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Mathematics Describing the Real World: Precalculus and Trigonometry

Scope:

see how precalculus plays a fundamental role in all of science and engineering, as well as business and

economics. As the name “precalculus” indicates, a thorough knowledge of this material is crucial for the
study of calculus, and in my many years of teaching, I have found that success in calculus is assured if students
have a strong background in precalculus.

The goal of this course is for you to appreciate the beautiful and practical subject of precalculus. You will

The principal topics in precalculus are algebra and trigonometry. In fact, at many universities and high schools,
the title of the course is Algebra and Trigonometry. However, precalculus covers much more: logarithms and
exponents, systems of linear equations, matrices, conic sections, counting methods and probability, sequences
and series, parametric equations, and polar coordinates. We will look at all these topics and their applications to
real-world problems.

Our study of precalculus will be presented in the same order as a university-level precalculus course. The
material is based on the 5% edition of the bestselling textbook Precalculus: A Graphing Approach by Ron Larson
and Bruce H. Edwards (Houghton Mifflin, 2008). However, any standard precalculus textbook can be used for
reference and support throughout the course. Please see the bibliography for an annotated list of appropriate
supplementary textbooks.

We will begin our study of precalculus with a course overview and a brief look at functions. The concept of
functions is fundamental in all of mathematics and will be a constant theme throughout the course. We will study
all kinds of important and interesting functions: polynomial, rational, exponential, logarithmic, trigonometric,
and parametric, to name a few.

As we progress through the course, most concepts will be introduced using illustrative examples. All the
important theoretical ideas and theorems will be presented, but we will not dwell on their technical proofs.
You will find that it is easy to understand and apply precalculus to real-world problems without knowing these
theoretical intricacies.

Graphing calculators and computers are playing an increasing role in the mathematics classroom. Without a
doubt, graphing technology can enhance the understanding of precalculus; hence, we will often use technology
to verify and confirm our results.

You are encouraged to use all course materials to their maximum benefit, including the video lectures, which
you can review as many times as you wish; the individual lecture summaries and accompanying problems in the
workbook; and the supporting materials in the back of the workbook, such as the solutions to all problems, the
glossary, and the review sheets of key theorems and formulas in algebra and trigonometry.

Good luck in your study of precalculus! I hope you enjoy these lectures as much as I did preparing them.



Lesson 1: Introduction to Precalculus—Functions

Introduction to Precalculus—Functions

Lesson 1

Topics
e Course overview.
e  What is precalculus?
e  Functions.
e Domain and range.
e  What makes precalculus difficult?

Definitions and Properties
Note: Terms in bold correspond to entries in the Glossary or other appendixes.

e A function, f, from a set 4 to a set B is a relation that assigns to each element x in set 4 exactly one
element y in set B. The notation is y = f{x) where y is the value of the function at x.

Set A4 is the domain of the function, or the set of inputs.

The range is the set of all outputs, which is a subset of set B.

The variable x is called the independent variable and y = f{x) is the dependent variable.

The vertical line test for functions states that if a vertical line intersects a graph at more than one
point, then the graph is not of a function.

Summary

In this introductory lesson, we talk about the content, structure, and use of this precalculus course. We also turn
to the study of functions, one of the most important concepts in all of mathematics.

Example 1: The Graph of a Function
Sketch the graph of the function f(x)=2x+3.

Solution

It is helpful to evaluate the function at a few numbers in the domain. For example,

f@=1
10)=3
f=-1

You can then plot these 3 points and connect them with a straight line, see figure 1.1.



Figure 1.1

Example 2: The Graph of the Absolute Value Function
The absolute value function is defined as follows.
) x, x>0
f(x)=|x|=
—x, x<0

Note: The absolute value of a number is always nonnegative.

The graph of the absolute value function looks like the letter V; it has a sharp corner at the origin, as in
figure 1.2.



Lesson 1: Introduction to Precalculus—Functions

Figure 1.2

y=[x|

Example 3: An Application to Compound Interest

In this example, we use the letter ¢ (time) for the independent variable. Suppose you invest $1000 in a bank
account that pays 5% interest compounded annually. How much money will you have in the account after
t years?

Solution

After the first year, you will have

1000+ 1000(0.05) =1000(1+ 0.05) = 1000(1.05) = $1050.
For the second year, you will earn 5% interest on the amount after the first year, as follows.
1000(1.05) +1000(1.05)(0.05) = 1000(1.05)(1+0.05) = 1000(1.05)* = $1102.50

Notice that you earned $50 interest the first year and $52.50 the second year. Continuing this pattern, you see

that the amount in the bank after ¢ years is given by A(¢) =1000(1.05)".



Study Tips

e To find the domain of a function, keep in mind that you cannot divide by zero, nor can you take square
roots (or even roots) of negative numbers. In addition, in applications of precalculus, the domain might
be limited by the context of the application.

e In general, it is more difficult to determine the range of a function than its domain.

e To analyze a function, it is often helpful to evaluate the function at a few numbers in order to get a feel
for its behavior.

e Ifavertical line intersects a graph at more than one point, then the graph is not of a function.

e Mathematics is not a spectator sport. Precalculus requires practice, so you will benefit from doing the
problems at the end of each lesson. The worked-out solutions appear at the end of this workbook.

Pitfall

e Although we usually write y = f(x) for a typical function, different letters are often used. The
underlying concept is the same.

1. Evaluate the function /h(f)=t>—2¢ at each specified value of the independent variable below and

simplify.
a. hQ2)
b h(l.5)
c. h(x+2)

2. Evaluate the function g(x)= at each specified value of the independent variable below and

2

simplify.
a. q(0)
b ¢(3)
c. q(y+3)

4
3. Find the domain of the function 4(¢) = e

y+2

Jy-10"

4. Find the domain of the function g(y)=



Functions

Lesson 1: Introduction to Precalculus

5. Determine whether the equation X+ y2 =4 represents y as a function of x.

6. Determine whether the equation y = |4—x| represents y as a function of x.

7. Write the area A of a circle as a function of its circumference C.
8. Sketch the graph of the following function by hand.

2x+3, x<0
3—x,x2>20

f(X)={

9. Compare the graph of y = Jx +2 with the graph of f(x)= Jx.

10. Compare the graph of y =+x—2 with the graph of f(x)= Jx.



Topics

Polynomial Functions and Zeros

Lesson 2

Polynomial functions.

Linear and quadratic functions.
Zeros or roots of functions.

The quadratic formula.

Even and odd functions.

The intermediate value theorem.

Definitions and Properties

Let n be a nonnegative integer and let a,, a,,, -*- , a,, a,, a, be real numbers with a, #0. The

n’

function given by f(x)=a,x" +a, x"" ++--+a,x* +a,x+a, is called a polynomial function in x of
degree n, where a, is the leading coefficient.

A linear polynomial has the form f(x)=ax+a, or y =mx+b.
A quadratic polynomial, or parabola, has the form f(x)=ax’ +bx+c, a #0.

A zero, or root, of a function y = f(x) is a number a such that f(a)=0.
A function is even if f(—x)= f(x). A function is odd if f(—x)=—f(x).

Theorem and Formula

—b+b* —4ac

The zeros of a quadratic function are given by the quadratic formula: x = 5
a

The intermediate value theorem says that if @ and b are real numbers, a<b,and if fis a
polynomial function such that f(a)# f(b), then in the interval [a, b] , [ takes on every value between
f(a) and f(b). In particular, if f(a) and f(b) have opposite signs, then f has a zero in the

interval [a, b].



Lesson 2: Polynomial Functions and Zeros

Summary

In this lesson, we study polynomial functions. The domain of a polynomial function consists of all real numbers
and the graph is a smooth curve without any breaks or sharp corners. The graph of a polynomial function of

degree 0 or 1 is a line of the form y =mx+b, with slope m and y-intercept b.

Example 1: The Graph of a Linear Polynomial
Sketch the graph of the first degree polynomial f(x) =3x-5.
Solution

The slope is 3, and the graph intercepts the y-axis at (0, —5). Plotting some more points, you obtain the graph

shown in figure 2.1.

Figure 2.1

- N W A L a

Example 2: Using the Quadratic Formula

Find the zeros of the quadratic polynomial f(x)=2x> +x-3.



Solution
We use the quadratic formula with a =2, b =1, and ¢ =-3.

-b +\/b2 —4ac _ \/ P —4(2)(-3) I B

2(2) 4

X =

o

— +5:1 and x:ﬁ:—é.
4

2

Thus, there are 2 zeros: x =

If you graph this polynomial, you will see that the curve is a parabola that intersects the horizontal axis at 2
points, 1 and —%. However, if you apply the quadratic formula to the polynomial f(x) = x* —2x+$ , you

obtain an expression involving the square root of a negative number. In that case, there are no real zeros.

Example 3: Locating Zeros
Use the intermediate value theorem to locate a zero of the function f(x)= 3xt +4x° 3.
Solution

Notice that f(0)=-3 and f(1) =4. Therefore, there is a sign change on the interval [0, 1]. According to the

intermediate value theorem, f must have a zero in this interval. Using a graphing utility (as shown in figure

2.2), you will see that the zero is approximately 0.779. In fact, there is a second zero, approximately —1.585.



Lesson 2: Polynomial Functions and Zeros

Figure 2.2

) =38+44-3

—1.585 0.779 x
L

Study Tips

e Parallel lines have the same slope. The slopes of perpendicular lines are negative reciprocals of
each other.

e The equation of a horizontal line is y = ¢, a constant. The equation of a vertical line is x = c.

e  The real zeros of a function correspond to the points where the graph intersects the x-axis.

e  Quadratic polynomials are often analyzed by completing the square.

Pitfalls

e If the quadratic formula yields the square root of a negative number, then the quadratic polynomial
has no real roots.
¢ Finding the zeros of polynomials often requires factoring, which can be difficult.

1. Find the slope and y-intercept of the line 5x— y+3 = 0. Then sketch the line by hand.
2. Find an equation of the line with slope m =3 and passing through the point (0, - 2).
3. Find the slope-intercept form of the line that passes through the points (5, —1) and (—5, 5).

4. Use factoring to solve the quadratic equation x* +4x =12.

10



10.

11.

12.

Use the quadratic formula to solve the equation 2+2x— x> =0.

Solve the quadratic equation x” +4x—32=0 by completing the square.
Find 2 quadratic equations having the solutions —6 and 5.
Find a polynomial function that has zeros 4, -3, 3, 0.

Use the intermediate value theorem and a graphing utility to find any intervals of length 1 in which the
polynomial function f(x)=x" —3x"+3 is guaranteed to have a zero. Then use the zero or root feature

of the graphing utility to approximate the real zeros of the function.
Find all solutions of the equation 5x° +30x* +45x = 0.

Find all solutions of the equation x* —4x* +3=0.

Find 2 positive real numbers whose product is a maximum if the sum of the first number and twice the
second number is 24.

11



Lesson 3: Complex Numbers

Complex Numbers
Lesson 3
I

Topics

e The imaginary unit i.

e The set of complex numbers.

Complex conjugates.

Sums, products, and quotients of complex numbers.
The fundamental theorem of algebra.

Graphing complex numbers in the complex plane.
Fractals and the Mandelbrot set.

Definitions and Properties

e The imaginary unit i is J-1. In other words, i =—1.

e A set of complex numbers, or imaginary numbers, consists of all numbers of the form « + bi, where
a and b are real numbers.

e The standard form of a complex number is a+bi. If b =0, then the number is real.

e The complex conjugate of a+bi is a—bi.

e In the complex plane, the horizontal axis is the real axis and the vertical axis is the imaginary axis. A

complex number a+bi has coordinates (a, b).

e A complex number ¢ is contained in the Mandelbrot set if and only if the following sequence is

2
2 2
bounded: c,cz+c,(cz+c) +c,((02 +c) +c) +c, ... .

Theorem

e The fundamental theorem of algebra says that if f is a polynomial of degree n, n >0, then f has

precisely 7 linear factors: f(x)=a, (x—c1 )(x—c2 ) : -(x -c, ), where ¢, ¢,, ... ¢, are complex

numbers.

Summary

In this lesson, we look at an extension of real numbers, called the set of complex numbers. Using complex
numbers and the quadratic formula, we can now find the zeros of any quadratic polynomial.

12



Example 1: Using the Quadratic Formula

Find the zeros of the quadratic polynomial f(x) = x* —2x+ %

Solution

We use the quadratic formula as follows.

2 13
_ —b+b* —4ac _ Dt (_2) _4(1)(4j _ Zi@

2a 2(1) 2

2+3v-1 2+3i 3.
== :li—l
2 2 2

X

Thus, there are 2 complex zeros: x =1 +%i and x =1 —%i.

Addition and multiplication of complex numbers are straightforward, as long as you replace i* with —1.

Example 2: Operations with Complex Numbers

The fundamental theorem of algebra states that in theory, all polynomials can be factored into linear factors.
The zeros could be real or complex, and even repeated.

V=9 = 3 (1) =3J-1=3i
(7+3i)+(7-3i)=14
(2-i)(4+3i)=8+6i—4i-3i* =11+2i

Example 3: Factoring Polynomials over the Complex Numbers

Factor the polynomial f(x) = x* —x* —20.

13



Lesson 3: Complex Numbers

Solution

We can first factor this fourth degree polynomial as the product of 2 quadratic polynomials. Then, we can factor
each quadratic.

xt = x? —20:(x2 —5)()62 +4)
:<x+\/§)(x—\/§)<xz +4)
= (o +/5)(x =5 ) (x+ 20) (x - 21)

There are 4 zeros: /5 , T2i. Notice that the complex zeros occur as conjugate pairs.

Example 4: The Mandelbrot Set
Fractals are a relatively new and exciting area of mathematics. The famous Mandelbrot set is defined using

sequences of complex numbers. The complex number ¢ =i is in the Mandelbrot set because the following
sequence is bounded.

On the other hand, the complex number 1+ is not in the Mandelbrot set.

Study Tips

e The sum of a complex number and its conjugate is a real number. Furthermore, the product of a
complex number and its conjugate is a real number.
o Complex zeros of polynomials having real coefficients occur in conjugate pairs.

Pitfall

e Some of the familiar laws of radicals for real numbers do not hold with complex numbers.
For example, the square root of a product is not necessarily the product of the square roots:

J-4:-9 = (2i)(3i) =—6, whereas +/(—4)(-9) = J36 =6.

14



1. Simplify 13i —(14-7i).

2. Simplify v—6+/-2.

3. Simplify (1+i)(3-2i).

4.  Simplify 4i(8+5i).

5. Write the complex conjugate of the complex number 4+ 3i, then multiply by its complex conjugate.

6. Write the complex conjugate of the complex number 3—+/-2, then multiply by its complex conjugate.

7. Write the quotient in standard form:

8. Find all zeros of the function f(x)=x”—12x+26, and write the polynomial as a product of linear

factors.

9. Find all zeros of the function f(x)=x"*+10x*+9, and write the polynomial as a product of linear

factors.

10. Find a polynomial function with real coefficients that has zeros 2, 2, 4—i.

11. For ¢= %i , find the first 4 terms of the sequence given by

2 2 2 2 2 ?
c, ¢ +c, (c +c> +c, (c +c) +c| +c, ...

From the terms, do you think the number is in the Mandelbrot set?

15



Lesson 4: Rational Functions

Rational Functions

Lesson 4

Topics

e Rational functions.
e Horizontal and vertical asymptotes.

Definitions and Properties

N .
e A rational function can be written in the form f(x) = %, where N(x)and D(x) are polynomials.
X

e The domain of a rational function consists of all values of x such that the denominator is not zero.

e The vertical line x=a is a vertical asymptote of the graph of f if f(x) >® or f(x)—>—0 as
x —> a, either from the right or from the left.

e The horizontal line y =5 is a horizontal asymptote of the graph of f if f(x)—>bas x —>© or
X —> —o0,

Test for Horizontal Asympotes

N(x)
D(x)

be a rational function.

Let f(x)=

e If the degree of the numerator is less than the degree of the denominator, then y = 0 is a
horizontal asymptote.

o If the degree of the numerator equals the degree of the denominator, then the horizontal asymptote is
the ratio of the leading coefficients.

e If the degree of the numerator is greater than the degree of the denominator, then there is no
horizontal asymptote.

Summary

In this lesson, we look at a class of functions called rational functions, which are quotients of polynomials.
Many rational functions have vertical and/or horizontal asymptotes.

16



Example 1: Finding Asymptotes

2x2

-1

Find the vertical and horizontal asymptotes of the graph of the rational function f(x) =

Solution

From figure 4.1, you see that the horizontal asymptote is y =2. The vertical asymptotes are x ==*1 because

these are zeros of the denominator, while not of the numerator.

Figure 4.1

Example 2: Finding Asymptotes and Holes

You have to be careful when finding vertical asymptotes. Find the vertical asymptotes of the graph of the
2
X +x-2

(x+2)(x-3)

function f(x)=

Solution

It is not sufficient to assume that the vertical asymptotes are simply the zeros of the denominator. You need to
factor the numerator and cancel the common factor.

e Z4+x=2 :(x+2)(x—l):(x—l) e
T =)o) ) rm3) (o3

Hence, the only vertical asymptote is x = 3, whereas the graph has a hole at x =—2, shown in figure 4.2.

17



Lesson 4: Rational Functions

18

Figure 4.2

f0) =, k2

I
I
I
I
| hole at (—2,% )
I
I
I
I

Example 3: The Design of a School Poster

This example illustrates how rational functions arise in real-life applications. Suppose you want to design a
school poster having 48 square inches of print. The margins on each side of the page are 1%z inches wide. The
margins at the top and bottom are each 1 inch deep. What should the dimensions of the page be so that the
minimum amount of paper is used?

Solution

Label a diagram as seen in figure 4.3.



Figure 4.3

41

A

1

If x and y are the dimensions inside the margins, then xy =48 or y = 4%. The area to be minimized is

A=(x+3)(y+2)

= (x+3)(4%+2)
(x+3)(48+2x).

X

Using a graphic utility, graph this rational function and estimate the minimum value. You obtain x =~ 8.5.

Hence, y ~ 48/ .~ 5.6. The dimensions for the entire page are x+3~11.5 inches by y+2~7.6 inches. It is
y 35 pag

interesting to note that by using calculus you can find the exact value x = 63/2.

Study Tips

Pitfalls

A graphing calculator is useful in verifying the shape and asymptotes of the graph of a rational
function.

A rational function has a finite number of vertical asymptotes.

A rational function can have zero or one horizontal asymptote.

Some graphing utilities have difficulty graphing rational functions that have vertical asymptotes.
Often, the utility will connect parts of the graph that are not supposed to be connected. To eliminate
this, try changing the mode form to dot mode.

You cannot assume that the vertical asymptotes are the zeros of the denominator. You must check
that these zeros are not zeros of the numerator as well.

It is possible for a nonrational function to have 2 horizontal asymptotes, one to the right and one to
the left.

It is possible for a nonrational function to have an infinite number of vertical asymptotes. We will see
such an example when we study the tangent function in trigonometry.
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Lesson 4: Rational Functions

1.  Sketch the graph of the following rational function, indicating any intercepts and asymptotes.

1

a. f(X)=m
1

b f()=—

¢ fW=——
2

2. Identify any horizontal and vertical asymptotes of the following functions

1
f@=.
a. X
2
x =25
b. X) = .
/() x> +5x
x4
3. Find the zeros of the rational function f(x)= 3
X+

4. Write a rational function f having a vertical asymptote x =2, a horizontal asymptote y =0, and a

zeroat x =1.

5. Using a graphing utility, graph the following functions and indicate any asymptotes.

a h(x)=—2%
x> +1
4lx-2]

b. g(x)=
x+1
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Inverse Functions

Lesson 5

Topics
e Combinations of functions.
e Inverse functions.
e  Graphs of inverse functions.
e  One-to-one functions and the horizontal line test.
¢ Finding inverse functions.

Definitions and Properties

Addition and multiplication of functions is defined by:

(f+8)x) = f(x)+g(x)
(/8)(x) = f(x)g(x).

e The composition of 2 functions is defined by (f o g)(x) = f(g(x)).
e Let f and gbe 2 functions such that f(g(x))=x for all x in the domain of g,and g(f(x))=x for

all x in the domain of f. Then g is the inverse of f,denoted f -

e If a function has an inverse, then the inverse is unique. If f is the inverse of g, then g is the inverse
of f. The domain of f is the range of g,and the domain of g is the range of f.

e The graphs of inverse functions are symmetric across the line y = x.

e A function is one-to-one if, for @ and b in the domain, f(a)= f(b) implies a =b. A function has an

inverse if and only if it is one-to-one.
e A function is one-to-one if its graph passes the horizontal line test: Every horizontal line intersects the
graph at most once.

Summary

You can combine functions in many ways, including addition, multiplication, and composition. In particular,

inverse functions, such as f(x)=5xand g(x)= %, satisfy f(g(x))=xand g( f (x)) =x.
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Lesson 5: Inverse Functions

22

Example 1: Verifying Inverse Functions Algebraically

+1
The functions f(x)=2x" -1 and g(x)= 3 x2 are inverses of each other because

f(g(x))=f(3 x;“l}z[z xz”J —1=2(x7+1j—1:(x+1)—1:x,

and similarly, g(f(x))=x. Notice that the graph of g is a reflection of the graph of f in the line y=x
(figure 5.1).

Figure 5.1

J6) =22~ 1
g = =T

Example 2: Finding Inverse Functions

If a function is one-to-one, then it has an inverse. To illustrate a technique for finding the inverse function, find

the inverse function of f(x)= Jx+1.



Solution

Begin with the equation y = \/; +1, interchange the roles of x and y, and solve for y.

y:\/;+l,x20,y21

x=4y+1

x—l:\/;

y=(x-1)", x21,y>0
[ =(x-1)", x21, >0

Notice how the domains and ranges have been interchanged.

Example 3: Temperature Scales

Inverse relationships can arise in applications. The Fahrenheit (F) and Celsius (C) temperature scales are related
9 5
by 2 equivalent formulas: F =§C+32 and C= §(F—32). If the temperature is C = 35° on the Celsius scale,

9
then the corresponding Fahrenheit temperature is F = 5(35) +32=63+32=95°.

Study Tips

e Inverse functions satisfy the equations f ( f ’l(x)) =xand /' (f(x))=x.

e  Graphically, if (a, b) is a point on the graph of the function f, then (b, a) is on the graph of the

inverse.

Pitfalls

. . . . . - . 1
e  The notation for an inverse function can be misleading. [ " does not mean the reciprocal of f, 7

e A function must be one-to-one in order to have an inverse. For example, the function f(x)= x* does
not have an inverse because the parabola does not pass the horizontal line test. However, if you restrict

the domain to x >0, then the inverse exists: /' (x) = \/;

e In general, the composition of functions is not commutative. That is, in general, ( fo g) * ( gof )
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Lesson 5: Inverse Functions

1. Let f(x)=x"+5and g(x)=+1—x. Find the following.

a. (f*2)x)
b. (f-2)x)
¢ ()

d.

[

2. Let f(x)=+vx+4 and g(x)=x". Determine the domains of the following.

a. f
b. g
c. fog

3. Find the inverse of the function f(x) = 6x.

4. Find the inverse of the function f(x)=x-3.

5. Show that the functions f(x)=x>+5 and g(x)=3x—5 are inverses of each other.

. . 1 .
6. Determine whether the function f'(x) =—- is one-to-one.
X

7. Determine whether the function f(x)=+/2x+3 is one-to-one.
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10.

Find the inverse function of f(x)=2x—3. Describe the relationship between the graphs of f and

its inverse.

Find the inverse function of f(x)=+/4-x”, 0<x<2. Describe the relationship between the graphs

of f and its inverse.

Restrict the domain of the function f(x)= |x+2| so that the function is one-to-one and has an inverse.

Then find the inverse function f . State the domains and ranges of f and f -
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Lesson 6: Solving Inequalities

Solving Inequalities
Lesson 6
I

Topics

e Interval notation.
e Properties of inequalities.
e Inequalities involving absolute values.

Interval Notation

e Closed interval [a, b] means a < x < b.
e Open interval (a, b) means a < x <b.
e Infinite interval [a, oo) means x > a.

e Infinite interval (—OO, b) means x < b.

Properties of Inequalities
e a<b and b<c implies a<c (transitivity).
e a<band c<dimplies a+c<b+d.
e a<b implies a+c<b+ec.
e a<b and ¢ >0 implies ac < bc.
e a<b and c<0Oimplies ac > bc.

e Let a>0. Then

o |x|<a ifand only if —a<x<a.

o |x|>a if and only if x <—a or x>a.

Summary

We have already used inequalities throughout these lessons, especially when studying domains of functions. We
see how the properties of inequalities are used in solving the following examples.
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Example 1: Solving an Inequality
. . 3
Solve the inequality 1 —Ex >x—4.

Solution

Notice how the inequality is reversed when you divide by —5.

1—§x2x—4
2
2-3x>2x-8
2-5x>-8
—5x>-10
-10

xX<—
x<2

Example 2: Solving an Inequality Involving Absolute Values

Inequalities involving absolute values occur frequently in calculus. Solve the inequality |x—5| <2

Solution
|x—5| <2
2<x-5<2
3<x<7

The solution consists of all real numbers in the closed interval [3, 7]. If the problem had asked for the solution

to |x—5| > 2, then the solution set would be all numbers less than 3 or greater than 7 (—00, 3) U(7, oo).

Example 3: An Application of Inequalities

Inequalities can arise in applications. If a student has scored 68 and 77 on 2 tests, what must the student score
on the third test to bring the average up to 80?
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Lesson 6: Solving Inequalities

Solution
Let x be the score on the third test. The average of the 3 scores must be greater than or equal to 80.

68+77+x
—_—>
3
145+ x > 3(80) = 240
x>240-145=95

80

The student needs at least a score of 95 on the third test.

Study Tips

e The set theory expression 4B means the set of all numbers in the set 4 together with all the
numbers in the set B. The symbol U is called the union symbol.

e The set theory expression 4B means all numbers that are contained in both sets A4 and B. The
symbol N is called the intersection symbol.

e The set of all real numbers can be expressed as (—00, 00).

e  The horizontal line over an answer indicates a recurring number: 0.9 =0.9999999... .

Pitfalls

e Infinity (o) is not a number. You should not write infinite intervals using a bracket next to the infinity

symbol. That is, write [—4, 00) not [—4, 00].

e If you multiply or divide both sides of an inequality by a negative number, you must reverse the
inequality.

e It is incorrect to write an inequality in the form 7 < x <3. There are no values of x that are greater
than 7 and also less than 3.

1. Find the domain of the following functions.

a. f(x)=+x-5.
b. f(x)=+x*-4.

2. Solve the following inequalities.
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a. —10x<40.

b. 4(x+1)<2x+3.
c. -8 S1—3(x—2) <13.

x+3

d. 0< <5.

e. [|x-7<6.
£ |x+14/+3>17.

Determine the intervals on which the polynomial x> —4x—>5 is entirely negative and those on which it
is entirely positive.

Use absolute value notation to describe the set of all real numbers that lie within 10 units of 7.

Use absolute value notation to describe the set of all real numbers that are at least 5 units from 3.
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Lesson 7: Exponential Functions

Exponential Functions

Lesson 7

30

Topics
e  Exponential functions.
e Review of exponents.
e  Graphs of exponential functions.
e  The natural base e.
e  The natural exponential function.

Definitions and Properties

e The exponential function f with base a (a>0, a#1) is defined f(x)=a", where x is any real
number.

e The domain of the exponential function is (—OO, OO), and the range is (O, OO).The exponential

function is increasing if @ >0 and decreasing if 0 <a <1. The intercept is (0, 1). The x-axis is the

horizontal asymptote.

e The exponential function is one-to-one and hence has an inverse (the logarithmic function, to be
defined in the next lesson).

e The natural base ¢ ~2.71828 is the most important base in calculus. The corresponding function

f(x)=¢€" is called the natural exponential function.

Properties of Exponents

Let a, b be real numbers and m, n integers.



Formulas for Compound Interest

After ¢ years, the balance 4 in an account with principle P and annual interest rate » (in decimal form) is given
by the following.

nt
e For n compounding per year: 4= P[l+£] .
n

e For continuous compounding: 4= Pe".

Summary

In the next block of lessons, we define and explore exponential and logarithmic functions. The exponential
function is defined for all real numbers. You can graph an exponential function by plotting points or using a
graphing utility.

Example 1: The Graph of an Exponential Function

Graph the exponential function f(x)=2"

Solution

Plot the following ordered pairs and connect them with a  smooth  curve:
(3,8), (2, 4), (1, 2), (0, 1), (—l, %), (—2, %) Note that the resulting graph is continuous and passes

the horizontal line test, see figure 7.1.
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Lesson 7: Exponential Functions

32

Figure 7.1

Example 2: A Model for Radioactive Decay

An exponential function to base 2 can be used to model radioactive decay. Let y represent a mass, in grams, of

radioactive strontium 90, whose half-life is 29 years. The quantity of strontium present after ¢ years is given by
1 o
=10|=| .
y=10(3)
Try graphing the model on your graphing utility to verify the results of the example. Notice that the graph
is decreasing.
a. According to this model, what is the initial mass?

b. How much strontium is present after 29 years?

c¢. How much is present after 80 years?



Solution

0 0
1 % 1
a. Letting # =0, you see that the initial mass is y = IO(EJ = 10(5) =10(1) =10 grams.

2% 1
1)7% 1
b. Letting =29, you see that half the amount remains: y = 10(5) = IO(EJ =35 grams.

The solution to this part illustrates that the half-life is 29 years.

0,
1) 72
c¢. When ¢ =80, youneed a calculator to obtain y = IO(EJ ~1.48 grams.

Example 3: An Application to Compound Interest

We can apply exponential functions to compound interest. A total of $12,000 is invested at an annual interest
rate of 3%. Find the balance after 4 years if the interest is compounded

a. quarterly, and

b. continuously.

Solution

We use a calculator for both calculations.

P nt 03 4(4)
a. A=P(l+—j 212,000[1+Tj ~$13,523.91
n

b. A=Pe" =12,000e*>* ~$13,529.96

Notice that the account has earned slightly more interest under continuous compounding.

Study Tips

e The base of the exponential function must be positive because a” is undefined for certain negative

values of x. Similarly, the base cannot be 1 because f(x)=1" =1 is a linear function.
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Lesson 7: Exponential Functions

Pitfall

The number e can be defined as the limit as x tends to infinity of the expression (1 +lj .
x

X
In calculus, this is written lim (1 + —] =e.
X—>0 X

bc (bc) »\¢
The tower ofexponents a means a not (a ) .

34

Evaluate the expressions.
a. 4(3)
b. 3(3°)

Evaluate the expressions.

3
a. 3T4

b. 24(-2)

Graph the following exponential functions by hand. Identify any asymptotes and intercepts, and
determine whether the graph of the function is increasing or decreasing.

a. f(x)=5"
b. f(x)=5"
Use the graph of f(x) = 3" to describe the transformation that yields the graph of g(x)=3"".
Use the graph of f(x)=0.3" to describe the transformation that yields the graph of g(x)=-0.3"+5.

Use a calculator to evaluate the function f(x)=50e™ for x=0.02. Round your result to the

nearest thousandth.



7. Graph the following functions by hand. Identify any asymptotes and intercepts, and determine whether
the graph of the function is increasing or decreasing.

a. f(x)=e"
b. f(x)=2+e"

8. Determine the balance for $2500 invested at 2.5% interest if
a. interest is compounded annually,

b. interest is compounded daily, and

c. interest is compounded continuously.
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Lesson 8: Logarithmic Functions

Logarithmic Functions

Lesson 8

36

Topics

Logarithmic functions.

Common logarithms and natural logarithms.
Properties of logarithms.

Graphs of logarithmic functions.

The rule of 70.

Definitions and Properties

The logarithmic function [ with base a (a >0, a #1) is defined by y =log, x if and only if x=a”.
Logarithms to base 10 are called common logarithms.
The domain of the logarithmic function is (0, OO), and the range is (—OO, OO).The logarithmic

function is increasing if a >0 and decreasing if 0 <a <1. The intercept is (1, 0). The y-axis is the

vertical asymptote.

The logarithmic function is one-to-one, and the inverse is the exponential function.

The graphs of the logarithmic and exponential functions (with the same base) are reflections of each
other across the line y = x.

The natural logarithmic function is the inverse of the natural exponential function: y =log, x if and

only if x =e”. The usual notation is y =Inx.

The Rule of 70

The doubling time for a deposit earning r % interest compounded continuously is approximately 7 years.
r

Properties of Logarithms

log,1=0
log,a=1

log, a" =x

log, x

a =X

If log, x =log, y, then x = y.



Summary

The inverse of the one-to-one exponential function is the logarithmic function. You can calculate logarithms by

referring back to the corresponding exponential function.

Example 1: Calculating Logarithms

log, (32) =5 because 2° =32.

log, (1) =0 because 3" =1.

l
log, (2) =% because 42 =2.

log,, (1000) =3 because 10° =1000.

The graph of the logarithmic function y =log, x is a reflection of the graph of the exponential function y =a*

about the line y = x. It is easy to graph horizontal and vertical shifts of logarithmic functions.

Example 2: Graphing Logarithmic Functions

Graph and compare the functions g(x) =log,, x and f(x)=1log,, (x - 1).

Solution

The graph of f is the graph of g shifted one unit to the right (figure 8.1). The intercept for [ is (2, O), and

the vertical asymptote is x =1.
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Figure 8.1

-2

Example 3: Calculating Natural Logarithms

The natural logarithmic function is the inverse of the natural exponential function.

. lnl=lne’1 =-1
e

. elnS =5
o 4Inl=4(0)=0

o 2lne=2(1)=2

Study Tips

e Calculators generally have 2 logarithm buttons: base 10 (common logarithm) and base e (natural
logarithm).

e It is helpful to remember that logarithms are exponents.

e The domain of the logarithmic function is the range of the corresponding exponential function.
Similarly, the range of the logarithmic function is the domain of the exponential function.



Pitfall

*  You cannot evaluate the logarithm of zero or a negative number.

1. Write the following logarithmic equations in exponential form.

a. log,64=3
2
b. log,, 4= 5
2. Evaluate the function f(x)=log, x at x =16.

1
3. Evaluate the functi x)=log,,x at x=——.
valuate the function f(x)=1log,,x a e

4. Use a calculator to evaluate log,, 345. Round your answer to 3 decimal places.
5. Use a calculator to evaluate Inv/42. Round your answer to 3 decimal places.
6. Solve the equation for x:log, 6> =x.

7. Sketch the graph of f(x)=3", and use the graph to sketch the graph of g(x) =log;, x.

8. Find the domain, vertical asymptote, and x-intercept of the following logarithmic functions. Then
sketch the graphs by hand.

a. f(x)=log,(x+2).
b. f(x)=In(x+1).

c. f(x)= ln(—x) )
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Lesson 9: Properties of Logarithms

Properties of Logarithms

Lesson 9

Topics
e  The change of base formula.

e Logarithms of products, quotients, and powers.
e Applications of logarithms.

Theorems and Properties

1 1
e The change of base formula is log, x = 80t _ X
log,a Ina
e log, (uv)=log,u+log,v
e log, (Ej =log,u—log,v
A4

o log, u"=nlog,u

The Rule of 72

The doubling time for a deposit earning » % interest compounded annually is 2 years.
r

Summary

Graphing calculators usually have only 2 keys for logarithms, those to base 10 and the natural logarithm. To
calculate logarithms to other bases, use the change of base formula.

Example 1: Calculating Logarithms

.« log (25):log1025 139794
¢ log,,4  0.60206
In25 3.21888
B ()= S e T

40



Notice that the 2 answers agree.

Example 2: Simplifying Logarithms

One of the most important properties of logarithms is that the logarithms of products are the sums of the
logarithms. Similarly, the logarithms of quotients are the differences of the logarithms.

. 11‘12+h13:h‘1[(2)(3)]=1n6
. lni=1n2—1n27
27

e log,,49 =log, (72 ) =2log,, 7

Example 3: Writing a Product as a Sum

Logarithms play a major role in calculus by converting products to sums.

e log, (5x3y) =log, 5+log, x’ +log, y =log, 5+3log, x +log, ¥

e In =In :ln(3x—5)%—ln7z%ln(3x—5)—ln7

Example 4: The Rule of 72
The rule of 72 is a convenient tool for estimating the doubling time for an investment earning interest
compounded annually. Suppose a bank pays 8% interest, compounded annually. Use the rule of 72 to

approximate the doubling time.

Solution

72
The rule of 72 says that the doubling time is approximately 3 =9 years. If you use the formula for compound

interest, you will see that this approximation is excellent.
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Lesson 9: Properties of Logarithms

Study Tips

Pitfalls

Calculators generally have 2 buttons for logarithms: base 10 (common logarithm) and base e (natural
logarithm). Use the change of base formula for other bases.
The rule of 72 is for compound interest, as contrasted with the rule of 70 for continuous compounding.

There is no formula for the logarithm of a sum or difference. In particular,

log, (u+v)#log, u+log, .

Be careful of domain changes when using properties of logarithms. For example, the domain of

y=Inx" isall x#0, whereas the domain of y=2Inx isall x> 0.

The notation for logarithms can be confusing. Note that (In x)" #nlnx.

42

Evaluate the following logarithms using the change of base formula. Round your answer to 3 decimal
places.

a. log,7
b. log51460

Rewrite the following expressions in terms of In4 and In5.

a. In20
b. lni
64

Use the properties of logarithms to rewrite and simplify the following logarithmic expressions

a. log,8.
b. In(Se°).

Use the properties of logarithms to expand the expression Invz asa sum, difference, and/or constant
multiple of logarithms.



5. Condense the expression Inx—3In(x+1) to the logarithm of a single quantity.
6. Find the exact value of log, 9 without using a calculator.

7. Find the exact value of Ine’ —Ine’ without using a calculator.
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Lesson 10: Exponential and Logarithmic Equations

Exponential and Logarithmic Equations
Lesson 10
I

Topics

e Equations involving logarithms and exponents.
e  Approximate solutions.
e Applications.

Summary

In this lesson, we solve a variety of equations involving logarithms and exponents.

Example 1: Solving an Exponential Equation

Solve the equation 4e** —3=2.
Solution

We use the properties of logarithms and exponents to solve for x.

4e** -3=2
4e** =5
RN
4

Ine™ =In (é

Example 2: Solving a Logarithmic Equation

You should be careful to check your answers after solving an equation. In this example, you will see that one of
the “solutions” is not valid. The appearance of these “extraneous” solutions occurs frequently with logarithmic
equations because the domain of the logarithmic function is restricted to positive real numbers.
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Solve the equation In(x—2)+In(2x—3)=2Inx.

Solution
Notice how we use the properties of logarithms to simplify both sides and remove the logarithms.
In(x-2)+In(2x—-3)=2Inx
In [(x— 2)(2x —3)] =Inx’
(x—2)(2x—3) =x’
2x° —Tx+6=x"

X' =T7x+6=0
(x—6)(x—l)=0

There are 2 solutions to this quadratic equation: x=1 and x=6. However, x =11is an extraneous solution
because it is not in the domain of the original expression. Therefore, the only solution is x = 6.

Example 3: Approximating the Solution of an Equation

In this example, we are forced to use a computer or graphing calculator to approximate the solution of the

equation. Approximate the solution to the equation Inx = x* —2.

Solution

Write the equation as a function: f(x)= Inx—x* +2. The zeros of this function are the solutions to the original

equation. Using a graphing utility, you see that the graph has 2 zeros, approximately 0.138 and 1.564. Note that
it is impossible to find the exact solutions to the equation.

Study Tips
e There many ways to write an answer. For instance, in the first example, you could have written the

A
answer as lln > , In Bl , In g, lnﬁ, or l[1n5—1n4] . All of these are correct.
2 4 4 4 2 2

e Recall that the logarithm of a sum is not the sum of the logarithms. That is, the equation
log, (x+10) #log,, x+log,, 10 for all values of x. However, you can show that this equation does

have a solution: x =1 A .
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Lesson 10: Exponential and Logarithmic Equations

Pitfalls
e It’s important to distinguish between exact and approximate answers. For instance, the exact answer to

. . -1 1 .. . .
the equation 5+2Inx=4 is x=e¢ - T This is approximately equal to 0.61, correct to 2 decimal
e

places.

e Be careful of extraneous solutions when solving equations involving logarithms and exponents. Make
sure that you check your answers in the original equation.

1. Solve the following exponential equations.

a. 4"'=16

b. [éjx =64

2. Solve the following logarithmic equations.
a. Inx=-7
b. In(2x-1)=5

3. Solve the following exponential equations. Round your result to 3 decimal places.

a. 8% =360

b [1 Hjm-z
12

c. € —4e"-5=0

d o=’

4. Solve the following logarithmic equations. Round your result to 3 decimal places.
a. logs(3x+2)=log;(6—x)

b. log, x—log, (x—1) =%
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5. Use a graphing utility to approximate the solution of the equation 10g10x=x3 —3, accurate to 3

decimal places.
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Lesson 11: Exponential and Logarithmic Models

Exponential and Logarithmic Models
Lesson 11
I

Topics
e Exponential and logarithmic models.
e Exponential growth and decay.
e  Gaussian models.
e Logistic growth models.
e Newton’s law of cooling.

Models
e Exponential growth model: y = ae”™, b>0.

e Exponential decay model: y = ae™, b<0.

e Gaussian model: y =ae “™°.

o Logistic growth model: y = a —.
+be™

e Newton’s law of cooling: The rate of change in the temperature of an object is proportional to the
difference between the object’s temperature and the temperature of the surrounding medium.

Summary

In this lesson, we look at a variety of models involving exponential and logarithmic functions. Although these
examples might seem fairly simple, they illustrate important ideas about mathematical modeling. The first
model we consider is that of exponential growth.

Example 1: Modeling Exponential Growth

In a research experiment, a population of fruit flies is increasing according to the law of exponential growth.
After 2 days there are 1000 flies, and after 4 days there are 3000 flies. According to this model, approximately
how many flies will there be after 5 days?
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Solution

Let y be the number of fruit flies at time ¢ (in days). The model for exponential growth is y = ae”. We can

determine the unknown constants by solving the following 2 equations.

t=2:y=1000 = ae®
t=4:y=3000=ae"

1000

From the first equation, you have a = o

Substituting ~ this  value into the second equation, you  obtain
1000

3000 = ae™’ :(Tje‘”’ =3=e".
e

Using the inverse relationship between logarithms and exponents, we have

2b :ln3:>b:%1n3z0.5493. Now we can find the value of the other constant:

1000 1000 1000

a= = = ~333.33.
e ez[(%)lnﬂ

Hence, our model is approximately y = ae” = 333.33¢"**.

When =5, y~333.33¢"*"® ~5196 fruit flies. Note that by letting /=0 in the

model, you see that the initial amount of flies is approximately 333.

Example 2: A Gaussian Model for SAT Scores

In 2005, the SAT math scores for college-bound seniors roughly followed the normal distribution

y= 0.0035e’(x’520)2/26’450, 200 < x < 800. Graph this model and estimate the average SAT score Xx.

Solution

You can use a graphing utility to produce the bell-shaped curve in figure 11.1. The average score is the x-
coordinate of the maximum value, x = 520.
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Lesson 11: Exponential and Logarithmic Models

Figure 11.1

0.004

»=0 00355 ~ 520)/26.450

0 800

Example 3: Newton’s Law of Cooling

In this example, we analyze a specific application of Newton’s law of cooling. Using calculus, it is possible to
derive a mathematical model for Newton’s law of cooling. Imagine a cup of coffee at 100°F placed in a room
at 60°. According to this law, the temperature of the coffee will decrease according to the equation
y=60+40e """ where ¢ is the time in minutes. By evaluating this model for various values of ¢, you will

see that the coffee is 90° after 10 minutes, and 82° 10 minutes later.

Study Tips

e For the exponential growth model, » >0, whereas b <0 for exponential decay. The constant a
indicates the initial amount of the substance under consideration.

e The logistic growth model is used for populations that initially experience rapid growth, followed by a
declining rate of growth. For example, a bacteria culture might grow rapidly at the beginning, but then
increase more slowly as the amount of food and space diminishes.

1. Suppose you deposit $10,000 at 3.5% interest, compounded continuously. How long will it take for the
deposit to double?
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The half-life of Radium-226 is 1599 years. If there are 10 grams now, how much will there be after
1000 years?

The population P (in thousands) of Reno, Nevada, can be modeled by P=134.0¢" >
where ¢ is the year, with # = 0 corresponding to 1990. In 2000, the population was 180,000.

4. Find the value of & for the model. Round your result to 4 decimal places.

b. Use your model to predict the population in 2010.

The 1Q scores for adults roughly follow the normal distribution y = 0.0266e’("’100)2/450, 70< x <115,

where x is the 1Q score.
a. Use a graphing utility to graph the function.

b. From the graph, estimate the average 1Q score.

A conservation organization releases 100 animals of an endangered species into a game preserve. The
organization believes that the preserve has a carrying capacity of 1000 animals and that the growth of
the herd will follow the logistic curve

~ 1000
p( )_ 14+ 9016561 ’

where ¢ is measured in months.
a. What is the population after 5 months?
b. After how many months will the population reach 500?

c. Use a graphing utility to graph the function. Use the graph to determine the values of p at
which the horizontal asymptotes will occur. Interpret the meaning of the larger asymptote in
the context of the problem.
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Introduction to Trigonometry and Angles

Lesson 12

52

Topics

Definition of angle.

Coterminal angles.

Complementary and supplementary angles.

Degree measure and radian measure.

Other units of angle measurement: minutes and seconds.
Arc length formula.

Linear and angular speed.

Definitions and Formulas

e An angle is determined by rotating a ray, or half-line, about its endpoint. The starting position of the
ray is the initial side, and the end position is the terminal side. The endpoint of the ray is the vertex. If
the origin is the vertex and the initial side is the positive x-axis, then the angle is in standard position.

o Positive angles are generated by a counterclockwise rotation, and negative angles by a clockwise
rotation. If 2 angles have the same initial and terminal sides, then they are called coterminal angles.

e A measure of one degree, 1°, is equivalent to a rotation of 1/360 of a complete revolution about the
vertex.

e An acute angle is between 0°and 90° a right angle is 90°, an obtuse angle is between 90° and
180°;

a straight angle is 180°. A full revolution is 360°.

e Two positive angles are complementary, or complements of each other, if their sum is 90°. Two
positive angles are supplementary, or supplements of each other, if their sum is 180°.

e Given a circle of radius 1, a radian is the measure of the central angle & that intercepts (subtends) an
arc s equal in length to the radius 1 of the circle.

e  180° = rradians, and 1 radian = 57 degrees.

e  One minute is %O of a degree. One second is %600 of a degree.

e Linear speed measures how fast a particle moves. Linear speed is arc length divided by time: ;
e Angular speed measures how fast the angle is changing. Angular speed is central angle divided by
. 0
time: —.
t

e Quadrant: the 4 parts into which a plane is evenly divided by rectangular coordinate axes, see
figure 12.1



Figure 12.1

Quadrant IT Quadrant I
90° <9 <180° 0° <0 <90°
0=180° 6=0°
Quadrant III Quadrant IV
90° <9 <270° 270° <6 <360°
0=270°

Summary
In this lesson, we begin the study of trigonometry. Before we define the trigonometric functions, we study

angles and their measures. After some preliminary definitions, we define coterminal angles, those that have the
same initial and terminal sides.

Example 1: Finding Coterminal Angles

Find 2 coterminal angles (one positive and one negative) for 8 = —120°.

Solution

You can add or subtract multiples of 360° to obtain coterminal angles, as follows.

—120°+360° = 240°
—120°-360° = —480°

Example 2: Converting Degrees to Radians

Radian measure is another way to measure angles. One radian is the measure of a central angle 6 that
intercepts an arc sequal in length to the radius of a unit circle (radius 1). That is, 7 radians equals 180°. A
radian is approximately 57°.
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7z rad
180 deg

90° = (90 deg)[ j = % radians

Example 3: Converting Radians to Degrees

_%rad = (—%radj(lgo degj =-210 degrees

7 rad

Example 4: Using the Formula s = ré@

Consider a circle of radius 7. Suppose the angle & corresponds to the arc length s. That is, the angle &
subtends an arc of the circle of length s. Then we have the important formula s = r6. Find the length of the arc
intercepted by a central angle of 240° in a circle with a radius of 4 inches.

Solution

First convert degrees to radians, then use the formula.

240° = (240 deg)( 7 rad j 43”

——— | = — radians
180 deg

s=r0= 4(%”] - 167” ~16.76 inches

Study Tips

. . ju
e To convert degrees to radians, multiply by % 30"

e To convert radians to degrees, multiply by 18% .

e Notice in Examples 2 and 3 above how the units (degrees and radians) conveniently cancel.
e  When no units for an angle are mentioned, assume that radian measure is implied.

Pitfalls

e Depending on the application, make sure your calculator is set in the correct mode: degree or radian.
e Angles greater than 90° do not have complements.
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1. Determine the quadrant in which each angle lies.

a. 150°
b. 282°
T
c p—
5
LA

5

2. Sketch each angle in standard position.

a. 30°
b. -150°
RY/4
c. =
4
a T
6

3. Determine 2 coterminal angles in degree measure (one positive and one negative) for each angle.
(Note: There are many correct answers.)

. 0=-495°

b, 0=230°

4. Determine 2 coterminal angles in radian measure (one positive and one negative) for each angle.
(Note: There are many correct answers. )

p=-"

a. 4
b 0=-2%
15

5. Find (if possible) the complement and supplement of each angle.
a, 24°

b. 126°
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56

6. Rewrite each angle in radian measure as a multiple of 7. Do not use a calculator.
a. 30°
p. 150°

7. Rewrite each angle in degree measure. Do not use a calculator.

3
a. 2

Iz
b. 6

8. Find the radian measure of the central angle of a circle of radius 29 inches that intercepts an arc of
length 8 inches.

9. Find the length of the arc on a circle of radius 2 meters intercepted by a central angle 6 = 1 radian.
10. Find the radius of a circle with an arc of length 36 feet and central angle 9 = % radians.

11. Assuming that Earth is a sphere of radius 6378 kilometers, what is the difference in latitudes of
Syracuse, New York, and Annapolis, Maryland, where Syracuse is 450 kilometers due north of
Annapolis?



Trigonometric Functions—Right Triangle Definition
Lesson 13
.

Topics
e Pythagorean theorem.

e Triangle definition of the trigonometric functions.
e  Trigonometric values for 30, 45, and 60 degrees.

Definitions and Properties

e Consider a right triangle with an acute angle €. The 6 trigonometric functions are defined as follows.

. opposite hypotenuse
sin@ = _oppostte scl = yp—
hypotenuse opposite
adjacent hypotenuse
cosd = _adjacent secd = yp—
hypotenuse adjacent
opposite adjacent
tan @ = L cotd = J—
adjacent opposite

Theorem and Identities

e In any right triangle, the Pythagorean theorem is with sides a and b, and hypotenuse c,
then o + b* =%,

e Pythagorean identities are defined as follows.
o sin®@+cos’f=1
o tan’@+1=sec’ @

o l+cot> @ =csc’ @

57



Lesson 13: Trigonometric Functions—Right Triangle Definition

e Reciprocal relationships found in trigonometry are as follows.

o secl=
cos @
o c¢scl=—
sin @
o cotf=
tan @
Summary

In this lesson, we develop the trigonometric functions using a right triangle definition. If you know the lengths
of the 3 sides of a right triangle, then you can find the trigonometric functions of either acute angle.

Example 1: Calculating Trigonometric Functions

Calculate the 6 trigonometric functions for the right triangle in figure 13.1.

Figure 13.1




Solution

Using the Pythagorean theorem, the hypotenuse is 5: hypotenuse =~/3° +4° = V25 =5.

sin@ =

-+
o
=
N
Il

, cos@

cscl =

(]
o
-+
N
Il

, secd

I RNV YN
Wl n|w
Blw WA

Example 2: The 30-60-90 Right Triangle

Certain angles occur often in trigonometry. For example, the trigonometric values for 30 and 60 degrees are
important to memorize.

Use the equilateral triangle in figure 13.2 to evaluate the sine and cosine of 30 and 60 degrees.

Figure 13.2

60°

Solution

By drawing the altitude in the equilateral triangle, you have a 30-60-90 right triangle. If the hypotenuse is 2,

then the shortest side is 1, and the third side is V3. The angle opposite the shortest side is 30 °. Hence, you have
the following values.

59



Lesson 13: Trigonometric Functions—Right Triangle Definition

60

sin30° = sinE = l =c0s60°= cosE
6 2 3

cos30° = cosZ =£ =sin60° = sinZ
6 2 3

Observe in this example that cofunctions of complementary angles are equal. This is true in general.

Example 3: Finding Trigonometric Functions

The fundamental identities permit you to use a known value of one trigonometric function to determine the
values of the other functions. Find the sine of the angle 8 if you know that cos& = 0.8.

Solution

We use the fundamental identity as follows.

sin” @ +cos’ 0 =1

sin® @+(0.8)" =1

sin® @ =1-(0.8)" =0.36
sind =0.6

Knowing the sine and cosine, it is easy to determine the other 4 trigonometric functions.

Study Tips

Pitfall

Notice that the tangent function could have been defined as the quotient of the sine and cosine.
The power of a trigonometric function, such as (sin 9)2 is written sin” 6.

It is important to know the values of the trigonometric functions for common angles, such as

%=30°, %=45°, §=60°. Using an isosceles right triangle, for example, you can show that

sinzzcoszz—2 and tanzzl.
4 4 4

You can use a calculator to verify your answers. In fact, you must use a calculator to evaluate
trigonometric functions for most angles.

Cofunctions of complementary angles are equal. For example, tan50° = cot40°.

On a calculator, you can evaluate the secant, cosecant, and cotangent as the reciprocal of cosine, sine,
and tangent, respectively.

The sine and cosine of any angle is less than or equal to one in absolute value.

Make sure you have set your calculator in the correct mode: degree or radian. Not doing this is one of
the most common mistakes in trigonometry.



1. Find the exact values of the 6 trigonometric functions of the angle € shown in the following figures.

a. Figure 13.3
13: 5
b
b= 13> -5 = /169 — 25 = 12
g OPP _ 5
sin @ hyp 13
_aj _12
cos0—hyp—13
opp 5
tan = — = —
o adj 12
h;
csc(9=ﬂ=E
opp 5
_byp 13
s 0 =4 " 12
cot0=afdJ=E
opp S
b. Figure 13.4
18 ¢

12

C= V18 + 122 = /468 = 6-/13

Gin 0 = 18 313

613 13

o= 12 2J13

ST /13 13

18 3
tanO—E—z

V13
csc 0 =——

3

V13
sec 0= ——

2
cott‘)—Z

3
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2. Sketch a right triangle corresponding to the trigonometric function of the acute angle Hgiven that
. 2 . o .
sind = 3 Use the Pythagorean theorem to determine the third side of the triangle, and then find the

other 5 trigonometric functions of the angle.

3. Sketch a right triangle corresponding to the trigonometric function of the acute angle Ogiven that
tand =3 . Use the Pythagorean theorem to determine the third side of the triangle, and then find the
other 5 trigonometric functions of the angle.

4. Find the acute angle & (in degrees and in radians) if cot & = 73
5. Find the acute angle @ (in degrees and in radians) if csc = V2.

1
6. Given the function values sin 60° = 73 and cos60° = > find the following trigonometric functions.

a tan60°
p. sin30°
¢. cos30°
d. cot60°

2
7. Given the function values cscd =3 and secd = 3T, find the following trigonometric functions.

a. siné
p. cosé
c. tan@

d. sec(90°—6)

8. Use trigonometric identities to show that (1+cos@)(1-cos ) =sin’ 6.

9. Use a calculator to evaluate each function. Round your answers to 4 decimal places.
a. sinl2°
b. cos72°

10. Without using a calculator, find the value of the acute angle @ (in degrees and radians) if secd=2.
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Trigonometric Functions—Arbitrary Angle Definition
Lesson 14

Topics
e Trigonometric functions for an arbitrary angle.
e  Quadrants and the sign of trigonometric functions.
e Trigonometric values for common angles.
e Reference angles.
[ ]

Trigonometric functions as functions of real numbers.

Definitions

e Let O be an angle in standard position, let (x, y) be a point on the terminal side, and let

r=+/x* 4+ y* #0. The 6 trigonometric functions are defined as follows.

sin¢9:Z cscH:L
r y
0056:E secH:L
7 X
tan49:Z c0t49:f
X y

e Let € be an angle in standard position. Its reference angle is the acute angle 8’', formed by the

terminal side of @ and the horizontal axis.
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64

Quadrants and the Signs of the Trigonometric Functions

Quadrant 1T Quadrant I
sin 0: + sin 0: +
cos 0: — cos 0: +
tan 0: — tan 0: +

Quadrant ITI Quadrant IV

sin 0: — sin 0: —
cos 0: — cos 0: +
tan 0: + tan 0: —

Trigonometric Values of Common Angles

0
(degrees) 0° 30° 45°] 60° | 90° |180°|270°
9 0 o |z =z | x|, |3
(radians) 6 4 3 2 2
i U Y/ IEVE T T I
sin 0 0 3 5 5
cos 0 1 N3 V2 | 1 _
ol v B A e
tan 6 0 g 1 \/? undef.| O |undef




Summary

In this lesson, we define the trigonometric functions for an arbitrary angle. The definition is equivalent to the
right triangle definition for acute angles. However, with this more general definition, we are able to calculate
trigonometric values for any angle.

Example 1: Calculating Trigonometric Functions
Let(—3, 4) be on the terminal side of the angle 6. Calculate the sine, cosine, and tangent of this angle.

Solution

. 4 3
We have x=-3,y=4, and r:\/(—3)2+42 =+/25=5.Then you have sm@zzzg, cos@zfz—g,
r r

4 . . . ..
and tan@ =2 = 3 Notice that the cosine and tangent are negative because the angle is in the Quadrant II.
x

Example 2: Important Angles

It is important to be familiar with the values of the trigonometric functions for frequently occurring angles.
From the definitions of the sine, cosine, and tangent, you have the following.

sin0=0, cosO=1, tan0=0,

sinZ =1, cosZ =0, ta:nZ is undefined.
2 2 2

Example 3: Using Reference Angles to Calculate Trigonometric Functions

Reference angles permit you to calculate trigonometric values for angles located in any quadrant. Calculate
sin300°.

Solution
The reference angle for 300° is 60°. Furthermore, 300° lies in Quadrant IV, so its sine is negative. Since

B

sin 60° = N3 , we have sin300°=——.
2 2
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We have defined the trigonometric functions for any angle—positive or negative. Hence, we can consider the

trigonometric functions as functions of a real variable. Using xas the independent variable, you see that the

domains of f(x)=sinx and g(x)=cosx are all real numbers, and their ranges consist of all real numbers in

the interval [—1, l].

Study Tips

Pitfall

For the definition of the 6 trigonometric functions, some authors specify that » = 1 in place of
r =+/x* + y*. Both approaches yield the same values.

. . . . . .
Notice that some trigonometric functions are undefined for certain angles. For example, tan51s

undefined because cos% =0.

To find the value of a trigonometric function of an arbitrary angle 9:
1. Determine the function value of the associated reference angle 9".
2. Depending on the quadrant, affix the appropriate plus or minus sign.

. 11 1 .
You can use a calculator to verify your answer. For example, cse—2 = T 1.41421, which
SinTﬂ.

. 2
approximates the exact answer — = V2.

V2

Make sure you have set your calculator in the correct mode: degree or radian. This is one of the most
common mistakes in trigonometry.

66

The point (7, 24) is on the terminal side of an angle in standard position. Determine the exact

values of the 6 trigonometric functions of the angle.

2. Find the values of the 6 trigonometric functions of the angle & if sin & =% and 6 lies in Quadrant

IL.

3. Find the values of the 6 trigonometric functions of the angle & if cscd=4 and cotd <O0.

4. Evaluate the following trigonometric functions.

a. sec7mw



10.

b. tan z
2

c. cotw
d. ¢scz

Find the reference angle @' corresponding to the angle &=120°. Sketch the 2 angles in
standard position.

Evaluate the sine, cosine, and tangent of € =225° without using a calculator.
. . T . .
Evaluate the sine, cosine, and tangent of & = e without using a calculator.
Use a calculator to evaluate sin10°. Round your answer to 4 decimal places.
2r .
Use a calculator to evaluate tan?. Round your answer to 4 decimal places.

The initial current and charge in an electric circuit are zero. When 100 volts is applied to the circuit,

—2t

the current is given by I =5e " sint, where the resistance, inductance, and capacitance are 80

ohms, 20 henrys, and 0.01 farad, respectively. Approximate the current in amperes ¢ =0.7 seconds
after the voltage is applied.
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Graphs of Sine and Cosine Functions

Lesson 15

Topics

e  Graphs of sine and cosine functions.
Graphs of general sine and cosine functions: y =d +asin(bx—c), y =d +acos(bx —c).

e  Amplitude.
e Period.
e Horizontal translations and phase shifts.
e  Vertical translations.
Definitions

Given the general sine and cosine functions y = d + asin(bx —c¢), y = d +acos(bx —c), where b >0,

e The amplitude is |a|. This number represents half the distance between the maximum and

minimum values of the function.

Y . .
e  The period is > when angles are measured in radians.

e  The phase shift is %

e The constant d determines the vertical translation.

Summary

In this lesson, we study the graphs of sine and cosine functions. Recall that the domain of both y = sin x and

y=cosx is the set of all real numbers, and the range consists of all real numbers in the closed interval [—1, 1].

Example 1: The Graph of the Sine Function

To sketch the graph of f(x) =sinx, begin calculating some values, such as sin0 =0, sin% =

. T . . .
and sin By =1. Then connect these points with a smooth curve, as in figure 15.1.
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Figure 15.1

Notice that the sine function is odd (symmetric with respect to the origin). The x-intercepts are

0, +7, £2x, ... The maximum value of the sine function is 1, occurring at
T Sr 3 Tz .. . . 3 Ix V4 Sr
X=—, —, ., ———, ———, .... The minimum value is —1, occurringat x=—, —, ..., ——, ———, ....

22 2 2 2 2 2 2

The graph of the cosine function is similar to that of the sine function. If you graph the cosine function on your

calculator, you will see that it looks like the sine graph shifted to the left % units.

Example 2: Periodicity

One of the most important properties of trigonometric functions is their periodicity. Sketch the graph of the

function f(x)= sing.

Solution

The period is 277[:21—”: 4. That means that the graph completes one cycle on the interval [0, 47[]. The
b

x-intercepts are x =0, *2x, *4r, .... Figure 15.2 shows both y =sinx and f(x)= sin%.
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Figure 15.2

Example 3: Analyzing a Trigonometric Graph

1.
This example analyzes a more complicated trigonometric graph, the function y = Esm (x —%)

Solution

The amplitude is |a| = ‘%‘ = % The period is 277[ = 2T7[ =2r. You can determine the left and right

endpoints of one cycle by solving the equations x —% =0 and x —% =2x. You will obtain x = %

7 . . . .
and x = Tﬂ as the endpoints of one complete cycle, as shown in figure 15.3. There is no vertical

shift (d = 0).



Figure 15.3

“‘ﬁ'

Study Tips

e The amplitude and vertical shift are generally easy to determine. For example, the graph of
y=243cos2x is a vertical shift 2 units upward of the graph of y =3cos2x.

e The horizontal translations are determined by solving the equations bx —c =0 and bx—c =2x.
e Itis always a good idea to plot some points when analyzing a graph.
e  You can also verify your graphs with a computer or graphing calculator.

1. Sketch the graph of the following functions by hand. Include 2 full periods.

a. y=3sinx

1
b =—COSX.
7y
c. y=coS—
d. y=sindx
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e —sin(x—zj
.y 2

f.  y=sin(x—7)

2. Use a graphing utility to graph the following functions. Include 2 full periods. Identify the
amplitude and period of the graphs.

a. y= —Zsin%

b. » :—4+500sf—2t

c. y=5sin(z—2x)+10

3. The pressure in millimeters of mercury, P, against the walls of the blood vessels of a person is
8t . L . .
modeled by P =100-20 cos%, where ¢ is the time in seconds. Use a graphing utility to graph

the model, where one cycle is equivalent to one heartbeat. What is the person’s pulse rate in
heartbeats per minute?



Graphs of Other Trigonometric Functions

Lesson 16

Topics
e  Graphs of other trigonometric functions.

e  Graphs of general trigonometric functions.
e  Damped trigonometric graphs.

Summary

In this lesson, we study graphs of the remaining 4 trigonometric functions. We begin with the graph of
y=tanx.

Example 1: The Graph of the Tangent Function

. sinx . . .
The function f(x)=tanx= is not defined when cos x = 0. The graph of the tangent function has vertical
cosx
T R4 S5x .
asymptotes at xziE, i?’ J_r?, ...and intercepts at x=0, £z, +2x, .... If you plot some values and

connect the points with smooth curves, you will obtain figure 16.1. Notice that the tangent is an odd function.

Figure 16.1

y = tanx y
P B
24
14
X
_3 7 - T 3n
2 )" 2 2 7
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The period of the tangent function is
3z

T

XZiE,

The graph of the cotangent function is similar to that of the tangent function, as shown in figure 16.2.

Figure 16.2

*

2

hY/4

7. The domain is the set of all real numbers except

, J_r?, ... . The range is the set of all real numbers.

Example 2: The Graph of the Secant Function

Analyze the graph of f(x)=secx= !
cosx

the period, x-intercepts, and vertical asymptotes.

y = cotx :

3 |

|

21 |

|

1] I

xl

-T ES 3n 2!
2 2 2

, shown together with the cosine graph, as in figure 16.3. What are



Figure 16.3

The period is 2z, and there are no x-intercepts. The graph has vertical asymptotes at

, J_r?, ... . The graph of the cosecant function is similar to that of the secant function.

Example 3: Analyzing a Damped Trigonometric Graph
In this example, we analyze a damped trigonometric graph. Analyze the graph of the function f(x)=¢ " sinx.

Solution

Using a graphing utility, you will obtain the graph in figure 16.4.
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Figure 16.4

Notice that the graph approaches zero as x tends to infinity. This damping effect can be described in

limit notation as lime *sinx = 0.

X—>0

Study Tips

Pitfall

76

. . . T RY/4 hY/4
The vertical asymptotes of the tangent function, or secant function, are x =i5, i?’ J_rj, .

. . Vs . .
This can be written as x = 5 +nm, where nis an integer.

You can obtain the graphs of cotangent, secant, and cosecant on a graphing utility by using

1 1
cotx = , Secx = ,and cscx =——.
tan x COS X sin x

. 1 . .
The function f(x)=sin— is fun to graph on your calculator. Zoom in on the graph near the origin and
x

you will see some bizarre behavior.

A graphing calculator might connect parts of the graphs of tangent, cotangent, secant, and cosecant that
are not supposed to be connected. You can avoid this by using dot mode instead of connected mode.



1. Sketch the graph of the following functions by hand. Include 2 full periods
a -1 tan x
.y 5
b -1 secx
.y 2
X
c. =3csc—
R
I x
d. =—cot—
a

2

2. Use a graphing utility to graph the following function, include 2 full periods: y =2csc3x. Graph

the corresponding reciprocal function, and compare the 2 graphs.

3. Use a graphing utility to graph the function, include 2 full periods: y =—2sec4x. Graph the

corresponding reciprocal function, and compare the 2 graphs.
4. Use the graph of the function to approximate the solutions to the equation tanx =1 on the interval

[-27, 27].

5. Use a graphing utility to graph the 2 equations J, =sec’x—1 and Vs =tan’ x in the same

viewing window. Use the graphs to determine whether the expressions are equivalent. Verify the
result algebraically.

6. Use a graphing utility to graph the function f(x)=e " cosx and the damping factor of the function

in the same viewing window. Describe the behavior of the function as X increases without bound.
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An object weighing W pounds is suspended from a ceiling by a steel spring, see figure below. The

weight is pulled downward (positive direction) from its equilibrium position and released. The

1 -
resulting motion of the weight is described by the function y =Ee

/4

4 cos4t, where y is the

distance in feet, and ¢ is the time in seconds (t > 0).

Use a graphing utility to graph the function.

Describe the behavior of the displacement function for increasing values of time ¢.

Harmonfe Motion  An object weighing W pounds is
suspended from a ceiling by a steel spring (s=e figure). The
weight is pulled downwand (positive direction) from lis
equilibrium position amd released. The resulting motion of
the weight is described by the function y = e/ cos 4r,
where v is the distance in feed and § s the ime n seconds

(7 = O

i
."'-n._

{a}) Use a graphing uhility to graph the function

(b} Describe the behnvior of the displscemen function for
increasing values of time ¢,



Inverse Trigonometric Functions

Lesson 17
I

Topics
e Inverse trigonometric functions.

e  Graphs of inverse trigonometric functions.
e Inverse properties.

Properties

T

e y=arcsinxifand onlyifsiny=x, -1<x<1, and —%Syﬁ 5

e y=arcosxifandonlyifcosy=x, -1<x<l, and0<y<7.

. . T T
e y=arctanx ifand only iftany=x, —co<x<oo, and — <y <—.

e sin(arcsin x) = x and arcsin(sin y) =y if -1<x<1, ——<y<

SR
N.|:]

There are sSimilar properties for the other functions.

Summary

In this lesson, we study the inverse trigonometric functions. Because the 6 trigonometric functions are not one-
to-one, we must restrict their domains in order to define their inverses. We begin with the inverse sine function.

Example 1: The Definition of the Inverse Sine Function

. . T 7 . .. .
On the restricted interval [_E’ 5} , the sine function is one-to-one. We can define its inverse as follows:

1 V

y =arcsin x=sin_ 5

x if and only if siny=x, —1<x<], and—%ﬁyﬁ

1 . 1 .. .
For example, arcsm—:£ because s1n£ =— and z lies in the interval —1, z .
2 6 6 2 6 22
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The graph of the inverse sine function is a reflection in the line y=x of the graph of the restricted sine

function, see figure 17.1.

Figure 17.1

NL:
|
|
I

. -1 .
y=sin x=arcsinx

Example 2: The Inverse Tangent Function

The remaining inverse trigonometric functions are defined in a similar manner by suitably restricting their

. . . . . Tz o
domains. If we restrict the domain of the tangent function to the open interval (—E, Ej’ then it will be one-

to-one, and we can define the inverse tangent function as follows:

y=arctanx if and only if tan y =x, —oo<x <0, and—%<y<§.

}

For example, arctan(—l) = —% because tan(—%) =-1 and —% lies in the interval [—%,

Notice that the graph of the arctangent function has 2 horizontal asymptotes: y zg to the right and y = —% to

the left. See figure 17.2.



Figure 17.2

y=sin x=arcsinx

-1
y=tan x =arctanx

<

Example 3: Inverse Properties

We can take advantage of the properties of inverse functions, as long as we remember to verify the restricted
domains.

sin(arcsinl) =1

. ( . 1) 1
S| arcsin— | =—
5) 5

arcsin[sin 37”} = arcsin(—l) =——

Study Tips

e The key to defining the inverse trigonometric functions is to appropriately restrict the domains of the
corresponding trigonometric functions.

. . . . . < —1 .
e The 2 common notations for the inverse trigonometric functions are y=sin x and y =arcsinx (and

similarly for the other 5 inverse functions).
e Textbooks disagree on the definition of the inverse secant function. The difficulty is how to restrict the
domain of the secant function so that it becomes one-to-one. Two popular choices are

oSG e SM 3
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Lesson 17: Inverse Trigonometric Functions

Pitfalls

e Pay special attention to the restricted domains of the inverse trigonometric functions. For example,

arccos(—l) #—7 even though cos(—;z') =—1. In fact, arccos(—l) =r.
e Similarly, arcsin(2) is undefined because there is no number xsatisfying sinx = 2.

. . . . . . . L |
e  The notation for inverse trigonometric functions can be confusing. That is, y =sin™ x does not mean

1

sin x

1. Find the exact value of each expression without using a calculator.

1
a. arccos—
2
b. arccosO
c¢. arcsinl
d. arccosl
e. arctanl
f. arctan(
g cos™'| — ﬁ
2
h sin”! [— ﬁ]
2

2. Use a calculator to approximate the following values. Round your answer to the nearest hundredth.
a. cos'0.75

b. arcsin(—0.75)

3. Use the properties of inverse functions to find the exact value of the following expressions

a. sin(arcsin0.7)
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b. arcsin(sin37)

-1 ( 57[)
¢. SIn tan —
4

4. Find the exact value of the expression cos [arcsin (%n

5. Write an algebraic expression that is equivalent to cot(arctan x).
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Lesson 18: Trigonometric Identities

Trigonometric Identities

Lesson 18

84

Topics

e Trigonometric identities.
e  Graphs of inverse trigonometric functions.

Formulas and Identities

e Fundamental identities used to calculate trigonometric functions.
o sinu+cos’u=1
o tan’u+l=sec’u
o l+cot’u=csc’u
o sin(—u)=-sinu
o cos(—u)=cosu
o tan(—u)=—tan(u)

e Confunction identities found in trigonometry are as follows.

(7
o SIn|——u |=cosu
(2 j
T .
O COS| ——u |=smnu
(2 j
V4
o tan(;—uj=cotu

e Reciprocal identities found in trigonometry are as follows.

o secu=
cosu
1

o cscu =—
sinu



o cotu =
tanu

Summary

In this lesson, we study trigonometric identities. In the first example, we use the fundamental identity

sin”u+cos” u =1 to calculate trigonometric functions.

Example 1: Using Identities to Evaluate Trigonometric Functions
. . . L 3
Find the values of the trigonometric functions if secu = > and tanu > 0.

Solution

. . 1 2 . . . . -
We immediately know that cosu = = Y Furthermore, since cosine is negative and tangent is positive,
secu

angle u must be in Quadrant III. We can find the sine using the fundamental identity:

2
sin®u=1-cos’u=1- 2 :1—i:§:>sinu:—£.
3 9 9 3

Notice that we take the negative square root since the angle is in Quadrant III. The remaining values are now
simple to calculate:

1
sinu J5

CSCu =

3 35 sinu _ﬁg J5 1 2 25
——T, tany =——=—+—>-= 2 —_—.

Example 2: Verifying a Trigonometric Identity

Verifying trigonometric identities is an important calculus topic. The secret is to begin with one side of the
equation, and use your knowledge of trigonometric properties to arrive at the other side.

sec? 6-1

Verify the identity g =sin’ 6.

S€C
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Solution

There are many ways to proceed. See if you can provide the reason for each step.

sec’ -1 _sec’d 1
sec’d  sec’O sec’ O
=1-cos* @
=sin’ @

Example 3: Verifying a Trigonometric Identity

Verify the identity tan® x = tan® xsec” x —tan” x.

Solution

We begin with the right-hand side, as follows.

tan® xsec® x —tan” x = tan’ )c(sec2 x—l) = tan? )c(tan2 x) = tan* x

Study Tips

Pitfalls

In Example 1 above, we rationalized the denominator. Make sure to ask your teacher if this is
necessary to do.
A trigonometric equation is not an identity if it is false for at least one value in the domain. For

. / . . . . 3z
example, sinx = 1—-cos® x is not an identity because it is false for x = -

Keep in mind the notation for powers of trigonometric functions. For example, sin® x means (sin x) ,
: 2 : 2
not sm(x ) =smx".

You can confirm an identity by graphing both sides in the same viewing window. If the graphs look
distinct, then the equation is not an identity. However, if the graphs appear to coincide, this is still not a
valid proof.

The sine and tangent functions are odd, so their graphs are symmetric about the origin. The cosine
function is even, so its graph is symmetric about the y-axis.

Your answer to a problem might look different from another answer. For example, the expression

In|secd] is equivalent to —In|cos6] because —In|cosd| = In|cosd| ' = In|secd] .

When verifying a trigonometric identity, don’t begin with the identity and simplify both sides
simultaneously until you arrive at a true statement. This is not a proof technique. Here is an example of
such a “false proof.” The original statement is not true for all values of x.



sinx=\/1—cos2 X

sin® x =1—cos” x

sin? x+cos’ x =1

. . . . T 1 3
1. Find the remaining trigonometric functions if sinx = 5 and cos x = >

25

2. Find the remaining trigonometric functions if sin(—x) = 3 and tanx = 5

3. Use the fundamental identities to simplify the following expressions.

a. cotxsinx

sin o

b. seca
tan

4. Verify the following identities algebraically.

cos @
=secH+tan

1—sin

sin® @

1—cosé

b. 1- =—cosd

5. Factor the following expression and use the fundamental identities to simplify: tan* x +2tan” x +1.

1 1
+

6. Simplify the expression .
I+cosx 1-cosx

7. Verify the following identities.
cos” f—sin® B =1-2sin S.

tanx+tany  cotx+coty

l-tanxtany cotxcoty—1
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8. Use the properties of logarithms
1n|cot 49| = 1n|cos 6’| —ln|sin 6’|.

and trigonometric

identities to verify the

identity



Trigonometric Equations

Lesson 19

Topics

e Trigonometric equations.
e  Approximate solutions to trigonometric equations.

Summary

In this lesson, we study trigonometric equations. Our goal is to identify all the values of the variable that satisfy
the given equation. It is no exaggeration to say that this skill plays a major role in calculus. In our first example,

notice how we first solve the equation on the interval [0, 271') and then use the periodicity of the sine function

to obtain all solutions.

Example 1: Solving a Trigonometric Equation
Find all solutions to the equation 2sinx—1=0.
Solution

The given equation is equivalent to sinx = > On the interval [0, 27[), the solutions are x :% and x= 5?”

By adding 2nzr to each solution, where n is an integer, we obtain the complete set of solutions:

x=£+2n7r, x=5—ﬂ+2n7t.
6 6

Example 2: Solving a Trigonometric Equation

Find all solutions to the equation 2sin’ x—sinx—1=0 on the interval [O, 27[].
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Solution

Begin by factoring the quadratic.

2sin’ x—sinx—1=0
(25inx+1)(sinx—1)=0

2sinx+1=0= sinx = -~ = x=%, 17T
2 6 6
. . V4
s1nx—1=0:smx=1:>x=3
. . . . 7 1z =« . . .
Thus, there are 3 solutions in the given interval: x = < 672 You are invited to verify these solutions by

graphing y =2sin’ x—sinx—1 and observing that the graph intersects the x-axis 3 times on the interval

[0, 27].

Example 3: Approximating Solutions to a Trigonometric Equation

In many applications, it is impossible to find the exact solutions to a trigonometric equation. However, you can
approximate the solutions with a computer or graphing utility. Use a graphing utility to approximate the

solutions to the equation x =2sinx on the interval [-7, 7].

Solution

Begin by graphing the function y =x—2sinx on the given interval. You will see that there are 3 solutions to
the equation. Using the root feature, you obtain x = —1.8955, x =0, and x =1.8955. Notice the symmetry of the

solutions because the function is odd.

Study Tips

e In order to be successful in solving trigonometric equations, you have to know the values of common
trigonometric functions. Many students memorize the values for important angles such as
0 =0, 30°, 45°, 60°, 90°, and so on.

e You are encouraged to verify your solutions with a graphing utility. In fact, most graphing utilities
have built-in root-finding capabilities.

e Some equations are easy to solve. For example, the fundamental identity sin® x+cos> x =1 is valid for
all x. Similarly, cosx =2 has no solutions because the range of the cosine function is [—1, 1].



. . . 1 . .
1. Find all solutions to the equation cosx = 3 in the interval [0°, 3600).

. 2 . .
2. Find all solutions to the equation sinx = 7 in the interval [0°, 360°).
3. Find all solutions to the equation cotx =—1 in the interval [0, 27[).
4. Find all solutions to the equation cscx =-2 in the interval [0, 27).

5. Solve the equation 3csc® x—4 =0.

6. Find all solutions to the equation sec® x —secx =2 in the interval [0, 27[) algebraically.
7. Find all solutions to the equation 2sinx+cscx =0 in the interval [0, 27z) algebraically.

8. Use a graphing utility to approximate the solutions to the equation 2sin” x+3sinx+1=0 in the

interval [0, 27). Round your answer to 3 decimal places.

9. Use a graphing utility to approximate the solutions to the equation 3tan® x+5tanx—4 =0 in the

interval |:—§, %} Round your answer to 3 decimal places.

10. Solve the multiple angle equation sin4x =1.
11. Use a graphing utility to graph the function f(x)= cosl.
X

a. What is the domain of the function?
b. Identify any symmetry or asymptotes of the graph.

c¢. Describe the behavior of the function as x — 0.
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Sum and Difference Formulas

Lesson 20

Topics
e  Sum and difference formulas.

e Double-angle formulas.
e  Power reducing formulas.

Formulas

e Sum and difference formulas in trigonometry are as follows.

o sin(utv)=sinucosv*cosusiny
o cos(utv)=cosucosvFsinusinv

° tan(u+v)— tanu £ tanv
B lFtanutanv

e Double-angle formulas in trigonometry are as follows.

o sin2u=2sinucosu

o cos2u=cos’u—sin®u=2cos’u—1=1-2sin’u
e Power-reducing formulas in trigonometry are as follows.

1—cos2u
2

o sin‘u=

2 1+cos2u
o cos u:T

Summary

In this lesson, we study the important formulas for the sum and difference of sines, cosines, and tangents.
Unfortunately, the formulas are not as simple as we would like. For instance, in general,

sin (u + v) # sinu +sinv. We illustrate one of these new formulas in the first example.
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Example 1: Evaluating a Trigonometric Function
. LT

Find the exact value of s1nE.

Solution

T o .
o is not a common angle, but we can rewrite it as the difference between 2 common angles. The formula for

the sine of the difference of 2 angles yields the final result.

. T . T T
siIn—=8s1m|{ ———
12 (3 4}

. T T T . T
=sin—cos——cos—sin—
3 4 3 4

== __= ~(0.258819
4

Example 2: Deriving a Double-Angle Formula

Double-angle formulas are derived from the sum and difference formulas. You can derive the formula for
sin 2u by using the formula for the sine of a sum.

sin 2u = sin(u +u)
=sinu cosu + cosu sinu

=2sinucosu

A similar argument and the fundamental identity yield the 3 formulas for cos 2u. These formulas are given in
the Theorems and Formula appendix.

Example 3: Solving a Trigonometric Equation

Double-angle formulas permit us to solve more complicated trigonometric equations. Solve the equation

2cosx+sin2x =0 on the interval [0, 27].
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Solution
We use the double-angle formula for the sine function, and then factor.

2cosx+sin2x=0
2cosx+2sinxcosx =0

2cosx(1+sinx)=0

kY4

cosx=0=>x= 7

>

w NN

T

sinx=-1=>x=—
2

Thus there are 2 solutions on the interval, x :% and x = 37” Try verifying this result by graphing the function

y=2cosx+sin2x on the interval [0, 27].

Study Tips

e A computer or graphing calculator might give a different form of a correct answer. For instance, in

(V3-1)v2

Example 1, my calculator gave , which is also correct.

The symbol s+ and F are used to conveniently combine formulas. For example, the formula
cos(u+v)=cosucosvFsinusinv is shorthand for the 2 formulas cos(u +v) = cosu cos v —sinusinv

and cos(u —v) = cosu cosv+sinusinv.

e  There are many more formulas in trigonometry. Please see the Theorem and Formula appendix for a
list of the most important ones.

Pitfall

e You have to be careful with notation. There is a difference between the sine of the angle #,

sin 4 =sin(k), and the so-called hyperbolic function sinh. This latter is a function used in engineering
and is defined sinhx = &~
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1. Find the exact value of each expression.

a. co0s(240°—0°)

b. ¢c0s240° — cos0°

: (27[ 577)
sin| == +==
3 6

. 2r . S«
d. sin—+sin—
3 6
2. Find the exact values of the sine, cosine, and tangent of the angle 75°.
. . . 137
3. Find the exact values of the sine, cosine, and tangent of the angle o
4. Write the expression cos60°cos20°—sin 60°sin 20° as the sine, cosine, or tangent of an angle.

. . T T . T .7 . .
5. Write the expression cos;cos7 - s1n§sm7 as the sine, cosine, or tangent of an angle.

6. Find the exact value of tan(u + v) given that sinuz% and cosv=—%. Both u and v are in

Quadrant II.

7. Find the exact value of the expression sin(sin"l 1+cos™ 1) without using a calculator.

8. Verify the identity sin(x+ y)+sin(x —y) = 2sin xcos y.
9. Use a double-angle formula to rewrite the expression 8sin x cos x.

10. Rewrite the expression sin® 2x in terms of the first power of the cosine.
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Lesson 21: Law of Sines

Law of Sines

Lesson 21

96

Topics

The law of sines.

Angle-angle-side (AAS) and angle-side-angle (ASA) problems.
Side-side-angle (SSA) problems.

Area formula.

Definitions

. . . . a b c
e Given the image above, the law of sines is defined as — =— =—
sind sinB sinC

e Given the image above, the area formula is defined as Area = %bc sind = %ac sinB = %ab sin C.

Summary

In this lesson and the next, we use trigonometry to “solve triangles.” That is, given some sides and angles of a
triangle, we will use the law of sines in this lesson, and the law of cosines in the next lesson, to determine the
remaining sides and angles. The law of sines is used when you know 2 angles and a side, or 2 sides and one
opposite angle. The law of cosines is used when you know 2 sides and the included angle, or all 3 sides. We
illustrate an application of the law of sines in our first example.



Example 1: Using the Law of Sines
Given the triangle in figure 21.1, find the remaining sides and angle.

Figure 21.1

Solution

The third angle is easy to determine: C =180°-A4—B =180°—-25°-60°=95°. We use the law of sines to
calculate the remaining 2 sides. Note that we need to use our calculator set in degree mode.

b a a
b= inB)=
= (sinB) 5

— == A (sin60°) ~ 24.59 in.
sinB sinA4 sin A sin

- % -2 (sinC)= .lzso(sin95°)z28.29in.

sinC - sin 4 sin A sin
Example 2: The 2-Solution Case

Two angles and one side determine a unique triangle (AAS or ASA). However, the situation is more
complicated if you are given 2 sides and one opposite angle. In this case, there might be exactly one triangle, no
triangle, or 2 different triangles. This example illustrates the 2-triangle case. Solve the triangle if you are given

a=2,b=+/12, and 4=30°.
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Solution

. . . oo l
The law of sines gives SH;B = sin 4 =sinB= sin 4 (b) = s1n230 (\/E) = é(zﬁ) = ? )
a a

There are 2 angles whose sine equals g, B =60° and B =120°. In the first case, C =180°—-30°—-60° =90°.

2
The triangle is a 30-60-90 right triangle and the hypotenuse is ¢ = ,/2° +(\/ﬁ ) =+/4+12 =4. For the second
case, C =180°—-30°—-120° =30°. The triangle is isosceles and the third side is 2.

Example 3: An Area Application

The law of sines can be used to develop a convenient formula for the area of any triangle. Find the area of the
triangular lot having 2 sides of lengths 90 meters and 52 meters and an included angle of 102°.

Solution

Since we are given 2 sides and the included angle, we can use the area formula to find the following.

A= %ab sinC = %(90)(52)sin102° ~2288.87 m”.

Study Tips

. . . sin4 sinB sinC
e The law of sines is often presented in the equivalent form = = .

a b c
e The side-side-angle case is the most difficult. As Example 2 above shows, it is possible to have 2
distinct solutions. It is also possible to have exactly one solution or no solution at all.
e It is always helpful to draw a sketch when solving triangles.
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1. Use the law of sines to solve the triangle if 4 =36°, a =8, and b =5.

2. Use the law of sines to solve the triangle if 4 =60° a=9, and ¢ =10.

3. Use the law of sines to solve the triangle if 4 =102.4°, C =16.7°, and a =21.6.
4. Use the law of sines to solve the triangle if 4 =76°, a =18, and b =20.

5. Use the law of sines to solve the triangle if 4=158° a=4.5, and »=12.8.



Find the area of the triangle if C =110°, a =6, and b =10.
Find the area of the triangle if 4 =238°45', b=67, and c =85.

The circular arc of a railroad curve has a chord of length 3000 feet and a central angle of 40°. Find the
radius and length of the circular arc.
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Lesson 22: Law of Cosines

Law of Cosines
Lesson 22
I

Topics
e The law of cosines.
e  Side-side-side (SSS) and side-angle-side (SAS) problems.
e  Side-side-angle (SSA) problems.
e Heron’s area formula.

Definitions

e Given the image above, the law of cosines is defined as follows.
o @’ =b*+c*—2bccos A
o b*=a’*+c*—2accosB

o ¢ =a>+b*-2abcosC

e Given a triangle with sides a, b, and ¢, Heron’s area formula states the area = \/s(s —a)(s—b)(s—c),

at+b+c
where s = 5 .
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Summary

This is our second lesson on “solving triangles.” Here we use the law of cosines, a generalization of the
Pythagorean theorem, to determine the remaining sides and angles in the cases side-side-side (SSS) and side-
angle-side (SAS). Our first example illustrates the case side-side-side.

Example 1: Using the Law of Cosines for the Case SSS

Given the triangle in figure 22.1, find the 3 angles.

Figure 22.1

b=19%t

Solution

We begin by using the law of cosines to calculate the angle opposite the longest side.

b* =a® +c¢* —2accos B
a+c’-b 8 +147-19°

- ~ —0.45089
2ac 2(8)(14)

cosB =

Using a calculator, you obtain B =116.80°. Notice that the angle is obtuse because its cosine is negative. For
the second angle, you can use the law of cosines again or the law of sines. Using the latter, we obtain the

following.
sind _sinB L sind :a(sm Bj z8(smll6.80 )z0.37583
a b 19
A~22.08°

Finally, C =180°-4—-B=180°-22.08°-116.80° =41.12°.
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Example 2: Using the Law of Cosines for the Case SAS

This example considers the case side-angle-side. Solve the triangle in figure 22.2.

Figure 22.2
C
b=9m a
25°
4 B
c=12m
Solution
Using the law  of  cosines, a> =b" +¢* —2bccos A=9" +12% —2(9)(12) cos 25° = 29.2375,
a~~29.2375 = 5.4072
Now use the law of sines to find the angle B: sin B = 4 —sin B =p| 1 4 ~9 31 25 ~ 0.7034. Because
b a a 5.4072

cis the longest side, the angle B must be acute, and you can use a calculator to obtain B ~ 44.7°.

Finally, C =180°—44.7°-25°=110.3°.
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Example 3: An Area Application

The law of cosines can be used to develop another convenient formula for the area of a triangle. Use Heron’s
formula to find the area of a 3-4-5 right triangle.

Solution

. a+b+c 3+4+5
2 2

A=\[s(s—a)(s—b)(s—c) =/6(6-3)(6—4)(6-5) =/36 =6.

The semiperimeter is

6. Hence, Heron’s formula gives

Study Tips

b+t -d’
2bc '
e Ifatriangle is a right triangle, cos90° = 0, the law of cosines simplifies to the Pythagorean theorem.

e In the first example, we found the largest angle first. If this angle is obtuse, then the other 2 angles are
acute. And if this angle is acute, then so are the others. Recall that cosé& >0 = angle acute and

e The law of cosines can be written many ways. For example, cos 4 =

cos#<0 = angle obtuse.

Pitfalls

e  You cannot apply the law of cosines to any 3 lengths a, b, and c¢. For example, ifa =16, b =4, and

Brarct—g?
¢ =10, you would obtain cos 4 =%: —1.75, which is impossible. In fact, these 3 lengths
c

cannot form a triangle because 16 >4 +10.

e Similarly, Heron’s area formula would not work for these 3 lengths because you would obtain the
square root of a negative number.

1. Use the law of cosines to solve the triangle if a =6, b5 =8, and c=12.

2. Use the law of cosines to solve the triangle if a =50° b =15, and ¢ = 30.

3. Use the law of cosines to solve the triangle if a =9, b=12, and ¢ =15.

4. Use Heron’s area formula to find the area of the triangle if a =5, b=38, and ¢ =10.

5. Use Heron’s area formula to find the area of the triangle if a =3.5. 5=10.2. and ¢ =9.
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6. Two ships leave a port at 9 a.m. One travels at a bearing of N 53°W at 12 miles per hour, and the
other travels at a bearing of S 67° W at 16 miles per hour. Approximate how far apart the ships are at
noon that day.



Introduction to Vectors

Lesson 23

Topics
e  Vectors.

e  Vector operations.
e  Unit vectors.

Definitions and Formulas

Q
°

Terminal
— point

PQ

Initial
point

e Given a directed line segment P—Q, P is the initial point, and Q is the terminal point.
e  The length or magnitude of a directed line segment is denoted ”P—QH .

e Directed line segments having the same length and direction are called equivalent. The set of all

directed line segments that are equivalent to a given P—Q is a vector in the plane, v = P—Q

e If the initial point of a directed line segment is at the origin, then the vector is in standard position. It

is uniquely represented by the coordinates (v, v,)of its terminal point: V:<v1, v2>. These

coordinates are the components of the vector.

e The component form of a vector with initial point P = ( 2R pz) and terminal point Q = (ql, qz) is

PﬁQ’:<ql LR _p2>:<\/1, V2>: V.
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Lesson 23: Introduction to Vectors

o |v|[=yw’ +v,’. The vector vis a unit vector if |[v|=1.

e  The standard unit vectors are i = (1, 0> and j= (0, 1).

e The trigonometric form of a vector is v :||v||(cosé’i+sin 0j). Here, the direction angle & is the

angle the vector makes with the positive x-axis.

e The term scalar is just another word for a real number.

Vector Operations

Let u= (ul, u2>, V= (vl, v2>, and let k be a real number.
e Addition: u+v =<ul +v, U, +v2>.

e  Scalar multiplication: ku = k(ul, 142) = (kul, ku2>.

Summary

In this lesson, vectors are used to represent quantities that have both magnitude and direction (e.g., velocity,
acceleration, force). We use directed line segments joining 2 points to represent vectors. Two directed line
segments are equivalent if they have the same magnitude and direction, as illustrated in the first example.

Example 1: Equivalent Directed Line Segments

Let u be represented by the directed line segment from P = (0, 0) to O =(3, 2),and let v be represented by
the directed line from R =(1, 2) to S =(4, 4). Show that u=v.

Solution

We begin by using the distance formula to show that the magnitudes are equal.

“FQ“: (3-0)° +(2-0)’ =\9+4 =413
|Rs]|=(4-1) +(4-2)" =\o+2 =13
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We verify that the directions are the same by calculating the slopes of each line segment.

— 2-0 2

slope of PQ=——=—
P 0 3-0 3
slope of jﬁzﬂ:g
4-1 3

The directed line segments have the same length and direction, which verifies that u = v.

Example 2: Vector Operations

You can add vectors and multiply them by real numbers. Find v+2wif v = (—2, 5) and w = <3, 4).

Solution

2w=2(3, 4)=(6, 8) = v+2w=(-2, 5)+(6, 8) =(4, 13)

Example 3: The Trigonometric Form of a Vector

We can combine our knowledge of trigonometry to express vectors in trigonometric form. Express the vector

V= <3, 3> in trigonometric form.
Solution

The magnitude of the vector is ||v||:\/32 +3% =4/18 =32 . The vector makes an angle of 45° with the

positive x-axis. Hence, the trigonometric form is the following.

v =|v||(cosGi+sin@j) = 3x/§(cos 45°i+5sin45°j)

Study Tips

e The notation for vectors varies in science and engineering, as does the notation for magnitude. This can
be confusing, so make sure to check your textbook.

e A vector vis the zero vector (O, O> if and only if ||v|| =0.

o In this course, we consider vectors in the plane. In engineering and science, you also study vectors in
space (3 dimensions).
e  Scalar multiplication by a negative number reverses the direction of a nonzero vector.

. vV . . . . .
e (iven a nonzero vector v, the vector— is a unit vector in the same direction as v.

M
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Lesson 23: Introduction to Vectors

Pitfalls

Do not confuse the standard unit vector i with the imaginary number i =v-1.

The magnitude of a sum of 2 vectors is not generally equal to the sum of their magnitudes. For
example, [i| = j|=1 but [i+j|= ||<1,1>|| =2.
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10.

Find the component form and magnitude of the vector with initial point [E’ 1) and terminal point

&

2
Find the component form and magnitude of the vector with initial point(—g, - lj and terminal point

N
27 5)
Find 2u—3v if u=(4, 2) and v=(7, 1).

Find a unit vector in the direction of the vector (6, 0>.

Find a unit vector in the direction of the vector (—24, - 7>.
Find the vector v having magnitude 8 and direction u = -21i.

The initial point of a vector is (=3, 1), and the terminal point is (4, 5). Write this vector as a linear

combination of the unit vectors i and j.

Find the magnitude and direction angle of the vector v = 6i — 6j.
Find the component form of the vector v if ||v|| =32 and v makes an angle of € =150° with the
positive x-axis.

Find the component form of the vector that represents the velocity of an airplane descending at a speed
of 100 miles per hour at an angle of 30° below the horizontal.



Trigonometric Form of a Complex Number

Lesson 24

Topics
e  The trigonometric form of a complex number.

e  Multiplication and division using the trigonometric form.
e DeMoivre’s theorem.

Definitions and Theorem

A
Imaginary
axis

(a, b)

[

N

! N

| N

I N
b | \

1 AN

N\
! N\ ® Real
| <] \ axis
v >

e The absolute value or modulus of a complex number a+bi is |a+bi|=~a’ +b>.

The trigonometric form of the complex number z=a+bi is z=r(cos@+isinf), where r is the

absolute value and @ is the appropriate angle given by tan 8 = 2
a
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Lesson 24: Trigonometric Form of a Complex Number

e Let z =r(cosh +ising,),and z, =r,(cosd, +isind,). Multiplication ~and  division  using

trigonometric form is defined as follows.

o Multiplication: z,z, =77, [ cos(6, +6,)+isin (6, +6,) .

o Division: j—; ::—i[cos(el -0,)+isin(6,-6,)], z, #0.

e DeMoivre’s Theorem is defined as follows: If z = r(cos«9+isin 0) and # is a positive integer, then

Z" =" (cosnf+isinn).

e For a positive integer n, the complex number z = r(cos 6 +isin 0) has exactly # distinct n™ roots given

by W(cos0+2ﬂk+isin0+2”kj, k=0,1,..,n-1.

n n

Summary

In this lesson, we apply our trigonometric skills to complex numbers. We will see how to represent complex
numbers in a new way and how to conveniently multiply and divide them. Finally, we will study the famous
DeMoivre’s theorem concerning powers and roots of complex numbers. We begin by showing how to find the
trigonometric form of a complex number.

Example 1: The Trigonometric Form of a Complex Number
2
If z=-2-23i, then its absolute value isr = ‘—2 - 2x/§i‘ = (—2)2 + (—Zx/g) =+/4+12 = 4. If you graph this

complex number, you will see that it lies in the Quadrant III and tan @ = 2 = ? =B3=0= 47” Hence, the
a —

. 4 .4 . .
trigonometric form is z=r(cos€+i sm€)=4(cosTﬂ+i smTﬂj. You can easily check this answer by

converting back to the original Cartesian coordinates.

110



Example 2: Multiplication

To multiply 2 complex numbers in trigonometric form, add their angles and multiply their

2
absolute values. Find the product of the complex numbers z =—1+3i= (cosTﬂsmTﬂJ and

z :4x/§—4i = cosiﬂsmM
: 6 6

Solution

ol
e 2241 s 22127
16{0 [6 m(l%ﬁﬂ
<t {5 Jrsn( 5] -1

You can check this result by multiplying the original numbers as we learned earlier in the course. Finally,
division is similar to multiplication, except that you subtract the angles and divide the absolute values.

Example 3: An Application of DeMoivre’s Theorem

DeMoivre’s theorem permits us to conveniently find powers of complex numbers. Use DeMoivre’s theorem to

calculate (—1 + \/gi )12 .

Solution

We first find the trigonometric form of —1 +3i. r= (—1)2 +(\/§)2 =+1+3=2.

We have tan9=2:£?:_\/§:>9:2§
a —
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Lesson 24: Trigonometric Form of a Complex Number

Now we can use DeMoivre’s theorem.

b 5 5 12
(—1 + \/51) = |:2(COST”+ isinTﬁﬂ

=2 {cos ((12) 277[) + isin((lZ) %ﬂ

=4096[cos 87 +isin87| = 4096

Notice that we have just shown that one of the twelve 12" roots of 4096 is —1+ x/gi.

Study Tips

Pitfall

Recall from our earlier work with complex numbers that we can graphically represent the complex
number a+bi as the ordered pair (a, b) in the complex plane.

If a complex number a +bi is real (b = 0), then the absolute value is the usual absolute value |a|.
The absolute value of a complex number represents its distance to the origin. For example,

|—1 + 3i| = w[(—1)2 +3? =/10 means that the complex number —1+3i is V10 units from the origin.

The trigonometric form is often called the polar form of a complex number. We will study polar
coordinates later in this course.

The trigonometric form of a complex number is not unique. For example, you can add 27 to the angle
6 and obtain another representation of the same complex number. And the number 0 has an infinite
number of representations.
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Plot the complex numbers 6i and —2i in the complex plane, and find their absolute values.
Plot the complex numbers —4+4i and —5—12i in the complex plane, and find their absolute values.

Find the trigonometric form of the following complex numbers

a. 5-5i
b. 3+
c. 8

d. 3



Calculate the product [3 (cos % +isin %ﬂ [4 [cos % +isin %ﬂ .

c0s50°+isin50°

Calculate the quotient - .
c0s 20° +isin 20°

Use DeMoivre’s theorem to calculate (2+ 21')6 )

Find the 3 cube roots of 64i.
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Lesson 25: Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices
Lesson 25
I

Topics
e Systems of linear equations.
e  The method of substitution.
e  Gaussian elimination and elementary row operations.
e  Matrix representation of a linear system.

Definitions

e Elementary row operations for systems of equations are defined as follows.
o Interchange 2 equations.
o  Multiply one of the equations by a nonzero constant.
o Add a multiple of one equation to another equation.

e Elementary row operations for matrices are defined as follows.
o Interchange 2 rows.
o Multiply a row by a nonzero constant.

o Add a multiple of one row to another row.

Summary

This is the first of 4 lessons on solving systems of linear equations and matrices. We begin by using the method
of substitution to solve a simple system of 2 equations and 2 unknowns.

Example 1: The Method of Substitution

Solve the following system of equations.

x+y=4
xX—y=2
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Solution

We begin by solving for the unknown y in the first equation: y =4—x.
Then substitute this expression for y in the second equation: x—y=2=x-(4-x)=2=2x=6=>x=3.

Finally, we can solve for y: y=4—x=4-3=1. The solutionis x=3, y=1 or (3, 1).

Example 2: Solving a System by Elimination

The method of elimination, known as the Gaussian elimination, is the preferred technique for solving systems of
linear equations. The key step is adding a multiple of one equation to another equation in order to eliminate a
particular variable. Solve the following system of equations.

x=2y+3z=9
—x+3y+z=-2
2x—=5y+5z=17

Solution

We begin by adding the first equation to the second equation, producing a new second equation with the
variable x eliminated. The first and third equations remain the same.

x—=2y+3z=9
y+4z=7
2x=5y+5z=17

Now add (—2) times the first equation to the third equation, eliminating the x-term in the third equation.

x—2y+3z=9
y+4z=7
—y—z=-1

Add the second equation to the third equation, and then divide the third equation by 3.

x—=2y+3z=9 x—=2y+3z=9
y+4z=7 = y+4z=7
3z=6 z=2

Knowing the value of z, we can use back substitution to find the remaining unknowns, as follows.

z=2=y4+42)=T=y=-1
x=2(-D+3(2)=9=x=1
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Lesson 25: Systems of Linear Equations and Matrices

The solutionis x=1, y=—1, z=2 or (1, -1, 2).

Example 3: Matrix Representation of a Linear System

A convenient notation for systems of linear equations involves rectangular arrays of numbers called matrices.
Notice how the following system of 3 equations in 2 unknowns is represented. The linear system

x—=2y=5 1 -2 5
2x+3y =3 can be represented by the matrix | 2 3 3|
3x+y=8 3 1 8

The third column of the matrix is the right-hand side of the system, and the first 2 columns represent the
coefficients of the unknowns x and y. You can use row reduction on the matrix just as you would do with the
original system.

x=2y=5 1 25
2x+3y=3<1(2 3 3
3x+y=8 3 1 8

x=2y=5 1 -2 5
Ty=-T <|0 7 -7
3x+y=8 31 8

x=2y=5 1 -2 5
Ty=-T7T <|0 7 -7
Ty =7 0o 7 -7

x=2y=5 1 -2 5
y=-1 <0 1 -1
0=0 0 0 O

Hence, y =—1, and x—2(-1)=5=> x=3. The solution is (3, —1).

Study Tips

e An equation is linear if the variables occur to the first power.

e Solving systems of equations by hand involves a lot of arithmetic. Make sure you check your
calculations as you go along. Fortunately, computers and graphing calculators have built-in programs
for solving linear equations.

e For a system of linear equations, there are exactly 3 possibilities: a unique solution, no solution, or an
infinite number of solutions.

e Some textbooks use vertical dots to separate the right-hand column of the matrix representing a
linear system.
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1. Solve the following systems by the method of substitution.

2x+y=6
-x+y=0

x—y=0
S5x-3y=10
2. Solve the following systems by the method of elimination.

x+2y=4
x=2y=1

2x-5y=0
b. {x d
x—y=3

25x-3y=15
2x—-24y=12

3. Solve the following systems of linear equations by the method of elimination.

X+y+z=6
a. 2x—y+z=3
3x-z=0

3x-2y+4z=1
b. x+y-2z=3
2x-3y+6z=8

4. The University of Georgia and Florida State University scored a total of 39 points during
the 2003 Sugar Bowl. The points came from a total of 11 scoring plays, which were a
combination of touchdowns worth 6 points, extra points worth 1 point, and field goals
worth 3 points. The same number of touchdowns and field goals were scored. How many
touchdowns, extra points, and field goals were scored during the game?
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Lesson 26: Operations with Matrices

Operations with Matrices
Lesson 26
I

Topics
e  Matrices.
e Addition and scalar multiplication of matrices.
e  Matrix multiplication.
e Applications to systems of linear equations.
Definitions
Ay 4y o qy
a a “en a ; .
e A matrix is a rectangular array of numbers. 4 = [a”.] = 2" |. The order or size of a
aml amZ e amn

matrix is the number of rows and number of columns, mxn.
e Two matrices are equal if they have the same order and corresponding entries are the same.

e  The sum of 2 matrices of the same order is [aij ] + [by] = [a[j + by]
e  The scalar multiple of a number times a matrix is & [aij] = [kaij ]

e A zero matrix is a matrix whose entries are all zero.

e An identity matrix is a square matrix of all zeros except for 1s down the main diagonal.

o If 4 is mxn and Bis nxp, then their product is an mxp matrix AB:[C[/.], where

¢y =aub; +ayby; +--+a,b

in=nj

Summary

In this lesson, we study operations with matrices: addition, scalar multiplication, and matrix multiplication. The
sum of 2 matrices of the same size is simply the matrix obtained by adding the corresponding entries. The scalar
multiple of a number times a matrix is obtained by multiplying the number (scalar) with each entry of the
matrix. Both operations are illustrated in the first example.
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Example 1: Addition and Scalar Multiplication of Matrices

.. . . 1 2 -1 0 1-1 2+0 0 2
Addition of 2 matrices of the same size: + = = .
3 4 2 4 3+2 4+4 5 8

. . {1 2} {3(1) 3(2)} {3 6}
A number times a matrix: 3 = = .
3 4 33) 3(4) 9 12

Observe that 4+ 0 = 4, where 0 is the zero matrix of the same order as A.

Example 2: Matrix Multiplication

Matrix multiplication is more complicated than matrix addition or scalar multiplication. The product 4B is
defined if the number of columns of 4 equals the number of rows of B. Notice in this example how the rows
of the left matrix are “multiplied” by the columns of the right matrix.

-1 3

Find the product of the matrices A=| 4 -2| and B= {_i ﬂ
5 0 -
Solution
-1 3 3 =D(E3)+3(-4) (D) +3() -9 1
AB=|4 -2 {_ 1} =|4(-3)+(-2)(-4) 42+ |=| 4 ©
5 0 5(=3)+0(-4) 5(2)+0(1) -15 10

Example 3: Matrix Multiplication and Linear Systems

You can conveniently use matrix multiplication to rewrite systems of linear equations. Rewrite the linear system

x=2y+z=2
2x—y-z=1
Solution
1 -2 1 2 g
We define the following matrices: 4 = {2 { J, B= L}, X =| y|. Then the original linear system can be
z

represented by the simple matrix equation 4X = B.
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Lesson 26: Operations with Matrices

Study Tips

¢  You can use brackets or parentheses to denote matrices.
e  The identity matrix [ serves as the multiplicative identity: A7 = 4.
e In general, matrix multiplication is not commutative. But, it is associative: A(BC) = (4B)C.

Pitfalls

e Matrix equations can be confusing; be careful about the notation. For example, the scalar
multiplication equation 04 =0 has 2 different zeros. The first zero is the real number zero, whereas
the second zero is the zero matrix (of the same order as A4 ).

e  Matrix multiplication requires that the 2 matrices be of the appropriate sizes. For example, in Example
2 above, the product B4 is not defined.

e Many familiar properties from algebra do not hold with matrices. For example, the cancellation law is
not true in general: AC = BC, C # 0 does not imply 4= B.

1. Find 34-2B if:

1 -1 2 -1
a. A= and B = .
TR N

8 -1 1 6
b. A=|2 3 |and B=|-1 -5/|.
-4 5 1 10

2. Find 4B, if possible, where:

2 1 0 -3 0
a. A=|-3 4|and B=|4 0 2].
-1 6 8 =2 7
0o -1 2 2 -1
b. A={6 0 3|and B=|4 -5|.
7 -1 8 1 6
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3. Find 4B and BA, where:

1 2 2 -1
a. A= and B = .

5 2 -1 8

3 -1 1 -3
b. 4= and B = .

1 3 3 1

4. Write the following system of equations as a matrix equation 4X = B.

=2x,-3x,=-4
a.
6x, +x, =36

x—=2y+3z=9
b. —x+3y—-z=-6
2x=5y+5z=17

5. Show that (A4+ B)2 # A> + 24B + B* does not hold for matrices.

6. If a and b are real numbers, then ab =0 implies a=0 or b =0. Show that this property does not
hold for matrices.
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Lesson 27: Inverses and Determinants of Matrices

Inverses and Determinants of Matrices
Lesson 27
[

Topics
e Inverses of matrices.

e The inverse of a 2 x2 matrix.
e Determinants.

Definitions and Formula

e The matrix B is the inverse of the square matrix 4 if AB = BA =1, where/ is the identity matrix. A

square matrix is singular if it does not have an inverse.

b
e The determinant of the 2x 2 matrix 4 = (a dj is det(A4) = |A| =ad —bc.
c

e The matrix inverse algorithm is used to find the inverse of the nxn square matrix 4: Adjoin the
nxn identity matrix and row reduce. If you are able to reduce A4to I, then / will simultaneously

reduce to the inverse 4™ :[4 i I]— [1 oA ] . Otherwise, the matrix 4 doesn’t have an inverse.
, a b L1 [a -b],
e The formula for 2x 2 matrices: If 4= ,then 4~ = if ad —bc # 0.
c d ad—bc|—c a

Summary

In this lesson, we look at inverses and determinants of square matrices. The algorithm for calculating the
inverse of a matrix, if it exists, relies on row reduction.

Example 1: Finding the Inverse of a Matrix

1 4
Find the inverse of the matrix 4 = { { 3}.
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Solution

. . S . . 1 4 110
First adjoin the identity matrix to 4. [4 © []= L 30 1l

Then row reduce this rectangular matrix until we obtain the identity matrix on the left.
. 1 4 : 10 1 0: -3 -4 )
[A Y ] = . - . = [1 : A_IJ
-1 -3 : 0 1 01 : 1 1

-3 -4
The inverse is the matrix on the right, 4™ = { _ } .

Example 2: The Inverse of a 2x2 Matrix

Calculating the inverse of a large matrix can be time consuming, and fortunately computers and calculators
have built-in capabilities for matrix inversion. For small 2x2 matrices, there is a convenient formula for the
inverse, if it exists.

1 1
3 -1 2 1 21
The inverse ofA:{ } is A" ;{ }:l{ }_ A A

2 2 32— (-] 2 3| 4|2 3| A
. L2 .
The inverse of 4= L 6} does not exist because ad —bc =1(6)—2(3) =0.

Example 3: Calculating Determinants

The expression ad —bc in the previous example is called the determinant of the matrix. Determinants are
defined for all square matrices and can be calculated with a graphing utility.

2 3
A:(l 2j:detA:Z(2)—(—3)(l)=7
B—2 ! detB=2(2)-1(4)=0
=\, |2 detB=22)-1(4)=
Study Tips

e Ifa matrix has an inverse, then the inverse is unique.
o If Aisthe inverse of B,then B is the inverse of A.

e A matrix is singular if and only if its determinant is zero.
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Lesson 27: Inverses and Determinants of Matrices

Pitfall

. . . _ . 1
e The notation for the inverse of a matrix, 4™', does not mean the reciprocal of A, v

3 -1 2 1
1. Show that B = is the inverse of 4 = .
-5 2 53

2. Find the inverse of the following matrices, if it exists

20
a. A=
o 3)

I 11
c. A=|3 5 4
36 5
-5 0 0
d A4=2 0
-1 5

5 1
3. Use the formula for the inverse of a 2 x 2 matrix to calculate the inverse of ( 5 2].

x=2y=S5

4. Use an inverse matrix to solve the system of linear equations .
2x-3y =10

5. Find the determinant of the following matrices.

- 33

-7 6
b.

13

2
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-1 2 -5
6. Use a calculator to find the determinant of the matrix | 0 3 4
0 0 3
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Lesson 28: Applications of Linear Systems and Matrices

Applications of Linear Systems and Matrices

Lesson 28

Topics

e  Cramer’s rule.
e Applications of linear systems.
e  Computer graphics.

Definition
e According to Cramer’s rule if a system of » linear equations in n variables has a coefficient matrix 4

with a nonzero determinant |A|, then the solution of the system is x, = %, X, = %, e X, = %

E

where the A4, has the same entries as 4, except the column is the i™ column of constants in the system of
equations.

Summary

In this lesson, we look at some applications of systems of linear equations and matrices. Our first example
illustrates Cramer’s rule, a method for solving linear equations using determinants.

Example 1: Cramer’s Rule

4x, —2x, =10

Use Cramer’s rule to solve the linear system of equations .
3x, —5x, =11

Solution

Notice how the numerators are similar to the denominators, except for the substitution of the right-hand side.

10 -2 410
I L O O 7 N I T
Yl 4 2] -4 P4 4 2 -14

3 -5 3 -5

The solution is (2, —1).
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Example 2: An Application of Linear Systems

Many applications in science and engineering lead to systems of linear equations. This example illustrates how
systems can be used to study automobile stopping distances.

During the testing of a new automobile braking system, the speeds x (in miles per hour) and the stopping
distances y (in feet) were recorded as follows.

Speed x Stopping Distance y
30 55
40 105
50 188

Fit a parabola to the data, and estimate the stopping distance for a speed of 70 miles per hour.

Solution

Let y=ax’ +bx+cbe the equation of the parabola. To find the coefficients, we substitute the given data into

this equation, producing a system of 3 equations and 3 unknowns.

a(30)° +5(30)+c =55
a(40)’ +b(40) +c =105
a(50)° +5(50)+c =188

Using Gaussian elimination, the solution is @ =0.165,b=-6.55 ¢=103. Hence, the parabola is

¥ =0.165x" —6.55x+103. When x =70, you obtain y = 0.165(70)2 —6.55(70)+103 = 453 feet.

Example 3: Computer Graphics

Matrices are an important tool in the field of computer graphics. You can use 2x2 matrices and matrix
multiplication to model simple transformations in the plane, as illustrated in this example.

-1 0 X
The 2x2 matrix T :( 0 1] represents a reflection in the y-axis because for any point P :[ j in the plane
y

-1 0 - 1
(written as a column), you have TP = [ j[xj = [ x]. Similarly, the matrix (O
y

0
reflects points in the
0 1)y 1

X-axis.
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Lesson 28: Applications of Linear Systems and Matrices

Study Tips

e  Although the formula for Cramer’s rule seems simple, it is not a practical method for solving systems
of equations because of the need to evaluate determinants.

o In real-life applications, scientists often need to solve large systems of equations. Fortunately,
computers are usually able to do this quickly and accurately. Moreover, graphing calculators have
built-in programs for solving systems of linear equations.

Pitfall
e Cramer’s rule only works for systems of n equations with » unknowns having a nonzero determinant.

If the determinant of the coefficient matrix is zero, then the system has either no solution or infinitely
many solutions.

1. Use Cramer’s rule to solve (if possible) the following systems of equations.

“Ix+11ly=-1
3x-9y=9

3x+2y=-2
6x+4y=4

2. You are offered 2 different jobs selling dental supplies. One company offers a straight salary
commission of 6% of sales. The other company offers a salary of $350 per week plus 3% of sales.
How much would you have to sell in a week in order to make the straight commission offer the better
offer?

3. What are the dimensions of a rectangular tract of land if its perimeter is 40 miles and its area is 96
square miles?

4. A grocer sells oranges for $0.95 each and grapefruit for $1.05 each. You purchase a mix of 16 pieces
of fruit and pay $15.90. How many of each type of fruit did you buy?

5. Describe the transformation given by the following matrices.

( \]
. T
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6. Find the equation of the circle x*+)°+Dx+Ey+F =0 that passes through the points
(O, O), (2, 2), and (4, 0).
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Circles and Parabolas

Lesson 29

Topics
e  Conic sections.

e Circles.
e Parabolas.

Definitions
e A conic section is the intersection of a plane with a double-napped cone.

e A circle is the set of all points (x, y) in a plane that are equidistant from a fixed point (h, k), called

the center of the circle. The distance » between the center and any point (x, y) on the circle is the

radius.

e A parabola is the set of all points (x, y) in a plane that are equidistant from a fixed line, called the

directrix, and a fixed point, called the focus, not on the line. The midpoint between the focus and the
directrix is the vertex, and the line through the focus and the vertex is the axis of the parabola.

Formulas
e Standard form of a circle: (x— h)2 +(y- k)2 =7
e Standard form of parabolas with vertex at (A, k):
o Vertical axis; directrix y=k—p : (x—h)2 =4p(y—k), p=0.

o Horizontal axis; directrix x=h—p: (y - k)2 = 4p(x - h), p#0.

Summary

This is the first of 2 lessons on conic sections. In this lesson, we look at circles and parabolas; in the next lesson,
we study ellipses and hyperbolas. All of these conic sections are defined as a set of points satisfying a certain
property. Our first example deals with circles.
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Example 1: Finding the Equation of a Circle

The point (1, 4) is on a circle whose center is at (—2, —3). Write the standard form of the circle.

Solution

The radius is the distance between the 2 points: 7 = \/(1 —(—2))2 + (4 —(—3))2 =32 472 =/58.
Using the standard equation of a circle, we have the following.
(x—h)2 +(y—k)2 r

(r—(-2)) +(y—(3))" =(V38)

(x+2)2+(y+3)2 =58

Example 2: Completing the Square

Find the standard equation of the circle given by x* —6x+ )" —2y+6=0.

Solution

In this example, we need to complete the square. Notice how we add and subtract appropriate constants to make
the terms in the parentheses perfect squares. Write the equation as (x2 —6x+ ?) + ( Y =2y+ ?) =—6. In order to

2 2
complete the 2 squares, you need to add (_76) =9 to the first term and [_72) =1 to the second term. Make

sure to also add these values to the right-hand side so as to not change the equation.
( 2 2 _
X —6x+9)+(y —2y+1)——6+9+1

()C—.’))2+(y—l)2 =4

Example 3: Standard Form of the Equation of a Parabola

The standard form of the equation of a parabola permits us to analyze its focus and directrix. Find the standard

form of the equation of the parabola with vertex at the origin and focus (0, 4).
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Lesson 29: Circles and Parabolas

Solution

The axis is vertical and passes through the vertex (0, 0) and focus (0, 4). We also have p=4. Hence,

.. 1
(x—h)" =4p(y—k)= x* = 4py = 4(4)y =16y. The equation is x* =16y or y:ExQ.

Study Tips

e  An important skill for analyzing conic sections is completing the square, as illustrated in Example 2.
e Circles are special cases of ellipses, which we study in the next lesson.

e Ifthe center of the circle is at the origin, then its equation simplifies to x* + y* = 7.

1. Find the standard form of the equation of the circle with center at the origin and radius Jis.

2. Find the standard form of the equation of the circle if the point (1, 0) is on the circle and the center is

(3, 7).

3. Find the standard form of the equation of the circle x* +y* —2x+6y+9=0.

4. Find the standard form of the equation of the circle 4x* +4y* +12x—24y+41=0.
3
5. Find the standard form of the equation of the parabola with vertex at the origin and focus at (0, _E)

6. Find the standard form of the equation of the parabola with vertex at the origin and focus at (—2, O).

7. Find the vertex, focus, and directrix of the parabola y* = —6x.

3
8. Find the standard form of the equation of the parabola with vertex (—2, 0) and focus (_E’ Oj.
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10.

Find the standard form of the equation of the parabola with vertex (0, 4) and directrix y = 2.

Each cable of the Golden Gate Bridge is suspended between 2 towers that are 1280 meters apart in the
shape of a parabola. The top of each tower is 152 meters above the roadway. The cables touch the
roadway midway between the towers. Write an equation that models the cables by placing the origin of
the coordinate system at the center of the roadway.
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Ellipses and Hyperbolas

Lesson 30

134

Topics
e Ellipses.
e Hyperbolas.
Definitions
e An ellipse is the set of all points (x, y) in a plane, the sum of whose distances from 2 distinct fixed
points, called foci, is constant. The line through the foci intersects the ellipse at 2 points called
vertices. The chord joining the vertices is the major axis, and its midpoint is the center of the ellipse.
The chord perpendicular to the major axis at the center is the minor axis.
e The eccentricity of an ellipse is e = <.
a
¢ A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from 2 distinct
fixed points, called foci, is a positive constant. The graph of a hyperbola has 2 branches. The line
through the foci intersects the hyperbola at the vertices. The line segment joining the vertices is the
transverse axis. The midpoint of the transverse axis is the center.
Formulas

Standard form of ellipses with center at (h, k) and major and minor axes of lengths 2a and 2b,
respectively, where 0 <b<a:
2 2
(x=h) (k) _

o Horizontal major axis: S+ =1
a b

2 2
o Vertical major axis: (x—zh) +(y—2k) =1.
b a

o The foci lie on the major axis, cunits from the center, with ¢* = a* —b”.

Standard form of hyperbolas with center at (h, k):

2 2

x—nh —k

o Transverse axis is horizontal: ( > ) - (ybz ) =1.
a




.. . y
o Transverse axis is vertical: -

o The vertices are a units from the center. The foci are cunits from the center, with

 =a* +b%

Summary

In this lesson, we continue our study of conic sections by looking at ellipses and hyperbolas. Again, there are
many applications of these conic sections, including orbits of planets and comets and whispering galleries. Our
first example analyzes an ellipse centered at the origin.

Example 1: Sketching an Ellipse
Sketch the ellipse given by the equation 4x* + y* = 36.

Solution

We first rewrite the equation in standard form.

4x* +y* =36
X2 y2
—+—=1
9 36
2L
3?6

As shown in figure 30.1, the center is (0, 0), and the major axis is vertical. a=6, b=3, and
c=+6> =3 :\/E =3x/§. The vertices are (0, 6) and (0, —6), and the foci are (0, 3\/5) and

(0, -3v3).
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Lesson 30: Ellipses and Hyperbolas

Figure 30.1

3,0)

—t—t—
-8 7 —6 -5 —4

Example 2: A Whispering Gallery

Statuary Hall is an elliptical room in the United States Capitol Building in Washington DC. The room is also
referred to as the Whispering Gallery because a person standing at one focus of the room can hear even a
whisper spoken by a person standing at the other focus. Given that the dimensions of Statuary Hall are 46 feet
wide and 97 feet long, find an equation for the shape of the floor. Assume that the center is at the origin.

Solution

4 2
We have a=%, b=76=23, and ¢ = (9—j —23% ~42.7.

2 2 2 2
An equation for the ellipse is x_2 PR N S A
a

»? (9%)2 232

Example 3: Standard Form of the Equation of a Hyperbola

In this example, we analyze a hyperbola. Find the standard form of the equation of the hyperbola with foci
(—1, 2) and (5, 2), and Vertices(O, 2) and (4, 2).
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Solution

The center of the hyperbola is the midpoint between the foci: (2, 2). The transverse axis is horizontal, and

a=2,c=3,andb=~c*—a> =\9-4 =/5. The equation is the following.

(x=h) (v=k) _
a’ b?
(=2F (=2F _

Y

1

Study Tips

o Circles are special cases of ellipses in which the 2 foci are the same.
e The eccentricity e, 0 <e <1, of an ellipse measures its “roundness.” If e =1, the ellipse is elongated,
and if e ~ 0, the ellipse is more circular.

e The orbits of comets are elliptical, hyperbolic, or parabolic. For example, Halley’s comet has an

elliptical orbit.
2 2

e If the center of an ellipse is the origin, then its equation simplifies to either —2+£—2=1
a
2 2
Yy _
or b_2+a_2 =1.
2 y2
e If the center of a hyperbola is the origin, then its equation simplifies to either _z_b_zzl
a
2 2
y oox
or ?—b—z —1

Pitfall

e Be careful to distinguish the formulas for ellipses and hyperbolas. There is a minus sign in the
hyperbola formula.

1. Find the center, vertices, foci, and eccentricity of the following ellipses.
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2 2
b, (x—4) Jr(y+l) -1
16 25

c. x*+9y°=36

d. 9x*+4y* +36x-24y+36=0

Find the standard form of the equation of the ellipse with vertices (i‘3, 0) and foci (i‘2, O).

2 2

Find the eccentricity of the ellipse x? + % =1.

Find the center, vertices, and foci of the following hyperbolas
a. 4x*-9y* =36
b. 9x°—)*-36x-6y+18=0

Find the standard form of the equation of the hyperbola with vertices (2, 0) and (6, 0), and foci
(0, 0) and (8, 0).



Parametric Equations

Lesson 31

Topics

e  Parametric equations.
e Eliminating the parameter.

Definitions

e If fand gare functions of the variable ¢ on an interval /,then the set of ordered pairs
(x, ¥)=(f(@), g(t)) is a plane curve C. The equations given by x=f(f) and y=g(t) are

parametric equations for the curve, and ¢ is the parameter.

e As the parameter ¢ increases, the curve is traced out in a specific direction called the orientation of the

curve.

Formulas
e The parametric equations of the line through the 2 points (x, ) and (x,,y,) are
x=x+(x-x ), y=y+t(n,-n)

o Neglecting air resistance, the path of a projectile launched at a height % feet above the ground

at an angle 6 with the horizontal, and with initial velocity v, feet per second is

x=(vyc080)t, y=h+(v,sin0)t—16¢>.

Summary

In this lesson, we look at parametric equations. Up to now, we have considered y as a function of the
independent variable x, y = f(x). Now both x and y will be functions of a third variable, say ¢. Each value of

¢ generates an ordered pair (x, y) = (x(t), y(t)), as illustrated in the first example.

Example 1: Sketching a Plane Curve

. . . t
Sketch the curve given by the parametric equations x =¢> —4, y = > 2<t<3.
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Solution
We first use the equations to generate some points on the curve. For example, when ¢ =-2, x = (—2)2 -4=0

-2 . . . . o .
and y= > =—1. Thus, the point (0, —1) is on the graph. We can continue to calculate points, as indicted in

the table.

t -2 -1 0 1 2 3
x 0 3 4 3 0 5

R S S/

Now connect these points with a smooth curve to obtain the graph in figure 31.1. Note how the
orientation is indicated by a small arrow.

Figure 31.1

In this example, we can eliminate the parameter ¢: t =2y, x=1" -4 = (2 y)2 —4=4y" —4. We recognize this

as the equation of a parabola.

Example 2: An Ellipse

In this example, we use our knowledge of trigonometry to trace out an ellipse. Eliminate the parameter, and
sketch the curve represented by the parametric equations x =3cosé, y =4sinf. Notice that the parameter is

0, not ¢.
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Solution

| =

We have cosé = and sinﬁzﬁ. From the fundamental trigonometric identity, we obtain

VS

2

2 2
cos’ @ +sin’ 0 = (%) + (%) =1= %+J1}_6 =1, which is the equation of an ellipse centered at the origin.

Example 3: Parametric Equations for a Line

In our final example, we develop the parametric equations for a line in the plane. This idea is very important for
calculus, especially in 3 dimensions. Find a set of parametric equations for the line passing through the 2 points

(1, 4)and (6, —3).
Solution

We use the equations for a line as follows.

x=x+t(x, —x ) =1+1(6-1)=1+5¢
y:yl+t(y2—y1):4+t(—3—4):4—7t

Notice in these parametric equations that when 7 =0, (x, y)=(1, 4), and when ¢ =1, (x, y)=(6, —3).

Study Tips

e It is not always possible to eliminate the parameter, as we did in Example 1. Furthermore, the
orientation is lost when the parameter is eliminated.

e The parametric equations for a curve are not unique. For instance, you could replace the parameter ¢
with 2¢ to obtain a different set of equations.

e  Graphing calculators have a built-in parametric mode. Try graphing the following cycloid on your
graphing calculator: x = @ —sind, y =1-cos#é.

Pitfall

e Parametric equations can be tricky. For example, the equations x=¢, y=¢ and the equations

x=t, y= * do not describe the same curve. The first curve is the line y =X, whereas the second

curve is theray y =x, x> 0.
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1.

Sketch the curve represented by the following parametric equations Then eliminate the parameter, and
determine the corresponding rectangular equation.

a. x=t,y=—4

b. x=3t-3,y=2t+1
c. x=t+2,y==

d. x=2cosf, y=3sinf
e. x=e', y=¢"

f. x=£,y=3Int

Eliminate the parameter and obtain the standard form of the equation of the circle given by
x=h+rcos0, y=k+rsind.

Eliminate the parameter and obtain the standard form of the equation of the ellipse given by
x=h+acos@, y=k+bsinb.

Use a graphing utility to graph the witch of Agnesi: x =2cot#, y = 2sin” 6.

o . 3¢
Use a graphing utility to graph the folium of Descartes: x = IEwEL y= e
+ +



Polar Coordinates

Lesson 32

Topics
e  Polar coordinates.

e Coordinate conversion.
e Polar equations and graphs.

Definition

o Let P= (x, y) be a point in the plane. Let » be the distance from the origin O to P. Let &be the

angle from the positive x-axis to the segment OP. Then (r, 9) are the polar coordinates of the point

(x, »).

Conversion Formulas

e  The polar coordinates (r, 0) are related to the rectangular coordinates (x, y) as follows.

o Xx=rcosf, y=rsind

o tané’zl, P =x"+y’
x

Summary

In this lesson, we describe points and graphs in the plane using polar coordinates. The location of a point can be
determined if we know its distance to the origin and the angle it makes with the positive x-axis, as illustrated in
the first example.

Example 1: Plotting a Point in Polar Coordinates

The point (r, 6’) =(3, —%) is graphed in figure 32.1. It is 3 units from the origin and makes an angle of

—% with the positive x-axis. This point can also be described by the polar coordinates (r, 6’) = (3, 1 1% )
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Figure 32.1

]

N
a\ia

G =9

Example 2: Polar to Rectangular Conversion

It is relatively easy to determine the rectangular coordinates of a point given in polar coordinates. If the polar

coordinates of a point are (r, §)=(2, 7), then the rectangular coordinates are given by

x=rcosf=2cos7=-2, y=rsin@ =2sinz = 0. Hence, the rectangular coordinates are (x, y)=(-2, 0).

Example 3: Rectangular to Polar Conversion

It is more difficult to convert from rectangular coordinates to polar coordinates than from polar
coordinates to rectangular coordinates. If the rectangular coordinates of a point are

(x,y)=(-1,1), then tan&:%:%:—l:@:%because the point is in Quadrant II.

Furthermore, r* = x* + »> =1+1=2. So one set of polar coordinates is (r, 8)= (\/5, 3%)
Example 4: A Polar Equation
Many graphs are easily described using polar coordinates. Describe the polar graph r = 2.

Solution

This graph consists of all points at a distance 2 from the origin, which is a circle. You can confirm

this if you convert to rectangular coordinates: 7 =2 =>7° =4 = x’ + )’ =4.

144



Study Tips

e  Whereas the rectangular coordinates (x, y) are unique, polar coordinates are not, as illustrated in

Example 1 above.
e Sometimes it is convenient to use negative values of r. For example, the following 3 polar

representations of a point are equivalent: (3, 5%), (3, _3%), (—3, 7%)

e Itis helpful to indicate which coordinate system you are using. For example, writing just (—2, O) does

not tell you whether the coordinates are rectangular or polar. If you mean rectangular coordinates, then
write (x, y)=(-2, 0), which corresponds to (r, 8)=(2, 7).

e  When graphing polar curves, you might find it helpful to write down a table of values. Graphing
utilities have a built-in polar mode, which uses radian measure.

5
1. Find the corresponding rectangular coordinates for the point (r, 6’) = (—1, Tﬂ]

5
2. Find the corresponding rectangular coordinates for the point (r, 9) = (\/g , ?j

3. Plot the point (r, 6?) = (4, —%], and find the corresponding rectangular coordinates.

3
4. Plot the point (r, 9) (—1, —Tﬂj, and find the corresponding rectangular coordinates.

5. Plot the point (x, y)=(=7, 0), and find 2 sets of polar coordinates for the point with 0 < <27.

6. Plot the point (x, y)=(—\/§, —\/5), and find 2 sets of polar coordinates for the point with
0<6<2r.

7. Convert the following rectangular equations to polar forms.

a. x’+3°=9
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9.

Sketch the graph of the polar equation r =3(1-cos6).



Topics

Sequences and Series

Lesson 33

Sequences.

Limits of sequences.
Summation notation.
Series.

Geometric series.

Definitions

An infinite sequence is a function whose domain is the set of positive integers. The function values
a, a,, ay, ... , a,, ... are the terms of the sequence.

n

The Fibonacci sequence is defined by a, =1, ¢, =1, a, =a,_, +a,_,, k>1.

Factorial notation: n!=1(2)(3)---(n—1)(n). 0!=1.

n
The sum of the first nterms of a sequence is represented by Zai =a,+a,+---a,. The index of
i=1

summation is i, # is the upper limit of summation, and 1 is the lower limit.

The sum of the terms of an infinite geometric sequence is called an infinite geometric series or simply
a geometric series.

Theorems

n
Sum of a finite geometric series: Z r= "
i=0 -r

S 1
Sum of an infinite geometric series: E r'= - |r| <1.
-r

i=0

{If |r| 21, the infinite series does not have a sum.)

Summary

Infinite sequences and series play a major role in calculus. Informally, an infinite sequence is a list of numbers,
usually described by a rule or formula. Here are some examples.
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Example 1: Writing the Terms of a Sequence

Write out the first 3 terms of the following sequences, beginning with n =1.

A key issue in the theory of sequences is that of limits. Informally, a sequence has a limit L if the terms of the
sequence get arbitrarily close to L as n tends to infinity. In Example 1 above, the second sequence has limit 0,
whereas the first sequence does not have a limit.

Example 2: The Fibonacci Sequence

The Fibonacci sequence is described by a recursive formula. Write out the first 8 terms of the Fibonacci
sequence given that ¢, =1, a, =1, and a, =a, ,+a, , for k=2, 3, 4, ...

Solution

We know that the first 2 terms are 1 and 1. The third term is the sum of the first 2 terms, a; =a, +a, =1+1=2.

The fourth term is a, = a, +a; =1+2 =3. Continuing in this manner, you obtain 1, 1, 2, 3, 5, 8, 13, 21, ...

Example 3: Summation Notation

Summation notation is used to describe the sum of a finite number of terms of a sequence.

1. 24:31'=3(1)+3(2)+3(3)+3(4) =3+6+9+12=30

i=1

8
2. Zi=i+l+i+l+---+i=1+1+l+l+---+ L 271828
oo 23 e 276 40,320
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Do you recognize the sum in this second example? If you were to add more and more terms, the
sum would approach the number e.

Example 4: A Geometric Series

The theory of infinite series is major topic in calculus courses. One of the most familiar infinite series is the

(1Y 11 1 1 1
geometric series: Z{Ej =l+—4+—+—4-= = =2.

= 2 4 8 1-r 1_(%)

Study Tips

e It is often convenient to begin subscripting a sequence with n = 0 instead of n = 1 instead of In fact, a
sequence can begin with any value of n. Furthermore, any convenient letter can be used as the index
of summation.

e Graphing utilities have a built-in feature for calculating factorials. Try calculating 20! with your
graphing utility. The answer will have 19 digits!

e The formula for a sequence is not unique. For example, the following 3 rules describe the same
sequence of odd numbers.

1. a,=2n-1,n=1,2,3, ..
2. b, =2n+1,n=0,1,2, ..

3. ¢,=2n-3,n=2,3,4, ..

Pitfall

e Real numbers can have multiple representations. For example, the number 1 is equal to the infinite
decimal expansion 0.99999... .

1. Write the first 5 terms of the following sequences. Assume # begins with 1.

a. a,=2n+5

_n+l

n

n
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2. Write an expression for the apparent n™ term of the following sequences.

a.

b.

1, 4, 7,10,13, ...

0, 3, 8, 15, 24, ...

3. Simplify the following factorial expressions.

12!
418!

(2n-1)!
(2n+1)!

4. Find the following sums.

(2i+1)

5
=1

1

5. Find the sum of the following infinite series.

a. i 10 (%)
n=0



Counting Principles

Lesson 34

Topics
e  Counting principles.

e Permutations.
e Combinations.

Definitions

e Let E, and E, be 2 events. The first event, E,, can occur in m, different ways. After E, has
occurred, E, can occur in m, different ways. The fundamental counting principle says that the 2

events can occur in m,m, ways.

e A permutation of n elements is an ordering of the elements such that one element is first, one is
second, one is third, and so on.

Formulas

e The number of permutations of nelements is n!=n(n—-1)(n-2)---3)(2)(1).

e  The number of permutations of »n elements taken r atatimeis P =

(n—r)! ’

i o n!
e  The number of combinations of 7 elements taken r atatimeis ,C, = (—)H .
n—r)lr!

Summary

In this lesson, we develop some basic counting principles. This will lead into our next lesson on elementary
probability. Our first example uses the fundamental counting principle.

Example 1: Using the Fundamental Counting Principle

How many different pairs of letters from the English alphabet are possible?
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Solution

There are 2 events in this situation. The first event is the choice of the first letter, and the second event is the
choice of the second letter. Since there are 26 letters in the English alphabet, there are 26x26 =676 possible
pairs of letters.

Example 2: Counting Horse Race Finishes

For permutations, order is important. Eight horses are running in a race. In how many ways can these horses
come in first, second, and third? Assume no ties.

Solution

There are 8 choices for the winning horse, 7 for the second place horse, and 6 for the third place horse. The total

number of ways is 8x7x6=336. You could also use the formula for » permutations taken » at a time:
81 8! 8(7)6)5!

(8=3)! 51 5!

P = =8x7x6 =336.

Example 3: Counting Card Hands

For combinations, order is not important. For example, in a poker hand, the order of the cards is not relevant. A
standard poker hand consists of 5 cards dealt from a deck of 52. How many different poker hands are possible?

Solution

We use the formula for #» combinations taken r at a time, along with a graphing utility. The number of hands is
coo_ 520 S2SD(S0)(49)(48)47! _ 52(51)(50)(49)(48)
27 (52-5)18! 4715! 5!

=2,598,960.

Study Tips

e Problems involving permutations and combinations require factorial calculations. Fortunately,
these formulas are built into graphing calculators.

e Keep in mind that permutations involve order, whereas combinations do not.
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1.

10

Determine the number of ways a computer can randomly generate an odd integer from the integers 1
through 12.

Determine the number of ways a computer can randomly generate a prime number from the integers 1
through 12.

A customer can choose 1 of 4 amplifiers, 1 of 6 compact disc players, and 1 of 5 speaker models for an
entertainment system. Determine the number of possible system configurations.

A college student is preparing a course schedule for the next semester. The student must select 1 of 2
mathematics courses, 1 of 3 science courses, and 1 of 5 courses from the social sciences. How many
schedules are possible?

Evaluate (P,.

In how many ways can 5 children posing for a photograph line up in a row?

Evaluate ,C,.

You can answer any 12 questions from a total of 14 questions on an exam. In how many ways can you
select the questions?

As of June 2006, the U.S. Senate Committee on Indian Affairs had 14 members. If party affiliation is
not a factor in selection, how many different committees are possible from the 100 U.S. Senators?

In Washington’s Lottery game, a player chooses 6 distinct numbers from 1 to 49. In how many ways
can a player select the 6 numbers?
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Elementary Probability

Lesson 35
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Topics
e Sample spaces.
e  Probability.
e  Mutually exclusive events.
e The complement of an event.
Definitions
e Any happening whose result is uncertain is called an experiment. The possible results of the
experiment are outcomes. The set of all possible outcomes of the experiment is the sample space of
the experiment, and any subcollection of a sample space is an event.
e Ifan event £ has n(E) equally likely outcomes and its sample space S has n(S) equally likely
- o n(E)
outcomes, then the probability of event E is given by p(E) = 5)
n
e Two events 4 and B (from the same sample space) are mutually exclusive if 4 and B have no
outcomes in common.
e The complement of an event 4 is the collection of all outcomes in the sample space that are not in 4,
and is denoted A4'.
Formulas

If 4 and B are mutually exclusive events, then P(A mB) =, and P(A UB) = P(A) +P(B).

If Aand B are events in the same sample space, then the probability of 4 or Bis
P(AUB)=P(A)+P(B)-P(ANB).

The probability of the complement A'. of an event 4 is P(A4')=1-P(4).



Summary

In this lesson, we study elementary probability. Probability can be used to determine what are the chances of
winning the lottery, or of rolling a 7 with 2 dic. To begin, we need to develop the concept of a sample space, as
illustrated in the first example.

Example 1: Finding the Sample Space

Examples of finding the sample space include using a 6-sided die if it is tossed once. Its sample space is {I1, 2,
3,4, 5, 6}, and the sample space for tossing a coin once would be {H, T}

Example 2: Finding the Probability of an Event

To calculate the probability of an event, you need to use the formula p(E) = niii
n

. If 2 6-sided dice are tossed,
what is the probability that a total of 7 is rolled?

Solution

There are 6 possible outcomes on each die, which means that there are 6x6 =36 different outcomes when 2

dice are tossed. A 7 can occur 6 ways: {(1, 6), (2,5), (3, 4), (4 3), (5, 2), (6, 1)}

Therefore, the probability of a total of 7 is p(E) = nE) = 5 = 1 .
n(S) 36 6

Example 3: Mutually Exclusive Events

In this example, we develop the idea of mutually exclusive events. If 1 card is selected from a standard deck of
52 cards: 1. What is the probability that the card is either a king or a queen? 2. What is the probability that the
card is either a heart or a face card?

Solution

1. The 2 events are mutually exclusive, so the answer is %2 + %2 = %2 = %3 .

2. The probability of selecting a heart (event 4 ) is 1 %2 . The probability of selecting a face card (event

B)is 1%2 . However, 3 cards are both hearts and face cards (jack, queen, and king of hearts). So we

have P(AUB):P(A)+P(B)—P(AmB):;—z+;—§—5%:?—i:%z 0.42.
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Lesson 35: Elementary Probability

Example 4: The Complement of an Event

In this example we use the result of Example 2 to calculate the complement of an event. What is the probability
of not getting a 7 when rolling 2 dice?

Solution

From Example 2, we know that the probability of getting a 7 when rolling 2 dice is % Therefore, the

probability of not getting a 7 is the complement, 1— % = % .

Study Tip
e The probability of an event is always a number between 0 and 1.
Pitfall

¢ Finding the probability of an event can be tricky. For example, suppose a couple intends to have 2

children. What is the probability that they will have one boy and one girl? The answer is %, not

13, because the possible outcomes are {BB, GG, BG, GB}.

1. A coin and a 6-sided die are tossed. What is the sample space for this experiment?

2. A taste tester has to rank 3 varieties of orange juice, 4, B, and C, according to preference. What is the
sample space for this experiment?

3. A coin is tossed 3 times. What is the probability of getting exactly 2 tails?
4. A coin is tossed 3 times. What is the probability of getting at least 1 head?
5. Exactly 1 card is selected from a standard deck of 52 playing cards. What is the probability that the

card is a face card?
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10.

11.

Exactly 1 card is selected from a standard deck of 52 playing cards. What is the probability that the
card is a face card or an ace?

A 6-sided die is tossed twice. What is the probability that the sum is 6?

A 6-sided die is tossed twice. What is the probability that the sum is less than 11?

The probability of event E is 0.75. What is the probability that the event will not occur?

Taylor, Moore, and Perez are candidates for public office. It is estimated that Moore and Perez have
about the same probability of winning, and Taylor is believed to be twice as likely to win as either of
the others. Find the probability of each candidate’s winning the election.

A shipment of 12 microwave ovens contains 3 defective units. A vending company has ordered 4 of
these units, and because all are packaged identically, the selection will be random. What is the
probability that all 4 units are good?
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Lesson 36: GPS Devices and Looking Forward to Calculus

GPS Devices and Looking Forward to Calculus

Lesson 36

Topics

e The Global Positioning System (GPS).
e Introduction to calculus: the tangent line problem.

Definition

e The Global Positioning System (GPS) is a set of 27 orbiting satellites, of which 24 are operational at
any one time and 3 are backups. At any one time, at least 4 satellites are within view of a GPS device
(receiver) from anywhere in the world.

Summary

In our final lesson, we look at 2 different topics. First, we study how the Global Positioning System (GPS)
works. Then, we take a peek at calculus, and show how to find the equation of a tangent line to the graph of a
function.

Example 1: Finding a Point of Intersection

The GPS requires a complicated analysis in 3 dimensions. Hence, we will simplify the discussion by
considering a 2-dimensional system. Imagine that there are “satellites” at 3 points in the plane, as indicated in
figure 36.1.
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Figure 36.1

y

i

o st

c=29 |

o

i
T4=0,0 B=(8,0)

—————t————
-8 -7 —6 -5 -4 -2 —l | 1 2 4 5 6 7 8

Suppose that my receiver indicates that I am 5 miles from satellite 4 at (0, 0), 5 miles from satellite B at

(8, 0), and 10 miles from satellite C at (-2, 5). Then my location is the point of intersection of the following

3 circles, as shown in figure 36.2.
1. x*+y*=25
2. (x—8)2+y2=25

3. (x+2) +(y-5)" =100
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Lesson 36: GPS Devices and Looking Forward to Calculus

Figure 36.2

G+ 28 + (- 5)=100
/

x—8Y +3%=25
y

you

To find the point of intersection of these 3 circles, you can subtract equation 2 from equation 1 to
obtain x* —(x—8)2 =0= x> —(xz —16x+64) =0=16x—64=0=>x=4. From equation 1, we

see that x =4 implies y =43.

Substitute x=4 into equation 3:
(4+2) +(y-5)" =100= (y-5) =64 = y-5=48= y=5+8= y =13
ory=-3.

Hence, we see that y = -3, and our location is the point (4, - 3).

Example 2: Finding the Slope of a Tangent Line to a Curve

You know how to find the slope of a line in the plane. But how would you find the slope of a tangent line to a
curve in the plane? This tangent line problem is the heart of the so-called differential calculus. Let’s illustrate

the tangent line problem with a specific example: Find the slope of the tangent line to the parabola y = x” at the

point P = (2, 4).
Solution

Let O= (x, xz) be another point on the graph of the parabola, shown in figure 36.3.
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Figure 36.3

2=(xx?)

249=pP

N . =4 (x=2)(x+2)
The slope of the line joining P and Q is m = 3 = 2 =x+2, x#2.
X— x—

As the point Qgets closer to P, the value of x gets closer to 2, and the slope approaches 4.
Calculus says that the slope of the tangent line at P is precisely 4.

Example 3: The Tangent Line to a Curve

We can use our knowledge of lines to find the equation of the tangent line at P. We know that the slope at

P= (2, 4) is 4, so the point-slope form of a line gives the following.

y=—4=4(x-2)
y—4=4x-8
y=4x-4

Try graphing the parabola y = x” together with the tangent line y =4x—4 in the same viewing window of

your graphing calculator.
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Lesson 36: GPS Devices and Looking Forward to Calculus

Study Tips

e Determining the location of a receiver in space requires finding the point of intersection of a set of
spheres rather than circles.

e The slope calculation of the tangent line in Example 2 can be expressed in limit notation:

2
lim(x _;j = lim(x+2)=4.

x-2 x— x—2

e Notice that you needed your precalculus skills to find the solutions to both of these problems. You
are ready to study calculus!

1. Your GPS device indicates that you are 5 miles from the point 4 :(0, 0), 10 miles from the point
B =(-5, 2), and 5 miles from the point C =(0, —8). Where are you located?

2. Find the equation of the tangent line to the graph of the parabola f(x)=x’ at the point (—3, 9).
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Lesson 1

IR

e

a. h(2)=2"-2(2)=0

b. h(1.5)=1.5*-2(1.5)=-0.75

Solutions

e h(x+2)=(x+2)* —2(x+2)=x"+4x+4—-2x—4=x>+2x

1 1
a. 0)= =——
O~
b 43)= -
1 1
c. qg(y+3)=

1 . oL
5 is undefined because of division by zero.

(y+3F -9 »+6y

Domain: All real numbers except ¢ = 0.

The term in the radical cannot be zero or negative. Hence, y —10 >0 = y >10. Domain: All y > 10.

This is not a function of x. For example, y =2 and y =-2 both correspond to x = 0.

This is a function of x. Its graph passes the vertical line test.

A=nr?, C=2xr

9. The graphof y = Jx +2 is the graph of f(x) = Jx shifted vertically upward 2 units.
10. The graph of y =~+/x—2 is the graph of f(x)= \/; shifted to the right 2 units.
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Solutions

Lesson 2

1. In slope-intercept form, the equation is y =5x+3. The slope is 5 and the y-intercept is (0, 3).

S5x—y+3=0
y=5x+3
(a) Slope: m =5
y-intercept: (0, 3)
) 1t
5
4

20,3

x

—t——+ +—+
-4—3—2—1/*12

2. Using point-slope form, y+2=3(x-0)= y=3x-2.

5-(=D - 6 = —%_ The equation of the line is

3. The slope of the line is
-5-5 -10

y+1:—§(x—5)3y:—%x+2.

4. xX*+4x=12
x*+4x-12=0
(x+6)(x—2)=0
x=-6, 2

5. —x*+2x+2=0,a=-1,b=2,¢c=2

C—btB —dac  2:422-4(-D(2) 24412 -1+3
2a -1

2(-1) -2

X

x=li\/§

6. X +4x=32
X +4x+4=32+4
(x+2)" =36
x+2=26
x=-2+t6=>x=-8, 4

7. There are many correct answers. For example, (x+6)(x—5)=0= x* +x—30=0. Or, another

equation is — X —x+30=0.

164



8. f(x)=(x—4)(x+3)(x—3)(x—0)
= (x—4)(x2 —9)x

=x* —4x® —9x% +36x

9. Using a graphic utility you see that the polynomial has 3 zeros. They are in the intervals
(—1, 0), (l, 2), and (2, 3). The approximate zeros are —0.879, 1.347, and 2.532.

10. 5x° +30x* +45x=0
5x(x2 +6x+9) =0

5x(x+3)° =0

x=0,x=-3

11. x*—4x*+3=0
(x2—3)(x2—1):0
(x+x/§)(x—«/§)(x+l)(x—l)=0
x=—\/§, \/5, -1, 1

12. Let x be the first number and y the second number. Then x+2y =24 = x =24-2y. The product is
P=xy=(24-2y)y=24y-2)". Completing the square,

P=-2y"+24y
=-2()" —12y+36)+72

=-2(y-6)" +72.

The maximum value occurs at the vertex of the parabola and equals 72. This happens when y =6 and

x=24-2(6)=12.
Lesson 3

1. 13i—(14-7i)=13i —14+7i = -14+20i

2. =632 =(6i)(V2i) = V12i" = 23(-1) =243
3. (1+i)(3-2i)=3-2i+3i-2" =3+i+2=5+i

4. 4i(8+5i)=32i+20i* =32i+20(-1) =—-20+32i

5. 4-3i is the complex conjugate of 4+ 3i.

(4+3i)(4-3i)=16+9=25

6. 3++/2i isthe complex conjugate of 3—+/-2 =3— J2i.
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Solutions

(3—ﬁi)(3+ﬁi):9+2=11

2 2 4+5i 8+10i 8 10,
= = =—t—

7. = = = =
4-5i 4-5 4+5i 16+25 41 41

124,J(-12) - 4(26)

2

=6+4/10.

8. By the quadratic formula, the zeros are x =

@) =] x=(6++10)][ x=(6-+10)] <[ x-6-10][x-6+10 |

9. () =x"+10x" +9 = (x* +1)(x* +9) = (x—i) (x+7)(x+3i) (x—3i)

The zeros are x ==+i, +3i.

10. Since 4—i is a zero, so is its conjugate 4+i. Hence, you have the following.

=(x=2)" (¥ ~8x+16+1)
=(x? —4)c+4)(x2 —8x+17)
=x" —12x% +53x =100x + 68

2
11. The Mandelbrot sequence is li, li +li:—l+li, —i+li, —L+£i.
2 2 2 4 2 16 4 256 32

This sequence is bounded, so the number is in the Mandelbrot set.

Lesson 4

y-intercept: (O, %j, vertical asymptote: x =—2; horizontal asymptote: y = 0.

1 x| —4 | -3 -1

f&) =

x+2

[N =

-1 |1

<
|
NI

Wi |

1
y-intercept: (0, 5)

Vertical asymptote: x = —2

Horizontal asymptote: y = 0

166



b. y-intercept: (0, —éj; vertical asymptote: x = 6; horizontal asymptote: y =0.

f(x)=ﬁ

. 1
y-intercept: <0, —g>

Vertical asymptote: x = 6

1

o
N
N
pi—| oo
—_
o

o
FNIN
N

ESEN

Horizontal asymptote: y = 0

<
Il
—_

c. Intercept: (0,0) ; vertical asymptotes: x =—2, 2; horizontal asymptote:
=5
Intercept: (0, 0)
Vertical asymptotes: x = 2, x = —2
Horizontal asymptote: y = 1
y-axis symmetry

(1LY N
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Solutions

168

3.

4.

d.

b.  f(x)=

X2 +3x 3 x(x+3) X x# 3

S = e T -2 (x+3) 52

~<
N =
[T

Intercept: (0, 0); vertical asymptote: x =2; horizontal asymptote: y =1.

There is a hole at (—3, %)

Horizontal asymptote: y = 0; vertical asymptote: x = 0.

x*-25 (x=5)(x+5) _x-5
X2 +5x x(x+5) X

x#-=5

5

Horizontal asymptote: y =1; vertical asymptote: x =0. (Hole at (—5, 2).)

f) = (x—2)(x+2)
x+3

The zeros are the zeros of the numerator: x = +2.

X —

_ox
(-2)( +1)

is one possible answer.

Sx) =



5. a. There are 2 horizontal asymptotes: y = %6.

8

—

-12 12

_

-8

b. There are 2 horizontal asymptotes at y = +4 and one vertical asymptote at x =—1.

Lesson 5

. (f+e)(x)= X +5+1-x
b. (f-g)(x)=x*+5-1-x
(fg x) (x +5)m

d (i}x_x +5
8

2. a. Thedomainof f is x+4>0 or x>—4.

b. The domain of g is all real numbers.
e (fog)(x)=r(g(x))=r(¥")=Vx"+4
The domain is all real numbers.
3. By inspection, the inverse is g(x) 2%

4. By inspection, the inverse is g(x) = x+3.
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Solutions

170

i

10.

f(g(x))=f(3/m)=(3 x—S)3 +5=(x-5)+5=x

g(F()=g(x +5)=3f(x* +5)-5 = =«

The function is not one-to-one. For example, f(1) = f(—1) =1. The graph does not pass the horizontal

line test.

This function is one-to-one. The graph passes the horizontal line test.

y=2x-3
x=2y-3
_x+3
2
1 x+3
X)=
)=

The graphs are reflections of each other in the line y = x.

y=v4-x*, 0<x<2

x:1/4—y2, 0<y<2, 0<x<2

xz :4—)/2
yz =4—x2
y=v4-x

f'l(x)= 4-x",0<x<2

The graphs are reflections of each other in the line y = x.

If welet f(x)= |x +2|, x>-2, then f has an inverse. (Note: we could have also let x <-2.)

y=|x+2|=x+2, x=-2
x=y+2

y=x-2
f_l(x)zx—2,x20

The domain of fis x > -2, and the range is y > 0. The domain of f~' is x>0, and the range is

yz-2.



Lesson 6

1. a. Thedomainis x>5 or [5, 00).

x> —4>0 implies x>2or x <-2. The domain is (—00, —2]u[2, 00).

2. a. —10<40
mlem@>~imm
10 10

x>-4

b.  4(x+1)<2x+3
Ax+4<2x+3
2x < -1

c. —-8<1-3(x-2)<13
-8<1-3x+6<13
-8<-3x+7<13
-15<-3x<6
52x>-2=>-2<x<5

x+3

d. 0< <5
0<x+3<10
-3<x<7

e. |x-7]<6
-6<x-7<6
1<x<13

f. |x+14/+3>17
|x+14|>14

x+14>14 or x+14<-14

x>0 or x<-28

3. xX*—4x-5>0
(x—5)(x+1)>0

Testing the intervals (—00, —1), (—1, 5), and(S, 00), we have x> —4x-5>0 on (—00, —1) and

(5, 00), and x> —4x—-5<0 on (—1, 5).

4. |x-7|<10
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Solutions

5. |x-3z5

Lesson 7

1. a. 4°(3)=16(3)=48
b. 3(3°)=3(27)=81

3 1+4 5
2 a0 =338
b 24(-2)" 24 24 3

(2 2 4

3. a. Horizontal asymptote: y = 0; intercept: (0, 1); increasing.

8k) = 5

x|—2|-1]0|1]2

yl&s | |1]5]25

Asymptote: y = 0
Intercept: (0, 1)
Increasing

b. Horizontal asymptote: y = 0; intercept: (0, 1); decreasing.

700 = @) =5
x| —=2|-1{0|1]2
v[25 |5 [1]s5]s
Asymptote: y = 0
Intercept: (0, 1)
Decreasing

4. The graph of g is a horizontal shift of 5 units to the right.
5. The graph of g is a reflection in the x-axis followed by a vertical shift 5 units upward.

6. 506" = 50" ~ 54,164
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7. a. Asymptote: y = 0; intercept: (0, 1); decreasing.

fl) = e

x -2 |-1]0]1 2
fx) | 739 | 272|1]037| 0.14

Asymptote: y = 0

b. Asymptote: y = 2; intercept: (O, 2+e’5)z(0, 2.007); increasing.

fx)=2+¢3

x |3 4 516 |7
f&) [ 214 | 237 | 3 472 939

e

Jermasae
—

1123456789

Asymptote: y = 2

nt 1(10)
8. a. A= P(l +1] - 2500(1 +&l25j ~ $3200.21
n
nt 365(10)
b. A:P(Hﬁ] =2500(1+Mj ~$3210.04
n 365

c. A=Pe" =2500e"21Y ~ $3210.06

Lesson 8

1. a. log,64=3=4"=64

2
b. log324:§:>32éz4

2. log,16=log,2" =4
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Solutions

174

A

8.

1 _ ,3 _
log,, (%j =log,, (lO ) =3

log,, 345 ~ 2.538

In/42 ~1.869

x=log 6” =2log, 6=2(1)=2

The functions f and g are inverses of each other.

f(x) = 3* and g(x) = log,x are inverses of
each other.

Y g
— x
S-4-3-2-1 f1 2345

-2
-3
-4
-5

a. Domain: x >—2; vertical asymptote: x =—2; intercept: (—l, 0).

y = log,(x + 2)
Domain: x +2 >0 = x> —2
Vertical asymptote: x = —2
log,(x +2) =0
x+2=1
x=-1
x-intercept: (—1, 0)




b. Domain: x > —1; vertical asymptote: x =—1; intercept: (0, 0).

Lesson 9

=
®

N
®

b.

w
o

-3

A(x) = In(x + 1)
Domain: x+1>0 = x> —1
The domain is (— 1, co).
Vertical asymptote: x + 1 =0 = x=—1
x-intercept: In(x + 1) = 0
fL=x+1
1=x+1
0=x
The x-intercept is (0, 0).

g(x) = In(—x)
Domain: —x >0 = x <0
The domain is (— oo, 0).

Vertical asymptote: —x =0 = x=0

x-intercept: 0 = In(—x)
el =—x
—1=x
log, 7=07 L9459 0o
In3 1.0986
log,. 1460 = 11460 72862 ) (o,

Inl5  2.7081

. In20=In(4-5)=In4+1n5

1n65—4=1nS—1n64=1nS—1n43 =In5-3In4

. log, 8 =In, 2* =3In, 2 =31In, (4)2 :3[%)11144:5

. 1n(5e")=1ns+1ne6 =In5+6ne=In5+6

y=hhx+1) =e—-1=x

=2

39 1 0 | 1.72 | 6.39 | 19.09

x —

1 2 3

N =

y| -

Domain: x < 0; vertical asymptote: x =0; intercept: (—1, 0).

The x-intercept is (—1, 0).

3
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Solutions

4. Inyz=Inz" =%lnz

5. lnx—31n(x+1)=lnx—1n(x+l)3=1n 7
(x+1)

6. log,9=1log,3* =2log;3=2(1)=2
7. Iné’-Ine’ =3lne-7lne=3-7=-4
Lesson 10

1. a. 4 =16=4"=x=2
2. a. Inx=—T=x=¢"
b. ln(Zx—1)=5:>2x—1:eS:>2x:1+65:>x:%(1+es)

In360
3In8

3. a. 8" =360=In8" =3xIn8=In360= x = ~0.944

121
(1+ O.le _y
b. 12

120
0,
12
12tlnE: In2
12

L2 960

()

. e —4e"-5=0
e =5=>x=In5~1.609

e" =—1, impossible.

d = x=x*-2
¥ —x-2=0
(x—2)(x+l)=0
x=2, -1
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4. a. logs(3x+2)=log,(6-x)

3x+2=6-x
4x =4
x=1
b. log, x—log, (x—l)z%
10g4(ij:l
x—1 2
X b,
x—1
x=2(x-1)=2x-2
x=2

5. Using a graphing utility, graph the function y =log,, x —x* +3. You will obtain the 2 zeros,
x=~1.469 and x =~ 0.001.

Lesson 11

1. We want to find the time needed for the amount to reach $20,000.

20,000 = 10,000e"%%*

2= eOA0351
In2 =0.035¢
= In2 ~19.8 years
0.035

Let C be the initial amount. We first use the half-life information to calculate the value of £.

lC — Ck15%) :>l=e1599k
2

In(1/2
L~ 1500k = 5 - (V2)
2 1599

Now we can use the decay model to find the amount after 1000 years.

y= Cet = 10@[1‘1(1/2)/1599]1000 ~ 6.48 grams
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Solutions

3. a. 180=134.0¢"

180 _ ok
134.0
10k = In 22— £ ~0.0295
134.0

b. For2010, t=20 and P =134.0e""* ~ 241,734 people.

0.05

70 115
0

b. The maximum point is 100, the average IQ score.

1000

5)=—————~203 animals
o p(5) 1+ 9 01656(5)
_ 1000 —0.1656(1) —0.1656(1) 1
S00= e = 149 =2 = e =0
1
1 (%)

~ 13 months

-0.1656t =In— =1t =
9 —-0.1656

b. The horizontal asymptotes occur at p = 1000 and p = 0. The asymptote at p = 1000 means that

there will not be more than 1000 animals in the preserve. As time goes on, the population

approaches 1000 animals.

1300

{] i i i i i i " i i i 1{]0
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Lesson 12

Since 90° <150° <180°, 150° lies in Quadrant II.
Since 270° < 282° <360°, 282° lies in Quadrant I'V.

1.

= ®

) T T T .
¢. Since 0<—<—, 5 lies in Quadrant I.

. Tm 3w I . .
d. Since 7r<—”<—7r, 7 Jies in Quadrant III.

(a) 30°

(b) —150°

(d) y
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Solutions

2. a. -495°+360°=-135°
—495°4720° =225°
b. 230°+360°=590°
230°-360° =-130°

3. a —9—”+47r:7—”
4
_9_ﬂ+2 :—Z
4 4
b, 2T o, 287
15 15
2r 32r
A P il
15 15

4. a. Complement of 24°: 90°—-24° =66°; supplement: 180°—24° =156°.
Complement of 126° not possible; supplement: 180°—126° = 54°,
2
c¢. Complement of r.r Z_ £; supplement: 7 EoE
32 3 6 3 3

d. Complement of 377[ not possible; supplement: 7 —3777 -

4

5. a. 30°= 30[Lj -

180°) 6
b. 150°=150( % |-
180°) 6

2 2 Vs

b, 1% —7—”(180 ): —210°
6 6 T

6. a. 31:3—”(18()):2700

7. s=r9:>8=299:>¢9=% radians
8. s=rf=s=2(1)=2 meters

s _36 :2 feet ~ 22.92 feet

FZE_HZ P

10. 9=12= 450 ~ 0.07056 radian ~ 4.04° ~ 4° 2' 33.02"
r 6378
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Lesson 13

1. a. b=+13*-5>=4169-25=+/144 =12

sin0=%=i, cosc9=a—dj=£, n9=ﬂ—i
hyp 13 hyp 13 adj 12
12
cscH——yp:13, secH—h—yP:B, to = ad,
opp ad] opp

=\/182+122=\/324+14 =468 = 64/13

sing = PP _ 18 _adj 12
hyp 613 J_ “hyp 6413 J_
cscG:h—yp:\/— g_hyp \/—, cotG:a—dJ:
opp adj opp
2.
3 2
V5
2% +(adj)” =3’ = adj J5
sin@—z, c050=£, tan¢9=i
3 3 J5
csc¢9—é secé’:i, coté’:ﬁ
2 J5 2

2
3

adJ

18

1

3
2
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Solutions

182

1

3% +1% = (hyp)’ = hyp = /10

3 1
sinf =—, cosf =——, tand =3
V10 10
cscez%, secd =+/10, cotﬁzé

1 B

cos 60°

1
:A .
sin 60° ﬁ/ B3
2

g =60° =§ because cot60° =

csc9:\/§:>sin49:L:£:>49:45":£
2 2 4
a. tan60°=w:
cos 60°
b. sin30°:c0s60°:%
c. cos30°:sin600=g
d. cot60°= ! =L:£
tan60° 3 3
a. sinf= ! :l
cscd 3
b. cosd= = 4 :2\/5
secd 32 3
. 1
c. tané’zsme— A 1 :ﬁ

cosﬁ_zﬁg_%/z 4

d. sec(90°—6)=cscd=3

(1+cos@)(1—cosf) =1-cos* @ =sin’ @



9. a. sinl2°~0.2079
b. cos72°=0.3090

10. sec9=2:>cosezéz>,9:6oo:%

Lesson 14

1. r=+72+24% =J491576 = /625 = 25

Sing:Z:ﬁ cosezle
r 25 r 25

24
tan9=Z=— cotngzl
x 7 y 24
secé’zizg cscgzizé
x 7 y 24

2. sinf=2 -3 1-25-9-16
r

The angle is in Quadrant II; hence, x =—4.

Si1’19=1=E cos@:fz__
r 5 r 5

tan¢9=Z=—3 coteziz_i
X 4 ¥y 3

SeC9=£=—— csc@:izé
X y 3

3. csc¢9=4:>sim9=1=%:>x2 =16-1=15
r

cotd < 0 = the angle is in Quadrant II; hence, x = —\/E.

Siné’:Z:l cosH:fz_ﬁ

ro 4 r 4
taIlH:Z:—LZ—i C0t6:£=—\/g

X 15 15 y
secﬁz—:—i:—ﬂ 9="-4

x 15 15 ¥



Solutions

10.

184

a. (x,y)=(-10), r=1:>sec7z=£=il=—1

=

b. (x »)=(0, 1), rzl:tan%:%:% (undefined)

c. (x, y) (—1, 0), r=1=cotzr = :%1 (undefined)

L
y

d. (x, y) = (—1, 0), r=1=cscm= :% (undefined)

< |~

6" =180°-120° = 60°

6'=60° \9 =120°

6 =225° lies in Quadrant III, and the reference angle is 6" = 45°.

A

sin225° = —sin45° = —g, c0s225°=—cos45° = —7, tan225° =tan45° =1

0= —7?7[ lies in Quadrant II, and the reference angle is 8" = % .

ol ()b ol Tl {58

sin10° = 0.1736

tan%z0.839l

I=5¢%sint

1(0.7) = 5¢ " sin 0.7 ~ 0.79 amperes



Lesson 15

1. a. Period: 27 ; amplitude: 3.

Key points: (0, 0), (g, 3), (m,0), (3{ —3), (2m,0)

-1+

.2 .
c. Period: =2 = 47 ; amplitude: 1.

g

3t
24
Key points: (0, 1), (m, 0), \ 7_1__ Kj? w
(277’ - 1), (377-’ O), (477’ 1) 27
=3+
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Solutions

d. Period: %Tﬂ =%; amplitude: 1.

e. Period: 27 ; amplitude: 1.
Shift: Set x——=0 and x——=27.
4 4

T 97
X=—, x=—.
4 4

Horizontal shift % units to the right.
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f. Period: 27 ; amplitude: 1.
Shift: Set x—7 =0 and x—7 =27r.

x=x, x=3"x.

Horizontal shift 7 units to the right. In fact, sin(x—7)=—sinx.

2r
%_

4

2. a. Period: 3; amplitude: 2.

ETATA SARTATN
VoY

b. Period: 2z =24 ; amplitude: 5.

o

20

-30 30




Solutions

2
¢. Period: 7” =7 ; amplitude: 5.

20

3. Period: 8277[ = %
2

one El;r;beat = i heartbeats/second = 80 heartbeats/minute.
4

130

0 115

60

Lesson 16

1. a. Period: 7.

. V4
Two consecutive asymptotes: x = —3, X = >

NS

N[ =
DN | =

188



b. Period: 2.

Period: 217ﬁ =4r.
2

C.

189



Solutions

190

i=2n’.

|
d. Period: A

Two consecutive asymptotes: x =0, x =27.

D | =




2. Period: 2%[ Reciprocal function: 2sin3x

10

3. Period: 2—”22. Reciprocal function: .
4 2 cos4x

KX Y

-4

. . . 3 5
4. There are 4 solutions on the given interval: x = —777[, —Tﬁ, %, Tﬂ

5. The 2 graphs appear to be the same. Algebraically, tan” x+1=sec’ x = tan® x =sec’ x—1 = Yy =
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Solutions

6. The damping factoris e™. As x > o0, f(x) > 0.

3

3 /5}5____6

0.6

-0.6

b. The displacement function is not periodic, but damped. It approaches 0 as ¢ increases.

Lesson 17

1 1 T
1. a. y=arccosE:>cosy=E, OSySﬁ:y:;

b. y=arccos0= cosy=0, 0£y$7r:>y:%

. . T T T
C. =arcsinl = siny=1, ——<y<—=y=—
y y > y > y >

d. y=arccosl=cosy=1,0<y<z=y=0

e —arctanl > tany =1, — 2 < y<Z= y=2
-y y=15 2 y > y 4
f. y=arctan0=tany =0, —%<y<%:y:0

| \/E «/5 RY/4
g. y=cos - :cosyz—T,Oéyﬁﬂ:y:T

y=sin™' —Q :>siny=_£, _Zgygzjy:_f
2 2 2 2 4
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2. 5 cos'0.75~0.72
arcsin(—0.75) = —0.85

b.
3 sin(arcsin 0.7) = 0.7
b arcsin(sin 37) = arcsin(0) = 0
c. sin’ tans—” =sin”' (1) = z
4 2

4. Let y=arcsin ﬁ Then, siny = 24 and cosy = l
25 25 25

25 24

1
5. Let y=arctanx. Then, tan y=x and coty =—.
X
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Solutions

Lesson 18

1. Since both the sine and cosine are positive, x is in Quadrant I.

. 1

smxzi_Lzﬁ’ cotx = 1 2\/5

Cos X fy B3 tan x
2

tan x =

. . 2 .

2. sm(—x) =-sinx = _E: sinx =—
Since both the sine is positive and the tangent is negative, x is in Quadrant II.
cosx = —/l—sin’ x = — 1—i =— 3 :—ﬁ, cotx = ! :—i:—ﬁ

9 9 3 tanx 2.5 2
3_ W5 1

1 3
secx = =——==- , CSCX=——"="=
cosx /5 5 sinx 2

X .
SInx =COS X

. cos
3. a. cotxsinx=

sin x
sina 1 . . cosa
b. seca——= sina cota = sing——=1
tana cosa cosa sina
4 a cos@ _ cosf l+sinc9_COSt9(1+Sin6’)
) l1-sind 1-sin@1+sinf 1-sin? @
cos@(1+sin@) 1+si 1 i
_ ( i ): +s1n49: smg:sec@+tan0
cos” @ cos @ cos@ cosl
sin?@  1-cos@—sin*@ cos’@—cosd cosd(cosf—1)
b. - = = = =—cosd
1-cos@ 1-cos@ 1—cosé@ 1—cos@
2 2
5, tan4x+2tan2x+1=(tan26’+l) =(se02¢9) =sec' @
6. 1 N 1 _ l-cosx+I+cosx 2 2 —2ese? x

l+cosx l-cosx (1+cosx)(1-cosx) T 1—cos’x sin’x

7. a. cos’ Bsin’ f=(1-sin’ B)-sin’ B =1-2sin> B

1 1
+
tanx+tany  cotx coty cotxcoty coty+cotx cotx+coty

l—tanxtany_l_ 1 1 cotxcoty cotxcoty—1 cotxcoty—1
cotx cot y
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|cos 0|
|sin 6’|

cos @
=In

8. In |cot 49| =In

: =In|cos 6| - In|sin &)
sin @

Lessonr 19

1. cosx= —% = x=120°, 240°

2. sinx= —%3 225°, 315°

3 cotx:—1:>x:3—7[, 7—”
4

4. cscx=—2:>sinx=—l:>x=7_ﬁ, 1z
2 6 6

4 2
5. 3csc’x—4=0=csc’x=—=>cscx=t——
3 NG

. 3 V3 2z
:>smx=i—:>x:—+n;;, X=—+nrw
2 3 3

6. sec’x—secx—2=0
(secx—2)(secx+1)=0
1 T Sz
secx=2=>CcoSxX=—=>XxX=—, —
2 373
secx=—l=cosx=-1=>x=7x
7. 2sinx+cscx=0
. 1
2sinx+——=0
sin x
28in’ x+1=0

sinx=——
2

Since this equation has no real solutions, there are no solutions to the original equation.

8. When you graph y = 2sin® x+3sinx+1, you will see that it has 3 zeros on the interval:
x = 3.665, 4.712, 5.760.

9.  When you graph y = 3tan” x + 5Stan x —4, you will see that it has 2 zeros on the interval:
x~—1.154, 0.534.
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Solutions

10. sin4x:1:4x:%+2niz

wn

v
x=—+4—=
8 2

11. a. The domain of the function is all real numbers except x =0.
b. The graph has y-axis symmetry (even function) and a horizontal asymptote at y =1.

c. As x— 0, the graph oscillates infinitely often between —1 and 1.

Lesson 20
1. a.  cos(240°-0°) = cos(240°) = —%
b. c0s240°—cos0° = —l—l = —é
2 2

. (2x% S« . (97 . 3r
¢c. sin|—+—|=sin|— |=sin—=-1
3 6 6 2

st 31 B3+l

. 2.
d. sin—+sin—=—+—=
3 6 2 2 2

13 B2 _ 2+

2. sin(75°) =sin(30°+45°) =sin30°cos 45°+ cos 30°sin 45° =

22 22 4
cos(75°) = cos(30°+ 45°) =¢0830°c0s45°—sin30°sin45° = ?%_%% = @

V2+6

_sin75° 4 J6+2
cos75° J6 -2 - J6 -2
4
This can be simplified to V3 +2. You could also obtain the same answer by using the formula for the

tangent of a sum.

tan (75°)

4 22 2 2

137 (37r ﬂ'j kY4 T .37 . ~&w ( \5]1 \/5\/5 \/§+\/g
COS—— = COS +—|= . = N Y2 TNT

37 21 ﬁ( ﬁ]:ﬁ—%

137 . (37 & . 3r T .7
3. sin—=sin| —+— |=sin—co0s—+8in—co$— = ——+ —| ———
3 4 3 3 4

2 2 2 4

137 S 4 2 J6-2

tan— = = =
4 COSBJ \/E"’_\/g \/g""\/i
4

4
This can be simplified to 2 — V3. You could also obtain the same answer by using the formula for the

tangent of a sum.
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4. cos60°cos20°—sin 60°sin 20° = cos ( 60° + 200) =cos80°

T T . T . T T 167
5. cos—cos——sin—sin— =cos| —+— |=cos| —
9 7 9 7 9 7 63

. . . 12
6. First, note that both « and v are in Quadrant II so that you have cosu = —/1-sin’u = T} and

sinv=+/1-cos?v =%. Hence, tanuz—% and tanv:—%.

tanu +tanv (_%Z)Jr(_%) __6%6_ 63

tan(u +v) = = = =——

l—tanutanv_l_(_%z)(_%) 1636 16

7. sin’'1 =% because sin% =1. cos'1=0 because cos0=1.
sin(sin_1 1+cos™ 1) =sin (% + Oj =1
8. sin(x+ y)+sin(x— y) = (sin xcos y +sin y cos x) + (sin x cos y —sin y cos x) = 2sin xcos y
9. 8sinxcosx =4(2cosxsinx)=4sin2x
I-cosdx 1

10. sin?2x= — - 5(1 —cos4x)

Lesson 21

_bsind _ 5sin(36°)
a
C=180°-A4-B=180°-36°-21.6°=122.4°

1. sinB ~03674= B ~21.6°

Cc =

8
inC)=—> (sin122.4°) ~11.49
sin g (€)= 5 (oin )

csind _10sin(60°) 1043
a 9 9 2
Case 1:C ~74.2°, B=180°—4—C =45.8°

2. sinC= ~0.9623 = C = 74.2° or C =105.8°

a

b:

(sinB)=

. —(sin45.8°) ~ 7.45
sin A sin 60°

Case 2:C~105.8°, B=180°—4—-C =14.2°

(sinB) = —(sin14.2°) ~ 2.55

sin A sin 60°

b=
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Solutions

3. B=180°-A4-C=180°-102.4°-16.7°=60.9°
. 21. .
b=— (sm B) = .—6(sm 60.9°) ~19.32
sin A sin102.4°
c=——(sinC) = i(sinlﬁ?) ~6.36
sin A sin102.4°
4. sinB= bsin 4 = 20sin 76 ~1.078. No solution.
a 18
5. sinB= bsin 4 = 12.8sin 58 ~ 2.26. No solution.

a 4.5

6. A= %ab sinC = %(6)(10)sin(1 10°) ~ 28.2 square units

7. A= %bc sin 4= %(67)(85)sin(38°45') ~1782.3 square units

8. The triangle in the figure is isosceles, and the other 2 angles measure 70° each. Using the law of sines, you
can find the radius and length.

Radius: roo_ 3000 N :300051n70

- - r - ~4385.71 feet
sin70°  sin40° sin 40°

Length: s =10 ~ (4385.71)40‘{&] ~3061.80 feet

Lesson 22
2, 2 2 _
1. cosd=2temar 644144736 o5 4~ 2640
2be 28)(12)
sinp = 2sinAd _8sin264% 5008 5 B~36.3°
a

C=180°-26.4°-36.3°=117.3°

2. a*=b*+c*—2bccos A=225+900—2(15)(30)cos 50° ~ 546.49 = a ~ 23.4

a’+c’—b>  546.49+900-225
2ac 2(23.4)(30)
C =180°-50°-29.4° =100.6°

~0.8708 = B ~29.4°

cosB =
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a’+b’—c®  81+144-225
2ab 2(9)(12)

sinAzizijAz36.9°
15 5

3. cosC=

0= C =90° (right triangle!)

B =180°-90°-36.9°=53.1°

4 S:a+b+c :5+8+10:§:1L5
2 2 2

A=Js(s—a)(s—b)(s—c) =/11.5(11.5-5)(11.5—8)(11.5—10) ~19.81 square units

S_a+b+c_3.5+10.2+9 227
2 2 2

=11.35

A= \/s(s —a)(s—b)(s—c) = \/1 1.35(11.35-3.5)(11.35-10.2)(11.35-9) ~15.52 square units

6. After 3 hours, the ships are located at the positions indicated in the figure.

C =180°-53°—67° = 60°
c? =a’> +b* —2abcos C = 36" +48” —2(36)(48)cos 60° = 1872

¢ ~43.3 miles
N
A
36 mi
53°
C o
W = 60 E
67°
48 mi
Y
S
Lesson 23
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Solutions

200

3. 2u-3v=2(4, 2)-3(7, 1) =(8, 4)—(21, 3)=(-13, 1)
4. |fs. o) =6

Unit vector :u = %(6, 0) = (1, O).

5. (24, -7)|=\(-24) +(=7)" =25

24
Unit vector :u = 2L5<—24, —7) = <__, _l>

7. v=(4=(=3), 5-1)=(7, 4)=Ti+4j
8. |v|=y6>+(-6)" =72 =62
tan0=—§=—l
6

Since the vector lies in Quadrant IV, 8 =315°.

9. v=3v2(cos150°, sin1500>=3«/§<—§, l>:<_ﬂ, £>

2 2 2
10. The direction angle is 180°+30°=210°.

v =100(cos210°, sin210°>=100<—§, —%>:<—50J§, -50)



Lesson 24

1.
61 = 6
Imaginary
axis
7
6®6i
5
4
3
2
1
————————> Real
432 _J{ 123 4 oaxis
2.

|—4 + 4i| = V(=4 + @)
=/32=42

4+
\ 3T

h Real

3. a. The point lies in Quadrant IV.

_—5=—1:6’=7—”
4

5
z= 5\/5 cos7—”+isin7—”
4 4

tan @ =

|—2i| = 2

Imaginary

|-5 — 12i| = /5% + 122
= V169 = 13

PR T T R L Real

-10 -8 -6 -4 2 4| 2 =8
14

’
S5-12i @ 12+
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Solutions

b. The point lies in Quadrant I.

y= (I)Jrl2 =\4=2
Jg

tan9=L= =0=

B

z= 2(cos—+zsm—]

¢. The point lies on the imaginary axis.

=10 +(-8)" =64 =8

tan @ =% undefined = 6 = 37”

( 3z .. 37[}
z=8| cos—+isin—
2 2

d r=3, 8=0=z=3(cos0+isin0)

{3(cos£+isinzﬂp(cos—ﬂsm—ﬂ (3)(4){cos( +£j+isin[£+£ﬂ
3 3 6 6 3 6 3 6

=12 cos£+isinZ
2 2

b

° 4 isin 50° . . 1
5, C0SS0THISINS0° (500 200) 1 isin(50° — 20°) = c0s 30° + isin30° = X2 4 L
c0s20°+isin 20° 2 2

6. (v <[ eossisin | = (23 conisn

=512 cos3—7z+isin3—” =-512i
2 2

1
7. The cube roots of 64i=64(cos%+isin%) are 644 cos ZT +isin =/ k=0,1, 2.

Hence, the 3 cube roots are the following.

k=0: 4(cosg+zsm—j 2\/§+2z

k=1: 4(cos%+zsm?j——2\/§+21
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k= 2:4(c0s9—”+isin9—”j =—4i
6 6

Lesson 25

1.

a.

Solve for y in Equation 1: y =6-2x.

Substitute for y in Equation 2: —x+(6—-2x)=0= 3x=-6=x=2.
Back substitute: x =2, y=6-2(2)=2.

Answer: (2, 2).

Solve for y in Equation 1: y = x.

Substitute for y in Equation 2: 5x—-3(x)=10=2x=10= x=5.
Back substitute: x =35, y=x=35.

Answer: (5, 5).

We add (—1) times Equation 1 to Equation 2.

x+2y=4 x+2y=4 X+2y=4
= = 3
x-2y=1 —4y=-3 y==
4
3 3 5
X+2|—|=4=>x=4——=—
4 2 2

Answer: (i, ij
2 4
We first interchange the equations. Then, add (—2) times Equation 1 to Equation 2.
2x-5y=0 x—y=3 x—y=3 x—y=3
= = =
x—y=3 2x-5y=0 -3y=-6 y=2
x-2=3=x=5
Answer: (5, 2).

If you multiply Equation 1 by (— %) and add to Equation 2, you obtain the inconsistent equation 0 =—4.

No solution.

First, multiply both equations by 10 to eliminate the decimals. Then, multiply Equation 1 by (—%) and

add to Equation 2, which eliminates Equation 2.

2.5x-3y=1.5 25x-30y =15 25x-30y =15 Sx-6y=3
= = =
2x-24y=12 20x—-24y =12 0=0 0=0

1
There are an infinite number of solutions: Let y =a, x = 5(3 +6a).
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Solutions

Answer: (%(3+ 6a), a), where a is any real number.

X+y+z=6 X+y+z=6 X+y+z=6
3. a. {2x—y+z=3=4 By-z=-9 =:{3y-z=-9
3x—z=0 -3y—-4z=-18 -3z=-9

z=3, -3y-3="9=y=2,x+2+3=6=>x=1
Answer: (1, 2, 3).

3x-2y+4z=1 x+y—-2z=3 x+y—-2z=3 x+y—-2z=3
b. X+y—-2z=3 ={3x-2y+4z=1={-5y+10z=-8= -5y +10z=-8
2x—-3y+6z=8 2x-3y+6z=8 —5y+10z=2 0=10

The system is inconsistent. No solution.

4. Let x =the number of touchdowns, y = the number of extra points, and z = the number of field goals. Then,
we have the following system of 3 equations and 3 unknowns.
x+y+z=11
6x+y+3z=39
x—z=0

Solving this system, you obtain x =4, y =3z = 4. (By the way, Georgia won 26-13.)

Lesson 26
1 -1 2 -1 3 -3 4 2 -1 -1
1. a.34-2B=3 -2 = - =
2 -1 -1 8 6 -3 -2 16 8 -19
8§ -1 1 6 24 -3 2 12 22 -15
b.34-2B=3] 2 3 |-2|-1 -5|=| 6 9 |—| -2 -10|=| 8 19
-4 5 1 10 -12 15 2 20 -14 -5

2. a. The product is not defined because 4 is 3x2 and B is 3x3.

0 -1 2)2 -1 -2 17
b. AB={6 0 3|4 -5|=|15 12
7 -1 8){1 6 18 46
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S AN
-2 s IHE )

1 -2 3 X 9
b. 4=|-1 3 -1|,X=|y|,B=|-6|=A4X=B
2 -5 5 z 17

1 0 10
5. There are many possible counterexamples. For example, let 4 = [3 lj and B = (1 ]

, (1.0 , (10 20 2.0
A = , B* = , A+B= , 24B =
6 1 10 4 1 8 0

(4+BY =(A+B)(A+B)=(l42 (1))

) ) 1 0 20 10 4 0
A°+2AB+B° = + + =
6 1 8 0 1 0 15 1

3 3 1 -1
6. There are many possible counterexamples. For example, let 4 = (4 4] and B = ( L j

a3 G

AB=0, A#0, B#0

Lesson 27
2 1/ 3 -1 1 0
1. A4AB= =
I (e S
3 -1\(2 1 1 0
BA = =
S R
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Solutions

206

. 2 01 0
a. [A:I]:(O 3 0 1] row reduces as follows:

1] 10/

]3A’1:

S N =

o 5

W | —

b. The matrix does not have an inverse because it is not square.

¢.  You can row reduce the augmented matrix by hand or use a graphing utility. In either case, you will obtain
the following.

111100y (100 1 1 -1 11 -
[4i]=[3 5 4 0 1 0|>/0 1 0 -3 2 —l|=[lid']=4"=|-3 2 -I
365001) (001 3 -3 2 303 2

d. The inverse does not exist. If you try the matrix inverse algorithm, you will obtain a row of zeros on the
left.

(5 1)1_ 1 (—2 —1]_ 1(—2 —1}_ J/A A
2 2] 5=2)-(=2Ml2 5) 8l2 5) |_1/ _5
(=2)-(=2)D) A A
. . ) r -2y, ., (-3 2
The inverse of the coefficient matrix 4 = 5 3 is 47 = - . Hence,
-3 2\ 5 5
X:AIB:[ j( J:(Oj. The answer is (5, 0).

-2 1)\10

a dt8 4—83 4(2)=24-8=16
L det] ) [=80)-4()=24-8=

-7 6
b det) 1 :(—7)(3)—6(%):—21—3:—24
2

Using a graphing utility or expanding along the first row, you obtain

-1 2 =5
detf 0 3 4 |=-9.
0 0 3

Note that the matrix is upper triangular, so its determinant is the product of the diagonal entries.



Lesson 28

-1 11 -7 -1
9 -9 -90 3 9] -60

1 a. X=7———=— = — = = =
-7 11 30 -7 11 30
39 3 -9

Answer: (—3, —2).

b.  Cramer’s rule cannot be used because the determinant of the coefficient matrix is 0. In fact, the system is
inconsistent.

2. Let x represent the dollar sales amount. Then, you have the following.

0.06x =0.03x+350
0.03x =350
x = $11,666.67

To make the straight commission offer better, you would have to sell more than $11,666.67 per week.

3. Let x be the length and y the width. Then, you have the following.

2x+2y=40=y=20-x
xy =96 = x(20—x) =96
20x—x* =96
x*=20x+96=0
(x—8)(x—12)=0

Since x> y, x=12 and y =8 are the dimensions.

4. Let M =number of oranges and R = number of grapefruit.

M+R=16
0.95M +1.05R =15.90

Solving this system of 2 equations and 2 unknowns, you obtain M =9and R=7.

S e

This is a reflection across the line y = x.
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Solutions

0 -1 -
b. S
1 0 )\y x
This is a counterclockwise rotation of 90°.

6. We substitute the 3 points into the equation of the circle to obtain the following.

(0, 0):F=0
(2,2):8+2D+2E+F=0=>D+E=-4
(4, 0):16+4D+F =0=D=—4

Hence, £ =0, and the equation is x*+y?—4x=0.

Lesson 29
1. x2+y2:(\/ﬁ)2:>x2+y2=18
2. Radius=4/(3-1)" +(7-0)° =4+49 =/53.
(x—h)2+(y—k)2=r2:(x—3)2+(y—7)2:53

3.  We complete the square as follows.
(¥ =2x+1)+(y* +6y+9)=—9+1+9
(x=1)" +(y+3) =1

Center: (1, —3); radius: 1.

4. We complete the square as follows.

4(x2+3x+%j+4(y2—6y+9)=—41+9+36
3 2
4(x+E] +4(y-3)' =4
2
(x+%j +(y—3)2:1

Center: (—%, 3); radius: 1.
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Vertex: (0, 0)=h=0, k =0; focus: (0, —%J: pz—%.
2
(x—h) =4py
2 3 2
X =4(—Ejy:>x =-6y

Vertex: (0, 0) = h=0, k=0; focus: (—2, 0) = p=-2.

2

y—k) =4p(x—h)

v =4(2)x=> y? =—8x
3 3
2 :—6 :4 —_— s = ——
y X > X p >
3 . . 3
Vertex: (0, 0); focus: - 0 |; directrix: x=2n

. 1
The parabola opens to the right, and p = 3

y2 :4(%j(x+2):>y2 =2(x+2)

The parabola opens upward, and p = 2.
(x=0)" =4(2)(y -9 = x> =8(y—4)

10. The point (640, 152) is on the parabola, so we can find the value of p.

x2:4py
640% 12,800
640> =4p(152)= p = ==
p(192)= p =" ="
Pea 12,800 e 19 .
19 51,200
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Solutions

Lesson 30

1. a. Center: (O, 0); a=8 b=3 ¢c=/64-9 =\/§. Vertices: (i& 0); foci: (iﬁ, O); eccentricity:
,_C_ 55
a 8

b. Center: (4, —1); a=5,b=4, c=+25-16 =\/§=3. Vertices: (4, —1i5):(4, —6), (4, 4); foci:

(4, —1£3):(4, —4), (4, 2); eccentricity: ezﬁzg.
a

2 2

. F+9y7 =36+ o]
36 4

a=6b=2=c=36-4=32=42

Center: (0, 0); vertices: (%6, 0). Foci: (14\/5, 0); eccentricity: e = €_ =
a

d. We complete the square as follows.
9(x" +4x+4)+4(y* —6y+9)=-36+36+36
9(x+2)" +4(y-3)" =36
(x+2)  (v=3) _
4 9
a=3,b=2c=\9-4=15
Center: (-2, 3); vertices: (2, 3+3):(=2, 6), (-2, 0). Foci: (-2, 3+/5):(-2, 3++5), (-2, 3-5);
J5

.. c
eccentricity: e=—=—.
a 3

1

2. Center: (0, 0); a=3, c=2, b=9—-4=4/5.

2 2
Horizontal major axis: % +2 =

5

3. a=3,b=2 c=9-4=+5
J5

C
e=—=—
a

3
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2 2

4. a. 4 -9y’ =36 -2
9 4

a=3,b=2 c=9+4 =413

Center: (0, 0); vertices: (+3, 0); foci: (i\/ﬁ, 0).

b. We complete the square as follows.
9(x* —4x+4)—()" +6y+9)=-18+36-9
9(x—2) —(y+3)° =9
(x=2)" (v+3)" _

1 9

a=1,b=3,c=1+9 =410

1

Center: (2, —3); vertices: (21, —=3):(3, —3), (I, —3); foci:

(21\/5, —3):(2+JE, —3)(2—\/5, -3).

5. a=2, c:4:>b=\/16—4:\/ﬁ; center: (4, 0).

(=hf (kP | (=4F
2 = 1y
b 4 12

a

Lesson 31

1. a. y=—-4t=-4x= y=—-4x

y
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Solutions

b.

j+1:2x+33y:%x+3
3 3

+3
x=3-3=>r=2"2

3
y:2t+l:2(x+3

y

A

5__

4-/

2__

1__
o+ > x
V—4 -3 2 —1_1__ 1 2

_2--

_3--

C. X=t+2=>t=x-2

y="t :(x—2)2 Dy:(x—Z)2

212
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2 2 2 2
d. (ij =cos’ 0, (lj =sin* 0= (fj +(lj =cos’ @ +sin* 0 =1
2 3 2 3

2 2
Xy .
—t+—=1 ellipse
5 (ellipse)

y
A
4__
2__
1__

} —t—>x

1 3 4
—4 +
_ 1
x=e'=>—=¢

€ X
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Solutions

y=3Insr=In =lnx= y=Inx

23456 78

x—h =cos 0, y—k =sind
r r

2 2
coszz9+sin26’=(x_hj +(y—kj =1
r

214

(x=h) +(y =k =

x = 2 cot 0, y=2sin20




3t 3¢
1+27  1+7

x=

L]
N

sﬂﬁ Sﬂﬁ
R

1. x=rcosf=(-1 —=—; y=rsinf =(-1)sin—=
(=Dco ST (=D 1

Lesson 32

B QJ_

Rectangular coordinates: {7, 5

2. x=rcosf= ﬁcos— I[—ﬁjz_%,y_rsmg ﬁsm_:[( J:*zf

2

. 3 43
Rectangular coordinates: (—E, g}

3. x=rcosf :4005(—%j = 4[lj =2, y=rsinf = 4sin(—%] = 4(—£] =-2./3.

2

Rectangular coordinates: (2, 23 )

S]]

Y
o
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Solutions

4.

5.

216

e LS S

i\
RN

Rectangular coordinates: [

N

Y
)

r=7, tanfd=0=0=r.

Polar coordinates: (r, 8)=(7, z), (-7, 0).

y

A

5 =+

4 1

31

24

l -

e x
-9-8-7-6-5-4-3-2-1 | 1

-2 +

-3 +

—4 4+

-5 +




6. r:\/3+3:\/g; tan9:1:>49:37ﬂ.

Polar coordinates: (7, 9):[\/& STEJ, (_\/E, %j

7. a. ¥ +)y'=9=r"=9=r=3
b. y=4=rsinfd=4=r=4csch
c. x=8=>rcosfd=8=r=_8secl

8. a. r=4=r=16=>x"+)"=16

b. r=2cos@=r’>=2rcosd = x> +y* =2x
¥ =2x+1+y” =1

(x=1)"+y* =1
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Solutions

9. Ifyou plot some points, or use a graphing utility, you will obtain the cardioids below.

N

Lesson 33

1. a a=2)+5=7, a,=22)+5=9, a, =2(3)+5=11
a, =2(4)+5=13, a, =2(5)+5=15

3 4 5 6
b. g =ﬂ=2, a, =%=—, ay==,a,=—, Q5 =—

1

2. a. a,=3n-2 (Beginning with n=1. There are many possible answers.)

b. a,=n"—1 (Beginning with n =1. There are many possible answers.)

120 1211)(10)9)8! _ 12(11)(10)(9) _ 11,880 _

3. a = 495
418! 418! 4! 24
(2n-1)! (2n-1)! 1
b. = =
(2n+1)! @n+D@2n)(2n—1)! 2n+1)(2n)
4. a. ZS:(ZHI):(2+1)+(4+1)+(6+1)+(8+1)+(10+1):35

i

4
b, > iP=0"+1"+2"+3+4% =30
i=0

n=0 n=0

2 (4Y = (4Y 1
. a —| = —| =10 ——|=50
5 a Zﬁo(sj 102(5j 10 =% 5
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v 3l =) s
n=0 n=0 1 — (— A)
. . 7
¢. The series does not have a finite sum because 5 >1.

Lesson 34

1. Oddintegers are 1, 3, 5,7, 9, 11. Hence, there are 6 ways.
2. Prime numbers are 2, 3, 5, 7, 11. Hence, there are 5 ways.
3. Total: 4(6)(5) = 120 ways.

4. Total: 2(3)(5) = 30 ways.

8! 8!
sP = 8-3)! —5—8(7)(6)—336

6. 5!'=120 ways

! !
e Ay
@-ni 3

14! 14! 14(13)
140G = = =
(14-12)1'12! 2112! 2

=91 ways

9. We use a calculator to evaluate the combination.

|
10Cla = 1008 440x10
(100—14)! 14! wa

10. We use a calculator to evaluate the combination.

49!

C =———— =13,983,816
(49-6)! 6! ways

Lesson 35

1. {(H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T, 1), (T, 2), (T, 3), (T, 4), (T. 5), (T, 6)}

2. {4BC, ACB, BAC, BCA, CAB, CBA}
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Solutions

10.

11.

220

E={HTT, THT, TTH)
n(E) 3

PEY=" 5%

E ={HHH, HHT, HTH, HTT, THH, THT, TTH)

n(E) 17

P&y = n(s) 8

There are 12 face cards in the deck.
nE)_12_3

PB= e 5213

There are 16 face cards and aces.
n(E) E 4

PE= ) " 52713

E={(,5), (2, 4, (3, 3), 4, 2), (5, 1)}
n(E) _ 5

PEY =25 " 36

The complement is E'={(5, 6), (6, 5), (6, 6)}.

mEY |3 B 1
n(S) 36 36 12

P(E)=1-P(E)=1-

P(E"= l—P(E) =1-0.75=0.25
p+p+2p=4p=1= p=0.25
Taylor: 0.50; Moore: 0.25; Perez: 0.25.

The probability that all 4 units are good is c
124

oGy _

126 _14

495 55



Lesson 36

1. You must find the intersection point of the 3 circles: x> +y* =25, (x+ 5)2 +(y- 2)2 =100, and
x*+ ( y+ 8)2 = 25. Subtracting the first and third circles, you obtain
v =(y +8)2 =0=y’ —(y2 +16y+ 64) =-16y—64 =0= y =—4. Then, from the first circle you have
x =13. Substituting y = —4 into the second circle gives
(x+ 5)2 +(—6)2 =100=> (x+5)2 =64 = x+5=48= x=3, —13. Hence, x =3, and your location is the point
(3, —4).
2.

Let (x, xz) be another point on the parabola. The slope of the line joining this point and (—3, 9) is

o x*-9  (x-3)(x+3)
S x—(-3) x+3

=x-3, x #-3.

As x approaches —3, the slope approaches —3 —3 = —6. Calculus says that the slope is —6 at the point. The
equation of the tangent line is y —9 = (-6)(x+3) = y=—-6x-9.
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Theorems and Formulas

Theorems and Formulas
I

Note: The number in parentheses indicates the lesson in which the theorem or formula is introduced.

angular speed (12): Central angle divided by time: ?

area of a triangle (21): Area = %bc sin A = %ac sin B = %ab sinC.

1
change of base formula (9): log, x = OB X _ ln_x
log,,a Ina

n!

combinations (34): The number of combinations of n elements taken » at a time is ,C, = W .

Cramer’s rule (28): If a system of nlinear equations in 7 variables has a coefficient matrix 4 with a nonzero

determinant |A|, then the solution of the system is

4l |4 |4,]

L, X, =

X, = X, =
1 > V2 n
47 4 |

where the 4, has the same entries as 4, except the i column is the column of constants in the system of equations.

degrees to radians (12): To convert degrees to radians, multiply by 7% 80

DeMoivre’s theorem (24): If z = r(cosH +isin@) and n s a positive integer, then z" = r" (cos nf+isin n@).
. . a b
determinant of the 2x 2 matrix 4= ( dj (27): det(4) = |A| =ad —bc.
c

exponential decay model (11): y = ae”™, b<0.

exponential growth model (11): y = ae™, b> 0.

b d -b
formula for 2x 2 matrices (27): If 4= “ ,then 47" = ! if ad —bc = 0.
c d ad—-bc|—c a

formulas for compound interest (7): After ¢ years, the balance 4 in an account with principle P and annual
interest rate 7 (in decimal form) is given by the following.

nt
e For n compounding per year: 4 :P(1+£j .
n

e  For continuous compounding: 4 = Pe”.
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fundamental theorem of algebra (3): If fis a polynomial of degree n, n>0,then f has precisely » linear

factors: f(x)=a, (x—¢)(x—c,)--(x—c,), where ¢, ¢,, ... ¢, are complex numbers.

Gaussian model (11): y = qe e

Heron’s area formula (22): A triangle with sides a, b, and ¢: where s = atb+c

horizontal translations (15): Determined by solving the equations bx —c =0 and bx—c =2x.

intermediate value theorem (2): If ¢ and 5 are real numbers, a < b, and if f is a polynomial function such that
f(a)# f(b), then in the interval [a, b], f takes on every value between f(a) and f(b). In particular, if f(a)

and f(b) have opposite signs, then f has a zero in the interval [a, b].

law of cosines (22): a’ =b”> +¢* —2bccos A; b* =a’ +c¢* —2accos B; ¢ =a” +b> —2abcosC.

a b c

law of sines 21): —=——=——.
sindAd sinB sinC

linear speed (12): Arc length divided by time: 3
t

a
1+be™™

logistic growth model (11): y =

magnitude (or length) of v (23):

matrix inverse algorithm (27): To find the inverse of the nxn square matrix 4, adjoin the nxn identity

matrix and row reduce. If you are able to reduce Ato 7, then / will simultaneously reduce to the inverse 4™':
[4 1 I]> [1 : A“]. Otherwise, the matrix 4 does not have an inverse.
multiplication and division of complex numbers (24): Let z, =7, (cos 6, +isin6,) and z, =7, (cosf, +isin6, ).

Multiplication: z,z, =77, [ cos(6, +6,)+isin(6 +6,)].

e Division: -1 = r—l[cos(ﬁl ~0,)+isin(6,-6,)], z, = 0.
Z h

Newton’s law of cooling (11): The rate of change in the temperature of an object is proportional to the difference

between the object’s temperature and the temperature of the surrounding medium.

parametric equations (31): The parametric equations of the line through the 2 points (x;, y;) and (x,, y,)are

X=X +[(x2_x1)’ J’:yl"‘t(J’z_)’l)-
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Theorems and Formulas

permutations (34):

The number of permutations of n elements is n!=n(n—-1)(n—-2)---(3)(2)(1).

(n—.r)!'

polar coordinates conversion formula (32): The polar coordinates (r, 6’) are related to the rectangular

The number of permutations of » elements taken » atatimeis ,P. =

coordinates (x, y) as follows.

e X=rcosf, y=rsinf

probability (35):
e Ifanevent E has n(E) equally likely outcomes and its sample space S has n(S) equally likely out-

n(E)
n(s)

comes, then the probability of event E is given by p(F) =

o If 4 and B are mutually exclusive events, then P(4NB) =, and P(AUB)=P(A)+P(B).

e If 4and B are events in the same sample space, then the probability of 4 or Bis

P(AUB)=P(A4)+P(B)-P(ANB).
e The probability of the complement 4’ of an event 4 is P(4") = 1 — P(A4)

product of 2 matrices (26): If 4 is ™*" and B is nxp then their Product is an MXP matrix

AB=[c; | _
1 where € = ailblj + ai2b2j +eet ainbnj

projectile motion (31): neglecting air resistance, the path of a projectile launched at a height h feet above the
ground at an angle 6 with the horizontal and with the initial velocity v, feet per second is
Pythagorean theorem (13): In any right triangle with sides a and » and hypotenuse ¢, a” +b* =¢’.

~b++/b* —4ac
2a '
radians to degrees (12): To convert radians to degrees, multiply by 18%.

quadratic formula (2): x =

rule of 70 (8): The doubling time for a deposit earning » % interest compounded continuously is approximately

70
— years.
B

rule of 72 (9): The doubling time for a deposit earning » % interest compounded annually is 72 years.
r

scalar multiple of a number times a matrix (26): k[aij] = [kaij] .
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standard form of a circle (29): (x— h)2 +(y- k)2 =72,

standard form of ellipses (30): Standard form of ellipses with center at (A, k) and major and minor axes of
lengths 2a and 2b, respectively, where 0 <b<a:
2 2
(x=h)  (v=k) _

e Horizontal major axis: + =1.
aZ bz

2 2
e  Vertical major axis: (x—zh) +(y—2k) =1.
b a

e The foci lie on the major axis, cunits from the center, with ¢* = a* —b>.

standard form of hyperbolas (30): Standard form of hyperbolas with center at (h, k):

2 2
e Transverse axis is horizontal: (x _2h) — (y _ k) =

- E 1.

2 2
e Transverse axis is vertical: (y _Zk) — (x ;2h) =1.
a

e The vertices are a units from the center. The foci are c units from the center with ¢* = a* + b,

standard form of parabolas (29): Standard form of parabolas with vertex at (h, k) :
e  Vertical axis; directrix y=k—p: (x—h)2 =4p(y—k), p#0.
e  Horizontal axis; directrix x=h—p: (y—k)2 =4p(x—h), p=0.

sum of 2 matrices of the same order (26): [a{./. } + [bﬁJ = [ay. +bl.jJ .

n+l

1-r

sum of a finite geometric series (33): > r' = . )
i=0 -r

> 1 . . .
sum of an infinite geometric series (33): Y r' =T |F|<1. (f |r|>1, the infinite series does not have
—-r

a sum.) i=0

trigonometric form of a vector (23): v= ||V||(cos fi+sinf j) . Here, the direction angle @ is the angle the vector
makes with the positive x-axis.

vector operations (23): Let u= (ul, u2>, (vl , v2>, and let k£ be a real number.

V=
e Addition: u+V:<ul+vl, u2+v2>.

e  Scalar multiplication: ku = k(ul, u2> = (kul, ku2>.
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Algebra Summary

Algebra Summary

Note: The number in parentheses indicates the lesson in which the concept is introduced.

Properties of Exponents (7)

Let a, b be real numbers and m, n integers.

m _n m+n a m—n

2 2
[ =a

Properties of Logarithms (9)

log,1=0
log,a=1
log, a* =x

log, x

a =x, x>0
e If log,x=1log, y, then x=y.

log, (uv) =log, u+log, v

log, (Zj =log,u—log, v
v

log, u" =nlog,u, u>0
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Graphs of Common Functions

Squaring Function

Cubing Function

Square Root Function
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Algebra Summary

228

Absolute Value Function

Rational Function

Natural Logarithmic Function

o) =[]

fx)=lnx

A




Natural Exponential Function

Exponential and Logarithmic Models

Exponential Decay Model ~ Gaussian Model

e &

2_

Logistic Growth Model Natural Logarithmic Model Common Logarithmic Model
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Trigonometry Summary

Trigonometry Summary

Note: The number in parentheses indicates the lesson in which the concept is introduced.

Degree Measure

v 907 = 1(360°)
4 v_ |
120° 60°= 1 (360°)
45°= 4 (360°)
o | raemo
30°= 5(360°)
0
= X
360°
330°
315°

240° 300#

Right Triangle Trigonometry

Side opposite 6

Side adjacent to 0
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Definition of the 6 Trigonometric Functions (13)

Right triangle definitions, where 0 < 6 < %

. opposite hypotenuse
sin@ = —PPOSTE (g0 = SYPOCTUSE
hypotenuse opposite
adjacent hypotenuse
cosf = _adjacent secd = yp—
hypotenuse adjacent
opposite adjacent
tan @ = L cotf = J—
adjacent opposite

Circular function definitions, where 6 is any angle.

Trigonometric Functions (14)

SinH:Z cscﬁzi
r Y
COS(9=£ sec@:i
r X
tan@ =2 cotf =2
X y
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Trigonometry Summary

Reciprocal Identities (16)

secl =

cost
cscl =—

sin @
cotl =

tan &

Tangent and Cotangent Identities (16)

sin x Ccos X
tanx = cotx =——-

CoS X sin x

Pythagorean Identities (13)

<2 2
sin“x+cos“ x=1
1+tan® x =sec’ x

1+cot® x =csc’ x
Symmetry Relations (18)

sin(—x) = —sinx cos(—x) = cosx
csc(—x) =—cscx tan(—x) = —tan x

sec(—x) =secx cot(—x) =—cotx

Sum and Difference Formulas (20)

sin(utv) = sinucosv + cosusinv

cos(utv) = cosucosv F sinusinv

tanu £ tanv

tan(u £ v)
1 ¥ tanutanv

Cofunction Identities (18)

. (7
sin| ——u |=cosu
(2 j
V4 .
COS| ——u |=SsInu
(2 j
T
tan| ——u |=cotu
2
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Double-Angle Formulas (20)

sin2u = 2sinu cosu

cos2u =cos’ u—sinu =2cos’u—1=1-2sin’u
Power-Reducing Formulas (20)

2 l-cos2u

sin” u
2
) 1+cos2u
cos uzT

Trigonometric Values of Common Angles (14)

Trigonometric Values of Common Angles

Inverse Trigonometric Functions (Definitions) (17)

y=arcsinx if and only if siny=x, —1<x<1, ——<y

A NN
IA
N_|§

N

y=arccosx if and only if cosy=x, —1<x<1, 0<y<

y=arctanx if and only if tany =x, —co<x <0, —%<y<%.
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Trigonometry Summary

Graphs of Common Functions

Sine Function (15)

fix)=sinx

Cosine Function (15)
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Tangent Function

Cosecant Function
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Trigonometry Summary

Secant Function

Cotangent Function
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Glossary

Note: The number in parentheses indicates the lesson in which the concept or term is introduced.

x, x>0 . .
absolute value function (1): f(x)= |x| = { 0 The absolute value of a number is always nonnegative.

—X, X <
absolute value of a complex number (24): See complex numbers.
acute angle (12): An angle between 0° and 90°.
addition of functions (5): (f'+g)(x) = f(x)+ g(x).
amplitude (15): Given the general sine and cosine functions y =d + asin(bx—c), y =d +acos(bx —c), where
b > 0, amplitude is |a|. This number represents half the distance between the maximum and minimum values of
the function.
angle (12): Is determined by rotating a ray (half-line) about its endpoint. The starting position of the ray is the
initial side, and the end position is the terminal side. The endpoint of the ray is the vertex. If the origin is the
vertex and the initial side is the positive x-axis, then the angle is in standard position.

. . . .. . 0
angular speed (12): Measures how fast the angle is changing. It is the central angle divided by time: —.
t

axis of a parabola (29): See parabola.
center of a circle (29): See circle.
center of a hyperbola (30): See hyperbola.

center of an ellipse (30): See ellipse.

circle (29): The set of all points (x, y) in a plane that are equidistant from a fixed point (h, k) , called the center
of the circle. The distance between the center and any point (x, y) on the circle is the radius, 7.

closed interval (6): Closed interval [a, b] means a < x<b.

common logarithms (8): Logarithms to base 10.

complementary angles (12): Two positive angles are complements of each other if their sum is 90°.
complement of an event (35): See experiment.

complex conjugate (3): The complex conjugate of a+bi is a—bi.

complex numbers (3): The set of complex or imaginary numbers consists of all numbers of the form a + bi,
where @ and b are real numbers.

The absolute value or modulus of a complex number a +bi is |a +bi| =~a’+b*.
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The trigonometric form of the complex number z =a+bi is z =r(cos@+isinf), where r is the absolute value
and @ is the appropriate angle given by tané = 2
a

n roots of a complex number: For a positive integer n, the complex number z =r (cos 6 +isin 6’) has exactly n

O+2xk .. O+2xk
+isin

j, k=0,1,..,n-1.
n n

distinct n™ roots given by %/r [cos
component form (23) : See vector.

components of a vector (23) : See vector.

composition (5): The composition of 2 functions is defined by (f o g)(x) = f(g(x)).
conic section (29): The intersection of a plane with a double-napped cone.

coterminal angles (12): Two angles that have the same initial and terminal sides.
degree (12): Equivalent to a rotation of 1/360 of a complete revolution about the vertex.
degree of a polynomial function (2): See polynomial function.

dependent variable (1): y = f(x) is the dependent variable, where y depends on x .
determinant (27): See matrix.

directed line segment (23): See vector.

directrix of a parabola (29): See parabola.

domain (1): The domain of a function is the set of inputs.

e (7): An irrational number, the natural base e =~ 2.71828 is the most important base in calculus. The corresponding
function f(x)=e¢" is called the natural exponential function.

eccentricity of an ellipse (30): e= <

a
ellipse (30): The set of all points (x, y) in a plane, the sum of whose distances from 2 distinct fixed points,
called foci, is constant. The line through the foci intersects the ellipse at 2 points called vertices. The chord
joining the vertices is the major axis, and its midpoint is the center of the ellipse. The chord perpendicular to the
major axis at the center is the minor axis.
equivalent (23) : See vector.

even (2): A function is even if f(—x) = f(x).

event (35): See experiment.
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experiment (35): Any happening whose result is uncertain is called an experiment. The possible results of
the experiment are outcomes. The set of all possible outcomes of the experiment is the sample space of the
experiment, and any subcollection of a sample space is an event.

Two events 4 and B (from the same sample space) are mutually exclusive if 4 and B have no outcomes in
common.

The complement of an event A is the collection of all outcomes in the sample space that are not in A4, and is
denoted A'.

exponential function (7): The exponential function f with base a (a >0, a#1) is defined by f(x)=a",
where x is any real number. The domain of the exponential function is (—oo, oo), and the range is (O, oo).
The exponential function is increasing if a >0 and decreasing if 0 <a <1. The intercept is (0, l). The x-axis
is the horizontal asymptote. The exponential function is one-to-one and hence has an inverse (the logarithmic
function).

factorial notation (33): n!=1(2)(3)---(n—1)(n). 0!=1.

Fibonacci sequence (33): a, =1, a, =1, a, =a, , +a,_;, k> 1.

foci of a hyperbola (30): See hyperbola.

foci of an ellipse (30): See ellipse.

focus of a parabola (29): See parabola.

full revolution (12): A full revolution around the vertex of a circle is 360°.

function (1): A function, f, from a set 4 to a set B is a relation that assigns to each element x in the set 4
exactly one element y in the set B. The notation is y = f(x), where y is the value of the function at x.

fundamental counting principle (34): Let £, and E, be 2 events. The first event, E,, can occur in m, different
ways. After E, has occurred, E, can occur in m, different ways. The fundamental counting principle says that
the 2 events can occur in m;m, ways.

geometric series (33): See infinite geometric series.
Global Positioning System (GPS) (36): A set of 27 orbiting satellites, of which 24 are operational at any one
time, and 3 are backups. At any one time, at least 4 satellites are within view of a GPS device (receiver) from

anywhere in the world.

horizontal asymptote (4): The horizontal line y =5 is a horizontal asymptote of the graph of f if f(x) > bas
X —>00 O X —> —o0,

horizontal line test (5): See one-to-one function.
hyperbola (30): The set of all points (x, y) in a plane, the difference of whose distances from 2 distinct fixed
points, called foci, is a positive constant. The graph of a hyperbola has 2 branches. The line through the foci

intersects the hyperbola at the vertices. The line segment joining the vertices is the transverse axis. The midpoint
of the transverse axis is the center.
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identity matrix (26): See matrix.

imaginary numbers (3): See complex numbers.

imaginary unit i (3): The imaginary uniti = J=1. In other words, i* =-1.
independent variable (1): For the function y = f(x), the variable x is called the independent variable.
inequalities (6): The properties of inequalities are:

a<b and b <c implies a < ¢ (transitivity).

a<b and ¢ <d implies a+c<b+d.

a<b implies a+c<b+c.

a<b and ¢ > 0 implies ac < bc.

a<b and ¢ < 0implies ac > bc.

Let a >0. Then

|x| <a ifandonly if —a<x<a.

|x|>a ifand only if x <—a or x> a.

infinite geometric series (33): The sum of the terms of an infinite geometric sequence is called an infinite
geometric series or simply a geometric series.

infinite interval (6): Infinite interval [a, oo) means x > a. Infinite interval (—oo, b) means x <b.

infinite sequence (33): A function whose domain is the set of positive integers. The function values
a, a,, a;, ... , a,, ... are the terms of the sequence.

initial side of a ray of an angle (12): See angle.

intersection symbol (N ) (6): The expression 4~ B means all numbers contained in both sets 4 and B.
inverse functions (5): Let f and gbe 2 functions such that f(g(x))=x for all xin the domain of g,and
2(f(x))=x forall xin the domain of f. Then g is the inverse of f,denoted f~'. If a function has an inverse,
then the inverse is unique. If f is the inverse of g, then g is the inverse of f. The domain of f is the range of
g,and the domain of g is the range of f. The graphs of inverse functions are symmetric across the line y = x.
inverse of a square matrix (27): See matrix.

inverse trigonometric functions (definitions) (17):

y=arcsinx if and only if siny=x, —-1<x<1, -

A NN
IA
<
IA

NN

y=arccosx if and only if cosy=x, —1<x<1, 0

<
IA
N
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y=arctanx if and only if tany =x, —0o<x <o, —%<y<%

leading coefficient (2): See polynomial function.
linear polynomial (2): Has the form f(x)=a,x+a, or y =mx+b.
linear speed (12): Measures how fast a particle moves. It is arc length divided by time: SN

t
logarithmic function (8): The logarithmic function f with base a (a >0, a #1) is defined by y =log, x if and
only if x=a”. The domain of the logarithmic function is (O, oo), and the range is (—oo, oo). The logarithmic
function is increasing if a >0 and decreasing if 0<a <1. The intercept is (l, 0). The y-axis is the vertical
asymptote. The logarithmic function is one-to-one, and the inverse is the exponential function. The graphs of the

logarithmic and exponential functions (with the same base) are reflections of each other across the line y = x.

magnitude (23): See vector.

major axis of an ellipse (30): See ellipse. a, a, - a,
a a e a
. 2 . ..
matrix (26): A rectangular array of numbers. 4 = [aly} = F > |. The order or size of a matrix is
the number of rows and number of columns, mxn. ) : :
aml amZ o amn

Two matrices are equal if they have the same order and corresponding entries are the same.
A zero matrix is a matrix whose entries are all zero.
An identity matrix is a square matrix of all zeros except for 1’s down the main diagonal.

The matrix B is the inverse of the square matrix 4 if AB= BA=1, where[ is the identity matrix. A square
matrix is singular if it does not have an inverse.

The determinant of the 2x2 matrix 4 = (i Zj is det(4) = |A| =ad —bc.
minor axis of an ellipse (30): See ellipse.

minute (12): One minute is %O of a degree.

modulus of a complex number (24): See complex numbers.
multiplication of function (5): (fg)(x) = f(x)g(x).

mutually exclusive events (35): See experiment.

natural base (7): The irrational number e =~ 2.71828.

natural logarithmic function (8): The natural logarithmic function is the inverse of the natural exponential
function: y =log, x if and only if x =e”. The usual notationis y =Inx.

negative angle (12): A negative angle is generated by a clockwise rotation.
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n'™ roots of a complex number (24): See complex numbers.

obtuse angle (12): An obtuse angle is between 90° and 180°.

odd (2): A function is odd if f(—x)=—f(x).

one-to-one function (5): A function is one-to-one if, for a and b in the domain, f(a)= f(b) implies a=b. A
function has an inverse if and only if it is one-to-one. A function is one-to-one if its graph passes the horizontal
line test: Every horizontal line intersects the graph at most once.

open interval (6): Open interval (a, b)means a <x <b.

orientation of the curve (31): See plane curve.

outcomes (35): See experiment.

parabola (29): The set of all points (x, y) in a plane that are equidistant from a fixed line, called the directrix,
and a fixed point, called the focus, not on the line. The midpoint between the focus and the directrix is the vertex,
and the line through the focus and the vertex is the axis of the parabola.

parameter (31): See plane curve.

parametric equations (31): See plane curve.

period (15): Given the general sine and cosine functions y =d +asin(bx—c), y =d +acos(bx—c), where
b > 0, the period is=Z (when angles are measured in radians). In general, a function f'is periodic if there exists a

positive number p such that f{x + p) = f(x).

permutation (34): A permutation of » elements is an ordering of the elements such that one element is first, one
is second, one is third, and so on.

phase shift (15): Given the general sine and cosine functions y = d + asin(bx —¢), y = d +acos(bx —c), where b
> 0, the phase shift is %

plane curve (31): If and gare functions of the variable ¢ on an interval /,then the set of ordered pairs
(x, y) = ( f@, g(t)) is a plane curve C. The equations given by x = f(#) and y = g(¢) are parametric equations

for the curve, and ¢is the parameter. As the parameter ¢ increases, the curve is traced out in a specific direction
called the orientation of the curve.

polar coordinates (32): Let P = (x, y) be a point in the plane. Let 7 be the distance from the origin O to P. Let
6 be the angle from the positive x-axis to the segment OP. Then (r, 0) are the polar coordinates of the point

(x, »)-

polynomial function (2): Let n be a nonnegative integer and let a,, a,_,, -+ , a,, a,, a, be real numbers with
a, # 0. The function given by f(x)=a,x" +a, x"" +---+a,x* +a,x+a, is called a polynomial function in x
of degree n, where a, is the leading coefficient.

positive angle (12): A positive angle is generated by a counterclockwise rotation.
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probability (35): If an event £ has n(E) equally likely outcomes and its sample space S has n(S) equally

n(E)
n(S)

Pythagorean theorem (13): In any right triangle with sides « and » and hypotenuse c, then a” +5* = ¢’.

likely outcomes, then the probability of event E is given by p(E) =

quadratic polynomial (2): Parabola with has the form f(x) = ax’ +bx+c, a # 0.

radian (12): Given a circle of radius 1, a radian is the measure of the central angle @ that intercepts (subtends)
an arc s equal in length to the radius 1 of the circle. 180° = 7 radians, and 1 radian = 57 degrees.

radius of a circle (29): See circle.

range (1): The set of all outputs, which is a subset of B.
N(x)

5

rational function (4): Can be written in the form f(x)= where N(x)and D(x) are polynomials. The

domain of a rational function consists of all values of x such that the denominator is not zero.
recurring number (6): The horizontal line over an answer indicates a recurring number: 0.9 =0.9999999.... .

reference angle (14): Let € be an angle in standard position. Its reference angle is the acute angle ¢', formed by
the terminal side of € and the horizontal axis.

right angle (12): An angle that is 90°.

root (2): See zero.

rule of 70 (8): The doubling time for a deposit earning r % interest compounded continuously is
approximately 770 years.

rule of 72 (9): The doubling time for a deposit earning » % interest compounded annually is 7r_2 years.
sample space (35): See experiment.

scalar (23): Another word for a real number.

second (12): One second is %600 of a degree.

standard form of a complex number (3): Ina+bi, when b =0, then the number is real.

standard position of an angle (12): See angle.

standard position of a vector (23): See vector.

straight angle (12): A straight angle is 180°.

sum of a sequence (33): The sum of the first » terms of a sequence is represented by Zn:al. =a,+a,+--a, The

index of summation is 7, is the upper limit of summation, and 1 is the lower limit. =l
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supplementary angles (12): Two positive angles are supplements of each other if their sum is 180°.
terminal side of a ray of an angle (12): See angle.

transverse axis of a hyperbola (30): See hyperbola.

trigonometric form (3): See complex numbers.

union symbol () (6): The set theory expression 4 B means the set of all numbers in set 4 together with all
the numbers in set B.

unit vector (23): The standard unit vectors are i = (1, 0) and j= (0, 1>.

vector (23): Directed line segments having the same length and direction are called equivalent. The set of all
directed line segments that are equivalent to a given PQ 1is a vector v in the plane v = PQ.

Given a directed line segment FQ, P is the initial point, and Q is the terminal point.

The length or magnitude of a directed line segment is denoted ”@” .

If the initial point of a directed line segment is at the origin, then the vector is in standard position. It is uniquely
represented by the coordinates (v1 A ) of its terminal point: v = <V1 , v2> . These coordinates are the components

of the vector.

The component form of a vector with initial point P (p,, p,) and terminal point Q=(q,, ¢,) is
PQ:<‘I1_P1’ qz_p2>:<vl’ V2>:V~

vertex of an angle (12): See angle.
vertex of a parabola (29): See parabola.

vertical asymptote (4): The vertical line x=a is a vertical asymptote of the graph of [ if f(x) > or
f(x) > —o as x — q, either from the right or from the left.

vertical line test (1): If a vertical line intersects a graph in more than one point, then the graph is not the graph
of a function.

vertical translation (15): Given the general sine and cosine functions y = d +asin(bx —c¢), y =d + acos(bx —c),
where b > 0, the constant d determines the vertical translation.

vertices of a hyperbola (30): See hyperbola.
vertices of an ellipse (30): See ellipse.
zero (2): Aroot of a function y = f(x) is a number a such that f(a)=0.

zero matrix (26): See matrix.
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