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Foreword

Metric Spaces and Related Analysis is an introductory textbook on
metric spaces aimed at advanced undergraduates and first-year grad-
uate students. It presupposes a modest knowledge of elementary set
theory as well as analysis on the real line. A course in which this text
would be used prepares students for a subsequent course in general
topology as well as courses in higher analysis, e.g. functional analysis
or measure and integration. It is important to note that the authors
give primacy to sequences over topology, making the material more
accessible and appropriate for a student headed for applied analy-
sis who might be less interested in abstract mathematics for its own
sake.

What are the main topics to be covered in such a course? There
is wide agreement on that: distance functions, balls, bounded and
totally bounded sets, special points relative to a subset of a metric
space (point of closure, accumulation point, interior point, bound-
ary point), convergence of sequences in a metric space, continuity
and uniform continuity, equivalent metrics, normed linear spaces
as metric spaces, Cauchy sequences, completeness, compactness via
sequences and open covers, pointwise and uniform convergence of
sequences of functions, and connectedness notions. The authors han-
dle all of these in a gentle, conversational way. The authors also
include some standard but optional topics: Lipschitz functions, Baire
metric spaces, function oscillation, locally compact metric spaces,
and the Stone–Weierstrass theorem. Kundu and Aggarwal are intent
on keeping their presentation as concrete as possible by frequently
working in the usual contexts that analysts encounter, e.g. focusing
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viii Metric Spaces and Related Analysis

on standard sequence spaces and the space C[a, b] equipped with the
supremum norm or Lp-distance.

But the authors include notable material that is simply not to be
found in competitive texts. They pay considerable attention to the
class of functions that map Cauchy sequences to Cauchy sequences
that lies between the uniformly continuous functions and the con-
tinuous functions. They introduce two important classes of metric
spaces lying between the compact metric spaces and the complete
metric spaces: the UC spaces and the larger class of cofinally com-
plete metric spaces. Both of these classes did not become generally
known until after 1950. UC spaces are those on which each contin-
uous function with values in a second metric space is automatically
uniformly continuous. Cofinally complete metric spaces are those in
which each cofinally Cauchy sequence has a convergent subsequence
(a sequence (xn) in a metric space (X, d) is called cofinally Cauchy
provided for each positive ε there exists an infinite set of indices N0

such that whenever n, k ∈ N0, we have d(xn, xk) < ε.)
Kundu and Aggarwal also introduce an important family of sub-

sets of a metric space lying between the totally bounded subsets and
the full family of bounded subsets, called the finitely chainable sub-
sets. This family of subsets is intrinsic to uniform continuity, and
arises in a characterization of those metric spaces on which the real-
valued uniformly continuous functions form a ring that was only
discovered in the last 10 years by Javier Cabello Sánchez.

The inclusion of this novel material hopefully will convince the
student and instructor alike that the study of metric spaces — par-
ticularly analysis on metric spaces — remains a vibrant field, and
that there are notions of truly general interest that continue to be
discovered.

Finally, the student should appreciate the authors’ historical ref-
erences as well as ample hints for the solution of exercises.

Gerald Beer
Burbank, California



Preface

This book offers a comprehensive study of one of the foundational
topics in mathematics, known as metric spaces. The significance of
abstract concepts and some nice notions related to metric spaces
inspired us to write this book. Although there are many undergrad-
uate texts for metric spaces, but the introduction of the concepts of
UC spaces, cofinal completeness, and that of finite chainability makes
the text unique of its kind. This will help the readers in

(i) taking the secondary step towards analysis on metric spaces.
(ii) realizing the connection between the two most important classes

of functions, continuous functions and uniformly continuous
functions.

(iii) understanding the gap between compact metric spaces and com-
plete metric spaces.

Moreover, the reader will also find interesting exercises on vari-
ous subtleties of continuity like subcontinuity, upper semi-continuity,
lower semi-continuity, etc. This will motivate them to explore the
special classes of functions to further extent. Additionally, special
emphasis has been laid on Lipschitz functions. All these notions could
be taken as topics for projects at undergraduate or graduate level.
We have also referred to some research papers and textbooks in the
bibliography towards the end. This will facilitate the detailed study
of the concepts for the interested readers.

Certain sections have been concluded by the historical perspec-
tive of the significant results (given in the section). The introductory
book covers a wide range of concepts in a very natural and concise
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x Metric Spaces and Related Analysis

manner. This makes the text suitable for not just the undergradu-
ate students, but also for the graduate students as well as for the
instructors. We expect the reader to have some basic knowledge of
the set theory and real analysis for better understanding. Some pre-
liminaries are also included in Sections 1.1 and 1.2 for making this
book self-explanatory.

We feel greatly obliged that the anonymous reviewers put consid-
erable effort and time to read the whole manuscript. Consequently,
the detailed reports by the reviewers helped in substantial additions
across the length and breadth of the book. Finally, we would like
to express our gratitude to Prof. Gerald Beer who has written the
foreword for this book.
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Chapter 1

Fundamentals of Analysis

We begin with the introduction of the fundamental structure of
metric spaces along with various useful illustrations. Since the
foundation of metric spaces lies in real analysis, we also discuss some
basic relevant notions of real analysis along with that of set theory
which are needed in the upcoming chapters.

1.1 Some Elements of Set Theory

1.1.1 De Morgan’s laws

First recall that if X is a set and A ⊆ X, then Ac denotes the
complement of A in X which is given by

Ac = X \A = {x ∈ X : x �∈ A}.
Theorem 1.1.1 (De Morgan’s laws). If X is a set and {Ai : i ∈
I} is a family of subsets of X, then

(a)

(⋂
i∈I

Ai

)c

=
⋃
i∈I

(Ai)
c,

(b)

(⋃
i∈I

Ai

)c

=
⋂
i∈I

(Ai)
c.
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2 Metric Spaces and Related Analysis

Proof. We prove (a), then (b) could be proved in a similar way.

x ∈
(⋂

i∈I
Ai

)c

⇔ x �∈ ⋂
i∈I

Ai

⇔ x �∈ Ai for some i ∈ I

⇔ x ∈ (Ai)
c for some i ∈ I

⇔ x ∈ ⋃
i∈I

(Ai)
c.

Thus, union and intersection of sets are dual concepts with respect
to complementation.

Consider a function f : X → Y between two sets X and Y .
For a subset A of X, the image f(A) of A under f is defined by:
f(A) = {f(a) : a ∈ A}. Analogously, the inverse image of a subset
B of Y under f is given by: f−1(B) = {x ∈ X : f(x) ∈ B}. It is
evident that f(A) ⊆ Y , while f−1(B) ⊆ X. Later on, especially in
Chapter 2, we shall be using the following relations: if {Ai : i ∈ I}
and {Bi : i ∈ I} are families of subsets of X and Y respectively then
we have

(i) f(
⋃
i∈I

Ai) =
⋃
i∈I

f(Ai)

(ii) f(
⋂
i∈I

Ai) ⊆
⋂
i∈I

f(Ai)

(iii) f−1(
⋃
i∈I

Bi) =
⋃
i∈I

f−1(Bi)

(iv) f−1(
⋂
i∈I

Bi) =
⋂
i∈I

f−1(Bi)

(v) f−1(Bc) = (f−1(B))c.

1.1.2 Equivalence relation

Definition 1.1.1. Let X be a non-empty set. A subset of X ×X is
called a relation on X, usually denoted by R.

Since X is taken twice, that is, X × X, such a relation is more
precisely a binary relation. But we will simply use the term, ‘relation’.
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If (x, y) ∈ R, we also write, xRy. There can be many types of
relations. But among these, two are most important: Equivalence
and Partial order. In order to define these two, we need the following
definitions first.

Definitions 1.1.2. (a) Reflexivity: If xRx for all x ∈ X, that is, if
(x, x) ∈ R for all x ∈ X, then R is called reflexive.

(b) Symmetry: Whenever xRy, then yRx for x, y ∈ X.
(c) Antisymmetry: If xRy and yRx then x = y.
(d) Transitivity: If xRy and yRz then xRz. Note that xRz happens

through the transit of y.

Now if a relation R satisfies (a), (b) and (d), then it is called
an equivalence relation. So an equivalence relation is reflexive,
symmetric and transitive. An equivalence relation is usually denoted
by ∼ or ≈. On the other hand, if a relation R satisfies (a), (c) and
(d), then it is called a partial order. So a partial order is reflexive,
anti-symmetric and transitive. Usually a partial order is denoted
by ≤.

Example 1.1.1. Let F be the collection of all finite subsets of the
set of natural numbers N. For A, B ∈ F , define A ∼ B if A and B
have the same number of elements. Evidently, ∼ is an equivalence
relation on F .

Example 1.1.2. Consider the set Z × (Z \ {0}), where Z denotes
the set of integers. Let (m,n), (p, q) ∈ Z× (Z \ {0}), define

(m,n) ∼ (p, q) if mq = np.

The reader can easily verify that ∼ is indeed an equivalence relation
on Z× (Z \ {0}).
Example 1.1.3. On the set R of all real numbers, define the usual
relation between the numbers: x ≤ y, x, y ∈ R. Clearly, ≤ is a
partial order.

Example 1.1.4. Let X be a set and P(X) be the set of all subsets of
X. Then the set inclusion relation ⊆ is a partial order on the power
set P(X).

Coming back to equivalence relation. Let ∼ be an equivalence
relation on a (non-empty) set X. Let x ∈ X and define [x] = {y ∈
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X : y ∼ x}. Such a set is called the equivalence class of x with
respect to ∼. Note that [x] is a subset of X containing x (why?).
Also note that for all x, y ∈ X, either [x] = [y] or else [x] ∩ [y] = ∅
(prove it!). So this fact gives rise to a partition of X into pairwise
disjoint sets. But you can also prove that a partition of X gives an
equivalence relation. So an equivalence relation on X corresponds to
a partition of X and vice-versa. In Example 1.1.2, the equivalence
classes with respect to ∼ are nothing but the rational numbers.

1.1.3 Cartesian product and axiom of choice

If {X1,X2, . . . ,Xn} is a family of (finitely many) non-empty sets,
then the Cartesian product of this family is defined to be

n∏
i=1

Xi = X1 ×X2 × · · · ×Xn

= {(x1, x2, . . . , xn) : xi ∈ Xi for 1 ≤ i ≤ n}.
Note that in order to define this product, we have used an order

of the sets {Xi : 1 ≤ i ≤ n}. But if we have an uncountably
infinite family of sets, we do not have such an order. Suppose for
each α ∈ R, we have a non-empty set Xα. Then how do we define
the Cartesian product of the family {Xα : α ∈ R}? So in order to
define the Cartesian product (hereafter simply called ‘product’) of
an arbitrary family of sets, we need to get rid of the order mentioned
earlier. Thus, we need to redefine the product

∏n
i=1Xi of finitely

many sets X1,X2, . . . ,Xn in terms of functions. Closely look at the
definition of a function- it does not involve an order.

Given a finite family of non-empty sets X1,X2, . . . ,Xn, define a
function f : {1, 2, . . . , n} → ⋃n

i=1Xi such that f(i) ∈ Xi. If we denote
f(i) by xi, then since the domain of f is {1, 2, . . . , n}, a finite set, we
can describe f simply by listing its values (x1, x2, . . . , xn). This way
the element (x1, x2, . . . , xn) of X1 ×X2 × . . .×Xn can be identified
with the function f . Note two things about this function f :

(a) The domain of f is {1, 2, . . . , n} which is the index set of the
family of sets {X1,X2, . . . ,Xn}. This index set is used to identify
the sets in the family of the sets. Here 1 is used to identify the
set X1, while in general, i (1 ≤ i ≤ n) is used to identify the set
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Xi. So there has to be a one-to-one correspondence between an
index set I and the corresponding family of sets {Xi : i ∈ I}.

(b) The range of the function f is
⋃n

i=1Xi, but there is a restriction
(or choice) on f : f(i) ∈ Xi. Actually such a function is called a
choice function.

Now we can define the product of a family of non-empty sets,
{Xi : i ∈ I}, as follows:

∏
i∈I

Xi = {f : I →
⋃
i∈I

Xi : f(i) ∈ Xi ∀ i ∈ I}.

Thus,
∏

i∈I Xi is the collection of choice functions. But, given an
arbitrary family {Xi : i ∈ I} of non-empty sets, what is the guar-
antee that we will have such a choice function? One may say that
we will just keep picking up one from each Xi. But how long will
you keep picking up? For the pick-up process to be valid, we need to
ensure that it is completed in finite time. Think about the use of the
Principle of Mathematical Induction!

Let us reformulate the question about the choice function.
Given a non-empty family {Xi : i ∈ I} of non-empty sets, is the

Cartesian product
∏

i∈I Xi non-empty?
In other words, I �= ∅, each Xi �= ∅ ⇒ ∏

i∈I Xi �= ∅? Though
the question appears to be simple, the answer does not appear so. In
fact, though the answer is expected to be affirmative, we can’t prove
it. The affirmative answer to this question is known as the Axiom of
Choice: If {Xi : i ∈ I} is a non-empty family of sets such that Xi is
non-empty for each i ∈ I, then

∏
i∈I Xi is non-empty.

A useful equivalent formulation of the axiom of choice is stated
below which can be easily verified by the readers:

Proposition 1.1.1. The following statements are equivalent:

(a) If {Xi : i ∈ I} is a non-empty family of sets such that Xi is
non-empty for each i ∈ I, then

∏
i∈I Xi is non-empty.

(b) If {Xi : i ∈ I} is a non-empty family of pairwise disjoint sets
such that each Xi is non-empty, then there exists a non-empty
subset E of

⋃
i∈I Xi such that E ∩ Xi consists of precisely one

element for each i ∈ I.
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Remarks. (i) Here ‘pairwise disjoint’ means Xi ∩Xj = ∅ for any
distinct pair {i, j} from I, that is, i, j ∈ I and i �= j.

(ii) Note that (a) gives the existence of a choice function, while (b)
gives the existence of a choice set.

(iii) Any one of the equivalent statements given in the previous
proposition is known as the Axiom of Choice.

(iv) There are many more equivalent formulations of the axiom of
choice, but their proofs are not usually easy. But one such impor-
tant equivalent formulation is Zorn’s Lemma.

In this course, we will encounter several applications of the axiom
of choice. In many proofs, we may not even realize the application of
the axiom.

1.2 The Real Numbers

The objective of this section is to study some crucial properties of
the set of real numbers R which are needed in the upcoming text.
The first one is the completeness axiom or the axiom of continuity. In
order to discuss it, we need to talk about various kinds of ‘bounded’
subsets of R.

Definitions 1.2.1. Let A be a non-empty subset of R. Then A is
called bounded above if there exists b ∈ R such that a ≤ b holds
for all a in A and b is called an upper bound of A.

Note that if b is an upper bound of A and if b′ > b, b′ ∈ R, then
b′ is also an upper bound of A. Moreover, the set S = {b ∈ R :
b is an upper bound of A} is non-empty for the bounded above set
A. Now the question arises: Does S have a least element ? Can you
prove it?

Definition 1.2.2. Let A be a non-empty subset of R. Suppose A is
bounded above. If the set S = {b ∈ R : b is an upper bound of A}
has a least element s (say), then s is called a least upper bound
(lub) or supremum of A.

Evidently, if S has a least element, then it must be unique. So it
should be referred to as the least element or the supremum. But the
definition of supremum does not answer our query: Does A have a
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supremum? Before answering this query, we would like to deal with
the symmetric problem of the subsets of R which are bounded below.

Definitions 1.2.3. Let A be a non-empty subset of R. Then A is
called bounded below if there exists b ∈ R such that b ≤ a holds
for all a in A and b is called a lower bound of A.

Again note that if b is a lower bound of A and if b′ < b, b′ ∈ R, then
b′ is also a lower bound of A. So in this case we have the following
query: Does the non-empty set S = {b ∈ R : b is a lower bound of A}
have a greatest element ? If yes, then such an element is called the
greatest lower bound (glb) or the infimum of A. Now observe
the following:

Proposition 1.2.1. The following statements are equivalent:

(a) Every non-empty subset A of R, which is bounded above, has a
supremum.

(b) Every non-empty subset A of R, which is bounded below, has an
infimum.

Proof. It can be proved by observing that if ∅ �= A ⊆ R, then A
is bounded above if and only if A′ = {−a : a ∈ A} is bounded
below.

Note that in the previous proposition, we only prove that (a) ⇔
(b), that is, if one of them is true, the other one is also true. We do
not prove that either (a) is true or (b) is true. So we need to assume
one of those two equivalent conditions as an axiom. It is well known
as the Completeness axiom on R or the Axiom of Continuity on R.

Completeness axiom on R: Every non-empty set of real numbers
that is bounded above has a least upper bound.

It should be noted that the lub need not belong to the set. If it
belongs to the set, we call it the maximum of the set.

Example 1.2.1. Consider the sets A = [0, 1) and B = [0, 1]. For
both the sets, the supremum is 1. While 1 ∈ B, 1 �∈ A. Hence we can
say that 1 is the maximum element of B, while A does not have a
maximum.

The following result is useful in the analysis of metric spaces.
Their proofs are left as an exercise for the interested readers.
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Theorem 1.2.1. Let A be a non-empty subset of R such that A is
bounded above. Then given ε > 0, there exists xε ∈ A (xε depends
on ε) such that sup(A) − ε < xε ≤ sup(A). Here sup(A) denotes the
supremum of A.

Remark. In the previous theorem, the expression ‘xε ≤ supA’ may
not be replaced by ‘xε < supA’. For example, look at the set A =
[0, 1]∪{2}. Here supA = 2. Can you find xε ∈ A such that xε �= supA
and 2− 1

2 = 3
2 < xε?

Corollary 1.2.1. The set N of all natural numbers is not bounded
above.

The glb (infimum) counterpart of Theorem 1.2.1 is as follows:

Theorem 1.2.1. Let A be a non-empty subset of R such that A is
bounded below. Then given ε > 0, there exists xε ∈ A (xε depends
on ε) such that inf(A) ≤ xε < inf(A) + ε. Here inf A denotes the
infimum of A.

Now we discuss briefly one of the useful properties of real numbers,
namely the ‘Archimedean Property’. Instead of the ‘Archimedean
Property’, it should have been called the ‘Eudoxusian Property’ in
honour of Eudoxus. The property was used extensively by the Greek
mathematician Archimedes, but most probably, it was introduced by
the Greek scholar Eudoxus.

Theorem 1.2.2 (The Archimedean property). If x and y are
two positive real numbers, then there exists some natural number n
such that nx > y.

Proof. Suppose, if possible, nx ≤ y for all n ∈ N. Then n ≤
y/x ∀ n ∈ N, as x > 0. But this implies that the set of all natural
numbers N is bounded above by a fixed real number y/x. This is
impossible.

Note that the importance of Theorem 1.2.2 lies in the following
fact: You choose any two positive reals x and y (x may be very small,
while y may be very large), but we can find a sufficiently large n in
N such that we can increase the length of x by multiplying it by n
so that nx becomes larger than y.
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1.3 Metric Spaces

Now we are ready to move towards the abstract study of metric
spaces. But before explaining a metric d and the corresponding
metric space, we should have a closer look at the usual distance on
R given by | · |. Note that if x and y are two real numbers, then the
distance from x to y is given by |x− y|, while the distance from y to
x is given by |y − x|. But they are same. Hence it is instead referred
to as the distance between x and y. While doing some manipulations
with sequences in R, often we use the triangle inequality:

|x− y| ≤ |x− z|+ |z − y| ∀ x, y, z ∈ R.

Other two important facts about this distance are so natural that
often we forget to notice them: (i) the distance between x and y is
always non-negative, that is, |x − y| ≥ 0, and |x − y| = 0 ⇔ x = y,
(ii) |x−y| = |y−x|. You may go through your knowledge of calculus
and analysis on R. You will be surprised to discover that the primary
tools in R are given by (i) and (ii) and the triangle inequality (also
denoted by �− inequality). In order to do similar analysis on various
other sets conveniently, there was a need to generalize this idea of
distance on an arbitrary non-empty set X. For this purpose, a metric
(or a distance) on X is defined as follows.

Definition 1.3.1. A metric (or a distance) d on a non-empty set
X is a function d : X ×X → R satisfying the following properties:
for every x, y, z ∈ X we have

(a) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y;
(b) d(x, y) = d(y, x) (symmetry);
(c) d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

Furthermore, the pair (X, d) is called a metric space.

Most of the times, the reference to the metric d in the notation
(X, d) is omitted in case there is no ambiguity. An immediate
application of the triangle inequality is to prove the following basic
result:

Proposition 1.3.1. Let (X, d) be a metric space. Then

|d(x, z) − d(y, z)| ≤ d(x, y) ∀ x, y, z ∈ X.
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Proof. By the triangle inequality, we have d(x, z) ≤ d(x, y)+d(y, z)
and hence d(x, z)− d(y, z) ≤ d(x, y). Now by interchanging the roles
of x and y, we get d(y, z) − d(x, z) ≤ d(y, x) = d(x, y). Hence,
|d(x, z) − d(y, z)| ≤ d(x, y).

Now let us look at some standard but useful examples of metric
spaces. We start with the example which was the main motivation
behind this concept.

Example 1.3.1. Consider the set of all real numbers R with the
usual distance d(x, y) = |x− y| ∀ x, y ∈ R. Then (R, d) is a metric
space. Note that the metric d is well known as the usual (or standard)
metric on R.

Example 1.3.2. Consider Rn which is the set of all ordered n-tuples
x = (x1, . . . , xn) of real numbers. In other words, Rn =

∏n
i=1Xi,

where Xi = R for all i ∈ {1, 2, . . . , n}. Define a function d on Rn×Rn

as follows:

d(x, y) =
( n∑

i=1

(xi − yi)
2
)1/2

for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn. Then the function
d satisfies the properties of a metric: the triangle inequality can
be proved using Minkowski’s inequality (see Appendix), while the
verification of the rest of the properties is straightforward. The
metric d is called the Euclidean metric and Rn equipped with this
metric is referred to as n-dimensional Euclidean space. Note that
this Euclidean distance on R2 and R3 actually gives the Euclidean
geometry.

Note. When n = 1, then the Euclidean metric is nothing but the
usual metric on R. Unless mentioned explicitly, Rn and its subsets
are assumed to be equipped with the Euclidean metric in this book.

Example 1.3.3. One needs to be careful while defining a metric
on the set of all ordered n-tuples of complex numbers, Cn, which
is analogous to the Euclidean metric on Rn. If z = (z1, . . . , zn) and
w = (w1, . . . , wn) ∈ Cn, then define

d(x, y) =

(
n∑

i=1

|zi − wi|2
)1/2
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(here we need to write |zi − wi|2, instead of (zi − wi)
2, in order

to ensure that |z − w| is a real number.) Note that Cn equipped
with this metric d is sometimes called complex Euclidean n-space or
n-dimensional unitary space.

Note that we can have multiple metrics defined on a set with
at least two points. So using next example, we can construct more
metrics on Rn.

Example 1.3.4. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection
of metric spaces. Then the reader should verify that the following
three functions define metrics on the Cartesian product

∏n
i=1Xi =

{(x1, x2, . . . , xn) : xi ∈ Xi for 1 ≤ i ≤ n}:
(i) μ1(a, b) =

∑n
i=1 di(ai, bi),

(ii) μ2(a, b) =
√∑n

i=1(di(ai, bi))
2,

(iii) μ∞(a, b) = max{di(ai, bi) : 1 ≤ i ≤ n},
where a = (a1, . . . , an), b = (b1, . . . , bn) ∈ ∏n

i=1Xi. Moreover, we
have

μ∞(a, b) ≤ μ2(a, b) ≤ μ1(a, b) ≤ nμ∞(a, b).

Example 1.3.5. An interesting metric can be defined on every
nonempty set X in a trivial way. For x �= y, define d(x, y) = 1
and set d(x, x) = 0. The metric d is called the discrete metric or
trivial metric on X.

The discrete metric given in Example 1.3.5 is often used as an easy
counter-example (will see later). To avoid confusion in the remaining
text, we would like to explicitly define discrete sets.

Definition 1.3.2. A subset A of a metric space (X, d) is called
discrete if ∀ x ∈ A ∃ δx > 0 such that d(x, y) ≥ δx ∀ y ∈ A \ {x}.
Example 1.3.6. Let X be a nonempty set and (Y, ρ) be a metric
space. Consider a one-to-one function f : X → (Y, ρ). Then using f ,
we can define a metric d on X as follows: d(x, x′) = ρ(f(x), f(x′))
for x, x′ ∈ X.

Note that if f is not one-to-one, then d is called pseudometric
because d(x, x′) = 0 need not imply x = x′ for x, x′ ∈ X. More
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precisely, a function d : X × X → R is called a pseudometric
if d(x, y) ≥ 0; d(x, x) = 0; d(x, y) = d(y, x); and d(x, y) ≤
d(x, z) + d(z, y) for all x, y, z ∈ X.

Interestingly, there is a standard technique of inducing a metric
space from a pseudometric space: suppose (X, d) is a pseudometric
space. Define an equivalence relation (that is, reflexive, symmetric
and transitive) on X by: x ∼ z if and only if d(x, z) = 0. Now let
S = {Ex : x ∈ X}, where Ex denotes the equivalence class containing
x, and define a function δ on S×S as: δ(Ex, Ez) = d(x, z). It can be
easily verified that δ defines a well-defined metric on S × S.

Let Pn be the set of all real polynomials with degree less than or
equal to n. Define a function:

f : Pn → Rn+1

f(ao + a1x+ · · ·+ anx
n) = (ao, a1, . . . , an).

Then note that f is an injective function and hence by using Example
1.3.6, we can get metrics on Pn. Can you think of a metric on the
set of all real polynomials?

Example 1.3.7. Consider �p (p ≥ 1 is a fixed real number), the set
of all sequences (xn) in R (we can also consider sequences of complex
numbers) such that

∑∞
k=1 |xk|p <∞, equipped with the metric

d(x, y) =

( ∞∑
k=1

|xk − yk|p
)1/p

,

where x = (xk) and y = (yk). Note that from Minkowski’s inequality
(see Appendix) it follows that (�p, d) forms a metric space.

Remark. If p < 1, then the triangle inequality fails: let a be the zero
sequence, b = (1, 1, 0, 0, . . .) and c = (0, 1, 0, 0, . . .). Then d(a, c) =
1 = d(c, b) and d(a, b) = 21/p > d(a, c) + d(c, b) because p < 1.

Example 1.3.8. Consider �∞, the set of all bounded sequences (xn)
(that is, supn∈N |xn| <∞). Let us define a function,

d(x, y) = sup
n∈N

|xn − yn|
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for x = (xn) ∈ �∞ and y = (yn) ∈ �∞. We only need to look at the
proof for the triangle inequality: for each n ∈ N we have,

|xn − yn| ≤ |xn − zn|+ |zn − yn| ≤ sup
n∈N

|xn − zn|+ sup
n∈N

|zn − yn|.

Thus, d(x, y) ≤ d(x, z) + d(z, y).

In Example 1.3.8, we considered the set of all bounded sequences
so that the supremum metric is well-defined. But what if we need to
define a metric on the set of all real sequences (that is, sequences in
R)? In fact, we try to construct a metric on a general set in the next
example.

Example 1.3.9. Let I be an arbitrary indexing set. Consider RI =∏
i∈I R = {(xi)i∈I : xi ∈ R}. (Note that the elements of RI are

nothing but functions from I to R: i �→ xi.) Then the following
function defines a metric on RI ,

d(x, y) = sup{ρ(xi, yi) : i ∈ I}

for x = (xi)i∈I and y = (yi)i∈I in RI . Here ρ(xi, yi) = min{|xi−yi|, 1}
is a bounded metric on R (refer to Exercise 1.3.7). The metric d is
called the uniform metric on RI .

Now can you think of a metric on the set of all real polynomials?

Example 1.3.10. Let {(Xn, dn) : n ∈ N} be a collection of metric
spaces. Then

d(x, y) =

∞∑
n=1

1

2n
dn(xn, yn)

1 + dn(xn, yn)
,

where x = (xn) and y = (yn), defines a metric on the Cartesian
product

∏∞
i=1Xi: for the triangle inequality, first note that the

function δn(x, y) =
dn(x,y)

1+dn(x,y)
defines a metric on Xn for n ∈ N (see

Exercise 1.3.7). Thus,

δn(xn, yn) ≤ δn(xn, zn) + δn(zn, yn) for xn, yn, zn ∈ Xn.
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This implies that

k∑
n=1

1

2n
δn(xn, yn) ≤

k∑
n=1

1

2n
δn(xn, zn) +

k∑
n=1

1

2n
δn(zn, yn)

≤
∞∑
n=1

1

2n
δn(xn, zn) +

∞∑
n=1

1

2n
δn(zn, yn)

= d(x, z) + d(z, y) for each k ∈ N.

Hence d(x, y) ≤ d(x, z) + d(z, y) for x = (xn), y = (yn), z = (zn) ∈∏∞
i=1Xi.

Example 1.3.11. Consider the set C[a, b] of all continuous
real-valued functions on a closed and bounded interval [a, b]. (Recall
that a function f : ([a, b], | · |) → (R, | · |) is said to be continuous at
xo ∈ [a, b] if given ε > 0, there exists a δ > 0 (δ depends on ε and xo)
such that |f(x) − f(xo)| < ε whenever |x − xo| < δ and x ∈ [a, b].)
Then the function D defined as

D(x, y) = max
t∈[a,b]

|x(t)− y(t)|,

where x, y are continuous functions on [a, b], is a metric on C[a, b].
The metric D is called the uniform metric. Here one only needs
to verify the triangle inequality as the verification of the rest of the
properties is straightforward. Now for all t ∈ [a, b], we have

|x(t)− y(t)| ≤ |x(t)− z(t)|+ |z(t) − y(t)| ≤ max
t∈[a,b]

|x(t)− z(t)|

+ max
t∈[a,b]

|z(t) − y(t)|.

Thus, D(x, y) ≤ D(x, z) +D(z, y) for all x, y, z ∈ C[a, b].

Since every real-valued continuous function on a closed and
bounded interval [a, b] attains its bounds, it is justified to use
‘maximum’ in the definition of the metric d in the previous example.
But we cannot use the same definition for the collection of all real-
valued bounded functions on [a, b] (will see in Example 1.3.13).
Further, note that geometrically this metric d denotes the largest
vertical distance between the graphs of the functions x and y.
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Example 1.3.12. The set C[a, b] can also be equipped with the
following metric:

dp(x, y) =

(∫ b

a
|x(t)− y(t)|pdt

)1/p

,

where 1 ≤ p <∞.
Clearly, dp(x, x) = 0 and dp(x, y) ≥ 0 for all x, y ∈ C[a, b]. Now

for proving that dp(x, y) = 0 ⇒ x = y, one needs to observe the
following:

Claim. If f ∈ C[a, b] with f(t) ≥ 0 for all t ∈ [a, b] and
∫ b
a f(t)dt = 0,

then f is identically 0 on [a, b].
Suppose, if possible, f(to) > 0 for some to ∈ [a, b]. Then by the

continuity of f at to, there exists a δ > 0 such that

|f(t)− f(to)| < f(to)

2
whenever |t− to| < δ and t ∈ [a, b].

Consequently,

∫ b

a
f(t)dt ≥

∫ to+δ

to−δ
f(t)dt ≥

∫ to+δ

to−δ

f(to)

2
dt = f(to)δ > 0.

This gives a contradiction. Hence f(t) = 0 for all t ∈ [a, b]. Thus,

dp(x, y) = 0 ⇒ x = y for x, y ∈ C[a, b].

The function dp is clearly symmetric. We are only left with triangle’s
inequality which follows from Minkowski’s inequality for integrals.
Let us state the inequality without proof:

(∫ b

a
|x(t) + y(t)|pdt

)1/p

≤
(∫ b

a
|x(t)|pdt

)1/p

+

(∫ b

a
|y(t)|pdt

)1/p

,

for 1 ≤ p <∞ and x, y ∈ C[a, b].

Remarks. (a) Geometrically, the metric d1 represents the area
between the graphs of the functions x and y.
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(b) It should be noted that d1 is a pseudometric on the set of all
Riemann integrable functions on [a, b]. But it is not a metric on
the set: consider the characteristic function:

x(t) =

{
1 if t = a
0 if a < t ≤ b

}

and y(t) = 0 for all t ∈ [a, b]. Then x and y are two distinct
functions with d1(x, y) = 0.

Example 1.3.13. Let X be a non-empty set and let B(X) be the
set of all real-valued bounded functions defined on X, that is,

B(X) = {f : X → R : f(X) is bounded in R}
= {f : X → R : ∃ Mf > 0 such that |f(x)| ≤Mf ∀ x ∈ X}.

On B(X), define the metric D as follows:

D(f, g) = sup{|f(x)− g(x)| : x ∈ X}.
This supremum is a non-negative real number since f and g are
bounded functions. Moreover, the reader should check that D
satisfies the properties of a metric on B(X). The metric D is
called the supremum metric or uniform metric on B(X). The
justification for calling it a ‘uniform’ metric will be given later.

Remark. (a) Note that even if we replace R by C, that is, if we
take B(X) to be the set of all complex valued bounded functions
on X, the function D defines a metric on this new collection as
well.

(b) When X = N = the set of all natural numbers, B(X) is nothing
but l∞. If we want to make a distinction between the set of all
bounded real sequences and that of bounded complex sequences,
we may use the notation l∞(R) or l∞(C). The l∞-space plays a
crucial role in measure theory and functional analysis.

(c) Since every continuous function on a closed and bounded interval
is bounded, C[a, b] is a subset of B(X), where X = [a, b].

(d) Note that Example 1.3.9 actually talks about the metric on the
set of all real-valued functions defined on a set I. The elements
of RI can also be represented in the form of functions of the type
f : I → R. So f(i) = xi.
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Towards the end of this section, we would like to precisely define
bounded sets in a metric space. Of course, the definition should be
consistent with the definition of bounded sets in R. Recall that a
subset A of R is bounded if there exists M > 0 such that |x| ≤M for
all x ∈ A, that is, |x−0| ≤M ∀ x ∈ A. But in a general metric space
(X, d), we may not have the point zero. Observe that ‘zero’ actually
works as a reference point from which we travel to other points in
R. In fact, we can choose any point xo in a metric space (X, d) and
can use it as a reference point in X. So we can define a subset A of
a metric space (X, d) to be bounded if there exists M > 0 such that
d(x, xo) (in place of |x−0|) is less thanM for all x ∈ A. But one may
raise a question: how we ensure that this definition is not dependent
on the choice of xo. This is ensured by the following result, the proof
of which is left as an exercise for the reader.

Proposition 1.3.2. Let (X, d) be a metric space, A be a non-empty
subset of X and xo ∈ X. Then the following are equivalent:

(a) there exists M1 > 0 such that d(x, xo) ≤M1 for all x ∈ A.
(b) sup{d(x, y) : x, y ∈ A} is a real number, that is, there exists

M2 > 0 such that d(x, y) ≤M2 for all x, y ∈ A.

The authors use (b) of the last result as the definition of a bounded
set in a metric space (X, d).

Definition 1.3.3. Let (X, d) be a metric space and A be a
non-empty subset of X.

(a) The diameter of A, denoted by d(A) or diam(A), is defined as
follows: d(A) = sup{d(x, y) : x, y ∈ A}.

(b) If d(A) ∈ R, then we say that A is bounded in (X, d).

The way in which diameter of a set is defined, completely justifies
the terminology ‘diameter’ used for it.

Remark. (i) Since d(x, y) ≥ 0 ∀ x, y ∈ X, d(A) ≥ 0. Often we
write d(A) <∞ in order to indicate that d(A) is a real number.

(ii) A sequence (xn) in a metric space (X, d) is called bounded if
the set A = {xn : n ∈ N} is bounded in (X, d).

(iii) A function f : (X, d) → (Y, ρ) is said to be bounded if the set
f(X) is bounded in (Y, ρ).
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Evidently, in a metric space (X, d), every non-empty subset of a
bounded set in (X, d) is again bounded. In particular, we have

Proposition 1.3.3. Let (X, d) be a metric space and A be a
non-empty subset of X. Then A is bounded in (X, d) if and only
if every sequence in A is bounded.

Exercises

1.3.1. Let d be a metric on a non-empty set X. Prove that the
function, defined by d′(x, y) = (d(x, y))α for x, y ∈ X and fixed
α ∈ (0, 1), is a metric on X. Is ρ also a metric on X, where ρ(x, y) =
(d(x, y))2 for x, y ∈ X?

1.3.2. If d1 and d2 are two metrics on a non-empty set X, then prove
that the function d(x, y) = max{d1(x, y), d2(x, y)} defined on X×X
is also a metric on X. What can you say about the minimum of two
metrics?

1.3.3. Let (Y, ρ) be a non-empty metric space and X be a proper
superset of Y (that is, Y ⊆ X). Extend the metric ρ to X, that is,
define a metric d on X such that d(y, y′) = ρ(y, y′) for all y, y′ ∈ Y .

1.3.4. Use Example 1.3.6 to construct a metric on the extended real
line R ∪ {+∞,−∞}.
1.3.5. Let X = (0,∞). Then verify that d(x, y) = | 1x − 1

y | for x, y ∈
X is a metric on X.

1.3.6. Let f : (X, d) → (Y, ρ) be any function between two metric
spaces. Show that σ(x, x′) = d(x, x′) + ρ(f(x), f(x′)) is also a metric
on X.

1.3.7. Let (X, d) be a metric space. Prove that the following
functions define a metric on X:

(i) ρ(x, y) = min{1, d(x, y)},

(ii) δ(x, y) = d(x,y)
1+d(x,y) ,

where x, y ∈ X. Do you observe some special property possessed by
these metrics which need not be possessed by the metric d?
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1.3.8. For n ∈ N and f, g ∈ C(R), let dn(f, g) = maxx∈[−n,n] |f(x)−
g(x)|. Further, let

d(f, g) =

∞∑
n=1

1

2n
dn(f, g)

1 + dn(f, g)
.

Show that dn is a pseudometric on C(R), while d is a metric on C(R).

1.3.9. Let (X, d) be a metric space. Prove that the function ρ
given by

ρ(x, y) = ln(1 + d(x, y)),

is also a metric on X.

1.3.10. Consider the functions: f(x) = x and g(x) = 6−x2 on [0, 3].
Compute D(f, g), d1(f, g) and d2(f, g). (Refer to Examples 1.3.11
and 1.3.12.)

1.4 Some Useful Concepts

Now we define the most important but a basic concept in a metric
space (X, d). Consider first the metric space (R, | · |). Given x ∈ R

and δ > 0, what does the open interval (x− δ, x+ δ) mean? Note

(x− δ, x+ δ) = {y ∈ R : |x− y| < δ}.
So if we replace R byX and |·| by d, then the set {y ∈ R : |x− y| < δ}
is transformed into the set {y ∈ X : d(x, y) < δ} which is the collec-
tion of all points in X whose distance from x is less than δ. Now think
about 3-dimensional Euclidean space R3 and the open ball centred
at x = (x1, x2, x3) and radius δ. Keeping this example in mind, the
set {y ∈ X : d(x, y) < δ} is denoted by B(x, δ) which is the open
ball centred at x with radius δ.

Definitions 1.4.1. Let (X, d) be a metric space. For any x ∈ X and
any number r > 0, the set

B(x, r) = {y ∈ X : d(x, y) < r}
is called the open ball with centre x and radius r. Similarly, the set
{y ∈ X : d(x, y) ≤ r} is called the closed ball with centre x and
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Figure 1.1 Open unit balls with respect to µ1, µ2 and µ∞.

radius r and is denoted by C(x, r). In particular, the balls B(x, 1)
and C(x, 1) are said to be the open unit ball and closed unit ball
respectively.

Evidently if x ∈ (X, d) and 0 < s < r, then B(x, s) ⊆ B(x, r). But
note that B(x, s) may not be a proper subset of B(x, r): in a metric
space (X, d) with the discrete metric (Example 1.3.5), B(x, 2) =
B(x, 3) = X ∀ x ∈ X. Can you draw geometrical figures for the
open unit balls in R2 with respect to the metrics given in Example
1.3.4 (Figure 1.1)?

Definitions 1.4.2. Let (X, d) be a metric space and let A ⊆ X. A
point a ∈ A is said to be an interior point of A if there exists r > 0
such that B(a, r) ⊆ A. The interior of A, denoted by int A or Ao,
is the set of all interior points of A.

It should be noted that the radius of the ball B(a, r) in Definition
1.4.2 may vary with the point a ∈ A.

Example 1.4.1. Consider the metric space (R, |·|) and let A = [0, 2).
Note that every point in A except 0 is an interior point of A and hence
int A = (0, 2).

Example 1.4.2. Let (X, d) be a metric space with the discrete
metric. If x ∈ X and r ≤ 1, then B(x, r) = {x}, while B(x, r) = X
if r > 1. Thus, int A = A for A ⊆ X.

By the definition of an interior point, int A ⊆ A. In particular,
int ∅ = ∅, that is, the empty subset of X does not have any interior
point. In Example 1.4.2, int A = A for all A ⊆ X, while in Example
1.4.1, if we take A = (0, 2), then int A = A in (R, | · |). In fact, the
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interior of an open interval is the interval itself. So you have two
possibilities for a set A in a metric space (X, d) : (i) int A = A or
else (ii) int A � A. The former case is an interesting one. Hence the
subsets of a metric space possessing this property are known by a
special name.

Definition 1.4.3. Let (X, d) be a metric space and A be a subset of
X. Then A is called open in (X, d) if int A = A, that is, each point
of A is an interior point of A.

Remark. Attention needs to be given on the metric space (X, d) in
which the interior of a subset is considered. For example, the interior
of Q in (R, | · |) is the empty set ∅ (use the density of irrationals in
R), while the interior of Q in (Q, | · |), since (Q, | · |) itself is a metric
space, is Q. In fact, in general for any metric space (X, d), int X in
(X, d) is X.

It is seen that the set of rational numbers Q can be considered in
two ways: as a subset of (R, | · |) or as a subset of (Q, | · |). In a general
scenario, let (X, d) be a metric space and Y be a non-empty subset of
X. Then the metric d on X induces a metric dY on Y in the following
natural manner: for y1, y2 ∈ Y , define dY (y1, y2) = d(y1, y2). One
can easily see that dY is a metric on Y . It is called the metric on
Y induced by the metric d on X. Moreover, the metric space (Y, dY )
is called a metric subspace of (X, d). The metric dY is essentially
same as d, the only difference is that in case of dY the points are
picked up from Y .

Note. For convenience, the same notation d, in place of dY , is
generally used to indicate the metric on Y induced by the metric
d on X.

If (X, d) is a metric space and Y is a non-empty subset of X, then
one needs to be careful about the open balls in Y and that in X. Let
y ∈ Y and r > 0. Then the open ball B(y, r) in Y is a subset of the
open ball B(y, r) inX. In order to maintain the difference, one should
use the following different notations (if needed): BY (y, r) = {z ∈ Y :
d(z, y) < r} and BX(y, r) = {z ∈ X : d(z, y) < r}. In other words,
BY (y, r) = BX(y, r)∩Y . For example, consider (R, |·|) and the subset
Y = [0, 2] of R. Then BR(0,

1
2) = (−1

2 ,
1
2 ), while BY (0,

1
2) = [0, 12).
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The basic facts about open sets are included in the following
result.

Theorem 1.4.1. Let (X, d) be a metric space. Then

(a) X and ∅ are open in (X, d).
(b) If {Ui : i ∈ I} is an arbitrary family of open sets in (X, d), then

their union
⋃

i∈I Ui is also open in (X, d).
(c) If {U1, U2, . . . , Un} is a finite family of open sets in (X, d), then

their intersection
⋂n

i=1 Ui is also open in (X, d).

Proof. The proof of (a) is already discussed and the proof of (b) is
left as an exercise. Here we prove (c):

Let x ∈ ⋂n
i=1 Ui. Since x ∈ Ui for 1 ≤ i ≤ n and int Ui = Ui,

there exists ri > 0 such that x ∈ B(x, ri) ⊆ Ui. Let r = min1≤i≤n ri.
Note that r > 0. Now x ∈ B(x, r) ⊆ B(x, ri) ⊆ Ui for all i = 1, . . . , n
and hence x ∈ B(x, r) ⊆ ⋂n

i=1 Ui. This implies that int(
⋂n

i=1 Ui) =⋂n
i=1 Ui. Hence,

⋂n
i=1 Ui is open in (X, d).

The reader should observe that in Theorem 1.4.1(c), we have used
the ‘finiteness’ in choosing r which is the minimum of all ri’s. Since
only finitely many ri’s are there, r > 0. In case of an arbitrary
family, we need to replace ‘minimum’ by ‘infimum’, that is, we need
to choose r = inf i∈I ri. But in this case, there is no guarantee that
r will be strictly positive. For example, infn∈N 1

n = 0, though 1
n > 0

for all n ∈ N. One may wonder that there might be other ways of
proving Theorem 1.4.1(c) for an arbitrary family of open sets. But
the following counter example shows that the result may not hold if
we replace ‘finite’ by ‘arbitrary’.

Example 1.4.3. Consider the infinite family of open sets {(− 1
n ,

1
n) :

n ∈ N} in R. Then
⋂

n∈N(− 1
n ,

1
n) = {0} which is not open in R.

Analogous to interior points and open sets, one can also define
closure points of a set A in a metric space and then with the help
of closure points, closed sets in a metric space (X, d) can be defined.
Or else, we can define a closed set first and then we link it to the
closure points. Let us take the latter route.

Definition 1.4.4. Let (X, d) be a metric space. A subset C of X is
called closed in (X, d) if X − C is open in (X, d), where X − C is
the complement of C in X.
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Remarks. (a) A door of a room is either open or closed. But a set
A in a metric space may be neither open nor closed. Look at the
set [0, 2) in (R, | · |) — it is neither open nor closed in (R, | · |).

(b) Since X and ∅ are open in a metric space (X, d), they are also
closed in (X, d). That is, X and ∅ are both open and closed in a
metric space (X, d).

When a set is both open and closed in a metric space (X, d), it is
called clopen in a metric space (X, d). So, X and ∅ are always clopen
in a metric space (X, d). Now the question arises, whether in general
there exists a third set, other than X and ∅, which is both open
and closed? This question needs to be answered as it is related to
connectedness of a metric space which will be studied in Chapter 7.
So consider a metric space (X, d) where d is the discrete metric. It
is known that every subset of X is open in (X, d) and hence every
subset is also closed in (X, d). So if X has more than one point, then
in the metric space (X, d), we can have a third clopen set as well.

In a metric space (X, d), a subset A of X is open in (X, d) if
and only if X − A = Ac is closed in (X, d). So the concepts of open
and closed sets in a metric space are dual. Now the following result
follows immediately from Theorem 1.4.1 and De Morgan’s laws.

Theorem 1.4.2. For a metric space (X, d) the following statements
hold:

(i) X and ∅ are closed in (X, d).
(ii) Arbitrary intersections of closed sets in (X, d) is again closed in

(X, d).
(iii) Finite unions of closed sets in (X, d) is again closed in (X, d).

Now we define the closure points of a set A in a metric space
(X, d). Think about the word ‘closure’ (it is an adjective to a (noun)
point). Intuitively, a point x inX should be called a closure point of A
if x is really close to A. Note that if x is already in A, then obviously
x is close to A. But what about the points which are not in A, but
‘really’ close to A. Let us look at the following example: consider the
set A = (0, 2) in the metric space (R, | · |). Consider two points 0
and 2. They are not in A. But if you take any ε-neighbourhood of 0,
(−ε, ε), it must intersect A, no matter how small ε you choose. On
the other hand, −0.01 does not belong to A but a sufficiently small
ε > 0 can be chosen such that (−0.01 − ε,−0.01 + ε) ∩ A = ∅ (take
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ε < 0.01). So clearly with respect to the set A, there is a difference
between the points 0 and −0.01. A similar situation occurs with the
point 2 as well. So though 0 and 2 do not belong to A, but they
possess some special property which is not possessed by other points
in Ac. One can say that 0 and 2 are closure points of A. Now we
give a precise definition of a closure point. But first let us define
neighbourhood (‘nhood’ in short) formally.

Definition 1.4.5. Let (X, d) be a metric space and x ∈ X. Then
a neighbourhood of x in (X, d) is an open set in (X, d) that
contains x.

If U is a nhood of x in (X, d), then by definition, it contains
an open ball around x, that is, there exists some r > 0 such that
B(x, r) ⊆ U . Consequently, while dealing with nhoods, often it
is enough to work with the open balls. Hence they are given a
special name. Any open ball with centre x in (X, d) is called a basic
neighbourhood of x in (X, d).

Definitions 1.4.6. Let (X, d) be a metric space, A ⊆ X and x ∈ X.
Then x is called a closure point of A if B(x, r)∩A �= ∅ for all r > 0,
that is, every nhood of x intersects A. The set of all closure points of
A in (X, d) is called the closure of A and is denoted by clXA or A.

Note that by definition A ⊆ A. So a natural question is: when do
we have the reverse inclusion? The next result answers more than
this.

Theorem 1.4.3. Let (X, d) be a metric space and A ⊆ X. Then
A is a closed set. Moreover, A is the smallest closed set in (X, d)
containing A, that is, if A ⊆ F and F is closed in (X, d), then
A ⊆ F .

Proof. First we show that A is closed, that is, X − A is open in
(X, d). So we need to show that every point of X − A is an interior
point of X −A. So let x ∈ X −A. Then there exists r > 0 such that
B(x, r)∩A = ∅. This means B(x, r) ⊆ X−A. But we will show that
B(x, r) ⊆ X − A, that is, B(x, r) ∩ A = ∅. Let y ∈ B(x, r). Then
r − d(x, y) > 0. Choose 0 < s < r − d(x, y). Then using triangle’s
inequality, one can prove that B(y, s) ⊆ B(x, r). Since B(x, r)∩A =
∅, B(y, s) ∩ A = ∅. This implies that y is not a closure point of A,
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that is, y �∈ A, y ∈ X−A. But y was arbitrarily chosen from B(x, r).
Hence B(x, r) ⊆ X − A. Thus, x is an interior point of X − A.
Consequently, X − A is open, which implies that A = X − (X − A)
is closed in (X, d).

For the second part, let F be a closed subset of (X, d) containing
A. Thus X − F is open in (X, d), which implies that every point of
X−F is an interior point of X−F . So given x ∈ X−F , there exists
r > 0 such that B(x, r) ⊆ X − F , that is, B(x, r) ∩ F = ∅. Since
A ⊆ F, B(x, r)∩A = ∅. But this means that x is not a closure point
of A, that is, x ∈ X −A. Hence X −F ⊆ X −A, that is, A ⊆ F .

Remark. Since an arbitrary intersection of closed sets is closed,
C =

⋂{F ⊆ X : F is closed in (X, d) and A ⊆ F} is the smallest
closed set containing A. Just by using the definition of a closure point,
can you prove that C = A ?

Similarly, we can have the following result.

Theorem 1.4.4. Let (X, d) be a metric space and A ⊆ X. Then
int A is the largest open set contained in A.

In fact, interior and closure are dual concepts. The precise
statement is given in the next lemma.

Lemma 1.4.1. Let (X, d) be a metric space and A ⊆ X. Then
int A = X − (X −A), that is, X− int A = X −A.

Now we will discuss a special kind of closure point known as
accumulation point. Let us start with an example. Consider the
metric space (R, | · |) and A = (0, 1)∪{2}. Note that A = [0, 1]∪{2}.
Though 0 and 1 do not belong to A, there is a remarkable difference
between these two points {0, 1} on one side and the point 2 on the
other side. Pick up the pair {0, 2}. Discussion for the pair {1, 2}
is similar. Both 0 and 2 are closure points of A. But if you take
any ε-nhood (−ε, ε) of 0 in R, it will intersect A in infinitely many
points. In particular, ((−ε, ε) − {0}) ∩ A �= ∅. But this is not true
for 2. If we choose 0 < ε < 1, then (2 − ε, 2 + ε) ∩ A = {2}, that
is, (2− ε, 2 + ε) does not intersect A in points other than 2, that is,
((2 − ε, 2 + ε) − {2}) ∩ A = ∅. Also note that ((−ε, ε) − {0}) ∩ A =
(−ε, ε) ∩ (A− {0}). In general, for a metric space (X, d), x ∈ X and
A ⊆ X, (B(x, r)−{x})∩A = B(x, r)∩(A−{x}) for all r > 0. In view
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of this discussion, we make the following definition of accumulation
points.

Definition 1.4.7. Let (X, d) be a metric space, A ⊆ X and x ∈ X.
Then x is called an accumulation point of A in (X, d) if B(x, r)∩
(A − {x}) �= ∅ for all r > 0, that is, every nhood of x contains an
element of A distinct from x. Moreover, the set of all accumulation
points of A in (X, d) is called the derived set of A and is denoted
by A′.

Remark. Note that some authors use the term ‘limit point’ in place
of accumulation point.

Definition 1.4.8. Let (X, d) be a metric space, A ⊆ X and x ∈ A.
Then x is called an isolated point of A in (X, d) if there exists
ro > 0 such that B(x, ro) ∩ (A − {x}) = ∅, that is, there exists a
nhood of x which does not contain any element of A other than x
itself.

In the example discussed before these definitions, every point in
[0, 1] is an accumulation point of A = (0, 1)∪{2} in (R, |·|). Note that
though 0 and 1 are accumulation points of A, they do not belong to
A. On the other hand, although 2 is in A, it is not an accumulation
point of A but it is an isolated point of A. Evidently, if x is an element
of A ⊆ X, then x is an isolated point of A if and only if x is not an
accumulation point of A.

The proof of the next result is easy and hence left as an exercise
for the readers.

Theorem 1.4.5. Let (X, d) be a metric space and A ⊆ X. Then

(a) A is closed in (X, d) ⇔ A = A.
(b) A = A ∪A′

It is evident that the closure of a set A in a metric space (X, d) is
a subset of X. But when A coincides with the mother space X, then
A plays a special role in X.

Definition 1.4.9. Let (X, d) be a metric space and ∅ �= A ⊆ B ⊆ X.
Then A is said to be dense in B if every point of B is a closure point
of A in X, that is, if B ⊆ A, where A denotes the closure of A in X.
In particular, A is dense in X if A = X.
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Example 1.4.4. Both P = the set of irrationals and Q = the set
of rationals are dense in (R, | · |). Similarly, one can see that the set
{(a, b) ∈ R2 : a, b ∈ Q} is dense in R2.

In addition to being dense in (R, | · |), the set of rationals Q is
also countable which makes it a special subset of (R, | · |). With this
motivation, let us look for such subsets in general metric spaces as
well. In this regard, another class of metric spaces is now defined.

Definition 1.4.10. Let (X, d) be a metric space and ∅ �= B ⊆ X. If
there exists a countable dense subset of B, thenB is called separable
(in (X, d)).

Example 1.4.5. The metric space (R, | · |) is separable. Similarly,
one can easily prove that the complex plane C with the usual metric
is separable: the set A = {a + ιb : a, b ∈ Q} is a countable dense
subset of C.

Example 1.4.6. The lp-space with 1 ≤ p <∞ is separable. Consider
the set,

B = {(r1, r2, . . . , rn, 0, 0, . . .) : n ∈ N, ri ∈ Q for 1 ≤ i ≤ n}.
Then B is a countable subset of lp because finite product of count-
able sets is countable and countable union of countable sets is also
countable. Now we show that B is dense in lp. Let x = (ηj) be an
arbitrary element in lp and ε > 0. Then there exists no ∈ N such that

∞∑
j=no+1

|ηj |p < εp

2
.

Since the set of rationals is dense in R, for each ηj where 1 ≤ j ≤ no,
there exists rj ∈ Q such that

no∑
j=1

|ηj − rj|p < εp

2
.

This implies that

(d(x, y))p =
no∑
j=1

|ηj − rj |p +
∞∑

j=no+1

|ηj |p < εp,

where y = (r1, r2, . . . , rno , 0, 0, . . .) ∈ B. Consequently, d(x, y) < ε
and hence B is dense in lp.
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Example 1.4.7. The l∞-space is not separable: the set of all
sequences of zeros and ones is an uncountable set by Cantor’s
diagonal method. Any two members of this set are distance 1 apart
in l∞. Consequently, l∞ cannot contain a countable dense subset.
Now can you similarly prove that the space B(X) is not separable for
any infinite set X?

The routine proof of the next result is omitted.

Proposition 1.4.1. Let (X, d) be a metric space and ∅ �= A ⊆ B ⊆
X. Then A is dense in B if and only if A is dense in B, where B
denotes the closure of B in (X, d). In particular, B is separable if
and only if B is separable.

Definition 1.4.11. Let (X, d) be a metric space and A ⊆ X. Then
the boundary of A is defined to be the set A∩X −A and it is denoted
by ∂A. A point in ∂A is called a boundary point of A.

Note that a point x in X is a boundary point of A if and only if
every nhood of x intersects both A and X−A. Now consider Q ⊆ R,
then ∂Q = R but if Q is considered as a subset of itself then it has
no boundary point. In general, ∂X = ∅ for any metric space (X, d).

Remarks. (a) ∂A = ∂(X −A).
(b) Often in literature, in place of ‘boundary’, the term ‘frontier’ is

also used.
(c) ∂A is always a closed set.
(d) ∂A = A \ A◦.

Now consider the interval [0, 1) in R. Observe that if [0, 1) is
considered as a subset of [0, 1], then only 1 is the boundary point of
[0, 1). But if [0, 1) is considered as a subset of R then 0 and 1 are
the boundary points of [0, 1). Thus while talking about the boundary
points of a set A, one needs to be careful about the metric space of
which A is considered as a subset.

When (X, d) is a metric space and ∅ �= Y ⊆ X, an open set A in
(Y, d) need not be open in (X, d). The open ball in (Y, d) centred at
y with radius r, BY (y, r) = BX(y, r)∩ Y may not be open in (X, d).
For example, if we consider the metric space (R, | · |) and Y = [0, 1],
then [0, 12 ) is open in (Y, | · |), but not open in (R, | · |). When we
want to emphasize the open and closed sets in the metric subspace
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(Y, d), we use the terms relatively open and relatively closed in Y .
The precise definition follows.

Definition 1.4.12. Let (X, d) be a metric space and ∅ �= Y ⊆ X. If
U ⊆ Y and U is open in the metric subspace (Y, d), then U is called
relatively open in Y . Similarly, if U is closed in (Y, d), then U is
called relatively closed in Y .

Proposition 1.4.2. Let (X, d) be a metric space and ∅ �= Y ⊆ X.

(a) A subset U of Y is relatively open in Y if and only if there exists
an open set V in (X, d) such that U = V ∩ Y .

(b) A subset C of Y is relatively closed in Y if and only if there
exists a closed set D in (X, d) such that C = D ∩ Y .

Proof. (a) Let U be open in (Y, d). Then for each y ∈ U , there exists
ry > 0 such that y ∈ BY (y, ry) ⊆ U . Hence U =

⋃
y∈U BY (y, ry). Let

V =
⋃

y∈U BX(y, ry). Then V is open in (X, d) and

V ∩ Y =

⎛
⎝⋃

y∈U
BX(y, ry)

⎞
⎠ ∩ Y =

⋃
y∈U

BX(y, ry) ∩ Y

=
⋃
y∈U

BY (y, ry) = U.

Similarly, we can prove the converse.
(b) If C is closed in (Y, d), then by (a), there exists an open set V
in (X, d) such that Y − C = V ∩ Y. Then C = (X − V ) ∩ Y . But
X − V is closed in (X, d). Take D = X − V . Similarly, we can prove
the converse part.

It is straightforward to verify that if A ⊆ Y ⊆ X, then clY (A) =
Y ∩ clX(A), where clY (A) denotes the closure of A in (Y, d) and
clX(A) denotes the closure of A in (X, d).

In the upcoming chapters, we will see that certain properties
of metric spaces can be completely defined in terms of open sets
(for example, continuity and compactness). Consequently, the rich
structure of a ‘metric’ is not required in those cases. Hence a spe-
cial name is given to the collection of all open subsets of a metric
space. It is called the topology on X induced by the metric d. If you
carefully observe, we mainly require the properties (of open sets)



30 Metric Spaces and Related Analysis

listed in Theorem 1.4.1 for the study. This gives an idea for defining
the notion of topology on an arbitrary set.

Definitions 1.4.13. Let X be a set and τ be a family of subsets of
X satisfying the following properties:

(a) ∅ ∈ τ and X ∈ τ .
(b) if {Ai : i ∈ I} ⊆ τ, then

⋃
i∈I Ai ∈ τ .

(c) if A1, . . . , An ∈ τ , then
⋂n

k=1Ak ∈ τ .
Then the family τ1 is called a topology on X and the pair (X, τ) is
called a topological space. Moreover, the elements of τ are called
open sets.

Note that every topology need not be induced by a metric. Since
the study of topological spaces is like exploring another world, we
won’t be going into further details of topological spaces. But of
course, we would like to advise our readers that after studying metric
spaces they should also explore the bigger world of topology.

Exercises

1.4.1. Compute the interior, closure, boundary and the derived set
of

(a) A = Qc ∩ [0,
√
3) in (Qc, | · |).

(b) B = {(x, y) ∈ R2 : x + y < 1, x ≥ 0, y ≥ 0} in (X, | · |) where
X = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

1.4.2. Let (X, d) be a metric space, x ∈ X and r > 0.

(a) Show that B(x, r) is an open set in (X · d).
(b) Show that C(x, r) is a closed set in (X · d).
1.4.3. Let A and B be subsets of a metric space. Show that

(a) (A ∩B)o = Ao ∩Bo.
(b) Ao ∪Bo ⊆ (A ∪B)o.
(c) A ∪B = A ∪B.
(d) A ∩B ⊆ A ∩B.

1A Greek letter pronounced as tau.
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(e) A = (int(Ac))c and A◦ = (cl(Ac))c.

Parts (b) and (d) are also true in case we take an arbitrary col-
lection of subsets but the equality in (a) and (c) may not hold for an
arbitrary collection. Think of counter examples.

1.4.4. If A and B are subsets of a metric space such that A ⊆ B,
then show that A ⊆ B. Is the converse also true, that is, if A ⊆ B,
does this imply that A ⊆ B?

1.4.5. Suppose ∅ �= A ⊆ B ⊆ X, where (X, d) is a metric space.
Then show that A is dense in B if and only if clBA = B, where clBA
denotes the closure of A in (B, d).

1.4.6. Let (X, d) be a metric space and x and y be two distinct points
in X. Show that there exists r > 0 such that B(x, r) ∩B(y, r) = ∅.

1.4.7. Let (X, d) be a metric space and U be a non-empty subset of
X. Show that U is open in (X, d) if and only if U can be written as
a union of a family of open balls. In view of this problem, an open
set need not be an open ball — give an example. Similarly, a closed
set in (X, d) need not be a closed ball.

1.4.8. Let (X, dX ) and (Y, dY ) be metric spaces and equip X × Y
with the metric μ∞ (refer to Example 1.3.4). Show that if A and B
are open (resp. closed) subsets of X and Y , then A×B is open (resp.
closed) in (X × Y, μ∞). Also see Exercise 2.6.7.

1.4.9. Let (X, d) be a metric space and A and B be two subsets of
X. If A is open and B is closed in (X, d), then show that A − B is
open in (X, d), while B −A is closed in (X, d).

1.4.10. If A is a subset of a metric space (X, d), then show that
∂A = ∅ if and only if A is both open and closed in X.

1.4.11. Consider A = {(x, sin( 1x)) : x > 0} as a subset of R2. Then
show that A ∪ {(0, y) : y ∈ [−1, 1]} is the boundary of A in R2.

1.4.12. Show that a metric space (X, d) with discrete metric is sep-
arable if and only if X is countable.
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1.4.13. What can you say regarding the separability of Cb(R), where
Cb(R) is the metric subspace of B(R), which consists of all the
continuous and bounded functions defined on R?

1.4.14. Show that any non-empty subset of a separable metric space
is separable.

1.4.15. Let Di be a dense subset of the metric space (Xi, di) for all
i ∈ {1, 2, . . . , n}. Show that

∏n
i=1Di is dense in (

∏n
i=1Xi, d), where d

is the metric defined as: d(x, y) =
∑n

i=1 di(xi, yi) for x = (x1, . . . , xn)
and y = (y1, . . . , yn) in

∏n
i=1Xi. Hence deduce that the product of a

finite number of separable metric spaces is also separable.

1.4.16. Let {(Xi, di) : i ∈ N} be a countable collection of metric
spaces. Then show that the Cartesian product

∏∞
i=1Xi equipped

with the metric given in Example 1.3.10 is separable if and only if
(Xi, di) is separable for all i ∈ N.

1.5 Convergence of Sequences

Recall that in order to define a metric d on a non-empty set, we
took the help of (R, | · |). A sequence (xn) is said to converge to x
in R if given ε > 0, there exists nε ∈ N (nε depends on ε) such
that |xn − x| < ε for all n ≥ nε, that is, xn ∈ (x − ε, x + ε) for all
n ≥ nε. Note that (x− ε, x+ ε) is a nhood of x. But ε > 0 was chosen
arbitrarily. So if we imitate this definition for a general metric space
(X, d), we get the following definition. But before that, note that a
sequence (xn) in X is just a function f : N → X and f(n) is denoted
by xn.

Definition 1.5.1. Let (X, d) be a metric space, x ∈ X and (xn)
be a sequence in X. Then (xn) is said to converge to x in (X, d)
if for every ε > 0, there exists nε ∈ N (nε depends on ε) such that
d(xn, x) < ε for all n ≥ nε, that is, xn ∈ B(x, ε) for all n ≥ nε. The
point x is called a limit of the sequence (xn) in (X, d).

Evidently, if (xn) converges to x in (X, d) then the corresponding
real sequence {d(xn, x)} converges to 0 in R.

If x is a limit of the sequence (xn), then it is often denoted as:
xn → x or lim

n→∞xn = x. In the previous definition, we can call a
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limit of a convergent sequence to be the limit (as proved in the next
result).

Proposition 1.5.1. Let (X, d) be a metric space and (xn) be a
sequence in X. If (xn) converges to x and y in X, then x = y.

Proof. Let (xn) be a sequence in (X, d) which converges to x and y
in X. Then for ε > 0, there exists no ∈ N such that for n ≥ no, we
have

d(x, y) ≤ d(x, xn) + d(xn, y) < ε.

Since ε was arbitrary and d(x, y) ≥ 0, x = y.

Sequences play a crucial role in the theory of metric spaces
because many of the concepts can be conveniently handled with
the help of sequences. Let us start with the following sequential
characterization of closure point and accumulation point in (X, d).

Theorem 1.5.1. Let (X, d) be a metric space, x ∈ X and A be a
non-empty subset of X. Then

(a) x ∈ A (that is, x is a closure point of A) if and only if there
exists a sequence (xn) in A such that xn → x in (X, d).

(b) x ∈ A′ (that is, x is an accumulation point of A) if and only
if there exists a sequence (xn) of distinct terms in A such that
xn → x in (X, d).

Proof. (a) First suppose that x ∈ A. Hence by definition B(x, 1n)∩
A �= ∅. Choose xn ∈ B(x, 1n) ∩ A. Then clearly (xn) is in A and

d(x, xn) <
1
n which implies that xn → x in (X, d).

Conversely, suppose that there exists a sequence (xn) in A such
that xn → x in (X, d). So given ε > 0, there exists nε ∈ N such
that xn ∈ B(x, ε) for all n ≥ nε. In particular, B(x, ε) ∩ A �= ∅.
Since ε > 0 was chosen arbitrarily, x ∈ A.

(b) Let x ∈ A′. In the proof of the corresponding part in (a), we just
chose xn from B(x, 1n). But there was no guarantee that this xn
was different from xm chosen from B(x, 1

m ). This time, we need
to ensure it.

For n = 1, choose x1 ∈ B(x, 1) ∩ A such that x �= x1. This is
possible because x is an accumulation point of A. For the next
step we need to choose x2 from B(x, 12) ∩ A such that x2 �= x1
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and x2 �= x. Since x1 �= x, d(x1, x) > 0. Choose r2 such that
0 < r2 < min{1

2 , d(x1, x)}. Then since x is an accumulation point
of A, B(x, r2)∩ (A \ {x}) �= ∅. Choose x2 ∈ B(x, r2)∩ (A \ {x}).

Clearly, x2 �= x. Also d(x2, x) < r2 < d(x1, x) which implies
x2 �= x1. Now apply an inductive process. Suppose x1, x2, . . . , xn
are already chosen from A which are all distinct and x �= xi for
1 ≤ i ≤ n such that d(x, xi) < min{1

i , d(xi−1, x)} for 2 ≤ i ≤ n.

Then choose rn+1 > 0 such that rn+1 < min{ 1
n+1 , d(xn, x)}.

ThenB(x, rn+1)∩(A\{x}) �= ∅ and choose xn+1 ∈ B(x, rn+1)∩
(A\{x}). Thus, (xn) is a sequence in A with distinct terms which
converges to x in (X, d).

The converse part clearly follows from the definition.

Corollary 1.5.1. If A is a subset of a metric space (X, d), then A
is closed in X if and only if whenever (an) ⊆ A converges to x ∈ X
then x ∈ A.

As a consequence of the previous corollary, one can easily deduce
that every finite subset of a metric space (X, d) is closed in X.

Corollary 1.5.2. Let A be a subset of a metric space (X, d), then
the derived set A′ is a closed set.

Corollary 1.5.3. Let (X, d) be a metric space, A ⊆ X and x ∈ X.
Then x is an accumulation point of A in (X, d) if and only if for
every open set U containing x, U ∩A is infinite.

Before we mention the next corollary, recall that (xkn)n∈N is a sub-
sequence of (xn)n∈N in (X, d) if (kn) is a strictly increasing sequence
of natural numbers, that is, kn ∈ N and kn < kn+1 for all n ∈ N.
More precisely, if the function f : N → X defined by f(n) = xn
represents the sequence (xn), then a subsequence (xkn) of (xn) is the
composition function f ◦ φ : N → X where φ : N → N : φ(n) = kn is
a strictly increasing function (that is, φ(n) < φ(n+ 1) ∀ n ∈ N) and
(f ◦ φ)(n) = f(φ(n)) = xφ(n) = xkn . Thus, (xkn) is itself a sequence.

Corollary 1.5.4. Let (X, d) be a metric space and (xn) be a sequence
of distinct points in X. If A = {xn : n ∈ N} has an accumulation
point x in X, then there exists a subsequence (xkn) of (xn) such that
xkn → x in (X, d).
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Proof. By Corollary 1.5.3, B(x, 1) ∩ A is infinite. So we can pick
up xk1 ∈ B(x, 1) ∩ A such that xk1 �= x. Now B(x, 12) \ {xk1} is

an open set containing x and hence (B(x, 12) \ {xk1}) ∩ A is again

infinite. So we can choose xk2 ∈ (B(x, 12) \ {xk1}) ∩ A such that

k2 > k1 and xk2 �= x. Note that d(xk2 , x) <
1
2 . Now continue this

process inductively. Suppose that xk1 , . . . , xkn have been chosen from
A such that k1 < k2 < · · · < kn, d(xkj , x) <

1
j and xkj �= x for

j = 1, 2, . . . , n. Then consider the open set B(x, 1
n+1)\{xk1 , . . . , xkn}

containing x. Thus (B(x, 1
n+1) \ {xk1 , . . . , xkn})∩A is infinite. So we

can choose xkn+1 ∈ B(x, 1
n+1) \ {xk1 , . . . , xkn} such that kn+1 > kn

and xkn+1 �= x. Now clearly, (xkn) is a subsequence of (xn) such that
xkn → x in (X, d).

Corollary 1.5.5. Let (X, d) be a metric space and A be an infinite
subset of X. Suppose every infinite subset of A has an accumulation
point in A. Then every sequence (xn) in A has a subsequence (xkn)
converging to a point in A.

Proof. Let (xn) be a sequence in A and B = {xn : n ∈ N}. If
B is finite, then (xn) has a constant subsequence and clearly this
constant subsequence converges to a point in A. So assume that
B = {xn : n ∈ N} is infinite. Then inductively we can prove the
existence of a subsequence (xkn) of (xn) such that xkn �= xkm holds
whenever n �= m. Let A1 = {xkn : n ∈ N}. Since A1 is infinite,
by hypothesis, A1 has an accumulation point x (say) in A. Then
by Corollary 1.5.4, there exists a subsequence (xknj

) of (xkn) such

that xknj
→ x. Since (xkn) is a subsequence of (xn), (xknj

) is also a

subsequence of (xn).

Convergence of a sequence is a very strong property which is not
possessed by every sequence. So there was a need to look for some
weaker class of sequences which could be helpful in some sense. If we
observe any convergent sequence carefully, then we will find that the
sequential terms eventually comes closer to each other. This property
is formalized under the name ‘Cauchy sequence’.

Definition 1.5.2. Let (X, d) be a metric space and (xn) be a
sequence in X. Then (xn) is called a Cauchy sequence in (X, d)
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if for every ε > 0, there exists nε ∈ N (nε depends on ε) such that
d(xm, xn) < ε for all n, m ≥ nε.

It is easy to see that every convergent sequence is Cauchy. But
the converse is not in general true. The metric spaces in which the
converse is also true holds a special place in the analysis on metric
spaces.

Definition 1.5.3. If every Cauchy sequence in (X, d) converges in
(X, d), then (X, d) is called a complete metric space.

Interestingly, (R, | · |) is a complete metric space but (Q, | · |) is
not complete. We will have a detailed discussion on complete metric
spaces in Chapter 3.

So far in a metric space, we were discussing about distance
between two points, but at times we are prompted to expand this
vision further and linking this with distance between a point and a
set. Let (X, d) be a metric space, ∅ �= A ⊆ X and x ∈ X. How to
define the distance between the point x and the set A? First con-
sider the Euclidean space R3. Suppose you are in front of the door
of a room. How will you compute the distance between you and the
room? Again in R2 with the usual distance, take a straight line L
and a point (x, y) outside L. What is the distance between (x, y) and
L? Will you go for the orthogonal projection of the point (x, y) on
L? Suppose this projection meets L in the point (x′, y′). So we take
the distance to be the length of the line segment joining (x, y) and
(x′, y′). But the concept of orthogonal projection may not be appli-
cable in a general metric space. Thus we look for some characteristic
feature of the orthogonal projection which could be generalized as
well. If we join (x, y) to each point on L and consider the lengths of
the line segments, then the length of the line segment corresponding
to the orthogonal projection is the smallest among all these lengths.
In view of this observation, we have the following definition.

Definitions 1.5.4. Let (X, d) be a metric space, A and B be two
non-empty subsets of X and x ∈ X. Then the distance of x from A,
denoted as d(x,A), is defined by

d(x,A) = inf{d(x, a) : a ∈ A}.
Also, the gap between the sets A and B is given by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
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Note. By convention, d(x, ∅) = +∞.

Suppose q ∈ Q, then due to density of Q in R, d(q,Q \ {q}) =
0. Furthermore, let A = {(x, 1x) : x > 0} and B = {(x, 0) : x ∈
R}. Then note that A and B are disjoint closed subsets in R2, but
d(A,B) = 0. Consequently, the function d does not define a metric
on the collection of all non-empty subsets of a metric space (X, d).
So the next guess is: take supremum instead of infimum. Moreover,
since we need a metric to be real-valued, we should restrict ourselves
to the collection of all non-empty bounded subsets of (X, d). Let
f(A,B) = sup{d(a,B) : a ∈ A}. Now if f(A,B) = 0 then d(a,B) = 0
for all a ∈ A. This implies that a ∈ B ∀ a ∈ A (see Exercise 1.5.4).
Hence A ⊆ B. Thus, f is also not a metric. But we get a fairly
reasonable idea of the definition of the following function:

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
.

Now we leave it as an exercise for the readers to prove that dH
satisfies the properties of a metric on the collection of all non-empty
closed and bounded subsets of a metric space (X, d) (Exercise 1.5.7).
Note that the metric dH is known as Hausdorff metric or Hausdorff
distance.

In the previous section, we briefly talked about a (topological)
structure which was weaker than that of a metric space. Now we end
this chapter with a brief discussion of normed linear spaces which
are stronger than metric spaces. Recall that the concept of a metric
was parallel to that of distances in R. The idea of norm is actually
motivated by the length |x| of a vector x. Consequently, we need a
vector space to define norm on it, unlike metric which was defined
on an arbitrary non-empty set.

First let us recall the precise definition of vector spaces.

Definition 1.5.5. Let X be a non-empty set with a function + :
X × X → X, and a function · : K × X → X, where K = R or
C. Then (X,+, ·) is called a vector space (or linear space) over
K if the following conditions are satisfied for all x, y, z ∈ X and
α, β ∈ K:

(i) x+ y = y + x,
(ii) (x+ y) + z = x+ (y + z),
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(iii) there exists 0 ∈ X such that x+ 0 = x,
(iv) there exists −x ∈ X such that x+ (−x) = 0,
(v) α · (x+ y) = α · x+ α · y,
(vi) (α+ β) · x = α · x+ β · x,
(vii) α · (β · x) = (αβ) · x,
(viii) 1 · x = x

Note that if (X,+) satisfies conditions (i) to (iv), then it is called
an abelian group. The operation + is usually called vector addition,
while · is known as scalar multiplication. The vector space (X,+, ·)
is said to be a real vector space if K = R, and a complex vector
space if K = C.

Evidently, Rn and lp are real vector spaces with respect to co-
ordinatewise operations, whereas Cn is a complex vector space with
respect to co-ordinatewise operations defined as follows: x+y = (x1+
y1, . . . , xn + yn), λx = (λx1, . . . , λxn), where x = (x1, . . . , xn), y =
(y1, . . . , yn) and λ ∈ C.

Definition 1.5.6. A norm is a real-valued function defined on a
vector space X over K (K = R or C), denoted by ‖x‖, which satisfies
the following properties:

(i) ‖x‖ ≥ 0,
(ii) ‖x‖ = 0 if and only if x = 0,
(iii) ‖αx‖ = |α| ‖x‖,
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for every x, y ∈ X and α ∈ K.

Moreover, the pair (X, ‖ · ‖) is called a normed linear space or
simply a normed space.

Example 1.5.1. The Euclidean space Rn is a normed linear space
with a norm defined as follows:

‖x‖ =
√

|x1|2 + · · ·+ |xn|2, where x = (x1, . . . , xn) ∈ Rn.

Hence the norm is called the Euclidean norm.

Interestingly, on a normed linear space (X, ‖·‖) one can naturally
define a metric as follows:

d(x, y) = ‖x− y‖, where x, y ∈ X.
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It is known as the metric induced by the norm. Thus, every
normed linear space is a metric space but every metric on a vector
space need not be obtained from a norm.

Example 1.5.2. Let X be a nonempty set, and let B(X) be the
collection of all bounded real-valued functions defined on X. Then
B(X) is a vector space over R under the usual addition of functions
on X and the usual scalar multiplication of f in B(X) by a scalar
α ∈ R. On B(X), we can define the supremum norm (also called
uniform norm) as follows:

‖f‖∞ = sup
x∈X

|f(x)| for f ∈ B(X).

Because of the notation ‖ · ‖∞, this norm is also called the infin-
ity norm. This norm induces the supremum metric D on B(X):
D(f, g) = ‖f − g‖∞ ∀ f, g ∈ B(X).

Exercises

1.5.1. Show that in the Euclidean space Rn, the closure of any open
ball B(x, r) is the closed ball C(x, r). Give an example to show that
in general, they need not coincide.

1.5.2. For the non-empty subsets A and B of R, define A + B =
{a+ b : a ∈ A, b ∈ B}.
(a) If A and B are both closed in R, is A+B also closed in R?
(b) Let A be closed in R and x ∈ R. Is x + A = {x + a : a ∈ A}

closed in R?

1.5.3. Let (X, d) be a metric space and (xn) be a sequence in X
converging to a point x in X. Show that the set F = {xn : n ∈
N} ∪ {x} is closed in (X, d). Is x an accumulation point of F?

1.5.4. Let (X, d) be a metric space, A and B be two non-empty
subsets of X and x ∈ X. Show that

(a) d(A,B) = inf{d(a,B) : a ∈ A} = inf{d(b,A) : b ∈ B}
(b) d(x,A) = 0 ⇔ x ∈ A, that is, A = {x ∈ X : d(x,A) = 0}
(c) If A ⊆ B, then d(x,B) ≤ d(x,A) ≤ d(x,B)+ diam(B)
(d) d(x,A) ≤ d(x, y) + d(y,A) ∀ y ∈ X
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(e) d(x, y) ≤ d(x,A)+ diam(A) + d(y,A) ∀ y ∈ X
(f) d(A,B) ≤ d(x,A) + d(x,B)
(g) diam(A) = diam(A)
(h) If {Ai : i ∈ I} is a family of non-empty subsets of X, then

d(x,
⋃

i∈I Ai) = inf{d(x,Ai) : i ∈ I}. If ⋂i∈I Ai �= ∅, then what
can you say regarding d(x,

⋂
i∈I Ai)?

1.5.5. Suppose S is a non-empty subset of R. If S is bounded below,
then d(inf S, S) = 0.

1.5.6. Let A be a non-empty subset of (X, d). For ε > 0, let Aε =⋃
a∈AB(a, ε).

(i) Show that Aε = {x ∈ X : d(x,A) < ε}.
(ii) Prove that A =

⋂
ε>0A

ε.
(iii) Give an example of a subset A of some metric space such that

A2 �= (A1)1.

1.5.7. (i) Prove that the following function dH is a metric on the
family, CLB(X), of all non-empty closed and bounded subsets
of a metric space (X, d):

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
.

(ii) Verify that dH(A,B) = inf{ε > 0 : B ⊆ Aε and A ⊆ Bε}.
(iii) Find dH(A,B), where A = [0, 2] and B = {0, (−1)/n : n ∈ N}

are closed and bounded subsets of R.
(iv) Suppose (X, d) is bounded. Then prove that (CLB(X), dH ) is

also bounded.

1.5.8. In a metric space with discrete metric, what kind of sequences
are convergent?

1.5.9. Prove that every convergent sequence in a metric space is
Cauchy and bounded. What can you say about the boundedness of
a Cauchy sequence?

1.5.10. Let a = (an) ∈ lp for 1 ≤ p < ∞. Show that the sequence
(x(k)) in lp, where x(k) = (a1, a2, . . . , ak, 0, 0, . . .), converges to a in
lp. Give an example to show that it need not hold true in l∞.
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1.5.11. Consider the subset coo of l∞ defined as coo = {(xn) ∈ l∞ :
xn = 0 ∀ n ≥ k for some k ∈ N}. Then show that coo is neither closed
nor open in l∞.

1.5.12. Prove that the set c and co are closed in l∞, where c denotes
the space of all convergent sequences, while c0 is the space of all
sequences converging to zero.

1.5.13. Let ‖ · ‖1 and ‖ · ‖2 be norms on a vector space X. Prove
that max{‖ · ‖1, ‖ · ‖2} and ‖ · ‖1 + ‖ · ‖2 are also norms on X.

1.5.14. Prove that a metric d induced by a norm on a normed linear
space (X, ‖ · ‖) satisfies the following properties:

d(x+ a, y + a) = d(x, y),
d(αx, αy) = |α| d(x, y)

for all x, y, a ∈ X and every α ∈ K = R or C. Thus, a metric
induced by a norm is translation invariant. It should be noted that
if a metric satisfies these properties then it need not be induced by
a norm. But these properties could be useful in proving some metric
to be not induced by any norm.

1.5.15. Recall that a subset A of a normed linear space (X, ‖ · ‖)
(over R) is called convex provided whenever a1, a2 ∈ A and α ∈ [0, 1]
then αa1+(1−α)a2 ∈ A, that is, for all a1, a2 ∈ A, the line segment
joining these points, {(1 − α)a1 + αa2 : α ∈ [0, 1]}, is also contained
in A. Prove the following assertions:

(i) every open ball in (X, ‖ · ‖) is convex.
(ii) if A is convex, then so is Aε for ε > 0.
(iii) the intersection of any family of convex subsets of X is again

convex, and conclude that any subset of X has a smallest convex
superset, that is, for A ⊆ X, there exists a smallest convex
subset B of X such that A ⊆ B.

(iv) the sum of two convex sets is also convex.
(v) the interior and closure of a convex set are also convex.
(vi) a convex set is stable under taking convex combinations of its

elements, that is, if a1, a2, . . . , an belong to a convex set A and
α1, α2, . . . , αn are non-negative numbers such that α1 + α2 +
. . .+ αn = 1 then α1a1 + α2a2 + . . . + αnan ∈ A.
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Note that a convex set can be defined in general for any vector space
over R.

1.6 Convergence of Subsequences

It is known that if a sequence (xn) in a metric space (X, d) converges
to some x ∈ R, then any subsequence of (xn) also converges to x. So
now the question is: If a sequence (xn) does not converge in a metric
space, then what about its subsequences other than (xn) itself? Do
they converge? More precisely, which subsequences converge? Note
that in this section, this question is answered for sequences in R. And
for that we need to talk about cluster points of a sequence. But we
define such points in a general metric space.

Definition 1.6.1. Let (xn) be a sequence in a metric space (X, d)
and x ∈ X. Then x is called a cluster point of (xn) in (X, d) if
given ε > 0 and n ∈ N, there exists k > n (k depends on both n and
ε) such that d(xk, x) < ε.

Remark. Some authors call cluster points by ‘limit points’. But
in order to avoid ambiguity between ‘limit point’ and ‘limit’ of a
sequence, we do not prefer to use the term ‘limit point’. In fact, the
term ‘cluster point’ is suitable in literal sense as well: keep ε > 0 fixed
but keep varying n ∈ N, then we can find infinitely many members
of the sequence in the ε-nhood of a cluster point.

Observe that if xn → x in (X, d), then the sequential terms get
arbitrarily close to the limit x of the sequence eventually. But the
sequential terms get arbitrarily close to a cluster point frequently.
Unlike limit of a sequence, there could be more than one cluster
point of a sequence. For example, consider the sequence (xn) where
x2n−1 = 1/n and x2n = 1 + 1/n for n ∈ N. Then 0 and 1 are the
cluster points of (xn). In this example, note that the subsequence
(x2n−1) converges to 0, while the subsequence (x2n) converges to 1.
Subsequently, we have the following equivalent characterization of a
cluster point of a sequence.

Theorem 1.6.1. Let (xn) be a sequence in a metric space (X, d)
and x ∈ X. Then x is a cluster point of (xn) in (X, d) if and only
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if there exists a subsequence (xkn) of (xn) such that xkn → x in
(X, d).

Proof. First suppose that x is a cluster point of (xn). For ε = 1,
choose k1 ∈ N such that d(xk1 , x) < 1. Now again apply the definition
of cluster point for ε = 1

2 and k1 ∈ N, then there exists k2 ∈ N such

that k2 > k1 and d(xk2 , x) <
1
2 . By induction, suppose k1, k2, . . . , kn

have been selected such that k1 < k2 < · · · < kn and d(xki , x) <
1
i , 1 ≤ i ≤ n. Then for ε = 1

n+1 and kn, we may choose by the
definition of a cluster point, kn+1 ∈ N such that kn+1 > kn and
d(xkn+1 , x) <

1
n+1 . Consequently, (xkn) is a subsequence of (xn) such

that xkn → x.
Conversely, suppose xkn → x. Let m ∈ N and ε > 0. Since xkn →

x, there exists no ∈ N such that d(xkn , x) < ε ∀ n ≥ no. Now choose
n1 > max{no,m}. Then d(xkn1

, x) < ε and also kn1 ≥ n1 > m. Thus,
x is a cluster point of (xn).

It is evident that a sequence in a metric space need not have a
cluster point. Consider the simple example of the sequence of natural
numbers. Note that this sequence is unbounded. Now the question
is: Can you construct a bounded sequence in R which has no cluster
point? The answer is negative! Interestingly, every bounded sequence
in R has a convergent subsequence. This is given by the well-known
result, Bolzano–Weierstrass theorem. For proving this theorem, we
need to do some more analysis. So let us begin.

Definitions 1.6.2. A sequence (xn) in R is said to be

(a) increasing if xn ≤ xn+1 ∀ n ∈ N.
(b) decreasing if xn ≥ xn+1 ∀ n ∈ N.
(c) monotone if (xn) is either increasing or decreasing.

Evidently, not every sequence in R is monotone but every sequence
in R has a monotone subsequence (Exercise 1.6.3). Now we look at the
condition under which a monotone sequence is convergent. Definitely,
for the sequence to be convergent, it should be bounded first. But is
boundedness sufficient for the convergence of a monotone sequence
in R? The answer is affirmative.
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Theorem 1.6.2 (Monotone convergence theorem). A mono-
tone sequence of real numbers is convergent if it is bounded.

Proof. Suppose (xn) is a bounded, increasing sequence in R. Then
there exists M > 0 such that xn ≤ M ∀ n ∈ N. By completeness
axiom on R, sup{xn : n ∈ N} exists in R. Let x∗ = sup{xn : n ∈ N}.
We claim that x∗ is the limit of the sequence (xn).

Let ε > 0. By Theorem 1.2.1, there exists k ∈ N such that

x∗ − ε < xk ≤ xn ≤ x∗ < x∗ + ε ∀ n ≥ k.

Thus,

|xn − x∗| < ε ∀ n ≥ k.

Hence xn → x∗.
For proving a bounded, decreasing sequence (yn) to be convergent,

note that the sequence (−yn) is bounded and increasing.

Hence monotonicity establishes a link between boundedness and
convergence of a real sequence. But a bounded sequence in R need
not be monotone in general. So now the next step is to construct
somehow a monotone sequence out of a given bounded sequence in R.

Let (xn) be a bounded sequence in R. For each n ∈ N, let

vn = sup
k≥n

xk and wn = inf
k≥n

xk.

Since (xn) is bounded, (vn) and (wn) are bounded sequences of real
numbers. Moreover, note that the sequence (vn) is decreasing, while
(wn) is an increasing sequence in R. Hence by monotone convergence
theorem,

lim
n→∞ vn = inf

n∈N
vn = inf

n∈N
[
sup
k≥n

xk
]

and

lim
n→∞wn = sup

n∈N
wn = sup

n∈N

[
inf
k≥n

xk
]
.

These limits are given special names as they play a crucial role in
real analysis.
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Definitions 1.6.3. Let (xn) be a bounded sequence in R. Then

(i) the limit superior of (xn) is defined by

lim supxn = inf
n∈N

[
sup
k≥n

xk
]
.

(ii) the limit inferior of (xn) is defined by

lim inf xn = sup
n∈N

[
inf
k≥n

xk
]
.

The next result gives a convenient way to find the limit superior
and the limit inferior of a bounded sequence.

Theorem 1.6.3. Let (xn) be a bounded sequence in R. Then
lim inf xn and lim supxn are the smallest and the largest cluster
points of (xn).

Proof. Suppose (xn) is a bounded sequence in R. Let s =
lim supxn = infn∈N vn, where vn = supk≥n xk. We first show that
s is a cluster point of (xn). Let ε > 0 and m ∈ N. Recall that (vn) is
a decreasing sequence which converges to s. Hence there exists n > m
such that s ≤ vn < s+ ε. Since vn = supk≥n xk, xk < s+ ε ∀ k ≥ n.
On the other hand, there must exist some k ≥ n such that s−ε < xk.
If not, then xk ≤ s − ε ∀ k ≥ n implying vn ≤ s − ε. But s ≤ vn.
Hence there exists k ≥ n such that s − ε < xk < s + ε. But n > m
and so k > m. Hence s is a cluster point of (xn).

Now we show that s is the largest cluster point of (xn). Let x be
a cluster point of (xn) and choose ε > 0. Then given n ∈ N, ∃ m > n
such that x− ε < xm < x + ε. Then x − ε < xm ≤ supk≥n xk. Thus
x − ε < vn for all n ∈ N. Hence x − ε ≤ infn∈N vn = s, that is,
x− ε ≤ s ∀ ε > 0. Therefore, x ≤ s and we are done.

Similarly, it can be proved that lim inf xn is the smallest cluster
point of (xn).

Remark. As a consequence, we have

lim inf xn ≤ lim supxn.

Now the question is: When does the reverse inequality hold true? (see
Exercise 1.6.4.)
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Note that Theorem 1.6.3 also talks about the existence of a cluster
point of a bounded sequence in R. Hence, every bounded sequence in
R has a cluster point. Then by Theorem 1.6.1, it can be concluded
that every bounded sequence in R has a convergent subsequence.
Hence we have finally proved the next result.

Theorem 1.6.4 (Bolzano–Weierstrass theorem). Every boun-
ded sequence in R has a convergent subsequence.

Remark. Note that we do not have an analogous version of Bolzano–
Weierstrass Theorem for any general metric space. For example,
consider the l2-space. Then the sequence (en), where en ∈ l2 with
1 at the nth place and 0 otherwise, is bounded but (en) has no
convergent subsequence.

Exercises

1.6.1. Suppose (kn) and (mn) are strictly increasing sequences of
natural numbers such that {kn, mn : n ∈ N} = N. Show that a
sequence (xn) in R converges if and only if both subsequences (xkn)
and (xmn) of (xn) converges to the same limit.

1.6.2. (a) How many cluster points does a convergent sequence
have?

(b) If a bounded sequence (xn) in a metric space (X, d) has a unique
cluster point x, does this imply that xn → x ? What can you say
if (X, d) = (R, | · |)?

1.6.3. Let (xn) be a sequence in R. Prove that there exists a subse-
quence of (xn) which is monotone. Using this observation, can you
give an alternate proof for Bolzano–Weierstrass Theorem?

1.6.4. If (xn) is a bounded sequence in R, then show that xn → x if
and only if lim inf xn = lim supxn = x.

1.6.5. Let (xn) and (yn) be two bounded sequences in R. Prove that:

(i) lim sup(−xn) = − lim inf xn
(ii) lim inf(−xn) = − lim supxn
(iii) lim sup(xn + yn) ≤ lim supxn + lim sup yn
(iv) lim inf(xn + yn) ≥ lim inf xn + lim inf yn.
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1.6.6. Show that the set of all cluster points of a sequence in (X, d)
is closed in X.

1.6.7. Let (xn) be a sequence in (X, d). Show that each accumulation
point of the set {xn : n ∈ N} is a cluster point of (xn). What can
you say about the converse?

1.6.8. Give an example of a sequence in R whose set of cluster points
is R. Generalize this construction to an arbitrary separable metric
space.
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Chapter 2

Continuity and Some Stronger
Notions

We all are familiar with the significance of continuous functions from
calculus and real analysis. In this chapter, we talk about continuity
of a function whose domain and codomain are general metric spaces.
Moreover, some very interesting classes of functions are also consid-
ered which lie strictly inside the class of continuous functions. These
classes of special functions play a crucial role in various branches of
mathematics.

2.1 Basics of Continuity

In this section, we mainly deal with the movement from one metric
space to another. But here the following question arises: Why should
one bother about moving from one metric space to another one?
Let us try to answer this question. Suppose you have two metric
spaces (X, d) and (Y, ρ). While the space (X, d) seems familiar to
you, the space (Y, ρ) you may not know well of. Is it possible to have
information on (Y, ρ) through (X, d) and vice-versa? For example,
suppose that you want to know if (Y, ρ) is separable, while you know
that (X, d) is separable. Actually, like a good vehicle, we should be
able to drive both ways: from (X, d) to (Y, ρ) and from (Y, ρ) to
(X, d). That means we should have information on the vehicle itself
which we use. So one should expect that the nature of the vehicle
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will depend on the kind of information we try to gather regarding
(Y, ρ) or (X, d).

Recall that a natural way to move from a set X to another set Y
is to use a function from X to Y . But when we have metric spaces
(X, d) and (Y, ρ), then the function from X to Y should have some-
thing more so that we can use the metric structures of X and Y
profitably. This ‘something more’ actually depends on the extent to
which we need the metric structures on X and Y to be related. We
start with a very basic map which is usually found in abundance.
These are known as continuous maps. Pay attention on the adjec-
tive ‘continuous’. Intuitively, it means a map f from (X, d) to (Y, ρ)
such that we move continuously: if we move slowly and methodically
from x1 to x2 in X, then the movement from f(x1) to f(x2) is also
slow and methodical. This intuition leads us to define continuity at
a point x in X. Recall the ε–δ definition of continuity of a function
f : R → R. Here obviously we consider the usual distance metric | · |.
Let f : (R, | · |) → (R, | · |) be a map and xo ∈ X. Then f is said to
be continuous at xo if given ε > 0, there exists a δ > 0 (δ depends
on ε and xo) such that |f(x)− f(xo)| < ε whenever |x− xo| < δ. Let
us imitate this definition for a map f : (X, d) → (Y, ρ) between two
metric spaces.

Definition 2.1.1. Let f : (X, d) → (Y, ρ) be a map between two
metric spaces (X, d) and (Y, ρ) and xo ∈ X. Then f is said to be
continuous at xo if for every ε > 0, there exists a δ > 0 (δ depends
on ε and xo) such that ρ(f(x), f(xo)) < ε whenever d(x, xo) < δ.

In other words, f(x) can be made arbitrarily close to f(xo) pro-
vided x is sufficiently close to xo. Here the reader should carefully
observe the usage of the words in order to remove the confusion
between ε and δ. First decide how much close to f(xo) you want
the images of points (under f) to be? That measurement is given by
ε. Then in order to ensure this ε-closeness, we need to decide how
much close to xo the pre-images should be? The second measurement
is given by δ. Obviously, δ will depend on ε and xo.

Now let us go back to Definition 2.1.1. Note that d(x, xo) < δ
means x ∈ BX(xo, δ) (the open ball centred at xo with radius δ in
(X, d)). Similarly ρ(f(x), f(xo)) < ε means f(x) ∈ BY (f(xo), ε). We
are distinguishing between the open balls in (X, d) and those in (Y, ρ)
by using the subscripts X and Y . Since an open ball centred at a
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point denotes a nhood of the point, Definition 2.1.1 can be rewritten
in terms of nhoods as follows: the function f : (X, d) → (Y, ρ) is said
to be continuous at xo if given a nhood BY (f(xo), ε) of f(xo) in Y ,
there exists a nhood BX(xo, δ) of xo in X such that f(BX(xo, δ)) ⊆
BY (f(xo), ε).

Example 2.1.1. Let f : R2 \ {(0, 0)} → R be defined by

f(x, y) =
x2 − y2

x2 + y2
for (x, y) ∈ R

2 \ {(0, 0)}.

Can you define f(0, 0) in such a way that f becomes continuous on
R
2? Let us think about the possible value of the function at (0, 0).

Let ε = 1
2 . We know that every open ball around (0, 0) contains

points of the form (a, a) for suitable a ∈ R. For a �= 0, f(a, a) = 0.
Hence by the continuity condition, |f(0, 0)−0| < 1

2 . This implies that

−1
2 < f(0, 0) < 1

2 . Similarly, we can see that every nhood of (0, 0)

contains points of x-axis. Thus, |f(0, 0)− f(a, 0)| = |f(0, 0)−1| < 1
2 .

Consequently, 1
2 < f(0, 0) < 3

2 . A contradiction! Hence, f is not
continuous at (0, 0) in any case.

Definition 2.1.2. A function f : (X, d) → (Y, ρ) between two metric
spaces is said to be continuous on X (or simply continuous) if f is
continuous at each point of X.

Here are some examples.

Example 2.1.2. Let f : (X, d) → (X, d) be the identity map, that
is, f(x) = x ∀ x ∈ X. For each point of X, given ε > 0, we can
choose δ = ε. So f is continuous at each point of X, that is, f is
continuous on X.

Note that the identity map from (R, | · |) to (R, d), where d is the
discrete metric, is not continuous at any point of R. Prove it! What
can you say regarding a function from (R, d) to (R, | · |)?
Example 2.1.3. Let f : (X, d) → (Y, ρ) be a map between two
metric spaces and yo ∈ Y . If f(x) = yo ∀ x ∈ X, then f is continuous
on X. In other words, a constant map is always continuous. Given
ε > 0, what is your δ ?

Example 2.1.4. Let f : (X, d) → (Y, ρ) be a map such that
ρ(f(x), f(x′)) = d(x, x′) ∀ x, x′ ∈ X. Such a map is called an
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isometry. The reader should verify that every isometry is continuous
and one-to-one. But an isometry need not be onto. Does there exist
an isometry from (R, | · |) onto (C, | · |)? We will have a detailed
discussion on isometries in the next section.

The next theorem presents the most useful characterizations of
continuity.

Theorem 2.1.1. Let f : (X, d) → (Y, ρ) be a function between two
metric spaces. Then the following statements are equivalent:

(a) f is continuous on X.
(b) f−1(U) is open in (X, d), whenever U is open in (Y, ρ).
(c) f−1(Bρ(y, ε)) is open in (X, d) for all y ∈ Y and ε > 0.
(d) Whenever xn → x in (X, d), then f(xn) → f(x) in (Y, ρ) for any

x ∈ X.
(e) f(A) ⊆ f(A) holds for every subset A of X.
(f) f−1(C) is closed in (X, d), whenever C is closed in (Y, ρ).

Proof. (a) ⇒ (b): Let U be open in (Y, ρ). In order to show that
f−1(U) is open in (X, d), we will show that each point of f−1(U) is
an interior point in (X, d).

Let x ∈ f−1(U). So f(x) ∈ U . Since U is open in (Y, ρ), there
exists ε > 0 such that f(x) ∈ Bρ(f(x), ε) ⊆ U . Since f is continuous
at x, there exists δ > 0 such that f(Bd(x, δ)) ⊆ Bρ(f(x), ε). So
x ∈ Bd(x, δ) ⊆ f−1(Bρ(f(x), ε)) ⊆ f−1(U). Hence x is an interior
point of f−1(U) and consequently f−1(U) is open in (X, d).

(b) ⇒ (c): This is immediate.

(c) ⇒ (d): Let (xn) be a sequence in X converging to a point x
in (X, d). We need to show that f(xn) → f(x) in (Y, ρ), that is, we
need to show that every nhood of f(x) in (Y, ρ) eventually contains
all the members of the sequence (f(xn)).

Let U be a nhood of f(x). Then there exists an ε > 0 such
that f(x) ∈ Bρ(f(x), ε) ⊆ U . By (c), f−1(Bρ(f(x), ε)) is open
in (X, d). Moreover, it contains x. Hence there exists δ > 0 such
that x ∈ Bd(x, δ) ⊆ f−1(Bρ(f(x), ε)). Since xn → x in (X, d),
there exists no ∈ N such that xn ∈ Bd(x, δ) ∀ n ≥ no, that is,
xn ∈ f−1(Bρ(f(x), ε)) ∀ n ≥ no. So f(xn) ∈ Bρ(f(x), ε) ∀ n ≥ no.
But that precisely means that f(xn) → f(x) in (Y, ρ).
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(d) ⇒ (e): Let x ∈ A so that f(x) ∈ f(A). By Theorem 1.5.2, there
exists a sequence (xn) in A such that xn → x in (X, d). By (d),
f(xn) → f(x) in (Y, ρ). But xn ∈ A ⇒ f(xn) ∈ f(A). Hence again

by Theorem 1.5.2, we get, f(x) ∈ f(A). Thus, f(A) ⊆ f(A).

(e) ⇒ (f): Let C be a closed set in (Y, ρ). Hence C = C in (Y, ρ). Let

A = f−1(C), then f(A) ⊆ C. By (e), f(A) ⊆ f(A) ⊆ C = C. This
implies that A ⊆ f−1(C) = A. Hence A = A, that is, A = f−1(C) is
closed in (X, d).

(f) ⇒ (a): We need to show that f is continuous at every point of X.
Let x ∈ X and choose ε > 0. Note that the set C = Y −Bρ(f(x), ε) =
{y ∈ Y : ρ(f(x), y) ≥ ε} is closed in (Y, ρ). Hence by (f), f−1(C) is
closed in (X, d). Since x �∈ f−1(C) and X−f−1(C) is open in (X, d),
there exists δ > 0 such that x ∈ Bd(x, δ) ⊆ X − f−1(C). Now if x′ ∈
Bd(x, δ), then x

′ ∈ X−f−1(C). This implies that f(x′) ∈ Bρ(f(x), ε).
So we get f(Bd(x, δ)) ⊆ Bρ(f(x), ε). Hence f is continuous at x.

Remark. Let A be a non-empty subset of X. We call a function
f : (X, d) → (Y, ρ) to be continuous on A if f is continuous at
each point of A. It should not be confused with the continuity of
the restriction of f on A, that is, f : (A, d) → (Y, ρ). For example,
consider the function f : R → R defined as f(x) = 0 for x ∈ Q and
f(x) = 1 for x �∈ Q. Then the restriction of f on Q is a constant
function and hence it is continuous. But f is not continuous on Q

because by the density of irrationals in R for every rational num-
ber a there exists a sequence (xn) of irrationals converging to a, but

f(xn) �→ f(a). In particular, take the sequence (
√
2
n ) which converges

to 0. The reader should observe that one side implication is always
true: if f is continuous on A then the function f : (A, d) → (Y, ρ)
is continuous (use Theorem 2.1.1(d)). The converse holds true if A
is open: let a ∈ A and (xn) be a sequence in X which converges
to a. Since A is open, the sequential terms of (xn) are eventually
contained in A and hence again by using the sequential characteri-
zation of continuity of f : (A, d) → (Y, ρ) we get that f is continuous
at a.

Many a times, when a function is not continuous on the whole
domain but on discrete points then in that scenario sequential char-
acterization for continuity could be highly convenient. Hence now we
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manipulate the condition (d) of the previous theorem for continuity
at discrete points of the domain space.

Theorem 2.1.2. Let f : (X, d) → (Y, ρ) be a function between
two metric spaces and x ∈ X. Then the following statements are
equivalent:

(a) f is continuous at x.
(b) Whenever xn → x in (X, d), then f(xn) → f(x) in (Y, ρ).

Proof. (a) ⇒ (b): Suppose xn → x in (X, d). To show that f(xn) →
f(x) in (Y, ρ), choose an open ball Bρ(f(x), ε) around f(x) in (Y, ρ).
Since f is continuous at x, there exists an open ball Bd(x, δ) around
x in (X, d) such that f(Bd(x, δ)) ⊆ Bρ(f(x), ε). Since xn → x in
(X, d), there exists an nδ ∈ N such that xn ∈ Bd(x, δ) ∀ n ≥ nδ.
Hence f(xn) ∈ Bρ(f(x), ε) ∀ n ≥ nδ, that is, f(xn) → f(x) in (Y, ρ).
(Note that nδ depends on δ which in turn depends on ε, hence nδ
depends on ε.)

(b) ⇒ (a): If possible, suppose that f is not continuous at x.
Then there exists ε > 0 for which no positive δ works. In particular,
δ = 1

n does not work for this ε. Hence there exists xn ∈ X such that

d(x, xn) <
1
n , but ρ(f(x), f(xn)) ≥ ε. This is true for all n in N. Then

xn → x in (X, d), but (f(xn)) does not converge to f(x) in (Y, ρ).
We get a contradiction. Hence f must be continuous at x.

Remarks. (i) Note that in (b) ⇔ (a) of Theorem 2.1.2, we have
implicitly applied the axiom of choice to get the existence of the
sequence (xn) with the required condition: for every n ∈ N, con-
sider the set Xn = {x′ ∈ X : d(x, x′) < 1

n and ρ(f(x), f(x′)) ≥
ε}. Then each Xn �= ∅ and hence by the axiom of choice (Propo-
sition 1.1.2),

∏
n∈NXn is non-empty. Let (xn) ∈

∏
n∈NXn. Then

this sequence (xn) converges to x but (f(xn)) does not converge
to f(x).

(ii) Theorem 2.1.2 says that if f is continuous at x, then whenever
xn → x, we have

lim
n→∞ f(xn) = f(x) = f( lim

n→∞xn).

Note how we have interchanged the positions of lim
n→∞ and f .

The next corollary is immediate from the previous result.
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Corollary 2.1.1. If the functions f : (X, dX ) → (Y, dY ) and g :
(Y, dY ) → (Z, dZ) are continuous, then their composition g ◦f is also
continuous.

In calculus we repeatedly use the algebra of continuous functions.
Now using the sequential characterization of continuity, we can prove
similar results for real-valued continuous functions defined on any
metric space.

Corollary 2.1.2. Let f and g be real-valued functions defined on
a metric space (X, d). Assume that both f and g are continuous at
xo ∈ X, then

(a) their sum f + g, defined as (f + g)(x) = f(x) + g(x), is also
continuous at xo.

(b) the scalar multiple cf, defined as (cf)(x) = cf(x), is also con-
tinuous at xo, where c ∈ R.

(c) their pointwise product fg, defined as (fg)(x) = f(x)g(x), is also
continuous at xo.

(d) the reciprocal 1
f , defined as ( 1f )(x) =

1
f(x) , is also continuous at

xo, provided the reciprocal is defined, that is, f(x) �= 0 on X.

Remarks. (i) As a consequence of the previous result, one can see
that C(X,R), the set of all real-valued continuous functions on
(X, d), form a vector space over R under usual addition and
scalar multiplication.

(ii) In (d), the function f is not required to be non-zero on the whole
X. If suppose f(xo) �= 0, then by the continuity of f , there exists
a nhood around xo such that f(x) �= 0 on that nhood. Hence
we can consider the reciprocal 1

f restricted to that nhood and

similarly it can be proved that 1
f is continuous at xo.

Using the previous result, one can easily verify that every poly-
nomial function is also continuous on R.

Exercises

2.1.1. Suppose f : (X, d) → (Y, ρ) is a function such that the inverse
image of every closed ball in (Y, ρ) is closed in (X, d). Does this imply
that f is continuous? Compare with Theorem 2.1.1(c).
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2.1.2. Prove that a function f : (X, d) → (Y, ρ) is continuous if
and only if it preserves convergent sequences, that is, if (xn) is a
convergent sequence in (X, d), then (f(xn)) also converges in (Y, ρ).
Compare it with Theorem 2.1.1 (d).

2.1.3. Let f : (X, d) → (Y, ρ) be a function. Then show that f is
continuous if and only if f−1(B◦) ⊆ (f−1(B))◦ for every subset B
of Y .

2.1.4. Prove that a function f : (X, d) → (Y, ρ) is continuous if and
only if

d(x,A) = 0 ⇒ ρ(f(x), f(A)) = 0,

for all x ∈ X and non-empty subsets A of X.

2.1.5. Prove that the function x �→ ln(2 + x2) is continuous on R.

2.1.6. Let f and g be two continuous functions from (X, d) into
(Y, ρ). If there exists a dense subset A of X such that f(x) = g(x)
for all x ∈ A. Show that f(x) = g(x) holds for all x ∈ X.

2.1.7. Prove that continuous image of a separable metric space is
also separable.

2.1.8. Let (X, d) be a metric space in which every bounded sequence
has a convergent subsequence. If f : (X, d) → (Y, ρ) is a continu-
ous function, then show that f preserves boundedness, that is, f(A)
is bounded for every bounded subset A of (X, d). Recall that by
Bolzano–Weierstrass theorem, every bounded sequence in R has a
convergent subsequence. Hence, every continuous function on R pre-
serves boundedness.

2.1.9. Let us define weaker notions of continuity. If f is a real-valued
function on (X, d) and xo ∈ X then it is said to be upper semi-
continuous at xo if for every ε > 0, there exists a δ > 0 such that
whenever d(x, xo) < δ, f(x) < f(xo) + ε. While f is called lower
semi-continuous at xo if for every ε > 0, there exists a δ1 > 0 such
that whenever d(x, xo) < δ1, f(xo)− ε < f(x). Clearly, a function is
continuous at xo if and only if it is both upper semi-continuous and
lower semi-continuous at xo.

(a) Give an example of a function which is upper (or lower) semi-
continuous at a point but not continuous at the point.
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(b) If A ⊆ X and f : (X, d) → R is a function defined as f(x) = 1
if x ∈ A and f(x) = 0 if x �∈ A, then show that f is lower semi-
continuous at every point of X if and only if A is an open set.
What about upper semi-continuity?

(c) Show that f is upper semi-continuous at xo if and only if −f is
lower semi-continuous at xo.

(d) Let (fn) be a sequence of real-valued functions defined on (X, d)
and let f(x) = inf

n∈N
fn(x) ∈ R for all x ∈ X. Show that if fn

is upper semi-continuous at xo ∈ X for every n ∈ N, then the
function f is also upper semi-continuous at xo.

(e) Establish that f is upper semi-continuous at every point of X if
and only if f−1(−∞, a) is open in X for all a ∈ R. And f is lower
semi-continuous at every point of X if and only if f−1(a,∞) is
open in X for all a ∈ R.

(f) Verify that f is upper semi-continuous at xo if and only if when-
ever xn → xo, then lim sup f(xn) ≤ f(xo).

(g) Prove that f is upper semi-continuous at every point of X if and
only if its hypograph {(x, t) ∈ X × R : t ≤ f(x)} is closed in
(X × R, μ), where μ is any of the metrics defined in Example
1.3.4.

(h) If f and g are upper semi-continuous at every point of X then
show that the following functions are also upper semi-continuous
at every point of X: f + g, λ.f (where λ ≥ 0), max{f, g} and
min{f, g}.

(i) Suppose that f : (X, d) → (Y, ρ) is continuous at xo ∈ X and
g : (Y, ρ) → R is upper semi-continuous at f(xo). Prove that
their composition g ◦ f is upper semi-continuous at xo.

2.1.10. ( [22]) Let us call a function f : (X, d) → (Y, ρ) to be sub-
continuous at x in X if for every sequence (xn) in X converging to
x, there exists a subsequence (f(xkn)) of (f(xn)) converging to some
y in Y . If f is subcontinuous at each x in X, then f is said to be
subcontinuous. Clearly, every continuous function is subcontinuous.

(a) Give an example of a subcontinuous function which is not con-
tinuous.

(b) Show that a function f : (X, d) → (Y, ρ) is continuous if and
only if it is subcontinuous and has closed graph, that is, the
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set G(f) = {(x, f(x)) : x ∈ X} is closed in (X × Y, μ1) where
μ1(a, b) = d(x1, x2) + ρ(y1, y2) for a = (x1, y1) and b = (x2, y2).

2.2 Continuous Functions: New from Old

As we explore metric spaces further, we may require to produce new
continuous functions with certain properties by using other continu-
ous functions. So now we talk about some of the powerful results in
this regard which do have their generalized versions for topological
spaces but here we prove them primarily in the context of metric
spaces. These results play a crucial role in the construction of new
continuous functions in the upcoming chapters.

Theorem 2.2.1 (Urysohn’s lemma). Let A and B be non-empty
disjoint closed subsets of a metric space (X, d). Then there exists a
continuous function f : (X, d) → [0, 1] such that f(x) = 0 for all
x ∈ A and f(x) = 1 for all x ∈ B.

Proof. Let us define a function f : (X, d) → R as follows:

f(x) =
d(x,A)

d(x,A) + d(x,B)
.

First note that f is well-defined: if d(x,A) + d(x,B) = 0, then x ∈
A ∩ B (by Exercise 1.5.4). Since A and B are closed, x ∈ A ∩ B,
which is impossible. Note that x �→ d(x,A) is a continuous function
on (X, d) (in fact it satisfies much stronger property which is proved
in Example 2.4.1 later). Hence by algebra of continuous functions f
is also continuous. Moreover, it is clear that 0 ≤ f(x) ≤ 1 on X.
If x ∈ A then d(x,A) = 0. This implies that f(x) = 0 on A and
similarly, f(x) = 1 on B.

The Urysohn’s Lemma says that disjoint closed sets in a metric
space can be separated by a continuous function. Using this contin-
uous function, one can prove that the disjoint closed sets can also be
separated by open sets, that is, there exist disjoint open subsets U
and V of (X, d) such that A ⊆ U and B ⊆ V . Note that a topolog-
ical space (X, τ) is said to be normal if every pair of disjoint closed
subsets in (X, τ) can be separated by open sets. Normality is a very
desirable property in topological spaces, and metric spaces possess
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this property. In our next corollary, we will prove that metric spaces
are stronger than normal spaces.

Corollary 2.2.1. Suppose that A and B are non-empty disjoint
closed subsets of a metric space (X, d). Then there exist open subsets
U and V in X such that A ⊆ U and B ⊆ V and U ∩ V = ∅.
Proof. By Urysohn’s Lemma, there exists a continuous function f :
(X, d) → [0, 1] such that f(x) = 0 for all x ∈ A and f(x) = 1 for all
x ∈ B. Let U = f−1[0, 13) and V = f−1(23 , 1]. Then by the continuity
of f , U and V are open in X such that A ⊆ U and B ⊆ V . Now we
only need to prove that U ∩ V = ∅. Suppose, if possible, x ∈ U ∩ V .
Then there exist (un) in U and (vn) in V such that un → x and
vn → x. Since f is continuous, f(un) → f(x) and f(vn) → f(x).
Now un ∈ U ⇒ f(un) ∈ [0, 13). Similarly, f(vn) ∈ (23 , 1]. But then

f(x) ∈ [0, 13 ] ∩ [23 , 1]. A contradiction!

Theorem 2.2.2 (Pasting lemma or gluing lemma). Let {Ai :
i ∈ I} be a non-empty family of non-empty open subsets of a metric
space (X, d) such that X =

⋃
i∈I Ai. For each i ∈ I, let fi : (Ai, d) →

(Y, ρ) be a continuous function such that fi(x) = fj(x) for all x ∈
Ai ∩ Aj and i, j ∈ I. Then the function f : (X, d) → (Y, ρ) defined
as: f(x) = fi(x) for x ∈ Ai is continuous on X.

Proof. We will use Theorem 2.1.1(b) to prove the continuity of f .
Let UY be an open subset of (Y, ρ). Then f−1

i (UY ) is open in Ai

for all i ∈ I. Consequently, f−1
i (UY ) = Ui ∩ Ai where Ui is open

in (X, d). Since Ai is open in X, f−1
i (UY ) is open in X and hence⋃

i∈I f
−1
i (UY ) is also open in X. Now

f−1(UY ) = f−1(UY ) ∩X = f−1(UY ) ∩
(⋃

i∈I
Ai

)
=
⋃
i∈I

(f−1(UY ) ∩Ai)

=
⋃
i∈I

f−1
i (UY ).

Hence f−1(UY ) is open in X which further implies that f is con-
tinuous.

Remark. On similar lines, one can easily prove that if we instead
take {Ai : i ∈ I} to be a finite collection of non-empty closed subsets
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of a metric space (X, d), then the function f is again continuous.
Here we are using the fact that the finite union of closed subsets is
also closed. But this may not hold true for an arbitrary collection of
closed sets (see Exercise 2.2.1).

Theorem 2.2.3. Let (X, dX ), (Y, dY ) and (Z, dZ) be metric spaces
and f : X → Y × Z be a function defined by f(x) = (f1(x), f2(x)),
where f1 : X → Y and f2 : X → Z. Then f is continuous if and only
if the functions f1 and f2 are continuous. Here we are considering
the following metric on Y ×Z : μ1(a, b) = dY (y1, y2) + dZ(z1, z2) for
a = (y1, z1) and b = (y2, z2).

Proof. First, suppose that f is continuous. Consider the two pro-
jection maps π1 : Y × Z → Y : π1(y, z) = y and π2 : Y × Z → Z :
π2(y, z) = z. Then using sequential characterization of continuity
(Theorem 2.1.1(d)), it is easy to see that π1 and π2 are continuous.
Now f1 = π1 ◦ f and f2 = π2 ◦ f and composition of continuous
functions is also continuous (Corollary 2.1.1), hence f1 and f2 are
continuous.

Conversely, let f1 and f2 be continuous functions. For proving
the continuity of f , we will use Theorem 2.1.1(d). So let xn → x
in (X, dX ) as n → ∞. Then by the continuity of f1 and f2, as
n → ∞ f1(xn) → f1(x) and f2(xn) → f2(x) in (Y, dY ) and
(Z, dZ ), respectively. Let ε > 0. Thus, there exist no ∈ N such that
dY (f1(xn), f1(x)) <

ε
2 and dZ(f2(xn), f2(x)) <

ε
2 for all n ≥ no. Con-

sequently, μ1(f(xn), f(x)) < ε for all n ≥ no. Thus, f(xn) → f(x) as
n→ ∞.

Remarks. (i) The functions f1 and f2 are referred to as the coor-
dinate functions of f .

(ii) The result remains true if we replace the metric μ1 with μ∞ or
μ2 as defined in Example 1.3.4 (because they all are equivalent
metrics, will discuss later).

Exercises

2.2.1. Let us define a collection A of subsets of a metric space (X, d)
to be locally finite if every x ∈ X has a nhood which intersects only
finitely many A ∈ A.
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(a) Show that the collection A = {[n, n+1] : n ∈ N} is locally finite
in R, whereas {[− 1

n ,
1
n ] : n ∈ N} is not locally finite in R.

(b) Prove that the union of a locally finite collection of closed sets
in (X, d) is again closed in (X, d).

(c) Prove that Theorem 2.2.2 holds true if {Ai : i ∈ I} is taken to
be a locally finite collection of closed subsets of (X, d), instead
of open subsets in (X, d).

(d) Give an example to show that Theorem 2.2.2 may fail to hold if

(i) {Ai : i ∈ I} is an arbitrary infinite collection of closed sets.
(ii) {Ai : i ∈ I} is a finite collection of arbitrary subsets of

(X, d).

2.2.2. Let f and g be two real-valued continuous functions on (X, d).
Show that the functions h1(x) = min{f(x), g(x)} and h2(x) =
max{f(x), g(x)} are continuous on X.

2.2.3. Let {(Xn, dn) : n ∈ N} be a family of metric spaces and f :
(X, ρ) → (

∏∞
i=1Xi, d) be a function defined by f(x) = (fn(x))n∈N,

where fn : X → Xn. Then prove that f is continuous if and only
if the function fn is continuous for all n ∈ N. Here the metric d is
defined as in Example 1.3.10.

2.2.4. Let (X, d) be a metric space. Prove that C(X) is a finite-
dimensional vector space if and only if X is a finite set. This is a nice
application of Urysohn’s lemma in Linear Algebra.

2.3 Stronger Notions of Continuity

In set theory, we define bijective functions to rename the objects in
a set as per our convenience. In metric spaces since we deal with
a rich structure on a set, now the functions need to be much more
than mere bijections. The equivalent characterizations of continuity
(Theorem 2.1.1) motivates us for the following concept.

Definition 2.3.1. Let f : (X, d) → (Y, ρ) be a map between two
metric spaces. Then f is said to be a homeomorphism between
(X, d) and (Y, ρ) if f is a bijection such that both f and f−1 are con-
tinuous. Moreover, if such a homeomorphism exists, then the metric
spaces (X, d) and (Y, ρ) are called homeomorphic.
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Example 2.3.1. Every open interval is homeomorphic to R: con-
sider the function f : (−π

2 ,
π
2 ) → R defined by f(x) = tanx. Then

the function f is not just continuous but even differentiable. It is
strictly increasing because its derivative sec2 x is positive on (−π

2 ,
π
2 ).

Hence it is one-to-one. Moreover, its inverse f−1(x) = tan−1 x is also
continuous on R. This proves that R is homeomorphic to (−π

2 ,
π
2 ).

Here note that we have considered the usual distance metric on both
R and (−π

2 ,
π
2 ). Furthermore, it can be proved that every open and

bounded interval (a, b) is homeomorphic to (−π
2 ,

π
2 ) (take a line seg-

ment joining the corresponding end points of the intervals, that is,
a �→ −π

2 and b �→ π
2 ). Since homeomorphism is a transitive rela-

tion (see Corollary 2.1.1), we can say that R is homeomorphic to
any interval of the form (a, b) where a, b ∈ R. Can you think of a
homeomorphism between (0, 1) and (1,∞)?

The previous example also shows that boundedness is not pre-
served by homeomorphism. For proving two spaces to be homeo-
morphic, we only need to produce a homeomorphism between them.
But for establishing the fact that the two spaces are not homeomor-
phic, we need to look for certain topological properties (a property
that is preserved under homeomorphism) being possessed by exactly
one of the metric spaces. Compactness and connectedness are two
such properties which we will talk about in detail in the upcom-
ing chapters. Using them it can be easily proved that R cannot be
homeomorphic to any interval of the form [a, b], [a, b), (a, b], [a,∞),
(−∞, b].

Let us now define another stronger form of continuity which
is widely known as uniform continuity. It was first introduced for
real-valued functions on Euclidean spaces by Eduard Heine in 1870.
Note the adjective, ‘uniform’. In the definition of continuity, δ not
only depends on ε but it also depends on x. If it is possible to
choose a δ > 0 which is uniform for all x ∈ X then we call the
function to be uniformly continuous. The precise definition is as
follows.

Definition 2.3.2. A function f : (X, d) → (Y, ρ) between two metric
spaces (X, d) and (Y, ρ) is called uniformly continuous if given
ε > 0, there exists a δ > 0 (δ depends only on ε) such that whenever
x, x′ ∈ X and d(x, x′) < δ, we have ρ(f(x), f(x′)) < ε.
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Remarks. (a) Unlike continuity, uniform continuity is not defined
at a point but on a set. Hence continuity is a local concept but
uniform continuity is a global concept.

(b) We call the function f to be uniformly continuous on A ⊆ X if
for every ε > 0, there exists a δ > 0 such that whenever a, a′ ∈ A
and d(a, a′) < δ, we have ρ(f(a), f(a′)) < ε.

The geometrical difference between continuity and uniform conti-
nuity can be beautifully analyzed through the graph of the function
f : (0,∞) → R : f(x) = 1

x . As x → 0+, f(x) → +∞ and the δ used
in the definition of continuity depends on the point x as well. Thus,
intuitively the function is continuous but not uniformly continuous.
We will give a more formal proof for this assertion in the upcoming
text. What will happen if we take the domain to be (a,∞) for some
a > 0?

Example 2.3.2. The function f : (R, | · |) → (R, | · |) given by
f(x) = x2 is continuous (by Corollary 2.1.2). But it is not uniformly
continuous: we need to show that there exists some ε > 0 for which
no δ works. Let us prove it for ε = 2. If δ > 0, then there exists
no ∈ N such that 1

n < δ ∀ n ≥ no. Choose x = no and x′ = no +
1
no
.

Then |x−x′| = 1
no
< δ. But |f(x)− f(x′)| = 2+ 1

n2
o
> 2. Since δ was

an arbitrary positive number, f is not uniformly continuous on R. Is
the function uniformly continuous on a closed and bounded interval?
We will answer this in a more general sense in Theorem 4.3.7.

By looking at the definition of uniform continuity, one can easily
realize that any function with domain equipped with the discrete
metric is uniformly continuous (take δ < 1). This observation could
be used in the formulation of counter examples later.

Example 2.3.3. Consider the identity function from (Q, d) to
(Q, | · |), where d is the discrete metric. Then it is uniformly con-
tinuous. Moreover, (Q, d) is bounded but (Q, | · |) is not. Hence uni-
form continuity does not preserve boundedness (compare with Exer-
cise 2.1.8). Additionally, observe that (Q, d) is complete because the
Cauchy sequences with respect to discrete metric are eventually con-
stant. But (Q, | · |) is not complete (think of a sequence of rationals
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which converges to an irrational number). Consequently, we can con-
clude that completeness is also not preserved by uniformly continuous
functions.

Note that in Theorem 2.1.1, we got a sequential characteriza-
tion of continuity. What about a sequential characterization of uni-
form continuity? Since convergent sequences characterizes continuous
functions, one might guess that Cauchy sequences play the analogous
role for uniformly continuous functions. But uniformly continuous
functions are much stronger than those functions which map Cauchy
sequences of the domain space to Cauchy sequences of the target
space. Let us have a closer look at such functions.

Definition 2.3.3. A function f : (X, d) → (Y, ρ) between two metric
spaces is said to be Cauchy continuous if (f(xn)) is Cauchy in
(Y, ρ) for every Cauchy sequence (xn) in (X, d).

Note that a Cauchy-continuous function is also referred to as
Cauchy-sequentially regular (or CS-regular for short) in the litera-
ture.

Proposition 2.3.1. Let f : (X, d) → (Y, ρ) be a function.

(a) If f is Cauchy continuous then f is continuous.
(b) If f is uniformly continuous then f is Cauchy continuous.

Proof. We only need to supply the proof for (a) because (b) fol-
lows from definitions. Let xn → x in (X, d). Then the sequence
〈x1, x, x2, x, . . .〉 is Cauchy. Since f is Cauchy continuous, the
sequence 〈f(x1), f(x), f(x2), f(x), . . .〉 is Cauchy in (Y, ρ). Thus, for
all ε > 0 there exists an no ∈ N such that ρ(f(xn), f(x)) < ε ∀ n ≥
no. This implies that f(xn) → f(x). Hence f is continuous by The-
orem 2.1.1.

Consequently, the class of Cauchy-continuous functions is inter-
mediate between the class of continuous functions and that of uni-
formly continuous functions. In fact, the inclusions are strict. For
example, f : (0,∞) → R : f(x) = 1

x is continuous but not Cauchy-

continuous (consider the sequence ( 1n) in (0,∞)).

Example 2.3.4. The function f : R → R : f(x) = x2 is Cauchy-
continuous but not uniformly continuous. Let (xn) be a Cauchy
sequence in R. We need to show that (x2n) is also Cauchy. Let ε > 0.



Continuity and Some Stronger Notions 65

Since (xn) is Cauchy, there exists no ∈ N such that |xn − xm| < 1
for all n, m ≥ no. Since for any x, y ∈ R | |x| − |y| | ≤ |x − y|, we
get |xn| < |xno | + 1 for n ≥ no. Let us denote |xno | + 1 by M . Now
again using the Cauchyness of (xn), we can find n1 > no such that
|xn − xm| < ε

2M for all n, m ≥ n1. Thus,

|x2n − x2m| = |xn + xm||xn − xm| < 2M.
ε

2M
= ε ∀ n, m ≥ n1.

Example 2.3.5. Consider the real-valued function f(x) = sin(x2)
defined on R. It is easy to see that the composition of two Cauchy-
continuous functions is also Cauchy-continuous. Thus, f is Cauchy-
continuous being the composition of the Cauchy-continuous functions
h(x) = x2 and g(x) = sin(x): by mean value theorem we know that
| sinx − sin y| ≤ |x − y| for all x, y ∈ R. Hence, the function g is in
fact uniformly continuous (take δ = ε). Is f uniformly continuous?

So now we need to look for some other type of sequences which
will characterize uniform continuity. In this regard, we next define
asymptotic sequences.

Definition 2.3.4. Let (xn) and (x′n) be a pair of sequences in a
metric space (X, d). Then they are called asymptotic if d(xn, x

′
n) →

0 as n → ∞, that is, given ε > 0, there exists nε ∈ N such that
d(xn, x

′
n) < ε ∀ n ≥ nε. Such a pair is denoted by (xn) � (x′n).

In (R, | · |), the sequences (n) and (n + 1
n) are asymptotic, that

is, (n) � (n + 1
n). It is easy to see that if two sequences in a metric

space (X, d) converge to the same limit in X, then the sequences are
asymptotic. The next result talks about the converse in some sense.
The routine proof (using triangle’s inequality) is left as an exercise.

Proposition 2.3.2. Let (xn) and (x′n) be a pair of asymptotic
sequences in a metric space (X, d).

(a) If one of them is Cauchy, so is the other one.
(b) If (xn) converges to x ∈ X, then (x′n) also converges to x.

Let us now prove the main result.

Theorem 2.3.1. A map f : (X, d) → (Y, ρ) between two metric
spaces is uniformly continuous if and only if f sends every pair of
asymptotic sequences in X to a pair of asymptotic sequences in (Y, ρ).
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Proof. Let f be uniformly continuous. If ε > 0, then there exists a
δ > 0 such that d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ε. Suppose (xn) �
(x′n), then there exists nδ ∈ N such that d(xn, x

′
n) < δ ∀ n ≥ nδ.

This implies that ρ(f(xn), f(x
′
n)) < ε ∀ n ≥ nδ, that is, (f(xn)) �

(f(x′n)). (Note that nδ depends on δ and δ depends on ε. Hence nδ
depends on ε indirectly.)

Conversely, let us assume that f is not uniformly continuous.
Then there exists an ε > 0 for which no δ > 0 works. In particu-
lar, δ = 1

n does not work for any n ∈ N. Hence there exist xn, x
′
n

in X such that d(xn, x
′
n) <

1
n , but ρ(f(xn), f(x

′
n)) ≥ ε. Clearly,

(xn) � (x′n), but (f(xn)) is not asymptotic to (f(x′n)). A contradic-
tion. Hence f must be uniformly continuous.

Remark. It should be noted that the axiom of choice is implic-
itly applied in the converse part of Theorem 2.3.1: for every
n ∈ N, consider the set Vn = {(x, x′) ∈ X × X : d(x, x′) <
1
n and ρ(f(x), f(x′)) ≥ ε}. Then each Vn �= ∅ and hence by the
axiom of choice (Proposition 1.1.2),

∏
n∈N Vn is non-empty. Let

((xn, x
′
n)) ∈

∏
n∈N Vn. Then the sequences (xn) and (x′n) are asymp-

totic but (f(xn)) and (f(x′n)) are not asymptotic.

Example 2.3.6. The function f(x) = ex is not uniformly continuous
on (R, | · |). Choose xn = ln(n) and x′n = ln(n)+ 1

n . Then (xn) � (x′n),
but |f(xn)− f(x′n)| = n(e1/n − 1) → 1 as n→ ∞.

Towards the end of this section, we think about an analogue of
pasting lemma for uniform continuity. Surprisingly, it does not hold
true in general for uniform continuity. For example, consider the
subsets A1 = {(x, 1x) : x > 0} and A2 = {(x, 0) : x > 0} of R2. Then
both A1 and A2 are closed in X = A1 ∪ A2. Here X is equipped
with the metric induced by the metric μ1 on R

2 (refer to Example
1.3.4). Now let us define two real-valued functions f1 and f2, on A1

and A2 respectively, as follows: f1(x,
1
x) = x and f2(x, 0) = 2x. Then

clearly f1 and f2 are uniformly continuous. But the function f : X →
R defined as: f(x, y) = f1(x, y) if (x, y) ∈ A1; f(x, y) = f2(x, y)
if (x, y) ∈ A2, is not uniformly continuous. Because the sequences
〈(n, 1n)〉 and 〈(n, 0)〉 are asymptotic but their respective images under
f are not asymptotic. Here note that A1 and A2 are disjoint. What
can you say in case they intersect?
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Exercises

2.3.1. Show that (0, 1) and (1,∞) are homeomorphic.

2.3.2. Give an example to show that completeness is not preserved
by homeomorphism.

2.3.3. The characterization of continuity given in Theorem 2.1.1(b)
motivates for the following notion which could be helpful in dealing
with homeomorphisms: a function f : (X, d) → (Y, ρ) is said to be an
open map if f(U) is open in (Y, ρ) for every open set U in (X, d).
Analogously, we call a function f to be a closed map if f(U) is
closed in (Y, ρ) for every closed set U in (X, d).

(a) Show that if f is a bijection, then f−1 is continuous if and only
if f is an open map if and only if f is a closed map.

(b) Give an example of an open map which is not closed.
(c) Give an example of a closed map which is not open.
(d) Give an example of a discontinuous function which is both open

and closed.

2.3.4. Show that the function f : (a,∞) → R defined by f(x) = 1
x

is uniformly continuous for a > 0.

2.3.5. Suppose A is a family of sequences in a metric space (X, d).
Let us define a relation ∼ on A as follows: for (xn) and (x′n) in A,

(xn) ∼ (x′n) ⇔ (xn) and (x′n) are asymptotic.

Show that ∼ is an equivalence relation.

2.3.6. Can you find a pair of asymptotic sequences in (B(X),D),
where X is a non-empty set and D is the supremum metric on B(X)?

2.3.7. Prove Proposition 2.3.2.

2.3.8 ([54]). Let us call two sequences (xn) and (x′n) to be uniformly
asymptotic in (X, d) if for every ε > 0, there exists nε ∈ N such
that d(xn, x

′
m) < ε for all n, m ≥ nε. We denote such sequences by

(xn) �u (x′n). Prove the following assertions:

(a) If (xn) is Cauchy then (xn) �u (xn).
(b) If sequences (xn) and (x′n) converges to the same limit, then

(xn) �u (x′n).
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(c) (xn) �u (x′n) ⇒ (xn) � (x′n).
(d) If (xn) �u (x′n), then (xn) is Cauchy.
(e) If (xn) and (x′n) are Cauchy sequences and (xn) � (x′n) then

(xn) �u (x′n).
(f) A function f : (X, d) → (Y, ρ) is Cauchy-continuous if and only

if it preserves uniformly asymptotic sequences, that is, if (xn) �u

(x′n) in (X, d) then (f(xn)) �u (f(x′n)) in (Y, ρ).

2.3.9. Let f : (X, d) → (Y, ρ) be a continuous function. Show that
f is Cauchy-continuous if (X, d) is complete. Hence the function f :
R → R : f(x) = ex is Cauchy-continuous.

2.3.10. If the functions f : (X, dX ) → (Y, dY ) and g : (Y, dY ) →
(Z, dZ ) are Cauchy-continuous, then prove that their composition
g ◦ f is also Cauchy-continuous.

2.3.11. Prove that the composition of two uniformly continuous
functions f : (X, dX ) → (Y, dY ) and g : (Y, dY ) → (Z, dZ) is also
uniformly continuous.

2.3.12. Prove Theorem 2.2.3 for uniform continuity, that is, f is
uniformly continuous if and only if the functions f1 : X → Y and
f2 : X → Z are uniformly continuous.

2.3.13. If f and g are two real-valued Cauchy-continuous functions
defined on (X, d), then prove that their pointwise product is also
Cauchy-continuous. Do we have similar result for uniformly contin-
uous functions?

2.3.14. Give an example of a real-valued function f which is uni-
formly continuous on [n− 1, n] for all n ∈ N but not so on [0,∞).

2.3.15. Using Theorem 2.3.1, show that the function f(x) = sin(x2)
is not uniformly continuous on R. Here note that f is continuous and
bounded.

2.4 Lipschitz Functions

In this section, we would like to throw some light on another ver-
sion of continuity which is in fact much stronger than uniform
continuity.
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Definition 2.4.1. A function f : (X, d) → (Y, ρ) is called Lipschitz
if there exists M ≥ 0 such that

ρ(f(x), f(x′)) ≤Md(x, x′) for all x, x′ ∈ X.
Here the number M is called a Lipschitz constant for the func-

tion f (the function f is also called M -Lipschitz). In fact, any num-
ber greater than M is also a Lipschitz constant for the function
f . Evidently, every Lipschitz function is uniformly continuous (take
δ = ε

M ). Lipschitz functions play a vital role in different branches of
mathematics. In fact, recall that Lipschitz continuity helps in estab-
lishing the uniqueness of the solution for an initial value problem in
Picard’s theorem.

Example 2.4.1. Let A be a non-empty subset of a metric space
(X, d). Then the real-valued function f defined on (X, d) as

f(x) = d(x,A) = inf{d(x, a) : a ∈ A}
is Lipschitz: by triangle’s inequality we have d(x, a) ≤ d(x, x′) +
d(x′, a) for all x, x′ ∈ X and a ∈ A. Thus, d(x,A) ≤ d(x, x′) +
d(x′, a), which implies that d(x,A)− d(x, x′) ≤ d(x′, a). Since this is
true for all a ∈ A, by the definition of infimum d(x,A) − d(x, x′) ≤
d(x′, A). This implies that d(x,A)− d(x′, A) ≤ d(x, x′). Similarly, by
interchanging the roles of x and x′ we get d(x′, A)−d(x,A) ≤ d(x, x′).
Combining the two inequalities we get, |d(x,A)− d(x′, A)| ≤ d(x, x′)
for all x, x′ ∈ X. Thus, f is Lipschitz with a Lipschitz constant 1.

Let us now observe something. Suppose f : (X, d) → (Y, ρ) is a
Lipschitz function. Let

L(f) := inf{M ≥ 0 :M is a Lipschitz constant for f}.
Then equivalently, L(f) can also be expressed as

L(f) = sup

{
ρ(f(x), f(x′))

d(x, x′)
: x, x′ ∈ X, x �= x′

}
.

Thus, L(f) is the least Lipschitz constant for f .

Remark. Many authors call L(f) to be the Lipschitz norm. But
it should be noted that L(f) does not define a norm on the family
of all Lipschitz functions from (X, d) to (Y, ρ) because for constant
functions L(f) = 0. See Exercise 2.4.11.
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The next result gives a very convenient method for proving a
function to be Lipschitz.

Proposition 2.4.1. Let f : [a, b] → R be a function which is con-
tinuous on [a, b] and differentiable on (a, b). Then f ′ is bounded on
(a, b) if and only if f is Lipschitz on [a, b].

Proof. Suppose there exists M > 0 such that |f ′(z)| ≤ M ∀ z ∈
(a, b) − (�). Now for any x, y ∈ [a, b], x < y, apply mean value
theorem on [x, y]. Thus, there exists c ∈ (x, y) such that

f(x)− f(y)

x− y
= f ′(c).

This implies that |f(x)−f(y)
x−y | = |f ′(c)| ≤ M , by (�). Hence |f(x) −

f(y)| ≤M |x− y| ∀ x, y ∈ [a, b].
Conversely, suppose f is Lipschitz on [a, b] with Lipschitz constant

M . For xo ∈ (a, b),

f ′(xo) = lim
x→xo

f(x)− f(xo)

x− xo
.

Since |f(x)− f(xo)| ≤ M |x − xo| ∀ x ∈ (a, b), |f ′(xo)| ≤ M . As xo
was arbitrarily chosen in (a, b), f ′ is bounded on (a, b).

Remark. A result analogous to Proposition 2.4.1 can be proved for
any interval in R. See Exercise 2.4.7.

Now can you prove that the function f(x) = x2 is Lipschitz (and
hence uniformly continuous) on every bounded interval of R?

If Lipschitz constant for a Lipschitz function, f : X → X, lies in
the open interval (0, 1) then such a special class of functions becomes
more useful and could be used to establish the existence of a unique
fixed point. Before proving the main result, let us give the required
definitions first.

Definition 2.4.2. Let (X, d) be a metric space. Then a function
f : (X, d) → (X, d) is said to be a contraction (or contraction
mapping) if there exists a number M , 0 < M < 1, such that

d(f(x), f(x′)) ≤Md(x, x′) for all x, x′ ∈ X.
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Definition 2.4.3. Let f : (X, d) → (X, d) be a function. Then a
point a ∈ X is called a fixed point for f if f(a) = a.

Thus, the function f(x) = x3 has three fixed points, namely 0,
1 and −1, on R whereas the function f(x) = sin(x) has a unique
fixed point. But the function f(x) = x + 1 has no fixed point. The
next result gives a sufficient condition for the existence of a unique
fixed point of a function. The result is named after S. Banach who
first stated it in 1922. Interestingly, it has wide applications in differ-
ent branches of mathematics, especially in differential equations and
numerical analysis.

Theorem 2.4.1 (Banach fixed point theorem or contraction
mapping principle). Let f : (X, d) → (X, d) be a contraction on a
complete metric space (X, d). Then f has a unique fixed point in X.

Proof. Let xo ∈ X. Define a sequence (xn) iteratively as: xn =
f(xn−1) for n ∈ N. We will prove that the sequence (xn) is Cauchy
and the limit of the sequence is the required fixed point of f . First
note that for k ∈ N,

d(xk+1, xk) = d(f(xk), f(xk−1))

≤Md(xk, xk−1) ≤M2d(xk−1, xk−2)

≤ · · · ≤Mkd(x1, xo),

whereM , 0 < M < 1, is a Lipschitz constant for f . Now for n, m ∈ N

with n > m, by the triangle’s inequality we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ (Mn−1 +Mn−2 + · · ·+Mm)d(x1, xo)

≤ Mm

1−M
d(x1, xo).

Since M < 1, Mm → 0 as m → ∞. Thus, (xn) is a Cauchy
sequence in the complete metric space (X, d). Let xn → x′ in X.
Now using the continuity of f , we get

f(x′) = f( lim
n→∞xn) = lim

n→∞ f(xn) = lim
n→∞xn+1 = x′.
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Consequently, x′ is a fixed point of f .

Uniqueness: Let x′′ ∈ X be another fixed point for f . Now

d(x′, x′′) = d(f(x′), f(x′′)) ≤Md(x′, x′′) < d(x′, x′′).

This gives a contradiction. Thus, x′ = x′′.

Remarks. (i) In the previous proof, observe that the fact that
M < 1 is used in proving both the existence and uniqueness of
the fixed point for the contraction.

(ii) If the hypothesis of completeness of the metric space (X, d) is
violated in the previous result, then the contraction may fail to
possess any fixed point in X: consider f : (0, 1) → (0, 1) defined
as f(x) = x

2 . The only possible fixed point for the contraction f
is 0 but 0 �∈ (0, 1).

(iii) If the contraction condition is replaced by d(f(x), f(x′)) <
d(x, x′), then also the conclusion may fail to hold: let f :
[0,∞) → [0,∞) : f(x) =

√
1 + x2. Since |f ′(x)| < 1 for

x ∈ (0,∞), by mean value theorem |f(x) − f(x′)| < |x − x′|
for all x, x′ ∈ [0,∞), x �= x′. But f has no fixed point.

Corollary 2.4.1. Let f : (X, d) → (X, d) be a function on a complete
metric space (X, d). If fn is a contraction for some n ∈ N, then f
has a unique fixed point in X.

Proof. By Theorem 2.4.1, fn has a unique fixed point say xo. Thus,
fn(xo) = xo. Now

fn(f(xo)) = f(fn(xo)) = f(xo).

This implies that f(xo) is a fixed point of fn. Then by the uniqueness
of the fixed point of fn, f(xo) = xo. Thus, xo is a fixed point of f .
Moreover, it is unique: if f(x1) = x1 then fn(x1) = x1. Since xo is
the unique fixed point of fn, x1 = xo.

We end this section with an interesting observation related to
continuous maps between normed linear spaces. Note that a metric
can be defined on any non-empty set X. But if the set X possesses
a linear structure (that is, X is a vector space) then we can think
of combining the two structures such that the two operations: vector
addition and scalar multiplication onX are continuous. Such a vector
space, endowed with a metric, in which vector addition and scalar
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multiplication are continuous is known as a metric linear space.
In fact, we usually consider normed linear spaces which are special
cases of metric linear spaces (Exercise 2.4.13).

Since a normed linear space is also a vector space, we can also
think about the functions which preserve the linear structure of the
normed linear spaces. Such maps play a crucial role in functional
analysis.

Definition 2.4.4. Let X and Y be vector spaces over K, where
K = R or C. Then a function T : X → Y is called a linear trans-
formation (or a linear operator) if for all x1, x2 ∈ X and for all
α, β ∈ K,

T (αx1 + βx2) = αT (x1) + βT (x2).

Note. If T is a linear transformation, then T (0) = 0. (For conve-
nience, we denote the zero vector in X and that in Y by the same
notation.)

When we are dealing with a linear transformation between two
normed linear spaces, then we can also talk about its continuity.
Interestingly, if a linear transformation is continuous at a single point
then it is continuous on the whole domain space. Moreover, continuity
and linearity of a function together produces the Lipschitz property.
Let us precisely state this in the next theorem.

Theorem 2.4.2. Let T : (X, ‖·‖) → (Y, ‖·‖) be a linear transforma-
tion between two normed linear spaces. Then the following statements
are equivalent:

(a) T is uniformly continuous.
(b) T is continuous.
(c) T is continuous at a point xo ∈ X.
(d) T is continuous at 0.
(e) There exists M > 0 such that ||Tx|| ≤M ||x|| ∀ x ∈ X.
(f) There exists M ′ > 0 such that ||Tx− Tx′|| ≤M ′||x− x′|| ∀ x, x′

∈ X.

Remarks. (1) For convenience, we are denoting the norms on X
and Y by the same symbol ‖ · ‖.

(2) Condition (f) implies that T is Lipschitz.
(3) Continuous linear maps between normed linear spaces are gen-

erally referred to as bounded linear operators.
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Proof. The implications (a) ⇒ (b) ⇒ (c) are immediate.

(c) ⇒ (d): We use Theorem 2.1.2 to prove the assertion. Let xn →
0 in X. Therefore, (xn + xo) → xo and consequently, T (xn + xo) →
T (xo). Since T is linear, Txn → 0 in Y .

(d) ⇒ (e): Let ε > 0. Since T is continuous at 0, there exists a
δ > 0 such that ‖x‖ < δ implies ‖Tx‖ < ε. Let 0 �= xo ∈ X. Now∥∥∥ δ
2

xo
‖xo‖

∥∥∥ < δ, therefore
∥∥∥T ( δ2 xo

‖xo‖
)∥∥∥ < ε. Thus we have ‖T (xo)‖ <

2ε
δ ‖xo‖. Let M = 2ε

δ (> 0), we get ||Tx|| ≤M ||x|| ∀ x ∈ X.

(e) ⇒ (f): Let x, x′ ∈ X. From (e), we have ||T (x−x′)|| ≤M ||(x−
x′)||. Thus taking M ′ =M , we get ||Tx−Tx′|| ≤M ′||x−x′|| ∀ x, x′
∈ X.

(f) ⇒ (a): This follows immediately from the fact that Lipschitz
function is uniformly continuous.

Corollary 2.4.2. Let T : (X, ‖ · ‖) → (Y, ‖ · ‖) be a linear transfor-
mation between two normed linear spaces. Suppose x, x′ ∈ X. Then
T is continuous at x if and only if T is continuous at x′.

Exercises

2.4.1. Let (X, ‖ · ‖) be a normed linear space. Show that the norm
function f : X → R : f(x) = ‖x‖ is Lipschitz.

2.4.2. Suppose (X, d) is a metric space. Prove that the distance
function f : (X × X,μ1) → R : f(x, y) = d(x, y) is Lipschitz. Is it
true if we replace μ1 with μ2 or μ∞ (refer to Example 1.3.4)?

2.4.3. Show that every polynomial function is Lipschitz on any
bounded interval in R.

2.4.4. Let (X, d) be a metric space and F = {f : (X, d) → R :
f is M -Lipschitz} for some M > 0. For every x ∈ X, let φ(x) =
inff∈F f(x) ∈ R. Prove that the function φ isM -Lipschitz. Similarly,
prove that the function ψ(x) = supf∈F f(x) is M -Lipschitz provided
ψ is real-valued for all x ∈ X.
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2.4.5. Show that Lipschitz functions preserve boundedness, that is,
if f : (X, d) → (Y, ρ) is a Lipschitz function and A ⊆ X is bounded,
then f(A) is bounded in (Y, ρ). Using this observation, can you con-
struct an example of a non-Lipschitz function?

2.4.6. Let (X, d) be a metric space. If the functions f, g : (X, d) →
R are bounded and Lipschitz, then prove that their product fg is
also Lipschitz. In fact, using previous exercise, one can say that the
product of two real-valued Lipschitz functions defined on a bounded
metric space is also Lipschitz. Think of an example of two Lipschitz
functions whose product is not Lipschitz.

2.4.7. If f : I → R is continuous on an interval I of R and differ-
entiable in int(I), then f ′ is bounded on int(I) if and only if f is
Lipschitz.

2.4.8. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection of metric
spaces and πi : (

∏n
j=1Xj , μ∞) → (Xi, di) be the projection map of∏n

j=1Xj onto Xi for i ∈ {1, 2, . . . , n}. Show that πi is Lipschitz.

Observe that πi is Lipschitz even if μ∞ is replaced by μ1 or μ2 (refer
to Example 1.3.4).

2.4.9. Let A be a non-empty closed subset of R. If x ∈ R, then prove
that d(x,A) = d(x, a) for some a ∈ A.

2.4.10. Give an example of a uniformly continuous function which
is not Lipschitz.

2.4.11. Suppose Lip(X) denotes the collection of all real-valued Lip-
schitz functions on a metric space (X, d). It is easy to verify that
Lip(X) forms a vector space with respect to the usual addition of
functions on X and the usual scalar multiplication. Let xo ∈ X.
Show that ‖ · ‖ defines a norm on Lip(X), where ‖ · ‖ is given by

‖f‖ = max{|f(xo)|, L(f)} for f ∈ Lip(X).

2.4.12. A function f : (X, d) → (Y, ρ) is said to be Hölder continu-
ous if there exist M > 0 and α > 0 such that

ρ(f(x), f(x′)) ≤M (d(x, x′))α for all x, x′ ∈ X.

Clearly, the class of Lipschitz functions is contained in the class of
Hölder continuous functions with α = 1. Establish the following
assertions:
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(a) Every Hölder continuous function is uniformly continuous.
(b) There exists an Hölder continuous function which is not Lips-

chitz.
(c) Suppose I is any interval in R and f : I → R is Hölder continuous

with α > 1. Then f is constant on I.

2.4.13. Let (X, ‖ · ‖) be a normed linear space over K, where K = R

or C. Show that the vector addition and scalar multiplication on X
are continuous operations, that is, the functions f1 : (X ×X,μ∞) →
(X, d): f1((x, y)) = x+y and f2 : (K×X,μ∞) → (X, d): f2((λ, x)) =
λ · x are continuous. Here observe that d denotes the metric induced
by the norm ‖ · ‖, that is, d(x, y) = ‖x − y‖. Further, note that the
functions f1 and f2 are continuous even if μ∞ is replaced by μ1 or
μ2 (refer to Example 1.3.4).

2.5 Isometries between Metric Spaces

Recall that in the beginning of this chapter, we were talking about
the vehicle which could carry some properties from one metric space
to another. Now let us discuss regarding a very strong version of
continuity. Whatever forms of continuity we have discussed so far
does not preserve the distance, that is, the distance between the ele-
ments of the domain space need not be same as the distance between
the respective images. But since we are dealing with the metric struc-
tures, we should also look into this possibility so that the correspond-
ing range space (f(X), ρ) is just a copy of the domain space (X, d)
which is obtained by renaming the elements of X.

Before starting with the definition of an isometry between metric
spaces, let us mention the following simple result which we will need
later.

Proposition 2.5.1. Let (X, d) be a metric space and let (xn) and
(yn) be two sequences in X. Then

(a) |d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym)
(b) If (xn) and (yn) are Cauchy in (X, d), then (d(xn, yn)) is a

Cauchy sequence in (R, | · |) and consequently it converges in
(R, | · |).



Continuity and Some Stronger Notions 77

(c) If xn → x, yn → y in (X, d), then d(xn, yn) → d(x, y) in (R, | · |).
In notation, lim

n→∞ d(xn, yn) = d(x, y) = d( lim
n→∞xn, lim

n→∞ yn).

(Note the interchange of lim and d.)

Definition 2.5.1. A function T : (X, d) → (Y, ρ) between two metric
spaces is called an isometry if ρ(Tx, Tx′) = d(x, x′) holds for all
x, x′ ∈ X.

Note that an isometry is always one-to-one: Tx = Tx′ ⇒
ρ(Tx, Tx′) = 0 ⇒ d(x, x′) = 0 ⇒ x = x′. But an isometry need
not be onto: consider the map f : (N, | · |) → (N, | · |) defined by
f(n) = n + 1. Since 1 does not have a pre-image, f is not onto. If
an onto isometry exists between (X, d) and (Y, ρ), then the two met-
ric spaces are called isometric. Evidently, isometric metric spaces
are homeomorphic. Moreover, every isometry is Lipschitz and hence
uniformly continuous as well.

Note. If there exists an onto isometry from (X, d) to (Y, ρ) then
the inverse map is an onto isometry from (Y, ρ) to (X, d). Hence we
just call the metric spaces to be isometric (without mentioning from
where to where).

Theorem 2.5.1. Let (X, d) and (Y, ρ) be two complete metric spaces
such that X ′ is dense in X, while Y ′ is dense in Y . Suppose T ′ :
(X ′, d) → (Y ′, ρ) is an onto isometry. Then there exists an onto
isometry T : (X, d) → (Y, ρ) such that T is an extension of T ′, that
is, Tx = T ′x ∀ x ∈ X ′.

Proof. Let x ∈ X. Since X ′ is dense in X, ∃ a sequence (xn) in X
′

such that xn → x. Now d(xn, xm) = ρ(T ′xn, T ′xm) ∀ n, m ∈ N.
But (xn) is Cauchy and hence (T ′xn) is also Cauchy in (Y, ρ). Since
(Y, ρ) is complete, T ′xn → y for some y ∈ Y . We can define Tx =
y = lim

n→∞T ′xn.

T is well-defined: We need to ensure that this definition does not
depend on the choice of the sequence (xn) converging to x. So let
(zn) be another sequence in X converging to x in (X, d). Now by
Proposition 2.5.1,

ρ( lim
n→∞T ′xn, lim

n→∞T ′zn) = lim
n→∞ ρ(T ′xn, T ′zn)

= lim
n→∞ d(xn, zn)
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= d( lim
n→∞xn, lim

n→∞ zn)

= d(x, x) = 0.

Hence lim
n→∞T ′xn = lim

n→∞T ′zn. It follows that Tx = lim
n→∞T ′xn is a

well-defined function from X to Y .
Clearly, Tx = T ′x for x ∈ X (consider the constant sequence).

Now we show that T : X → Y is an isometry. Let x, z ∈ X. Suppose
that (xn) and (zn) are two sequences in (X ′, d) converging to x and
z respectively. Again by Proposition 2.5.1, we have

ρ(Tx, Tz) = ρ( lim
n→∞T ′xn, lim

n→∞T ′zn)

= lim
n→∞ ρ(T ′xn, T ′zn)

= lim
n→∞ d(xn, zn)

= d( lim
n→∞xn, lim

n→∞ zn) = d(x, z).

Finally, we need to show that T is onto. Let y ∈ Y . Since Y ′ is
dense in Y , ∃ a sequence (yn) in Y

′ such that yn → y in (Y, ρ). So (yn)
is Cauchy in (Y ′, ρ). Since T ′ : (X ′, d) → (Y ′, ρ) is an onto isometry,
(T ′)−1 : (Y ′, ρ) → (X ′, d) is also an isometry. Hence ρ(yn, ym) =
d((T ′)−1yn, (T

′)−1ym) and consequently the sequence {(T ′)−1(yn)}
is Cauchy in (X, d). Let (T ′)−1(yn) = zn. Then T ′zn = yn. Since
(X, d) is complete, zn → x for some x ∈ X. Thus, Tzn → Tx. But
Tzn = T ′zn ∀ n, since T is an extension of T ′. So Tzn = T ′zn =
yn → y ⇒ y = Tx. Hence T is onto.

Remark. It is easy to see that under the hypothesis of the previous
theorem, there exists a unique isometry fromX onto Y which extends
T ′: suppose T1 : (X, d) → (Y, ρ) is another onto isometry such that
T1x = T ′x ∀ x ∈ X ′. Let x ∈ X. Then there exists (xn) ⊆ X ′
such that xn → x. Then by the continuity of T1, T1(xn) → T1(x).
Therefore, T1(x) = lim

n→∞T1(xn) = lim
n→∞T ′(xn) = T (x).

Exercises

2.5.1. Prove Proposition 2.5.1.
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2.5.2. Prove that the interval [0, 1] is isometric to any closed interval
of length 1. Is it isometric to any closed interval of length other
than 1?

2.5.3. SupposeA is a family of metric spaces. Let us define a relation
∼ on A as follows: for (X, d) and (Y, ρ) in A,

X ∼ Y ⇔ X and Y are isometric.

Show that ∼ is an equivalence relation, that is, it is reflexive, sym-
metric and transitive.

2.5.4. (a) Let f : (X, d) → (Y, ρ) be an onto isometry. If xo ∈
X, r > 0, A = {x ∈ X : d(x, xo) = r} and B = {y ∈ Y :
ρ(y, f(xo)) = r}, then show that B = f(A).

(b) Use (a) to show that there does not exist any onto isometry
between (R, | · |) and (R2, | · |).

2.5.5. Prove that every separable metric space is isometric to a sub-
set of ∞.

2.5.6. Produce an isometry of Rn equipped with the Euclidean met-
ric into 2.

2.5.7. For a metric space (X, d), show that x �→ {x} is an isometry
of X into the collection of all non-empty closed and bounded subsets
of X equipped with the Hausdorff distance. (Refer to Exercise 1.5.7.)

2.6 Equivalent Metrics

Many a times working with a particular metric could be little cum-
bersome than other metrics. In case we are looking for certain topo-
logical features which only involves the open sets, etc., then we can
work with some metric which is equivalent to the original metric.
Before we give the precise meaning of equivalent metrics, let us start
with the following relevant result. Its proof is left as an exercise.

Theorem 2.6.1. Let d and ρ be two metrics on a non-empty set X.
Then the following statements are equivalent:

(a) The family τd of all open sets in X generated by d is same as the
family τρ of all open sets generated by ρ.
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(b) Both the identity map I : (X, d) → (X, ρ) and its inverse I−1

are continuous. In other words, the identity map is a homeomor-
phism.

(c) If (xn) is a sequence in X and x ∈ X then lim
n→∞ d(xn, x) = 0

if and only if lim
n→∞ ρ(xn, x) = 0, that is, a sequence (xn) in X

converges to some x in (X, d) if and only if (xn) converges to x
in (X, ρ).

Definition 2.6.1. When any one of the equivalent conditions of the
previous theorem is satisfied, then the metrics d and ρ are called
equivalent metrics.

Example 2.6.1. If d is a metric on X, then the metric ρ defined by

ρ(x, y) =
d(x, y)

1 + d(x, y)
, x, y ∈ X

is equivalent to d.
Let lim

n→∞ d(xn, x) = 0. Then it is clear that ρ(xn, x) → 0 as

n → ∞. Conversely, let lim
n→∞ ρ(xn, x) = 0 − (�). Since ρ(x1, x2) <

1 ∀ x1, x2 ∈ X, d(xn, x) =
ρ(xn,x)

1−ρ(xn,x)
→ 0 as n→ ∞ by (�).

Example 2.6.2. On X = (−π
2 ,

π
2 ), consider a metric ρ given by

ρ(x, y) = |tan x− tan y|.
Then ρ is a metric on (−π

2 ,
π
2 ) which is equivalent to the usual

distance metric | · | on (−π
2 ,

π
2 ) by the continuity of tanx, tan−1 x

and Theorem 2.6.1(c). Also see Exercise 2.6.4. Note that (−π
2 ,

π
2 ) is

incomplete with respect to the usual metric |·| because the Cauchy
sequence (π2 − 1

n) does not converge in (X, | · |). But (X, ρ) is com-
plete: let (xn) be a Cauchy sequence in (X, ρ). This implies that
(tan(xn)) is Cauchy in (R, |·|). Since (R, |·|) is complete, the sequence
(tan(xn)) converges to some a = tan(tan−1 a) in (R, | · |). Conse-
quently, ρ(xn, tan

−1 a) → 0 as n → ∞. Hence (xn) converges to
tan−1 a in (X, ρ).

Remark. Note that in the previous example, tan x function has been
used because it defines a homeomorphism from the incomplete metric
space ((−π

2 ,
π
2 ), | · |) to the complete metric space (R, | · |).
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In view of the previous example, we would like to make the fol-
lowing observation:

Two metrics d and ρ on a non-empty set X may be equivalent, but
one of them may be complete, while the other one may be incomplete.
The equivalence of two metrics only guarantees the same family of
convergent sequences with same limit, but the equivalent metrics
need not generate the same family of Cauchy sequences. It should
be noted that convergence of a sequence depends on the open sets,
while Cauchyness rely on the size of the balls.

Example 2.6.3. Consider two metrics d1 and d2 on the set (0,∞),
where d1 is the usual distance metric and d2 is defined as follows:

d2(x, y) =

∣∣∣∣ 1x − 1

y

∣∣∣∣ for x, y ∈ (0,∞).

It is easy to see that d1 and d2 are equivalent metrics (see Exer-
cise 2.6.4) and hence they have the same collection of convergent
sequences. But the sequence ( 1n) is Cauchy with respect to d1 but
not with respect to d2.

In order to get rid of this anomaly, we need a stronger concept
than that of equivalent metrics.

Definition 2.6.2. Let d and ρ be two metrics on a non-empty set
X. Suppose both the identity map I : (X, d) → (X, ρ) and its inverse
I−1 are uniformly continuous. Then d and ρ are called uniformly
equivalent.

Example 2.6.4. If f : (X, d) → (Y, μ) is uniformly continuous, then
the metric ρ on X defined as: ρ(x1, x2) = d(x1, x2) + μ(f(x1), f(x2))
for all x1, x2 ∈ X, is uniformly equivalent to d.

Example 2.6.5. Refer to Example 1.3.4 for metrics defined on the
Cartesian product

∏n
i=1Xi of the finite collection of metric spaces

{(Xi, di) : 1 ≤ i ≤ n}. Recall that
μ∞(a, b) ≤ μ2(a, b) ≤ μ1(a, b) ≤ nμ∞(a, b),

for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ ∏n
i=1Xi. Thus, both the

metrics μ1 and μ2 are uniformly equivalent (and hence equivalent)
to μ∞. Consequently, whenever we need to verify some property,
possessed by the Cartesian product, which involves only the open
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sets then it is enough to work with any one of these metrics at our
convenience. The topology generated by these metrics is called the
product topology and hence the Cartesian product equipped with the
product topology is referred to as the product space. (See Exercise
2.6.7.)

Proposition 2.6.1. Given any metric space (X, d), there exists a
metric ρ on X such that ρ is uniformly equivalent to d and (X, ρ) is
bounded.

Proof. We prove that the metric ρ given in Example 2.6.1 is in fact

uniformly equivalent to d. First observe that ρ(x, y) = d(x,y)
1+d(x,y) ≤

d(x, y) for all x, y ∈ X. Then, the identity map from (X, d) to (X, ρ)
is Lipschitz and hence uniformly continuous. Now let ε > 0. Choose
δ = ε

1+ε . Then

ρ(x, y) < δ ⇒ 1− 1

1 + d(x, y)
< 1− 1

1 + ε
⇒ d(x, y) < ε.

Thus, the identity map from (X, ρ) to (X, d) is uniformly continuous.
Now it is proved that ρ is uniformly equivalent to d. Further, it is
evident that ρ(x, y) ≤ 1 for all x, y ∈ X. Hence (X, ρ) is bounded.

As a consequence of the previous result, it is easy to deduce
that boundedness is not preserved under uniform equivalence. Since
the identity maps between the uniformly equivalent metrics are uni-
formly continuous, both the spaces have the same class of Cauchy
sequences and that of convergent sequences. Now the next result
immediately follows from this observation.

Proposition 2.6.2. Let d and ρ be two uniformly equivalent metrics
on a non-empty set X. Then (X, d) is complete if and only if (X, ρ)
is complete.

Let us end this section with interesting remarks. Carefully observe
the definition of uniformly equivalent metrics. Can you define a
notion which is stronger than homeomorphism?

Definition 2.6.3. A function f : (X, d) → (Y, ρ) between two met-
ric spaces is said to be a uniform homeomorphism between (X, d)
and (Y, ρ) if f is a bijection such that both f and f−1 are uniformly
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continuous. Moreover, if such a uniform homeomorphism exists then
the metric spaces (X, d) and (Y, ρ) are called uniformly homeo-
morphic.

Remarks. (a) Unlike in homeomorphism, completeness is pre-
served under uniform homeomorphism, that is, if (X, d) and
(Y, ρ) are uniformly homeomorphic and if (X, d) is complete then
(Y, ρ) is also complete. This follows immediately from Proposi-
tion 2.3.1.

(b) Two metrics d and ρ on a non-empty set X are uniformly equiv-
alent if and only if the identity map I : (X, d) → (X, ρ) is a
uniform homeomorphism.

(c) By Proposition 2.6.1 and the previous remark, it can be deduced
that boundedness may not be preserved under uniform homeo-
morphism.

Exercises

2.6.1. Prove Theorem 2.6.1.

2.6.2. Let {f1, . . . , fn} be a finite collection of functions where fi :
(X, d) → (Yi, ρi) for each i. Suppose d′ is a metric on X which is
defined as

d′(x1, x2) = d(x1, x2) +
n∑

i=1

ρi(fi(x1), fi(x2)) for all x1, x2 ∈ X.

Show that d′ is equivalent to d if and only if fi : (X, d) → (Yi, ρi)
is continuous for each i ∈ {1, 2, . . . , n}. Moreover, in this case fi :
(X, d′) → (Yi, ρi) is Lipschitz for each i.

2.6.3. Let us call the metrics d and ρ on a non-empty set X to be
Cauchy equivalent if both the identity map I : (X, d) → (X, ρ)
and its inverse I−1 are Cauchy-continuous. Hence, the collection of
Cauchy sequences in (X, d) coincides with that of (X, ρ). Give an
example of Cauchy-equivalent metrics which are not uniformly equiv-
alent.

2.6.4. Let f : (X, d1) → (Y, ρ) be a bijective function. Define a
metric d2 on X as follows: d2(x, x

′) = ρ(f(x), f(x′)). Then show
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that the metrics d1 and d2 are equivalent on X if and only if f is
a homeomorphism. Can you think of some equivalent conditions for
Cauchy-equivalence and uniform equivalence of metrics?

2.6.5. Produce a metric ρ on X = (−1, 1) such that ρ is equivalent
to the usual metric and (X, ρ) is complete. (Also see Theorem 3.4.3.)

2.6.6. Show that the metric ρ on X, defined as ρ(x1, x2) =
min{1, d(x1, x2)} for x1, x2 ∈ X, is uniformly equivalent to the met-
ric d on X.

2.6.7. Prove that the open sets in the product topology on
∏n

i=1Xi

are precisely the arbitrary unions of the sets of the form
∏n

i=1 Ui,
where Ui is open in (Xi, di) for i ∈ {1, 2, . . . , n}.
2.6.8. Let C[0, 1] be the set of all real-valued continuous functions
defined on the interval [0, 1]. Show that the metrics d and ρ on C[0, 1],
defined as

d(f, g) = max{|f(x)− g(x)| : x ∈ [0, 1]} and

ρ(f, g) =

∫ 1

0
|f(x)− g(x)|dx,

for f, g ∈ C[0, 1], are not equivalent.

2.6.9. Prove that R is not uniformly homeomorphic with (0, 1). Com-
pare with Example 2.3.1.



Chapter 3

Complete Metric Spaces

If a metric space possesses some special properties, then such metric
spaces become more useful. One of such significant properties is com-
pleteness which we are going to study in this chapter. Due to vari-
ous applications of complete metric spaces, one usually look for the
completion of an incomplete metric space. It is, in some sense, the
‘smallest’ complete metric space in which an incomplete metric space
is contained. The interesting process is discussed in detail in this
chapter.

3.1 Some Examples

Consider the metric space (Q, | · |), where Q is the set of all rational
numbers and | · | is the usual distance on Q. Define a sequence (xn) in
Q as follows: let x1 = 1 and then define inductively xn+1 =

1
2(xn+

2
xn

)
for all n. By induction, we have (xn) to be a sequence of rationals.
But where does (xn) converge to? The sequence (xn) converges to√
2 (Prove it!). But

√
2 is not a rational number. This means (xn)

does not converge in (Q, | · |). Since we know that the members of
(xn) actually gather around

√
2 after a while, the members of (xn)

get close to each other eventually. This much information we have
about (xn) as long as we confine ourselves to the smaller metric space
(Q, | · |) instead of the bigger space (R, | · |). But for a general metric
space (X, d), we may not know if it is sufficiently large or not. This
leads to the definition of a special class of sequences which is weaker
than that of convergent sequences.

85
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Definition 3.1.1. A sequence (xn) in a metric space (X, d) is called
a Cauchy sequence if for every ε > 0, there exists nε ∈ N (nε depends
on ε) such that d(xm, xn) < ε for all n, m ≥ nε.

Thus every convergent sequence is Cauchy. But the discussion
before the previous definition depicts that the sequence (xn) was
Cauchy but not convergent in (Q, | · |). There we observed a crucial
property which is possessed by (R, | · |) but not by (Q, | · |).
Definition 3.1.2. If every Cauchy sequence in (X, d) converges in
(X, d), then (X, d) is called a complete metric space.

We will shortly prove that (R, | · |) is a complete metric space.
Before that let us look at some examples of complete and incomplete
metric spaces.

Example 3.1.1. Let X = (0,∞) be equipped with the usual metric
d(x, y) = |x − y|. Then (X, d) is not complete as ( 1n) is a Cauchy
sequence in (X, d) which does not converge in (X, d) (0 �∈ X).

Example 3.1.2. Let (X, d) be a metric space where d is the discrete
metric. Then every Cauchy sequence in (X, d) is eventually constant
and hence it converges. Thus (X, d) is a complete metric space. What
can you say about the metric space (N, | · |)?

Before we discuss about a few more important examples of com-
plete metric spaces, let us briefly highlight one result from real anal-
ysis which could be useful in proving the completeness of certain
metric spaces.

Proposition 3.1.1. Let (xn) be a sequence in R converging to a
point x in R. Then the sequence (|xn|) converges to |x| in R.

Proof. Use ||xn| − |x|| ≤ |xn − x|.
Is the converse of the previous result true? That is, if |xn| → |x|

in (R, | · |), then does that imply xn → x?

Example 3.1.3. Consider lp (p ≥ 1 is a fixed real number) equipped
with the metric

d(x, y) =

( ∞∑
k=1

|xk − yk|p
)1/p

,
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where x = (xk) and y = (yk) (refer to Example 1.3.7). We now prove
that it is a complete metric space.

Let (x(n)) be a Cauchy sequence in (lp, d), where x(n) =

(x
(n)
1 , x

(n)
2 , . . .). Then for every ε > 0, there exists no ∈ N such that

for all m, n > no,

d(x(m), x(n)) =

⎛
⎝ ∞∑

j=1

|x(m)
j − x

(n)
j |p
⎞
⎠

1/p

< ε. (�)

Hence for every j, |x(m)
j − x

(n)
j | < ε, for all m, n > no. This implies

that the sequence (x
(n)
j )n∈N is a Cauchy sequence in F, where F = R

or C, for every j and therefore it converges to some xj, because F

with the usual metric is complete.
Let x = (x1, x2, . . .). Now we claim that x ∈ lp and the sequence

(x(n)) converges to x. From (�), for k ∈ N we have

k∑
j=1

|x(m)
j − x

(n)
j |p < εp

for all m, n > no. If n→ ∞, then

k∑
j=1

|x(m)
j − xj|p ≤ εp for m > no.

Therefore, the sequence of partial sums (sk), where sk =∑k
j=1 |x(m)

j − xj |p, is monotonically increasing and bounded above
and hence we get,

∞∑
j=1

|x(m)
j − xj|p ≤ εp for m > no. (��)

Consequently, x(m)−x ∈ lp. Since x(m) ∈ lp, by Minkowski’s inequal-
ity (Theorem 7.4.6), we have

x = x(m) + (x− x(m)) ∈ lp.
Moreover, by (��) we have (x(n)) converges to x.
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Similar steps can be used to prove the completeness of the follow-
ing metric space.

Example 3.1.4. Consider the space l∞ equipped with the supre-
mum metric d(x, y) = sup

n∈N
|xn − yn| (refer to Example 1.3.8). Then

the metric space (l∞, d) is complete.

It should be noted that the metric plays a crucial role in the
completeness of a metric space.

Example 3.1.5. Consider the space C[a, b] of all continuous real-
valued functions on a closed and bounded interval [a, b] equipped
with the uniform metric:

D(x, y) = max
t∈[a,b]

|x(t)− y(t)|,

where x, y are continuous functions on [a, b]. Then C[a, b] is complete
(proved later). But if we equip the set with the metric:

dp(x, y) =

(∫ b

a
|x(t)− y(t)|pdt

)1/p

,

where 1 ≤ p < ∞ then the metric space is incomplete. We now
show the incompleteness of the space (C[a, b], d1). First observe that
d1(x, y) geometrically represents the area between the graphs of the
functions x and y. Now let a < c < b and for every n with a < c−1/n,
define xn as

xn(t) =

⎧⎪⎨
⎪⎩
0 if a ≤ t ≤ c− 1

n

nt− nc+ 1 if c− 1
n ≤ t ≤ c

1 if c ≤ t ≤ b

⎫⎪⎬
⎪⎭.



Complete Metric Spaces 89

Then (xn) is a Cauchy sequence in (C[a, b], d1) as d1(xn, xm) ≤
1
n + 1

m . Suppose (xn) converges to some x ∈ C[a, b]. Now

d1(xn, x) =

∫ c−(1/n)

a
|x(t)|dt+

∫ c

c−(1/n)
|xn(t)− x(t)|dt

+

∫ b

c
|1− x(t)|dt

=

(∫ c−(1/n)

a
|x(t)|dt+

∫ c

c−(1/n)
|x(t)|dt

)

+

∫ c

c−(1/n)
|xn(t)− x(t)|dt+

∫ b

c
|1− x(t)|dt

−
∫ c

c−(1/n)
|x(t)|dt

=

∫ c

a
|x(t)|dt +

∫ c

c−(1/n)
|xn(t)− x(t)|dt

+

∫ b

c
|1− x(t)|dt−

∫ c

c−(1/n)
|x(t)|dt.

Since c − 1
n → c, the integrals

∫ c
c−(1/n) |xn(t) − x(t)|dt and∫ c

c−(1/n) |x(t)|dt converge to zero. Moreover, since d1(xn, x) → 0, we

have ∫ c

a
|x(t)|dt+

∫ b

c
|1− x(t)|dt = 0.

But x ∈ C[a, b]. This implies that x(t) = 0 on [a, c] and x(t) = 1 on
[c, b], which is impossible. Hence the Cauchy sequence (xn) does not
converge in (C[a, b], d1).

Example 3.1.6. Let X be a non-empty set and let B(X) be the set
of all real-valued bounded functions defined on X equipped with the
supremum metric D:

D(f, g) = sup{|f(x)− g(x)| : x ∈ X}.
Now we prove that D is a complete metric: let (fn) be a Cauchy
sequence in (B(X),D). Then given ε > 0, there exists nε ∈ N such
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that D(fn, fm) < ε ∀ n, m ≥ nε. In particular, for each x ∈ X,

|fn(x)− fm(x)| ≤ D(fn, fm) < ε ∀ n, m ≥ nε. (�)

But this means that for each x ∈ X, the sequence (fn(x)) is Cauchy in
(R, |·|). Hence (fn(x)) converges to a (unique) point, say yx in (R, |·|)
(yx depends on x). Define f : X → R by: f(x) = yx = lim

n→∞ fn(x).

Note that f is a well-defined real-valued function defined on X. By
(�), we get

lim
n→∞ |fn(x)− fm(x)| ≤ ε ∀ m ≥ nε. (��)

Now

lim
n→∞ |fn(x)− fm(x)| = | lim

n→∞(fn(x)− fm(x))|
(by Proposition 3.1.1)

= |f(x)− fm(x)|
(by the definition of f).

So we get,

|f(x)− fm(x)| ≤ ε ∀ m ≥ nε (� � �)

Hence for all x ∈ X, we have |f(x) − fnε(x)| ≤ ε. Consequently,
|f(x)| ≤ |fnε(x)|+ ε ∀ x ∈ X. Since fnε ∈ B(X), there exists Mε > 0
such that |fnε(x)| ≤Mε ∀ x ∈ X. Hence |f(x)| ≤Mε + ε =M (say)
∀ x ∈ X, that is, f ∈ B(X).
Now we need to show that D(f, fn) → 0 as n→ ∞. By (���), |f(x)−
fm(x)| ≤ ε ∀ m ≥ nε and ∀ x ∈ X. So D(f, fm) ≤ ε ∀ m ≥ nε. But
this precisely means that fn → f in (B(X),D). Hence (B(X),D) is
a complete metric space.

Remark. (a) In (��), n → ∞ means that it is being done for suf-
ficiently large n and in particular, for n ≥ nε; Moreover, in the
limit process, ‘<’ is replaced by ‘≤’ (for example, 1

n > 0 ∀ n ∈ N,

but lim
n→∞

1
n = 0).

(b) Note that if we replace R by C, that is, if we take B(X) to
be the set of all complex valued bounded functions on X, then
analogously we can prove that (B(X),D) is a complete metric
space.
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Surprisingly, if B(X,Y ) denotes the set of all bounded functions
from a set X to a metric space (Y, ρ) and suppose (Y, ρ) is complete
then B(X,Y ) is also complete with respect to the supremum metric.
The proof is analogous to that of B(X). Interestingly, the converse
is also true, that is, if (B(X,Y ),D) is complete then so is (Y, ρ).

Proposition 3.1.2. Let (X, d) and (Y, ρ) be two metric spaces such
that (B(X,Y ),D) is complete, where D(f, g) = sup{ρ(f(x), g(x)) :
x ∈ X}. Then (Y, ρ) is also complete.

Proof. Let (yn) be a Cauchy sequence in Y . For each n ∈ N, define
fn : X → Y as: fn(x) = yn. Then clearly, fn ∈ B(X,Y ) for all
n ∈ N. Moreover, (fn) is Cauchy in B(X,Y ). Since (B(X,Y ),D)
is complete, let fn → f . Now it is enough to prove that f is a
constant function. Suppose, if possible, f(x1) �= f(x2). Let εo =
ρ(f(x1), f(x2)) > 0. Since fn → f , there exists no ∈ N such that
ρ(yn, f(x)) <

εo
2 ∀ n ≥ no and ∀ x ∈ X. But then this would imply

that εo = ρ(f(x1), f(x2)) ≤ ρ(f(x1), yno) + ρ(yno , f(x2)) < εo. This
is a contradiction. Thus, if xo ∈ X, then f(x) = f(xo) ∀ x ∈ X.
Since fn → f , we get that yn → f(xo) in (Y, ρ).

Exercises

3.1.1. Let X = (0,∞) endowed with metric d′ defined by: d′(x, y) =
| 1x − 1

y | for all x, y ∈ X. Is (X, d′) complete?

3.1.2. Show that the metric space (R, d) is incomplete, where
d(x, y) = | tan−1 x− tan−1 y| on R.

3.1.3. Let f : (X, d) → (Y, ρ) be any function between two metric
spaces. Then show that the metric space (X,σ), where σ is defined
as

σ(x, x′) = d(x, x′) + ρ(f(x), f(x′)) for x, x′ ∈ X,

is complete if (X, d) is complete and f is continuous. (Refer to
Exercise 1.3.6.)

3.1.4. Let X be a non-empty set and (Y, ρ) be a complete met-
ric space. Then show that the metric space B(X,Y ) of all bounded
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functions from X to (Y, ρ) is complete with respect to the supremum
metric.

3.1.5. Show that the space R
I is complete with respect to the uni-

form metric. (Refer to Example 1.3.9.)

3.1.6. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection of metric
spaces. Then show that the product space

∏n
i=1Xi equipped with

any of the metrics given in Example 1.3.4 is complete if and only
if (Xi, di) is complete for all 1 ≤ i ≤ n. (Keep in mind Proposition
2.6.3.) As a consequence, it can be deduced that the Euclidean space
R
n is complete.

3.1.7. Show that the Cartesian product
∏∞

i=1Xi is complete with
respect to the metric defined in Example 1.3.10 if and only if the
metric space (Xn, dn) is complete for all n ∈ N.

3.2 Cauchy Sequences vis-à-vis Total Boundedness

It is well known that every subsequence of a convergent sequence
in a metric space (X, d) also converges to the same limit. But if
a subsequence is convergent then the parent sequence need not be
convergent (think of ((−1)n)n∈N). Can you think of some conditions
which guarantee the convergence of the parent sequence? It is quite
intuitive that if the sequential terms are arbitrarily close to each
other eventually then the sequence is convergent provided it has a
convergent subsequence. We are going to use this observation to prove
the completeness of (R, | · |).
Theorem 3.2.1. The metric space (R, | · |) is complete.

Proof. Let (xn) be a Cauchy sequence in (R, | · |). First we show
that (xn) is bounded in R. Let ε = 1. Then there exists no ∈ N

such that |xn − xm| < 1 for all n, m ≥ no. In particular, |xn −
xno | < 1 for all n ≥ no, that is, |xn| < |xno | + 1 ∀ n ≥ no. Let
M = max{|x1|, . . . , |xno−1|, |xno |+ 1}. Then |xn| ≤ M for all n ∈ N.
By Bolzano–Weierstrass theorem, there exists a subsequence (xkn) of
(xn) such that xkn → x for some x ∈ R. So given ε > 0, there exists
nε ∈ N such that |xkn − x| < ε/2 for all n ≥ nε. Again since (xn) is
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Cauchy in R, there exists n′ε ∈ N such that |xn − xm| < ε/2 for all
n, m ≥ n′ε. Choose n′′ε = max{nε, n′ε}. If n ≥ n′′ε , then kn ≥ n ≥ n′′ε
and hence

|xn − x| = |xn − xkn + xkn − x|
≤ |xn − xkn |+ |xkn − x|
< ε/2 + ε/2 = ε ∀ n ≥ n′′ε .

Thus, xn → x in (R, | · |) and consequently, (R, | · |) is a complete
metric space.

The reader should observe carefully that in the proof of the last
result, we have implicitly proved that if a Cauchy sequence (xn) has
a convergent subsequence then the sequence (xn) itself converges to
the same limit. Although it is proved in the context of real sequences
but the proof can be imitated for a sequence in a general metric space
as well. Further, we proved that every Cauchy sequence in (R, | · |) is
bounded. Let us prove this fact for a general metric space.

Proposition 3.2.1. Every Cauchy sequence in a metric space (X, d)
is bounded.

Proof. Let (xn) be a Cauchy sequence in (X, d). Then there exists
no ∈ N such that d(xn, xno)< 1 ∀ n≥no. Let M > max{d(x1,
xno), d(x2, xno), . . . , d(xno−1, xno), 1}. Then (xn) ⊆ B(xno ,M).

Note that if (xn) is Cauchy, then the set {xn : n ∈ N} is much
stronger than being bounded. Because if (xn) is Cauchy in (X, d),
then the sequence can be contained in finitely many balls of arbitrar-
ily small radius. Now let us generalize this notion for any arbitrary
subset of a metric space.

Definition 3.2.1. Let A be a nonempty subset of a metric space
(X, d). Then A is called totally bounded in (X, d) if given ε > 0,
there exists a finite subset (depending on ε) {x1, x2, . . . , xn} of X
such that A ⊆ ⋃n

i=1B(xi, ε).

Remark. In the previous definition, the finite set {x1, x2, . . . , xn}
can be chosen from A itself (Prove it!).
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The empty set ∅ is vacuously totally bounded. It is evident that
a totally bounded set in a metric space is always bounded, but the
converse need not be true. Think about the discrete metric. Can you
think of a bounded set in (R, | · |) which is not totally bounded?

If (xn) is a Cauchy sequence in (X, d), then it is easy to see that
the set {xn : n ∈ N} is totally bounded. In fact, the next result
talks about the relation between totally bounded sets and Cauchy
sequences in a precise manner.

Theorem 3.2.2. Let (X, d) be a metric space and A be a non-empty
subset of X. Then A is totally bounded if and only if every sequence
in A has a Cauchy subsequence.

Proof. First suppose that A is totally bounded and let (xn) be a
sequence in A. Consider the set S = {xn : n ∈ N}. We may assume
S to be infinite. Otherwise if S is finite, then (xn) has a constant
subsequence.

Now given ε = 1
2 , there exists a finite subset F1 of X such that

A ⊆ ⋃y∈F1
B(y, 12). Since S is infinite, there exists y1 ∈ F1 such

that B(y1,
1
2) contains a subsequence (xkn) of (xn) and the set S1 =

{xkn : n ∈ N} is infinite. Denote the subsequence (xkn) by (x
(1)
n ). Now

choose ε = 1
22 and repeat the previous process, that is, there exists a

finite subset F2 of X such that A ⊆ ⋃y∈F2
B(y, 1

22
). As before, there

exists y2 ∈ F2 such that B(y2,
1
22
) contains a subsequence of (x

(1)
n ).

Call this subsequence by (x
(2)
n ) and note that the set S2 = {x(2)n : n ∈

N} is again infinite. Proceeding in this way, we obtain a sequence of
sequences, each of which is a subsequence of the preceeding one,

(xn), (x
(1)
n ), (x(2)n ), . . . , (x(k)n ), . . .

Note that for each k ∈ N, Sk = {x(k)n : n ∈ N} is infinite and Sk is

contained in an open ball of radius 1
2k
. Now (x

(n)
n ) is a subsequence

of (xn). Let ε > 0 and choose no ∈ N such that 1
2no−1 < ε. For n > no

and p ∈ N, we have

d(x
(n+p)
n+p , x(n)n ) <

1

2n
+

1

2n
=

1

2n−1
<

1

2no−1
< ε.

But this means that (x
(n)
n ) is a Cauchy sequence.
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Conversely, suppose that every sequence in A has a Cauchy subse-
quence. In order to show that A is totally bounded, choose any ε > 0.
Let x1 ∈ A. If A − B(x1, ε) is empty, then A ⊆ B(x1, ε) and we are
done. Otherwise, choose x2 ∈ A−B(x1, ε). If A− [B(x1, ε)∪B(x2, ε)]
is empty, we are done. We only need to assert that this process ter-
minates. If it does not terminate, then we would land up with a
sequence (xn) of all distinct points in A such that d(xi, xj) ≥ ε for
all i �= j. Obviously, the sequence (xn) cannot have a Cauchy subse-
quence which is contrary to our hypothesis.

Remark. In the first part of the proof, we produced a subsequence

(x
(n)
n ) of (xn). Here we are employing a trick which is well-known

as the diagonal method. Also satisfy yourself that in this diagonal
process, you are really picking up a subsequence of (xn) (we are

moving towards right and not going back while picking up x
(n)
n ).

Consequently, if A is an infinite totally bounded subset of a metric
space (X, d) then there exists a Cauchy sequence of distinct points
in A.

Recall that R is homeomorphic to the interval (−π
2 ,

π
2 )

(Example 2.3.1). From this, it is evident that total boundedness is
not preserved by homeomorphism. But interestingly, now we prove
that Cauchy-continuity preserves total boundedness.

Corollary 3.2.1. Let f : (X, d) → (Y, ρ) be a Cauchy-continuous
function. If A is a totally bounded subset of (X, d), then f(A) is
totally bounded in (Y, ρ).

Proof. We will use the sequential characterization of totally
bounded sets to prove this. Let (f(an)) be a sequence in f(A). Since
A is totally bounded, (an) has a Cauchy subsequence say (akn).
By the Cauchy continuity of f , (f(akn)) is Cauchy in (Y, ρ). Since
(f(an)) was an arbitrary sequence in (Y, ρ), every sequence in f(A)
has a Cauchy subsequence. Thus by Theorem 3.2.2, f(A) is totally
bounded.

Subsequently, we can say that every Cauchy-continuous function
is bounded on totally bounded subsets of the domain space. It should
be noted that the converse of Corollary 3.2.1 may not hold true. For
example, let X = { 1

n : n ∈ N} and {0, 1} be equipped with the
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metric induced by the usual distance metric. Consider the function
f : X → {0, 1} defined by: f(x) = 0 if n is even and f(x) = 1 if n is
odd. Clearly, f carries totally bounded sets of X to totally bounded
sets of {0, 1}. In fact, every subset of {0, 1} is totally bounded. More-
over, f is continuous (as every point ofX is an isolated point) but not
Cauchy-continuous (take ( 1n)) (See Exercise 3.2.4). As a consequence
of Corollary 3.2.1, it can be said that total boundedness is preserved
under Cauchy equivalent metrics (Exercise 2.6.3), that is, if the met-
rics d and ρ on X are Cauchy equivalent then the collection of the
totally bounded sets with respect to the metric d coincides with the
corresponding collection in (X, ρ).

Proposition 3.2.2. Let (X, d) be a metric space and B be a non-
empty totally bounded subset of X. Then B is separable.

Proof. Since B is totally bounded, for each n ∈ N there exists a
finite subset Fn ofB such that B ⊆ ⋃x∈Fn

B(x, 1n). Let F =
⋃∞

n=1 Fn.
Then F is countable because countable union of finite sets is count-
able. We claim that F is dense in B. Given ε > 0, choose no ∈ N

such that 1
no

< ε. Let x ∈ B, then there exists xo ∈ Fno such that

x ∈ B(xo,
1
no
). Hence xo ∈ B(x, 1

no
) and therefore B(x, ε) ∩ F �= ∅.

This implies that x ∈ F . So B ⊆ F . But F is countable. Hence B is
separable.

Can you find a separable metric space which is not totally
bounded? (Think of discrete metric.)

Exercises

3.2.1. Let A be a subset of a metric space (X, d). Show that if A is
bounded (totally bounded) then A is also bounded (totally bounded).

3.2.2. Show that a subset of a totally bounded set in a metric space
is also totally bounded.

3.2.3. Let f : (X, d) → (Y, ρ) be a function. Then prove that the
following are equivalent statements:

(a) f is Cauchy-continuous.
(b) f is uniformly continuous on every totally bounded subset of X.
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3.2.4. Let f : (X, d) → (Y, ρ) be a function. Then show that the
following statements are equivalent:

(a) f maps totally bounded subsets of X to totally bounded subsets
of Y .

(b) If (xn) is Cauchy in X, then (f(xn)) has a Cauchy subsequence
in Y .

3.2.5. Show that the closed unit ball in �∞ is not totally bounded.

3.2.6. Prove that (X, d) is totally bounded if and only if
(CLB(X), dH ) is totally bounded. (Refer to Exercise 1.5.7.)

3.3 Cantor’s Intersection Theorem

Let us first explore the close connection between a complete metric
space and its closed subsets. For example, consider two subsets [0, 1]
and (0, 1) of the complete metric space (R, | · |) with the induced
metric, that is, consider the metric spaces ([0, 1], | · |) and ((0, 1), | · |).
Then note that ([0, 1], | · |) is complete, but ((0, 1), | · |) is not. Why
is it so? The next result answers this question.

Theorem 3.3.1. Let (X, d) be a metric space and A be a non-empty
subset of X.

(a) Suppose (X, d) is complete and A is closed in (X, d). Then (A, d)
is a complete metric space.

(b) If (A, d) is a complete metric space, then A is closed in (X, d).

Proof. (a) Let (xn) be a Cauchy sequence in (A, d). We need to
show that (xn) converges to a point in A. Since (xn) is also
Cauchy in the complete metric space (X, d), there exists x ∈ X
such that xn → x in (X, d). But (xn) is a sequence from A and
hence by Theorem 1.5.2(a), x ∈ A. Since A is closed, A = A
and thus x ∈ A. Therefore, the Cauchy sequence (xn) in (A, d)
converges to a point in A. Hence (A, d) is complete.

(b) Suppose (A, d) is complete. We need to show that A is closed
in (X, d). Let x ∈ A. Then by Theorem 1.5.2(a), there exists a
sequence (xn) in A such that xn → x in (X, d). Hence (xn) is
Cauchy in (A, d). Since (A, d) is complete, there exists y ∈ A such
that xn → y in (A, d). This means xn → y in (X, d). Then by
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the uniqueness of the limit of a convergent sequence x = y. But
y ∈ A, so x ∈ A. This implies that A ⊆ A and hence A = A. So
A is closed in (X, d).

Remarks. (i) In functional analysis, two metric subspaces, c and
c0, of the metric space l∞ play a significant role. Here, c denotes
the space of all convergent sequences, while c0 is the space of all
sequences converging to zero. Clearly, co ⊆ c ⊆ l∞. Moreover,
these inclusions are strict. Since both these spaces are closed
in the complete space l∞ (Exercise 1.5.12), c and c0 are also
complete with respect to the supremum metric inherited from
the space l∞.

(ii) Later it will be proved that the space C[a, b], equipped with
the uniform metric (see Example 3.1.5), is a closed subset of
(B[a, b],D). Hence by Theorem 3.3.1, (C[a, b],D) is complete.

Next we want to prove the famous Cantor’s Intersection Theorem
on a complete metric space. It is a very powerful tool which is often
used to prove other important results in analysis.

Theorem 3.3.2 (Cantor’s Intersection Theorem). Let (X, d)
be a complete metric space and let (An) be a sequence of non-
empty closed subsets of X such that An+1 ⊆ An ∀ n ∈ N and
lim
n→∞ d(An) = 0. Then the intersection

⋂∞
n=1An consists precisely of

one point.

Proof. The proof mainly consists of two parts: existence and unique-
ness of the point in

⋂∞
n=1An. We prove the uniqueness part first. If

x, y ∈ ⋂∞
n=1An, then x, y ∈ An for all n. By definition, d(x, y) ≤

d(An) ∀ n. But lim
n→∞ d(An) = 0. This implies that d(x, y) = 0 and

hence x = y. So the intersection
⋂∞

n=1An can have at most one
element.

Now we show that
⋂∞

n=1An has a point. For each n ∈ N, choose
xn ∈ An. Note for m ≥ n, Am ⊆ An and hence d(Am) ≤ d(An).
Now given ε > 0, there exists no ∈ N such that d(Ano) < ε, because
d(An) → 0. Hence for all n, m ≥ no, d(xn, xm) ≤ d(Ano) < ε and so
(xn) is a Cauchy sequence in (X, d). But (X, d) is complete. Hence
there exists x ∈ X such that xn → x in (X, d). But this means that
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(xn)n≥m → x in (X, d) for all m ∈ N and hence by Theorem 1.5.2(a),
x ∈ Am for all m ∈ N. Since Am is closed, this implies that x ∈ Am

for all m ∈ N. Consequently, x ∈ ⋂∞
n=1An.

Remarks. (a) By the sequence of sets (An), it means that there is
a function f : N → P(X), where P(X) denotes the power set of
X, such that f(n) = An.

(b) In place of ‘An+1 ⊆ An ∀ n ∈ N’, sometimes we call it a decreas-
ing sequence of sets.

(c) Note that the assumption of (X, d) being a complete metric
space in Cantor’s Intersection Theorem cannot be dropped. For
example, let X = (0, 1) and consider the usual distance metric
| · | on X. Then (X, | · |) is not complete. The sequence ( 1

n+1)
does not converge in (X, | · |), though it is a Cauchy sequence in
(X, | · |). Let An = (0, 1

n+1 ]. Then each An is closed in (X, | · |)
and
⋂∞

n=1An = ∅.
(d) One should observe that the assumption of diameter tending

to 0 is not just required for proving the uniqueness part in the
theorem but also for the existence part: consider N with the usual
distance metric and An = {k ∈ N : k ≥ n}. Then d(An) �→ 0 and⋂∞

n=1An = ∅.
The reader should observe that the converse of Cantor’s Intersec-

tion Theorem is also true as proved in the next proposition.

Proposition 3.3.1. Let (X, d) be a metric space such that for
every sequence of non-empty closed subsets (An) in X with An+1 ⊆
An ∀ n ∈ N and lim

n→∞ d(An) = 0, the intersection
⋂∞

n=1An �= ∅.
Then the metric space (X, d) is complete.

Proof. Let (xn) be a Cauchy sequence in (X, d) and let (An) be a

sequence of subsets of X, where An = {xk : k ≥ n} for all n ∈ N.
Then clearly An’s are non-empty closed subsets of X with An+1 ⊆
An ∀ n ∈ N. Since (xn) is Cauchy, lim

n→∞ d(An) = 0. Then by the

given condition, let x ∈ ⋂∞
n=1An. This implies that for every ε > 0,

xn ∈ B(x, ε) for infinitely many n. Hence x is a cluster point of
(xn) and by Theorem 1.6.1 there exists a subsequence of (xn) which
converges to x. But since (xn) is Cauchy, xn → x. Thus, (X, d) is
complete.
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Exercises

3.3.1. Show that (X, d) is complete if and only if for some fixed r ∈
(0, 1), every sequence (xn) in X satisfying d(xn, xn+1) < rn ∀ n ∈ N

converges in (X, d).

3.3.2 ([14]). Give an example of a non-convergent sequence (xn)
in R such that |xn − xn+1| tends to 0 as n tends to infinity. This
gives an idea of a special class of sequences which is weaker than
Cauchy sequences. Let us first define them precisely: a sequence (xn)
in (X, d) is said to be quasi-Cauchy if given any ε > 0, there exists
nε such that d(xn, xn+1) < ε ∀ n ≥ nε.

(a) Give an example to show that quasi-Cauchy sequences need not
be bounded.

(b) Prove that a sequence (xn) in a metric space is Cauchy if and
only if every subsequence of (xn) is quasi-Cauchy.

(c) If f : (X, d) → (Y, ρ) is uniformly continuous then show that
(f(xn)) is quasi-Cauchy in (Y, ρ) whenever (xn) is quasi-Cauchy
in (X, d).

(d) Let I be any interval in R and let (an) and (bn) be sequences in I
such that |an − bn| → 0 as n→ ∞. Then establish the existence
of a quasi-Cauchy sequence (xn) in I such that for every n ∈ N

there exists a kn ∈ N such that an = xkn and bn = xkn+1.
(e) Prove that a function g : I → R is uniformly continuous on the

interval I if and only if it preserves quasi-Cauchy sequences.

3.3.3. Use Proposition 3.3.1 to prove the completeness of (R, | · |).
3.3.4. Prove that the space of all polynomial functions, defined on
some closed and bounded interval [a, b], with the uniform metric,
D(x, y) = maxt∈[a,b] |x(t)− y(t)|, is incomplete.

3.3.5. Prove the following generalization of Cantor’s intersection the-
orem, which is well known as Kuratowski’s intersection theorem. Let
(X, d) be a metric space. Then the following are equivalent:

(1) (X, d) is complete.
(2) Whenever (An) is a sequence of non-empty closed subsets of X

such that An+1 ⊆ An ∀ n ∈ N and lim
n→∞α(An) = 0, then⋂∞

n=1An �= ∅.
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Note that for each A ⊆ X,

α(A) = inf{ε > 0 : A is contained in a finite union of balls of radius ε}.

The functional α is called the Kuratowski measure of non-
compactness. Can we further say that the intersection

⋂∞
n=1An con-

sists precisely of one point?

3.4 Completion of a Metric Space

The very first property which we look for in any metric space is com-
pleteness. Because many good results on metric spaces only hold for
complete metric spaces. Cantor’s Intersection Theorem is one such
result and in fact in upcoming sections also we will realize the signif-
icance of this property. So now the question is to find the ‘smallest’
complete metric space (Y, ρ), for an arbitrary incomplete metric space
(X, d), such that X ⊆ Y and ρ

∣∣
X×X = d? Here ‘smallest’ means that

X is somewhat dense in the complete metric space (Y, ρ). Since we
are working with arbitrary metric spaces, it might not be possible
to simply add the limits of the Cauchy sequences. So in a general
scenario, we make use of an isometry because it preserves the metric
structure.

Before we demonstrate the process of formulating such complete
superspaces. We first define them formally.

Definition 3.4.1. Let (X, d) be a metric space. A completion of

(X, d) is a metric space (X̂, d̂) with the following properties:

(a) (X̂, d̂) is complete.

(b) (X, d) is isometric to a dense subset of (X̂, d̂), that is, there

exists an isometry T : (X, d) → (X̂, d̂) such that T (X) is dense

in (X̂, d̂).

Remark. Since metric space properties are preserved under isome-
tries, we can think of X and T (X) to be the same. As a consequence,

X itself can be treated as a dense subset of X̂.

Examples 3.4.1. (a) Clearly, (R, | · |) is a completion of (Q, | · |) and
(R \Q, | · |).
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(b) Later, it will be proved (Weierstrass approximation theorem)
that the set of all polynomials P defined on [a, b] is dense in
the complete metric space (C[a, b],D), where D is the uniform
metric. Consequently, (C[a, b],D) is a completion of (P,D).

(c) Recall from Example 3.1.5 that the metric space (C[a, b], dp) is
incomplete. The incompleteness of the space (C[a, b], dp) is one
of the drawbacks of Riemann integration. In fact, this pushes
towards a more powerful theory of integration namely ‘Lebesgue
integral’. One of the crucial by-product of the Lebesgue theory is
Lp space (also called Lebesgue space). In fact, such spaces play a
key role in measure theory and functional analysis. Interestingly,
(C[a, b], dp) is dense in L

p[a, b] and the space Lp[a, b] is complete
as well. This implies that the Lebesgue space is a completion of
the space (C[a, b], dp). We are not going into the details of Lp

spaces as it is out of the scope of this book.

Theorem 3.4.1. For every metric space (X, d), there exists a com-

pletion (X̂, d̂).

Proof. Recall that B(X) denotes the set of all real-valued bounded
functions on X. It has been shown in Example 3.1.6 that (B(X),D)
is a complete metric space where

D(f, g) = sup
x∈X

|f(x)− g(x)|.

We only need to find an isometry T : (X, d) → (B(X),D). Then

the closure T (X) of T (X) in (B(X),D) will be the required X̂ (by

Theorem 3.3.1) and d̂ will be simply D restricted to T (X) × T (X).
Now let us start the proof.

Let a ∈ X and keep it fixed. For each x ∈ X, define fx : X → R

by fx(y) = d(x, y)−d(y, a) ∀ y ∈ X. By Proposition 1.3.1, it follows
that |fx(y)| = |d(x, y) − d(y, a)| ≤ d(x, a) ∀ y ∈ X. Since both x
and a are fixed, fx ∈ B(X). Now define T : (X, d) → (B(X),D) by
T (x) = fx for x ∈ X. Let us calculate D(T (x), T (z)) for x, z ∈ X.

|fx(y)− fz(y)| = |d(x, y) − d(y, a)− [d(z, y) − d(y, a)]|
= |d(x, y) − d(z, y)|
≤ d(x, z).
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Hence D(fx, fz) = supy∈X |fx(y)− fz(y)| ≤ d(x, z). On the other
hand,

|fx(z)− fz(z)| = |d(x, z) − d(z, z)| = d(x, z).

And consequently, d(x, z) ≤ D(fx, fz). Hence D(fx, fz) =
d(x, z) ∀ x, z ∈ X. Since (B(X),D) is a complete metric space, by

Theorem 3.3.1 (T (X),D) is complete. Hence by definition, (T (X),D)
is a completion of (X, d).

The proof presented here is an easy one but it is not intu-
itive. Let us give an outline of the original proof as well for the
interested readers: we need to construct a space which contains
the limits of all the non-convergent Cauchy sequences in (X, d).
But there might be Cauchy sequences which converge to the same
limit. We know that such sequences would be asymptotic and vice-
versa (see Proposition 2.3.2 and Exercise 2.3.8). So the set of all
Cauchy sequences is split into equivalence classes, where we define
two Cauchy sequences (xn) and (yn) to be equivalent if they are
asymptotic, that is,

(xn) ∼ (yn) ⇔ lim
n→∞ d(xn, yn) = 0.

Verify that ∼ is an equivalence relation. Let us denote the set of
all equivalence classes by X̃. Now define a metric (check!) d̃ on X̃ as
follows:

d̃(x̃, ỹ) = lim
n→∞ d(xn, yn),

where x̃, ỹ ∈ X̃ and (xn) ∈ x̃, (yn) ∈ ỹ.
Convince yourself that the definition of d̃ is well defined, that is,

(i) lim
n→∞ d(xn, yn) exists in R (by Proposition 2.5.1; here we are using

the completeness of (R, |·|)), and (ii) the definition of d̃ is independent
of the choice of elements of x̃ and ỹ. Finally, prove that the mapping
f : X → X̃ : f(x) = x̃, where x̃ ∈ X̃ such that every Cauchy

sequence in x̃ converges to x, is an isometry and f(X) is dense in X̃.

This will be subsequently used to prove the completeness of (X̃, d̃).

Theorem 3.4.2. If (X̃, d̃) and (X̂, d̂) are two completions of a met-

ric space (X, d), then there exists an onto isometry S : (X̂, d̂) →
(X̃, d̃), that is, the completion of (X, d) is unique up to isometry.
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Proof. Let T : (X, d) → (X̂, d̂) and T ′ : (X, d) → (X̃, d̃) be isome-

tries of X onto T (X) and T ′(X) which are dense in X̂ and X̃, respec-
tively. Then T ′oT−1 is an isometry from T (X) onto T ′(X). The claim
of the theorem now follows from Theorem 2.5.2.

Remark. Due to this uniqueness (up to isometry), we call ‘a’ com-
pletion of a metric space to be ‘the’ completion.

Let us conclude this section with an interesting remark. In Exam-
ple 2.6.2, it was observed that completeness is not preserved by equiv-
alent metrics. Now the question arises: under what conditions, does a
metric space possess an equivalent metric with respect to which it is
complete? We are answering this question in the following result. For
the proof, interested readers can refer to Ref. [58, Theorem 24.12].

Theorem 3.4.3. Let (X, d) be a metric space. Then the following
statements are equivalent:

(a) (X, d) is completely metrizable, that is, there exists an equivalent
metric ρ on X such that (X, ρ) is complete.

(b) X can be expressed as the intersection of countably many open

subsets in its completion (X̂, d̂).

Consequently, every open set in R is completely metrizable.

Exercise

3.4.1. Prove that two metrics d and ρ on a set X are Cauchy equiv-
alent if and only if there is a homeomorphism between their comple-
tions that fixes X. (Refer to Exercise 2.6.3.)

3.5 Extension Theorems

Many times while proving something, we need to construct a contin-
uous function (or a function having stronger properties) on a metric
space (X, d) which possesses some particular properties on a subset A
of X. In such situations, there is a requirement of an extension theo-
rem. This will help in extending a function f , which is continuous (or
Cauchy continuous or uniformly continuous) on A, to a function F
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which is continuous (or Cauchy continuous or uniformly continuous)
on X such that F |A = f (that is, F (a) = f(a) ∀ a ∈ A).

Example 3.5.1. Consider the function f : (0,∞) → R defined as:
f(x) = 1

x . Then f is continuous on (0,∞). But f cannot be extended
to a continuous function on [0,∞) because limx→0+ f(x) does not
exist.

In the previous example, note that (0,∞) is not closed in R.
Now let us prove the well-known extension theorem for continuous
functions which is beneficial in extending the functions continuously
under certain conditions.

Theorem 3.5.1 (Tietze’s extension theorem). Let f : A→ [0, 1]
be a continuous function where A is a closed subset of a metric space
(X, d). Then there exists a continuous function F : X → [0, 1] such
that F (a) = f(a) ∀ a ∈ A.

Proof. Without loss of generality, we can assume that f : A→ [1, 2]
(otherwise we can work on h ◦ f where h(x) = 1 + x). Now define a
function F : X → R as follows:

F (x) =

⎧⎨
⎩

inf
a∈A

f(a)d(x,a)

d(x,A) : x �∈ A

f(x) : x ∈ A

⎫⎬
⎭ .

Since f(A) ⊆ [1, 2],

d(x,A) ≤ inf
a∈A

f(a)d(x, a) ≤ 2d(x,A).

Hence F (x) ∈ [1, 2] ∀ x ∈ X. Now we only need to prove that F
is continuous on X which will follow from pasting lemma. Note that
X = A ∪X \ A where both A and X \ A are closed sets. Only the

continuity of F on X \ A needs to be proved.
We first prove that F is continuous on X \ A. Let x ∈ X \ A.

Since A is closed, X \ A is open and hence there exists δ > 0
such that B(x, δ) ⊆ X \ A. Since x �→ d(x,A) is a continuous
function (see Example 2.4.1) and d(x,A) > 0 ∀ x �∈ A (see
Exercise 1.5.4), it is enough to prove the continuity of the function
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f̃(u) = infa∈A f(a)d(u, a) at x. So let ε > 0 and y ∈ X \ A with
d(x, y) < ε/2. If a ∈ A, then

d(x, a) ≤ d(x, y) + d(y, a) <
ε

2
+ d(y, a).

Thus, we have f(a)d(x, a) < ε + f(a)d(y, a) because f(a) ≤ 2. Now

taking the infimum over a ∈ A, we get f̃(x) ≤ ε + f̃(y). Similarly,

it can be proved that f̃(y) ≤ ε + f̃(x). Consequently, we get that

whenever d(x, y) < min{δ, ε2}, |f̃(x) − f̃(y)| ≤ ε. Therefore, f̃ (and
hence F ) is continuous at x ∈ X \ A.

Now suppose x′ ∈ ∂A = A ∩X \ A. Let ε > 0. Since f is contin-
uous at x′, there exists a δ > 0 such that

|F (x′)− F (a)| < ε ∀ a ∈ A ∩B(x′, δ). (�)

Now suppose y ∈ (X \ A) ∩ B(x′, δ/4). We will prove that |F (x′) −
F (y)| < ε. But first we claim that

inf
a∈A

f(a)d(a, y) = inf
a∈A∩B(x′,δ)

f(a)d(a, y).

Suppose a ∈ A \ B(x′, δ). Then d(y, a) ≥ d(x′, a) − d(x′, y) ≥
δ − δ

4 = 3δ
4 . Since f(A) ⊆ [1, 2], inf{f(a)d(y, a) : a ∈ A \B(x′, δ)} ≥

3δ
4 . But note that f(x′)d(x′, y) ≤ 2d(x′, y) < 2 δ

4 < 3δ
4 . Therefore,

infa∈A∩B(x′,δ) f(a)d(a, y) <
3δ
4 . Now

inf
a∈A

f(a)d(a, y) = min

{
inf

a∈A∩B(x′,δ)
f(a)d(a, y), inf

a∈A\B(x′ ,δ)
f(a)d(a, y)

}

= inf
a∈A∩B(x′,δ)

f(a)d(a, y).

Similarly, it can be shown that

d(y,A) = inf
a∈A∩B(x′,δ)

d(a, y) (��).

Now

F (y) =
inf
a∈A

f(a)d(y, a)

d(y,A)
=

inf
a∈A∩B(x′,δ)

f(a)d(y, a)

d(y,A)
.
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By (�),

(F (x′)− ε) inf
a∈A∩B(x′,δ)

d(y, a)

d(y,A)
<

inf
a∈A∩B(x′,δ)

f(a)d(y, a)

d(y,A)

<

(F (x′) + ε) inf
a∈A∩B(x′,δ)

d(y, a)

d(y,A)

Thus, by (��), we get

F (x′)− ε < F (y) < F (x′) + ε.

Consequently, we have |F (x′) − F (y)| < ε for all y ∈ (X \ A) ∩
B(x′, δ/4). Thus, by (�), we have F to be continuous at x′ ∈ ∂A.

Remark. (a) From the proof of Theorem 3.5.1, it is clear that the
codomain of the given function f can be any bounded interval
[a, b]. Subsequently, the codomain of the corresponding extension
would also be the same bounded interval [a, b].

(b) Suppose f : A → (−1, 1) is a continuous function where A is
a closed subset of (X, d). Then by Theorem 3.5.1, there exists
a continuous extension F1 : X → [−1, 1] of f . Let A1 = {x ∈
X : F1(x) ∈ {−1, 1}}. Then A and A1 are disjoint closed sub-
sets of X. Hence by Urysohn’s lemma (Theorem 2.2.1), there
exists a continuous function g : X → [0, 1] such that g(A1) = 0
and g(A) = 1. Now one can easily verify that the function
F : X → (−1, 1) given by F (x) = g(x).F1(x) is a continuous
extension of f . Note that the interval (−1, 1) can be replaced by
any bounded interval (a, b) throughout because the two intervals
are homeomorphic.

(c) In Theorem 3.5.1, we talked about the extension of a bounded
continuous function defined on a closed subset of a metric space.
Interestingly, we do not require the condition of boundedness for
extending the given function. Suppose f : A → R is continu-
ous where A is a closed subset of (X, d). Then tan−1 ◦f : A →
(−π

2 ,
π
2 ) is a bounded continuous function on A. Now by the

previous remark, let F : X → (−π
2 ,

π
2 ) be the continuous exten-

sion, then F̃ = tan ◦F is the required continuous extension of f .
Moreover, infa∈A f(a) = inf

x∈X
F̃ (x) and supa∈A f(a) = sup

x∈X
F̃ (x).
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Now let us see one nice application of Tietze’s extension theorem.

Corollary 3.5.1. Let (X, d) be a metric space. Then the following
statements are equivalent:

(a) (X, d) is complete.
(b) Every continuous function on (X, d) with values in an arbitrary

metric space is Cauchy-continuous.
(c) Every real-valued continuous function on (X, d) is Cauchy-

continuous.

Proof. (a)⇒ (b): Let (X, d) be complete. Since continuous functions
preserve convergent sequences, every continuous function on (X, d)
with values in any arbitrary metric space is Cauchy-continuous.

(b) ⇒ (c): This is immediate.

(c) ⇒ (a): Let (xn) be a Cauchy sequence in (X, d) which does not
converge. Without loss of generality, we may assume xn �= xm for
n �= m. Since (xn) does not converge, it has no convergent subse-
quence. Then by Theorem 1.6.1, (xn) has no cluster point. Thus,
A = {xn : n ∈ N} is a closed subset of X by Theorem 1.4.6. Now
consider the function f : A → R defined as f(xn) = n for n ∈ N.
Then f is continuous by Theorem 2.1.1(d). Consequently, by Tietze’s
extension theorem there exists a real-valued continuous extension
F : (X, d) → R of f . This implies that F (xn) = f(xn) = n. By (c),
F is Cauchy-continuous. Thus, (F (xn)) = (n) should be Cauchy in
R, which is a contradiction.

Example 3.5.1 also shows that a function f which is continuous
on a dense set may not be extended continuously to the whole space.
Here comes the role of uniformly continuous functions. It was seen
that if f is uniformly continuous then we can surely extend the func-
tion from a dense set to the whole space provided the codomain is
complete. In fact, in the next result it is proved that such a thing
holds even for a weaker class as well, namely Cauchy-continuous func-
tions. Observe that the function f in Example 3.5.1 is not Cauchy-
continuous (take the sequence ( 1n)).

Theorem 3.5.2. Let A be a subset of a metric space (X, d) and
(Y, ρ) be a complete metric space. If f : (A, d) → (Y, ρ) is a Cauchy
continuous function, then there exists a unique continuous function
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F : A→ Y such that F (a) = f(a) ∀ a ∈ A. Moreover, F is Cauchy
continuous.

Proof. We need to define F on A. Let xo ∈ A. Then by Theorem
1.5.2, there exists a sequence (an) in A such that an → xo. Conse-
quently, the sequence (f(an)) is Cauchy in (Y, ρ) which is complete.
Hence (f(an)) converges to some point in Y , let us define that point
to be F (xo), that is, F (xo) = lim

n→∞ f(an).

F is well-defined: Suppose (wn) is another sequence in A which con-
verges to xo. We need to show that lim

n→∞ f(an) = lim
n→∞ f(wn). Since

the sequence 〈a1, w1, a2, w2, . . .〉 converges to xo, its corresponding
image under f is Cauchy and hence convergent in (Y, ρ). This implies
that its subsequences (f(an)) and (f(wn)) converge to the same limit.
Hence our claim is proved.

F is Cauchy-continuous: Let (xn) be a Cauchy sequence in A.
For each n ∈ N, let (anm)m∈N be a sequence in A which con-
verges to xn. Thus, F (xn) = lim

m→∞ f(anm) for n ∈ N. Now for each

n ∈ N, we can choose mn ∈ N such that d(anmn
, xn) < 1

n and

ρ(f(anmn
), F (xn)) <

1
n . This implies that (anmn

) � (xn). Since (xn) is
Cauchy, by Proposition 2.3.2 the sequence (anmn

) is also Cauchy in
A. Since f is Cauchy-continuous, (f(anmn

)) is Cauchy. Consequently,
(F (xn)) is Cauchy as (f(anmn

)) � (F (xn)). Therefore, F is Cauchy-
continuous.

F is an extension of f : If xo ∈ A, then we know that the constant
sequence (xo) in A converges to xo. Thus, F (xo) = lim

n→∞ f(xo) =

f(xo). This implies that F |A = f .

Uniqueness: Let F̃ : A → Y be another continuous function such
that

F̃ (a) = f(a) ∀ a ∈ A. (�)

Let x ∈ A. Then there exists a sequence (an) in A such that an → x.

Since F̃ is continuous, F̃ (an) → F̃ (x). By (�), F̃ (x) = lim
n→∞ F̃ (an) =

lim
n→∞ f(an) = F (x). Since x was arbitrarily chosen from A, F̃ (x) =

F (x) ∀ x ∈ A.
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Remark. (a) It is noteworthy that in the previous theorem if the
function f is uniformly continuous then so is F (Exercise!).

(b) In Theorem 3.5.2, the condition of completeness of (Y, ρ) cannot
be omitted. For example, take the identity function on A = { 1

n :
n ∈ N}. Here Y = A which is incomplete with respect to the
usual distance metric and A = A ∪ {0} in R. Thus, the function
is in fact uniformly continuous on A but it cannot be extended
continuously to A.

In the previous result, a Cauchy-continuous function was extended
to the closure of its domain A, where A ⊆ X. But now the question
arises, whether we can extend it to the whole of X (like we did in
Tietze’s extension theorem).

Theorem 3.5.3. Let A be a subset of a metric space (X, d) and
f : (A, d) → R be a Cauchy-continuous function. Then there exists a
real-valued Cauchy-continuous function g on (X, d) such that g(a) =
f(a) ∀ a ∈ A.

Proof. Since f : (A, d) → R is Cauchy-continuous and A can also be

considered as a subset of the completion (X̂, d) of (X, d), by Theorem
3.5.2 we can get a real-valued continuous extension F of f which
is defined on the closure cl

̂X(A) of A in (X̂, d). Now by Tietze’s

extension theorem, we can find a continuous function F̃ : (X̂, d) → R

such that F̃ (a) = F (a) ∀ a ∈ cl
̂X(A). Note that since (X̂, d) is

complete, F̃ is Cauchy-continuous by Corollary 3.5.1. Consequently,
F̃ |X is the required function.

Remark. Note that unlike Tietze’s extension theorem (for continu-
ous functions), we don’t require A to be closed in (X, d) for extending
the Cauchy-continuous function f .

Since in the previous theorem A is any subset of the metric space
(X, d), such an extension need not be unique. Moreover, we cannot
have an analogous result for uniformly continuous functions.

Example 3.5.2. Let A = N and f : A → R : f(n) = n2 ∀ n ∈ N.
Then clearly f is uniformly continuous on A. Suppose F : [0,∞) → R

is uniformly continuous such that F |A = f . Then there exists a δ > 0
such that |x − y| < δ ⇒ |F (x) − F (y)| < 1. By the Archimedean
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property of R, there exists no ∈ N such that 1/no < δ.

|(no + 1)2 − n2o| = |F (no)− F (no + 1)|

≤
∣∣∣∣F (no)− F

(
no +

1

no

)∣∣∣∣+
∣∣∣∣F
(
no +

1

no

)

−F

(
no +

2

no

)∣∣∣∣+ · · ·+

+

∣∣∣∣F
(
no +

no − 1

no

)
− F (no + 1)

∣∣∣∣
< 1 + 1 + · · ·+ 1 = no.

This implies that no < −1, which is a contradiction. Consequently,
F is not uniformly continuous on [0,∞).

Observe that in Example 3.5.2, f is unbounded. Interestingly,
extension result like Theorem 3.5.3 holds true for bounded uniformly
continuous functions. We state the result without proof here but
interested readers can follow the steps given in Exercise 3.5.5 for
proving it.

Theorem 3.5.4. Let A be a subset of a metric space (X, d) and f be
a real-valued bounded uniformly continuous function on A. Then f
can be extended to a bounded real-valued uniformly continuous func-
tion on (X, d). Further, if the range of f is contained in the closed
interval [a, b], then f has a uniformly continuous extension on X
whose range is also contained in [a, b].

Historically, McShane [39] was the first to obtain explicit solution
for the extension problem for uniformly continuous functions in 1934.
He proved using Lipschitz extension theorem, whereas in 1990 Man-
delkern [36] gave an explicit construction (the same function which
we used in the proof of Tietze’s extension theorem) for the problem
which we outline in Exercise 3.5.5.

Towards the end of this section, let us prove McShane’s extension
theorem for real-valued Lipschitz functions.

Theorem 3.5.5. Let A be a subset of a metric space (X, d) and
f : (A, d) → R be an M -Lipschitz function. Then there exists
a real-valued M -Lipschitz function F on (X, d) such that F (a) =
f(a) ∀ a ∈ A.
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Proof. For each a ∈ A, let us define fa : (X, d) → R by fa(x) =
f(a)+Md(x, a) for x ∈ X. Now we claim that the function F defined
by

F (x) = inf{fa(x) : a ∈ A}
for all x ∈ X, will work for us.

F is real-valued: Suppose x is an arbitrary element of X. Let
a, a′ ∈ A. Then

f(a)− f(a′) ≤Md(a, a′) ≤Md(x, a) +Md(x, a′).

This implies that f(a) − Md(x, a) ≤ f(a′) +Md(x, a′) ∀ a′ ∈ A.
Thus, f(a) − Md(x, a) ≤ F (x) (�). Therefore, F (x) ∈ R for all
x ∈ X.

F is M -Lipschitz: If we prove that fa is M -Lipschitz for all a ∈ A,
then F is also M -Lipschitz by Exercise 2.4.4. So let x, x′ ∈ X. Then
by Proposition 1.3.1, we have

|fa(x)− fa(x
′)| =M |d(x, a) − d(x′, a)| ≤Md(x, x′).

Thus, fa is M -Lipschitz.

F (a) = f(a) ∀ a ∈ A: Let ao ∈ A. Then fao(ao) = f(ao). Thus,
F (ao) ≤ f(ao). Moreover, by (�) we have, f(ao) ≤ F (ao). Conse-
quently, F (ao) = f(ao).

Remark. Similarly, one can verify that the function G(x) =
supa∈A ga(x), where ga(x) = f(a) −Md(x, a), defined on X is also
an M -Lipschitz extension of f (Exercise 3.5.9).

Exercises

3.5.1. Let f : {a, b} → {0, 1} be a non-constant function where
a, b ∈ R. Show that there does not exist any continuous function
F : [a, b] → {0, 1} such that F (a) = f(a) and F (b) = f(b). Why is
this example not violating Tietze’s extension theorem?

3.5.2. Let f : A→ (a, b] be a continuous function where A is a closed
subset of (X, d). Then prove that there exists a continuous function
F : X → (a, b] such that F (x) = f(x) ∀ x ∈ A.
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3.5.3. Show that if the function f is uniformly continuous in Theo-
rem 3.5.2, then the unique extension F is also uniformly continuous.

3.5.4. Give an example to show that Theorem 3.5.2 does not hold
true for bounded continuous functions.

3.5.5 ([36]). If A is a subset of a metric space (X, d) and f is a real-
valued bounded uniformly continuous function on A. Then prove the
following statements to get a bounded real-valued uniformly contin-
uous extension of f on (X, d):

(a) It is enough to prove the result for f : A→ [1, 2].
(b) It suffices to prove for A closed.
(c) Let F : X → R be defined as

F (x) =

{
inf
u∈A

f(u) d(x,u)d(x,A) : x �∈ A

f(x) : x ∈ A

}
.

Then F (x) ∈ [1, 2] ∀ x ∈ X.
(d) Let 0 < ε < 1. Choose δ such that 0 < δ < ε and whenever

a, b ∈ A with d(a, b) < 9δ then |f(a)− f(b)| < ε.
(e) If x �∈ A and y ∈ A with d(x, y) < 3δ, then |F (x)− F (y)| < 4ε.
(f) If x, y ∈ X with d(x, y) < δ2, then |F (x) − F (y)| < 9ε (make

cases: d(x,A) < 2δ and d(x,A) ≥ 2δ).

3.5.6. Prove that the function f(x) = tan x is not Cauchy-
continuous on (−π

2 ,
π
2 ).

3.5.7. Show that a metric space (X, d) is complete if and only if
whenever A and B are disjoint closed subsets of X, there is a Cauchy-
continuous function f : (X, d) → R such that f(x) = 0 ∀ x ∈ A and
f(x) = 1 ∀ x ∈ B. Compare this with Urysohn’s Lemma.

3.5.8. Let f : (A, d) → I be a Cauchy-continuous function where
A is a subset of (X, d) and I is any closed interval in R. Prove that
there exists a Cauchy-continuous function g : (X, d) → I such that
g(a) = f(a) ∀ a ∈ A.

3.5.9. Let A be a subset of a metric space (X, d) and f : (A, d) → R

be an M -Lipschitz function. Then show that the function G(x) =
sup
a∈A

ga(x), where ga(x) = f(a) − Md(x, a), defined on X is also

M -Lipschitz. Moreover, G(a) = f(a) ∀ a ∈ A.
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3.6 Baire Category Theorem

In this section, we will prove a beautiful result, namely Baire category
theorem. The significance of the Baire theorem can be seen in proving
the two most powerful results in functional analysis, namely the open
mapping theorem and the uniform boundedness principle. Moreover,
it can also be used to prove the existence of a continuous nowhere
differentiable real-valued function on [0, 1]. But before that let us
define some required notions.

Definition 3.6.1. Let A be a subset of a metric space (X, d). If
int A = ∅, then A is called nowhere dense in X.

We would like to emphasize over here that the concepts of nowhere
dense and ‘everywhere’ dense are not complementary. For example,
the setQ∩(0, 1) is neither dense in R nor it is nowhere dense in R. The
characterization of nowhere dense sets given in the next proposition
is useful in visualizing nowhere dense sets geometrically.

Proposition 3.6.1. Let (X, d) be a metric space and A ⊆ X. Then
the following statements are equivalent:

(a) A is nowhere dense in X.
(b) X −A is dense in X.
(c) For every non-empty open set U in X, there exists a non-empty

open set V in X such that V ⊆ U and A ∩ V = ∅.

Proof. (a) ⇒ (b): Let W be any non-empty open subset of X. Since
int A = ∅, W is not a subset of A and hence W ∩ (X − A) �= ∅.
Therefore, X −A is dense in X.

(b) ⇒ (c): Let U be a non-empty open set in X. Since X − A is
an open dense set in X, U ∩ (X − A) is a non-empty open set. Let
V = U ∩ (X −A). Clearly, V ⊆ U and V ∩A = ∅.
(c) ⇒ (a): If possible, suppose int A �= ∅. Let x ∈ int A. Then there
exists a nhood U of x which is contained in A. By (c), there exists
a non-empty open set V in X such that V ⊆ U and A ∩ V = ∅.
Since V ⊆ U and U ⊆ A, V ⊆ A. Moreover, since V �= ∅, let y ∈ V .
This implies that y ∈ A. Therefore, every nhood of y intersects A.
In particular, V ∩A �= ∅. But this is a contradiction.



Complete Metric Spaces 115

Figure 3.1 A line is nowhere dense in R2.

From the previous proposition, it is clear that the set { 1
n : n ∈ N}

is nowhere dense in (0, 1). Also, any line is nowhere dense in R
2

(Figure 3.1).

Definition 3.6.2. A metric space (X, d) is called a Baire space if
every intersection of a non-empty countable collection of dense open
subsets of X is dense in X.

Equivalently, (X, d) is a Baire space if and only if for any given
countable collection {Fn : n ∈ N} of nowhere dense closed subsets of
X, their union ∪n∈NFn has empty interior in X (using De Morgan’s
Laws and Exercise 1.4.3).

It is evident that the set of rationals Q is not a Baire space with
respect to the usual metric: {Q\{q} : q ∈ Q} is a countable collection
of open dense subsets in Q whose intersection is empty. Next is the
main result of this section which gives a sufficient condition for a
metric space to be a Baire space.

Theorem 3.6.1 (Baire category theorem). Every complete met-
ric space (X, d) is a Baire space.

Proof. Let (An) be a sequence of open and dense subsets of X.
We need to show that

⋂∞
n=1An is dense in (X, d). Let x ∈ X and

r > 0. Since A1 is dense in (X, d), B(x, r)∩A1 �= ∅. Now A1 is open,
hence B(x, r) ∩ A1 is open in (X, d). Let x1 ∈ B(x, r) ∩ A1. Then
there exists r1 > 0 such that r1 ≤ 1 and C(x1, r1) ⊆ B(x, r) ∩ A1.
Again since A2 is open and dense in (X, d), B(x1, r1) ∩ A2 is open
and non-empty. So as before, we may choose x2 ∈ X such that x2 ∈
C(x2, r2) ⊆ B(x1, r1)∩A2 and 0 < r2 ≤ 1

2 . We continue this process
inductively. Suppose x1, . . . , xn in X and r1, . . . , rn have been chosen
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such that xi+1 ∈ C(xi+1, ri+1) ⊆ B(xi, ri) ∩ Ai+1 for 1 ≤ i ≤ n − 1
and 0 < ri ≤ 1

i for 1 ≤ i ≤ n. Now consider B(xn, rn) ∩ An+1

which is open and non-empty. So we may choose xn+1 in X such that
xn+1 ∈ C(xn+1, rn+1) ⊆ B(xn, rn)∩An+1 and 0 < rn+1 ≤ 1

n+1 . Thus,
there exists a sequence (xn) in X and a sequence (rn) of positive
numbers such that 0 < rn ≤ 1

n and C(xn+1, rn+1) ⊆ B(xn, rn)∩An+1

for each n. Let Cn = C(xn, rn) for n ∈ N. Then each Cn is non-
empty, closed and Cn+1 = C(xn+1, rn+1) ⊆ B(xn, rn) ∩ An+1 ⊆
C(xn, rn) = Cn for each n. Moreover, d(Cn) ≤ 2rn ≤ 2

n ⇒ d(Cn) → 0
as n→ ∞. But (X, d) is a complete metric space. Hence by Cantor’s
Intersection Theorem, there exists y ∈ ⋂∞

n=1Cn. Now y ∈ C1 =
C(x1, r1) ⇒ y ∈ B(x, r) and y ∈ A1. Also y ∈ Cn+1 for each n which
implies y ∈ B(xn, rn) ∩ An+1 for each n. Hence y ∈ ⋂∞

n=1An, that
is, y ∈ B(x, r) ∩ (

⋂∞
n=1An). But x and r were arbitrarily chosen.

Hence
⋂∞

n=1An is dense in (X, d) and consequently (X, d) is a Baire
space.

Now the curious readers might be thinking: why is the word ‘cate-
gory’ used in the name of the theorem? So here we would like to men-
tion that many authors first define the sets of first category and that
of second category, and then they state the Baire category theorem
in terms of second category spaces. Since this word ‘category’ has no
particular significance, we refrain ourselves from defining unnecessar-
ily extra terminologies in this book. It should be noted that often we
call the previous theorem as Baire category theorem. But in practice,
we mainly use the following corollary. Subsequently, this corollary is
also known as Baire category theorem and it easily follows from the
discussion after the definition of a Baire space.

Corollary 3.6.1. If (X, d) is a complete metric space and X =⋃∞
n=1An, then int Ano �= ∅ for some no ∈ N.

Consequently, the set of irrationals cannot be expressed as a
countable union of nowhere dense sets in R as R is complete and
Q =
⋃

q∈Q{q}. Let us now prove a nice application of Baire category
theorem which is an analogue of the uniform boundedness principle
in functional analysis.

Theorem 3.6.2. Let F be a family of real-valued continuous func-
tions defined on a complete metric space (X, d). Suppose that for
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every x ∈ X, there exists Mx > 0 such that |f(x)| ≤ Mx for all
f ∈ F . Then there exist a non-empty open set U in X and M > 0
such that |f(x)| ≤M for all f ∈ F and x ∈ U .

Proof. For n ∈ N and f ∈ F , let An,f = {x ∈ X : |f(x)| ≤ n}.
Since every f ∈ F is continuous, An,f is closed in X. Consequently,
the set An =

⋂
f∈F An,f is also closed in X. Since for every x ∈ X,

there exists Mx > 0 such that |f(x)| ≤ Mx for all f ∈ F , we have
X =

⋃
n∈NAn. By Corollary 3.6.1, intAno �= ∅ for some no ∈ N.

Thus, there exists an open set U which is contained in Ano . Hence,
|f(x)| ≤ no for every x ∈ U and f ∈ F .

Historical Perspective

In 1897, the American mathematician Osgood showed that any
countable intersection of dense open sets in R is again dense in R. In
1899, Baire proved this result for the Euclidean space R

n. In 1914,
Hausdorff went one step further and proved that every completely
metrizable space (X, τ) has the property that any countable inter-
section of dense open sets in the topological space (X, τ) is again
dense in (X, τ) — its metric version is proved in Theorem 3.6.1.
This result eventually came to be known as the Baire category the-
orem. The term ‘Baire space’ was introduced by Bourbaki. Strictly
speaking, Theorem 3.6.1 should be called Osgood–Baire–Hausdorff
Theorem.

We would like to end this section with the historical perspective
behind the following famous result of Stefan Banach. We do not give
its proof, but would like to emphasize that Baire category theorem is
needed to prove this result. Note that (C[0, 1],D) is a complete metric
space and hence a Baire space. Here D denotes the supremum metric
on C[0, 1] defined by D(f, g) = supx∈[0,1] |f(x)− g(x)|. Of course, we
also require the fact that every real-valued continuous function on
[0, 1] is bounded (it follows from the compactness of ([0, 1], | · |) which
will be discussed in the next chapter).

Theorem 3.6.3 (S. Banach, 1931). Let A be the family of all
members f of C[0, 1] having a derivative at some point of [0, 1], that
is, A = {f ∈ C[0, 1] : f has a derivative at some point of [0, 1]}.
Then A can be written as a countable union of nowhere dense
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sets in (C[0, 1],D) and consequently, C[0, 1] \ A = {f ∈ C[0, 1] :
f has derivative at no point of [0, 1]} cannot be expressed as a union
of countable collection of nowhere dense sets in C[0, 1] (Intuitively,
C[0, 1] \A is a large set).

In 1834, Bernhard Bolzano gave an example of a real-valued con-
tinuous function on an interval which is nowhere differentiable in that
interval. Weierstrass, though usually given credit for what Bolzano
found, presented such an example of a function in lectures in 1861
and in a paper to the Berlin Academy in 1872. But for almost a
century after 1834, mathematicians treated such functions as patho-
logical. As stated before, in 1931 Banach showed that, in some sense,
the vast majority of real-valued continuous functions defined on a
closed and bounded interval of R are not differentiable anywhere.

Exercises

3.6.1. Show that the set of irrational numbers, P, is not a countable
union of closed sets in (R, | · |). And hence Q, the set of rationals,
cannot be written as a countable intersection of open sets in (R, | · |).
3.6.2. Show that the space of irrationals, P, is a Baire space. This
shows that the converse of the Baire category theorem is not true in
general.

3.6.3. Does there exist a metric d on Q which is equivalent to the
usual metric and (Q, d) is complete?

3.6.4. Show that R is not countable. Further, prove that if a complete
metric space is countable then it must have an isolated point.

3.6.5. Let (X, d) be a metric space, Y be a non-empty subset of X
and ∅ �= N ⊆ Y .

(i) If N is nowhere dense in Y , then show that N is also nowhere
dense in X. Give an example to show that the converse need not
hold true, that is, if N is nowhere dense in X, then it need not
be nowhere dense in Y .

(ii) If Y is dense in X and N is nowhere dense in X, then prove that
N is nowhere dense in Y .
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3.6.6. Show that a finite union of nowhere dense sets is again a
nowhere dense set. Is this statement true for a countable union of
nowhere dense sets?

3.6.7. Show that a metric space (X, d) is a Baire space if and only if
every non-empty open subset of X cannot be written as a countable
union of nowhere dense sets in X.

3.6.8. Show that every open subset of a Baire space is itself a Baire
space. Hence deduce that the unit interval (0, 1) is a Baire space.

3.7 Oscillation of a Function

Recall that a finite union of closed sets is closed, while a finite inter-
section of open sets is open. But the same is not true in case we take
countably infinite unions and countably infinite intersections respec-
tively. Since these countable versions play a crucial role in the study,
let us give some name to these special sets.

Definitions 3.7.1. Let (X, d) be a metric space.

(a) A subset of X is called a Gδ-set if it is the intersection of count-
ably many open sets.

(b) A subset of X is called a Fσ-set if it is the union of countably
many closed sets.

It is evident that Gδ-sets and Fσ-sets are complements of each
other. In other words, the complement of an Fσ-set is a Gδ-set and
vice versa. If we take the set of all rationals, then it is clearly an
Fσ-set in R being a countable union of singletons which are closed in
R. And hence the set of irrationals is a Gδ-set. Moreover, the closed
interval [a, b] is a Gδ-set because [a, b] =

⋂
n∈N(a − 1

n , b +
1
n). (See

Exercise 3.7.3.)
Now let us define a notion which is quite helpful in examining the

set of points of continuity of a function. Let f be a function from
(X, d) to (Y, ρ) and x ∈ X. For n ∈ N, let

ωn(f, x) = diam(f(B(x, 1/n)))

= sup{ρ(f(x′), f(x′′)) : x′, x′′ ∈ B(x, 1/n)}.



120 Metric Spaces and Related Analysis

Note that ωn(f, x) ≥ ωn+1(f, x) for each n ∈ N. Thus, it is a decreas-
ing sequence of extended real numbers which is bounded below by
0. As a consequence, lim

n→∞ωn(f, x) = infn∈N ωn(f, x) is also a non-

negative extended real number. This limit plays a significant role in
the study of continuous functions and hence given a special name.

Definition 3.7.2. Let f : (X, d) → (Y, ρ) be a function and x ∈ X.
Then the oscillation of f at x, denoted by ω(f, x), is defined as

ω(f, x) = lim
n→∞ωn(f, x) = inf

n∈N
sup

x′,x′′∈B(x,1/n)
ρ(f(x′), f(x′′)).

Roughly speaking, the oscillation of a function quantifies the vari-
ation in the function’s extreme values in the neighbourhoods of the
point x when we approach towards x.

Remarks. (a) ω(f, x) is a non-negative extended real number.
(b) If x is an isolated point of X, then ω(f, x) = 0.

Let us look at an example. Consider the function f : [−π
2 ,

π
2 ] → R

defined as f(x) = tanx if x ∈ (−π
2 ,

π
2 ) and f(−π

2 ) = 0 = f(π2 ). Then
ω(f, x) = ∞ if x = −π

2 or π
2 . But ω(f, x) = 0 for x ∈ (−π

2 ,
π
2 ). Here

observe that the function f is continuous on (−π
2 ,

π
2 ). In fact, this

can be generalized as follows.

Theorem 3.7.1. Let f : (X, d) → (Y, ρ) be a function. Then f is
continuous at a point x ∈ X if and only if ω(f, x) = 0.

Proof. Let f be continuous at x ∈ X and ε > 0. Then there
exists a δ > 0 such that whenever x′ ∈ B(x, δ), ρ(f(x), f(x′)) < ε

2 .

Now by Archimedean property of R, 1
no

< δ for some no ∈ N.
Thus, ωn(f, x) ≤ ε for all n ≥ no which implies that ω(f, x) =
inf
n∈N

ωn(f, x) ≤ ε. Since ε > 0 was arbitrarily chosen and ω(f, x) ≥ 0,

we get ω(f, x) = 0.
For the converse, let ω(f, x) = 0 and ε > 0. Then inf

n∈N
ωn(f, x) =

0 < ε. Now by the definition of infimum, there exists no ∈ N such
that ωno(f, x) < ε. Consequently, ρ(f(x′), f(x)) < ε for all x′ ∈
B(x, 1/no). Hence f is continuous at x.

Corollary 3.7.1. Let (X, d) and (Y, ρ) be two metric spaces. Suppose
A denotes the set of points of discontinuity of a function f : (X, d) →
(Y, ρ). Then
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(a) A is an Fσ-set.
(b) either A contains a non-empty open set or it can be expressed as

a countable union of nowhere dense sets.

Proof. (a) By Theorem 3.7.1,

A = {x ∈ X : ω(f, x) > 0} =
⋃
n∈N

{
x ∈ X : ω(f, x) ≥ 1

n

}
.

Now we just need to prove that the sets An =
{
x ∈ X : ω(f, x) ≥ 1

n

}
are closed in (X, d). Let x �∈ An. This implies that ω(f, x) < 1

n . By the

definition of infimum, there exists no ∈ N such that ωno(f, x) <
1
n .

Thus ρ(f(x′), f(x′′)) < 1
n for all x′, x′′ ∈ B(x, 1/no). Now if

x′ ∈ B(x, 1/no), then we know that there exists n1 ∈ N such
that B(x′, 1/n1) ⊆ B(x, 1/no). Consequently, ωn1(f, x

′) < 1
n . Hence

ω(f, x′) < 1
n . Thus, x′ �∈ An. Since x′ was arbitrary element of

B(x, 1/no), we get B(x, 1/no) ⊆ Ac
n. Thus A

c
n is open and hence

An is closed in (X, d).

(b) By (a), A =
⋃

n∈NAn, where An’s are closed in X. Suppose A
does not contain any non-empty open set, then int An = ∅ ∀ n ∈ N.
Hence An is nowhere dense for all n ∈ N.

Remark. The set of points of continuity of f is a Gδ-set.

Exercises

3.7.1. Compute the oscillation function for the following functions
on R:

(a) f(x) = 1 if x is rational and f(x) = 0 otherwise (Dirichlet func-
tion).

(b) g(x) = 1/x for x �= 0 and g(0) = 0.
(c) h(x) = x if x is rational and h(x) = 0 otherwise.

3.7.2. (a) Show that there does not exist any function f : [0, 1] → R

which is continuous exactly on the rationals.
(b) Give an example of a real-valued function which is discontinuous

exactly on the rationals.
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3.7.3. Prove that every open set in a metric space is an Fσ-set, while
every closed set is a Gδ-set.

3.7.4. Let f : (X, d) → R be a bounded function. Then show that
the real-valued oscillation function ω(f, ·) is upper semi-continuous
at every point of X. Can you think of an example of a function f such
that ω(f, ·) is not lower semi-continuous? (Refer to Exercise 2.1.9 for
definitions.)



Chapter 4

Compactness

The notion of compactness is an extremely useful concept both in
analysis and topology. In fact, this notion can be thought of as a
generalization of finiteness in some sense. In real analysis, many of
the important results implicitly use the compactness of closed and
bounded intervals in R. We are going to explore this feature in detail
in the present chapter. We advice the readers to look at the paper [27]
by Hewitt who was one of the great mathematicians of 20th century.
He was a topologist as well as an analyst.

4.1 Basic Properties

In order to define compactness, we need to start with covers.

Definitions 4.1.1. A family A = {Ai : i ∈ I} of subsets of a non-
empty set X is said to cover a subset G of X if G ⊆ ⋃

i∈I Ai. If a
subfamily of A covers G, then it is called a subcover. If (X, d) is a
metric space and each Ai is open in (X, d), then A is called an open
cover for G in (X, d).

Example 4.1.1. Let X = R and An = (−n, n) for n ∈ N. Then
{An : n ∈ N} is an open cover for R. But if we take Bn = [−n, n) for
each n ∈ N, then {Bn : n ∈ N} is not an open cover for R.

Definition 4.1.2. Let (X, d) be a metric space and K ⊆ X. Then
K is called compact in (X, d) if every open cover of K has a finite
subcover.

123
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It is evident from the definition of open sets that every open set
in a metric space can be written as a union of open balls. Now this
observation can be applied to verify that K is compact in (X, d)
if and only if every cover of K by open balls in (X, d) has a finite
subcover.

Example 4.1.2. If (X, d) is a metric space, then the empty subset
and any finite subset of X are (trivially) compact in (X, d). But a
compact subset of X need not be finite.

Example 4.1.3. Let (X, d) be a metric space and (xn) be a sequence
in X converging to a point x in X. Then the set A = {xn : n ∈
N} ∪ {x} is compact in (X, d): let {Ui : i ∈ I} be an open cover
of A in (X, d). Since A ⊆ ⋃

i∈I Ui, there exists io ∈ I such that
x ∈ Uio . Now xn → x implies that there exists no ∈ N such that xn ∈
Uio ∀ n ≥ no. Since A ⊆ ⋃i∈I Ui, for each xj (1 ≤ j ≤ no−1) choose
Ukj (kj ∈ I) such that xj ∈ Ukj . Then {Uio , Uk1 , Uk2 , . . . , Ukno−1} is
a finite subcover for A. Hence A is compact in (X, d). In particular,
consider the space (R, | · |) and A = { 1

n : n ∈ N} ∪ {0}. Then A is
compact in (R, | · |), but A is not finite.

Example 4.1.4. Let (X, d) be a metric space in which every subset
of X is open. Now let A be a non-empty compact set in (X, d).
Since {x} is open in (X, d) for all x ∈ X and A =

⋃
x∈A{x}, the

collection {{x} : x ∈ A} is an open cover of A in (X, d). Now given
that A is compact in (X, d), there exist x1, . . . , xn in A such that
A ⊆ ⋃n

i=1{xi}. Hence A = {x1, . . . , xn}, that is, A is finite. Thus, in
a metric space (X, d) in which every point is isolated, every compact
subset of X must be finite. What about the converse? (See Exercise
4.1.1.)

Example 4.1.5. The open interval (0, 1) is not compact in (R, | · |).
Consider the open cover A = {( 1n , 1) : n ∈ N} for (0, 1). This
cover does not have any finite subcover for (0, 1). Because any
finite subcover of A will look like {( 1

nk
, 1) : 1 ≤ k ≤ m} for

some m ∈ N. But this will only cover the interval ( 1
no
, 1) where

no = max{nk : 1 ≤ k ≤ m}.
Similarly, R itself is not compact in (R, |·|), since {(−n, n) : n ∈ N}

is an open cover of R without having any finite subcover for R.
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Interestingly, in Section 4.4 it will be proved that every closed
and bounded subset of R is compact. In particular, any interval of
the type [a, b] is also compact in R. But before that, let us discuss
some elementary results on compactness.

Proposition 4.1.1. If (X, d) is a metric space and ∅ 
= A ⊆ Y ⊆ X.
Then A is compact in (Y, d) if and only if A is compact in (X, d).

Proof. Use Proposition 1.4.8.

As a consequence of the previous proposition, it can be said that
a subset A of (X, d) is compact if and only if the metric space (A, d)
is compact. Thus, while talking about the compactness of a set, we
do not require to mention the ambient space. Recall that in Example
4.1.5, it was seen that the open interval (0, 1) is not compact in R.
The next result provides the justification for a general case.

Proposition 4.1.2. Let (X, d) be a metric space and K be a non-
empty compact subset of X. Then K is closed and bounded in (X, d).

Proof. We first show that any point lying outside K is not a closure
point of K. Pick a ∈ X −K. Now choose any x ∈ K. Since a 
= x,
there exist open balls Ux and Vx in (X, d) such that a ∈ Ux, x ∈ Vx
and Ux ∩ Vx = ∅. Now vary x over K. Then {Vx : x ∈ K} is an
open cover of K in (X, d). Since K is compact in (X, d), there exist
x1, x2, . . . , xn in K such that K ⊆ ⋃n

i=1 Vxi . Now consider the set
U =

⋂n
i=1 Uxi . By construction, a ∈ Ux ∀ x ∈ K. Hence a ∈ U . Also

U , being a finite intersection of open sets in (X, d), is itself open in
(X, d). So U is a nhood of a in (X, d). Now

U ∩
(

n⋃
i=1

Vxi

)
=

n⋃
i=1

(U ∩ Vxi) ⊆
n⋃

i=1

(Uxi ∩ Vxi) = ∅.

But K ⊆ ⋃n
i=1 Vxi , hence U ∩ K = ∅. Since U is a nhood of a in

(X, d), a cannot be a closure point of K. So K ⊆ K. But K is
always contained in K. Hence K = K and consequently K is closed
in (X, d).

For proving boundedness, choose a point xo ∈ X. Now for any x ∈
K, there exists an nx ∈ N (depending on x) such that d(x, xo) < nx,
that is, x ∈ B(xo, nx). This means that {B(xo, n) : n ∈ N} is an open
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cover of K. Since K is compact in (X, d), there exist n1, . . . , nt in N

such that K ⊆ ⋃t
i=1B(xo, ni) = B(xo,m) where m = max1≤i≤t ni.

Hence K is bounded in (X, d).

Observe carefully the need of compactness of K in the proof of
Proposition 4.1.2. We could take U to be

⋂
x∈K Ux, but then U may

not be open. Here note that compactness is turned into finiteness.
This proof validates the observation in the beginning of the chap-
ter: Compactness, in some sense, is a topological generalization of
finiteness.

Corollary 4.1.1. Let (X, d) be a metric space and xo ∈ X. If K is
a compact subset of X and each point of K \{xo} is an isolated point
of K, then K is at most countable.

Proof. If K is finite then we are done. Suppose K is infinite. Since
every point of K \ {xo} is isolated, for every x ∈ K \ {xo}, there
exists εx > 0 such that B(x, εx) ∩K = {x}. Thus xo ∈ K otherwise
{B(x, εx) : x ∈ K \ {xo}} is an open cover of K with no finite
subcover.

Since K is compact, it is bounded. Let K ⊆ B(xo, no). Now
U1 = B(xo, 1) ∪ (

⋃{B(x, εx) : x ∈ K \ {xo}}) is an open cover of
K and hence it has a finite subcover. This implies that there exists
at most finitely many points of K, say x1, . . . , xn, outside B(xo, 1).
Similarly, we can see that K ∩ [B(xo,

1
n) \B(xo,

1
n+1)] is finite. Now

K =
⋃

n∈N{K ∩ [B(xo,
1
n) \B(xo,

1
n+1)]} ∪ {x1, . . . , xn}. Hence K is

countably infinite.

Note that the proof of Proposition 4.1.2 actually gives the follow-
ing result (also see Corollary 2.2.2).

Proposition 4.1.3. Suppose K is compact in a metric space (X, d)
and x ∈ X −K. Then there exist open sets V and W in (X, d) such
that x ∈ V, K ⊆W and V ∩W = ∅ (and hence x 
∈W ).

Proposition 4.1.4. Let (X, d) be a metric space. Suppose K is com-
pact in (X, d) and F is closed in (X, d). Then F is compact if F ⊆ K.
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Proof. Let {Ui : i ∈ I} be an open cover of F in (X, d). Since F is
closed in (X, d), X − F is open in (X, d). Now

F ⊆
⋃
i∈I

Ui ⇒ X = (X − F ) ∪ F ⊆ (X − F ) ∪
(⋃

i∈I
Ui

)
.

In particular, (X −F )∪{Ui : i ∈ I} is an open cover of the compact
set K. Hence, there exist i1, . . . , in in I such that K ⊆ (X − F ) ∪
(
⋃n

k=1 Uik). Note that F ⊆ K and the set X − F does not cover any
part of F . Hence F ⊆ ⋃n

k=1 Uik . This shows that {Uik : 1 ≤ k ≤ n}
is a finite subcover of the open cover {Ui : i ∈ I} for F . Hence F is
compact.

Do you think that the converse of Proposition 4.1.4 holds true?
(See Exercise 4.1.3.)

Exercises

4.1.1. Prove that the following statements are equivalent for a metric
space (X, d):

(a) Every point of (X, d) is an isolated point.
(b) Every compact subset of X is finite.

4.1.2. Give an example to show that the converse of Proposition
4.1.2 need not hold true in general.

4.1.3. If every proper closed subset of a metric space (X, d) is com-
pact, does that imply (X, d) is compact?

4.1.4. Let F = {(xn) ∈ �∞(R) : supn∈N |xn| ≤ 1}. Being a closed
unit ball, F is closed and bounded in (�∞(R),D), but show that F
is not compact in (�∞(R),D). Here D is the supremum metric on
�∞(R). (Refer to Example 1.3.8.)

4.1.5. A family of sets A is said to have the finite intersection prop-
erty if whenever A1, A2, . . . , An ∈ A, ⋂n

i=1Ai 
= ∅.
Prove that a metric space (X, d) is compact if and only if every

family of closed sets with the finite intersection property has a non-
empty intersection.
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4.1.6. Show that intersection (union) of an arbitrary (finite) collec-
tion of non-empty compact subsets of a metric space (X, d) is also
compact. What about countable union of compact sets?

4.1.7. (1) Let A be a compact subset of the Euclidean space Rn

(n > 1) with countable boundary ∂A. Then prove that A = ∂A.
(2) Give an example to show that (i) need not hold true for n = 1.
(3) If A is a compact subset of C with countable boundary, then

prove that A = ∂A.

4.2 Equivalent Characterizations of Compactness

In this section, we essentially look at two nice characterizations of
compact subsets of a metric space: one in terms of sequences and the
other one in terms of accumulation points. The sequential character-
ization of compact subsets of a metric space is a very powerful and
useful tool. In order to present these characterizations in a simpler
way, we need to discuss some preliminary results.

Proposition 4.2.1. Let (X, d) be a metric space and A be a non-
empty compact subset of (X, d). Then A is totally bounded in (X, d).

Proof. Let r > 0. Then {B(x, r) : x ∈ A} is an open cover of A in
(X, d). Since A is compact in (X, d), there exist x1, . . . , xn in A such
that A ⊆ ⋃n

i=1B(xi, r). Thus, A is totally bounded in (X, d).

As a consequence of the previous proposition, we can see that
the closed unit ball B[0, 1] in l2-space is not compact: note that
d(en, em) =

√
2 ∀ m 
= n, where en ∈ l2 is the sequence whose nth

term is 1 and rest all are 0. Thus, the sequence (en) in B[0, 1] has no
Cauchy subsequence. Now see Theorem 3.2.3.

The next corollary immediately follows from Proposition 3.2.5.

Corollary 4.2.1. Every compact metric space (X, d) is separable.

Definition 4.2.1. Let A be a subset of a metric space (X, d) and
U = {Ui : i ∈ I} be an open cover of A in (X, d). Suppose that there
exists some δ > 0 such that for each x ∈ A, we have B(x, δ) ⊆ Ui for
some i ∈ I. Then δ is called a Lebesgue number of the cover U .
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Proposition 4.2.2. Let (X, d) be a metric space and A be a non-
empty subset of X. Suppose that every sequence (xn) in A has a
subsequence (xkn) converging to a point in A. Then every open cover
of A in (X, d) has a Lebesgue number.

Proof. Let U = {Ui : i ∈ I} be an open cover of A in (X, d). If
possible, suppose that for this open cover U , there does not exist any
Lebesgue number. So for each n ∈ N, there exists xn ∈ A such that
B(xn,

1
n) � Ui ∀ i ∈ I, that is, B(xn,

1
n) ∩ (X − Ui) 
= ∅ for each

i ∈ I. (�)
Now by the given condition, there exists a subsequence (xkn) of

(xn) such that xkn → x for some x ∈ A. Since U is an (open) cover
of A in X, we can pick some j ∈ I such that x ∈ Uj . Since Uj is
open, there exists r > 0 such that B(x, r) ⊆ Uj . By Archimedean
property of R, choose no ∈ N such that 1

n < r
2 ∀ n ≥ no. Since

xkn → x, there exists m ≥ no such that d(x, xkm) <
1
km

≤ 1
m < r

2 .

It is easy to check that B(xkm,
1
km

) ⊆ B(x, r). But B(x, r) ⊆ Uj . So

B(xkm ,
1
km

) ∩ (X − Uj) = ∅ which is a contradiction to (�). Hence
every open cover of A in (X, d) has a Lebesgue number.

Remark. Here note that the hypothesis is: every sequence in A has
a subsequence converging to a point in A. This is stronger than A
being totally bounded. Recall that A is totally bounded if and only
if every sequence in A has a Cauchy subsequence.

We know that every bounded subset of R is totally bounded. So
(0, 1) is totally bounded in R. Find an open cover of A = (0, 1) in
(R, | · |) with no Lebesgue number. What about [0, 1]? Can you prove
that every open cover of [0, 1] in (R, | · |) has a Lebesgue number?

Interestingly, now we are going to prove that the property (in
terms of sequences) being satisfied by the subset A in Proposition
4.2.2 is equivalent to the compactness of A.

Theorem 4.2.1. Let (X, d) be a metric space and A be an infinite
subset of X. Then the following statements are equivalent:

(a) A is compact in (X, d).
(b) Every infinite subset of A has an accumulation point in A.
(c) Every sequence (xn) in A has a subsequence (xkn) converging to

a point in A.
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Proof. (a) ⇒ (b): Let S be an infinite subset of the compact set
A. If possible, suppose that S has no accumulation point in A. So if
x ∈ A, then x is not an accumulation point of S. Hence there exists
rx > 0 such that B(x, rx)∩ (S \{x}) = ∅, that is, B(x, rx)∩S ⊆ {x}.
Now {B(x, rx) : x ∈ A} is an open cover of the compact set A.
Hence there exist x1, . . . , xn in A such that A ⊆ ⋃n

i=1B(xi, rxi).
Now S = A ∩ S ⊆ (

⋃n
i=1B(xi, rxi)) ∩ S =

⋃n
i=1(B(xi, rxi) ∩ S) ⊆

{x1, . . . , xn} which shows that S must be a finite set. This contradicts
our assumption that S is an infinite subset of A. Hence every infinite
subset of A has an accumulation point in A.

(b) ⇒ (c): This is precisely Corollary 1.5.7.

(c) ⇒ (a): Let {Ui : i ∈ I} be an open cover of A in (X, d).
Then by Proposition 4.2.2, {Ui : i ∈ I} has a Lebesgue number
δ > 0. We claim that there exist x1, . . . , xn in A such that A ⊆⋃n

i=1B(xi, δ). To see this, if possible, suppose that the claim is false.
Fix some x1 ∈ A and then choose x2 ∈ A\B(x1, δ). In general, using
induction, choose xn+1 ∈ A \ ⋃n

i=1B(xi, δ). Clearly, d(xn, xm) ≥ δ
for n 
= m. This implies that no subsequence of (xn) can converge,
which contradicts the hypothesis (c). Hence the claim holds. Now
for each j, 1 ≤ j ≤ n, pick some ij ∈ I such that B(xj, δ) ⊆ Uij .
Then A ⊆ ⋃n

i=1B(xi, δ) ⊆
⋃n

j=1Uij . This shows that A is compact

in (X, d).

Consequently, Proposition 4.2.2 can be restated as: every open
cover of a compact metric space has a Lebesgue number.

Corollary 4.2.2. A metric space (X, d) is compact if and only if
every countable open cover of (X, d) has a finite subcover.

Proof. It is enough to prove the sufficient part. For that we use the
sequential characterization of compactness given in Theorem 4.2.1.
Suppose, if possible, there exists a sequence (xn) of distinct terms
in X with no convergent subsequence. Therefore by Theorem 1.6.1,
(xn) has no cluster point. This implies that for all n ∈ N, there exists
rn > 0 such that B(xn, rn) ∩ S = {xn}, where S = {xn : n ∈ N}.
Since (xn) has no cluster point, S is closed. Now it is evident that
(X \S)⋃{B(xn, rn) : n ∈ N} is a countable open cover of X with no
finite subcover. A contradiction!

Note that the metric spaces for which every countable open cover
has a finite subcover are known as countably compact . Thus, for
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metric spaces the notion of compactness and that of its countable
counterpart coincide. But here we would like to mention that this
coincidence need not hold true in a general topological space.

In Proposition 4.2.1, it was seen that every compact metric space
is totally bounded. But note that the converse is not true in general.
For example, any open and bounded interval of R is totally bounded
but not compact (it is not even closed). The next result highlights
the gap between compact metric spaces and totally bounded metric
spaces.

Theorem 4.2.2. A metric space (X, d) is compact if and only if
(X, d) is complete and totally bounded.

Proof. Suppose (X, d) is compact and let (xn) be a Cauchy sequence
in (X, d). Then by Theorem 4.2.1, (xn) has a convergent subsequence
in X. Thus, the sequence (xn) itself converges as it is Cauchy. Hence
(X, d) is complete, whereas the total boundedness of (X, d) follows
from Proposition 4.2.1.

Conversely, suppose that (X, d) is complete as well as totally
bounded. We show that every sequence (xn) in (X, d) has a conver-
gent subsequence. Since (X, d) is totally bounded, (xn) has a Cauchy
subsequence (xkn) by Theorem 3.2.3. Again since (X, d) is complete,
there exists x ∈ X such that xkn → x in (X, d). Hence every sequence
(xn) in X has a convergent subsequence. So by Theorem 4.2.1, (X, d)
is compact.

If (X, d) is a compact metric space, then the equivalent metrics
will have to behave in a similar fashion. Suppose (X, d) is a compact
metric space and ρ is a metric equivalent to d. Since the topology
generated by ρ is same as the topology generated by d, (X, ρ) is also
compact and consequently (X, ρ) is complete. But in case of a non-
compact metric space, we may have two equivalent metrics d and ρ
such that d is complete, while ρ is not complete. For example, on
(−π

2 ,
π
2 ), the usual distance metric | · | is not complete, while there

exists a metric ρ, equivalent to |·|, on (−π
2 ,

π
2 ) such that ρ is complete

(see Example 2.6.2). Note that (−π
2 ,

π
2 ) with the usual distance | · | is

not compact as it is not closed in R. In the next section, it is proved
that [−π

2 ,
π
2 ] with the usual distance is compact.

We would like to state a relevant result without proof. Interested
readers may refer to [42] for the proof.
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Theorem 4.2.3. Let (X, d) be a metric space. Then (X, d) is com-
pact if and only if for every equivalent metric ρ on X, (X, ρ) is
complete.

Exercises

4.2.1. Give an example of a complete metric space which is not
compact.

4.2.2. Let E be a non-empty compact subset in (X, d). Let δ =
diam(E). Show that there exist xo, yo ∈ E such that d(xo, yo) = δ.

4.2.3. Show that the closed unit ball in C[0, 1] with the supremum
metric is not compact.

4.2.4. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection of metric
spaces. Then show that the product space

∏n
i=1Xi, equipped with

any of the metrics given in Example 1.3.4, is compact if and only if
(Xi, di) is compact for all 1 ≤ i ≤ n.

4.2.5. Let {(Xi, di) : i ∈ N} be a countable collection of metric
spaces. Then show that the Cartesian product

∏∞
i=1Xi, equipped

with the metric given in Example 1.3.10, is compact if and only if
(Xi, di) is compact for all i ∈ N.

A generalized version of this result in topological space setting is
well known as Tychonoff Theorem.

4.2.6. Prove that a metric space (X, d) is totally bounded if and
only if its completion is compact.

4.2.7. A subset A of (X, d) is called relatively compact if A is com-
pact. Now prove the following statements:

(1) Finite union of relatively compact subsets of (X, d) is also rela-
tively compact.

(2) If A is relatively compact in (X, d) and B ⊆ A, then B is also
relatively compact.

(3) A is relatively compact if and only if each sequence in A has a
cluster point in X.
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(4) Every relatively compact set is totally bounded. Give an example
of a totally bounded set in some metric space that is not relatively
compact.

4.3 Compactness vis-à-vis Continuity

Now think about the structure of the range of a continuous function
defined on a closed and bounded interval of R. We present the next
two results in this regard, but the complete answer will follow once
we talk about Heine–Borel Theorem.

Theorem 4.3.1. Let f : (X, d) → (Y, σ) be a continuous map
between two metric spaces. If A is compact in (X, d), then f(A) is
compact in (Y, σ).

Proof. Let A be compact in (X, d). To show that f(A) is compact
in (Y, σ), let {Vi : i ∈ I} be an open cover of f(A) in (Y, σ), that is,
f(A) ⊆ ⋃i∈I Vi and Vi is open in (Y, σ) for each i ∈ I. Now

f(A) ⊆
⋃
i∈I

Vi ⇒ A ⊆ f−1

(⋃
i∈I

Vi

)
=
⋃
i∈I

f−1(Vi).

Since f is continuous and each Vi is open in (Y, σ), f−1(Vi) is open
in (X, d) ∀ i ∈ I. Hence {f−1(Vi) : i ∈ I} is an open cover of A
in (X, d). Since A is compact in (X, d), there exist i1, i2, . . . , ik in I

such that A ⊆ ⋃k
j=1 f

−1(Vij ). Hence,

f(A) ⊆ f

⎛
⎝ k⋃

j=1

f−1(Vij )

⎞
⎠ =

k⋃
j=1

f(f−1(Vij )) ⊆
k⋃

j=1

Vij .

Hence {Vij : 1 ≤ j ≤ k} is a finite subcover of {Vi : i ∈ I} for f(A).
Thus, f(A) is compact in (Y, σ).

Before stating the next result, recall that if A is a subset of R
which is bounded above, then supA is a real number and further,
by definition of supremum, supA ∈ A in (R, | · |). Similarly, if B is
a subset of R which is bounded below, then inf B is a real number
which lies in B. In particular, if A is closed and bounded in (R, | · |),
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then both supA and inf A are in A itself. Now the next result is
immediate from Theorem 4.3.1 and Proposition 4.1.2.

Theorem 4.3.2. Let f : (X, d) → (R, |·|) be a real-valued continuous
function. If A is compact in (X, d), then f(A) is closed and bounded
in (R, | · |). Moreover, there exist a, b ∈ A such that sup f(A) = f(a)
and inf f(A) = f(b).

In other words, it can be said that every real-valued continu-
ous function, defined on a compact metric space, attains its extreme
values. The reader should compare it with the “Extreme Value The-
orem” of real analysis in which we particularly take a continuous
function on a closed and bounded interval.

Theorem 4.3.3. Let f : (X, d) → (Y, σ) be a continuous bijection
between two metric spaces. If (X, d) is compact, then f−1 : (Y, σ) →
(X, d) is also continuous and hence f is a homeomorphism.

Proof. First let A be closed in (X, d). Since (X, d) is compact, by
Proposition 4.1.4 A is compact in (X, d). Now Theorem 4.3.1 implies
that f(A) is compact in (Y, σ) and hence f(A) is closed in (Y, σ). But
f(A) = (f−1)−1(A). So if A is closed in (X, d), then (f−1)−1(A) =
f(A) is closed in (Y, σ). Hence f−1 is continuous by Theorem 2.1.1.

Theorem 4.3.4. Let (X, d) be a metric space. Then the following
statements are equivalent:

(a) (X, d) is compact.
(b) (X, ρ) is bounded for every metric ρ equivalent to d.
(c) Every continuous function on (X, d) with values in an arbitrary

metric space is bounded.
(d) Every real-valued continuous function on (X, d) is bounded.

Proof. (a) ⇒ (b): Let ρ be a metric on X which is equivalent to d.
Then the identity map from (X, d) to (X, ρ) is a homeomorphism.
Hence by Theorem 4.3.1, (X, ρ) is also compact. This implies that
(X, ρ) is bounded by Proposition 4.2.1.

(b) ⇒ (c): Let f : (X, d) → (Y, σ) be a continuous function.
Now consider the function ρ(x, y) = d(x.y) + σ(f(x), f(y)) defined
on X ×X. Then we know that (see Exercise 2.6.2) ρ is a metric on
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X which is equivalent to d. By (b), (X, ρ) is bounded. Hence there
exist M > 0 and xo ∈ X such that ρ(x, xo) < M for all x ∈ X.
Consequently, σ(f(x), f(xo)) ≤ ρ(x, xo) < M for all x ∈ X. This
implies that f is bounded.

(c) ⇒ (d): This is immediate.

(d) ⇒ (a): Suppose every real-valued continuous function on
(X, d) is bounded. Let (xn) be a sequence in X with no conver-
gent subsequence. Then by Theorem 1.6.1, (xn) has no cluster point.
Without loss of generality, it can be assumed that xn 
= xm ∀ n 
= m.
Thus, the set A = {xn : n ∈ N} is closed and the function
f : A → R defined as f(xn) = n is continuous. By Tietze’s exten-
sion theorem, there exists a continuous function F : X → R such
that F (a) = f(a) ∀ a ∈ A. Thus, by definition F is unbounded.
This gives a contradiction to (d). Hence by Theorem 4.2.1, (X, d) is
compact.

Now we would like to establish a link between Lebesgue numbers
and compact sets in a metric space. Using the sequential characteri-
zation of compact sets, Proposition 4.2.2 can be reformulated in the
following manner. But here we give a direct proof, just by using the
definition of compactness.

Theorem 4.3.5. Let (X, d) be a metric space and A be a non-empty
compact subset of X. Then every open cover of A in (X, d) has a
Lebesgue number.

Proof. Let U = {Ui : i ∈ I} be an open cover of A in (X, d) and let
x ∈ A. Since U is a cover of A and each Ui is open in (X, d), there
exists some Ux ∈ U and εx > 0 such that x ∈ Ux and B(x, 2εx) ⊆ Ux.
Now {B(x, εx) : x ∈ A} is an open cover of the compact set A in
(X, d). Hence there exists a finite set {x1, x2, . . . , xk} ⊆ A such that

A ⊆ ⋃k
i=1B(xi, εxi). Now choose ε = min1≤i≤k εxi and our claim is

that ε is a Lebesgue number of the open cover U of A. Let a ∈ A. So
there exists some j ∈ {1, 2, . . . , k} such that a ∈ B(xj, εxj ). We claim
that B(a, ε) ⊆ B(xj, 2εxj ). Take y ∈ B(a, ε). So d(a, y) < ε. Now
d(xj , y) ≤ d(xj , a) + d(a, y) < εxj + ε ≤ 2εxj , that is, y ∈ B(xj , 2εxj )
and hence B(a, ε) ⊆ B(xj , 2εxj ). But B(xj, 2εxj ) ⊆ Uxj . Hence the
claim is proved.



136 Metric Spaces and Related Analysis

The converse of Theorem 4.3.5 is not true in general. In fact, in
the next chapter we will have a detailed discussion on the metric
spaces in which every open cover has a Lebesgue number.

Recall from real analysis that every continuous function on a
closed and bounded interval [a, b] is uniformly continuous. If we care-
fully analyze the proof then it can be observed that the compactness
of [a, b] is not required in full strength. Let us prove its generalized
version.

Theorem 4.3.6. Let f : (X, d) → (Y, ρ) be a continuous function.
If every open cover of X has a Lebesgue number, then f is uniformly
continuous.

Proof. Let ε > 0. By the continuity of f , for every x ∈ X, there
exists rx > 0 such that d(x, y) < rx ⇒ ρ(f(x), f(y)) < ε

2 . Now
{B(x, rx) : x ∈ X} is an open cover of X. Hence by the hypothesis,
this open cover has a Lebesgue number, say δ > 0.

Now assume that x, x′ ∈ X with d(x, x′) < δ. So ∃ z ∈ X such
that B(x′, δ) ⊆ B(z, rz), which implies that d(x′, z) < rz. Also note
that x ∈ B(x′, δ). Hence d(x, z) < rz. Recall how we got rz. Hence
ρ(f(z), f(x′)) < ε

2 and ρ(f(z), f(x)) < ε
2 . Consequently,

ρ(f(x), f(x′)) ≤ ρ(f(x), f(z)) + ρ(f(z), f(x′)) <
ε

2
+
ε

2
,

whenever d(x, x′) < δ. Hence f is uniformly continuous.

The next result is immediate from Theorems 4.3.5 and 4.3.6.

Theorem 4.3.7. Let f : (X, d) → (Y, ρ) be a continuous function
between two metric spaces. If (X, d) is compact, then f is uniformly
continuous.

But we would like to give a direct proof of the previous theorem,
just by using the definition of compactness.

Alternative proof of Theorem 4.3.7. Let ε > 0. Choose any
x ∈ X. Since f is continuous at x, there exists rx > 0 such that

d(x, x′) < 2rx, x
′ ∈ X ⇒ ρ(f(x), f(x′)) < ε/2. (�)

Now {B(x, rx) : x ∈ X} is an open cover of X. Since X is compact,
there exist x1, . . . , xn in X such that X =

⋃n
i=1B(xi, rxi). Note that
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X is also acting as the index set for the cover {B(x, rx) : x ∈ X}.
Let δ = min1≤i≤n rxi . Now let w, w′ ∈ X such that d(w,w′) < δ.
So there exists xi (1 ≤ i ≤ n) such that w ∈ B(xi, rxi), that is,
d(w, xi) < rxi . By (�), ρ(f(xi), f(w)) < ε/2 (��). Now

d(w′, xi) ≤ d(w′, w) + d(w, xi) < δ + rxi ≤ 2rxi .

But d(w′, xi) < 2rxi ⇒ ρ(f(xi), f(w
′)) < ε/2 (by (�)). Hence

ρ(f(w), f(w′)) ≤ ρ(f(w), f(xi)) + ρ(f(xi), f(w
′))

< ε/2 + ε/2 = ε,

whenever d(w,w′) < δ.

Remark. In the beginning of this chapter, it has been said that
compactness is a topological generalization of finiteness. Look at the
alternative proof of Theorem 4.3.7 — check carefully where exactly
the compactness of X is needed. In the absence of the hypothesis of
compactness of X, we could have chosen δ to be infx∈X rx. But then
δ could be 0, which won’t work. In order to ensure that δ > 0, we
needed only a finite number of rx. One can make the same observation
in the proof of Theorem 4.3.5 as well where ε = min1≤i≤k εxi was
chosen.

Corollary 4.3.1. Let d and ρ be two equivalent metrics on X such
that (X, d) is compact. Then the two metrics are uniformly equivalent
on X.

Exercises

4.3.1. Suppose A is a subset of a compact metric space (X, d). More-
over, for every continuous function f : (X, d) → R, the restriction of
f to A attains the maximum on A. Prove that A is compact.

4.3.2. Let (X, d) be a compact metric space and f : (X, d) → R be
a function which is upper semi-continuous at every point of X. Then
show that f has an absolute maximum on X, that is, there exists
xo ∈ X such that f(x) ≤ f(xo) for all x ∈ X.

4.3.3. Let f : (X, d) → (Y, ρ) be a function which is continuous on
every compact subset of X. Show that f is continuous.
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4.3.4. Let (X, d) be a compact metric space and f : X → X be an
isometry. Then prove that f is onto. Does the conclusion hold if X
is not compact?

4.3.5. (a) Let (X, d) be a compact metric space and f : X → X
be a function such that d(f(x), f(y)) < d(x, y) for x 
= y. Then
show that f has a unique fixed point. Compare with Remark (iii)
given after Theorem 2.4.2.

(b) Give an example of a compact metric space (X, d) and a function
f : X → X such that d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X
and

(i) f has no fixed point;
(ii) f has more than one fixed point.

4.3.6. Can you find a homeomorphism between a parabola and a
circle in R2?

4.3.7. Let A and B be two non-empty disjoint subsets of a metric
space (X, d).

(a) If A and B are compact then show that d(A,B) > 0.
(b) Does the conclusion hold true if either of A or B is just closed?
(c) If A and B are closed, then show with the help of an example

that d(A,B) can be 0.

4.3.8. Give examples to show that compactness of the subset A in
Theorem 4.3.2 cannot be dropped.

4.3.9. Let f : (X, d) → (Y, ρ) be a function. Then the graph G of f
is a subset of X × Y , defined by

G = {(x, y) ∈ X × Y : y = f(x)}.
Suppose (Y, ρ) is compact, then show that f is continuous if and only
if G is a closed subset of X × Y , where X × Y is equipped with the
metric:

D((x, y), (u, v)) = d(x, u) + ρ(y, v) for (x, y), (u, v) ∈ X × Y.

Give a counter example to show that if (Y, ρ) is not compact, then a
function f : (X, d) → (Y, ρ) need not be continuous, even if its graph
is closed in (X × Y,D).
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4.3.10. Let I be a closed interval in R. Prove that a function f :
I → (Y, ρ) is continuous if and only if f is Cauchy-continuous.

4.3.11. Let f be a real-valued continuous function on a compact
metric space (X, d) and ε > 0. Then show that there exists M > 0
such that

|f(x)− f(y)| ≤Md(x, y) + ε for all x, y ∈ X.

4.4 Heine–Borel Theorem

In Proposition 4.1.2, it was seen that every compact subset of a
metric space is closed and bounded. In this section, we will talk
about the converse. In general a closed and bounded subset of a
metric space need not be compact. For example, [0,

√
3]∩Q is closed

and bounded in Q but not compact (use sequential characterization
of compact spaces). Furthermore, in Exercise 4.1.4 it was seen that
the closed unit ball is not compact in (�∞(R),D). Interestingly, in R

every closed and bounded subset is compact as proved in the next
theorem. In the literature, one can find many proofs for this theorem.
But here an elementary and easy proof (just by using the Cantor’s
Intersection Theorem) is presented (see page 90 of [46]).

Theorem 4.4.1 (Heine–Borel theorem). For k ∈ N, a subset
of the Euclidean space Rk is compact if and only if it is closed and
bounded in Rk.

We defer the proof for a while.

Remarks. (a) If we consider the metric d(x, y) = min{1, |x−y|} on
R, then it can be easily verified that (R, d) is not compact but it is
closed and bounded. This shows the significance of the standard
metric in the Heine–Borel theorem, even uniformly equivalent
metric does not work.

(b) Those metric spaces in which every closed and bounded sub-
set is compact are referred to as boundedly compact metric
spaces. Thus, by Heine–Borel theorem, the Euclidean space Rk

is boundedly compact.

Recall that in any metric space, every compact subset is closed as
well as bounded. Hence the strength of Heine–Borel theorem lies in
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the reverse direction, that is, any closed and bounded subset of Rk

is compact in Rk.
We first look at a very intuitive corollary of Heine–Borel theorem.

In this regard, recall that there is an onto isometry from Ck to R2k

given by

f : Ck → R2k

z = (z1, . . . , zk) → f(z) = (x1, y1, x2, y2, . . . , xk, yk)

where zi = xi+ιyi, 1 ≤ i ≤ k and both Ck and R2k are equipped with
usual distance metric. Subsequently, we have the following result.

Corollary 4.4.1. A subset of Ck is compact if and only if it is closed
and bounded in Ck.

For an easy proof of Heine–Borel theorem, we need to talk about
cells in Rk.

Definition 4.4.1. A non-empty subset F of Rk (k ∈ N) is
called a cell (more precisely a k-cell) if there exist closed intervals
[a1, b1], [a2, b2], . . . , [ak, bk] such that F = [a1, b1] × [a2, b2] × · · · ×
[ak, bk], that is, F = {(x1, . . . , xk) ∈ Rk : xj ∈ [aj , bj ] for 1 ≤ j ≤ k}.
Note that the diameter of F is δ = sup{d(x, y) : x, y ∈ F} =(∑k

j=1(bj − aj)
2
)1/2

, where d is the Euclidean metric on Rk.

Using midpoints cj = 1
2(aj + bj) of [aj , bj ], we can see that F is

a union of 2k k-cells each having diameter δ/2. For a better under-
standing, first consider the case of k = 2 (see Figure 4.1) and that
of k = 3, that is, consider the usual plane and the three-dimensional
Euclidean space.

Theorem 4.4.2. Every k-cell in the Euclidean space Rk is compact.

Proof. Let F be a cell in Rk and if possible, assume that F is not
compact. Then there exists an open cover U = {Ui : i ∈ I}, Ui is open
in Rk, of F such that no finite subfamily of U covers F . Let δ denotes
the diameter of F . As noted earlier, F is a union of 2k k-cells, each
having diameter δ/2. At least one of these 2k k-cells, which we denote
by F1, cannot be covered by finitely many sets from U . Likewise, F1

contains a k-cell F2 of diameter δ/4 = δ/22, which cannot be covered
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Figure 4.1 2-cell.

by finitely many sets from U . Continuing in this fashion, we obtain
a sequence (Fn) of k-cells such that

(i) F ⊇ F1 ⊇ F2 ⊇ F3 ⊇ . . .
(ii) Fn has diameter δ/2n

(iii) Fn cannot be covered by finitely many sets from U .
Since Rk is a complete metric space, by Cantor’s Intersection The-

orem,
⋂∞

n=1 Fn contains a point xo. Recall that U is an (open) cover
of F and Fn ⊆ F ∀ n ∈ N. Hence xo ∈ F and consequently, there
exists Uo ∈ U such that xo ∈ Uo. Since Uo is open in Rk, there exists
an open ball B(xo, r) in Rk such that xo ∈ B(xo, r) ⊆ Uo. Now if
δ/2n < r, one can easily see that Fn ⊆ B(xo, r) (because xo ∈ Fn),
that is, Fn ⊆ Uo if δ/2n < r. But this contradicts (iii). Hence every
k-cell in Rk is compact.

Now let us prove the main result.

Proof of Heine–Borel theorem. Let E be a closed and bounded
set in Rk. If E is empty, then E is trivially compact in Rk. So, assume
that E is non-empty. Since E is bounded, there exists a positive real
number m such that E is contained in

∏k
i=1[−m,m], that is, in the

set F = {(x1, . . . , xk) ∈ Rk : |xj| ≤ m for 1 ≤ j ≤ k}. By Theorem
4.4.2, F is compact in Rk. Hence by Proposition 4.1.4, E is compact
in Rk.

Remark. For proving Heine–Borel theorem, the sequential char-
acterization of a compact set in a metric space can also be used.
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For the details, interested readers may refer to Theorem 7.4 (page
51) of [1].

Let us look at one of the nice applications of Heine–Borel theorem.

Proposition 4.4.1. Let A be an uncountable subset of the Euclidean
space (Rn, d). Then there exist infinitely many accumulation points
of A in Rn.

Proof. First, we prove the existence of an accumulation point of A.
Note that A =

⋃
k∈N(A∩C(0, k)), where C(0, k)) denotes the closed

ball in Rn around 0 with radius k. Since A is uncountable, A ∩
C(0, k) is infinite for some k ∈ N. By Heine–Borel theorem, C(0, k)
is compact. Then by Theorem 4.2.1, A ∩ C(0, k) (and hence A) has
an accumulation point in Rn.

Now we prove that there are infinitely many accumulation points
of A. Suppose, if possible, there are only finitely many accumulation
points of A in Rn, namely x1, . . . , xk. For j ∈ N, let Sj = A ∩ {x ∈
Rn : d(x, xi) >

1
j ∀ i ∈ {1, 2, . . . , k}}. Consequently,

A ⊆
⋃
j∈N

Sj ∪ {x1, . . . , xk}.

This implies that Sj is uncountable for some j ∈ N, since A is
uncountable. Thus, by our previous claim, there exists an accumu-
lation point of Sj, say s ∈ Rn. But Sj ⊆ Sm for some m with 0 <
j < m. Then s is an accumulation point of A other than x1, . . . , xk.
A contradiction!

Historical Perspective

(i) Heinrich Eduard Heine (1821–1881) was a German mathemati-
cian. He worked on PDE and special functions. Heine introduced
the concept of uniform continuity.

(ii) Emile Borel (1871–1956) was a French mathematician. He was
one of the founders of the modern theory of functions along
with Baire and Lebesgue. In fact, the measure theory was
founded by these three mathematicians and Greek mathemati-
cian Caratheodory. It was in 1872 that Heine gave a proof of
Heine–Borel Theorem, while Borel published his proof much later
in 1895.
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Exercises

Note. The reader should keep in mind that unless mentioned explic-
itly, Rk is assumed to be equipped with the Euclidean metric.

4.4.1. For m ∈ N, let Am = {(x, y) ∈ R2 : xm + ym = 1}. Use
Heine–Borel Theorem to show that Am is compact in R2 if and only
if m is even.

4.4.2. Let A and B be two non-empty closed sets in Rk.

(a) Give an example to show that A + B = {a + b : a ∈ A, b ∈ B}
may not be closed in Rk.

(b) If A is compact in Rk, then show that A+B is closed in Rk. But
A+B need not be compact in Rk. Find a counter example.

(c) If A and B are both compact in Rk, then prove that A + B is
also compact in Rk.

4.4.3. Show that each boundedly compact metric space can be
expressed as a union of an increasing sequence of compact subsets.

4.4.4. Show that each boundedly compact metric space is both sep-
arable and complete.

4.4.5. Let A be a closed subset of a boundedly compact metric space
(X, d). Prove that (A, d) is boundedly compact.

4.4.6. Does the uniformly continuous image of a boundedly compact
metric space also boundedly compact?
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Chapter 5

Weaker Notions of Compactness

It is well known that compactness is a very strong property which
is not possessed by a large collection of metric spaces. Naturally, in
such cases our next step should be to look for some weaker property
which could be useful in the study. In this chapter, our main goal
is to make our readers familiar with four very interesting concepts:
local compactness, UCness, cofinal completeness and finite chainabil-
ity. All of them are weaker than compactness. But UC spaces and
cofinally complete metric spaces are stronger than complete metric
spaces, while finite chainability is stronger than boundedness.

5.1 Local Compactness

In Heine–Borel Theorem, it was seen that although R is not compact
but for every x ∈ X and ε > 0, the interval [x− ε, x+ ε] is compact.
Now if we look at Q, then even for a single x ∈ Q, we won’t be able
to find any ε > 0 such that [x− ε, x+ ε] ∩Q becomes compact. This
gives an idea of a notion, weaker than compactness, which is applied
in a local sense.

Definition 5.1.1. A metric space (X, d) is said to be locally com-

pact if for every x ∈ X there exists an ε > 0 such that B(x, ε) is
compact.

Remark. Note that a subset A of a metric space (X, d) is said to
be locally compact if the metric space (A, d) is locally compact.

145
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Since a closed subset of a compact metric space is compact, every
compact space is locally compact. But the converse is not true in
general. For example, the Euclidean space Rn is locally compact (by
Heine–Borel Theorem) but not compact. The next result says that
we can call a metric space to be compact in a local sense if every
x ∈ X has ‘arbitrarily small’ compact neighbourhoods.

Theorem 5.1.1. Let (X, d) be a metric space. Then (X, d) is locally
compact if and only if for every x ∈ X and ε > 0, there exists a δ > 0
such that B(x, δ) ⊆ B(x, ε) and B(x, δ) is compact.

Proof. Let (X, d) be locally compact. If x ∈ X and ε > 0, then there

exists an ε1 > 0 such that B(x, ε1) is compact. Now we can choose a

positive δ < min{ε, ε1} such that B(x, δ) ⊆ B(x, ε) ∩B(x, ε1). Since

closed subset of a compact space is compact, B(x, δ) is compact.
Hence we are done.

The reverse implication follows immediately from the definition.

Now recall that R is locally compact, while its subset Q is not
locally compact with the Euclidean distance (as per the discussion
before Definition 5.1.1). Let us look at some additional conditions
under which local compactness is preserved by the subsets.

Corollary 5.1.1. An open or closed subset of a locally compact met-
ric space is also locally compact.

Proof. Let A be an open subset of a locally compact space (X, d).
Suppose a ∈ A. Since A is open, there exists an ε > 0 such
that B(a, ε) ⊆ A. Then by Theorem 5.1.1, there exists a δ > 0
such that clX(B(a, δ)) ⊆ B(a, ε) and clX(B(a, δ)) is compact. Since
clX(B(a, δ)) ⊆ B(a, ε) ⊆ A, clA(B(a, δ) ∩A) = clX(B(a, δ)). Conse-
quently, (A, d) is locally compact.

Now assume that E is closed in (X, d) and let e ∈ E. We need to
find some δ′ > 0 such that clE(B(e, δ′)∩E) is compact. By the local
compactness of (X, d), there exists an ε′ > 0 such that clX(B(e, ε′))
is compact. Note that clE(B(e, ε′)∩E) = {clX (B(e, ε′)∩E)}⋂E is a
closed subset of the compact space clX(B(e, ε′)). Hence clE(B(e, ε′)∩
E) is compact.
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Thus, every open interval and closed interval in the Euclidean
space Rn is also locally compact.

Proposition 5.1.1. Let f be a continuous function from (X, d) onto
(Y, ρ). If (X, d) is locally compact then so is (Y, ρ) provided f is an
open map.

Proof. Let x ∈ X. Then there exists an ε > 0 such that
Bd(x, ε) is compact. Since f is continuous, Theorem 4.3.1 implies

that f(Bd(x, ε)) is also compact. Now f being an open map,
f(Bd(x, ε)) is open. Since f(x) ∈ f(Bd(x, ε)), there exists an εo > 0

such that Bρ(f(x), εo) ⊆ f(Bd(x, ε)) ⊆ f(Bd(x, ε)). The compact-

ness of f(Bd(x, ε)) implies that it is closed and hence we have,

Bρ(f(x), εo) ⊆ f(Bd(x, ε)). This implies that Bρ(f(x), εo) is com-
pact being a closed subset of a compact set. Since Y = f(X), (Y, ρ)
is locally compact.

Consequently, local compactness is a topological property, that is,
it is preserved under homeomorphism.

Exercises

5.1.1. Show that each boundedly compact metric space is locally
compact. Give an example of a metric subspace of the real line that
is locally compact but not boundedly compact.

5.1.2. Verify that a metric space in which every point is an isolated
point is locally compact.

5.1.3. Give an example to show that the condition of openness of
the map f in Proposition 5.1.1 cannot be dropped for the conclusion
to hold true.

5.1.4. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection of metric
spaces. Then show that the product space

∏n
i=1Xi, equipped with

any of the metrics given in Example 1.3.4, is locally compact if and
only if (Xi, di) is locally compact for all 1 ≤ i ≤ n.

5.1.5. Let K be a compact subset of a locally compact metric space
(X, d). If U is an open set containing K, then show that there exists
an open set A such that K ⊆ A ⊆ A ⊆ U and A is compact.
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5.1.6. (a) Give an example of a locally compact metric space which
is not complete.

(b) Prove that every locally compact metric space is a Baire space.
This is Baire Category Theorem for locally compact spaces.

(c) Give an example of a metric space which is a Baire space but
not locally compact.
Note that using (a) and (b) we can construct examples of Baire

spaces which are not complete.

5.2 UC Spaces

The significant role played by continuous function and its stronger
version, namely uniformly continuous function, in the theory of anal-
ysis is unquestioned. This prompted many of the mathematicians to
study the gap between the two classes of functions. Every uniformly
continuous function is continuous, so the main question is: under what
equivalent conditions on a metric space (X, d), does every real-valued
continuous function defined on (X, d) is uniformly continuous?

It was proved that every continuous function from a compact
metric space to an arbitrary metric space is uniformly continuous,
but compactness is clearly not a necessary condition (consider any
infinite set equipped with the discrete metric). In fact, it is a char-
acteristic property of a larger class of metric spaces widely known as
UC spaces or Atsuji spaces. In this section, some of the very inter-
esting characterizations of UC spaces are presented. But first let us
define them precisely.

Definition 5.2.1. A metric space (X, d) is called a UC space or
an Atsuji space if every real-valued continuous function on (X, d)
is uniformly continuous.

Thus by Theorem 4.3.7, every compact metric space is a UC space.
In fact, more precisely the class of UC spaces lies between the class of
compact metric spaces and that of complete metric spaces as proved
in the next result. For that, we need to define uniformly discrete sets
in a metric space. Recall the definition of a discrete set in a metric
space. In Definition 1.3.2, if δ does not depend on x then we call it
‘uniformly’ discrete set. More precisely, we have
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Definition 5.2.2. A subset A of a metric space (X, d) is called
uniformly discrete if there exists a δ > 0 such that d(x, y) ≥
δ ∀ x, y ∈ A, x �= y.

Proposition 5.2.1. Every UC space is complete.

Proof. Suppose (X, d) is UC but not complete. Then there exists a
Cauchy sequence (xn) of distinct points in X such that it does not
converge in X. Thus, (xn) has no cluster point by Theorem 1.6.1.
Consequently, the set A = {xn : n ∈ N} is closed and discrete in X.

Now define a function f : A → R as follows: f(xn) = n ∀ n ∈ N.
Since A is discrete, f is continuous. By Tietze’s extension theorem,
f can be extended to a continuous function F on X. But F is not
uniformly continuous because (xn) is Cauchy in (X, d) and (f(xn)) =
(n) is not Cauchy in R (see Proposition 2.3.1). A contradiction!

Note that there exists a complete metric space which is not UC
(consider R with the usual distance metric). In Theorem 4.3.6, one
of the sufficient conditions for a metric space to be UC is already
proved: if every open cover of (X, d) has a Lebesgue number, then
every continuous function f : (X, d) → (Y, ρ) is uniformly continu-
ous. Interestingly, it can be shown that the converse of this result is
also true.

Theorem 5.2.1. For a metric space (X, d), the following conditions
are equivalent:

(a) (X, d) is a UC space.
(b) If A1 and A2 are two disjoint nonempty closed sets in X, then

d(A1, A2) > 0.
(c) Every closed discrete subset of X is uniformly discrete in X.
(d) Every open cover of X has a Lebesgue number.

Proof. (a) ⇒ (b): Let A1 and A2 be two disjoint nonempty closed
sets in X with d(A1, A2) = inf{d(x, y) : x ∈ A1, y ∈ A2} = 0. Then
by definition of infimum, for all n ∈ N, there exist an ∈ A1 and
wn ∈ A2 such that d(an, wn) <

1
n . By Urysohn’s Lemma (Theorem

2.2.1), there exists a continuous function f : X → [0, 1] such that
f(a) = 0 ∀ a ∈ A1 and f(w) = 1 ∀ w ∈ A2. But then f is not
uniformly continuous which is a contradiction to (a).
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(b) ⇒ (c): Let A be a closed discrete subset of X which is not
uniformly discrete. Thus for each n, there exist an, bn in A, an �= bn,
such that d(an, bn) <

1
n . Moreover we can assume that an and bn

are distinct from 2n − 2 preceding points a1, . . . , an−1, b1, . . . , bn−1.
Otherwise, for each m ≥ n we get: whenever 0 < d(a, b) <
1
m , a, b ∈ A, we have either a ∈ {a1, . . . , an−1, b1, . . . , bn−1} or
b ∈ {a1, . . . , an−1, b1, . . . , bn−1}. Since {a1, . . . , an−1, b1, . . . , bn−1} is
a finite set, we can find some z ∈ {a1, . . . , an−1, b1, . . . , bn−1} and a
strictly increasing sequence (nk) in N such that ∀ k ∈ N, there exists
some zk ∈ A such that 0 < d(zk, z) <

1
nk

. This implies that z is an
accumulation point of A, which is a contradiction as A is discrete
and z ∈ A. Hence, the sets A1 = {an : n ∈ N} and A2 = {bn : n ∈ N}
are disjoint. Also, A1 and A2 are closed in X as they are subsets of a
closed and discrete set A. But d(A1, A2) = 0, which is a contradiction
to (b).

(c) ⇒ (d): Let U = {Ui : i ∈ I} be an open cover of X with
no Lebesgue number. Thus, for all n ∈ N, there exists xn ∈ X
such that B(xn,

1
n) � Ui ∀ i ∈ I. Since U is an open cover of

X, each xn ∈ Uin for some in ∈ I and there exists yn ∈ X with
d(xn, yn) <

1
n but yn �∈ Uin . Since all Ui’s are open, by passing to

a subsequence we can assume that xn �= xm for n �= m. Moreover,
the set A = {xn, yn : n ∈ N} has no accumulation point: suppose if
possible, z is an accumulation point of A. Then B(z, δ) ⊆ Ui for some
i ∈ I and some δ > 0 (Ui is open). Also, there exists a subsequence
of (xn) which converges to z. Then B(xk,

1
k ) ⊆ B(z, δ) ⊆ Ui for some

k ∈ N, which is a contradiction. Thus A has no accumulation point
and hence it is a closed and discrete subset of X. By (c), A is uni-
formly discrete. Again a contradiction!

(d) ⇒ (a): It follows from Theorem 4.3.6.

Remarks. (i) Conditions (b), (c) and (d) have been studied in [40],
[44] and [57].

(ii) Due to the characterizing property (d), UC spaces are also known
as Lebesgue spaces.

Here the reader should observe that the previous theorem is
very helpful in discarding the UCness of a certain metric space.
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For example, [0,∞) is not UC as A = {n, n+ 1
n : n ∈ N} is closed and

discrete in [0,∞) but not uniformly discrete. Like we have complete-
ness being characterized by Cauchy sequences, next we present some
of the interesting sequential characterizations of UC spaces. First we
give some required definitions.

Definition 5.2.3. A sequence (xn) in a metric space (X, d) is called
pseudo-Cauchy if it satisfies the following condition: ∀ ε > 0 and
∀ n ∈ N, there exist j, k ∈ N such that j �= k, j, k > n and
d(xj , xk) < ε.

In Cauchy sequences, the sequential terms gets arbitrary close
eventually. Now if we analyze the definition of pseudo-Cauchy
sequences, then in other words it can be said that frequently the
sequential terms gets arbitrarily close. One of the very useful char-
acterizations of UC spaces is in terms of the isolation functional I(·)
defined by: I(x) = d(x,X \{x}) = inf{d(x, y) : y ∈ X \{x}}. Thus, if
x is an isolated point in X, then I(x) = sup{r > 0 : B(x, r) = {x}}.
Clearly, I(x) = 0 if and only if x ∈ X ′.

Theorem 5.2.2. For a metric space (X, d), the following conditions
are equivalent:

(a) If (xn) and (yn) are two asymptotic sequences in X such that
xn �= yn for each n, then the sequence (xn) (equivalently (yn))
has a cluster point in X.

(b) Every sequence (xn) in X with lim
n→∞ I(xn) = 0 has a cluster

point.
(c) Every pseudo-Cauchy sequence with distinct terms in X has a

cluster point.
(d) (X, d) is a UC space.

Proof. (a) ⇒ (b): Let (xn) be a sequence with lim
n→∞ I(xn) = 0. By

passing to a subsequence, we can assume that I(xn) <
1
n . Thus,

for all n ∈ N, there exists yn ∈ X such that 0 < d(xn, yn) <
1
n .

Then, (xn) and (yn) are asymptotic sequences and hence (xn) clusters
in X.

(b) ⇒ (c): Let (xn) be a pseudo-Cauchy sequence with distinct
terms in X. Then we can find a subsequence (xkn) of (xn) such that
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I(xkn) → 0. Consequently, the sequence (xkn), and hence (xn), has
a cluster point.

(c) ⇒ (d): Let f : (X, d) → R be a continuous function which is not
uniformly continuous. Then there exists an εo > 0 such that for all
n ∈ N, there exist xn, yn ∈ X with 0 < d(xn, yn) <

1
n but |f(xn) −

f(yn)| > εo (�). We can assume that xn �= xm, yn �= ym and xn �= ym
for n �= m, otherwise we will get contradiction to the continuity of
f (like we did in the proof of (b) ⇒ (c) of Theorem 5.2.1). Thus,
the sequence (zn), where z2n−1 = xn and z2n = yn for all n ∈ N, is
pseudo-Cauchy with distinct terms and hence it has a cluster point,
say xo. Since f is continuous at xo, there exists a δ > 0 such that
|f(x) − f(xo)| < εo

2 whenever x ∈ B(xo, δ). Then for sufficiently
large n, xn, yn ∈ B(xo, δ), which implies that |f(xn) − f(yn)| ≤
|f(xn) − f(xo)| + |f(yn) − f(xo)| < εo. This gives a contradiction
to (�).

(d) ⇒ (a): Suppose there exist two asymptotic sequences (xn) and
(yn) in X such that xn �= yn for each n and (xn) (equivalently (yn))
has no cluster point. Hence by passing to a subsequence, we can
assume that xn �= xm and yn �= ym for n �= m. Now we construct
two subsequences (x′nk

) and (y′nk
) such that x′nk

�= y′nl
∀ k, l ∈ N and

d(x′nk
, y′nk

) < 1/k.
We proceed by induction. For n = 1, let x′n1

= x1 and y
′
n1

= y1.
Let A1 = {x′n1

} and B1 = {y′n1
}. Then, A1∩B1 = ∅. Suppose that we

have chosen x′n1
, . . . , x′nk

and y′n1
, . . . , y′nk

and Ak = {x′n1
, . . . , x′nk

},
Bk = {y′n1

, . . . , y′nk
} are such that Ak ∩Bk = ∅. Then choose nk+1 =

min{m > nk : xm /∈ Ak ∪Bk or ym /∈ Ak ∪Bk}.
Suppose that nk+1 does not exist, that is, ∀ n > nk, xn, yn ∈

Ak ∪ Bk. This implies that {d(xn, yn) : n > nk} is finite and hence
lim
n→∞ d(xn, yn) > 0 which contradicts our choice of (xn) and (yn).

If xnk+1
∈ Bk or ynk+1

∈ Ak, then let x′nk+1
= ynk+1

and y′nk+1
=

xnk+1
, otherwise let x′nk+1

= xnk+1
and y′nk+1

= ynk+1
.

Let A = {x′nk
: k ∈ N} and B = {y′nk

: k ∈ N}. Since the sets A
and B have no accumulation point in X, A and B are closed in X.
Also by construction of (x′nk

) and (y′nk
), A∩B = ∅ and d(A,B) = 0.

By Urysohn’s lemma (Theorem 2.2.1), we can have a real valued
continuous function, f : X −→ [0, 1] such that f(A) = {0} and
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f(B) = {1}. By (d), f is uniformly continuous, which is a contradic-
tion as d(A,B) = 0.

Remarks. (i) Conditions (a), (b) and (c) have been mentioned in
[57], [30] and [56] respectively.

(ii) In Theorem 5.2.2(c), it is important to take pseudo-Cauchy
sequence of distinct terms. For example, consider the UC space
(N, | · |). Here observe that the sequence 〈1, 1, 2, 2, 3, 3, . . .〉 is
pseudo-Cauchy with no cluster point.

Corollary 5.2.1. Every closed subset of a UC space is UC.

Proof. Let A be a closed subset of a UC space (X, d) and let (xn)
be a pseudo-Cauchy sequence of distinct terms in A. Since (X, d) is a
UC space, (xn) has a cluster point in X. But since A is closed in X,
this cluster point must belong to A. Hence by Theorem 5.2.2, (A, d)
is a UC space.

It should be noted that for defining UC spaces we do not need to
restrict the range space to R as proved in the following result.

Corollary 5.2.2. For a metric space (X, d), the following statements
are equivalent:

(a) (X, d) is a UC space.
(b) Given any metric space (Y, ρ), any continuous function f :

(X, d) → (Y, ρ) is uniformly continuous.

Proof. We only need to prove (a) ⇒ (b). Let f : (X, d) → (Y, ρ)
be any continuous function which is not uniformly continuous. Then
there exists an εo > 0 such that for all n ∈ N, ∃ xn, wn ∈ X with
d(xn, wn) <

1
n but ρ(f(xn), f(wn)) > εo. Then I(xn) → 0 and hence

by Theorem 5.2.2, (xn) has a cluster point, say xo. Since f is continu-
ous at xo, there exists a δ > 0 such that ρ(f(x), f(xo)) <

εo
2 whenever

x ∈ B(xo, δ). Now for sufficiently large n, xn, wn ∈ B(xo, δ). Con-
sequently, ρ(f(xn), f(wn)) ≤ ρ(f(xn), f(xo)) + ρ(f(wn), f(xo)) < εo.
We arrive at a contradiction.

Interested reader can refer to the survey article [34] by Kundu and
Jain for a well-organized collection of 25 equivalent characterizations
of a UC space.
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Corollary 5.2.3. Suppose (X, d) is a UC space. Then the set X ′ of
all accumulation points of X is compact.

Proof. If X ′ is finite, then we are done. Suppose X ′ is infinite. We
use Theorem 4.2.4 to prove the compactness of X ′. Let (xn) be a
sequence in X ′. Then I(xn) = 0 for all n ∈ N. Since (X, d) is UC,
(xn) has a cluster point in X by Theorem 5.2.2. Now Theorem 1.6.1
implies that there exists a subsequence (xkn) of (xn) such that xkn →
x for some x ∈ X. Since (xkn) ⊆ X ′, x ∈ X ′. Thus by Theorem 4.2.4,
X ′ is compact.

Remark. It should be noted that the converse of Corollary 5.2.3
is not true in general. For example, consider X = [0, 1] ∪ A, where
A = {n, n + 1

n : n ∈ N}, equipped with the usual distance metric.
Then X ′ = [0, 1] which is compact. But (X, | · |) is not UC. Find
a pseudo-Cauchy sequence of distinct points in X which does not
cluster?

Although the compactness of the set of accumulation points X ′
does not imply that the metric space (X, d) is UC, but at least it
guarantees the existence of an equivalent metric ρ on X such that
(X, ρ) is UC.

Theorem 5.2.3. Let (X, d) be a metric space such that X ′ is com-
pact. Then there exists an equivalent metric ρ on X such that (X, ρ)
is a UC space.

Proof. If X ′ = ∅, then take ρ to be the discrete metric on X.
Now suppose that X ′ �= ∅. Define ρ : X ×X −→ R as

ρ(x, y) =

{
0 if x = y

d(x, y) + max{d(x,X ′), d(y,X ′)} if x �= y.

Using the inequality,

max{u,w} ≤ u+ w ≤ max{u, v} +max{v,w} ∀ u, v, w ≥ 0,

one can easily verify that ρ is a metric on X.
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Clearly, every convergent sequence in (X, ρ) is convergent in
(X, d). Now let (xn) be a sequence of distinct points converging to x
in (X, d). Then, x ∈ X ′ and d(x,X ′) = 0. Thus,

ρ(xn, x) = d(xn, x) + d(xn,X
′)

≤ 2d(xn, x).

So (xn) is convergent to x in (X, ρ). Therefore, ρ and d are equivalent
metrics on X by Theorem 2.6.1.

Now we use Theorem 5.2.2(a) to prove that (X, ρ) is UC. Let (xn)
and (yn) be asymptotic sequences in (X, ρ) with xn �= yn ∀ n ∈ N.
Then 0 ≤ d(xn,X

′) ≤ ρ(xn, yn) → 0 as n → ∞. So there exists
a sequence (x′n) in X ′ such that d(xn, x

′
n) → 0 as n → ∞. Since

X ′ is compact, by Theorem 4.2.4, (x′n) has a cluster point in (X, d).
Consequently, (xn) (and equivalently (yn)) has a cluster point in
(X, d). Since d and ρ are equivalent, (xn) (equivalently (yn)) has a
cluster point in (X, ρ). By Theorem 5.2.2, (X, ρ) is a UC space.

Remark. The main outline of the proof of Theorem 5.2.3 has been
taken from [5].

Recall that the class of Cauchy-continuous functions lies strictly
in between the class of uniformly continuous functions and that of
continuous functions. Now one might be curious to know when every
Cauchy-continuous function on a given metric space is uniformly con-
tinuous? Definitely, it should be weaker than UC spaces. In fact,
from Corollary 3.5.2 and Exercise 3.5.3, the next result is quite
intuitive.

Theorem 5.2.4. Let (X, d) be a metric space and (X̂, d) be its com-
pletion. Then the following statements are equivalent:

(a) For every metric space (Y, ρ), every Cauchy-continuous function
f : (X, d) −→ (Y, ρ) is uniformly continuous.

(b) Every real-valued Cauchy-continuous function on (X, d) is uni-
formly continuous.

(c) The metric space (X̂, d) is a UC space.
(d) Every pseudo-Cauchy sequence with distinct terms in (X, d) has

a Cauchy subsequence.
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We stated the previous result without proof as our main goal
behind this result was to make our readers get acquainted with some
interesting facts.

Historical Perspective

Probably Raouf Doss [21] was the first one to study UC spaces in
1947 and then it was studied by Jun-iti Nagata [41] in 1950. But
UC spaces were first extensively studied by Masahiko Atsuji [2] in
1958. Consequently, UC spaces are also known as Atsuji spaces. In
recent years, UC spaces have been studied with a different approach
by various mathematicians.

Exercises

5.2.1. Let X = {(1/j)en : n, j ∈ N} ∪ {0} ⊆ l2, where en ∈ l2 with
1 at the nth place and 0 otherwise. Show that (X, d) is a UC space
where d is the metric induced by the standard metric on l2. Further,
verify that (X, d) is not locally compact.

5.2.2. Think of more examples of UC spaces and non-UC spaces.
Can you construct an example of a UC space which is non-compact
using Theorem 5.2.3?

5.2.3. Prove that if (xn) is a sequence in a UC space (X, d) with no
cluster point, then the set A = {n ∈ N : xn ∈ X ′} is finite.

5.2.4. Give example of a pseudo-Cauchy sequence which does not
have a Cauchy subsequence.

5.2.5. Prove that for x ∈ X, I(x) = ∞ if and only if X = {x}.
In case, X has at least two points, then show that the isolation
functional I : (X, d) → [0,∞) is Lipschitz.

5.2.6. Prove Theorem 5.2.4.

5.3 Cofinally Complete Spaces: A Brief Introduction

Recall that a sequence (xn) is Cauchy if for every ε > 0, there exists
a residual set of indices Nε such that each pair of terms whose indices
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come from Nε are within ε distance from each other. If we replace
“residual” by “cofinal” then we obtain sequences that are called cofi-
nally Cauchy. The precise definition is as follows.

Definitions 5.3.1. A sequence (xn) in a metric space (X, d) is called
cofinally Cauchy if for each ε > 0, there exists an infinite subset
Nε of N such that for each n, j ∈ Nε, we have d(xn, xj) < ε.

A metric space (X, d) is said to be cofinally complete if every
cofinally Cauchy sequence in X clusters.

Example 5.3.1. The set of real numbers R equipped with the usual
metric is cofinally complete: let (xn) be a cofinally Cauchy sequence
in R. Then there exists an infinite subset N of N such that |xn −
xj | < 1 for all n, j ∈ N . Thus (xn)n∈N is a bounded sequence in
R and hence by Bolzano–Weierstrass theorem it has a convergent
subsequence. This implies that the sequence (xn)n∈N clusters in R.

Example 5.3.2. Let X =
⋃

n∈NAn ⊆ l2, where An = {en} ∪ {en +
1
nek : k ∈ N} and en is the sequence whose nth term is 1 and rest all
terms are 0. Then (X, d) is discrete and complete, where ‘d’ is the
metric induced by the metric on l2 (refer to Example 1.3.7), because
every Cauchy sequence in (X, d) is eventually constant. On the other
hand, by enumerating X, we will get a cofinally Cauchy sequence
which certainly does not cluster and hence (X, d) is not cofinally
complete.

Since every Cauchy sequence is cofinally Cauchy, every cofinally
complete metric space is complete. In fact, the class of cofinally com-
plete metric spaces lies in between the class of complete metric spaces
and that of compact metric spaces. Before moving to the equivalent
characterizations of this special class of metric spaces, we would like
to mention the following result. It says that every cofinally Cauchy
sequence with no constant subsequence has a cofinally Cauchy sub-
sequence of distinct terms.

Proposition 5.3.1. ([7]) Let (xn) be a cofinally Cauchy sequence in
a metric space (X, d) with no constant subsequence. Then there is a
pairwise disjoint family {Mj : j ∈ N} of infinite subsets of N such
that

(a) if {i, l} ⊆ ⋃{Mj : j ∈ N} then xi �= xl; and
(b) if i ∈ Mj and l ∈ Mj then d(xi, xl) <

1
j .
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Proof. Suppose (xn) has a Cauchy subsequence. Since (xn) has no
constant subsequence, we can assume that (xn) has a Cauchy sub-
sequence (xnk

)k∈N of distinct terms. Thus, for each j ∈ N, there
exists mj ∈ N such that d(xnk

, xnl
) < 1

j for all k, l ≥ mj. Let No =

{nk : k ∈ N}. Then partition No into countably many infinite subsets
{Kj : j ∈ N}. Now for each j ∈ N, choose Mj = {nk ∈ Kj : k ≥ mj}.

If (xn) has no Cauchy subsequence, choose an infinite subset M1

of N such that 0 < d(xi, xl) < 1 for all i, l ∈ M1. Since (xn) has
no Cauchy subsequence, the set {xi : i ∈ M1} cannot be totally
bounded. By passing to an infinite subset of M1, we can find ε1 <

1
2

such that ε1 < d(xi, xl) < 1 for all i, l ∈ M1. Now choose an infinite
subset M2 of N such that 0 < d(xi, xl) < ε1 for all i, l ∈ M2. By
construction {xi : i ∈ M1} ∩ {xi : i ∈ M2} consists of at most one
point. Also, {xi : i ∈ M2} is not totally bounded, so by passing to an
infinite subset of {xi : i ∈ M2} we can assume the two sets are disjoint
and further that there exists ε2 <

1
3 such that ε2 < d(xi, xl) <

1
2 for

all i, l ∈ M2. Choosing an infinite M3 ⊆ N such that 0 < d(xi, xl) <
ε2 for all i, l ∈ M3. By deleting at most two indices from M3 we
can assume {{xi : i ∈ Mj} : j = 1, 2, 3} is a pairwise disjoint family.
Continuing in this way inductively we produce {Mj : j ∈ N} with
the required properties.

As a consequence of the previous result, it is enough to show the
clustering of cofinally Cauchy sequences of distinct terms in order to
prove a space to be cofinally complete. And hence by the sequential
characterization of UC spaces in terms of pseudo-Cauchy sequences
(Theorem 5.2.2), it is evident that the class of cofinally complete
metric spaces is positioned strictly between the class of UC spaces
and that of complete metric spaces. Note that the set of real numbers,
R, with the usual metric is cofinally complete but not UC.

Recall that a metric space (X, d) is called a UC space if every
real-valued continuous function on (X, d) is uniformly continuous.
Since every UC space is cofinally complete, one may think of having
a similar characterization of cofinally complete metric spaces. For
that let us define the following class of functions.

Definition 5.3.2. A function g : (X, d) → (Y, ρ) between two metric
spaces is called uniformly locally bounded if ∃ a δ > 0 such that
∀ x ∈ X, g(Bd(x, δ)) is a bounded subset of (Y, ρ).
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Evidently, every uniformly continuous function is uniformly
locally bounded. But it should be noted that a continuous function
may not be uniformly locally bounded in general. For example, let
f : (0, 1) → R defined by f(x) = 1/x. The next result gives a neces-
sary and sufficient condition on a metric space (X, d) such that every
continuous function defined on (X, d) is uniformly locally bounded.

Theorem 5.3.1 ([7]). Let (X, d) be a metric space. Then the fol-
lowing statements are equivalent:

(a) (X, d) is cofinally complete.
(b) Each continuous function on (X, d) with values in an arbitrary

metric space (Y, ρ) is uniformly locally bounded.
(c) Each real-valued continuous function on (X, d) is uniformly

locally bounded.

Proof. (a) ⇒ (b): Let f : (X, d) → (Y, ρ) be a continuous func-
tion which fails to be uniformly locally bounded. Then there exists a
sequence (xn) in X such that f(Bd(xn,

1
n)) is an unbounded subset

of (Y, ρ). Thus by Theorem 4.3.1 and Proposition 4.1.2, the closed
ball Cd(xn,

1
n) is not compact. We claim that the sequence (xn) does

not cluster in (X, d). Suppose, if possible, x ∈ X is a cluster point
of (xn). Since f is continuous at x, there exists a δ > 0 such that
f(Bd(x, δ)) ⊆ Bρ(f(x), 1). By Theorem 1.6.1, there exists a subse-
quence (xnk

) of (xn) which converges to x. Then for sufficiently large
k, Bd(xnk

, 1
nk

) ⊆ Bd(x, δ) and hence f(Bd(xnk
, 1
nk

)) ⊆ f(Bd(x, δ)) ⊆
Bρ(f(x), 1). This gives a contradiction. Thus, (xn) has no cluster
point in X.

Since Cd(xn,
1
n) is not compact, let (anm)m∈N be a sequence of

distinct points in Cd(xn,
1
n) with no cluster point (Theorem 4.2.4).

Then B = {xn, anm : m, n ∈ N} is a closed and discrete subset of
X. Since B is countable, let {zn : n ∈ N} be an enumeration of B.
Consider the function f : B → R: f(zn) = n − (�). Then f is a
continuous function on a closed set B and hence by Tietze’s extension
theorem, f can be extended to a real-valued continuous function f̃
on (X, d). Now (zn) is cofinally Cauchy in X and (X, d) is cofinally
complete, hence (zn) has a convergent subsequence. Then by the

continuity of f̃ , (f̃(zn)) has a convergent subsequence. This gives a
contradiction to (�). Consequently, f is uniformly locally bounded.
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(b) ⇒ (c): This is immediate.

(c) ⇒ (a): If (X, d) is not cofinally complete, then there exists a
cofinally Cauchy sequence (xn) of distinct points in (X, d) with no
cluster point. Thus the set A = {xn : n ∈ N} is closed and discrete
and hence the function f : (A, d) → R defined by f(xn) = n is
continuous. By Tietze’s extension theorem, there exists a real-valued
continuous extension f̃ of f to (X, d). By (c), f̃ is uniformly locally

bounded and hence ∃ a δ > 0 such that ∀ x ∈ X, f̃(B(x, δ)) is
a bounded subset of R (��). Since (xn) is cofinally Cauchy, there
exists an infinite subset N of N and no ∈ N such that xm ∈ B(xno , δ)

for all m ∈ N . Then the set S = {f̃(xm) : m ∈ N} ⊆ f̃(B(xno, δ))
is bounded by (��). This is a contradiction to the way f is defined.
Thus (X, d) is cofinally complete.

Since a cofinally complete metric space is complete, we now look
for some nice characterizations of the metric spaces whose comple-
tions are cofinally complete.

Theorem 5.3.2. Let (X, d) be a metric space. Then the following
statements are equivalent:

(a) The completion (X̂, d) of (X, d) is cofinally complete.
(b) Every complete subset (as a metric subspace) of (X, d) is cofinally

complete.
(c) Every cofinally Cauchy sequence in (X, d) has a Cauchy subse-

quence.
(d) Each Cauchy-continuous function on (X, d) with values in an

arbitrary metric space (Y, ρ) is uniformly locally bounded.
(e) Each real-valued Cauchy-continuous function on (X, d) is uni-

formly locally bounded.

Proof. The implications (a) ⇒ (b); (d) ⇒ (e) are easy to see.

(b) ⇒ (c): Let (xn) be a cofinally Cauchy sequence in X. We claim
that (xn) has a Cauchy subsequence. Suppose (xn) has no Cauchy
subsequence. Then A = {xn : n ∈ N} is complete as a metric sub-
space of (X, d). Hence (A, d) is cofinally complete, which implies that
(xn) has a cluster point. This is a contradiction as (xn) has no Cauchy
subsequence.
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(c) ⇒ (a): Let (x̂n) be a cofinally Cauchy sequence in (X̂, d). Then

by the density of X in X̂ , for every n ∈ N, there exists xn ∈ X such
that d(xn, x̂n) < 1/n. Then (xn) is cofinally Cauchy in (X, d) and
hence it has a Cauchy subsequence, say (xnk

). Thus, (xnk
) converges

in (X̂, d). Consequently, we have a convergent subsequence of (x̂n).

(a) ⇒ (d): Let f : (X, d) → (Y, ρ) be a Cauchy-continuous function.
Then by Theorem 3.5.3, there exists a Cauchy-continuous function
f̃ : (X̂, d) → (Ŷ , ρ) which extends f . Now by Theorem 5.3.1, f̃ is
uniformly locally bounded. Hence, f is uniformly locally bounded.

(e)⇒ (a): Let f : (X̂, d) → R be a continuous function. We claim that

f is uniformly locally bounded. Since (X̂, d) is complete, f is Cauchy-
continuous (Corollary 3.5.2) which implies that the restriction of f to
X, f |X , is Cauchy continuous and hence uniformly locally bounded
(by (e)). Then there exists a δ > 0 such that ∀ x ∈ X, f(B(x, δ)∩X)

is bounded. Let x̂ ∈ X̂ . We claim that f(B(x̂, δ3 )) is bounded. Sup-

pose it is not bounded. Then there exists a sequence (x̂n) in B(x̂, δ3)
such that |f(x̂n)| > n. Let (anm)m∈N be a sequence in X converging to
x̂n for every n ∈ N. Then, eventually every such sequence lies in some
δ ball of X and hence there images under f are bounded by some
M > 0. Subsequently, by the continuity of f , (f(x̂n)) is bounded,
which is a contradiction to the way (x̂n) is constructed.

Historical Perspective

Cofinal completeness was first considered implicitly by Corson [19] in
1958 and then by Howes [29] in 1971 in terms of nets and entourages.
A few years later, Rice [45] introduced the notion of uniform para-
compactness for a Hausdorff uniform space X and subsequently
in Ref. [53], Smith, the reviewer of Rice’s paper for Mathematical
Reviews, observed that uniform paracompactness is equivalent to
net cofinal completeness for a Hausdorff uniform space. In 1981,
Hohti [28] gave a nice equivalent characterization of a uniformly
paracompact metric space in terms of uniform local compactness.
Much later in 2008, Beer [7] cast a new light on cofinal complete-
ness and gave various nice characterizations of cofinally complete
metric spaces. Besides this, Beer also discussed some equivalent con-
ditions under which a metric space possesses an equivalent cofinally
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complete metric. For a detailed discussion on cofinally complete met-
ric spaces, the interested readers can also have a look at the research
monograph [32].

Exercises

5.3.1. Give an example of

(a) a complete metric space which is not cofinally complete;
(b) a cofinally Cauchy sequence with no Cauchy subsequence.

5.3.2 ([7]). Prove that the following assertions are equivalent for a
metric space (X, d):

(a) (X, d) is totally bounded.
(b) Each sequence in X is cofinally Cauchy.
(c) Each sequence in X is pseudo-Cauchy.

5.3.3. Let (X, d) be a metric space. Then prove that the following
statements are equivalent:

(a) (X, d) is cofinally complete.
(b) Every d-cofinally Cauchy sequence (that is, cofinally Cauchy

with respect to metric d) in X is σ-cofinally Cauchy for all equiv-
alent metrics σ on X.

5.3.4. Let us define analogues of asymptotic sequences and uniformly
asymptotic sequences: a pair of sequences (xn) and (yn) in a metric
space (X, d) is said to be

(i) cofinally asymptotic, written (xn) �c (yn), if ∀ ε > 0, ∃ an infinite
subset Nε of N such that d(xn, yn) < ε ∀ n ∈ Nε.

(ii) cofinally uniformly asymptotic, written (xn) �c
u (yn), if ∀ ε > 0,

∃ an infinite subset Nε of N such that d(xn, ym) < ε ∀ n, m ∈ Nε.

Now suppose that (xn) and (yn) are sequences in a metric space
(X, d) and b ∈ X. Show that

(a) If (xn) �c (yn), then there exist subsequences (xnk
)k∈N and

(ynk
)k∈N of (xn) and (yn) respectively, such that (xnk

) � (ynk
).

(b) A sequence (xn) has a subsequence converging to b if and only
if (xn) �c

u (b)n∈N if and only if (xn) �c (b)n∈N.
(c) For every sequence (xn) in X, (xn) �c (xn).
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(d) A sequence (xn) is cofinally Cauchy if and only if (xn) �c
u (xn).

(e) If (xn) �c
u (yn), then (xn) and (yn) are cofinally Cauchy

sequences.
(f) If (xn) is cofinally Cauchy such that (xn) � (yn) then (xn) �c

u

(yn).
(g) If (xn) is a Cauchy sequence such that (xn) �c (yn) then (xn) �c

u

(yn).

5.3.5. Let f : (X, d) → (Y, ρ) be a function between two metric
spaces. Then prove that the following statements are equivalent:

(a) f is uniformly continuous.
(b) Whenever (xn) �c (zn) in (X, d), then (f(xn)) �c (f(zn)) in

(Y, ρ).
(c) Whenever (xn) � (zn) in (X, d), then (f(xn)) �c (f(zn)) in

(Y, ρ).

5.4 Finite Chainability

Recall that a metric space (X, d) is compact if and only if every
real-valued continuous function on (X, d) is bounded. Now the anal-
ogous question arises for boundedness of real-valued uniformly con-
tinuous functions. In this regard, first note that every real-valued
uniformly continuous function on a totally bounded metric space
(X, d) is bounded (Corollary 3.2.4). But the converse need not be
true.

Example 5.4.1. Consider the space of all real square summable
sequences l2 (see Example 1.3.7). Then the open ball around the
zero sequence 0 in l2, B(0, 2), is not totally bounded: consider the
sequence (en) ⊆ B(0, 2), where en is the sequence with 1 as nth
term and rest are 0. Then d(en, ek) =

√
2 for n �= k and hence

(en) has no Cauchy subsequence. Now see Theorem 3.2.3. But note
that every real-valued uniformly continuous function on B(0, 2) is
bounded: let f : B(0, 2) → R be uniformly continuous. Then there
exists a δ > 0 such that |f(x) − f(y)| < 1 whenever x, y ∈ B(0, 2)
with d(x, y) < δ. Let m ∈ N such that 1

m < δ
2 . If x ∈ B(0, 2), then

we can find m points in B(0, 2), x0 = 0, x1, . . . , xm−2, xm−1 = x,
such that d(xi−1, xi) < δ for all i ∈ {1, . . . ,m − 1} (take xi =

i
mx).
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Consequently, |f(x)−f(0)| ≤ |f(x)−f(xm−2)|+· · ·+|f(x1)−f(0)| <
m− 1 for all x ∈ B(0, 2). Thus, f is bounded.

In order to study such metric spaces on which every real-valued
uniformly continuous function is bounded, in 1958 Atsuji [2] intro-
duced finitely chainable metric spaces which were weaker than totally
bounded metric spaces but stronger than bounded metric spaces. In
fact, one can get the intuition for the definition by Example 5.4.1.

Definitions 5.4.1. Let (X, d) be a metric space and ε be a positive
number. Then an ordered set of points {x0, x1, . . . , xm} in X satis-
fying d(xi−1, xi) ≤ ε, where i = 1, 2, . . . ,m, is said to be an ε-chain
of length m from xo to xm.

Let A be a subset of X. Then, A is said to be finitely chain-
able in (X, d) if for every ε > 0, there exist finitely many points
p1, p2, . . . , pr in X and a positive integer m such that every point of
A can be joined with some pj , 1 ≤ j ≤ r by an ε-chain of length m.

Remark. These finitely chainable sets are also known as Bourbaki-
bounded sets in the literature because these sets were considered in
the book of Bourbaki [12].

It is evident that every subset of a finitely chainable set in a
metric space (X, d) is also finitely chainable in X. Here we would
like to point out that unlike total boundedness, finite chainability
of a set A depends essentially on the underlying space (X, d), that
is, if Y is a subset of (X, d), then A ⊆ Y is finitely chainable in X
whenever it is finitely chainable in Y , but the converse need not hold.
For example, the set A = {en : n ∈ N} in l2 is finitely chainable in
the whole space l2: for every ε > 0, we can find m ∈ N such that
every en can be joined with the zero sequence by some ε-chain of
length m. But A is not finitely chainable subset of itself as A is an
infinite uniformly discrete metric space.

The routine proof of the following result is omitted.

Proposition 5.4.1. Let (X, d) be a metric space. Then

(a) Every totally bounded subset of (X, d) is finitely chainable in
(X, d).

(b) Every finitely chainable subset of (X, d) is bounded.
(c) If A is finitely chainable in (X, d), then A is also finitely chain-

able in (X, d).
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Observe that a bounded subset of a metric space (X, d) need not
be finitely chainable in (X, d). For example, consider any infinite
subset of a metric space (X, d), where d is the discrete metric. But
interestingly, this cannot be the case in the Euclidean space Rn and
in l2 (see Exercise 5.4.1). Furthermore, it should be noted that the
open ball B(0, 2) and the set A = {en : n ∈ N} (see Example 5.4.1)
are finitely chainable in l2 but both are not totally bounded.

Now we prove the main result of this section due to which the
notion of finite chainability was introduced.

Theorem 5.4.1. Let A be a subset of the metric space (X, d). Then
the following statements are equivalent:

(a) A is finitely chainable in (X, d).
(b) Every uniformly continuous function defined on (X, d) with val-

ues in an arbitrary metric space (Y, ρ) is bounded on A.
(c) Every real-valued uniformly continuous function on (X, d) is

bounded on A.

Proof. (a) ⇒ (b): Let f : (X, d) → (Y, ρ) be uniformly continu-
ous. Then there exists a δ > 0 such that ρ(f(x), f(z)) < 1 whenever
d(x, z) < δ. Since A is finitely chainable in (X, d), there exist finitely
many points p1, p2, . . . , pr in X andm ∈ N such that every point of A
can be joined with some pj, 1 ≤ j ≤ r by some δ-chain of length m.
Thus, for every a ∈ A, ρ(f(a), f(pi)) < m for some i ∈ {1, 2, . . . , r}.
Hence f is bounded on A.

(b) ⇒ (c): Trivial.

(c) ⇒ (a): Suppose A is not finitely chainable in (X, d). Then there
exists an εo > 0 such that for any finitely many points in X and
n ∈ N, there is a point in A which cannot be joined with any of
the points in the finite collection by an εo-chain of length n. Now fix
xo ∈ X. Let Ao

o = {xo} and for n ∈ N, let

An
o = {x ∈ X : x can be joined with xo by εo-chain of length n

but not n− 1}.
Now define f : (X, d) → R as follows:

Case I: A ∩An
o is non-empty for infinitely many n.
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If x ∈ An
o for some n ∈ N, then f(x) = (n − 1)εo + d(x,An−1

o ),
otherwise f(x) = 0. We claim that f is uniformly continuous. Let
ε < εo and suppose d(x, y) < ε. If x �∈ An

o for all n ∈ N ∪ {0}, then
so does y and hence f(x) = f(y) = 0. Now suppose x ∈ An

o for some
n ≥ 2. Then we can have the following cases:

Case (a): y ∈ An−1
o .

Then d(x,An−1
o ) ≤ d(x, y) < ε and d(y,An−2

o ) < εo. This implies
that f(x)− f(y) = εo + d(x,An−1

o ) − d(y,An−2
o ) > 0. Now we claim

that d(y,An−2
o ) ≥ εo − ε. Suppose, if possible, d(y,An−2

o ) < εo − ε.
Then there exists y′ ∈ An−2

o such that d(y, y′) < εo − ε. Thus,
d(x, y′) ≤ d(x, y) + d(y, y′) < εo, which means either x ∈ An−1

o

or x ∈ An−3
o . A contradiction. Consequently, f(x) − f(y) < εo +

ε+ ε− εo = 2ε.

Case (b): y ∈ An
o .

Then |f(x)− f(y)| ≤ d(x, y) < ε.

Case (c): y ∈ An+1
o .

It can be handled in a way similar to Case (a). Hence, f is a
uniformly continuous function which is unbounded on A. This is a
contradiction.

Case II: A ∩An
o is empty eventually.

Since A is not finitely chainable in (X, d), we can find a1 ∈ A
such that a1 �∈ Ao =

⋃∞
n=0A

n
o . If we can define a function similar

to that in Case I corresponding to a1, then we are done. In case we
are not able to define a function similar to that in Case I for some
ai, since A is not finitely chainable in (X, d), we have a sequence of
infinitely many sets Ao, A1, A2, . . .. Now define the function f on X
as follows: f(x) = n if x ∈ An and f(x) = 0 if x �∈ ⋃∞

n=0An. Then f
is a uniformly continuous function which is unbounded on A. Again
a contradiction!

Remark. Note that Theorem 5.4.1 was initially proved by Atsuji [2],
particularly for A = X. Then Hejcman gave a more general result
for finite chainability of subsets of a uniform space in Ref. [26]. The
result was later proved in metric space setting by Marino, Lewicki
and Pietramala in Ref. [37] and separately by Beer and Garrido in
Ref. [9].
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The next result is straightforward from Theorem 4.3.4 and the
previous result.

Corollary 5.4.1. A metric space (X, d) is compact if and only if
(X, d) is finitely chainable and a UC space.

It is well known from calculus that the pointwise product of two
real-valued continuous functions is also continuous. But this is not in
general true for uniformly continuous functions: suppose f : R → R is
the identity function, that is, f(x) = x ∀ x ∈ R. Then f is uniformly
continuous but f2 is not (see Example 2.3.2). Here note that f is
unbounded.

Corollary 5.4.2. Let f and g be two real-valued uniformly contin-
uous functions defined on a finitely chainable metric space (X, d).
Then their pointwise product f.g is also uniformly continuous.

Proof. Since (X, d) is finitely chainable, the uniformly continuous
functions f and g are bounded by Theorem 5.4.1. So let M be a
positive number such that |f(x)| ≤M and |g(x)| ≤M for all x ∈ X.
Let ε > 0. Then there exists a δ1 > 0 such that whenever d(x, y) < δ1
then |f(x) − f(y)| < ε

2M . Similarly, there exists a δ2 > 0 such that
whenever d(x, y) < δ2 then |g(x) − g(y)| < ε

2M . Now suppose δ =
min{δ1, δ2}. Then δ > 0. If d(x, y) < δ, then

|f(x)g(x) − f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
≤ |f(x)||g(x) − g(y)|+ |g(y)||f(x) − f(y)|
< M

ε

2M
+M

ε

2M
= ε.

Thus, f · g is uniformly continuous.

Note that the converse of the previous result may not hold true,
that is, if the class of real-valued uniformly continuous functions
on (X, d) is closed under pointwise product, then (X, d) may not
be finitely chainable. For example, consider any infinite uniformly
discrete metric space. This example gives an idea for the next result.

Theorem 5.4.2 (Cabello Sánchez theorem [15]). Let (X, d) be
a metric space. Then the following statements are equivalent:

(a) If f and g are real-valued uniformly continuous functions on
(X, d), then their pointwise product f · g is also uniformly con-
tinuous.
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(b) Every subset A of X is either finitely chainable in (X, d) or A
contains an infinite uniformly isolated subset (that is, ∃ δ > 0
and an infinite subset F ⊆ A such that d(w,X \{w}) ≥ δ ∀ w ∈
F ).

Proof. (a) ⇒ (b): Suppose, if possible, there exists A ⊆ X which
is neither finitely chainable nor contains an infinite uniformly iso-
lated subset. Then there exists a uniformly continuous function
f : (X, d) → R which is unbounded on A (see Theorem 5.4.1). With-
out loss of generality, we can assume that f ≥ 0. Consequently, there
exists a sequence (xn) ⊆ A such that f(xn+1) ≥ f(xn) + 1 ≥ n + 1
for all n ∈ N. Thus, |f(xn) − f(xm)| ≥ 1 ∀ n �= m. Since f is
uniformly continuous, there exists a δ > 0 such that d(xn, xm) ≥
δ ∀ n �= m (�). Since A does not contain any infinite uniformly
isolated subset, for all δ′ > 0, the set {a ∈ A : d(a,X \ {a}) ≥ δ′}
is finite. Consequently, d(xn,X \ {xn}) → 0 and hence we can find a
sequence (yn) in X such that for all n ∈ N, 0 < d(xn, yn) < δ/3 and
d(xn, yn) → 0. Note that by (�), the sequence 〈x1, y1, x2, y2, . . .〉 has
distinct terms. Now define a function g : {xn, yn : n ∈ N} → [0, 1]
as: g(xn) = 1/n and g(yn) = 0. Then g is uniformly continuous. By
Theorem 3.5.5, g can be extended to a uniformly continuous function
g̃ : (X, d) → [0, 1]. Since for all n f · g̃(xn) ≥ 1 and f · g̃(yn) = 0,
f · g̃ is not uniformly continuous. A contradiction!

(b) ⇒ (a): Let f, g : (X, d) → R be uniformly continuous functions
whose pointwise product f · g is not uniformly continuous. Then
there exists an εo > 0 such that for each n ∈ N, we can find xn, yn ∈
X with 0 < d(xn, yn) < 1/n but |f(xn)g(xn) − f(yn)g(yn)| ≥ εo.
Consequently, either f or g is unbounded on the set A = {xn, yn : n ∈
N}. Then A is not finitely chainable in (X, d) by Theorem 5.4.1. Since
0 < d(xn, yn) < 1/n, d(xn,X \ {xn}) < 1/n and d(yn,X \ {yn}) <
1/n. Thus, for all δ > 0, the set {a ∈ A : d(a,X \ {a}) ≥ δ} is finite.
This implies that A does not contain any infinite uniformly isolated
subset, which is again a contradiction.

Like we have Cauchy sequences which characterize totally
bounded metric spaces, similarly in 2014, Garrido and Meroño [23]
defined a special class of sequences called Bourbaki–Cauchy to give
nice sequential characterizations of finitely chainable metric spaces.
We give the precise definition first.
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Definition 5.4.2. Let (X, d) be a metric space. A sequence (xn) is
said to be Bourbaki–Cauchy in X if for every ε > 0, there exist
m, no ∈ N such that whenever n > j ≥ no, the points xj and xn can
be joined by an ε-chain of length m.

Clearly, every Cauchy sequence is Bourbaki–Cauchy but the
reverse implication need not hold true. For example, the sequence
(en) is Bourbaki–Cauchy in l2 but it is not Cauchy. Here note that
(en) is not Bourbaki–Cauchy in the subset X = {en : n ∈ N} ⊆ l2.
Hence unlike Cauchy sequences, the ambient space matters when we
talk about Bourbaki–Cauchy sequences. Interestingly, finitely chain-
able metric spaces are characterized by Bourbaki–Cauchy sequences
in the same way as Cauchy sequences characterize total boundedness
(see Theorem 3.2.3).

Theorem 5.4.3. Let (X, d) be a metric space and A ⊆ X. Then the
following statements are equivalent:

(a) A is finitely chainable in X.
(b) Every countable subset of A is finitely chainable in X.
(c) Every sequence in A has a Bourbaki–Cauchy subsequence in X.

Proof. (a) ⇒ (b): This is immediate.

(b) ⇒ (c): Let (xn) be a sequence in A. Then {xn : n ∈ N} is finitely
chainable in X. Thus, there exists p1 ∈ X and m1 ∈ N and a sub-
sequence (x1n) of (xn) such that every point of the subsequence can
be joined with p1 by 1-chain of length m1. Repeating this process we
get, for every k ≥ 2 there exist pk ∈ X and mk ∈ N and a subse-
quence (xkn) of (x

k−1
n ) such that every point of the subsequence can

be joined with pk by 1
k -chain of length mk. Then the sequence (xnn)

is the required Bourbaki–Cauchy subsequence of (xn).

(c) ⇒ (a): Suppose A is not finitely chainable in X. Then there exists
an εo > 0 such that for any finitely many points in X and m ∈ N,
there is a point in A which cannot be joined with any of the points in
the finite collection by an εo-chain of lengthm. Now fix x0 ∈ X. Then
for all m ∈ N, there exists am ∈ A such that am cannot be joined
with x0, a1, . . . , am−1 by any εo-chain of length m. Consequently, the
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sequence (am)m∈N in A has no Bourbaki–Cauchy subsequence in X,
which is a contradiction.

One can find a wide collection of equivalent characterizations of
finitely chainable metric spaces in the expository article [33]. More-
over, for further study of UC spaces, cofinal completeness and finite
chainability, one may refer to the research monograph [8].

Exercises

5.4.1. Show that in the Euclidean space Rn and in lp space, a subset
A is bounded if and only if it is finitely chainable in the whole space.

5.4.2. Prove Proposition 5.4.1.

5.4.3. Prove that a metric space (X, d) is finitely chainable if and
only if (X, ρ) is bounded for every metric ρ which is uniformly equiv-
alent to the metric d.

5.4.4. Let X =
⋃

n∈NAn be the discrete subset of l2, where An =

{en, en + 1
nek : k ∈ N}. What can you say about Bourbaki–Cauchy

sequences in X?



Chapter 6

Real-Valued Functions on
Metric Spaces

This chapter is devoted to the analysis of real-valued functions
defined on a metric space. Particularly, we will study three significant
results, namely Dini’s Theorem, Ascoli–Arzelà Theorem and Stone–
Weierstrass Theorem. These results play a crucial role in the analysis
of the metric space (C(X),D) where C(X) denotes the set of all real-
valued continuous functions on a compact metric space (X, d) and D
is the uniform metric.

6.1 Pointwise and Uniform Convergence

We are already familiar with the significance of the study of
convergence of sequences in real analysis. Now the question is: How
to define the concept of convergence of a sequence of real-valued
functions? So let us start with a sequence (fn) of real-valued functions
defined on a non-empty set X. We know that for a fixed x ∈ X,
(fn(x)) is a sequence of real numbers. Intuitively, if we want the
sequence (fn) of functions to converge, then the sequence (fn(x))
should converge in (R, | · |) for all x ∈ X (that is, lim

n→∞ fn(x) exists

in R for each x ∈ X). Consequently, by collecting all the limits
with respect to each point in X, we can formulate a new function
f : X → R. Thus, f is defined by f(x) = lim

n→∞ fn(x) for x ∈ X. If

this happens, then the sequence (fn) is said to converge pointwise to

171
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f (or f is the pointwise limit of (fn)). So we can write the formal
definition of pointwise convergence as follows:

Definition 6.1.1. Let (fn) be a sequence of real-valued functions
defined on a non-empty set X and let f : X → R be a function.
Then we say that (fn) converges to f pointwise, denoted by fn → f
pointwise, if given ε > 0 and x ∈ X, there exists no ∈ N (no depends
on both ε and x) such that

|fn(x)− f(x)| < ε ∀ n ≥ no.

In the previous definition, it should be noted that no depends on
both ε and x. Suppose no depends only on ε and not on x, then
we get a stronger notion of convergence of a sequence of real-valued
functions. This stronger concept is known as uniform convergence
because the natural number no is uniform for all points in the domain
space (X, d). The formal definition is as follows.

Definition 6.1.2. Let (fn) be a sequence of real-valued functions
defined on a non-empty set X. Then we say that (fn) converges to
f : X → R uniformly, denoted by fn → f uniformly, if given ε > 0,
there exists no ∈ N (no depends on ε only) such that

|fn(x)− f(x)| < ε ∀ n ≥ no and ∀ x ∈ X.

Remarks. (a) When a sequence (fn) of real-valued functions
converges uniformly to a function f , we call f to be ‘the’ uniform
limit of (fn). (Here the article ‘the’ is used because of the
uniqueness of limit of a sequence, see Proposition 1.5.1.)

(b) The concept of pointwise and uniform convergence can also be
defined for a sequence of functions with codomain as some general
metric space but we focus on real-valued functions in this chapter.

(c) A sequence (fn) ⊆ R
X is said to converge uniformly on K ⊆ X

to the function f in R
X if for each ε > 0, there exists no ∈ N

such that

|fn(x)− f(x)| < ε ∀ x ∈ K and ∀ n ≥ no,

which is equivalent to lim
n→∞(supx∈K |fn(x)− f(x)|) = 0.

Evidently, uniform convergence implies pointwise convergence and
hence by the uniqueness of limits (Proposition 1.5.1), the uniform
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limit is also the pointwise limit. Consequently, whenever we are given
a sequence of functions then first find out its pointwise limit and sub-
sequently use this pointwise limit to check whether the convergence
is uniform or not.

Example 6.1.1. Consider the sequence of functions (fn) where
fn : [0,∞) → R is defined as fn(x) = xe−nx for x ∈ [0,∞).
First see that lim

n→∞ fn(x) = 0 for each x ∈ [0,∞). Thus, the

zero function is the pointwise limit of (fn). Now we show that
fn → 0 uniformly. Let ε > 0. We need to find no ∈ N such that
|fn(x)− f(x)| < ε ∀ n ≥ no and ∀ x ∈ [0,∞), which is equivalent to
supx∈[0,∞) xe

−nx < ε ∀ n ≥ no. Using second derivative test, one can

easily verify that supx∈[0,∞) xe
−nx = 1

ne . Since
1
ne → 0 as n → ∞,

fn → f uniformly (choose no to be any natural number which is
greater than 1

eε).

It should be noted that pointwise convergence may not imply
uniform convergence. For a counter-example, consider the following:

Example 6.1.2. Let X = [0, 1] and let (fn) be the sequence of
functions defined on X by fn(x) = xn for all x ∈ [0, 1]. Then each fn
is a continuous function on ([0, 1], | · |) and fn → f pointwise where
f(x) = 0 ∀ x ∈ [0, 1) and f(1) = 1. Clearly, f is not continuous on
[0, 1]. This convergence is not uniform: suppose fn → f uniformly.
Then there exists no ∈ N such that |fn(x) − f(x)| < 1

2 ∀ n ≥ no
and ∀ x ∈ [0, 1]. In particular we have, xno < 1

2 ∀ x ∈ [0, 1). This

implies that lim
x→1−

xno ≤ 1
2 ⇒ 1 ≤ 1

2 . A contradiction! Hence the

convergence is not uniform. The point 1 in X is a trouble maker.
In fact, the reader should check that fn → f uniformly on [0, a] for
any a ∈ (0, 1). Shortly, we will see a theoretical justification for such
cases.

For a graphic understanding of uniform convergence of a sequence
of functions, one can think of the following simple example: let X =
[0, 1] and fn : [0, 1] → R. Suppose fn → f uniformly where f :
[0, 1] → R. Then given ε > 0, there exists nε (depending on ε only)
such that |fn(x) − f(x)| < ε ∀ n ≥ nε and ∀ x ∈ [0, 1], that is,
f(x) − ε < fn(x) < f(x) + ε ∀ n ≥ nε and ∀ x ∈ [0, 1]. So if we
consider two functions hε = f − ε and gε = f + ε, where hε(x) =
f(x) − ε and gε(x) = f(x) + ε for all x ∈ [0, 1], then the graphs of
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Figure 6.1 Graphs of fn(x) = xn on [0, 1] for a few n.

all fn (n ≥ nε) lie in between the graphs of hε and gε. Informally, we
say that the graphs of fn (n ≥ nε) lie within the ε-band around the
graph of f .

In Example 6.1.2, by drawing a few graphs of fn, one can easily
see that the point 1 is creating trouble (Figure 6.1).

Example 6.1.2 clearly shows that the pointwise limit of continuous
functions need not be continuous. But the question is: how large is
the set of points of discontinuity of such a pointwise limit function?
The next result says that it is essentially a ‘small’ set.

Theorem 6.1.1. Let f : R → R be the pointwise limit of a sequence
(fn) of continuous functions. Then the set A of the points of discon-
tinuity of f can be expressed as a countable union of nowhere dense
sets in R.

Proof. By Corollary 3.7.2,

A = {x ∈ R : ω(f, x) > 0} =
⋃
n∈N

{
x ∈ R : ω(f, x) ≥ 1

n

}
.

We need to show that the sets An = {x ∈ R : ω(f, x) ≥ 1
n} are

nowhere dense in R for each n ∈ N. Let us use Proposition 3.6.1.
Suppose I is an open interval in R. We will prove the existence of
a subinterval J ⊆ I such that J ∩ Aε = ∅, where Aε = {x ∈ R :
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ω(f, x) ≥ ε} for ε > 0. For each m ∈ N, consider the set

Bm = {x ∈ I : |fi(x)− fj(x)| ≤ ε/3 ∀ i, j ≥ m}.

Claim. Bm is closed for each m ∈ N.
For i, j ∈ N, consider the function hi,j : R → R which is defined as

hi,j(x) = |fi(x)− fj(x)| = |(fi − fj)(x)|.
Since fi and fj are continuous, fi − fj is also continuous. Moreover,
x �→ |x| is also a continuous function. Hence by Corollary 2.1.3,
hi,j is continuous. Then Theorem 2.1.1(f) implies that h−1

i,j ([0, ε/3])
is closed in R for every i, j ∈ N and consequently, Bm =⋂∞

i=m

⋂∞
j=m h

−1
i,j ([0, ε/3]) is closed in R by Theorem 1.4.2.

Let B =
⋃

m∈NBm. Then clearly B ⊆ I. Since fn → f pointwise,
the sequence (fn(x)) is Cauchy for each x ∈ R. Hence for every x ∈ I,
there exists Nx ∈ N such that

|fi(x)− fj(x)| ≤ ε/3 ∀ i, j ≥ Nx.

Thus x ∈ BNx ⊆ B ∀ x ∈ I. This implies that I ⊆ B and hence
B = I. We know that R is a Baire space (Baire category theorem)
and I = B =

⋃
m∈NBm. This means that int Bmo = ∅ for some

mo ∈ N. Thus, there exists an open interval I1 which is contained in
Bmo and hence contained in I.

Now we claim that I1 ∩ An = ∅. For x ∈ I1, we have |fi(x) −
fj(x)| ≤ ε/3 ∀ i, j ≥ mo. Fixing i = mo and j → ∞, we get
|fmo(x)− f(x)| ≤ ε/3. Now consider

|f(u)− f(w)| ≤ |f(u)− fmo(u)|+ |fmo(u)− fmo(w)|
+ |fmo(w)− f(w)| (�)

Further, by uniform continuity of fmo on any compact subset of I1
(Theorem 4.3.7), there exists an interval J ⊆ I1 such that |fmo(u)−
fmo(w)| < ε/3 for all u, w ∈ J . Then (�) implies |f(u) − f(w)| < ε
for all u, w ∈ J . Thus, ω(f, x) < ε ∀ x ∈ J . Hence J ∩Aε = ∅.

Some of the main applications of uniform convergence are quite
evident from the fact that it preserves continuity and Riemann
integrability. Recall that the uniform limit f of a sequence (fn)
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of Riemann integrable functions on a closed and bounded interval
[a, b] is also Riemann integrable on [a, b]. Moreover, the limit and the
integral can be interchanged, that is,∫ b

a
f = lim

n→∞

∫ b

a
fn.

Now let us prove that the uniform limit of a sequence of continuous
functions is always a continuous function.

Theorem 6.1.2. Let (fn) be a sequence of real-valued continuous
functions on a metric space (X, d). If (fn) converges uniformly to a
real-valued function f on X, then f is continuous on X.

Proof. Let a ∈ X and ε > 0. We need to show that there exists a
δ > 0 such that |f(x)−f(a)| < ε ∀ x ∈ B(a, δ). Since (fn) converges
uniformly to f on X, there exists k ∈ N such that |fk(x) − f(x)| <
ε/3 ∀ x ∈ X (�)

Since fk is continuous on X, fk is continuous at a. Hence there
exists a δ > 0 such that

|fk(x)− fk(a)| < ε/3 ∀ x ∈ B(a, δ) (��)

Now

|f(x)− f(a)| = |f(x)− fk(x) + fk(x)− fk(a) + fk(a)− f(a)|
≤ |f(x)− fk(x)|+ |fk(x)− fk(a)|+ |fk(a)− f(a)|
< ε/3 + ε/3 + ε/3 ∀ x ∈ B(a, δ) (by (�) and (��)).

This implies that |f(x)− f(a)| < ε ∀ x ∈ B(a, δ). Consequently,
f is continuous at a. But a was chosen arbitrarily from X. Hence f
is continuous at each point of X, that is, f is continuous on X.

Corollary 6.1.1. The space C[a, b] equipped with the uniform metric
D is a closed subset of (B[a, b],D).

Though Theorem 6.1.2 cannot be used for proving uniform
convergence of a sequence but it could be used for disproving the uni-
form convergence of sequences of continuous functions. For example,
consider the sequence of functions (fn) where fn is defined on [0,∞)
as: fn(x) = 0 for x ≥ 1/n and fn(x) = −nx+1 for 0 ≤ x ≤ 1/n. See
Figure 6.2.
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Figure 6.2 Graphs of f1, f2 and fn.

Then (fn) is a sequence of continuous functions which converges
pointwise to the function f , where f(0) = 1 and f(x) = 0 for x ∈
(0,∞). By Theorem 6.1.2, the convergence is not uniform as f is
not continuous. In fact, Theorem 6.1.2 can be conveniently used to
show that the sequence of functions defined in Example 6.1.2 does
not converge uniformly.

Remarks. (a) If (fn) is a sequence of uniformly continuous
functions from (X, d) to R which converges uniformly to f :
(X, d) → R, then f is also uniformly continuous (proof is similar
to that of Theorem 6.1.2).

(b) The uniform limit of a sequence of Cauchy-continuous functions
is also Cauchy-continuous.

But one should note that the uniform limit of a sequence of Lip-
schitz functions need not be Lipschitz.

Example 6.1.3. Let fn(x) =
√
x+ 1

n for x ∈ [0, 1]. Then using

Proposition 2.4.1, it can be verified that fn is Lipschitz for all n ∈ N.
Further, fn → √

x uniformly (check !). But the function f(x) =
√
x

is not Lipschitz on [0, 1] because

|√x− 0|
|x− 0| → ∞ as x→ 0+.

Theorem 6.1.3. Let (fn) be a sequence of real-valued Lipschitz func-
tions on a metric space (X, d) with Lipschitz constant Mn > 0. If
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fn → f pointwise and supn∈NMn =M ∈ R, then f is Lipschitz with
Lipschitz constant M . Moreover, the convergence of (fn) is uniform
on every totally bounded subset of X.

Proof. Since each fn is Lipschitz,

|fn(x)− fn(y)| ≤Mnd(x, y) ≤Md(x, y) ∀ x, y ∈ X.
By Proposition 2.5.1,

|f(x)− f(y)| = lim
n→∞ |fn(x)− fn(y)| ≤Md(x, y),

for all x, y ∈ X. Let A be a totally bounded subset of X and let
ε > 0. Then there exist x1, . . . , xk ∈ X such that A ⊆ ⋃k

i=1B(xi, ε).
Since f is the pointwise limit of (fn), there exists no ∈ N such that
|fn(xi) − f(xi)| ≤ ε for all n ≥ no and for all i ∈ {1, 2, . . . , k}. Let
a ∈ A. Then d(a, xm) < ε for some m ∈ {1, 2, . . . , k}. Now

|fn(a)− f(a)| ≤ |fn(a)− fn(xm)|+ |fn(xm)− f(xm)|
+ |f(xm)− f(a)|

≤Md(a, xm) + ε+Md(xm, a) < (2M + 1)ε

for all n ≥ no. Since a was an arbitrary element of A, fn → f
uniformly on A.

If (fn) and (gn) are sequences of real-valued functions which
converge uniformly on X, then it is easy to see that the sequence
(αfn +βgn) also converges uniformly on X, where α, β ∈ R.
What can you say about the pointwise product of the two sequences?
Clearly, the pointwise product (fngn) of the two sequences converges
pointwise but in general it is not uniformly convergent as seen in the
following example.

Example 6.1.4. Let fn : [0,∞) → R be defined as fn(x) = x + 1
n .

Then the sequence (fn) converges uniformly to the identity func-
tion f . Furthermore, the sequence (f2n) converges pointwise to f2.
Suppose, if possible, the convergence is uniform. Then there exists
no ∈ N such that |f2n(x) − f2(x)| < 1 ∀ n ≥ no and ∀ x ≥ 0. In
particular, |f2n(n2)− f2(n2)| = 2n+ 1

n2 < 1 for all n ≥ no. This gives
a contradiction.
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In the previous example, note that the pointwise limit function
for the sequence is unbounded. Now in the next proposition it is
proved that the pointwise product of uniformly convergent sequences
is uniformly convergent provided the limit function is bounded.

Proposition 6.1.1. Let fn and gn be real-valued functions defined
on a set X. Suppose the sequences (fn) and (gn) converge uniformly
to the bounded functions f and g, respectively. Then the pointwise
product of the two sequences (fngn) converges uniformly to fg, where
(fngn)(x) = fn(x)gn(x).

Proof. Since f and g are bounded, there exists M > 0 such that
|f(x)| < M and |g(x)| < M for all x ∈ X. Since (fn) is uniformly
convergent to f , there exists no ∈ N such that |fn(x) − f(x)| < 1
∀ n ≥ no and ∀ x ∈ X. Consequently,

|fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| < 1 +M

∀ n ≥ no and ∀ x ∈ X. Let ε > 0. The uniform convergence of (fn)
and (gn) implies that there exists n1 ∈ N such that

|fn(x)− f(x)| < ε

2M
and |gn(x)− g(x)| < ε

2(M + 1)

∀ n ≥ n1 and ∀ x ∈ X. Hence for n ≥ max{no, n1} and x ∈ X, we
have

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− fn(x)g(x) + fn(x)g(x)

− f(x)g(x)| ≤ |fn(x)||gn(x)− g(x)|
+ |g(x)||fn(x)− f(x)|

< (M + 1)
ε

2(M + 1)
+M

ε

2M
= ε.

This means that (fngn) converges uniformly to fg.

Exercises

6.1.1. Let (fn) be a sequence of real-valued functions defined on a
non-empty subset X of R. Suppose fn is increasing for each n ∈ N,
that is, x < y ⇒ fn(x) ≤ fn(y). Then show that the pointwise limit
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(if exists) of (fn) is also an increasing function. Does the result still
hold if we replace increasing with strictly increasing?

6.1.2. Let (fn) be a sequence of real-valued continuous functions
on (X, d). If (fn) converges uniformly to a real-valued function f on
every compact subset of X, then show that f is continuous on X.

6.1.3. With the help of an example, show that the uniform limit of
a sequence of discontinuous functions need not be discontinuous.

6.1.4. Show that the function f(x) = x2, defined on R, is not the
uniform limit of any sequence of Lipschitz functions.

6.1.5. Show that the normed linear space (Lip(X), ‖ ·‖) is complete,
where

‖f‖ = max{ |f(xo)|, L(f)} for f ∈ Lip(X),

for a fixed xo ∈ X. (Refer to Exercise 2.4.11.)

6.1.6. Show that the function f : (X, d) → (Y, ρ) is uniformly
continuous if and only if the sequence of functions 〈ωn(f, ·)〉 converges
uniformly to the zero function on X. For definition of the function
ωn(f, ·) : (X, d) → [0,∞], see Section 3.7.

6.1.7. Using Theorem 6.1.2, construct more examples of sequences
of functions which are pointwise convergent but not uniformly
convergent.

6.2 Dini’s Theorem

Recall that given a non-empty set X, R
X denotes the set of all

functions from X to R. In fact, it is a vector space over R under the
usual addition of functions on X and the usual scalar multiplication
of f in R

X by a scalar α ∈ R. Moreover, with respect to these
operations, the collection B(X) of all bounded functions in R

X is
also a vector space over R. In Example 3.1.6, it was shown that the
metric space (B(X),D) is complete where D is the uniform metric.
Now in order to talk about another special subset of RX , we consider
a metric d on the set X. Let C(X) denotes the set of all real-valued
continuous functions on the metric space (X, d). It can be easily
checked that C(X) is a vector space over R. Thus C(X) and B(X)
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are both linear subspaces of RX . Consequently, C(X)∩B(X) is also
a linear subspace of RX . Note that C(X) ∩ B(X) = {f : X → R :
f is continuous as well as bounded}. Let us denote C(X)∩B(X) by
Cb(X) which is the set of all bounded real-valued continuous func-
tions on (X, d). Since Cb(X) ⊆ B(X), we can consider the met-
ric induced by the uniform metric D on Cb(X). Here note that a
sequence (fn) in B(X) converges to some f in B(X) if and only if
D(fn, f) → 0 as n → ∞ if and only if (fn) converges uniformly to
f . Due to this reason, the metric D is referred to as the ‘uniform’
metric. Similarly, a sequence which is Cauchy in (B(X),D) is known
as uniformly Cauchy. Let us define it precisely for a sequence in R

X .

Definition 6.2.1. A sequence (fn) of real-valued functions defined
on a non-empty set X is said to be uniformly Cauchy if for every
ε > 0, there exists no ∈ N such that

|fn(x)− fm(x)| < ε ∀ n, m ≥ no and ∀ x ∈ X.

It is easy to see that every uniformly convergent sequence of real-
valued functions on a set X is uniformly Cauchy. In fact, one can eas-
ily imitate the proof given in Example 3.1.6 to prove that the converse
is also true (note that in the proof we are using the completeness of
R). Hence the class of uniformly Cauchy sequences is same as that
of uniformly convergent sequences. Let us state it precisely.

Proposition 6.2.1. Let (fn) be a sequence of real-valued functions
defined on a non-empty set X. Then the sequence (fn) is uniformly
convergent if and only if it is uniformly Cauchy.

Remark. If (fn) is a sequence of functions from a set X to a
complete metric space (Y, ρ), then (fn) is uniformly convergent if
and only if it is uniformly Cauchy.

Now we show that the metric subspace (Cb(X),D) of (B(X),D)
is also complete.

Theorem 6.2.1. If (X, d) is a metric space, then (Cb(X),D) is a
complete metric space.

Proof. Let (fn) be a Cauchy sequence in (Cb(X),D). Hence (fn) is
Cauchy in the complete metric space (B(X),D). Then there exists
f ∈ B(X) such that D(fn, f) → 0 as n→ ∞. By the definition of the
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metric D, (fn) converges uniformly to f . But then by Theorem 6.1.2,
f is continuous on X, that is, f ∈ C(X). Hence f ∈ B(X)∩C(X) =
Cb(X). This implies that (fn) converges to f in (Cb(X),D). So the
metric space (Cb(X),D) is complete.

Corollary 6.2.1. If (X, d) is a compact metric space, then the metric
space (C(X),D) is complete.

Proof. Since (X, d) is compact, every real-valued continuous
function on (X, d) is bounded (Theorem 4.3.4). Hence C(X) =
Cb(X). Now the conclusion follows from Theorem 6.2.1.

Since pointwise convergent sequences need not be uniformly
convergent in general scenario and uniformly convergent sequences
play a vital role especially in real analysis, our next task is to analyze
the conditions under which pointwise convergence implies uniform
convergence. In this regard, we need the following definitions.

Definitions 6.2.2. A sequence (fn) of real-valued functions on a set
X is said to be increasing if fn ≤ fn+1 holds for all n ∈ N, that is,
fn(x) ≤ fn+1(x) holds for all n ∈ N and for all x ∈ X.

Similarly, (fn) is called decreasing if fn ≥ fn+1 holds for all
n ∈ N, that is, fn(x) ≥ fn+1(x) holds for all n ∈ N and for all x ∈ X.

An increasing or a decreasing sequence of functions is referred to
as a monotone sequence of functions.

For illustration, think about the sequence (fn) where fn(x) = x/n
for n ∈ N and x ∈ [0,∞). Clearly, (fn) is a decreasing sequence.
Monotone sequence of functions plays a big role in measure theory.
In fact, now we are going to exhibit their role in uniform convergence
of sequence of functions.

Theorem 6.2.2 (Dini’s theorem). Let (X, d) be a compact metric
space. If a monotone sequence in C(X) converges pointwise to a
continuous function, then the convergence is uniform.

Proof. Suppose that the sequence (fn) in C(X) is increasing and
converges pointwise to some f ∈ C(X), that is, fn(x) ↑ f(x) holds
for each x ∈ X. This implies that for each x ∈ X, (fn(x)) is an



Real-Valued Functions on Metric Spaces 183

increasing sequence in R which converges to a real number f(x). So
f(x) = sup

n
fn(x). Now let ε > 0. For each n ∈ N, define

Un = {x ∈ X : f(x)− fn(x) < ε} = (f − fn)
−1(−ε, ε).

Note that f(x) − fn(x) ≥ 0 ∀ n ∈ N and ∀ x ∈ X. Hence (f −
fn)

−1([0, ε)) = (f − fn)
−1(−ε, ε). Since f and fn are continuous,

f − fn is also continuous. Hence (f − fn)
−1(−ε, ε) is open in (X, d),

that is, each Un is open in (X, d). Since fn(x) ≤ fn+1(x) ∀ x ∈
X, Un ⊆ Un+1 (�).

Moreover, since fn(x) ↑ f(x) holds for each x ∈ X, given x ∈ X,
there exists nx ∈ N such that f(x) − fnx(x) < ε, that is, x ∈ Unx .
Hence X =

⋃∞
n=1 Un. Now (X, d) is compact and {Un : n ∈ N} is

an open cover of X. Thus, there exist k1, . . . , kl in N such that X =⋃l
i=1 Uki . Letm = max{k1, . . . , kl}. ThenX = Um = Un ∀ n ≥ m by

(�). This implies that 0 ≤ f(x)− fn(x) < ε ∀ n ≥ m and ∀ x ∈ X.
But this precisely says that (fn) converges uniformly to f on X.

Note that in case (fn) is a decreasing sequence, then we can work
with the sequence (−fn).
Remark. The reader should carefully observe the requirement of
each and every condition given in the hypothesis of Dini’s theorem.
If we drop any one of these conditions, then the conclusion may not
hold true as seen in the following examples:

(a) Compactness of (X, d): let X = [0,∞) and fn : [0,∞) → R be
defined as fn(x) = x/n for all n ∈ N. Then the sequence (fn)
is a monotone sequence of continuous functions which converges
pointwise to the zero function f . Suppose fn → f uniformly.
Then there exists no ∈ N such that x

n <
1
2 ∀ n ≥ no and ∀ x ∈ X.

In particular, it should hold for x = no and n = no. Then we get
a contradiction. Thus the convergence is not uniform.

(b) Monotonicity of (fn): let X = {0, 1/n : n ∈ N} and for n ∈ N

define fn : X → R as fn(1/n) = 1 and zero otherwise. Then it can
be easily verified that the sequence (fn) of continuous functions
converges pointwise to the zero function f but the convergence
is not uniform (particularly, take x = 1/no and n = no).

(c) Continuity of fn’s: let X = [0, 1] and for n ∈ N define fn :
X → R as fn(x) = 1 for x ∈ (0, 1n ] and zero otherwise. Then the
monotone sequence (fn) converges pointwise to the zero function
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f but the convergence is not uniform (particularly, take x = 1/no
and n = no).

Interestingly, the converse of the Dini’s theorem also holds true
as seen in the next result.

Theorem 6.2.3. For a metric space (X, d), the following statements
are equivalent:

(a) X is compact.
(b) Every increasing sequence (fn) of functions in C(X) converging

pointwise to a function f in C(X), converges uniformly.

Proof. We only need to prove (b) ⇒ (a). For that we use Theorem
4.3.4.

Let f : X → R be a continuous function. Without loss of
generality, assume that f ≥ 0 (otherwise work with |f |). Now for
each n ∈ N, define fn(x) = min{f(x), n} for x ∈ X. Note that
fn ∈ C(X) (see Exercise 2.2.2) and (fn(x)) increases to f(x) for
each x ∈ X. Then by (b), fn → f uniformly. Hence ∃ no ∈ N such
that

0 ≤ f(x)− fn(x) < 1 ∀ n ≥ no and ∀ x ∈ X.

Consequently, 0 ≤ f(x) < 1 + fno(x) ≤ 1 + no ∀ x ∈ X. Thus, f is
bounded.

Exercises

6.2.1. Let fn : R → R be continuous for every n ∈ N. If (fn) is
uniformly Cauchy on Q, then show that it is uniformly Cauchy on R.

6.2.2. Let (fn) be a sequence of non-negative continuous functions
defined on [a, b]. Suppose that the series

∑
n∈N fn converges pointwise

to a continuous function on [a, b]. Show that the convergence is uni-
form on [a, b]. Note that a series

∑
n∈N fn of functions in R

X is said

to be pointwise (uniformly) convergent to f ∈ R
X if the correspond-

ing sequence of partial sums (sn), where sn(x) = f1(x)+ . . .+ fn(x),
is pointwise (uniformly) convergent to f .



Real-Valued Functions on Metric Spaces 185

6.2.3. Let 0 < a < 1 be a fixed number. Prove that the sequence of
functions (fn), where fn : [0, a] → R is defined as fn(x) = xn for all
n ∈ N, converges uniformly.

6.2.4. Suppose that (fn) is a sequence of continuous functions from
a metric space (X, d) to R. Show that if fn → f uniformly on a dense
subset D of X, then fn → f uniformly on X. Does the result still
hold if we drop the continuity of the functions?

6.2.5 (Dini’s theorem for upper semi-continuous functions).
If (fn) is a decreasing sequence of upper semi-continuous real-valued
functions on a compact metric space (X, d) that converges pointwise
to a lower semi-continuous function, then prove that the convergence
is uniform.

6.3 Equicontinuity

When we talk about continuity of a function at a point x, then the
positive number δ which we choose depends on both ε and x (see
Definition 2.1.1). Now if we consider a collection of continuous func-
tions then we will get a stronger notion if some δ can be chosen
which depends on ε and x but not on the function in the collection.
This section is devoted to the study of this notion. Interestingly, this
will help in characterizing the compact subsets of (C(X),D), where
(X, d) is a compact metric space and D is the supremum (uniform)
metric on C(X).

So let us start the discussion.

Definition 6.3.1. Let (X, d) be a metric space and ∅ = F ⊆ C(X).
For a given x ∈ X, F is said to be equicontinuous at x if given
ε > 0, there exists a δ > 0 such that |f(x) − f(y)| < ε whenever
y ∈ B(x, δ) and f ∈ F (same δ works for all f in F ).

We say that F is equicontinuous on X or simply F is equicontin-
uous if F is equicontinuous at each x ∈ X.

Example 6.3.1. Let X = [0, 1] and F = {fn : n ∈ N} ⊆ C(X),
where fn(x) = xn. Then the collection F is not equicontinuous at
x = 1: given any t with 0 < t < 1, then we know that tn → 0 as n→
∞. Thus we have |fn(1)− fn(t)| = 1− tn > 1

2 for all sufficiently large

n, and so the condition for equicontinuity of F fails at 1 (for ε = 1
2 ).



186 Metric Spaces and Related Analysis

However, F is equicontinuous on [0, 1). Given 0 ≤ x < 1 and ε > 0,
choose a with x < a < 1. Since the series

∑∞
n=1 na

n−1 converges
(apply Ratio Test), there exists b > 0 such that nan−1 ≤ b ∀ n ∈ N.
Choose δ = min{a − x, εb}. Now for a non-negative number t such
that t ∈ (x− δ, x+ δ) and for all n ∈ N, we have

|fn(t)− fn(x)| = |tn − xn| =
∣∣∣∣∣(t− x)

n∑
k=1

tn−kxk−1

∣∣∣∣∣
≤ |t− x|nan−1 because t < x+ δ ≤ a; x < a

<
( ε
b

)
.b = ε.

Hence f is equicontinuous at x. Since x was chosen arbitrarily
from [0, 1), f is equicontinuous on [0, 1). Moreover, the sequence (fn)
converges uniformly on [0, a] whenever 0 < a < 1, but it does not
converge uniformly on [0, 1] (see Example 6.1.2). In fact, (fn) con-
verges uniformly on K ⊆ [0, 1] if and only if 1 is not an accumulation
point of K (verify!).

Our next result gives sufficient conditions to deduce uniform con-
vergence on all compact subsets from mere pointwise convergence on
a dense subset.

Theorem 6.3.1. Let (X, d) be a metric space and D be a dense
subset of X. Suppose (fn) is an equicontinuous sequence in C(X)
such that for each x ∈ D, (fn(x)) converges in R. Then there is a
function f in C(X) such that (fn) converges uniformly to f on every
compact subset K of X.

Proof. Let x ∈ X and ε > 0 be given. By equicontinuity of (fn),
there is a δx > 0 such that

|fn(t)− fn(x)| < ε

3
∀ t ∈ B(x, δx) and ∀ n ∈ N (1)

Since D = X, ∃ to ∈ B(x, δx) ∩ D. Since the sequence (fn(to))
converges in R, it is a Cauchy sequence. Hence ∃ no ∈ N such that

|fm(to)− fn(to)| < ε

3
∀ m, n ≥ no (2)
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By (1) and (2), we get

|fm(x)− fn(x)| ≤ |fm(x)− fm(to)|+ |fm(to)− fn(to)|
+ |fn(to)− fn(x)| < ε ∀ m, n ≥ no.

This shows that (fn(x)) is a Cauchy sequence in (R, | · |). Since
(R, | · |) is complete, (fn(x)) converges in R. Hence, we obtain a
function f : X → R such that (fn) converges pointwise to f on X,
that is, for each x ∈ X, lim

n→∞ fn(x) = f(x).

Now we show that f is continuous on X. Let x ∈ X and ε > 0
be given. Choose δx as before, so that (1) is obtained. For any given
t ∈ B(x, δx), choose n sufficiently large so that we have

|f(t)− fn(t)| < ε

3
and |fn(x)− f(x)| < ε

3
.

Then by using (1), we get

|f(t)− f(x)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(x)|+ |fn(x)− f(x)|
< ε ∀ t ∈ B(x, δx). (3)

Hence f is continuous at x.
Now finally, we show that fn → f uniformly on every compact

subset K of X. Let ε > 0. For each x ∈ K, choose a δx > 0 such that
(1) is obtained. Then by reasoning as in the preceding paragraph,
we obtain (3). Since K is compact in X, there exists a finite subset
{x1, . . . , xn} of K such that K ⊆ ⋃n

j=1B(xj, δxj ). Now choose m
sufficiently large such that

|f(xj)− fn(xj)| < ε

2
∀ n ≥ m and for j ∈ {1, . . . , n}. (4)

Now given t ∈ K, choose j (1 ≤ j ≤ n) such that t ∈ B(xj , δxj ).
By using (3), (4) and (1) we have

|f(t)− fn(t)| ≤ |f(t)− f(xj)|+ |f(xj)− fn(xj)|+ |fn(xj)− fn(t)|
< ε+

ε

2
+
ε

3
∀ n ≥ m < 2ε ∀ n ≥ m.
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Hence |f(t)−fn(t)| < 2ε ∀ t ∈ K and ∀ n ≥ m. But this precisely
means that (fn) converges uniformly to f on K.

Remark. Note that equicontinuity of the sequence (fn) cannot be
dropped in the previous theorem: let X = {0, 1/n : n ∈ N} and
for n ∈ N define fn : X → R as fn(1/n) = 1 and zero otherwise.
The collection {fn : n ∈ N} is not equicontinuous at 0. Moreover,
the sequence (fn) of continuous functions converges pointwise to the
zero function f but the convergence is not uniform on the compact
set X (particularly, take x = 1/no and n = no).

Interestingly, the previous result can be thought of as ‘equicon-
tinuous’ version of Dini’s theorem. Let us state it precisely.

Corollary 6.3.1. Let (X, d) be a compact metric space. If (fn) is an
equicontinuous sequence in C(X) which converges pointwise to some
real-valued function f on X, then the convergence is uniform.

The proof of our next result is based on the classical diagonal
sequence argument. This result is often useful in proving powerful
theorems.

Theorem 6.3.2. Let D = {x1, x2, . . .} be a non-empty countable
set. For each n, let fn : D → R be a function such that for each
x ∈ D, the set {fn(x) : n ∈ N} is bounded in R. Then there exists a
subsequence (fnk

) of (fn) such that (fnk
(x)) converges in R for each

x ∈ D.

Proof. Note that for each x ∈ D, {fn(x) : n ∈ N} is compact in
(R, | · |) by Heine–Borel Theorem. Hence for each x ∈ D, (fn(x))
has a convergent subsequence in (R, | · |). Consequently, for x = x1,
there exists a subsequence (g1n) of (fn) such that lim

n→∞ g1n(x1) exists

in R. Similarly for x = x2, there exists a subsequence (g2n) of (g1n)
such that lim

n→∞ g2n(x2) exists in R. By continuing in this way, we can

choose (inductively) sequences (gin), i = 1, 2, . . . , such that

(a) (g1n) is a subsequence of (fn),
(b) (gi+1

n ) is a subsequence of (gin) for each i = 1, 2, . . . and
(c) lim

n→∞ gin(xi) exists in R for each i = 1, 2, . . .
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Now consider the diagonal sequence (hn) where hn = gnn for each n.
Note that (hn) is a subsequence of (fn) such that lim

n→∞hn(xi) exists in

R for each i. Then this sequence (hn) is our desired subsequence.

Now we are ready to prove a version of Ascoli–Arzelà Theorem.

Theorem 6.3.3. Let (X, d) be a separable metric space. Let F be a
non-empty equicontinuous subset of C(X) such that for each x ∈ X,
the set {f(x) : f ∈ F} is bounded in R. Then each sequence (fn) in F
has a subsequence that converges pointwise to a function f in C(X).
Moreover, this convergence is uniform on every compact subset of X.

Proof. Let D be a countable dense subset of X and let (fn) be a
sequence in F . By Theorem 6.3.2, there exists a subsequence (fnk

)
of (fn) such that (fnk

(x)) converges in R for each x ∈ D. Now apply
Theorem 6.3.1 to this subsequence to obtain the desired function f .

Before moving on to the main Ascoli–Arzelà Theorem, we would
like to formalize one of the hypothesis of Theorems 6.3.2 and 6.3.3
in the following definition.

Definitions 6.3.2. Let S be a non-empty collection in R
X , where

X is a non-empty set. Then S is called

(a) Pointwise bounded if, for each x ∈ X, {f(x) : f ∈ S} is
bounded in R.

(b) Uniformly bounded if there exists M > 0 such that |f(x)| ≤
M ∀ x ∈ X and ∀ f ∈ S.

Remarks. (a) By Heine–Borel Theorem, {f(x) : f ∈ S} is bounded
in R if and only if its closure in R, {f(x) : f ∈ S}, is compact.

(b) If S is a non-empty subset of Cb(X) = {f ∈ C(X) :
f(X) is bounded in R} then S is uniformly bounded if and only
if S is bounded in the normed linear space (Cb(X), ‖ · ‖∞), that
is, ∃M > 0 such that ‖f‖∞ = supx∈X |f(x)| ≤M ∀ f ∈ S. Note
that the supremum metric D on Cb(X) is the metric induced by
the norm ‖ · ‖∞ on Cb(X).

Evidently, every uniformly bounded collection of functions is
pointwise bounded but the converse is not true in general. For
example, for n ∈ N, define fn : R → R as fn(n) = n and else it
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is zero. Then the collection {fn : n ∈ N} is pointwise bounded but
not uniformly bounded.

Recall that Heine–Borel Theorem exhibited the class of compact
subsets in R in a precise manner. Now, let us talk about the precise
collection of compact subsets of (C(X),D), where (X, d) is compact.
Since compactness is equivalent to completeness and total bound-
edness (Theorem 4.2.6), we first characterize the totally bounded
subsets of (C(X),D).

Theorem 6.3.4 (Ascoli–Arzelà Theorem). Let (X, d) be a com-
pact metric space and let S be a non-empty subset of C(X). Then
the following statements are equivalent:

(a) S is totally bounded in (C(X),D),
(b) S is uniformly bounded and equicontinuous and
(c) S is pointwise bounded and equicontinuous.

Proof. (a) ⇒ (b): Since S is totally bounded, it is bounded in
(C(X),D). Hence there exists M > 0 such that D(f, fo) < M ∀ f ∈
S, where fo is the zero function in C(X). Therefore, supx∈X |f(x)| <
M ∀ f ∈ S. This implies that S is uniformly bounded.

To prove that S is equicontinuous, let ε > 0 and x ∈ X.
Since S is totally bounded, there exist f1, . . . , fn ∈ S such that
S ⊆ ⋃n

i=1B(fi, ε), where B(fi, ε) = {g ∈ C(X) : D(fi, g) < ε}.
Since S ⊆ C(X), fi is continuous for all i ∈ {1, 2, . . . , n}. Conse-
quently, we can choose a δx > 0 such that |fi(y) − fi(x)| < ε for all
y ∈ B(x, δx) and for all i = 1, . . . , n.

Now let y ∈ B(x, δx) and f ∈ S. Then f ∈ B(fi, ε) for some
i ∈ {1, 2, . . . , n}. So |f(y)− fi(y)| < ε and |f(x)− fi(x)| < ε. Thus

|f(y)− f(x)| ≤ |f(y)− fi(y)|+ |fi(y)− fi(x)|+ |fi(x)− f(x)|
< ε+ ε+ ε = 3ε.

This shows that S is equicontinuous at x. But x was chosen
arbitrarily. Hence S is equicontinuous on X.

(b) ⇒ (c): This is immediate.

(c) ⇒ (a): We show that every sequence (fn) in S has a conver-
gent subsequence in (C(X),D). First note that since (X, d) is a
compact metric space, it is separable (Corollary 4.2.2). Hence by
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Theorem 6.3.3, (fn) has a subsequence (fnk
) that converges point-

wise on X to a function f ∈ C(X). Moreover, (fnk
) converges uni-

formly to f on every compact subset of X. Since (X, d) is itself
compact, (fnk

) converges uniformly to f on X. This precisely means
that (fnk

) converges to f in (C(X),D). Hence S is totally bounded
by Theorem 3.2.3.

Remark. The reader should carefully observe the requirement of
each and every condition given in Ascoli–Arzelà Theorem. If we drop
any one of these conditions, then the conclusion may not hold true
as seen in the following examples:

(i) Compactness of (X, d): the sequence (fn) in (Cb(R),D) defined

by fn(x) = e−(x−n)2 is a pointwise bounded equicontinuous
family (verify!). But D(fn, fm) ≥ 1 − 1

e for n = m. So {fn :
n ∈ N} is not totally bounded.

(ii) Equicontinuity of S: let X = {0, 1n : n ∈ N} and for n ∈ N

define fn : X → R as fn(x) = 1 for x ≤ 1
n and zero otherwise.

Then the collection S = {fn : n ∈ N} is uniformly bounded. But
D(fn, fm) = 1 for n = m and hence S is not totally bounded.
One can verify that the collection S is not equicontinuous at 0.

(iii) Uniform boundedness of S: let X = {0, 1} and for n ∈ N define
fn : X → R as fn(0) = 0 and fn(1) = n. Then the collection
S = {fn : n ∈ N} is equicontinuous but not uniformly bounded.
Moreover, D(fn, fm) ≥ 1 for n = m and hence S is not totally
bounded in (C(X),D).

In practice, the next corollary is often referred to as the Ascoli–
Arzelà Theorem. The proof immediately follows from Theorem 6.3.4,
Corollary 6.2.1 and Theorem 4.2.6.

Corollary 6.3.2. Let S be a non-empty subset of C(X), where (X, d)
is compact. Then S is compact in (C(X),D) if and only if S is
equicontinuous, closed and pointwise bounded in (C(X),D).

Exercises

6.3.1. Let (fn) be a uniformly bounded sequence in (C[a, b],D).
For each n, define ϕn : [a, b] → R by ϕn(x) =

∫ x
a fn(t)dt for each

x in [a, b]. Show that (ϕn) has a uniformly convergent subsequence
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on [a, b], that is, (ϕn) has a subsequence (ϕnk
) such that ϕnk

→ ϕ
uniformly on [a, b] for some ϕ ∈ C[a, b].

6.3.2. Consider a continuous function f : [0,∞) → R. For each n ∈
N, define a continuous function fn : [0,∞) → R by fn(x) = f(xn).
Show that the sequence (fn) of continuous functions is equicontinu-
ous at x = 1 if and only if f is a constant function.

6.3.3. (a) Let (X, d) be a compact metric space and let A be
an equicontinuous subset of C(X). Show that A is uniformly
equicontinuous, that is, show that for each ε > 0, there exists
a δ > 0 such that whenever x, y ∈ X with d(x, y) < δ then
|f(x)− f(y)| < ε ∀ f ∈ A.

(b) Let A ⊆ C[a, b] such that every f ∈ A is differentiable on (a, b).
If there exists M > 0 such that |f ′(x)| ≤ M ∀ f ∈ A and
∀ x ∈ (a, b), then show that A is uniformly equicontinuous.

(c) Find a uniformly bounded subset F of C(R) that is equicontin-
uous on R, but not uniformly equicontinuous on R.

(d) Give an example of any metric space (X, d) and a subset S of
Cb(X) such that S is uniformly bounded and uniformly equicon-
tinuous but not totally bounded in (Cb(X),D). Compare this
with Theorem 6.3.4.

6.3.4. Let X = [0, 1]× [0, 1] and equip X with the Euclidean metric.
Given a continuous function f : X → R, for each y ∈ [0, 1] define fy :
[0, 1] → R by fy(x) = f(x, y). Show that the set F = {fy : y ∈ [0, 1]}
is equicontinuous on [0, 1].

6.3.5. Let (X, d) be a metric space which is not necessarily compact.
If (fn) is a sequence in C(X) which is equicontinuous on X and for
some function f : X → R, we have lim

n→∞ fn(x) = f(x) for each

x ∈ X, then show that f is continuous on X. In other words, the
pointwise limit of an equicontinuous sequence of functions in C(X)
is also continuous. Compare with Theorem 6.1.2.

6.3.6. Let (X, d) be a metric space and let A be an equicontinuous
subset of C(X). Show that the collection F , where F = {x ∈ X :
A is pointwise bounded at x}, is both closed and open in (X, d).

6.3.7. Let K : [a, b] × [a, b] → R be a continuous function. Define

T : C[a, b] → C[a, b] by T (f)(x) =
∫ b
a K(x, y)f(y)dy for each f ∈
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C[a, b]. If B = {f ∈ C[a, b] : ‖f‖∞ < 1}, then show that T (B) is an
equicontinuous subset of C[a, b].

6.3.8. Let (X, d) be a metric space and (fn)n∈N be a Cauchy
sequence in (Cb(X),D), where D is the supremum metric. Then
prove that the family {fn : n ∈ N} is equicontinuous on X.

6.3.9. Prove that every uniformly convergent sequence (fn) of real-
valued bounded functions on (X, d) is uniformly bounded.

6.3.10. Let (X, d) be a compact metric space and let S be a
non-empty subset of C(X).

(a) If S is pointwise bounded then prove that its closure is also
pointwise bounded in C(X).

(b) If S is uniformly bounded then prove that its closure is also
uniformly bounded in C(X).

(c) Do we have similar result for equicontinuity as well?

6.4 Stone–Weierstrass Theorem

In this section, we find some nice dense subsets in (C(X), ‖ · ‖∞),
where X is a compact metric space. In 1885, the German analyst
Karl Weierstrass proved that any continuous real-valued function on
a closed bounded interval of R is the uniform limit of some sequence
of polynomial functions with real coefficients. That is, given an inter-
val [a, b] and a continuous function f : [a, b] → R, there exists a
sequence (Pn) of polynomial functions on [a, b] such that (Pn) con-
verges uniformly to f on [a, b], that is, ‖Pn − f‖∞ → 0 as n → ∞.
Since then, many different proofs of Weierstrass approximation the-
orem have been given. In this section, we present several versions of
a vast generalization of this theorem that is due to the 20th cen-
tury American analyst M. H. Stone. Before proving these versions,
we would like to mention that the strategy of the proof is similar
to the one employed in Ref. [55, page 146]. Let us start with some
preliminary discussion which is required to attain our goal.

A linear space A of real-valued functions on a non-empty set X
is called an algebra of functions whenever the product of any two
functions in A is again in A. Thus, a set A ⊆ R

X is an algebra if for
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every pair f, g ∈ A and real numbers α and β, we have αf +βg and
fg in A, where of course, (fg)(x) = f(x)g(x) for each x ∈ X.

A collection L of real-valued functions defined on a non-empty
set X is said to separate the points of X if for every pair of
distinct points x and y of X, there exists a function f ∈ L such that
f(x) = f(y). We say that L vanishes nowhere on X if for each
x ∈ X, there exists an f ∈ L such that f(x) = 0.

If f and g are real-valued functions on X, we define f ∨ g and
f ∧ g on X by

(f ∨ g)(x) = max{f(x), g(x)} and

(f ∧ g)(x) = min{f(x), g(x)}.

It is easy to check that

f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|).

If (X, d) is a metric space and f and g are continuous on (X, d),
so are f ∨ g and f ∧ g.

Now L ⊆ R
X is called a lattice (of functions) if for any two

f, g ∈ L, f ∨ g and f ∧ g belongs to L. Additionally, if L is a linear
space over R, then L is called a function space.

Finally, note that given a metric space (X, d), C(X) is itself an
algebra. Now if ∅ = L ⊆ C(X) and L is itself an algebra with respect
to same operations as that of C(X), then L is called a subalgebra
of C(X).

Proposition 6.4.1. Let X be a non-empty set and L be an algebra
of real-valued functions on X which separates the points of X and
vanishes nowhere on X. If x, y ∈ X such that x = y and a and b
are real numbers, then there is a function h ∈ L such that h(x) = a
and h(y) = b.

Proof. Let x = y, a and b be given. Since x = y and L separates
the points of X, there exists f1 ∈ L such that f1(x) = f1(y). Also,
since L vanishes nowhere on X, there exist f2, f3 ∈ L such that
f2(x) = 0 = f3(y). Now consider the different possibilities.

Case I: Suppose f1(x) = 0. Then f1(y) = 0.
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Take h = αf1 + βf2, where α = bf2(x)−af2(y)
f1(y)f2(x)

and β = a
f2(x)

. Since

f1, f2 ∈ L and L is an algebra, h ∈ L. Moreover, h(x) = a and
h(y) = b.

Similarly, if f1(y) = 0, then f1(x) = 0 and we take h = αf1+βf3,

where α = af3(y)−bf3(x)
f1(x)f3(y)

and β = b
f3(y)

. As before, h ∈ L, h(x) = a

and h(y) = b.

Case II: f1(x) = 0 = f1(y).
Take h = αf1 + βf21 , where α and β are the solutions of the

system,

αf1(x) + β(f1(x))
2 = a,

αf1(y) + β(f1(y))
2 = b.

The solutions of the system exist since the determinant of the
coefficient matrix is f1(x)f1(y)(f1(y)− f1(x)) = 0.

Note that the collection of all even polynomial functions is a
subalgebra of C(R) which does not separate the points of R. Here
recall that a function f : R → R is said to be even if f(x) = f(−x)
for all x ∈ R.

Theorem 6.4.1. Let (X, d) be a compact metric space and L be a
subalgebra of C(X). In addition, suppose that

(i) L separates the points of X
(ii) L vanishes nowhere on X and
(iii) L is a lattice.

Then given a function g ∈ C(X), a point a in X and ε > 0, there
exists a function f ∈ L such that f(a) = g(a) and f(x) > g(x) −
ε ∀ x ∈ X.

Proof. For every point x (= a) in X, by Proposition 6.4.1, there
exists hx,a ∈ L such that hx,a(a) = g(a) and hx,a(x) = g(x) >
g(x) − ε.

Note that since L vanishes nowhere on X, there exists h ∈ L such

that h(a) = 0. So if x = a, let ha,a = g(a)
h(a)h. Since L is an algebra,

ha,a ∈ L. Moreover, ha,a(a) = g(a) > g(a) − ε.
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Now define Vx,a = {t ∈ X : hx,a(t) > g(t)−ε}. Note that hx,a(x) >
g(x) − ε and hx,a(a) > g(a) − ε. Hence both x and a are in Vx,a.
Also, since hx,a − g is continuous on X, Vx,a is open in X. Now
{Vx,a : x ∈ X} is an open cover of the compact space X. Hence there
exists a finite subset {x1, . . . , xn} of X such that X =

⋃n
i=1 Vxi,a.

Define f = hx1,a ∨ · · · ∨ hxn,a. Since L is a lattice, f ∈ L. Moreover,
f(a) = hxi,a(a) for some i, with 1 ≤ i ≤ n. But hxi,a(a) = g(a). So
f(a) = g(a). Also, if x ∈ X, then there exists some k (1 ≤ k ≤ n) such
that x ∈ Vxk,a. Then f(x) ≥ hxk,a(x) > g(x) − ε and consequently,
the function f satisfies the required properties.

Now we can prove the ‘lattice version’ of Stone–Weierstrass
Theorem.

Theorem 6.4.2. Let (X, d) be a compact metric space and L be a
subalgebra of C(X). In addition, suppose that

(i) L separates the points of X
(ii) L vanishes nowhere on X
(iii) L is a lattice.

Then L is dense in (C(X), ‖ · ‖∞).

Proof. Let g ∈ C(X) and ε > 0. For each x ∈ X, by Theorem 6.4.1,
there exists a continuous function fx ∈ L such that fx(x) = g(x) and
fx > g − ε.

Let Vx = {y ∈ X : fx(y) < g(y) + ε}. Note that since fx(x) =
g(x) < g(x) + ε, x ∈ Vx. Moreover, since fx − g is continuous on X,
Vx is open in X. Hence {Vx : x ∈ X} is an open cover of the compact
space X. Consequently, there exists a finite subset {x1, . . . , xn} of X
such that X =

⋃n
i=1 Vxi . Let f = fx1 ∧ . . . ∧ fxn . Since L is a lattice,

f ∈ L. Moreover, since fxk
> g − ε for all 1 ≤ k ≤ n, f > g − ε.

On the other hand, if x ∈ X, then there exists some k (1 ≤ k ≤ n)
such that x ∈ Vxk

and hence f(x) ≤ fxk
(x) < g(x) + ε. Therefore,

g(x) − ε < f(x) < g(x) + ε ∀ x ∈ X and consequently, ‖f − g‖∞ =
supx∈X |f(x)− g(x)| ≤ ε. Thus, L is dense in (C(X), ‖ · ‖∞).

In order to state and prove the classical (algebra version) Stone–
Weierstrass Theorem, we need the next two results.

Lemma 6.4.1. There exists a sequence of polynomial functions that
converges uniformly to

√
x on the interval [0, 1].
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Proof. First by induction, we construct a sequence of polynomial
functions (Pn) as follows. Let P1(x) = 0 for all x ∈ [0, 1] and then
inductively define Pn+1(x) = Pn(x) +

1
2(x− (Pn(x))

2) for n ≥ 1.
Now we prove by induction that 0 ≤ Pn(x) ≤

√
x for all n and for

all x ∈ [0, 1]. For n = 1, it is trivial. Assume now 0 ≤ Pn(x) ≤
√
x for

all x ∈ [0, 1] and for some n. Then, by definition 0 ≤ Pn+1(x) for all
x ∈ X. Moreover,

√
x−Pn+1(x) = (

√
x−Pn(x))(1− 1

2(
√
x+Pn(x))).

Since Pn(x) ≤
√
x ≤ 1, (1− 1

2 (
√
x+Pn(x))) ≥ 0. Hence Pn+1(x) ≤

√
x

for all x ∈ [0, 1].
Note that for each n, Pn(x) ≤ Pn+1(x) for all x ∈ [0, 1]. Hence

for each x ∈ [0, 1], (Pn(x)) is an increasing sequence in R which
is bounded above by 1. Consequently, (Pn) converges pointwise to
some non-negative function φ on [0, 1]. Further, lim

n→∞Pn+1(x) =

lim
n→∞Pn(x) +

1
2( limn→∞(x − (Pn(x))

2)), that is, φ(x) = φ(x) + 1
2 (x −

(φ(x))2). So (φ(x))2 = x, that is, φ(x) =
√
x for all x ∈ [0, 1] (because

φ is non-negative).
Since φ is a continuous function and (Pn) is increasing, by Dini’s

theorem, (Pn) converges uniformly to
√
x on [0, 1].

Theorem 6.4.3. Let (X, d) be a metric space and A be a subalgebra
of Cb(X). Then the closure A of A in (Cb(X), ‖ · ‖∞) is also an
algebra. Moreover, if f and g are in A, then |f |, f ∨ g and f ∧ g are
also in A.

Proof. Let f, g ∈ A. Then we can choose sequences (fn) and (gn)
in A such that ‖f −fn‖∞ → 0 and ‖g−gn‖∞ → 0 in (Cb(X), ‖ ·‖∞).
It follows that for α ∈ R,

‖(αf) − (αfn)‖∞ = |α|‖f − fn‖∞ → 0,

‖(f + g) − (fn + gn)‖∞ ≤ ‖f − fn‖∞ + ‖g − gn‖∞ → 0, and

‖fg − fngn‖∞ = ‖f(g − gn) + gn(f − fn)‖∞
≤ ‖f‖∞‖g − gn‖∞ + ‖gn‖∞‖f − fn‖∞
→ ‖f‖∞.0 + ‖g‖∞.0 = 0.

(because | ‖gn‖∞ − ‖g‖∞| ≤ ‖gn − g‖∞, and since ‖gn − g‖∞ → 0,
‖gn‖∞ → ‖g‖∞). Hence αf, f + g and fg are all in A, that is, A is
also an algebra.
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To prove that |f | ∈ A, we may assume that β = ‖f‖∞ > 0. Let
(Pn) be a sequence of polynomial functions (determined by Lemma
6.4.1) that converges uniformly to

√
x on [0, 1]. Since A is an algebra,

the function ϕn = Pn(
f2

β2 ) belongs to A for each n. Also the sequence

(ϕn) converges uniformly to
√

f2

β2 = |f |
β . Then |f |

β ∈ A and hence

|f | ∈ A. The rest follows from

f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|).

Now we state and prove a generalized version of the classical
Weierstrass approximation theorem.

Theorem 6.4.4 (Stone–Weierstrass theorem). Let (X, d) be a
compact metric space and A be a subalgebra of C(X) such that A
separates the points of X. Then either

(a) A = C(X), where A is the closure of A in (C(X), ‖ · ‖∞) or else
(b) there is some p ∈ X such that A = {f ∈ C(X) : f(p) = 0}.

Proof. Case I: A vanishes nowhere on X.
Then A also vanishes nowhere on X. Also note that A separates

the points of X. By Theorem 6.4.3, A is an algebra as well as a
lattice. Therefore, A is dense in (C(X), ‖ · ‖∞) by Theorem 6.4.2.
Since A is closed, A = C(X).

Case II: There exists some p ∈ X such that h(p) = 0 ∀ h ∈ A.
Let L = {c + h : c ∈ R, h ∈ A}. It is easy to verify that L is

a subalgebra of C(X) that separates the points of X and vanishes
nowhere on X. It follows from Case I that if f ∈ C(X) with f(p) =
0 and ε > 0 are given, then there is some c + h ∈ L such that
‖f − (c+ h)‖∞ < ε

2 . Evaluating at p, we get

|c| = |f(p)− (c+ h(p))| ≤ ‖f − (c+ h)‖∞ <
ε

2
.
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Therefore, the function h in A satisfies

‖f − h‖∞ ≤ ‖f − (c+ h)‖∞ + ‖c‖∞
= ‖f − (c+ h)‖∞ + |c|
< ε/2 + ε/2 = ε.

This proves that A = {f ∈ C(X) : f(p) = 0}.
Note that the compactness of the metric space (X, d) cannot be

dropped in Theorem 6.4.4 as seen in the following example.

Example 6.4.1. Let X = R and let A = {f ∈ Cb(X) : lim
n→∞ f(n) ∈

R}. Then A is a subalgebra of Cb(X). It separates points of X: let
a = a′ in X. Then a < no for some no ∈ N. Let B = {a′} ∪ {n ∈ N :
n > no}. Now define a function f1 on X as

f1(x) =
d(x,B)

d(x, a) + d(x,B)
.

Then f1(a) = f1(a
′) and f1 ∈ A. Also, note that A contains the

constant function 1. Now we claim that A = Cb(X): consider the
function g on X:

g(x) =
d(x,C)

d(x,C) + d(x,D)
,

where C = {2n− 1 : n ∈ N} and D = {2n : n ∈ N}. Then g ∈ Cb(X)
but supx∈X |g(x) − f(x)| ≥ 1/2 for all f ∈ A: let f ∈ A and let
lim
n→∞ f(n) = a ∈ R. Now consider different cases a ≤ 0, 0 < a ≤ 1/2

and a > 1/2 and analyze the value of |g(x) − f(x)| at even or odd
natural numbers.

Hence, A is not dense in (Cb(X), ‖ · ‖∞).

Corollary 6.4.1. Let (X, d) be a compact metric space and A be a
subset of C(X) such that

(a) A is a subalgebra of C(X).
(b) A separates the points of X.
(c) A contains the constant function 1, where 1(x) = 1 ∀ x ∈ X.

Then A is dense in (C(X), ‖ · ‖∞).
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Now we finally state the result which is one of the finest con-
tributions to real analysis. It follows immediately by applying
Corollary 6.4.1 to the algebra of all polynomial functions (with real
coefficients) defined on a compact subset of R.

Corollary 6.4.2 (Weierstrass approximation theorem). Any
real-valued continuous function on a compact subset A of R is the
uniform limit on A of a sequence of polynomial functions.

Remarks. (a) Since the collection of all polynomials with rational
coefficients is countable, by previous corollary the normed linear
space (C[a, b], ‖ · ‖∞) is separable. Also see Exercise 6.4.8.

(b) We do have an analogous version of this result for complex
valued functions as well which says that for every complex-valued
continuous function f on a compact subset A of R, there exists a
sequence of polynomials (with complex coefficients) which con-
verges uniformly to f on A. See Exercise 6.4.10.

Further, let us prove a version of Theorem 6.4.2 which uses the
hypothesis of strong separation of the points of X. This version is
known as Kakutani–Krein Theorem. In this version, we do not require
L to be a subalgebra of C(X) but a function space. The precise
statement is as follows.

Theorem 6.4.5 (Kakutani–Krein theorem). Let (X, d) be a
compact metric space with at least two points. Let L be a vector sub-
space of C(X). In addition, suppose that

(a) L is a lattice.
(b) L strongly separates the points of X, that is, for each pair of

distinct points x, y in X,
⋃{(f(x), f(y)) : f ∈ L} = R

2.

Then L is dense in (C(X), ‖ · ‖∞).

Proof. Let g ∈ C(X) and ε > 0. We need to find f ∈ L such that
g(x) − ε ≤ f(x) ≤ g(x) + ε ∀ x ∈ X. By the strong separation
property, for any x, y ∈ X (x and y need not be distinct), we can
find hx,y ∈ L such that hx,y(x) = g(x) and hx,y(y) = g(y). (Here we
are using the fact that X has at least two points.)

Fix xo ∈ X. For each y ∈ X, define Uy = {z ∈ X : hxo,y(z) <
g(z) + ε}. Since hxo,y(y) = g(y) < g(y) + ε, y ∈ Uy. Moreover, since
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hxo,y − g is continuous on X, Uy is open in X. Hence {Uy : y ∈ X}
is an open cover of the compact space X. Consequently, there exists
a finite subset {y1, . . . , yn} of X such that X =

⋃n
i=1 Uyi .

Let fxo = hxo,y1 ∧ . . . ∧ hxo,yn . Since L is a lattice, fxo ∈ L. Note
that fxo(xo) = g(xo). If z ∈ X, then z ∈ Uyj for some j, 1 ≤ j ≤ n.
Hence fxo(z) ≤ hxo,yj(z) < g(z) + ε. Since xo ∈ X was arbitrary, we
have fx(z) < g(z) + ε ∀ z ∈ X and ∀ x ∈ X (�).

Now we repeat this argument ‘upside down’. Given x ∈ X, define
Vx = {z ∈ X : fx(z) > g(z)− ε}. Since fx(x) = g(x) > g(x)− ε, x ∈
Vx. Again, since fx − g is continuous on X, Vx is open in X. Hence
{Vx : x ∈ X} is an open cover of the compact space X. Therefore,
there exists a finite subset {x1, . . . , xm} ofX such that X =

⋃m
i=1 Vxi .

Let f = fx1 ∨ . . .∨ fxm. Since L is a lattice, f ∈ L. If z ∈ X, then
z ∈ Vxk

for some k, 1 ≤ k ≤ m. Hence f(z) ≥ fxk
(z) > g(z) − ε.

Thus, f(z) > g(z) − ε ∀ z ∈ X (��).
By (�), we have fxj(z) < g(z) + ε for each z ∈ X and for each

j ∈ {1, . . . ,m}. Therefore, f(z) < g(z) + ε ∀ z ∈ X (� � �).
By (��) and (� � �), we get g(z) − ε < f(z) < g(z) + ε ∀ z ∈ X.

Thus, we have constructed the required f in L.

Remark. If X contains only one point, then L = {0} satisfies the
hypothesis of previous theorem but L is not dense in (C(X), ‖ · ‖∞).

Evidently, if a subcollection A of RX strongly separates the points
of X, then it separates the points of X. But the converse is not true
in general. For example, if X = {a, b} is a set of two distinct points
and A = {f} where f(a) = 1 and f(b) = 0. Then clearly A separates
the points of X but not strongly. Also see Exercise 6.4.2.

Historical Perspective

The idea of pointwise convergence of a sequence of real valued func-
tions existed since the early days of calculus, particularly in the
study of power series and trigonometric series. But the uniform
convergence of sequences of functions could not have been even
imagined, until the concepts of convergent series and continuous
function had been precisely described by Bolzano and Cauchy. It
suffices to mention that before them, the use of series without regard
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to convergence and divergence had led to a number of paradoxes and
disagreements.

In 1821, while studying the limit of a convergent series of
continuous functions and the term by term integration of a series
of continuous functions, Cauchy made some missteps and overlooked
the need for uniform convergence. Fortunately soon after, Cauchy’s
errors came to the notice of Abel. In his 1826 paper, Abel gave a
correct proof for sum of a uniformly convergent series of continuous
functions to be continuous in the interior of the interval of conver-
gence. But he did not study the uniform convergence of a series of
functions in its generality. The notion of uniform convergence and
its subsequent importance were recognized in and of themselves by
Stokes, a leading mathematical physicist of his time and indepen-
dently by Philipp L. Seidel in 1847–1848 and by Cauchy himself in
1853.

Actually Weierstrass had the precise idea of uniform convergence
with perfect clarity as early as 1842. But his work related to uniform
convergence was first published much later in 1894. In fact, according
to Stephen Willard ([58], p. 320), ‘In the last half of the 19th century,
in the hands of Heine, Weierstrass, Riemann and others, uniform con-
vergence came into its own in applications to integration theory and
Fourier series’. Apparently, the work of Ascoli, Arzelà and Hadamard
in the last two decades of the 19th century marked the beginning of
what is known today as theory of function spaces. Loosely speak-
ing, a topological space in which the points are functions is called a
function space. The spaces of functions have been used since the late
19th century to form a framework in which convergence of sequences
of functions could be studied.

During his years as a high school teacher, Weierstrass discov-
ered that any real-valued continuous function over a closed bounded
interval in the real line can be expressed in that interval as the uni-
formly convergent limit of a sequence of polynomials. This result,
better known as uniform approximation of real-valued continuous
functions on a closed bounded interval, proved to be a strong and
useful tool in classical analysis. In the middle of 20th century, M. H.
Stone enriched the theory of approximation of continuous functions
by generalizing the aforesaid approximation theorem of Weierstrass
substantially to real or complex valued functions having any compact
Hausdorff space as domain.
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Note. For the historical perspective, the authors have taken
substantial help from Ref. [38].

Exercises

6.4.1. This exercise gives a ‘lattice’ version of Stone–Weierstrass
Theorem under a different set of hypothesis. Prove the following
results:

(a) Let X be a non-empty set and L be a vector space of real-valued
functions on X that separates the points of X and contains the
constant function 1. Then given any two distinct points x and y
of X and real numbers α and β, there exists some f ∈ L such
that f(x) = α and f(y) = β.

(b) Let (X, d) be a compact metric space and let L be a function
space of continuous functions on X that contains the constant
function 1 and separates the points of X. Then

(i) Given g ∈ C(X), a point a in X and ε > 0, there exists a
function f ∈ L such that f(a) = g(a) and f(x) > g(x) −
ε ∀ x ∈ X.

(ii) Moreover, L is dense in (C(X), ‖ · ‖∞).

6.4.2. Let S be a linear subspace of C(X), where (X, d) is a metric
space. Suppose that S contains the constant function 1 and S sep-
arates the points of X. Show that S strongly separates the points
of X.

6.4.3. Let (X, d) be a compact metric space and S be a subalgebra
of C(X) such that S is closed in (C(X), ‖ · ‖∞). Show that S is a
lattice.

6.4.4. Suppose Lip(X) denotes the collection of all real-valued Lip-
schitz functions on a metric space (X, d). Prove that

(a) Lip(X) is a function space.
(b) Lip(X) is a subalgebra of C(X) provided (X, d) is compact.

6.4.5. Show that Lip(X) is dense in (C(X), ‖ · ‖∞) provided (X, d)
is compact.
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6.4.6. Let (X, d) be a compact metric space and L be a lattice of
continuous functions on X. Suppose f ∈ C(X). Given x, y ∈ X
and ε > 0, there exists g ∈ L such that |f(x) − g(x)| < ε and
|f(y) − g(y)| < ε. Show that f ∈ L, where L is the closure of L in
(C(X), ‖ · ‖∞).

6.4.7. If f is a real-valued continuous function on [0, 1] such that∫ 1
0 x

nf(x)dx = 0 for n = 0, 1, . . . , then show that f(x) = 0 ∀ x ∈
[0, 1].

6.4.8. If (X, d) is a compact metric space, then show that (C(X),D)
is separable, where D is the supremum metric.

6.4.9. (a) Give an example of a sequence of differentiable functions,
defined on some bounded interval of R, which is uniformly con-
vergent to a non-differentiable function. Compare with Theorem
6.1.2.

(b) With the help of an example, show that if (fn) is a sequence of
differentiable functions which converges uniformly to a differen-
tiable function f , then this does not imply that the sequence of
derivatives (f ′n) converges pointwise to f ′.

(c) For all n ∈ N, let fn : I → R be differentiable, where I is
some bounded interval of R, such that the real sequence (fn(xo))
converges for some xo ∈ I. If f ′n → g uniformly, then prove that
the sequence (fn) converges uniformly to a function f : I → R

that is differentiable on I and f ′ = g.

6.4.10 (Stone–Weierstrass theorem for complex valued
functions). Let (X, d) be a compact metric space and A be a self-
adjoint subalgebra of C(X,C), where C(X,C) denotes the set of all
continuous functions from (X, d) to C (C is equipped with the usual
distance metric). If A separates the points of X, then prove that
either

(a) A = C(X,C), where A is the closure of A in (C(X,C), ‖ · ‖∞) or
else

(b) there is some p ∈ X such that A = {f ∈ C(X,C) : f(p) = 0}.
Here note that A is said to be self-adjoint if for every f ∈ A, its
complex conjugate f also lies in A, where f(x) = f(x).



Chapter 7

Connectedness

Like completeness and compactness, connectedness is another crucial
pillar in the analysis of metric spaces. The well-known Intermediate
Value Theorem, that is highly used in calculus and numerical analy-
sis, is not only based on continuity of a function but also it makes use
of the connectedness of an interval in R. In fact, many of the results
in real analysis are given for intervals because implicitly we use their
connectedness feature as well. Thus, our study of metric spaces would
be incomplete without the discussion of connected metric spaces.

7.1 Connected Metric Spaces

Intuitively, we say that something is connected if it consists of one
single piece. In this section, we plan to make this notion more precise.
An interval in R has the property that if it contains two distinct
points, then it contains every point between them. Connectedness
represents an extension of this idea that an interval consists of one
piece. The problem of deciding whether a metric space is in one piece
is resolved by determining whether it can be split into non-empty
disjoint open subsets.

Definitions 7.1.1. A metric space (X, d) is called connected if it
cannot be expressed as a union of two non-empty disjoint open sub-
sets of (X, d).

If a metric space (X, d) is not connected then it is referred to as
disconnected metric space.

205
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Remark. By the definition of connected metric space, it is clear
that the metric structure of (X, d) is not used in full strength. In
fact, it makes use of open sets in (X, d). Consequently, the notion of
connectedness can be defined for any topological space.

Note that proving some metric space to be disconnected is easier
than proving it to be connected. This is because for disconnectedness,
you just need to produce two non-empty disjoint open subsets A and
B of (X, d) such that X = A ∪ B. But for connectedness, you need
to prove that no such open subsets exist. Now that is a task! Conse-
quently, there is a need to learn some equivalent characterizations of
connectedness which are easier to apply.

Definition 7.1.2. A non-empty subset Y of a metric space (X, d) is
called connected if the metric space (Y, d) is itself connected. In this
case, we say that Y is connected in (X, d).

Because of the definition of connected subsets in a metric space
(X, d), one needs to be conscious of the ambient space while consid-
ering open and closed sets.

Examples 7.1.1. (a) Intervals in R are connected (Theorem 7.1.2)
and hence R = (−∞,∞) is also connected. But R \ {0} is dis-
connected because R \ {0} = (−∞, 0) ∪ (0,∞).

(b) Every metric space (with at least two points) in which every
point is an isolated point is disconnected.

(c) The subset A = {(x, y) ∈ R
2 : xy �= 0} of R2 is disconnected

because xy �= 0 means both x and y are non-zero. Note that A =
R
2 \ B where B = {(x, 0), (0, y) : x, y ∈ R}. Now geometrically

can you see the possible non-empty disjoint open subsets of A
such that A could be expressed as their unions?

Now let us discuss some nice characterizations of a connected
metric space which can be applied according to the convenience.

Theorem 7.1.1. Let (X, d) be a metric space. Then the following
assertions are equivalent:

(a) (X, d) is connected.
(b) X is not a union of two disjoint non-empty closed subsets.
(c) Every continuous function from (X, d) to {0, 1} is constant,

where {0, 1} is equipped with the discrete metric.
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(d) Every proper non-empty subset of X has non-empty boundary in
(X, d).

(e) No proper non-empty subset of X is both open and closed in
(X, d).

Proof. (a) ⇒ (b): This is immediate.

(b) ⇒ (c): If possible, suppose there is a non-constant continuous
function f : (X, d) → {0, 1}. Then X = f−1{0} ∪ f−1{1}. Since
f is non-constant, both f−1{0} and f−1{1} are non-empty. Since
f is continuous and {0}, {1} are closed in the range space, both
f−1{0} and f−1{1} are closed in (X, d) by Theorem 2.1.1. But this
contradicts (b). Hence our supposition was wrong.

(c) ⇒ (d): Let A be a non-empty proper subset of X. If possible,
suppose that the boundary of A in X, ∂(A) is empty. Thus, ∂(A) =
A ∩ X −A = ∅. Consequently, A ⊆ A and X −A ⊆ X − A which
implies that A and X −A are closed in X. Define f : X → {0, 1} as:
f(x) = 1 if x ∈ A, and f(x) = 0 if x ∈ X − A. Thus f = χA, the
characteristic function of A. Note that the closed sets in {0, 1} are
∅, {0}, {1} and {0, 1}. By construction, the inverse image of each of
these sets is closed in (X, d). Hence f is continuous by Theorem 2.1.1.
But f is non-constant and this contradicts (c). Hence ∂(A) �= ∅.
(d) ⇒ (e): If possible, suppose A is a proper non-empty subset of X
which is both open and closed in (X, d). Then X − A is also closed
in (X, d) and consequently, ∂A = A ∩ (X −A) = A ∩ (X − A) = ∅.
But this contradicts (d).

(e) ⇒ (a): This is immediate.

It is now evident that the set of rational numbers Q is not con-
nected because (−π, π)∩Q is a clopen subset of Q. It is known that
the continuous image of a compact metric space is compact. The next
result talks about the analogous result for connected spaces.

Corollary 7.1.1. Let f : (X, d) → (Y, ρ) be a continuous map
between two metric spaces. If A is a non-empty connected subset of
(X, d), then f(A) is connected in (Y, ρ).

Proof. If (f(A), ρ) is not connected, then by Theorem 7.1.1, there
exists a non-constant continuous function g : (f(A), ρ) → {0, 1}. But
then the composite gof : (A, d) → {0, 1} will be a non-constant
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continuous function, which in turn will imply that (A, d) is not
connected. A contradiction. Hence f(A) is connected in (Y, ρ).

What can you say about the converse of the previous corollary?
(see Exercise 7.1.7.)

Example 7.1.2. Let S1 = {(x, y) ∈ R
2 : x2 + y2 = 1} be the unit

circle in R
2. By Theorem 2.2.4 (and the remark afterwards), the func-

tion f : [0, 2π) → S1 defined as f(x) = (cos x, sinx) is continuous.
By Corollary 7.1.1, S1 = f([0, 2π)) is connected.

Corollary 7.1.1 says that connectedness is a topological property,
that is, it is preserved under homeomorphism. Although it cannot be
used in proving two spaces to be homeomorphic but at least it may
help in disproving two spaces to be homeomorphic.

Example 7.1.3. The interval [a, b) is not homeomorphic to (a, b):
suppose, if possible, f : [a, b) → (a, b) is a homeomorphism. Then
note that (a, b) is a connected subset of [a, b), while f((a, b)) =
(a, b) \ {f(a)} is not connected because (a, f(a)) is a non-empty
proper subset of (a, b) \ {f(a)} which is both open and closed in
(a, b) \ {f(a)}. This gives a contradiction.

Corollary 7.1.2. Let (X, d) be a metric space and A be a connected
subset of X. Suppose A ⊆ B ⊆ A. Then B is also connected in
(X, d).

Proof. Let f : (B, d) → {0, 1} be a continuous function. Then f |A
is also continuous. Since A is connected in (X, d), f |A is constant.
Now let x ∈ B ⊆ A, then there exists a sequence (xn) in A such that
xn → x in (X, d). By the continuity of f , f(xn) → f(x) in {0, 1}.
But each xn ∈ A and f |A is constant. Hence (f(xn)) is a constant
sequence. So f has the same value at x as it has on A. Since x was
chosen arbitrarily from B, f is also constant on B and hence (B, d)
is connected, that is, B is connected in (X, d).

As a consequence of the previous result, it is clear that the closure
of a connected set in a metric space is also connected. Now the next
corollary highlights how connectedness fills the gap between UCness
and compactness.
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Corollary 7.1.3. Let (X, d) be a connected metric space. Then
(X, d) is compact if it is a UC space.

Proof. First we claim that X ′ = X. Suppose, if possible, X ′ �= X.
Then there exists x ∈ X \X ′. Hence we can find an ε > 0 such that
B(x, ε) = {x}. Consequently, {x} is open in X. Moreover, we know
that finite sets are closed in a metric space. Hence {x} is also closed
in X. Then by Theorem 7.1.1(e), (X, d) is not connected (note that
if X = {x} then X is obviously compact). This gives a contradiction.
Hence X ′ = X. Since (X, d) is a UC space, by Corollary 5.2.6 we get
the compactness of (X, d).

Remark. Consequently, one should look for a non-connected metric
space in order to find examples of UC spaces which are not compact.

In the beginning of this chapter, it was mentioned that intervals
in R are connected. Now let us prove it precisely. Surprisingly, these
are the only connected subsets of R.

Theorem 7.1.2. A non-empty subset I of R with at least two points
is connected in (R, | · |) if and only if I is an interval.

Proof. First, let I be a non-empty connected subset of R. If possible,
assume that I is not an interval. So there exist a, b in I and x ∈ R such
that a < x < b but x �∈ I. Then I ∩ (−∞, x) and I ∩ (x,∞) are both
relatively open in I. Moreover, a ∈ I ∩ (−∞, x) and b ∈ I ∩ (x,∞).
But I = (I ∩ (−∞, x)) ∪ (I ∩ (x,∞)) which implies that I is not
connected in (R, | · |). A contradiction. Hence I must be an interval.

Conversely, suppose that I is an interval in R having more than
one point. If I is not connected in R, then by Theorem 7.1.1, there
exists a continuous surjection f : I → {0, 1}. Pick a, b ∈ I such
that f(a) = 0 and f(b) = 1. We may assume that a < b and hence
[a, b] ⊆ I as I is an interval. Let B = {c ∈ [a, b) : f(c) = 0}.
Note that clI(B) ⊆ [a, b] ⊆ I. Now a ∈ B ⇒ B is non-empty and
B ⊆ [a, b] ⇒ B is bounded. Hence co = supB ∈ R and co ≤ b. Since
co ∈ B and f(c) = 0 ∀ c ∈ B, by the continuity of f , f(co) = 0.
Then co < b because f(b) = 1. Also f(x) = 1 ∀ x ∈ (co, b]. Since

co ∈ [co, b] = (co, b] (the closure of (co, b] in I), f(co) = 1 by the
continuity of f . We arrive at a contradiction and consequently, I is
connected in (R, | · |).
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Remark. In the converse part of Theorem 7.1.2, it was assumed
that a < b. Can you prove the result for a > b? (Exercise 7.1.8.)

As a consequence of the previous result, R = (−∞,∞) is con-
nected. Hence R has no non-trivial clopen subsets.

Corollary 7.1.4 (Intermediate value theorem). Let f be a real-
valued continuous function on a connected metric space (X, d). If
a, b are in X such that f(a) < f(b), then for each d in R with
f(a) < d < f(b), there exists some c ∈ X such that f(c) = d.

Proof. By Corollary 7.1.1, f(X) is connected in R. Then The-
orem 7.1.2 implies that f(X) is an interval in R and hence
[f(a), f(b)] ⊆ f(X).

The next result is a special case of the previous corollary. It is
widely applicable, especially in numerical analysis for getting approx-
imate location of roots of a function. Hence, we state the result in a
precise manner.

Corollary 7.1.5 (Intermediate value theorem of calculus). If
f is a real-valued continuous function on an interval I, then f has
the Intermediate Value Property (IVP) : whenever a, b ∈ I, a < b
and y lies strictly between f(a) and f(b), then there exists x ∈ (a, b)
such that f(x) = y.

Remarks. (a) Note that IVP essentially says that the image of
an interval under a real-valued continuous function is again an
interval.

(b) In the previous corollary, if we particularly take y to be 0, then
according to the result there exists x ∈ (a, b) such that f(x) = 0.

Now as a consequence of this intermediate value theorem, we have
the following nice observation (compare with Exercise 4.3.5). This
result finds applications in various branches of mathematics including
numerical analysis and fixed point theory.

Corollary 7.1.6. Let f : ([a, b], | · |) → ([a, b], | · |) be a continuous
function. Then f has a fixed point, that is, there is an xo ∈ [a, b] such
that f(xo) = xo.

Proof. Consider the function g : [a, b] → R defined as g(x) = f(x)−
x. Then g is continuous on [a, b]. Since a ≤ f(x) ≤ b for all x ∈ [a, b],
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g(a) ≥ 0 and g(b) ≤ 0. Thus, g(b) ≤ 0 ≤ g(a). By intermediate value
theorem, there exists xo ∈ [a, b] such that g(xo) = 0. This implies
that f(xo) = xo.

Geometrically, observe that a fixed point of a real-valued function
represents the point of intersection of the graph of the function with
the line y = x. And to get the intuition for the previous result, one
should try to draw a continuous function f : [0, 1] → [0, 1] without
crossing the line y = x !

Exercises

7.1.1. Give an example of a continuous function f : [0, 1) → [0, 1)
which does not have any fixed point.

7.1.2. Give an example to show that the interior of a connected set
need not be connected.

7.1.3. Show that if a > 0 and m ∈ N, then a has a positive mth
root, that is, there exists b in (0,∞) such that bm = a.

7.1.4. Show that a connected subset of a metric space is either sin-
gleton or uncountable. Hence a finite subset of a metric space is
connected if and only if it contains precisely one point.

7.1.5. Show that if every real-valued continuous function f on (X, d)
has intermediate value property (that is, if a, b ∈ X and y ∈ R lies in
between f(a) and f(b), then there exists x ∈ X such that f(x) = y),
then (X, d) is connected.

7.1.6. Prove that an interval I in R is not homeomorphic to the unit
circle S1 = {(x, y) ∈ R

2 : x2 + y2 = 1} in R
2. Further, if f : S1 → I

is continuous and one-to-one then show that f cannot be onto.

7.1.7. Suppose a function f : (X, d) → (Y, ρ) preserves connected-
ness, that is, if A is a non-empty connected subset of (X, d) then
f(A) is connected in (Y, ρ). Is the function f continuous?

7.1.8. Let I be a subset of R. Suppose f : I → {0, 1} is a continuous
function and a, b ∈ I with a > b and f(a) = 0, f(b) = 1. Show that
I cannot be an interval.
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7.2 More About Connectedness

Given a metric space (X, d) and a family {Xi : i ∈ I} of connected
subsets of X, now we study the conditions under which

⋃
i∈I Xi is

connected. But we would like to study in a broader perspective of
chained collection of sets. So first let us define this collection.

Definition 7.2.1. Let X be a non-empty set and {Xi : i ∈ I} be
a non-empty family of non-empty subsets of X. The family {Xi :
i ∈ I} is called chained if given Xi, Xj , i, j ∈ I, there exists
{i1, i2, . . . , ik} ⊆ I such that Xi = Xi1 ,Xj = Xik and Xim−1 ∩Xim �=
∅ for allm ∈ {2, 3, . . . , k}. Such a k-tuple {Xi1 ,Xi2 , . . . ,Xik} is called
a chain from Xi to Xj in {Xk : k ∈ I}.

Consider any two disjoint open discs in R
2 then it is evident that

the discs are connected but their union is not connected in R
2. Here

note that the family of two discs is not chained.

Theorem 7.2.1. Let (X, d) be a metric space and {Xi : i ∈ I} be
a chained collection of connected subsets of X. Then

⋃
i∈I Xi is also

connected in (X, d).

Proof. Suppose f :
⋃

i∈I Xi → {0, 1} is a continuous function. Since
each Xi is connected in (X, d), f |Xi is constant for all i ∈ I by
Theorem 7.1.1. Let x, y ∈ ⋃i∈I Xi. Suppose x ∈ Xi, y ∈ Xj for
some i, j ∈ I. If Xi = Xj , then since f |Xj constant, we have f(x) =
f(y). If Xi �= Xj, then there exists a natural number k > 1 and a
chain {Xi1 ,Xi2 , . . . ,Xik} from Xi to Xj in {Xl : l ∈ I}. For each
m ∈ {2, 3, . . . , k}, pick xm ∈ Xim−1 ∩Xim . Since f |Xl

is constant for
each l ∈ {1, 2, . . . , k}, we have f(x) = f(x2), f(xl−1) = f(xl) for
each l ∈ {3, 4, . . . , k} and f(xk) = f(y). Hence f(x) = f(y) and so f
is constant on

⋃
i∈I Xi. Consequently,

⋃
i∈I Xi is connected in (X, d)

by Theorem 7.1.1.

Now let us apply the previous result on some particular chained
collections.

Corollary 7.2.1. Let {Xi : i ∈ I} be a non-empty family of con-
nected subsets of a metric space (X, d). If

⋂
i∈I Xi �= ∅, then ⋃i∈I Xi

is connected in (X, d).



Connectedness 213

Proof. The collection {Xi : i ∈ I} is chained because for any
i, j ∈ I, Xi ∩ Xj �= ∅. Hence ⋃i∈I Xi is connected in (X, d) by
Theorem 7.2.1.

Corollary 7.2.2. Let (X, d) be a metric space and suppose for each
pair of points x, y in X, there exists a connected subset Exy of X
which contains x and y. Then (X, d) is connected.

Proof. Fix a ∈ X. Then X =
⋃

x∈X Eax and a ∈ ⋂x∈X Eax. Hence
by Corollary 7.2.1, (X, d) is connected.

Corollary 7.2.3. Let (X, d) be a metric space such that X =⋃
n∈NXn, where each Xn is connected and Xn−1 ∩ Xn �= ∅ for all

n ≥ 2. Then (X, d) is connected.

Proof. Clearly {Xn : n ∈ N} is a chained collection of connected
subsets of X.

Example 7.2.1. The Euclidean space Rn is connected: since (R, | · |)
is connected and a continuous image of a connected metric space is
connected (Corollary 7.1.1), every straight line passing through the
origin in R

n is connected (consider the function f : R → R
n defined

as f(t) = (a1t, a2t, . . . , ant) where (a1, a2, . . . , an) ∈ R
n is fixed).

Hence by Corollary 7.2.1, (Rn, | · |) is connected as R
n is the union

of all straight lines passing through the origin.

Since we talked about the connectedness of union of connected
sets, now one might be thinking about the non-empty intersection of
connected sets as well. In general, it is not connected.

Example 7.2.2. Consider the unit circle in R
2 with centre as origin

and the set {(x, 0) ∈ R
2 : −1 ≤ x ≤ 1}. Then both are connected in

R
2 but their intersection {(−1, 0), (1, 0)} is not connected.

By looking at the crucial role being played by connectedness in
various branches of mathematics, whenever a metric space (X, d) is
itself not connected, then we should look at the maximal connected
subsets of X. In order to do this, we need to define a connected
component in (X, d).
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Definition 7.2.2. Let (X, d) be a metric space and ∅ �= U ⊆ X.
Then U is called a connected component (or simply a compo-
nent) of X if the following conditions are satisfied:

(i) U is connected in (X, d).
(ii) Whenever U ⊆ V ⊆ X such that V is connected in (X, d), then

V = U .

In other words, U is called a connected component of X if U is a
maximal connected subset of X. Here of course, maximality is with
respect to set inclusion.

Examples 7.2.3. (a) If (X, d) is itself connected then X is the only
connected component of X.

(b) In a metric space (X, d) in which every point is isolated, the
connected components are precisely its singleton subsets because
each singleton subset of X is both open and closed in (X, d).

Let us observe a few interesting facts regarding connected com-
ponents of a metric space.

Theorem 7.2.2. Let (X, d) be a metric space. Then

(a) the distinct connected components of X are pairwise disjoint.
(b) the connected components of X are closed in (X, d).
(c) every connected subset of X is contained in a connected compo-

nent of X.
(d) X is the union of its connected components.

Proof. (a) Let C andD be two distinct connected components ofX.
If possible, suppose C ∩D �= ∅. Then by Corollary 7.2.1, C ∪D
is connected. So by the definition of a connected component,
C = C ∪ D = D. But this is a contradiction as C and D are
distinct. Hence C ∩D = ∅.

(b) Let C be a connected component of X. Then C is also connected
in (X, d) by Corollary 7.1.2. Then the definition of a connected
component implies that C = C and consequently, C is closed in
(X, d).

(c) Let D be a connected subset of X and let CD be the collection of
all connected subsets of X which contains D. Define C = ∪{A :
A ∈ CD}. Note that CD is non-empty as D ∈ CD and hence
the definition of C makes sense. Then by Corollary 7.2.1, C is
connected in (X, d). If E is a connected subset of X containing
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C, then D ⊆ E. But then E ∈ CD and hence E ⊆ C. Therefore,
E = C and consequently C is a connected component of X which
contains D.

(d) Note that for each x ∈ X, {x} is connected in (X, d). Hence by
(c), x belongs to a connected component, say Cx, of X. Then
X = ∪{Cx : x ∈ X}.

Remark. A component in a metric space need not be open. Consider
the metric subspace X = { 1

n : n ∈ N}∪{0} of (R, | · |). The set {0} is
a connected component of X, but {0} is not open in (X, | · |) because
every open interval around 0 contains points of the form 1

n eventually.

Now we would like to give a useful characterization of discon-
nected subsets of a metric space in terms of separated sets. But before
we introduce another terminology, let us first make an observation.
Consider the following two subsets of R2: A = {(x, y) : x2 + y2 < 1}
and B = {(x, y) : 1 ≤ x2 + y2 < 2}. Then A ∪B is connected in R

2.
But A ∪ (B \ ∂B) is disconnected. Now try to observe this closely.
Here A ∩ B = ∅ but A ∩ B �= ∅. This feature gives an idea for the
kind of separation needed for a subset to be disconnected.

Definition 7.2.3. Let A andB be two non-empty subsets of a metric
space (X, d). Then A and B are referred to as separated in (X, d)
if A ∩B = ∅ = A ∩B.

For proving the required characterization of disconnected met-
ric space, we need to prove a small result which highlights the gap
between separated sets in a metric space.

Lemma 7.2.1. Let (X, d) be a metric space and A and B be two
non-empty separated sets in (X, d). Then there exist disjoint open
sets U and V in (X, d) such that A ⊆ U and B ⊆ V .

Proof. If A ∩ B = ∅, then the result follows from Corollary 2.2.2.
So we can assume that A∩B �= ∅. Consider Y = X − (A∩B). Then
Y is open in (X, d). Since A and B are separated in X, A ⊆ Y and
B ⊆ Y . Moreover, the closure of A in Y , clY A = A ∩ Y . Similarly,
clY B = B ∩ Y . Now (clY A) ∩ (clY B) = (A ∩ B) ∩ Y = ∅. Hence by
applying Corollary 2.2.2 to the metric space (Y, d), we get disjoint
and relatively open sets U and V in (Y, d) such that A ⊆ U and
B ⊆ V . But since Y itself is open in (X, d), U and V are also open
in (X, d).
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Theorem 7.2.3. Let (X, d) be a metric space and ∅ �= Y ⊆ X. Then
the following statements are equivalent:

(a) (Y, d) is disconnected.
(b) There exist non-empty separated sets A and B in (X, d) such that

Y = A ∪B.
(c) There exist disjoint open sets U and V in (X, d) such that Y ⊆

U ∪ V, U ∩ Y �= ∅ and V ∩ Y �= ∅.
Proof. (a) ⇒ (b): Since (Y, d) is disconnected, there exist relatively
open sets A and B in Y such that A �= ∅ �= B, A ∩ B = ∅ and
Y = A ∪B.

Claim. A∩B = ∅ = A∩B (where A, B denote the closure of these
sets in (X, d)).

Let x ∈ A ∩ B. Since B is open in (Y, d), there exists an open
set V in (X, d) such that B = V ∩ Y . Now x ∈ B ⇒ x ∈ V . Since
x ∈ A, A ∩ V �= ∅. But A ∩ B = A ∩ (V ∩ Y ) = (A ∩ Y ) ∩ V =
A∩ V ⇒ A∩ V = ∅. We arrive at a contradiction. Hence A∩B = ∅.
Similarly, A ∩B = ∅. Thus, A and B are separated in (X, d).

(b) ⇒ (c): Suppose there exist non-empty separated sets A and B in
(X, d) such that Y = A ∪B. Since A and B are separated in (X, d),
by Lemma 7.2.1 there exist disjoint open sets U and V in (X, d) such
that A ⊆ U and B ⊆ V . Hence Y = A∪B ⊆ U∪V, ∅ �= A = A∩Y ⊆
U ∩ Y and ∅ �= B = B ∩ Y ⊆ V ∩ Y .

(c) ⇒ (a): We have Y = Y ∩ (U ∪V ) = (Y ∩U)∪ (Y ∩V ). Also, U is
open in (X, d) ⇒ Y ∩U is open in (Y, d). Similarly, Y ∩ V is open in
(Y, d). Further, U ∩Y �= ∅ �= V ∩Y . Hence (Y, d) is disconnected.

Let us end this section with a nice remark. Recall the power-
ful characterizations of completeness and compactness in terms of
sequences. But surprisingly, we do not have sequential characteriza-
tion of connectedness.

Exercises

7.2.1. Let A be a non-empty connected subset of (X, d). If A is both
open and closed in (X, d), then show that A is a component of X.
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7.2.2. What are the components of Q? Are the components open?

7.2.3. Let (X, d) be a metric space. Define a relation ∼ on X as
follows:

x ∼ y ⇐⇒ there is a connected subset of X

which contains both x and y.

Show that ∼ is an equivalence relation. Moreover, verify that the
equivalence classes are precisely the components of X.

7.2.4. It is known that every singleton set in any metric space is
connected. But now think about those metric spaces in which the
only connected subsets are singleton. Let us call such metric spaces
to be totally disconnected. In other words, a metric space (X, d) is
said to be totally disconnected if the connected components in X
are all singleton sets. Clearly, a metric space in which every point
is isolated is totally disconnected but can you think of an example
of a totally disconnected metric space which contains a non-isolated
point.

7.2.5 (Local version of connectedness). A metric space (X, d)
is said to be locally connected if for every x ∈ X and every neigh-
bourhood U of x, there is a connected neighbourhood G of x such
that G ⊆ U .

(a) Give an example of a connected metric space which is not locally
connected.

(b) Give an example of a locally connected metric space which is not
connected.

(c) Show that every component of a locally connected space is open.
(d) Let f : (X, d) → (Y, ρ) be an onto, continuous and open

mapping. Then prove that (Y, ρ) is locally connected if (X, d)
is so.

Note that locally compact spaces can be equivalently defined as those
spaces in which for every point x ∈ X and every neighbourhood U of
x, there is a neighbourhoodG of x such that G ⊆ U and G is compact
(see Theorem 5.1.1). But from (a), we get the existence of a metric
space (X, d) in which every point has a connected neighbourhood
but (X, d) is not locally connected.
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7.2.6. Let U be an open subset of Rn. Then show that every com-
ponent of U is open and there are countably many components.

7.3 Path Connectedness

Though the notion of connectedness is very important in analysis and
topology, its definition is somewhat negative in nature. The definition
of connectedness ask for non-existence of a certain kind of splitting
of the space. A positive approach towards the same sort of problem
is provided by path connectedness in which it is feasible to reach any
point in the space from any other point along a connected path. This
approach is specially useful in analysis and algebraic topology.

The word path is used in a variety of ways in different areas of
mathematics. We shall define a path to be any continuous function
on [0, 1]. The precise definition follows.

Definition 7.3.1. Let (X, d) be a metric space. A continuous func-
tion f : ([0, 1], | · |) → (X, d) is called a path (or an arc) in X from
the point f(0) to the point f(1). The points f(0) and f(1) are called
the end points of the path.

Example 7.3.1. Consider the function f : [0, 1] → R
2 defined as

f(t) = (cos(2πt), sin(2πt)). Then f represents a path in R
2 from

(1, 0) to (1, 0) itself that traces the circle in anti-clockwise direction.

Note that since a path is defined on the compact and connected
metric space ([0, 1], | · |), it is uniformly continuous and its image is
compact as well as connected.

Definition 7.3.2. A metric space (X, d) is called path connected
(or arcwise connected) if for each x, y ∈ X, there is a path in X
with end points x and y, that is, there exists a continuous function
f : ([0, 1], | · |) → (X, d) such that f(0) = x and f(1) = y.

If ∅ �= Y ⊆ X and (Y, d) is path connected, then Y is called path
connected in (X, d).

Example 7.3.2. The Euclidean space Rn is path connected since for
any pair of points x, y in R

n, the continuous function f : [0, 1] → R
n

defined by f(t) = ty+ (1− t)x gives a path from x to y. In fact, this
also shows that every normed linear space is pathwise connected.
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Note that every open ball B(x, r) in R
n is also path connected

since it can be easily verified that given y, z in B(x, r), {ty+(1−t)z :
0 ≤ t ≤ 1} ⊆ B(x, r). Also see Exercise 7.3.2.

Theorem 7.3.1. Every path connected metric space (X, d) is con-
nected.

Proof. Pick a ∈ X and keep it fixed. Let x ∈ X. Since (X, d) is path
connected, there exists a continuous function fx : [0, 1] → (X, d) such
that fx(0) = a and fx(1) = x. Since [0, 1] is connected, fx([0, 1]) is
connected in (X, d) by Corollary 7.1.1. Now X =

⋃{fx([0, 1]) : x ∈
X} and a ∈ fx([0, 1]) for all x ∈ X. Hence by Corollary 7.2.1, (X, d)
is connected.

The converse of the previous result may not be true, that is, a
connected metric space need not be path connected as seen in the
following standard example.

Example 7.3.3 (Topologist’s sine curve). Let A = {(0, y) ∈
R
2 : −1 ≤ y ≤ 1} and B = {(x, sin 1

x) ∈ R
2 : 0 < x ≤ 1}. Suppose

X = A∪B (see Figure 7.1) and consider the Euclidean distance on X

Figure 7.1 Topologist’s sine curve.
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which is inherited from R
2. Define f : (0, 1] → B by f(x) = (x, sin 1

x).
Since f is a continuous surjection and ((0, 1], | · |) is connected, B
is connected. Hence by Corollary 7.1.2, the closure of B in R

2 is
also connected. But this closure is X itself. Hence X is connected.
But it can be shown that no point of A can be connected by a path to
any point of B (since the proof is not straightforward, we have divided
it into steps in Exercise 7.3.7). Hence X is not path connected.

The previous example also exhibits that the closure of a connected
set is connected but the same is not true for path connected sets.
Next we show that like connectedness, path connectedness is also
preserved by continuous functions.

Theorem 7.3.2. Let f : (X, d) → (Y, ρ) be a continuous surjection
between two metric spaces. If (X, d) is path connected, then (Y, ρ) is
also path connected.

Proof. Given y1, y2 in Y , pick x1, x2 in X such that f(x1) = y1 and
f(x2) = y2. Since (X, d) is path connected, there exists a continuous
function g : [0, 1] → (X, d) such that g(0) = x1 and g(1) = x2. Then
f ◦ g : [0, 1] → (Y, ρ) gives a path from y1 to y2. Hence (Y, ρ) is also
path connected.

Now we would like to see under what conditions, the union of a
collection of path connected sets is path connected. But for proving
this, we need the following proposition.

Proposition 7.3.1. Let (X, d) be a metric space and x, y, z be in X.
If f is a path from x to y and g is a path from y to z in X, then

h(t) =

⎧⎪⎨
⎪⎩
f(2t) : 0 ≤ t ≤ 1

2

g(2t − 1) :
1

2
≤ t ≤ 1

is a path in X from x to z.

Proof. Since f(1) = y = g(0), f(2t) = g(2t − 1) at t = 1
2 . Hence

the function h is well-defined. Moreover, h is continuous on [0, 1] by
pasting lemma (Theorem 2.2.3).

The path h defined in the preceding proposition is denoted by
g • f .
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Theorem 7.3.3. Let (X, d) be a metric space.

(a) If {Ei : i ∈ I} is a collection of path connected subsets of X such
that Ei ∩ Ej �= ∅ ∀ i, j ∈ I, then E =

⋃
i∈I Ei is path connected

in (X, d).
(b) If {Ei : i ∈ I} is a collection of path connected subsets of X such

that
⋂

i∈I Ei �= ∅, then E =
⋃

i∈I Ei is path connected in (X, d).
(c) If {En : n ∈ Z} is a sequence of path connected subsets of X

such that En∩En+1 �= ∅ ∀ n ∈ Z, then E =
⋃

n∈ZEn is also path
connected.

Proof. (a) Let x, y ∈ E. Then suppose x ∈ Ei, y ∈ Ej. Fix any
point z in Ei ∩ Ej. Let f : [0, 1] → Ei be a path from x to z
and let g : [0, 1] → Ej be a path from z to y. Then g • f is the
required path in E from x to y.

(b) This immediately follows from (a).
(c) Let x, y ∈ ⋃{En : n ∈ Z}. Then there are integers m, n such that

x ∈ Em and y ∈ En. Assume thatm < n. By part (a), Em∪Em+1

is path connected. Again (a) implies that Em ∪Em+1 ∪Em+2 is
path connected. Continuing like this, we get that Em∪ . . .∪En is
path connected. Thus there is a path in Em ∪ . . .∪En ⊆ ⋃{En :
n ∈ Z} from x to y. Since x and y were arbitrarily chosen,⋃{En : n ∈ Z} is path connected.

Exercises

7.3.1. Let (X, d) be a metric space and x, y ∈ X. Then show that
the following statements are equivalent:

(i) there exists a continuous function f : [0, 1] → X such that f(0) =
x and f(1) = y.

(ii) there exists a continuous function g : [a, b] → X such that g(a) =
x and g(b) = y.

Thus, to say that the points x, y ∈ X can be joined by a path, we
do not necessarily require a continuous function on [0, 1].

7.3.2. Give an example to show that a ball in a pathwise connected
metric space need not be connected.
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7.3.3. Let (X, d) be a metric space in which for every x ∈ X and
every neighbourhood Ux of x, there is a path connected ball B(x, r)
which is contained in Ux (note that such metric spaces are called
locally path connected). Then show that every open connected sub-
set of (X, d) is path connected. In particular, we have every open
connected subset of Rn is path connected. But this is not true for
closed connected subset of Rn (consider Topologist’s sine curve).

7.3.4. Prove that the ellipse {(x, y) ∈ R
2 : x2

a2 + y2

b2 = 1} is path
connected.

7.3.5. Let {(Xi, di) : 1 ≤ i ≤ n} be a finite collection of metric
spaces. Show that the Cartesian product

∏n
i=1Xi equipped with any

of the metrics given in Example 1.3.4 is connected (path connected)
if and only if (Xi, di) is connected (path connected) for all 1 ≤ i ≤ n.

7.3.6. Let {(Xi, di) : i ∈ N} be a countable collection of metric
spaces. Show that the Cartesian product

∏∞
i=1Xi equipped with the

metric given in Example 1.3.10 is connected (path connected) if and
only if (Xi, di) is connected (path connected) for all i ∈ N.

7.3.7. Prove the following assertions in order to show that X given
in Example 7.3.3 is not path connected.

(a) Suppose f : [0, 1] → X is a path from (0, 0) to (1, sin(1)). Then
f−1(A) is closed.

(b) Let to ∈ [0, 1] be the largest element of f−1(A). Then to < 1.
(c) The function f : [to, 1] → X given by f(t) = (x(t), y(t)) is a path

such that f(to) ∈ A and f((to, 1]) ⊆ B.
(d) Now x(to) = 0, and for t ∈ (to, 1] we have x(t) > 0 and y(t) =

sin( 1
x(t)).

(e) Prove that f is not continuous at to. This gives a contradiction.

7.4 Polygonal Connectedness

Now we move towards defining another stronger form of connected-
ness where we look for a more specific path between any two points.
In particular, we ask for piecewise linear path (and hence it is referred
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to as polygonal connectedness). Of course, for defining such notion
the ambient space needs to possess a linear structure as well.

Definition 7.4.1. Let X be a vector space over R and A be a subset
of X. Then A is said to be polygonally connected if every a, b ∈ A can
be joined by a polygonal path in A, that is, there exist some points
a1, a2, . . . , an−1 in A such that the line segments {(1−α)ai+αai+1 :
α ∈ [0, 1]} are contained in A for every i ∈ {0, 1, . . . , n − 1}, where
ao = a and an = b.

The reader should note that for talking about polygonal connect-
edness, the ambient space is required to be a vector space, whereas
for connectedness and path connectedness it needs to be a metric
space (or a topological space in general). Hence if we want to com-
pare all the three forms of connectedness on X then X is required
to have a vector space structure as well as a metric space structure
(and of course they should be compatible). For that reason, we usu-
ally consider a normed linear space.

Example 7.4.1. If S1 and S2 are two intersecting balls in R
2, then

their union is polygonally connected. In fact, we can also generalize
this as follows: if for all n ∈ N An is a convex set in a vector space
X such that Ai ∩Ai+1 �= ∅ for all i ∈ N then

⋃
n∈NAn is polygonally

connected. (Refer to Exercise 1.5.15.)

It is evident that in a normed linear space, every polygonally
connected set is path connected and hence connected. But the con-
verse is not true in general. For example, consider a unit circle in
R
2 which is path connected but not polygonally connected. Recall

that an open connected subset of Rn is path connected. Interestingly,
now we see that it is not just path connected but it is polygonally
connected.

Theorem 7.4.1. Let U be a non-empty open connected sub-
set of a normed linear space (X, ‖·‖). Then U is polygonally
connected.

Proof. Fix xo ∈ U . Consider U1 = {x ∈ U : ∃ a polygonal
path in U joining x and xo}. Then xo ∈ U1. Now we show that U1

is both closed and open in U . We start with closedness. Let (xn)
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be a sequence in U1 which converges to x in U . Since U is open,
there exists a δ > 0 such that B(x, δ) ⊆ U . Moreover, for some
no ∈ N, xn ∈ B(x, δ) ∀ n ≥ no. Now xno ∈ U1, thus xno and xo
can be joined by a polygonal path in U . Since B(x, δ) is a convex
set in the normed linear space X, xno and x can be joined by a
line segment in U and hence x and xo are connected by a polygo-
nal path in U . Consequently, x ∈ U1. Hence U1 is closed in U by
Corollary 1.5.3.

Now we show that U1 is open in U . Let y ∈ U1. Since U is open,
there exists an ε > 0 such that B(y, ε) ⊆ U . Now again by convexity
of B(y, ε), we can prove that every point in B(y, ε) can be joined
with xo by some polygonal path. This implies that B(y, ε) ⊆ U1.
Hence we have proved that U1 is non-empty, open as well as closed
in a connected set U and hence U1 = U . This means that every point
in U can be joined with xo by some polygonal path. Hence we are
done.

Remark. As a consequence of the previous theorem, it can be said
that all the three forms of connectedness coincides for an open sub-
set of a normed linear space and in particular for open subsets of
R
n.

Now the next result gives an application of Theorem 7.4.1 in cal-
culus of several variables.

Theorem 7.4.2. Let U be an open connected subset of Rn (n ≥ 2)
and let f : U → R be a differentiable function with all partial deriva-
tives 0. Then f is constant on U .

Proof. Let a, b ∈ U . We prove that f(a) = f(b). By Theorem 7.4.1,
there exist some points x1, x2, . . . , xn−1 in U such that the line seg-
ments {(1 − t)xi + txi+1 : t ∈ [0, 1]} are contained in U for every
i ∈ {0, 1, . . . , n − 1}, where xo = a and xn = b. We show that f is
constant along the path γ : [0, 1] → U : γ(t) = (1− t)a+ tx1.

Let γ(t) = (γ1(t), . . . , γn(t)). Consider the function g : [0, 1] → R

defined as g(t) = f(γ(t)) = f(γ1(t), . . . , γn(t)). Then by chain rule

the derivative of g is given by g′(t) = ∂f
∂γ1

dγ1
dt + · · · + ∂f

∂γn
dγn
dt . Since

the partial derivatives of f are 0, g′(t) = 0 ∀ t ∈ [0, 1]. Now by mean
value theorem, g(t) = g(0) = f(a) for all t ∈ (0, 1]. In particular,
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f(a) = g(1) = f(γ(1)) = f(x1). Similarly, we have f(xi) = f(xi+1)
for all i ∈ {1, . . . , n− 1}. Hence f(a) = f(b).

Remark. If f : U → C is a complex analytic function on an open
connected subset U of C with f ′(z) = 0 ∀ z ∈ U , then it can be
similarly proved that f is constant on U .

Exercise

7.4.1. Show that R2 \A is polygonally connected if A is a countable
subset of R2.
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Hints to Selected Exercises

Chapter 1

1.3.1 For triangle’s inequality, use: (u+v)α ≤ uα+vα for all u ≥ 0
and v ≥ 0. The function ρ need not be a metric: consider the
usual metric on R.

1.3.2 The minimum of two metrics need not be a metric. Take X
to be some finite set and try to construct two metrics d1 and
d2 as in Example 1.3.6.

1.3.3 Define a metric d on X as follows:

d(x1, x2) = d(x2, x1)

=

⎧⎪⎨
⎪⎩
ρ(x1, x2) : x1, x2 ∈ Y

σ(x1, x2) : x1, x2 ∈ X \ Y
d(x1, a) + 1 + d(b, x2) : x1 ∈ Y, x2 ∈ X \ Y

⎫⎪⎬
⎪⎭ ,

where a and b are fixed points in Y and X \ Y respectively,
and σ is any metric on X \ Y ×X \ Y .

1.3.4 For x ∈ R, take f(x) = tan−1(x), f(+∞) = π
2 and f(−∞) =

−π
2 .

1.3.7 (i) For triangle inequality: if either ρ(x, z) or ρ(z, y) is 1,
ρ(x, y) ≤ ρ(x, z) + ρ(z, y) because ρ(x, y) ≤ 1. Now sup-
pose that both ρ(x, z) and ρ(z, y) are less than 1. Now
ρ(x, y) ≤ d(x, y) ≤ d(x, z) + d(z, y) = ρ(x, z) + ρ(z, y).

(ii) Note that f(t) = t/(1 + t) is increasing for t ≥ 0. Now

δ(x, z) + δ(z, y) ≥ d(x, z)

1 + d(x, z) + d(z, y)

227
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+
d(z, y)

1 + d(x, z) + d(z, y)

≥ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

≥ d(x, y)

1 + d(x, y)
= δ(x, y).

1.3.9 For triangle’s inequality, note that

1+ d(x, z) ≤ 1+ d(x, y) + d(y, z) ≤ (1+ d(x, y))(1 + d(y, z)).

Now use that ln(x) is an increasing function.
1.4.3 For counter examples, consider the following subsets of R:

{(− 1
n ,

1
n) : n ∈ N} for (a) and {( 1n , n) : n ∈ N} for (c).

1.4.4 Consider A = [0, 1) and B = (0, 1] in R.
1.4.13 Cb(R) is not separable because the sub-collection A of the

piecewise linear functions such that f(n) is either 0 or 1, for
n ∈ N, is uncountable. Moreover, D(f, g) ≥ 1 for f, g ∈
A, f �= g.

1.4.14 Let D = {xn : n ∈ N} be a countable dense subset of X
and Y be a subset of X. For n, m ∈ N, choose yn,m ∈
B(xn,

1
m) ∩ Y if this intersection is non-empty. Then verify

that the collection {yn,m : n, m ∈ N} ⊆ Y is dense in Y .
1.4.16 Let Di be a countable dense subset of Xi for i ∈ N.

Fix ai ∈ Di for each i. Then the set D =⋃
n∈N{(x1, . . . , xn, an+1, an+2, . . .) : xi ∈ Di ∀ 1 ≤ i ≤ n}

is a countable dense subset of the product space.
1.5.1 We only need to prove that C(x, r) ⊆ B(x, r). Let a ∈

C(x, r). For each n ∈ N, let us take an = 1
nx + (1 − 1

n)a.
Note that an lies on the line segment joining a and x. It is
easy to see that an ∈ B(x, r) and an → a as n→ ∞. Now use
Theorem 1.5.2. For counterexample, think of discrete metric.

1.5.2 (a) Take A = {−n : n ∈ N} and B = {n + 1
n : n ∈ N}. Then

both A and B are closed subsets of R. Since ( 1n) ⊆ A + B
but 0 �∈ A+B, A+B is not closed in R.

1.5.4 (h) d(x,
⋂

i∈I Ai) ≥ sup{d(x,Ai) : i ∈ I}. The reverse
inequality need not hold true (think of an example).

1.5.11 Take x = (1, 12 ,
1
3 , . . .) ∈ l∞. Construct a sequence in coo

which converges to x. This will show that coo is not closed
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in l∞. Now for showing that it is not open in l∞, we prove
that no open ball around 0 = (0) ∈ coo is contained in coo.
Suppose, if possible, B(0, 1

no
) ⊆ coo. Now ( 1

no+1 ,
1

no+2 , . . .) ∈
B(0, 1

no
) but it does not belong to coo.

1.5.12 Use Corollary 1.5.3 and |a| ≤ |a− b|+ |b|.

Chapter 2

2.1.1 No. Consider the identity map from (R, | · |) to (R, d), where
d is the discrete metric.

2.1.2 Let xn → x. Then the sequence 〈x1, x, x2, x, . . . , xn, x, . . .〉
also converges to x. Hence the sequence 〈f(x1), f(x),f(x2),
f(x), . . . , f(xn), f(x), . . .〉 converges in (Y, ρ). Since it has a
subsequence converging to f(x), the whole sequence converges
to the same limit. This implies that f(xn) → f(x).

2.1.3 Use Theorems 1.4.4 and 2.1.1.
2.1.4 Use Theorem 2.1.1(e) and Exercise 1.5.4.
2.1.5 Use Corollary 2.1.3.
2.1.7 Let f : (X, d) → (Y, ρ) be a continuous function and A be a

countable subset of X such that A = X. Then by Theorem
2.1.1, f(X) = f(A) ⊆ f(A). Note that f(A) is countable.
Therefore, f(X) is separable.

2.1.8 Let A be bounded in (X, d). Suppose f(A) is not bounded.
Then for every n ∈ N, there exist an, a

′
n ∈ A such that

ρ(f(an), f(a
′
n)) > n. By the given condition, (an) has a con-

vergent subsequence say (ank
). Similarly, (a′nk

) has a conver-
gent subsequence which we denote by (a′nk

) itself for con-
venience. So ank

→ a and a′nk
→ a′. By continuity of f ,

f(ank
) → f(a) and f(a′nk

) → f(a′). nk < ρ(f(ank
), f(a′nk

)) ≤
ρ(f(ank

), f(a)) + ρ(f(a), f(a′)) + ρ(f(a′), f(a′nk
)) < 1 +

ρ(f(a), f(a′)) for k ≥ ko for some ko ∈ N. This implies that
the increasing sequence (nk) of naturals is bounded by a fixed
number eventually. A contradiction!

2.1.10 (b) Using Theorems 1.5.2 and 2.1.1(d), one can show that
every continuous function has a closed graph. We only need to
prove that if f is sub-continuous and has closed graph then it is
continuous. Suppose, if possible, f is not continuous at x ∈ X.
Then there exists an εo > 0 such that for all n ∈ N there exist
xn ∈ X with d(xn, x) < 1/n but ρ(f(xn), f(x)) > εo. Thus,
xn → x. By sub-continuity of f , there exists a convergent
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subsequence (f(xkn)) of (f(xn)). Suppose f(xkn) → y for some
y ∈ Y . Then the sequence {(xkn , f(xkn))} converges to (x, y)
in (X × Y, μ1). But G(f) is closed, hence (x, y) ∈ G(f). This
implies that y = f(x). A contradiction!

2.2.1 (b) Let {Ai : i ∈ I} be such collection and let x ∈ ∪Ai.
Then there exists a nhood Ux of x such that it intersects
Ai for only finitely many i, say i1, i2, . . . , in. Moreover,
every nhood of x intersects ∪Ai. Then prove by contra-
diction that every nhood of x intersects

⋃n
k=1Aik . Hence

x ∈ ⋃n
k=1Aik =

⋃n
k=1Aik . Thus, x ∈ Aik = Aik for

some k. This implies that ∪Ai ⊆ ∪Ai. The converse inclu-
sion always holds true.

(c) Prove using (b) and Theorem 2.1.1(f).
(d) (i) Consider the collection {An : n ∈ N ∪ {0}} of sets

in the Euclidean space R
2, where A0 = {(0, y) : y ∈

[0, 1]} and An = {( 1n , y) : y ∈ [0, 1]} for n ∈ N. For

n ∈ N, define fn : An → R as: fn((
1
n , y)) = 1

n . And
let f0 : A0 → R be defined as: f0((0, y)) = 1. Then
observe that the sequence 〈( 1n , 0)〉 converges to (0, 0),

but 1
n �→ 1.

(ii) Consider the function f : R → R defined as

f(x) =

{
0 : x ∈ (−∞, 0)

1 : x ∈ [0,∞)

}
.

2.2.2 Let A = {x ∈ X : f(x) ≥ g(x)} and B = {x ∈ X : f(x) ≤
g(x)}. Then X = A ∪B. Now use pasting lemma.

2.2.4 Let x1, . . . , xn ∈ X. For i ∈ {1, 2, . . . , n}, by Urysohn’s Lemma
there exists a continuous function fi : (X, d) → [0, 1] such that
fi(xi) = 1 and fi(xj) = 0 for j �= i. Then the set {fi : 1 ≤ i ≤
n} is linearly independent in C(X). Thus, dim(C(X)) ≥ n.

2.3.1 Take f(x) = 1
x .

2.3.2 Consider the identity map between (N, d) and (N, ρ), where d is
the usual distance metric and ρ is defined as ρ(n,m) = | 1n− 1

m |
for n, m ∈ N. Since every point of (N, d) and (N, ρ) is iso-
lated, any function with domain as (N, d) or (N, ρ) is contin-
uous. Note that (N, d) is complete because Cauchy sequences
in (N, d) are eventually constant, whereas (N, ρ) is incomplete
because the Cauchy sequence (n) is not convergent in (N, ρ).
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2.3.3 (a) Use f(U) = (f−1)−1(U).
(b) Take the projection map π1 : R

2 → R : π1(x, y) = x. Note
that π1 is open as well as continuous. But the image of
the hyperbola {(x, y) : xy = 1} under π1 is R \ {0}.

(c) Consider a constant map.
(d) Use discrete metric.

2.3.4 Note that |f(x)−f(x′)| = |x′−x|
xx′ < 1

a2
|x−x′| for x, x′ ∈ (a,∞).

2.3.8 (f) If (xn) �u (x′n) then the sequence 〈x1, x′1, x2, x′2, . . .〉 is
Cauchy in (X, d) and hence
the sequence 〈f(x1), f(x′1),f(x2), f(x′2), . . .〉 is Cauchy in
(Y, ρ). This implies that (f(xn)) �u (f(x′n)). Conversely,
let (xn) be Cauchy in (X, d). Then (xn) �u (xn). Hence
(f(xn)) �u (f(xn)). So (f(xn)) is Cauchy.

2.3.11 Let ε > 0. Then there exists a δ > 0 such that dZ(g(y), g(y
′)) <

ε whenever dY (y, y
′) < δ. Now for this δ, apply the uniform

continuity of f to get δ1 > 0 such that dX(x, x′) < δ1 implies
dY (f(x), f(x

′)) < δ. Consequently, we have dX(x, x′) < δ1 ⇒
dZ(g ◦ f(x), g ◦ f(x′)) < ε.

2.3.13 No. Take f(x) = g(x) = x for x ∈ R.
2.3.14 Consider f(x) = x2.
2.3.15 Consider the sequences (

√
nπ) and (

√
nπ + π

2 ).
2.4.1 Use | ‖x‖ − ‖x′‖ | ≤ ‖x− x′‖.
2.4.2 Let z1 = (x1, y1) and z2 = (x2, y2). Then |f(z1) − f(z2)| =

|f(x1, y1) − f(x2, y2)| = |d(x1, y1) − d(x2, y2)| ≤ d(x1, x2) +
d(y1, y2) = μ1(z1, z2). Since μ1(z1, z2) ≤ 2μ∞(z1, z2) ≤
2μ2(z1, z2), f is Lipschitz with any one of these metrics.

2.4.3 Use that xn−yn = (x−y)(xn−1+xn−2y+xn−3y2+· · ·+yn−1).
2.4.4 φ(y) −Md(x, y) ≤ f(y) −Md(x, y) ≤ f(x) for every f ∈ F .

Hence φ(y) − φ(x) ≤ Md(x, y). Now interchange the roles of
x and y.

2.4.5 Since ρ(f(x), f(x′)) ≤Md(x, x′) ≤M diam(A) for all x, x′ ∈
A, diam(f(A)) ≤M diam(A) <∞.

2.4.6 Let f and g be the identity functions on R. Then (fg)(x) = x2

for x ∈ R.
2.4.9 By the definition of infimum, for every n ∈ N, there exists

an ∈ A such that d(x, an) < d(x,A) + 1/n. (�) Thus, (an) is
a bounded real sequence and hence it has a convergent sub-
sequence. Let ank

→ a. Since A is closed, a ∈ A. Now by the
continuity of the function y �→ d(x, y), d(x, ank

) → d(x, a). By
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(�), d(x,A) ≤ d(x, a) ≤ d(x,A) + 1/n for all n ∈ N. Hence
d(x,A) = d(x, a).

2.4.10 Let f(x) =
√
x for x ∈ [0,∞). We know that |√x − √

y|2 =
|√x−√

y||√x−√
y| ≤ |√x+√

y||√x−√
y| = |x− y|. Hence

|√x − √
y| ≤ √|x− y| for x, y ≥ 0. Thus f is uniformly

continuous (take δ = ε2). But f is not Lipschitz on [0,∞)

because |√x−0|
|x−0| → ∞ as x→ 0+.

2.4.12 (b) Take f(x) =
√
x for x ≥ 0. Note that |√x − √

y| ≤√|x− y| for x, y ≥ 0.

(c) Let α = 1+ k where k > 0. Then, |f(x)−f(y)
x−y | ≤M |x− y|k

for x, y ∈ I with x �= y. Then lim
y→x

|f(x)−f(y)
x−y | = 0 and

hence lim
y→x

f(x)−f(y)
x−y = 0. Thus, f ′(x) = 0 for all x ∈ I and

hence f is constant on I.

2.4.13 Let (xn) and (yn) be two sequences in X and (λn) be a
sequence in K. Suppose that xn → x and yn → y in (X, d),
then prove that xn+yn → x+y in (X, d). This will prove that
f1 is continuous by Theorem 2.1.2. Similarly for proving the
continuity of f2, suppose that λn → λ in (K, | · |) and xn → x
in (X, d). Then show that λn · xn → λ · x in (X, d).

2.5.2 Suppose f : [0, 1] → [a, a+λ] is an onto isometry, where λ > 0.
Then |f−1(a + λ) − f−1(a)| = |a + λ − a| = λ. This implies
that λ ≤ 1. Now |1− 0| = |f(1)− f(0)| ≤ λ. Hence λ = 1.

2.5.4 Show that B ⊆ f(A) and f(A) ⊆ B.
2.5.5 Let D be a countable dense subset of (X, d). Now show that

X is isometric to a subset of l∞ using the following mapping:
x �→ fx where fx(y) = d(x, y)−d(y, a) for y ∈ D (where a ∈ D
is fixed). Note that |fx(y)| = |d(x, y) − d(y, a)| ≤ d(x, a) for
all y ∈ D. Thus, fx ∈ l∞.

2.6.4 Use sequential characterization of continuity.
2.6.7 If Ui is open in (Xi, di) for each i, then the set

∏n
i=1 Ui

is open in (
∏n

i=1Xi, μ∞): let x = (x1, . . . , xn) ∈ ∏n
i=1 Ui.

Then there exists an ε > 0 such that BXi(xi, ε) ⊆ Ui for all
i ∈ {1, 2, . . . , n}, where BXi(xi, ε) denotes the open ball with
centre xi and radius ε in (Xi, di). Consequently, BX(x, ε) =∏n

i=1BXi(xi, ε) ⊆
∏n

i=1 Ui where X =
∏n

i=1Xi and BX(x, ε)
denotes the ε-ball in (X,μ∞). Then

∏n
i=1 Ui is open and hence

any arbitrary union of the sets of this form is also open in the
product topology.
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Conversely, let U be open in (X,μ∞). If x = (x1, . . . , xn) ∈ U ,
then there exists a δx > 0 such that x ∈ BX(x, δx) ⊆ U . Thus,
U =

⋃
x∈U BX(x, δx) =

⋃
x∈U (

∏n
i=1BXi(xi, δx)).

2.6.8 Consider the sequence (fn) in C[0, 1] defined as: fn(x) = xn

for x ∈ [0, 1]. Then show that as n → ∞ ρ(fn, f) → 0 but
d(fn, f) �→ 0, where f(x) = 0 for all x ∈ [0, 1].

2.6.9 Note that R is complete but (0, 1) is incomplete with respect
to the usual metric. Now use Proposition 2.3.1 to get a con-
tradiction.

Chapter 3

3.1.2 Note that the function f : (R, d) → ((−π
2 ,

π
2 ), | · |) : f(x) =

tan−1 x is a bijective isometry. Thus (R, d) is incomplete as
((−π

2 ,
π
2 ), | · |) is incomplete.

3.1.4 Let f be defined as in Example 3.1.6. Then fn(x) ∈
B(fnε(x), ε) ∀ n ≥ nε and ∀ x ∈ X. Consequently, f(x) ∈
B(fnε(x), ε) ∀ x ∈ X, which implies that ρ(f(x), fnε(x)) <
ε ∀ x ∈ X. Since fnε is bounded, f ∈ B(X,Y ). Moreover,
D(f, fnε) < ε. Now it is easy to prove that fn → f in B(X,Y ).
Thus, (B(X,Y ),D) is complete.

3.1.5 First observe that (R, ρ) is complete by Exercise 2.6.6 and
Proposition 2.6.3. Now the proof is similar to that of Example
3.1.6.

3.1.7 Let (xn) be a sequence in
∏∞

i=1Xi, where x
n = (xn1 , x

n
2 , . . .).

Then observe that (i) xn → x, where x = (x1, x2, . . .), in∏∞
i=1Xi if and only if xni → xi in Xi for each i; (ii) (xn) is

Cauchy in
∏∞

i=1Xi if and only if (xni ) is Cauchy in Xi for
each i.

3.2.3 (a) ⇒ (b): Suppose f is not uniformly continuous on a
totally bounded subset A of X. Then there exists an εo >
0 such that for all n ∈ N, there exist an, a′n ∈ A
with d(an, a

′
n) < 1

n but ρ(f(an), f(a
′
n)) ≥ εo. Since A

is totally bounded, by Theorem 3.2.3 (an) has a Cauchy
subsequence say (ank

). By Proposition 2.3.2, (a′nk
) is also

Cauchy. Now verify that the sequence 〈an1 , a
′
n1
, an2 , a

′
n2
, . . .〉

is also Cauchy. Since f is Cauchy-continuous, the sequence
〈f(an1), f(a

′
n1
), f(an2), f(a

′
n2
), . . .〉 is also Cauchy. A contra-

diction!
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(b) ⇒ (a): Let (xn) be Cauchy in X. Then A = {xn : n ∈ N} is
totally bounded. Hence f is uniformly continuous (and hence
Cauchy continuous) on A. Thus, (f(xn)) is Cauchy.

3.2.4 (a) ⇒ (b): Let (xn) be Cauchy in X. Then the set A = {xn :
n ∈ N} is totally bounded. Hence f(A) is totally bounded. By
Theorem 3.2.3, (f(xn)) has a Cauchy subsequence.

(b) ⇒ (a): Let A be totally bounded in X. Suppose f(A) is
not totally bounded. Then there exists εo > 0 and a1, a2 ∈ A
such that f(a2) �∈ B(f(a1), εo). Now there exists a3 ∈ A such
that f(a3) �∈ B(f(a1), εo) ∪ B(f(a2), εo). Continuing like this,
we will get a sequence (an) in A such that ρ(f(ai), f(aj)) ≥ εo
for all i, j ∈ N, i �= j. Since A is totally bounded, (an) has
a Cauchy subsequence say (ank

). Then (f(ank
)) has a Cauchy

subsequence, which is a contradiction.
3.3.2 Take xn+1 = xn + (1/n) and x1 = 0.
3.3.3 Let (An) be a sequence of non-empty closed subsets of R with

An+1 ⊆ An ∀ n ∈ N and lim
n→∞ d(An) = 0. Then An is bounded

for sufficiently large n and hence by the completeness prop-
erty of R, An has supremum and infimum, say xn and yn,
respectively. Since An is closed, xn, yn ∈ An. Now An+1 ⊆ An

implies that yn ≤ yn+1 ≤ xn+1 ≤ xn. Since every monotone
and bounded sequence converges in R, xn → x and yn → y.
Moreover, x, y ∈ An ∀ n. But |x−y| ≤ d(An) → 0. So x = y.
Hence

⋂∞
n=1An = {x}.

3.3.4 Consider the series expansion of ex, ex =
∑∞

n=0
xn

n! . Now take
the sequence of partial sums.

3.4.1 Suppose there exists a homeomorphism between the comple-
tions (X̂d, d) and (X̂ρ, ρ) of (X, d) and (X, ρ), respectively,
that fixes X. Since every continuous function on a complete
space is Cauchy-continuous (Exercise 2.3.9), the metrics d and
ρ are Cauchy equivalent on X.

Conversely, suppose that the metrics d and ρ are Cauchy
equivalent on X. Then the identity map id : (X, d) → (X, ρ) is

Cauchy-continuous. Let x ∈ X̂d. Then there exists a sequence
(xn) in X which converges to x in (X̂d, d). This implies
that (xn) is Cauchy in (X, d) and hence in (X, ρ). Thus, the

sequence (xn) converges to some x′ in (X̂ρ, ρ). Suppose (zn)

is another sequence in X that converges to x in (X̂d, d). Then
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there exists some z in X̂ρ such that (zn) converges to z with
respect to the metric ρ. Now, the sequence 〈x1, z1, x2, z2, ...〉
is convergent to x in (X̂d, d) and hence the sequence is con-

vergent in (X̂ρ, ρ). So x′ = z. Consequently, the function

f : (X̂d, d) → (X̂ρ, ρ) : f(x) = x′ is well-defined, that

is, the definition of f(x), for x ∈ X̂d, is independent of the
choice of the sequence in X converging to x with respect to d.
Note that f is a continuous extension of id. Moreover, f is a
homeomorphism.

3.5.3 Suppose for ε > 0, we have δ > 0 such that ρ(f(a), f(a′)) < ε
whenever a, a′ ∈ A with d(a, a′) < δ. Now let x, x′ ∈ A such
that d(x, x′) < δ/3. Then there exist sequences (an) and (a′n)
in A which converges to x and x′, respectively. Now verify the
existence of some no ∈ N such that d(am, a

′
p) < δ ∀ m, p ≥ no.

Thus ρ(f(am), f(a′p)) < ε. Now use the definition of F along
with the triangle inequality to get ρ(F (x), F (x′)) ≤ ε.

3.5.4 Consider f : (0,∞) → R defined as: f(x) = sin( 1x).
3.5.6 Use Theorem 3.5.3. Here observe the significance of Theorem

3.5.3.
3.5.7 Suppose (X, d) is complete. Then use Urysohn’s Lemma and

Corollary 3.5.2 to get the required function. Conversely, sup-
pose, if possible, (X, d) is not complete. Let (xn) be a Cauchy
sequence of distinct terms which does not converge in X.
Hence it has no convergent subsequence. Thus, A = {x2n :
n ∈ N} and B = {x2n+1 : n ∈ N} are disjoint and
closed subsets of X. Now use the given condition to get the
contradiction.

3.5.8 The proof is analogous to that of Theorem 3.5.4.
3.6.1 Suppose P =

⋃
n∈N Fn, where Fn’s are closed in R. Since Fn ⊆

P, intFn = ∅. Now Q is a countable union of singletons, hence
R is a countable union of closed and nowhere dense sets. This
is a contradiction to Baire category theorem.

3.6.2 Let (Un) be a sequence of open dense sets in P. Then Un =
Vn ∩ P where Vn is open in R. Since Un is dense in P and
P is dense in R, it can be easily shown that Vn is dense in
R. Now R is a Baire space by Baire category theorem. Hence⋂

n∈N Un = (
⋂

n∈N Vn) ∩ (
⋂

q∈Q R \ {q}) is dense in R. Now
show that it is dense in P.
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3.6.4 Suppose R is countable. Then R =
⋃

x∈R{x} and each set {x}
is closed in R. Now use Corollary 3.6.3 to get a contradiction.

3.6.5 The set of natural numbers, N, is nowhere dense in R but it
is not nowhere dense in itself.

3.6.6 Consider Q =
⋃

q∈Q{q}.
3.6.8 Use Exercises 3.6.7 and 3.6.5.
3.7.2 (a) Use Corollary 3.7.2 and Exercise 3.6.1.

(b) Let us take Thomae’s function, f : R → R : f(x) = 0
if x �∈ Q, f(0) = 1 and f(x) = 1/n if x = m

n where
m ∈ Z and n ∈ N are coprime. Let p = m/n be such
a rational number. Then f(p) = 1/n. Let ε < 1/n and
δ > 0. Since irrationals are dense in R, there exists a �∈ Q

in (p− δ, p+ δ). Thus, |f(a)− f(p)| = 1/n > ε. So f is not
continuous at rationals. Now let c �∈ Q. If ε > 0, then by
Archimedean property of R there exists no ∈ N such that
1/no < ε. Note that the interval (c−1, c+1) contains only
finitely many rationals of the aforementioned form m/n
with n < no. Hence we can choose 0 < δ < 1 such that
(c−δ, c+δ) contains rationals of the formm/n with n ≥ no
only. Consequently, |f(m/n) − f(c)| = 1/n ≤ 1/no < ε.
Hence f is continuous at irrationals.

3.7.3 Note that A = {x ∈ X : d(x,A) = 0} =
⋂∞

n=1{x ∈ X :
d(x,A) < 1

n}. Moreover, f(x) = d(x,A) is a continuous func-
tion.

3.7.4 Let ε > 0 and xo ∈ X. Then by definition of infimum, there
exists an no ∈ N such that ωno(f, xo) < ω(f, xo) + ε. If x ∈ X
with d(x, xo) < 1/2no, then B(x, 1/2no) ⊆ B(xo, 1/no). Thus,
ω(f, x) ≤ ω2no(f, x) ≤ ωno(f, xo) < ω(f, xo) + ε.

Consider f : R → R defined by: f(x) = 1 for x ≥ 0 and
f(x) = 0 for x < 0. Then verify that the corresponding oscil-
lation function ω(f, ·) is not lower semi-continuous at 0.

Chapter 4

4.1.1 (b) ⇒ (a): Suppose, if possible, xo is an accumulation point
of X. Then by Theorem 1.5.2, there exists a sequence (xn) of
distinct points in X which converges to xo. Now the infinite
set {xn, xo : n ∈ N} is compact in X (see Example 4.1.3).
This is a contradiction.
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4.1.2 Let X be any infinite set equipped with the discrete metric
d. Then X is closed and bounded in (X, d), but (X, d) is not
compact (recall that any compact subset in (X, d) must be
finite).

4.1.3 Yes. Let A = {Ui : i ∈ I} be an open cover of X. Let
Uio be a non-empty open subset of X for some io ∈ I. Then
X\Uio is a proper closed subset ofX and hence it is compact.
Consequently, there exist i1, . . . , in in I such that X \ Uio ⊆⋃n

j=1 Uij . Consequently, {Uij : 0 ≤ j ≤ n} is a finite subcover
for X.

4.1.4 Consider the open cover {B(x, 1) : x ∈ F} of F , where
B(x, 1) = {y ∈ l∞(R) : D(y, x) < 1}. Now for each n ∈ N, let

x(n) be defined so that x
(n)
n = −1 and x

(n)
j = 1 for j �= n. Note

that x(n) ∈ F . From this, conclude that {B(x, 1) : x ∈ F}
does not have a finite subcover for F .

4.1.7 (i) Note that ∂A = A ∩Rn \A = A ∩Rn \ A, since A, being
compact, is closed in R

n. Hence, ∂A ⊆ A.
We need to show that A ⊆ ∂A = A−int(A) = A−int

(A). If possible, suppose z ∈ A, but z �∈ ∂A = A−int (A).
Therefore z ∈ int A. So there exists δ > 0 such that B(z, δ) ⊆
A. Now draw a ray l starting from z in any direction. Note
that l is closed in R

n and hence A1 = A ∩ l is also closed
in R

n. Since A1 ⊆ A and A is compact, A1 is also compact.
So A1 is bounded in R

n. Let m = sup{d(a, z) : a ∈ A1},
where d is the Euclidean metric on R

n. Then there exists
a sequence (an) in A1 such that d(an, z) → m. Since A1 is
compact, there exists a subsequence (akn) of (an) such that
akn → ao for some ao ∈ A1. Hence d(akn , z) → d(ao, z). But
d(akn , z) → m and so d(ao, z) = m (�).

Now we claim that ao ∈ ∂A. If possible, suppose that ao �∈
∂A = A−intA. Since ao ∈ A1 ⊆ A, ao ∈ intA. So there
exists r > 0 such that B(ao, r) ⊆ A. Note that ao+

r
2

ao−z
|z−ao| ∈

A ∩ l = A1. Now

∣∣∣∣ao + r

2

ao − z

|z − ao| − z

∣∣∣∣ =
∣∣∣∣(ao − z)

(
r

2|z − ao| + 1

)∣∣∣∣
= |ao − z|

(
r

2|z − ao| + 1

)
> |ao − z|.
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But it contradicts (�). Hence ao ∈ ∂A. Since l was an arbi-
trary ray, we have a boundary point of A in every direction.
This contradicts the fact that ∂A is countable. Therefore,
A = ∂A.
(ii) Consider the compact subset [0, 1] of R.

4.2.1 Take N with the metric induced by the usual distance.
4.2.2 By definition of supremum, for each n ∈ N, there exist

xn, yn ∈ E such that δ − 1/n < d(xn, yn) ≤ δ (�).
Since E is compact, (xn) has a convergent subsequence, say
xnk

→ xo where xo ∈ E. Similarly, there exists a subsequence
of (ynk

) which converges to some point of E say yo. For conve-
nience, we can denote that subsequence by (ynk

) itself. Using
Proposition 2.5.1, d(xnk

, ynk
) → d(xo, yo). Now conclude

using (�).
4.2.3 Construct a sequence of functions (fn) in C[0, 1] in the fol-

lowing manner: for all n ∈ N, fn is 0 in [0, 1
n+2 ], 1 at 1

n+1 ,

0 in [ 1n , 1] and linear in the intervals [ 1
n+2 ,

1
n+1 ] and [ 1

n+1 ,
1
n ].

Then D(fn, fm) = 1 for n �= m.
4.2.4 Use sequential characterization of compactness.
4.2.5 Suppose (Xi, di) is compact for all i ∈ N. Let ψ = (xn) be a

sequence in
∏∞

i=1Xi, where x
n = (xn1 , x

n
2 , . . .). If πi denotes

the projection on ith component, then the sequence π1o ψ
has a convergent subsequence in X1. Thus, we can find a
subsequence ψ1 of ψ such that π1o ψ1 converges to x1 ∈ X1.
Now similarly, we can find a subsequence ψ2 of ψ1 such that
π2o ψ2 converges to x2 ∈ X2. Proceed inductively in this
manner. Then finally construct a sequence whose nth term
is given by the nth term of the sequence ψn. Observe that
this is a subsequence of ψ which is convergent to (x1, x2, . . .).
Consequently,

∏∞
i=1Xi is compact by Theorem 4.2.4.

4.2.6 Use Theorem 4.2.6 and Exercise 3.2.1.
4.3.1 We will prove that A = A. Let xo ∈ A. Now the function f

defined as f(x) = −d(x, xo) is continuous on (X, d). Hence
its restriction to A attains the maximum on A. Since xo ∈ A,
there exists a sequence (an) in A such that an → xo. Thus,
f(an) → f(xo). Since f ≤ 0 and f(an) → 0, sup{f(x) : x ∈
A} = 0. Hence xo ∈ A.
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4.3.2 Let Vn = {x ∈ X : f(x) < n}. Then by Exercise 2.1.9,
{Vn : n ∈ N} is an open cover of X. Now use the compactness
of (X, d) to show that f(X) is bounded above. Consequently,
by completeness axiom on R there exists sup{f(x) : x ∈ X}
in R, call it m. By Theorem 1.2.2, there exists (xn) ⊆ X
such that f(xn) → m. Since (X, d) is compact, Theorem
4.2.4 implies the existence of a convergent subsequence (xkn)
of (xn). Let xkn → xo. Now prove that f(xo) = m.

4.3.3 Use Theorem 2.1.1(d) and Example 4.1.3.
4.3.4 Let xo ∈ X. Define a sequence (xn) ⊆ X as follows:

xn = f(xn−1) for n ∈ N. Since X is compact, (xn) has a
cluster point, say a ∈ X. Hence for ε > 0, we can choose
m, k ∈ N such that d(xm, a) < ε and d(xm+k, a) < ε.
Thus, d(xo, f(X)) ≤ d(xo, xk) = d(xm, xm+k) ≤ d(xm, a) +

d(a, xm+k) < 2ε for all ε > 0. So xo ∈ f(X) by Exercise 1.5.4.
Theorem 4.3.1 implies that f(X) is compact and hence by
Proposition 4.1.2, xo ∈ f(X). The conclusion may not hold
true if we drop the compactness of X: take X = N and
f(n) = n+ 1.

4.3.5 (a) Clearly, f is continuous. Let us define a function, g(x) =
d(x, f(x)). Then |g(x)− g(y)| < 2d(x, y) and hence it is con-
tinuous. Since X is compact, g attains its minimum at some
point, say xo ∈ X. Suppose f(xo) �= xo, then g(f(xo)) =
d(f(xo), f(f(xo))) < d(xo, f(xo)) = g(xo). This is a contra-
diction. Thus, f(xo) = xo. Uniqueness of fixed point is easy
to see.

4.3.6 Use Theorem 4.3.1.
4.3.7 (a) Consider the function f defined on A as: f(x) = d(x,B)

for x ∈ A and use Theorem 4.3.2 and Exercise 1.5.4.
(c) Let A = N and B = {n, n− 1

n : n ∈ N}.
4.3.9 Suppose G is closed in X × Y and f is not continuous at

some xo ∈ X. Then there exist an εo > 0 such that for all
n ∈ N, we can find xn ∈ X such that d(xn, xo) < 1/n but
ρ(f(xn), f(xo)) ≥ εo. Thus, xn → xo. Since (Y, ρ) is compact,
(f(xn)) has a convergent subsequence. So let f(xnk

) → yo.
Then the sequence 〈(xnk

, f(xnk
))〉 in G converges to (xo, yo).

Now use the closeness of G to get a contradiction.
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Let (xn) be a sequence of distinct points in a metric space
(X, d) such that xn → x, x ∈ X. Then consider a function
f : {xn, x : n ∈ N} → N, defined by f(x) = 1 and f(xn) = n
for n ∈ N.

4.3.10 Use Proposition 3.2.2 and Theorem 4.3.7.
4.3.11 Let ε > 0. Since f is uniformly continuous, there is a

δ > 0 such that |f(x) − f(y)| < ε ≤ ε + Md(x, y) when-
ever d(x, y) < δ and M > 0. Since f is bounded, there exists
M1 > 0 such that |f(x) − f(y)| ≤ M1 for all x, y ∈ X.
Let M = M1/δ. Then |f(x) − f(y)| ≤ Mδ ≤ Md(x, y) ≤
Md(x, y) + ε whenever d(x, y) ≥ δ.

4.4.1 Am is always closed in R
2. But Am is bounded in R

2 if and
only if m is even. Suppose Am is bounded, then there exists
M > 0 such that |x| ≤ M and |y| ≤ M for all (x, y) ∈ Am.
If m is odd, then the polynomial p(x) = xm + (M + 1)m − 1
has a real root, say xo. Then (xo, M + 1) ∈ Am, which is a
contradiction.

4.4.2 Use the sequential characterization of compactness in a met-
ric space (Theorem 4.2.4).

4.4.6 No. Consider the identity map from (N, | · |) to (N, d) where
d is the discrete metric.

Chapter 5

5.1.3 Since Q is countable, there exists a bijection f : N → Q. Since
every point of N is isolated with respect to the usual metric,
f is continuous. Note that N is locally compact, but Q is not.

5.1.4 Apply Proposition 5.1.3 on projection maps.
5.1.5 For each x ∈ K, we get εx > 0 such that B(x, εx) ⊆ U

and B(x, εx) is compact (by Theorem 5.1.1). Since K is com-

pact, K ⊆ ⋃n
i=1B(xi, εxi). Now use that

⋃n
i=1B(xi, εxi) =⋃n

i=1B(xi, εxi).
5.1.6 (a) (0, 1) (Corollary 5.1.2).

(b) The proof is analogous to that of Theorem 3.6.2. (Choose
Ci which are compact as well. The Cauchy sequence (xn)
lies eventually in the compact spaces Ci.)

(c) Refer to Exercise 3.6.2.
5.2.5 Note that |I(x) − I(y)| ≤ 2d(x, y).
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5.3.3 (a) ⇒ (b): Let σ be a metric on X which is equivalent to d.
Hence the identity map I : (X, d) → (X,σ) is a homeomor-
phism. Now suppose that (xn) is cofinally Cauchy in (X, d).
Since (X, d) is cofinally complete, (xn) has a convergent sub-
sequence, say (xnk

) (Theorem 1.6.1). By the continuity of
I, (xnk

) also converges in (X,σ) and hence (xn) is cofinally
Cauchy with respect to the metric σ.

(b) ⇒ (a): If (X, d) is not cofinally complete, then there exists
a cofinally Cauchy sequence (xn) of distinct points in (X, d)
with no cluster point. Thus the set A = {xn : n ∈ N} is
closed and discrete and hence the function f : (A, d) → R

defined by f(xn) = n is continuous. By Tietze’s extension

theorem, there exists a real-valued continuous extension f̃ of
f to (X, d). Now define a metric σ on X as follows: σ(x, y) =
d(x, y) + |f(x)− f(y)| for x, y ∈ X. Then σ is equivalent to d
(see Exercise 2.6.2). By (b), (xn) is cofinally Cauchy in (X,σ).
Consequently, the sequence (f(xn)) = (n) is cofinally Cauchy
in R. A contradiction!

5.3.5 (c) ⇒ (a): Suppose f is not uniformly continuous. Then there
exists an εo > 0 such that ∀ n ∈ N, ∃ xn, zn ∈ X with
d(xn, zn) <

1
n but ρ(f(xn), f(zn)) > εo. Hence (xn) � (zn) but

(f(xn)) ��c (f(zn)), a contradiction.
5.4.1 For R

n, use Heine–Borel theorem. For lp: let A be contained
in a ball, B(xo, r), in l

p, where xo ∈ lp and r > 0. Let ε > 0.
Choose m ∈ N such that r

m < ε. Let a ∈ A and define ξi =

xo +
i
m(a − xo) for all i = 1, 2, . . . ,m and ξo = xo. Then one

can verify that d(ξi−1, ξi) < ε ∀ i = 1, 2, . . . ,m. Hence every
element of A can be joined with xo by an ε-chain of length m.

5.4.3 Use Theorem 5.4.2 and Example 2.6.4.
5.4.4 The Bourbaki–Cauchy sequences inX are eventually constant.

Chapter 6

6.1.1 Suppose f(x) = lim
n→∞ fn(x) for every x ∈ X. If f is not

increasing, then there exist x, y ∈ X such that x < y but
f(x) > f(y). Let εo = f(x)− f(y). Then there exists no ∈ N

such that |fn(x)−f(x)| < εo
3 and |fn(y)−f(y)| < εo

3 ∀ n ≥ no.
Now fno(x)−fno(y) = (fno(x)−f(x))+(f(x)−f(y))+(f(y)−
fno(y)) >

−εo
3 + εo − εo

3 = εo
3 > 0. A contradiction! Note that
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the same result may not hold true for strictly increasing func-
tions: consider fn(x) = x/n.

6.1.2 Use Theorem 2.1.1(d), Example 4.1.3 and Theorem 6.1.2.
6.1.3 Let fn : R → R be defined as fn(

1
n) = 1

n and otherwise it
is 0.

6.1.5 Suppose (fn) is a Cauchy sequence in (Lip(X), ‖ · ‖). Let ε >
0. Then there exists no ∈ N such that |fm(xo)− fn(xo)| < ε
and L(fm − fn) < ε ∀ m,n ≥ no. Thus, for all x ∈ X and
for all m,n ≥ no, we have

|fm(x)− fn(x)− fm(xo) + fn(xo)| < ε d(x, xo).

Then (fn(x)) is Cauchy in R ∀ x ∈ X. Let f(x) :=
lim
n→∞ fn(x) ∀ x ∈ X. Since a Cauchy sequence is bounded, by

Theorem 6.1.4 f ∈ Lip(X). Now the claim is ‖fn−f‖ → 0:
let ε > 0. Since (fn) is Cauchy, for x, x

′ ∈ X we have |fm(x)−
fn(x)−fm(x′)+fn(x′)| < ε d(x, x′) ∀m,n ≥ no. Now letm→
∞. Then |(f − fn)(x)− (f − fn)(x

′)| ≤ ε d(x, x′) ∀ n ≥ no.
6.2.2 The sequence of partial sums (sn) for the series

∑
n∈N fn is

an increasing sequence in C[a, b]. Now use Dini’s theorem to
conclude.

6.2.4 Let ε > 0. By Proposition 6.2.1, (fn) is uniformly Cauchy
on D. Thus, there exists no ∈ N such that |fn(y)− fm(y)| <
ε/3 ∀ n, m ≥ no and ∀ y ∈ D. Let x ∈ X. Then there exists
(yn) ⊆ D such that yn → x. Now use the continuity of the
functions to prove that (fn) is uniformly Cauchy on X.

6.3.3 (c) Take any bounded continuous function f : R → R which
is not uniformly continuous.

(d) Let X = N and S = {fn : n ∈ N} where fn(n) = 1 and
otherwise it is zero.

6.3.9 Suppose for each n ∈ N, there exists Mn > 0 such that
|fn(x)| < Mn ∀ x ∈ X. Since (fn) converges uniformly to f
on X, there exists no ∈ N such that |fn(x)− f(x)| < 1 for all
n ≥ no and for all x ∈ X. As a consequence, for n ≥ no and
x ∈ X we have, |fn(x)| ≤ |fn(x) − f(x)|+ |f(x)− fno(x)| +
|fno(x)| < 2 +Mno . Let M = max{M1,M2, . . . ,Mno−1, 2 +
Mno}. Then |fn(x)| < M ∀ n ∈ N and ∀ x ∈ X.

6.3.10 (c): Yes. If S ⊆ C(X) is equicontinuous then so is S.
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6.4.2 Note that the dimension of R2 over R is 2.
6.4.3 Follows from Theorem 6.4.5.
6.4.4 (b) Use Theorem 4.3.2.
6.4.5 Note that Lip(X) contains the constant functions and hence

it vanishes nowhere on X. Further, it separates the points
of X: let x1 �= x2 ∈ X, then the function f(x) = d(x, x1)
belongs to Lip(X) and f(x1) �= f(x2). Now use Exercise
6.4.4 and Theorem 6.4.3.

6.4.7 From Corollary 6.4.8, there exists a sequence of polyno-
mials (pn) which converges uniformly to f on [0, 1]. Then∫ 1
0 f

2(x)dx = lim
n→∞

∫ 1
0 f(x)pn(x)dx = 0. Now using continu-

ity of f , show by contradiction that f = 0 on [0, 1].
6.4.8 Let A = {xn : n ∈ N} be a countable dense subset of X and

let fn(x) = d(x, xn). If A is the subalgebra of C(X) gener-
ated by the functions 1, f1, f2, . . . , then show that A = C(X)
(use Theorem 6.4.6).

6.4.9 (a) Example can be easily constructed using Weierstrass
approximation theorem (Corollary 6.4.8).

(b) Consider fn(x) = xn+1/(n+1) for x ∈ [0, 1]. Then fn →
0 uniformly because |fn(x)| ≤ 1/(n + 1) → 0 as n → ∞
for any x ∈ [0, 1]. But f ′n(x) = xn. Now see Example
6.1.2.

(c) Let x ∈ I and m, n ∈ N. Apply Lagrange mean value
theorem to the function fm − fn on the interval with
endpoints xo and x. Now use Proposition 6.2.1.

6.4.10 Let Ar = {f ∈ A : f(X) ⊆ R}. If f ∈ A, then Ref =
(f + f)/2 ∈ Ar and similarly, Imf ∈ Ar. Apply Theorem
6.4.6 on Ar.

Chapter 7

7.1.1 Take f(x) = (x+ 1)/2.
7.1.2 Let A = {(x, y) : (x−1)2+y2 ≤ 1}∪{(x, y) : (x+1)2+y2 ≤ 1}.

Then A is connected but A◦ is not connected.
7.1.3 Consider the function f(x) = xm. Then f(0) = 0. Let xo =

max{a, 1}. Then f(xo) = xmo > a. Thus, f(0) < a < f(xo).
Now use intermediate value theorem.

7.1.4 If possible, suppose x and y are two distinct elements in a
countable connected subset A of (X, d). Then there exists 0 <
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r < d(x, y) such that B(x, r) ∩ A = B[x, r] ∩ A. Now use
Theorem 7.1.1 to get a contradiction.

7.1.5 Suppose (X, d) is not connected, then there exists a non-
constant continuous function g : (X, d) → {0, 1}, where {0, 1}
is equipped with the discrete metric. Let h : {0, 1} → R be
defined by: h(0) = 0 and h(1) = 1. Then h is continuous and
so is h ◦ g but h ◦ g does not satisfy IVP.

7.1.6 Note that if f : X → Y is a homeomorphism, then f : A →
f(A) is also a homeomorphism for A ⊆ X. Moreover, we know
that if we remove a point from a circle then it will still remain
connected. So use Corollary 7.1.2. For the second part, use
Theorem 4.3.3.

7.1.7 First think about connected subsets of Q. Then look at some
characteristic function defined on Q.

7.2.2 Every component of Q is a singleton.
7.2.5 (a) Topologist’s sine curve (Example 7.3.3).

(b) (0, 1) ∪ (2, 3).
(c) Let C be a component in (X, d) and x ∈ C. Then there

exists a connected neighbourhood G of x. Since x ∈ C∩G,
C∪G is connected. But C is a component, hence C = C∪G
which further implies that G ⊆ C.

7.2.6 For the first part, use Exercise 7.2.5(c). Let D be a countable
dense subset in R

n. Since each component in U is open, each
component contains a point of D. Now distinct components
are disjoint and D is countable. Hence there are countably
many components.

7.3.1 Use the homeomorphism h : [0, 1] → [a, b] defined as h(x) =
xb+ (1− x)a. And the inverse function h−1.

7.3.2 Let X = R
2 \{(0, y) : −1 ≤ y ≤ 1} and consider the open unit

ball in X with centre (12 , 0).
7.3.3 Let U be a non-empty open connected set. Fix xo ∈ U . Con-

sider U1 = {x ∈ U : ∃ a path in U joining x and xo}. Then
xo ∈ U1. Now show that U1 is both closed and open in U .
Thus, U1 = U . Also refer to the proof of Theorem 7.4.1.

7.3.4 The ellipse is the image of [0, 2π] under the continuous map-
ping f(t) = (a cos(t), b sin(t)).

7.3.6 For path connectedness, use Exercise 2.2.3, Theorem 7.3.2 and
projection maps.



Hints to Selected Exercises 245

7.4.1 SupposeR2\A is not polygonally connected. Let x, y ∈ R
2\A.

Consider a straight line l between x and y which is not passing
through them. Now draw line segments joining x and points
on l. Similarly draw line segments joining y and points on l.
This gives uncountable number of polygonal paths between x
and y. Since R

2 \ A is not polygonally connected, each such
path contains distinct points of A. This implies that A is
uncountable.
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Appendix

Some Useful Inequalities

Theorem A.1 (Young’s inequality). Let a and b be non-negative
real numbers and 0 < λ < 1 be a fixed real number. Then

aλb1−λ ≤ λa+ (1− λ)b.

Proof. The inequality certainly holds when either a or b is zero. So
let us assume that a > 0 and b > 0. Since the function ln x is concave
on (0,∞), ln(λa + (1 − λ)b) ≥ λ ln a + (1 − λ) ln b. This implies
that aλb1−λ ≤ λa + (1 − λ)b because the function ex is increasing
on R.

The main purpose of Young’s inequality is to prove the next
inequality.

Theorem A.2 (Hölder’s inequality). If p > 1 and q is such that
1
p + 1

q = 1, then we have

n∑
i=1

|xiyi| ≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

for (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in R
n or C

n.

Proof. If either
∑n

i=1 |xi|p or
∑n

i=1 |yi|q is zero, then we are done.
Hence we assume that they both are non-zero. For convenience, let us

denote (
∑n

i=1 |xi|p)1/p by X and (
∑n

i=1 |yi|q)1/q by Y . Now for every
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i ∈ {1, 2, . . . , n} we apply Young’s inequality for a = |xi|p
Xp , b = |yi|q

Y q

and λ = 1/p. Hence we get,

|xiyi|
XY

≤ 1

p

|xi|p
Xp

+
1

q

|yi|q
Y q

∀ i ∈ {1, 2, . . . , n}.

Now by adding all the n inequalities, we get∑n
i=1 |xiyi|
XY

≤ 1

p

∑n
i=1 |xi|p
Xp

+
1

q

∑n
i=1 |yi|q
Y q

=
1

p
+

1

q
= 1.

Remark. When we particularly take p = 2, then Hölder’s inequality
reduces to (

n∑
i=1

|xiyi|
)2

≤
(

n∑
i=1

|xi|2
)(

n∑
i=1

|yi|2
)
.

Since this special case is widely applicable especially in functional
analysis and probability theory, it is given a special name Cauchy–
Schwarz inequality .

Now we prove the main inequality which is required to prove the
triangle inequality for some significant metrics in Chapter 1.

Theorem A.3 (Minkowski’s inequality for finite sums). For
p ≥ 1, we have

(
n∑

i=1

|xi + yi|p
)1/p

≤
(

n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

,

where (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in R
n or C

n.

Proof. We only need to prove the case for p > 1 and
∑n

i=1 |xi +
yi|p �= 0.

n∑
i=1

|xi + yi|p ≤
n∑

i=1

|xi||xi + yi|p−1 +

n∑
i=1

|yi||xi + yi|p−1
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≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q

+

(
n∑

i=1

|yi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q

,

(by Hölder’s inequality)

=

⎡
⎣( n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

⎤
⎦( n∑

i=1

|xi + yi|p
)1/q

.

Now by dividing both sides by (
∑n

i=1 |xi + yi|p)1/q, we get the
required result.

Theorem A.4 (Minkowski’s inequality for infinite sums).
Suppose p ≥ 1, and (xn) and (yn) are sequences in R or C

such that
∑∞

i=1 |xi|p and
∑∞

i=1 |yi|p are convergent. Then the series∑∞
i=1 |xi + yi|p is convergent. Moreover we have,

( ∞∑
i=1

|xi + yi|p
)1/p

≤
( ∞∑

i=1

|xi|p
)1/p

+

( ∞∑
i=1

|yi|p
)1/p

.

Proof. By Theorem A.3, for any n ∈ N we have

(
n∑

i=1

|xi + yi|p
)1/p

≤
(

n∑
i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

≤
( ∞∑

i=1

|xi|p
)1/p

+

( ∞∑
i=1

|yi|p
)1/p

.

Thus,
{
(
∑n

i=1 |xi + yi|p)1/p
}
n≥1

is a monotonically increasing

sequence of real numbers which is bounded above by (
∑∞

i=1 |xi|p)1/p+
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(
∑∞

i=1 |yi|p)1/p < ∞. Consequently, the series
∑∞

i=1 |xi + yi|p is con-
vergent and

( ∞∑
i=1

|xi + yi|p
)1/p

≤
( ∞∑

i=1

|xi|p
)1/p

+

( ∞∑
i=1

|yi|p
)1/p

.
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Fσ-set, 119
Gδ-set, 119
d(A), 17
d(A,B), 36
d(x,A), 36

A

accumulation point, 26
algebra of functions, 193
arc, 218
Archimedean property, 8
arcwise connected, 218
Ascoli–Arzelà theorem, 190
asymptotic sequences, 65, 151
Atsuji space, 148
axiom of choice, 5

B

Baire category theorem, 115,
148

Baire space, 115
Banach fixed point theorem, 71
basic neighborhood, 24
Bolzano–Weierstrass theorem, 46
boundary point, 28
bounded above, 6
bounded below, 7
bounded function, 17
bounded sequence, 17
bounded set, 17

boundedly compact, 139
Bourbaki–Cauchy sequence, 169

C

Cantor’s intersection theorem, 98
Cauchy-continuous function, 64
Cauchy-Schwarz inequality, 252
Cauchy equivalent metrics, 83
Cauchy sequence, 35, 86
cell, 140
chain, 212
clopen set, 23
closed ball, 19
closed map, 67
closed set, 22
closure of a set, 24
closure point, 24
cluster point, 42
cofinally asymptotic sequences, 162
cofinally Cauchy sequence, 157
cofinally complete space, 157
cofinally uniformly asymptotic

sequences, 162
compact space, 123
complete metric space, 36, 86
completely metrizable, 104
completeness axiom, 7
completion, 101
connected component, 214
connected metric space, 205
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continuous at a point, 50–51
continuous function, 51
contraction, 70
contraction mapping principle, 71
convergent sequence, 32
convex set, 41
countably compact, 130
cover, 123

D

De Morgan’s Laws, 1
dense set, 26
derived set, 26
diameter of a set, 17
Dini’s theorem for upper

semi-continuous functions, 182,
185

disconnected metric space, 205
discrete metric, 11
discrete set, 11

E

equicontinuity, 185
equivalence class, 4
equivalence relation, 3
equivalent metrics, 80

F

finite intersection property,
127

finitely chainable, 164
fixed point, 71
function space, 194

G

greatest lower bound, 7

H

Hölder continuous function, 75
Hölder’s inequality, 251
Hausdorff metric, 37
Heine–Borel theorem, 139
homeomorphic spaces, 61
homeomorphism, 61

I

infimum, 7
interior point, 20
intermediate value theorem, 210
isolated point, 26
isolation functional, 151
isometry, 52, 77

K

Kakutani–Krein theorem, 200
Kuratowski’s intersection theorem,

100

L

lattice, 194
least upper bound, 6
Lebesgue number, 128
limit inferior, 45
limit of a sequence, 32
limit point, 26
limit superior, 45
linear space, 37
linear transformation, 73
Lipschitz function, 69
locally compact, 145
locally connected, 217
locally finite collection, 60
locally path connected, 222
lower bound, 7
lower semi-continuous, 56

M

metric linear space, 73
metric space, 9
Minkowski’s inequality, 252–253
monotone convergence theorem, 43
monotone sequence, 43, 182

N

neighborhood, 24
norm, 38
normal space, 58
normed linear space, 38
nowhere dense, 114
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O

open ball, 19
open cover, 123
open map, 67
open set, 21
oscillation of a function, 120

P

partial order, 3
pasting lemma, 59, 66
path, 218
path connected, 218
pointwise bounded, 189
pointwise convergence, 172
polygonally connected, 223
product space, 82
product topology, 82
projection map, 60
pseudo-Cauchy sequence, 151
pseudometric, 12

Q

quasi-Cauchy sequence, 100

R

relation, 2
relatively closed, 29
relatively compact, 132
relatively open, 29

S

separable, 27
separated sets, 215
Stone–Weierstrass theorem, 198
subalgebra, 194
subcontinuous function, 57
subcover, 123
subspace, 21
supremum, 6

supremum metric, 16
supremum norm, 39

T

Tietze’s extension theorem, 105
topological property, 62
topological space, 30
topologist’s sine curve, 219
topology, 30
totally bounded set, 93
totally disconnected, 217

U

UC space, 148
uniform convergence, 172
uniform homeomorphism, 82
uniform metric, 13, 181
uniformly asymptotic sequences, 67
uniformly bounded, 189
uniformly Cauchy, 181
uniformly continuous, 62
uniformly discrete set, 149
uniformly equicontinuous, 192
uniformly equivalent metrics, 81
uniformly homeomorphic spaces, 83
uniformly locally bounded, 158
upper bound, 6
upper semi-continuous, 56
Urysohn’s lemma, 58

V

vector space, 37

W

Weierstrass approximation theorem,
200

Y

Young’s inequality, 251
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