Simulation of Analog and
Mixed-Signal Circuits

Ken Kundert

Cadence Design Systems, Inc.

I(a,b) <+ V(a,b)/r
I(a,b) <+ c*ddt(V(a,b));
I(a,b) <+ idt(V(a,b))/I;
end
endmodule

Author

Dr. Ken Kundert is a fellow at Cadence Design Systems and for many years has
been the principle architect of the Spectre circuit simulation family. As such, he has
lead the development of Spectre, SpectreHDL, and SpectreRF. He also played a
key role in the development of Hewlett-Packard's harmonic balance simulator and
made substantial contributions to both the Verilog-AMS and VHDL-AMS
languages. He has authored two books on circuit simulation, Steady-State Methods
Jor Simulating Analog and Microwave Circuits in 1990 and The Designer's Guide to

SPICE and Spectre in 1995, as well as over a dozen papers published in refereed
conferences and journals.

Dr. Kundert received Ph. D., M. Eng., and B. S. degrees in electrical engineering
and computer sciences from the University of California, Berkeley in 1989, 1983

and 1979, respectively. He specialized in circuit simulation and analog circuit
design.

Page 1

Outline

Traditional SPICE Simulation €
¢ DC

¢ AC and Noise

Transient

Timing Simulation
AHDLs and MSHDLs

RF Simulation (tomorrow)

2 BCTM98 Tutorial on Circuit Simulation c a d e n (e

Abstract

This presentation is a tutorial on circuit simulation for analog and mixed-signal
circuits. The emphasis is presenting information about the way circuit simulators
behave that is useful to the practicing circuit designer. I begin with traditional
SPICE simulation and cover DC, AC, transient and Fourier analyses. Timing
simulation is introduced and contrasted with circuit simulation. Finally, mixed-
signal hardware description languages (MS-HDLs) are presented as a way to
improve the productivity of engineers involved in the design of complex mixed-
signal circuit and Verilog-AMS is introduced.

Target Audience
The primary audience is circuit designers and CAD engineers that use or support
circuit simulators.

Page 2

. Traditional SPICE Simulation
Formulates a system of differential equations that
describe circuit
Different analyses apply different stimulus and
different assumptions
¢ DC: Equilibrium point (constant waveforms)
& AC, Noise: Small-signals (linearity)
Transient: Initial conditions
Steady-State: Periodic boundary conditions
3 BCTM 98 Tutorial on Circuit Simulation m
Circuit Simulators

Circuit simulators are programs that from a structural description of a circuit
formulate and solve a system of nonlinear differential equations. In particular, the
simulator formulates a system of nonlinear first-order differential/algebraic
equations. These equations describe the circuit and the simulator solves them in
order to predict the circuit response to a specified stimulus. The nonlinear system of
equations consists of model equations combined with equations that embody
Kirchhoff’s laws. The model equations are either hard-code in the simulator as
built-in models or are specified by the user in the form of behavioral models.

Various analyses apply different assumptions before solving the equations. For
example, DC analysis assumes that all waveforms in the circuits are constant
valued. Doing so allows the system of differential equations to be simplified to a
system of nonlinear algebraic equations that are solved for the equilibrium points of
the circuit. AC analysis assumes the stimulus is a small sinusoid applied as a
perturbation of the DC equilibrium point and that the stimulus was started long ago
so that the circuit has reached its steady-state behavior. Transient analysis assumes
the circuit is driven with some arbitrary stimulus and that the circuit starts from a
particular initial condition, typically the DC operating point. Finally, a steady-state
analysis assumes the circuit is driven with either a periodic or quasiperiodic
stimulus and finds the steady-state response. Unlike with AC analysis, the stimulus
is not assumed to be small.

Page 3

Simulation Methods

Cannot directly solve nonlinear differential
equations

Convert differential equations to nonlinear
algebraic equations

Cannot directly solve nonlinear algebraic
equations

¢ Convert nonlinear algebraic equations to
sequence of linear equations (Newton’s method)

4 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Simulation Methods

Once the system of equations that describe the circuit is formulated, it is necessary
to solve it. Unfortunately, there is no known approach to solving a nonlinear system
of differential equations analytically. Simulators solve these equations numerically.
The assumptions in both DC and AC analysis allow the differential equations to be
reformulated as a set of algebraic equations. In transient analysis, integration
methods are applied that convert the differential equations into difference equations
that can be solved by solving a sequence of nonlinear algebraic equations.

There is also no direct method for solving nonlinear algebraic equations. Instead
Newton’s method, which is also known as the Newton-Raphson or NR method, is
used. It is an iterative procedure for solving nonlinear equations that converts the
problem of solving a nonlinear equation into that of solving a sequence of linear
equations.

Page 4

DC Analysis
@
Finds Equilibrium Points
Some circuits have multiple equilibrium points
¢ Equilibrium points may be unstable
Stable Unstable Non-Isolated
’
Uses Nefvton s Metl{Od i Ckt with 3
Solution must be isolated .: Equilibrium
& Convergence is an issue Points
5 BCTM 98 Tutorial on Circuit Simulation
DC Analysis

DC analysis finds solutions to the systems of equations that describe the circuit that
are constant valued. It does so by simply discarding time-derivatives (since the
solution is constant valued, its time-derivative must be zero). These constant valued
solutions are the equilibrium points of the circuit. It is important to realize that a
single circuit may have more than one equilibrium point and that there are three
types of equilibrium points: stable, unstable, and non-isolated. A stable equilibrium
point is such if a circuit is perturbed slightly while sitting at a stable equilibrium
point, it will eventually return to it. However, when disturbed, a circuit will not
return to an unstable equilibrium point. The latch shown is an example of a circuit
with multiple equilibrium points. Two of the equilibrium points are stable (the one
associated with the output being high, and the other associated with the output low).
The third equilibrium point results with both gates exactly balanced and the output
half way between high and low. This equilibrium point is unstable. Any disturbance
will cause the latch to rapidly switch and settle into one of its two equilibrium
points. DC analysis does not distinguish between stable and unstable equilibrium
points and is just as likely to output an unstable equilibrium point as a stable one.

Non-isolated solutions are those where there are a continuum of solutions.

Page 5

Isolated Solutions

Required for convergence
¢ Equal preference for unstable & stable solutions

Examples of non-isolated solutions
Floating nodes
Loops of shorts

Topology checker finds structural problems, but
not parametric problems

& Gmin designed to avoid isolated solutions

Examples
¢ CMOS Nand gate
Disconnected back-gate

6 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Non-Isolated Equilibrium Points

Non-isolated equilibrium points typically result from floating nodes (nodes with no
DC path to ground). It also may occur when loops are formed with components that
act as short-circuits at DC (for example, voltage sources or inductors). For practical
reasons, circuit simulators use a version of NR that is not capable of solving a
system of equations with a non-isolated solution, which for DC analysis is the same
as having a non-isolated equilibrium point. Instead, the user is expected to find and
fix such problems. Typically, a topology checker is provided that will quickly
examine the circuit and find structural problems (nodes with no DC path to ground
or loops of short circuits). Occasionally nodes can float because nonlinear devices
turn off. This occurs inside a CMOS nand gate. To avoid this problem, most
simulators add Gmin, a small conductor of typically 10~'? Siemens (10'?> Ohms)
across every nonlinear device that is capable of “turning off”. This generally avoids
this problem but Gmin may affect the solution in some cases.

Page 6

Newton-Raphson Algorithm (NR)

Find zero crossing starting
with a.m initial guess It

& [teratively refine i
guess by solving First

series of linear Refinement
approximations Second
PP Refinement

¢ NR also knows as
Newton’s Method

|
V, ViV

7 BCTM 98 Tutorial on Circuit Simulation c a d e n C e

Newton-Raphson Algorithm

The goal of the Newton-Raphson (NR) algorithm is to find the solution to a
nonlinear equation. This is the point where the curve crosses the x-axis. It is an
iterative procedure that starts with at a starting point that is often referred to as the
“initial guess”. The equation and its derivative is evaluated at this point in order to
construct a linear model of the equation. The value and the slope of the linear model
match that of the equation at the evaluation point. The solution to the linear model,
the point where the line crosses the x-axis, is found and used as the next “guess” as
the procedure repeats. If things go well, each guess is closer to the solution than its
predecessor. Thus, NR starts with an initial guess and iteratively refines it until it
converges to the solution.

The Newton-Raphson algorithm is also referred to as Newton’s method.

Page 7

Convergence Criteria

Update criterion |Av|<e
Important at high-impedance nodes

Residue criterion
Important at low-impedance nodes
SPICE form: Delta-/ check | Ai(v) | < 0

— Assures change in / between iterations is small

— Subject to false convergence

Spectre form: KCL check |2 i(v)| <o
— Assures KCL is satisfied

8 BCTM 98 Tutorial on Circuit Simulation I c a d e n c e I

Convergence Criteria

NR is an iterative method, and so some stopping criteria must be applied to prevent
it from continuing forever. Circuit simulators generally have two such criterion,
both of which must be satisfied before convergence is assumed and the iteration
stops. SPICE uses modified nodal analysis, and so it is reasonable to think of NR
finding the voltage at which Kirchhoff’s current law (though the situation is not
quite that simple). In this case, one criterion applies to the update, or the difference
in the voltage between two iterations. The second applies to the value of the
equation. There are two alternative approaches used in this case. SPICE performs
the A7 check. Thus, it assures that the change in the current through any component
between one iteration and the next is small. Notice that SPICE uses two A checks (a
AV and a Al check). This means that if for some reason the Newton iteration stalls,
which might occur if there is an error in the derivative, then both checks could be
satisfied far from the actual solution. In this case, which is known as false
convergence, the result computed by SPICE is incorrect.

The alternative to the Al check is the KCL check. In this case, the convergence
criterion assures that KCL is satisfied within some tolerance. This approach is not
subject to false convergence and so results in more reliable results.

The KCL check is more difficult to implement efficiently than the A/ check. As a
result, the simulators that provide a KCL check provide it as an option that when
selected provides improved reliability at the cost of reduced performance. Only one
simulator, Spectre, was initially designed to support the KCL check efficiently. As
such, there is no performance penalty associated with the KCL check. In this case,
the A7 check provides no advantage and so is not provided.

Page 8

Convergence of Newton’s Method

Convergence is guaranteed if ...
Equations (models) are sufficiently smooth
Solution is isolated

Initial guess is sufficiently close to solution
— Use nodesets to provide initial guess

9 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Convergence of Newton’s Method

Convergence has long been a problem that has plagued circuit designers that use
SPICE. And so designer’s are often surprised when told that Newton’s method has
guaranteed convergence. While true, there are assumptions that must first be
satisfied before convergence is assured, and therein lies the problem.

There are three conditions that must be satistied before convergence is assured. First
the circuit equations must be sufficiently smooth. This can be assured by proper
modeling (removing the discontinuities from the models). This was a big problem
early on, but it is generally much less of a problem today. The second condition is
that the solution must be isolated. This was discussed previously. Lastly, the initial
guess must be sufficiently close to the solution. This is the difficult condition to
satisty. Nodesets are provided to allow the user to specify the initial guess, but
generally the designer does not know the solution well enough to provide a useful
initial guess. However, this property exploited by a series of convergence aids that
are referred to as continuation or homotopy methods that can greatly reduce the
number of cases where convergence is a problem.

Page 9

Improving Convergence via Homotopy

Homotopy (AKA Continuation) methods
¢ Modify problem so that ...

— It is easy to compute solution of modified problem
— A parameter controls the amount of modification

Solve sequence of problems
— Start from “easy” one
— Follow path to desired solution using each point as
guess for next
* Exploits continuity of path

+ Exploits NR’s ability to converge if guess is close to
solution

10 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Improving Convergence via Homotopy

When a simulator is unable to achieve convergence with simple NR, it generally
switches to a homotopy or continuation method. Homotopy and continuation are
two names for the same process. The idea behind this process is to solve a series of
problems the first of which is easy to solve and the last of which is the problem for
which we need the solution. The series of problems is created by identifying or
creating some parameter A in the equations and varying the parameter. The
parameterization must be such that:

1. the equations are easily solved for some value of the parameter, say A=0,

2. the equations must revert to their original form for some other value of the
parameter, say say A=1, and

3. the solution trajectory must vary as a continuous function of the parameter
between the two values.

Page 10
10

Homotopy Method

Desired Solution

Solution at each point ~C
is initial guess for next :

Easy Solution "

11 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Homotopy Methods

Continuation and homotopy methods start by setting the parameter to its initial
value and solving the easy problem. They then step the parameter to towards its
final value. On each step the equations are solved using the solution on the previous
step as the initial guess. Since the solution trajectory is continuous, it is always
possible to choose a step small enough so that the solution for the equations at the
previous parameter value is a good guess for the new value of the parameter.

Page 11

11

Homotopy Methods

Source stepping
& Sweep supplies from 0 to proper values
GMIN stepping
¢ Sweep GMIN from 1 Q2 to 1TQ
Pseudo-Transient
¢ Add linear capacitors from every node to ground
¢ Sweep time from 0 to o

12 BCTM 98 Tutorial on Circuit Simulation I c a g e n C e I

Homotopy Methods

Circuit simulators employ several types of homotopy methods. None are guaranteed
to converge, so often several are available from the same simulator and are tried
sequentially until one works.

The first method is source stepping. In this method, the parameter multiplies values
of the independent sources and sweeps from 0 to 1. When the parameter is 0 the
sources are all zero and the solution must also be zero. The parameter is then swept
to 1, where the source take their desired values. In practice, source stepping
trajectories are plagued by discontinuities called folds and so do not work very well.

Which Gmin stepping, the value of the Gmin conductors are swept from 1 Ohm to
10'2 Ohms. Gmin stepping is also subject to folds, but is much less susceptible to
them that source stepping. In generally Gmin stepping works pretty well.

The final approach is to pseudo-transient analysis. In this case 1 farad capacitors are
added from every node in the circuit to ground. Each capacitor starts with an initial
voltage equal to zero and a transient analysis is performed. In this case time is the
homotopy parameter and it sweeps from 0 to infinity. Pseudo-transient analysis is
not subject to folds, however the resulting circuit could oscillate, in which case the
method would never converge.

Page 12
12

Why Homotopy Methods Fail

Simple discontinuities
Error in models

Folds

Occur naturally in ckts
with multiple solutions

Bifurcations
Result from symmetry

Oscillations

[ssue with pseudo-
transient methods

13 BCTM 98 Tutorial on Circuit Simulation (a d e n c e

11]

Why Homotopy Methods Fail

Homotopy methods are reliable if the homotopy trajectory is continuous when the
parameter sweep is mapped onto the range A=0 to 1. There are four common forms
of discontinuity that will cause homotopy methods to fail.

The first is the simple discontinuity. This occurs when the model equations
themselves are discontinuous.

The second type of discontinuity is folds, which is a natural consequence of circuits
having multiple solutions. Homotopy methods can be reformulated to be arc-length
methods which are able to handle folds, however such methods must do a certain
amount of work to progress beyond each fold, and some circuits can have a large
number of folds and so can be impractical to solve with arc-length methods. For
example, the simple latch shown earlier had three equilibrium points and so two
folds. If two such circuits were combined the resulting circuit could have 32=9
equilibrium points and 9—-1 = 8 folds. The combination of three such circuits would
have 33—1 = 26 folds, and so on.

The third type of discontinuity is bifurcation, which results when both the circuit
and the initial starting point is perfectly symmetric. This problem is easily avoided
by providing a random starting point.

The final type of discontinuity is due to oscillation in the pseudo-transient approach.
At first glance pseudo-transient appears to avoid problems with discontinuities.
Indeed, it is not subject to any of the three previously mentioned discontinuities.
However, pseudo-transient sweeps its parameter time for 0 to infinity. When the
time is mapped to A such that it varies between 0 and 1, the oscillation becomes
infinitely fast as A goes to 1, which is another form of discontinuity.

Page 13
13

Suggestions for DC Analysis

If convergence is a problem
Heed warnings
Closely examine circuit for mistakes
Use nodesets
Replace DC analysis with Transient/UIC

To assure large circuit is operating properly

¢ Examine composite figures of merit
— Power or supply currents
— Extreme values (Spectre info statement)

14 BCTM 98 Tutorial on Circuit Simulation I c a g e n C e I

Suggestions for DC Analysis

Convergence problems are often a result of mistakes in the netlist. For example,
unreasonable parameter values can cause convergence problems. Another common
cause of convergence problems is forgetting to connect MOSFET back-gates to a
bias supply. Also, the simulator may generate warming messages that could lead
you the the problem area.

If the problem does not appear to be in your circuit, then you can try to provide the
simulator a good guess of the solution using nodesets, perhaps from a previous
simulation. Finally, if that is not practical, one can use a transient analysis with the
UIC option set. Simply set the independent sources to their DC values and simulate
long enough for the solution to settle to its final value. Be sure to write the final
solution to a file so that it can be used as a nodeset for subsequent simulations.

Once the simulator has converged, you must still assure that the solution is as
expected (the circuit may have been entered incorrectly). The easiest way to do that
for a large circuit is to look at composite metrics, such as the circuit power
dissipation or supply currents. If these metrics are well outside of the expected
range, it generally indicates a problem with the circuit.

Page 14
14

Small-Signal Analysis
[
Apply small sinusoid
Stimulus so small it does not generate nonlinear
response
Linearize circuit about DC operating point
Compute sinusoidal steady state solution
Transfer functions
AC, Noise analyses
15 BCTM 98 Tutorial on Circuit Simulation
Small-Signal Analysis

The sinusoidal small-signal analyses, AC and noise, both operate by assuming the
DC solution is by a small sinusoidal excitation. The excitation is assumed to be so
small that the response can be accurately computed by linearizing the circuit about
the DC operating point and solving the linear system. The steady-state solution is
computed directly. Since the circuit is linearized about a DC operating point the
resulting representation of the circuit is linear and time invariant (LTI). The steady-
state response of an LTI circuit to a sinusoid is a sinusoid at the same frequency.
Thus, the AC analysis need only compute the magnitude and phase of the response
relative to the input. Thus, it is useful for computing transfer functions. Noise
analysis is a variation of AC analysis that computes the response of a circuit to
collection of small noise sources.

Page 15
15

Sinusoidal Small-Signal Analysis

Small-signal implies linear analysis
¢ Computes transfer functions
& Large signal effects are not modeled
— Distortion, clipping, etc.
Linearized about DC operating point implies
single frequency analysis
Frequency conversion not modeled

Noise folding not modeled
— Not suitable for many communication circuits

16 BCTM 98 Tutorial on Circuit Simulation I c a g e n (e I

Sinusoidal Small-Signal Analysis

AC and noise are sinusoidal steady-state analyses performed on a linearization of
the circuit about its DC operating point. Since the analysis is performed on a linear

approximation to the circuit, the amplitude of the response will always be
proportional to the amplitude of the specified stimulus. As such, AC analysis

computes the transfer function of the circuit and does not take into account large

signal effects such as distortion of clipping.

In addition, since the circuit is linearized about the DC operating point, the resulting

LTI representation does not accurately model frequency conversion or noise
folding. For information on small-signal analyses that accurately account for
frequency conversion, refer to the tutorial on RF simulation.

Page 16

16

Circuits Suitable for AC & Noise Analysis

o
Suitable Not Suitable
¢ Amplifiers ¢ Mixers
¢ Continuous-Time & Oscillators and VCOs
Filters & Samplers, Sample & Holds

¢ Discrete-Time Filters
— Switched-Capacitor Filters
— Switched-Current Filters

¢ Chopper-Stabilized Amplifiers

¢ Frequency Multipliers and Dividers
¢ Phase Detectors

& Parametric Amplifiers

¢ Detectors

17 BCTM 98 Tutorial on Circuit Simulation c a d e n (e

Circuits Suitable for AC and Noise Analysis

The circuits that are suitable for AC and noise analysis are those that operate near
their DC operating point. Many circuits, particularly those used in communication
applications do not operate about a DC operating point. All of the circuits listed
above that are unsuitable for AC and noise analysis only operate properly with a
large, usually periodic, signal applied. For example, mixers need an LO signal to
operate and switched-capacitor filters need a clock.

Page 17

Transient Analysis
@
Approximates solution to differential equation
starting from an initial condition
Time is discretized
Solution is approximated with piecewise
polynomial
Polynomial coefficients chosen such that
differential equation is satisfied at each time
point
18 BCTM 98 Tutorial on Circuit Simulation
Transient Analysis

In transient analysis, the differential equation that represents the circuit is
approximated with a difference equation that is then solved one timepoint at a time.
This is done by first discretizing time, and then approximating the solution
trajectory of the circuit with a low-order polynomial over each timestep. Using a
low-order polynomials are used because it is possible to analytically compute their
derivatives as a function of their end points. In this way, the derivatives in the
differential equation are replaced by finite-difference approximations. Then the
polynomials coefficients are chosen such that the finite-difference approximation to
the differential equation is satisfied at each timepoint.

Page 18

18

Integration Methods

Forward Euler (FE)
Vi1 T %(Vk Vi)
Backward Euler (BE)
Vi = %(Vk “Vi1)
Trapezoidal Rule (TR)
v = %(vk “Vig) = Vi (FE, BE combined)
Gear’s Backward Difference Formula (G2)

.3 2 L]
Vi =2 Vk Tu Vi T V2

19 BCTM 98 Tutorial on Circuit Simulation I c a g e n C e I

Integration Methods

There are many different finite-difference approximations that can be used, and
each has different characteristics. The ones that are commonly used in circuit and
timing simulation are shown above. Notice that the trapezoidal rule is simply the
sum of forward Euler and backward Euler.

Page 19

19

Example

Formulate KCL
Cy(t) + Gv(t) +i(t) = 0

Replace d/dt operator with discrete-time approximation
. Forw%gd Euler — An Explicit Method
v) ¥ Gy i =0
. Back\g,ard Euler — An Implicit Method

;(vk -vk_1)+ Gvk + lk = O

20 BCTM98 Tutorial on Circuit Simulation c a d e n (e

Example

In this example, the equation to be solved is simply Kirchhoff’s Current Law
combined with the model equations. The derivative is replaced by either the forward
Euler or the backward Euler finite difference approximation. 4 is the timestep.
Doing so converts the differential equation into a difference equation that can be
solved one step at a time.

Forward Euler is an explicit method and backward Euler is an implicit method. This
distinction is important, though in this example it is not obvious why one is implicit
and the other explicit. Unfortunately I will not give a rationale here. If you are
interested, I suggest you refer to a book on numerical methods.

Page 20

20

Stability and Stiff Circuits

Stiff circuits are ones with time constants much
shorter than timestep
Explicit methods (FE) are unstable on stiff ckts

— Stability bounds time step
— Only used in timing simulation, not circuit simulation

Implicit methods (BE, TR, G2) are stiffly-stable

TR is average of FE and BE and so is marginally
stable on stiff circuits
& Marginal stability manifests itself as ringing

21 BCTM98 Tutorial on Circuit Simulation c a d e n (e

Stability and Stiff Circuits

Stiff circuits are those that contain time constants that are much shorter than the
timestep. In order for the timestep to be larger than a time constant, the time
constant must not be active, otherwise the timestep must be reduced to follow the
time constant. Such time constants are common in electrical circuits. Even if the
time constants are initially excited, the response decays rapidly. Once their response
has died out, it is important to be able to increase the size of the timestep to
efficiently follow the response of the rest of the circuit, which is slow relative to the
time constant. However, some integration methods, forward Euler in particular, are
unstable on stiff circuits. Thus, when using forward Euler on stiff circuits the
timestep must be chosen small relative to the fastest time constant to avoid stability
problems. For this reason, forward Euler is not efficient when applied to stiff
circuits.

Backward Euler, trapezoidal rule, and Gear’s second-order backward difference
formula are all stiffly stable, meaning that they are stable on stiff circuits. However,
trapezoidal being the combination of forward and backward Euler is only
marginally stable. As a result, trapezoidal rule will exhibit a point-to-point ringing
on stiff circuits.

Page 21
21

Trapezoidal Rule Ringing

TR rings on stiff circuits
& Marginal stability
Characteristic point-to-point ringing

22 BCTM98 Tutorial on Circuit Simulation

Trapezoidal Rule Ringing

Trapezoidal rule exhibits a characteristic point-to-point ringing when applied to stiff
circuits. This ringing can be reduced and often eliminated by adjusting tolerances so

that the timestep size is reduced.

Page 22

22

Artificial Numerical Damping

Gear2, BE are overly stable

Gear 2 Backward Euler

23 BCTM98 Tutorial on Circuit Simulation c a d e n (e

Artificial Numerical Damping

Backward Euler and Gear2 are not without faults. Both are overly stable and so
exhibit artificial numerical damping. Thus they add loss to circuits. This is
noticeable when simulating an LC tank circuit. If excited, it should oscillate forever
because the loss mechanisms are not included in the simulation. And if trapezoidal
rule is used, that is exactly what happens. However, if either Gear2 or backward
Euler are used, the amplitude of the oscillation asymptotically decays. They add
damping even though none exists in the circuit. Backward Euler adds considerably
more damping than Gear2.

Page 23

Artificial Numerical Damping
Gear2, BE are overly stable

Trapezoidal

Gear 2

Backward Euler

24 BCTM98 Tutorial on Circuit Simulation c a d e n C e

Artificial Numerical Damping

Backward Euler and Gear2 are not without faults. Both are overly stable and so
exhibit artificial numerical damping. Thus they add loss to circuits. This is
noticeable when simulating an LC tank circuit. If excited, it should oscillate forever
the loss mechanisms are not included in the simulation. And if trapezoidal rule is
used, that is exactly what happens. However, if either Gear2 or backward Euler are
used, the amplitude of the oscillation asymptotically decays. They add damping
even though none exists in the circuit. Backward Euler adds considerably more
damping than Gear2.

Page 24

24

Truncation Error

Error made by replacing d/dt operator with
discrete-time approximation
— Shrinking timestep reduces error
Local truncation error (LTE)
Error made on a single step

Global truncation error
¢ Maximum truncation error

Global truncation error depends on circuit
— Error may either accumulate or dissipate

25 BCTM98 Tutorial on Circuit Simulation

Truncation Error

Truncation error is the error made by an integration method when it replaces the
time-derivative with a finite-difference approximation. At each time point a small
amount of error is created. This is referred to as local truncation error or LTE. The
global truncation error is the accumulated effect of the LTE made on each step. The
LTE is determined by the integration method, but how that error accumulates to
form global truncation error is determined by the circuit.

Page 25

25

Dissipative Circuit: Errors Fade

Error current results from not satisfying KCL
» Use superposition to study effect of small errors separately

-IQI

Q)
o
=
S
=
=
)
S
()

Error Stimulus Error Response

26 BCTM98 Tutorial on Circuit Simulation

Dissipative Circuit: Errors Fade

If the circuit is dissipative, i.e. if the circuit has no long time constants, then the
error made on each timestep will fade with time. The time constants of the error will

be those of the circuit.

Page 26

26

Non-Dissipative Circuits: Errors Accumulate

Circuits with long time-constants

Q)
o
=
=
=
=
)
S
()

Error Stimulus Error Response

27 BCTM98 Tutorial on Circuit Simulation

Non-Dissipative Circuit: Errors Accumulate

If the circuit has long time constants, then the local truncation errors tend to
accumulate. The circuit above has an infinitely long time constant and the effect of
a one time error is retained for ever. The effect of a sequence of errors is integrated.

Page 27

27

Error Accumulation in Transient Analysis

Circuits with long time-constants require tighter
tolerances
¢ Integrators

Charge-storage circuits

— Switched-capacitor filters
— Sample & holds

¢ Oscillators
— Phase drift

28 BCTM98 Tutorial on Circuit Simulation I c a g e n C e I

Error Accumulation in Transient Analysis

If the circuit has long time constants, then the local truncation errors tend to
accumulate. Thus, one has to be more careful on circuits with long time constants.
Examples of such circuits include oscillators, integrators, and charge-storage
circuits. In the case of an oscillator, the errors will cause the phase to drift. The
integration methods tend to under estimate curvature and so in an oscillator the LTE
is correlated in such a way to cause the phase to drift so that the simulator slightly
underestimates the oscillator frequency.

Page 28

28

Estimating Local Truncation Error

Simulators choose timestep to control LTE
Integration methods are exact if trajectory follows
low-order polynomial
— First-order methods (FE, BE) are exact for lines
— Second-order methods (TR, G2) are exact for parabolas
o LTE is difference between actual tr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>