elimination of state 2 we obtain the equivalent regular expression 0 [0. (1. 0 )* 0
+ r. (1. 0 )* 0]. And finally DFA has remaining state 1, shown below.

L
@ 0[0.(1.0)*0 +r.(1.0)*0]

e The regular expression for repetition arc on state 1 over symbol 1 is 1%, and
e The regular expression for another repetition arc on state 1is 0 [0. (1. 0)*. 0 +r. (1.
0 )* 0]. Therefore the final regular expression is union of them i.e.,
1* 4+ 0.[0. (1. 0)* 0 + r. (1. 0)* 0]
Substitute the value of r thus we obtain the final regular expression
1*+0.[0. (1.0)* 0 + 1. 0% 1 (1. 0)* O]

9.6 FINITE AUTOMATONS WITH OUTPUT

In the previous chapter of finite automata we have discussed in detail the deterministic and
nondeterministic nature of finite automata. The behaviors of these automatons are defined by
the nature of the input strings accepted by them. That is, after processing the input string
automaton generates the output in the form of decisions i.e., either accepted if automaton
reaches to its final state/s or rejected if automaton never reaches to its final state/s. (Fig. 9.22)
So, the nature of language which is accepted by the finite automaton designates the power of
such finite automaton.

Accepted

Input Finite
String Automata

Rejected

Fig. 9.22
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This section introduces other forms of finite automatons, which operates on input string
and returned the output in some form of string, instead of decisions. This types of finite au-
tomatons are called as Finite Automatons with Output. So, the behavior of finite automatons
with output are captured by the nature of the output string it generates. Eventually, the sig-
nificance of final state is meaninglessy. Fig 9.23 shows the abstract view of a finite automata
with output. Let automaton M be a finite automata with output, that operates on some input
string (e X*), where X is the set of input symbols and it returns the output string (€ A), where
A is the set of output symbols.

Output
String

Input

String M

Fig. 9.23

So, the automaton M behaves as a Transducer. Let us represented it by T,; where,
Ty 2% — A*
Assume x be a input string i.e., x € X* then,
Ty®x) =w {where w e A*}
Let x be a input string and it can break into a sub string y and a symbol a, i.e.,
X =y.a
and similarly assume w is the output string i.e., w =y .a’
where, Tyx)=Ty(y.a)=w=y".da
Assume, automata M is in starting state r,, and after consuming input string y it reaches
to state r. with return string y’ as output and on next symbol a it reaches to state Tiv1 with return

symbol a’ as output and it stops because whole string x is now consumed by M, no matter what
state r;, is. It may be any state including starting state r,,

A
v

(output string/symbol)
Fig. 9.24

So, the concept of final state does’nt arises here. On which state automaton stops that is
depend upon the input string i.e., after reading the last symbol of the input string it will stop.

There are two types of Automatons exist under this category,

1. Melay Automaton (Machine)

2. Moore Automaton (Machine)

9.6.1 Melay Automaton

In the Melay automaton output is given over the transition arc. Assume a portion of DFA M is
in Fig. 9.25, where M = ({A, B, C}, {a, b}, §, A, @}, here set of final state is @ because it is useless
to talk about the final state in case of Finite automan with output.

1 Finite Automatons with output has no final state/s, because from the strating state automaton
generates the output in some form of symbols on each transitions betweeen the states. Automaton can
stop, any of the state (¢ @) depending upon the nature of the input string.
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‘ a, b
O =)

Fig. 9.25

S

Now if we put another symbol on each transition arc provided that it is associated with
the output information corresponding to that input symbol then the automaton M becomes M’
shown in Fig. 9.26.

Fig. 9.26

where, we assume that output symbols are in set A = {0, 1}. For example, if input string is
‘abba’ then automaton M’ generate an equivalent output string 1010 in the following manner,

e From starting state A, M’ reads the first symbol ‘@’ and return corresponding output
symbol 1 and reach to state B.

e Next input symbol is b, from state B, M’ reads symbol & and return corresponding
output symbol 0 and reach to state C.

e From state C, processed the remaining symbols a¢ and b and return corresponding
symbols 0 and 1 respectively.

Hence, the input string ‘abba’ returns the string 1010 as output. Therefore, this type of
automaton M’ is known as Melay automaton & Melay Machine.

9.6.1.1 Definition
A Melay Machine is defined by following set of tuples,
1. A finite set of states Q,
2. A finite set of input symbols X,
3. A finite set of output symbols A,
4. Transition function 9,
5. Output function A, and
6. A starting state q,, where g, € Q
So, a Melay automaton M, is defined using these 6 tuples as,
M, =(Q, %, A 6, A, qp
where the transition function § is defined as,
:QxX—Q
which is the partial mapping of a state (¢ Q) with an input symbol (e X) which returns a state
(e Q). The output function A is defined as,
AMQxXZ—A
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which is again the partial mapping of a state (¢ Q) with an input symbol (¢ X) and return an

output symbol (e A).
OO

Fig. 9.27
For example, the transition diagram shown in Fig. 9.27 of Melay case,
Mg, a) = b; [returns a output symbol]
and d(q, a) = p; [returns a state]

Thus, the purpose of the output function (1) is to map the input string to output string.

9.6.1.2 Representation

The representation of the Melay machine is similar to the DFA representation such that the
states are represented by the small circles and the directed edges indicating transitions between
the states. Each edge is labeled with a compound symbol I/O where the edge to travel is
determined by the input symbol I, while traveling with the edge the output symbol O is printed.
For example, Fig. 9.28 shows a Melay machine M, = ({q,, q,, g4, 93}, {a, b}, {0, 1}, 3, A, q,).

Fig. 9.28. (M,)

So, on input strings ‘abbab’ and ‘aaabb’ we obtain the output strings ‘01111’ and ‘01110’
respectively.

FACT
e In a Melay machine the length of the output string is same as the length of input
string, i.e., if machine M, generates the output string w on processing the input string
Xthen |w | =|x |.
e Due to the absence of final state in the machine the language of the Melay machine
doesn’t define by accepting or rejecting the input strings.

Example 9.8
0/1, 1/0

Fig. 9.29 M,.
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The Melay machine shown in Fig. 9.29 is the I’s complement machine where M, = ({g,},
{0, 1}, {0, 1}, 3, A, q,} and 6 and A are defined as,
3(qy, 0) = q,; 3(qy, 1) = qy;
and Mgy, 0) = 1; Mg, 1) = 0;
For example if the input string is 1010110 then M, generates corresponding output
string 0101001 (1’s complement of the string 1010110).

0/0, 1/1

Example 9.9.

Fig. 9.30 M,.

Melay shown in Fig. 9.30 is an incremental machine. For example, if the input string is
1000 the return string will be 1001, if input string is 0000 then we get the output string 0001,
provided that the symbol read from the input string is from right to left.

Input string 1000, 0000 101011
«— «— «—
Output string 1001 0001 101100

Example 9.10. Construct the Melay machine that accepts the string x and returns string 3
times of x, where string x is formed over X = {0, 1).

Sol. Consider any string of 0’s and 1’s i.e., x = 0101 then output will be 3 times the number
represented by binary digits 0101, that will be 1111 i.e.,

Input string 0101 or, 000111
«— «—
Output string 1111 010101

Procedure to calculate3x
3x can be calculated from x by simple three times addition of x like as,

X

+ x
X
S
For example, if x = 000111 calculation for 3x by step-by-step three times binary addi-
tion will be given as,

00 01 10 10 01 00 <« Position of Input Carry
<+— Input string

<4+——Output string
+— Move in this direction
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Now assume that these carry positions represent three different states such that initially
automaton is in state C,, on symbol 1 automaton reaches to state C; and return the symbol 1.
For next input symbol 1, return output symbol is 0 and automaton reach to state C,,. This
state remains unchanged, if next input symbol will be 1 and return symbol is 1. At this state
(digit position) if input symbol is 0 then, return symbol will be 0 and next state will be C,. At
this state if input symbol is 0 then automaton reach to state C, and produce output symbol 1.
State C,, remains same for input symbol 0 and it outputted the symbol 0. Thus we obtain the
Melay machine shown in Fig. 9.31.

Fig. 9.31

We can verify the correctness of the above Melay machine over any input string of 0’s
and 1’s, i.e., for example x = (001011), or (11),,, then machine should generate the output
string 3x that is (100001), or (33),,.

01 10 01 10 01 00 < Position of Input Carry
[0 0 0 1 1 1] «— Inputsymbols

0 0 1 0 1 1

0O 0 1 0 1 1
<4——  Symbols processed in this direction

|1 0 0 0 0 1 |<—Output symbols

Hence Melay machine works correctly and returns the 3 times of the input string. The
moves between states over input symbols and the generation of the output symbols are shown
in table shown in Fig. 9.32.

Current State | Input Symbol Output Symbol | Carry Generated | State Transition
Coo 1 1 01 Cyo = Cyy
(No Carry)
Cy; 1 0 10 Cy; = Cy
Cio 0 0 01 Ciyo— Cyy
Co, 1 0 10 Cyy — Cy
Cio 0 0 01 Ciyo— Cyy
Cy; 0 1 00 Cy; ®Cy,
Fig. 9.32

9.6.2 Moore Automaton

As we seen that, in the case of Melay machine (finite automata with output), the transition arc
between the states is labelled with a compound symbol such that the output is generated
corresponding to input symbol. In case of Moore machine output is represented by the state
itself. The names of the states are such, that it represents the output symbols. So, in case of
Moore machine, the output is associated with the states. Therefore, for a given input the
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sequence of transitions between states is responsible for generating the output. For example,
a finite automata shown in Fig. 9.33 whose start state is A, and states A, B and C are represented
equivalently by the symbol 0, 0 and 1 respectively.

Fig. 9.33

Then for the input string ‘abba’ the output string will be determine as follows,

From the start state A, following sequence of states is obtained after processing the
complete string ‘abba’,

a b b a <+— Input string
A—»B—>C—>»C—>»C
0 0 1 1 1 «— Output string
Corresponding to that sequence of states we obtain the output string 00111.

9.6.2.1 Definition

A Moore machine is defined as following set of tuples,
1. A finite set of states Q,
2. A finite set of input Symbols X,
3. A finite set of output Symbols A,
4. Transition function 9J,
5. Output function A,
6. Starting state r, where r; € Q.
Let M, is a Moore machine, then it can be defined using above tuples as,
Mo = (Q’ 2, A, 8a }‘a ro)
where, transition function 0 is defined as,
0: QxXZ—>Q
which is the partial mapping of a state (¢ Q)with an input symbol (¢ ¥) that return a state
(e Q). Similarly the output function A, is defined as,
A QoA
which is the direct mapping between the state and the output symbol.
For example, consider a Moore machine M, shown in Fig. 9.34.
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Assume that states r,, r; and r, are represented by symbol 0, 1 and 2 respectively, then
AMry)=0; A(rp)=1; and A(ry)= 2;

FACT

e In the Moore machine, the first symbol in the output string always specified the start
state.

e In the Moore machine the output string has not the same length as the input string. If
we compare the length of input string with length of output string, then we found that
length of output string is one more than length of input string. So, if x is the input
string and w is its output string then,

lx ] +1=1]wl
Since, it is assume that machine always starts from initial state. So, corresponding to
the start state an additional output symbol always comes in the list of output string.
While, in case of Melay machine length of the output string is no greater than the
input string.

o The language of a Moore machine doesn’t define on the basis of accepted word. Since,
every traceable input string generates some output string and there is no such thing as
final state. The process is terminated when the last symbol of input string is read and
the last output symbol is printed.

Note. Moore and Melay machines are Deterministic Finite State Automatons. Hence, from each
state of above machines, there is exactly one and only one exit transition arc on each input symbol.

Example 9.11. Consider the Moore machine shown in Fig. 9.34, determine the output for the
input string 10111.

Sol. From the start state r,, we obtain following sequence of states after reading the
input string 10111,

1 0 1 1 1 <+—— Input string
TP T, P, P,y
0 1 2 2 2 2 <4—— Output string
Hence, the output string is 012222. If we carefully observe the nature of return string
then we will find that it is the reminder of 3. See the table shown in Fig. 9.35.

For the input string 010111

Input Symbol Equivalent Value Operation Output
(Value mod 3) (Reminder of 3)
0 0 0 mod 3 0
1 (01),, 1 mod 3 1
0 (010), 2 mod 3 2
1 (0101), 5 mod 3 2
1 (01011), 11 mod 3 2
1 (010111), 23 mod 3 2%

Fig. 9.35
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From starting state r,, if input number is 0 then it returns the number 0((0), mod 3 = 0)

Otherwise, if input number is 1 then output will be 1 (state r;, number) or ((1), mod 3 = 1).
From state r,, if input number is 0, so total input number received at this state is 10 then
machine returns output number 2 (corresponding to state r,) or ((10), mod 3 = 2). At state r,,
received input numbers is 10 then,

e For input string 10 followed by one/more 1 (equivalent number will be either (101,
1011, 10111...), or number (5, 11, 23, ...),,) the output is 2 (corresponding to state r,)
or ((101, 1011, ...), mod 3 = 2).

e For input string 10 followed by number 0 then return number is 1 (state ;) or ((100),
mod 3 = 2).

e For input string 10 followed by 1* followed by number 0 (equivalent number will be
(1010, 10110, 101110,.....), or (10, 22, 46, ..),,) the return number is 1 ( state r,) which
is again reminder of 3.

At state r; possible strings are received,
e 100, or
e 101* 0, i.e., strings are {1010, 10110, 101110,.....}

For state transition r; — r, means that above strings followed by number 1 so that the
final input strings are (1001 or 10101, 101101, 1011101, ....... )por (9,21,45... ),,, in such case
reminder will be zero.

9.7 EQUIVALENCE OF MELAY & MOORE AUTOMATONS

When we study the finite automata with output such that a Melay machine and a Moore
machine a general question arises, does both machines are equivalent. Alternatively, we say if
M, is the Melay machine and M is the Moore machine then,

Does M, =M ?
In other words, we may check the equivalence of above machines with respect to the
string generated by them at the output. Let x is the input string, then assume the output of
machines M, and M, are w and w’ that can be define as,

Ty, @=w and T, (x)=uw’
Since, | w | # | w’|, it means
Ty, &) £ Ty, () (for Vx)
Therefore, Melay machine is not equivalent to Moore machine.

Since these machines are lying in the class finite automaton with output therefore it is
possible to make both these machine equivalent, i.e.,

e Equivalence of a Melay machine to a Moore machine, and
e Equivalence of a Moore machine to a Melay machine.
To make Melay machine equivalent to Moore machine i.e.,
M, =M,
We must introduce an additional symbol b corresponding to the start state (r) of the
Moore machine i.e.,

A, (rg)=bthen b.T, (x) = T, () (Vx)
(The Meaning is that start state is the pending state by own)
Eventually, we get the same length of output string from both the machines.
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9.7.1 Equivalent Machine Construction
(From Moore machine-to-Melay Machine)

Let M be a Moore machine i.e.,
M, =Q,%,A,3,A,ry
then an equivalent Melay machine M, can be constructed from M i.e.,
M, =@Q,Z,A,5d, A,y
(where all symbols as there usual meaning)
Now we can establish the correspondence between the tuples of both the machines, i.e.
e Both machines operate on same set of states so Q, = Q, (let it be Q),
Both machines operate on same set of input symbols so X = X, (let it be %),
Both machines operate on same set of output symbols so A = A, (let it be A),

Both machines start on same starting state {rg}.

Transitions between states over input alphabets must be same in both machines so
8 =9, (let it be J).
e The relation between the output function A, (Melay) to A (Moore) will be defined as,
A(r,a)=A(8(r,a)) [for Vre QandVae 2]
Alternatively, the return of output function A, from any state over the input symbol is
same to the value of output function A, at the state obtain from the transition of that state over
that input symbol.

For example consider again a Moore machine shown in Fig. 9.34, i.e.,

where the set of states Q = {r, r;, ,}, state {r,} is the starting state, set of input symbols X = {0, 1},
set of output symbols A = {0, 1, 2}, transition function &’s are defined as,

8(ry, 0) = ry; d(rg, 1) =ry;
8(ry, 0) = ry; O(ry, 1) =ry;
3(ry, 0) = 1y; d(ry, 1) =r1y;

and output function A are defined as,
Mry)=0; Mr)=1; and Mry =2;
(from the transition diagram shown)

Now determine the output function for Melay machine () from the known output func-
tion for Moore machine (A ) i.e.,

A (g, 0) = A, (8(ry, 0)) = A (ry) = 0; Ay 1) = A (8(ry, 1)) = A (r)) = 1;
Ay, 0) = A (8(ry, 0)) = A (ry) = 2; Ay, 1) = A (8(ry, 1)) = A (ry) = 0;
A (g 0) = A (8(ry, 0)) = A (r)) = 1; Mgy 1) = A (8(ry, 1)) = A (ry) = 2;
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Hence, the state diagram of equivalent Melay machine is constructed and which is shown
below in Fig. 9.36, where transition arcs are labeled with compound symbols i.e., input and
corresponding output symbol.

Fig. 9.36 M.,

Note. We observe from the state diagram of Melay machine that all incoming arcs to a state must
be labeled the output symbol which is equivalent to that state itself. Conversely, the role of state for its
outgoing arcs is nothing in the output generation. For example, consider a snapshot of machine M, (Fig.
9.37) where state r,, has two incoming arcs labeled with input symbol 0 and 1. So the output symbol would
corresponds to state r, only, which is 0, so both arcs are labeled with output symbol 0.

0/0 A

Fig. 9.37

1/0

Similarly, with state r,, incoming arcs labeled with input and there corresponding output symbol
are shown below.

1/1

0/1

Fig. 9.38

Similarly output for other states can be determined.

9.7.2 Melay Machine-to-Moore Machine

Now we shall discuss the method how an equivalent Moore machine is constructed form a
given Melay machine. Assume, M, be a Melay machine which is defined by following set of
tuples,

M, =(Q,Z, A 4, A, 1y
then an equivalent Moore machine M, can be constructed from M, where,

M, =(Q,, X, A, 4, A, [ry, b

> Yo’ "o
(where all tuples as there usual meaning)
Now we can establish the relation between corresponding tuples of both the machines,
ie.,
e Both machines operate on same set of input symbols X and same set of output
symbols A.
e Q =Q,x A, i.e., states of the Moore machine is represented by an pair whose first
element is the state (¢ Q,) and the second element is the output symbol (¢ A). For
example, state [r, a] € Q,, where state r € Q, and a € A.
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e Start state of Moore machine is defined as [r, b], where r, is the starting state of
Melay machine and b is any arbitrary symbol € A.

e The return of output function A when operated on the state like [r, a] € Q,, will be
the output symbol that exist as the second element of the pair i.e.,

A, al)=a
e Transition function 9, relates to 6, like as,
8 ([r, al, b) = [8,(r, b), A (r, b)] = Ip, d]
where, 6,(r,b) =p (€ Q,) and A (r, ) =d € A.
Example 9.12. Now we discuss some simple conversions from Melay machine to Moore machine.

(i) Consider a snapshot of Melay machine is shown in Fig. 9.39 (a) then its equivalent Moore
machine will be shown in Fig. 9.39 (b). (In the Moore machine second symbol of the state is the
output produced by the machine at that state)

all b/l

c/1
(a) Melay Machine (b) Moore Machine
Fig. 9.39

(it) since, output symbols are {0, 1} so the states of Moore machines are [r, 0] and [r, 1] and
there equivalence are shown in Fig. 9.40.

\G/AO b/0 o b
GG
b1 b1 / !
b1 all b

(a) Melay machine (b) Moore machine
Fig. 9.40

Example 9.13. Construct the Moore machine from the Melay machine M, shown in Fig. 9.41

Fig. 9.41

Sol. The given Melay machine M, can be defined as,
Me = ({00; Cl’ 02}, {0, 1}, {O, 1} 8 7\'6’ CO) and

> Yoo

Where the output function (X)) is shown in table I.
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Table 1
Input symbol
State
0 1
— C, 0 1
Cl 1 0
C, 0 1

And the transition function (3,) is shown in table II.

Table 11
Input symbol
State
0 1
—a» C, Co C,
C, Co C,
CZ Cl Cz

Let M, be the Moore machine which is constructed from given M, then M is defined as,

M, =(Q, 3, A, 8, &, [Cy, b)), where == {0, 1}, b € A= {0, 1}.

s Yoo N0

o Set Q,=Q, xA={C,C,C,)x1{0,1)

= {[Cy, 01, [Cy, 11 [Cy, 0] [Cy, 11 [Cy, 0] [C,, 11}
e Output function (4) will be determine as,

A, lg,al =a, forVge Q,and Va € X

e Determine transition function §, (using table I & II) i.e.,

3,(IC,, 01, 0) = [8,(C,, 0), A,(Cy, 0)] = [C,, O]
8,(IC,, 01, 1) = [8,(C,, 1), 1,(C,, DI = [Cy, 1
8,(ICy, 11, 0) = [5,(C,, 0), 4,(Cy, O)] = [Cy, O
8,(IC, 11, 1) = [8,(C, 1), A,(C,, DI = [Cy, 1
3,(IC;, 01, 0) = [5,(C;, 0, A,(Cy, 0)] = [C,, 1

8,(Cy, 0), 1,(Cy, 0)] =

8,(IC;, 11, 1) = [8,(C;, 1), A,(C,, D] = [C,, 0
3,(IC,, 01, 0) = [5,(C,, 0), 4,(C,, 0)] = [C,, O
8,(IC,, 01, 1) = [8,(C,, 1), ,(C,, D] = [C,, 1
3,(IC,, 11, 0) = [5,(C,, 0), 4,(C,, 0)] = [C,, O
8,(IC,, 11, 1) = [8,(C,, 1), ,(C,, D] = [C,, 1

[
[
[
[
[
8,(IC, 11, 0) =
[
[
[
[
[

Hence, we prepare a table III that shows all §,’s for Moore machine.

[
[
[
[
5,(IC,, 01, 1) = [5,(C, 1), A,(C,, D] = [C,, 0
[
[
[
[
[

[Cy, 1]
[C,, O]
[Cy, 1]
[Cy» 1]
[C,, 0]
[C,, 11
[C,, 0]
[C,, 0]
[C,, 1]
[C,, 0]
[C,, 1]
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Table III
Input symbol
State
0 1
—» [C,, O] [C,, O] [C,, 1]
[Cy, 1] [C,, O] [C,, 1]
[C,, 0] [Cy, 1] [C,, 0]
[C,, 1] [Cy, 1] [C,, 0]
[C,, 0] [C,, 0] [C,, 1]
[C,, 1] [C,, 0] [C,, 1]

Since C, is the start state of the Melay machine corresponds to that we obtain two states
of Moore, from them any one is selected as starting state which is marked by an arrow. Let we
select [C,, 0] is the starting state then we construct the state diagram of the Moore machine
shown in Fig. 9.42.

Fig. 9.42 Moore machine.

Example 9.15. Construct the equivalent Moore machine from Melay machine shown in Fig. 9.43.
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Sol. Construct the output function (1) table I for the given Moore machine.

Table I
Input symbol
State

0 1

— A 1 0
B 0 1

C 0 1

D 1 0

Similarly construct the transition function (5,) table II.

Table 11
Input symbol
State

a b

—1» A D C
B A B

C D A

D B D

Let we define the equivalent Moore machine (Mo) which is constructed from given Melay

machine i.e.,

M, =@Q, 3 A5

s Yoo

A

0°

[A, 0]), where X = {a, b}, and 0 € A.

e Now set of state Q, = {A, B, C, D} x {0, 1}

= {[A, 0], [A, 1] [B, O] [B, 1] [C, 0] [C, 11, [D, 0], [D, 1]}

e Determine transition functions §, (using table I & II) i.e.,

d,([A, 01, )
3,([A, 01, b)
d,([A, 11, a)
3,([A, 11, b)
d,(IB, 01, )
3,([B, 01, b)
d,(IB, 11, a)
3,([B, 11, b)
3,([C, 0], a)
3,(IC, 01, b)
d3,([C, 11, a)
3,(IC, 11, b)
d,(ID, 01, @)
3,([D, 01, b)
3,(ID, 11, @)
3,(ID, 11, b)

= [5,(A, a), A (A, @)l = [D, 1]
= [5,(A, b), A(A, b)] = [C, 0]
= [5,(A, a), A (A, @)l = [D, 1]
=[5,(A, b), A,(A, b)] = [C, 0
=[5,(B, a), A(B, a)] = [A,

=[5,(B, b), (B, b)] = [B, 1
=[5,(B, a), A(B, a)] = [A,
=[38,(B, b), A,(B, b)] = [B
=[5,(C, @), A,(C, a)] = [D, 0]
=[5,(C, b), A,(C, b)] = [A, 1]
=[5,(C, @), A,(C, a)] = [D, 0]
=[5,(C, b), A,(C, b)] = [A, 1]
5,(D, a), A,(D, a)] = [B,
5,(D, b), A,(D, b)] = [D,
5,(D, a), A,(D, a)] = [B,

=1
=1
=1
= [8,D, b), (D, b)] = D,

1]
0]
1]
0]
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Hence, we prepare a transition function table III for Moore machine.

Table III

Input symbol

State

a b

— [A, 0] [D, 1] [C, 0]
(A, 1] [D, 1] [C, 0]
(B, 0] (A, 0] [B, 1]
[B, 1] [A, 0] [B, 1]
[C, 0] [D, 0] [A, 1]
[C, 1] (D, 0] (A, 1]
[D, 0] [B, 1] [D, 0]
D, 1] [B, 1] [D, 0]

Since we assume that [A, 0] is the start state of the Melay machine so it is marked by an
arrow in the transition table. The state diagram of the Moore machine shown in Fig. 9.44.

a
Fig. 9.44 Moore machine.

EXERCISES

9.1 Write regular expressions for each of the following languages over the alphabet {0, 1}.
(7) The set of all strings containing at least of two 0’s.
(i) The set of all strings not containing 001 as a substring.
(ii1) The set of all strings with an equal number of 0’s and 1’s.
(iv) The set of all strings of odd length.
(v) The set of all strings containing of both 100 and 011 as substrings.
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9.2 Write regular expressions for each of the following languages over the alphabet {a, b}.

(7) All strings that don’t have substring ba.
(ii) All strings that don’t have substring aab and baa.
(Zi7) All strings that have even number of a’s and odd number of b’s.
(iv) All strings in which a’s or b’s is doubled but not both.
(v) All strings in which symbol b is never tripled.
(vi) All strings in which number of a’s are divisible by 5.
9.3 Construct the FA for the following regular expressions.
(@) 11 + 0)* 0* (00 + 1)*
(@) 01((10* + 11) + 0)*
@) O+1)O+1)*+11+01 +0)* + €
9.4 Construct the regular expression for the following DFA, shown in Fig. 9.45.

=0
(2 a
)

Fig. 9.45
9.5 Describe the language denoted by the following regular expressions
@) ((b + aa)*)* (@) (b (a + bb)*)*
(i) (b (abb)* a (baa)*)* (iv) (a + b) a (ab)*

(v) (a*b*)*
9.6 Prove are disprove the following for regular expressions
(@) (@*b*)* = (a + b)* (@) (a + b)* = a* + b*
@it) @+ b)*a(a+b)*b (a+b)*=(a+b)*ab(a+b)*
(@v) (a + b)* ab (a + b)* + b*a* = (a + b)* (v) (aa*1)*1 =1 + a (a + 1a)*11

9.7 Construct the regular expression corresponding to the followng FAs shown in Fig. 9.46.

0 E%o,l ?%0,1

1
(@) (b)

:0 % ?0,1
1

(©
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Fig. 9.46
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) (O]
Fig. 9.46

9.8 Comment on the property of the given Melay machine shown in Fig. 9.47 (a) & (b)
0/0

all

al0 6’

@ b/0 ‘ alo
bl0 /1

M)
(a) (b)
Fig. 9.47

9.9 Design a Melay Machine to perform the addition of 2 binary numbers.
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Regular and Nonregular
10 Languages

10.1 INTRODUCTION

From exploring the knowledge of the previous chapters, for checking the regularity of any
language, we might say that, a language is said to be regular language if there exist a Finite
Automaton (FA) that accept it. In other words, a machine with finite number of states (DFA/
NFA/NFA with e-moves) including definite halting state and no other means of storage,
recognizes the language that language is a regular language; otherwise language is not regular.

To prove any language is regular or not we discuss a theorem called pumping lemma for
regular language in the next section. Through pumping lemma we necessarily check the
regularity of any language. Section 10.2 and 10.3 discuses more about regularity and
nonregularity of any languages.

There are some inherent characterizations, if the language recognize as the regular
language. Closure characterization is one of them. Closure characteristics tell about the nature
of regular languages over operators. In section 10.4 we will see the nature of regular languages
over operations like union, concatenation, intersection and kleeny closure that also return a
regular language.

The problem of equivalence of regular languages can be a general one. Whether two
regular languages are equivalent, alternatively we have two DFAs corresponding to two different
regular languages, then whether these DFAs are equivalent. The solution of above problem is
finding out by the construction of a minimum state DFA that recognizes both the languages.
We discuss the problem of minimization of DFA with some other problems of regularity under
topic “Decision problems” in section 10.5 in details.

10.2 PUMPING LEMMA FOR REGULAR LANGUAGE

Lemma 10.1. If L is a regular language then there exist a constant n such that if a string Z
L and

| Z | =n, then Z can be written as,

Z = U.VvV.w

where, 1. |v| =21
2. Ju.v] £n

3. Vi 20, uviowe L

(where n depends only on language)

The statement of the pumping lemma says if we select any string Z from the set of
regular language L, such that string Z can be break into substrings u followed by substring v

254
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followed by substring w then we always locate a middle substring v (in between of length n)
that contains at least a symbol (or nonempty) can be ‘pump’ zero/more (finite) times causes the
resulting string returns in language L.

Proof. For proving above lemma we assume that there is a DFA of n distinct states that
accept the regular language L. Let string Z is of k symbols where k > n then string Z can be
written as,

Z=a,. a,. a;. 8, ...... a,.
ie., | Z | k so| z |2 n.

Since we assume that £ = n so a DFA accepting the string Z must have following possi-
bilities,

e Either, it is a n state DFA i.e., if one symbol corresponds to one transition arc and if

string contains k symbols where & = n (take one such case), then the string Z = u.v.w
where | Z | = n, is accepted.

Or

e For accepting the string of length > n, an n state DFA must has one/more repetitive
transition arcs on few intermediate states.

Let DFA operates over states set Q where Q contains start state g, and other states q,,
Q9 q35---q,, Where g, € F. Then after consuming stringa,. a,. a;. a,. . . a,, the path taken by
DFA is as follows,

a Qy ag Qi1 a; an
q, q, Qy— cnnn Q—> Qe s TR 41—,

Since, | Z | 2n , or number of symbols in string Z is more than m ( number of states) so
there must be at least one duplication of states. In other words at least two states must be
same (Fig. 10.1). Assume states g, and q; are same thus there exists at least one symbol in
between a; and @, i.e., | v | = 1. The discussed situation is shown below.

(a,.a,a,... &) . (&,.... &) . (&.,...3a)

»
»

u V(z#e) w
because of same states of ¢; and g;

) g1
a;,  a, ag A,
Q= q,— qy— 9 Qin a; Qiog wveeeen Q1 = G,
Qi1 @ /
Fig. 10.1
The states diagram of DFA M is shown in Fig. 10.2.
v
M

Fig. 10.2
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Therefore string v can be pumped as many as you can such that the resulting string
{u. vl. w Vi >0} will be accepted by DFA M. Hence language is a regular language.

Remember, above lemma checks the regularity of any language whose length is greater
then or equal to the number of states of its DFA. So, initially break the string into three
substrings and then test the effects of finite repetition of middle string on any of the interme-
diate state (not the final state) if it causes final string is in language then language is regular
otherwise language is nonregular.

10.3 REGULAR AND NONREGULAR LANGUAGES SOLVED EXAMPLES

Now we test the regularity of any language using pumping lemma discussed above. This section
gives the idea that how to proceed to testify the language is a regular language using pumping
lemma. The examples discussed below presented the approach to reach the conclusion to the
problems.

Example 10.1. Let T = {0, 1}, then check the regularity of language L = {0*1* | k > 0}.

Sol. The language L consists of following set of string {e, 01, 0011, 000111, ........... }. We shall
prove the regularity of L by method of contradiction. Thus, assume L is regular and n is any
constant then string Z can be written as,

Z=0".1" je, |Z| =2ns0|Z| >n
Now break the string Z into substrings u , v and w (Fig. 10.3) i.e.,
Z=0".1" =u.v.w

where substrings fulfill the condition such that

(000........... 00......000) . (111.eeverreeene. 1111)
u v w
—r —r <« »
Fig. 10.3

We observe that string u. v consist only of s so | u .v | <n and | v | 2 1. For the
verification of the base case of pumping lemma i.e., string Z = u.vi.w = u.w(for i = 0).
Lemma says if L is regular then u. we L. Since substring u contains 0’s that are fewer than n
(because of few 0’s are part of substring v) and substring w contains exactly n, 1’s. So, string
u. w doesn’t have equal numbers of 0’s followed by equal number of 1’s. Hence, we obtain a
contradiction therefore L is not regular.

Example 10.2. If ¥ = {0} and language defined over X is L = { e | i 20} then L is not regular.
Sol. Now, the strings in the set L. = {¢, 0, 0000, 00000000, ...... |3
Assume L is regular, then there exist a constant n s.t.

2
String Z= 0" (| Z | = n?>n) and it can be broken into substrings u, v and w s.t.
Z =u.v.w and these substrings are:

........ 00........ 00) . (0...ccueeee 00).cciiieieiiienieeeee, (L 00)
u v w
> —> < >

(In the string Z there are n sets that contains n number of 0’s, so total n? 0’s)

Since, v #€ and | u.v | < n ; means that sub string wv should be in first set that
contains n, 0’s. Substring u has less than n 0’s because some of 0’s are in v.
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Remaining (n — 1) set of n number of 0’s are in w.
For the base case of pumping lemma, if u.w is in L then L is regular.

The strings u.w contains fewer than n 0’s , followed by (n — 1) set of n number of 0’s. So,
total numbers of 0’s in w.v are, where we assume u has £ 0’s s.t. & < n.

So, 0%+*»-D-n jg not a perfect square = u.w ¢ L
So, there is a contradiction. Hence language L is not regular.
Or, Assume Z=0"=u.v.we L.
Check the string u.v?.w if this is in L then number are 0’s should be perfect square.

Le. lu.v?’w|=|u.v.w]|+]|v|
=n?+|v|
since | v | is least 1,
Hence, n?+ | v | >n?
Max length of substring | v | =n
So, n?<|u.v?. w| <n?+n — tomake perfect square add constant (n + 1)
= nP<|lu. . w|<n?P+n+@n+1)
= n2<|lu.v’ . w|<mh+1)72

i.e. the length of string # (n + 1)? a perfect square = u . v?. w ¢ L.
Hence, Language is not regular.

Example 10.3. If language L = {0' I/ 2! | i and j are arbitrary Integers} then L is not regular.

Sol. Language L contains the strings that have equal number of 0’s and 2’s, and in between 0’s
and 2’s it has any number of 1’s.

Assume a constant n (and a constant m where n > m), so that string Z = 0" 1™ 2%;
If L is regular then, Z can be break into substring u , v and w s.t.
Z=0"1m2"=y .v.w whereu, vand w are given as follows:

(LN 00 0) (Leveeiieiieieenen, 1) 2 2)
u v w
—>r < > < >

substringv#e = |v|2land|u.v|<n

Proof by contradiction:
Assume LisregularsoVi>0,u.v'. we L.

For base case (i = 0) of pumping lemma, . w € L. if L is regular.

Since, u . w has fewer than n 0’s (because some of 0’s are part of v) followed by m 1’s and
n 0’s.

From the nature of language L we find that only those strings are in L that have equal
number of 0’s (followed by any number of 1’s) and 2’s.

However, u . w doesn’t fulfill above condition. So, a contradiction,

Hence, u.we L.

Fori=2,stringZ=u.v'.w = u.v?. w

So, |u.v .wl|=|u.v.w]| +]|v|

= =(2n+m)+ |v| wherel<|v|<n
= Cn+m)+ | v | >2n+m)

i.e., Cn+m)<|u.v2.w|<@n+m)+n
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= Cn+m)<|u.v . w|<@n+m)+n;

[to make equal, number of 0’s and 2’s add more n 2’s on right side of equality]
= Cn+m)<|u.v?.w|<@n+m)+n+n ;l[for 2n 0’s and 2n 2’s]
= @Cn+m)<|u.v’. w| <I[22n)+ml

That we see from the right side of equality, string | u . v? .w | #4n + m
= u.v2.we L
Hence language is not regular.

10.4 PROPERTIES OF REGULAR LANGUAGES

As we said earlier there are some inherent characterizations of a language if it is regular.
These inherent characterizations we summarize here as the properties of regular languages,
equally says the properties of regular expressions.

Among these properties:

Regular expressions are closed under U operation

Regular expressions are closed under concatenation operation
Regular expressions are closed under Complementation
Regular expressions are closed under n operation

Regular expressions are closed under Subtraction operation

Regular expressions are closed under x operation (Kleeny Closure)

Regular expression are closed under U operation

This property says that the union of regular expressions is a regular expression. If r; and r,
are two regular expressions and there languages are L(r;) and L(r,) then, union of r, and r, is
given as (r; + r,) means either r, or r,, that is a regular expression.

It denotes the language L (r;+ r,); which is the language denoted by L (r;) or language
denoted by L (r,). This is a regular language in either case.

Or we say,
L(r, + ry) = L(r)) U L(r,)
Hence, Regular languages are closed under union.

Regular expressions are closed under concatenation operation

Concatenation of regular expressions are a regular expression. If r; and r, are two regular
expressions and there languages are L(r,) and L(r,) then concatenation of r; and r, is given as,
(r, . ry) means regular expression r, followed by regular expression r,. That results a regular
expression.

Now, the language of composite of regular expression (r, . r,)is L(r, . r,), that must be
language of r, followed by the language of r,, which is again a regular language.
Le., L(r, . ry) = L(r,) . L(r,)

Hence Regular languages are closed under concatenation.

Regular expression is closed under complementation operation

The property says that complement of the regular expression is a regular expression. Let r is
a regular expression and it denotes the regular language L (i.e. L = L(r))
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Let regular language is defined over set of symbols X, then complement of L returns all
possible strings formed over X excluded the strings of the set L.

i.e. L=x*1L;

Now we see that how L is also a regular language.

We know that a language is regular if it is accepted by some DFA. If we construct a DFA
that accept complement of language L, then we say it is also regular.

Let M be a DFA accepting L define as,
M=(Q,Z,3,q,F) and L = L(M)
Now if we construct a new DFA M’ by using the information of DFA M such that, the set
of final states in M’ is F” which is given as,
F=Q-F
Then DFA M’ = (Q, Z, 3, q,, Q — F) accepts complement of the language L.

Example 10.4. A DFA M is shown in Fig. 10.4, that accepts that language given by the regular
expression

(1+0.1%.0) 0+ D*

Fig. 10.4. (M)

Now we construct the DFA M’ that accepts the complement of language L.

Sol. In the complemented DFA M’ all non final states will be final states and final state will be
nonfinal state, i.e. we obtain the DFA M’ show in Fig. 10.5.

Fig. 10.5. (M)

Thus, M’ accepts the language of the regular expression (¢ + 0 . 1*) which is the
complement of L.
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LM)=L(e +0.1% ={e, 0,01, 011, .....}
and, L(M) =L [1 + 0.1*. 0) (0 + 1)*] ={(1, 00, 010, 0110,.....), (1, 00, 010, 0110,.....) O,
(1, 00, 010, 0110,.....)1, (1, 00, 010, 0110,.....) 00,....}
we see L( M) excluded all the strings of the set of L(M) formed over {0,1}.

So, LM)=3*_-T(M)=L

Regular expressions are closed under N operation

This property says that if intersection operation is performed over regular expressions we
again get the regular expression, in other words, intersection of two regular languages is a
regular language.

Assume r, and r, are regular expressions and there languages are L, and L,. Then
there intersection will be, L; N L.

Applying the De Morgan Law that complement of complement is effectless. So,
L, nL, = [(L; nLy)l

= [L; UL,] [using De Morgan Law]
= a Regular language

Because, complement of a regular language is regular; union of regular languages is
regular and subsequently complement of a regular language is regular. So, L, N L, returns
regular.

Hence, Regular expressions (languages) are closed under intersection.

Theorem 10.1. If M, M, are two DFAs that accept the language L, and L, then there exist a
DFA M that accept L, N L,,
Proof. Let DFA M, and M, are defined as,
M, =(Q;, %, 8, q;, F,) and L; = L(M,); and
M, = (Q,, %, 8, q,, F,) and L, = L(M,)
Assume DFA M = (Q, %, 3, q,, F) accepts the language L(M) = L, U L,, where M has
following characteristics:
e Q=Q; x Q, Set Q contains all possible set of states formed over Q, with Q,.

e Same set of input symbols

e Transition function &t

e Starting state is a state that contains pair of starting states i.e., ¢, = (q;, q,).

e F=F, xF,; Set of Final state F' contains all pairs of final states formed over F; with
F

9

t Transition function § is the mapping of a pair of states (¢ Q) with input symbol (¢ X) and
return a pair of states.

Let pair of states is (p, ¢) and X = {a} then transition function & will be:
3((p, g), @) = (3,(p, a), 8,(q, a))

l

= (r , s)I[whererand s are there respective next states of M; and M,]
If a is the language of DFA M, certainly state » € F, as well as state s € F,,.
So, finally we get the machine M = (Q; x Qy, Z, 3, (g, g5), F; x Fy).
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Example 10.5. Two DFAs M, and M, are shown in Fig 10.6. Construct the machine that

Fig. 10.6

accepts intersection of Language of M, and language of M,
Sol. Machine M, accepts the language expressed by the regular expression 0*.1. (0 + 1)* and
machine M, accepts the language expressed by the regular expression 1*.0 . (0* + 0% . 1.
(1 + 0)*). Now we construct the machine M that accepts intersection of language of M, as well
M,
Let M =(Q, %, §, {A, P}, F, x F,), where
e Q=MA,BxP QR)

= (A, PL{A, QL {A R} {B, P}, (B, Q), {B, R});
o« =={0,1)
e Starting state is the pair of starting state of M, as well M,, so {A, P}
e F={B}x{Q, R}

= (B, Ql, {B, R}
e Transition functions J are given in the table shown in Fig. 10.7.

S({A, P}, 0) = [8(A, 0), &(P, 0)] = {A, Q} and similarly we compute other transition func-

tions.

State Input symbol
0 1
—1» (AP} A, Ql {B, P}
(A, Q (A, Q {B, R}
(A, R} {A, R} {B, R}
{B, P} {B, Q {B, P}
® B, Q {B, Q} {B, R}
® (B,R} {B, R} {B, R}
Fig. 10.7

Hence, the transition diagram of DFA M is shown in Fig. 10.8
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Fig. 10.8

Regular languages are closed under Subtraction

Subtraction (Difference) of two regular languages is a regular language i.

Let r; and r, are regular expressions and there languages are L; and L, then there
difference is r; — r,, which denotes the language L(r, — r,),

= L(r)) -L(ry) or L, -L,=L

It contains set of strings that are in L, but not in L,. If it is L then L is called difference
set of L; with L,

So, language is closed under difference.

For example assume regular expressions r;, = (0 + 1)* and r, = 1* then difference of
regular expressions is r; — r, = (0 + 1)* - 1*, that can be simplify after knowing the language
expressed by both regular expressions.

Since, language expressed by r, is L(r,) = {all strings formed over 0’and 1’s} and

Language expressed by r, is L(r,) = {€, all strings formed over 1’s}

If difference of languages L(r,) and L(r,) is L then L contains all the those strings that
doesn’t have all 1’s. So L contains all those strings that have at least a, 0.

Hence, regular expression of such language is 0% . (1 + 0)* . 0¥ (which also generate €,
but in L € will not be there). So, to exclude symbol € from the language of regular expression,
the new regular expression is constructed without affecting the nature of language it gener-
ates i.e.,

[0.0%. (1 +0)*.0%+0%.(1+0)*.0*.0].
Hence language L is
L(0.0*. A +0)*.0%*+0*. (1 +0)*.0%.0]) = {0, 00, 01, 10, 100,....}
That contains all strings formed over 0’s and 1’s that have at least a, 0.

Reversal of regular language is regular

Let w is any string abed...... xyz then reverse of w is a string zyx...... dcba. If w is regular then
reverse of w is also regular. Now we discuss a lemma so the things are more clearer.

1 We can’t say directly that difference of regular expression is regular expression, because sub-
traction operation is not a part of the definition of regular expression. After few steps of simplification
we may get the difference of regular expression.
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Lemma 10.2.

Let r is a regular expression and it generates the language L. Assume regular expression r can
be formed by concatenation of regular expressions ry, Iy, I's,............ r, , wherer, (Vi >1) may
be formed by addition of regular expressions or kleeny closure of it.

I =T,.T,.T...r,. (because concatenations of regular expressions are regular expression)

If we concatenate the above regular expressions in reverse order we get again a regular
expression.
rfV =y .r
Regular expression r®EV generates the language that certainly contains the strings that
are reverse of the strings of L.

For example r = a, . a, . a,......a, and it expresses the language L = a,a.a,......a, then
reverse of Lisa,......a;a,a,. That is generated from the concatenation of the regular expressions
in reverse order

ie., rRfEV = g ...... a;.a,.a,
Since, r®EV is a regular expression. Hence its language is also regular.

FACT
If L is the language accepted by some DFA then we can construct the DFA (one/more) that
accepts reverse of all the strings of L.
Proof. Let DFA M = (Q, %, 6, q,, F) is represented by equivalent regular expression r where
L = L(r). Let reverse of L is LR where LE = (L)R = (L(r))® = L(rR) says reverse of L is expressed
by a regular expression r®. Hence, there exist some DFA equivalent to regular expression r®.
Now, we construct the DFA My with following consideratons, i.e.,
e Starting state of M becomes the final state of M.
e Final state of M will be the starting state of My,.

e If M has more than one final state then number of DFA M, are more (number of My
will be depend upon the number of final states)

1. Select any one final state (of M) that will be the starting state of My,, remaining
final states becomes non final states of My;.

2. Pick next final state (of M) that will be the starting state of My, and remaining
final states becomes non final states of Mg,.

3. Repeat step 2 until all final states becomes starting state of My;, Mg,,......
where £ is the number of final states in M. So there are K possible DFA (M) that
accept reverse of language L.

e Reverse direction of all the transition arcs.
For example Fig. 10.9 shows a DFA M accepts language L, where L is the language
denoted by regular expression 0%. 1.1%¥ +0*.1.1%*.0. (1 + 0)*

1,0
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For accepting the reverse of the strings of Language L, we can construct the My, using
above disumed points, i.e.,

e State A will be the starting state.

e Firstly choose final state B that will be the starting state. (Fig. 10.10(a))
o Next state C will be the starting state. (Fig. 10.10(5))

e Reverse the direction of transition arcs,

Thus, we get two DFA My, and Mg, that are shown in Fig. 10.10.

1,0

, 0
! !
M
(a) (b)
Fig. 10.10

R2

For automaton My, equivalent regular expression is 1* .1 .0* which is the reverse of
the first part of previous regular expression.

Similarly Mg, has equivalent regular expression (0 + 1)*. 0. 1*. 1. 0* which is the
reverse of the second part of previous regular expression.

Hence, we see that reverse of language L are accepted by DFA My, or Mg,.

Therefore, reverse of a regular language is also regular.

10.5 DECISION PROBLEMS (DP) OF REGULAR LANGUAGES

Decision problems of regular languages are computational problems. We know the fact that
regular languages are the languages of the finite automatons. So, Finite automaton provides
computational procedure to solve the decisions problems.

A decision problems consists of a set of instances (may be infinite). On these set of
instances finite automaton take decision and answered either ‘Yes’ or ‘No’.

A regular language consists of infinite many strings and there is no finite way to represent
the complete languages. So, for the general queries about the regular languages those are
discussed below, the computational procedure exist that’s why these queries are the decision
problems of regular languages.

Following are the decision problems:

1. Emptiness problem

2. Finiteness problem

3. Membership problem

4. Equivalence problem and problem of Minimization

10.5.1 (DP1)-Emptiness Problem
If L is a regular language then the question arises; Is L. empty?
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To answer the question let M = (Q, X 3, q,, F) be a DFA accepts language L, i.e. L = L(M),
then above problem may be stated as,

Yes, if L(M) 1s Empty or L(M) = O;
Is Empty (M) <
No, if L(M) is Nonempty or L(M) # @;
if L(IM) = @ = Finite automata has no path between starting state and final state/s or there
is no way to reach to accepting state/s. Hence language is empty.
if L (M) # @ = There are one/more transition/s so that we can reach from starting state to
final state/s. hence language is nonempty.
FACT. If M be a DFA of n states, then L(M) is nonempty if and only if M accepts a string x
where | x | <n.
To test the emptiness nature of the regular expressions, always remember following
points:
Let r be a regular expression then if r = @ or L(r) = @ then it is empty.
Ifr=r, .0 = r=0orL{) =0 thenitisempty (Whatever regular expression r, is).
Ifr=0+0 = r=0orL(r) =0 then it is empty.

Ifr=r* = L(r) contains at least a symbol that is € (whatever the regular expres-
sion r;) so it is never empty.

10.5.2 (DP2)-Finiteness Problem

Let L is a regular language accepted by some finite automaton M then the question arises; Is
L(M) finite ?

FACT. If M be a n states DFA then language L(M) is infinite if and only if M accepts a string
xst.n<| x| <2n.

From the pumping lemma of regular languages we see that if the language L (M) ac-
cepts any string of length > Y n then L (M) is infinite because string can be written as u. v.w
where,| v | > land|u.v] < nand Vi >0, u.vi.w e L (infinite many strings).

Prove the fact by contradiction:
Since L( M) is infinite, let a string x € L of length at least 2n(| x | > 2n). Apply the pumping
lemma on x. So, x can be writtenasu.v. wst. |u.v | <nand |v | 21

Since |u.v.w|22nand |v |<n = |u.w|2n.

Further, |u.w | <|u.v.w |, because | v | 2 1.

Hence,

= |u.w|2nand |v.w|<|u.v.w |

= n<|u.w|<2n [or 2n<|u.w | <|x|]

Under this range thereisnox € L(M) orn < | x | < 2n. So, it contradicts the assumption
of the string of length > 2n is in L.

Hence, if no strings of length less than 2n are accepted, then L(M) is finite, otherwise it
is infinite.
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10.5.3 (DP3)-Membership Problem
Another important decision problem is, for any given string x and regular language L the
question arises; Is x is in L? or whether string x is the member of set of strings of L?

Since, we know that, if L is a regular language then there exists a finite automaton
(DFA) M that accepts L. Now above membership problem can be formulated as, given a DFA M
and a string x, is x is accepted by M?

The solution of above decision problem is determined by the acceptance nature of DFA
M over the string «x; i.e.,

e if automata reaches to its final state/s after processing string x then x € L; (yes) so it

is the member of the set of regular language L, or

e if automata is not react to its final state/s after processing string x then x ¢ L; (no) so

it is not the member of L.

To reach on to the solution, above computational procedure ends within finite number

of steps; this fact is because of the deterministic nature of automata M.

Assume M is a n states DFA then if length of the string x is at most n then to reach on to
the final decision it takes O(n) times or in linear time (by assuming that each transition re-
quires constant time).

If L has other representation like NFA or NFA with e-moves, then we first convert it to
a DFA and then apply the procedure diseumed earlier.

10.5.4 DP4-Equivalence Problem
Given two sets of regular languages, then the question arises; whether these sets are equiva-
lent or they define same set of regular language? Or,

Given two finite automatons M, and M,; are they accept the same language? i.e.;

L, =L,. [.. L,=LM, &L, =LO,)]

The solution of above decision problem is fairly simple. If deference of two regular lan-
guages is empty then both are equivalent.

We say that if deference is L where L is given as:

L=(;-Ly)u@L,-L) or

= L=@,nL))u(,nL,) where L,” and L,” are the complement of L, and L,.

If L= = only when nothing is common in between one language and complement
of other then both are equivalent.

Else if L # @ = regular languages are not equivalent.

Another consequence of equivalence problem is, two regular languages are equivalent if
and only if they are the languages of some common DFA.

Let L, is the language of DFA M, and L, is the language of DFA M,, and both languages
are equivalent then both DFA M, and M, certainly converge to a common DFA. In fact, this
DFA is the minimum states DFA constructed from above DFA’s.

So, in this journey of finding solution of equivalence problem we reach to another prob-
lem that is minimization problem that is discussed in the next section.
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10.5.5 Minimization Problem and Myhill Nerode Theorem (Optimizing DFA)

The Minimization problem suggest the way that how we will find a minimum state DFA equiva-
lent to given DFA. Since there is essentially an unique minimum state DFA for every regular
expression Myhill Nerode theorem.

Recall the discussion of equivalence relations and equivalence classes from section 1.4.
Assume L be an arbitrary language and R, be an equivalence relation i.e., x R;y if and only if
for each a, either both xa and ya € L or neither is in L. Alternatively the number of equivalence
classes is always finite if L is a regular language. Associated with the finite automaton there
exists also a natural equivalence relation on its language set i.e., for any x,y € ¥*,x R,y if and
only if &(q,, x) = 8(q,, y). The relation R divides the set X* into equivalence classes which is
finite. In addition, if x Ry, then xa R; ya for all a eX*. An equivalence relation R; such that
xR,y = xa R, ya is said to be right invariant with respect to concatenation. Later we will see
that every FAs make a right invariant equivalence relation on its language set.

(Myhill Nerode theorem)

If L be a regular language then the set of equivalence classes of Ry is finite.

Alternatively the set L € Z* is accepted by some FA, and let E; be the set of equivalence
classes of the relation Ry on Z*. If E; is a finite set then a FA accepts L provided that this FA has
the fewest states then any FA accepting L. Besides other consequences of this theorem, its impli-
cation is that there exists always a unique minimum state DFA for any regular language.

This suggests that from a given DFA some/more of the states might be equivalent or
they are not distinguishable. All such states are form a group and placed in a class. So, the
partitions of states are grouped into two different classes. One is the equivalence class of
states and other is the class of distinguishable states. The transition nature of the class is
similar to the transition of individual states in the group. So, these classes are equivalent to
the different states of the DFA and we get minimum states DFA. (number of states would be
less than the number of states of given DFA).

Finding equivalence of states
Assume DFAM =(Q, %, 3, q, F) and let r and s are the states € Q then, Statesr and s are said
to be equivalent if for all strings x of L have:

° S(r, x) € F and S(s, x) € F (for ¥x € L).

States r and s are said to be distinguishable if for at least a string x € L have:

° S(r, x) € F and S(s, X) ¢ F, or
° S(r, x) ¢ F and S(s, X) € F, or

e 5(r, x) ¢ F and §(s, x) ¢ F (where F is the set of accepting state/s).

The equivalence of states have been categorized into various classes which is depend
upon up to what extents of symbols of string x they behaves in similar nature (returns on the
set F). These equivalence classes are 0-equivalence class, 1-equivalence class, 2-equivalence
class,......k-equivalence class.

k-equivalence class

Let states r and s € Q then r and s are k-equivalent states if and only if no string of length <%
can distinguish them. It says that, for all strings of length k or smaller up to zero (because
symbol € has length 0) transition of states r and s reaches to final state.
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We say that equivalence relation Ry exists between statesr and s (pR.Q). So, to distinguish
the states on these bases and make partition, this partition of states is called k-equivalence
classes.

Similarly we can define other equivalence classes.

0-equivalence class

Test the equivalence relation such as r R;s for the string of length O(Ignore the mean-
ingless case of length less than 0). It means we are talking about the string containing symbol
€ (] € | =0)only. If both 8(r, €) € F and §(s, €) € F, then statesr and s are said to
be 0-equivalent states, and partition of states is 0-equivalent classes.

I-equivalence class

Similarly test the equivalence relation r R;s for the string of length one or zero (i.e. length < 1).
Assume language L is define over X, where X = {0, 1} then test the relation r R;s over symbols
0, 1 and € only and make partition of states.

Example 10.6. Let the Language L = {x € {0, 1}*/the second symbol from the right is a 1} then
the corresponding regular expression is (0 + 1)*. 1. (0 + 1) and the possible DFA that accepts
above regular expression is shown in Fig. 10.11.

Fig. 10.11. (M)

Now, Is this is a minimum states DFA M? If not, then construct the minimum states
DFA.

Where, M = ({P, Q, R, S, T, U, V}, {0, 1}, 3, {P}, {S, T}

Sol. Find equivalence classes

0-equivalence classes

Test the transition of states over the symbol € and make groups of the states which are equiva-
lent and which are distinguishable.

Since, PR,Q = &(P, €) = P(¢ F) and §(Q €) = Q¢ F) so they are
Distinguishable.

And, PRR = (P, €) = P(¢ F) andd R €) = R(e¢ F) sotheyare
Distinguishable.
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And, PRS = &P, €) = P(g¢ F) andd(S, €) = S(¢ F) sothey are
Distinguishable.

Similarly test all other states with each other we find states P, Q, R, U and V are distin-
guishable so, they form a group:

{P,Q,R, U, V)
Only states S and T are equivalence, because
SRT = &S, €) = S(e F) and §(T, €) = T(e F)so they are
Equivalence and form another group {S, T}
Hence, 0-equivalence classes are,
{P,Q,R,U,V} and {S, T}

1-equivalence classes
Test the equivalence relation between states of groups for the strings of length less then or
equal to one (i.e. for the symbols €, 0 and 1).
First take up the group of states {P, Q, R, U, V} and test for equivalence,
Symbol € is not able to distinguish between states of above group so, test equivalence
with respect to another symbols 0 and 1.
PRQ = &(P, 0/1) = RQ(¢ F) and 8(Q 0/1) = T/S(e F)so they are

Distinguishable.
And,PRR = &P, 0/1) ¢ F and &(R 0/1) ¢ F;sothey are distinguishable.
And,PRS = &P, 0/1) ¢ F and &(S, 0/1) e F;sothey are distinguishable.
And,PRU = &(P, 0/1) ¢ F and &(U, 0/1) e F;sothey are distinguishable.

And,PRV = &P, 0/1) ¢ F and &(V, 0/1) ¢ F;sothey are distinguishable.
Similarly test for other pairs of states in this group, we find states Q and U are equivalent
because,
RU = §(Q 0/1) e F and (U, 0/1) e F;sothey placesin other group.
Test equivalence relation for other group of states {S, T}, we see that
SRT = (S, 0/1) € F and &(T, 0/1) ¢ F;sincethey are distinguishable
so they will not be in the same group.
Hence 1-equivalence classes are,
{P, R, V}, {Q, U}, {S} and {T}
(this is a refinement of 0-equivalence class)

2-equivalence classes

Now test the equivalence relation for the strings ¢, 0,1,00,01,10,11 (all strings of length < 2).
Since we form the groups of states w.r.t. strings €, 0, and 1 so further it can not be distinguish.
Now test the equivalence relation between states of the groups only the over remaining strings.
We say it xy, where x and y are either O or 1.
Since,
PR.R = &(P, 00/01) ¢ F and (R, 00/01) ¢ F;sotheyare distinguishable.
And, PRV = §(P, 00/01) ¢ F and &(V, 00/01) ¢ F;sothey are distinguishable.
And, RRV = §(R 00/01) ¢ F and J(V, 00/01) ¢ F;sothey are distinguishable.
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Since, we couldn’t find any equivalent of states in this group so there is no split in the
group.
Next, test for equivalence in other group {Q, U}.
RU = &Q 00/01) ¢ F and (U, 00/01) ¢ F;sotheyare distinguishable.
So there is no split in this group also.
Since, group {S} and {T} contains single state so further there is no split in these groups.
Hence, 2-equivalence classes are,
{P, R, V}, {Q, U}, {S} and {T}
That is similar to 1-equivalence classes and since there is no further refinement. So,
process to find equivalence classes terminate.
Hence, equivalent states are = {P, R, V},{Q, U}, {S} & {T}
Therefore, minimum state DFA has just above 4-states.
Remember transition nature of groups is given by the transitions of all the states in the

group that return on the same group or some other group. Thus we obtain the transition table
shown in Fig. 10.12.

Input Symbol
State
0 1
—» {P,R,V} Return on same group {P, R, V} Return on group {Q, U}
Q, U} Return on group {T} Return on group {S}
o {T} Return on group {V} Return on group {U}
o {S} Return on group {T} Return on group {S}
Fig. 10.12

And the minimum states DFA is shown in Fig. 10.13 :
[whose language is also the language expressed by the regular expression
O+D*.1.0+1)]

Fig. 10.13
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Example 10.7. Find a minimum states DFA of the finite automata shown in Fig. 10.14 which
recognizes the same language.

Fig. 10.14

Sol. Find equivalence classes,

0-equivalence classes. Here we test the equivalence over the symbol € and we obtain
that states 6 & 7 are equivalence so they place in the same group and all other states are
distinguishable so they place in other group, i.e., {1, 2, 3, 4, 5} and {6, 7}.

1-equivalence classes. Now we test the equivalence over the symbols €, 0 and 1 and we
find that there is no equivalence of states found in the first group while states 6 and 7 are
distinguishable so they are not placed in the same group, i.e., {1, 2, 3, 4, 5}, {6} and {7}.

2- equivalence classes. Test the equivalence over the symbols 00, 01, 10, 11 including the
symbols €, 0, and 1. Since there is no equivalence of states find in the groups further so the
minimum state DFA has 3-states and after considering of the transitions of all the states over
the alphabets we obtain the transition diagram which is shown in Fig. 10.15.

Fig. 10.15
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EXERCISES
10.1 Prove or disprove the regularity of the following languages. (Justify your answer).
@) {0 | n>1} @) {170™ 1" | m and n > 1}
(i) {0* 12" | n> 1} (@) {0" 1™ | n 2 m}}
(v) {0 1"0™ 1™ | m and n are arbitrary integers}
W) ww | we (0+1)% (i) {w w® | we 0+ 1)*)
(i) fw 1" w® | n>1land w e (0 + 1%} (ix) (0" 1™ | n 2 m]}.

10.2 Decide whether following languages are regular or irregular, (Justify your answer).
(@) The set of odd length strings over {0, 1} in which middle symbol is 0.
(ii) The set of even length strings over {0, 1} in which two middle symbol are same.
(i) The set of strings over {0, 1} in which the number of 1’s are perfect square.
(iv) The set of palindrome strings of length at least 3.
(v) The set of strings in which number of 0’s and number of 1’s both are divisible by 5.
10.3 Construct minimum state DFA from given FAs shown in Fig. 10.16.

@

(@)
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(u11)

(iv)

(v)

Fig. 10.16

10.4 Let L be a regular language then prove that %4(L) is also regular, where
(L) = {x € X*/xy € L for some y € X* and |x| = | y|}
[Hint : Assume L = {0010, 01, 001110, 00, ...... } then %A(L) = {00, 0, 001, O, ....... }. Let M be a DFA
which accepts Lie., M = (Q, %, §, q,, F) and the language %(L) is accepted by the DFA M’ = (Q x
QxQuig, %, ¥, q,, F). Further, assume
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10.5

10.6
10.7
10.8

XY =01 Qg oeereeerennnnn a, .by.by . b
9 91 9 91 9 Znv1 9nvz 9201 9on

(where q,, € F)
So a state is the group of states p, q, and r i.e., {p, q, r} where state p is concern with the first part
of the string (i.e., x), state g is concern with the second part of the string (i.e., y), and state r is
concern to the nondeterministic guess i.e. state q,. Therefore & ({p;, py, P4}, @) = {8(py, @), 7, p,} if
and only if 8(p,, b) = r for some b € X ; 8(q,/, €) = {q,, q, g} s.t. for allg € Q and F’ = {q, a5 ql s.t. for
allg € Qand qp€ F.
Let £ = {0} and L = {00}* = {e, 00, 0000, ........... } then A(L) = {e, 0, 00, ........ } = {0}*. Thus there
transitions diagram are shown in Fig. 10.17 (a) and (b) which are the FA’s hence (L) is also

regular].
: @
0
{(IO, 4y, qO}

(@M

0, 915 90}

{qu qo, ql}

191, 91, 90}

0
90 915 ql}{ql, o> Q1)
0

(b)y M’
Fig. 10.17
Prove that L = {0™1%ged(m, n) = 1} is not regular.

[Hint : Assume Z=0"1*=uv.w where r+k>n and ged(r, k) = 1.

Letr=p,.n!and 2k =r!+ 1wherer>n (1< |v| =n) and & is prime. Hence, test u.v*!.w € L. Since
u.v*! is the string of full of 0’s, i.e. number of 0’s are

r+i|v|l=r+nl(k-p) |v|/|v] [because i = n! (k. —p )/ |v|]
=r+n!(k-p,)
=n!p,+nlk—n!p,
=nlk [number of 0’s]

Since number of 1’s are & hence ged(r, k) # 1.Hence, pumping lemma violated.
[Therefore L is not regular.]
Find an example of a nonregular language L € {0, 1}* such that L? is regular.
Find an example of a language L € {0, 1}* such that L* is not regular.
Let L; and L, are two languages over X then we define quotient of L, and L, to be the language
ie.,
L,/L, = {x/for some y € Ly, x y € L,}
Show that if L, is regular then L,/L, is also regular for any arbitrary language L,.
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11 Non-Regular Grammars

11.1 INTRODUCTION

We know that finite automata gives the abstract view of computation and the regular languages
tell about the power of the finite automata. Non-regular grammar such as context free grammar
is the grammar defined over simple recursive rules. And the set of strings generated using
these recursive rules is called context free languages. So, Context free grammar contains infinite
many strings. We say that context free grammar consists of finite set of recursive rules provides
a way to represent infinite many strings.

Like regular languages that are accepted by the finite automaton, an automaton that
accepts context free languages is called ‘Pushdown Automata’.

Before begin to the study of context free grammar we will start our discussion with the
meaning of a grammar.

11.2 GRAMMAR

A grammar consists of a finite nonempty set of rules which specify the syntax of the
language. Grammar imposes structure on the sentences of the language.

In the context of an automaton a grammar is defined by possible set of tuples, i.e. let G
be a grammar then G can be defined as,

G=(V VLS, P)
where tuples are defined as follows,

e V. is a finite set of terminal symbols (token symbols),

e V, is a finite set of nonterminal symbols (variables),

e Sis a start symbol (S € V/S is a nonterminal symbol in the set of Vi), and

e P is a finite set of productions/rules over which grammar G is bounded.

Terminal symbols are those symbols over which language is formulated. For example,
assume L is the language i.e.,

o L = {all strings formed over 0’s and 1’s}; so 0 and 1 are terminal symbols.

o IfL = {ab, aaab, abab, abbab...}; here L is based on symbols a and b hence these are

terminal symbols.

Nonterminal symbols or variables are used to establish the relationship (may be recursive)
between itself and with other nonterminals and it must terminate to terminal symbol. For
example, let E be an expression (defined over symbol a) and using operators +, / and * it
returns an expression s.t. E + E, E/E, E * E and a itself. Hence, E is a nonterminal symbol.

276
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Each grammar must start with a symbol which is called start symbol; all other symbols
(terminals/nonterminals) are linked next to start symbol. Throughout the context we denote S
as a start symbol and since it doesn’t part of the language so S € V. Hence,

o V # @ {set of nonterminal symbols must has at least a symbol that is a starting
symbol S}

e V. N V=0 {nothing is common between terminal symbols and variables}
In the grammar G productions are defined as,
o—B
It can be read as ‘o derives [’ or ‘left symbol(s) derives right symbol(s)’, where
o, Be (VguVp*

11.3 CLASSIFICATION OF GRAMMAR - CHOMESKY’S HEIRARCHY

Since productions or rules provides the basis to the grammar. A rule may be represented
by o — B. There are several possibilities of the selection of the term o and B in the rule.
On the basis of these selections of o and B we classify the productions. Therefore, there are
several restrictions in the production oo — B on which grammars are classified.

I. Restriction 1

o must contain at least one nonterminal
ie.ove (VguVp* . V. (VguVp*and Be (VN Vp)*
Let Vi ={a, b, c} and V = {S, A, B, C} then applying this restriction following are only
valid productions,
e aABac — abBC
(Here o, (left side of production) is aABac, which contains two nonterminals A and B
and B (right side of production) is abBC and both o and B e (Vg n V)™
e But ab — ABab is not a valid production, because on its left side there is not a single
nonterminal symbol.
e Ifee V then, Aab — ¢ is a valid rule. [where € is a null string]
e But € — ab is not a valid production because € € V. Therefore, o # €.

The grammar defined under above restriction is called ‘Phase Structured Grammar’ or
‘T'ype-0 Grammar’ or ‘Recursive Enumerable Grammar’ and the language generated by this
grammar is called ‘Phase Structured Language’ or ‘Type-0 Language’ or ‘Recursive
Enumerable Language’. The automata accept such language is Turing machine.

II. Restriction 2 (followed by restriction 1)
For the grammar G, if o — [ is a rule then along with the restriction I such that o contains at
least a nonterminal it follows another restriction, | B | 2| o | ; or length of right side
derived symbols is not less than the length of left side derivatives symbols.
ie.ove (VyuVp* Vi . (VguVp* and Be (VyuVp*andalso | o | <|p|andB=e.

e From the previous example of production i.e., atABac — abBC is not a valid production

here, because | abBC | 2 | aABac |, on left side there should at least five symbols
(terminals/nonterminals) but it fulfill restriction 1.
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e A production of type bABc — babbc is certainly a valid production. On left side it
contains 2 non terminals and the length of derived symbols (5) is greater than length
of derivatives symbols (4).

e Aab — eisnot a valid production. Because, | Aab| £ | € | or length of derived symbol
(0) is not greater than or equal to the length of derivatives symbols (3).

The grammars follow restriction 2 along with restrictions 1 is called ‘Context Sensitive
Grammar’ or ‘Type-1 Grammar’ or ‘Length Increasing Grammar’ and its language is called
‘Context Sensitive Language’ or ‘T'ype-1 Language’ or ‘Length Increasing Language’.

IT1. Restriction 3 (followed Restriction 2 + Restriction 1)

If the grammar G has the production oo — B then besides, restriction 1 & restriction 2,
there is another restriction i.e.,

o must be a single non terminal symbol
Examples of the valid productions are,

e A — ab; there is only a single derivative symbol that is A, and restriction 1 and 2 also
fulfill.

e B — aABc

e A — gis also a valid production.

So the grammar that is bounded under these restrictions (1, 2 and 3) is ‘Context Free
Grammar’ or ‘T'ype-2 Grammar’ and so the language is ‘Context Free Language’ or ‘T'ype-
2 Language’.

The automaton accepts such type of language is Push down Automata.

IV. Restriction 4 (followed Restriction 3 + Restriction 2 + Restriction 1)

In the grammar G, if oo —  is a production then, besides above restrictions (1, 2, 3)
restriction 4 says,  must be a single terminal symbol or a terminal followed by a
nonterminal symbol.

Such as, followings are the valid type productions:

e A—b;wherebe V.

e A — bC; a terminal symbol b is followed by symbol C € V.

The grammar fulfill above restrictions (1,2,3,4) is ‘Regular Grammar’ or ‘Type-3 Gram-
mar’ and the language generated by G is ‘Regular Language’ or ‘Type-3 Language’.

As we say earlier if grammar G = (V, Vy, S, P) then language generated by grammar G
is L (G) where,

LG =(xeV#S & x}

From starting symbol S and by using the production/s (¢ P) we reaches to the string x

(that is formed over set of terminal symbol/s) in finite steps.

Note. At any stage of productions propagation if, o; A o, = o, ¥ o, then surely, A — yis a
production where o, and o, € (VU V)*
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Type-0 Language

Type-1 Language

Regular

Type-2 Language
Language

» Type-3 Language

Fig. 11.0

So the classification of grammars canbe heirarchly arranged, which is shown in Fig. 11.0.
This arrangement is known as Chomesky’s heirarchy. Alternatively we say that

e A type-3 language has the property of , type-2 language, type-1 language & type-0

language.

e A type-2 language has the property of type-1 language & type-0 language.

e A type-1 language has the property of type-0 language.
Example 10.1. A grammar (G) is defined as, G = (V, Vy, S, P) where V. = {a, b}; V), = (S, A, B}
and the set of productions P={S —-aB, S -bA, A —-a, A ->aS,A -bAA, B —-b, B—>bS,B —
aBBJ then at any stage of productions propagation if,

aa B BAb = aa aBB BAb
o, oy o, o
then, B — aBB is a production (e P)
(example of Type-2 grammar)
The language of the grammar G is given by L(G) where L(G) contains following set of

string/s:
S = aB

= aaB B [.. B — aBB] now we expand against

rightmost nonterminal symbol (B) first
= aa B aBB [.. B — aBB]
= aabSa B B [.. B—bS]
= aab S abB [.. B—b]
= aabbAab B [.. S —bA]
= aabbAabb [.. B—b]
= aabbaabb [.. A—>al

or S % aabbaabb

Hence, aabbaabb € L(G). Similarly many strings can be generated using the produc-
tions that are the in language of G.

%, The relation (deriving in zero or finite number of steps) is reflexive and transitive
i.e. If X £ X then it concluded that X = X in zero step, hence reflexive, and if X X YandY=

Z in one step then certainly X %, Y on some finite step/s.
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Hence we say that if,
0 = Oy = 03 = .. o
then, o, &, o, or o, derives o, in some finite steps.

Example 11.2. A grammar G is defined over Vy, = (S, A}, V. = {0, 1}, start symbol is S and
following productions are in set P:

P={S —->0S, A->IS
S =04, A —0,
A = 0A, S — 1};
Sol. These productions can also be written as:
S — 0S/1A/1
A — 0A/1S/0
Above grammar is a Type-3 grammar/regular grammar hence there exist a finite au-
tomaton (shown in Fig. 11.1) that accepts the L(G).

Fig. 11.1

Construction of Finite Automata is very easy. All nonterminals in the grammar are
corresponding to the states of finite automata. From starting state S an arc labeled 0 returns
itself because S derives 0S. Similarly an arc labeled 1 goes to state A due to production S
derives 1A and so on.

Now at what state automata stop. We see the production S — 1A and S — 1 are only
possible if A is a stopping state. (Fig. 11.2)

Fig. 11.2

The strings that are in L(G) are constructed as follows:

S = 1

S = 0S = 01I;

S = 0S = 00S = 001,

S = 0S = 00S = O001A = 0010/0010A/0011S and similarly derived other
strings.
Example 11.3. A grammar G is defined over Vy = {a}, V. = {S}, S is the starting symbol and
productions are:

S — aaaa/aaaaS
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Then L (G) contains following strings:

S = aaaaq;

S = aaaaS = aaaa aaaa;

S = aaaaS = aaaa acaaS = aaaa aaaa aaaa; and so on.
Hence L(G) = {multiple of 4a’s}

11.4 SENTENTIAL FORM

For any grammar all derivation starts from S, where S is the starting symbol. If S drive x(e V)
in finite steps i.e.,

S & x and if 0y, Oy, Og,......aTe some intermediate derivatives that are in (Vg U V)*
then,

S = o, = 0y = 05 = ... = o, =%
This sequence of derivations is called sentential form.

Left sentential form

If S %y by means of means of deriving leftmost nonterminal symbol first then the sequence
of derivations is called left sentential form.

Right sentential form

IfS & x by means of deriving rightmost nonterminal symbol first then the sequence of deriva-
tion is called right sentential form.

Lemma 11.1
(€) is not in the language of Type-1 grammar.

Proof. Since we know that if grammar is type-1 then its productions oo — P fulfill the restric-
tions:

e o must have at least single nonterminal, and
e [B|2]al
Now if A — € is any production of this grammar then it’s fulfill previous restriction but,

because € says zero occurrences of symbols so, | € | = 0. Hence it does it, fulfill the next
restriction.

Hence we conclude the proof.

Theorem 11.1. If L is a regular language then there exists a type-3 grammar G, i.e.,
L=L(G).
Proof. Since L is regular, hence there exists a DFA that accepts it. ......
Let DFA M is defined as,
M =(Q, %, 9, q,, F) where all tuples has their usual meaning.
Now the theorem says, from the DFA we can construct a type-3 grammar G i.e.,
L=L(G).
Assume that grammar G is defined as,
G =(Vy, V1, S, P) where tuples have been related with the tuples of M like as,
e All states (¢ Q) will be in the set of non terminals, s.t. V; = Q.
e All input symbols (e X) will be the variables, s.t. V., = X.
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e Starting state (q,) will corresponds to the starting symbol S, and
e Set of productions (P) takes the meaning from the transition function (3).
For example,
m If8(A, a) = B is one of the transition function then its state diagram will be shown

in Fig. 11.3, i.e.,
(D)——()

Fig. 11.3

from state A, automata consumes symbol a and reach to state B. Hence, the production will
A — aB, means that from non terminal symbol A, generate the variable symbol a and reach to
another non terminal symbol B.

m If 8(A, a) = B and state B is the final state then, state diagram will be as in
Fig. 11.4 the productions are A — a, because automata terminates as soon as it
reaches to state B and A — a B, because machine reaches to state B after consuming
symbol a from state A.

Fig. 11.4

m If starting state is the final state or &(S, €) = S then, state diagram will be as

Fig. 11.5

Fig. 11.5

Hence, S — € will be the production.
Since, all above constructed productions must obey the restrictions 1, 2, 3 and 4. There-
fore, grammar is a Type-3 grammar.

Example 11.4. Let X = (a} and the language L = (€} U {a, aaa, aaaaa,......}J. Since L is regular
hence there exists a DFA M shown in Fig. 11.6 that accepts the language L.

a
—>
a

Fig. 11.6. (M)

Following transition functions can be translated into productions as follows,
e S,a)=A = S — a A(S generates a and reaches to A)
e 3A,a)=B = A — a B(A generates a and reaches to B)
e dB,a)=A = B — a A(B generates a and reaches to A)
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Since S and A are the final states hence, following are some more productions:

e Start state is the final state, means that machine M halts in real no consumption of
any input symbol. So, for transition function &S, €) =S = S = € is a production.

e For those strings that are terminated on state A, the productions are,
S—>a (stop) and B —a (stop)
Hence the set P contains following productions:
S — elalaA
A —aB
B — aAla
Since, above productions obey the required restrictions (1, 2, 3 and 4) hence these pro-
ductions are from type-3 grammar.
We can also see that the language generated by grammar G is L(G) is same as the
language of DFA M or L(G) = L(M).
S = € = S = a,
S = aA = aaB = aaaq,
S = aA = aaB = aaaA = aaaaB = aaaaa
So, L(G)={e,a,aaa,aaaaa,....... } = L(M)

Theorem 11.2. If L is generated from a Type-3 grammar G then L is regular.
Proof. Above theorem suggest the way how to construct the DFA from given grammar.

Let grammar G = (Vy, Vi, S, P) then the tuples of DFA M = (Q, %, 3, q,, F) relates the
tuples of G in following manner,

Q=Vyu {gd where qris the new final state added in this set.

L=V,

90 = S

F= {qf}u{S}ife 1S L,Or{qf}ife ¢ L.

From given definition of productions, transition functions are to be determin, i.e.

For example, ......
If productions of G are:

S — aAlale A —aB and B > a Al
Then following will be the FA, (Fig. 11.7)

Fig. 11.7

Note that machine might be a NFA at this level. So convert it Fig. 11.7 to the DFA. i.e. the
minimum state DFA will be shown in Fig. 11.8.
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a
—

Fig. 11.8

11.5 CONTEXT FREE GRAMMARS (CFG)/(TYPE-2 GRAMMAR) AND CONTEXT
FREE LANGUAGES (CFL)

As we see earlier, that a grammar G = (V, V, S, P) is said to be context free grammar if P
contains the production of type o — B, i.e.,

e o must be a single non terminal, and

o [Bl=2]al.

For the case that if € be in the language of the grammar G then S — ¢ is also a production
is in set P exceptionally.

And the language generated by context free grammar G is context free language that is
L(G) where,

L) =fre VS B x

Solve the examples of CFGs and CFLs
Example 11.5. If a language L = {a* b*/k > 1} then L is CFL. Prove it.
Sol. Since L is CFL if and only if it generates from CFG. So, try to find the Grammar G i.e.
L=L(G).
where L = {ab, aabb, aaabbb, .......... }

Let the grammar G = (V, Vi, S, P) where,

Vi =1a, b}, V= {S, A ....select arbitrary symbols as per the requirements}, S is the
starting symbol and set of productions are determined as follows:

e Since L contains string ‘ab’ hence productin will be,

S —ab
e For the next strings there is a recursive iterations of string ‘@ S b’ so production will
be,
S—>aSb
Using productions S — ab | a S b we can derive all the strings of L such as,
S = ab,
S = aSb = aabbd.
S =aSb = aaSbb = aaabbbandsoon.

Hence L(G) = L and since there is no further need of the non terminal symbols hence V
contains only symbol S.

So, G=({S} {a,b},S,{S—>ab | aSb} is the required grammar.

Since, both productions fulfill the restrictions. Hence G is a CFG and language L is CFL.
Example 11.6. Prove that Language L = {a* b* c!/k > 1 and | > 1} is a CFL.
Proof. We will Construct the grammar G for the language L i.e. L = L(G)

Now, we see that in the language L,
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1. All strings formed by two different substrings
2. One substring starting with a’s followed by equal number of b’s i.e. ‘ab, aabb,.’
3. Followed by other substring that generates ¢’s only i.e. ‘c, cc, ccc......’

Let S is the starting symbol and A and C are other non terminal symbols, then following
are the productions (P)

S — AC (corresponding to 1)
A—>ab|aAb (corresponding to 2) and
C—oc|cC (corresponding to 3)

Thus the grammar G = ({S, A, C}, {a, b}, S, P)
We can also see that,
S == AC = abC = abec,
aabbec, or
S == AC = aAbC = aabbC/,
SgabbeC —s aabbcecandsoon.
Example 11.7. Prove that Language L = {a* b' ¢!/k > 1 and | > 1} is a CFL.
Sol. We observe that L contains strings of following nature, i.e.
1. all strings formed by two substrings,
2. first substring formed over symbol a’s viz. ‘a, aa, aaa.........

3. followed by other substring that contains the symbol &’s followed by a equal number
of ¢’s viz. ‘be, bbee, bbbece......... ’

Let S is the starting symbol and A and B are the other non terminals.
So, under above observations the following are the productions (P)
S—AB (corresponds to 1)
A—sa|aA (corresponds to 2) and
B—-bc|bBc (corresponds to 3)
These productions fulfill the restrictions that all are derived from a single non terminal
(S or A or B) and length of derived symbol/s is greater than or equal to the length ofits derivative
symbol (| AB | =[S [;|a|=[Al;|aA|=[A];|bc|=|B[;|bBc|=]B].
Hence, the Grammar
(S, A, B}, {a, b, ¢}, S, P} is a CFG and the language is a CFL.
Example 11.8. A language L is defined over X = {a, b} such that it contains equal number of a’s
and b’s. Construct the grammar for above grammar and checks its ambiguity.
Sol. We see that the L contains following possible set of strings, i.e.,
1. strings starting with symbol ¢’s s.t. it has equal number of a’s and &’s
2. strings starting with symbol &’s s.t. it has equal number of b’s and a’s
Let S be the starting symbol and A and B are other non terminals then following are the
productions:

Corresponds to 1: Corresponds to 2:
S—aB S—>DbA
B>b|bS|aeBB A—>a|aS|bAA

Now derive the arbitrary string ‘abbaabab’ (that has equal number of ¢’s and &’s) from
above set of productions, i.e.,
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S = aB = abS = abbA = abbaS = abbaaB
= abbaabS = abbaabaB = abbaababd
Assume the string ‘aabbabab’, and then following will be the derivation sequences.

e S =5 aB = aaBB = aabb$S = aabbaB = aabbabS
= aabbabaB = aabbabab, (using Im derivatin sequence)

e S = aB = aaBB = aabSB = aabbAB = aabbaB
= aabbab$S = aabbabaB = aabbabab

(using /m derivation sequence)
Both derivation sequences are different and their derivation trees are shown in Fig. 11.9

S S
a B a B
a/IL\B a/II?.\B
b o s oo
| mderivation sequence 1 | mderivation sequence 2
Fig. 11.9

Since the string has two derivation trees so grammar is ambiguous and the language it
generates is an ambiguous language.

Example 11.9. Construct the CFG for the language L = {a* b’ c*/k > 0, | > 0).
Sol. Since the language L = {e, b, bb......, ac, aacc......, abe,......}, where,
e ¢isin language and it derives from start symbol S hence ......
S — € is a production

e strings ‘b, bb, bbb,...... are derived from the productions
S—b or S—>bS

e strings ‘ac, aacc, ...... ” are derived from productions
S—ac or S—>aSc

Remaining strings can be derived using above productions, i.e.,
For example,
S = € S=b;, S=>bS=bb; S=>bS=bbS=bbbandsoon
S = ac; S=>aSc=aaScc=aaeccc=aacc; andsoon.
S = aSc=abc; S=aSc=abSc=abbc;and soon.
So, the responsible grammar for language L has the productions
S—>e|b|bS|a]aSc
Since, the productions fulfill the restrictions required for CFG, so the grammar is CFG.
Alternatively, if the language L = {a* b’ c¥/k > 1, ] > 1} then the production
S—aSec
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for the strings that have equal number of a’s and ¢’s and in between there are multiple of
bsso S >aAcand A - b | b A are the additional productions.

Hence, grammar has the productions
S—>aSc|aAc
A->b|bA

That is also a context free grammar (CFG).

11.6 DERIVATION TREE (PARSE TREE)

When we constructed the language (strings) from the grammar, we will go through a sequence
of derivations. The tree representation of the derivations are called derivation tree/parse tree.
Parse tree shows how the terminal symbol/s are generated and grouped into strings. The
recursive inferences of the productions are also visualize in the parse tree.

The ambiguity characteristic of the grammars and languages is an important application
of parse trees. In the compiler theory parse tree provide the way how the source program is
translated into the machine level program.

11.6.1 Parse Tree Construction

Let the grammar G = (V, V, S, P) then, the derivation tree of G has following characteristics,
m The nodes of this tree have labeled from V; U V. U {e},
m The root of the tree has labeled S (start symbol),
n All internal nodes in the tree have labeled from V,

m Ifanode haslabel X and X, X,, X,......... X are the labels of its children (from left-to-
right) then X — X, X, X,......... X must be the production,

m If a node has label € then it must be a leaf node and also it must be the only son of its
parent.

On bases of these characteristics we can construct the parse tree.
Example 11.10. Let V= (S}, V. = {+, % (,), a} and the productions are S - S +S/S «S/(S)/a.
Then construct the derivation tree for the terminal string (a + (a » a)).
Sol. First we go through the derivation sequence for the given terminal string, i.e.,

S = (S) [we start from this production because the first terminal string is ‘(’]

S = S+95) [. S—>S+8]
S = (@+9) [.. S—al
S = (a+(S) [.. S—(S)]
S = @+ (S x9) [.. S—S«S]
S = (@+@x*9)) [.. S—al
S = (a+(a@axa) [.. S—al

So, from starting symbol S we reaches to the terminal string (a + (a x @)), and its deriva-
tion tree is shown in Fig. 11.10.
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Fig. 11.10

Hence, S %, (@ + (a * @)) is the yield of the derivation tree which is the concatenation of
all terminal symbols (leaves) of the tree from left-to-right.

Since, in the derivation sequence we derive the left most non terminal first. Hence, the
derivation is called ‘left-most-derivation (Im) and the derivation tree is left-most-derivation-
tree.

So, S (a+(@xa)

Im

For right-most-derivation (rm) sequence derive right most non terminal first. Hence, we
get the right-most-derivation-tree.

Like in this example when we derive right most derivation first we go through a differ-
ent derivation sequence for the same terminal string ‘(@ + (a x a)) viz.

S = (S) [we start from this production because the first terminal string is ‘(]

S = S+95) [. S—>S+8]
S = S+(@) [.. S—= ()]
S = S+ x9) [.. S—S«S]
S = S+ xa) [.. S—al
S = S+(axa) [.. S—al
S = (a+(@axa) [.. S—al
Hence, S X (@ +(axa)

rm

And its right most derivation tree is shown in Fig. 11.11
S
AN
( / é \)
N
S S
l L

Fig. 11.11

Q—Wn
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Thus, we may find more derivation sequences and consequently more derivation trees
for a single terminal string.

Every tree has exactly one left derivation sequence and exactly one right derivation
sequence and also possible that both derivation sequences may be the same. Hence, a string
may have more than one derivation trees.

Example 11.11. Fig. 11.12 shows a left-most-derivation tree for the string ‘a + a »a’ using the
previous grammar G, i.e. (S, (+, % (,),a}, S, (S - S +S/S *S/(S)/al.

§///T\\\E
ZSAN
l l

Fig. 11.12
For the following derivation sequence:
S = S+S = a+S = a+S = S = a+axS = a+axa
There exists another /m derivation sequence for the same string, i.e.,
S = SxS = S+SxS = a¢+S*xS = a+axS = a+axa
So, there exists another /m derivation tree shown in Fig. 11.13.

g///i\\\E
AN
|

Q——W2

Fig. 11.13

Next, we see the right-most-derivation sequences for the same string, i.e.,

S = SxS = S*a = S+Sxa = S+axa = a+axa

S & graxa
rm

Fig. 11.14 shows its rm derivation tree.

N

or

/S\ T
S + S a
l l

Fig. 11.14
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There exists another right most derivation sequence for the string ‘a + a x @’, i.e.,
S = S+S = S+S«xS = S+Sxa=>S+axa = a+axa.
For above rm derivation sequence the rm derivation tree is shown in Fig. 11.15.

N
s/l\s
7

Fig. 11.15
Hence, the string ‘a + a * @’ has two Im & two rm derivation trees.

Q——Wn

11.7 AMBIGUOUS GRAMMAR

As we have seen that the derivation tree provides the structure of construction for the strings
in its language. This structure is unique for each string that is in the language. Although, few
grammars fails to provide a unique structures for all the strings that are in its language. We
mean to say that, such grammar’s language contains at least one string that has two or more
essentially different derivations. Those grammars are known as ‘ambiguous grammars’.

11.7.1 Definition

A grammar is said to be ambiguous if, for its any one string, produce at least two distinct
derivation tree either two distinct r mderivation tree or two distinct | m derivation tree.

So, a context free grammar G is said to be ambiguous if we can find two or more different
parse tree for at least a string € L (G).

If each string has one and only one derivation tree (derived either by | mderivation
sequences or r mderivation sequences) then the grammar is an unambiguous grammar.

11.7.2 Ambiguous Context Free Language

A context free language L is said to be ambiguous if and only if, every CFG generating L is
ambiguous.

Above definition says that the CFG grammars that are responsible for generating the
language L must be all ambiguous CFGs.

That is, if context free language L can be generated from CFG G, G,, G5 ... G then L is
ambiguous context free language (CFL) iff VG,(i = 1 to k) are ambiguous CFGs.
Example 11.12. Let G be the CFG with the productions
S—>T+S/T
T—>FxT/F
F—>al(S)
Test the ambiguity of G.

Sol. We take the string ‘@ + ¢ » @’ that is in L(G) and construct its most possible
derivation sequences, i.e.,
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L. | mderivation sequence
S == T+S = F+S = a+S = a¢+T = a+F+T = a+axT
= a+axF = a+axa
(Fig. 11.16 shows its | mderivation tree)

N

S
|

|

*

e—m—n

—
e

Fig. 11.16

II. r mderivation sequence
S == T+S = T+T = T+F+«T = T+F+«F = T+Fxa

= T+axa = F+axa = a+axa
(Fig. 11.17 shows its r mderivation tree)

N
|
|

N

T
|
F
l

e—m—n

—\

Fig. 11.17

After compare the derivation tree structures we find that both are similar. So the string
has a unique derivation tree hence G is an unambiguous grammar.

Example 11.13. Show that CFG G with productions
S—>a|Sa|bSS|SSb|SbHS
is ambiguous.
Sol. If G is ambiguous then it must has two or more derivation trees for at least a strings of
L(G). Since L(G) = {a, aa, aaa, ...... , baa, baaaa,....., aab,......, aba,......, baab,......}
o Test the ambiguity of G on string ‘baa’. For that following are the derivation se-
quences, i.e.,
mS = b6SS = baS = baa (usingl| mderivation sequence)
mS = bSS = bSa = baa (using rmderivation sequence)
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Both shows unique derivation tree. Hence G may be unambiguous.
o Test with the string ‘baaab’.
We construct most possible derivation sequences for this string, i.e.,
mS = SSb = bSSSb = baSSb = baaSb = baaab
(using | mderivation sequences).
mS = bSS = baS = baSSb = baaSb = baaabd
(using | mderivation sequences).
mS = bSS = bSSSb = bSSab = bSaab = baaab
(using r mderivation sequences)
There derivation trees are shown in Fig. 11.18(a) (b) (c) respectively.

/SN T b b T /SN b ‘S /SN
b S S a a ‘S ‘S b a ‘S ‘S b
c‘z c‘z a a a a
| mderivation tree 1 | mderivation tree 2 r mderivation tree Similar to
| mderivation tree 2
(a) (b) (c)
Fig. 11.18

Thus, for this string we have two different derivation trees that are shown above. So,
grammar G fails to provide unique derivation tree, hence G is an ambiguous CFG.

Example 11.14. Show that CFG G with productions
S = S8 | e
is unambiguous.
Sol. Construct the context free language (CFL) i.e., (G) = {€, e(e), e(e)(e), e(e(e)),......}
Now test the ambiguity of CFG G and show that there is a unique derivation tree for all
of its strings € L(G).
e For string € there is one and only one possible derivation sequence S = €.
e For string e(e):
S = SS) = €8 = e(e)
We get a unique derivation tree either derive Im or rm derivation sequence.
e For string e(e) (e):
S = SO = SO)XS) = eB)S) = eE)S) = e(e)e)
There is no other derivation sequence possible for this string. Hence, we again reach
to unique derivation tree.
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e For string e(e(e)):
S = S) = S(S(S)) = S(S(e)) = S(e(e)) = e(ele))

Here we again reach to a unique derivation tree.

And similarly test for other strings of L(G). We find that the above case is true for all of
its strings. Hence, CFG G is an unambiguous grammar.

Note — By careful observation of above examples we find that in a grammar, from start-
ing symbol S if two are more intermediate productions reaches on the same string then gram-
mar may be an ambiguous grammar.

Let G has productions S — Al | A2 ...... | Ak
where Al % x(e V,:*)
and A2 % x (e V%)

then G is ambiguous.

11.8 PUSHDOWN AUTOMATON

Pushdown automaton (PDA) is an extended finite state automaton model of computation such
that it recognizes the context free languages (CFLs). The abstract machine model of the PDA
is shown in Fig. 11.19 essentially has an input tape, a finite control, and additionally a stack
(FILO) of infinite length whose bottom boundary is known but no top boundary.

T
lalbfblb] .. [ | |

H

M

q, Finite Control

Fig. 11.19

The stack contains a string of symbols from some alphabets. The leftmost symbol of the
stack is considered to be at the top of the stack. Assume T is the finite set of stack symbols
whose first element is Z,. The automaton will be deterministic, having some finite number of
possible transitions in each situation. Let Q be the set of states. Tape T consists of input alpha-
bets from the set of input alphabets X. Initially (¢ = 0) assume that automaton is in state g, and
the stack pointer points to the stack start symbol Z,. Tape cells are scanned by the read only
tape head H which move right on each scan of the cell and never returns back.

PDA follows two types of moves. In the first type of move, an input symbol is used.
Depending upon the input symbol, the top stack symbol, and the state of the automaton, sev-
eral transitions are possible. These transitions consist of a next state from the set Q and a
possible string of symbols (possibly empty) to replace (push/pop) the top stack symbol then
tape head move one cell right. The second type of move is similar to the first, except that the
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input symbol is not used, and the tape head is not advanced after the move. This type of move
allows the PDA to manipulate the stack without reading the input alphabets.

Thus the transition function & will be a partial mapping i.e.,
0:Qx (X uUe)xT — A finite subsets of (Q x T'*)

For example, let automaton is in state p (€ Q) and ready to scan the input alphabet a €
(£ U €) from the tape cell and the stack pointer points the symbol A (e T'¥) then choices of
transitions are as follows,

8 (p,a, A) = {(qy, 1)), (@95 V)5 (@gs Yg)y e » (g, 1))
where state g, € Q, stack symbol y, € T* for all 1 <i <k.
Therefore, we can define a PDA using following tuples,
M=(Q,Z%,T,09,qy Zy F)
where the symbol F c Q is the set of final states.
Note. Unless stated otherwise, we use lower case letters to denote input alphabets and upper case
letters to denote stack symbols.

If a PDA satisfies following conditions then the PDA will be a deterministic PDA or
DPDA, ie.,
e For any transition d(p, a, A), it must have only a single empty (Vp e Q,Va e X, VA e
*)
e Whenever 8(p, €, A) is nonempty then 8(p, @, A) must be empty (Vp € Q, Va € X, VA
e I'*)
(Remember that acceptance power of both model PDA and DPDA will be different)

Instantaneous Descriptions (ID)

ID describes the configuration of the PDA at a given instant with the record of the state and
the stack contents. For example,

(g, ax,7) |— (p,x, Ay) [ &g, a, V) = (p, Al
M
This situation is shown in fig. 11.20 (a) and (b).

X

Y e—
[.Jalw|[p] .. | | |

H

M

q  Finite Control Y

A 4

Fig. 11.20(a)
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[ .Jalb]p] . .| | |
H
M A
p  Finite Control - Y
» ZO
Fig. 11.20(b)

Language of a PDA

Finally, we define the language of a PDA. There are two natural ways to define the language
accepted by a PDA. The first will be the acceptance by the empty stack mechanism and second
will be the acceptance by the final state mechanism.

Acceptance by Empty Stack Mechanism

As we have seen that language accepted by the PDA is the set of all input alphabets for which
some sequence of moves causes the PDA to empty the stack no matter in what state PDA is in
that instant. Assume M be a PDA and its language be N(M) then

N = {x e Z*/(qy %, Zy) I (g, €, €)}
M

Acceptance by Final State Mechanism

In this way we define the language accepted by the PDA similar to the way a FA accepts the
inputs. Such that we designate some states as final states and define the language as the set of
all input alphabets for which some choice of moves causes the PDA to reach to the final state
no matter what stack pointer points to. Assume M be a PDA and its language be L(M) then

LM) ={x e */(qy %, Z) I~ (p, €, D}

M
Note for a particular PDA M both definitions of acceptance i.e., N(M) and L(M) are not always equiva-

lent but of course they are both context free languages (CFLs).

Although the acceptance by final state mechanism is the more common notation, but
the acceptance by the empty stack mechanism provides an easier way to prove the basic theo-
rems of PDA. In the latter examples we will construct the PDA by assuming that the given
language is the language accepted by empty stack.

Example 11.15. Construct a PDA for the language L = {a' b* / i > 1}.
Sol. Since language L is a context free language whose grammar will be S — ab / aSb so an
equivalent PDA can be constructed. Also assume L = N(M), where PDA M will be
M = (q,, gy}, la, b}, {Z, X), §, q4, Zy, D)
The moves are as follows,

e 3(qy, a,Zy) - {(qy, XZ)} [Corresponding to the first input alphabet a, stack sym-
bol X will be pushed]
e 3(qq, a,X) = {(gq, XX)} [For the consecutive occurrences of a’s, same stack sym-

bol X will be pushed again]
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e 3(qy,0,X) = {(qy, €)} [If next input alphabet is b then pop the stack symbol]
e 3(qy 0,X) - {(q,, €)} [For the consecutive occurrences of b’s, stack symbol
will be poped again]

* 3(qy €,7Zy) — {(gy, €)} [If there is no input symbol left and stack also left with

start symbol Z only then this symbol is also poped]
And the machine stops.

Here we show only the accepted moves of the PDA and other moves like, 8 (q,, @, Zj) — 9
and 8 (qy, b, Z;) — @ where state @ signifies that automaton crashes if it reaches to this state.

Hence we define L as,
L=LM) ={x/(qy,x, Zy) P (gy €, €)}
To verify that above moves are correct we assume a stringx =a aa b b b € L, then trace
the transitions over x, i.e.,
(@ aaabbb,Z)l (q,aabbb,XZ) (ql,abbb,XXZ) | (g,, b b b, XXXZ) |-

(gy b b, XXZ) = (qy, b, XZy) | (g4, €, Zy) I (g, €, €) [Accepted]
Example 11.16. Construct a PDA for the language L = {w ¢ w® / w € {a, b}*).

Sol. Since language L is a context free language so an equivalent PDA can be constructed. Also
assume L = N(M), where assume PDA M will be,

M= ({ql, q2}, {a, b, C}, {ZO’ A, B)a 6’ ql’ ZO’ Q)
Where & are as follows,

e 3(qy, a,Zy) — {(q, AZy)} [If the first input alphabet is a, then symbol A will
be pushed into the stackl];
8 (qy, b, Zy) — {(q,, BZ)} [If the first input alphabet is b, then symbol B will
be pushed into the stackl];
8 (qy, ¢, Zy) = {(qq, Zy)} [If input alphabet is ¢ then stack remains un-
changed];
e 3(qy,a,A) = {(gy, AA)} [For the next occurrence of a’s, stack symbols A’s
will be pumped];
d(qq, b, A) — {(q, BA)} [For the next occurrence of b’s, stack symbols B’s
will be pumped];
d(qq, ¢, A) = {(g,, A)} [For the next occurrence of ¢, stack remains un-
changed];
Similarly,

e 3(qq, @, B) = {(q;, AB)};
d(qq, b, B) = {(q,, BB)};
8 (q,, ¢, B) = {(gy, B)};
For the matching of substring lies left side of symbol ¢ with the substring lies right side
of ¢, following are the moves
* 3(qy a,A) = {(gy, )}
e 3(qy b,B) = {(q,, €)}
Finally,
* 3(qy €,7Zy) — {(gy, €)} Accepted
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[While other moves like 8 (¢, a, Z,) — @ and 3 (q,, b, Z)) — @ where state @ signifies that
automaton crashes if it reaches to this state]

Hence PDA will be an deterministic PDA.

To verify that above moves are correct we assume a stringw =a b a ca b a , then trace
the transitions over w, i.e.,

(qpabacaba,Zy)}— (g,bacaba,AZ) |- (q,acaba, BAZ) |- (g;,caba,

ABAZ ) |— (g4, a b a, ABAZ)) |— (q,, b a, BAZ)) }— (g4, a, AZ) |— (q,, €, Zy) |— (g, €, €)
[Accepted]
Example 11.17. Construct a PDA for the language L = {w € {a, b}* | w w¥}.

Sol. From the exercise 11.11 we found that language L is a context free language so an equiva-
lent PDA can be constructed for it. Since we assume that language L is the language accepted
by the PDA having empty stack mechanism i.e., L = N(M), where M be a PDA where,

M = (q,, g5}, la, b}, {Z, A, B), 8, q4, Zy, D)
where &% are constructed as follows,
e Since € is in the language L so, 6 (¢4, €, Z;) — {(g;, €)}
e For the first occurrence of input symbol a or b corresponding stack symbol A or B will
be pumped, i.e.
8 (qy, a, Zy) — {(q,, AZ)}
8(qy, b, Zy) — {(q,, BZy)}
e For the next occurrences of consecutive a’s or consecutive b’s, there are two possible

moves such that either stack symbol will be popped or corresponding symbol A or B
will be pushed, i.e.

d(qq, @, A) = {(q,, €), (q;, AA)}
3 (g4, b, B) = {(qy, €), (¢;, BB)}
e For alternate occurrences of symbols a¢ and b corresponding stack symbol A or B will
be pumped, i.e.
3(q,, @, B) = {(q;, AB)}
dq,, b, A) — {(g,, BA)}
¢ During cross checking of occurrences of input symbols (from state g,) corresponding
stack symbols will be popped, i.e.
3 (g, a, A) = {(q,, €)}
3 (g, b, B) = {(q,, €)}
e Finally, 0(qy €,Zy) — {(gy, €} Accepted
To verify above moves consider an string w =a a b b a a (¢ L), and then trace the moves, i.e.,
(@q,aabbaa,Z)|— (qg,abbaa,AZ)|— {(q,bbaa,Zy,(q,bbaa, AAZ,)}
I I
Trace the moves from ID I and from ID II separately, i.e.

I (@pbbaa,Zy)|— (g,baa,e) x

Since stack becomes empty without reading of complete input string so automaton crashes
through this path.
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II. (q,bbaa,AAZ) | (q,,baa, BAAZ) |— {(q,, a a, BBAAZ), (q,, a a, AAZ)}
r 1 i
From ID IT’ following are the moves,
(q;, @ a, BBAAZ ) |— (q,, a, ABBAAZ )
I— {(q;, €, AABBAAZ), (q,, €, BBAAZ )
X X

Since both these moves don’t empty the stack hence by this path string w is not accepted.
From ID IT” following are the moves,

(qy, a a, AAZ) |— (g4, a, AZ) |— (qy, €, Zy) }— (g5, €,€)  Accepted

11.9 SIMPLIFICATION OF GRAMMARS

In the previous section we have studied Context free grammars, derivation trees and the gen-
eration of languages from CFG the context free languages. In this section we will study the
simplification of the grammars including simplification of CFGs.

The simplification of grammar means to perform certain operations over its set of pro-
duction/s so that it may reach to some standard form (normal form) of the grammar. So before
going to study the normal form of a grammar first we discuss the preliminary means of simpli-
fication of the grammar. In the chapter we generally restrict our self and discuss the simplifi-
cation of context free grammars. In fact, the means of simplification that are discussed below
are equally useful for the simplification of are other type of grammars.

The means of simplification are as follows,

1. Remove all null production/s

2. Remove all useless production/s

3. Remove all unit production/s

4. Remove all useless symbol/s

Now we will discuss each means of simplification in details.

1. Remove all null productions
A production is said to be null production if it derives a null string (e ). For example, produc-
tion A — ¢ is a null production where, A is a non terminal and € is a variable/terminal.

All non terminals that derive the string € in one/more steps of derivation are called
nullable non terminals of a grammar viz.

o IfX & ¢ then X is nullable.

e If A — € is a production then A = €, so A is nullable.

e If A —> BandB — € are the productions then A =B = € and B = €, so A and B are
nullable.

e IfA—> BCandB — € and C — € are the productions then all non terminals A, B and
C are nullable.

By eliminating the null productions it is likely to increase the number of productions in

the grammar. (The ambiguity characteristic of the grammar remain unaltered)
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Lemma 11.1

Let G = (V, Vi, S, P) be a CFG that allows null production/s (A — €) then the language L(G)
— {e} can be generated from a equivalent grammar G’ = (V’, V', §’, P’) such that G’ has no
null production.
So, Grammar G’ has a new production
Spew =S | € followed by all productions derive from S as usual.
Constructive proof
Assume a grammar G has the productions
S—>ab|AB | A
A->Bla
B->S|b]|e
Then remove all null productions from G.

Observe the null production/s of the grammar G. Remove all null productions such that
resultant grammar generates the similar language excluding string €.

e We find the production B — € is a null production (nullable B) so remove it from G.
(- B-oe
(+) S-—>A
+) A—>-e
So, add two new productions in the grammar because, all the productions that derive
including symbol B are manipulated according to following possibilities:
If we use the definition B — € then S — A B becomes S — A and A — B becomes A — €.
Otherwise, production S - A B and A — B remains in the grammar for using next
production definitions B - S and B — b.
The, new set of productions are
S—>ab|AB|A| A remove duplicate productions i.e.
So, Grammar becomes
S—>ab|AB|A

A>Bla|c€
B—>S|b
e Next null production is A — € (A is nullable), remove it from the grammar i.e.,
A —>—>e
(+)S > e (S — € can be derive from S — A when A — €)
(+)S—>B (S — B can be derive from S — A B when A — €)

Thus, new set of productions are.
S—>ab|AB|A|B]|e«
A—>B|a
B—>S|b
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e S — € is a nullable production (S is nullable), remove it from G, i.e.,
(=S —>e
(+)B—e (B — € can be derive from B - Swhen S — €)

Thus, new set of productions are,
S—>ab|AB|A|B
A—>B|a
B—-e|b
Again symbol B becomes nullable so we find a cycle of occurrence of nullable symbols
that never terminate. Hence the sequential removal of nullables might not free the grammar
from null production. Therefore, we search for alternate method of elimination of null produc-
tion/s.
Hence, we ask for another method of elimination of null production/s.
Al gorithm
(For finding the nullable)
[l Assume a grammar G = (V, V., S, P)

1 begin
2 old V = & /1 old Vis the set of nullable synbols
3 newV ={Ae Vy| A—=>eisinP};, [/ newVis the set of
nul | abl e currently search
4 while (Ad V # New V) do
5 begin
6 old V = new V,
7 newV =newVu{Ae Vy| A= aisinPandac (oldV)*};
8 end;
9 end.

Fig. 11.19

Example 11.18. Simplify the following grammar and find nullable symbols.
S—>ab|AB|A
A—>B|a
B->S|b|e
Sol. Since we know that symbol N is nullable if N derives € in one/more derivations, i.e.
NZ%e
Thus G contains following {B, A, S} are the nullables.

Explanation
Using algorithm shown in Fig. 11.19, initially old V set contains no nullable (line 2). After line
3 we get symbol B is in set new V. while new V is not equal to old V repeat line 6 and 7.
e First iteration,
old V = {B} and new V = {B} U {A} or {B, A} because A — B and B € old V.

e Second iteration,
old V={B, A} andnew V = {B, A} U {S} or {B, A, S} because S — A B and A B € (old V)*.
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e Third iteration,

Old V ={B, A, S} and new V = {B, A, S} with non existence of other nullable.

Now, old V equal to new V so while loop is terminated and program is terminated.
Hence, nullable symbols are {B, A, S}.

Remove all nullables. Simultaneously we add following productions (so that meaning of
the grammar doesn’t change).

+) S—B [derive from S — A B when A — €]
+) S—>A [derive from S — A B when B — €]
Thus we obtain grammar G’ i.e.,
S—>ab|AB|A|A
S—>ab|AB|A
A—>B|aea and B->S|b

and its language L (G’) = L(G) — {e}. Alternatively we say that grammar G’ generates the
similar set of strings as grammar G except the null string (¢).

To generate string ¢ by G’ add the production S — € | S, so the grammar G” becomes
Spew 2 € | S
S—>ab|AB|A
A—>B|a
B—>S|b

Example 11.19. A grammar G has the production
S—>aXYZ|ab
X—>aAb|A|a
Y—>bBa|B|b
Z—>a|aA|XY
A—>e|a|aA
B—>e |b|bB
Simplify the grammar (by removing all null productions).
Sol. Find nullable symbols that are

e B [. B = €]

e A [«. A = €]

o Y [. Y = B = €]

e X [. X == A = €]

o Z [. Z == XY = € ¥ = e = €]

So, {B, A, Y, X, Z} are nullables.
After dropping the nullables add following productions i.e.

(+) X—>ab [X > a A b when A — € is removed]
(+) Y—ba [Y - b B a when B — € is removed]
(+) Z —->X [Z - XY when Y — € is removed]

(+) Z->Y [Z - XY when X — € is removed]

(+) S—sa¥YZ [S = aXYZwhen X — € is removed]

(+) S—saXZ [S—=aXYZwhenY — € is removed]
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(+) S—=aXY [S—aX¥YZwhenZ — € is removed]
also production
(+) Z—>a [Z - a A when A — €] but this is a repeatatine production so

there is no need to add further into the grammar.
Hence the new grammar G’ has following productions
S—>aXYZ|ab|aYZ|aXZ|aXY
X—>aAb|A|a]|ab
Y>bBa|B|b|ba
Z—>a|aA|XY
A—>al|aA
B—->b|bB
Example 11.20. A language L is expressed by the regular expression r = (a + b )*. b . b
. (a. b)*
Express the grammar G i.e. L = L (G) and simplify it.
Sol. Let Grammar G can be defined as
G =y, {a, b}, S, P)
where, V = {S and some other symbols} and set of productions P contains:

e S>WZ [assume W is responsible for generating the strings for (a + b )*. b
and Z is responsible for generating the strings for b. (a . b )*]

e W—Xb [symbol X generate the strings corresponds to (a + b )¥]

e Z>b¥Y [symbol Y generate the strings corresponds to (a . b)*]

o X—>e¢e [X also generates string €]

e X—>aX | bX [all strings formed over {a, bleither start with symbol a or 5]

e Y—oe [Y also generates string €]

e Y>abyY [Y derives the strings containing multiple of ‘ab’]

Thus, grammar G consists of above set of rules. Now, for simplification remove all null
productions from G. So, find the nullable symbols first, there are,

e X [because X = €], and
e Y [becauseY = €].
hence [X, Y] are nullables.

So, after removing the nullable, from G we must add following productions,

(+) X—>a [from X — ¢ X when X — € is removed]
(+) X-=b [from X — b X when X — € is removed]
(+) Wb [from W — X b when X — € is removed]
(+) Y—ab [fromY —>ab¥Y whenY — € is removed]
(+) Z—>b [fromZ — b Y when Y — € is removed]
Hence we obtain the new grammar G’ i.e.,

S—>WZ

WoXb|b

Z->bY |b

X->aX|bX|a]|b

Y>abY|abd

and its language s.t. L(G’) = L(G) - ().
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Example 11.21. Similar to previous example, let language L is expressed by the regular ex-
pression

r=(a+b)*.b.b.(a +b)*
Express its grammar and simplify it.

Sol. Assume grammar G = (Vy, {a, b}, S, P) then it expresses the language s.t. L(G) = L (r),
where we can consult following let of productions, i.e.

e S>WZ [assume W is responsible for generating the strings for (a + b )* . b
and Z is responsible for generating the strings for b . (a + b )*]

e W—Xb [symbol X generate the strings corresponds to (a + b )*]

e Z->b¥Y [symbol Y generate the strings corresponds to (a + b)*]

o X—>e¢e [X also generates string €]

e X—>aX|bX [all strings formed over {a, b}either start with symbol a or b]

e Yo X [Y is similar to X]

So nullables are {X, Y}.
Now following productions are added in G after removing the nullables,

(+) X—=>a [from X — ¢ X when X — € is removed]
(+) X-=b [from X — b X when X — € is removed]
(+) Wb [from W — X b when X — € is removed]
(+) Z—-b [fromZ — b Y when Y — € is removed]

(Y —» X remains there in grammar for holding rest of the definition of X excluding
deriving €)
Thus we obtain a new grammar G’ i.e.,
S—>WZ
W-Xb|b
Z->bY|b
X->aX|bX|a]|b
Y- X
That has the language s.t. L(G’) = L(G) - (€.

2. Remove all useless productions

A production is said to be useless if there is no way to reach to that production in the grammar.
So, a production oo — P is useless if and only if the non terminal symbol o is non reachable from
any deriving non terminal in the grammar s.t. for all productions

Yy— A then A=«

Then o is the useless symbol of the grammar. A symbol is again useless if it is non
terminative, i.e. For example, A — a A | b A. In this production there is no way to come out
from the definition of A or there is no recovery derivation is defined from A. Since, A is non
terminative so A is a useless symbol and simultaneously this production is a useless production
for the grammar. So, during simplification of the grammar we remove all useless production/s
and also useless symbol/s. For example a grammar is expressed using following productions

S—>AB|a
A—>aA|bA
B—a|aB
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e Since, definition of production A is non terminative so it is a useless production, si-
multaneously symbol A is a useless symbol. (mark by X)

X—-a X |bX
e Because of the useless symbol A the production
S — A’ B has no meaning so it is a useless production.

e And because of the useless production S — A B it is meaningless to include the pro-
duction of B into the grammar.

Hence, B—oa|aeB becomes the useless production.
Finally, we find that S — a is the only meaningful production of the grammar.

Example 11.22. Simplify the grammar
S—>a|AB|D

A—>a|aA
B—->bB|aB
C—-dC|d

Sol. Let us find the reachable symbols of the grammar i.e.,

e a, A, B and D are reachable from S,

e b is also reachable because B is reachable,

e Nothing else is reachable.
(There is no way to reach to symbol C from Starting symbol S)

So, {S, a, A, B, D, b} are reachable symbols.

Now, from the reachable symbols find the useful symbols

e S — a is useful production,

e B is not useful because of non terminative production of B,

e S= AB = a B = ... that never reach to terminal string because of non terminative
production of B; B is useless symbol; so eliminate production S — AB.

e Because S — A B is a useless production hence it is useless to define the production of
Aor A —a | a A are the useless productions.

e The deriving symbol/s from D are undefined hence S — D is useless production.

Summarize the useful symbols we find that S — a is the only production of the grammar.

3. Eliminate the Unit Productions

A production of form X — Y (where X and Y € V) is a unit production. These productions may
be useful or may not be useful (useless). If derivation of unit productions terminated on termi-
nals then it is useful like as, whenever, X — Y is a unit production and Y X oe (Vp)*, then we
can add the production X — o (after removing unit production X — Y) in the set P and when-
ever, X - Y and Y — Z are unit productions and Z X ooe (V)*, then we can add the production
X — o (after removing unit productions X — Y and Y — Z) in the set P. A cycle of unit produc-
tions is the case of all useless unit productions. For example, A —» B, B — C, C — A are useless
productions.
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Example 11.23. Consider the grammar

S—>S+T|T
T>T+«F|F
F—(@S)|a

Remove unit productions from the grammar.
Sol. 1. Remove the unit production S — T, thus we can add following productions i.e.,
e T=T =F, so add production S —» T « F.
e T=F = a, so add production S — a.
e T=F = (S), so add production S — ( S).
2. Remove the unit production T — F, thus we can add following productions i.e.,
e F = (S), so add production T — (S).
e F = a, so add production T — a.
3. No other production is the unit production.
Hence grammar left with following productions which are free form unit productions.
S>S+T|T«xF|a]|(S)
TS>T+«F | ]|a
F>®)|a

Example 11.24. Consider the grammar G has following productions
S—>A|B|C
A—aAa | B
B—>bB|bb
C—oaCaaa|D
Find the grammar G’, which has no unit productions, that generates the language L(G), i.e.
L(G) = L(G).
Sol. Since grammar G has 3 unit productions S - A, S — B and S — C so remove these
productions from the grammar and add new productions so that new grammar generates same
language.
1. Remove the unit production S — A, thus we can do following
e S= A =a Aa; S generates a A a; so add production S — a A a.
e S = A = B; S generates B; so add production S — B.
2. Remove the unit production S — B, thus we can do following
e S = B = b B; S generates b B; so add production S — b B.
e S = B =bb; S generates b b; so add production S — b b.
3. Remove the unit production S — C, thus we can do following
e S=>C=aCaaa;Sgenerates a C a a a; so add production S - a Ca a a.
e S = C = D; S generates D; so add production S — D.
Hence Grammar becomes
S—>aAa | B| bB | bb | aCaca | D
A—>aAe | B
B—>bB | bb
C —>aCaaa | D
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We see that, the new grammar still has some new unit productions. Unit productions
S — D and C — D are the useless productions because grammar doesn’t have any production
derive from D that terminates on terminal string. So remove these productions.

It has another, unit production A — B. Thus can remove while adding the productions
A—>bB|bb.
Hence we get the grammar G’ (free from unit production)
S—>aAa | B | bB | bb | aCaca
A > aAa |bB |bb
B—>bB | bb
C — aCaaa
where L(G") = L(G) [Reader may verify it]

Example 11.25. Consider the grammar

S—>A|bb
A->B|a
B—>S|b

Remove all unit productions from the grammar.
Sol. e First we remove the production A — B so, we must add two more productions i.e.,
+HA->S [~ B->S]
+)A—->b [.. B-b]
Thus grammar becomes

S>A|bb
A>S|bla
B-S|b

e Next, remove the unit production B — S so we can add the following productions, i.e.
+HB—-A [.. S—=A]
+H)B—-bb [ S—0bb]

Now the grammar becomes

S>A|bb
A>S|bla
B>A|bb|b

e Next, remove the unit production B — A so we add the productions
+B->S [~ A->S]
+B—>b [.. A—-b]
+B—>a [~ A—adl
Hence the grammar becomes
S>A|bb
A—>S|b|a
B->S|bb|b|a
This grammar again has the unit production B — S, which is not terminative. So, there
is the existence of a cycle of unit productions in ths grammar. Therefore, to simplify the gram-
mar that contains cyclic case of unit productions an alternative approach is used, which is
discussed below :
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1. Remove unit production S — A
e while, S = A and A derives terminal then we say that S generates that terminal.
Or, S = A = a, so add production S — a.

e while, S = A = B and B derives terminals then certainly S generates that terminal.
Or,S = A = B = b, so add production S — b.

2. Remove unit production A — B

e while, A = B and B derives terminals then we say that A generates that terminal.
Or, A = B = b, so add production A = b.

e while, A = B = S and S derives terminal then we say that A generate that terminal.
Or,A= B =S =5 b, so add production A — b b.

3. Remove unit production B — S

e while, B= S and S derives terminal then we say that B generates that that terminal.
Or,B= S = b b, so add production B — b b.

e while, B = S = A and A derives the terminal then we say that B generates that
terminal.

Or, B =S = A = a, so add production B — a.
Hence the grammar becomes

Ssalb|bb
Asb|bb|a
Bobb|al|b

We further find that symbols A and B are not reachable so they are useless symbols (all
production derived from A and from B are useless productions) hence remove from the gram-
mar.

Therefore, after simplification we obtain the new grammar which is free from all unit
productions, i.e.,

S—»>a|b|bb
4. Remove all useless symbols

There is another approach to eliminate the useless symbols. We may start to search the useful
symbols. The useful symbols are reachable symbols and active non terminals.

Useful Symbol
A symbol X is useful if it occurs in the derivation of terminals from starting symbol S, i.e.
s & aXpB x x(e V,*) for some o and B

lor,S L «xe (Vp)* then S — x is the useful production]

Active non terminal

Symbol A is active non terminal if it generates the terminal string i.e.
A% x(e Vp)*

Algorithm

Assune a grammar G = (V, V; S, P) then we find active non terninals as
foll ows:
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begi n
adyVv = g;
New V = {Ae Vy/ A= oaisinPand a e V*)
Wiile (old V < > new V) do
Begi n
ad V = new V
New V = new V U {A € V, /A generates o is in P,
so o € (V; uold V}

end;
end.

Fig. 11.21

Reachable Symbol

If there exist the derivation S £ o X B (for some o and ) then symbol X is said to be reachable

symbol. Start symbol is always consider as a reachable symbol. Now we discuss the Algorithm
to find useful symbol:

Step 1. Find active non terminals and drop rest of the non active non terminals from the
grammar.

Step 2. Find reachable symbols and remove non reachable symbols from the grammar.

Example 11.26. A grammar G is given, find an equivalent grammar with no useless symbols.

S—a|AB
A—a|adA
B —>bB | aB
C—d|dC

Sol. e First,we will find active non terminals, these are {S, A, C} all these generated termi-
nal strings.

(Symbol B is not active non terminal because it’s not generate the terminal string)
So, we have following grammar

S—>a|AB
A—>aladA
C—d|dC

e Now, we will find reachable symbols.

From S symbol ‘@’ is generated so ‘a’ is reachable. Symbols A and B are also reachable
but fortunately, there is no production derive from B so it is a useless hence S derive AB is
useless and drop both symbols. Clearly, C is non reachable symbol so drop C. Therefore, only
reachable symbols are {S, a}.

Hence, the grammar G left with a single useful production

S—>a
Example 11.27. A grammar G is given, find an equivalent grammar with no useless symbols.
S —>AB | AC

A —>aAb | bAa | a
B — bbA | aaB | AB
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C — abCa | aDb
D —bD | aC
Sol. Since grammar G uses the non terminals {S, A, B, C, D} and terminals {a, b}.
We test the non terminals; and find the active non terminals and drop non active ones
ie.
D = 6D or D = aC never terminates on terminals so non active;
C = abCa or C = aDb = never terminates on terminals so non active;
B = bbA = bba; so active non terminal.
A = a; so active non terminal.

S = AB = terminated on terminals because both A and B are active; so active one.

Since, {S, A, B} are only active non terminals so the productions defined and using these
symbols are

S — AB
A —>aAb | bAa | a
B — bbA | aaB | AB
Now, we test the reachability of the symbols used in grammar G.
e Symbols A and B are reachable because S = AB.
e Symbol a and b are also reachable because S = AB = aAbB and so on.

Hence, all symbols used in the previous simplified step of grammar{S, A, B, a, b} are
reachable symbols.

So, the simplified grammar with no useless symbols is
S — AB
A —>aAb | bAa | a
B — bbA | aaB | AB

11.10 CHOMSKY NORMAL FORM (CNF)

Let G be the context free grammar then we find another context free grammar G’ such that all
productions in G’ are either of forms:

e A — a, where A is non terminal and a is a terminal, or
e A — BD, where A, B and D are non terminals.

and L(G’) = L(G) — {&e} means grammar G’ is free from null productions then grammar G’ is said
to be in Chomsky Normal Form (CNF).

To obtain the CFG in CNF we apply the means of simplification 1 to 4, such that gram-
mar is free from null productions, useless productions, unit productions and useless symbols.

Now, the remaining productions of the context free grammar are of form oo — B that is
either,

e where o is a non terminal (€ V) and B is a terminal (e V) or, a allowed form of CNF
e | B | =] o] orpcontains two or more symbols i.e.

m if one is terminal and other is non terminal then replace the terminal symbol by
a new non terminal viz.
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A —aB [then replace a by X ] s.t.
+) X,—a

So, A —X,B,and
X, —a are in CNF.
m If both symbols are non terminals then production is in CNF.

m If b has more than two non terminals then replace all non terminals except first
by a new non terminal viz.

A — BCD [then replace CD by R (a new non terminal] s.t.
(+) R—-CD

Hence, productions are
A - BR
R—>CD are in CNF
m Or, in general if
A—AAA L Ap [then replace A, A,...A; by B,] s.t.

(+) B, > AA.L AL
Hence, productions becomes

A - A B, [is in CNF]

B, - AB, [where B, is replacement of A,......A;] s.t.
(+) By,— A Ag

Hence, production becomes
A - A B,
B, —» A,B, [where B, is replacement of A,......A(] s.t.
B, — A;B; [and so on]

By, = Ag 1A
In this way we can convert all productions into the CNF productions.
Example 11.28. A CFG G is given, convert it to CNF.
S —aB | bA
A—aS|a]|bAA
B—->bS|b|aBB

Sol. e First, we simplify the grammar and find that grammar is in simplified form Next, we
see that the productions A — a & B — b are in desired form of CNF. Now, replace a by
X, and b by X, through adding the productions i.e.

X,—~a and X, —b
Thus the grammar becomes
S—->XB|XA
A—-XS|a|XAA
B->X,S|b|XBB
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Now we have the remaining non CNF form productions are
A - X AA and

(ii) B—>X BB

In (i) we put X in place of AA s.t.

(+HA-XX and

(+) X > AA are in CNF :| A ->XAA
In (i) put R in place of BB s.t.

B—-XR and

R — BB are in CNF ] (- B - X BB
Hence We obtain the final CNF grammar is

S—->XB| XA

A->XS|a|XX

X - AA

B->XS|b|XR

R — BB

11.11 GREIBACH NORMAL FORM (GNF)

If the grammar consists the productions of the form A — a o where o € (V()* then grammar is
said to be in greibach normal form. It means if the derived string consists of a terminal fol-
lowed by one/more non-terminals then this form of production is a GNF production.

Immediate Left Recursion (ILR)

The production shown in the Fig. 11.22 where the derived string contains the same non termi-
nal as it derived from on its left most position is an ILR production.

A—>Aa
A

Fig. 11.22
[But A £ Aywhere ye (V, U V) is not ILR]

Immediate Right Recursion (IRR)

If the derived string in the production contains the same non terminal as it derived from on its
right most position then production is IRR, i.e.,

(@) (b)
Fig. 11.23

IRR shown in Fig. 11.23(a) is a GNF production but production shown in Fig. 11.23(b) is
not a GNF production.

So, our objective is to convert the ILR and rest of the IRR production to GNF productions.

e Productions of type ILR can be converted as follows,

Assume A — A a is a given ILR production followed by another known production
A — b in the grammar then remove both productions like as
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-YA—>Aa|b

(HA->D | bA

HA >a|ah
Or, in general

(DA—>Aa, |Aay | Aay |...... | Aa, | b, | by by ... | b,
then (HA—=b | by | by ... | bn | b1 A’ | b2A’| b3 A’| .......... | b, A
and A —>a, |a,|ag]... | a, | a, A’ ay A'| ag A |...... | a, A

So, we get the productions free from ILR.

Algorithm to convert the given grammar to GNF
Step 1. Simplify and convert the grammar to CNF

Step 2. Order the non terminals in the productions through substitution so that it
becomes ILR form

Step 3. + Convert ILR production into GNF production. (So we find that few produc-
tions derived from ILR non terminalt that are in GNF)

+ use the GNF productions such that its derived string/s (right side) is sub-
stituted in other production/s where ILR non terminal occurs in left most
position on its right side.

+ By this substitution we modified non GNF productions to GNF productions.
Step 4. Repeat step 2 and 3 until we convert all productions into GNF productions.

We can remove left recursion both immediate left recursion (ILR) and non immediate
left recursion begin using following procedure,

begin for i =1 to n do// where nis the nunber of ILR non termnals
{ for j = 1to (i — 1) do
{ for every production of formA — A o do
{ for every production A — B do
begi n

Add A — B o in the grammar
Renmove A — A o from the gramar
end
/'l remove ILR from A

end
Fig. 11.24

Example 11.29. Convert the grammar into GNF
S—>AA|a
A—>SS|b

T ILR non terminal
If ‘A — A &’ is ILR production then symbol A is called ILR non terminal.
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Sol. Step 1. Since the grammar is in simplified form also in and CNF so directly switch to
next step.

Step 2. We see that grammar contains none of the productions are of ILR so try to make
ILR production/s i.e., in the production S — A A if A is replaced by SS[. A —» S S]

then S—SSA and
further substitute b in place of A[.. A — b) so
S—>bA

Now the productions are
S—>SSA|bA|e [ILR productions]

A—->SS|b [non ILR productions]
Following assumptions are made for ILR productions
S—SalB| B, [where atis S A; B, is b A; B, is aj]

(S is ILR non terminal)
Step 3. To, remove ILR productions
(+) S—=B;| By | BR| B,R here we assume that R is a new non terminal
+) R->o]oR
Substitutes the values of o, B, and B, then we get
S—>bA | a| bAR| aR are in GNF and
R — SA | SAR
Thus, we get following productions are in GNF
S—>bA | a| bAR| a¢R
A—>b
and modify remaining non GNF productions i.e.
A —» SSandR — SA | SAR

In these productions ILR non terminal (S) position is leftmost (on right side), so substi-
tute GNF derived symbols in place of S. Hence we get GNF productions.

A—>bAS|aS|bARS | aRS
R—>bAA|aA|bARA | eRA
R—>bAAR | a AR | BARAR | aR AR.
Step 4. Since, the grammar has no more non GNF production so process stop.
Therefore, grammar has following GNF productions.
S—>bA | a|bAR| aR
A—>bAS|aS|bARS |aRS | b
R>bAA|acA|bARA | eRA
R—>bAAR | a AR | bAR AR | aR AR

Example 11.30. Convert the grammar into GNF,
A —5AA | a
A, —>AA | b
A, —>A A A | aA, e
Sol. Step 1. Given grammar is in simplified form and its productions are of CNF.

Step 2. Examine the productions and we find that if A, is replaced by A A, [. A, —
A,A,] in the production A; — A,A A, then this production becomes an ILR production i.e.
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A; - AAAA,
and further A, is replaced through b[.. A, — b] so A; — A A A, becomes
A, bAA,
Since, ) Ay - AAA,
+) Ay —>AAAA, and
(+) A o DAA,

thus grammar has following ILR productions

Ay = AAAA | BAA, | aA, | ¢ [ILR non-terminal is A,]
with other productions

A —-AA | a

Ay oA | b

Step 3
e remove ILR productions i.e.
Ay > AAAA | DAA, | aA, | c
[By assuming that A;A;A, is o; bA5 A, is B;; aA, is B,; ¢ is Bg; so clear ILR production are
Ay~ A0 | By | By | By
which are connectedon A; — B, | B, | B3 | B;C | B,C| B3 C and C — o | o C where C is a new
non terminal

Substitute the values we get
) A5 AAAA | BAJA, | aA, | ¢
(+) Ay —>bA;A, | aA, | c | bA;A,C | aA,C|cC
and (+) C—-AAA, | AJAAC
(So, we find GNF productions derived from A,)
Now the grammar has following GNF productions
A; 5 DA A, | aA, | c | BA;A,C | aA,C | cCand
remaining non GNF productions
A —->A A |a
A, > AA | b
e Modify non GNF productions to GNF where A, (ILR non terminal) is left most on
right side (A, = A5 A, | b) by substituting GNF derived symbols
A, 5 DA A A | aA A | c A | DAJA,CA | aA,CA | cCA | b
e Now A, derived GNF productions so non GNF production A, — A A, | a is modified
to GNF through replacing A, by GNF derived symbols as
A, 5 bAAA A, | aAA A cAA; | DAA,CAA,| aA,CAA,
| cCAA;| A | a
e Since, A, derived GNF productions so remaining non GNF productions where A, is in
the left most on right side (C — A A A, | A;AA, C) are modified to GNF through
replacing A, by GNF derived symbols as
C = bAAA AAA, | aAAAAA, | cAAAA, | DAACAAAA, | dA,
CAAAA, | cCAAAA, | DAAA, | aAA,
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and C — bAAAAAAC | aAAAAAC | cAAAAC | BAA,CAAAA,
CA,AC | aA,CAAAAC | cCAAAAC | DAAAC | aAAC
Step 4. Since, grammar has no more non GNF productions hence we reach to end and
process stop.
(All GNF productions are shown by bold productions)

11.12 PUMPING LEMMA FOR CONTEXT FREE LANGUAGES

In chapter 10 we have studied the lemma for the testing certain language is regular or not, like
that here we study a similar type of lemma which is called the lemma for context free lan-
guages. On the basis of this lemma we must insure that for a sufficiently long string of a CFL
we can find small sub strings that can be pumped. That is, pumping as many copies of the
substrings yields strings will be in the language.

So, before deriving the pumping lemma for CFL we will study the nature of its parse
tree. One advantage of the conversion of CFG into CNF is to turn the parse tree into binary
tree with following fact,

Fact

If a CFG is in CNF and the length of the largest path in a derivation tree is n then the terminal
string derived in the tree have length < 21,

Proof
In CNF the possible forms of productions are
A—>a or A—BC
and their derivation trees are shown in Fig. 11.25 (a) & (b)
A

(a root and one leaf node)
a

Fig. 11.25(a)

Here length of the largest path is one (n = 1) so the derived string length is 1. Since 21-1 =1
that is symbol ‘@’ in this case, fact is true.

'/A\‘
B k-1 C
[ ) [ )
< 2k—2 < 2k—2

Fig. 11.25(b)
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Assume length of largest path is k(2 >1) then the sub trees T and T has the largest
pathis <(k —1).

From the binary tree properties we know that tree extended up to level (£ — 1) yields a
string of length at most 2%2. So, the sub trees T and T, each yields the substrings of at most
2%2 Because A = BC = terminal string; whose yield is the concatenation of yields of tree Ty
and yields of tree T. That is, at most of

92 4 Oh2 =9 k2
= 2k-1 (so the fact is true)

Similarly using method of induction we can see that for any & = n above fact is true.

Pumping lemma
If Gbe CFG then there exist a constant n such that if Z is any string s.t. Ze L(G and | Z | 2n
then Z can be written as
G=uv.wx.y
wher e,
i.|Jv.x] 21
ii. |[v.wx] £n
iii. Vi 20, uvi.wxi.y € L(G
Proof. We construct the proof for the CNF that of the CFG G = (V, V,, S, P). Assume the
grammar has % non terminals i.e.,
| Vi | =%
Let the constant n = 2% and assume a string Z that is in L(G) with | Z | > n.

Now, consider the derivation tree for the string Z and apply the above fact. Since, G has
k non terminals and a type of GNF so the length of the largest path in the derivation tree is at
most k that yields the string of length at most (2% — 1).
ie., 2k-1 = 2k/2 = n/2

So, the grammar G generates the string of length at most of n/2.

Although we assume that the string | Z | > n but the derivation tree yields the string of
length = n/2 (= n).

So, the derivation tree that yields the string Z where | Z | > n has the path length

more than % or at least (& + 1).

Draw the derivation tree that has one of the path lengths at least (£ + 1). Hence the
number of nodes (non terminals) in the path is at least (& + 2).

Since, G has only % different non terminals thus this path has at least two duplicate non
terminals so that total number of non terminals becomes at least (& + 2).

Fig. 11.26 shows that X, Y, A .....are & non terminals and assume symbol A occurs at
least twice in the path. Then it is possible to divide the tree as shown in Fig. 11.26.
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Fig. 11.26

String w is the yield of sub tree rooted at lower A. v and x are the left and right sub
strings of w in the yield of the sub tree rooted at higher A and finally u and y are its left most
and right most substrings.

Since, A % w and A is reachable.
Hence, from Starting symbol S (active and reachable) we reach to A, or S* = o A B
where o and B are any arbitrary symbols.

Since, S ouA y where u and y are terminal strings (Fig. 11.27(a))
And A £y A x (Fig. 11.27(c)) and A & w (Fig. 11.27(b))

Then,
either S % 4 Ay X ouw ye L (casefori=0 shown in Fig. 11.27(d))
or s & uAy%uvAxy
* wvvA xy
X uviwxiyisalsoin L (Fig. 11.27(e))
S
A
A
/N
S S — — —
u y w v x

(@) (b) (c)
Fig. 11.27
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S S
A A

A

— w —— — /\
u y u A y
v A x
v A x
v /N\X
w

(d) (e)
Fig. 11.27 (Continued)

In the derivation trees we have seen that duplicates of A occur at the different node
points (not at the same node point) hence sub strings v and x together not be empty so,

|v.x |21 proved cond. (i)

From the derivation tree it is also seen that non terminal A is chosen near or to the
bottom of the tree. So the largest path in the sub tree rooted at A is at most (£ + 1). Hence, it
yields the string of length at most 2%+1-1, That is at most 2k or n.

Thus, |v. w.x | <n proved cond. (it)
Proved.

Now we solve some examples and see the application of pumping lemma to testify the
language whether it is a CFL or not CFL.
Example 11.31. A language L is defined over X = {a, b, ¢/ s.t. L = {a; b, c;/i > 1}. Prove that L is
not a CFL.

Sol. We suppose L is a CFL. Let’s take a constant n (for lemma) and assume a stringZ € Li.e.
| Z | 2n and Z = a" b" ¢", which can be break into sub strings u, v, w, x and y s.t.
Z=u.v.w.x.y
and satisfying the conditions (i), (i) and (iii) of the pumping lemma.
Since | v.w .x | £n,the string vwx can contain at most two distinct type of symbols viz.
(and since | v.x| 21, v and x together contain at least one)

o Ifstring v.w .x e a"”then stringu . w .y must have fewer than n a’s besides possible
n b’s and n ¢’s = string doesn’t contains equal numbers of all symbols.

e String v . w . x € a™ b"*; then vx consists of only a’s and b’s with at least one of the
symbols. So, uwy has n ¢’s but fewer than n a’s or fewer than n b’s or both = string
doesn’t contains equal numbers of all symbols.

e Stringv.w .x e b" sostring ¢ L
e Stringv.w .x e b*c"; = so string ¢ L
e Stringv.w .x e c¢* = so string ¢ L

Therefore, neither string is in the language L. Condition (i7) of lemma is violated, hence
Lis not a CFL.
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11.13 PROPERTIES OF CONTEXT FREE LANGUAGES

In the previous chapter of regular expressions we have seen that certain operations are de-
fined over regular expressions so that its base case definitions are unaltered these are called
closure properties of regular expressions. Like that some operations are also defined over
context free languages that are guaranteed to return context free language. We shall now
study these operations as closure properties of context free languages.

Among these properties:
e Context free languages are closed under U operation
e Context free languages are closed under concatenation operation
e Context free language is closed under kleeny closure operation

Context free languages are closed under U operation

This property of context free language states that union operation between CFLs return the
CFL. To prove this closure property assume that L, and L, are context free languages that are
generated from CFG G, and G, respectively, where

Gy = (Vg Vipp, S3, P and Gy = (Vigy, Vi, Sy, Py)
Now construct a new grammar G(to take in mind that it generates L, U L,) that has
following tuples,
e The set of non terminals Vi = Vi, U Vi, U {S} where S is a new start symbol
(Assume Vi, NV, = D)
e The set of terminals V., =V, UV,
e A new start symbol S

e The set P of productions are S — S, | S, U P, U P, where, S, and S, are reachable
from S and so P, and P, which are defined for G, and G, respectively.

Since G; and G, are CFG so G = (Vy, V,, S, P)is a CFG.
The constructed CFG G generates the language L, U L,. Hence, language is a CFL.
Further, we see that,
If x € L, then it generates from grammar G as,
S=185, &, x (all G, productions are in )
If y € L, then from grammar G it is generated with following derivation,
S=8, &, y (all G, productions are in )
Thus, L, U L, € L(G).

Context free languages are closed under concatenation operation

The second closure property says concatenations of context free languages are context free
language. Assume L, and L, are CFLs that are generated from CFGs G, and G,, respectively,
where, G, =(Vyy, Vi, S, P and G, = (V,, Vi, So, Py)

Now we construct the grammar G that will generate L, . L, certainly has following tuples,

e The set of non terminals V| contains all the non terminals of G, as well as of G, with
a new start symbol S i.e.,

V=V v VgusS
e The set of terminals contains all the terminals of G, as well as of G, i.e.,
Vi =Vp UV
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e Assume a new start symbol S.

e The set P of productions contains all the productions of P, all the productions of P,
and a new production S — S,S, that are responsible to generate the strings of G,
concatenated with strings of G, so,

S—8,S,uP,UP,
Since P, and P, are the productions of G, and G, that are CFG, hence grammar G is
CFG.
So, we conclude that L,. L, is CFL.
Further assume that if string x € L, and y € L, then
S, *, x and S, &, y

Thus, for the concatenation of these strings xy (Fig. 11.28 shows the derivation tree)

following is the derivation sequence,

S = 85, % xS, & x, thatisL,.L,

Hence L;. L, e L(G).
S
Sy S,
x y
Fig. 11.28

Context free language is closed under kleeny closure operation

Kleeny closure of context free language is context free language. To prove this property we
assume that L is a CFL and its grammar G = (V, Vi, S, P). Now construct a new grammar G/
using the definition of G (without violating the properties of CFG) so that it generates kleeny
closure of L, that is L*.

Before constructing the grammar G’ we recall following facts for L*,

e A new string € be the part of its language so G" has a null production. Because we
can’t alter the rules of set P so we introduce a new production for this cause, deriving
from a new non terminal S’ that is the start symbol for G'.

S > e
e SinceL*=e UL.LUL.L.Lu.......

From S we can generate the possible string of (single) L. For the generation of strings
of multiple L’s, G" must have following production

S >SS
Likeas, S =S5 =S.e =S (that generates the strings € L)
S =88 =SSS"=SS.e =SS (that generates the strings € L. L)
and s % 8S....8 (that generates the strings e L. L. L......L)
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So, G’ includes following tuples,
e Set of non terminalsi.e., VU S/,
e Set of terminals i.e., V U {e},
e A new start symbol S” and
e Set of productionsie,PuU{S >SS | ¢
All the productions of G’ fulfilling the properties of CFG hence its language L* is a CFL.

Besides above discussed closure properties for context free languages nothing is predicted
for the operations like intersection and complementation.

Theorem 11.1. If L, and L, are CFLs then L, N L, may or may not be a CFL.
Proof. The proof of the above theorem is seen by solving of following example.
Assume languages L, = {a! b!¢//I1>1,J>1} and L, = {a? b1 /I > 1, J > 1} and there are
generated from the grammars G, and G,, respectively,
where G, is given as, S — AB
A —>ab | aAb
B—c|cB
and G, is given as, S — AB
A—>aladA
B > bc | bBc
These are context free grammars (CFGs) so L, and L, are CFLs.

However we find that, language L, N L, contains all the strings of equal number of a’s,
b’s and c’s or
L ,NnL,={a'b'c/I>1} =L (let)
For language L it is not possible to construct the context free language hence, L is not
CFLor L, n L, is not a CFL.

Theorem 11.2. If L, is a CFL and L, is a regular language then L, N L, is a CFL.
Proof. [Hint : Reader may prove this theorem with the help of Chamosky’s hierarchy]
Theorem 11.3. Let L be a CFL so its complement L may or may not be a CFL.

Proof. Theorem says that for the complement of the language L i.e.

L=3*-L
nothing is predicted such that for the remaining strings which are not in L not necessarily the
part of CFL. We can prove this by method of contradiction.

Assume that L; and L, are CFLs then
L,uL, = (L;nLy) [DeMorgan Law]
= (L;uLy)
Since union of CFLs is CFL so the intersection is CFL that is a contradiction. Hence,

complement of language L is not a CFL.
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11.14 DECISION PROBLEMS (DP) OF CONTEXT FREE LANGUAGES

In the previous chapter of regular expression we study a number of its decision problems and
simultaneously, we have discussed some computational tools to answer these problems.
Analogous to these problems we formulate, some of the problems for context free languages.
For some of the problems of CFLs like emptiness problem, finiteness problem and membership
problem the computational procedure exists but a lot more problems have no algorithms such
problems are known as undecidable problems of CFLs.

So, following are the decision problems:
1. Finiteness problem

2. Emptiness problem

3. Membership problem

DP1-Finiteness Problem
Given a CFG G and its language L (G), then the question arises Is L (G) finite?

To answer the question we perform following tasks,

e First, transform the grammar G to G’ that is in CNF and

e Then make a directed graph corresponding to grammar G’. Let G’ be,

G =(Vy, V, S, P)

Since G’ is in CNF so it has following types of productions either A — BC or A — a whose

directed graphs are shown in Fig. 11.29(a) & (b) respectively.

(@) (b)
Fig. 11.29
Directed graph is drawn from vertex (non terminal A) with an edge to each other vertices

(derived non terminals B and C) if A — BC is a production. If derived symbol is terminal like,
A — a then there is no edge shown in the directed graph corresponding to this production.
e Check for cycle/s. If the directed graph has at least a cycle then L(G) is infinite, other-
wise, L(G) is finite, (if no cycle is there).
For example, consider a grammar G of following productions

S—>AB | a
A—a | AB
B-b

Since the grammar is in CNF and Fig. 11.30 shows the directed graph for it.



NON-REGULAR GRAMMARS 323

Self loop on A

Fig. 11.30
The directed graph of A— AB has selfloop on symbol A so there exist a cycle. Hence, L(G)
is infinite.

Consider another example of grammar G

S—>AB | a

A—>a

B-b
The directed graph of above grammar (Fig. 11.31) has no cycle. Hence L(G) is finite.

Now we study above following general cases i.e.,
Case I

Suppose the graph has a cycle which causes due to following vertices arrangement in the
directed graph,

Fig. 11.31

Xy Xy Xgy covvvrvrrnnrenne X, X,

Since all vertices are connected through arcs. So there is an arc from X, to X; with
possible production X, — X;A or X, — BX,.

So, X, = o, X,B, where o, and o, are e Vg and | o, | = 1 and for next arc from X, to X,,
possible production X, — X,A or X, — BX,,

So, X, = 0, X,B; = a,X,B, where o, and o, € Vg and | o,B, | = 2, and so on.
[where X, = a,X;b; means
= AX,
(~ X, = AX, isthedefined prodn. Here 0., is A and B, is nothing so | o, | is 1)
= AX,B
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(+ X, = X,Bis the defined prodn. Here o, is A and B, is B so | ab, | is 2)

and | o3, | =i and soon.]
Hence, there exists a derivation sequence
X, = X B = oXB, = ... = oXB, = o, XB,,

Or, X, b AR X,B,,.1 and since each non terminal of CNF is active so it must generate

terminal string.

n+1

Let’s assume,
O, q *. » and B,.1 %, xwherev andx e V,*and sothelength | v.x | =(n + 1)

Thus,
X, *, v.X,.x and also X, *, we Vp*
Since X, is useful so it is reachable from start state that is,
s & 0X,B, we can find the terminal strings u and y s.t.
S & 4. X,y
Then,
s & u.X,.y &, u.v.X,.x.y
&, u.v.v.X,.x.x.y
*x

(for any number i >0) & w.v'.X;.x'.y

Therefore, it has infinite many strings.
Case I1
Suppose graph has no cycle. Define a new term rank of a node in the graph that is the length
of the longest path starting from node A.

Consider, A — BC and rank of B or rank (B) = r then,

rank (A) >r + 1
Because, A derived B (and C) and length from A is one more than length from B

Fig. 11.32

From the Fig. 11.32 we will see that if graph has no cycle then rank of each node is
finite.

FACT

If rank of a node is r, then length of the largest string derived from this node will have length <
2r,

Proof. Let us assume rank (r) of any node is 0. So, there is no possible path away from this
node. It means the production derived from this node is of the type A — a (assume grammar is
in CNF). Where, the derived string is of length 1. (Fact is true for base case).
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Induction Hypothesis

Assume that fact is true for all ranks < r — 1. Then examine, for node rank (A) = r. Since A
derived B and C so rank (B) or rank (C) <r — 1. (Fig. 11.33).

From the derivation tree and by using the fact of CFL the length of the largest string
derived from B or C is < 21,

/A\‘

B C

S 2)‘71 S 27‘71
Fig. 11.33

Thus, A derived a string of length = 2r — 1 + 2r — 1 or < 2r . So we reach the fact hence it
is true for all ranks.

Since node rank (A) is finite and reachable (terminates to terminal string) so from starting
symbol S, rank (S) = r’ is a finite and the length of the largest string is no greater than 2 is
also finite.

DP2-Emptiness Problem

Given a CFG G, then emptiness problem says: Is L (G) = & (empty) ?
There is an inefficient way to examine the emptiness of the CFG G for the language
L(G). As we studied earlier under the topic of simplification of the grammar that, if the gram-
mar G has at least a nonterminal which is active and reachable, then it certainly derived a
terminal string and because it is reachable so the start symbol S generates the terminal string.
Then L(G) is non empty, i.e. L(G) = &.

Conversely, L(G) is empty only if S generates no string of terminals. Or, G has none of
its nonterminals are active and reachable.

Even if € is in L(G) then L(G) # &.

DP3-Membership Problem
Let G be a CFG and x be any terminal string then: Does string x € L(G)? or Is string x is the
member of L(G) ?

There is an efficient way to solve membership problem through CYK algorithm that is
based on dynamic programming. The algorithm operated over CNF grammar G for the lan-
guage L(G).

There are few terms used in the algorithm such as,

X; ; = a substring of X starting from ith position in x and of length j.
V, = (set of nonterminals) or {A e Vi | A % X; ’j}

For example, let string x = abba and the grammar G is,
S —» aB | bA
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Then, x; ¥ and V, j areas follows,
Case L. for the substring of length one (x; , for Vi = 1 to [x|)
=aand V,; = {A[A = candAe V]
b and V,, = {B} [B = band*Be Vgl
31 = band V;, = {B [B = band*Be Vgl
410 =aand V,, = {AH[A = aandAe V]

Case II.  for the substring of length two (x; , for Vi = 1 to |X|-1)determineV, ,
for all substrings x; , . Since partltlon for length two (j = 2) are only 3 (| x|
1 =4-1)for str1ng of length 4. Those are shown below,

] 1,

1
u 1

N

X X X X

a b b a
-
-
-
Case III. Similarly make next partitions for the substring of length three (x; , for
Vi =1 to |X|-2)and determine V, , for all the substrings X; ;.
These partitions are,
a b b a
-
-
In this case two partitions are possible (| x| - 2 = 4 - 2)those are starting from position

first and second.

Case end: This is the last case for the partitioning of the substring that is completely
contains whole of the string x. for example the string of length 4 i.e. abba,

4gforvi =1to]| x| - 3=4-23=1or x, ,only,so,determine
Vl 4 that derive the string x, ,.
a b b a
— )

The CYK algorithm stands on the way that how frequently we can determine the set of
nonterminals V, ; for each case of x; .. The method uses dynamic programming approach to
find V, g ThlS is a tabulation methoci and fact is that in O(n3) time the algorithm constructs
the table for all V, ; to decide whether string x is in L(G).

The method constructs a triangular table shown in Fig. 11.34

Vi Vit Vi Viis Viia
X |
a Vl,l
Vio = Vi1 * Vo, V. . = {Vl,l Vo OF
b Vo e Viie * Vi
Voo = Vo * Vg Vi
b A
v - {Vz‘l Vs, or
Vao = Vo * Vy 23 Voo ¥ Vau
a A%
Xi 1 Xi 2 Xi 3 Xi 4

Fig. 11.34
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Now CYK algorithm starts with CNF grammar of G. So, convert the grammar G into
CNF that is,
(+) X > a (+) R — AA
(+) Y > b (+) Q — BB

So the grammar becomes,
S —> XB| YA . X > a; R — AA
A—-al| XS| YR Y — b; Q — BB;
B—->b| YS| XQ

Now Construct the table, i.e.,

On first column j = 1

That means only single length substrings of x is considered.

Now, Xi | =Xy, = substring starting from Ist position and of length 1 is a,
(a bba)
4
Similarly, x,, = b (a lz_ b a)
X;, =D (a b b a)
' '
X,1 = Db (a b b j)

e So, V; , corresponding to x; ; means o &, X, ; (where a € V of G)

(.. Xy ; = a)so only productions are A - a and X — a.

Therefore, V; ; = {A X}.

e Similarly, substring x, ; = b will be derived from productions B—»b and Y — b
= vV, = {B Y}

e For substring x;, =b = V;, = {B Y} and

o for substring x,, =a = V., ={A X

These entries are shown in column 1 in the table (Fig. 11.35).

Vi Vi Vi Viia
i =1 a (A X} {s} {B} {S}
=2 b {B, Y} {QG {B}
i =3 b {B, Y} {s}
i =4 a {A X}
j =1 j =2 j =3 =4
Fig. 11.35

On Second column j = 2
(substrings of length 2 is considered)
So, X; , are:

e X, ,=ab (a b b a)
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So, Vi, =V, * V0 (take the values from column one that are earlier find)
={A X}*{B, Y} = {AB, XB, AY and XY} we get a set of derived
‘—

symbols. Now, from r.h.s. select those entries that are found in productions of G.

only XB is found in rule of G.

Therefore, V, , = {S} (. S = XB}
Similarly,
e For x, , = bb (a b b a)

’ [ —

So,V, , = Vo, * Vy,={B Y}*{B, Y} = {BB, YB, YY and BY}
Search for derived symbols that are in G which is BB.

Therefore, V, , = {Q (.. Q= BB}
e For x;, = ba (a b b a)
[
So,V;, =V, * V., ={B Y}*{A X} = {BA YA BX and YX}
<—

We find derived symbol YA that are in G.
Therefore, V; , = {S} (= S = YA
See second column of the table shown in Fig. 11.35.

On Third column j = 3

(consider only substrings of length 3)

or

That are,

e X, ; = abb (a b b a)

So, V, ; can be determine either through V, , * V,, or V,;, * V
That are,

{S} * {B, Y} = {SB, SY} nothing is in G.

{A X * {Q = {AQ XQ . We find derived string XQ are in rules of G

2,2

Therefore, V, ; = {B} (-~ B = XG
And next possible substring is
e X, , = bba (a b b a)

' -

So, V, ; can be determined either through V, ;, * V;, or V,, * V,,
That are,

{B, Y} * {S} = {BS, YS} we find YSisin G so no need to consider other way.
Therefore, V, ;, = {B} (-~ B = YS}
See third column of table shown in Fig. 11.35.

On last column j = 4

(complete string is considered as a whole)

e X, , = abba (a b b a)
! | ——

So, V, , can be determined either through
Vip * Vo5 ={A X * {B} = {AB XB} = XBisin G thatis derived from S.
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or V.

12 Vi, ={St * {S} = {SS} we find nothing.
or Vv

13 " Vi {B} * {A X} and find nothing.
Therefore, V, , = {S} (.. S = XB}
This entry is shown in Fourth column of table shown in Fig. 11.35.

Conclusion

From the table (Fig. 11.35) we see that its last column contains the nonterminal/s that derived
the complete string x. If this column contains the start symbol S it means,
S & x
Then, string x € L(G).

Conversely, if start symbol S ¢ V, | (last column) then x ¢ L (G).

CYK Algorithm

Start with the CNF grammar G = (V, V,, S, P), and assume that string x is of length n(| x |
=n).

begi n
For i =1 tondo // for all substring of length 1
Vig ={oe Vy| A—>x ,is aproductionin G
End for (i)
For i =2 tondo// for all substring of length 2
For j =1 to n-i+l1l do
Vii =9
For k =1 to i-1 do
Vii=V,; u{Ae WA BCis aproductioninGand Be V,
and C e Vi, 4}
End for (K)
End for (j)
End for (i)
If Se V,, then x € L(G otherwise x ¢ L(Q
end

So, the algorithm must terminate with in the time complexity O(n3) due to nested three
for loops with variables %, j and .

[In general the compiler of ‘C’ and ‘PASCAL’ languages are of linear time complexity i.e.
O(n).]

11.15 UNDECIDED PROBLEMS (UDP) OF CONTEXT FREE LANGUAGES

There are a lot more problems of the context free languages (CFLs) that have no known solution,
such problems are called undecidable problems. For example, following problems for CFGs/
CFLs have no algorithms, i.e.,

e Problem of equivalence

Remember, problem of equivalence is decidable for regular languages that says that if L, and
L, are two regular languages then they are equivalence if and only if]

(L,~L,) ULy~ L) =@
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But for the case of CFLs there is no answer of this question. Why? Because for the CFGs
G, and G, this problem says,

Is L(G) = L(G,)?
Or, to evaluate the function

Yes
Equiv_cfz(G,, G) <
No

Algorithm never exists.

e Problem of Ambiguity

Given a CFG G, Is G ambiguous? Or,
For a given CFL L, Is L. ambiguous?
Algorithm never exists.

e Problem of Intersection

Given two CFGs G, and G,, Is there intersection L(G,) N L(G,) is also CFL?
To decide whether there intersection returns a CFL, no algorithm exists.

e Problem of Complementation
Given a CFG G, then what’s about the complement of its language?

Is L(G) is CFL?

Algorithm never exists.
e Problem of equivalence of languages of ambiguous and unambiguous CFG
Given an ambiguous CFG G, Does there exist an equivalent unambiguous CFG G’ s.t. L (G) =
L(G)?

No algorithm exists.

e Problem of regularity

Given a CFL L, Is L regular?
There is no way to find that L is also a regular language.

EXERCISES
11.1 Classify the grammar and construct the language generated by them
(@) S - aSBC/abC (@) S — 0A0

bB — bb A — 0A0/1

bC — be

CB — BC

cC — cc

(it) S — 0S/0B
B—-1C

C — 0C/0
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11.2 Construct the grammar for the given language and identify the types of language.
@) L={a"ba" | n21} @) L={a"ba" | m,n=1}
(i) L={a"? | n>1}
11.3 Construct the CFG which generates following languages.

OL={01V2*|i=j+Fk} @) L={0tV2%|i<jori>Fk}
@) L={0"V2*F | izj+k) @ L={0"V |i1<j<154)
11.4 Show that given grammars are regular grammars. Find the regular expressions for each gram-
mar.
(i) S —» aPlaS,P - bQ, Q — aQla @@i) S — aAla, A — aA/bB/a, B — bB/c

(tii) S - 0A, A — 0A/0B, B — 1C, C — 0B/0.
11.5 What language is generated by the following grammars.
(1)S—>aSbbSale @)S—>aSbh
(tii) S—>a B/b B/e,B—>abB
(iv) S — 0A/1C/b, A — 0S/1B, B — 0C/1A/0, C — 0B/1S
(v) S — 1S/0A/ €, A — 0A/1B/1, B — 18S.
11.6 Construct the grammar for the number representations, viz.
(i) Integer numbers (ii) Real numbers
(ii7) Floating Point numbers.
11.7 Shows following grammars are ambiguous grammar.

(1) S — 0S1S/1S0S /e (I) S — SS/0/1
(tii) S - P/Q, P — 0P1/01, Q — 01Q/e (iv) S - PQP, P — 0P/e, Q — 1Q/e
(v) S - aS/aSbS /e (vi) S - AbB, A — aA/e, B — aB/bB/e

11.8 Find the equivalent unambiguous grammar from the ambiguous grammars shown from previ-
ous exercises 11.7.

11.9 Show that following languages are not CFL.
@L={0"1"2" | n>1} @) L={0"1"2" | m > n}
@) L={0"1"2 | n<m <) @) L={0"12"2" | n>0}
W L={0"1m2 | n2m,m=l,andl#n} (@i)L={0"1"| m=n?
(vii) L = {s s/s € {a, b}*}.
11.10 Show that language L = {0" 1" | n > 1} is derived from the grammar S - 0S 1, S— 0 1.
11.11 Show that language L = {w w® | w € {0, 1}*} is derived from the grammar S - 0S0,S - 1S 1,

S—>e.
11.12 Show that following languages are CFL.
@)L, ={0"1"2" | n21, m=1} @) Ly =1{0"1"2" | n,m =1}

11.13 Let two grammars G, and G, are given below. Show that there languages be L; and L, shown in
exercise 11.12.

G, S—>AB
A — 0A1/01
B — 2B/2
()G, S—CD
C - 0C/0
D — 1D2/12
11.14 From the given CFG G, convert into CNF.
(1) S — SS/(S)/e
(i) S - bA/aB, A — bAA/aS/a, B — aBB/b
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11.15

11.16

11.17

(Tit) S — 0S0/1S1/e
A — 0B1/1B0
B — 0B/1B/e
(iv) S — abSblalaAb, A — bS/laAAb
Convert CFG into GNF.
(i) Convert the grammar to GNF
S—AA|O
A — SS|1
@) S—>PQ|0
P—->QS|1
Q —» PQP|0P|2

Prove that the grammar for the language L = {0” 1* 2" | n 21} is not a context free grammar.

[Hint : Let G is the grammar for L then G has following productions,

S—>012|0SB2
2B—->B2
1B—>11

which is a length increasing grammar]|

2
Prove that the language L = {0" | n = 1} is neither a regular language nor a context free lan-

guage.

[Hint : When we construct the grammar for the language L then its grammar must has following

set of productions,
S—0|CD
C - ACB|AB
AB — 0BA
B0 —» 0B
A0 — 0A
AD — DO
BD — EO
BE — EO0
E—->0

Which are of type 1-grammar productions. Therefore the language is neither a regular language

nor a context free language]

11.18 Construct the grammar for the language L = {¢2" | n = 1}.

[Hint : Similar to exercise 1.17 we can construct the grammar for L that contains following set of

productions,

S — ACOB

C0 — 00C

CB - DB|E

0D — DO

AD — AC

0E — EO0

AE — €
which is a type 0 grammar]
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Introduction to Turning
12 | Machine

12.1 INTRODUCTION

We have discussed so far comperatively small and simple classes of languages which are regular
languages and context free languages and their corresponding automatons FA’s and PDA’s
respectively. These automatons are not capable to stores no more than a fixed amount of
information and simultaneously the information can be retrieved only in accordance of LIFO
fashion during activation (live) of the machine. So in totality these modules provide a ‘limited
view of computation’.

Thus, the question arises, what class of language is defined by any computational model.
In general we ask about the capability of the machine or automaton.

Now we extend the approach of computation and discuss a more general model of com-
putation. An abstract machine called Turing Machine is an accepted form of ‘general model of
computation’. We may hypothetically assume that Turing Machine is flexible to store enor-
mous amount of information and also has enormous computing power. So, particular this model
can accommodate the idea of stored program machine like a computer and that is analogous to
the working of human brain. This hypothetical model of computation provides the basis for the
computers.

In 1936, Allan M. Turing proposed a machine known as Turing Machine as a ‘general
model of any possible computation’. To say that any possible algorithm procedure that can be
imagined or immerged by humans can be carried out by some Turing machine. Conversely,
Turing machine provides the way to implement all algorithmic procedures (theoretically). This
hypothesis is known as Church thesis or Church—Turing Thesis.

12.2 BASIC FEATURES OF A TURING MACHINE(TM)

Allan Turing literally proposes a human like Computer. A human has a pen and paper and
solve the problem in discrete and isolated computational steps like FA/PDA, it has finite set of
states corresponding to possible ‘states of mind’. In Turing Machine the paper is replaced by
the linear tape of infinite length (whose left boundary is known but no right boundary). Tape
is divided into cells that can hold one symbol at a time.

Tape cells contains symbols of two types,

e First, symbols those are from the list of the set of ‘input symbols’. (so it is a input
device)

e Second, ‘tape symbols’ are those symbols that are used for replacing the input symbols
during computation. (it is a output device because the string of tape symbols left on
the tape at the end of computation will be the output generated by TM)

334
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A cell contains no input symbol and no tape symbol certainly contains the ‘blank sym-
bol’. Tt is used to distinguish between the input symbols and tape symbols.

The tape is pointed by the tape head such that at any moment tape is head centered on
one of the cell of the tape. The movement of the tape head may consists of following:

1. It moves one cell left (unless it is not on the left most cell)/right at a time.
2. It replaces the current symbol either by a tape symbol or through blank symbol.
3. And changing the state.

12.2.1 Abstract View of a TM

alalblalc|ec|B|B|B|B| ..... 00 blal|lb|lal|lc|c|B| ...

M M

gy p
(@) (b)

Fig. 12.1

Assume that at time ¢# = 0 Machine M is in state g, (initial state) and its tape head
pointing to its left most cell. Tape cells contain the string of input symbols (form over X) and
the remaining cells hold the blank symbol/s that is shown by B’s. Machine has a read/write
tape head T that scans one cell at a time. Assume that after reading the symbol ‘@’ machine
reaches to state p and simultaneously tape head replaces the input symbol by another tape
symbol let it be ‘6> and move to right. Now tape head pointed to the second cell containing the
input symbol ‘@’. In this way M scans all cells that contain the input symbol and left the tape
symbols that will be the possible form of output generated by the Turing Machine M. The
abstract view of turing machine is shown in Fig. 12.1(a) & (b).

12.2.2 Definition of a TM

Once we know the characteristics of the Turing Machine, we can easily define it in the
forms of set of following tuples,

e A finite set of states (Q)

¢ A finite set of input symbols (X)

¢ A finite set of tape symbols (I'); where £ c T’

e Blank symbol (B); where BXT but B¢ X

e A starting state (q,); where ¢, € Q

e Transition function d, where 9d is: (partial mapping of)

0:Q*x{Tuzl—-Q=*={fTu}l*({,R)

That is the arguments of d are a state g (¢ Q) and a tape/input symbol ‘a’ (e {T" U X}) and
returns to the next state p (¢ Q), replacing another symbol ‘6’ (U {T" U X}) and moves either left
or right, i.e.

d(g,a)=(p,b,R); here we assume tape head moves right.
o The set of final state/s (F); where F ¢ Q
So, above 7-tuples describe the TM M as,
M=(Q,X,T,B,q,dF
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Note: It is always remember that

1. Machine crashes if b is not define or tape head crosses left most boundary.
For example, 8 (q,, a) = (p, a, L) (from Fig. 12.1(a)) is not possible.

2. Machine is deterministic and without €-transitions.

12.2.3 Instantaneous Description (ID) of a Turing Machine
In this section we will describe instantaneous description of the Turing machine. Instantaneous
Description (ID) shows the sequence of moves and its configuration from one instant to next.
As we see that the status of the Turing machine (at any moment) is given by the contents
of the cell/s that already scanned, the present state, and the remaining nonblank cells entry
including the current tape head entry.
Fig. 12.2 shows the configuration of Turing machine at any time ¢, where M is in state ¢
and the tape cell entries are shown below,

o, Ay
DGR Xk | Xier | ceevveeeens Xy B B.....
M Last non blank
q symbol
Fig. 12.2
So, ID is given as, 0, q Oy

where, o, and o, are the strings of nonblank symbols.

In general, ID is given by as, I'* Q T'* (because o, € I'*, g € Q and o, € T'™*)

We describe the moves of the Turing machine by - notation that is called move relation.
And the meaning of * is as usual, zero/one/more (finite) moves of Turing Machine M.

Hence, the meaning of I, + I, tells that Turing machine M reaches from one instant (1)
to next (2) in exactly one step.

Further we see that the nature of —* is reflexivef and transitivei closure of ‘+’.

From Fig. 12.2 the ID of TM M is,

o, q O,
where, string o, = X; X, X,........... Xgand o, = Xp ; Xpo e X, (by assuming that X, X,
D, SO X, is the portion of tape between left most and right most non blanks, i.e.
X, X, X g Xpe,q Xigog coeeeeeeens X, X Xy X YPXpgooooonnnnn X,

if and only if 9 (q, Xg,,) = (p, Y, R) i.e. tape head move rightward.

T Suppose Turing machine presently in ID — I and it remains to ID — I in no move i.e.
ID; k=, ID; ; hence ‘+ is reflexive.

1 Let TM M reaches from ID — I to J in one step and from J to K in some finite steps i.e.
ID, 1! ID; and ID; * IDg then M reaches ID — I to K in some fine steps.
ie.ID;=*IDy ; hence ‘I’ is transitive.
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This situation is shown in Fig. 12.3.

X | X | Y | o | covveereeenn Xy B B......
— N
M Last non blank
P symbol
Fig. 12.3

The limitations of this move are:
e If tape head points to the rightmost nonblank cell that is X, = X then next to its
right is blank. Thus,
X Xy e X, 19X F X X, X ,YpB and no more ID.
e If tape head point to the Ist cell and Y = B, that is symbol X, is replaced by B. That
causes infinite sequence of leading blanks and not appears in the next ID. So,

qX; X, X, F pXy.on X,
Suppose 9 (q, Xg,,) = (p, Y, L) i.e. tape head move leftward then,
X X, X d Xy, 1 Xigyg ooeeeennn X, F XXy Xe 1 PX Y Xy, X,

This situation is shown in Fig. 12.4.

X Xl Xe | Y | Xiig | coveeveneens Xy B B
M Last non blank
P symbol
Fig. 12.4

12.2.4 Representation of a Turing Machine
We can represent the moves of the Turing machine by state diagram or by transition table. For
example the move
dg,a)={@,X,R)
is represented by the state diagram shown in Fig. 12.5

(D
q > P

Fig. 12.5

It tells that machine is in state ¢ reading the input symbol @ and it perform the operation
to replace the symbol ¢ by X and the head moves right of the current cell and ready to read the
next symbol, these situation are clearly smalised in Fig. 12.6(a) & (b).
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al|lb|lalb al|lb|X|b
Y ’_T
]
q p
(@) (b)
Fig. 12.6

As usual a state is represented by a circle, A start state is represented by a circle marked
with an arrow, and the final state (halting state) is represented by the double circle.

Alternatively state diagram of Fig. 12.7
(@, a,R)

Fig. 12.7

shows that from the starting state g, machine reads the symbol a and left the same symbol a
(over write a by a) and move to right and reaches to state g, and halted (shown by double
circled).

Let us consider an example and construct the Turing machine for the language
L ={a’ b’ | i > 0}. We see that language L contains all the strings of equal number of a’s
followed by equal number of &’s like,

L = {ab, aabb, aaabbb, .................. and €}
So, we construct the Turing machine that accepts the strings, which are in set L.

Logic
The logic for scanning the accepted nature strings is depend upon the counting of the number

of @’s and b’s with followings steps: (assume string is ‘aaabbb’)

e Read the first symbol a, converted to X, move right and find the equivalent b at the
end of the string (before the blank symbol B) and converted to B.

aaabbbBB = XaabbBBB
e Move back and reach to the next starting symbol a and repeat the previous step like
as,
XaabbBBB = XXabBBBB
and XXabBBBB = XXXBBBBB (astring of only X and blanks B)

e The string of equal number of a’s followed by b’s certainly returns the string shown
above that is last X followed by B and this may be taken as the halting condition of
the machine.

Transition functions (0)
Let machine M = (Q, %, T, B, q,, 8, F) where g, is the starting state, set Q = {q, 9;, 95, 95, 9,4},
Y ={a, b}, T = {a, b, X, B} (because X c I') and & are defined as follows:

e 3qy a)=(qy, X, R) //first a is replaced by X

e &g, @) =(qy, a, R) and 8(q,, b) = (q,, b, R) / skip all a’s and b’s and move right so it
reaches to symbol B
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e d(q,, B) =(q,, B, L) // find the last b

e (g, b) = (g4, B, L) // last b is replaced by B and move left

e 3, b) = (g4, b, L) and 3(q,, @) = (g5, a, L) / skip all a’s and b’s and move left and
reaches to X

e 34 X) = (g X, R) // X remains X and move right

e 3@q,y B) =(q,, B, R)// B remains B and halt.

So, F = {q,} or halting state

State Diagram

X, X, R)

Fig. 12.8

Note, the definitions of d defined above are the only possibilities for the acceptance of the
strings of L. For rest of the moves (not defined above) machine will crashes or disappear.

ID’s View

(Start) gaabbt+Xqg,abb+-Xaq,bb+-Xaqg,bb+-Xabg,b-Xabbg,B+Xabgq,
b-Xag;bHXgsabkq;Xab-Xqg,ab-XXqg,b-XXbg, BHFXXg,bH-Xg,XH
XX q,B+XXBg,B (Halt)

12.3 LANGUAGE OF A TURING MACHINE

Let M be a Turing machine defined as, M = (Q, %, T, B, q, 8, F) then language of M be L(M),
where
LIM)={xe X* | gyx +* o, p 0, and p € F} where o, o, € T*

It means that the string x is in the language of machine if from starting state g, machine
M reaches to the state p (final state) after scanning the complete string x (whatever the tape
symbols it left o, and o)

The language of the Turing machine is the recursive enumerable language. The accept-
ance that is commonly used for turing machines is the acceptance by halting. It means turing
machine halts if there is no move define further in that instance of problem state. Alterna-
tively we can always assume that a turing machine always halts when it is in an accepting
state.

In fact a class of languages whose turing machine halts, regardless of whether or not it
reaches an accepting state are called recursive languages. The other class of languages con-
sists of there recursive enumerable languages that are not accepted by any turing machine
with the guarantee of halting. These languages are accepted in an in convenient way.

Example 12.1. Construct the TM for the language L = {a b* | i > 1.

Sol. We can construct the TM for L by applying different logic used in the previous example,
i.e., for counting equal number of a’s followed by 6’s we go through following steps:



340

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

replace starting symbol a by X, then reaches to the first b and replace by Y
move back and find next starting symbol ¢ and repeat the previous step
until found X followed by Y

Lets input string is ‘aabb’. Then applying above steps it will converted on XXYY’
The machine will terminate certainly with the condition that last X is followed by Y.
Let g, be the starting state, Q = {q, 9,, 45, 95, q,}, Z={a, b}, T = {a, b, X, Y, B} and halting

state F =

{q,} then Transition function (9) are follows:

3(qy @) =(q;, X, R)

3(q,, @) = (g4, @, R) and &(q,, Y) = (g, Y, R) // skip all a’s and Y’s and move right and
reaches to first b (corresponds to first a)

d(q,, b) = (g, Y, L) // replace b by Y and move left

3(qq, @) = (q,, @, L) and 8(q,, Y) = (g,, Y, L) / skip all a’s and Y’s and move left and
reaches to X

8(q4, X) = (g4, X, R) // X will remain X and move right

8(qy, Y) = (g5, Y, R) // if no more symbol left then machine certainly reaches to Y It
remains Y and move to right

8(qs, Y) = (g5, Y, R) // skip all Y’s and reaches to blank
8(g5, B) = (g,, B, R) // blank remains blank and halt

State Diagram

(B,B,R)

Fig. 12.9

Y, Y, R)

ID View’s (Let’s trace the moves of TM for the string ‘aabd’)

(Start) gyaa bbb +-Xqg,abb+-Xaqg bb+-Xg,aYbtFqg,XaYbFHXqg,aYd
FXXqg YbHXXYq bFXXqg YYHFXg, XYY HXXq, YYHXXYq,YH
XXYY q;B-XXYYB g, B (Halt)

Example 12.2. Construct the Turing machine for the Context Sensitive Language

L={albia|i>0).

Sol. Here the language L consist of strings of equal number of a’s followed by equal number of
b’s followed by equal number of a’s resembling {aba, aabbaa, aaabbbaaa....}. So to check up
this condition we apply following logic:
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e The first symbol a is replaced by X (we count one a); skip all a’s and reaches to last b;
replace it by a (now we have counted 2a’s); Corresponding to it last 2a’s converted to
blank,

¢ aabbdbbaaca
XaabbaaBB

e Repeat the previous step for next starting symbol ¢ and so on we get
X¢abbaeae BB and similarly X X ¢ 4 «a BB BB
XXabaBBBB = XXXea BBBB

= XXXBBBBBB

o Therefore, the string is accepted (counted successfully ) if and only if the machine
returns the string of tape symbols X’s followed by B’s (blank).

Transition function (0)
Assume Turing machine M = ({q,, 94, 95, 44, 95, 94> 97 25}> (@, b}, {a, b, X, B}, B, q, 9, {qg}) where
&’s are follows,

e 3qya)=(q;, X, R)

e &g, @) =(q,, a, R) // skip all a’s and reaches to first symbol b

e &g, b) =(qy, b, R)// b remain b and move right

e (g, b) =(qy, b, R) // skip all b’s and reaches to first a

e 3(q,, a) = (g4, a, L) // reaches to last b

e 34, b) =(q,, a, R) // replace last b by a

e &g, a) =(q, a, R)// skip all a’s and move right so it reaches to blank

e 3(q,, B) = (g;, B, L) // reaches to last a

e 3(q;, a) = (g4, B, L) / replace it by Blank and move left

e 3(q¢ a) = (g4, B, L) / replace one more a by Blank and move left

e 3q,, a) =(q, a, L) and d(q,, b) = (q,, b, L) / skip all a’s and b’s and reaches to X

e (g, X) =(qy X, R) // X remain X and ready for next iteration and so on it reaches to

symbol blank

e 3@qy B) = (qg, B, R) // if no more input symbol left so machine halts or terminates
successfully.

State Diagram

Fig. 12.10
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Example 12.3. Construct the Turing machine for the language L = {a' b’ ¢! | i > 0}.
Sol. The construction of Turing machine M is similar to the previous example. Here the ma-
chine count the equal number of a’s followed by same number of &’s followed by same number
of ¢’s. By applying the similar logic we proceed as,
e Replace first a by X (count one a); reaches to last b; replace last b by c(counted symbols
are 2); replaces last 2 ¢’s to B (blank) corresponding to the 2 symbols that are first a

and last b.
o Repeat the previous step until the string of tape symbol X’s followed by B’s will found.

¢ aabbbce¢¢

= Xaabbe¢e¢BB
= XXae bc BBBB
= XXX¢ ¢BBBB = XXXBBBBBB

In the similar fashion we define the transition functions and thus we obtain the state
diagram of the Turing machine which is shown in Fig. 12.11.

State Diagram

Fig. 12.11

12.4 GENERAL PROBLEMS OF A TURING MACHINE

Now we discuss the general problems of a turing machine that is if, o ¢ B —* o p & B where a,
BeT*and g and p € Q and & € %; then how a machine handle this situation. The fact of the
problem is, pushing of an extra symbol between strings a and B (in finite steps). In
other words how to create a free space between the strings o and 3 so that an extra symbol will

place them.

a b a QA | eeeevenes b B ... a b a a A | eeeeeenes b B

]

(@) (b)
Fig. 12.12
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That is, to shift the complete string B one cell right and to push a symbol & before f3.
Here we assume that set of input string X = {a, b}.

Fig. 12.13 shows the transition diagram of the Turing machine M from state ¢ which
reaches to state p in finite steps and creates a blank space before string b that is replaced by an
extra symbol & and tape head move forward.

State Diagram

Fig. 12.13

A similar problem is occasionally facing, how to shift one cell left of the loaded
string on the tape i.e.

o0qg&PH*appPwherea,Be IMandp & g € Q and & e{a, b}.

alal|l&E|b|b]|B - ala|b|b|B|B
[ — [ — [ —
o B a 8
q p
Fig. 12.14

Here machine is in state ¢ and ready to read the string B’ where B’ = & b (@ symbol
¢ and substring B) and in finite steps it reaches to state p and ready to read the remaining
string .

Fig. 12.15 shows the state diagram of the Turing machine.

Following are the steps:

e Machine reads the first symbol & that is either symbol @ or . This cell should be
blank. So create a blank space at this cell by replacing symbol a or b to B and move
right.

e Skip all a’s and &’s so as reaches to blank.

o Replace the last symbol either a or & to blank and follow the move:

e rto p through s if B is a string of all a’s,
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e rto p through ¢ if B is a string of all &’s,
e rto p through s and ¢ as required for mix strings.

State Diagram

(a, a, R)
(b, b, R)

Let us solve another problem of Turing machine. This problem states how to copying
the block (that is loaded the tape symbol string) i.e. if x is the string formed over symbols
{a, b} is loaded on the tape shown in the Fig. 12.14 then copy this string x s.t. the resulting
string is the string x followed by x. Now the tape contains the string (x + x).

x BB
h
q
x X BB
A
p
Fig. 12.16

A simple way to construct the Turing machine for copying the string by assuming that a
cell is blank before the string x so ID of the machine would be g Bx mH*p Bx B x

The state diagram of the Turing machine is shown in Fig. 12.17
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State Diagram

(B,B,R)

X, X, R)
Y, Y, R)

Fig. 12.17

12.5 TURING MACHINE IS THE COMPUTER OF NATURAL FUNCTIONS

Let f'be a function defined on natural numbers N such that
f:Nt=N  (for arbitrary k)

Alternatively, we can represent the function flx,, x,, ........ x,) = y. Reader must remind
that functions can be classified into total functions and partial functions. Total functions are
those functions which are defined for all input parameters. Conversely, if the functions are not
defined for all input parameters then those functions are called partial functions. For exam-
ple, the function

JAC T S x,) = x,/xy; ifx, #0
is an partial function. Natural functions can be evaluated by the Turing machine. For, total
functions we always construct a recursive Turing machine while for the partial functions we
can construct a Turing machine which never stop.

Procedure for Computation of Natural functions

Consider an natural function f{u, v) = w, i.e., u, v and w € N, where u and v are two inputs and
w is the output of the function these are all decimal numbers. We make assumption that
decimal numbers are represented by a stream of zeros, for example,
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Number 0 is represented by 0
Number 1 is represented by 00
Number 2 is represented by 000
Number 3 is represented by 0000
Number % is represented by (k+1)0s

Thus number u and v are represented by (xz + 1) 0’s and (v + 1) 0’s respectively. These
streams of 0’s are loaded on the tape of the Turing machine. To distinguish numbers u and v
we introduced a separator 1 between them. This number 1 is called the breaker. Fig. 12.18
shows the tape cells entries before the start of the machine.

(u+1)0’s (v+1)0’s
P — A
0 0[1]0 0| B B B
A A
9o Breaker
Fig. 12.18

Fig. 12.19 shows the situation of the Turing machine computation for the function f
which is outputted w i.e., a stream of (w + 1) 0’s in finite steps, where X’s are the tape symbols
that comes after the replacement of input symbol 0’s.

(w + 1)0’s
N
s N
X | . X|0]o0 0| BBB
p
Fig 12.19

Consider an example to construct a Turing machine for the function f which evaluate
the addition of two numbers x, and x,, i.e.,
g, x,) = % + x4
Since, f is the natural function so we can construct an equivalent Turing machine for
the addition of two numbers x,, x,. As per the requirement we can assume that numbers x, and
x, are represented by (x; + 1) 0’s and (x,, + 1) 0’s and these streams of 0’s are to be placed on the
tape cells of the machine with the breaker 1. Fig 12.20 pictured the above situation.
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(x; + 1)0’s (x, + 1)0’s
P —— A
0 0110 0 B B B
! !
o Breaker
Fig. 12.20

Turing machine starts the computation over input strings and at instance of state {q,} it
counts number of 0’s are (x; + 1 +x, + 1). Since it has an extra 0 so this extra 0 will be replaced
by symbol blank (B). Thus, at state {g,} numbers of 0’s counted are (x; + x, + 1). Finally,
machine stops at the state {g;} which is the left most end of the tape cells. Fig. 20.21 shows the
state diagram of the Turing machine for the function f.

Fig. 12.21

Example 12.4 Construct the Turing machine for the natural function (f : N* — N) which
evaluates the proper subtraction, i.e., if x and y are two numbers then flx, y) =x -y ifx >y, and
flx, y) = 0, otherwise.
Sol. Assume Turing machine starts the computation from the starting state g,. Since tape
cells contain a total of (x + 1) 0’s followed by (y + 1) 0’s and between them a breaker of symbol
1. The machine computes the subtraction between numbers x and y using the following compu-
tation logic i.e.,
e For the case if x >y then (y + 1) 0’s must be crossed and they are all converted to
blanks with the corresponding 0’s of the string x which are converted to symbols X’s.
Fig. 12.22 shows the snapshots (from state g, to g, and returned to q,) of the state
diagram for the discussed situation. Thus we have remaining 0’s of the string x in-
cluding a symbol 1. Symbol 1 is converted to 0 and since we have a lack of 0 so one
symbol X is also converted to 0. Thus machine will return a total of (x — y + 1) 0’s
hence it will stop at state g,. The state diagram of the machine is shown in Fig. 12.22.

e For the case if x < y then result should be 0. To implement this case, we will found
that in between the computation of crossing of 0’s of the string y corresponding to 0’s
of string x if there is no more 0’s left in the string x for the remaining 0’s of string y
then machine will search a new path. The state diagram of the Fig. 12.23 shows that
there is a new path from the state g, to g5 and then halting state g, for this situation.
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0,0,R)

(1,1,R)

Fig. 12.22

(0,0,R)

(0,0,L)
1,1,L)

(0,0,L)

Fig. 12.23

Example 12.5 Construct the Turing machine for the natural function (f : N* — N) which evalu-
ates the multiplication of two numbers, i.e., for numbers x and y, f(x,y) =x*y.

Sol. Since the meaning of multiplication of x* y is the successive addition of x, y times. This is
one of the computation logic which to determine the multiplication of two numbers. Initially
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tape cells contains (x + 1) 0’s corresponding to string x followed by a symbol 1 (breaker) and
next to it symbol blanks. Now our task is to copy this block of (x + 1) 0’s, y times.

Thus, Turing machine starts the computation over the string x and it copy the block
according to the state diagram shown in Fig. 12.24.

(0,0,R) (0,0,L)

HALT

Fig. 12.24

This state diagram will copy the string x once hence, repetition of this sequence y times
will compute the required result i.e., x* y.

EXERCISES

12.1 Construct the TM for the following languages over {0, 1}.
(i) L = {x/x contains the substring 000} (i) L = {x/x is palindrome}

@) L = {w w/w € {0, 1}#} (iv) L = {w wr/w e {0, 1}%}
(v) L = {w c wkv/w e {0, 1}*} (i) L = {w w w/w € {0, 1}*}
12.2  Construct the TM for languages L, and L.
(@) L, ={0"1" 2"/n > 1} (i) Ly = {0" 1" 2"/n = 0}
12.3 Construct the TM that computes the indicated functions (f : N* — N), where x, y, z € N.
@WDfx)=x+1T (1) flx) = 3
(it1) fix) = x mod 7 () flx, y) = x2 + xy
W) flx,y,z)=x+2y + 3z (i) flx, y, 2) = 2x + 3y + 22

(vii) flx) = smallest integer greater then or equal to log, (x + 1), i.e.,
0)=0,A1)=1,A2) =f(38)=2, f(4) = ...= {7) = 3, and so on.
12.4 Consider f] and f,, are two natural functions that are computed by TMs M, and M, respectively.
Construct a TM that computes each of the following functions,

@) f, +1, @) fi—1y
(iii) mod (fy, f,) (iv) max (fy, fy)
(v) min (f3, £5).



THIS PAGE IS
BLANK




Boolecm Algebra

A.1 Introduction

A.2 Definition of Boolean Algebra

A.3 Theorems of Boolean Algebra

A.4  Boolean functions

A.5 Simplification of Boolean Functions

A.6 Forms of Boolean Functions

A.7 Simplification of Boolean Functions Using K-map
Exercises




Appendix

A Boolean Algebra

A.1 INTRODUCTION

Like any other mathematical system, Boolean algebra, is defined by a set of elements X, a set
of operators Y, and a set of postulates (axioms) that defines the properties of X and Y. A set is
a collection of objects sharing a common property. Set of operators Y = {AND, OR, NOT},
where AND and OR are binary operators represented by ‘.’ and ‘+” respectively, and NOT is
a unary operator represented by ‘”’. The postulates are the basic assumptions of the algebraic
structures on which it is possible to construe the rules and theorems of the system. The postulates
need no proof. It provides the basis to the theorems. Here we summarize some of the common
postulates used by various algebraic structures:

L. Closure. The operators ‘. ’ and ‘+” are closed, which means that if x and y € X,
then x + y and x . y are also € X and unique.

II. Commutative. Binary operators ‘.’ and ‘+’ are commutative on a set X such that
if x and y € X, then we have,
X+y=y+x and X.y=y.x
III. Associative. Binary operators ‘.’ and ‘+” are associative on a set X such that if x, y
and z € X, then we have,
x+(y+z)=@+y)+z and x.(y.2)=(x.y).z
IV. Existence of an Identity Element. There exists an identity element ¢ for Vx € X
with respect to binary operators ‘.’ and ‘+’ i.e.
x+e=¢+x=x and x.¢e=¢.x =Xx
For example, 0 is the identity element for algebraic structure (I, +), where I is the set of
integers and ‘+’ is the binary addition operation of integers i.e., x + 0 =0 + x = x, for Vx € 1.
Therefore, element 0 is called additive identity. (Reader self verify that element 1 will be a
multiplicative identity).

V. Existence of an Inverse Element. There exists an inverse elementy € X for Vx € X
with respect to binary operators ‘.’ and ‘+ i.e.,
x+y=¢ and x.y=g¢
For example, the additive inverse define the subtraction s.t. x + (- x) = ¢. Similarly, the
multiplication inverse defines division s.t. x . (1/x) = ¢.

VI. Distributive Property. Since ‘.’ and ‘+’ are two binary operators on set X, and if x,
y and z € X then operator ‘.’ is said to be distributive over operator ‘+’ whenever,

x.y+z)=x.y+x.z

352
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and also operator ‘+ is distributive over operator ¢ .’ whenever,
x+(@y.2)=+y).x+2)

One of the example of an algebraic system is a field. A field is defined by a set of ele-
ments, binary operations ‘.’ and ‘+’, a set of postulates 1 to 5, and combination of both opera-
tions fulfilling postulates 6. A field of real numbers is a common example consists of set of real
numbers, with binary operations ‘.’ and ‘+’ which is the basis for ordinary algebra.

A.2 DEFINITION OF BOOLEAN ALGEBRA

A Boolean algebra is an algebraic structure denoted as (X, +, ., /, 0, 1) in which (X, +, .) is a
lattice, where X is a set of elements and binary operations + and . are called GLB and LUB
respectively. 0 and 1 are least and greatest element of the poset (X, <). Fig. A.1 shows the
postulates that are satisfied by Boolean algebra.

No. Name of the postulates Statement of the postulates
These pairs of laws are dual to each other
Closure Closure w.r.t. operator ‘+’ | Closure w.r.t. operator ‘.’
2 Existence of an Identity There exist elements 0, 1 € X such that for all x € X
Element x+0=0+x=x x.1=1.x=x
Commutative Law X+y=y+x X.y=y.x
Distributive Law x.(y+2)=(.y)+x.2) x+@y.2)=+y).x+2)
Complement Vx € X there exist an element x” (known as complement of x)
such that
x+x' =1 x.x'=0
6 Uniqueness There exists at least two elements x,y € Xie.,x #y

(Postulates 1-6 are called Huntington postulates)
Fig. A.1

We can formulate many Boolean algebra, depending upon the choice of the set X and the
rules of operations. For example, atwo-value Boolean algebra is defined on a set of two elements
X = {0, 1}. The operations (+, . , ") are shown in Fig. A.2 (a), (b) and (c) respectively. The two-
value Boolean algebra is denoted by a Boolean structure ({0, 1}, +, ., ", 0, 1) and it satisfies all
the postulates 1-6. It is the only Boolean structure whose representation is a chain.

’

x y | x+y x y | x.y x x
0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1
(a) operations same as OR (b) operations same as AND  (c) operations same as NOT
Fig. A.2

We can also verify that Huntington postulates 1-6 are satisfied by a two-value Boolean
algebra ({0, 1}, +, ., %, 0, 1), i.e.,

e Closure is obvious, because from the operations tables shown in Fig. A.2 we saw that
result of each operation is either 0 or 1 that is in set X.
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e Since,0+0=0and 0+ 1=0+ 1=1 (existence of an identity 0 for operation ‘+’) and
1.1=1and 0.1=1.0 =0 (existence of an identity 1 for operation ‘."’).

o Commutative law is obvious from the symmetry of the binary operations ‘+’ and .

shown in tables.

2

e Distribution law such that distribution of operation ‘.’ over operation ‘+’ such that
x.(y+2)=(x.y)+ (x.z) hold valid. That can be verified from the same truth values
shown in the column 5 and 8 of the table Fig. A.3.

X y | z |y+z x.(y+2z) X.y X.Z x.y)+x.2)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 « Column

Fig. A.3 number

Similarly we can verify the distribution of the operation ‘+’ over operation ‘.’ using
truth table.

e For the verification of x + x" = 1 (and x . x” = 0) the complement of the elements 0 and
1,since, 0+0'=0+1=1and1+1'=1+0=1(andalso0.0’=0.1=0and 1.1 =

1.0=0).

e Since, set X = {0, 1} or the set contains unique elements i.e., 0 = 1.

A.3 THEOREMS OF BOOLEAN ALGEBRA

Now we can discuss the basic theorems of Boolean algebra and its most common postulates.
The postulates shown in the in the table (Fig. A.4) is abbreviated by P1 — P4 and the theorems

by T1 - T6.

Abbreviation Statement of Rules Name
P1 x+0=x x.1l=x
P2 x+x'=1 x.x'=0
P3 X+y=y+x X.y=y.x Commutative
P4 x.(y+2)=x.y+x.z x+y.z=@+y).x+2) Distributive
T1 xX+x=x xX.x=x
T2 x+1=1 x.0=0
T3 @) =x Involution
T4 x+@y+2)=x+y)+z x.(y.2) =x.y).z Associative
T5 x+y)=x".y x.y)y=x+y De Morgan’s
T6 X+x.y=x x.(x+y)=x Absorption

Fig. A.4
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proof.

Since, postulates are the basic axioms of algebraic structures and so they required no

We can prove the listed theorems from the given postulates.

(T1) LHS
x+x=@+x).1
=@x+x).(x+x)
=x+x.x
=x+0
=x
RHS Hence proved.

Dual part of Theorem T1 can be proved similarly such as,

(T1’) LHS
x.x=x.x+0
=x.x+x.x
=x.(x+x")
=x.1
=x
RHS Hence, proved.
(T2) LHS
x+1=(kx+1).1
=@x+1).x+x)
=x+1.x
=x+x
=1
RHS Hence, proved.

(T2’) LHS
x.0=x.0+0
=x.0+(x.x)
=x. +0)
=x.x
=0
RHS Hence, proved

(T3) Since,x+x'=1 and x.x'=0

Define the complement of x i.e. x”. So to determine the complement of x” we have,

@) +x'=1land &) .x'=0
On comparing (i) and (if) we obtain,

() =x
Hence, proved.

Lx.1l=x
Lx+x =1

L+ y)x+)=x+y .z

Lx.x'=0

Lx+0=x

Lx+0=x

Lx.x'=0

Lx.y+x.z=x.(y+2)

Lx+x =1

Lx.1l=x

Lxdl=x
Lx+x =1

ety . +2)=x+y.z

sl.x =x
Lx+x =x
Lx+0=x
Lx.x'=0

Lx.y+x.z=x.(y+2)

X +0=x

Lx.x'=0

@)

(i)

P2

P2

P1
P2
P4
P2
P1

P1
P2
P4
P2
P1

P1
P2
P4
P1
P2

P1
P2
P4
P1
P2



356 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Theorem involving 2/3 variables can be proved algebraically by using the postulates and
the theorems proved above. Validity of the theorems T4 and T5 can be seen using truth table
similar to the table shown in Fig. A.3. Next we shall discuss the proof of the theorem T6.

(T6) LHS
x+x.y=x.1+x.y Lx.l=x P1
=x.(1+y) Lx.y+x.z=x.(y+2) P4
=x.(@y+1) LX+Y=Y+X P3
=x.1 Ly+l=1 T2
=x Lx.l=x P1
RHS Hence, proved.
(T6") LHS
x. (x+y)=@+0).(x+y) Lx+0=x P1
=x+0.y Lx+y.z=@+y) . (x+2) P4
=x+0 ~0.2=0 T3
=x Lx+0=x P1
RHS Hence, proved.

Duality Theorem

Every algebraic expression is construe from the postulates of the Boolean algebra remains
valid if the both operators and identity elements are interchanged.

Principle of duality states that any Boolean expression remains true if AND, OR, 1, 0
are replaced by OR, AND, 0, 1 respectively. This principle reflects the obvious symmetry existing
among the operators and the Boolean variables that allows many concepts to exist in dual
form. For example, the pairs of the postulates listed in the table (Fig. A.4) are dual to each
other, one may be obtained from other if operator ‘+’ is interchange to ‘.’ and replaces the
identity element from 1 to 0 and vice versa.

A.4 BOOLEAN FUNCTIONS

A Boolean function is a Boolean expression consisting of one/more variables, binary operators
(OR, AND) that are denoted by (+, .) respectively, unary operator (NOT) denoted by ( * ) and
parenthesis. Since, Boolean variables can take value either 0 or 1, so truth value of the function
is either O or 1 on each possible interpretation. The truth values of the Boolean function on
various combinations of truth values of Boolean variables are obtained using truth table. For
example, the truth values of following Boolean functions are shown in truth table in Fig. A.5.
(@) F=xyz

() Fy=x.y+y .z

(@) Fy=(+y) .y +2)

() Fy=x+y.z



BOOLEAN ALGEBRA 357

x y z F, F, F, F,
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 0 0 0 1 1
1 0 1 0 1 0 1
1 1 0 0 1 1 1
1 1 1 0 1 0 1

Fig. A.5. Truth table for F,, F,, F;, and F,.

We can represent any Boolean function by using truth table. An n variable Boolean
function must contain 2" rows in the truth table starting from 0 to 2" — 1. It is also possible that
two Boolean expressions can be instigating from same Boolean function because, by applying
theorems and axioms of Boolean algebra, we can simplify the expression that return to some
common function. Alternatively, two Boolean functions are said to be similar to each other if
the truth values of both functions are same for all possible interpretations.

While, evaluating the Boolean function the precedence of the parenthesis is the highest,
next precedence is of the complement, then the operator AND and finally the operator OR.
Alternatively, the expression written inside the parenthesis will be evaluated first, follows the
complement, then follows the ¢ .’ and finally follows the ‘+” operations.

A.5 SIMPLIFICATION OF BOOLEAN FUNCTIONS

The objective of the simplification of a Boolean function is to minimize the number of literals.
Since, each term of Boolean function is implemented with a logic gate, and then each literal in
the function designates an input to a gate. To, minimize the number of literals and the number
of terms certainly trim down the circuit and equipments. Although it is not always possible to
minimize both factors simultaneously.

We can simplify the Boolean function by using most common postulates and basic theo-
rems of Boolean algebra through #rail & chance. Of course, there is no specific procedure of
deduction that yields the minimized expression. In the following example we can see that, by
way of trail & chance we can simplify the Boolean function.

Example A.1 Simplify the following Boolean functions to a minimum number of literals.

1. f=xy+xy’
=x(@y+y) P4
=x.1 P2
=x P1

2. f=ywz +wz)+xy
=y.w@+2)+xy P2
=y.w.l+xy P1
=yw+xy P1
=Syw+yx P3

=y (W + x) P4
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3. f=x+y).&+y)

Simplification of such Boolean function can be easily done by using involution law (T3)
which states that the complement of the complement is effectless i.e., if we take complement of
complement of Boolean function f then we have,

=1
Thus ff=x+y). & +y))
=((x+y)) +({(x" +y)Y) T5 (De Morgan’s)
=@x+y)+ & +y) T3 (Involution)
=@x+x)+@+y) T4 (Associativity)
=1+1 P2
S0 =1 T2

Further, if we take the complement of /" i.e.,
(f’Y=(1)Y=0; then £=0.

The complement of Boolean function can be obtained through straight forward way by
interchanging the values 0’s for 1’s and 1’s for 0’s.

De Morgan’s law (T5) using two binary variables x and y states that, (x +y) =«" .y  and
also (x . y)’ = " + y” that can be generalized for any number of binary variables i.e.,

(0 + %y +Xg + ceeriinnnnn, +2,) =2y %y Xy X,

and, (€ . cx) = x xy A +x,

The generalized form of De Morgan’s law states that complement of an expression will
interchange the binary operators ‘+’ into ‘. > and vise versa and complement each literal.
Example A.2. Find the complement and simplify the following Boolean functions.

1. f=pq +r's’
Then complement of fis obtain as,
[f=(pq +7rsY=@pPqg).0sY) T5 (De Morgan’s)
=(p'+q).(@+s) T5 & T3
2. f=(qr +p's).(pq +rs’)

Then complement of f is given as,
f'=lgr+ps).pqg +rs)

=(@r+p's)+(pqg +rsy T5
=X+Y
where, we assume, (g7’ + p’s)’ =X and (p ¢" + r s’)’ =Y and solve separately,
So we have,
X=(@r+p's=@qr)y.@ps) T5
=@ +r).(p+s) T5 & T3
=@ +r).p+(@ +r).s P4
=q'p+rp+qg s+rs
Similarly,
Y=(pqg +rsY=p@pqg).rsY T5
=P’ +q) .0 +9) T5 & T3
=@ +q).r+(P +q).s P4

=p'r+qr +p’'s+qs
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Then, [[=X+Y=q¢'p+rp+q s’+rs+p'r+qr' +p’s+qs
=1 (reader may solve the remaining part of
the expression to verify the result).
3. f=[pq)plxl(padql
Then complement of f will be obtain as,

f ={lpq)pl.lpqg)qly

=[pq)pl'+(pqg)ql T5
=lpqg)+p1+1pqg+q] T5 & T3
=p ' +q+pl+pqg+q1l T5 & T3
=p'+ql+Ipqg+q T1
=" +pql+lg+q1l T4
=p +pql+1 P2
=p +pql+1 P2
=1 T2
Hence, f'=1.

A.6 FORMS OF BOOLEAN FUNCTIONS

A Boolean function can be expressed in any of the two forms, (1) Canonical form, or (2) Standard
form. The class of canonical form further slices into (1.1) sum of minterms, or (1.2) product of
maxterms. In the sum of minterms form, by ‘sum’ meant ORing of minterms, where each
minterm is obtained from an AND term of the n variables that are either prime (¢rue) or
unprimed (false). Similarly, in the product of maxterms form, by ‘product’ meant ANDing of
maxterms, where each maxterm is obtained from an OR term of n variables that are being
prime or unprimed.

So in general, n variables can be combined to form 2” minterms and 2" maxterms. The
2" different minterms and maxterms can be determined by the method similar to one shown
in Fig. A.6 for three variables that has 8 (= 23) minterms and 8 (= 2%) maxterms.

x y z Minterms Maxterms
Term Symbol Term Symbol
0 0 0 m, x .y .2 M, X+y+z
0 0 1 my x .y .z M, x+y+2
0 1 0 m, x.y. 2 M, x+y +z
0 1 1 mg x.y.z M, x+y +2
1 0 0 my x.y .z M, X +y+z
1 0 1 my x.y .z M, X +y+2
1 1 0 mg x.y.2 M, X +y +z
1 1 1 m; x.y.z M, X +y +2

Fig. A.6
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Thus we can express the Boolean function f containing n variables (x;, xy, ............. x,)in

sum of minterms or product of maxterms respectively as,
Fxy, Xy vevniinnnnn x,)=2Xm, ..(D
and Fxy, Xy voveiinnnnn x,)=TIlm, ...(IT)

Where, we take those £’s (0 < & < 2" — 1) for which combination of variables results truth
value 1. The symbols ¥ and IT denotes the logical sum (OR) and product (AND) operations. It
is also observed from the truth table that each maxterm is the complement of its correspond-
ing minterms, and vice-versa. A Boolean function expressed as a sum of minterms or product
of maxterms is said to be in canonical form.

Example A.3. Express the Boolean function f, and f, shown in Fig. A.7 in sum of minterms
and product of maxterms forms.

)
b

O O O O R
= O O R R o o R
= O R O R O R O w

== =] = =] o o ©

O O O] O O H| H| =

Fig. A.7

Sol. Functions f] is of three variables x, y, and z. Since the combinations of terms x’y’z’, x’y’z,
and x’yz’ of corresponding minterms m, m,, and m, respectively yields the truth value of
f; = 1. Thus we have,

fix, y,2) =xy2" + x'y'z + x'yz’
=my + my+ my;
or, equivalently it can be expressed as,
filx,y,2)=%(0, 1, 2);
Now to express the complement of function f;, we consider those minterms for which
combination of variables results truth value 0 in the f; such that ms,....m..

So, we have fi,y,2)=mg+my+my+mg+m;=2(3,4,5,6,7);
=x"yz + xy’2' + xy'z + xy2’ + xy2
Since, ") =f T3 (Involution)
Thus we obtain,
() (x, y,2)) = (x"yz + xy'2" + xy'z + xy2’ + xy2)’

filx, v, 2) = (x'y2) . (xy'2")" . (xy’2)" . (xyz')" . (xyz)’ T5 (De Morgan’s)
=@+y +2). @W+y+2). @+y+2). & +y +2). & +y +2)
T5 (DeM)
= M M M M M

3 4
(Product of maxterms)

so, filx,y,2)=m(3,4,5,6,7);

5 6 7
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Similarly we can obtain,
folx, y,2) = X'yz + xy'2’ + xy'z + xyz’ + xyz
=mg +my +my+mg+mg
or, =X(3,4,5,6,7);
and (fy(x,y,2)) =folx,y,2) =n (0, 1, 2);

Therefore we can say that, m,” = M,; that is, maxterm with subscript % is a complement
of the minterms with the same subscript % or conversely, minterms with subscript % is a
complement of the maxterms of same subscript k2. Therefore, Boolean function can be converted
from one canonical form to other by simply interchanging the symbols ¥ and IT and add the
missing numbers that was not in the original form. One thing must be insured before finding
of the missing terms that, sum of minterms and sum of maxterms should be 2" for an n variables
Boolean function.

Besides the canonical form representation of Boolean functions, there is another form to
express the Boolean functions called standard form, where each term may contain any number
of literals. Standard form is of two types:

e Sum of Product (SoP)

e Product of Sum (PoS)

SoP (PoS) is similar to sum of minterms (product of maxterms) except that in SoP (PoS)

each term of Boolean function may have any number of literals. For example,
fix,y,2)=x+yz+x'yz SoP
fox,y,2)=@+y)xzxx+y +2z) PoS

Any Boolean function expressed in SoP (PoS) where, product terms (sum terms) contains
less literals than minterms (maxterms) could be expressed in sum of minterms (product of
maxterms) by applying following procedure,

Inspect the Boolean function and see, if it is in SoP (PoS) form, and if each term contains
all the literals, then do nothing; Otherwise, missed one or more literals islare ANDed (ORed)
with an expression such as x + X’ (x . x’) where x is one of the missing literal.

In the context of the statement calculus (discuss in next chapter 6) we may say that any
statement formula can be expressed in either of any form (SoP/PoS). Therefore, it is conven-
ient if we replace the word product by ‘conjunction’ and sum by ‘disjunction’. While, SoP is also
called disjunctive normal form (DNF) and PoS is also called as conjunctive normal form
(CNF). Alternately, the sum of minterms is called ‘principle disjunctive normal form’
(PDNF) and product of maxterms is called ‘principle conjunctive normal form’ (PCNF).
Example A.4 (i) Consider the Boolean function f,(x,y, z2) =x +yz + x"y z; which is in
standard form (SoP). Express f in a sum of minterms.

Sol. Since, function contains three variables x, y, and z and the first term is missing of vari-
ables y and z so ANDed (y + y') and (z + 2’) in the first term. Similarly, ANDed (x + x") in the
second term and nothing ANDed in the third term. Thus, way obtain,
fie,y,2)=x(y+y)+2)+(x+x)yz+x'yz
=xyz +xy'z + xyz’ + xy’2 + xyz + x'yz + x'yz

Simplifying and removing those minterms that appears more than once and rearrang-

ing the minterms thus we obtain,
f1(x, 5, 2) = X'yz + xy'2’ + xy'z + xy2’ + xy2
filx,y,2)=2@,4,5,6,7); PDNF
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(i) Consider the next Boolean function f,(x,y, z) = (x +y) . z. (X + ¥y’ + z); that is in
standard form (PoS). Express [ in a product of maxterms. Since, function contains
three variables x, y, and z and the first term is missing of variable z so ORed (z z’) in
the first term. Similarly, ORed (x x") and (y y’) in the second term and nothing ORed
in the third term. Therefore, we obtain,

o, y,2)=+y+z2). xx' +yy +2). x+y +2)
Since,
x+y+z2)=@+y+2) (x+y+2); P4 [Distribution]
and, xx'+yy +2)=@x+yy +2) & +yy +2) P4 [Distribution]
=@+y+2)x+y +2) @ +y+2) & +y +2);

Combining all the maxterms and removing those maxterms that appear more than
once, thus we obtain,

e, y,2)=@+y+2)x+y+2) x+y +2) @ +y+2) & +y +2);
= M, M, M M M
f,(x, y, z) =11 (0, 1, 2, 4, 6); PCNF

2 4 6

Example A.5. Express the following functions in a sum of minterms and a product of maxterms.
@) far,s,t) =@ +s) (s"+1t)

Since, the Boolean function fis not in standard form (SoP/PoS) so use distributive law to
remove parenthesis thus, we get the function is in standard form i.e.

fir,s, ) =" +s)(s"+1)

=r's'+ss’+r't+st P4
=r's’+0+r't+st .88 =0 P2
=r's’+r't+st Lx+0=x P1
(SoP form)

To express the function fin sum of minterms, we find that the missing variables in
the first, second, and in the third terms are ¢, s, and r; therefore ANDed expressions are
(t + t), (s+ s, and (r + ') respectively. Thus we have,

=rs @t+t)+r(s+s)t+@r+r)st

=r’st+r’st +r’st+r’s’'t+rst+r'st P4
Simplifying and rearrange the minterms thus we obtain

=r’st +r'st+rst+rst

(o.rst+rst=rstandrst+rst=r'st)T1

S0, fir,s,t)=rst +r'st+rst+rst
f(r,s,t) =2 (0,1,3,7); PDNF
Hence, f(r, s, t) =11 (2, 4, 5, 6); PCNF

@) f(r,s, t) =1
Since we know that sum of all minterms of a Boolean function of n variable is 1. Here
function has three variables thus we have,
fr,s,)=r's’t +r’st+rst' +r'st+rs't’'+rs’t+rst’' +rst
Conversely, we can prove above fact also i.e.
fr,s,)=r's't’ +r’st+rst' +r'st+rs't’'+rs’'t+rst' +rst
=rs @t +t)+r’s@t+t)+rs @ +t)+rs@ +1t)
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=rs’+r's+rs’ +rs @t+t=1) P2
=r'(s+s)+r(s+s) P4
=r'xl+rx1 P2
=r'+r P1
=1 P2

Therefore, f(r,s,t)=1=X(0,1,2, 3,4, 5,6, 7); PDNF
f(r, s, t) = 1; then no maxterms; PCNF
G)pq+p ' qr
We first express the equivalent PDNF formula from the given formula. Since the

formula contains three variables and in the first term variable r is missing so ANDed the
expression (r + r’) in this term. Thus we have,

=pq.l+p'qr P1
=pq(r+r)+p'qr P2
=pqr+pqr +p'qr P4

which, is an equivalent PDNF formula.
To obtain the equivalent PCNF formula we write the formula as,

=pq+p'qr=pPq+p)pPqg+qr) [x+yz=C+y) (x+2)] P4
=@p'+pgy (pg+qr) [~ x+y=y+x] P3
=@ +p) P +q@) (pg+qr) P4
=1.p"+q@) (pg+gqr) P2
=@p'+q¢)(pg+qr) P1
=@+ pg+q) (pg+r P4
=@p'+q)q@+pq) pg+7r) P3
=@p'+q9)@+p)@+q) pg+r) P4
=P +q) @+p)gpqg+r) T1
=@p'+q)(q@+p)qr+pq) P3
=@ +q)@+p)g(r+p) (r+q P4

Above formula is in CNF; to obtain the PCNF we find the missing variables in each
terms. The missing variables from left to right terms are r, r, p and r, ¢, and p so, ORed the
expressions r ', rr’, p p’and r v, q q¢’, and p p’ respectively. Thus we have,

=@ +q+rr)Yp+qg+rr)pp +q+rr)(p+qq +r)(pp +q+71) P3

=@ +q+r)P' +q+r)p+qg+rr)pp +q+rr)(p+qqg +r)(pp’+q+r) P4

=@ +q+rp' +q+rp+qg+rp+qg+r)pp +q+rrp+qgqg +r)pp +q+r1)

P4
=@ +q+rpP' +q+rp+qg+r)p+qg+r)pp +qg+r)pp +q+7r)
p+qgqg +rpp +q+r) P4
=@ +q+rp' +q+rp+qg+r)p+qg+r)p+q+r)p +q+r)
pp +q+rp+qq +rpp +q+r) P4
=@ +q+rp' +q+rp+qg+rp+qg+r)p+q+r)p +q+r)p+qg+7r)p +q+71)
p+qgqg +rpp +q+r) P4
=@ +q+rp' +q+rp+qg+rp+qg+r)p+q+r)pP +q+r)p+qg+r)p +q+71)
p+g+r)p+q +r)pp +q+r1) P4



364 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

=@ +q+rp' +q+rp+qg+rp+qg+r)p+q+r)p +q+r)p+qg+r)p +q+71)
P+q+rp+q +r)p+q+r)(p'+q+r) P4
Rearrange the maxterms and remove those that are appears more than once, so we get
the required PCNF,
=(p+q+r)(p+q+r)(p+q +r) (P +q+r) (P +q+71)
(iv) Express the function f(x, y, z) = x in PCNF.

Since, function contains three variables x, y, and z and the first term is missing of the
variables y and z, so ORed the expression y y" and z 2z’ in this term.

Thus we obtain,

fa,y,2)=x+yy +z2 [~yy =zz=0P2and [.. x+0=x] P1
=x+yy +z2)x+yy +2) [x+yz=x+y)x+2)] P4
=x+y+2)+y +2) x+yy +2) P4
=@x+y+2)@+y +2)x+y+2)x+y +2) P4
f(x,y,2)=xx+y+2) X+y+zZ)X+y +2) X+y +2) P3
PCNF

(v) Express function f(x, y, z) = (x + y)’ in PCNF.
Flx,y,z) = +y)

=(x) &) T5 [DeM]
=@ +0) @y +0) P1
= +yy)y +22) P2
=@ +y) @ +y)y +2) @ +2) P4
=@ +y+0)@+y +0)0+y +2)0+y +2) P1
=@ +y+z2)@+y +z2)xx'+y +2)(xx +y +2) P2

=@ +y+2)+y+2) @ +y +2) @ +y +2)(x+y +2)
@+y +2)x+y +2) " +y +2) P4

Rearranging the maxterms and remove those maxterms that appears in the expression
more than once so we obtain,

f(X,y,2)=+y +2)xX+y +2)X +y+2) X +y+2)X +y +2z) X' +y +2Z)

PCNF

Example A.6 Obtain the PCNF and PDNF of following formulas.

(Dly—x)(x'y

2)x—kx.(y—>x)

Bx+x =>@y+ —2)

(4) (x' > 2z)(y <> x)

Sol. Since we know that any formula can be expressed in either PDNF or PCNF that are

using only operations +, . , and’. The other operators (connectives) like — or <> can be converted
into +, . , and ’ operators by following equivalence formulas,

@) A—-B)=A"+B)

i) A>B)=A->B).B-A

First, we obtain the PCNF of the formula,

(1) yo>x)&@y) =@ +x) (& y) Equiv. (i)
=@ +y) &) ) P3
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= +y) @ +0)(0+y) P1
=@x+y)& +yy)xx +y) P2
=@x+y)&+y) @ +y)x+y) & +y) P4
After simplifying we obtain,
=@x+y)@+y) & +y) & +y)
To obtain the PDNF, we proceed like as,
=@y +x) (& y)
=y x'y+xx'y P4
=x'yy+xx'y P3
=x".0+0.y P2
=0+0 T3
=0 P1
(2) x>x.yox)=x—>@.y +x) Equiv. (i)
=x—> .y +x.x) P4
=x—> .y +x) T1
=x"+x.y +x) Equiv. (i)
=x"+x+xy P3
=1+xy P2
=1 T2
So a PCNF expression is, (x + x") (y + y) P2
To obtain PDNF we proceed as,
=@x+x)@y+y) P2
=xy+x'y+xy +x"y P4
=x'y +x'y+xy +xy P3
=x'yz+2)+x'y+2)+xyz+2)+xy(+2)
=x'yz+x'yZ+xyz+xyZ+xyz+xy 2 +xyz+xyz P4

PDNF

(3) exercise to readers.
(4)Let flx,y,2) =" —>2) (y < x)

Find the PDNF,

=(x)+2)@y—>x) x>y
=x+2)@y>x) x>y
=@x+2) @ +x) & +y)
=@x+2)x+y) & +y)
=@+0+2)x+y +0) (" +y+0)
=@+yy +2)x+y +z2)&+y+z2)

Equiv. (i) & (ii)
T3

Equiv. (i)

P3

P1

P2

=@+y+2)x+y +2)x+y +2)x+y +2) @ +y+2) & +y+2) P4

=@+y+2)x+y +2)x+y +2) @ +y+2) & +y+2) Simp.

PCNF

=" —>z)(yeox)
=@x+2)(x+y) & +y)
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=@xx+zx+xy +zy) & +y) P4
=x+xz+xy +y2) & +y) T1 & P3
=x+y)+xz@+y)+xy & +y)+y z@ +y) P4
=xx'+xy+xzx +xzy+xyx +xyy+yzx'+y zy P4
=0 +xy+ 0 +xyz+ 0 + 0 +«'yz+ O P2 & P3
=xy+xyz+x'yz P1
=xy@+2)+xyz+x'yz P1

After Simplifying and rearranging we get the expression,
=x'yz+xyzZ +xyz
PDNF

A.7 SIMPLIFICATION OF BOOLEAN FUNCTION USING K-MAP

Instead of squabble that simplification of Boolean function lacks specific deduction procedure
(Sec 5.4) in this section we will discuss a well known graphical method of minimization of the
Boolean functions for small values of n, where n is the number of Boolean variables. This
method developed in 1950s at AT and T lab known as Karnaugh Map or K-map method
simplifying the Boolean functions that are expressed in standard forms only.

A K-map of n variables function is a two dimensional array consisting of 2" cells that are
lying on a surface. It means, top and bottom boundaries and left and right boundaries of the
array touching each other to form adjacent cells. Each cell represents one minterms. Since,
SoP expression of any Boolean function consists of a sum of minterms; so entries of the cells in
the K-map will be 1 (0) with respect to presence (absence) of the corresponding minterms in
the Boolean function. The cells in the map are arranged according to the reflected-code sequence
(Gray-Code) such that logically adjacent minterms are almost adjacent to each other. The
presence of minterms in the function is all marked by 1 on the K-map, and the objective is to
frame the groups from the marked cells, so a minimal set is selected.

K-map for 2 variables
K-map for two variable Boolean function is shown in Fig. A.8. It has 4 (= 22) cells and
the cells are recognized by the minterms m,, m,, m,, m,. Assume variables are x and y.

In 3 ’

My | My Xy | xy X

my | my xy' | xy x

(@) (b (©
Fig. A.8 K- map for 2 variables.

In the Fig. A.8 (b) minterms are shown. The presence of minterms in the function for
that cells entries are 1’s often called implicants. In the next figure prime implicants are shown
s.t. x” and x are prime implicants corresponding to Ist and IInd row and similarly y” and y are
the prime implicants corresponding to Ist and IInd column of the K-map.

Let the function f,(x, y) = x y” (m,); so place 1 on the cell represented by m, that shows
the presence of that minterms only. (see Fig. A.9 (a))
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y ooy Yooy
x x 1
x 1 x| 1 1
(@) (b)
Fig. A.9

Consider another example, f,(x, y) = x + y +xy; here first and second term of the function
are prime implicants so all the cells corresponding to IInd row (for x) and IInd column (for y)
are filled by 1’s. Also place 1 corresponding to the third term of the function in the cell m,.
Therefore, K-map of £, could be seen in the Fig. A.9 (b).

Alternatively, foe,y)=x+y+xy

=x.1+1.y+xy P1
=x(y+y)+x+x)y+xy (ANDed the missing term) P2
=xy+xy +xy (Simplification)

which, is represented by K-map shown in Fig. A.9 (b).

K - map for 3 variables

K-map for three variables shall consists of 8(= 22) cells corresponds to the minterms

Myyennnn m, shown in Fig. A.10. Here we assume the variables x, y, and z.
Mo | My | Mg | My xXyz | xyz | Xyz | ¥y
«—>
my | ms | mqg | Mg xy'Z | xyz | xyz | xyZ
(@) (b)

I

(0
Fig. A.10

Fig. A.10 (c¢) shows the prime implicants corresponding to rows and columns.

For example, let Boolean function flx,y,2) =xy 2’ +xyz +x'y 2’ =m; + myz + m,; Boolean
function f can be represented by the K-map shown in Fig. A.11.

7 ’ ’

Yz Yz Yz Yz

X 1

X 1 1 1

Fig. A.11
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Similarly K-map of 4 variables consists of 16 (= 24) cells for the minterms m,,...... mys.
The arrangement of different cells is shown in the Fig. A.12.

yz
Wx y/zl ylz yz yzl
my | My | Mg | My w'x’
my | my | Mg | Mg w'x
+“—>
Mg | Mg | Myy | My wx
Mg | Mg | Mys | My wx
(@) (b)
Fig. A.12

Since, Fig. A.12 (b) shows the prime implicants for rows and columns. The minterms of
each cell can be determined by the concatenation of the corresponding row label with column
label where rows and columns are labeled by the prime implicants.

For example, consider the function fw, x, y, z2) = w x ¥’ 2’ + x y; the Ist term of the
function corresponds to minterm m,,. In the second term there is missing of variables w and z.
So, IInd term will be obtain from the summation of minterms i.e.

xy=w+w)xy

=wxy+wxy

wxy@+z2)+w xy@z+2)
=wxyz+wxyzZ +wxyz+w xyz
fw,x,y,z)=wxy 2z +wxyz+wxyz +wxyz+wxyz
After rearranging the terms we get,
=Mg+ My + Moy + My, + My
So, places 1’s in the K-map for cells m, m,, m,,, m,,, and m; that is shown in Fig. A.13.

7 ’

Yz yz yz yz

w'x’

w'x 1 1
wx

wx 1 1 1

Fig. A.13

It is also noted that each row or column has labeled by the expressions (prime implicants)
corresponding to the sequence of numbers generated using Gray code number system.

In general we assume that a minimized function Boolean function is that where sum of
products (product of sums) have minimal number of literals. Through K-map representation of
any Boolean function we may obtain the minimized Boolean function. (? How). Since, the cells
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in the K-map are so arranged that the adjacent cells are differs only by a single variable. This
variable must be prime (presence) in one cell and unprimed (absence) in other cell. Remaining
variables are same in both adjacent cells. Therefore, the summation (ORed) of two adjacent
cells (minterms) can be simplified to a single ANDed term consisting of one variable less.

For example, in a three variables K-map consider the summation of two adjacent cells
recognized by minterms m, and m will be,

=xy 2z +xyz
=xy @ +2z)=xy .1=xy (free from one variable)
and is shown in Fig. A.14.

<] ]

I —
z

Fig. A.14

Similarly summation of four adjacent cells can be simplified to a single term that will be
free from two variables, for example consider the summation of adjacent cells m,, m4, m, and
m, in a three variables K-map is shown in Fig. A.15.

That will be, =my+mg+my+m,

Xyz+x'yz+xyz+xyz
=x'(y+y)z+x @ +y)z

=x'z+xz
=(x'+x)z=1.z2=2 (free from two variables)
yZ
X y'Z y'z yz yz
X 1|1
x 1 1
Fig. A.15

As we mentioned earlier that K-map is lies on the surface such that top and bottom
edges as well as left and right edges are touching each other to form adjacent cells. For example
in a three variables K-map cells recognized by m,,, m,, m,, m,, are adjacent to cells m,, m, m.,
m respectively; similarly cells m, m, are adjacent to cells m,, m4 respectively. In the similar
sense we can acknowledge the adjacent cells for four or more variables K-map.
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<«
N

or or

|
.
I_II_II_II_I

or

Fig. A.16
Example 5.7. Simplify the K-map shown in Fig. A.17.

yz Y
 ——
wx yZ| ¥z  yz  yZ
wx’ 1 1
wx |1 1 |
X
wx 1 1
w
, 1 1
wx 1
L
4
Fig. A.17

fo,y,z2)=w x"+w xy+xyz+wz+y 2z (5 minterms)

Solution: Since, we know that maxterms is dual to the minterms; so in the K-map represen-
tation of any Boolean function if we groups the 0’s instead of 1’'s we obtain the minimized
Boolean function that is in products of maxterms. In the previous example grouping of 0’s
instead 1’s are shown below in Fig. A.18.
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yz

@]
i
\Y

11M

Fig. A.18

foa,y,2)=(w+x+y)wW+x +y)& +y+2) (W +y 2) (w+y+2) (5minterms)
Example A.8. Simplify the Boolean function f(x, y, z) = X (0, 2, 4, 6).
Solution: Here, summation of minterms are given by their equivalent decimal numbers. Since,

function f has three variables so K-map of three variables must be used to represent f. The
minterms of the function are marked by 1’s in the K-map shown in Fig. A.19.

yz
X y/Zl y/z yZ yzl
1 1
x 1 1
Fig. A.19

The adjacent cells marked by 1’s can be combined to form the term free from one variable
such as,

XyzZ+xyzZ=&+x)y2=1.y2'=y2;
and, XyZ+xyzZ='+x)yz’=1.yz'=y2";
Further, these expression lies on the adjacent edges so it can be simplified as,
=y zZ+yzZ =@ +y)z=1.2"=2 ....(D)
Cells holding 1’s can also be combined as, (see Fig. A.20)

s

Xy zZ+x'yzZ=x"@+y)z=x".1.2"=x"2

and, xyzZ+xyzZ=x@+yz=x.1.2"=x2";
yz
X ’ ’ ’
Yz Yz yz ¥z
x| 1 1
x||1 1

Fig. A.20
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Further, these expression lies on the adjacent edges so it can be simplified as,
=x'zZ+xz2=+x)z'=1.2"=2 ...(2)
Combining expressions (1) and (2) we obtain,
fle,y,2)=2"+2
= Z,

Example A.9. Simplify the Boolean function f(p, q, r,s) =20, 1, 2,4, 5, 6, 8, 9, 12, 13, 14).
Sol. K-map representation of the function using four variables are is shown in Fig. A.21 and
the presence of minterms in the function are shown by placing 1’s in the corresponding cells.

rs

pq rs’ r's rs rs’
Pad||1||1 0 1
p'q 1 1 0 1
pg |11 | 1 0 1
g’ 1 1 0 0

Fig. A.21

We see from the figure that eight cells are adjacent so they can group as to give the
expression r’. Remaining 1’s (three) near the right edge are adjacent to the similar number of
1’s of left edge but grouping of these adjacent cells can’t return the minimized expression.
Therefore, we group these 1’s as,

prs +prs’=p(r+r)s’=p .1.s"=p’s" (top two left 1’s are grouped with top two right
1’s), and

qr'ss+qrs’=q(r'+r)s’=q.1.s" =qs" (grouping of 1’s that lies middle rows and two
end columns)

Hence, the simplified Boolean function is,

Fp,q,r,s)=r"+p's"+qs’

The simplification approach using K-map is convenient for Boolean function of variables
not more than five or six. Because, when number of variables increases then it is difficult to
visualize the logical adjacency between cells. Therefore K-map is unfeasible for the simplification
of Boolean functions of large variables. Of course, using similar approach with algebraic
manipulations known as Quine McCluskey method can be used for the minimizing the Boolean
function of variables up to ten. Functions of large variables can be simplified using
approximation techniques or heuristics approaches based on trial - and - chance.

Example A.10 Obtain the simplify the Boolean function F(p, q, r, s) = 20, 1, 2, 5, 8, 9, 10) in
sum of products (SoP) and product of sums (PoS).
Sol. Since function fis given in the sum of minterms form such as,

F(p,q,r,8) =my+my+my+mg+mg+mg+m,;
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That can be represented by the K-map shown in Fig. A.22.

rs

pPq rs r’s rs rs’
pq|l 1 1 0 1
pg| 0 1 0 0
pq 0 0 0 0
rqd ||| 1 1 0 1

Fig. A.22

We can group the cells recognized by 1’s as,
e Top two cells of 1’s can grouped to the lowest two cells of 1’s; return the expression

[P

pPar+pgr=p+pqgr=1.qr=qr;
e Combing four 1’s at corner gives the simplified expression, g’ s’
e Grouping of top two 1’s at second column gives the expression, p’ r’ s
Therefore simplified Boolean function is,
Fp,q,r,s)=q¢'r+q s +p'r's (SoP)
To obtain the product of sum expression we shall combine the cells marked with 0’s.

Since, combining the cells of 0’s represent the minterms not included in the function, hence it
denotes the complement of F that gives the simplified function in PoS.

e Combing 0’s that lies middle rows and two end columns gives the expression,
qr's’+qrs’ ' =qs’

e Combing all 0’s of third row gives the expression, p ¢

e Combining all 0’s of third column gives the expression, r s (Fig. A.23)

rs
Pq rs’ r's rs rs’

pq| 1 1 0 1

pq| O 1 0 0

pg | |0 o [|o]]lo

pg | 1 1 0 1

Fig. A.23
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Since, no more 0 left in the K-map for consideration, therefore we get the simplified
complemented function,

F=qgs'+pqg+rs;
Take complement, thus
F)Y=@s +pqg+rs)
F=@+s)(p"+q) (" +5s") (Using DeMorgan and involution law)
(PoS)

Example A.11 Given truth table (Fig. A.24) that defines the functions X, and X,, obtain the
simplified functions in SoP and PoS.

Sol. From the table shown in Fig. A.24 we obtain the given function X, and X,, are in sum of
minterms forms as,

X,=2(1,3,4,5) =my + mg+ my + my

and, X,=2(0,1,2,5,7) =my+m, + my+mg +my
x y z X, X,
0 0 0 0 1
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0 . e
Z 'z 2z 2
1 0 0 1 1 Y J J J
1 0 1 0 0 X0 | L1 | 0
1 1 0 0 0
x 1 1 0 0
1 1 1 0 1
Fig. A.24 Fig. A.24 (a)
Yz
X yZ o yz  yz  yZ
x 0 1 1 0
X 1 1 0 0
Fig. A.24 (b)

Functions X, and X,, can be represented using K-map (Fig. A.24 (a) and (b)) where 1’s
placed in cells represent all the minterms of the functions X, and X, and the cells marked with
0’s represents the absence of the minterms in the functions hence it denotes the complement of
the functions X, and X,,.

Combining 1’s we get the simplified expressions of functions X, & X, in SoP as,
Xi=xy' +yz'+x'z
and Xo=x'y +2'
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To obtain X, and X, in PoS, combing 0’s so we get the complement of the function that
are expressed in sum of minterms as,

X/=(xy +yz' +x' 2)
and X ="y +2)
Applying DeMorgan and involution theorem we get the simplified expressions,
XY=y +yz' +x'2)
X, =& +y) ' +2) (x+2); (SoP)
Similarly, X))y =Wy +2)
X, =(x +y)z; (SoP)
Example A.12 Simplify the Boolean expression
fle,y,2)=2(0,2,4,5,6)
Sol. The K-map of function fis shown in Fig. A.25.

yz
X y/zl y/z yz yzl
x 1 1
x | 1 1 | 1
A & L 3 /
Yz yZ Yz
Fig. A.25
Since, y’z’ and yz’ are adjacent to each other so their simplification yields 2.
So, fx,y,2)=2"+xy.
EXERCISES
A.1 Obtain the truth table of the following expressions:
@) xy +xy’ @) xy +xy’ +y'z
@) xy +xy" +y'z @)@ +y+2) @y +2)x
W) w +y +2) (1) x'y'z + x'y2’ + xyz’

(i) xy’ + [(x" + 2) y]
Also show its K-map representation.
A.2 Express the following functions into PDNF and PCNF:

@) Flx,y,2) =y +2) (y + x2) (i) Flx,y,2) =xy + yz’
@) Fp,q, =@ +q) (@ +1) ) Flw, x,y,2) = yz + wxy” + wxz’ + w'x’z
A.3 Expand the following functions into their canonical SoP forms (DNF):
@) flx, y,2) = xy +y2’ @) flA, B, C, D) = BC + CA'D
(i1i) A, B,C,D)=A+C'D + B'C @iv) (A, B, C,D) = 1.
A.4 TUsing K-map representation find the minimal DNF expression for each of the following func-
tions:
@) flx,y,2)=2(0, 1, 4, 6) @) fle,y,2)=2(1,3,7)
@) fx,y,2)=%(0,2,3,7) @) fw, x,y,2)=2(0, 1, 2, 3, 13, 15)

W) fw, x,y,2)=%2(0,2,6,7,8,9, 13, 15).
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A.5 Using K-map representation find the minimal CNF expression for each of the following func-

tions:
@) flx, v, z,w) =T1(0, 1, 2, 3, 4, 10, 11) (i) flx, y,2) = T1(0, 1, 4, 5)
i) fw, x,y,2)=11(0, 1, 2, 3, 4, 6, 12) @) fw,x,y,2)=11(0,2,6,7,8,9, 13, 15).
A.6 Consider X = 01001001, Y = 01111000, and Z = 10000111 then find
OX+Y +7Z @G X +2)Y @) XY Z.
A.7 Let flA, B, C) = AB’ + ABC’ + A’'BC’, then show that
@) A, B, C) + AC’ = flA, B, C) @) fIA,B,C)+ A #f(A, B, C)

(i) flA, B, C) + C" # flA, B, C).
A.8 Write the dual of each Boolean equation,
@Dx+xy=x+y (@) (x.1) 0 +x)=0.
A.9 Show that the dual of fix, y) = xy + x’y is equal to its complement.

A.10 In the truth table shown in Fig. A.26 that defines the functions f; and f;, obtain the simplified
functions in SoP and PoS.

)
b

=l Bl Bl E=A E=N =X =} I
=A==l k=R =1

H| O[O H|O|HFH|O N

SRR =
Clo|R|RR|iR|lo|m
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