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Bruce H. Edwards, Ph.D.
Professor of Mathematics 

University of Florida

Professor Bruce H. Edwards has been a Professor of Mathematics at the 
University of Florida since 1976. He received his B.S. in Mathematics 
from Stanford University in 1968 and his Ph.D. in Mathematics from 

Dartmouth College in 1976. From 1968 to 1972, he was a Peace Corps 
volunteer in Colombia, where he taught mathematics (in Spanish) at La 
Universidad Pedagógica y Tecnológica de Colombia.

Professor Edwards’s early research interests were in the broad area of pure 
mathematics called algebra. His dissertation in quadratic forms was titled 

“Induction Techniques and Periodicity in Clifford Algebras.” Beginning in 1978, he became interested in applied 
mathematics while working summers for NASA at the Langley Research Center in Virginia. This led to his 
research in the area of numerical analysis and the solution of differential equations. During his sabbatical year 
1984–1985, he worked on 2-point boundary value problems with Professor Leo Xanthis at the Polytechnic of 
Central London. Professor Edwards’s current research is focused on the algorithm called CORDIC that is used in 
computers and graphing calculators for calculating function values.

Professor Edwards has coauthored a wide range of mathematics textbooks with Professor Ron Larson of Penn 
State Erie, The Behrend College. They have published leading texts in the areas of calculus, applied calculus, 
linear algebra, finite mathematics, algebra, trigonometry, and precalculus. This course is based on the bestselling 
textbook Precalculus, A Graphing Approach (5th edition, Houghton Mifflin, 2008).

Over the years, Professor Edwards has received many teaching awards at the University of Florida. He was 
named Teacher of the Year in the College of Liberal Arts and Sciences in 1979, 1981, and 1990. He was 
both the Liberal Arts and Sciences Student Council Teacher of the Year and the University of Florida Honors 
Program Teacher of the Year in 1990. He was also selected by the alumni affairs office to be the Distinguished 
Alumni Professor for 1991–1993. The winners of this 2-year award are selected by graduates of the 
university. The Florida Section of the Mathematical Association of America awarded him the Distinguished 
Service Award in 1995 for his work in mathematics education for the state of Florida. Finally, his textbooks 
have been honored with various awards from the Text and Academic Authors Association. 

Professor Edwards has been a frequent speaker at both research conferences and meetings of the National 
Council of Teachers of Mathematics. He has spoken on issues relating to the Advanced Placement calculus 
examination, especially the use of graphing calculators.

Professor Edwards is the author of the 2010 Great Course Understanding Calculus: Problems, Solutions, and 
Tips. This 36-lecture DVD course covers the content of the Advanced Placement AB calculus examination, 
which is equivalent to first-semester university calculus.

Professor Edwards has taught a wide range of mathematics courses at the University of Florida, from first-year 
calculus to graduate-level classes in algebra and numerical analysis. He particularly enjoys teaching calculus to 
freshman, due to the beauty of the subject and the enthusiasm of the students.
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Mathematics Describing the Real World: Precalculus and Trigonometry

Scope:

The goal of this course is for you to appreciate the beautiful and practical subject of precalculus. You will 
see how precalculus plays a fundamental role in all of science and engineering, as well as business and 
economics. As the name “precalculus” indicates, a thorough knowledge of this material is crucial for the 

study of calculus, and in my many years of teaching, I have found that success in calculus is assured if students 
have a strong background in precalculus.

The principal topics in precalculus are algebra and trigonometry. In fact, at many universities and high schools, 
the title of the course is Algebra and Trigonometry. However, precalculus covers much more: logarithms and 
exponents, systems of linear equations, matrices, conic sections, counting methods and probability, sequences 
and series, parametric equations, and polar coordinates. We will look at all these topics and their applications to 
real-world problems.

Our study of precalculus will be presented in the same order as a university-level precalculus course. The 
material is based on the 5th edition of the bestselling textbook Precalculus: A Graphing Approach by Ron Larson 
and Bruce H. Edwards (Houghton Mifflin, 2008). However, any standard precalculus textbook can be used for 
reference and support throughout the course. Please see the bibliography for an annotated list of appropriate 
supplementary textbooks.

We will begin our study of precalculus with a course overview and a brief look at functions. The concept of 
functions is fundamental in all of mathematics and will be a constant theme throughout the course. We will study 
all kinds of important and interesting functions: polynomial, rational, exponential, logarithmic, trigonometric, 
and parametric, to name a few. 

As we progress through the course, most concepts will be introduced using illustrative examples. All the 
important theoretical ideas and theorems will be presented, but we will not dwell on their technical proofs. 
You will find that it is easy to understand and apply precalculus to real-world problems without knowing these 
theoretical intricacies.

Graphing calculators and computers are playing an increasing role in the mathematics classroom. Without a 
doubt, graphing technology can enhance the understanding of precalculus; hence, we will often use technology 
to verify and confirm our results.

You are encouraged to use all course materials to their maximum benefit, including the video lectures, which 
you can review as many times as you wish; the individual lecture summaries and accompanying problems in the 
workbook; and the supporting materials in the back of the workbook, such as the solutions to all problems, the 
glossary, and the review sheets of key theorems and formulas in algebra and trigonometry.

Good luck in your study of precalculus! I hope you enjoy these lectures as much as I did preparing them.
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Introduction to Precalculus—Functions 
Lesson 1 

Topics 

 Course overview. 
 What is precalculus? 
 Functions. 
 Domain and range. 
 What makes precalculus difficult? 

Definitions and Properties 

Note: Terms in bold correspond to entries in the Glossary or other appendixes. 

 A function, f, from a set A to a set B is a relation that assigns to each element x in set A exactly one 
element y in set B. The notation is y = f(x) where y is the value of the function at x. 

 Set A  is the domain of the function, or the set of inputs. 
 The range is the set of all outputs, which is a subset of set B.  
 The variable x is called the independent variable and y = f(x) is the dependent variable. 
 The vertical line test for functions states that if a vertical line intersects a graph at more than one 

point, then the graph is not of a function. 

Summary 

In this introductory lesson, we talk about the content, structure, and use of this precalculus course. We also turn 
to the study of functions, one of the most important concepts in all of mathematics. 

Example 1: The Graph of a Function 

Sketch the graph of the function ( ) 2 3.f x x   

Solution 

It is helpful to evaluate the function at a few numbers in the domain. For example, 

(2) 7
(0) 3

( 2) 1

f
f

f




  

You can then plot these 3 points and connect them with a straight line, see figure 1.1.  
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Figure 1.1 

 

 

Example 2: The Graph of the Absolute Value Function 

The absolute value function is defined as follows. 

,  0
( )

,  0
x x

f x x
x x


   

  

Note: The absolute value of a number is always nonnegative. 

The graph of the absolute value function looks like the letter V; it has a sharp corner at the origin, as in  
figure 1.2. 
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Figure 1.2 

 

 

Example 3: An Application to Compound Interest 

In this example, we use the letter t (time) for the independent variable. Suppose you invest $1000 in a bank 
account that pays 5% interest compounded annually. How much money will you have in the account after 
t years? 

Solution 

After the first year, you will have 

1000 1000(0.05) 1000(1 0.05) 1000(1.05) $1050.      

For the second year, you will earn 5% interest on the amount after the first year, as follows. 

21000(1.05) 1000(1.05)(0.05) 1000(1.05)(1 0.05) 1000(1.05) $1102.50      

Notice that you earned $50 interest the first year and $52.50 the second year. Continuing this pattern, you see 

that the amount in the bank after t  years is given by ( ) 1000(1.05) .tA t 
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Study Tips 

 To find the domain of a function, keep in mind that you cannot divide by zero, nor can you take square 
roots (or even roots) of negative numbers. In addition, in applications of precalculus, the domain might 
be limited by the context of the application. 

 In general, it is more difficult to determine the range of a function than its domain. 
 To analyze a function, it is often helpful to evaluate the function at a few numbers in order to get a feel 

for its behavior. 
 If a vertical line intersects a graph at more than one point, then the graph is not of a function.  
 Mathematics is not a spectator sport. Precalculus requires practice, so you will benefit from doing the 

problems at the end of each lesson. The worked-out solutions appear at the end of this workbook.  
 

Pitfall 

 Although we usually write ( )y f x  for a typical function, different letters are often used. The 
underlying concept is the same. 

 

1. Evaluate the function 2( ) 2h t t t   at each specified value of the independent variable below and 
simplify. 

a. (2)h  

b. (1.5)h  

c. ( 2)h x   

2. Evaluate the function 2
1( )

9
q x

x



 at each specified value of the independent variable below and 

simplify. 

a. (0)q  

b. (3)q  

c. ( 3)q y   

3. Find the domain of the function 
4( )h t
t

 . 

4. Find the domain of the function 2( )
10

yg y
y





. 

    Problems
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5. Determine whether the equation 2 2 4x y   represents y  as a function of .x  

6. Determine whether the equation 4y x   represents y  as a function of .x  

7. Write the area A of a circle as a function of its circumference .C  

8. Sketch the graph of the following function by hand.  

 
2 3,  0

( )
3 ,  0
x x

f x
x x
 

   
 

9. Compare the graph of 2y x   with the graph of ( )f x x . 

10. Compare the graph of 2y x   with the graph of ( )f x x .
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Polynomial Functions and Zeros 
Lesson 2 

 

Topics 

 Polynomial functions. 
 Linear and quadratic functions. 
 Zeros or roots of functions. 
 The quadratic formula. 
 Even and odd functions. 
 The intermediate value theorem. 

 

Definitions and Properties 

 Let n  be a nonnegative integer and let 1 2 1 0,  ,   ,  ,  ,  n na a a a a   be real numbers with 0.na   The 

function given by 1 2
1 2 1 0( ) n n

n nf x a x a x a x a x a
       is called a polynomial function in x  of

degree ,n where na is the leading coefficient. 
 A linear polynomial has the form 1 0( )f x a x a   or .y mx b   

 A quadratic polynomial, or parabola, has the form 2( ) ,  0.f x ax bx c a     
 A zero, or root, of a function ( )y f x  is a number a  such that ( ) 0.f a    
 A function is even if ( ) ( ).f x f x   A function is odd if ( ) ( ).f x f x    

Theorem and Formula 

 The zeros of a quadratic function are given by the quadratic formula: 
2 4

2
b b acx

a
  

 . 

 The intermediate value theorem says that if a  and b are real numbers, ,a b and if f is a 

polynomial function such that ( ) ( ),f a f b then in the interval  ,  ,a b f takes on every value between 

( )f a  and ( ).f b  In particular, if ( )f a  and ( )f b  have opposite signs, then f  has a zero in the 

interval  ,  .a b  
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Summary 

In this lesson, we study polynomial functions. The domain of a polynomial function consists of all real numbers 
and the graph is a smooth curve without any breaks or sharp corners. The graph of a polynomial function of 
degree 0 or 1 is a line of the form ,y mx b   with slope m  and y-intercept .b  

Example 1: The Graph of a Linear Polynomial 

Sketch the graph of the first degree polynomial ( ) 3 5.f x x   

Solution 

The slope is 3, and the graph intercepts the y-axis at  0,  5 .  Plotting some more points, you obtain the graph 

shown in figure 2.1. 

Figure 2.1 

 

 

Example 2: Using the Quadratic Formula 

Find the zeros of the quadratic polynomial 2( ) 2 3.f x x x    
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Solution 

We use the quadratic formula with 2,  1,a b   and 3.c    

 22 1 1 4(2)( 3)4 1 25 1 5
2 2(2) 4 4

b b acx
a

         
     

Thus, there are 2 zeros: 1 5 1
4

x  
   and 1 5 3

4 2
x  
   .  

 

If you graph this polynomial, you will see that the curve is a parabola that intersects the horizontal axis at 2 

points, 1 and 3 .2  However, if you apply the quadratic formula to the polynomial 2 13( ) 2
4

f x x x   , you 

obtain an expression involving the square root of a negative number. In that case, there are no real zeros. 

Example 3: Locating Zeros 

Use the intermediate value theorem to locate a zero of the function 4 3( ) 3 4 3.f x x x    

Solution 

Notice that (0) 3f    and (1) 4.f   Therefore, there is a sign change on the interval  0,  1 .  According to the 

intermediate value theorem, f must have a zero in this interval. Using a graphing utility (as shown in figure 
2.2), you will see that the zero is approximately 0.779.  In fact, there is a second zero, approximately 1.585.  
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Figure 2.2 

 

 

Study Tips 

 Parallel lines have the same slope. The slopes of perpendicular lines are negative reciprocals of 
each other. 

 The equation of a horizontal line is y = c, a constant. The equation of a vertical line is x = c. 
 The real zeros of a function correspond to the points where the graph intersects the x-axis. 
 Quadratic polynomials are often analyzed by completing the square.  

 

Pitfalls 

 If the quadratic formula yields the square root of a negative number, then the quadratic polynomial 
has no real roots. 

 Finding the zeros of polynomials often requires factoring, which can be difficult. 
 

 

1. Find the slope and y-intercept of the line 5 3 0x y   . Then sketch the line by hand. 

2. Find an equation of the line with slope 3m   and passing through the point  0,  2 .   

3. Find the slope-intercept form of the line that passes through the points  5,  1  and  5,  5 .  

4. Use factoring to solve the quadratic equation 2 4 12x x  . 

    Problems
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5. Use the quadratic formula to solve the equation 22 2 0.x x    

6. Solve the quadratic equation 2 4 32 0x x    by completing the square. 

7. Find 2 quadratic equations having the solutions −6 and 5. 

8. Find a polynomial function that has zeros 4, −3, 3, 0. 

9. Use the intermediate value theorem and a graphing utility to find any intervals of length 1 in which the 

polynomial function 3 2( ) 3 3f x x x    is guaranteed to have a zero. Then use the zero or root feature 
of the graphing utility to approximate the real zeros of the function. 

10. Find all solutions of the equation 3 25 30 45 0.x x x    

11. Find all solutions of the equation 4 24 3 0.x x     

12. Find 2 positive real numbers whose product is a maximum if the sum of the first number and twice the 
second number is 24. 
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Complex Numbers 
Lesson 3 

 

Topics 

• The imaginary unit .i  
• The set of complex numbers. 
• Complex conjugates. 
• Sums, products, and quotients of complex numbers. 
• The fundamental theorem of algebra. 
• Graphing complex numbers in the complex plane. 
• Fractals and the Mandelbrot set. 

 

Definitions and Properties 

• The imaginary unit i is 1.−  In other words, 2 1.i = −  
• A set of complex numbers, or imaginary numbers, consists of all numbers of the form ,a bi+  where 

a  and b are real numbers.  
• The standard form of a complex number is a bi+ . If 0,b =  then the number is real. 
• The complex conjugate of a bi+  is .a bi−  
• In the complex plane, the horizontal axis is the real axis and the vertical axis is the imaginary axis. A 

complex number a bi+  has coordinates ( ),  .a b  
• A complex number c  is contained in the Mandelbrot set if and only if the following sequence is 

bounded: ( ) ( )( )22 22 2 2, , , ,   .c c c c c c c c c c+ + + + + +   

 

Theorem 

• The fundamental theorem of algebra says that if f is a polynomial of degree ,  0,n n > then f has 

precisely n  linear factors: ( )( ) ( )1 2( ) ,n nf x a x c x c x c= − − −  where 1 2,  ,   nc c c  are complex 
numbers.  

 

Summary 

In this lesson, we look at an extension of real numbers, called the set of complex numbers. Using complex 
numbers and the quadratic formula, we can now find the zeros of any quadratic polynomial. 
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Example 1: Using the Quadratic Formula 

Find the zeros of the quadratic polynomial 2 13( ) 2 .
4

f x x x    

Solution 

We use the quadratic formula as follows. 

 2
2

13( 2) 2 4(1)
44 2 9

2 2(1) 2

2 3 1 2 3 31
2 2 2

b b acx
a

i i

              

  
   

 

Thus, there are 2 complex zeros: 31
2

x i   and 31 .
2

x i    

Addition and multiplication of complex numbers are straightforward, as long as you replace 2i  with 1.   

Example 2: Operations with Complex Numbers 

The fundamental theorem of algebra states that in theory, all polynomials can be factored into linear factors. 
The zeros could be real or complex, and even repeated. 

 
   

  

2

2

9 3 1 3 1 3

7 3 7 3 14

2 4 3 8 6 4 3 11 2

i

i i

i i i i i i

     

   

       

Example 3: Factoring Polynomials over the Complex Numbers 

Factor the polynomial 4 2( ) 20.f x x x    
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Solution 

We can first factor this fourth degree polynomial as the product of 2 quadratic polynomials. Then, we can factor 
each quadratic. 

  
   
    

4 2 2 2

2

20 5 4

5 5 4

5 5 2 2

x x x x

x x x

x x x i x i

    

   

    

 

There are 4 zeros: 5,  2 .i   Notice that the complex zeros occur as conjugate pairs. 

 

Example 4: The Mandelbrot Set 

Fractals are a relatively new and exciting area of mathematics. The famous Mandelbrot set is defined using 
sequences of complex numbers. The complex number c i  is in the Mandelbrot set because the following 
sequence is bounded. 

 
 

2

2

2

1

1

1
etc.

c i
i i i

i i i

i i i



   

    

    

 

On the other hand, the complex number 1 i  is not in the Mandelbrot set.  

Study Tips 

 The sum of a complex number and its conjugate is a real number. Furthermore, the product of a 
complex number and its conjugate is a real number. 

 Complex zeros of polynomials having real coefficients occur in conjugate pairs. 

Pitfall 

 Some of the familiar laws of radicals for real numbers do not hold with complex numbers.  
For example, the square root of a product is not necessarily the product of the square roots:

  4 9 2 3 6,i i      whereas ( 4)( 9) 36 6.     
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1. Simplify 13 (14 7 ).i i− −  

2. Simplify 6 2.− −  

3. Simplify ( )1 (3 2 ).i i+ −  

4.  Simplify ( )4 8 5 .i i+  

5. Write the complex conjugate of the complex number 4 3 ,i+ then multiply by its complex conjugate. 

6. Write the complex conjugate of the complex number 3 2,− −  then multiply by its complex conjugate. 

7. Write the quotient in standard form: 
2

4 5i−
. 

8. Find all zeros of the function 2( ) 12 26,f x x x= − +  and write the polynomial as a product of linear 
factors. 

9. Find all zeros of the function 4 2( ) 10 9,f x x x= + +  and write the polynomial as a product of linear 
factors. 

10. Find a polynomial function with real coefficients that has zeros 2,  2,  4 .i−   

11. For 1
2

c i= , find the first 4 terms of the sequence given by  

( ) ( )
22 22 2 2,  ,  ,  ,   .c c c c c c c c c c + + + + + +  

  

From the terms, do you think the number is in the Mandelbrot set? 

  

    Problems
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Rational Functions 
Lesson 4 

 

Topics 

 Rational functions. 
 Horizontal and vertical asymptotes. 

 

Definitions and Properties 

 A rational function can be written in the form 
( )( ) ,
( )

N xf x
D x

  where ( )N x and ( )D x  are polynomials. 

 The domain of a rational function consists of all values of x  such that the denominator is not zero. 
 The vertical line x a  is a vertical asymptote of the graph of f  if ( )f x   or ( )f x   as 

,x a  either from the right or from the left. 
 The horizontal line y b  is a horizontal asymptote of the graph of f  if ( )f x b as x  or 

.x  
 

Test for Horizontal Asympotes 

Let 
( )( )
( )

N xf x
D x

  be a rational function. 

 If the degree of the numerator is less than the degree of the denominator, then y = 0 is a  
horizontal asymptote. 

 If the degree of the numerator equals the degree of the denominator, then the horizontal asymptote is 
the ratio of the leading coefficients. 

 If the degree of the numerator is greater than the degree of the denominator, then there is no  
horizontal asymptote. 

 

Summary 

In this lesson, we look at a class of functions called rational functions, which are quotients of polynomials. 
Many rational functions have vertical and/or horizontal asymptotes. 
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Example 1: Finding Asymptotes 

Find the vertical and horizontal asymptotes of the graph of the rational function
2

2
2( ) .

1
xf x

x



 

Solution 

From figure 4.1, you see that the horizontal asymptote is 2.y   The vertical asymptotes are 1x    because 
these are zeros of the denominator, while not of the numerator.  

Figure 4.1

 

 

Example 2: Finding Asymptotes and Holes 

You have to be careful when finding vertical asymptotes. Find the vertical asymptotes of the graph of the 

function 
  

2 2( ) .
2 3

x xf x
x x

 


 
 

Solution 

It is not sufficient to assume that the vertical asymptotes are simply the zeros of the denominator. You need to 
factor the numerator and cancel the common factor. 

  
  
  

 
 

2 2 1 12( ) ,  2
2 3 2 3 3

x x xx xf x x
x x x x x

   
    

    
 

Hence, the only vertical asymptote is 3,x  whereas the graph has a hole at 2,x    shown in figure 4.2. 
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Figure 4.2 

 

Example 3: The Design of a School Poster 

This example illustrates how rational functions arise in real-life applications. Suppose you want to design a 
school poster having 48 square inches of print. The margins on each side of the page are 1½ inches wide. The 
margins at the top and bottom are each 1 inch deep. What should the dimensions of the page be so that the 
minimum amount of paper is used? 

Solution 

Label a diagram as seen in figure 4.3.  
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Figure 4.3 

 

If x  and y  are the dimensions inside the margins, then 48xy   or 48 .y x  The area to be minimized is  

  
  
  

3 2

483 2

3 48 2
.

A x y

x x
x x

x

  

  

 


 

Using a graphic utility, graph this rational function and estimate the minimum value. You obtain 8.5.x   

Hence, 48 5.68.5y   . The dimensions for the entire page are 3 11.5x    inches by 2 7.6y    inches. It is 

interesting to note that by using calculus you can find the exact value 6 2.x    

 

Study Tips 

 A graphing calculator is useful in verifying the shape and asymptotes of the graph of a rational 
function. 

 A rational function has a finite number of vertical asymptotes. 
 A rational function can have zero or one horizontal asymptote. 
 Some graphing utilities have difficulty graphing rational functions that have vertical asymptotes. 

Often, the utility will connect parts of the graph that are not supposed to be connected. To eliminate 
this, try changing the mode form to dot mode. 
 

Pitfalls 

 You cannot assume that the vertical asymptotes are the zeros of the denominator. You must check 
that these zeros are not zeros of the numerator as well. 

 It is possible for a nonrational function to have 2 horizontal asymptotes, one to the right and one to 
the left. 

 It is possible for a nonrational function to have an infinite number of vertical asymptotes. We will see 
such an example when we study the tangent function in trigonometry. 
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1.  Sketch the graph of the following rational function, indicating any intercepts and asymptotes. 

a.
1( )

2
f x

x



 

b.
1( )

6
f x

x



 

c.
2

2( )
4

xf x
x




 

d.
2

2
3( )

6
x xf x

x x



 

 

2. Identify any horizontal and vertical asymptotes of the following functions 

a. 
2

1( ) .f x
x


 

b.
2

2
25( ) .
5

xf x
x x





 

3. Find the zeros of the rational function 
2 4( )

3
xf x
x





. 

4. Write a rational function f  having a vertical asymptote 2,x   a horizontal asymptote 0,y   and a 
zero at 1.x   

5. Using a graphing utility, graph the following functions and indicate any asymptotes.  

a.
2

6( )
1

xh x
x




 

b.
4 2

( )
1

x
g x

x





 

 

    Problems
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Inverse Functions 

Lesson 5 

 

Topics 

• Combinations of functions. 
• Inverse functions. 
• Graphs of inverse functions. 
• One-to-one functions and the horizontal line test. 
• Finding inverse functions. 

 

Definitions and Properties 

• Addition and multiplication of functions is defined by: 
 

( )( ) ( ) ( )
( )( ) ( ) ( ).

f g x f x g x
fg x f x g x
+ = +

=
 

• The composition of 2 functions is defined by ( )( ) ( ( )).f g x f g x=  
• Let f  and g be 2 functions such that ( ( ))f g x x=  for all x in the domain of ,g and ( ( ))g f x x=  for 

all x in the domain of .f  Then g is the inverse of ,f denoted 1.f −  
• If a function has an inverse, then the inverse is unique. If f is the inverse of ,g  then g  is the inverse 

of .f  The domain of f is the range of ,g and the domain of g is the range of .f  
• The graphs of inverse functions are symmetric across the line .y x=  
• A function is one-to-one if, for a and b in the domain, ( ) ( )f a f b=  implies .a b=  A function has an 

inverse if and only if it is one-to-one. 
• A function is one-to-one if its graph passes the horizontal line test: Every horizontal line intersects the 

graph at most once. 
 

Summary 

You can combine functions in many ways, including addition, multiplication, and composition. In particular, 

inverse functions, such as ( ) 5f x x= and ( ) ,
5
xg x =  satisfy ( )( )f g x x= and ( )( ) .g f x x=  
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Example 1: Verifying Inverse Functions Algebraically 

The functions 3( ) 2 1f x x 
 
and 3

1( )
2

xg x 
  are inverses of each other because  

 
3

3 3
1 1 1( ) 2 1 2 1 ( 1) 1 ,

2 2 2
x x xf g x f x x

                           
 

and similarly, ( ( )) .g f x x  Notice that the graph of g is a reflection of the graph of f in the line y x   
(figure 5.1). 

Figure 5.1 

 

 

Example 2: Finding Inverse Functions 

If a function is one-to-one, then it has an inverse. To illustrate a technique for finding the inverse function, find 

the inverse function of ( ) 1.f x x   
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Solution 

Begin with the equation 1,y x   interchange the roles of x  and ,y and solve for .y  

 
 

2

21

1,  0,  1

1

1

1 ,  1,  0

( ) 1 ,  1,  0

y x x y

x y

x y

y x x y

f x x x y

   

 

 

   

   

 

Notice how the domains and ranges have been interchanged.  

Example 3: Temperature Scales 

Inverse relationships can arise in applications. The Fahrenheit (F) and Celsius (C) temperature scales are related 

by 2 equivalent formulas: 
9F C 32
5

   and  5C F 32 .
9

   If the temperature is C = 35° on the Celsius scale, 

then the corresponding Fahrenheit temperature is  9F 35 32 63 32 95 .
5

       

 

Study Tips  

 Inverse functions satisfy the equations  1( )f f x x   and  1 ( ) .f f x x   

 Graphically, if  ,  a b  is a point on the graph of the function ,f  then  ,  b a  is on the graph of the 
inverse. 

 

Pitfalls 

 The notation for an inverse function can be misleading. 1f 

 does not mean the reciprocal of ,f 1
f

. 

 A function must be one-to-one in order to have an inverse. For example, the function 2( )f x x does 
not have an inverse because the parabola does not pass the horizontal line test. However, if you restrict 

the domain to 0,x   then the inverse exists: 1( ) .f x x   

 In general, the composition of functions is not commutative. That is, in general,    .f g g f   
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1. Let 2( ) 5 and ( ) 1 .f x x g x x     Find the following. 

a. (f + g)(x) 

b. (f – g)(x) 

c. (fg)(x) 

d. ( )f x
g

 
 
 

 

 

2. Let 2( ) 4 and ( ) .f x x g x x    Determine the domains of the following. 

a.  f  

b. g  

c. f g  

  

3. Find the inverse of the function ( ) 6 .f x x  

  

4. Find the inverse of the function ( ) 3.f x x   

 

5. Show that the functions 3( ) 5f x x   and 3( ) 5g x x   are inverses of each other. 

 

6. Determine whether the function 2

1( )f x
x

  is one-to-one. 

7. Determine whether the function ( ) 2 3f x x   is one-to-one. 

    Problems
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8. Find the inverse function of ( ) 2 3.f x x   Describe the relationship between the graphs of f and  
its inverse. 

9. Find the inverse function of 2( ) 4 ,  0 2.f x x x     Describe the relationship between the graphs 

of f and its inverse. 

10. Restrict the domain of the function ( ) 2f x x   so that the function is one-to-one and has an inverse. 

Then find the inverse function 1f  . State the domains and ranges of f and 1.f   
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solving Inequalities 
Lesson 6 

Topics 

 Interval notation. 
 Properties of inequalities. 
 Inequalities involving absolute values. 

 

Interval Notation 

 Closed interval  ,  a b  means .a x b   

 Open interval  ,  a b means .a x b   

 Infinite interval  ,  a   means .x a  

 Infinite interval  ,  b  means .x b  

Properties of Inequalities 

 a b and b c  implies a c  (transitivity).

 a b  and c d implies .a c b d  

 a b  implies .a c b c  

 a b  and 0c  implies .ac bc

 a b  and 0c  implies .ac bc

 Let 0.a   Then 

o x a  if and only if .a x a    

o x a  if and only if x a   or .x a  

Summary 

We have already used inequalities throughout these lessons, especially when studying domains of functions. We 
see how the properties of inequalities are used in solving the following examples. 
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Example 1: Solving an Inequality 

Solve the inequality 31 4.
2

x x  
 
 

Solution 

Notice how the inequality is reversed when you divide by 5.  

31 4
2

2 3 2 8
2 5 8

5 10
10
5

2

x x

x x
x
x

x

x

  

  
  
  







 

 

Example 2: Solving an Inequality Involving Absolute Values 

Inequalities involving absolute values occur frequently in calculus. Solve the inequality 5 2.x   

Solution  

5 2
2 5 2
3 7

x
x
x

 

   
 

 

The solution consists of all real numbers in the closed interval  3,  7 .  If the problem had asked for the solution 

to 5 2,x  then the solution set would be all numbers less than 3 or greater than 7    ,  3 7,  .  
 
 

Example 3: An Application of Inequalities 

Inequalities can arise in applications. If a student has scored 68 and 77 on 2 tests, what must the student score 
on the third test to bring the average up to 80? 
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Solution 

Let x be the score on the third test. The average of the 3 scores must be greater than or equal to 80. 

68 77 80
3

145 3(80) 240
240 145 95

x

x
x

 


  
  

 

The student needs at least a score of 95 on the third test.  

 

Study Tips  

 The set theory expression A B  means the set of all numbers in the set A  together with all the 
numbers in the set .B  The symbol  is called the union symbol.  

 The set theory expression A B  means all numbers that are contained in both sets A and .B  The 
symbol ∩ is called the intersection symbol. 

 The set of all real numbers can be expressed as  ,  .   

 The horizontal line over an answer indicates a recurring number: 0.9 0.9999999... .  

Pitfalls 

 Infinity    is not a number. You should not write infinite intervals using a bracket next to the infinity 

symbol. That is, write  4,    not  4,    . 

 If you multiply or divide both sides of an inequality by a negative number, you must reverse the 
inequality.  

 It is incorrect to write an inequality in the form 7 3x  . There are no values of x that are greater 
than 7 and also less than 3. 

 

1. Find the domain of the following functions. 

a. ( ) 5.f x x   

b. 2( ) 4.f x x   

2. Solve the following inequalities. 

    Problems
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a. 10 40.x   

b. 4( 1) 2 3.x x    

c.  8 1 3 2 13.x      

d. 30 5.
2

x 
   

e. 7 6.x   

f. 14 3 17.x    

3. Determine the intervals on which the polynomial 2 4 5x x   is entirely negative and those on which it 
is entirely positive. 

4. Use absolute value notation to describe the set of all real numbers that lie within 10 units of 7. 

5. Use absolute value notation to describe the set of all real numbers that are at least 5 units from 3. 
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Exponential Functions 
Lesson 7 

 

Topics 

 Exponential functions. 
 Review of exponents. 
 Graphs of exponential functions. 
 The natural base e. 
 The natural exponential function. 

 

Definitions and Properties 

 The exponential function f with base ( 0,  1)a a a   is defined ( ) ,xf x a  where x is any real 
number. 

 The domain of the exponential function is  ,  ,   and the range is  0,  . The exponential  

function is increasing if 0a   and decreasing if 0 1.a   The intercept is  0,  1 . The x-axis is the 
horizontal asymptote. 

 The exponential function is one-to-one and hence has an inverse (the logarithmic function, to be 
defined in the next lesson). 

 The natural base e 2.71828  is the most important base in calculus. The corresponding function 
( ) xf x e  is called the natural exponential function. 

Properties of Exponents 

Let ,  a b  be real numbers and ,  m n  integers. 

 m n m na a a  ,
m

m n
n

a a
a

  


20 2 21 ,  1 ( 0),  n

na a a a a a
a

       

   ,  
m m

m m m
m

a aab a b
b b

   
 

  nm mna a
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Formulas for Compound Interest 

After t years, the balance A in an account with principle P and annual interest rate r (in decimal form) is given  
by the following. 

 For n  compounding per year: 1 .
ntrA P

n
   
 

 

 For continuous compounding: .rtA Pe  

Summary 

In the next block of lessons, we define and explore exponential and logarithmic functions. The exponential 
function is defined for all real numbers. You can graph an exponential function by plotting points or using a 
graphing utility. 

 

Example 1: The Graph of an Exponential Function 

Graph the exponential function ( ) 2 .xf x 
 
 

Solution 

Plot the following ordered pairs and connect them with a smooth curve: 

           1 13,  8 ,  2,  4 ,  1,  2 ,  0,  1 ,  1,  ,  2,  2 4  . Note that the resulting graph is continuous and passes 

the horizontal line test, see figure 7.1. 
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Figure 7.1 

 

   

 

Example 2: A Model for Radioactive Decay 

An exponential function to base 2 can be used to model radioactive decay. Let y  represent a mass, in grams, of 
radioactive strontium 90, whose half-life is 29 years. The quantity of strontium present after t  years is given by 

 
29110 .

2

t

y    
   

Try graphing the model on your graphing utility to verify the results of the example. Notice that the graph  
is decreasing. 

a. According to this model, what is the initial mass?  

b. How much strontium is present after 29 years? 

c. How much is present after 80 years? 
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Solution  

a. Letting 0,t   you see that the initial mass is 
0 0291 110 10 10(1) 10

2 2
y          

   
grams. 

b. Letting 29,t   you see that half the amount remains: 
29 1291 110 10 5

2 2
y         

   
 grams. 

The solution to this part illustrates that the half-life is 29 years. 

c. When 80,t   you need a calculator to obtain 
80

29110 1.48
2

y    
 

 grams. 

Example 3: An Application to Compound Interest 

We can apply exponential functions to compound interest. A total of $12,000 is invested at an annual interest 
rate of 3%. Find the balance after 4 years if the interest is compounded 

a.  quarterly, and 

b. continuously. 

 

Solution 

We use a calculator for both calculations. 

a.
4(4).031 12,000 1 $13,523.91

4

ntrA P
n

          
   

  

b.  0.03 412,000 $13,529.96rtA Pe e    

Notice that the account has earned slightly more interest under continuous compounding.   
 
 

 

Study Tips  

 The base of the exponential function must be positive because xa  is undefined for certain negative 
values of .x  Similarly, the base cannot be 1 because ( ) 1 1xf x    is a linear function. 
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• The number e  can be defined as the limit as x  tends to infinity of the expression 11 .
x

x
 + 
 

 

In calculus, this is written 1lim 1 .
x

x
e

x→∞

 + = 
 

 

 

Pitfall 

• The tower of exponents 
cba  means 

cb
a
  
   not ( )cba . 

 

 

1. Evaluate the expressions. 

a. 24 (3)  

b. 33(3 )  

2. Evaluate the expressions. 

a. 4
3

3−  

b. ( ) 524 2 −−  

3. Graph the following exponential functions by hand. Identify any asymptotes and intercepts, and 
determine whether the graph of the function is increasing or decreasing. 

a. ( ) 5xf x =   

b. ( ) 5 xf x −=   

4. Use the graph of ( ) 3xf x =  to describe the transformation that yields the graph of 5( ) 3 .xg x −=  

5. Use the graph of ( ) 0.3xf x =  to describe the transformation that yields the graph of ( ) 0.3 5.xg x = − +  

6. Use a calculator to evaluate the function 4( ) 50 xf x e=  for 0.02.x =  Round your result to the  
nearest thousandth. 

  

    Problems



35

7. Graph the following functions by hand. Identify any asymptotes and intercepts, and determine whether 
the graph of the function is increasing or decreasing. 

a.  ( ) xf x e−=  

b. 5( ) 2 xf x e −= +  

8. Determine the balance for $2500 invested at 2.5% interest if 

a. interest is compounded annually, 

b. interest is compounded daily, and 

c. interest is compounded continuously. 
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Logarithmic Functions 
Lesson 8 

 

Topics 

 Logarithmic functions. 
 Common logarithms and natural logarithms. 
 Properties of logarithms. 
 Graphs of logarithmic functions. 
 The rule of 70. 

 

Definitions and Properties 

 The logarithmic function f with base ( 0,  1)a a a   is defined by logay x  if and only if .yx a  
Logarithms to base 10 are called common logarithms. 

 The domain of the logarithmic function is  0,  ,  and the range is  ,  .  The logarithmic  

function is increasing if 0a   and decreasing if 0 1.a   The intercept is  1,  0 . The y-axis is the  
vertical asymptote. 

 The logarithmic function is one-to-one, and the inverse is the exponential function. 
 The graphs of the logarithmic and exponential functions (with the same base) are reflections of each 

other across the line .y x  
 The natural logarithmic function is the inverse of the natural exponential function: logey x  if and 

only if .yx e  The usual notation is ln .y x

The Rule of 70 

The doubling time for a deposit earning r % interest compounded continuously is approximately 70
r

years.

Properties of Logarithms 
 log 1 0a   

 log 1a a 

 log x
a a x

 loga xa x

 If log log ,a ax y  then .x y  
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Summary 

The inverse of the one-to-one exponential function is the logarithmic function. You can calculate logarithms by 
referring back to the corresponding exponential function. 

Example 1: Calculating Logarithms 

  2log 32 5  because 52 32.  

  3log 1 0  because 03 1.  

  4
1log 2
2

  because 
1

24 2.  

  10log 1000 3  because 310 1000.  

 

The graph of the logarithmic function logay x  is a reflection of the graph of the exponential function xy a  
about the line .y x  It is easy to graph horizontal and vertical shifts of logarithmic functions. 

Example 2: Graphing Logarithmic Functions 

Graph and compare the functions 10( ) logg x x  and  10( ) log 1 .f x x   

Solution  

The graph of f is the graph of g shifted one unit to the right (figure 8.1). The intercept for f  is  2,  0 ,  and 

the vertical asymptote is 1.x   
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Figure 8.1 

 

Example 3: Calculating Natural Logarithms 

The natural logarithmic function is the inverse of the natural exponential function. 

 11ln ln 1e
e

    

 ln5 5e   

 4ln1 4(0) 0   

 2ln 2(1) 2e    

 

Study Tips  

 Calculators generally have 2 logarithm buttons: base 10 (common logarithm) and base e  (natural 
logarithm). 

 It is helpful to remember that logarithms are exponents. 
 The domain of the logarithmic function is the range of the corresponding exponential function. 

Similarly, the range of the logarithmic function is the domain of the exponential function. 
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Pitfall 

 You cannot evaluate the logarithm of zero or a negative number. 

 

1. Write the following logarithmic equations in exponential form. 

a. 4log 64 3   

b. 32
2log 4
5

   

2. Evaluate the function 2( ) logf x x  at 16.x   

3. Evaluate the function 10( ) logf x x  at 
1

1000
x  . 

4. Use a calculator to evaluate 10log 345.  Round your answer to 3 decimal places. 

5. Use a calculator to evaluate ln 42.  Round your answer to 3 decimal places. 

6. Solve the equation for 2
6: log 6 .x x  

7. Sketch the graph of ( ) 3 ,xf x   and use the graph to sketch the graph of 3( ) log .g x x  

8. Find the domain, vertical asymptote, and x-intercept of the following logarithmic functions. Then 
sketch the graphs by hand.  

a.  2( ) log 2f x x  .  

b.  ( ) ln 1f x x  .  

c.  ( ) lnf x x  .  

 

  

    Problems
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Properties of Logarithms
Lesson 9 

 

Topics 

 The change of base formula. 
 Logarithms of products, quotients, and powers. 
 Applications of logarithms. 

 

Theorems and Properties 

 The change of base formula is 10

10

log lnlog .
log lna

x xx
a a

   

 log ( ) log loga a auv u v   

 log log loga a a
u u v
v

    
 

 log logn
a au n u

The Rule of 72 

The doubling time for a deposit earning r % interest compounded annually is 72
r

years.

Summary 

Graphing calculators usually have only 2 keys for logarithms, those to base 10 and the natural logarithm. To 
calculate logarithms to other bases, use the change of base formula.  

Example 1: Calculating Logarithms 

   10
4

10

log 25 1.39794log 25 2.32
log 4 0.60206

     

  4
ln 25 3.21888log 25 2.32
ln 4 1.38629

    
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Notice that the 2 answers agree.  

Example 2: Simplifying Logarithms 

One of the most important properties of logarithms is that the logarithms of products are the sums of the 
logarithms. Similarly, the logarithms of quotients are the differences of the logarithms. 

  ln 2 ln3 ln (2)(3) ln6    


2ln ln 2 ln 27

27
   

  2
10 10 10log 49 log 7 2log 7   

Example 3: Writing a Product as a Sum 

Logarithms play a major role in calculus by converting products to sums.

  3 3
4 4 4 4 4 4 4log 5 log 5 log log log 5 3log logx y x y x y       


     

1
2 1

2
3 53 5 1ln ln ln 3 5 ln 7 ln 3 5 ln 7

7 7 2
xx x x

         
 
 

  
 
 

 

Example 4: The Rule of 72 

The rule of 72 is a convenient tool for estimating the doubling time for an investment earning interest 
compounded annually. Suppose a bank pays 8% interest, compounded annually. Use the rule of 72 to 
approximate the doubling time. 

Solution 

The rule of 72 says that the doubling time is approximately 
72 9
8
  years. If you use the formula for compound 

interest, you will see that this approximation is excellent. 
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Study Tips  

 Calculators generally have 2 buttons for logarithms: base 10 (common logarithm) and base e  (natural 
logarithm). Use the change of base formula for other bases. 

 The rule of 72 is for compound interest, as contrasted with the rule of 70 for continuous compounding. 
 

Pitfalls 

 There is no formula for the logarithm of a sum or difference. In particular, 

 log log log .a a au v u v    

 Be careful of domain changes when using properties of logarithms. For example, the domain of
2lny x  is all 0,x  whereas the domain of 2lny x  is all 0.x   

 The notation for logarithms can be confusing. Note that  ln ln .nx n x  

 

1. Evaluate the following logarithms using the change of base formula. Round your answer to 3 decimal 
places. 

a. 3log 7   

b. 15log 1460   

2. Rewrite the following expressions in terms of ln 4  and ln 5.  

a. ln 20  

b.
5ln
64

 

3. Use the properties of logarithms to rewrite and simplify the following logarithmic expressions 

a. 4log 8.  

b.  6ln 5 .e  

4. Use the properties of logarithms to expand the expression ln z  as a sum, difference, and/or constant 
multiple of logarithms.  

    Problems
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5. Condense the expression ln 3ln( 1)x x   to the logarithm of a single quantity. 

6. Find the exact value of 3log 9  without using a calculator. 

7. Find the exact value of 3 7ln lne e  without using a calculator. 
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Exponential and Logarithmic Equations 
Lesson 10 

 

Topics 

 Equations involving logarithms and exponents. 
 Approximate solutions. 
 Applications. 

Summary 

In this lesson, we solve a variety of equations involving logarithms and exponents.  

Example 1: Solving an Exponential Equation 

Solve the equation 24 3 2.xe    

Solution 

We use the properties of logarithms and exponents to solve for .x  

2

2

2

2

4 3 2

4 5
5
4

5ln ln
4
52 ln
4

1 5ln 0.11
2 4

x

x

x

x

e
e

e

e

x

x

 





   
 
   
 
   
 

  

 

Example 2: Solving a Logarithmic Equation 

You should be careful to check your answers after solving an equation. In this example, you will see that one of 
the “solutions” is not valid. The appearance of these “extraneous” solutions occurs frequently with logarithmic 
equations because the domain of the logarithmic function is restricted to positive real numbers.  
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Solve the equation ln( 2) ln(2 3) 2ln .x x x     

Solution 

Notice how we use the properties of logarithms to simplify both sides and remove the logarithms. 

  
  

  

2

2

2 2

2

ln( 2) ln(2 3) 2ln

ln 2 2 3 ln

2 2 3

2 7 6

7 6 0
6 1 0

x x x

x x x

x x x

x x x

x x
x x

   

    
  

  

  

  

 

There are 2 solutions to this quadratic equation: 1x   and 6.x   However, 1x  is an extraneous solution 
because it is not in the domain of the original expression. Therefore, the only solution is 6.x   

 

Example 3: Approximating the Solution of an Equation 

In this example, we are forced to use a computer or graphing calculator to approximate the solution of the 

equation. Approximate the solution to the equation 2ln 2.x x    
 
 

Solution 

Write the equation as a function: 2( ) ln 2f x x x   . The zeros of this function are the solutions to the original 
equation. Using a graphing utility, you see that the graph has 2 zeros, approximately 0.138 and 1.564. Note that 
it is impossible to find the exact solutions to the equation. 

Study Tips  

 There many ways to write an answer. For instance, in the first example, you could have written the 

answer as  
1

21 5 5 5 5 1ln ,  ln ,  ln ,  ln ,  or ln 5 ln 4
2 4 4 4 2 2

       
   

. All of these are correct.

 Recall that the logarithm of a sum is not the sum of the logarithms. That is, the equation 
 10 10 10log 10 log log 10x x    for all values of .x  However, you can show that this equation does 

have a solution: 10
9x  .
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Pitfalls 
 It’s important to distinguish between exact and approximate answers. For instance, the exact answer to 

the equation 5 2 ln 4x   is 
1

2 1 .x e
e


   This is approximately equal to 0.61, correct to 2 decimal 

places.  

 Be careful of extraneous solutions when solving equations involving logarithms and exponents. Make 
sure that you check your answers in the original equation. 

 

1. Solve the following exponential equations. 

a.  4 16x   

b. 1 64
8

x
   
 

 

2. Solve the following logarithmic equations. 

a. ln 7x    

b. ln(2 1) 5x    

3. Solve the following exponential equations. Round your result to 3 decimal places. 

a. 38 360x   

b.
120.101 2

12

t
   
 

 

c. 2 4 5 0x xe e    

d.
2 2x xe e   

4. Solve the following logarithmic equations. Round your result to 3 decimal places. 

a.    5 5log 3 2 log 6x x     

b.  4 4
1log log 1
2

x x     

    Problems
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5. Use a graphing utility to approximate the solution of the equation 3
10log 3,x x   accurate to 3  

decimal places. 
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Exponential and Logarithmic models 
Lesson 11 

 

Topics 

 Exponential and logarithmic models. 
 Exponential growth and decay. 
 Gaussian models. 
 Logistic growth models. 
 Newton’s law of cooling. 

 

Models 

 Exponential growth model: ,  0.bxy ae b   

 Exponential decay model: ,  0.bxy ae b   

 Gaussian model:  2 / .x b cy ae   

 Logistic growth model: .
1 rx

ay
be




 

 Newton’s law of cooling: The rate of change in the temperature of an object is proportional to the 
difference between the object’s temperature and the temperature of the surrounding medium. 

Summary 

In this lesson, we look at a variety of models involving exponential and logarithmic functions. Although these 
examples might seem fairly simple, they illustrate important ideas about mathematical modeling. The first 
model we consider is that of exponential growth. 

Example 1: Modeling Exponential Growth 

In a research experiment, a population of fruit flies is increasing according to the law of exponential growth. 
After 2 days there are 1000 flies, and after 4 days there are 3000 flies. According to this model, approximately 
how many flies will there be after 5 days?  
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Solution 

Let y  be the number of fruit flies at time t  (in days). The model for exponential growth is .bty ae  We can 
determine the unknown constants by solving the following 2 equations. 

2

4

2 : 1000

4 : 3000

b

b

t y ae

t y ae

  

  
 

From the first equation, you have 2

1000
ba

e
 .  

Substituting this value into the second equation, you obtain 

4 4 2
2

10003000 3 .b b b
bae e e

e
     
 

  

Using the inverse relationship between logarithms and exponents, we have 
12 ln 3 ln 3 0.5493.
2

b b     Now we can find the value of the other constant: 

 2 12 ln32

1000 1000 1000 333.33.
3ba

e e
 
 

     

Hence, our model is approximately 0.5493333.33 .bt ty ae e   

When 5,t  0.5493(5)333.33 5196y e   fruit flies. Note that by letting 0t   in the 
model, you see that the initial amount of flies is approximately 333.  

 

Example 2: A Gaussian Model for SAT Scores 

In 2005, the SAT math scores for college-bound seniors roughly followed the normal distribution 
 2520 /26,4500.0035 ,  200 800.xy e x    Graph this model and estimate the average SAT score .x  

Solution 

You can use a graphing utility to produce the bell-shaped curve in figure 11.1. The average score is the x-
coordinate of the maximum value, 520.x   
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Figure 11.1

  

 

Example 3: Newton’s Law of Cooling 

In this example, we analyze a specific application of Newton’s law of cooling. Using calculus, it is possible to 
derive a mathematical model for Newton’s law of cooling. Imagine a cup of coffee at 100 F  placed in a room 
at 60 .  According to this law, the temperature of the coffee will decrease according to the equation 

0.0287760 40 ,ty e   where t  is the time in minutes. By evaluating this model for various values of ,t  you will 
see that the coffee is 90  after 10 minutes, and 82  10 minutes later.  

Study Tips  

 For the exponential growth model, 0,b   whereas 0b   for exponential decay. The constant a  
indicates the initial amount of the substance under consideration.

 The logistic growth model is used for populations that initially experience rapid growth, followed by a 
declining rate of growth. For example, a bacteria culture might grow rapidly at the beginning, but then 
increase more slowly as the amount of food and space diminishes.

 

1. Suppose you deposit $10,000 at 3.5% interest, compounded continuously. How long will it take for the 
deposit to double?  

    Problems
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2. The half-life of Radium-226 is 1599 years. If there are 10 grams now, how much will there be after  
1000 years?  

3. The population P  (in thousands) of Reno, Nevada, can be modeled by  134.0 ,ktP e  
3. where t is the year, with t = 0 corresponding to 1990. In 2000, the population was 180,000. 

a. Find the value of k for the model. Round your result to 4 decimal places. 

b. Use your model to predict the population in 2010. 

4. The IQ scores for adults roughly follow the normal distribution  2100 /4500.0266 ,  70 115,xy e x     
where x is the IQ score. 

a.  Use a graphing utility to graph the function. 

b. From the graph, estimate the average IQ score. 

5. A conservation organization releases 100 animals of an endangered species into a game preserve. The 
organization believes that the preserve has a carrying capacity of 1000 animals and that the growth of 
the herd will follow the logistic curve  

 0.1656

1000( ) ,
1 9 tp t

e



 

where t  is measured in months. 

a. What is the population after 5 months? 

b. After how many months will the population reach 500? 

c. Use a graphing utility to graph the function. Use the graph to determine the values of p at 
which the horizontal asymptotes will occur. Interpret the meaning of the larger asymptote in 
the context of the problem. 
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Introduction to Trigonometry and angles 
Lesson 12 

 

Topics 

 Definition of angle. 
 Coterminal angles. 
 Complementary and supplementary angles. 
 Degree measure and radian measure. 
 Other units of angle measurement: minutes and seconds. 
 Arc length formula. 
 Linear and angular speed. 

 

Definitions and Formulas 

 An angle is determined by rotating a ray, or half-line, about its endpoint. The starting position of the 
ray is the initial side, and the end position is the terminal side. The endpoint of the ray is the vertex. If 
the origin is the vertex and the initial side is the positive x-axis, then the angle is in standard position. 

 Positive angles are generated by a counterclockwise rotation, and negative angles by a clockwise 
rotation. If 2 angles have the same initial and terminal sides, then they are called coterminal angles. 

 A measure of one degree, 1°, is equivalent to a rotation of 1 360 of a complete revolution about the 
vertex.  

 An acute angle is between 0 and 90 ;  a right angle is 90 ;  an obtuse angle is between 90  and 
180 ;   
a straight angle is 180 .  A full revolution is 360 .  

 Two positive angles are complementary, or complements of each other, if their sum is 90 .  Two 
positive angles are supplementary, or supplements of each other, if their sum is 180 .

 Given a circle of radius 1, a radian is the measure of the central angle   that intercepts (subtends) an 
arc s  equal in length to the radius 1 of the circle.  

 180 radians, and 1 radian 57 degrees.    

 One minute is 1
60  of a degree. One second is 1

3600  of a degree. 

 Linear speed measures how fast a particle moves. Linear speed is arc length divided by time: .s
t

 

 Angular speed measures how fast the angle is changing. Angular speed is central angle divided by 

time: .
t


 

 Quadrant: the 4 parts into which a plane is evenly divided by rectangular coordinate axes, see  
figure 12.1 
 



53

Figure 12.1 

 

Summary 

In this lesson, we begin the study of trigonometry. Before we define the trigonometric functions, we study 
angles and their measures. After some preliminary definitions, we define coterminal angles, those that have the 
same initial and terminal sides.  

Example 1: Finding Coterminal Angles 

Find 2 coterminal angles (one positive and one negative) for 120 .     

Solution 

You can add or subtract multiples of 360  to obtain coterminal angles, as follows. 

120 360 240
120 360 480

     
      

 

Example 2: Converting Degrees to Radians 

Radian measure is another way to measure angles. One radian is the measure of a central angle   that 
intercepts an arc s equal in length to the radius of a unit circle (radius 1). That is,   radians equals 180 .  A 
radian is approximately 57 .  
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   rad90 90 deg  radians
180 deg 2
  

   
 

  

 

Example 3: Converting Radians to Degrees 

7 7 180 degrad rad 210 degrees
6 6 rad
 


        

  

 

Example 4: Using the Formula s r

Consider a circle of radius .r  Suppose the angle   corresponds to the arc length .s  That is, the angle   
subtends an arc of the circle of length .s  Then we have the important formula .s r  Find the length of the arc 
intercepted by a central angle of 240  in a circle with a radius of 4 inches. 

Solution 

First convert degrees to radians, then use the formula. 

  rad 4240 240 deg radians
180 deg 3

4 164 16.76 inches
3 3

s r

 

 

 
   

 
     
 

 

 

Study Tips  

 To convert degrees to radians, multiply by 180
 . 

 To convert radians to degrees, multiply by 180
 . 

 Notice in Examples 2 and 3 above how the units (degrees and radians) conveniently cancel. 
 When no units for an angle are mentioned, assume that radian measure is implied. 

Pitfalls 

 Depending on the application, make sure your calculator is set in the correct mode: degree or radian.  
 Angles greater than 90  do not have complements. 
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1. Determine the quadrant in which each angle lies. 

a. 150  

b. 282  

c.
5


 

d.
7
5


  

2. Sketch each angle in standard position. 

a. 30  

b. 150   

c. 3
4
   

d.
5
6


 

3. Determine 2 coterminal angles in degree measure (one positive and one negative) for each angle. 
(Note: There are many correct answers.) 

a. 495     

b. 230    

4. Determine 2 coterminal angles in radian measure (one positive and one negative) for each angle. 
(Note: There are many correct answers.) 

a.
9
4
  

  

b.
2
15
    

5. Find (if possible) the complement and supplement of each angle. 

a. 24  

b. 126  

    Problems
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c.
3


  

d. 3
4
  

 

6. Rewrite each angle in radian measure as a multiple of .  Do not use a calculator. 

a. 30   

b. 150  

7. Rewrite each angle in degree measure. Do not use a calculator. 

a.
3
2


  

b.

7
6



 

8. Find the radian measure of the central angle of a circle of radius 29 inches that intercepts an arc of 
length 8 inches. 

9. Find the length of the arc on a circle of radius 2 meters intercepted by a central angle   1 radian. 

10. Find the radius of a circle with an arc of length 36 feet and central angle 
2
   radians. 

11. Assuming that Earth is a sphere of radius 6378 kilometers, what is the difference in latitudes of 
Syracuse, New York, and Annapolis, Maryland, where Syracuse is 450 kilometers due north of 
Annapolis? 
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Trigonometric Functions—Right Triangle Definition 
Lesson 13 

 

Topics 

 Pythagorean theorem. 
 Triangle definition of the trigonometric functions. 
 Trigonometric values for 30, 45, and 60 degrees. 

 

Definitions and Properties 

 Consider a right triangle with an acute angle .  The 6 trigonometric functions are defined as follows.  
 

opposite hypotenusesin csc
hypotenuse opposite

adjacent hypotenusecos sec
hypotenuse adjacent

opposite adjacenttan cot
adjacent opposite

 

 

 

 

 

 

 

 

Theorem and Identities 

 In any right triangle, the Pythagorean theorem is with sides a and b, and hypotenuse c, 
then a2 + b2 = c2. 

 Pythagorean identities are defined as follows. 

o 2 2sin cos 1    

o 2 2tan 1 sec    

o 
2 21 cot csc    
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 Reciprocal relationships found in trigonometry are as follows. 

o 1sec
cos




 

o 1csc
sin




 

o 1cot
tan




 

 

Summary 

In this lesson, we develop the trigonometric functions using a right triangle definition. If you know the lengths 
of the 3 sides of a right triangle, then you can find the trigonometric functions of either acute angle. 

 

Example 1: Calculating Trigonometric Functions 

Calculate the 6 trigonometric functions for the right triangle in figure 13.1.  

Figure 13.1 
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Solution 

Using the Pythagorean theorem, the hypotenuse is 5: hypotenuse 2 23 4 25 5.     

4 3 4sin ,  cos ,  tan
5 5 3
5 5 3csc ,  sec ,  cot
4 3 4

  

  

  

  
 

 

Example 2: The 30-60-90 Right Triangle 

Certain angles occur often in trigonometry. For example, the trigonometric values for 30 and 60 degrees are 
important to memorize.  

Use the equilateral triangle in figure 13.2 to evaluate the sine and cosine of 30 and 60 degrees. 

Figure 13.2 

 

Solution 

By drawing the altitude in the equilateral triangle, you have a 30-60-90 right triangle. If the hypotenuse is 2, 
then the shortest side is 1, and the third side is 3.  The angle opposite the shortest side is 30  . Hence, you have 
the following values. 
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1sin 30 sin cos 60 cos
6 2 3

3cos30 cos sin 60 sin
6 2 3

 

 

     

     
 

Observe in this example that cofunctions of complementary angles are equal. This is true in general. 

 

Example 3: Finding Trigonometric Functions 

The fundamental identities permit you to use a known value of one trigonometric function to determine the 
values of the other functions. Find the sine of the angle  if you know that cos 0.8.   

Solution 

We use the fundamental identity as follows. 

 
 

2 2

22

22

sin cos 1

sin 0.8 1

sin 1 0.8 0.36
sin 0.6

 






 

 

  



 

Knowing the sine and cosine, it is easy to determine the other 4 trigonometric functions. 

 

Study Tips  

 Notice that the tangent function could have been defined as the quotient of the sine and cosine. 
 The power of a trigonometric function, such as  2sin is written 2sin .  
 It is important to know the values of the trigonometric functions for common angles, such as 

30 ,  45 ,  60
6 4 3
  
      . Using an isosceles right triangle, for example, you can show that 

2sin cos
4 4 2
 
   and tan 1.

4

  

 You can use a calculator to verify your answers. In fact, you must use a calculator to evaluate 
trigonometric functions for most angles.  

 Cofunctions of complementary angles are equal. For example, tan50 cot 40 .    
 On a calculator, you can evaluate the secant, cosecant, and cotangent as the reciprocal of cosine, sine, 

and tangent, respectively. 
 The sine and cosine of any angle is less than or equal to one in absolute value. 

 

Pitfall 

 Make sure you have set your calculator in the correct mode: degree or radian. Not doing this is one of 
the most common mistakes in trigonometry. 
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1. Find the exact values of the 6 trigonometric functions of the angle   shown in the following figures. 

a. Figure 13.3  

 

b. Figure 13.4  

 

    Problems
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2. Sketch a right triangle corresponding to the trigonometric function of the acute angle  given that
2sin
3

  . Use the Pythagorean theorem to determine the third side of the triangle, and then find the 

other 5 trigonometric functions of the angle. 

3. Sketch a right triangle corresponding to the trigonometric function of the acute angle  given that
tan 3  . Use the Pythagorean theorem to determine the third side of the triangle, and then find the 
other 5 trigonometric functions of the angle. 

4. Find the acute angle   (in degrees and in radians) if 3cot .
3

   

5. Find the acute angle   (in degrees and in radians) if csc 2.   

6. Given the function values 3sin 60
2

   and 
1cos60 ,
2

   find the following trigonometric functions. 

a. tan60  

b. sin 30  

c. cos 30  

d. c o t 6 0   

7. Given the function values csc 3   and 3 2sec ,
4

   find the following trigonometric functions. 

a. sin  

b. cos  

c. tan  

d.  sec 90   

8. Use trigonometric identities to show that    21 cos 1 cos sin .      

9. Use a calculator to evaluate each function. Round your answers to 4 decimal places. 

a. sin12°  

b. cos72°  

10. Without using a calculator, find the value of the acute angle  (in degrees and radians) if sec 2  . 
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Trigonometric Functions—Arbitrary Angle Definition 
Lesson 14 

 

Topics 

 Trigonometric functions for an arbitrary angle. 
 Quadrants and the sign of trigonometric functions. 
 Trigonometric values for common angles. 
 Reference angles. 
 Trigonometric functions as functions of real numbers. 

 

Definitions 

 Let   be an angle in standard position, let  ,  x y  be a point on the terminal side, and let 
2 2 0.r x y    The 6 trigonometric functions are defined as follows.  

sin csc

cos sec

tan cot

y r
r y
x r
r x
y x
x y

 

 

 

 

 

 

 

 
 Let   be an angle in standard position. Its reference angle is the acute angle ,   formed by the 

terminal side of   and the horizontal axis. 
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Quadrants and the Signs of the Trigonometric Functions 

 

 

Trigonometric Values of Common Angles 
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Summary 

In this lesson, we define the trigonometric functions for an arbitrary angle. The definition is equivalent to the 
right triangle definition for acute angles. However, with this more general definition, we are able to calculate 
trigonometric values for any angle. 

 

Example 1: Calculating Trigonometric Functions 

Let  3,  4 be on the terminal side of the angle .  Calculate the sine, cosine, and tangent of this angle.  

Solution 

We have 3,  4,x y    and  2 23 4 25 5.r      Then you have 4 3sin ,  cos ,
5 5

y x
r r

     

4and tan .
3

y
x

  
 
Notice that the cosine and tangent are negative because the angle is in the Quadrant II. 

 

Example 2: Important Angles 

It is important to be familiar with the values of the trigonometric functions for frequently occurring angles. 
From the definitions of the sine, cosine, and tangent, you have the following. 

sin 0 0,  cos0 1,  tan 0 0,

sin 1,  cos 0,  tan is undefined.
2 2 2
  
  

 
 

 

Example 3: Using Reference Angles to Calculate Trigonometric Functions 

Reference angles permit you to calculate trigonometric values for angles located in any quadrant. Calculate 
sin 300 .  

Solution 

The reference angle for 300  is 60 .  Furthermore, 300  lies in Quadrant IV, so its sine is negative. Since 

3sin 60
2

  , we have 3sin 300 .
2

    
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We have defined the trigonometric functions for any angle—positive or negative. Hence, we can consider the 
trigonometric functions as functions of a real variable. Using xas the independent variable, you see that the 
domains of ( ) sinf x x  and ( ) cosg x x  are all real numbers, and their ranges consist of all real numbers in 

the interval  1,  1 .  

 

Study Tips  

 For the definition of the 6 trigonometric functions, some authors specify that r = 1 in place of
2 2 .r x y   Both approaches yield the same values. 

 Notice that some trigonometric functions are undefined for certain angles. For example, tan
2


is 

undefined because cos 0.
2

  

 To find the value of a trigonometric function of an arbitrary angle  : 
1. Determine the function value of the associated reference angle .   
2. Depending on the quadrant, affix the appropriate plus or minus sign. 

 You can use a calculator to verify your answer. For example, 11 1csc 1.41421
114 sin

4




  , which 

approximates the exact answer 2 2.
2
  

 

Pitfall 

 Make sure you have set your calculator in the correct mode: degree or radian. This is one of the most 
common mistakes in trigonometry. 

 

 

 

1. The point  7,  24  is on the terminal side of an angle in standard position. Determine the exact 

values of the 6 trigonometric functions of the angle.  

2. Find the values of the 6 trigonometric functions of the angle   if 3sin
5

   and   lies in Quadrant 

II. 

3. Find the values of the 6 trigonometric functions of the angle   if csc 4   and cot 0.   

4. Evaluate the following trigonometric functions. 

a. sec  

    Problems
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b. tan
2


 

c. cot  

d. csc  

5. Find the reference angle    corresponding to the angle 120 .    Sketch the 2 angles in  
standard position.  

6. Evaluate the sine, cosine, and tangent of 225    without using a calculator. 

7. Evaluate the sine, cosine, and tangent of 7
6
    without using a calculator. 

8. Use a calculator to evaluate sin10 .  Round your answer to 4 decimal places. 

9. Use a calculator to evaluate 2tan .
9
  Round your answer to 4 decimal places. 

10. The initial current and charge in an electric circuit are zero. When 100 volts is applied to the circuit, 
the current is given by 25 sin ,tI e t  where the resistance, inductance, and capacitance are 80 
ohms, 20 henrys, and 0.01 farad, respectively. Approximate the current in amperes 0.7t   seconds 
after the voltage is applied. 
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Graphs of Sine and Cosine Functions 
Lesson 15 

 

Topics 

 Graphs of sine and cosine functions. 
 Graphs of general sine and cosine functions: sin( ),  cos( ).y d a bx c y d a bx c       
 Amplitude. 
 Period. 
 Horizontal translations and phase shifts. 
 Vertical translations. 

 

Definitions 

Given the general sine and cosine functions sin( ),  cos( ),y d a bx c y d a bx c       where b > 0, 

 The amplitude is .a  This number represents half the distance between the maximum and 
minimum values of the function. 

 The period is 2
b
  when angles are measured in radians. 

 The phase shift is .c
b

 

 The constant d determines the vertical translation. 
 

Summary 

In this lesson, we study the graphs of sine and cosine functions. Recall that the domain of both siny x and 

cosy x  is the set of all real numbers, and the range consists of all real numbers in the closed interval  1,  1 .   

 

Example 1: The Graph of the Sine Function 

To sketch the graph of ( ) sin ,f x x
 
begin calculating some values, such as 1 2sin 0 0,  sin ,  sin ,

6 2 4 2
  

   

and sin 1.
2


 Then connect these points with a smooth curve, as in figure 15.1. 
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Figure 15.1 

Notice that the sine function is odd (symmetric with respect to the origin). The x-intercepts are 
0,  ,  2 ,  ...   . The maximum value of the sine function is 1, occurring at 

5 3 7,  ,  ... ,  ,  ,  ... .
2 2 2 2

x    
    The minimum value is 1, occurring at 

3 7 5,  ,  ... ,  ,  ,  ... .
2 2 2 2

x    
    

The graph of the cosine function is similar to that of the sine function. If you graph the cosine function on your 

calculator, you will see that it looks like the sine graph shifted to the left 
2


 units.  

 

Example 2: Periodicity 

One of the most important properties of trigonometric functions is their periodicity. Sketch the graph of the 

function ( ) sin .
2
xf x   

Solution 

The period is 2 2 4 .
1

2b
     That means that the graph completes one cycle on the interval  0,  4 .  The  

x-intercepts are 0,  2 ,  4 ,  ... .x      Figure 15.2 shows both siny x  and ( ) sin .
2
xf x 
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Figure 15.2 

 

 

Example 3: Analyzing a Trigonometric Graph 

This example analyzes a more complicated trigonometric graph, the function 1 sin .
2 3

y x    
 

  

Solution 

The amplitude is 
1 1 .
2 2

a    The period is 2 2 2 .
1b

     You can determine the left and right 

endpoints of one cycle by solving the equations 0
3

x 
   and 2 .

3
x     You will obtain 

3
x 


 

and 7
3

x 
 as the endpoints of one complete cycle, as shown in figure 15.3. There is no vertical 

shift ( 0).d   
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Figure 15.3 

 

Study Tips  

 The amplitude and vertical shift are generally easy to determine. For example, the graph of 
2 3cos 2y x   is a vertical shift 2 units upward of the graph of 3cos 2 .y x  

 The horizontal translations are determined by solving the equations 0bx c   and 2 .bx c    
 It is always a good idea to plot some points when analyzing a graph. 
 You can also verify your graphs with a computer or graphing calculator. 

 

 

 

1. Sketch the graph of the following functions by hand. Include 2 full periods. 

a. 3siny x   

b. 1 cos
4

y x . 

c. cos
2
xy    

d. sin 4y x   

    Problems
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e. sin
4

y x    
 

 

f.  siny x    

2. Use a graphing utility to graph the following functions. Include 2 full periods. Identify the 
amplitude and period of the graphs. 

a. 22sin
3
xy      

b. 4 5cos
12
ty   


  

c.  5sin 2 10y x    

3. The pressure in millimeters of mercury, P, against the walls of the blood vessels of a person is 

modeled by 8100 20cos ,
3
tP 

   where t  is the time in seconds. Use a graphing utility to graph 

the model, where one cycle is equivalent to one heartbeat. What is the person’s pulse rate in 
heartbeats per minute? 

 

  



73

Graphs of Other Trigonometric Functions 
Lesson 16 

 

Topics 

 Graphs of other trigonometric functions. 
 Graphs of general trigonometric functions. 
 Damped trigonometric graphs. 

 

Summary 

In this lesson, we study graphs of the remaining 4 trigonometric functions. We begin with the graph of 
tan .y x  

 

Example 1: The Graph of the Tangent Function 

The function sin( ) tan
cos

xf x x
x

 
 
is not defined when cos 0.x   The graph of the tangent function has vertical 

asymptotes at 
3 5,  ,  ,  ...

2 2 2
x   
    and intercepts at 0,  ,  2 ,  ... .x      If you plot some values and 

connect the points with smooth curves, you will obtain figure 16.1. Notice that the tangent is an odd function.  

Figure 16.1 
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The period of the tangent function is .  The domain is the set of all real numbers except 
3 5,  ,  ,  ... .

2 2 2
x   
   

 
The range is the set of all real numbers.  

The graph of the cotangent function is similar to that of the tangent function, as shown in figure 16.2. 

Figure 16.2 

 

Example 2: The Graph of the Secant Function 

Analyze the graph of 1( ) sec ,
cos

f x x
x

   shown together with the cosine graph, as in figure 16.3. What are  

the period, x-intercepts, and vertical asymptotes. 
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Figure 16.3 

 

The period is 2 ,  and there are no x-intercepts. The graph has vertical asymptotes at 

3 5,  ,  ,  ... .
2 2 2

x   
     The graph of the cosecant function is similar to that of the secant function. 

 

Example 3: Analyzing a Damped Trigonometric Graph 

In this example, we analyze a damped trigonometric graph. Analyze the graph of the function ( ) sin .xf x e x   

Solution 

Using a graphing utility, you will obtain the graph in figure 16.4. 
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Figure 16.4 

 

 

Notice that the graph approaches zero as x tends to infinity. This damping effect can be described in 
limit notation as lim sin 0.x

x
e x


  

 

Study Tips  

 The vertical asymptotes of the tangent function, or secant function, are 
3 5,  ,  ,  ... .

2 2 2
x   
   

 

This can be written as ,
2

x n  
 
where n is an integer. 

 You can obtain the graphs of cotangent, secant, and cosecant on a graphing utility by using 
1 1 1cot ,  sec , and csc .

tan cos sin
x x x

x x x
     

 The function 1( ) sinf x
x

  is fun to graph on your calculator. Zoom in on the graph near the origin and 

you will see some bizarre behavior.  
 

Pitfall 

 A graphing calculator might connect parts of the graphs of tangent, cotangent, secant, and cosecant that 
are not supposed to be connected. You can avoid this by using dot mode instead of connected mode. 
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1. Sketch the graph of the following functions by hand. Include 2 full periods 

a. 1 tan
2

y x   

b. 1 sec
4

y x   

c. 3csc
2
xy    

d. 1 cot
2 2

xy    

2. Use a graphing utility to graph the following function, include 2 full periods: 2csc3 .y x  Graph 
the corresponding reciprocal function, and compare the 2 graphs. 

3. Use a graphing utility to graph the function, include 2 full periods: 2sec4 .y x   Graph the 
corresponding reciprocal function, and compare the 2 graphs. 

4. Use the graph of the function to approximate the solutions to the equation tan 1x   on the interval 

 2 ,  2  . 

5. Use a graphing utility to graph the 2 equations 2
1 sec 1y x   and 2

2 tany x  in the same  
viewing window. Use the graphs to determine whether the expressions are equivalent. Verify the  
result algebraically.  

6. Use a graphing utility to graph the function ( ) cosxf x e x  and the damping factor of the function 
in the same viewing window. Describe the behavior of the function as x  increases without bound. 

  

    Problems
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7. An object weighing W  pounds is suspended from a ceiling by a steel spring, see figure below. The 
weight is pulled downward (positive direction) from its equilibrium position and released. The 

resulting motion of the weight is described by the function 41 cos 4 ,
2

t
y e t−
=  where y  is the 

distance in feet, and t  is the time in seconds ( )0 .t >  

a. Use a graphing utility to graph the function. 

b. Describe the behavior of the displacement function for increasing values of time .t  
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Inverse Trigonometric Functions 
Lesson 17 

 

Topics 

 Inverse trigonometric functions. 
 Graphs of inverse trigonometric functions. 
 Inverse properties. 

 

Properties 

 y = arcsin x if and only if sin y = x, 1 1,  and .
2 2

x y     
   

 y = arcos x if and only if cos y = x, 1 1,  and 0 .x y       

 y = arctan x if and only if tan y = x, ,  and .
2 2

x y     
   

 sin(arcsin x) = x and arcsin(sin y) = y if 1 1,  .
2 2

x y     
 

 

There are sSimilar properties for the other functions. 

 

Summary 

In this lesson, we study the inverse trigonometric functions. Because the 6 trigonometric functions are not one-
to-one, we must restrict their domains in order to define their inverses. We begin with the inverse sine function.  

 

Example 1: The Definition of the Inverse Sine Function 

On the restricted interval ,  ,
2 2
    

the sine function is one-to-one. We can define its inverse as follows: 

1arcsin sin if and only if sin ,  1 1,  and .
2 2

y x x y x x y        
 

 

For example, 1arcsin
2 6


  because 1sin

6 2


  and 
6
  lies in the interval ,  .

2 2
    
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The graph of the inverse sine function is a reflection in the line y x  of the graph of the restricted sine 
function, see figure 17.1. 

Figure 17.1 

 

Example 2: The Inverse Tangent Function 

The remaining inverse trigonometric functions are defined in a similar manner by suitably restricting their 

domains. If we restrict the domain of the tangent function to the open interval ,  ,
2 2
   

   
then it will be one-

to-one, and we can define the inverse tangent function as follows: 

arctan if and only if tan ,  ,  and .
2 2

y x y x x y        
 

 

For example,  arctan 1
4


    because tan 1
4

    
 


 and 

4


  lies in the interval ,  .
2 2
   

 
 

 

Notice that the graph of the arctangent function has 2 horizontal asymptotes: 
2

y 
  to the right and 

2
y 
   to 

the left. See figure 17.2. 
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Figure 17.2 

 

Example 3: Inverse Properties 

We can take advantage of the properties of inverse functions, as long as we remember to verify the restricted 
domains. 

sin(arcsin1) 1   

1 1sin arcsin
5 5

   
 

  

 3arcsin sin arcsin 1
2 2
       

 
   

 

Study Tips  

 The key to defining the inverse trigonometric functions is to appropriately restrict the domains of the 
corresponding trigonometric functions. 

 The 2 common notations for the inverse trigonometric functions are 1siny x  and arcsiny x  (and 
similarly for the other 5 inverse functions). 

 Textbooks disagree on the definition of the inverse secant function. The difficulty is how to restrict the 
domain of the secant function so that it becomes one-to-one. Two popular choices are 

0,  ,  
2 2
          

 and 
30,  ,  

2 2
         

. 
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Pitfalls 

 Pay special attention to the restricted domains of the inverse trigonometric functions. For example, 
 arccos 1     even though  cos 1.    In fact,  arccos 1   . 

 Similarly,  arcsin 2  is undefined because there is no number xsatisfying sin 2.x   

 The notation for inverse trigonometric functions can be confusing. That is, 1siny x  does not mean 

1
sin x

. 

 

 

1. Find the exact value of each expression without using a calculator. 

a. 1arccos
2

 

b. arccos0  

c. arcsin1 

d. arccos1  

e. arctan1  

f. arctan0  

g. 1 2cos
2

  
  
 

 

h. 1 2sin
2

  
  
 

 

 

2. Use a calculator to approximate the following values. Round your answer to the nearest hundredth. 

a. 1cos 0.75  

b.  arcsin 0.75  

3. Use the properties of inverse functions to find the exact value of the following expressions 

a. sin(arcsin 0.7)  

    Problems
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b. arcsin(sin 3 )  

c. 1 5sin tan
4

  
 
 


 

4. Find the exact value of the expression 24cos arcsin .
25

  
  

  
 

5. Write an algebraic expression that is equivalent to cot(arctan ).x  
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Trigonometric Identities 
Lesson 18 

 

Topics 

 Trigonometric identities. 
 Graphs of inverse trigonometric functions. 

 

Formulas and Identities 

 Fundamental identities used to calculate trigonometric functions. 

o 2 2sin cos 1u u   

o 2 2tan 1 secu u   

o 2 21 cot cscu u   

o sin( ) sinu u    

o cos( ) cosu u   

o tan( ) tan( )u u    

 Confunction identities found in trigonometry are as follows. 

o sin cos
2

u u   
 

  

o cos sin
2

u u   
 

  

o tan cot
2

u u   
 

  

 Reciprocal identities found in trigonometry are as follows. 

o 1sec
cos

u
u

  

o 1csc
sin

u
u

  
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o 1cot
tan

u
u

  

 

Summary 

In this lesson, we study trigonometric identities. In the first example, we use the fundamental identity 
2 2sin cos 1u u   to calculate trigonometric functions.  

 

Example 1: Using Identities to Evaluate Trigonometric Functions 

Find the values of the trigonometric functions if 
3sec
2

u   and tan 0.u   

Solution 

We immediately know that 1 2cos .
sec 3

u
u

    Furthermore, since cosine is negative and tangent is positive, 

angle u must be in Quadrant III. We can find the sine using the fundamental identity: 

2
2 2 2 4 5 5sin 1 cos 1 1 sin .

3 9 9 3
u u u            

 
  

Notice that we take the negative square root since the angle is in Quadrant III. The remaining values are now 
simple to calculate: 

51 3 3 5 sin 53csc ,  tan ,  and
2sin 5 cos 25 3

uu u
u u


       


1 2 2 5cot .

tan 55
u

u
    

 

Example 2: Verifying a Trigonometric Identity 

Verifying trigonometric identities is an important calculus topic. The secret is to begin with one side of the 
equation, and use your knowledge of trigonometric properties to arrive at the other side. 

Verify the identity 
2

2
2

sec 1 sin .
sec

 



  
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Solution 

There are many ways to proceed. See if you can provide the reason for each step.  

 

2 2

2 2 2

2

2

sec 1 sec 1
sec sec sec

1 cos

sin

 
  






 

 



 

 

Example 3: Verifying a Trigonometric Identity 

Verify the identity 4 2 2 2tan tan sec tan .x x x x   

Solution 

We begin with the right-hand side, as follows. 

   2 2 2 2 2 2 2 4tan sec tan tan sec 1 tan tan tanx x x x x x x x      

 

Study Tips  

 In Example 1 above, we rationalized the denominator. Make sure to ask your teacher if this is 
necessary to do.  

 A trigonometric equation is not an identity if it is false for at least one value in the domain. For 

example, 2sin 1 cosx x   is not an identity because it is false for 
3 .
2

x 
  

 Keep in mind the notation for powers of trigonometric functions. For example, 2sin x  means  2sin ,x  

not  2 2sin sin .x x  

 You can confirm an identity by graphing both sides in the same viewing window. If the graphs look 
distinct, then the equation is not an identity. However, if the graphs appear to coincide, this is still not a 
valid proof. 

 The sine and tangent functions are odd, so their graphs are symmetric about the origin. The cosine 
function is even, so its graph is symmetric about the y-axis. 

 

Pitfalls 

 Your answer to a problem might look different from another answer. For example, the expression 
ln sec  is equivalent to ln cos  because 1ln cos ln cos ln sec     . 

 When verifying a trigonometric identity, don’t begin with the identity and simplify both sides 
simultaneously until you arrive at a true statement. This is not a proof technique. Here is an example of 
such a “false proof.” The original statement is not true for all values of .x  
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2

2 2

2 2

sin 1 cos

sin 1 cos

sin cos 1

x x
x x
x x

 

 

 

 

 

 

 

1. Find the remaining trigonometric functions if 
1 3sin and cos .
2 2

x x   

2. Find the remaining trigonometric functions if 2 2 5sin( ) and tan .
3 5

x x      

3. Use the fundamental identities to simplify the following expressions. 

a. cot sinx x  

 

b. sinsec
tan




 

4. Verify the following identities algebraically.  

a. cos sec tan
1 sin

 


  


 

b. 
2sin1 cos

1 cos
  


 


 

5. Factor the following expression and use the fundamental identities to simplify: 4 2tan 2 tan 1.x x   

6. Simplify the expression 1 1 .
1 cos 1 cosx x


 

 

 

7. Verify the following identities. 

a. 
2 2 2cos sin 1 2sin .      

b. tan tan cot cot .
1 tan tan cot cot 1

x y x y
x y x y
 


 

 

    Problems
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8. Use the properties of logarithms and trigonometric identities to verify the identity 
ln cot ln cos ln sin .     
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Trigonometric Equations 
Lesson 19 

 

Topics 

 Trigonometric equations. 
 Approximate solutions to trigonometric equations. 

 

Summary 

In this lesson, we study trigonometric equations. Our goal is to identify all the values of the variable that satisfy 
the given equation. It is no exaggeration to say that this skill plays a major role in calculus. In our first example, 
notice how we first solve the equation on the interval  0,  2  and then use the periodicity of the sine function 

to obtain all solutions. 

 

Example 1: Solving a Trigonometric Equation 

Find all solutions to the equation 2sin 1 0.x    

Solution 

The given equation is equivalent to 1sin .
2

x   On the interval  0,  2 ,  the solutions are 
6

x 
  and 5 .

6
x 
  

By adding 2n  to each solution, where n  is an integer, we obtain the complete set of solutions: 
52 ,  2 .

6 6
   x n x n     

 

Example 2: Solving a Trigonometric Equation 

Find all solutions to the equation 22sin sin 1 0x x    on the interval  0,  2 .  
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Solution 

Begin by factoring the quadratic. 

  

22sin sin 1 0
2sin 1 sin 1 0

x x
x x

  

  
 

1 7 112sin 1 0 sin ,  
2 6 6

sin 1 0 sin 1
2

      

     

x x x

x x x

 


 

 

Thus, there are 3 solutions in the given interval: 7 11,  ,  .
6 6 2

x   

 
You are invited to verify these solutions by 

graphing 22sin sin 1y x x    and observing that the graph intersects the x-axis 3 times on the interval 

 0,  2 .  

 

Example 3: Approximating Solutions to a Trigonometric Equation 

In many applications, it is impossible to find the exact solutions to a trigonometric equation. However, you can 
approximate the solutions with a computer or graphing utility. Use a graphing utility to approximate the 
solutions to the equation 2sinx x  on the interval  ,  .   

Solution 

Begin by graphing the function 2siny x x   on the given interval. You will see that there are 3 solutions to 

the equation. Using the root feature, you obtain 1.8955,  0, and 1.8955.   x x x  Notice the symmetry of the 
solutions because the function is odd. 

 

Study Tips  

 In order to be successful in solving trigonometric equations, you have to know the values of common 
trigonometric functions. Many students memorize the values for important angles such as 

0,  30 ,  45 ,  60 ,  90 ,      and so on. 
 You are encouraged to verify your solutions with a graphing utility. In fact, most graphing utilities 

have built-in root-finding capabilities. 
 Some equations are easy to solve. For example, the fundamental identity 2 2sin cos 1x x   is valid for 

all .x  Similarly, cos 2x   has no solutions because the range of the cosine function is  1,  1 .  
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1. Find all solutions to the equation 1cos
2

x    in the interval  0 ,  360 .   

2. Find all solutions to the equation 
2sin

2
x    in the interval  0 ,  360 .   

3. Find all solutions to the equation cot 1x    in the interval  0,  2 .  

4. Find all solutions to the equation csc 2x    in the interval  0,  2 .  

5. Solve the equation 23csc 4 0.x    

6. Find all solutions to the equation 2sec sec 2x x   in the interval   0, 2  algebraically. 

7. Find all solutions to the equation 2sin csc 0x x   in the interval  0,  2  algebraically. 

8. Use a graphing utility to approximate the solutions to the equation 22sin 3sin 1 0x x    in the 
interval  0,  2 .  Round your answer to 3 decimal places. 

9. Use a graphing utility to approximate the solutions to the equation 23tan 5tan 4 0x x    in the 

interval ,  .
2 2

   

 
 Round your answer to 3 decimal places. 

10. Solve the multiple angle equation sin 4 1.x   

11. Use a graphing utility to graph the function 1( ) cos .f x
x

  

a. What is the domain of the function? 

b. Identify any symmetry or asymptotes of the graph. 

c. Describe the behavior of the function as 0.x   

 

 

  

    Problems



92

﻿Le
ss

on
 2

0:
 S

um
 a

nd
 D

iff
er

en
ce

 F
or

m
ul

as

Sum and Difference Formulas 
Lesson 20 

 

Topics 

• Sum and difference formulas. 
• Double-angle formulas. 
• Power reducing formulas. 

 

Formulas 

• Sum and difference formulas in trigonometry are as follows. 

o ( )sin sin cos cos sinu v u v u v± = ±  

o ( )cos cos cos sin sinu v u v u v± =   

o ( ) tan tantan
1 tan tan

u vu v
u v
±

± =


 

• Double-angle formulas in trigonometry are as follows. 

o sin 2 2sin cosu u u=  

o 2 2 2 2cos 2 cos sin 2cos 1 1 2sinu u u u u= − = − = −  

• Power-reducing formulas in trigonometry are as follows. 

o 2 1 cos 2sin
2

uu −
=  

o 2 1 cos 2cos
2

uu +
=  

 

Summary 

In this lesson, we study the important formulas for the sum and difference of sines, cosines, and tangents. 
Unfortunately, the formulas are not as simple as we would like. For instance, in general, 

( )sin sin sin .+ ≠ +u v u v  We illustrate one of these new formulas in the first example. 
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Example 1: Evaluating a Trigonometric Function 

Find the exact value of sin .
12
  

Solution 

12
  is not a common angle, but we can rewrite it as the difference between 2 common angles. The formula for 

the sine of the difference of 2 angles yields the final result. 

sin sin
12 3 4

sin cos cos sin
3 4 3 4

3 2 1 2 6 2 0.258819
2 2 2 2 4

  

   

   
 

 


   

  

 

Example 2: Deriving a Double-Angle Formula 

Double-angle formulas are derived from the sum and difference formulas. You can derive the formula for 
sin 2u  by using the formula for the sine of a sum. 

sin 2 sin( )
sin cos cos sin
2sin cos

u u u
u u u u

u u

 
 


 

 

A similar argument and the fundamental identity yield the 3 formulas for cos 2u. These formulas are given in 
the Theorems and Formula appendix. 

 

Example 3: Solving a Trigonometric Equation 

Double-angle formulas permit us to solve more complicated trigonometric equations. Solve the equation 
2cos sin 2 0x x   on the interval  0,  2 .  
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Solution 

We use the double-angle formula for the sine function, and then factor. 

 

2cos sin 2 0
2cos 2sin cos 0
2cos 1 sin 0

x x
x x x
x x

 
 

 

 

3cos 0 ,  
2 2
3sin 1
2

  

   

x x

x x

 


  

Thus there are 2 solutions on the interval, 3and .
2 2

x x 
   Try verifying this result by graphing the function 

2cos sin 2y x x   on the interval  0,  2 .   

 

Study Tips  

 A computer or graphing calculator might give a different form of a correct answer. For instance, in 

Example 1, my calculator gave 
 3 1 2

4


, which is also correct. 

 
The symbol s and   are used to conveniently combine formulas. For example, the formula 

 cos cos cos sin sinu v u v u v    is shorthand for the 2 formulas  cos cos cos sin sinu v u v u v  
  and cos cos cos sin sin .u v u v u v    

 There are many more formulas in trigonometry. Please see the Theorem and Formula appendix for a 
list of the most important ones. 

 

Pitfall 

 You have to be careful with notation. There is a difference between the sine of the angle ,h
sin sin( ),h h  and the so-called hyperbolic function sinh.  This latter is a function used in engineering 

and is defined sinh
2

x xe ex


 . 
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1. Find the exact value of each expression. 

 

a. cos(240° − 0°) 

b. cos240° − cos0° 

c. 

2 5sin
3 6
π π + 

   

d. 2 5sin sin
3 6
π π
+  

 

2. Find the exact values of the sine, cosine, and tangent of the angle 75 .°  

3. Find the exact values of the sine, cosine, and tangent of the angle 13 .
12
π  

4. Write the expression cos 60 cos 20 sin 60 sin 20° ° − ° °  as the sine, cosine, or tangent of an angle. 

5. Write the expression cos cos sin sin
9 7 9 7
π π π π

−  as the sine, cosine, or tangent of an angle. 

6. Find the exact value of tan(u + v) given that 5 3sin and cos .
13 5

u v= = −  Both u and v are in  

Quadrant II. 

7. Find the exact value of the expression ( )1 1sin sin 1 cos 1− −+ without using a calculator. 

8. Verify the identity sin( ) sin( ) 2sin cos .+ + − =x y x y x y  

9. Use a double-angle formula to rewrite the expression 8sin cos .x x  

10. Rewrite the expression 2sin 2x  in terms of the first power of the cosine. 

 

 

  

    Problems
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Law of Sines 
Lesson 21 

 

Topics 

 The law of sines. 
 Angle-angle-side (AAS) and angle-side-angle (ASA) problems. 
 Side-side-angle (SSA) problems. 
 Area formula. 

 

Definitions  

 

 Given the image above, the law of sines is defined as 
sin sin sin

a b c
A B C
   

 Given the image above, the area formula is defined as 1 1 1Area sin sin sin .
2 2 2

bc A ac B ab C    

 

Summary 

In this lesson and the next, we use trigonometry to “solve triangles.” That is, given some sides and angles of a 
triangle, we will use the law of sines in this lesson, and the law of cosines in the next lesson, to determine the 
remaining sides and angles. The law of sines is used when you know 2 angles and a side, or 2 sides and one 
opposite angle. The law of cosines is used when you know 2 sides and the included angle, or all 3 sides. We 
illustrate an application of the law of sines in our first example. 
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Example 1: Using the Law of Sines 

Given the triangle in figure 21.1, find the remaining sides and angle.  

Figure 21.1 

 

 

Solution 

The third angle is easy to determine: 180 180 25 60 95 .C A B          We use the law of sines to 
calculate the remaining 2 sides. Note that we need to use our calculator set in degree mode. 

   

   

12sin sin 60 24.59 in.
sin sin sin sin 25

12sin sin 95 28.29 in.
sin sin sin sin 25

b a ab B
B A A

c a ac C
C A A

     


     


 

Example 2: The 2-Solution Case 

Two angles and one side determine a unique triangle (AAS or ASA). However, the situation is more 
complicated if you are given 2 sides and one opposite angle. In this case, there might be exactly one triangle, no 
triangle, or 2 different triangles. This example illustrates the 2-triangle case. Solve the triangle if you are given 

2,  12, a b  and 30 . A   
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Solution 

The law of sines gives    
1sin sin sin sin 30 32sin 12 (2 3)

2 2 2
B A AB b

b a a


      . 

There are 2 angles whose sine equals 
3 ,  60

2
 B  and 120 .B    In the first case, 180 30 60 90 .C        

The triangle is a 30-60-90 right triangle and the hypotenuse is  222 12 4 12 4.c       For the second 

case, 180 30 120 30 .C        The triangle is isosceles and the third side is 2.  

 

Example 3: An Area Application 

The law of sines can be used to develop a convenient formula for the area of any triangle. Find the area of the 
triangular lot having 2 sides of lengths 90 meters and 52 meters and an included angle of 102 .  

Solution 

Since we are given 2 sides and the included angle, we can use the area formula to find the following. 

   21 1sin 90 52 sin102 2288.87 m .
2 2

   A ab C  

 

Study Tips  

 The law of sines is often presented in the equivalent form sin sin sinA B C
a b c

  . 

 The side-side-angle case is the most difficult. As Example 2 above shows, it is possible to have 2 
distinct solutions. It is also possible to have exactly one solution or no solution at all.  

 It is always helpful to draw a sketch when solving triangles. 
 

 

 

1. Use the law of sines to solve the triangle if 36 , 8,A a    and 5.b   

2. Use the law of sines to solve the triangle if 60 , 9,A a    and 10.c   

3. Use the law of sines to solve the triangle if 102.4 , 16.7 ,A C     and 21.6.a   

4. Use the law of sines to solve the triangle if 76 , 18,A a    and 20.b   

5. Use the law of sines to solve the triangle if 58 , 4.5,A a    and 12.8.b   

    Problems



99

6. Find the area of the triangle if 110 , 6,C a= ° =  and 10.b =  

7. Find the area of the triangle if 38 45 , 67,A b′= ° =  and 85.c =  

8. The circular arc of a railroad curve has a chord of length 3000 feet and a central angle of 40 .°  Find the 
radius and length of the circular arc.  
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Law of Cosines 
Lesson 22 

 

Topics 

• The law of cosines. 
• Side-side-side (SSS) and side-angle-side (SAS) problems. 
• Side-side-angle (SSA) problems. 
• Heron’s area formula. 

 

Definitions  

 

• Given the image above, the law of cosines is defined as follows. 

o 2 2 2 2 cosa b c bc A= + −  

o 2 2 2 2 cosb a c ac B= + −  

o 2 2 2 2 cosc a b ab C= + −  

• Given a triangle with sides a, b, and c, Heron’s area formula states the area ( )( )( ),s s a s b s c= − − −

where .
2

a b cs + +
=  
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Summary 

This is our second lesson on “solving triangles.” Here we use the law of cosines, a generalization of the 
Pythagorean theorem, to determine the remaining sides and angles in the cases side-side-side (SSS) and side-
angle-side (SAS). Our first example illustrates the case side-side-side.  

 

Example 1: Using the Law of Cosines for the Case SSS 

Given the triangle in figure 22.1, find the 3 angles. 

Figure 22.1 

 

Solution 

We begin by using the law of cosines to calculate the angle opposite the longest side. 

2 2 2

2 2 2 2 2 2

2 cos

8 14 19cos 0.45089
2 2(8)(14)

b a c ac B
a c bB

ac

  

   
   

 

  

Using a calculator, you obtain 116.80 .B    Notice that the angle is obtuse because its cosine is negative. For 
the second angle, you can use the law of cosines again or the law of sines. Using the latter, we obtain the 
following. 

sin sin sin sin116.80sin 8 0.37583
19

22.08

A B BA a
a b b

A

          
   

 

 

 

Finally, 180 180 22.08 116.80 41.12 .        C A B  
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Example 2: Using the Law of Cosines for the Case SAS 

This example considers the case side-angle-side. Solve the triangle in figure 22.2. 

Figure 22.2 

 

Solution 

Using the law of cosines, 
 

2 2 2 2 22 cos 9 12 2(9)(12)cos 25 29.2375,a b c bc A       

29.2375 5.4072a    

 

Now use the law of sines to find the angle B: 
sin sin sin sin 25sin 9 0.7034.

5.4072
B A AB b

b a a
          

   
Because 

c is the longest side, the angle B must be acute, and you can use a calculator to obtain 44.7 .B     

 

Finally, 180 44.7 25 110.3 .C        
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Example 3: An Area Application 

The law of cosines can be used to develop another convenient formula for the area of a triangle. Use Heron’s 
formula to find the area of a 3-4-5 right triangle. 

Solution 

The semiperimeter is 3 4 5 6
2 2

a b cs    
   . Hence, Heron’s formula gives 

( )( )( ) 6(6 3)(6 4)(6 5) 36 6.         A s s a s b s c  

 

Study Tips  

 The law of cosines can be written many ways. For example, 
2 2 2

cos
2

b c aA
bc

 
 . 

 If a triangle is a right triangle, cos90° = 0, the law of cosines simplifies to the Pythagorean theorem.  
 In the first example, we found the largest angle first. If this angle is obtuse, then the other 2 angles are 

acute. And if this angle is acute, then so are the others. Recall that cos 0 angle acute and 
cos <0 angle obtuse.   

 

Pitfalls 

 You cannot apply the law of cosines to any 3 lengths ,  ,  and .a b c  For example, if 16,  4, a b and 

10,c  you would obtain 
2 2 2

cos 1.75,
2
 

  
b c aA

bc
which is impossible. In fact, these 3 lengths 

cannot form a triangle because 16 4 10.   

 Similarly, Heron’s area formula would not work for these 3 lengths because you would obtain the 
square root of a negative number. 

 

 

1. Use the law of cosines to solve the triangle if 6, 8,a b   and 12.c   

2. Use the law of cosines to solve the triangle if 50 , 15,a b    and 30.c   

3. Use the law of cosines to solve the triangle if 9, 12,a b   and 15.c   

4. Use Heron’s area formula to find the area of the triangle if 5, 8,a b   and 10.c   

5. Use Heron’s area formula to find the area of the triangle if 3.5, 10.2,a b   and 9.c   

    Problems
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6. Two ships leave a port at 9 a.m. One travels at a bearing of N 53W at 12 miles per hour, and the 
other travels at a bearing of S 67  W at 16 miles per hour. Approximate how far apart the ships are at 
noon that day. 
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Introduction to Vectors 
Lesson 23 

 

Topics 

 Vectors. 
 Vector operations. 
 Unit vectors. 

 

Definitions and Formulas 

 

 Given a directed line segment ,

PQ  P is the initial point, and Q is the terminal point.  

 The length or magnitude of a directed line segment is denoted PQ


. 

 Directed line segments having the same length and direction are called equivalent. The set of all 
directed line segments that are equivalent to a given PQ


 is a vector in the plane, .v


PQ  

 If the initial point of a directed line segment is at the origin, then the vector is in standard position. It 
is uniquely represented by the coordinates  1 2,  v v of its terminal point: 1 2,  .v v v  These 

coordinates are the components of the vector. 

 The component form of a vector with initial point  1 2,  P p p  and terminal point  1 2,  Q q q  is 

1 1 2 2 1 2,  ,  .     v

PQ q p q p v v  
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 2 2
1 2 .v v v   The vector v is a unit vector if 1.v  

 The standard unit vectors are 1,  0 and 0,  1 . i j  

 The trigonometric form of a vector is  cos sin .v v i j    Here, the direction angle   is the 

angle the vector makes with the positive x-axis. 

 The term scalar is just another word for a real number. 

 

Vector Operations 

Let 1 2 1 2,  ,  ,  , and let be a real number. u vu u v v k  

 Addition: 1 1 2 2,  .   u v u v u v  

 Scalar multiplication: 1 2 1 2,  ,  . uk k u u ku ku  

 

Summary 

In this lesson, vectors are used to represent quantities that have both magnitude and direction (e.g., velocity, 
acceleration, force). We use directed line segments joining 2 points to represent vectors. Two directed line 
segments are equivalent if they have the same magnitude and direction, as illustrated in the first example. 

 

Example 1: Equivalent Directed Line Segments 

Let u  be represented by the directed line segment from (0,  0)P  to (3,  2),Q and let v  be represented by 

the directed line from (1,  2)R  to (4,  4).S  Show that .u v  

Solution 

We begin by using the distance formula to show that the magnitudes are equal. 

   

   

2 2

2 2

3 0 2 0 9 4 13

4 1 4 2 9 4 13

PQ

RS

      

      



  
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We verify that the directions are the same by calculating the slopes of each line segment. 

2 0 2slope of
3 0 3
4 2 2slope of
4 1 3

PQ

RS


 




 




  

The directed line segments have the same length and direction, which verifies that .u v   

 

Example 2: Vector Operations 

You can add vectors and multiply them by real numbers. Find 2v w if 2,  5 v  and 3,  4 .w  

Solution 

2 2 3,  4 6,  8 2 2,  5 6,  8 4,  13       w v w  

 

Example 3: The Trigonometric Form of a Vector 

We can combine our knowledge of trigonometry to express vectors in trigonometric form. Express the vector 
3,  3v  in trigonometric form. 

Solution 

The magnitude of the vector is 2 23 3 18 3 2   v . The vector makes an angle of 45  with the 

positive x-axis. Hence, the trigonometric form is the following. 

   cos sin 3 2 cos45 sin 45      v v i j i j  

 

Study Tips  

 The notation for vectors varies in science and engineering, as does the notation for magnitude. This can 
be confusing, so make sure to check your textbook. 

 A vector v is the zero vector 0,  0  if and only if 0.v  
 In this course, we consider vectors in the plane. In engineering and science, you also study vectors in 

space (3 dimensions). 
 Scalar multiplication by a negative number reverses the direction of a nonzero vector. 

 Given a nonzero vector ,v  the vector v
v

 is a unit vector in the same direction as .v  
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Pitfalls 

 Do not confuse the standard unit vector i  with the imaginary number 1.i    

 The magnitude of a sum of 2 vectors is not generally equal to the sum of their magnitudes. For 
example, 1 i j  but 1,1 2 i + j . 

 

 

1. Find the component form and magnitude of the vector with initial point
2 ,  1
5

 
 
 

and terminal point 

21,  .
5

 
 
 

 

2. Find the component form and magnitude of the vector with initial point
2 ,  1
3

   
 

and terminal point 

1 4,  .
2 5

 
 
 

 

3. Find 2 3u v  if 4,  2 and 7,  1 . u v  

4. Find a unit vector in the direction of the vector 6,  0 .  

5. Find a unit vector in the direction of the vector 24,  7 .   

6. Find the vector v  having magnitude 8 and direction 2 . u i  

7. The initial point of a vector is  3,  1 ,  and the terminal point is  4,  5 .  Write this vector as a linear 

combination of the unit vectors and .i j  

8. Find the magnitude and direction angle of the vector 6 6 . v i j  

9. Find the component form of the vector v  if 3 2v  and v  makes an angle of 150    with the 

positive x-axis. 

10. Find the component form of the vector that represents the velocity of an airplane descending at a speed 
of 100 miles per hour at an angle of 30  below the horizontal. 

 

 

 

    Problems
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Trigonometric Form of a Complex Number 
Lesson 24 

 

Topics 

 The trigonometric form of a complex number. 
 Multiplication and division using the trigonometric form. 
 DeMoivre’s theorem. 

 

Definitions and Theorem 

 

 The absolute value or modulus of a complex number a bi  is 2 2 .  a bi a b  

 
The trigonometric form of the complex number z a bi   is (cos sin ), z r i   where r  is the 

absolute value and   is the appropriate angle given by tan .b
a

 
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 Let    1 1 1 1 2 2 2 2cos sin , and cos sin .   z r i z r i    Multiplication and division using 

trigonometric form is defined as follows. 

o Multiplication:    1 2 1 2 1 2 1 2cos sin .     z z r r i     

o Division:    1 1
1 2 1 2 2

2 2

cos sin ,  0.      
z r i z
z r

     

 DeMoivre’s Theorem is defined as follows: If  cos sinz r i    and n is a positive integer, then

 cos sin . n nz r n i n   

 For a positive integer n, the complex number  cos sinz r i   has exactly n distinct nth roots given 

by 
2 2cos sin ,  0,  1,  ... ,  1.     

 
n k kr i k n

n n
     

 

Summary 

In this lesson, we apply our trigonometric skills to complex numbers. We will see how to represent complex 
numbers in a new way and how to conveniently multiply and divide them. Finally, we will study the famous 
DeMoivre’s theorem concerning powers and roots of complex numbers. We begin by showing how to find the 
trigonometric form of a complex number. 

 

Example 1: The Trigonometric Form of a Complex Number 

If 2 2 3 ,  z i  then its absolute value is    222 2 3 2 2 3 4 12 4.r i           If you graph this 

complex number, you will see that it lies in the Quadrant III and 2 3 4tan 3 .
2 3


    


b
a

   Hence, the 

trigonometric form is   4 4cos sin 4 cos sin .
3 3

z r i i        
 

 You can easily check this answer by 

converting back to the original Cartesian coordinates. 
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Example 2: Multiplication 

To multiply 2 complex numbers in trigonometric form, add their angles and multiply their  

absolute values. Find the product of the complex numbers 1
2 21 3 2 cos sin
3 3

z i i       
 

 and 

2
11 114 3 4 8 cos sin .

6 6
z i i      

   

 

Solution 

  

1 2
2 2 11 112 cos sin 8 cos sin
3 3 6 6

2 11 2 112 8 cos sin
3 6 3 6

15 1516 cos sin
6 6

16 cos sin 16
2 2

z z i i

i

i

i i

   

   

 

 

                    
               

             
              

  

 

You can check this result by multiplying the original numbers as we learned earlier in the course. Finally, 
division is similar to multiplication, except that you subtract the angles and divide the absolute values.  

 

Example 3: An Application of DeMoivre’s Theorem 

DeMoivre’s theorem permits us to conveniently find powers of complex numbers. Use DeMoivre’s theorem to 

calculate  12
1 3 .  i  

Solution 

We first find the trigonometric form of 1 3 .i      221 3 1 3 2.r         

We have 3 2tan 3 .
1 3

b
a

      

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Now we can use DeMoivre’s theorem. 

 

 

12
12

12

2 21 3 2 cos sin
3 3

2 22 cos (12) sin (12)
3 3

4096 cos8 sin 8 4096

i i

i

i

 

 

 

         
             

  

 

Notice that we have just shown that one of the twelve 12th roots of 4096 is 1 3 .i   

 

Study Tips  

 Recall from our earlier work with complex numbers that we can graphically represent the complex 
number a bi  as the ordered pair  ,  a b  in the complex plane. 

 If a complex number a bi  is real  0 ,b  then the absolute value is the usual absolute value .a  
 The absolute value of a complex number represents its distance to the origin. For example, 

 2 21 3 1 3 10i       means that the complex number 1 3i   is 10  units from the origin. 

 The trigonometric form is often called the polar form of a complex number. We will study polar 
coordinates later in this course. 

 

Pitfall 

 The trigonometric form of a complex number is not unique. For example, you can add 2  to the angle 
  and obtain another representation of the same complex number. And the number 0  has an infinite 
number of representations. 

 

 

1. Plot the complex numbers 6i  and 2i  in the complex plane, and find their absolute values. 

2. Plot the complex numbers 4 4i   and 5 12i   in the complex plane, and find their absolute values. 

3. Find the trigonometric form of the following complex numbers 

a. 5 5i  

b. 3 i  

c. 8i  

d. 3 

    Problems



113

4. Calculate the product 3 cos sin 4 cos sin .
3 3 6 6

i i                      
 

5. Calculate the quotient cos50 sin 50
cos 20 sin 20

i
i

  
  

. 

6. Use DeMoivre’s theorem to calculate  62 2 .i  

7. Find the 3 cube roots of 64 .i  

 

 



114

﻿Le
ss

on
 2

5:
 S

ys
te

m
s 

of
 L

in
ea

r E
qu

at
io

ns
 a

nd
 M

at
ric

es

Systems of Linear Equations and Matrices 
Lesson 25 

 

Topics 

 Systems of linear equations. 
 The method of substitution. 
 Gaussian elimination and elementary row operations. 
 Matrix representation of a linear system. 

 

Definitions 

 Elementary row operations for systems of equations are defined as follows. 

o Interchange 2 equations. 

o Multiply one of the equations by a nonzero constant. 

o Add a multiple of one equation to another equation. 

 Elementary row operations for matrices are defined as follows. 

o Interchange 2 rows. 

o Multiply a row by a nonzero constant. 

o Add a multiple of one row to another row. 

 

Summary 

This is the first of 4 lessons on solving systems of linear equations and matrices. We begin by using the method 
of substitution to solve a simple system of 2 equations and 2 unknowns.  

 

Example 1: The Method of Substitution 

Solve the following system of equations. 

4
2

x y
x y
 

  
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Solution 

We begin by solving for the unknown y in the first equation: 4 . y x   

Then substitute this expression for y in the second equation: 2 (4 ) 2 2 6 3.         x y x x x x   

Finally, we can solve for :y 4 4 3 1.    y x  The solution is 3,  1 x y  or  3,  1 .  

 

Example 2: Solving a System by Elimination 

The method of elimination, known as the Gaussian elimination, is the preferred technique for solving systems of 
linear equations. The key step is adding a multiple of one equation to another equation in order to eliminate a 
particular variable. Solve the following system of equations. 

2 3 9
3 2

2 5 5 17

x y z
x y z
x y z

  
    
   

 

Solution 

We begin by adding the first equation to the second equation, producing a new second equation with the 
variable x  eliminated. The first and third equations remain the same. 

2 3 9
4 7

2 5 5 17

x y z
y z

x y z

  
  
   

 

Now add  2  times the first equation to the third equation, eliminating the x-term in the third equation. 

2 3 9
4 7

1

x y z
y z
y z

  
  
    

 

Add the second equation to the third equation, and then divide the third equation by 3. 

2 3 9 2 3 9
4 7 4 7

3 6 2

x y z x y z
y z y z

z z

      
      
   

 

Knowing the value of ,z  we can use back substitution to find the remaining unknowns, as follows. 

2 4(2) 7 1
2( 1) 3(2) 9 1

z y y
x x
      
     

 



116

﻿ �Lesson 25: Systems of Linear Equations and Matrices﻿﻿
Le

ss
on

 2
5:

 S
ys

te
m

s 
of

 L
in

ea
r E

qu
at

io
ns

 a
nd

 M
at

ric
es

The solution is 1,  1,  2   x y z  or  1,  1,  2 .  

 

Example 3: Matrix Representation of a Linear System 

A convenient notation for systems of linear equations involves rectangular arrays of numbers called matrices. 
Notice how the following system of 3 equations in 2 unknowns is represented. The linear system  

2 5
2 3 3
3 8

x y
x y
x y

 
  
  

 can be represented by the matrix 
1 2 5
2 3 3 .
3 1 8

 
 
 
 
 

 

The third column of the matrix is the right-hand side of the system, and the first 2 columns represent the 
coefficients of the unknowns x and y. You can use row reduction on the matrix just as you would do with the 
original system. 

2 5 1 2 5
2 3 3 2 3 3
3 8 3 1 8

x y
x y
x y

    
      
     

 

2 5 1 2 5
7 7 0 7 7

3 8 3 1 8

x y
y

x y

    
       
     

 

2 5 1 2 5
7 7 0 7 7
7 7 0 7 7

x y
y
y

    
       
      

 

2 5 1 2 5
1 0 1 1

0 0 0 0 0

x y
y
    

       
    

 

Hence, 1, y  and 2( 1) 5 3.    x x  The solution is  3,  1 .  

 

Study Tips  

 An equation is linear if the variables occur to the first power.  
 Solving systems of equations by hand involves a lot of arithmetic. Make sure you check your 

calculations as you go along. Fortunately, computers and graphing calculators have built-in programs 
for solving linear equations. 

 For a system of linear equations, there are exactly 3 possibilities: a unique solution, no solution, or an 
infinite number of solutions.  

 Some textbooks use vertical dots to separate the right-hand column of the matrix representing a  
linear system. 
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1. Solve the following systems by the method of substitution. 

a. 
2 6

0
x y
x y
 

  
 

b. 
0

5 3 10
x y
x y
 

  
 

2. Solve the following systems by the method of elimination. 

a. 
2 4
2 1

x y
x y
 

  
 

b. 
2 5 0

3
x y
x y
 

  
 

c. 

2 3 4
5 2

1 3 2
5 4

x y

x y

  

   


 

d. 
2.5 3 1.5
2 2.4 1.2

x y
x y

 
  

 

3. Solve the following systems of linear equations by the method of elimination. 

a. 
6

2 3
3 0

x y z
x y z

x z

  
   
  

 

b. 
3 2 4 1

2 3
2 3 6 8

x y z
x y z
x y z

  
   
   

 

4. The University of Georgia and Florida State University scored a total of 39 points during 
the 2003 Sugar Bowl. The points came from a total of 11 scoring plays, which were a 
combination of touchdowns worth 6 points, extra points worth 1 point, and field goals 
worth 3 points. The same number of touchdowns and field goals were scored. How many 
touchdowns, extra points, and field goals were scored during the game? 

 

  

    Problems
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Operations with Matrices 
Lesson 26 

 

Topics 

 Matrices. 
 Addition and scalar multiplication of matrices. 
 Matrix multiplication. 
 Applications to systems of linear equations. 

 

Definitions 

 A matrix is a rectangular array of numbers.

11 12 1

21 22 2

1 2

n

n
ij

m m mn

a a a
a a a

A a

a a a

 
 
      
 
 




  


. The order or size of a 

matrix is the number of rows and number of columns, m n .  

 Two matrices are equal if they have the same order and corresponding entries are the same.  

 The sum of 2 matrices of the same order is .ij ij ij ija b a b              

 The scalar multiple of a number times a matrix is .ij ijk a ka        

 A zero matrix is a matrix whose entries are all zero.  

 An identity matrix is a square matrix of all zeros except for 1s down the main diagonal.  

 If A  is m n  and B is ,n p  then their product is an m p  matrix ,   ijAB c  where 

1 1 2 2   ij i j i j in njc a b a b a b . 

 

Summary 

In this lesson, we study operations with matrices: addition, scalar multiplication, and matrix multiplication. The 
sum of 2 matrices of the same size is simply the matrix obtained by adding the corresponding entries. The scalar 
multiple of a number times a matrix is obtained by multiplying the number (scalar) with each entry of the 
matrix. Both operations are illustrated in the first example.  
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Example 1: Addition and Scalar Multiplication of Matrices 

Addition of 2 matrices of the same size: 
1 2 1 0 1 1 2 0 0 2

.
3 4 2 4 3 2 4 4 5 8

         
                 

 

A number times a matrix: 
1 2 3(1) 3(2) 3 6

3 .
3 4 3(3) 3(4) 9 12
     

      
     

 

Observe that 0 , A A  where 0  is the zero matrix of the same order as .A  

 

Example 2: Matrix Multiplication 

Matrix multiplication is more complicated than matrix addition or scalar multiplication. The product AB  is 
defined if the number of columns of A  equals the number of rows of .B  Notice in this example how the rows 
of the left matrix are “multiplied” by the columns of the right matrix. 

Find the product of the matrices 
1 3

4 2
5 0

A
 
   
  

 and 
3 2

.
4 1
 

   
B  

Solution 

1 3 ( 1)( 3) 3( 4) ( 1)(2) 3(1) 9 1
3 2

4 2 4( 3) ( 2)( 4) 4(2) ( 2)(1) 4 6
4 1

5 0 5( 3) 0( 4) 5(2) 0(1) 15 10
AB

            
                                     

 

 

Example 3: Matrix Multiplication and Linear Systems 

You can conveniently use matrix multiplication to rewrite systems of linear equations. Rewrite the linear system 
2 2

.
2 1
  

   

x y z
x y z  

 

Solution 

We define the following matrices: 
1 2 1 2

,  ,  .
2 1 1 1

 
                   

x
A B X y

z  

Then the original linear system can be 

represented by the simple matrix equation .AX B  
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Study Tips  

 You can use brackets or parentheses to denote matrices. 
 The identity matrix I serves as the multiplicative identity: AI A . 
 In general, matrix multiplication is not commutative. But, it is associative: ( ) ( ) .A BC AB C  

 

Pitfalls 

 Matrix equations can be confusing; be careful about the notation. For example, the scalar 
multiplication equation 0 0A   has 2 different zeros. The first zero is the real number zero, whereas 
the second zero is the zero matrix (of the same order as A ). 

 Matrix multiplication requires that the 2 matrices be of the appropriate sizes. For example, in Example 
2 above, the product BA  is not defined. 

 Many familiar properties from algebra do not hold with matrices. For example, the cancellation law is 
not true in general: ,  0 AC BC C  does not imply .A B  

 

 

 

1. Find 3 2A B  if: 

a. 
1 1
2 1

A
 

   
 and 

2 1
1 8

B
 

   
.  

b. 
8 1
2 3
4 5

A
 

   
  

 and 
1 6
1 5

1 10
B

 
    
 
 

. 

 

2. Find ,AB  if possible, where: 

a. 
2 1
3 4
1 6

A
 
   
  

 and 
0 3 0
4 0 2
8 2 7

B
 

   
  

. 

b. 
0 1 2
6 0 3
7 1 8

A
 

   
  

 and 
2 1
4 5 .
1 6

B
 

   
 
 

 

 

    Problems
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3. Find AB  and ,BA  where:  

 

a. 
1 2
5 2

A  
  
 

 and 
2 1
1 8

B
 

   
. 

b. 
3 1
1 3

A
 

  
 

 and 
1 3
3 1

B
 

  
 

. 

4. Write the following system of equations as a matrix equation .AX B  

a. 1 2

1 2

2 3 4
6 36

x x
x x

   
   

 

b. 
2 3 9
3 6

2 5 5 17

x y z
x y z
x y z

  
     
   

 

5. Show that  2 2 22A B A AB B     does not hold for matrices. 

6. If a  and b are real numbers, then 0ab   implies 0a   or 0.b  Show that this property does not 
hold for matrices. 
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Inverses and Determinants of Matrices 
Lesson 27 

 

Topics 

 Inverses of matrices. 
 The inverse of a 2 2  matrix. 
 Determinants. 

 

Definitions and Formula 

 The matrix B is the inverse of the square matrix A  if , AB BA I  where I is the identity matrix. A 
square matrix is singular if it does not have an inverse. 

 The determinant of the 2 2 matrix 
a b

A
c d

 
  
 

 is det( ) .  A A ad bc  

 The matrix inverse algorithm is used to find the inverse of the n n square matrix A: Adjoin the 
n n  identity matrix and row reduce. If you are able to reduce A to ,I  then I  will simultaneously 

reduce to the inverse 1A :   1A I I A     . Otherwise, the matrix A doesn’t have an inverse. 

 The formula for 2 2 matrices: If , 
  
 

a b
A

c d
then 1 1 d b

A
c aad bc

  
    

 if 0.ad bc   

 

Summary 

In this lesson, we look at inverses and determinants of square matrices. The algorithm for calculating the 
inverse of a matrix, if it exists, relies on row reduction. 

 

Example 1: Finding the Inverse of a Matrix  

Find the inverse of the matrix 
1 4

.
1 3

 
    

A  
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Solution 

First adjoin the identity matrix to .A    1 4 1 0
.

1 3 0 1
 

    





A I  

Then row reduce this rectangular matrix until we obtain the identity matrix on the left. 

 
  11 4 1 0 1 0 3 4

1 3 0 1 0 1 1 1
A I I A                 

 
 

   

The inverse is the matrix on the right, 1 3 4
1 1

A   
  
 

. 

 

Example 2: The Inverse of a 2 2  Matrix 

Calculating the inverse of a large matrix can be time consuming, and fortunately computers and calculators 
have built-in capabilities for matrix inversion. For small 2 2  matrices, there is a convenient formula for the 
inverse, if it exists. 

The inverse of
3 1
2 2

A
 

   
 is 1

1 12 1 2 11 1 2 4 .
32 3 2 3 13(2) ( 1)( 2) 4

2 4


                     

A  

The inverse of 
1 2
3 6

A  
  
   

does not exist because 1(6) 2(3) 0.ad bc     

 

Example 3: Calculating Determinants 

The expression ad bc  in the previous example is called the determinant of the matrix. Determinants are 
defined for all square matrices and can be calculated with a graphing utility. 

 

2 3
det 2(2) ( 3)(1) 7

1 2

2 1
det 2(2) 1(4) 0

4 2

A A

B B

 
      
 
 

     
 

 

 

Study Tips  

 If a matrix has an inverse, then the inverse is unique.  
 If A is the inverse of ,B then B is the inverse of .A  
 A matrix is singular if and only if its determinant is zero. 
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Pitfall 

 The notation for the inverse of a matrix, 1,A  does not mean the reciprocal of 1,  .A
A

 

 

 

1. Show that 
3 1
5 2

B
 

   
 is the inverse of 

2 1
.

5 3
 

  
 

A  

2. Find the inverse of the following matrices, if it exists 

a. 
2 0
0 3

A  
  
 

 

b. 
2 7 1
3 9 2

A  
    

 

c. 
1 1 1
3 5 4
3 6 5

A
 
   
 
 

 

d. 
5 0 0

2 0 0
1 5 7

A
 
   
  

 

3. Use the formula for the inverse of a 2 2 matrix to calculate the inverse of 
5 1

.
2 2

 
   

 

4. Use an inverse matrix to solve the system of linear equations 
2 5

.
2 3 10
x y
x y
 

  
 

5. Find the determinant of the following matrices.  

a. 
8 4
2 3
 
 
 

 

b. 
7 6

1 3
2

 
 
  
 

 

    Problems
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6. Use a calculator to find the determinant of the matrix 
1 2 5

0 3 4 .
0 0 3

  
 
 
 
 
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Applications of Linear Systems and Matrices 
Lesson 28 

 

Topics 

 Cramer’s rule. 
 Applications of linear systems. 
 Computer graphics. 

 

Definition 

 According to Cramer’s rule if a system of n linear equations in n variables has a coefficient matrix A 

with a nonzero determinant ,A then the solution of the system is 1 2
1 2,  ,   ,  ,   n

n
AA A

x x x
A A A

where the Ai has the same entries as A, except the column is the ith column of constants in the system of 
equations.  

 

Summary 

In this lesson, we look at some applications of systems of linear equations and matrices. Our first example 
illustrates Cramer’s rule, a method for solving linear equations using determinants.  

 

Example 1: Cramer’s Rule  

Use Cramer’s rule to solve the linear system of equations 1 2

1 2

4 2 10
.

3 5 11
 

  

x x
x x

 

Solution 

Notice how the numerators are similar to the denominators, except for the substitution of the right-hand side. 

 1 2
1 2

10 2 4 10
11 5 3 1128 142 1
4 2 4 214 14
3 5 3 5

A A
x x

A A


 

        
  
 

 

The solution is  2,  1 .  
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Example 2: An Application of Linear Systems 

Many applications in science and engineering lead to systems of linear equations. This example illustrates how 
systems can be used to study automobile stopping distances.  

During the testing of a new automobile braking system, the speeds x  (in miles per hour) and the stopping 
distances y (in feet) were recorded as follows. 

Speed Stopping Distance
30 55
40 105
50 188

x y

 

Fit a parabola to the data, and estimate the stopping distance for a speed of 70 miles per hour. 

Solution 

Let 2y ax bx c   be the equation of the parabola. To find the coefficients, we substitute the given data into 
this equation, producing a system of 3 equations and 3 unknowns. 

   
 
   

2

2

2

30 30 55

40 (40) 105

50 50 188

a b c

a b c

a b c

   
   


  

 

Using Gaussian elimination, the solution is 0.165, 6.55, 103.a b c     Hence, the parabola is 
20.165 6.55 103.y x x    When 70,x  you obtain    20.165 70 6.55 70 103 453 feet.   y  

 

Example 3: Computer Graphics 

Matrices are an important tool in the field of computer graphics. You can use 2 2  matrices and matrix 
multiplication to model simple transformations in the plane, as illustrated in this example.  

The 2 2  matrix 
1 0

0 1
T

 
  
 

 represents a reflection in the y-axis because for any point 
x

P
y

 
  
 

 in the plane 

(written as a column), you have 
1 0

.
0 1
     

     
    

x x
TP

y y
 Similarly, the matrix 

1 0
0 1
 
  

reflects points in the 

x-axis. 
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Study Tips  

 Although the formula for Cramer’s rule seems simple, it is not a practical method for solving systems 
of equations because of the need to evaluate determinants. 

 In real-life applications, scientists often need to solve large systems of equations. Fortunately, 
computers are usually able to do this quickly and accurately. Moreover, graphing calculators have 
built-in programs for solving systems of linear equations. 

 

Pitfall 

 Cramer’s rule only works for systems of n equations with n unknowns having a nonzero determinant. 
If the determinant of the coefficient matrix is zero, then the system has either no solution or infinitely 
many solutions.  

 

 

 

1. Use Cramer’s rule to solve (if possible) the following systems of equations. 

a. 
7 11 1
3 9 9
x y
x y

   
  

 

b. 
3 2 2
6 4 4
x y
x y
  

  
 

 

2. You are offered 2 different jobs selling dental supplies. One company offers a straight salary 
commission of 6% of sales. The other company offers a salary of $350 per week plus 3% of sales. 
How much would you have to sell in a week in order to make the straight commission offer the better 
offer? 

 

3. What are the dimensions of a rectangular tract of land if its perimeter is 40 miles and its area is 96 
square miles? 

 

4. A grocer sells oranges for $0.95 each and grapefruit for $1.05 each. You purchase a mix of 16 pieces 
of fruit and pay $15.90. How many of each type of fruit did you buy? 

 

5. Describe the transformation given by the following matrices.  

a. 
0 1
1 0
 

  
 

T  

    Problems
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b. 
0 1
1 0

T
 

  
 

 

6. Find the equation of the circle 2 2 0x y Dx Ey F      that passes through the points 

   0,  0 ,  2,  2 ,  and  4,  0 .  
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Circles and Parabolas 
Lesson 29 

 

Topics 

 Conic sections. 
 Circles. 
 Parabolas. 

 
 

Definitions 

 A conic section is the intersection of a plane with a double-napped cone. 

 A circle is the set of all points  ,  x y  in a plane that are equidistant from a fixed point  ,  ,h k called 

the center of the circle. The distance r  between the center and any point  ,  x y on the circle is the 

radius. 

 A parabola is the set of all points  ,  x y  in a plane that are equidistant from a fixed line, called the 

directrix, and a fixed point, called the focus, not on the line. The midpoint between the focus and the 
directrix is the vertex, and the line through the focus and the vertex is the axis of the parabola. 

 

Formulas 

 Standard form of a circle:    2 2 2 .   x h y k r  

 Standard form of parabolas with vertex at  ,  :h k  

o Vertical axis; directrix y k p  :    2 4 ,  0.   x h p y k p  

o Horizontal axis; directrix x h p  :    2 4 ,  0.   y k p x h p  

 

Summary 

This is the first of 2 lessons on conic sections. In this lesson, we look at circles and parabolas; in the next lesson, 
we study ellipses and hyperbolas. All of these conic sections are defined as a set of points satisfying a certain 
property. Our first example deals with circles. 
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Example 1: Finding the Equation of a Circle  

The point  1,  4  is on a circle whose center is at  2,  3 .   Write the standard form of the circle. 

Solution 

The radius is the distance between the 2 points:      2 2 2 21 2 4 3 3 7 58.r           

Using the standard equation of a circle, we have the following. 

   

       
   

2 2 2

22 2

2 2

2 3 58

2 3 58

x h y k r

x y

x y

   

     

   

 

 

Example 2: Completing the Square  

Find the standard equation of the circle given by 2 26 2 6 0.x x y y      

 

Solution 

In this example, we need to complete the square. Notice how we add and subtract appropriate constants to make 

the terms in the parentheses perfect squares. Write the equation as    2 26 ? 2 ? 6.      x x y y  In order to 

complete the 2 squares, you need to add 
26 9

2
   

   
to the first term and 

22 1
2
   

   
to the second term. Make 

sure to also add these values to the right-hand side so as to not change the equation. 

 
   
   

2 2

2 2

6 9 2 1 6 9 1

3 1 4

x x y y

x y

        

   
 

  

Example 3: Standard Form of the Equation of a Parabola 

The standard form of the equation of a parabola permits us to analyze its focus and directrix. Find the standard 
form of the equation of the parabola with vertex at the origin and focus  0,  4 .  
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Solution 

The axis is vertical and passes through the vertex  0,  0  and focus  0,  4 .  We also have 4.p   Hence, 

   2 24 4 4(4) 16 .      x h p y k x py y y  The equation is 2 16x y or 21 .
16

y x  

  

Study Tips 

 An important skill for analyzing conic sections is completing the square, as illustrated in Example 2. 
 Circles are special cases of ellipses, which we study in the next lesson. 
 If the center of the circle is at the origin, then its equation simplifies to 2 2 2. x y r  

 

 

 

1. Find the standard form of the equation of the circle with center at the origin and radius 18.  

2. Find the standard form of the equation of the circle if the point  1,  0  is on the circle and the center is 

 3,  7 .  

3. Find the standard form of the equation of the circle 2 2 2 6 9 0.x y x y      

 

4. Find the standard form of the equation of the circle 2 24 4 12 24 41 0.x y x y      

 

5. Find the standard form of the equation of the parabola with vertex at the origin and focus at 
30,  .
2

  
 

 

 

6. Find the standard form of the equation of the parabola with vertex at the origin and focus at  2,  0 .  

 

7. Find the vertex, focus, and directrix of the parabola 2 6 .y x   

 

8. Find the standard form of the equation of the parabola with vertex  2,  0  and focus 
3 ,  0 .
2

  
 

 

    Problems
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9. Find the standard form of the equation of the parabola with vertex  0,  4  and directrix 2.y   

 

10. Each cable of the Golden Gate Bridge is suspended between 2 towers that are 1280 meters apart in the 
shape of a parabola. The top of each tower is 152 meters above the roadway. The cables touch the 
roadway midway between the towers. Write an equation that models the cables by placing the origin of 
the coordinate system at the center of the roadway. 
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Ellipses and Hyperbolas 
Lesson 30 

Topics 

 Ellipses. 
 Hyperbolas. 

 

Definitions 

 An ellipse is the set of all points  ,  x y  in a plane, the sum of whose distances from 2 distinct fixed 

points, called foci, is constant. The line through the foci intersects the ellipse at 2 points called 
vertices. The chord joining the vertices is the major axis, and its midpoint is the center of the ellipse. 
The chord perpendicular to the major axis at the center is the minor axis.  

 The eccentricity of an ellipse is 
ce
a

. 

 A hyperbola is the set of all points  ,  x y  in a plane, the difference of whose distances from 2 distinct 

fixed points, called foci, is a positive constant. The graph of a hyperbola has 2 branches. The line 
through the foci intersects the hyperbola at the vertices. The line segment joining the vertices is the 
transverse axis. The midpoint of the transverse axis is the center. 

Formulas 

 Standard form of ellipses with center at  ,  h k  and major and minor axes of lengths 2a  and 2 ,b  
respectively, where 0 b a  : 

o Horizontal major axis:    2 2

2 2 1.
 

 
x h y k

a b
 

o Vertical major axis:    2 2

2 2 1.
 

 
x h y k

b a
 

o The foci lie on the major axis, c units from the center, with 2 2 2. c a b  

 

 Standard form of hyperbolas with center at  ,  :h k  

o Transverse axis is horizontal:    2 2

2 2 1.
 

 
x h y k

a b
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o Transverse axis is vertical:    2 2

2 2 1.
 

 
y k x h

a b
 

o The vertices are a  units from the center. The foci are c units from the center, with 
2 2 2 . c a b  

 

Summary 

In this lesson, we continue our study of conic sections by looking at ellipses and hyperbolas. Again, there are 
many applications of these conic sections, including orbits of planets and comets and whispering galleries. Our 
first example analyzes an ellipse centered at the origin. 

 

Example 1: Sketching an Ellipse  

Sketch the ellipse given by the equation 2 24 36. x y  

Solution 

We first rewrite the equation in standard form.  

2 2

2 2

2 2

2 2

4 36

1
9 36

1
3 6

x y
x y

x y

 

 

 

 

As shown in figure 30.1, the center is  0,  0 ,  and the major axis is vertical. 6,  3,  anda b 

2 26 3 27 3 3.c      The vertices are  0,  6 and  0,  6 ,  and the foci are  0,  3 3  and 

 0,  3 3 .
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Figure 30.1 

               

 

Example 2: A Whispering Gallery  

Statuary Hall is an elliptical room in the United States Capitol Building in Washington DC. The room is also 
referred to as the Whispering Gallery because a person standing at one focus of the room can hear even a 
whisper spoken by a person standing at the other focus. Given that the dimensions of Statuary Hall are 46 feet 
wide and 97 feet long, find an equation for the shape of the floor. Assume that the center is at the origin. 

Solution 

We have 
97 ,
2

a  
46 23,
2

 b
 
and 

2
297 23 42.7.

2
    
 

c   

An equation for the ellipse is 
 

2 2 2 2

2 2 2 21 1.
2397

2

    
x y x y
a b

  

 

Example 3: Standard Form of the Equation of a Hyperbola 

In this example, we analyze a hyperbola. Find the standard form of the equation of the hyperbola with foci 
 1,  2  and  5,  2 ,  and vertices  0,  2 and  4,  2 .  
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Solution 

The center of the hyperbola is the midpoint between the foci:  2,  2 .  The transverse axis is horizontal, and 

2 22, 3, and 9 4 5.a c b c a        The equation is the following. 

   

   

 

2 2

2 2

2 2

2 2

1

2 2
1

2 5

x h y k
a b

x y

 
 

 
 

  

 

Study Tips  

 Circles are special cases of ellipses in which the 2 foci are the same. 
 The eccentricity ,  0 1, e e of an ellipse measures its “roundness.” If 1,e the ellipse is elongated, 

and if 0,e the ellipse is more circular. 
 The orbits of comets are elliptical, hyperbolic, or parabolic. For example, Halley’s comet has an 

elliptical orbit. 

 If the center of an ellipse is the origin, then its equation simplifies to either 
2 2

2 2 1x y
a b

 

2 2

2 2or 1.x y
b a

   

 If the center of a hyperbola is the origin, then its equation simplifies to either 
2 2

2 2 1x y
a b

 

2 2

2 2or 1.y x
a b

   

 

Pitfall 

 Be careful to distinguish the formulas for ellipses and hyperbolas. There is a minus sign in the 
hyperbola formula. 

 

 

 

1. Find the center, vertices, foci, and eccentricity of the following ellipses. 

a. 
2 2

1
64 9
x y

   

    Problems
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b.    2 24 1
1

16 25
x y 

   

c. 2 29 36x y   

d. 2 29 4 36 24 36 0x y x y      

 

2. Find the standard form of the equation of the ellipse with vertices  3,  0  and foci  2,  0 .  

3. Find the eccentricity of the ellipse 
2 2

1.
4 9
x y

   

4. Find the center, vertices, and foci of the following hyperbolas 

a. 2 24 9 36x y   

b. 2 29 36 6 18 0x y x y      

5. Find the standard form of the equation of the hyperbola with vertices  2,  0  and  6,  0 ,  and foci 

 0,  0  and  8,  0 .  
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Parametric Equations 
Lesson 31 

 

Topics 

 Parametric equations. 
 Eliminating the parameter. 

 

Definitions 

 If f and g are functions of the variable t  on an interval ,I then the set of ordered pairs 

   ,  ( ),  ( )x y f t g t  is a plane curve .C  The equations given by ( )x f t  and ( )y g t  are 

parametric equations for the curve, and t is the parameter. 

 As the parameter t increases, the curve is traced out in a specific direction called the orientation of the 
curve. 

 

Formulas 

 The parametric equations of the line through the 2 points  1 1,  x y  and  2 2,  x y  are

   1 2 1 1 2 1,  .     x x t x x y y t y y  

 Neglecting air resistance, the path of a projectile launched at a height h  feet above the ground  
at an angle   with the horizontal, and with initial velocity 0v  feet per second is

    2
0 0cos ,  sin 16 .   x v t y h v t t   

 

Summary 

In this lesson, we look at parametric equations. Up to now, we have considered y as a function of the 
independent variable ,  ( ).x y f x  Now both x  and y will be functions of a third variable, say .t Each value of 

t generates an ordered pair    ,  ( ),  ( ) ,x y x t y t  as illustrated in the first example. 

 

Example 1: Sketching a Plane Curve  

Sketch the curve given by the parametric equations 2 4,  ,  2 3.
2

     
tx t y t  
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Solution 

We first use the equations to generate some points on the curve. For example, when  22,  2 4 0     t x  

and 
2 1

2
y 
   . Thus, the point  0,  1 is on the graph. We can continue to calculate points, as indicted in 

the table. 

2 1 0 1 2 3
0 3 4 3 0 5

31 11 0 12 2 2

t
x

y

 
  

 

 

Now connect these points with a smooth curve to obtain the graph in figure 31.1. Note how the 
orientation is indicated by a small arrow. 

Figure 31.1 

                                

In this example, we can eliminate the parameter t :  22 22 ,  4 2 4 4 4.      t y x t y y  We recognize this 

as the equation of a parabola.  

 

Example 2: An Ellipse  

In this example, we use our knowledge of trigonometry to trace out an ellipse. Eliminate the parameter, and 
sketch the curve represented by the parametric equations 3cosx  , 4sin .y   Notice that the parameter is 

, not .t  

  



141

Solution 

We have cos
3
x 

 
and sin

4
y  . From the fundamental trigonometric identity, we obtain 

2 2 2 2
2 2cos sin 1 1,

3 4 9 16
            
   

x y x y   which is the equation of an ellipse centered at the origin.   

  

Example 3: Parametric Equations for a Line 

In our final example, we develop the parametric equations for a line in the plane. This idea is very important for 
calculus, especially in 3 dimensions. Find a set of parametric equations for the line passing through the 2 points 
 1,  4 and  6,  3 .  

Solution 

We use the equations for a line as follows. 

 
 

1 2 1

1 2 1

1 (6 1) 1 5

4 ( 3 4) 4 7

x x t x x t t

y y t y y t t

       

        
 

Notice in these parametric equations that when  0,  ,  (1,  4), t x y  and when  1,  ,  (6,  3).  t x y  

 

Study Tips  

 It is not always possible to eliminate the parameter, as we did in Example 1. Furthermore, the 
orientation is lost when the parameter is eliminated. 

 The parametric equations for a curve are not unique. For instance, you could replace the parameter t
with 2t to obtain a different set of equations. 

 Graphing calculators have a built-in parametric mode. Try graphing the following cycloid on your 
graphing calculator: sin ,  1 cos .   x y    

 

Pitfall 

 Parametric equations can be tricky. For example, the equations ,   x t y t  and the equations 
2 2,   x t y t do not describe the same curve. The first curve is the line ,y x  whereas the second 

curve is the ray ,  0. y x x  
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1. Sketch the curve represented by the following parametric equations Then eliminate the parameter, and 
determine the corresponding rectangular equation. 

a. ,  4x t y t    

b. 3 3,  2 1x t y t     

c. 22,  x t y t    

d. 2cos ,  3sinx y    

e. 3,  t tx e y e   

f. 3 ,  3lnx t y t   

 

2. Eliminate the parameter and obtain the standard form of the equation of the circle given by 
cos ,  sin .   x h r y k r   

 

3. Eliminate the parameter and obtain the standard form of the equation of the ellipse given by 
cos ,  sin .   x h a y k b   

 

4. Use a graphing utility to graph the witch of Agnesi: 22cot ,  2sin . x y   

5. Use a graphing utility to graph the folium of Descartes: 
2

3 3
3 3,  .

1 1
 

 
t tx y
t t

 

 

  

    Problems
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Polar Coordinates 
Lesson 32 

 

Topics 

 Polar coordinates. 
 Coordinate conversion. 
 Polar equations and graphs. 

 

Definition 

 Let  ,  P x y be a point in the plane. Let r  be the distance from the origin O  to .P  Let  be the 

angle from the positive x-axis to the segment .OP  Then  ,  r   are the polar coordinates of the point 

 ,  .x y   

 

Conversion Formulas 

 The polar coordinates  ,  r   are related to the rectangular coordinates  ,  x y as follows. 

o cos ,  sinx r y r    

o 2 2 2tan ,  y r x y
x

     

 

Summary 

In this lesson, we describe points and graphs in the plane using polar coordinates. The location of a point can be 
determined if we know its distance to the origin and the angle it makes with the positive x-axis, as illustrated in 
the first example. 

 

Example 1: Plotting a Point in Polar Coordinates  

The point    ,  3,  6 r   is graphed in figure 32.1. It is 3 units from the origin and makes an angle of 

6
  with the positive x-axis. This point can also be described by the polar coordinates    11,  3,  .6r 

 



144

﻿Le
ss

on
 3

2:
 P

ol
ar

 C
oo

rd
in

at
es

Figure 32.1 

 

 

Example 2: Polar to Rectangular Conversion  

It is relatively easy to determine the rectangular coordinates of a point given in polar coordinates. If the polar 
coordinates of a point are    ,  2,  ,r    then the rectangular coordinates are given by

cos 2cos 2, sin 2sin 0.      x r y r     Hence, the rectangular coordinates are    ,  2,  0 . x y  

  

Example 3: Rectangular to Polar Conversion 

It is more difficult to convert from rectangular coordinates to polar coordinates than from polar 
coordinates to rectangular coordinates. If the rectangular coordinates of a point are 

   ,  1,  1 , x y  then 1 3tan 1
1 4

y
x

      


because the point is in Quadrant II. 

Furthermore, 2 2 2 1 1 2.r x y      So one set of polar coordinates is    3,  2,  .4r   

 

Example 4: A Polar Equation 

Many graphs are easily described using polar coordinates. Describe the polar graph 2.r  

Solution 

This graph consists of all points at a distance 2 from the origin, which is a circle. You can confirm 
this if you convert to rectangular coordinates: 2 2 22 4 4.r r x y       
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Study Tips  

 Whereas the rectangular coordinates  ,  x y  are unique, polar coordinates are not, as illustrated in 
Example 1 above. 

 Sometimes it is convenient to use negative values of .r  For example, the following 3 polar 

representations of a point are equivalent:      5 33,  ,  3,  ,  3,  .4 4 4
     

 It is helpful to indicate which coordinate system you are using. For example, writing just  2,  0  does 
not tell you whether the coordinates are rectangular or polar. If you mean rectangular coordinates, then 
write    ,  2,  0 , x y  which corresponds to    ,  2,  .r    

 When graphing polar curves, you might find it helpful to write down a table of values. Graphing 
utilities have a built-in polar mode, which uses radian measure. 

 

 

 

1. Find the corresponding rectangular coordinates for the point   5,  1,  .
4

   
 

r   

2. Find the corresponding rectangular coordinates for the point   5,  3,  .
6

   
 

r   

3. Plot the point  ,  4,  ,
3

   
 

r   and find the corresponding rectangular coordinates. 

4. Plot the point   3,  1,  ,
4

    
 

r   and find the corresponding rectangular coordinates. 

5. Plot the point    ,  7,  0 , x y  and find 2 sets of polar coordinates for the point with 0 2 .    

6. Plot the point    ,  3,  3 ,  x y  and find 2 sets of polar coordinates for the point with 

0 2 .    

7. Convert the following rectangular equations to polar forms. 

a. 2 2 9x y    

b. 4y    

c.  8x    

8. Convert the following polar equations to rectangular form. 

a.  4r    

b. 2cosr  .  

    Problems
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9. Sketch the graph of the polar equation  3 1 cos .r    
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Sequences and Series 
Lesson 33 

 

Topics 

 Sequences. 
 Limits of sequences. 
 Summation notation. 
 Series. 
 Geometric series. 

 

Definitions  

 An infinite sequence is a function whose domain is the set of positive integers. The function values 

1 2 3,  ,  ,   ,  ,   na a a a  are the terms of the sequence. 

 The Fibonacci sequence is defined by 0 1 2 11,  1,  ,  1.     k k ka a a a a k  

 Factorial notation: ! 1(2)(3) ( 1)( ). n n n  0! 1.  

 The sum of the first n terms of a sequence is represented by 1 2
1

.


   
n

i n
i

a a a a  The index of 

summation is ,i n is the upper limit of summation, and 1 is the lower limit. 

 The sum of the terms of an infinite geometric sequence is called an infinite geometric series or simply 
a geometric series. 

Theorems 

 Sum of a finite geometric series: 
1

0

1
1

nn
i

i

rr
r








 . 

 Sum of an infinite geometric series: 
0

1 ,  1.
1





 
 i

i
r r

r
 

(If 1,r  the infinite series does not have a sum.) 

 

Summary 

Infinite sequences and series play a major role in calculus. Informally, an infinite sequence is a list of numbers, 
usually described by a rule or formula. Here are some examples. 
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Example 1: Writing the Terms of a Sequence 

Write out the first 3 terms of the following sequences, beginning with 1.n   

1.  3 1 n
na     

2. 1
2

n

na    
 

 

Solution  

1.      1 2 3
1 2 33 1 2,  3 1 4,  3 1 2           a a a  

2. 
1 2 3

1 2 3
1 1 1 1 1 1,  ,  
2 2 2 4 2 8

               
     

a a a  

 

A key issue in the theory of sequences is that of limits. Informally, a sequence has a limit L  if the terms of the 
sequence get arbitrarily close to L  as n  tends to infinity. In Example 1 above, the second sequence has limit 0, 
whereas the first sequence does not have a limit.  

 

Example 2: The Fibonacci Sequence 

The Fibonacci sequence is described by a recursive formula. Write out the first 8 terms of the Fibonacci 
sequence given that 1 21,  1, a a  and 2 1k k ka a a    for 2,  3,  4,  ... .k  

Solution 

We know that the first 2 terms are 1 and 1. The third term is the sum of the first 2 terms, 3 1 2 1 1 2.a a a      

The fourth term is 4 2 3 1 2 3.    a a a  Continuing in this manner, you obtain 1,  1,  2,  3,  5,  8,  13,  21,  ... .  

  

Example 3: Summation Notation 

Summation notation is used to describe the sum of a finite number of terms of a sequence. 

1. 
4

1
3 3(1) 3(2) 3(3) 3(4) 3 6 9 12 30

i
i



          

2. 
8

0

1 1 1 1 1 1 1 1 11 1 2.71828
! 0! 1! 2! 3! 8! 2 6 40,320n n

                
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Do you recognize the sum in this second example? If you were to add more and more terms, the 
sum would approach the number .e  

  

Example 4: A Geometric Series 

The theory of infinite series is major topic in calculus courses. One of the most familiar infinite series is the 

geometric series: 
 0

1 1 1 1 1 11 2.
12 2 4 8 1 1 2

i

i r





             
    

 

Study Tips  

 It is often convenient to begin subscripting a sequence with n = 0 instead of n = 1 instead of  In fact, a 
sequence can begin with any value of n. Furthermore, any convenient letter can be used as the index  
of summation. 

 Graphing utilities have a built-in feature for calculating factorials. Try calculating 20!  with your 
graphing utility. The answer will have 19 digits! 

 The formula for a sequence is not unique. For example, the following 3 rules describe the same 
sequence of odd numbers. 
 

1. 2 1,  1,  2,  3,  ...  na n n  

2. 2 1,  0,  1,  2,  ...  nb n n  

3. 2 3,  2,  3,  4,  ...  nc n n  

 

Pitfall 

 Real numbers can have multiple representations. For example, the number 1 is equal to the infinite 
decimal expansion 0.99999... .  

 

 

1. Write the first 5 terms of the following sequences. Assume n begins with 1.  

a. 2 5na n   

b. 1
n

na
n


   

  

    Problems
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2. Write an expression for the apparent nth term of the following sequences. 

a.  1,  4,  7,  10, 13,  ...  

b. 0,  3,  8,  15,  24,  ...  

3. Simplify the following factorial expressions. 

a. 12!
4! 8!

 

b.  
 
2 1 !
2 1 !

n
n



 

4. Find the following sums.
 
 

a.  
5

1
2 1

i
i



  

b. 
4

2

0i
i


  

5. 
 
Find the sum of the following infinite series. 

a. 
0

410
5

n

n





 
 
 

  

b. 
0

15
2

n

n





  
 

  

c. 
1

1

72
3

n

n





 
 
 

  
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Counting Principles 
Lesson 34 

 

Topics 

 Counting principles. 
 Permutations. 
 Combinations. 

 

Definitions 

 Let 1E  and 2E  be 2 events. The first event, 1,E  can occur in 1m  different ways. After 1E  has 

occurred, 2E  can occur in 2m  different ways. The fundamental counting principle says that the 2 

events can occur in 1 2m m  ways. 

 A permutation of n  elements is an ordering of the elements such that one element is first, one is 
second, one is third, and so on. 

 

Formulas 

 The number of permutations of n elements is ! ( 1)( 2) (3)(2)(1)n n n n    . 

 The number of permutations of n elements taken r  at a time is 
 

!
!n r

nP
n r




. 

 The number of combinations of n elements taken r  at a time is 
 

!
! !n r

nC
n r r




. 

 

Summary 

In this lesson, we develop some basic counting principles. This will lead into our next lesson on elementary 
probability. Our first example uses the fundamental counting principle. 

 

Example 1: Using the Fundamental Counting Principle 

How many different pairs of letters from the English alphabet are possible?  
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Solution 

There are 2 events in this situation. The first event is the choice of the first letter, and the second event is the 
choice of the second letter. Since there are 26 letters in the English alphabet, there are 26 26 676   possible 
pairs of letters. 

  

Example 2: Counting Horse Race Finishes 

For permutations, order is important. Eight horses are running in a race. In how many ways can these horses 
come in first, second, and third? Assume no ties. 

Solution 

There are 8 choices for the winning horse, 7 for the second place horse, and 6 for the third place horse. The total 
number of ways is 8 7 6 336.    You could also use the formula for n  permutations taken r  at a time: 

 8 3
8! 8! 8(7)(6)5! 8 7 6 336.

8 3 ! 5! 5!
      


P   

 

Example 3: Counting Card Hands 

For combinations, order is not important. For example, in a poker hand, the order of the cards is not relevant. A 
standard poker hand consists of 5 cards dealt from a deck of 52. How many different poker hands are possible? 

Solution 

We use the formula for n  combinations taken r  at a time, along with a graphing utility. The number of hands is 

 52 5
52! 52(51)(50)(49)(48)47! 52(51)(50)(49)(48) 2,598,960.

52 5 !5! 47!5! 5!
   


C  

 

Study Tips 

 Problems involving permutations and combinations require factorial calculations. Fortunately, 
these formulas are built into graphing calculators. 

 Keep in mind that permutations involve order, whereas combinations do not. 
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1. Determine the number of ways a computer can randomly generate an odd integer from the integers 1 
through 12. 

 

2. Determine the number of ways a computer can randomly generate a prime number from the integers 1 
through 12. 

 

3. A customer can choose 1 of 4 amplifiers, 1 of 6 compact disc players, and 1 of 5 speaker models for an 
entertainment system. Determine the number of possible system configurations. 

 

4. A college student is preparing a course schedule for the next semester. The student must select 1 of 2 
mathematics courses, 1 of 3 science courses, and 1 of 5 courses from the social sciences. How many 
schedules are possible? 

 

5. Evaluate 8 3.P  

 

6. In how many ways can 5 children posing for a photograph line up in a row? 

 

7. Evaluate 4 1.C  

 

8. You can answer any 12 questions from a total of 14 questions on an exam. In how many ways can you 
select the questions? 

 

9. As of June 2006, the U.S. Senate Committee on Indian Affairs had 14 members. If party affiliation is 
not a factor in selection, how many different committees are possible from the 100 U.S. Senators? 

 

10. In Washington’s Lottery game, a player chooses 6 distinct numbers from 1 to 49. In how many ways 
can a player select the 6 numbers? 

  

    Problems
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Elementary Probability 
Lesson 35 

 

Topics 

 Sample spaces. 
 Probability. 
 Mutually exclusive events. 
 The complement of an event. 

 

Definitions 

 Any happening whose result is uncertain is called an experiment. The possible results of the 
experiment are outcomes. The set of all possible outcomes of the experiment is the sample space of 
the experiment, and any subcollection of a sample space is an event. 

 If an event E  has ( )n E  equally likely outcomes and its sample space S  has ( )n S  equally likely 

outcomes, then the probability of event E  is given by ( )( ) .
( )


n Ep E
n S

 

 Two events A  and B  (from the same sample space) are mutually exclusive if A  and B  have no 
outcomes in common.  

 The complement of an event A  is the collection of all outcomes in the sample space that are not in ,A
and is denoted .A  

 

Formulas 

 If A and B are mutually exclusive events, then   , P A B  and      .  P A B P A P B  

 If A and B  are events in the same sample space, then the probability of A  or B is 
       .    P A B P A P B P A B  

 The probability of the complement .A of an event A  is    1 .  P A P A   
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Summary 

In this lesson, we study elementary probability. Probability can be used to determine what are the chances of 
winning the lottery, or of rolling a 7 with 2 dic. To begin, we need to develop the concept of a sample space, as 
illustrated in the first example. 

 

Example 1: Finding the Sample Space 

Examples of finding the sample space include using a 6-sided die if it is tossed once. Its sample space is {1, 2, 
3, 4, 5, 6}, and the sample space for tossing a coin once would be {H, T}  

 

Example 2: Finding the Probability of an Event 

To calculate the probability of an event, you need to use the formula ( )( )
( )

n Ep E
n S

 . If 2 6-sided dice are tossed, 

what is the probability that a total of 7 is rolled? 

Solution 

There are 6 possible outcomes on each die, which means that there are 6 6 36   different outcomes when 2 
dice are tossed. A 7 can occur 6 ways:             1,  6 ,  2,  5 ,  3,  4 ,  4,  3 ,  5,  2 ,  6,  1 .  

Therefore, the probability of a total of 7 is ( ) 6 1( )
( ) 36 6

n Ep E
n S

   . 

 

Example 3: Mutually Exclusive Events 

In this example, we develop the idea of mutually exclusive events. If 1 card is selected from a standard deck of 
52 cards: 1. What is the probability that the card is either a king or a queen? 2. What is the probability that the 
card is either a heart or a face card? 

 

Solution 

1. The 2 events are mutually exclusive, so the answer is 84 4 2
52 52 52 13   . 

2. The probability of selecting a heart (event A ) is 13
52 . The probability of selecting a face card (event 

B ) is 12
52 . However, 3 cards are both hearts and face cards (jack, queen, and king of hearts). So we 

have       13 12 3 22 11( ) 0.42.
52 52 52 52 26

          P A B P A P B P A B  
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Example 4: The Complement of an Event 

In this example we use the result of Example 2 to calculate the complement of an event. What is the probability 
of not getting a 7 when rolling 2 dice? 

Solution 

From Example 2, we know that the probability of getting a 7 when rolling 2 dice is 1 .6  Therefore, the 

probability of not getting a 7 is the complement, 511 .6 6   

  

Study Tip 

 The probability of an event is always a number between 0 and 1. 

Pitfall 

 Finding the probability of an event can be tricky. For example, suppose a couple intends to have 2 

children. What is the probability that they will have one boy and one girl? The answer is 1 ,2  not 

1 ,3  because the possible outcomes are  ,  ,  ,  .BB GG BG GB  

 

 

1. A coin and a 6-sided die are tossed. What is the sample space for this experiment? 

 

2. A taste tester has to rank 3 varieties of orange juice, A, B, and C, according to preference. What is the 
sample space for this experiment? 

 

3. A coin is tossed 3 times. What is the probability of getting exactly 2 tails? 

 

4. A coin is tossed 3 times. What is the probability of getting at least 1 head? 

 

5. Exactly 1 card is selected from a standard deck of 52 playing cards. What is the probability that the 
card is a face card? 

 

    Problems
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6. Exactly 1 card is selected from a standard deck of 52 playing cards. What is the probability that the 
card is a face card or an ace? 

 

7. A 6-sided die is tossed twice. What is the probability that the sum is 6? 

 

8. A 6-sided die is tossed twice. What is the probability that the sum is less than 11? 

 

9. The probability of event E is 0.75. What is the probability that the event will not occur? 

 

10. Taylor, Moore, and Perez are candidates for public office. It is estimated that Moore and Perez have 
about the same probability of winning, and Taylor is believed to be twice as likely to win as either of 
the others. Find the probability of each candidate’s winning the election. 

 

11.  A shipment of 12 microwave ovens contains 3 defective units. A vending company has ordered 4 of 
these units, and because all are packaged identically, the selection will be random. What is the 
probability that all 4 units are good? 
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GPS Devices and Looking Forward to Calculus 
Lesson 36 

 

Topics 

 The Global Positioning System (GPS). 
 Introduction to calculus: the tangent line problem. 

 

Definition 

 The Global Positioning System (GPS) is a set of 27 orbiting satellites, of which 24 are operational at 
any one time and 3 are backups. At any one time, at least 4 satellites are within view of a GPS device 
(receiver) from anywhere in the world. 

 

Summary 

In our final lesson, we look at 2 different topics. First, we study how the Global Positioning System (GPS) 
works. Then, we take a peek at calculus, and show how to find the equation of a tangent line to the graph of a 
function.  

 

Example 1: Finding a Point of Intersection 

The GPS requires a complicated analysis in 3 dimensions. Hence, we will simplify the discussion by 
considering a 2-dimensional system. Imagine that there are “satellites” at 3 points in the plane, as indicated in 
figure 36.1. 
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Figure 36.1 

 

 

Suppose that my receiver indicates that I am 5 miles from satellite A  at  0,  0 ,  5 miles from satellite B  at 

 8,  0 ,  and 10 miles from satellite C  at  2,  5 .  Then my location is the point of intersection of the following 

3 circles, as shown in figure 36.2. 

1. 2 2 25 x y  

2.  2 28 25  x y  

3.    2 22 5 100   x y  
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Figure 36.2  

                             

To find the point of intersection of these 3 circles, you can subtract equation 2 from equation 1 to 

obtain    22 2 28 0 16 64 0 16 64 0 4.            x x x x x x x  From equation 1, we 

see that 4x   implies 3y   .  

 

Substitute 4x   into equation 3: 

     2 2 24 2 5 100 5 64 5 8 5 8 13y y y y y                 
or 3.y    

Hence, we see that 3, y  and our location is the point  4,  3 .  

 

Example 2: Finding the Slope of a Tangent Line to a Curve 

You know how to find the slope of a line in the plane. But how would you find the slope of a tangent line to a 
curve in the plane? This tangent line problem is the heart of the so-called differential calculus. Let’s illustrate 
the tangent line problem with a specific example: Find the slope of the tangent line to the parabola 2y x at the 

point  2,  4 .P  

Solution 

Let  2,  Q x x  be another point on the graph of the parabola, shown in figure 36.3.  
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Figure 36.3 

 

The slope of the line joining P  and Q  is 
  2 2 24 2,  2.

2 2
 

    
 

x xxm x x
x x

 

As the point Q gets closer to ,P  the value of x gets closer to 2, and the slope approaches 4. 
Calculus says that the slope of the tangent line at P is precisely 4. 

  

Example 3: The Tangent Line to a Curve 

We can use our knowledge of lines to find the equation of the tangent line at .P  We know that the slope at 

 2,  4P  is 4, so the point-slope form of a line gives the following. 

4 4( 2)
4 4 8
4 4

y x
y x
y x

  
  
 

 

Try graphing the parabola 2y x  together with the tangent line 4 4y x   in the same viewing window of 
your graphing calculator.  
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Study Tips 

 Determining the location of a receiver in space requires finding the point of intersection of a set of 
spheres rather than circles. 

 The slope calculation of the tangent line in Example 2 can be expressed in limit notation:
 

 
2

2 2

4lim lim 2 4.
2 

 
    x x

x x
x

 

 Notice that you needed your precalculus skills to find the solutions to both of these problems. You 
are ready to study calculus! 

 

 

1. Your GPS device indicates that you are 5 miles from the point  0,  0 ,A  10 miles from the point 

 5,  2 , B  and 5 miles from the point  0,  8 . C  Where are you located? 

 

2. Find the equation of the tangent line to the graph of the parabola 2( )f x x  at the point  3,  9 .  

    Problems
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Lesson 1 

1. a. 2(2) 2 2(2) 0h = − =   

b. 2(1.5) 1.5 2(1.5) 0.75h = − = −  

c. 2 2 2( 2) ( 2) 2( 2) 4 4 2 4 2h x x x x x x x x+ = + − + = + + − − = +  

2. a. 2
1 1(0)

90 9
q = = −

−
 

b. 2
1(3)

3 9
q =

−
is undefined because of division by zero. 

c. 
( )2 2

1 1( 3)
63 9

q y
y yy

+ = =
++ −

 

3. Domain: All real numbers except 0.t =  
4. The term in the radical cannot be zero or negative. Hence, 10 0 10.y y− > ⇒ >  Domain: All 10.y >  
5. This is not a function of .x  For example, 2y =  and 2y = −  both correspond to 0.x =  
6. This is a function of .x  Its graph passes the vertical line test.  

7. 2

2 2

,  2

2 2 4

A r C r

C C Cr A

π π

π
π π π

= =

 = ⇒ = = 
 

 

 

8.   

 
 
 

9. The graph of 2y x= +  is the graph of ( )f x x=  shifted vertically upward 2 units. 

10. The graph of 2y x= −  is the graph of ( )f x x= shifted to the right 2 units. 

  

Solutions
 

Lesson 1 

1. a. 2(2) 2 2(2) 0h = − =   

b. 2(1.5) 1.5 2(1.5) 0.75h = − = −  

c. 2 2 2( 2) ( 2) 2( 2) 4 4 2 4 2h x x x x x x x x+ = + − + = + + − − = +  

2. a. 2
1 1(0)

90 9
q = = −

−
 

b. 2
1(3)

3 9
q =

−
is undefined because of division by zero. 

c. 
( )2 2

1 1( 3)
63 9

q y
y yy

+ = =
++ −

 

3. Domain: All real numbers except 0.t =  
4. The term in the radical cannot be zero or negative. Hence, 10 0 10.y y− > ⇒ >  Domain: All 10.y >  
5. This is not a function of .x  For example, 2y =  and 2y = −  both correspond to 0.x =  
6. This is a function of .x  Its graph passes the vertical line test.  

7. 2

2 2

,  2

2 2 4

A r C r

C C Cr A

π π

π
π π π

= =

 = ⇒ = = 
 

 

 

8.   

 
 
 

9. The graph of 2y x= +  is the graph of ( )f x x=  shifted vertically upward 2 units. 

10. The graph of 2y x= −  is the graph of ( )f x x= shifted to the right 2 units. 
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Lesson 2 

1. In slope-intercept form, the equation is 5 3.y x= +  The slope is 5 and the y-intercept is ( )0,  3 .  

  

2. Using point-slope form, 2 3( 0) 3 2.y x y x+ = − ⇒ = −  
 

3. The slope of the line is 5 ( 1) 6 3 .
5 5 10 5
− −

= = −
− − −  

The equation of the line is 

( )3 31 5 2.
5 5

y x y x+ = − − ⇒ = − +  

 
4. 

( )

2

2

4 12

4 12 0
6 ( 2) 0
6,  2

x x

x x
x x

x

+ =

+ − =

+ − =

= −

 

 

5. 

 

2

22

2 2 0,  1,  2,  2

2 2 4( 1)(2)4 2 12 1 3
2 2( 1) 2 1

1 3

x x a b c

b b acx
a

x

− + + = = − = =

− ± − −− ± − − ± − ±
= = = =

− − −

= ±

 

 

6.  

( )

2

2

2

4 32

4 4 32 4

2 36
2 6

2 6 8,  4

x x

x x

x
x
x x

+ =

+ + = +

+ =

+ = ±
= − ± ⇒ = −

 

 
7. There are many correct answers. For example, ( )( ) 26 5 0 30 0.x x x x+ − = ⇒ + − =  Or, another 

equation is – x2 – x + 30 = 0. 
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8.  ( )( )( )( )

( )( )2

4 3 2

( ) 4 3 3 0

4 9

4 9 36

f x x x x x

x x x

x x x x

= − + − −

= − −

= − − +

 

 
9. Using a graphic utility you see that the polynomial has 3 zeros. They are in the intervals 

( ) ( )1,  0 ,  1,  2 ,−  and ( )2,  3 .  The approximate zeros are 0.879,  1.347,−  and 2.532.  

 
10. 

( )
( )

3 2

2

2

5 30 45 0

5 6 9 0

5 3 0
0,  3

x x x

x x x

x x
x x

+ + =

+ + =

+ =

= = −

 

 
11.  

( )( )
( )( )( )( )

4 2

2 2

4 3 0

3 1 0

3 3 1 1 0

3,  3,  1,  1

x x

x x

x x x x

x

− + =

− − =

+ − + − =

= − −

 

 
12. Let x  be the first number and y the second number. Then 2 24 24 2 .x y x y+ = ⇒ = −  The product is 

( ) 224 2 24 2 .P xy y y y y= = − = −  Completing the square, 

( )
( )

2

2

2

2 24

2 12 36 72

2 6 72.

P y y

y y

y

= − +

= − − + +

= − − +

 

The maximum value occurs at the vertex of the parabola and equals 72. This happens when 6y =  and 

24 2(6) 12.x = − =  

Lesson 3 

1. ( )13 14 7 13 14 7 14 20i i i i i− − = − + = − +  

2. ( )( ) 26 2 6 2 12 2 3( 1) 2 3i i i− − = = = − = −  

3. ( )( ) 21 3 2 3 2 3 2 3 2 5i i i i i i i+ − = − + − = + + = +  

4. ( ) 24 8 5 32 20 32 20( 1) 20 32i i i i i i+ = + = + − = − +  

5. 4 3i−  is the complex conjugate of 4 3 .i+   

( )( )4 3 4 3 16 9 25i i+ − = + =  

6. 3 2i+  is the complex conjugate of 3 2 3 2 .i− − = −  
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   3 2 3 2 9 2 11i i      

7. 2 2 4 5 8 10 8 10
4 5 4 5 4 5 16 25 41 41

i i i
i i i

 
   

   
 

 

8. By the quadratic formula, the zeros are 
 212 12 4(26)

6 10.
2

x
  

    

     ( ) 6 10 6 10 6 10 6 10f x x x x x                        

9.        4 2 2 2( ) 10 9 1 9 3 3f x x x x x x i x i x i x i            

 The zeros are ,  3 .x i i    

10. Since 4 i  is a zero, so is its conjugate 4 .i  Hence, you have the following. 

 

     
   
  

2

2 2

2 2

4 3 2

( ) 2 4 4

2 8 16 1

4 4 8 17

12 53 100 68

f x x x i x i

x x x

x x x x

x x x x

     

    

    

    

 

11. The Mandelbrot sequence is 
21 1 1 1 1 3 1 7 13,  ,  ,  .

2 2 2 4 2 16 4 256 32
i i i i i i          
 

 

  This sequence is bounded, so the number is in the Mandelbrot set. 

 

Lesson 4 

1. a. y-intercept: 10,  ;
2

 
 
 

 vertical asymptote: 2;x    horizontal asymptote: 0.y   
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b. y-intercept: 10,  ;
6

  
 

 vertical asymptote: 6;x   horizontal asymptote: 0.y   

       
 
c. Intercept:  0,0 ; vertical asymptotes: 2,  2;x    horizontal asymptote: 1.y   
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d. ( )
( )( )

2

2

33( ) ,  3
2 3 26

x xx x xf x x
x x xx x

++
= = = ≠ −

− + −+ −
 

                      

Intercept: ( )0,  0 ;  vertical asymptote: 2;x =  horizontal asymptote: 1.y =  

There is a hole at ( )33,  .5−
 

 
2. a. Horizontal asymptote: 0;y =  vertical asymptote: 0.x =  

b. 
    

( )( )
( )

2

2

5 525 5( ) ,  5
55

x xx xf x x
x x xx x
− +− −

= = = ≠ −
++

 

  Horizontal asymptote: 1;y =  vertical asymptote: 0.x =  (Hole at ( )5,  2 .− ) 

 
 

3. 

( )( )2 2
( )

3
x x

f x
x

− +
=

+   

The zeros are the zeros of the numerator: 2.x = ±  

4. 
( )( )2

1( )
2 1
xf x

x x
−

=
− +

 is one possible answer. 

  

d. ( )
( )( )

2

2

33( ) ,  3
2 3 26

x xx x xf x x
x x xx x

++
= = = ≠ −

− + −+ −
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3
x x

f x
x

− +
=

+   

The zeros are the zeros of the numerator: 2.x = ±  
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xf x

x x
−

=
− +

 is one possible answer. 
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2
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x xx x xf x x
x x xx x
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xf x

x x
−

=
− +

 is one possible answer. 

  

d. ( )
( )( )

2

2

33( ) ,  3
2 3 26

x xx x xf x x
x x xx x

++
= = = ≠ −

− + −+ −
 

                      

Intercept: ( )0,  0 ;  vertical asymptote: 2;x =  horizontal asymptote: 1.y =  

There is a hole at ( )33,  .5−
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( )( )
( )

2

2

5 525 5( ) ,  5
55

x xx xf x x
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169

5. a. There are 2 horizontal asymptotes: 6.y    

      

b. There are 2 horizontal asymptotes at 4y    and one vertical asymptote at 1.x    

                     

Lesson 5 

1. a.    2 5 1f g x x x      

b.    2 5 1f g x x x      

c.    2( 5) 1fg x x x    

d.  
2 5
1

f xx
g x

  
 

 
  

2. a. The domain of f  is 4 0x    or 4.x    

b. The domain of g is all real numbers. 

c.        2 2 4f g x f g x f x x     

The domain is all real numbers. 

3. By inspection, the inverse is ( ) .
6
xg x    

4. By inspection, the inverse is ( ) 3.g x x   

  

−12

−8

12

8

−24

−16

24

16
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5.       
33 3( ( )) 5 5 5 5 5f g x f x x x x          

    33 3 33( ( )) 5 5 5g f x g x x x x      
 

 
6. The function is not one-to-one. For example, (1) ( 1) 1.f f    The graph does not pass the horizontal 

line test. 
 

7. This function is one-to-one. The graph passes the horizontal line test. 
 

8. 2 3y x   

 1

2 3
3

2
3

2

x y
xy

xf x

 







 

The graphs are reflections of each other in the line .y x  
 

9. 24 ,  0 2y x x     

 

2

2 2

2 2

2

1 2

4 ,  0 2,  0 2

4

4

4

4 ,  0 2

x y y x

x y
y x

y x

f x x x

     

 

 

 

   

 

The graphs are reflections of each other in the line .y x  
 

10. If we let ( ) 2 ,  2,f x x x     then f  has an inverse. (Note: we could have also let 2.)x    

 1

2 2,  2
2
2

2,  0

y x x x
x y
y x
f x x x

     

 
 

  

 

The domain of f is 2,x    and the range is 0.y   The domain of 1f   is 0,x   and the range is 
2.y    
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Lesson 6 

1. a. The domain is 5x   or  5,  .  

b. 
2 4 0x    implies 2x  or 2.x   The domain is    ,  2 2,  .     

2. a.  −10 < 40 

          
 1 110 (40)

10 10
4

x

x

   

 
  

b. 4( 1) 2 3x x    

         

4 4 2 3
2 1

1
2

x x
x

x

  
 

 

 

 
c.   8 1 3 2 13x      

   

8 1 3 6 13
8 3 7 13
15 3 6

5 2 2 5

x
x
x

x x

    
    
   
      

  

d.  30 5
2

x 
   

0 3 10
3 7

x
x

  
  

 

 
e. 7 6x    

6 7 6
1 13

x
x

   
 

 

 
f.  14 3 17x     

14 14
14 14 or 14 14
0 or 28

x
x x
x x

 

    
  

 

 
3. 2 4 5 0x x     

  5 1 0x x    

Testing the intervals    ,  1 ,  1,  5 ,    and  5,  ,  we have 2 4 5 0x x    on  ,  1   and 

 5,  ,  and 2 4 5 0x x    on  1,  5 .  
 

4. 7 10x    
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5. 3 5x    

 

Lesson 7 

1. a.     24 (3) 16(3) 48   

b. 33(3 ) 3(27) 81   

2. a.     1 4 5
4

3 3 3 243
3


     

b.  
 

5
5

24 24 324 2
32 42

    


 

3. a.  Horizontal asymptote: 0;y   intercept:  0,  1 ;  increasing. 

       
 
b. Horizontal asymptote: 0;y   intercept:  0,  1 ;  decreasing.                                                                                            

 
 

4. The graph of g  is a horizontal shift of 5 units to the right.  
5. The graph of g is a reflection in the x-axis followed by a vertical shift 5 units upward. 

6. 
 4 0.02 0.0850 50 54.164e e   
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7. a. Asymptote: 0;y   intercept:  0,  1 ;  decreasing. 

     

b. Asymptote: 2;y   intercept:    50,  2 0,  2.007 ;e   increasing. 

      

8. a. 
1(10)0.0251 2500 1 $3200.21

1

ntrA P
n

          
   

 

b. 
365(10)0.0251 2500 1 $3210.04

365

ntrA P
n

          
   

 

c. 0.025(10)2500 $3210.06rtA Pe e    

 

Lesson 8 

1. a. 3
4log 64 3 4 64    

b. 
2

5
32

2log 4 32 4
5

  
 

2. 4
2 2log 16 log 2 4   
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3.  3
10 10

1log log 10 3
1000

     
 

 

4. 10log 345 2.538  

5. ln 42 1.869  

6.  2
6 6log 6 2 log 6 2 1 2x      

7. The functions f and g are inverses of each other. 

  
8. a. Domain: 2;x    vertical asymptote: 2;x    intercept:  1,  0 .  
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b. Domain: 1;x    vertical asymptote: 1;x    intercept:  0,  0 .  

      

c. Domain: 0;x   vertical asymptote: 0;x   intercept:  1,  0 .  
 

       

Lesson 9 

1. a. 3
ln 7 1.9459log 7 1.771
ln 3 1.0986

    

 

b. 
15

ln1460 7.2862log 1460 2.691
ln15 2.7081

  
 

 .
 

2. a. ln 20 ln(4 5) ln 4 ln 5     

b. 
35ln ln 5 ln 64 ln 5 ln 4 ln 5 3ln 4

64
       

3. a.  
13 2

4 4 4 4 4
1 3log 8 ln 2 3ln 2 3ln 4 3 ln 4
2 2

      
 

 

b.  6 6ln 5 ln 5 ln ln 5 6 ln ln 5 6e e e       
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4. 
1

2 1ln ln ln
2

z z z   

5.  
 

3
3ln 3ln( 1) ln ln 1 ln

1
xx x x x

x
     


 

6. 2
3 3 3log 9 log 3 2log 3 2(1) 2     

7. 3 7ln ln 3ln 7 ln 3 7 4e e e e        
 

Lesson 10 

1. a. 24 16 4 2x x     

b. 
21 64 8 8 2 2

8

x
x x x           

   
2. a. 7ln 7x x e     

b.  5 5 51ln(2 1) 5 2 1 2 1 1
2

x x e x e x e          
 

3. a. 3 3 ln 3608 360 ln8 3 ln8 ln 360 0.944
3ln8

x x x x        

 

4. 

b.  

120.101 2
12

t
   
 

 

                       

 

1212.1 2
12

12.112 ln ln 2
12

1 ln 2 6.960
12.112 ln 12

t

t

t

   
 



 

 

 
c. 2 4 5 0x xe e    

        

5 ln 5 1.609

1, impossible.

x

x

e x
e

   

 
 

 

d.  
2 2 2 2x xe e x x     

  

   

2 2 0
2 1 0
2,  1

x x
x x

x

  

  

   
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4. a.    5 5log 3 2 log 6x x    

3 2 6
4 4

1

x x
x

x

  



 
b.  4 4

1log log 1
2

x x  

 

              

4

1
2

1log
1 2

4 2
1
2( 1) 2 2
2

x
x

x
x
x x x
x

    

 

   


 

 
5. Using a graphing utility, graph the function 3

10log 3.y x x    You will obtain the 2 zeros, 

1.469 and 0.001.x x   

 

Lesson 11 

1. We want to find the time needed for the amount to reach $20,000. 

0.035

0.035

20,000 10,000

2
ln 2 0.035

ln 2 19.8 years
0.035

t

t

e
e

t

t






 

 

2. Let C  be the initial amount. We first use the half-life information to calculate the value of .k  

 
 

(1599) 15991 1
2 2

ln 1 21ln 1599
2 1599

k kC Ce e

k k

  

  
 

Now we can use the decay model to find the amount after 1000 years. 
 ln 1 2 /1599 100010 6.48 gramskty Ce e      
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3. a.  10180 134.0 ke  

10180
134.0

18010 ln 0.0295
134.0

ke

k k



  
 

b.  For 2010, 20t   and 20134.0 241,734 people.kP e   
4. a.      

  
b. The maximum point is 100, the average IQ score. 

 

5.  a. 
0.1656(5)

1000(5) 203 animals
1 9

p
e

 
  

         

 

0.1656( ) 0.1656( )
0.1656( )

1000 1500= 1 9 2
91 9

1ln1 90.1656 ln 13 months
9 0.1656

t t
t e e

e

t t

 
     



    


 

b. The horizontal asymptotes occur at p = 1000 and p = 0. The asymptote at p = 1000 means that 
there will not be more than 1000 animals in the preserve. As time goes on, the population 
approaches 1000 animals. 
 

 

  

70

0

115

0.05
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Lesson 12 

1. a.  Since 90 150 180 ,  150       lies in Quadrant II. 
b. Since 270 282 360 ,  282       lies in Quadrant IV. 

c. Since 0 ,  
5 2 5
  

   lies in Quadrant I. 

d. Since 7 3 7,  
5 2 5
      lies in Quadrant III. 

 

 
 

 

  

(c)(c)

(d)

(d)
(d)
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2. a. 495 360 135− °+ ° = − °  
495 720 225− °+ ° = °  

b. 230 360 590° + ° = °  
230 360 130° − ° = − °  
 

3. a. 9 74
4 4

− + =
π ππ  

9 2
4 4

− + = −
π ππ  

b. 2 282
15 15
π ππ− + =  

2 322
15 15

− − = −
π ππ

 
 

4. a. Complement of 24 :  90 24 66 ;° ° − ° = °  supplement: 180 24 156 .° − ° = °  
b. Complement of 126° not possible; supplement: 180 126 54 .° − ° = °  

c. Complement of :  ;
3 2 3 6
π π π π

− =  supplement: 2 .
3 3
π ππ − =  

d. Complement of 3
4
π  not possible; supplement: 3 .

4 4
π ππ − =  

 

5. a. 30 30
180 6
π π ° = = ° 

 

b. 5150 150
180 6
π π ° = = ° 

 

 

6. a.  3 3 180 270
2 2
π π

π
° = = ° 

 
 

b. 7 7 180 210
6 6
π π

π
° − = − = − ° 

 
 

 

7. 88 29 radians
29

s rθ θ θ= ⇒ = ⇒ =  

 
8. ( )2 1 2 meterss r sθ= ⇒ = =  

 

9. 36 72 feet 22.92 feet
2

sr
πθ π

= = = ≈  

 

10. 450 0.07056 radian 4.04 4 2 33.02
6378

s
r

θ ′ ′′= = ≈ ≈ ° ≈ °  
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Lesson 13 

1. a. 2 213 5 169 25 144 12b        

        

opp 5 adj 12 opp 5sin ,  cos ,  tan
hyp 13 hyp 13 adj 12
hyp 13 hyp 13 adj 12csc ,  sec ,  cot
opp 5 adj 12 opp 5

  

  

     

     

 
 

b. 2 218 12 324 144 468 6 13c        

        

opp 18 3 adj 12 2 opp 18 3sin ,  cos ,  tan
hyp hyp adj 12 26 13 13 6 13 13
hyp 13 hyp 13 adj 2csc ,  sec ,  cot
opp 3 adj 2 opp 3

  

  

        

     
 

 
2.  

 

 22 22 adj 3 adj 5     

2 5 2sin ,  cos ,  tan
3 3 5
3 3 5csc ,  sec ,  cot
2 25

  

  

  

  
 

   

Lesson 13 

1. a. 2 213 5 169 25 144 12b        

        

opp 5 adj 12 opp 5sin ,  cos ,  tan
hyp 13 hyp 13 adj 12
hyp 13 hyp 13 adj 12csc ,  sec ,  cot
opp 5 adj 12 opp 5

  

  

     

     

 
 

b. 2 218 12 324 144 468 6 13c        

        

opp 18 3 adj 12 2 opp 18 3sin ,  cos ,  tan
hyp hyp adj 12 26 13 13 6 13 13
hyp 13 hyp 13 adj 2csc ,  sec ,  cot
opp 3 adj 2 opp 3

  

  

        

     
 

 
2.  

 

 22 22 adj 3 adj 5     

2 5 2sin ,  cos ,  tan
3 3 5
3 3 5csc ,  sec ,  cot
2 25

  

  

  

  
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3.  

 

 22 23 1 hyp hyp 10     

3 1sin ,  cos ,  tan 3
10 10
10 1csc ,  sec 10,  cot
3 3

  

  

  

  

 

4. 60
3
     because 

1cos 60 1 32cot 60 .
sin 60 33 3

2


    


 

5. 1 2csc 2 sin 45
2 42

           

6. a.     sin 60tan 60 3
cos 60


  


 

b. 1sin 30 cos60
2

     

c. 3cos30 sin 60
2

      

d. 1 1 3cot 60
tan 60 33

   


 

 

7. a. 1 1sin
csc 3




    

b. 1 4 2 2cos
sec 33 2




    

c. 
1sin 1 23tan

cos 42 2 2 2
3




     

d.  sec 90 csc 3     

 
8. 2 2(1 cos )(1 cos ) 1 cos sin         
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9. a.     sin12 0.2079   
b. cos72 0.3090   

 

10. 1sec 2 cos 60
2 3

          

 

Lesson 14 

1. 2 27 24 49 576 625 25r        

  

24 7sin cos
25 25
24 7tan cot
7 24

25 25sec csc
7 24

y x
r r
y x
x y
r r
x y

   

   

   

 

 

 
 

 

2. 23sin 25 9 16
5

y x
r

        

The angle is in Quadrant II; hence, 4.x    

 

3 4sin cos
5 5

3 4tan cot
4 3
5 5sec csc
4 3

y x
r r
y x
x y
r r
x y

 

 

 

    

     

    

  

 

3. 21csc 4 sin 16 1 15
4

y x
r

          

cot 0  
 
the angle is in Quadrant II; hence, 15.x    

 

1 15sin cos
4 4

1 15tan cot 15
1515

4 4 15sec csc 4
1515

y x
r r
y x
x y

r r
x y

 

 

 

    

       

      
 

  

9. a.     sin12 0.2079   
b. cos72 0.3090   

 

10. 1sec 2 cos 60
2 3

          

 

Lesson 14 

1. 2 27 24 49 576 625 25r        

  

24 7sin cos
25 25
24 7tan cot
7 24

25 25sec csc
7 24

y x
r r
y x
x y
r r
x y

   

   

   

 

 

 
 

 

2. 23sin 25 9 16
5

y x
r

        

The angle is in Quadrant II; hence, 4.x    

 

3 4sin cos
5 5

3 4tan cot
4 3
5 5sec csc
4 3

y x
r r
y x
x y
r r
x y

 

 

 

    

     

    

  

 

3. 21csc 4 sin 16 1 15
4

y x
r

          

cot 0  
 
the angle is in Quadrant II; hence, 15.x    

 

1 15sin cos
4 4

1 15tan cot 15
1515

4 4 15sec csc 4
1515

y x
r r
y x
x y

r r
x y

 

 

 

    

       

      
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4. a.         1,  1,  0 ,  1 sec 1
1

rx y r
x

       


 

b.     1,  0,  1 ,  1 tan (undefined)
2 0

yx y r
x


      

c.     1,  1,  0 ,  1 cot (undefined)
0

xx y r
y

 
       

d.     1,  1,  0 ,  1 csc (undefined)
0

rx y r
y

       

 
5. 180 120 60        

 

 

 

6. 225    lies in Quadrant III, and the reference angle is 45 .     

2 2sin 225 sin 45 ,  cos 225 cos 45 ,  tan 225 tan 45 1
2 2

                 

7. 7
6
    lies in Quadrant II, and the reference angle is 

6
   . 

7 1 7 3 7 3sin sin ,  cos cos ,  tan tan
6 6 2 6 6 2 6 6 3
                                       

             

 

8. sin10 0.1736   
 

9. 2tan 0.8391
9

  

 
 

10. 2

1.4

5 sin

(0.7) 5 sin 0.7 0.79 amperes

tI e t
I e







 

 

 

  



185

Lesson 15 

1. a.  Period: 2 ; amplitude: 3. 

      

b. Period: 2 ; amplitude: 1 .
4

 

      

c. Period: 2 4
1

2

  ; amplitude: 1. 

      

  

Lesson 15 

1. a.  Period: 2 ; amplitude: 3. 

      

b. Period: 2 ; amplitude: 1 .
4

 

      

c. Period: 2 4
1

2

  ; amplitude: 1. 
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d. Period: 2
4 2
π π
= ; amplitude: 1. 

     

 

e. Period: 2π ; amplitude: 1. 

Shift: Set 0
4

x π
− =  and 2 .

4
x π π− =  

       
9,  .

4 4
x xπ π
= =  

   Horizontal shift 
4
π  units to the right. 
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f. Period: 2π ; amplitude: 1. 

Shift: Set 0x π− =  and 2 .x π π− =  

,  3 .x xπ π= =  

Horizontal shift π units to the right. In fact, ( )sin sin .x xπ− = −  

    

 

2. a. Period: 2 3
2

3

π
π

= ; amplitude: 2. 

     

b. Period: 2 24
12

π
π

= ; amplitude: 5. 

      

  

6−6

−4

4

30−30

−20

20
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c. Period: 
2
2
π π=

; amplitude: 5. 
 

 
5sin( 2 ) 10y xπ= − +   

 

3. Period: 2 3 .
8 4

3

π
π

=  

( )
one heartbeat 4 heartbeats/second 80 heartbeats/minute.

3 3
4

= =

 

 

Lesson 16 

1. a. Period: .π  

Two consecutive asymptotes: ,  .
2 2

x xπ π
= − =  

         

  

-4 -2 2 4

-5

5

10

15

20

0

60

1.5

130

c. Period: 
2
2
 

; amplitude: 5. 
 

 

 

3. Period: 2 3 .
8 4

3




  

 
one heartbeat 4 heartbeats/second 80 heartbeats/minute.

3 3
4

 

 

 

Lesson 16 

1. a. Period: .  

Two consecutive asymptotes: ,  .
2 2

x x 
    

         

  

c. Period: 
2
2
π π=

; amplitude: 5. 
 

 
5sin( 2 ) 10y xπ= − +   

 

3. Period: 2 3 .
8 4

3

π
π

=  

( )
one heartbeat 4 heartbeats/second 80 heartbeats/minute.

3 3
4

= =

 

 

Lesson 16 

1. a. Period: .π  

Two consecutive asymptotes: ,  .
2 2

x xπ π
= − =  
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b. Period: 2 .  

    

c. Period: 2 4 .
1

2

   
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d. Period: 

2 .
1

2

 

 

Two consecutive asymptotes: 0,  2 .x x    
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2. Period: 2 .
3
π  Reciprocal function: 2sin3x 

 

3. Period: 2 .
4 2
π π
=  Reciprocal function: 2 .

cos 4x
−  

 

4. There are 4 solutions on the given interval: 7 3 5,  ,  ,  .
4 4 4 4

x π π π π
= − −  

5. The 2 graphs appear to be the same. Algebraically, 2 2 2 2
2 1tan 1 sec tan sec 1 .x x x x y y+ = ⇒ = − ⇒ =  
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6. The damping factor is .xe  As ,  ( ) 0.x f x   

     

7. a.      

 
b. The displacement function is not periodic, but damped. It approaches 0 as t  increases. 

 

Lesson 17 

1. a. 1 1arccos cos ,  0
2 2 3

y y y y         

b. arccos0 cos 0,  0
2

y y y y         

c.     arcsin1 sin 1,  
2 2 2

y y y y  
         

d. arccos1 cos 1,  0 0y y y y        

e.     arctan1 tan 1,  
2 2 4

y y y y  
         

f. arctan 0 tan 0,  0
2 2

y y y y 
         

g.     1 2 2 3cos cos ,  0
2 2 4

y y y y   
          

 
 

h. 

1 2 2sin sin ,  
2 2 2 2 4

y y y y    
            

   

  

−3

3

6−3

0

−0.6

0.6

�4

6. The damping factor is .xe  As ,  ( ) 0.x f x   

     

7. a.      

 
b. The displacement function is not periodic, but damped. It approaches 0 as t  increases. 

 

Lesson 17 

1. a. 1 1arccos cos ,  0
2 2 3

y y y y         

b. arccos0 cos 0,  0
2

y y y y         

c.     arcsin1 sin 1,  
2 2 2

y y y y  
         

d. arccos1 cos 1,  0 0y y y y        

e.     arctan1 tan 1,  
2 2 4

y y y y  
         

f. arctan 0 tan 0,  0
2 2

y y y y 
         

g.     1 2 2 3cos cos ,  0
2 2 4

y y y y   
          

 
 

h. 

1 2 2sin sin ,  
2 2 2 2 4

y y y y    
            

   
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2. a. 
1cos 0.75 0.72   

b.  arcsin 0.75 0.85    
 

3 a. sin(arcsin 0.7) 0.7  

 b.  arcsin(sin 3 ) arcsin(0) 0     

c.  1 15sin tan sin 1
4 2
      

    
 

4. Let 24arcsin .
25

y   Then, 24sin
25

y   and 7cos .
25

y   

 

 

5. Let arctan .y x  Then, tan y x  and 1cot y
x

 . 
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Lesson 18 

1. Since both the sine and cosine are positive, x  is in Quadrant I. 
1sin 1 3 12tan ,  cot 3

cos 3 tan3 3
2

1 2 2 3 1sec ,  csc 2
cos 3 sin3

xx x
x x

x x
x x

     

    

 

2.   2 2sin sin sin
3 3

x x x        

Since both the sine is positive and the tangent is negative, x  is in Quadrant II. 

2 4 5 5 1 5 5cos 1 sin 1 ,  cot
9 9 3 tan 22 5

1 3 3 5 1 3sec ,  csc
cos 5 sin 25

x x x
x

x x
x x

              

      

 

 

3. a. coscot sin sin cos
sin

xx x x x
x

   

b. sin 1 1 cossec sin cot sin 1
tan cos cos sin

    
   
  

 
 

4. a.   
2

cos 1 sincos cos 1 sin
1 sin 1 sin 1 sin 1 sin


 

   

   
   

 

 
2

cos 1 sin 1 sin 1 sin sec tan
cos cos coscos

 
     

     
  

  

b.  2 2 2 cos cos 1sin 1 cos sin cos cos1 cos
1 cos 1 cos 1 cos 1 cos

      
   

  
     

     
 

5.    2 24 2 2 2 4tan 2 tan 1 tan 1 sec secx x          

 

6. 
  

2
2 2

1 1 1 cos 1 cos 2 2 2csc
1 cos 1 cos 1 cos 1 cos 1 cos sin

x x x
x x x x x x

  
    

    
 

 
 

7. a.   2 2 2 2 2cos sin 1 sin sin 1 2sin           

        b. 

1 1
tan tan cot cot cot cot cot cotcot cot

1 11 tan tan cot cot cot cot 1 cot cot 11
cot cot

x y x y y x x yx y
x y x y x y x y

x y


  

  
  

 

 

Lesson 18 

1. Since both the sine and cosine are positive, x  is in Quadrant I. 
1sin 1 3 12tan ,  cot 3

cos 3 tan3 3
2

1 2 2 3 1sec ,  csc 2
cos 3 sin3

xx x
x x

x x
x x

     

    

 

2.   2 2sin sin sin
3 3

x x x        

Since both the sine is positive and the tangent is negative, x  is in Quadrant II. 

2 4 5 5 1 5 5cos 1 sin 1 ,  cot
9 9 3 tan 22 5

1 3 3 5 1 3sec ,  csc
cos 5 sin 25

x x x
x

x x
x x

              

      

 

 

3. a. coscot sin sin cos
sin

xx x x x
x

   

b. sin 1 1 cossec sin cot sin 1
tan cos cos sin

    
   
  

 
 

4. a.   
2

cos 1 sincos cos 1 sin
1 sin 1 sin 1 sin 1 sin


 

   

   
   

 

 
2

cos 1 sin 1 sin 1 sin sec tan
cos cos coscos

 
     

     
  

  

b.  2 2 2 cos cos 1sin 1 cos sin cos cos1 cos
1 cos 1 cos 1 cos 1 cos

      
   

  
     

     
 

5.    2 24 2 2 2 4tan 2 tan 1 tan 1 sec secx x          

 

6. 
  

2
2 2

1 1 1 cos 1 cos 2 2 2csc
1 cos 1 cos 1 cos 1 cos 1 cos sin

x x x
x x x x x x

  
    

    
 

 
 

7. a.   2 2 2 2 2cos sin 1 sin sin 1 2sin           

        b. 

1 1
tan tan cot cot cot cot cot cotcot cot

1 11 tan tan cot cot cot cot 1 cot cot 11
cot cot

x y x y y x x yx y
x y x y x y x y

x y


  

  
  
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8.  
coscosln cot ln ln ln cos ln sin

sin sin
  

 
     

Lesson 19 

1. 1cos 120 ,  240
2

x x       

 

2. 2sin 225 ,  315
2

x       

 

3. 3 7cot 1 ,  
4 4

x x  
     

 

4. 1 7 11csc 2 sin ,  
2 6 6

x x x  
        

 

5. 2 2 4 23csc 4 0 csc csc
3 3

x x x        

3 2sin ,  
2 3 3

x x n x n       
  

 
 

6. 2sec sec 2 0x x    
  sec 2 sec 1 0

1 5sec 2 cos ,  
2 3 3

sec 1 cos 1

x x

x x x

x x x

  

    

      

 

  
 

7. 2sin csc 0x x   

2

2

12sin 0
sin

2sin 1 0
1sin
2

x
x

x

x

 

 

 

 

Since this equation has no real solutions, there are no solutions to the original equation. 
 
8. When you graph 22sin 3sin 1,y x x    you will see that it has 3 zeros on the interval: 

3.665,  4.712,  5.760.x   
 

9. When you graph 23tan 5 tan 4,y x x    you will see that it has 2 zeros on the interval: 
1.154,  0.534.x    

 

10. sin 4 1 4 2
2

x x n   
   

8 2
nx  

   

Lesson 19 

1. 1cos 120 ,  240
2

x x       

 

2. 2sin 225 ,  315
2

x       

 

3. 3 7cot 1 ,  
4 4

x x  
     

 

4. 1 7 11csc 2 sin ,  
2 6 6

x x x  
        

 

5. 2 2 4 23csc 4 0 csc csc
3 3

x x x        

3 2sin ,  
2 3 3

x x n x n       
  

 
 

6. 2sec sec 2 0x x    
  sec 2 sec 1 0

1 5sec 2 cos ,  
2 3 3

sec 1 cos 1

x x

x x x

x x x

  

    

      

 

  
 

7. 2sin csc 0x x   

2

2

12sin 0
sin

2sin 1 0
1sin
2

x
x

x

x

 

 

 

 

Since this equation has no real solutions, there are no solutions to the original equation. 
 
8. When you graph 22sin 3sin 1,y x x    you will see that it has 3 zeros on the interval: 

3.665,  4.712,  5.760.x   
 

9. When you graph 23tan 5 tan 4,y x x    you will see that it has 2 zeros on the interval: 
1.154,  0.534.x    

 

10. sin 4 1 4 2
2

x x n   
   

8 2
nx  

   
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11. a.     The domain of the function is all real numbers except 0.x   
b. The graph has y-axis symmetry (even function) and a horizontal asymptote at 1.y   
c. As 0,x   the graph oscillates infinitely often between 1  and 1. 

 

Lesson 20 

1. a.       1cos(240 0 ) cos 240
2

        

b. 1 3cos 240 cos0 1
2 2

         

c.     2 5 9 3sin sin sin 1
3 6 6 2
             

   
 

d.     2 5 3 1 3 1sin sin
3 6 2 2 2
  
     

2.     1 2 3 2 2 6sin 75 sin 30 45 sin 30 cos 45 cos30 sin 45
2 2 2 2 4


               

    3 2 1 2 6 2cos 75 cos 30 45 cos30 cos 45 sin 30 sin 45
2 2 2 2 4


               

 
2 6

sin 75 6 24tan 75
cos 75 6 2 6 2

4


 

   
  

 

This can be simplified to 3 2.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

3. 13 3 3 3 2 1 3 2 2 6sin sin sin cos sin cos
12 4 3 4 3 3 4 2 2 2 2 4
                        

 

13 3 3 3 2 1 2 3 2 6cos cos cos cos sin sin
12 4 3 4 3 4 3 2 2 2 2 4
                         

 

13 2 6sin13 6 24 4tan
134 2 6 6 2cos

4 4









  
 


 

This can be simplified to 2 3.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

4.  cos60 cos 20 sin 60 sin 20 cos 60 20 cos80            

 

5. 16cos cos sin sin cos cos
9 7 9 7 9 7 63
               

   
 

Lesson 19 

1. 1cos 120 ,  240
2

x x       

 

2. 2sin 225 ,  315
2

x       

 

3. 3 7cot 1 ,  
4 4

x x  
     

 

4. 1 7 11csc 2 sin ,  
2 6 6

x x x  
        

 

5. 2 2 4 23csc 4 0 csc csc
3 3

x x x        

3 2sin ,  
2 3 3

x x n x n       
  

 
 

6. 2sec sec 2 0x x    
  sec 2 sec 1 0

1 5sec 2 cos ,  
2 3 3

sec 1 cos 1

x x

x x x

x x x

  

    

      

 

  
 

7. 2sin csc 0x x   

2

2

12sin 0
sin

2sin 1 0
1sin
2

x
x

x

x

 

 

 

 

Since this equation has no real solutions, there are no solutions to the original equation. 
 
8. When you graph 22sin 3sin 1,y x x    you will see that it has 3 zeros on the interval: 

3.665,  4.712,  5.760.x   
 

9. When you graph 23tan 5 tan 4,y x x    you will see that it has 2 zeros on the interval: 
1.154,  0.534.x    

 

10. sin 4 1 4 2
2

x x n   
   

8 2
nx  

   

11. a.     The domain of the function is all real numbers except 0.x   
b. The graph has y-axis symmetry (even function) and a horizontal asymptote at 1.y   
c. As 0,x   the graph oscillates infinitely often between 1  and 1. 

 

Lesson 20 

1. a.       1cos(240 0 ) cos 240
2

        

b. 1 3cos 240 cos0 1
2 2

         

c.     2 5 9 3sin sin sin 1
3 6 6 2
             

   
 

d.     2 5 3 1 3 1sin sin
3 6 2 2 2
  
     

2.     1 2 3 2 2 6sin 75 sin 30 45 sin 30 cos 45 cos30 sin 45
2 2 2 2 4


               

    3 2 1 2 6 2cos 75 cos 30 45 cos30 cos 45 sin 30 sin 45
2 2 2 2 4


               

 
2 6

sin 75 6 24tan 75
cos 75 6 2 6 2

4


 

   
  

 

This can be simplified to 3 2.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

3. 13 3 3 3 2 1 3 2 2 6sin sin sin cos sin cos
12 4 3 4 3 3 4 2 2 2 2 4
                        

 

13 3 3 3 2 1 2 3 2 6cos cos cos cos sin sin
12 4 3 4 3 4 3 2 2 2 2 4
                         

 

13 2 6sin13 6 24 4tan
134 2 6 6 2cos

4 4









  
 


 

This can be simplified to 2 3.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

4.  cos60 cos 20 sin 60 sin 20 cos 60 20 cos80            

 

5. 16cos cos sin sin cos cos
9 7 9 7 9 7 63
               

   
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6. First, note that both u and v are in Quadrant II so that you have 2 12cos 1 sin
13

u u      and 

2 4sin 1 cos .
5

v v    Hence, 5tan
12

u    and 4tan .
3

v    

   
  
5 4 63tan tan 6312 3 36tan( )

165 41 tan tan 161 3612 3

u vu v
u v

   
     

   
 

7. 1sin 1
2
   because sin 1.

2

  1cos 1 0   because cos0 1 .  

   1 1sin sin 1 cos 1 sin 0 1
2
       
 

 

8. sin( ) sin( ) (sin cos sin cos ) (sin cos sin cos ) 2sin cosx y x y x y y x x y y x x y         
 

9. 8sin cos 4(2cos sin ) 4sin 2x x x x x   
 

10.  2 1 cos 4 1sin 2 1 cos 4
2 2

xx x
    

 

Lesson 21 

1.  5sin 36sinsin 0.3674 21.6
8

b AB B
a


       

   

180 180 36 21.6 122.4
8sin sin122.4 11.49

sin sin 36

C A B
ac C

A

          

   


  

2.  10sin 60sin 10 3sin 0.9623 74.2 or 105.8
9 9 2

c AC C C
a


          

   

   

Case 1: 74.2 ,  180 45.8
9sin sin 45.8 7.45

sin sin 60
Case 2 : 105.8 ,  180 14.2

9sin sin14.2 2.55
sin sin 60

C B A C
ab B

A
C B A C

ab B
A

       

   


       

   


 
  

11. a.     The domain of the function is all real numbers except 0.x   
b. The graph has y-axis symmetry (even function) and a horizontal asymptote at 1.y   
c. As 0,x   the graph oscillates infinitely often between 1  and 1. 

 

Lesson 20 

1. a.       1cos(240 0 ) cos 240
2

        

b. 1 3cos 240 cos0 1
2 2

         

c.     2 5 9 3sin sin sin 1
3 6 6 2
             

   
 

d.     2 5 3 1 3 1sin sin
3 6 2 2 2
  
     

2.     1 2 3 2 2 6sin 75 sin 30 45 sin 30 cos 45 cos30 sin 45
2 2 2 2 4


               

    3 2 1 2 6 2cos 75 cos 30 45 cos30 cos 45 sin 30 sin 45
2 2 2 2 4


               

 
2 6

sin 75 6 24tan 75
cos 75 6 2 6 2

4


 

   
  

 

This can be simplified to 3 2.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

3. 13 3 3 3 2 1 3 2 2 6sin sin sin cos sin cos
12 4 3 4 3 3 4 2 2 2 2 4
                        

 

13 3 3 3 2 1 2 3 2 6cos cos cos cos sin sin
12 4 3 4 3 4 3 2 2 2 2 4
                         

 

13 2 6sin13 6 24 4tan
134 2 6 6 2cos

4 4









  
 


 

This can be simplified to 2 3.  You could also obtain the same answer by using the formula for the 
tangent of a sum. 
 

4.  cos60 cos 20 sin 60 sin 20 cos 60 20 cos80            

 

5. 16cos cos sin sin cos cos
9 7 9 7 9 7 63
               

   
 

6. First, note that both u and v are in Quadrant II so that you have 2 12cos 1 sin
13

u u      and 

2 4sin 1 cos .
5

v v    Hence, 5tan
12

u    and 4tan .
3

v    

   
  
5 4 63tan tan 6312 3 36tan( )

165 41 tan tan 161 3612 3

u vu v
u v

   
     

   
 

7. 1sin 1
2
   because sin 1.

2

  1cos 1 0   because cos0 1 .  

   1 1sin sin 1 cos 1 sin 0 1
2
       
 

 

8. sin( ) sin( ) (sin cos sin cos ) (sin cos sin cos ) 2sin cosx y x y x y y x x y y x x y         
 

9. 8sin cos 4(2cos sin ) 4sin 2x x x x x   
 

10.  2 1 cos 4 1sin 2 1 cos 4
2 2

xx x
    

 

Lesson 21 

1.  5sin 36sinsin 0.3674 21.6
8

b AB B
a


       

   

180 180 36 21.6 122.4
8sin sin122.4 11.49

sin sin 36

C A B
ac C

A

          

   


  

2.  10sin 60sin 10 3sin 0.9623 74.2 or 105.8
9 9 2

c AC C C
a


          

   

   

Case 1: 74.2 ,  180 45.8
9sin sin 45.8 7.45

sin sin 60
Case 2 : 105.8 ,  180 14.2

9sin sin14.2 2.55
sin sin 60

C B A C
ab B

A
C B A C

ab B
A

       

   


       

   

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3.  180 180 102.4 16.7 60.9B A C          

   

   

21.6sin sin 60.9 19.32
sin sin102.4

21.6sin sin16.7 6.36
sin sin102.4

ab B
A

ac C
A

   


   
  

 

4. sin 20sin 76sin 1.078.
18

b AB
a


    No solution. 

 

5. sin 12.8sin 58sin 2.26.
4.5

b AB
a


    No solution. 

 

6.     1 1sin 6 10 sin 110 28.2
2 2

A ab C     square units 

 

7.     1 1sin 67 85 sin 38 45 1782.3
2 2

A bc A      square units 

 
8. The triangle in the figure is isosceles, and the other 2 angles measure 70  each. Using the law of sines, you 

can find the radius and length. 

  Radius: 3000 3000sin 70 4385.71
sin 70 sin 40 sin 40

r r 
   

  
 feet 

  Length: (4385.71)40 3061.80
180

s r        
 feet 

 

Lesson 22 

1. 
2 2 2 64 144 36cos 0.8958 26.4

2 2(8)(12)
b c aA A

bc
   

       

sin 8sin 26.4sin 0.5928 36.3
6

180 26.4 36.3 117.3

b AB B
a

C


     

      
  

2. 2 2 2 2 cos 225 900 2(15)(30) cos50 546.49 23.4a b c bc A a           
2 2 2 546.49 900 225cos 0.8708 29.4

2 2(23.4)(30)
180 50 29.4 100.6

a c bB B
ac

C

   
     

       
 

  

3.  180 180 102.4 16.7 60.9B A C          

   

   

21.6sin sin 60.9 19.32
sin sin102.4

21.6sin sin16.7 6.36
sin sin102.4

ab B
A

ac C
A

   


   
  

 

4. sin 20sin 76sin 1.078.
18

b AB
a


    No solution. 

 

5. sin 12.8sin 58sin 2.26.
4.5

b AB
a


    No solution. 

 

6.     1 1sin 6 10 sin 110 28.2
2 2

A ab C     square units 

 

7.     1 1sin 67 85 sin 38 45 1782.3
2 2

A bc A      square units 

 
8. The triangle in the figure is isosceles, and the other 2 angles measure 70  each. Using the law of sines, you 

can find the radius and length. 

  Radius: 3000 3000sin 70 4385.71
sin 70 sin 40 sin 40

r r 
   

  
 feet 

  Length: (4385.71)40 3061.80
180

s r        
 feet 

 

Lesson 22 

1. 
2 2 2 64 144 36cos 0.8958 26.4

2 2(8)(12)
b c aA A

bc
   

       

sin 8sin 26.4sin 0.5928 36.3
6

180 26.4 36.3 117.3

b AB B
a

C


     

      
  

2. 2 2 2 2 cos 225 900 2(15)(30) cos50 546.49 23.4a b c bc A a           
2 2 2 546.49 900 225cos 0.8708 29.4

2 2(23.4)(30)
180 50 29.4 100.6

a c bB B
ac

C

   
     

       
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3. 
2 2 2 81 144 225cos 0 90  ( right triangle!)

2 2(9)(12)
a b cC C

ab
   

       

9 3sin 36.9
15 5

180 90 36.9 53.1

A A

B

    

      
  

4. 5 8 10 23 11.5
2 2 2

a b cs    
     

( )( )( ) 11.5(11.5 5)(11.5 8)(11.5 10) 19.81 square unitsA s s a s b s c        

  

5. 3.5 10.2 9 22.7 11.35
2 2 2

a b cs    
     

( )( )( ) 11.35(11.35 3.5)(11.35 10.2)(11.35 9) 15.52 square unitsA s s a s b s c          

 
6. After 3 hours, the ships are located at the positions indicated in the figure.  

  2 2 2 2 2

180 53 67 60

2 cos 36 48 2(36)(48)cos 60 1872
43.3 miles

C
c a b ab C
c

      

       


 

      

Lesson 23 

1. 2 2 3 31 ,  1 ,  
5 5 5 5

    v  

2 23 3 18 3 2
5 5 25 5

          
   

v

   

3. 
2 2 2 81 144 225cos 0 90  ( right triangle!)

2 2(9)(12)
a b cC C

ab
   

       

9 3sin 36.9
15 5

180 90 36.9 53.1

A A

B

    

      
  

4. 5 8 10 23 11.5
2 2 2

a b cs    
     

( )( )( ) 11.5(11.5 5)(11.5 8)(11.5 10) 19.81 square unitsA s s a s b s c        

  

5. 3.5 10.2 9 22.7 11.35
2 2 2

a b cs    
     

( )( )( ) 11.35(11.35 3.5)(11.35 10.2)(11.35 9) 15.52 square unitsA s s a s b s c          

 
6. After 3 hours, the ships are located at the positions indicated in the figure.  

  2 2 2 2 2

180 53 67 60

2 cos 36 48 2(36)(48)cos 60 1872
43.3 miles

C
c a b ab C
c

      

       


 

      

Lesson 23 

1. 2 2 3 31 ,  1 ,  
5 5 5 5

    v  

2 23 3 18 3 2
5 5 25 5

          
   

v
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2. 1 2 4 7 9,  ( 1) ,  
2 3 5 6 5

       
 

v  

2 27 9 4141 2.1450
6 5 30

         
   

v

  
3. 2 3 2 4,  2 3 7,  1 8,  4 21,  3 13,  1u v        

 
4. 6,  0 6  

1Unit vector : 6,  0 1,  0 .
6

 u

  

5.    2 224,  7 24 7 25        

1 24 7Unit vector : 24,  7 ,  .
25 25 25

     u  

 

6. 1 18 8 2,  0 8,  0 8
2

u i
u

               
 

 
7. 4 ( 3),  5 1 7,  4 7 4v i j        

 

8.  226 6 72 6 2    v  

6tan 1
6

     

  Since the vector lies in Quadrant IV, 315 .    

9. 3 1 3 6 3 23 2 cos150 ,  sin150 3 2 ,  ,  
2 2 2 2

v         

10. The direction angle is 180 30 210 .      

3 1100 cos 210 ,  sin 210 100 ,  50 3,  50
2 2

v           
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Lesson 24 

1.  

 

2.  

 

3. a. The point lies in Quadrant IV. 

        

 225 5 50 5 2

5 7tan 1
5 4

7 75 2 cos sin
4 4

r

z i

 

 

    


    

   
   

  

Lesson 24 

1.  

 

2.  

 

3. a. The point lies in Quadrant IV. 

        

 225 5 50 5 2

5 7tan 1
5 4

7 75 2 cos sin
4 4

r

z i

 

 

    


    

   
   
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b. The point lies in Quadrant I. 

        

 2 23 1 4 2

1 3tan
3 63

2 cos sin
6 6

r

z i

 

 

   

   

   
   

 

c. The point lies on the imaginary axis. 

        

 220 8 64 8

8 3tan undefined
0 2

3 38 cos sin
2 2

r

z i

 

 

    

  

   
   

d. 3,  0 3(cos 0 sin 0)r z i      
 

4. 3 cos sin 4 cos sin (3)(4) cos sin
3 3 6 6 3 6 3 6

i i i                                         

         

12 cos sin
2 2

i   
 

 

  

5. cos50 sin 50 3 1cos(50 20 ) sin(50 20 ) cos30 sin 30
cos 20 sin 20 2 2

i i i i
i

  
             

  
 

 

6.     
6

66 6 62 2 2 2 cos sin 2 2 cos sin
4 4 4 4

i i i                

     

3 3512 cos sin 512
2 2

i i     
 

 

  

7. The cube roots of 64 64 cos sin
2 2

i i    
 

 are 
1

3
2 22 264 cos sin ,  0,  1,  2.

3 3

k k
i k

       
     
    

    
 

Hence, the 3 cube roots are the following. 

0 : 4 cos sin 2 3 2
6 6

k i i      
 

 

5 51: 4 cos sin 2 3 2
6 6

k i i       
 
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9 92 : 4 cos sin 4
6 6

k i i      
 

 

Lesson 25 

1. a. Solve for y  in Equation 1: 6 2 .y x   

       Substitute for y  in Equation 2: (6 2 ) 0 3 6 2.x x x x           

       Back substitute: 2,  6 2(2) 2.x y     

       Answer:  2,  2 .  

 
b.  Solve for y  in Equation 1: .y x  

       Substitute for y  in Equation 2: 5 3( ) 10 2 10 5.x x x x       
       Back substitute: 5,  5.x y x    

       Answer:  5,  5 .  

 
2. a.  We add  1 times Equation 1 to Equation 2. 

       

2 42 4 2 4
32 1 4 3
4

3 3 52 4 4
4 2 2

x yx y x y
x y y y

x x

                
       
 

 

        Answer: 5 3,  .
2 4

 
 
 

 

 
b.  We first interchange the equations. Then, add  2  times Equation 1 to Equation 2. 

        

2 5 0 3 3 3
3 2 5 0 3 6 2

2 3 5

x y x y x y x y
x y x y y y

x x

          
               

     

         Answer:  5,  2 .  

 

c.  If you multiply Equation 1 by  1
2  and add to Equation 2, you obtain the inconsistent equation 0 4.      

   No solution. 
 

d.  First, multiply both equations by 10 to eliminate the decimals. Then, multiply Equation 1 by  4
5  and 

add to Equation 2, which eliminates Equation 2.  
 

      

2.5 3 1.5 25 30 15 25 30 15 5 6 3
2 2.4 1.2 20 24 12 0 0 0 0

x y x y x y x y
x y x y

          
             

 

       There are an infinite number of solutions: Let  1,  3 6 .
5

y a x a    

        Answer:  1 3 6 ,  ,
5

a a  
 

 where a  is any real number. 

Lesson 25
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3. a. 
6 6 6

2 3 3 9 3 9
3 0 3 4 18 3 9

x y z x y z x y z
x y z y z y z

x z y z z

          
                
            

 

 

         3,  3 3 9 2,  2 3 6 1z y y x x             

         Answer:  1,  2,  3 .  

 

b. 

 

3 2 4 1 2 3 2 3 2 3
2 3 3 2 4 1 5 10 8 5 10 8

2 3 6 8 2 3 6 8 5 10 2 0 10

x y z x y z x y z x y z
x y z x y z y z y z
x y z x y z y z

              
                      
               

 

         The system is inconsistent. No solution. 
 

4. Let x  the number of touchdowns, y  the number of extra points, and z  the number of field goals. Then, 
we have the following system of 3 equations and 3 unknowns. 

11
6 3 39

0

x y z
x y z

x z

  
  

 
 

Solving this system, you obtain 4,  3 4.x y z    (By the way, Georgia won 26-13.) 

 

Lesson 26 

1. a. 
1 1 2 1 3 3 4 2 1 1

3 2 3 2
2 1 1 8 6 3 2 16 8 19

A B
              

                           
  

 

b. 
8 1 1 6 24 3 2 12 22 15

3 2 3 2 3 2 1 5 6 9 2 10 8 19
4 5 1 10 12 15 2 20 14 5

A B
           

                           
                     

 

 
2. a. The product is not defined because A  is 3 2  and B is 3 3.   

 

b. 
0 1 2 2 1 2 17
6 0 3 4 5 15 12
7 1 8 1 6 18 46

AB
      

          
        

 

  

Lesson 25 

1. a. Solve for y  in Equation 1: 6 2 .y x   

       Substitute for y  in Equation 2: (6 2 ) 0 3 6 2.x x x x           

       Back substitute: 2,  6 2(2) 2.x y     

       Answer:  2,  2 .  

 
b.  Solve for y  in Equation 1: .y x  

       Substitute for y  in Equation 2: 5 3( ) 10 2 10 5.x x x x       
       Back substitute: 5,  5.x y x    

       Answer:  5,  5 .  

 
2. a.  We add  1 times Equation 1 to Equation 2. 

       

2 42 4 2 4
32 1 4 3
4

3 3 52 4 4
4 2 2

x yx y x y
x y y y

x x

                
       
 

 

        Answer: 5 3,  .
2 4

 
 
 

 

 
b.  We first interchange the equations. Then, add  2  times Equation 1 to Equation 2. 

        

2 5 0 3 3 3
3 2 5 0 3 6 2

2 3 5

x y x y x y x y
x y x y y y

x x

          
               

     

         Answer:  5,  2 .  

 

c.  If you multiply Equation 1 by  1
2  and add to Equation 2, you obtain the inconsistent equation 0 4.      

   No solution. 
 

d.  First, multiply both equations by 10 to eliminate the decimals. Then, multiply Equation 1 by  4
5  and 

add to Equation 2, which eliminates Equation 2.  
 

      

2.5 3 1.5 25 30 15 25 30 15 5 6 3
2 2.4 1.2 20 24 12 0 0 0 0

x y x y x y x y
x y x y

          
             

 

       There are an infinite number of solutions: Let  1,  3 6 .
5

y a x a    

        Answer:  1 3 6 ,  ,
5

a a  
 

 where a  is any real number. 
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3. a. 
1 2 2 1 0 15
5 2 1 8 8 11

AB
    

         
 

      

2 1 1 2 3 2
1 8 5 2 39 14

BA
     

           

 

b. 
3 1 1 3 0 10
1 3 3 1 10 0

AB
      

     
    

  

     
1 3 3 1 0 10
3 1 1 3 10 0

BA
      

     
      

 

4. a. 1

2

2 3 4
,  ,  

6 1 36
x

A X B AX B
x

      
            

 

 

b. 
1 2 3 9
1 3 1 ,  ,  6

2 5 5 17

x
A X y B AX B

z

     
                 
          

 

 

5. There are many possible counterexamples. For example, let 
1 0
3 1

A  
  
 

 and 
1 0

.
1 0

B  
  
 

    

2 2

2

2 2

1 0 1 0 2 0 2 0
,  ,  ,  2

6 1 1 0 4 1 8 0

4 0
12 1

1 0 2 0 1 0 4 0
2

6 1 8 0 1 0 15 1

A B A B AB

A B A B A B

A AB B

       
           
       

 
      

 
       

            
       

 

6.  There are many possible counterexamples. For example, let 
3 3
4 4

A  
  
 

 and 
1 1

.
1 1

B
 

   
 

3 3 1 1 0 0
4 4 1 1 0 0

0,  0,  0

AB

AB A B

    
         
  

 

 

Lesson 27 

1. 
2 1 3 1 1 0
5 3 5 2 0 1

AB
    

         
  

3 1 2 1 1 0
5 2 5 3 0 1

BA
    

         
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2. a.   2 0 1 0
0 3 0 1

A I  
  
 

  row reduces as follows:              

        

  1 1

1 011 0 02 0 1 0 2 2 .
1 10 3 0 1 0 1 0 03

3

A I I A A 

 
                         

 

   

 
b. The matrix does not have an inverse because it is not square. 
 
c. You can row reduce the augmented matrix by hand or use a graphing utility. In either case, you will obtain 

the following. 
 

  1 1

1 1 1 1 0 0 1 0 0 1 1 1 1 1 1
3 5 4 0 1 0 0 1 0 3 2 1 3 2 1
3 6 5 0 0 1 0 0 1 3 3 2 3 3 2

A I I A A 

      
                    
           

   

 
d.  The inverse does not exist. If you try the matrix inverse algorithm, you will obtain a row of zeros on the 

left. 
 

3.  
1 1 15 1 2 1 2 11 1 4 8

52 2 2 5 2 5 15( 2) ( 2)(1) 8
4 8

                                  
  

 

4. The inverse of the coefficient matrix 
1 2
2 3

A
 

   
 is 1 3 2

.
2 1

A  
   

 Hence, 

1 3 2 5 5
.

2 1 10 0
X A B     
          

 The answer is  5,  0 .  

 

5. a.  
8 4

det 8(3) 4(2) 24 8 16
2 3
 

     
 

 

 

b. 

 

7 6
1det ( 7)(3) 6( ) 21 3 241 23

2

 
           
   

 
6. Using a graphing utility or expanding along the first row, you obtain 

 
1 2 5

det 0 3 4 9.
0 0 3

  
    
 
 

 

Note that the matrix is upper triangular, so its determinant is the product of the diagonal entries.  
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Lesson 28 

 

1. a. 

1 11 7 1
9 9 3 990 603 2
7 11 7 1130 30

3 9 3 9

x y

  
  

       
 

 

 

Answer:  3,  2 .   

 
b. Cramer’s rule cannot be used because the determinant of the coefficient matrix is 0. In fact, the system is 

inconsistent. 
 

2. Let x represent the dollar sales amount. Then, you have the following. 

 
0.06 0.03 350
0.03 350

$11,666.67

x x
x
x

 



 

To make the straight commission offer better, you would have to sell more than $11,666.67 per week. 

 
3. Let x be the length and y the width. Then, you have the following. 

 2

2

2 2 40 20
96 (20 ) 96

20 96

20 96 0
( 8)( 12) 0

x y y x
xy x x

x x
x x
x x

    
   

 

  
  

 

Since ,x y  12x   and 8y   are the dimensions. 

 
4. Let M  number of oranges and R  number of grapefruit. 

 

16
0.95 1.05 15.90

M R
M R

 
    

Solving this system of 2 equations and 2 unknowns, you obtain 9M  and 7.R    

 

5. a.
 

0 1
1 0

x y
y x

    
    

      
 

     This is a reflection across the line .y x  

  

Lesson 28
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b. 
0 1
1 0

x y
y x

     
    

    
 

This is a counterclockwise rotation of 90 .  

 
6. We substitute the 3 points into the equation of the circle to obtain the following. 

 
 
 

0,  0 : 0

2,  2 : 8 2 2 0 4

4,  0 :16 4 0 4

F

D E F D E

D F D



       

     

 

Hence, 0,E   and the equation is 2 2 4 0.x y x    

 

Lesson 29 

1.  22 2 2 218 18x y x y      

 

2. Radius =    2 23 1 7 0 4 49 53.       

       2 2 2 22 3 7 53x h y k r x y          

 
3. We complete the square as follows. 

   
   

2 2

2 2

2 1 6 9 9 1 9

1 3 1

x x y y

x y

        

   
 

Center:  1,  3 ;  radius: 1. 

 
4. We complete the square as follows. 

 

 

 

2 2

2
2

2
2

94 3 4 6 9 41 9 36
4

34 4 3 4
2

3 3 1
2

x x y y

x y

x y

          
 

     
 

     
 

 

Center: 3 ,  3 ;
2

  
 

 radius: 1. 

  

Lesson 29
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5. Vertex:  0,  0 0,  0;h k    focus: 3 30,  .
2 2

p     
 

 

 2

2 2

4

34 6
2

x h py

x y x y

 

      
 

 

 
6. Vertex:  0,  0 0,  0;h k    focus:  2,  0 2.p     

 
 

 

2

2 2

4 ( )

4 2 8

y k p x h

y x y x

  

    
 

 

7. 2 3 36 4
2 2

y x x p        
 

 

 

Vertex:  0,  0 ;  focus: 3 ,  0 ;
2

  
 

 directrix: 3 .
2

x   

 

8. The parabola opens to the right, and 1 .
2

p   

2 214 ( 2) 2( 2)
2

y x y x      
 

 

 
9. The parabola opens upward, and 2.p   

   2 20 4 2 ( 4) 8( 4)x y x y       

 
10. The point  640,  152  is on the parabola, so we can find the value of .p  

  

2

2
2

2 2

4

640 12,800640 4 152
608 19

12,800 194
19 51, 200

x py

p p

x y y x



   

    
 
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Lesson 30 

1. a. Center:  0,  0 ;  8,  3,  64 9 55.a b c      Vertices:  8,  0 ;  foci:  55,  0 ;  eccentricity:      

       55 .
8

ce
a

   

 

b. Center:  4,  1 ;  5,  4,  25 16 9 3.a b c       Vertices:      4,  1 5 : 4,  6 ,  4,  4 ;    foci:    

            4,  1 3 : 4,  4 ,  4,  2 ;    eccentricity: 3 .
5

ce
a

   

 

c. 
2 2

2 29 36 1
36 4
x yx y      

       6,  2 36 4 32 4 2a b c        

Center:  0,  0 ;  vertices:  6,  0 .  Foci:  4 2,  0 ;  eccentricity: 4 2 2 2 .
6 3

ce
a

    

 
d. We complete the square as follows. 

       

   
   
   

2 2

2 2

2 2

9 4 4 4 6 9 36 36 36

9 2 4 3 36

2 3
1

4 9

x x y y

x y

x y

        

   

 
 

 

      3,  2,  9 4 5a b c      

Center:  2,  3 ;  vertices:      2,  3 3 : 2,  6 ,  2,  0 .     Foci:      2,  3 5 : 2,  3 5 ,  2,  3 5 ;       

eccentricity: 5 .
3

ce
a

   

 

2. Center:  0,  0 ;  3,  2,  9 4 5.a c b      

Horizontal major axis: 
2 2

1.
9 5
x y

   

 

3.  3,  2,  9 4 5a b c      

 

5
3

ce
a

   
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4. a. 
2 2

2 24 9 36 1
9 4
x yx y      

        3,  2,  9 4 13a b c      

        Center:  0,  0 ;  vertices:  3,  0 ;  foci:  13,  0 .  

 
b. We complete the square as follows. 

       

   
   
   

2 2

2 2

2 2

9 4 4 6 9 18 36 9

9 2 3 9

2 3
1

1 9

x x y y

x y

x y

        

   

 
 

 

      1,  3,  1 9 10a b c      

      Center:  2,  3 ;  vertices:    2 1,  3 : 3,  3 ,  (1,  3);    foci:      

         2 10,  3 : 2 10,  3 2 10,  3 .       

 

5. 2,  4 16 4 12;a c b       center:  4,  0 .  

      2 2 2 2

2 2

4
1 1

4 12
x h y k x y

a b
  

    
 

 

Lesson 31 

1. a. 4 4 4y t x y x        

     

  

Lesson 31
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b.   33 3
3

xx t t 
   

 
      

3 2 22 1 2 1 3 3
3 3 3

xy t x y x          
 

 

  

 
c.  2 2x t t x    

 
        2 22 2 2y t x y x       
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d.  
2 2 2 2

2 2 2 2cos ,  sin cos sin 1
2 3 2 3
x y x y                    

       
   

 
      

2 2

1 (ellipse)
4 9
x y

   

  

 

e. 
1t tx e e
x

  

 

       
 

3
33 1t ty e e y

x
      
 
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f. 
3x t  

       
33ln ln ln lny t t x y x      

  

2.  cos ,  sinx h y k
r r
 

    

   

2 2
2 2

2 2 2

cos sin 1x h y k
r r

x h y k r

          
   

   

 
 

 

3.  cos ,  sinx h y k
a b
 

    

   

2 2
2 2

2 2

2 2

cos sin 1

1

x h y k
a b

x h y k
a b

          
   

 
 

 

  
4.  

 

  −4

4

6−6

x � 2 cot �,  y � 2 sin2 �
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5.   

 

Lesson 32 

1.  5 2 5 2cos ( 1) cos ;  sin ( 1) sin .
4 2 4 2

x r y r           

Rectangular coordinates: 2 2,  .
2 2

 
  
 

 

 

2. 5 3 3 5 1 3cos 3 cos 3 ;  sin 3 sin 3 .
6 2 2 6 2 2

x r y r  
                   

 

Rectangular coordinates: 3 3,  .
2 2

 
  
 

 

 

3. 1 3cos 4cos 4 2;  sin 4sin 4 2 3.
3 2 3 2

x r y r  
                                

 

Rectangular coordinates:  2,  2 3 .  

 

  

−4

4

6−6

y �
3t2

1 � t3
x �

3t

1 � t3
,

Lesson 32
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4.        3 2 2 3 2 2cos 1 cos 1 ;  sin 1 sin 1 .
4 2 2 4 2 2

x r y r  
                                    

 

Rectangular coordinates: 2 2,  .
2 2

 
  
 

 

 
 

5. 7;  tan 0 .r        

 Polar coordinates:      ,  7,  ,  7,  0 .r     
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6. 33 3 6;  tan 1 .
4

r         

  Polar coordinates:   5,  6,  ,  6,  .
4 4

r          
     

 

 

7. a. 2 2 29 9 3x y r r       
 
b. 4 sin 4 4cscy r r       
 
c. 8 cos 8 8secx r r       
 

8. a. 2 24 16 16r r x y        
 
b. 2 2 22cos 2 cos 2r r r x y x      

 

        

2 2

2 2

2 1 1

1 1

x x y

x y

   

  
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9. If you plot some points, or use a graphing utility, you will obtain the cardioids below. 

 

 

Lesson 33 

1. a. 1 2 32(1) 5 7,  2(2) 5 9,  2(3) 5 11a a a          

       4 52(4) 5 13,  2(5) 5 15a a       
 

b. 1 2 3 4 5
1 1 2 1 3 4 5 62,  ,  ,  ,  

1 2 2 3 4 5
a a a a a 
        

 
2. a. 3 2na n   (Beginning with 1.n   There are many possible answers.)  

 
b. 2 1na n   (Beginning with 1.n   There are many possible answers.)  
 

3. a. 
 

12! 12(11)(10)(9)8! 12(11)(10)(9) 11,880 495
4! 8! 4!8! 4! 24

     

 

b. 
 

 
 

 
 

2 1 ! 2 1 ! 1
2 1 ! (2 1)(2 ) 2 1 ! (2 1)(2 )

n n
n n n n n n
 

 
   

 

 

4. a.  
5

1
2 1 (2 1) (4 1) (6 1) (8 1) (10 1) 35

i
i



             

 

b. 
4

2 2 2 2 2 2

0
0 1 2 3 4 30

i
i



       

  

5. a. 

 
0 0

4 4 110 10 10 50
45 5 1 5

n n

n n

 

 

                  
   

 

Lesson 33



219

b.  
 0 0

1 1 1 105 5 5
12 2 31 2

n n

n n

 

 

          
     

   

 

c.  The series does not have a finite sum because 7 1.
3
  

 

Lesson 34 

1. Odd integers are 1, 3, 5, 7, 9, 11. Hence, there are 6 ways. 
 

2. Prime numbers are 2, 3, 5, 7, 11. Hence, there are 5 ways. 
 

3. Total: 4(6)(5) = 120 ways. 
 

4. Total: 2(3)(5) = 30 ways. 
 

5. 8 3
8! 8! 8(7)(6) 336

(8 3)! 5!
P    


 

 
6.  5! 120  ways 

 

7. 4 1
4! 4! 4

(4 1)!1! 3!
C   


 

 

8.  14 12
14! 14! 14(13) 91

(14 12)!12! 2!12! 2
C    


 ways 

 
9. We use a calculator to evaluate the combination. 

 16
100 14

100! 4.42 10
(100 14)!14!

C   
 ways 

10. We use a calculator to evaluate the combination. 

 49 6
49! 13,983,816

(49 6)! 6!
C  

  ways 

 

Lesson 35 

1.                         ,  1 ,  ,  2 ,  ,  3 ,  ,  4 ,  ,  5 ,  ,  6 ,  ,  1 ,  ,  2 ,  ,  3 ,  ,  4 ,  ,  5 ,  ,  6H H H H H H T T T T T T  

 
2.  ,  ,  ,  ,  ,  ABC ACB BAC BCA CAB CBA  

 

Lesson 34
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3.  ,  ,  E HTT THT TTH  

( ) 3( )
( ) 8

n EP E
n S

 
 

 
4.  ,  ,  ,  ,  ,  ,  E HHH HHT HTH HTT THH THT TTH  

( ) 7( )
( ) 8

n EP E
n S

 
 

 
5. There are 12 face cards in the deck. 

( ) 12 3( )
( ) 52 13

n EP E
n S

  
 

 
6. There are 16 face cards and aces.  

( ) 16 4( )
( ) 52 13

n EP E
n S

  
 

 
7.  (1,  5),  (2,  4),  (3,  3),  (4,  2),  (5,  1)E   

( ) 5( )
( ) 36

n EP E
n S

 
 

 
8. The complement is  (5,  6),  (6,  5),  (6,  6) .E   

 ( ) 3 33 11( ) 1 ( ) 1 1
( ) 36 36 12

n EP E P E
n S


       

 

 

9.  ( ) 1 1 0.75 0.25P E P E       

 
10. 2 4 1 0.25p p p p p       

Taylor: 0.50; Moore: 0.25; Perez: 0.25. 

11. The probability that all 4 units are good is 9 4

12 4

126 14 .
495 55

C
C

   
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Lesson 36 

1. You must find the intersection point of the 3 circles: 2 2 25,x y      2 25 2 100,x y     and 

 22 8 25.x y    Subtracting the first and third circles, you obtain 

   22 2 28 0 16 64 16 64 0 4.y y y y y y y               Then, from the first circle you have 

3.x    Substituting 4y    into the second circle gives 

     2 2 25 6 100 5 64 5 8 3,  13.x x x x               Hence, 3,x  and your location is the point 

 3,  4 .  

 

2. Let  2,  x x  be another point on the parabola. The slope of the line joining this point and  3,  9  is  

  2 3 39 3,  3.
( 3) 3

x xxm x x
x x

 
     

  
 

As x approaches 3,  the slope approaches 3 3 6.     Calculus says that the slope is 6  at the point. The 
equation of the tangent line is 9 ( 6)( 3) 6 9.y x y x         

 

Lesson 36
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Theorems and Formulas

Note: The number in parentheses indicates the lesson in which the theorem or formula is introduced.

angular speed (12): Central angle divided by time: .
t
θ

area of a triangle (21): 1 1 1Area sin sin sin .
2 2 2

bc A ac B ab C= = =

change of base formula (9): 10

10

log lnlog .
log lna

x xx
a a

= =

combinations (34): The number of combinations of n elements taken r  at a time is ( )
!

! !n r
nC

n r r
=

− .

Cramer’s rule (28): If a system of n linear equations in n variables has a coefficient matrix A with a nonzero 

determinant ,A  then the solution of the system is 

1 2
1 2,  ,   ,  ,n

n
AA A

x x x
A A A

= = =

where the iA  has the same entries as ,A except the ith column is the column of constants in the system of equations.

degrees to radians (12): To convert degrees to radians, multiply by .180
π

DeMoivre’s theorem (24): If ( )cos sinz r iθ θ= +  and n is a positive integer, then ( )cos sin .n nz r n i nθ θ= +

determinant of the 2 2× matrix 
a b

A
c d

 
=  
 

 (27): det( ) .A A ad bc= = −  

exponential decay model (11): ,  0.bxy ae b= <

exponential growth model (11): ,  0.bxy ae b= >

formula for 2 2× matrices (27): If ,
a b

A
c d
 

=  
 

then 1 1 d b
A

c aad bc
− − 
=  −−  

 if 0.ad bc− ≠

formulas for compound interest (7): After t years, the balance A in an account with principle P and annual 
interest rate r (in decimal form) is given by the following.

•	 For n  compounding per year: 1 .
ntrA P

n
 = + 
 

•	 For continuous compounding: .rtA Pe=
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fundamental theorem of algebra (3): If f is a polynomial of degree ,  0,n n > then f has precisely n  linear 

factors: ( )( ) ( )1 2( ) ,n nf x a x c x c x c= − − −  where 1 2,  ,   nc c c  are complex numbers. 

Gaussian model (11): ( )2 / .x b cy ae− −=

Heron’s area formula (22): A triangle with sides a, b, and c: where .
2

a b cs + +
=

horizontal translations (15): Determined by solving the equations 0bx c− =  and 2 .bx c π− =

intermediate value theorem (2): If a  and b are real numbers, ,a b< and if f is a polynomial function such that 

( ) ( ),f a f b≠ then in the interval [ ],  ,a b f takes on every value between ( )f a  and ( ).f b  In particular, if ( )f a  

and ( )f b  have opposite signs, then f  has a zero in the interval [ ],  .a b

law of cosines (22): 2 2 2 2 2 2 2 2 22 cos ;  2 cos ;  2 cos .a b c bc A b a c ac B c a b ab C= + − = + − = + −

law of sines (21): .
sin sin sin

a b c
A B C
= =

linear speed (12): Arc length divided by time: .s
t

logistic growth model (11): .
1 rx

ay
be−

=
+

magnitude (or length) of v (23): 
 

matrix inverse algorithm (27): To find the inverse of the n n×  square matrix ,A  adjoin the n n×  identity 
matrix and row reduce. If you are able to reduce A to ,I  then I  will simultaneously reduce to the inverse 1A− :

[ ] 1A I I A− →    . Otherwise, the matrix A  does not have an inverse.

multiplication and division of complex numbers (24): Let ( )1 1 1 1cos sinz r iθ θ= +  and ( )2 2 2 2cos sin .z r iθ θ= +

•	 Multiplication: ( ) ( )1 2 1 2 1 2 1 2cos sin .z z r r iθ θ θ θ= + + +  

•	 Division: ( ) ( )1 1
1 2 1 2 2

2 2

cos sin ,  0.
z r i z
z r

θ θ θ θ= − + − ≠  

Newton’s law of cooling (11): The rate of change in the temperature of an object is proportional to the difference 
between the object’s temperature and the temperature of the surrounding medium.

parametric equations (31): The parametric equations of the line through the 2 points ( )1 1,  x y and ( )2 2,  x y are 

( ) ( )1 2 1 1 2 1,  .x x t x x y y t y y= + − = + −
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permutations (34): 

The number of permutations of n elements is ! ( 1)( 2) (3)(2)(1)n n n n= − −  . 

The number of permutations of n elements taken r  at a time is 
( )

!
!n r

nP
n r

=
−

.

polar coordinates conversion formula (32): The polar coordinates ( ),  r θ are related to the rectangular 

coordinates ( ),  x y as follows.

•	 cos ,  sinx r y rθ θ= =

•	

probability (35): 
•	 If an event E  has ( )n E  equally likely outcomes and its sample space S  has ( )n S  equally likely out-

comes, then the probability of event E  is given by ( )( ) .
( )

n Ep E
n S

=

•	 If A and B are mutually exclusive events, then ( ) ,P A B∩ =∅  and ( ) ( ) ( ).P A B P A P B∪ = +

•	 If A and B  are events in the same sample space, then the probability of A  or B is 

•	 ( ) ( ) ( ) ( ).P A B P A P B P A B∪ = + − ∩

•	

•	 The probability of the complement A’ of an event A is P(A’) = 1 – P(A)

product of 2 matrices (26): If A  is m n×  and B is ,n p×
 then their product is an 

m p×  matrix 
,ijAB c =    where 1 1 2 2ij i j i j in njc a b a b a b= + + + .

projectile motion (31): neglecting air resistance, the path of a projectile launched at a height h feet above the 
ground at an angle θ with the horizontal and with the initial velocity v0 feet per second is 
Pythagorean theorem (13): In any right triangle with sides a  and b  and hypotenuse 2 2 2,  .c a b c+ =

quadratic formula (2): 
2 4

2
b b acx

a
− ± −

= .

radians to degrees (12): To convert radians to degrees, multiply by 180 .π
rule of 70 (8): The doubling time for a deposit earning r % interest compounded continuously is approximately 

70
r

years.

rule of 72 (9): The doubling time for a deposit earning r % interest compounded annually is 72
r  

years.

scalar multiple of a number times a matrix (26): ij ijk a ka   =    . 
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standard form of a circle (29): ( ) ( )2 2 2.x h y k r− + − =

standard form of ellipses (30): Standard form of ellipses with center at ( ),  h k  and major and minor axes of 
lengths 2a  and 2 ,b  respectively, where 0 b a< < :

•	 Horizontal major axis:
( ) ( )2 2

2 2 1.
x h y k

a b
− −

+ =

•	 Vertical major axis: 
( ) ( )2 2

2 2 1.
x h y k

b a
− −

+ =

•	 The foci lie on the major axis, c units from the center, with 2 2 2.c a b= −

standard form of hyperbolas (30): Standard form of hyperbolas with center at ( ),  :h k

•	 Transverse axis is horizontal:
( ) ( )2 2

2 2 1.
x h y k

a b
− −

− =

•	 Transverse axis is vertical: 
( ) ( )2 2

2 2 1.
y k x h

a b
− −

− =

•	 The vertices are a  units from the center. The foci are c units from the center with 2 2 2.c a b= +

standard form of parabolas (29): Standard form of parabolas with vertex at ( ),  :h k

•	 Vertical axis; directrix y k p= − : ( ) ( )2 4 ,  0.x h p y k p− = − ≠

•	 Horizontal axis; directrix x h p= − : ( ) ( )2 4 ,  0.y k p x h p− = − ≠

sum of 2 matrices of the same order (26): ij ij ij ija b a b     + = +      .

sum of a finite geometric series (33): 
1

0

1
1

nn
i

i

rr
r

+

=

−
=

−∑ .

sum of an infinite geometric series (33): 
0

1 ,  1.
1

i

i
r r

r

∞

=

= <
−∑  (If 1,r ≥  the infinite series does not have  

a sum.)

trigonometric form of a vector (23): ( )cos sinv v i jθ θ= + . Here, the direction angle θ  is the angle the vector 
makes with the positive x-axis.

vector operations (23): Let 1 2 1 2,  ,  ,  , and let be a real number.u vu u v v k= =

•	 Addition: 1 1 2 2,  .u v u v u v+ = + +

•	 Scalar multiplication: 1 2 1 2,  ,  .uk k u u ku ku= =
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Algebra Summary

Note: The number in parentheses indicates the lesson in which the concept is introduced.

Properties of Exponents (7)

Let ,  a b  be real numbers and ,  m n  integers. 

•	
m n m na a a += , 

m
m n

n
a a
a

−=  

•	

20 2 21 ,  1 ( 0),  n
na a a a a a

a
− = = ≠ = =  

•	
( ) ,  

m m
m m m

m
a aab a b
b b

 = = 
 

•	
( )nm mna a=

Properties of Logarithms (9)

•	 log 1 0a =  

•	 log 1a a =

•	 log x
a a x=

•	
log ,  0a xa x x= >

•	 If log log ,a ax y=  then .x y=

•	 log ( ) log loga a auv u v= +  

•	
log log loga a a

u u v
v

  = − 
 

•	 log log ,  0n
a au n u u= >
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Graphs of Common Functions

Squaring Function

Cubing Function

Square Root Function
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Absolute Value Function

Rational Function

Natural Logarithmic Function
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Natural Exponential Function

Exponential and Logarithmic Models
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Trigonometry Summary

Note: The number in parentheses indicates the lesson in which the concept is introduced.

Degree Measure 

Right Triangle Trigonometry 
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Definition of the 6 Trigonometric Functions (13)

Right triangle definitions, where 0 .
2
πθ< <

	

Circular function definitions, where θ is any angle.

Trigonometric Functions (14)

	 	

opposite hypotenusesin csc
hypotenuse opposite

adjacent hypotenusecos sec
hypotenuse adjacent

opposite adjacenttan cot
adjacent opposite

θ θ

θ θ

θ θ

= =

= =

= =

sin

cos

tan

y
r

x
r

y
x

θ

θ

θ

=

=

=

csc

sec

cot

r
y

r
x

x
y

θ

θ

θ

=

=

=
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Reciprocal Identities (16)

1sec
cos

θ
θ

=

1csc
sin

θ
θ

=

1cot
tan

θ
θ

=

Tangent and Cotangent Identities (16)

sin costan     cot
cos sin

x xx x
x x

= =

Pythagorean Identities (13)

Symmetry Relations (18)

Sum and Difference Formulas (20)

Cofunction Identities (18)
 

2 2

2 2

2 2

sin cos 1

1 tan sec

1 cot csc

x x

x x

x x

+ =

+ =

+ =

sin( ) sin    cos( ) cos
csc( ) csc    tan( ) tan
sec( ) sec    cot( ) cot .

x x x x
x x x x
x x x x

− = − − =
− = − − = −
− = − = −

sin( )  sin cos   cos sin

cos( )  cos cos   sin sin

tan   tantan( )  
1  tan tan

u v u v u v

u v u v u v

u vu v
u v

± = ±

± =

±
± =





sin cos
2

cos sin
2

tan cot
2

u u

u u

u u

π

π

π

 − = 
 
 − = 
 
 − = 
 
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Double-Angle Formulas (20)

Power-Reducing Formulas (20)

Trigonometric Values of Common Angles (14)

Inverse Trigonometric Functions (Definitions) (17)

2 2 2 2

sin 2 2sin cos

cos 2 cos sin 2cos 1 1 2sin

u u u

u u u u u

=

= − = − = −

2

2

1 cos 2sin
2

1 cos 2cos
2

uu

uu

−=

+
=

arcsin if and only if sin ,  1 1,  .
2 2

arccos if and only if cos ,  1 1,  0 .

arctan if and only if tan ,  ,  .
2 2

y x y x x y

y x y x x y

y x y x x y

π π

π
π π

= = − ≤ ≤ − ≤ ≤

= = − ≤ ≤ ≤ ≤

= = −∞ < < ∞ − < <
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Graphs of Common Functions

Sine Function (15)

Cosine Function (15)
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Tangent Function

Cosecant Function
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Secant Function

Cotangent Function



237

Glossary

Note: The number in parentheses indicates the lesson in which the concept or term is introduced.

absolute value function (1): 
,  0

( ) .
,  0

x x
f x x

x x
≥

= = − <
 The absolute value of a number is always nonnegative.

absolute value of a complex number (24): See complex numbers.

acute angle (12): An angle between 0° and 90 .°

addition of functions (5): ( )( ) ( ) ( ).f g x f x g x+ = +

amplitude (15): Given the general sine and cosine functions sin( ),  cos( ),y d a bx c y d a bx c= + − = + −  where  
b > 0, amplitude is .a  This number represents half the distance between the maximum and minimum values of 
the function.

angle (12): Is determined by rotating a ray (half-line) about its endpoint. The starting position of the ray is the 
initial side, and the end position is the terminal side. The endpoint of the ray is the vertex. If the origin is the 
vertex and the initial side is the positive x-axis, then the angle is in standard position.

angular speed (12): Measures how fast the angle is changing. It is the central angle divided by time: .
t
θ

axis of a parabola (29): See parabola.

center of a circle (29): See circle.

center of a hyperbola (30): See hyperbola.

center of an ellipse (30): See ellipse.

circle (29): The set of all points ( ),  x y  in a plane that are equidistant from a fixed point ( ),  ,h k called the center 
of the circle. The distance between the center and any point ( ),  x y on the circle is the radius, r.

closed interval (6): Closed interval [ ],  a b  means .a x b≤ ≤

common logarithms (8): Logarithms to base 10.

complementary angles (12): Two positive angles are complements of each other if their sum is 90 .°

complement of an event (35): See experiment.

complex conjugate (3): The complex conjugate of a bi+  is .a bi−

complex numbers (3): The set of complex or imaginary numbers consists of all numbers of the form ,a bi+  
where a  and b are real numbers. 

The absolute value or modulus of a complex number a bi+  is 2 2 .a bi a b+ = +
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The trigonometric form of the complex number z a bi= +  is (cos sin ),z r iθ θ= +  where r  is the absolute value 

and θ  is the appropriate angle given by tan .b
a

θ =

nth roots of a complex number: For a positive integer n, the complex number ( )cos sinz r i= +θ θ has exactly n 

distinct nth roots given by 2 2cos sin ,  0,  1,  ... ,  1.n k kr i k n
n n

θ π θ π+ + + = − 
 

component form (23) : See vector. 

components of a vector (23) : See vector.

composition (5): The composition of 2 functions is defined by ( )( ) ( ( )).f g x f g x=

conic section (29): The intersection of a plane with a double-napped cone.

coterminal angles (12): Two angles that have the same initial and terminal sides.

degree (12): Equivalent to a rotation of 1 360 of a complete revolution about the vertex. 

degree of a polynomial function (2): See polynomial function.

dependent variable (1): ( )y f x=  is the dependent variable, where y  depends on x .

determinant (27): See matrix.

directed line segment (23): See vector.

directrix of a parabola (29): See parabola.

domain (1): The domain of a function is the set of inputs.

e (7): An irrational number, the natural base e 2.71828≈  is the most important base in calculus. The corresponding 
function ( ) xf x e=  is called the natural exponential function.

eccentricity of an ellipse (30): ce
a

= .

ellipse (30): The set of all points ( ),  x y  in a plane, the sum of whose distances from 2 distinct fixed points, 
called foci, is constant. The line through the foci intersects the ellipse at 2 points called vertices. The chord 
joining the vertices is the major axis, and its midpoint is the center of the ellipse. The chord perpendicular to the 
major axis at the center is the minor axis. 

equivalent (23) : See vector. 

even (2): A function is even if ( ) ( ).f x f x− =

event (35): See experiment.
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experiment (35): Any happening whose result is uncertain is called an experiment. The possible results of 
the experiment are outcomes. The set of all possible outcomes of the experiment is the sample space of the 
experiment, and any subcollection of a sample space is an event.

Two events A  and B  (from the same sample space) are mutually exclusive if A  and B  have no outcomes in 
common. 

The complement of an event A  is the collection of all outcomes in the sample space that are not in ,A and is 
denoted .A′

exponential function (7): The exponential function f with base  ( 0,  1)a a a> ≠  is defined by ( ) ,xf x a=  
where x  is any real number. The domain of the exponential function is ( ),  ,−∞ ∞  and the range is ( )0,  .∞
The exponential function is increasing if 0a >  and decreasing if 0 1.a< <  The intercept is ( )0,  1 . The x-axis 
is the horizontal asymptote. The exponential function is one-to-one and hence has an inverse (the logarithmic 
function).

factorial notation (33): ! 1(2)(3) ( 1)( ). 0! 1.n n n= − =

Fibonacci sequence (33): 0 1 2 11,  1,  ,  1.k k ka a a a a k− −= = = + >

foci of a hyperbola (30): See hyperbola.

foci of an ellipse (30): See ellipse.

focus of a parabola (29): See parabola.

full revolution (12): A full revolution around the vertex of a circle is 360 .°

function (1): A function, ,f  from a set A  to a set B  is a relation that assigns to each element x  in the set A  
exactly one element y  in the set .B  The notation is ( ),y f x=  where y is the value of the function at .x

fundamental counting principle (34): Let 1E  and 2E  be 2 events. The first event, 1,E  can occur in 1m  different 
ways. After 1E  has occurred, 2E  can occur in 2m  different ways. The fundamental counting principle says that 
the 2 events can occur in 1 2m m  ways.

geometric series (33): See infinite geometric series.

Global Positioning System (GPS) (36): A set of 27 orbiting satellites, of which 24 are operational at any one 
time, and 3 are backups. At any one time, at least 4 satellites are within view of a GPS device (receiver) from 
anywhere in the world.

horizontal asymptote (4): The horizontal line y b=  is a horizontal asymptote of the graph of f  if ( )f x b→ as 
x →∞  or .x → −∞

horizontal line test (5): See one-to-one function.

hyperbola (30): The set of all points ( ),  x y  in a plane, the difference of whose distances from 2 distinct fixed 
points, called foci, is a positive constant. The graph of a hyperbola has 2 branches. The line through the foci 
intersects the hyperbola at the vertices. The line segment joining the vertices is the transverse axis. The midpoint 
of the transverse axis is the center.
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identity matrix (26): See matrix.

imaginary numbers (3): See complex numbers.

imaginary unit i (3): The imaginary unit i 1.= −  In other words, 2 1.i = −

independent variable (1): For the function ( ),y f x=  the variable x  is called the independent variable.

inequalities (6): The properties of inequalities are: 

a b<  and b c<  implies a c<  (transitivity).

a b<  and c d< implies .a c b d+ < +

a b<  implies .a c b c+ < +

a b<  and 0c > implies .ac bc<

a b<  and 0c < implies .ac bc>

Let 0.a >  Then

x a<  if and only if .a x a− < <

x a>  if and only if x a< −  or .x a>

infinite geometric series (33): The sum of the terms of an infinite geometric sequence is called an infinite 
geometric series or simply a geometric series.

infinite interval (6): Infinite interval [ ),  a ∞  means .x a≥  Infinite interval ( ),  b−∞  means .x b<

infinite sequence (33): A function whose domain is the set of positive integers. The function values 
1 2 3,  ,  ,   ,  ,  na a a a   are the terms of the sequence.

initial side of a ray of an angle (12): See angle.

intersection symbol (∩ ) (6): The expression A B∩  means all numbers contained in both sets A and .B

inverse functions (5): Let f  and g be 2 functions such that ( ( ))f g x x=  for all x in the domain of ,g and 
( ( ))g f x x=  for all x in the domain of .f  Then g is the inverse of ,f denoted 1.f −

 If a function has an inverse, 
then the inverse is unique. If f is the inverse of ,g  then g  is the inverse of .f  The domain of f is the range of 

,g and the domain of g is the range of .f  The graphs of inverse functions are symmetric across the line .y x=

inverse of a square matrix (27): See matrix.

inverse trigonometric functions (definitions) (17): 

arcsin if and only if sin ,  1 1,  
2 2

y x y x x y= = − ≤ ≤ − ≤ ≤
π π

arccos if and only if cos ,  1 1,  0y x y x x y= = − ≤ ≤ ≤ ≤ π
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arctan if and only if tan ,  ,  
2 2

y x y x x y= = −∞ < < ∞ − < <
π π

leading coefficient (2): See polynomial function.

linear polynomial (2): Has the form 1 0( )f x a x a= +  or .y mx b= +

linear speed (12): Measures how fast a particle moves. It is arc length divided by time: .s
t

logarithmic function (8): The logarithmic function f with base  ( 0,  1)a a a> ≠  is defined by logay x=  if and 
only if .yx a=  The domain of the logarithmic function is ( )0,  ,∞  and the range is ( ),  .−∞ ∞ The logarithmic 
function is increasing if 0a >  and decreasing if 0 1.a< <  The intercept is ( )1,  0 . The y-axis is the vertical 
asymptote. The logarithmic function is one-to-one, and the inverse is the exponential function. The graphs of the 
logarithmic and exponential functions (with the same base) are reflections of each other across the line .y x=

magnitude (23): See vector.

major axis of an ellipse (30): See ellipse.

matrix (26): A rectangular array of numbers.

11 12 1

21 22 2

1 2

n

n
ij

m m mn

a a a
a a a

A a

a a a

 
 
  = =   
 
 




  


. The order or size of a matrix is 
the number of rows and number of columns, m n× . 

Two matrices are equal if they have the same order and corresponding entries are the same. 

A zero matrix is a matrix whose entries are all zero. 

An identity matrix is a square matrix of all zeros except for 1’s down the main diagonal. 

The matrix B is the inverse of the square matrix A  if ,AB BA I= =  where I is the identity matrix. A square 
matrix is singular if it does not have an inverse.

The determinant of the 2 2× matrix 
a b

A
c d
 

=  
 

 is det( ) .A A ad bc= = −

minor axis of an ellipse (30): See ellipse.

minute (12): One minute is 1
60  of a degree.

modulus of a complex number (24): See complex numbers.

multiplication of function (5): ( )( ) ( ) ( ).fg x f x g x=

mutually exclusive events (35): See experiment.

natural base (7): The irrational number e 2.71828.≈

natural logarithmic function (8): The natural logarithmic function is the inverse of the natural exponential 
function: logey x=  if and only if .yx e=  The usual notation is ln .y x=

negative angle (12): A negative angle is generated by a clockwise rotation. 
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nth roots of a complex number (24): See complex numbers.

obtuse angle (12): An obtuse angle is between 90°  and 180 .°   

odd (2): A function is odd if ( ) ( ).f x f x− = −

one-to-one function (5): A function is one-to-one if, for a and b in the domain, ( ) ( )f a f b=  implies .a b=  A 
function has an inverse if and only if it is one-to-one. A function is one-to-one if its graph passes the horizontal 
line test: Every horizontal line intersects the graph at most once.

open interval (6): Open interval ( ),  a b means .a x b< <

orientation of the curve (31): See plane curve.

outcomes (35): See experiment.

parabola (29): The set of all points ( ),  x y  in a plane that are equidistant from a fixed line, called the directrix, 
and a fixed point, called the focus, not on the line. The midpoint between the focus and the directrix is the vertex, 
and the line through the focus and the vertex is the axis of the parabola.

parameter (31): See plane curve.

parametric equations (31): See plane curve.

period (15): Given the general sine and cosine functions sin( ),  cos( ),y d a bx c y d a bx c= + − = + −  where  
b > 0, the period is 2

b
π  (when angles are measured in radians). In general, a function f is periodic if there exists a 

positive number p such that f(x + p) = f(x).
 

permutation (34): A permutation of n  elements is an ordering of the elements such that one element is first, one 
is second, one is third, and so on.

phase shift (15): Given the general sine and cosine functions sin( ),  cos( ),y d a bx c y d a bx c= + − = + −  where b 

> 0, the phase shift is .c
b

plane curve (31): If and g are functions of the variable t  on an interval ,I then the set of ordered pairs 
( ) ( ),  ( ),  ( )x y f t g t=  is a plane curve .C  The equations given by ( )x f t=  and ( )y g t=  are parametric equations 
for the curve, and t is the parameter. As the parameter t increases, the curve is traced out in a specific direction 
called the orientation of the curve.

polar coordinates (32): Let ( ),  P x y= be a point in the plane. Let r  be the distance from the origin O  to .P  Let 
θ be the angle from the positive x-axis to the segment .OP  Then ( ),  r θ  are the polar coordinates of the point 
( ),  .x y  

polynomial function (2): Let n  be a nonnegative integer and let 1 2 1 0,  ,   ,  ,  ,  n na a a a a−   be real numbers with 
0.na ≠  The function given by 1 2

1 2 1 0( ) n n
n nf x a x a x a x a x a−

−= + + + + +  is called a polynomial function in x  
of degree ,n  where na is the leading coefficient.

positive angle (12): A positive angle is generated by a counterclockwise rotation.
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probability (35): If an event E  has ( )n E  equally likely outcomes and its sample space S  has ( )n S  equally 

likely outcomes, then the probability of event E  is given by ( )( ) .
( )

n Ep E
n S

=

Pythagorean theorem (13): In any right triangle with sides a  and b  and hypotenuse 2 2 2,  then .c a b c+ =

quadratic polynomial (2): Parabola with has the form 2( ) ,  0.f x ax bx c a= + + ≠

radian (12): Given a circle of radius 1, a radian is the measure of the central angle θ  that intercepts (subtends) 
an arc s  equal in length to the radius 1 of the circle. 180 radians, and 1 radian 57 degrees.π° = ≈

radius of a circle (29): See circle.

range (1): The set of all outputs, which is a subset of .B

rational function (4): Can be written in the form ( )( ) ,
( )

N xf x
D x

=  where ( )N x and ( )D x  are polynomials. The 

domain of a rational function consists of all values of x  such that the denominator is not zero.

recurring number (6): The horizontal line over an answer indicates a recurring number: 0.9 0.9999999... .=

reference angle (14): Let θ  be an angle in standard position. Its reference angle is the acute angle ,θ ′  formed by 
the terminal side of θ  and the horizontal axis.

right angle (12): An angle that is 90 .°

root (2): See zero.

rule of 70 (8): The doubling time for a deposit earning r % interest compounded continuously is

approximately 70
r

years.

rule of 72 (9): The doubling time for a deposit earning r % interest compounded annually is 72
r  

years.

sample space (35): See experiment.

scalar (23): Another word for a real number.

second (12): One second is 1
3600  of a degree.

standard form of a complex number (3): In a bi+ , when 0,b =  then the number is real.

standard position of an angle (12): See angle.

standard position of a vector (23): See vector.

straight angle (12): A straight angle is 180 .°

sum of a sequence (33): The sum of the first n terms of a sequence is represented by 1 2
1

.
n

i n
i

a a a a
=

= + +∑   The 
index of summation is ,i is the upper limit of summation, and 1 is the lower limit.
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supplementary angles (12): Two positive angles are supplements of each other if their sum is 180 .°

terminal side of a ray of an angle (12): See angle.

transverse axis of a hyperbola (30): See hyperbola.

trigonometric form (3): See complex numbers.

union symbol (∪ ) (6): The set theory expression A B∪  means the set of all numbers in set A  together with all 
the numbers in set .B

unit vector (23): The standard unit vectors are 1,  0 and 0,  1 .i j= =

vector (23): Directed line segments having the same length and direction are called equivalent. The set of all 
directed line segments that are equivalent to a given PQ


 is a vector v in the plane .v PQ=



Given a directed line segment ,PQ


 P is the initial point, and Q is the terminal point. 

The length or magnitude of a directed line segment is denoted PQ


.

If the initial point of a directed line segment is at the origin, then the vector is in standard position. It is uniquely 
represented by the coordinates ( )1 2,  v v of its terminal point: 1 2,  v v v= . These coordinates are the components 
of the vector.

The component form of a vector with initial point ( )1 2,  P p p  and terminal point ( )1 2,  Q q q=  is 
1 1 2 2 1 2,  ,  .vPQ q p q p v v= − − = =



vertex of an angle (12): See angle.

vertex of a parabola (29): See parabola.

vertical asymptote (4): The vertical line x a=  is a vertical asymptote of the graph of f  if ( )f x →∞  or 
( )f x → −∞  as ,x a→  either from the right or from the left.

vertical line test (1): If a vertical line intersects a graph in more than one point, then the graph is not the graph 
of a function.

vertical translation (15): Given the general sine and cosine functions sin( ),  cos( ),y d a bx c y d a bx c= + − = + −  
where b > 0, the constant d determines the vertical translation.

vertices of a hyperbola (30): See hyperbola.

vertices of an ellipse (30): See ellipse.

zero (2): A root of a function ( )y f x=  is a number a  such that ( ) 0.f a =  

zero matrix (26): See matrix.
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