

9 Practical Node.js Projects

Copyright © 2018 SitePoint Pty. Ltd.

Cover Design: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be

reproduced, stored in a retrieval system or transmitted in

any form or by any means, without the prior written

permission of the publisher, except in the case of brief

quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to

ensure the accuracy of the information herein. However,

the information contained in this book is sold without

warranty, either express or implied. Neither the authors

and SitePoint Pty. Ltd., nor its dealers or distributors will

be held liable for any damages to be caused either

directly or indirectly by the instructions contained in this

book, or by the software or hardware products described

herein.

Trademark Notice

Rather than indicating every occurrence of a

trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the

trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: books@sitepoint.com

About SitePoint

SitePoint specializes in publishing fun, practical, and

easy-to-understand content for web professionals. Visit

http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find

a stack of information on JavaScript, PHP, design, and

more.

http://www.sitepoint.com/

Preface

While there have been quite a few attempts to get

JavaScript working as a server-side language, Node.js

(frequently just called Node) has been the first

environment that's gained any traction. It's now used by

companies such as Netflix, Uber and Paypal to power

their web apps. Node allows for blazingly fast

performance; thanks to its event loop model, common

tasks like network connection and database I/O can be

executed very quickly indeed.

From a beginner's point of view, one of Node's obvious

advantages is that it uses JavaScript, a ubiquitous

language that many developers are comfortable with. If

you can write JavaScript for the client-side, writing

server-side applications with Node should not be too

much of a stretch for you.

In this book, we'll offer a selection of nine different

practical projects that you can follow along with.

Who Should Read This Book?

This book is for anyone who wants to start learning

server-side development with Node.js. Familiarity with

JavaScript is assumed, but we don't assume any previous

back-end development experience.

Conventions Used

CODE SAMPLES

Code in this book is displayed using a fixed-width font,

like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back
at school.</p>

Where existing code is required for context, rather than

repeat all of it, ⋮ will be displayed:

function animate() {
 ⋮
new_variable = "Hello";
}

Some lines of code should be entered on one line, but

we’ve had to wrap them because of page constraints. An

➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-
web-
➥design-real-user-testing/?responsive1");

You’ll notice that we’ve used certain layout styles

throughout this book to signify different types of

information. Look out for the following items.

TIPS, NOTES, AND WARNINGS

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Chapter 1: Build a Simple

Beginner App with Node,

Bootstrap & MongoDB

BY JAMES HIBBARD

If you’re just getting started with Node.js and

want to try your hand at building a web app,

things can often get a little overwhelming. Once

you get beyond the "Hello, World!" tutorials,

much of the material out there has you copy-

pasting code, with little or no explanation as to

what you’re doing or why.

This means that, by the time you’ve finished, you’ve built

something nice and shiny, but you also have relatively

few takeaways that you can apply to your next project.

In this tutorial, I’m going to take a slightly different

approach. Starting from the ground up, I’ll demonstrate

how to build a no-frills web app using Node.js, but

instead of focusing on the end result, I’ll focus on a range

of things you’re likely to encounter when building a real-

world app. These include routing, templating, dealing

with forms, interacting with a database and even basic

authentication.

This won’t be a JavaScript 101. If that’s the kind of thing

you’re after, look here. It will, however, be suitable for

those people who feel reasonably confident with the

JavaScript language, and who are looking to take their

first steps in Node.js.

What Weʼll Be Building

https://www.sitepoint.com/beginners-guide-javascript-variables-and-datatypes/

We’ll be using Node.js and the Express framework to

build a simple registration form with basic validation,

which persists its data to a MongoDB database. We’ll add

a view to list successful registration, which we’ll protect

with basic HTTP authentication, and we’ll use Bootstrap

to add some styling. The tutorial is structured so that you

can follow along step by step. However, if you’d like to

jump ahead and see the end result, the code for this

tutorial is also available on GitHub.

Basic Setup

Before we can start coding, we’ll need to get Node, npm

and MongoDB installed on our machines. I won’t go into

depth on the various installation instructions, but if you

have any trouble getting set up, please leave a comment

below, or visit our forums and ask for help there.

NODE.JS

Many websites will recommend that you head to the

official Node download page and grab the Node binaries

for your system. While that works, I would suggest that

you use a version manager instead. This is a program

which allows you to install multiple versions of Node and

switch between them at will. There are various

advantages to using a version manager, for example it

negates potential permission issues which would

otherwise see you installing packages with admin rights.

If you fancy going the version manager route, please

consult our quick tip: Install Multiple Versions of

Node.js Using nvm. Otherwise, grab the correct binaries

for your system from the link above and install those.

NPM

npm is a JavaScript package manager which comes

bundled with Node, so no extra installation is necessary

https://nodejs.org/en/
http://expressjs.com/
https://www.mongodb.com/
https://getbootstrap.com/
https://github.com/jameshibbard/demo-node-app
https://www.sitepoint.com/community/
https://nodejs.org/en/download/
https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/

here. We’ll be making quite extensive use of npm

throughout this tutorial, so if you’re in need of a

refresher, please consult: A Beginner’s Guide to npm —

the Node Package Manager.

MONGODB

MongoDB is a document database which stores data in

flexible, JSON-like documents.

The quickest way to get up and running with Mongo is to

use a service such as mLabs. They have a free sandbox

plan which provides a single database with 496 MB of

storage running on a shared virtual machine. This is

more than adequate for a simple app with a handful of

users. If this sounds like the best option for you, please

consult their quick start guide.

You can also install Mongo locally. To do this, please visit

the official download page and download the correct

version of the community server for your operating

system. There’s a link to detailed, OS-specific installation

instructions beneath every download link, which you can

consult if you run into trouble.

A MONGODB GUI

Although not strictly necessary for following along with

this tutorial, you might also like to install Compass, the

official GUI for MongoDB. This tool helps you visualize

and manipulate your data, allowing you to interact with

documents with full CRUD functionality.

At the time of writing, you’ll need to fill out your details

to download Compass, but you won’t need to create an

account.

CHECK THAT EVERYTHING IS INSTALLED

CORRECTLY

https://www.sitepoint.com/beginners-guide-node-package-manager/
http://docs.mlab.com/
https://www.mongodb.com/download-center#community
https://www.mongodb.com/download-center#compass

To check that Node and npm are installed correctly, open

your terminal and type:

node -v

followed by:

npm -v

This will output the version number of each program

(8.9.4 and 5.6.0 respectively at the time of writing).

If you installed Mongo locally, you can check the version

number using:

mongo --version

This should output a bunch of information, including the

version number (3.6.2 at the time of writing).

CHECK THE DATABASE CONNECTION USING

COMPASS

If you have installed Mongo locally, you start the server

by typing the following command into a terminal:

mongod

Next, open Compass. You should be able to accept the

defaults (server: localhost, port: 27017), press the

CONNECT button, and establish a connection to the

database server.

MongoDB Compass connected to localhost

Note that the databases admin and local are created

automatically.

Using a Cloud-hosted Solution

If you’re using mLabs, create a database subscription (as

described in their quick-start guide), then copy the

connection details to the clipboard. This should be in the

form:

http://docs.mlab.com/

mongodb://<dbuser>:
<dbpassword>@ds251827.mlab.com:51827/<dbname>

When you open Compass, it will inform you that it has

detected a MongoDB connection string and asks if you

would like to use it to fill out the form. Click Yes, noting

that you might need to adjust the username and

password by hand. After that, click CONNECT and you

should be off to the races.

MongoDB Compass connected to mLabs

Note that I called my database sp-node-article. You

can call yours what you like.

Initialize the Application

With everything set up correctly, the first thing we need

to do is initialize our new project. To do this, create a

folder named demo-node-app, enter that directory and

type the following in a terminal:

npm init -y

This will create and auto-populate a package.json file

in the project root. We can use this file to specify our

dependencies and to create various npm scripts, which

will aid our development workflow.

INSTALL EXPRESS

Express is a lightweight web application framework for

Node.js, which provides us with a robust set of features

for writing web apps. These features include such things

as route handling, template engine integration and a

middleware framework, which allows us to perform

additional tasks on request and response objects. There

is nothing you can do in Express that you couldn’t do in

plain Node.js, but using Express means we don’t have to

re-invent the wheel and reduces boilerplate.

So let’s install Express. To do this, run the following in

your terminal:

npm install --save express

By passing the --save option to the npm install
command, Express will be added to the dependencies
section of the package.json file. This signals to anyone

https://www.sitepoint.com/guide-to-npm-as-a-build-tool/
http://expressjs.com/

else running our code that Express is a package our app

needs to function properly.

INSTALL NODEMON

nodemon is a convenience tool. It will watch the files in

the directory it was started in, and if it detects any

changes, it will automatically restart your Node

application (meaning you don’t have to). In contrast to

Express, nodemon is not something the app requires to

function properly (it just aids us with development), so

install it using:

npm install --save-dev nodemon

This will add nodemon to the dev-dependencies
section of the package.json file.

CREATE SOME INITIAL FILES

We’re almost through with the setup. All we need to do

now is create a couple of initial files before kicking off the

app.

In the demo-node-app folder create an app.js file and

a start.js file. Also create a routes folder, with an

index.js file inside. After you’re done, things should

look like this:

.
├── app.js
├── node_modules
│ └── ...
├── package.json
├── routes
│ └── index.js
└── start.js

Now, let’s add some code to those files.

https://github.com/remy/nodemon

In app.js:

const express = require('express');
const routes = require('./routes/index');

const app = express();
app.use('/', routes);

module.exports = app;

Here, we’re importing both the express module and

(the export value of) our routes file into the application.

The require function we’re using to do this is a built-in

Node function which imports an object from another file

or module. If you’d like a refresher on importing and

exporting modules, read Understanding module.exports

and exports in Node.js.

After that, we’re creating a new Express app using the

express function and assigning it to an app variable. We

then tell the app that, whenever it receives a request

from forward slash anything, it should use the routes file.

Finally, we export our app variable so that it can be

imported and used in other files.

In start.js:

const app = require('./app');

const server = app.listen(3000, () => {
 console.log(`Express is running on port
${server.address().port}`);
});

Here we’re importing the Express app we created in

app.js (note that we can leave the .js off the file name

in the require statement). We then tell our app to

listen on port 3000 for incoming connections and output

https://www.sitepoint.com/understanding-module-exports-exports-node-js/
http://expressjs.com/en/api.html#express

a message to the terminal to indicate that the server is

running.

And in routes/index.js:

const express = require('express');

const router = express.Router();

router.get('/', (req, res) => {
 res.send('It works!');
});

module.exports = router;

Here, we’re importing Express into our routes file and

then grabbing the router from it. We then use the router

to respond to any requests to the root URL (in this case

http://localhost:3000) with an “It works!”

message.

KICK OFF THE APP

Finally, let’s add an npm script to make nodemon start

watching our app. Change the scripts section of the

package.json file to look like this:

"scripts": {
 "watch": "nodemon ./start.js"
},

The scripts property of the package.json file is

extremely useful, as it lets you specify arbitrary scripts to

run in different scenarios. This means that you don’t

have to repeatedly type out long-winded commands with

a difficult-to-remember syntax. If you’d like to find out

more about what npm scripts can do, read Give Grunt

the Boot! A Guide to Using npm as a Build Tool.

https://www.sitepoint.com/guide-to-npm-as-a-build-tool/

Now, type npm run watch from the terminal and visit

http://localhost:3000.

You should see “It works!”

Basic Templating with Pug

Returning an inline response from within the route

handler is all well and good, but it’s not very extensible,

and this is where templating engines come in. As the

Express docs state:

A template engine enables you to use static template files

in your application. At runtime, the template engine

replaces variables in a template file with actual values,

and transforms the template into an HTML file sent to

the client.

In practice, this means we can define template files and

tell our routes to use them instead of writing everything

inline. Let’s do that now.

Create a folder named views and in that folder a file

named form.pug. Add the following code to this new

file:

form(action="." method="POST")
 label(for="name") Name:
 input(
 type="text"
 id="name"
 name="name"
)

 label(for="email") Email:
 input(
 type="email"
 id="email"
 name="email"
)

 input(type="submit" value="Submit")

http://localhost:3000/
http://expressjs.com/en/guide/using-template-engines.html

As you can deduce from the file ending, we’ll be using the

pug templating engine in our app. Pug (formerly known

as Jade) comes with its own indentation-sensitive syntax

for writing dynamic and reusable HTML. Hopefully the

above example is easy to follow, but if you have any

difficulties understanding what it does, just wait until we

view this in a browser, then inspect the page source to

see the markup it produces.

If you’d like a refresher as to what JavaScript templates

and/or templating engines are, and when you should use

them, read An Overview of JavaScript Templating

Engines.

INSTALL PUG AND INTEGRATE IT INTO THE

EXPRESS APP

Next, we’ll need to install pug, saving it as a dependency:

npm i --save pug

Then configure app.js to use Pug as a layout engine

and to look for templates inside the views folder:

const express = require('express');
const path = require('path');
const routes = require('./routes/index');

const app = express();

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'pug');

app.use('/', routes);

module.exports = app;

You’ll notice that we’re also requiring Node’s native Path

module, which provides utilities for working with file and

directory paths. This module allows us to build the path

to our views folder using its join method and

https://pugjs.org/
https://www.sitepoint.com/overview-javascript-templating-engines/
https://nodejs.org/api/path.html
https://nodejs.org/docs/latest/api/path.html#path_path_join_paths

__dirname (which returns the directory in which the

currently executing script resides).

ALTER THE ROUTE TO USE OUR TEMPLATE

Finally, we need to tell our route to use our new

template. In routes/index.js:

router.get('/', (req, res) => {
 res.render('form');
});

This uses the render method on Express’s response

object to send the rendered view to the client.

So let’s see if it worked. As we’re using nodemon to

watch our app for changes, you should simply be able to

refresh your browser and see our brutalist masterpiece.

DEFINE A LAYOUT FILE FOR PUG

If you open your browser and inspect the page source,

you’ll see that Express only sent the HTML for the form:

our page is missing a doc-type declaration, as well as a

head and body section. Let’s fix that by creating a master

layout for all our templates to use.

To do this, create a layout.pug file in the views folder

and add the following code:

doctype html
html
 head
 title= `${title}`

 body
 h1 My Amazing App

 block content

https://nodejs.org/docs/latest/api/modules.html#modules_dirname
http://expressjs.com/en/4x/api.html#res.render

The first thing to notice here is the line starting title=.

Appending an equals sign to an attribute is one of the

methods that Pug uses for interpolation. You can read

more about it here. We’ll use this to pass the title

dynamically to each template.

The second thing to notice is the line that starts with the

block keyword. In a template, a block is simply a

“block” of Pug that a child template may replace. We’ll

see how to use it shortly, but if you’re keen to find out

more, read this page on the Pug website.

USE THE LAYOUT FILE FROM THE CHILD

TEMPLATE

All that remains to do is to inform our form.pug
template that it should use the layout file. To do this,

alter views/form.pug, like so:

extends layout

block content
 form(action="." method="POST")
 label(for="name") Name:
 input(
 type="text"
 id="name"
 name="name"
)

 label(for="email") Email:
 input(
 type="email"
 id="email"
 name="email"
)

 input(type="submit" value="Submit")

And in routes/index.js, we need to pass in an

appropriate title for the template to display:

https://pugjs.org/language/interpolation.html
https://pugjs.org/language/inheritance.html

router.get('/', (req, res) => {
 res.render('form', { title: 'Registration form'
});
});

Now if you refresh the page and inspect the source,

things should look a lot better.

Dealing with Forms in Express

Currently, if you hit our form’s Submit button, you’ll be

redirected to a page with a message: “Cannot POST /”.

This is because when submitted, our form POSTs its

contents back to / and we haven’t defined a route to

handle that yet.

Let’s do that now. Add the following to

routes/index.js:

router.post('/', (req, res) => {
 res.render('form', { title: 'Registration form'
});
});

This is the same as our GET route, except for the fact that

we’re using router.post to respond to a different

HTTP verb.

Now when we submit the form, the error message will be

gone and the form should just re-render.

HANDLE FORM INPUT

The next task is to retrieve whatever data the user has

submitted via the form. To do this, we’ll need to install a

package named body-parser, which will make the form

data available on the request body:

npm install --save body-parser

https://www.npmjs.com/package/body-parser

We’ll also need to tell our app to use this package, so add

the following to app.js:

const bodyParser = require('body-parser');
...
app.use(bodyParser.urlencoded({ extended: true
}));
app.use('/', routes);

module.exports = app;

Note that there are various ways to format the data you

POST to the server, and using body-parser’s urlencoded

method allows us to handle data sent as

application/x-www-form-urlencoded.

Then we can try logging the submitted data to the

terminal. Alter the route handler like so:

router.post('/', (req, res) => {
 console.log(req.body);
 res.render('form', { title: 'Registration form'
});
});

Now when you submit the form, you should see

something along the lines of:

{name: 'Jim', email: 'jim@example.com'}

https://www.npmjs.com/package/body-parser#bodyparserurlencodedoptions

Form output logged to terminal

A NOTE ABOUT REQUEST AND RESPONSE

OBJECTS

By now you’ve hopefully noticed the pattern we’re using

to handle routes in Express.

router.METHOD(route, (req, res) => {
 // callback function
});

The callback function is executed whenever somebody

visits a URL that matches the route it specifies. The

callback receives a req and res parameter, where req is

an object full of information that is coming in (such as

form data or query parameters) and res is an object full

of methods for sending data back to the user. There’s

also an optional next parameter which is useful if you

don’t actually want to send any data back, or if you want

to pass the request off for something else to handle.

Without getting too deep into the weeds, this is a concept

known as middleware (specifically, router-level

middleware) which is very important in Express. If

you’re interested in finding out more about how Express

uses middleware, I recommend you read the Express

docs.

VALIDATING FORM INPUT

Now let’s check that the user has filled out both our

fields. We can do this using express-validator module, a

middleware that provides a number of useful methods

for the sanitization and validation of user input.

You can install it like so:

npm install express-validator --save

And require the functions we’ll need in

routes/index.js:

const { body, validationResult } =
require('express-validator/check');

We can include it in our route handler like so:

router.post('/',
 [
 body('name')
 .isLength({ min: 1 })
 .withMessage('Please enter a name'),
 body('email')
 .isLength({ min: 1 })
 .withMessage('Please enter an email'),
],
 (req, res) => {
 ...
 }
);

As you can see, we’re using the body method to validate

two properties on req.body — namely, name and

email. In our case, it’s sufficient to just check that these

properties exist (i.e. that they have a length greater than

http://expressjs.com/en/guide/using-middleware.html
https://www.npmjs.com/package/express-validator
https://github.com/ctavan/express-validator#bodyfields-message

one), but express-validator offers a whole host of other

methods that you can read about on the project’s home

page.

In a second step, we can call the validationResult method

to see if validation passed or failed. If no errors are

present, we can go ahead and render out a “Thanks for

registering” message. Otherwise, we’ll need to pass these

errors back to our template, so as to inform the user that

something’s wrong.

And if validation fails, we’ll also need to pass req.body
back to the template, so that any valid form inputs aren’t

reset:

router.post(
 '/',
 [
 ...
],
 (req, res) => {
 const errors = validationResult(req);

 if (errors.isEmpty()) {
 res.send('Thank you for your
registration!');
 } else {
 res.render('form', {
 title: 'Registration form',
 errors: errors.array(),
 data: req.body,
 });
 }
 }
);

Now we have to make a couple of changes to our

form.pug template. We firstly need to check for an

errors property, and if it’s present, loop over any errors

and display them in a list:

extends layout

https://github.com/ctavan/express-validator
https://github.com/ctavan/express-validator#validationresultreq

block content
 if errors
 ul
 for error in errors
 li= error.msg
 ...

If the li= looks weird, remember that pug does

interpolation by following the tag name with an equals

sign.

Finally, we need to check if a data attribute exists, and if

so, use it to set the values of the respective fields. If it

doesn’t exist, we’ll initialize it to an empty object, so that

the form will still render correctly when you load it for

the first time. We can do this with some JavaScript,

denoted in Pug by a minus sign:

-data = data || {}

We then reference that attribute to set the field’s value:

input(
 type="text"
 id="name"
 name="name"
 value=data.name
)

That gives us the following:

extends layout

block content
 -data = data || {}

 if errors
 ul
 for error in errors
 li= error.msg

 form(action="." method="POST")

 label(for="name") Name:
 input(
 type="text"
 id="name"
 name="name"
 value=data.name
)

 label(for="email") Email:
 input(
 type="email"
 id="email"
 name="email"
 value=data.email
)

 input(type="submit" value="Submit")

Now, when you submit a successful registration, you

should see a thank you message, and when you submit

the form without filling out both field, the template

should be re-rendered with an error message.

Interact with a Database

We now want to hook our form up to our database, so

that we can save whatever data the user enters. If you’re

running Mongo locally, don’t forget to start the server

with the command mongod.

SPECIFY CONNECTION DETAILS

We’ll need somewhere to specify our database

connection details. For this, we’ll use a configuration file

(which should not be checked into version control) and

the dotenv package. Dotenv will load our connection

details from the configuration file into Node’s

process.env.

Install it like so:

npm install dotenv --save

https://www.npmjs.com/package/dotenv
https://nodejs.org/docs/latest/api/process.html#process_process_env

And require it at the top of start.js:

require('dotenv').config();

Next, create a file named .env in the project root (note

that starting a filename with a dot may cause it to be

hidden on certain operating systems) and enter your

Mongo connection details on the first line.

If you’re running Mongo locally:

DATABASE=mongodb://localhost:27017/node-demo-
application

If you’re using mLabs:

mongodb://<dbuser>:
<dbpassword>@ds251827.mlab.com:51827/<dbname>

Note that local installations of MongoDB don’t have a

default user or password. This is definitely something

you’ll want to change in production, as it’s otherwise a

security risk.

CONNECT TO THE DATABASE

To establish the connection to the database and to

perform operations on it, we’ll be using Mongoose.

Mongoose is an ORM for MongoDB, and as you can read

on the project’s home page:

Mongoose provides a straight-forward, schema-based

solution to model your application data. It includes built-

in type casting, validation, query building, business logic

hooks and more, out of the box.

What this means in real terms is that it creates various

abstractions over Mongo, which make interacting with

https://www.npmjs.com/package/mongoose
https://en.wikipedia.org/wiki/Object-relational_mapping
http://mongoosejs.com/

our database easier and reduce the amount of boilerplate

we have to write. If you’d like to find out more about how

Mongo works under the hood, be sure to read our

Introduction to MongoDB.

To install Mongoose:

npm install --save mongoose

Then, require it in start.js:

const mongoose = require('mongoose');

The connection is made like so:

mongoose.connect(process.env.DATABASE, {
useMongoClient: true });
mongoose.Promise = global.Promise;
mongoose.connection
 .on('connected', () => {
 console.log(`Mongoose connection open on
${process.env.DATABASE}`);
 })
 .on('error', (err) => {
 console.log(`Connection error:
${err.message}`);
 });

Notice how we use the DATABASE variable we declared in

the .env file to specify the database URL. We’re also

telling Mongo to use ES6 Promises (these are necessary,

as database interactions are asynchronous), as its own

default promise library is deprecated.

This is what start.js should now look like:

require('dotenv').config();
const mongoose = require('mongoose');

mongoose.connect(process.env.DATABASE, {
useMongoClient: true });

https://www.sitepoint.com/introduction-mongodb

mongoose.Promise = global.Promise;
mongoose.connection
 .on('connected', () => {
 console.log(`Mongoose connection open on
${process.env.DATABASE}`);
 })
 .on('error', (err) => {
 console.log(`Connection error:
${err.message}`);
 });

const app = require('./app');
const server = app.listen(3000, () => {
 console.log(`Express is running on port
${server.address().port}`);
});

When you save the file, nodemon will restart the app

and, if all’s gone well, you should see something along

the lines of:

Mongoose connection open on
mongodb://localhost:27017/node-demo-application

DEFINE A MONGOOSE SCHEMA

MongoDB can be used as a loose database, meaning it’s

not necessary to describe what data will look like ahead

of time. However, out of the box it runs in strict mode,

which means it’ll only allow you to save data it knows

about beforehand. As we’ll be using strict mode, we’ll

need to define the shape our data using a schema.

Schemas allow you to define the fields stored in each

document along with their type, validation requirements

and default values.

To this end, create a models folder in the project root,

and within that folder, a new file named

Registration.js.

Add the following code to Registration.js:

http://mongoosejs.com/docs/guide.html

const mongoose = require('mongoose');

const registrationSchema = new mongoose.Schema({
 name: {
 type: String,
 trim: true,
 },
 email: {
 type: String,
 trim: true,
 },
});

module.exports = mongoose.model('Registration',
registrationSchema);

Here, we’re just defining a type (as we already have

validation in place) and are making use of the trim

helper method to remove any superfluous white space

from user input. We then compile a model from the

Schema definition, and export it for use elsewhere in our

app.

The final piece of boilerplate is to require the model in

start.js:

...

require('./models/Registration');
const app = require('./app');

const server = app.listen(3000, () => {
 console.log(`Express is running on port
${server.address().port}`);
});

SAVE DATA TO THE DATABASE

Now we’re ready to save user data to our database. Let’s

begin by requiring Mongoose and importing our model

into our routes/index.js file:

http://mongoosejs.com/docs/api.html#schema_string_SchemaString-trim
http://mongoosejs.com/docs/models.html

const express = require('express');
const mongoose = require('mongoose');
const { body, validationResult } =
require('express-validator/check');

const router = express.Router();
const Registration =
mongoose.model('Registration');
...

Now, when the user posts data to the server, if validation

passes we can go ahead and create a new

Registration object and attempt to save it. As the

database operation is an asynchronous operation which

returns a Promise, we can chain a .then() onto the end

of it to deal with a successful insert and a .catch() to

deal with any errors:

if (errors.isEmpty()) {
 const registration = new
Registration(req.body);
 registration.save()
 .then(() => { res.send('Thank you for your
registration!'); })
 .catch(() => { res.send('Sorry! Something
went wrong.'); });
} else {
 ...
}

...

Now, if you enter your details into the registration form,

they should be persisted to the database. You can check

this using Compass (making sure to hit the refresh

button in the top left if it’s still running).

Using Compass to check that our data was saved to

MongoDB

RETRIEVE DATA FROM THE DATABASE

To round the app off, let’s create a final route, which lists

out all of our registrations. Hopefully you should have a

reasonable idea of the process by now.

Add a new route to routes/index.js, as follows:

router.get('/registrations', (req, res) => {
 res.render('index', { title: 'Listing

registrations' });
});

This means that we’ll also need a corresponding view

template (views/index.pug):

extends layout

block content
 p No registrations yet :(

Now when you visit http://localhost:3000/registrations,

you should see a message telling you that there aren’t any

registrations.

Let’s fix that by retrieving our registrations from the

database and passing them to the view. We’ll still display

the “No registrations yet” message, but only if there

really aren’t any.

In routes/index.js:

router.get('/registrations', (req, res) => {
 Registration.find()
 .then((registrations) => {
 res.render('index', { title: 'Listing
registrations', registrations });
 })
 .catch(() => { res.send('Sorry! Something
went wrong.'); });
});

Here, we’re using Mongo’s Collection#find method,

which, if invoked without parameters, will return all of

the records in the collection. Because the database

lookup is asynchronous, we’re waiting for it to complete

before rendering the view. If any records were returned,

these will be passed to the view template in the

registrations property. If no records were returned

registrations will be an empty array.

http://localhost:3000/registrations
https://docs.mongodb.com/manual/reference/method/db.collection.find/

In views/index.pug, we can then check the length of

whatever we’re handed and either loop over it and output

the records to the screen, or display a “No registrations”

message:

extends layout

block content

 if registrations.length
 table
 tr
 th Name
 th Email
 each registration in registrations
 tr
 td= registration.name
 td= registration.email
 else
 p No registrations yet :(

Add HTTP Authentication

The final feature we’ll add to our app is HTTP

authentication, locking down the list of successful

registrations from prying eyes.

To do this, we’ll use the http-auth module, which we can

install using:

npm install --save http-auth

Next we need to require it in routes/index.js, along

with the Path module we met earlier:

const path = require('path');
const auth = require('http-auth');

Next, let it know where to find the file in which we’ll list

the users and passwords (in this case users.htpasswd

https://en.wikipedia.org/wiki/Basic_access_authentication
https://www.npmjs.com/package/http-auth

in the project root):

const basic = auth.basic({
 file: path.join(__dirname,
'../users.htpasswd'),
});

Create this users.htpasswd file next and add a

username and password separated by a colon. This can

be in plain text, but the http-auth module also supports

hashed passwords, so you could also run the password

through a service such as Htpasswd Generator.

For me, the contents of users.htpasswd looks like

this:

jim:$apr1$FhFmamtz$PgXfrNI95HFCuXIm30Q4V0

This translates to user: jim, password: password.

Finally, add it to the route you wish to protect and you’re

good to go:

router.get('/registrations', auth.connect(basic),
(req, res) => {
 ...
});

Serve Static Assets in Express

Let’s give the app some polish and add some styling

using Twitter Bootstrap. We can serve static files such as

images, JavaScript files and CSS files in Express using

the built-in express.static middleware function.

Setting it up is easy. Just add the following line to

app.js:

http://www.htaccesstools.com/htpasswd-generator/
https://getbootstrap.com/
http://expressjs.com/en/starter/static-files.html

app.use(express.static('public'));

Now we can load files that are in the public
directory.

STYLE THE APP WITH BOOTSTRAP

Create a public directory in the project root, and in the

public directory create a css directory. Download the

minified version of Bootstrap v4 into this directory,

ensuring it’s named bootstrap.min.css.

Next, we’ll need to add some markup to our pug

templates.

In layout.pug:

doctype html
html
 head
 title= `${title}`
 link(rel='stylesheet',
href='/css/bootstrap.min.css')
 link(rel='stylesheet',
href='/css/styles.css')

 body
 div.container.listing-reg
 h1 My Amazing App

 block content

Here, we’re including two files from our previously

created css folder and adding a wrapper div.

In form.pug we add some class names to the error

messages and the form elements:

extends layout

block content
 -data = data || {}

https://getbootstrap.com/docs/4.0/getting-started/download/

 if errors
 ul.my-errors
 for error in errors
 li= error.msg

 form(action="." method="POST" class="form-
registration")
 label(for="name") Name:
 input(
 type="text"
 id="name"
 name="name"
 class="form-control"
 value=data.name
)

 label(for="email") Email:
 input(
 type="email"
 id="email"
 name="email"
 class="form-control"
 value=data.email
)

 input(
 type="submit"
 value="Submit"
 class="btn btn-lg btn-primary btn-block"
)

And in index.pug, more of the same:

extends layout

block content

 if registrations.length
 table.listing-table.table-dark.table-striped
 tr
 th Name
 th Email
 each registration in registrations
 tr
 td= registration.name
 td= registration.email
 else
 p No registrations yet :(

Finally, create a file called styles.css in the css
folder and add the following:

body {
 padding: 40px 10px;
 background-color: #eee;
}
.listing-reg h1 {
 text-align: center;
 margin: 0 0 2rem;
}

/* css for registration form and errors*/
.form-registration {
 max-width: 330px;
 padding: 15px;
 margin: 0 auto;
}
.form-registration {
 display: flex;
 flex-wrap: wrap;
}
.form-registration input {
 width: 100%;
 margin: 0px 0 10px;
}
.form-registration .btn {
 flex: 1 0 100%;
}
.my-errors {
 margin: 0 auto;
 padding: 0;
 list-style: none;
 color: #333;
 font-size: 1.2rem;
 display: table;
}
.my-errors li {
 margin: 0 0 1rem;
}
.my-errors li:before {
 content: "! Error : ";
 color: #f00;
 font-weight: bold;
}

/* Styles for listing table */
.listing-table {

 width: 100%;
}
.listing-table th,
.listing-table td {
 padding: 10px;
 border-bottom: 1px solid #666;
}
.listing-table th {
 background: #000;
 color: #fff;
}
.listing-table td:first-child,
.listing-table th:first-child {
 border-right: 1px solid #666;
}

Now when you refresh the page, you should see all of the

Bootstrap glory!

Conclusion

I hope you’ve enjoyed this tutorial. While we didn’t build

the next Facebook, I hope that I was nonetheless able to

help you get your feet wet in the world of Node-based

web apps and offer you some solid takeaways for your

next project in the process.

Of course it’s hard to cover everything in one tutorial and

there are lots of ways you could elaborate on what we’ve

built here. For example, you could check out our article

on deploying Node apps and try your hand at launching

it to Heroku or now. Alternatively, you might augment

the CRUD functionality with the ability to delete

registrations, or even write a couple of tests to test the

app’s functionality.

https://www.sitepoint.com/how-to-deploy-node-applications-heroku-vs-now-sh/
https://www.heroku.com/
https://zeit.co/now

Chapter 2: How to Build a

File Upload Form with

Express and Dropzone.js

BY LUKAS WHITE

Let’s face it, nobody likes forms. Developers

don’t like building them, designers don’t

particularly enjoy styling them and users

certainly don’t like filling them in.

Of all the components that can make up a form, the file

control could just be the most frustrating of the lot. A

real pain to style, clunky and awkward to use and

uploading a file will slow down the submission process of

any form.

That’s why a plugin to enhance them is always worth a

look, and DropzoneJS is just one such option. It will

make your file upload controls look better, make them

more user-friendly and by using AJAX to upload the file

in the background, at the very least make the process

seem quicker. It also makes it easier to validate files

before they even reach your server, providing near-

instananeous feedback to the user.

We’re going to take a look at DropzoneJS in some detail;

show how to implement it and look at some of the ways

in which it can be tweaked and customized. We’ll also

implement a simple server-side upload mechanism using

Node.js.

As ever, you can find the code for this tutorial on our

GitHub repository.

http://www.dropzonejs.com/
https://github.com/sitepoint-editors/image-uploads-dropzonejs-node-express

Introducing DropzoneJS

As the name implies, DropzoneJS allows users to upload

files using drag n’ drop. Whilst the usability benefits

could justifiably be debated, it’s an increasingly common

approach and one which is in tune with the way a lot of

people work with files on their desktop. It’s also pretty

well supported across major browsers.

DropzoneJS isn’t simply a drag n’drop based widget,

however; clicking the widget launches the more

conventional file chooser dialog approach.

Here’s a screenshot of the widget in action:

Alternatively, take a look at this, most minimal of

examples.

You can use DropzoneJS for any type of file, though the

nice little thumbnail effect makes it ideally suited to

uploading images in particular.

http://ux.stackexchange.com/questions/56829/what-is-the-usability-benefit-of-drag-files-images-here
http://caniuse.com/#feat=dragndrop
http://www.dropzonejs.com/examples/simple.html

FEATURES

To summarize some of the plugin’s features and

characteristics:

Can be used with or without jQuery

Drag and drop support

Generates thumbnail images

Supports multiple uploads, optionally in parallel

Includes a progress bar

Fully themeable

Extensible file validation support

Available as an AMD module or RequireJS module

It comes in at around 33Kb when minified

BROWSER SUPPORT

Taken from the official documentation, browser support

is as follows:

Chrome 7+

Firefox 4+

IE 10+

Opera 12+ (Version 12 for MacOS is disabled because their API is

buggy)

Safari 6+

There are a couple of ways to handle fallbacks for when

the plugin isn’t fully supported, which we’ll look at later.

Installation

The simplest way to install DropzoneJS is via Bower:

bower install dropzone

Alternatively you can grab it from Github, or simply

download the standalone JavaScript file — though bear

https://github.com/enyo/dropzone
https://raw.githubusercontent.com/enyo/dropzone/master/dist/dropzone.js

in mind you’ll also need the basic styles, also available in

the Github repo.

There are also third-party packages providing support

for ReactJS and implementing the widget as an Angular

directive.

First Steps

If you’ve used the Bower or download method, make sure

you include both the main JS file and the styles (or

include them into your application’s stylesheet), e.g:

<link rel="stylesheet"
href="/path/to/dropzone.css">
<script type="text/javascript"
src="/path/to/dropzone.js"></script>

Pre-minified versions are also supplied in the package.

If Youʼre Using RequireJS

If you’re using RequireJS, use dropzone-amd-module.js instead.

Basic Usage

The simplest way to implement the plugin is to attach it

to a form, although you can use any HTML such as a div
tag. Using a form, however, means less options to set —

most notably the URL, which is the most important

configuration property.

You can initialize it simply by adding the dropzone
class, for example:

<form id="upload-widget" method="post"
action="/upload" class="dropzone">
</form>

https://raw.githubusercontent.com/enyo/dropzone/master/dist/dropzone.css
https://github.com/paramaggarwal/react-dropzone
https://github.com/sandbochs/angular-dropzone

Technically that’s all you need to do, though in most

cases you’ll want to set some additional options. The

format for that is as follows:

Dropzone.options.WIDGET_ID = {
 //
};

To derive the widget ID for setting the options, take the

ID you defined in your HTML and camel-case it. For

example, upload-widget becomes uploadWidget:

Dropzone.options.uploadWidget = {
 //
};

You can also create an instance programmatically:

var uploader = new Dropzone(‘#upload-widget’,
options);

Next up, we’ll look at some of the available configuration

options.

Basic Configuration Options

The url option defines the target for the upload form,

and is the only required parameter. That said, if you’re

attaching it to a form element then it’ll simply use the

form’s action attribute, in which case you don’t even

need to specify that.

The method option sets the HTTP method and again, it

will take this from the form element if you use that

approach, or else it’ll simply default to POST, which

should suit most scenarios.

The paramName option is used to set the name of the

parameter for the uploaded file; were you using a file

upload form element, it would match the name attribute.

If you don’t include it then it defaults to file.

maxFiles sets the maximum number of files a user can

upload, if it’s not set to null.

By default the widget will show a file dialog when it’s

clicked, though you can use the clicked parameter to

disable this by setting it to false, or alternatively you

can provide an HTML element or CSS selector to

customize the clickable element.

Those are the basic options, but let’s now look at some of

the more advanced options.

ENFORCING MAXIMUM FILE SIZE

The maxFilesize property determines the maximum

file size in megabytes. This defaults to a size of 1000

bytes, but using the filesizeBase property, you could

set it to another value — for example, 1024 bytes. You

may need to tweak this to ensure that your client and

server code calculate any limits in precisely the same

way.

RESTRICTING TO CERTAIN FILE TYPES

The acceptFiles parameter can be used to restrict the

type of file you want to accept. This should be in the form

of a comma-separated list of MIME-types, although you

can also use wildcards.

For example, to only accept images:

acceptedFiles: 'image/*',

MODIFYING THE SIZE OF THE THUMBNAIL

By default, the thumbnail is generated at 120px by

120px; i.e., it’s square. There are a couple of ways you

can modify this behavior.

The first is to use the thumbnailWidth and/or the

thumbnailHeight configuration options.

If you set both thumbnailWidth and

thumbnailHeight to null, the thumbnail won’t be

resized at all.

If you want to completely customize the thumbnail

generation behavior, you can even override the resize
function.

One important point about modifying the size of the

thumbnail; the dz-image class provided by the package

sets the thumbnail size in the CSS, so you’ll need to

modify that accordingly as well.

ADDITIONAL FILE CHECKS

The accept option allows you to provide additional

checks to determine whether a file is valid, before it gets

uploaded. You shouldn’t use this to check the number of

files (maxFiles), file type (acceptedFiles), or file

size (maxFilesize), but you can write custom code to

perform other sorts of validation.

You’d use the accept option like this:

accept: function(file, done) {
 if (!someCheck()) {
 return done('This is invalid!');
 }
 return done();
}

As you can see it’s asynchronous; call done() with no

arguments and validation passes, or provide an error

message and the file will be rejected, displaying the

message alongside the file as a popover.

We’ll look at a more complex, real-world example later in

the article, when we’ll look at how to enforce minimum

or maximum image sizes.

Sending Additional Headers

Often you’ll need to attach additional headers to the

uploader’s HTTP request.

As an example, one approach to CSRF (Cross Site

Request Forgery) protection is to output a token in the

view, then have your POST/PUT/DELETE endpoints

check the request headers for a valid token. Suppose you

outputted your token like this:

<meta name="csrf-token"
content="CL2tR2J4UHZXcR9BjRtSYOKzSmL8U1zTc7T8d6Jz
">

Then, you could add this to the configuration:

headers: {
 'x-csrf-token':
document.querySelectorAll('meta[name=csrf-
token]')[0].getAttributeNode('content').value,
},

Alternatively, here’s the same example but using jQuery:

headers: {
 'x-csrf-token': $('meta[name="csrf-
token"]').attr('content')
},

Your server should then verify the x-csrf-token
header, perhaps using some middleware.

Handling Fallbacks

The simplest way to implement a fallback is to insert a

<div> into your form containing input controls, setting

the class name on the element to fallback. For

example:

<form id="upload-widget" method="post"
action="/upload" class="dropzone">
 <div class="fallback">
 <input name="file" type="file" />
 </div>
</form>

Alternatively, you can provide a function to be executed

when the browser doesn’t support the plugin using the

fallback configuration parameter.

You can force the widget to use the fallback behavior by

setting forceFallback to true, which might help

during development.

Handling Errors

You can customize the way the widget handles errors by

providing a custom function using the error
configuration parameter. The first argument is the file,

the error message the second and if the error occured

server-side, the third parameter will be an instance of

XMLHttpRequest.

As always, client-side validation is only half the battle.

You must also perform validation on the server. When

we implement a simple server-side component later we’ll

look at the expected format of the error response, which

when properly configured will be displayed in the same

way as client-side errors (illustrated below).

Overriding Messages and Translation

There are a number of additional configuration

properties which set the various messages displayed by

the widget. You can use these to customize the displayed

text, or to translate them into another language.

Most notably, dictDefaultMessage is used to set the

text which appears in the middle of the dropzone, prior

to someone selecting a file to upload.

You’ll find a complete list of the configurable string

values - all of which begin with dict - in the

documentation.

Events

There are a number of events you can listen to in order to

customize or enhance the plugin.

http://www.dropzonejs.com/#configuration-options

There are two ways to listen to an event. The first is to

create a listener within an initialization function:

Dropzone.options.uploadWidget = {
 init: function() {
 this.on('success', function(file, resp){
 ...
 });
 },
 ...
};

Or the alternative approach, which is useful if you decide

to create the Dropzone instance programatically:

var uploader = new Dropzone('#upload-widget');
uploader.on('success', function(file, resp){
 ...
});

Perhaps the most notable is the success event, which is

fired when a file has been successfully uploaded. The

success callback takes two arguments; the first, a file

object and the second an instance of XMLHttpRequest.

Other useful events include addedfile and

removedfile for when a file has been added or

removed from the upload list, thumbnail which fires

once the thumbnail has been generated and

uploadprogress which you might use to implement

your own progress meter.

There are also a bunch of events which take an event

object as a parameter and which you could use to

customize the behavior of the widget itself - drop,

dragstart, dragend, dragenter, dragover and

dragleave.

You’ll find a complete list of events in the relevant

section of the documentation.

http://www.dropzonejs.com/#event-list

A More Complex Validation Example:
Image Dimensions

Earlier we looked at the asynchronous accept() option,

which you can use to run checks (validation) on files

before they get uploaded.

A common requirement when you’re uploading images is

to enforce minimum or maximum image dimensions. We

can do this with DropzoneJS, although it’s slightly more

complex.

Although the accept callback receives a file object, in

order to check the image dimensions we need to wait

until the thumbnail has been generated, at which point

the dimensions will have been set on the file object. To

do so, we need to listen to the thumbnail event.

Here’s the code; in this example we’re checking that the

image is at least 640 x 480px before we upload it:

init: function() {
 this.on('thumbnail', function(file) {
 if (file.width < 1024 || file.height < 768)
{
 file.rejectDimensions();
 }
 else {
 file.acceptDimensions();
 }
 });
},
accept: function(file, done) {
 file.acceptDimensions = done;
 file.rejectDimensions = function() {
 done('The image must be at least 1024 by 768
pixels in size');
 };
},

A Complete Example

Having gone through the options, events and some

slightly more advanced validation, let’s look at a

complete and relatively comprehensive example.

Obviously we’re not taking advantage of every available

configuration option, since there are so many — making

it incredibly flexible.

Here’s the HTML for the form:

<form id="upload-widget" method="post"
action="/upload" class="dropzone">
 <div class="fallback">
 <input name="file" type="file" />
 </div>
</form>

If you’re implementing CSRF protection, you may want

to add something like this to your layouts:

<head>
 <!-- -->
 <meta name="csrf-token" content="XYZ123">
</head>

Now the JavaScript - notice we’re not using jQuery!

Dropzone.options.uploadWidget = {
 paramName: 'file',
 maxFilesize: 2, // MB
 maxFiles: 1,
 dictDefaultMessage: 'Drag an image here to
upload, or click to select one',
 headers: {
 'x-csrf-token':
document.querySelectorAll('meta[name=csrf-
token]')[0].getAttributeNode('content').value,
 },
 acceptedFiles: 'image/*',
 init: function() {
 this.on('success', function(file, resp){
 console.log(file);
 console.log(resp);
 });

 this.on('thumbnail', function(file) {
 if (file.width < 640 || file.height < 480
) {
 file.rejectDimensions();
 }
 else {
 file.acceptDimensions();
 }
 });
 },
 accept: function(file, done) {
 file.acceptDimensions = done;
 file.rejectDimensions = function() {
 done('The image must be at least 640 x
480px')
 };
 }
};

A reminder that you’ll find the code for this example on

our GitHub repository.

Hopefully, this is enough to get you started for most

scenarios; check out the full documentation if you need

anything more complex.

Theming

There are a number of ways to customize the look and

feel of the widget, and indeed it’s possible to completely

transform the way it looks.

For an example of just how customizable the appearance

is, here is a demo of the widget tweaked to look and feel

exactly like the jQuery File Upload widget using

Bootstrap.

Obviously the simplest way to change the widget’s

appearance is to use CSS. The widget has a class of

dropzone and its component elements have classes

prefixed with dz-; for example dz-clickable for the

clickable area inside the dropzone, dz-message for the

caption, dz-preview / dz-image-preview for

https://github.com/sitepoint-editors/image-uploads-dropzonejs-node-express
http://www.dropzonejs.com/
http://www.dropzonejs.com/bootstrap.html
https://blueimp.github.io/jQuery-File-Upload/index.html

wrapping the previews of each of the uploaded files, and

so on. Take a look at the dropzone.css file for

reference.

You may also wish to apply styles to the hover state; that

is, when the user hovers a file over the dropzone before

releasing their mouse button to initiate the upload. You

can do this by styling the dz-drag-hover class, which

gets added automatically by the plugin.

Beyond CSS tweaks, you can also customize the HTML

which makes up the previews by setting the

previewTemplate configuration property. Here’s what

the default preview template looks like:

<div class="dz-preview dz-file-preview">
 <div class="dz-image">

 </div>
 <div class="dz-details">
 <div class="dz-size">

 </div>
 <div class="dz-filename">

 </div>
 </div>
 <div class="dz-progress">
 <span class="dz-upload" data-dz-
uploadprogress>
 </div>
 <div class="dz-error-message">

 </div>
 <div class="dz-success-mark">
 <svg>REMOVED FOR BREVITY</svg>
 </div>
 <div class="dz-error-mark">
 <svg>REMOVED FOR BREVITY</svg>
 </div>
</div>

As you can see, you get complete control over how files

are rendered once they’ve been queued for upload, as

well as success and failure states.

That concludes the section on using the DropzoneJS

plugin. To round up, let’s look at how to get it working

with server-side code.

A Simple Server-Side Upload Handler
with Node.js and Express

Naturally you can use any server-side technology for

handling uploaded files. In order to demonstrate how to

integrate your server with the plugin, we’ll build a very

simple example using Node.js and Express.

To handle the uploaded file itself we’ll use multer, a

package which provides some Express middleware that

makes it really easy. In fact, this easy:

var upload = multer({ dest: 'uploads/' });

app.post('/upload', upload.single('file'),
function(req, res, next) {
 // Metadata about the uploaded file can now be
found in req.file
});

Before we continue the implementation, the most

obvious question to ask when dealing with a plugin like

DropzoneJS which makes requests for you behind the

scenes is: “what sort of responses does it expect?”

Handling Upload Success

If the upload process is successful, the only requirement

as far as your server-side code is concerned, is to return a

2xx response code. The content and format of your

response is entirely up to you, and will probably depend

on how you’re using it; for example you might return a

JSON object which contains a path to the uploaded file,

https://www.npmjs.com/package/multer

or the path to an automatically generated thumbnail. For

the purposes of this example we’ll simply return the

contents of the file object - i.e. a bunch of metadata -

provided by Multer:

return res.status(200).send(req.file);

The response will look something like this:

{ fieldname: 'file',
 originalname: 'myfile.jpg',
 encoding: '7bit',
 mimetype: 'image/jpeg',
 destination: 'uploads/',
 filename: 'fbcc2ddbb0dd11858427d7f0bb2273f5',
 path:
'uploads/fbcc2ddbb0dd11858427d7f0bb2273f5',
 size: 15458 }

Handling Upload Errors

If your response is in JSON format - that is to say, your

response type is set to application/json - then

DropzoneJS default error plugin expects the response to

look like this:

{
 error: 'The error message'
}

If you aren’t using JSON, it’ll simply use the response

body, for example:

return res.status(422).send('The error
message');

Let’s demonstrate this by performing a couple of

validation checks on the uploaded file. We’ll simply

duplicate the checks we performed on the client —

remember, client-side validation is never sufficient on its

own.

To verify that the file is an image, we’ll simply check that

the Mime-type starts with image/. ES6’s

String.prototype.startsWith() is ideal for this,

but let’s install a polyfill for it:

npm install string.prototype.startswith --save

Here’s how we might run that check and, if it fails, return

the error in the format which Dropzone’s default error

handler expects:

if (!req.file.mimetype.startsWith('image/'))
{
 return res.status(422).json({
 error : 'The uploaded file must be an image'
 });
}

Status Codes

I’m using HTTP Status Code 422, Unprocessable Entity here for validation
failure, but 400 Bad Request is just as valid; indeed anything outside of the 2xx
range will cause the plugin to report the error.

Let’s also check that the image is of a certain size; the

image-size package makes it really straightforward to get

the dimensions of an image. You can use it

asynchronously or synchronously; we’ll use the latter to

keep things simple:

var dimensions = sizeOf(req.file.path);

if ((dimensions.width < 640) || (
dimensions.height < 480)) {
 return res.status(422).json({
 error : 'The image must be at least 640 x
480px'

https://github.com/mathiasbynens/String.prototype.startsWith
https://github.com/netroy/image-size

 });
}

Let’s put all of it together in a complete (mini)

application:

var express = require('express');
var multer = require('multer');
var upload = multer({ dest: 'uploads/' });
var sizeOf = require('image-size');
var exphbs = require('express-handlebars');
require('string.prototype.startswith');

var app = express();

app.use(express.static(__dirname +
'/bower_components'));

app.engine('.hbs', exphbs({ extname: '.hbs' })
);
app.set('view engine', '.hbs');

app.get('/', function(req, res, next){
 return res.render('index');
});

app.post('/upload', upload.single('file'),
function(req, res, next) {

 if (!req.file.mimetype.startsWith('image/')
) {
 return res.status(422).json({
 error : 'The uploaded file must be an
image'
 });
 }

 var dimensions = sizeOf(req.file.path);

 if ((dimensions.width < 640) || (
dimensions.height < 480)) {
 return res.status(422).json({
 error : 'The image must be at least 640 x
480px'
 });
 }

 return res.status(200).send(req.file);

});

app.listen(8080, function() {
 console.log('Express server listening on port
8080');
});

CSRF Protection

For brevity, this server-side code doesn’t implement CSRF protection; you
might want to look at a package like CSURF for that.

You’ll find this code, along with the supporting assets

such as the view, in the accompanying repository.

Summary

DropzoneJS is a slick, powerful and highly customizable

JavaScript plugin for super-charging your file upload

controls and performing AJAX uploads. In this article

we’ve taken a look at a number of the available options,

at events and how to go about customizing the plugin.

There’s a lot more to it than can reasonably be covered in

one article, so check out the official website if you’d like

to know more — but hopefully this is enough to get you

started.

We’ve also built a really simple server-side component to

handle file uploads, demonstrating how to get the two

working in tandem.

https://www.npmjs.com/package/csurf
https://github.com/sitepoint-editors/image-uploads-dropzonejs-node-express
http://www.dropzonejs.com/

Chapter 3: How to Build and

Structure a Node.js MVC

Application

BY JAMES KOLCE

In a non-trivial application, the architecture is as

important as the quality of the code itself. We

can have well-written pieces of code, but if we

don’t have a good organization, we’ll have a hard

time as the complexity increases. There’s no

need to wait until the project is half-way done to

start thinking about the architecture. The best

time is before starting, using our goals as

beacons for our choices.

Node.js doesn't have a de facto framework with strong

opinions on architecture and code organization in the

same way that Ruby has the Rails framework, for

example. As such, it can be difficult to get started with

building full web applications with Node.

In this chapter, we’re going to build the basic

functionality of a note-taking app using the MVC

architecture. To accomplish this, we’re going to employ

the Hapi.js framework for Node.js and SQLite as a

database, using Sequelize.js, plus other small utilities to

speed up our development. We’re going to build the

views using Pug, the templating language.

What is MVC?

Model-View-Controller (or MVC) is probably one of the

most popular architectures for applications. As with a lot

https://hapijs.com/
https://nodejs.org/en/
http://www.sqlite.org/
http://docs.sequelizejs.com/en/v3/
https://pugjs.org/api/getting-started.html

of other cool things in computer history, the MVC model

was conceived at PARC for the Smalltalk language as a

solution to the problem of organizing applications with

graphical user interfaces. It was created for desktop

applications, but since then, the idea has been adapted to

other mediums including the web.

We can describe the MVC architecture in simple words:

Model: The part of our application that will deal with the

database or any data-related functionality.

View: Everything the user will see. Basically the pages that we’re

going to send to the client.

Controller: The logic of our site, and the glue between models

and views. Here we call our models to get the data, then we put

that data on our views to be sent to the users.

Our application will allow us to publish, see, edit and

delete plain-text notes. It won’t have other functionality,

but because we’ll have a solid architecture already

defined we won’t have big trouble adding things later.

You can check out the final application in the

accompanying GitHub repository, so you get a general

overview of the application structure.

Laying out the Foundation

The first step when building any Node.js application is to

create a package.json file, which is going to contain

all of our dependencies and scripts. Instead of creating

this file manually, npm can do the job for us using the

init command:

npm init -y

After the process is complete will get a package.json
file ready to use.

https://youtu.be/NdSD07U5uBs?t=29m2s
https://en.wikipedia.org/wiki/PARC_(company)
https://github.com/sitepoint-editors/notes-board

npm Commands

If you're not familiar with these commands, checkout our Beginner's Guide to
npm.

We’re going to proceed to install Hapi.js — the

framework of choice for this tutorial. It provides a good

balance between simplicity, stability and feature

availability that will work well for our use case (although

there are other options that would also work just fine).

npm install --save hapi hoek

This command will download the latest version of

Hapi.js and add it to our package.json file as a

dependency. It will also download the Hoek utility

library that will help us write shorter error handlers,

among other things.

Now we can create our entry file — the web server that

will start everything. Go ahead and create a server.js
file in your application directory and all the following

code to it:

'use strict';

const Hapi = require('hapi');
const Hoek = require('hoek');
const Settings = require('./settings');

const server = new Hapi.Server();
server.connection({ port: Settings.port });

server.route({
 method: 'GET',
 path: '/',
 handler: (request, reply) => {
 reply('Hello, world!');
 }
});

server.start((err) => {
 Hoek.assert(!err, err);

https://www.sitepoint.com/beginners-guide-node-package-manager/
https://github.com/hapijs/hoek
https://github.com/hapijs/hoek/blob/master/API.md

 console.log(`Server running at:
${server.info.uri}`);
});

This is going to be the foundation of our application.

First, we indicate that we’re going to use strict mode,

which is a common practice when using the Hapi.js

framework.

Next, we include our dependencies and instantiate a new

server object where we set the connection port to 3000
(the port can be any number above 1023 and below

65535.)

Our first route for our server will work as a test to see if

everything is working, so a “Hello, world!” message is

enough for us. In each route, we have to define the HTTP

method and path (URL) that it will respond to, and a

handler, which is a function that will process the HTTP

request. The handler function can take two arguments:

request and reply. The first one contains information

about the HTTP call, and the second will provide us with

methods to handle our response to that call.

Finally, we start our server with the server.start
method. As you can see, we can use Hoek to improve our

error handling, making it shorter. This is completely

optional, so feel free to omit it in your code, just be sure

to handle any errors.

Storing Our Settings

It is good practice to store our configuration variables in

a dedicated file. This file exports a JSON object

containing our data, where each key is assigned from an

environment variable — but without forgetting a fallback

value.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://hapijs.com/styleguide#strict-mode
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

In this file, we can also have different settings depending

on our environment (e.g. development or production).

For example, we can have an in-memory instance of

SQLite for development purposes, but a real SQLite

database file on production.

Selecting the settings depending on the current

environment is quite simple. Since we also have an env
variable in our file which will contain either

development or production, we can do something

like the following to get the database settings (for

example):

const dbSettings = Settings[Settings.env].db;

So dbSettings will contain the setting of an in-memory

database when the env variable is development, or will

contain the path of a database file when the env variable

is production.

Also, we can add support for a .env file, where we can

store our environment variables locally for development

purposes; this is accomplished using a package like

dotenv for Node.js, which will read a .env file from the

root of our project and automatically add the found

values to the environment. You can find an example in

the dotenv repository.

If You Use a .env File

If you decide to also use a .env file, make sure you install the package with
npm install -s dotenv and add it to .gitignore so you don’t publish
any sensitive information.

Our settings.js file will look like this:

// This will load our .env file and add the
values to process.env,
// IMPORTANT: Omit this line if you don't want to

https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv/tree/master/examples/basic

use this functionality
require('dotenv').config({silent: true});

module.exports = {
 port: process.env.PORT || 3000,
 env: process.env.ENV || 'development',

 // Environment-dependent settings
 development: {
 db: {
 dialect: 'sqlite',
 storage: ':memory:'
 }
 },
 production: {
 db: {
 dialect: 'sqlite',
 storage: 'db/database.sqlite'
 }
 }
};

Now we can start our application by executing the

following command and navigating to

localhost:3000 in our web browser.

node server.js

Ensure Your Installation is Up-to-date

This project was tested on Node v6. If you get any errors, ensure you have an
updated installation.

Defining the Routes

The definition of routes gives us an overview of the

functionality supported by our application. To create our

additional routes, we just have to replicate the structure

of the route that we already have in our server.js file,

changing the content of each one.

Let’s start by creating a new directory called lib in our

project. Here we’re going to include all the JS

components. Inside lib, let’s create a routes.js file

and add the following content:

'use strict';

module.exports = [
 // We're going to define our routes here
];

In this file, we’ll export an array of objects that contain

each route of our application. To define the first route,

add the following object to the array:

{
 method: 'GET',
 path: '/',
 handler: (request, reply) => {
 reply('All the notes will appear here');
 },
 config: {
 description: 'Gets all the notes available'
 }
},

Our first route is for the home page (/) and since it will

only return information we assign it a GET method. For

now, it will only give us the message All the notes
will appear here, which we’re going to change later

for a controller function. The description field in the

config section is only for documentation purposes.

Then, we create the four routes for our notes under the

/note/ path. Since we’re building a CRUD application,

we will need one route for each action with the

corresponding HTTP method.

Add the following definitions next to the previous route:

{
 method: 'POST',
 path: '/note',

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://www.w3schools.com/tags/ref_httpmethods.asp

 handler: (request, reply) => {
 reply('New note');
 },
 config: {
 description: 'Adds a new note'
 }
},
{
 method: 'GET',
 path: '/note/{slug}',
 handler: (request, reply) => {
 reply('This is a note');
 },
 config: {
 description: 'Gets the content of a note'
 }
},
{
 method: 'PUT',
 path: '/note/{slug}',
 handler: (request, reply) => {
 reply('Edit a note');
 },
 config: {
 description: 'Updates the selected note'
 }
},
{
 method: 'GET',
 path: '/note/{slug}/delete',
 handler: (request, reply) => {
 reply('This note no longer exists');
 },
 config: {
 description: 'Deletes the selected note'
 }
},

We’ve done the same as in the previous route definition,

but this time we’ve changed the method to match the

action we want to execute.

The only exception is the delete route. In this case, we’re

going to define it with the GET method rather than

DELETE and add an extra /delete in the path. This

way, we can call the delete action just by visiting the

corresponding URL.

Strict REST

If you plan to implement a strict REST interface, then you would have to use
the DELETE method and remove the /delete part of the path.

We can name parameters in the path by surrounding the

word in brackets ({ … }). Since we’re going to identify

notes by a slug, we add {slug} to each path, with the

exception of the PUT route. We don’t need it there,

because we’re not going to interact with a specific note,

but to create one.

You can read more about Hapi.js routes on the official

documentation.

Now, we have to add our new routes to the server.js
file. Let's import the routes file at the top of the file:

const Routes = require('./lib/routes');

and replace our current test route with the following:

server.route(Routes);

Building the Models

Models allow us to define the structure of the data and all

the functions to work with it.

In this example, we’re going to use the SQLite database

with Sequelize.js which is going to provide us with a

better interface using the ORM (Object-Relational

Mapping) technique. It will also provide us a database-

independent interface.

SETTING UP THE DATABASE

https://hapijs.com/tutorials/routing?lang=en_US
http://www.sqlite.org/
http://docs.sequelizejs.com/en/v3/
https://en.wikipedia.org/wiki/Object-relational_mapping

For this section, we’re going to use Sequelize.js and

SQlite. You can install and include them as dependencies

by executing the following command:

npm install -s sequelize sqlite3

Now create a models directory inside lib/ with a file

called index.js which is going to contain the database

and Sequelize.js setup, and include the following

content:

'use strict';

const Fs = require('fs');
const Path = require('path');
const Sequelize = require('sequelize');
const Settings = require('../../settings');

// Database settings for the current environment
const dbSettings = Settings[Settings.env].db;

const sequelize = new
Sequelize(dbSettings.database, dbSettings.user,
dbSettings.password, dbSettings);
const db = {};

// Read all the files in this directory and
import them as models
Fs.readdirSync(__dirname)
 .filter((file) => (file.indexOf('.') !== 0) &&
(file !== 'index.js'))
 .forEach((file) => {
 const model =
sequelize.import(Path.join(__dirname, file));
 db[model.name] = model;
 });

db.sequelize = sequelize;
db.Sequelize = Sequelize;

module.exports = db;

First, we include the modules that we’re going to use:

https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/sqlite3

Fs, to read the files inside the models folder, which is going to

contain all the models.

Path, to join the path of each file in the current directory.

Sequelize, that will allow us to create a new Sequelize instance.

Settings, which contains the data of our settings.js file from the

root of our project.

Next, we create a new sequelize variable that will

contain a Sequelize instance with our database

settings for the current environment. We’re going to use

sequelize to import all the models and make them

available in our db object.

The db object is going to be exported and will contain

our database methods for each model; it will be available

in our application when we need to do something with

our data.

To load all the models, instead of defining them

manually, we look for all the files inside the models
directory (with the exception of the index.jsfile) and

load them using the import function. The returned

object will provide us with the CRUD methods, which we

then add to the db object.

At the end, we add sequelize and Sequelize as part

of our db object, the first one is going to be used in our

server.js file to connect to the database before

starting the server, and the second one is included for

convenience if you need it in other files too.

CREATING OUR NOTE MODEL

In this section, we’re going to use the Moment.js package

to help with Date formatting. You can install it and

include it as a dependency with the following command:

npm install -s moment

http://momentjs.com/

Now, we’re going to create a note.js file inside the

models directory, which is going to be the only model in

our application; it will provide us with all the

functionality we need.

Add the following content to that file:

'use strict';

const Moment = require('moment');

module.exports = (sequelize, DataTypes) => {
 let Note = sequelize.define('Note', {
 date: {
 type: DataTypes.DATE,
 get: function () {
 return
Moment(this.getDataValue('date')).format('MMMM
Do, YYYY');
 }
 },
 title: DataTypes.STRING,
 slug: DataTypes.STRING,
 description: DataTypes.STRING,
 content: DataTypes.STRING
 });

 return Note;
};

We export a function that accepts a sequelize
instance, to define the model, and a DataTypes object

with all the types available in our database.

Next, we define the structure of our data using an object

where each key corresponds to a database column and

the value of the key defines the type of data that we’re

going to store. You can see the list of data types in the

Sequelize.js documentation. The tables in the database

are going to be created automatically based on this

information.

http://docs.sequelizejs.com/en/latest/api/datatypes/

In the case of the date column, we also define a how

Sequelize should return the value using a getter function

(get key). We indicate that before returning the

information it should be first passed through the

Moment utility to be formatted in a more readable way

(MMMM Do, YYYY).

Ahem, Excuse Me ...

Although we’re getting a simple and easy-to-read date string, it is stored as a
precise date string product of the Date object of JavaScript. So this is not a
destructive operation.

Finally, we return our model.

SYNCHRONIZING THE DATABASE

Now, we have to synchronize our database before we’re

able to use it in our application. In server.js, import

the models at the top of the file:

// Import the index.js file inside the models
directory
const Models = require('./lib/models/');

Next, replace the following code block:

server.start((err) => {
 Hoek.assert(!err, err);
 console.log(`Server running at:
${server.info.uri}`);
});

with this one:

Models.sequelize.sync().then(() => {
 server.start((err) => {
 Hoek.assert(!err, err);
 console.log(`Server running at:
${server.info.uri}`);

http://docs.sequelizejs.com/en/latest/docs/models-definition/#getters-setters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date

 });
});

This code is going to synchronize the models to our

database and, once that is done, the server will be

started.

Building the controllers

Controllers are functions that accept the request and

reply objects from Hapi.js. The request object contains

information about the requested resource and we use

reply to return information to the client.

In our application, we’re going to return only a JSON

object for now, but we will add the views once we build

them.

We can think of controllers as functions that will join our

models with our views; they will communicate with our

models to get the data, and then return that data inside a

view.

THE HOME CONTROLLER

The first controller that we’re going to build will handle

the home page of our site. Create a home.js file inside

the lib/controllers directory with the following

content:

'use strict';

const Models = require('../models/');

module.exports = (request, reply) => {
 Models.Note
 .findAll({
 order: [['date', 'DESC']]
 })
 .then((result) => {
 reply({
 data: {

https://hapijs.com/api#request-object
https://hapijs.com/api#reply-interface

 notes: result
 },
 page: 'Home—Notes Board',
 description: 'Welcome to my Notes Board'
 });
 });
};

First, we get all the notes in our database using the

findAll method of our model. This function will return

a promise and, if it resolves, we will get an array

containing all the notes in our database.

We can arrange the results in descending order, using

the order parameter in the options object passed to the

findAll method, so the last item will appear first. You

can check all the available options in the Sequelize.js

documentation.

Once we have the home controller, we can edit our

routes.js file. First, we import the module at the top

of the file, next to the Path module import:

const Home = require('./controllers/home');

Then we add the controller we just made to the array:

{
 method: 'GET',
 path: '/',
 handler: Home,
 config: {
 description: 'Gets all the notes available'
 }
},

BOILERPLATE OF THE NOTE CONTROLLER

Since we’re going to identify our notes with a slug, we

can generate one using the title of the note and the slug

http://docs.sequelizejs.com/en/latest/api/model/#findalloptions-promisearrayinstance
http://docs.sequelizejs.com/en/latest/api/model/#findalloptions-promisearrayinstance
https://github.com/dodo/node-slug

library, so let's install it and include it as a dependency

with the following command:

npm install -s slug

The last controller that we have to define in our

application will allow us to create, read, update, and

delete notes.

We can proceed to create a note.js file inside the

lib/controllers directory and add the following

content:

'use strict';

const Models = require('../models/');
const Slugify = require('slug');
const Path = require('path');

module.exports = {
 // Here we're going to include our functions
that will handle each request in the routes.js
file.
};

THE “CREATE” FUNCTION

To add a note to our database, we’re going to write a

create function that is going to wrap the create
method on our model using the data contained in the

payload object.

Add the following inside the object that we’re exporting:

create: (request, reply) => {
 Models.Note
 .create({
 date: new Date(),
 title: request.payload.noteTitle,
 slug: Slugify(request.payload.noteTitle,
{lower: true}),
 description:

request.payload.noteDescription,
 content: request.payload.noteContent
 })
 .then((result) => {
 // We're going to generate a view later,
but for now lets just return the result.
 reply(result);
 });
},

Once the note is created, we will get back the note data

and send it to the client as JSON using the reply
function.

For now, we just return the result, but once we build the

views in the next section, we will be able to generate the

HTML with the new note and add it dynamically on the

client. Although this is not completely necessary and will

depend on how you are going to handle your front-end

logic, we’re going to return an HTML block to simplify

the logic on the client.

Also, note that the date is being generated on the fly

when we execute the function, using new Date().

THE “READ” FUNCTION

To search just one element we use the findOne method

on our model. Since we identify notes by their slug, the

where filter must contain the slug provided by the client

in the URL

(http://localhost:3000/note/:slug:).

read: (request, reply) => {
 Models.Note
 .findOne({
 where: {
 slug: request.params.slug
 }
 })
 .then((result) => {
 reply(result);

 });
},

As in the previous function, we will just return the result,

which is going to be an object containing the note

information. The views are going to be used once we

build them in the Building the Views section.

THE “UPDATE” FUNCTION

To update a note, we use the update method on our

model. It takes two objects, the new values that we’re

going to replace and the options containing a where
filter with the note slug, which is the note that we’re

going to update.

update: (request, reply) => {
 const values = {
 title: request.payload.noteTitle,
 description: request.payload.noteDescription,
 content: request.payload.noteContent
 };

 const options = {
 where: {
 slug: request.params.slug
 }
 };

 Models.Note
 .update(values, options)
 .then(() => {
 Models.Note
 .findOne(options)
 .then((result) => {
 reply(result);
 });
 });
},

After updating our data, since our database won’t return

the updated note, we can find the modified note again to

return it to the client, so we can show the updated

version as soon as the changes are made.

THE “DELETE” FUNCTION

The delete controller will remove the note by providing

the slug to the destroy function of our model. Then,

once the note is deleted, we redirect to the home page. To

accomplish this, we use the redirect function of the

Hapi.js reply object.

delete: (request, reply) => {
 Models.Note
 .destroy({
 where: {
 slug: request.params.slug
 }
 })
 .then(() => reply.redirect('/'));
}

USING THE NOTE CONTROLLER IN OUR

ROUTES

At this point, we should have our note controller file

ready with all the CRUD actions. But to use them, we

have to include it in our routes file.

First, let's import our controller at the top of the

routes.js file:

const Note = require('./controllers/note');

We have to replace each hander with our new functions,

so we should have our routes file as follows:

{
 method: 'POST',
 path: '/note',
 handler: Note.create,
 config: {
 description: 'Adds a new note'
 }
},
{
 method: 'GET',

https://hapijs.com/api#replyredirecturi

 path: '/note/{slug}',
 handler: Note.read,
 config: {
 description: 'Gets the content of a note'
 }
},
{
 method: 'PUT',
 path: '/note/{slug}',
 handler: Note.update,
 config: {
 description: 'Updates the selected note'
 }
},
{
 method: 'GET',
 path: '/note/{slug}/delete',
 handler: Note.delete,
 config: {
 description: 'Deletes the selected note'
 }
},

Referencing Functions, Not Calling Them

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Building the Views

At this point, our site is receiving HTTP calls and

responding with JSON objects. To make it useful to

everybody we have to create the pages that render our

information in a nice way.

In this example, we’re going to use the Pug templating

language, although this is not mandatory and we can use

other languages with Hapi.js. Also, we’re going to use the

Vision plugin to enable the view functionality in our

server.

Pug

https://hapijs.com/tutorials/views
https://github.com/hapijs/vision

If you're not familiar with Pug (formerly Jade), see our Jade Tutorial for
Beginners.

You can install the packages with the following

command:

npm install -s vision pug

THE NOTE COMPONENT

First, we’re going to build our note component that is

going to be reused across our views. Also, we’re going to

use this component in some of our controller functions

to build a note on the fly in the back-end to simplify the

logic on the client.

Create a file in lib/views/components called

note.pug with the following content:

article
 h2: a(href=`/note/${note.slug}`)= note.title
 small Published on #{note.date}
 p= note.content

It is composed of the title of the note, the publication

date and the content of the note.

THE BASE LAYOUT

The base layout contains the common elements of our

pages; or in other words, for our example, everything

that is not content. Create a file in lib/views/ called

layout.pug with the following content:

doctype html
html(lang='en')
 head
 meta(charset='utf-8')
 meta(http-equiv='x-ua-compatible'
content='ie=edge')

https://www.sitepoint.com/jade-tutorial-for-beginners/

 title= page
 meta(name='description' content=description)
 meta(name='viewport' content='width=device-
width, initial-scale=1')

 link(href='https://fonts.googleapis.com/css?
family=Gentium+Book+Basic:400,400i,700,700i|Ubunt
u:500' rel='stylesheet')
 link(rel='stylesheet'
href='/styles/main.css')
 body
 block content

 script(src='https://code.jquery.com/jquery-
3.1.1.min.js' integrity='sha256-
hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8='
crossorigin='anonymous')
 script(src='/scripts/jquery.modal.js')
 script(src='/scripts/main.js')

The content of the other pages will be loaded in place of

block content. Also, note that we will display a page

variable in the title element, and a description
variable in the meta(name='description') element.

We will create those variables in our routes later.

We also include, at the bottom of the page, three JS files,

jQuery, jQuery Modal and a main.js file which will

contain all of our custom JS code for the front-end. Be

sure to download those packages and put them in a

static/public/scripts/ directory. We’re going to

make them public in the Serving Static Files section.

THE HOME VIEW

On our home page, we will show a list containing all the

notes in our database and a button that will show a

modal window with a form that allows us to create a new

note via Ajax.

Create a file in lib/views called home.pug with the

following content:

https://jquery.com/
https://github.com/kylefox/jquery-modal

extends layout

block content
 header(container)
 h1 Notes Board

 nav
 ul
 // This will show a modal window with a
form to send new notes
 li: a(href='#note-form' rel='modal:open')
Publish

 main(container).notes-list
 // We loop over all the notes received from
our controller rendering our note component with
each entry
 each note in data.notes
 include components/note

 // Form to add a new note, this is used by our
controller `create` function.
 form(action='/note' method='POST').note-
form#note-form
 p: input(name='noteTitle' type='text'
placeholder='Title…')
 p: input(name='noteDescription' type='text'
placeholder='Short description…')
 p: textarea(name='noteContent') Write here
the content of the new note…
 p._text-right: input(type='submit'
value='Submit')

THE NOTE VIEW

The note page is pretty similar to the home page, but in

this case, we show a menu with options specific to the

current note, the content of the note and the same form

as in the home page but with the current note

information already filled, so it’s there when we update

it.

Create a file in lib/views called note.pug with the

following content:

extends layout

block content
 header(container)
 h1 Notes Board

 nav
 ul
 li: a(href='/') Home
 li: a(href='#note-form' rel='modal:open')
Update
 li: a(href=`/note/${note.slug}/delete`)
Delete

 main(container).note-content
 include components/note

 form(action=`/note/${note.slug}`
method='PUT').note-form#note-form
 p: input(name='noteTitle' type='text'
value=note.title)
 p: input(name='noteDescription' type='text'
value=note.description)
 p: textarea(name='noteContent')= note.content
 p._text-right: input(type='submit'
value='Update')

THE JAVASCRIPT ON THE CLIENT

To create and update notes we use the Ajax functionality

of jQuery. Although this is not strictly necessary, I feel it

provides a better experience for the user.

This is the content of our main.js file in the

static/public/scripts/ directory:

$('#note-form').submit(function (e) {
 e.preventDefault();

 var form = {
 url: $(this).attr('action'),
 type: $(this).attr('method')
 };

 $.ajax({
 url: form.url,

 type: form.type,
 data: $(this).serialize(),
 success: function (result) {
 $.modal.close();

 if (form.type === 'POST') {
 $('.notes-list').prepend(result);
 } else if (form.type === 'PUT') {
 $('.note-content').html(result);
 }
 }
 });
});

Every time the user submits the form in the modal

window, we get the information from the form elements

and send it to our back-end, depending on the action

URL and the method (POST or PUT). Then, we will get

the result as a block of HTML containing our new note

data. When we add a note, we will just add it on top of

the list on the home page, and when we update a note we

replace the content for the new one in the note view.

ADDING SUPPORT FOR VIEWS ON THE SERVER

To make use of our views, we have to include them in our

controllers and add the required settings.

In our server.js file, let's import the Node Path utility

at the top of the file, since we’re using it in our code to

indicate the path of our views.

const Path = require('path');

Now, replace the server.route(Routes); line with

the following code block:

server.register([
 require('vision')
], (err) => {
 Hoek.assert(!err, err);

https://nodejs.org/api/path.html

 // View settings
 server.views({
 engines: { pug: require('pug') },
 path: Path.join(__dirname, 'lib/views'),
 compileOptions: {
 pretty: false
 },
 isCached: Settings.env === 'production'
 });

 // Add routes
 server.route(Routes);
});

In the code we have added, we first register the Vision

plugin with our Hapi.js server, which is going to provide

the view functionality. Then, we add the settings for our

views — like the engine that we’re going to use and the

path where the views are located. At the end of the code

block, we add again our routes.

This will make work our views on the server, but we still

have to declare the view that we’re going to use for each

route.

SETTING THE HOME VIEW

Open the lib/controllers/home.js file and replace

the reply(result); line with the following:

reply.view('home', {
 data: {
 notes: result
 },
 page: 'Home—Notes Board',
 description: 'Welcome to my Notes Board'
});

After registering the Vision plugin, we now have a view
method available on the reply object, we’re going to use it

to select the home view in our views directory and to

send the data that is going to be used when rendering the

views.

https://github.com/hapijs/vision

In the data that we provide to the view, we also include

the page title and a meta description for search engines.

SETTING THE NOTE VIEW: CREATE FUNCTION

Right now, every time we create a note we get a JSON

object from the server to the client. But since we’re doing

this process with Ajax, we can send the new note as

HTML ready to be added to the page. To do this, we

render the note component with the data we have.

Replace the line reply(result); with the following

code block:

// Generate a new note with the 'result' data
const newNote = Pug.renderFile(
 Path.join(__dirname,
'../views/components/note.pug'),
 {
 note: result
 }
);

reply(newNote);

We use the renderFile method from Pug to render the

note template with the data we just received from our

model.

SETTING THE NOTE VIEW: READ FUNCTION

When we enter a note page, we should get the note

template with the content of our note. To do this, we

have to replace the reply(result); line with this:

reply.view('note', {
 note: result,
 page: `${result.title}—Notes Board`,
 description: result.description
});

As with the home page, we select a view as the first

parameter and the data that we’re going to use as the

second one.

SETTING THE NOTE VIEW: UPDATE FUNCTION

Every time we update a note, we will reply similarly to

when we create new notes. Replace the

reply(result); line with the following code:

// Generate a new note with the updated data
const updatedNote = Pug.renderFile(
 Path.join(__dirname,
'../views/components/note.pug'),
 {
 note: result
 }
);

reply(updatedNote);

No View for the Delete Function

The delete function doesn't need a view, since it will just redirect to the home
page once the note is deleted.

Serving Static Files

The JavaScript and CSS files that we’re using on the

client side are provided by Hapi.js from the

static/public/ directory. But it won’t happen

automatically; we have to indicate to the server that we

want to define this folder as public. This is done using

the Inert package, which you can install with the

following command:

npm install -s inert

In the server.register function inside the

server.js file, import the Inert plugin and register it

https://github.com/hapijs/inert

with Hapi like this:

server.register([
 require('vision'),
 require('inert')
], (err) => {

Now we have to define the route where we’re going to

provide the static files, and their location on our server's

filesystem. Add the following entry at the end of the

exported object in routes.js:

{
 // Static files
 method: 'GET',
 path: '/{param*}',
 handler: {
 directory: {
 path: Path.join(__dirname,
'../static/public')
 }
 },
 config: {
 description: 'Provides static resources'
 }
}

This route will use the GET method and we have replaced

the handler function with an object containing the

directory that we want to make public.

You can find more information about serving static

content in the Hapi.js documentation.

More Files in the Repo

Check the Github repository for the rest of the static files, like the main
stylesheet.

Conclusion

https://hapijs.com/tutorials/serving-files?lang=en_US#directory-handler
https://github.com/sitepoint-editors/notes-board
https://github.com/sitepoint-editors/notes-board/tree/master/static
https://github.com/sitepoint-editors/notes-board/blob/master/static/public/styles/main.css

At this point, we have a very basic Hapi.js application

using the MVC architecture. Although there are still

things that we should take care of before putting our

application in production (e.g. input validation, error

handling, error pages, etc.) this should work as a

foundation to learn and build your own applications.

If you would like to take this example a bit further, after

finishing all the small details (not related the

architecture) to make this a robust application, you could

implement an authentication system so only registered

users are able to publish and edit notes. But your

imagination is the limit, so feel free to fork the

application repository and experiment with your ideas.

https://github.com/sitepoint-editors/notes-board

Chapter 4: User

Authentication with the

MEAN Stack

BY SIMON HOLMES & JEREMY WILKEN

In this article, we’re going to look at managing

user authentication in the MEAN stack. We’ll use

the most common MEAN architecture of having

an Angular single-page app using a REST API

built with Node, Express and MongoDB.

When thinking about user authentication, we need to

tackle the following things:

1. let a user register

2. save their data, but never directly store their password

3. let a returning user log in

4. keep a logged in user’s session alive between page visits

5. have some pages that can only been seen by logged in users

6. change output to the screen depending on logged in status (e.g. a

“login” button or a “my profile” button).

Before we dive into the code, let’s take a few minutes for

a high-level look at how authentication is going to work

in the MEAN stack.

The MEAN Stack Authentication Flow

So what does authentication look like in the MEAN

stack?

Still keeping this at a high level, these are the

components of the flow:

user data is stored in MongoDB, with the passwords hashed

CRUD functions are built in an Express API — Create (register),

Read (login, get profile), Update, Delete

an Angular application calls the API and deals with the responses

the Express API generates a JSON Web Token (JWT, pronounced

“Jot”) upon registration or login, and passes this to the Angular

application

the Angular application stores the JWT in order to maintain the

user’s session

the Angular application checks the validity of the JWT when

displaying protected views

the Angular application passes the JWT back to Express when

calling protected API routes.

JWTs are preferred over cookies for maintaining the

session state in the browser. Cookies are better for

maintaining state when using a server-side application.

The Example Application

The code for this article is available on GitHub. To run

the application, you’ll need to have Node.js installed,

along with MongoDB. (For instructions on how to install,

please refer to Mongo’s official documentation —

Windows, Linux, macOS).

THE ANGULAR APP

To keep the example in this article simple, we’ll start

with an Angular app with four pages:

1. home page

2. register page

3. login page

4. profile page

The pages are pretty basic and look like this to start with:

https://github.com/sitepoint-editors/MEAN-stack-authentication
http://www.sitepoint.com/beginners-guide-node-package-manager/
https://docs.mongodb.org/manual/administration/install-community/

The profile page will only be accessible to authenticated

users. All the files for the Angular app are in a folder

inside the Angular CLI app called /client.

We’ll use the Angular CLI for building and running the

local server. If you’re unfamiliar with the Angular CLI,

refer to the Angular 2 Tutorial: Create a CRUD App with

Angular CLI to get started.

https://www.sitepoint.com/angular-2-tutorial/

THE REST API

We’ll also start off with the skeleton of a REST API built

with Node, Express and MongoDB, using Mongoose to

manage the schemas. This API has three routes:

1. /api/register (POST) — to handle new users registering

2. /api/login (POST) — to handle returning users logging in

3. /api/profile/USERID (GET) — to return profile details when

given a USERID.

The code for the API is all held in another folder inside

the Express app, called api. This holds the routes,

controllers and model, and is organized like this:

At this starting point, each of the controllers simply

responds with a confirmation, like this:

module.exports.register = function(req, res) {
 console.log("Registering user: " +
req.body.email);
 res.status(200);
 res.json({
 "message" : "User registered: " +
req.body.email
 });
};

http://mongoosejs.com/

Okay, let’s get on with the code, starting with the

database.

Creating the MongoDB Data Schema
with Mongoose

There’s a simple user schema defined in

/api/models/users.js. It defines the need for an

email address, a name, a hash and a salt. The hash and

salt will be used instead of saving a password. The email
is set to unique as we’ll use it for the login credentials.

Here’s the schema:

var userSchema = new mongoose.Schema({
 email: {
 type: String,
 unique: true,
 required: true
 },
 name: {
 type: String,
 required: true
 },
 hash: String,
 salt: String
});

MANAGING THE PASSWORD WITHOUT SAVING

IT

Saving user passwords is a big no-no. Should a hacker

get a copy of your database, you want to make sure they

can’t use it to log in to accounts. This is where the hash

and salt come in.

The salt is a string of characters unique to each user. The

hash is created by combining the password provided by

the user and the salt, and then applying one-way

encryption. As the hash can’t be decrypted, the only way

to authenticate a user is to take the password, combine it

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/api/models/users.js

with the salt and encrypt it again. If the output of this

matches the hash, the password must have been correct.

To do the setting and the checking of the password, we

can use Mongoose schema methods. These are

essentially functions that you add to the schema. They’ll

both make use of the Node.js crypto module.

At the top of the users.js model file, require crypto so

that we can use it:

var crypto = require('crypto');

Nothing needs installing, as crypto ships as part of Node.

Crypto itself has several methods; we’re interested in

randomBytes to create the random salt and

pbkdf2Sync to create the hash (there’s much more

about Crypto in the Node.js API docs).

Setting the Password

To save the reference to the password, we can create a

new method called setPassword on the userSchema
schema that accepts a password parameter. The method

will then use crypto.randomBytes to set the salt, and

crypto.pbkdf2Sync to set the hash:

userSchema.methods.setPassword =
function(password){
 this.salt =
crypto.randomBytes(16).toString('hex');
 this.hash = crypto.pbkdf2Sync(password,
this.salt, 1000, 64, 'sha512').toString('hex');
};

We’ll use this method when creating a user. Instead of

saving the password to a password path, we’ll be able to

pass it to the setPassword function to set the salt and

hash paths in the user document.

https://nodejs.org/api/crypto.html
https://nodejs.org/api/crypto.html

Checking the Password

Checking the password is a similar process, but we

already have the salt from the Mongoose model. This

time we just want to encrypt the salt and the password

and see if the output matches the stored hash.

Add another new method to the users.js model file,

called validPassword:

userSchema.methods.validPassword =
function(password) {
 var hash = crypto.pbkdf2Sync(password,
this.salt, 1000, 64, 'sha512').toString('hex');
 return this.hash === hash;
};

GENERATING A JSON WEB TOKEN (JWT)

One more thing the Mongoose model needs to be able to

do is generate a JWT, so that the API can send it out as a

response. A Mongoose method is ideal here too, as it

means we can keep the code in one place and call it

whenever needed. We’ll need to call it when a user

registers and when a user logs in.

To create the JWT, we’ll use a module called

jsonwebtoken which needs to be installed in the

application, so run this on the command line:

npm install jsonwebtoken --save

Then require this in the users.js model file:

var jwt = require('jsonwebtoken');

This module exposes a sign method that we can use to

create a JWT, simply passing it the data we want to

include in the token, plus a secret that the hashing

http://www.sitepoint.com/using-json-web-tokens-node-js/
https://www.npmjs.com/package/jsonwebtoken

algorithm will use. The data should be sent as a

JavaScript object, and include an expiry date in an exp
property.

Adding a generateJwt method to userSchema in

order to return a JWT looks like this:

userSchema.methods.generateJwt = function() {
 var expiry = new Date();
 expiry.setDate(expiry.getDate() + 7);

 return jwt.sign({
 _id: this._id,
 email: this.email,
 name: this.name,
 exp: parseInt(expiry.getTime() / 1000),
 }, "MY_SECRET"); // DO NOT KEEP YOUR SECRET IN
THE CODE!
};

Keep the Secret Safe!

It’s important that your secret is kept safe: only the originating server should
know what it is. It’s best practice to set the secret as an environment variable,
and not have it in the source code, especially if your code is stored in version
control somewhere.

That’s everything we need to do with the database.

Set Up Passport to Handle the Express
Authentication

Passport is a Node module that simplifies the process of

handling authentication in Express. It provides a

common gateway to work with many different

authentication “strategies”, such as logging in with

Facebook, Twitter or Oauth. The strategy we’ll use is

called “local”, as it uses a username and password stored

locally.

To use Passport, first install it and the strategy, saving

them in package.json:

npm install passport --save
npm install passport-local --save

CONFIGURE PASSPORT

Inside the api folder, create a new folder config and

create a file in there called passport.js. This is where

we define the strategy.

Before defining the strategy, this file needs to require

Passport, the strategy, Mongoose and the User model:

var passport = require('passport');
var LocalStrategy = require('passport-
local').Strategy;
var mongoose = require('mongoose');
var User = mongoose.model('User');

For a local strategy, we essentially just need to write a

Mongoose query on the User model. This query should

find a user with the email address specified, and then call

the validPassword method to see if the hashes match.

Pretty simple.

There’s just one curiosity of Passport to deal with.

Internally, the local strategy for Passport expects two

pieces of data called username and password.

However, we’re using email as our unique identifier, not

username. This can be configured in an options object

with a usernameField property in the strategy

definition. After that, it’s over to the Mongoose query.

So all in, the strategy definition will look like this:

passport.use(new LocalStrategy({
 usernameField: 'email'

 },
 function(username, password, done) {
 User.findOne({ email: username }, function
(err, user) {
 if (err) { return done(err); }
 // Return if user not found in database
 if (!user) {
 return done(null, false, {
 message: 'User not found'
 });
 }
 // Return if password is wrong
 if (!user.validPassword(password)) {
 return done(null, false, {
 message: 'Password is wrong'
 });
 }
 // If credentials are correct, return the
user object
 return done(null, user);
 });
 }
));

Note how the validPassword schema method is called

directly on the user instance.

Now Passport just needs to be added to the application.

So in app.js we need to require the Passport module,

require the Passport config and initialize Passport as

middleware. The placement of all of these items inside

app.js is quite important, as they need to fit into a

certain sequence.

The Passport module should be required at the top of the

file with the other general require statements:

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var passport = require('passport');

The config should be required after the model is

required, as the config references the model.

require('./api/models/db');
require('./api/config/passport');

Finally, Passport should be initialized as Express

middleware just before the API routes are added, as

these routes are the first time that Passport will be used.

app.use(passport.initialize());
app.use('/api', routesApi);

We’ve now got the schema and Passport set up. Next, it’s

time to put these to use in the routes and controllers of

the API.

Configure API Endpoints

With the API we’ve got two things to do:

1. make the controllers functional

2. secure the /api/profile route so that only authenticated users

can access it.

CODE THE REGISTER AND LOGIN API

CONTROLLERS

In the example app the register and login controllers are

in /api/controllers/authentication.js. In

order for the controllers to work, the file needs to require

Passport, Mongoose and the user model:

var passport = require('passport');
var mongoose = require('mongoose');
var User = mongoose.model('User');

The Register API Controller

The register controller needs to do the following:

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/api/controllers/authentication.js

1. take the data from the submitted form and create a new Mongoose

model instance

2. call the setPassword method we created earlier to add the salt

and the hash to the instance

3. save the instance as a record to the database

4. generate a JWT

5. send the JWT inside the JSON response.

In code, all of that looks like this:

module.exports.register = function(req, res) {
 var user = new User();

 user.name = req.body.name;
 user.email = req.body.email;

 user.setPassword(req.body.password);

 user.save(function(err) {
 var token;
 token = user.generateJwt();
 res.status(200);
 res.json({
 "token" : token
 });
 });
};

This makes use of the setPassword and generateJwt
methods we created in the Mongoose schema definition.

See how having that code in the schema makes this

controller really easy to read and understand.

Don’t forget that, in reality, this code would have a

number of error traps, validating form inputs and

catching errors in the save function. They’re omitted

here to highlight the main functionality of the code.

The Login API Controller

The login controller hands over pretty much all control

to Passport, although you could (and should) add some

validation beforehand to check that the required fields

have been sent.

For Passport to do its magic and run the strategy defined

in the config, we need to call the authenticate method

as shown below. This method will call a callback with

three possible parameters err, user and info. If user
is defined, it can be used to generate a JWT to be

returned to the browser:

module.exports.login = function(req, res) {

 passport.authenticate('local', function(err,
user, info){
 var token;

 // If Passport throws/catches an error
 if (err) {
 res.status(404).json(err);
 return;
 }

 // If a user is found
 if(user){
 token = user.generateJwt();
 res.status(200);
 res.json({
 "token" : token
 });
 } else {
 // If user is not found
 res.status(401).json(info);
 }
 })(req, res);

};

SECURING AN API ROUTE

The final thing to do in the back end is make sure that

only authenticated users can access the /api/profile
route. The way to validate a request is to ensure that the

JWT sent with it is genuine, by using the secret again.

This is why you should keep it a secret and not in the

code.

Configuring the Route Authentication

First we need to install a piece of middleware called

express-jwt:

npm install express-jwt --save

Then we need to require it and configure it in the file

where the routes are defined. In the sample application,

this is /api/routes/index.js. Configuration is a

case of telling it the secret, and — optionally — the name

of the property to create on the req object that will hold

the JWT. We’ll be able to use this property inside the

controller associated with the route. The default name

for the property is user, but this is the name of an

instance of our Mongoose User model, so we’ll set it to

payload to avoid confusion:

var jwt = require('express-jwt');
var auth = jwt({
 secret: 'MY_SECRET',
 userProperty: 'payload'
});

Again, don’t keep the secret in the code!

Applying the Route Authentication

To apply this middleware, simply reference the function

in the middle of the route to be protected, like this:

router.get('/profile', auth,
ctrlProfile.profileRead);

If someone tries to access that route now without a valid

JWT, the middleware will throw an error. To make sure

our API plays nicely, catch this error and return a 401

response by adding the following into the error handlers

section of the main app.js file:

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/api/routes/index.js

// error handlers
// Catch unauthorised errors
app.use(function (err, req, res, next) {
 if (err.name === 'UnauthorizedError') {
 res.status(401);
 res.json({"message" : err.name + ": " +
err.message});
 }
});

Using the Route Authentication

In this example, we only want people to be able to view

their own profiles, so we get the user ID from the JWT

and use it in a Mongoose query.

The controller for this route is in

/api/controllers/profile.js. The entire contents

of this file look like this:

var mongoose = require('mongoose');
var User = mongoose.model('User');

module.exports.profileRead = function(req, res) {

 // If no user ID exists in the JWT return a 401
 if (!req.payload._id) {
 res.status(401).json({
 "message" : "UnauthorizedError: private
profile"
 });
 } else {
 // Otherwise continue
 User
 .findById(req.payload._id)
 .exec(function(err, user) {
 res.status(200).json(user);
 });
 }

};

Naturally, this should be fleshed out with some more

error trapping — for example, if the user isn’t found —

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/api/controllers/profile.js

but this snippet is kept brief to demonstrate the key

points of the approach.

That’s it for the back end. The database is configured, we

have API endpoints for registering and logging in that

generate and return a JWT, and also a protected route.

On to the front end!

Create Angular Authentication Service

Most of the work in the front end can be put into an

Angular service, creating methods to manage:

saving the JWT in local storage

reading the JWT from local storage

deleting the JWT from local storage

calling the register and login API endpoints

checking whether a user is currently logged in

getting the details of the logged-in user from the JWT.

We’ll need to create a new service called

AuthenticationService. With the CLI, this can be

done by running ng generate service
authentication, and making sure it’s listed in the app

module providers. In the example app, this is in the file

/client/src/app/authentication.service.ts.

LOCAL STORAGE: SAVING, READING AND

DELETING A JWT

To keep a user logged in between visits, we use

localStorage in the browser to save the JWT. An

alternative is to use sessionStorage, which will only

keep the token during the current browser session.

First, we want to create a few interfaces to handle the

data types. This is useful for type checking our

application. The profile returns an object formatted as

UserDetails, and the login and register endpoints

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/authentication.service.ts

expect a TokenPayload during the request and return a

TokenResponse object:

export interface UserDetails {
 _id: string;
 email: string;
 name: string;
 exp: number;
 iat: number;
}

interface TokenResponse {
 token: string;
}

export interface TokenPayload {
 email: string;
 password: string;
 name?: string;
}

This service uses the HttpClient service from Angular

to make HTTP requests to our server application (which

we’ll use in a moment) and the Router service to

navigate programmatically. We must inject them into

our service constructor.

Then we define four methods that interact with the JWT

token. We implement saveToken to handle storing the

token into localStorage and onto the token
property, a getToken method to retrieve the token from

localStorage or from the token property, and a

logout function that removes the JWT token from

memory and redirects to the home page.

It’s important to note that this code doesn’t run if you’re

using server-side rendering, because APIs like

localStorage and window.atob aren’t available, and

there are details about solutions to address server-side

rendering in the Angular documentation.

import { Injectable } from '@angular/core';
import { HttpClient } from
'@angular/common/http';
import { Observable } from 'rxjs/Observable';
import { map } from 'rxjs/operators/map';
import { Router } from '@angular/router';

// Interfaces here

@Injectable()
export class AuthenticationService {
 private token: string;

 constructor(private http: HttpClient, private
router: Router) {}

 private saveToken(token: string): void {
 localStorage.setItem('mean-token', token);
 this.token = token;
 }

 private getToken(): string {
 if (!this.token) {
 this.token = localStorage.getItem('mean-
token');
 }
 return this.token;
 }

 public logout(): void {
 this.token = '';
 window.localStorage.removeItem('mean-token');
 this.router.navigateByUrl('/');
 }
}

Now let’s add a method to check for this token — and the

validity of the token — to find out if the visitor is logged

in.

Getting Data from a JWT

When we set the data for the JWT (in the generateJwt
Mongoose method) we included the expiry date in an

exp property. But if you look at a JWT, it seems to be a

random string, like this following example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJfaWQiOiI1
NWQ0MjNjMTUxMzcxMmNkMzE3YTRkYTciLCJlbWFpbCI6InNpb
W9uQGZ1bGxzdGFja3RyYWluaW5nLmNvbSIsIm5hbWUiOiJTaW
1vbiBIb2xtZXMiLCJleHAiOjE0NDA1NzA5NDUsImlhdCI6MTQ
zOTk2NjE0NX0.jS50GlmolxLoKrA_24LDKaW3vNaY94Y9EqYA
FvsTiLg

So how do you read a JWT?

A JWT is actually made up of three separate strings,

separated by a dot .. These three parts are:

1. Header — an encoded JSON object containing the type and the

hashing algorithm used

2. Payload — an encoded JSON object containing the data, the real

body of the token

3. Signature — an encrypted hash of the header and payload, using

the “secret” set on the server.

It’s the second part we’re interested in here — the

payload. Note that this is encoded rather than encrypted,

meaning that we can decode it.

There’s a function called atob() that’s native to modern

browsers, and which will decode a Base64 string like

this.

So we need to get the second part of the token, decode it

and parse it as JSON. Then we can check that the expiry

date hasn’t passed.

At the end of it, the getUserDetails function should

return an object of the UserDetails type or null,

depending on whether a valid token is found or not. Put

together, it looks like this:

public getUserDetails(): UserDetails {
 const token = this.getToken();
 let payload;
 if (token) {
 payload = token.split('.')[1];
 payload = window.atob(payload);

 return JSON.parse(payload);
 } else {
 return null;
 }
}

The user details that are provided include the

information about the user’s name, email, and the

expiration of the token, which we’ll use to check if the

user session is valid.

CHECK WHETHER A USER IS LOGGED IN

Add a new method called isLoggedIn to the service. It

uses the getUserDetails method to get the token

details from the JWT token and checks the expiration

hasn’t passed yet:

public isLoggedIn(): boolean {
 const user = this.getUserDetails();
 if (user) {
 return user.exp > Date.now() / 1000;
 } else {
 return false;
 }
}

If the token exists, the method will return if the user is

logged in as a boolean value. Now we can construct our

HTTP requests to load data, using the token for

authorization.

STRUCTURING THE API CALLS

To facilitate making API calls, add the request method

to the AuthenticationService, which is able to

construct and return the proper HTTP request

observable depending on the specific type of request. It’s

a private method, since it’s only used by this service, and

exists just to reduce code duplication. This will use the

Angular HttpClient service; remember to inject this

into the AuthenticationService if it’s not already

there:

private request(method: 'post'|'get', type:
'login'|'register'|'profile', user?:
TokenPayload): Observable<any> {
 let base;

 if (method === 'post') {
 base = this.http.post(`/api/${type}`, user);
 } else {
 base = this.http.get(`/api/${type}`, {
headers: { Authorization: `Bearer
${this.getToken()}` }});
 }

 const request = base.pipe(
 map((data: TokenResponse) => {
 if (data.token) {
 this.saveToken(data.token);
 }
 return data;
 })
);

 return request;
}

It does require the map operator from RxJS in order to

intercept and store the token in the service if it’s

returned by an API login or register call. Now we can

implement the public methods to call the API.

CALLING THE REGISTER AND LOGIN API

ENDPOINTS

Just three methods to add. We’ll need an interface

between the Angular app and the API, to call the login

and register endpoints and save the returned token, or

the profile endpoint to get the user details:

public register(user: TokenPayload):
Observable<any> {
 return this.request('post', 'register', user);
}

public login(user: TokenPayload): Observable<any>
{
 return this.request('post', 'login', user);
}

public profile(): Observable<any> {
 return this.request('get', 'profile');
}

Each method returns an observable that will handle the

HTTP request for one of the API calls we need to make.

That finalizes the service; now to tie everything together

in the Angular app.

Apply Authentication to Angular App

We can use the AuthenticationService inside the

Angular app in a number of ways to give the experience

we’re after:

1. wire up the register and sign-in forms

2. update the navigation to reflect the user’s status

3. only allow logged-in users access to the /profile route

4. call the protected /api/profile API route.

CONNECT THE REGISTER AND LOGIN

CONTROLLERS

We’ll begin by looking at the register and login forms.

The Register Page

The HTML for the registration form already exists and

has NgModel directives attached to the fields, all bound

to properties set on the credentials controller

property. The form also has a (submit) event binding

to handle the submission. In the example application, it’s

in

/client/src/app/register/register.componen
t.html and looks like this:

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/register/register.component.html

<form (submit)="register()">
 <div class="form-group">
 <label for="name">Full name</label>
 <input type="text" class="form-control"
name="name" placeholder="Enter your name"
[(ngModel)]="credentials.name">
 </div>
 <div class="form-group">
 <label for="email">Email address</label>
 <input type="email" class="form-control"
name="email" placeholder="Enter email"
[(ngModel)]="credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control"
name="password" placeholder="Password"
[(ngModel)]="credentials.password">
 </div>
 <button type="submit" class="btn btn-
default">Register!</button>
</form>

The first task in the controller is to ensure our

AuthenticationService and the Router are

injected and available through the constructor. Next,

inside the register handler for the form submit, make

a call to auth.register, passing it the credentials

from the form.

The register method returns an observable, which we

need to subscribe to in order to trigger the request. The

observable will emit success or failure, and if someone

has successfully registered, we’ll set the application to

redirect them to the profile page or log the error in the

console.

In the sample application, the controller is in

/client/src/app/register/register.componen
t.ts and looks like this:

import { Component } from '@angular/core';
import { AuthenticationService, TokenPayload }

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/register/register.component.ts

from '../authentication.service';
import { Router } from '@angular/router';

@Component({
 templateUrl: './register.component.html'
})
export class RegisterComponent {
 credentials: TokenPayload = {
 email: '',
 name: '',
 password: ''
 };

 constructor(private auth:
AuthenticationService, private router: Router) {}

 register() {

this.auth.register(this.credentials).subscribe(()
=> {
 this.router.navigateByUrl('/profile');
 }, (err) => {
 console.error(err);
 });
 }
}

The Login Page

The login page is very similar in nature to the register

page, but in this form we don’t ask for the name, just

email and password. In the sample application, it’s in

/client/src/app/login/login.component.html
and looks like this:

<form (submit)="login()">
 <div class="form-group">
 <label for="email">Email address</label>
 <input type="email" class="form-control"
name="email" placeholder="Enter email"
[(ngModel)]="credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control"
name="password" placeholder="Password"
[(ngModel)]="credentials.password">
 </div>

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master//client/src/app/login/login.component.html

 <button type="submit" class="btn btn-
default">Sign in!</button>
</form>

Once again, we have the form submit handler, and

NgModel attributes for each of the inputs. In the

controller, we want the same functionality as the register

controller, but this time called the login method of the

AuthenticationService.

In the sample application, the controller is in

/client/src/app/login/login.controller.ts
and look like this:

import { Component } from '@angular/core';
import { AuthenticationService, TokenPayload }
from '../authentication.service';
import { Router } from '@angular/router';

@Component({
 templateUrl: './login.component.html'
})
export class LoginComponent {
 credentials: TokenPayload = {
 email: '',
 password: ''
 };

 constructor(private auth:
AuthenticationService, private router: Router) {}

 login() {

this.auth.login(this.credentials).subscribe(() =>
{
 this.router.navigateByUrl('/profile');
 }, (err) => {
 console.error(err);
 });
 }
}

Now users can register and sign in to the application.

Note that, again, there should be more validation in the

forms to ensure that all required fields are filled before

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/login/login.controller.ts

submitting. These examples are kept to the bare

minimum to highlight the main functionality.

CHANGE CONTENT BASED ON USER STATUS

In the navigation, we want to show the Sign in link if a

user isn’t logged in, and their username with a link to the

profile page if they are logged in. The navbar is found in

the App component.

First, we’ll look at the App component controller. We can

inject the AuthenticationService into the

component and call it directly in our template. In the

sample app, the file is in

/client/src/app/app.component.ts and looks

like this:

import { Component } from '@angular/core';
import { AuthenticationService } from
'./authentication.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html'
})
export class AppComponent {
 constructor(public auth: AuthenticationService)
{}
}

That’s pretty simple, right? Now, in the associated

template we can use auth.isLoggedIn() to determine

whether to display the sign-in link or the profile link. To

add the user’s name to the profile link, we can access the

name property of auth.getUserDetails()?.name.

Remember that this is getting the data from the JWT.

The ?. operator is a special way to access a property on

an object that may be undefined, without throwing an

error.

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/app.component.ts

In the sample app, the file is in

/client/src/app/app.component.html and the

updated part looks like this:

<ul class="nav navbar-nav navbar-right">
 <li *ngIf="!auth.isLoggedIn()">Sign in
 <li *ngIf="auth.isLoggedIn()">{{
auth.getUserDetails()?.name }}
 <li *ngIf="auth.isLoggedIn()"><a
(click)="auth.logout()">Logout

PROTECT A ROUTE FOR LOGGED IN USERS

ONLY

In this step, we’ll see how to make a route accessible only

to logged-in users, by protecting the /profile path.

Angular allows you to define a route guard, which can

run a check at several points of the routing life cycle to

determine if the route can be loaded. We’ll use the

CanActivate hook to tell Angular to load the profile

route only if the user is logged in.

To do, this we need to create a route guard service, ng
generate service auth-guard. It must implement

the CanActivate interface, and the associated

canActivate method. This method returns a boolean

value from the

AuthenticationService.isLoggedIn method

(basically checks if the token is found, and still valid),

and if the user is not valid also redirects them to the

home page:

import { Injectable } from '@angular/core';
import { Router, CanActivate } from
'@angular/router';
import { AuthenticationService } from
'./authentication.service';

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/app.component.html

@Injectable()
export class AuthGuardService implements
CanActivate {

 constructor(private auth:
AuthenticationService, private router: Router) {}

 canActivate() {
 if (!this.auth.isLoggedIn()) {
 this.router.navigateByUrl('/');
 return false;
 }
 return true;
 }
}

To enable this guard, we have to declare it on the route

configuration. There’s a property called canActivate,

which takes an array of services that should be called

before activating the route. Ensure you also declare these

services in the App NgModule’s providers array. The

routes are defined in the App module, which contains the

routes like you see here:

const routes: Routes = [
 { path: '', component: HomeComponent },
 { path: 'login', component: LoginComponent },
 { path: 'register', component:
RegisterComponent },
 { path: 'profile', component: ProfileComponent,
canActivate: [AuthGuardService] }
];

With that route guard in place, now if an

unauthenticated user tries to visit the profile page,

Angular will cancel the route change and redirect to the

home page, thus protecting it from unauthenticated

users.

CALL A PROTECTED API ROUTE

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/app.modle.ts

The /api/profile route has been set up to check for a

JWT in the request. Otherwise, it will return a 401

unauthorized error.

To pass the token to the API, it needs to be sent through

as a header on the request, called Authorization. The

following snippet shows the main data service function,

and the format required to send the token. The

AuthenticationService already handles this, but

you can find this in

/client/src/app/authentication.service.ts.

base = this.http.get(`/api/${type}`, { headers: {
Authorization: `Bearer ${this.getToken()}` }});

Remember that the back-end code is validating that the

token is genuine when the request is made, by using the

secret known only to the issuing server.

To make use of this in the profile page, we just need to

update the controller, in

/client/src/app/profile/profile.component.
ts in the sample app. This will populate a details
property when the API returns some data, which should

match the UserDetails interface.

import { Component } from '@angular/core';
import { AuthenticationService, UserDetails }
from '../authentication.service';

@Component({
 templateUrl: './profile.component.html'
})
export class ProfileComponent {
 details: UserDetails;

 constructor(private auth:
AuthenticationService) {}

 ngOnInit() {
 this.auth.profile().subscribe(user => {
 this.details = user;

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/authentication.service.ts
https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/client/src/app/profile/profile.component.ts

 }, (err) => {
 console.error(err);
 });
 }
}

Then, of course, it’s just a case of updating the bindings

in the view

(/client/src/app/profile/profile.component
.html). Again, the ?. is a safety operator for binding

properties that don’t exist on first render (since data has

to load first).

<div class="form-horizontal">
 <div class="form-group">
 <label class="col-sm-3 control-label">Full
name</label>
 <p class="form-control-static">{{
details?.name }}</p>
 </div>
 <div class="form-group">
 <label class="col-sm-3 control-
label">Email</label>
 <p class="form-control-static">{{
details?.email }}</p>
 </div>
</div>

And here’s the final profile page, when logged in:

https://github.com/sitepoint-editors/MEAN-stack-authentication/blob/master/

That’s how to manage authentication in the MEAN stack,

from securing API routes and managing user details to

working with JWTs and protecting routes.

Chapter 5: Build a

JavaScript Command Line

Interface (CLI) with Node.js

BY LUKAS WHITE & MICHAEL WANYOIKE

As great as Node.js is for “traditional” web

applications, its potential uses are far broader.

Microservices, REST APIs, tooling, working with

the Internet of Things and even desktop

applications: it’s got your back.

Another area where Node.js is really useful is for

building command-line applications — and that’s what

we’re going to be doing in this article. We’re going to

start by looking at a number of third-party packages

designed to help work with the command line, then build

a real-world example from scratch.

What we’re going to build is a tool for initializing a Git

repository. Sure, it’ll run git init under the hood, but

it’ll do more than just that. It will also create a remote

repository on GitHub right from the command line,

allow the user to interactively create a .gitignore file,

and finally perform an initial commit and push.

As ever, the code accompanying this tutorial can be

found on our GitHub repo.

Why Build a Command-line Tool with
Node.js?

Before we dive in and start building, it’s worth looking at

why we might choose Node.js to build a command-line

https://github.com/sitepoint-editors/ginit

application.

The most obvious advantage is that, if you’re reading

this, you’re probably already familiar with it — and,

indeed, with JavaScript.

Another key advantage, as we’ll see as we go along, is

that the strong Node.js ecosystem means that among the

hundreds of thousands of packages available for all

manner of purposes, there are a number which are

specifically designed to help build powerful command-

line tools.

Finally, we can use npm to manage any dependencies,

rather than have to worry about OS-specific package

managers such as Aptitude, Yum or Homebrew.

Although Your Tool May Have Other Dependencies

That isn’t necessarily true, in that your command-line tool may have other
external dependencies.

Tip: that isn’t necessarily true, in that your command-

line tool may have other external dependencies.

What Weʼre Going to Build: ginit

For this tutorial, We’re going to create a command-line

utility which I’m calling ginit. It’s git init, but on

steroids.

You’re probably wondering what on earth that means.

As you no doubt already know, git init initializes a git

repository in the current folder. However, that’s usually

only one of a number of repetitive steps involved in the

process of hooking up a new or existing project to Git.

For example, as part of a typical workflow, you may well:

1. initialise the local repository by running git init
2. create a remote repository, for example on GitHub or Bitbucket —

typically by leaving the command line and firing up a web browser

3. add the remote

4. create a .gitignore file

5. add your project files

6. commit the initial set of files

7. push up to the remote repository.

There are often more steps involved, but we’ll stick to

those for the purposes of our app. Nevertheless, these

steps are pretty repetitive. Wouldn’t it be better if we

could do all this from the command line, with no copy-

pasting of Git URLs and such like?

So what ginit will do is create a Git repository in the

current folder, create a remote repository — we’ll be

using GitHub for this — and then add it as a remote.

Then it will provide a simple interactive “wizard” for

creating a .gitignore file, add the contents of the

folder and push it up to the remote repository. It might

not save you hours, but it’ll remove some of the initial

friction when starting a new project.

With that in mind, let’s get started.

The Application Dependencies

One thing is for certain: in terms of appearance, the

console will never have the sophistication of a graphical

user interface. Nevertheless, that doesn’t mean it has to

be plain, ugly, monochrome text. You might be surprised

by just how much you can do visually, while at the same

time keeping it functional. We’ll be looking at a couple of

libraries for enhancing the display: chalk for colorizing

the output and clui to add some additional visual

components. Just for fun, we’ll use figlet to create a fancy

ASCII-based banner and we’ll also use clear to clear the

console.

In terms of input and output, the low-level Readline

Node.js module could be used to prompt the user and

request input, and in simple cases is more than adequate.

But we’re going to take advantage of a third-party

package which adds a greater degree of sophistication —

Inquirer. As well as providing a mechanism for asking

questions, it also implements simple input controls:

think radio buttons and checkboxes, but in the console.

We’ll also be using minimist to parse command-line

arguments.

https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/clui
https://www.npmjs.com/package/clui
https://www.npmjs.com/package/clear
https://nodejs.org/api/readline.html
https://www.npmjs.com/package/inquirer
https://www.npmjs.com/package/minimist

Here’s a complete list of the packages we’ll use

specifically for developing on the command line:

chalk — colorizes the output

clear — clears the terminal screen

clui — draws command-line tables, gauges and spinners

figlet — creates ASCII art from text

inquirer — creates interactive command-line user interface

minimist — parses argument options

configstore — easily loads and saves config without you having to

think about where and how.

Additionally, we’ll also be using the following:

@octokit/rest — a GitHub REST API client for Node.js

lodash — a JavaScript utility library

simple-git — a tool for running Git commands in a Node.js

application

touch — a tool for implementating the Unix touch command.

Getting Started

Although we’re going to create the application from

scratch, don’t forget that you can also grab a copy of the

code from the repository which accompanies this article.

Create a new directory for the project. You don’t have to

call it ginit, of course:

mkdir ginit
cd ginit

Create a new package.json file:

npm init

Follow the simple wizard, for example:

https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/clear
https://www.npmjs.com/package/clui
https://www.npmjs.com/package/figlet
https://www.npmjs.com/package/inquirer
https://www.npmjs.com/package/minimist
https://www.npmjs.com/package/configstore
https://www.npmjs.com/package/@octokit/rest
https://www.npmjs.com/package/lodash
https://www.npmjs.com/package/simple-git
https://www.npmjs.com/package/touch
https://github.com/sitepoint-editors/ginit

name: (ginit)
version: (1.0.0)
description: "git init" on steroids
entry point: (index.js)
test command:
git repository:
keywords: Git CLI
author: [YOUR NAME]
license: (ISC)

Now install the dependencies:

npm install chalk clear clui figlet inquirer
minimist configstore @octokit/rest lodash simple-
git touch --save

Alternatively, simply copy-paste the following

package.json file — modifying the author
appropriately — or grab it from the repository which

accompanies this article:

{
 "name": "ginit",
 "version": "1.0.0",
 "description": "\"git init\" on steroids",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" &&
exit 1"
 },
 "keywords": [
 "Git",
 "CLI"
],
 "author": "Lukas White <hello@lukaswhite.com>",
 "license": "ISC",
 "bin": {
 "ginit": "./index.js"
 },
 "dependencies": {
 "@octokit/rest": "^14.0.5",
 "chalk": "^2.3.0",
 "clear": "0.0.1",
 "clui": "^0.3.6",
 "configstore": "^3.1.1",

https://github.com/sitepoint-editors/ginit/blob/master/package.json

 "figlet": "^1.2.0",
 "inquirer": "^5.0.1",
 "lodash": "^4.17.4",
 "minimist": "^1.2.0",
 "simple-git": "^1.89.0",
 "touch": "^3.1.0"
 }
}

Now create an index.js file in the same folder and

require the following dependencies:

const chalk = require('chalk');
const clear = require('clear');
const figlet = require('figlet');

Adding Some Helper Methods

We’re going to create a lib folder where we’ll split our

helper code into modules:

files.js — basic file management

inquirer.js — command-line user interaction

github.js — access token management

repo.js — Git repository management.

Let’s start with lib/files.js. Here, we need to:

get the current directory (to get a default repo name)

check whether a directory exists (to determine whether the current

folder is already a Git repository by looking for a folder named

.git).

This sounds straightforward, but there are a couple of

gotchas to take into consideration.

Firstly, you might be tempted to use the fs module’s

realpathSync method to get the current directory:

path.basename(path.dirname(fs.realpathSync(__file
name)));

https://nodejs.org/api/fs.html#fs_fs_realpathsync_path_options

This will work when we’re calling the application from

the same directory (e.g. using node index.js), but

bear in mind that we’re going to be making our console

application available globally. This means we’ll want the

name of the directory we’re working in, not the directory

where the application resides. For this purpose, it’s

better to use process.cwd:

path.basename(process.cwd());

Secondly, the preferred method of checking whether a

file or directory exists keeps changing.The current way is

to use fs.stat or fs.statSync. These throw an error

if there’s no file, so we need to use a try … catch
block.

Finally, it’s worth noting that when you’re writing a

command-line application, using the synchronous

version of these sorts of methods is just fine.

Putting that all together, let’s create a utility package in

lib/files.js:

const fs = require('fs');
const path = require('path');

module.exports = {
 getCurrentDirectoryBase : () => {
 return path.basename(process.cwd());
 },

 directoryExists : (filePath) => {
 try {
 return fs.statSync(filePath).isDirectory();
 } catch (err) {
 return false;
 }
 }
};

https://nodejs.org/api/process.html#process_process_cwd
http://stackoverflow.com/a/4482701

Go back to index.js and ensure you require the new

file:

const files = require('./lib/files');

With this in place, we can start developing the

application.

Initializing the Node CLI

Now let’s implement the start-up phase of our console

application.

In order to demonstrate some of the packages we’ve

installed to enhance the console output, let’s clear the

screen and then display a banner:

clear();
console.log(
 chalk.yellow(
 figlet.textSync('Ginit', { horizontalLayout:
'full' })
)
);

The output from this is shown below.

Next up, let’s run a simple check to ensure that the

current folder isn’t already a Git repository. That’s easy:

we just check for the existence of a .git folder using the

utility method we just created:

if (files.directoryExists('.git')) {
 console.log(chalk.red('Already a git
repository!'));
 process.exit();
}

Coloring the Message

Notice we’re using the chalk module to show a red-colored message.

Prompting the User for Input

The next thing we need to do is create a function that will

prompt the user for their GitHub credentials.

https://www.npmjs.com/package/chalk

We can use Inquirer for this. The module includes a

number of methods for various types of prompts, which

are roughly analogous to HTML form controls. In order

to collect the user’s GitHub username and password,

we’re going to use the input and password types

respectively.

First, create lib/inquirer.js and insert this code:

const inquirer = require('inquirer');
const files = require('./files');

module.exports = {

 askGithubCredentials: () => {
 const questions = [
 {
 name: 'username',
 type: 'input',
 message: 'Enter your GitHub username or
e-mail address:',
 validate: function(value) {
 if (value.length) {
 return true;
 } else {
 return 'Please enter your username or
e-mail address.';
 }
 }
 },
 {
 name: 'password',
 type: 'password',
 message: 'Enter your password:',
 validate: function(value) {
 if (value.length) {
 return true;
 } else {
 return 'Please enter your password.';
 }
 }
 }
];
 return inquirer.prompt(questions);
 },
}

https://www.npmjs.com/package/inquirer

As you can see, inquirer.prompt() asks the user a

series of questions, provided in the form of an array as

the first argument. Each question is made up of an object

which defines the name of the field, the type (we’re just

using input and password respectively here, but later

we’ll look at a more advanced example), and the prompt

(message) to display.

The input the user provides will be passed in to the

calling function as a promise. If successful, we’ll end up

with a simple object with two properties; username and

password.

You can test all of this out by adding the following to

index.js:

const inquirer = require('./lib/inquirer');

const run = async () => {
 const credentials = await
inquirer.askGithubCredentials();
 console.log(credentials);
}

run();

Then run the script using node index.js.

Dealing With GitHub Authentication

The next step is to create a function to retrieve an OAuth

token for the GitHub API. Essentially, we’re going to

"exchange" the username and password for a token.

Of course, we don’t want users to have to enter their

credentials every time they use the tool. Instead, we’ll

store the OAuth token for subsequent requests. This is

where the configstore package comes in.

STORING CONFIG

Storing config is outwardly quite straightforward: you

can simply read and write to/from a JSON file without

the need for a third-party package. However, the

configstore package provides a few key advantages:

1. It determines the most appropriate location for the file for you,

taking into account your operating system and the current user.

2. There’s no need to explicitly read or write to the file. You simply

modify a configstore object and that’s taken care of for you in the

background.

https://www.npmjs.com/package/configstore

To use it, simply create an instance, passing it an

application identifier. For example:

const Configstore = require('configstore');
const conf = new Configstore('ginit');

If the configstore file doesn’t exist, it’ll return an

empty object and create the file in the background. If

there’s already a configstore file, the contents will be

decoded into JSON and made available to your

application. You can now use conf as a simple object,

getting or setting properties as required. As mentioned

above, you don’t need to worry about saving it

afterwards. That gets taken care of for you.

On macOS/Linux

On macOS/Linux, you’ll find the file in /Users/[YOUR-
USERNME]/.config/configstore/ginit.json

Communicating with the GitHub API

Let’s create a library for handling the GitHub token.

Create the file lib/github.js and place the following

code inside it:

const octokit = require('@octokit/rest')();
const Configstore = require('configstore');
const pkg = require('../package.json');
const _ = require('lodash');
const CLI = require('clui');
const Spinner = CLI.Spinner;
const chalk = require('chalk');

const inquirer = require('./inquirer');

const conf = new Configstore(pkg.name);

Now let’s add the function that checks whether we’ve

already got an access token. We’ll also add a function

that allows other libs to access octokit(GitHub)

functions:

...
module.exports = {

 getInstance: () => {
 return octokit;
 },

 getStoredGithubToken : () => {
 return conf.get('github.token');
 },

 setGithubCredentials : async () => {
 ...
 },

 registerNewToken : async () => {
 ...
 }

}

If a conf object exists and it has github.token
property, this means that there’s already a token in

storage. In this case, we return the token value back to

the invoking function. We’ll get to that later on.

If no token is detected, we need to fetch one. Of course,

getting an OAuth token involves a network request,

which means a short wait for the user. This gives us an

opportunity to look at the clui package which provides

some enhancements for console-based applications,

among them an animated spinner.

Creating a spinner is easy:

const status = new Spinner('Authenticating you,
please wait...');
status.start();

https://www.npmjs.com/package/clui

Once you’re done, simply stop it and it will disappear

from the screen:

status.stop();

Dynamic Captions

You can also set the caption dynamically using the update method. This could
be useful if you have some indication of progress, for example displaying the
percentage complete.

Here’s the code to authenticate with GitHub:

...
 setGithubCredentials : async () => {
 const credentials = await
inquirer.askGithubCredentials();
 octokit.authenticate(
 _.extend(
 {
 type: 'basic',
 },
 credentials
)
);
 },

 registerNewToken : async () => {
 const status = new Spinner('Authenticating
you, please wait...');
 status.start();

 try {
 const response = await
octokit.authorization.create({
 scopes: ['user', 'public_repo', 'repo',
'repo:status'],
 note: 'ginits, the command-line tool for
initalizing Git repos'
 });
 const token = response.data.token;
 if(token) {
 conf.set('github.token', token);
 return token;
 } else {
 throw new Error("Missing Token","GitHub

token was not found in the response");
 }
 } catch (err) {
 throw err;
 } finally {
 status.stop();
 }
 },

Let’s step through this:

1. we prompt the user for their credentials using the

setGithubCredentials method we defined earlier

2. we use basic authentication prior to trying to obtain an OAuth

token

3. we attempt to register a new access token for our application

4. if we manage to get an access token, we set it in the configstore
for next time.

5. we then return the token.

Any access tokens you create, whether manually or via

the API as we’re doing here, you’ll be able to see them

here. During the course of development, you may find

you need to delete ginit’s access token — identifiable by

the note parameter supplied above — so that you can re-

generate it.

Working with 2FA

If you have two-factor authentication enabled on your GitHub account, the
process is slightly more complicated. You’ll need to request the confirmation
code — for example, one sent via SMS — then supply it using the X-GitHub-
OTP header. See the documentation for further information.

If you’ve been following along and would like to try out

what we have so far, you can update the run() function

in index.js as follows:

const run = async () => {
 let token = github.getStoredGithubToken();
 if(!token) {
 await github.setGithubCredentials();
 token = await github.registerNewToken();
 }

https://github.com/mikedeboer/node-github#authentication
https://github.com/mikedeboer/node-github#creating-tokens-for-your-application
https://github.com/settings/tokens
https://developer.github.com/v3/auth/#working-with-two-factor-authentication

 console.log(token);
}

Please note you may get a Promise error if something

goes wrong, such as inputting the wrong password. I’ll

show you the proper way of handling such errors later.

Creating a Repository

Once we’ve got an OAuth token, we can use it to create a

remote repository with GitHub.

Again, we can use Inquirer to ask a series of questions.

We need a name for the repo, we’ll ask for an optional

description, and we also need to know whether it should

be public or private.

We’ll use minimist to grab defaults for the name and

description from optional command-line arguments. For

example:

ginit my-repo "just a test repository"

This will set the default name to my-repo and the

description to just a test repository.

The following line will place the arguments in an array

indexed by an underscore:

const argv = require('minimist')
(process.argv.slice(2));
// { _: ['my-repo', 'just a test repository'] }

More to minimist

This only really scratches the surface of the minimist package. You can also
use it to intepret flags, switches and name/value pairs. Check out the
documentation for more information.

https://www.npmjs.com/package/minimist

We’ll write code to parse the command-line arguments

and ask a series of questions. First, update

lib/inquirer.js by inserting the following code right

after askGithubCredentials function:

 ...
 askRepoDetails: () => {
 const argv = require('minimist')
(process.argv.slice(2));

 const questions = [
 {
 type: 'input',
 name: 'name',
 message: 'Enter a name for the
repository:',
 default: argv._[0] ||
files.getCurrentDirectoryBase(),
 validate: function(value) {
 if (value.length) {
 return true;
 } else {
 return 'Please enter a name for the
repository.';
 }
 }
 },
 {
 type: 'input',
 name: 'description',
 default: argv._[1] || null,
 message: 'Optionally enter a description
of the repository:'
 },
 {
 type: 'list',
 name: 'visibility',
 message: 'Public or private:',
 choices: ['public', 'private'],
 default: 'public'
 }
];
 return inquirer.prompt(questions);
 },

Next, create the file lib/repo.js and add this code:

const _ = require('lodash');
const fs = require('fs');
const git = require('simple-git')();
const CLI = require('clui')
const Spinner = CLI.Spinner;

const inquirer = require('./inquirer');
const gh = require('./github');

module.exports = {
 createRemoteRepo: async () => {
 const github = gh.getInstance();
 const answers = await
inquirer.askRepoDetails();

 const data = {
 name : answers.name,
 description : answers.description,
 private : (answers.visibility ===
'private')
 };

 const status = new Spinner('Creating remote
repository...');
 status.start();

 try {
 const response = await
github.repos.create(data);
 return response.data.ssh_url;
 } catch(err) {
 throw err;
 } finally {
 status.stop();
 }
 },
}

Once we have that information, we can simply use the

GitHub package to create a repo, which will give us a

URL for the newly created repository. We can then set

that up as a remote in our local Git repository. First,

however, let’s interactively create a .gitignore file.

Creating a .gitignore File

https://mikedeboer.github.io/node-github/#api-repos-create

For the next step, we’ll create a simple command-line

“wizard” to generate a .gitignore file. If the user is

running our application in an existing project directory,

let’s show them a list of files and directories already in

the current working directory, and allow them to select

which ones to ignore.

The Inquirer package provides a checkbox input type

for just that.

The first thing we need to do is scan the current

directory, ignoring the .git folder and any existing

.gitignore file (we do this by making use of lodash’s

without method):

const filelist = _.without(fs.readdirSync('.'),
'.git', '.gitignore');

If there’s nothing to add, there’s no point in continuing,

so let’s simply touch the current .gitignore file and

bail out of the function:

https://lodash.com/docs#without

if (filelist.length) {
 ...
} else {
 touch('.gitignore');
}

Finally, let’s utilize Inquirer’s checkbox “widget” to list

the files. Insert the following code in

lib/inquirer.js:

...
 askIgnoreFiles: (filelist) => {
 const questions = [
 {
 type: 'checkbox',
 name: 'ignore',
 message: 'Select the files and/or folders
you wish to ignore:',
 choices: filelist,
 default: ['node_modules',
'bower_components']
 }
];
 return inquirer.prompt(questions);
 },
..

Notice that we can also provide a list of defaults. In this

case, we’re pre-selecting node_modules and

bower_components, should they exist.

With the Inquirer code in place, we can now construct

the createGitignore() function. Insert this code in

lib/repo.js:

...
 createGitignore: async () => {
 const filelist =
_.without(fs.readdirSync('.'), '.git',
'.gitignore');

 if (filelist.length) {
 const answers = await
inquirer.askIgnoreFiles(filelist);

 if (answers.ignore.length) {
 fs.writeFileSync('.gitignore',
answers.ignore.join('\n'));
 } else {
 touch('.gitignore');
 }
 } else {
 touch('.gitignore');
 }
 },
...

Once “submitted”, we then generate a .gitignore by

joining up the selected list of files, separated with a

newline. Our function now pretty much guarantees we’ve

got a .gitignore file, so we can proceed with

initializing a Git repository.

Interacting with Git from Within the App

There are a number of ways to interact with Git, but

perhaps the simplest is to use the simple-git package.

This provides a set of chainable methods which, behind

the scenes, run the Git executable.

These are the repetitive tasks we’ll use it to automate:

1. run git init
2. add the .gitignore file

3. add the remaining contents of the working directory

4. perform an initial commit

5. add the newly-created remote repository

6. push the working directory up to the remote.

Insert the following code in lib/repo.js:

...
 setupRepo: async (url) => {
 const status = new Spinner('Initializing
local repository and pushing to remote...');
 status.start();

 try {
 await git

https://www.npmjs.com/package/simple-git

 .init()
 .add('.gitignore')
 .add('./*')
 .commit('Initial commit')
 .addRemote('origin', url)
 .push('origin', 'master');
 return true;
 } catch(err) {
 throw err;
 } finally {
 status.stop();
 }
 },
...

Putting It All Together

First, let’s set up a couple of helper functions in

lib/github.js. We need a convenient function for

accessing the stored token, and another function for

setting up an oauth authentication:

...
 githubAuth : (token) => {
 octokit.authenticate({
 type : 'oauth',
 token : token
 });
 },

 getStoredGithubToken : () => {
 return conf.get('github.token');
 },
...

Next, we create a function in index.js for handling the

logic of acquiring the token. Place this code before the

run() function:

const getGithubToken = async () => {
 // Fetch token from config store
 let token = github.getStoredGithubToken();
 if(token) {
 return token;

 }

 // No token found, use credentials to access
GitHub account
 await github.setGithubCredentials();

 // register new token
 token = await github.registerNewToken();
 return token;
}

Finally, we update the run() function by writing code

that will handle the main logic of the app:

const run = async () => {
 try {
 // Retrieve & Set Authentication Token
 const token = await getGithubToken();
 github.githubAuth(token);

 // Create remote repository
 const url = await repo.createRemoteRepo();

 // Create .gitignore file
 await repo.createGitignore();

 // Set up local repository and push to remote
 const done = await repo.setupRepo(url);
 if(done) {
 console.log(chalk.green('All done!'));
 }
 } catch(err) {
 if (err) {
 switch (err.code) {
 case 401:
 console.log(chalk.red('Couldn\'t log
you in. Please provide correct
credentials/token.'));
 break;
 case 422:
 console.log(chalk.red('There already
exists a remote repository with the same name'));
 break;
 default:
 console.log(err);
 }
 }

 }
}

As you can see, we ensure the user is authenticated

before calling all of our other functions

(createRemoteRepo(), createGitignore(),

setupRepo()) sequentially. The code also handles any

errors and offers the user appropriate feedback.

You can check out the completed index.js file on our

GitHub repo.

Making the ginit Command Available
Globally

The one remaining thing to do is to make our command

available globally. To do this, we’ll need to add a shebang

line to the top of index.js:

#!/usr/bin/env node

Next, we need to add a bin property to our

package.json file. This maps the command name

(ginit) to the name of the file to be executed (relative to

package.json).

"bin": {
 "ginit": "./index.js"
}

After that, install the module globally and you’ll have a

working shell command:

npm install -g

Works on Windows

https://github.com/sitepoint-editors/ginit/blob/master/index.js
https://en.wikipedia.org/wiki/Shebang_%28Unix%29

This will also work on Windows, as npm will helpfully install a cmd wrapper
alongside your script.

Taking it Further

We’ve got a fairly nifty, albeit simple command-line app

for initializing Git repositories. But there’s plenty more

you could do to enhance it further.

If you’re a Bitbucket user, you could adapt the program

to use the Bitbucket API to create a repository. There’s a

Node.js API wrapper available to help you get started.

You may wish to add an additional command-line option

or prompt to ask the user whether they want to use

GitHub or Bitbucket (Inquirer would be perfect for just

that) or merely replace the GitHub-specific code with a

Bitbucket alternative.

You could also provide the facility to specify your own set

of defaults for the .gitgnore file, instead of a

hardcoded list. The preferences package might be

suitable here, or you could provide a set of “templates” —

perhaps prompting the user for the type of project. You

might also want to look at integrating it with the

.gitignore.io command-line tool/API.

Beyond all that, you may also want to add additional

validation, provide the ability to skip certain sections,

and more.

http://stackoverflow.com/a/10398567/1136887
https://www.npmjs.com/package/bitbucket-api
https://www.gitignore.io/

Chapter 6: Building a Real-

time Chat App with Sails.js

BY MICHAEL WANYOIKE

If you’re a developer who currently uses

frameworks such as Django, Laravel or Rails,

you’ve probably heard about Node.js. You might

already be using a popular front-end library such

as Angular or React in your projects. By now, you

should be thinking about doing a complete

switchover to a server technology based on

Node.js.

However, the big question is where to start. Today, the

JavaScript world has grown at an incredibly fast pace in

the last few years, and it seeming to be ever expanding.

If you’re afraid of losing your hard-earned programming

experience in the Node universe, fear not, as we have

Sails.js.

Sails.js is a real-time MVC framework designed to help

developers build production-ready, enterprise-grade

Node.js apps in a short time. Sails.js is a pure JavaScript

solution that supports multiple databases

(simultaneously) and multiple front-end technologies. If

you’re a Rails developer, you’ll be happy to learn that

Mike McNeil, the Sails.js founder, was inspired by Rails.

You’ll find a lot of similarities between Rails and Sails.js

projects.

In this article, I’ll teach you the fundamentals of Sails.js,

by showing you how to build a simple, user-friendly chat

https://sailsjs.com/
https://twitter.com/mikermcneil

application. The complete source code for the sails-chat

project can be found in this GitHub repo.

https://github.com/brandiqa/sp-sails-chat

Prerequisites

Before you start, you need at least to have experience

developing applications using MVC architecture. This

tutorial is intended for intermediate developers. You’ll

also need at least to have a basic foundation in these:

Node.js

Modern JavaScript syntax (ES6+).

To make it practical and fair for everyone, this tutorial

will use core libraries that are installed by default in a

new Sails.js project. Integration with modern front-end

libraries such as React, Vue or Angular won’t be covered

here. However, I highly recommend you look into them

after this article. Also, we won’t do database integrations.

We’ll instead use the default, local-disk, file-based

database for development and testing.

Project Plan

The goal of this tutorial is to show you how to build a

chat application similar to Slack, Gitter or Discord.

Not really! A lot of time and sweat went into building

those wonderful platforms. The current number of

features developed into them is quite huge.

Instead, we’ll build a minimum viable product version of

a chat application which consists of:

single chat room

basic authentication (passwordless)

profile update.

I’ve added the profile feature as a bonus in order to cover

a bit more ground on Sails.js features.

https://www.sitepoint.com/an-introduction-to-node-js/
https://www.sitepoint.com/anatomy-of-a-modern-javascript-application/#javascriptes2015
https://slack.com/
https://gitter.im/
https://discordapp.com/

Installing Sails.js

Before we start installing Sails.js, we need first to set up a

proper Node.js environment. At the time of writing, the

latest stable version currently available is v0.12.14.

Sails.js v1.0.0 is also available but is currently in beta,

not recommended for production use.

The latest stable version of Node I have access to is

v8.9.4. Unfortunately, Sails.js v0.12 doesn’t work

properly with the current latest LTS. However, I’ve tested

with Node v.7.10 and found everything works smoothly.

This is still good since we can use some new ES8 syntax

in our code.

As a JavaScript developer, you’ll realize working with

one version of Node.js is not enough. Hence, I

recommend using the nvm tool to manage multiple

versions of Node.js and NPM easily. If you haven’t done

so, just purge your existing Node.js installation, then

install nvm to help you manage multiple versions of

Node.js.

Here are the basic instructions of installing Node v7 and

Sails.js:

Install the latest version of Node v7 LTS
nvm install v7

Make Node v7 the default
nvm default alias v7

Install Sails.js Global
npm install -g sails

If you have a good internet connection, this should only

take a couple of minutes or less. Let’s now go ahead and

create our new application using the Sails generator

command:

https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/

Go to your projects folder
cd Projects

Generate your new app
sails generate new chat-app

Wait for the install to finish then navigate to
the project folder
cd chat-app

Start the app
sails lift

It should take a few seconds for the app to start. You

need to manually open the url

http://localhost:1337 in your browser to see your

newly created web app.

Seeing this confirms that we have a running project with

no errors, and that we can start working. To stop the

project, just press control + c at the terminal. User your

favorite code editor (I’m using Atom) to examine the

generated project structure. Below are the main folders

you should be aware of:

api: controllers, models, services and policies (permissions)

assets: images, fonts, JS, CSS, Less, Sass etc.

config: project configuration e.g. database, routes, credentials,

locales, security etc.

node_modules: installed npm packages

tasks: Grunt config scripts and pipeline script for compiling and

injecting assets

views: view pages — for example, EJS, Jade or whatever

templating engine you prefer

.tmp: temporary folder used by Sails to build and serve your

project while in development mode.

Before we proceed, there are a couple of things we need

to do:

Update EJS package. If you have EJS 2.3.4 listed in

package.json, you need to update it by changing it to 2.5.5

immediately. It contains a serious security vulnerability. After

changing the version number, do an npm install to perform the

update.

Hot reloading. I suggest you install sails-hook-autoreload to

enable hot reloading for your Sails.js app. It’s not a perfect

solution but will make development easier. To install it for this

current version of Sails.js, execute the following:

npm install sails-hook-autoreload@for-sails-0.12
--save

Installing Front-end Dependencies

For this tutorial, we’ll spend as little time as possible

building an UI. Any CSS framework you’re comfortable

https://github.com/sgress454/sails-hook-autoreload

with will do. For this tutorial, I’ll go with the Semantic UI

CSS library.

Sails.js doesn’t have a specific guide on how to install

CSS libraries. There are three or more ways you can go

about it. Let’s look at each.

1. MANUAL DOWNLOAD

You can download the CSS files and JS scripts yourself,

along with their dependencies. After downloading, place

the files inside the assets folder.

I prefer not to use this method, as it requires manual

effort to keep the files updated. I like automating tasks.

2. USING BOWER

This method requires you to create a file called

.bowerrc at the root of your project. Paste the following

snippet:

{
"directory" : "assets/vendor"
}

This will instruct Bower to install to the

assets/vendor folder instead of the default

bower_components folder. Next, install Bower

globally, and your front-end dependencies locally using

Bower:

Install bower globally via npm-
npm install -g bower

Create bower.json file, accept default answers
(except choose y for private)
bower init

Install semantic-ui via bower
bower install semantic-ui --save

https://semantic-ui.com/

Install jsrender
bower install jsrender --save

I’ll explain the purpose of jsrender later. I thought it

best to finish the task of installing dependencies in one

go. You should take note that jQuery has been installed

as well, since it’s a dependency for semantic-ui.

After installing, update

assets/style/importer.less to include this line:

@import '../vendor/semantic/dist/semantic.css';

Next include the JavaScript dependencies in

tasks/pipeline.js:

var jsFilesToInject = [

// Load Sails.io before everything else
'js/dependencies/sails.io.js',

// Vendor dependencies
'vendor/jquery/dist/jquery.js',
'vendor/semantic/dist/semantic.js',
'vendor/jsrender/jsrender.js',

// Dependencies like jQuery or Angular are
brought in here
'js/dependencies/**/*.js',

// All of the rest of your client-side JS files
// will be injected here in no particular order.
'js/**/*.js'
];

When we run sails lift, the JavaScript files will

automatically be injected into views/layout.ejs file

as per pipeline.js instructions. The current grunt
setup will take care of injecting our CSS dependencies for

us.

Don't Add Vendor Dependencies

Add the word vendor in the .gitignore file. We don’t want vendor
dependencies saved in our repository.

3. USING NPM + GRUNT.COPY

The third method requires a little bit more effort to set

up, but will result in a lower footprint. Install the

dependencies using npm as follows:

npm install semantic-ui-css jsrender --save

jQuery will be installed automatically, since it’s also

listed as a dependency for semantic-ui-css. Next we

need to place code in tasks/config/copy.js. This

code will instruct Grunt to copy the required JS and CSS

files from node_modules to the assets/vendor
folder for us. The entire file should look like this:

module.exports = function(grunt) {

grunt.config.set('copy', {
 dev: {
 files: [{
 expand: true,
 cwd: './assets',
 src: ['**/*.!(coffee|less)'],
 dest: '.tmp/public'
 },
 //Copy JQuery
 {
 expand: true,
 cwd: './node_modules/jquery/dist/',
 src: ['jquery.min.js'],
 dest: './assets/vendor/jquery'
 },
 //Copy jsrender
 {
 expand: true,
 cwd: './node_modules/jsrender/',
 src: ['jsrender.js'],
 dest: './assets/vendor/jsrender'
 },

 // copy semantic-ui CSS and JS files
 {
 expand: true,
 cwd: './node_modules/semantic-ui-css/',
 src: ['semantic.css', 'semantic.js'],
 dest: './assets/vendor/semantic-ui'
 },
 //copy semantic-ui icon fonts
 {
 expand: true,
 cwd: './node_modules/semantic-ui-
css/themes',
 src: ["*.*", "**/*.*"],
 dest: './assets/vendor/semantic-ui/themes'
 }]
 },
 build: {
 files: [{
 expand: true,
 cwd: '.tmp/public',
 src: ['**/*'],
 dest: 'www'
 }]
 }
});

grunt.loadNpmTasks('grunt-contrib-copy');
};

Add this line to assets/styles/importer.less:

@import '../vendor/semantic-ui/semantic.css';

Add the JS files to config/pipeline.js:

// Vendor Dependencies
'vendor/jquery/jquery.min.js',
'vendor/semantic-ui/semantic.js',
'vendor/jsrender/jsrender.js',

Finally, execute this command to copy the files from

node_modules the assets/vendor folder. You only

need to do this once for every clean install of your

project:

grunt copy:dev

Remember to add vendor to your .gitignore.

TESTING DEPENDENCIES INSTALLATION

Whichever method you’ve chosen, you need to ensure

that the required dependencies are being loaded. To do

this, replace the code in view/homepage.ejs with the

following:

<h2 class="ui icon header">
<i class="settings icon"></i>
<div class="content">
 Account Settings
 <div class="sub header">Manage your account
settings and set e-mail preferences.</div>
</div>
</h2>

After saving the file, do a sails lift. Your home page

should now look like this:

Always do a refresh after restarting your app. If the icon

is missing or the font looks off, please review the steps

carefully and see what you missed. Use the browser’s

console to see which files are not loading. Otherwise,

proceed with the next stage.

Creating Views

When it comes to project development, I like starting

with the user interface. We’ll the use the Embedded

JavaScript Template to create the views. It’s a templating

engine that’s installed by default in every Sails.js project.

However, you should be aware it has limited

functionality and is no longer under development.

Open config/bootstrap.js and insert this line in

order to give a proper title to our web pages. Place it

right within the existing function before the cb()
statement:

sails.config.appName = "Sails Chat App";

You can take a peek at views/layout.ejs to see how

the title tag is set. Next, we begin to build our home

page UI.

HOME PAGE DESIGN

Open /views/homepage.ejs and replace the existing

code with this:

<div class="banner">
<div class="ui segment teal inverted">
 <h1 class="ui center aligned icon header">
 <i class="chat icon"></i>
 <div class="content">
 Sails Chat
 <div class="sub header">Discuss your
favorite technology with the community!</div>
 </div>
 </h1>
</div>
</div>
<div class="section">

http://www.embeddedjs.com/getting_started.html

<div class="ui three column grid">
 <div class="column"></div>
 <div class="column">
 <div class="ui centered padded compact raised
segment">
 <h3>Sign Up or Sign In</h3>
 <div class="ui divider"></div>
 [TODO : Login Form goes here]
 </div>
 </div>
 <div class="column"></div>
</div>
</div>

To understand the UI elements used in the above code,

please refer to the Semantic UI documentation. I’ve

outlined the exact links below:

Segment

Icon

Header

Grid

Create a new file in assets/styles/theme.less and

paste the following content:

.banner a {
color: #fff;
}

.centered {
margin-left: auto !important;
margin-right: auto !important;
margin-bottom: 30px !important;
}

.section {
margin-top: 30px;
}

.menu {
border-radius: 0 !important;
}

.note {
font-size: 11px;

https://semantic-ui.com/elements/segment.html
https://semantic-ui.com/elements/icon.html
https://semantic-ui.com/elements/header.html
https://semantic-ui.com/collections/grid.html

color: #2185D0;
}

#chat-content {
height: 90%;
overflow-y: scroll;
}

These are all the custom styles we’ll use in our project.

The rest of the styling will come from the Semantic UI
library.

Next, update assets/styles/importer.less to

include the theme file we just created:

@import 'theme.less';

Execute sails lift. Your project should now look like

this:

Next, we’ll look at building the navigation menu.

NAVIGATION MENU

This will be created as a partial since it will be shared by

multiple view files. Inside the views folder, create a

folder called partials. Then create the file

views/partials/menu.ejs and paste the following

code:

<div class="ui labeled icon inverted teal menu">

 <i class="chat icon"></i>
 Chat Room

 <i class="user icon"></i>
 Profile

<div class="right menu">

 <i class="sign out icon"></i>
 Logout

</div>
</div>

To understand the above code, just refer to the Menu

documentation.

If you inspect the above code, you’ll notice that we’ve

created a link for /chat, /profile and

/auth/logout. Let’s first create the views for profile
and chat room.

PROFILE

Create the file view/profile.ejs and paste the

following code:

<% include partials/menu %>

<div class="ui container">
<h1 class="ui centered header">Profile Updated!
</h1>
<hr>
<div class="section">
 [TODO put user-form here]
</div>
</div>

By now you should be familiar with header and grid
UI elements if you’ve read the linked documentation. At

the root of the document, you’ll notice we have a

container element. (Find out more about this in the

Container documentation.

https://semantic-ui.com/collections/menu.html
https://semantic-ui.com/elements/container.html

We’ll build the user form later, once we’ve built the API.

Next we’ll create a layout for the chat room.

CHAT ROOM LAYOUT

The chat room will be made up of three sections:

Chat users — list of users

Chat messages — list of messages

Chat post — form for posting new messages.

Create views/chatroom.ejs and paste the following

code:

<% include partials/menu %>

<div class="chat-section">
<div class="ui container grid">

 <!-- Members List Section -->
 <div class="four wide column">
 [TODO chat-users]
 </div>

 <div class="twelve wide column">

 <!-- Chat Messages -->
 [TODO chat-messages]

 <hr>

 <!-- Chat Post -->
 [TODO chat-post]

 </div>
</div>
</div>

Before we can view the pages, we need to set up routing.

Routing

Open config/routes.js and update it like this:

'/': {
view: 'homepage'
},
'/profile': {
view: 'profile'
},
'/chat': {
view: 'chatroom'
}

Sails.js routing is quite flexible. There are many ways of

defining routing depending on the scenario. This is the

most basic version where we map a URL to a view.

Fire up your Sails app or just refresh your page if it’s still

running in the background. Currently there’s no link

between the home page and the other pages. This is

intentional, as we’ll later build a rudimentary

authentication system that will redirect logged in users to

/chat. For now, use your browser’s address bar and add

/chat or /profile at the end URL.

At this stage you should be having the above views. Let’s

go ahead and start creating the API.

Generating a User API

We’re going to use the Sails.js command-line utility to

generate our API. We’ll need to stop the app for this step:

sails generate api User

Within a second, we get the message “Created a new

api!” Basically, a User.js model and a

UserController.js has just been created for us. Let’s

update the api/model/User.js with some model

attributes:

module.exports = {

attributes: {

 name: {
 type: 'string',
 required: true
 },

 email: {
 type: 'string',
 required: true,
 unique: true
 },

 avatar: {
 type: 'string',
 required: true,
 defaultsTo:
'https://s.gravatar.com/avatar/e28f6f64608c970c66
3197d7fe1f5a59?s=60'
 },

 location: {
 type: 'string',
 required: false,
 defaultsTo: ''
 },

 bio: {
 type: 'string',
 required: false,
 defaultsTo:''
 }
}
};

I believe the above code is self-explanatory. By default,

Sails.js uses a local disk database which is basically a file

located in the .tmp folder. In order to test our app, we

need to create some users. The easiest way to do this is to

install the sails-seed package:

npm install sails-seed --save

After installing, you’ll find that the file

config/seeds.js has been created for you. Paste the

following seed data:

module.exports.seeds = {
user: [
 {
 name: 'John Wayne',
 email: 'johnnie86@gmail.com',
 avatar:
'https://randomuser.me/api/portraits/men/83.jpg',
 location: 'Mombasa',
 bio: 'Spends most of my time at the beach'
 },
 {
 name: 'Peter Quinn',
 email: 'peter.quinn@live.com',
 avatar:
'https://randomuser.me/api/portraits/men/32.jpg',
 location: 'Langley',
 bio: 'Rather not say'
 },
 {
 name: 'Jane Eyre',
 email: 'jane@hotmail.com',
 avatar:
'https://randomuser.me/api/portraits/women/94.jpg
',

https://www.npmjs.com/package/sails-seed

 location: 'London',
 bio: 'Loves reading motivation books'
 }
]
}

Now that we’ve generated an API, we should configure

the migration policy in the file config/models.js:

migrate: 'drop'

There are three migration strategies that Sails.js uses to

determine how to rebuild your database every time it’s

started:

safe — don’t migrate, I’ll do it by hand

alter — migrate but try to keep the existing data

drop — drop all tables and rebuild everything

I prefer to use drop for development, as I tend to iterate

a lot. You can set alter if you’d like to keep existing

data. Nevertheless, our database will be populated by the

seed data every time.

Now let me show you something cool. Fire up your Sails

project and navigate to the addresses /user and

/user/1.

Thanks to the Sails.js Blueprints API, we have a fully

functional CRUD API without us writing a single line of

code. You can use Postman to access the User API and

perform data manipulation such as creating, updating or

deleting users.

Let’s now proceed with building the profile form.

PROFILE FORM

Open view/profile.ejs and replace the existing

TODO line with this code:

<img class="ui small centered circular image"
src="<%= data.avatar %>">
<div class="ui grid">
 <form action="<%= '/user/update/'+ data.id %>"
method="post" class="ui centered form">
 <div class="field">
 <label>Name</label>
 <input type="text" name="name" value="<%=
data.name %>">
 </div>
 <div class="field">
 <label>Email</label>
 <input type="text" name="email" value="<%=
data.email %>">
 </div>

https://sailsjs.com/documentation/concepts/blueprints

 <div class="field">
 <label>Location</label>
 <input type="text" name="location" value="
<%= data.location %>">
 </div>
 <div class="field">
 <label>Bio</label>
 <textarea name="bio" rows="4" cols="40"><%=
data.bio %></textarea>
 </div>
 <input type="hidden" name="avatar" value=
<%=data.avatar %>>
 <button class="ui right floated orange
button" type="submit">Update</button>
 </form>
</div>

We’re using Semantic-UI Form to build the form

interface. If you examine the form’s action value,

/user/update/'+ data.id, you’ll realize that I’m

using a Blueprint route. This means when a user hits the

Update button, the Blueprint’s update action will be

executed.

However, for loading the user data, I’ve decided to define

a custom action in the User Controller. Update the

api/controllers/UserController with the

following code:

module.exports = {

render: async (request, response) => {
 try {
 let data = await User.findOne({
 email: 'johnnie86@gmail.com'
 });
 if (!data) {
 return response.notFound('The user was NOT
found!');
 }
 response.view('profile', { data });
 } catch (err) {
 response.serverError(err);
 }
}
};

https://semantic-ui.com/collections/form.html

In this code you’ll notice I’m using the async/await
syntax to fetch the User data from the database. The

alternative is to use callbacks, which for most developers

is not clearly readable. I’ve also hardcoded the default

user account to load temporarily. Later, when we set up

basic authentication, we’ll change it to load the currently

logged-in user.

Finally, we need to change the route /profile to start

using the newly created UserController. Open

config/routes and update the profile route as follows:

...
'/profile': {
 controller: 'UserController',
 action: 'render'
},
...

Navigate to the URL /profile, and you should have the

following view:

Try changing one of the form fields and hit the update

button. You’ll be taken to this view:

You’ll notice that the update has worked, but the data

being displayed is in JSON format. Ideally, we should

have a view-only profile page in

views/user/findOne.ejs and an update profile page

in /views/user/update.ejs. The Blueprint system

will guess the views to use for rendering information. If it

can’t find the views it will just output JSON. For now,

we’ll simply use this neat trick. Create the file

/views/user/update.ejs and paste the following

code:

<script type="text/javascript">
window.location = '/profile';
</script>

Next time we perform an update, we’ll be redirected to

the /profile page. Now that we have user data, we can

create the file views/partials/chat-users.js to

be used in views/chatroom.ejs. After you’ve created

the file, paste this code:

<div class="ui basic segment">
<h3>Members</h3>
<hr>
<div id="users-content" class="ui middle aligned
selection list"> </div>
</div>

// jsrender template
<script id="usersTemplate" type="text/x-
jsrender">
<div class="item">

 <div class="content">
 <div class="header">{{:name}}</div>
 </div>
</div>
</script>

<script type="text/javascript">

function loadUsers() {
 // Load existing users
 io.socket.get('/user', function(users,
response) {
 renderChatUsers(users);
 });

 // Listen for new & updated users
 io.socket.on('user', function(body) {
 io.socket.get('/user', function(users,
response) {
 renderChatUsers(users);
 });
 });
}

function renderChatUsers(data) {
 const template = $.templates('#usersTemplate');
 let htmlOutput = template.render(data);
 $('#users-content').html(htmlOutput);
}

</script>

For this view, we need a client-side rendering approach

to make the page update in real time. Here, we’re making

use of the jsrender library, a more powerful templating

engine than EJS. The beauty of jsrender is that it can

either take an array or a single object literal and the

template will still render correctly. If we were to do this

in ejs, we’d need to combine an if statement and a for
loop to handle both cases.

Let me explain the flow of our client-side JavaScript

code:

1. loadUsers(). When the page first loads, we use the Sails.js

socket library to perform a GET request for users. This request will

be handled by the Blueprint API. We then pass on the data

received to renderChatUsers(data) function.

2. Still within the loadUsers() function, we register a listener

using io.socket.on function. We listen for events pertaining to

the model user. When we get notified, we fetch the users again

and replace the existing HTML output.

3. renderChatUsers(data). Here we grab a script with the id

usersTemplate using a jQuery templates() function. Notice

the type is text/x-jsrender. By specifying a custom type, the

browser will ignore and skip over that section since it doesn’t

know what it is. We then use the template.render() function

to merge the template with data. This process will generate an

HTML output which we then take and insert it into the HTML

document.

The template we wrote in profile.ejs was rendered

on the Node server, then sent to the browser as HTML.

For the case of chat-users, we need to perform client-

side rendering. This will allow chat users to see new

users joining the group without them refreshing their

browser.

Before we test the code, we need to update

views/chatroom.ejs to include the newly created

https://github.com/BorisMoore/jsrender

chat-users partial. Replace [TODO chat-users]
with this code:

...html
<% include partials/chat-users.ejs %>
...

Within the same file, add this script at the end:

<script type="text/javascript">
window.onload = function() {
 loadUsers();
}
</script>

This script will call the loadUsers() function. To

confirm this is working, let’s perform a sails lift and

navigate to the /chat URL.

Your view should like like the image above. If it does,

let’s proceed with building the Chatroom API.

ChatMessage API

Same as before, we’ll use Sails.js to generate the API:

sails generate api ChatMessage

Next, populate api/models/ChatMessage.js with

these attributes:

module.exports = {

attributes: {

 message: {
 type: 'string',
 required: true
 },

 createdBy : {
 model: 'user',
 required: true
 }
}
};

Notice that we’ve declared a one-to-one association with

the User model through the createdBy attribute. Next

we need to populate our disk database with a few chat

messages. For that, we’ll use config/bootstrap.js.

Update the entire code as follows. We’re using

async/await syntax to simplify our code and avoid

callback hell:

module.exports.bootstrap = async function(cb) {

sails.config.appName = "Sails Chat App";

// Generate Chat Messages
try {

 let messageCount = ChatMessage.count();
 if(messageCount > 0){
 return; // don't repeat messages
 }

 let users = await User.find();
 if(users.length >= 3) {
 console.log("Generating messages...")

 let msg1 = await ChatMessage.create({
 message: 'Hey Everyone! Welcome to the
community!',
 createdBy: users[1]
 });
 console.log("Created Chat Message: " +
msg1.id);

 let msg2 = await ChatMessage.create({
 message: "How's it going?",
 createdBy: users[2]
 });
 console.log("Created Chat Message: " +
msg2.id);

 let msg3 = await ChatMessage.create({
 message: 'Super excited!',
 createdBy: users[0]
 });
 console.log("Created Chat Message: " +
msg3.id);

 } else {
 console.log('skipping message generation');
 }
}catch(err){
 console.error(err);
}

// It's very important to trigger this callback
method when you're finished with Bootstrap!
(Otherwise your server will never lift, since
it's waiting on Bootstrap)
cb();
};

The great thing is that the seeds generator runs before

bootstrap.js. This way, we’re sure Users data has

been created first so that we can use it to populate the

createdBy field. Having test data will enable us to

quickly iterate as we build the user interface.

CHAT MESSAGES UI

Go ahead and create a new file

views/partials/chat-messages.ejs, then place

this code:

<div class="ui basic segment" style="height:
70vh;">
<h3>Community Conversations</h3>
<hr>
<div id="chat-content" class="ui feed"> </div>
</div>

<script id="chatTemplate" type="text/x-jsrender">
<div class="event">
 <div class="label">

 </div>
 <div class="content">
 <div class="summary">
 {{:createdBy.name}} posted
on
 <div class="date">
 {{:createdAt}}
 </div>
 </div>
 <div class="extra text">
 {{:message}}
 </div>
 </div>
</div>
</script>

<script type="text/javascript">

function loadMessages() {
 // Load existing chat messages
 io.socket.get('/chatMessage',
function(messages, response) {
 renderChatMessages(messages);
 });

 // Listen for new chat messages
 io.socket.on('chatmessage', function(body) {
 renderChatMessages(body.data);

 });
}

function renderChatMessages(data) {
 const chatContent = $('#chat-content');
 const template = $.templates('#chatTemplate');
 let htmlOutput = template.render(data);
 chatContent.append(htmlOutput);
 // automatically scroll downwards
 const scrollHeight =
chatContent.prop("scrollHeight");
 chatContent.animate({ scrollTop: scrollHeight
}, "slow");
}

</script>

The logic here is very similar to chat-users. There’s

one key difference on the listen section. Instead of

replacing the rendered output, we use append. Then we

do a scroll animation to the bottom of the list to ensure

users see the new incoming message.

Next, let’s update chatroom.ejs to include the new

chat-messages partial and also to update the script to

call the loadMessages() function:

...
<!-- Chat Messages -->
 <% include partials/chat-messages.ejs %>
...

<script type="text/javascript">
...
 loadMessages();
...
</script>

Your view should now look like this:

Let’s now build a simple form that will allow users to

post messages to the chat room.

CHAT POST UI

Create a new file views/partial/chat-post.ejs
and paste this code:

<div class="ui basic segment">
<div class="ui form">
 <div class="ui field">
 <label>Post Message</label>
 <textarea id="post-field" rows="2">
</textarea>
 </div>
 <button id="post-btn" class="ui right floated
large orange button" type="submit">Post</button>
</div>
<div id="post-err" class="ui tiny compact
negative message" style="display:none;">
 <p>Oops! Something went wrong.</p>
</div>
</div>

Here we’re using a using semantic-ui elements to

build the form. Next add this script to the bottom of the

file:

<script type="text/javascript">

function activateChat() {
 const postField = $('#post-field');
 const postButton = $('#post-btn');
 const postErr = $('#post-err');

 // Bind to click event
 postButton.click(postMessage);

 // Bind to enter key event
 postField.keypress(function(e) {
 var keycode = (e.keyCode ? e.keyCode :
e.which);
 if (keycode == '13') {
 postMessage();
 }
 });

 function postMessage() {
 if(postField.val() == "") {
 alert("Please type a message!");
 } else {
 let text = postField.val();
 io.socket.post('/postMessage', { message:
text }, function(resData, jwRes) {
 if(jwRes.statusCode != 200) {

 postErr.html("<p>" + resData.message
+"</p>")
 postErr.show();
 } else {
 postField.val(''); // clear input field
 }
 });
 }
 }
}

</script>

This script is made up of two functions:

activateChat(). This function binds the post button to a click

event and the message box (post field) to a key press (enter) event.

When either is fired, the postMessage() function is called.

postMessage. This function first does a quick validation to

ensure the post input field is not blank. If there’s a message is

provided in the input field, we use the io.socket.post()
function to send a message back to the server. Here we’re using a

classic callback function to handle the response from the server. If

an error occurs, we display the error message. If we get a 200

status code, meaning the message was captured, we clear the post

input field, ready for the next message to be typed in.

If you go back to the chat-message script, you’ll see

that we’ve already placed code to detect and render

incoming messages. You should have also noticed that

the io.socket.post() is sending data to the URL

/postMessage. This is not a Blueprint route, but a

custom one. Hence, we need to write code for it.

Head over to

api/controllers/UserController.js and insert

this code:

module.exports = {

postMessage: async (request, response) => {
 // Make sure this is a socket request (not
traditional HTTP)
 if (!request.isSocket) {

 return response.badRequest();
 }

 try {
 let user = await
User.findOne({email:'johnnie86@gmail.com'});
 let msg = await
ChatMessage.create({message:request.body.message,
createdBy:user });
 if(!msg.id) {
 throw new Error('Message processing
failed!');
 }
 msg.createdBy = user;
 ChatMessage.publishCreate(msg);
 } catch(err) {
 return response.serverError(err);
 }

 return response.ok();
}
};

Since we haven’t set up basic authentication, we are

hardcoding the user johnnie86@gmail.com for now as

the author of the message. We use the

Model.create() Waterline ORM function to create a

new record. This is a fancy way of inserting records

without us writing SQL code. Next we send out a notify

event to all sockets informing them that a new message

has been created. We do that using the

ChatMessage.publishCreate() function, which is

defined in the Blueprints API. Before we send out the

message, we make sure that the createdBy field is

populated with a user object. This is used by chat-
messages partial to access the avatar and the name of

the user who created the message.

Next, head over to config/routes.js to map the

/postMessage URL to the postMessage action we

just defined. Insert this code:

...
'/chat': {
view: 'chatroom'
}, // Add comma here
'/postMessage': {
controller: 'ChatMessageController',
action: 'postMessage'
}
...

Open views/chatroom.js and include the chat-
post partial. We’ll also call the activateChat()
function right after the loadMessages() function:

...
<% include partials/chat-messages.ejs %>
...

<script type="text/javascript">
...
 activateChat();
...
</script>

Refresh the page and try to send several messages.

You should now have a functional chat system. Review

the project source code in case you get stuck.

Basic Authentication

Setting up a proper authentication and authorization

system is outside the scope of this tutorial. So we’ll settle

for a basic password-less authentication system. Let’s

first build the signup and login form.

LOGIN/SIGN UP FORM

Create a new file views/auth-form.ejs and paste the

following content:

<form method="post" action="/auth/authenticate"
class="ui form">
<div class="field">
 <label>Full Names</label>
 <input type="text" name="name"
placeholder="Full Names" value="<%= typeof name
!= 'undefined' ? name : '' %>">
</div>
<div class="required field">
 <label>Email</label>
 <input type="email" name="email"
placeholder="Email" value="<%= typeof email !=
'undefined' ? email : '' %>">
</div>
<button class="ui teal button" type="submit"
name="action" value="signup">Sign Up &
Login</button>
<button class="ui blue button" type="submit"
name="action" value="login">Login</button>
<p class="note">*Provide email only for Login</p>
</form>
<% if(typeof error != 'undefined') { %>
<div class="ui error message">
<div class="header"><%= error.title %></div>
<p><%= error.message %></p>
</div>
<% } %>

Next open views/homepage.ejs and replace the

TODO line with this include statement:

...
<% include partials/auth-form.ejs %>
...

We’ve created a form that allows you to create a new

account by providing an input for name and email. When

you click Signup & Login, a new user record is

created and you get logged in. However, if the email is

already being used by another user, an error message will

be displayed. If you just want to log in, just provide the

email address and click the Login button. Upon

successful authentication, you’ll be redirected to the

/chat URL.

Right now, everything I’ve just said isn’t working. We’ll

need to implement that logic. First, let’s navigate to /
address to confirm that the auth-form looks goods.

POLICY

Now that we’re setting up an authentication system, we

need to protect /chat and /profile routes from public

access. Only authenticated users should be allowed to

access them. Open config/policies.js and insert

this code:

ChatMessageController: {
'*': 'sessionAuth'
},

UserController: {
'*': 'sessionAuth'
},

By specifying the name of the controller, we have also

effectively blocked all routes provided by the Blueprint

API for Users and Chat Messages. Unfortunately, policies

only work with controllers. This means the route /chat
can’t be protected in its current state. We need to define

a custom action for it. Open

api/controller/ChatroomController.js and

insert this code:

...
render: (request, response) => {
 return response.view('chatroom');
},

Then replace the route config for /chat with this one

one config/routes.js:

...
'/chat': {
 controller: 'ChatMessageController',
 action: 'render'
 },
 ...

The /chat route should now be protected from public

access. If you restart your app and try to access

/profile, /chat, /user or /chatmessage, you’ll be

met with the following forbidden message:

If you’d like to redirect users to the login form instead,

head over to api/policies/sessionAuth and

replace the forbidden call with a redirect call like this:

...
// return res.forbidden('You are not permitted to
perform this action.');
return res.redirect('/');
...

Try accessing the forbidden pages again, and you’ll

automatically be redirected to the home page. Let’s now

implement the Signup and Login code.

AUTH CONTROLLER AND SERVICE

You’ll need to stop Sails.js first in order to run this

command:

sails generate controller Auth

This will create a blank

api/controllers/AuthController for us. Open it

and insert this code:

authenticate: async (request, response) => {

 // Sign up user
 if(request.body.action == 'signup') {
 // Validate signup form

 // Check if email is registered

 // Create new user
 }

 // Log in user
},

logout: (request, response) => {
 // Logout user
}

I’ve placed in comments explaining how the logic will

flow. We can place the relevant code here. However,

Sails.js recommends we keep our controller code simple

and easy to follow. To achieve this, we need to write

helper functions that will help us with each of the above

commented tasks. To create these helper functions, we

need to create a service. Do this by creating a new file

api/services/AuthService.js. Insert the

following code:

/**
* AuthService.js
*
**/

const gravatar = require('gravatar')

// Where to display auth errors
const view = 'homepage';

module.exports = {

sendAuthError: (response, title, message,
options) => {
 options = options || {};
 const { email, name} = options;
 response.view(view, { error: {title, message},
email, name });
 return false;
},

validateSignupForm: (request, response) => {
 if(request.body.name == '') {
 return AuthService.sendAuthError(response,
'Signup Failed!', "You must provide a name to
sign up", {email:request.body.email});
 } else if(request.body.email == '') {
 return AuthService.sendAuthError(response,
'Signup Failed!', "You must provide an email
address to sign up", {name:request.body.name});
 }
 return true;
},

checkDuplicateRegistration: async (request,
response) => {
 try {

 let existingUser = await
User.findOne({email:request.body.email});
 if(existingUser) {
 const options = {email:request.body.email,
name:request.body.name};
 return AuthService.sendAuthError(response,
'Duplicate Registration!', "The email provided
has already been registered", options);
 }
 return true;
 } catch (err) {
 response.serverError(err);
 return false;
 }
},

registerUser: async (data, response) => {
 try {
 const {name, email} = data;
 const avatar = gravatar.url(email, {s:200},
"https");
 let newUser = await User.create({name, email,
avatar});
 // Let all sockets know a new user has been
created
 User.publishCreate(newUser);
 return newUser;
 } catch (err) {
 response.serverError(err);
 return false;
 }
},

login: async (request, response) => {
 try {
 let user = await
User.findOne({email:request.body.email});
 if(user) { // Login Passed
 request.session.userId = user.id;
 request.session.authenticated = true;
 return response.redirect('/chat');
 } else { // Login Failed
 return AuthService.sendAuthError(response,
'Login Failed!', "The email provided is not
registered", {email:request.body.email});
 }
 } catch (err) {
 return response.serverError(err);
 }
},

logout: (request, response) => {
 request.session.userId = null;
 request.session.authenticated = false;
 response.redirect('/');
}
}

Examine the code carefully. As an intermediate

developer, you should be able to understand the logic. I

haven’t done anything fancy here. However, I would like

to mention a few things:

Gravatar. You need to install Gravatar. It’s a JavaScript library for

generating Gravatar URLs based on the email address.

```bash 
npm install gravatar --save 
``` 

User.publishCreate(newUser). Just like ChatMessages,

we fire an event notifying all sockets that a new user has just been

created. This will cause all logged-in clients to re-fetch the users

data. Review views/partial/chat-users.js to see what I’m

talking about.

request.session. Sails.js provides us with a session store

which we can use to pass data between page requests. The default

Sails.js session lives in memory, meaning if you stop the server the

session data gets lost. In the AuthService, we’re using session to

store userId and authenticated status.

With the logic inAuthService.js firmly in place, we

can go ahead and update

api/controllers/AuthController with the

following code:

module.exports = {

authenticate: async (request, response) => {
 const email = request.body.email;

 if(request.body.action == 'signup') {
 const name = request.body.name;
 // Validate signup form

https://sailsjs.com/documentation/concepts/sessions

if(!AuthService.validateSignupForm(request,
response)) {
 return;
 }
 // Check if email is registered
 const duplicateFound = await
AuthService.checkDuplicateRegistration(request,
response);
 if(!duplicateFound) {
 return;
 }
 // Create new user
 const newUser = await
AuthService.registerUser({name,email}, response);
 if(!newUser) {
 return;
 }
 }

 // Attempt to log in
 const success = await
AuthService.login(request, response);
},

logout: (request, response) => {
 AuthService.logout(request, response);
}
};

See how much simple and readable our controller is.

Next, let’s do some final touches.

Final Touches

Now that we have authentication set up, we should

remove the hardcoded value we placed in the

postMessage action in

api/controllers/ChatMessageController.

Replace the email code with this one:

...
let user = await
User.findOne({id:request.session.userId});
...

I’d like to mention something you may not have noticed,

if you look at the logout URL in

views/partials/menu.ejs, we’ve placed this

address /auth/logout. If you look at

config/routes.js, you’ll notice that we haven’t

placed a URL for it. Surprisingly, when we run the code,

it works. This is because Sails.js uses a convention to

determine which controller and action is needed to

resolve a particular address.

By now you should be having a functional MVP chat

application. Fire up your app and test the following

scenarios:

sign up without entering anything

sign up by filling only name

sign up by only filling email

sign up by filling name and a registered email — for example,

johnnie86@gmail.com or jane@hotmail.com

sign up using your name and email

update your profile

try posting a blank message

post some messages

open another browser and log in as another user, put each browser

side by side and chat

log out and create a new account.

Phew! That’s a lot of functionality we’ve just

implemented in one sitting and then tested. With a few

more weeks, we could whip out a production ready chat

system integrated with more features, such as multiple

chat rooms, channel attachments, smiley icons and social

accounts integration!

Summary

During this tutorial, we didn’t put the name of the

logged-in user somewhere at the top menu. You should

be capable of fixing this yourself. If you’ve read the entire

tutorial, you should now be proficient in building

applications using Sails.js.

The goal of this tutorial is to show you that can come

from a non-JavaScript MVC framework and build

something awesome with relatively few lines of code.

Making use of the Blueprint API will help you implement

features faster. I also recommend you learn to integrate a

more powerful front-end library — such as React,

Angular or Vue — to create a much more interactive web

application. In addition, learning how to write tests for

Sails.js to automate the testing process is a great weapon

in your programming arsenal.

Chapter 7: Passport

Authentication for Node.js

Applications

BY PAUL ORAC

In this tutorial, we’ll be implementing

authentication via Facebook and GitHub in a

Node.js web application. For this, we’ll be using

Passport, an authentication middleware for

Node.js. Passport supports authentication with

OpenId/OAuth providers.

Express Web App

Before getting started, make sure you have Node.js

installed on your machine.

We’ll begin by creating the folder for our app and then

accessing that folder on the terminal:

mkdir AuthApp
cd AuthApp

To create the node app we’ll use the following command:

npm init

You’ll be prompted to provide some information for

Node’s package.json. Just hit enter until the end to

leave the default configuration.

Next, we’ll need an HTML file to send to the client.

Create a file called auth.html in the root folder of your

http://nodejs.org/
http://passportjs.org/
http://www.passportjs.org/docs/facebook/
http://nodejs.org/

app, with the following contents:

<html>
 <head>
 <title>Node.js OAuth</title>
 </head>
 <body>
 Sign in with
Facebook

</br>
 Sign in with Github
 </body>
</html>

That’s all the HTML we’ll need for this tutorial.

You’ll also require Express, a framework for building web

apps that’s inspired by Ruby’s Sinatra. In order to install

Express, from the terminal type the following command:

npm install express --save

Once you’ve done that, it’s time to write some code.

Create a file index.js in the root folder of your app and

add the following content to it:

/* EXPRESS SETUP */

const express = require('express');
const app = express();

app.get('/', (req, res) =>
res.sendFile('auth.html', { root : __dirname}));

const port = process.env.PORT || 3000;
app.listen(port , () => console.log('App
listening on port ' + port));

In the code above, we require Express and create our

Express app by calling express(). Then we declare the

route for the home page of our app. There we send the

http://expressjs.com/
http://expressjs.com/en/api.html#express

HTML file we’ve created to the client accessing that

route. Then, we use process.env.PORT to set the port

to the environment port variable if it exists. Otherwise,

we’ll default to 3000, which is the port we’ll be using

locally. This gives you enough flexibility to switch from

development, directly to a production environment

where the port might be set by a service provider like, for

instance, Heroku. Right below, we call app.listen() with

the port variable we set up, and a simple log to let us

know that it’s all working fine, and on which port is the

app listening.

Now we should start our app to make sure all is working

correctly. Simply write the following command on the

terminal:

node index.js

You should see the message: App listening on
port 3000. If that’s not the case, you probably missed a

step. Go back and try again.

Moving on, let’s see if our page is being served to the

client. Go to your web browser and navigate to

http://localhost:3000.

If you can see the page we created in auth.html, we’re

good to go.

Head back to the terminal and stop the app with ctrl +

c. So remember, when I say start the app, you write node

index.js, and when I say stop the app, you do ctrl + c.

Clear? Good, you’ve just been programmed :-)

Setting up Passport

As you’ll soon come to realize, Passport makes it a breeze

to provide authentication for our users. Let’s install

https://www.heroku.com/
http://expressjs.com/en/api.html#app.listen

Passport with the following command:

npm install passport --save

Now we have to set up Passport. Add the following code

at the bottom of the index.js file:

/* PASSPORT SETUP */

const passport = require('passport');
app.use(passport.initialize());
app.use(passport.session());

app.get('/success', (req, res) => res.send("You
have successfully logged in"));
app.get('/error', (req, res) => res.send("error
logging in"));

passport.serializeUser(function(user, cb) {
 cb(null, user);
});

passport.deserializeUser(function(obj, cb) {
 cb(null, obj);
});

Here we require Passport and initialize it along with its

session authentication middleware, directly inside our

Express app. Then, we set up the '/success' and

'/error' routes, which will render a message telling us

how the authentication went. It’s the same syntax for our

last route, only this time instead of using

[res.SendFile()]
(http://expressjs.com/en/api.html#res.send
File) we’re using [res.send()]
(http://expressjs.com/en/api.html#res.send
), which will render the given string as text/html in

the browser. Then we’re using serializeUser and

deserializeUser callbacks. The first one will be

invoked on authentication and its job is to serialize the

user instance and store it in the session via a cookie. The

second one will be invoked every subsequent request to

deserialize the instance, providing it the unique cookie

identifier as a “credential”. You can read more about that

in the Passport documentation.

As a side note, this very simple sample app of ours will

work just fine without deserializeUser, but it kills

the purpose of keeping a session, which is something

you’ll need in every app that requires login.

That’s all for the actual Passport setup. Now we can

finally get onto business.

http://www.passportjs.org/docs/configure/#sessions

Implementing Facebook Authentication

The first thing we’ll need to do in order to provide

Facebook Authentication is installing the passport-

facebook package. You know how it goes:

npm install passport-facebook --save

Now that everything’s set up, adding Facebook

Authentication is extremely easy. Add the following code

at the bottom of your index.js file:

/* FACEBOOK AUTH */

const FacebookStrategy = require('passport-
facebook').Strategy;

const FACEBOOK_APP_ID = 'your app id';
const FACEBOOK_APP_SECRET = 'your app secret';

passport.use(new FacebookStrategy({
 clientID: FACEBOOK_APP_ID,
 clientSecret: FACEBOOK_APP_SECRET,
 callbackURL: "/auth/facebook/callback"
 },
 function(accessToken, refreshToken, profile,
cb) {
 return cb(null, profile);
 }
));

app.get('/auth/facebook',
 passport.authenticate('facebook'));

app.get('/auth/facebook/callback',
 passport.authenticate('facebook', {
failureRedirect: '/error' }),
 function(req, res) {
 res.redirect('/success');
 });

Let’s go through this block of code step by step. First, we

require the passport-facebook module. Then, we

https://github.com/jaredhanson/passport-facebook

declare the variables in which we’ll store our app id and

app secret (we’ll see how to get those shortly). After that,

we tell Passport to use an instance of the

FacebookStrategy we required. To instantiate said

strategy we give it our app id and app secret variables

and the callbackURL that we’ll use to authenticate the

user. As a second parameter, it takes a function that will

return the profile info provided by the user.

Further down, we set up the routes to provide

authentication. As you can see in the callbackURL we

redirect the user to the /error and /success routes

we defined earlier. We’re using passport.authenticate,

which attempts to authenticate with the given strategy on

its first parameter, in this case facebook. You probably

noticed that we’re doing this twice. On the first one, it

sends the request to our Facebook app. The second one is

triggered by the callback URL, which Facebook will use

to respond to the login request.

Now you’ll need to create a Facebook app. For details on

how to do that, consult Facebook’s very detailed guide

Creating a Facebook App, which provides step by step

instructions on how to create one.

When your app is created, go to Settings on the app

configuration page. There you’ll see your app id and app

secret. Don’t forget to change the variables you declared

for them on the index.js file with their corresponding

values.

Next, enter “localhost” in the App Domains field. Then,

go to Add platform at the bottom of the page and choose

Website. Use

http://localhost:3000/auth/facebook/callba
ck as the Site URL.

On the left sidebar, under the Products section, you

should see Facebook Login. Click to get in there.

http://www.passportjs.org/docs/authenticate/
https://developers.facebook.com/docs/apps/register

Lastly, set the Valid OAuth redirect URIs field to

http://localhost:3000/auth/facebook/callba
ck.

If you start the app now and click the Sign in with

Facebook link, you should be prompted by Facebook to

provide the required information, and after you’ve

logged in, you should be redirected to the /success
route, where you’ll see the message You have
successfully logged in.

That’s it! you have just set up Facebook Authentication.

Pretty easy, right?

Implementing GitHub Authentication

The process for adding GitHub Authentication is quite

similar to what we did for Facebook. First, we’ll install

the passport-github module:

npm install passport-github --save

Now go to the index.js file and add the following lines

at the bottom:

/* GITHUB AUTH */

const GitHubStrategy = require('passport-
github').Strategy;

const GITHUB_CLIENT_ID = "your app id"
const GITHUB_CLIENT_SECRET = "your app secret";

passport.use(new GitHubStrategy({
 clientID: GITHUB_CLIENT_ID,
 clientSecret: GITHUB_CLIENT_SECRET,
 callbackURL: "/auth/github/callback"
 },
 function(accessToken, refreshToken, profile,
cb) {
 return cb(null, profile);
 }

https://github.com/jaredhanson/passport-github

));

app.get('/auth/github',
 passport.authenticate('github'));

app.get('/auth/github/callback',
 passport.authenticate('github', {
failureRedirect: '/error' }),
 function(req, res) {
 res.redirect('/success');
 });

This looks familiar! It’s practically the same as before.

The only difference is that we’re using the

GithubStrategy instead of FacebookStrategy.

So far so … the same. In case you hadn’t yet figured it

out, the next step is to create our GitHub App. GitHub

has a very simple guide, Creating a GitHub app, that will

guide you through the process.

When you’re done, in the configuration panel you’ll need

to set the Homepage URL to

http://localhost:3000/ and the Authorization

callback URL to

http://localhost:3000/auth/github/callback
, just like we did with Facebook.

Now, simply restart the Node server and try logging in

using the GitHub link.

It works! Now you can let your users log in with GitHub.

Conclusion

In this tutorial, we saw how Passport made the task of

authentication quite simple. Implementing Google and

Twitter authentication follows a nearly identical pattern.

I challenge you to implement these using the passport-

google and passport-twitter modules. In the meantime,

the code for this app is available on GitHub.

https://developer.github.com/apps/building-github-apps/creating-a-github-app/
https://github.com/jaredhanson/passport-google
https://github.com/jaredhanson/passport-twitter
https://github.com/sitepoint-editors/OpenAuthWithPassport

Chapter 8: Local

Authentication Using

Passport in Node.js

BY PAUL ORAC

In the last chapter, we talked about

authentication using Passport as it relates to

social login (Google, Facebook, GitHub, etc.). In

this chapter, we’ll see how we can use Passport

for local authentication with a MongoDB back

end.

All of the code from this article is available for download

on GitHub.

Prerequisites

Node.js — Download and install Node.js.

MongoDB — Download and install MongoDB Community Server.

Follow the instructions for your OS. Note, if you’re using Ubuntu,

this guide can help you get Mongo up and running.

Creating the Project

Once all of the prerequisite software is set up, we can get

started.

We’ll begin by creating the folder for our app and then

accessing that folder on the terminal:

mkdir AuthApp
cd AuthApp

http://www.passportjs.org/
https://github.com/sitepoint-editors/LocalPassportAuth
https://nodejs.org/en/download/
https://www.mongodb.com/download-center#community
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

To create the node app, we’ll use the following

command:

npm init

You’ll be prompted to provide some information for

Node’s package.json. Just hit enter until the end to

leave the default configuration.

HTML

Next, we’ll need a form with username and password
inputs as well as a Submit button. Let’s do that! Create a

file called auth.html in the root folder of your app,

with the following contents:

<html>
 <body>
 <form action="/" method="post">
 <div>
 <label>Username:</label>
 <input type="text" name="username" />

 </div>
 <div>
 <label>Password:</label>
 <input type="password" name="password" />
 </div>
 <div>
 <input type="submit" value="Submit" />
 </div>
 </form>
 </body>
</html>

That will do just fine.

Setting up Express

Now we need to install Express, of course. Go to the

terminal and write this command:

http://expressjs.com/

npm install express --save

We’ll also need to install the body-parser middleware

which is used to parse the request body that Passport

uses to authenticate the user.

Let’s do that. Run the following command:

npm install body-parser --save

When that’s done, create a file index.js in the root

folder of your app and add the following content to it:

/* EXPRESS SETUP */

const express = require('express');
const app = express();

const bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: true
}));

app.get('/', (req, res) =>
res.sendFile('auth.html', { root : __dirname}));

const port = process.env.PORT || 3000;
app.listen(port , () => console.log('App
listening on port ' + port));

We’re doing almost the same as in the previous tutorial.

First we require Express and create our Express app by

calling [express()]
(http://expressjs.com/en/api.html#express)
. The next line is the only difference with our previous

Express setup. We’ll need the body-parser middleware

this time, in order for authentication to work correctly.

Then we declare the route for the home page of our app.

There we send the HTML file we created to the client

accessing that route. Then, we use process.env.PORT
to set the port to the environment port variable if it

https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser

exists. Otherwise, we’ll default to 3000, which is the port

we’ll be using locally. This gives you enough flexibility to

switch from development, directly to a production

environment where the port might be set by a service

provider like, for instance, Heroku. Right below we

called [app.listen()]
(http://expressjs.com/en/api.html#app.list
en) with the port variable we set up and a simple log to

let us know that it’s all working fine and on which port is

the app listening.

That’s all for the Express setup. Now we have to set up

Passport, exactly as we did the last time. I’ll show you

how to do that in case you didn’t read the previous

tutorial.

Setting up Passport

First, we install passport with the following command:

npm install passport --save

Then, add the following lines at the bottom of your

index.js file:

/* PASSPORT SETUP */

const passport = require('passport');
app.use(passport.initialize());
app.use(passport.session());

app.get('/success', (req, res) =>
res.send("Welcome "+req.query.username+"!!"));
app.get('/error', (req, res) => res.send("error
logging in"));

passport.serializeUser(function(user, cb) {
 cb(null, user.id);
});

passport.deserializeUser(function(id, cb) {
 User.findById(id, function(err, user) {

https://www.heroku.com/

 cb(err, user);
 });
});

Here, we require passport and initialize it along with its

session authentication middleware, directly inside our

Express app. Then, we set up the '/success' and

'/error' routes which will render a message telling us

how the authentication went. If it succeeds, we’re going

to show the username parameter, which we’ll pass to

the request. We’re using the same syntax for our last

route, only this time instead of using

[res.SendFile()]
(http://expressjs.com/en/api.html#res.send
File) we’re using [res.send()]
(http://expressjs.com/en/api.html#res.send
), which will render the given string as text/html on

the browser. Then we’re using serializeUser and

deserializeUser callbacks. The first one will be

invoked on authentication, and its job is to serialize the

user instance with the information we pass to it (the user

ID in this case) and store it in the session via a cookie.

The second one will be invoked every subsequent request

to deserialize the instance, providing it the unique cookie

identifier as a “credential”. You can read more about that

in the Passprot documentation.

As a side note, this very simple sample app of ours will

work just fine without deserializeUser, but it kills

the purpose of keeping a session, which is by all means

something you’ll need in every app that requires login.

Creating a MongoDB Data Store

Since we’re assuming you’ve already installed Mongo,

you should be able to start the mongod server using the

following command:

http://www.passportjs.org/docs/configure/#sessions

sudo mongod

From another terminal, launch the Mongo shell:

mongo

Within the shell, issue the following commands:

use MyDatabase;

db.userInfo.insert({'username':'admin','password'
:'admin'});

The first command creates a data store named

MyDatabase. The second command creates a collection

named userInfo and inserts a record. Let’s insert a few

more records:

db.userInfo.insert({'username':'jay','password':'
jay'});
db.userInfo.insert({'username':'roy','password':'
password'});

RETRIEVING STORED DATA

We can view the data we just added using the following

command:

db.userInfo.find();

The resulting output is shown below:

{ "_id" : ObjectId("5321cd6dbb5b0e6e72d75c80"),
"username" : "admin", "password" : "admin" }
{ "_id" : ObjectId("5321d3f8bb5b0e6e72d75c81"),
"username" : "jay", "password" : "jay" }
{ "_id" : ObjectId("5321d406bb5b0e6e72d75c82"),
"username" : "roy", "password" : "password" }

We can also search for a particular username and

password:

db.userInfo.findOne({'username':'admin','password
':'admin'})

This command would return only the admin user.

Connection Mongo to Node with
Mongoose

Now that we have a database with records in it, we need

a way to communicate with it from our application. We’ll

be using Mongoose to achieve this. Why don’t we just use

plain Mongo? Well, as the Mongoose devs like to say on

their website:

writing MongoDB validation, casting and business logic

boilerplate is a drag.

Mongoose will simply make our lives easier and our code

more elegant.

Let’s go ahead and install it with the following command:

npm install mongoose --save

Now we have to configure Mongoose. You know the drill:

add the following code at the bottom of your index.js
file:

/* MONGOOSE SETUP */

const mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/MyDatabase'
);

const Schema = mongoose.Schema;
const UserDetail = new Schema({
 username: String,

http://mongoosejs.com/

 password: String
 });
const UserDetails = mongoose.model('userInfo',
UserDetail, 'userInfo');

Here we require the mongoose package. Then we

connect to our database using mongoose.connect and

give it the path to our database. Then we’re making use

of Schema to define our data structure. In this case, we’re

creating a UserDetail schema with username and

password fields. After that, we create a model from that

schema. The first parameter is the name of the collection

in the database. The second one is the reference to our

Schema, and the third one is the name we’re assigning to

the collection inside Mongoose.

That’s all for the Mongoose setup. We can now move on

to implementing our Strategy.

Implementing Local Authentication

It’s time to configure our authentication strategy using

passport-local. Let’s go ahead and install it. Run the

following command:

npm install passport-local --save

Finally, we’ve come to the last portion of the code! Add it

to the bottom of your index.js file:

/* PASSPORT LOCAL AUTHENTICATION */

const LocalStrategy = require('passport-
local').Strategy;

passport.use(new LocalStrategy(
 function(username, password, done) {
 UserDetails.findOne({
 username: username
 }, function(err, user) {
 if (err) {

http://mongoosejs.com/docs/guide.html
http://mongoosejs.com/docs/models.html
https://github.com/jaredhanson/passport-local

 return done(err);
 }

 if (!user) {
 return done(null, false);
 }

 if (user.password != password) {
 return done(null, false);
 }
 return done(null, user);
 });
 }
));

app.post('/',
 passport.authenticate('local', {
failureRedirect: '/error' }),
 function(req, res) {
 res.redirect('/success?
username='+req.user.username);
 });

Let’s go through this. First, we require the passport-
local Strategy. Then we tell Passport to use an

instance of the LocalStrategy we required. There we

simply use the same command that we used in the

Mongo shell to find a record based on the username. If a

record is found and the password matches, the above

code returns the user object. Otherwise, it returns

false.

Below the strategy implementation is our post, with the

[passport.authenticate]
(http://www.passportjs.org/docs/authentica
te/) method which attempts to authenticate with the

given strategy on its first parameter, in this case

'local'. It will redirect us to '/error' if it fails.

Otherwise it'll redirect us to the '/success' route,

sending the username as a parameter. That’s how we get

the username to show on the line

req.query.username we saw earlier.

That’s all we need for the app to work. We’re done!

Restart your Node server and point your browser to

http://localhost:3000/ and try to log in with

“admin” as username and “admin” as password. If it all

goes well, you should see the message “Welcome

admin!!” in the browser.

Conclusion

In this article, we learned how to implement local

authentication using Passport in a Node.js application.

In the process, we also learned how to connect to

MongoDB using the Mongoose.

We only added the necessary modules for this app to

work — nothing more, nothing less. For a production

app, you’ll need to add other middlewares and separate

your code in modules. You can take that as a challenge to

set up a clean and scalable environment and grow it into

something useful.

Chapter 9: An Introduction

to NodeBots

BY PATRICK CATANZARITI

Many web developers out there would love the

chance to build an incredibly cool robot that they

can control via JavaScript, right? I’m here to tell

you that this is already possible today! Right

now.

NodeBots have been around for a while, and the

community around them is growing like wildfire. In this

article, I’m going to explain what NodeBots are, how they

work and how you can get started tinkering away at robot

creation.

What is a Microcontroller?

Before I get too far into things, we’ll be mentioning

microcontrollers quite frequently. A microcontroller is a

tiny and very simple computer. It has a simple physical

programmable circuit board that can detect various

inputs and send outputs. An Arduino is a type of

microcontroller. It’s actually one of the most common

ones for newcomers to experiment with. There are other

sorts of microcontrollers too that can be powered by

Node, including Particle boards (my favorite!),

BeagleBone boards, Tessel boards (the board itself runs

on JS) and Espruino boards (also runs on JS). In this

article, I’ll be focusing on Arduinos, as they’re the most

common.

What are NodeBots?

http://particle.io/
http://beagleboard.org/
https://tessel.io/
http://www.espruino.com/

NodeBots are (quite literally) robots of one kind or

another that can be controlled via Node. They can have

everything from wheels, movable arms and legs, motion

detectors, cameras, LED displays, the ability to play

sound and so much more. The only limits are your

imagination and the components you can find and put

together!

The whole idea of NodeBots evolved through the

increasing capabilities of Node.js and the interest of a

few developers like Nikolai Onken, Jörn Zaefferer, Chris

Williams, Julian Gautier and Rick Waldron who worked

to develop the various Node modules we use in NodeBots

today. The Node package called node-serialport by Chris

Williams started it all, allowing access to real world

devices via reading and writing to serial ports at a low

level.

Julian Gautier then implemented the Firmata protocol, a

protocol used to access microcontrollers like Arduinos

via software on a computer, using JavaScript in his

Node.js Firmata library.

Rick Waldron took it a massive step further. Using the

Firmata library as a building block, he created a whole

JavaScript Robotics and IoT programming framework

called Johnny-Five. The Johnny-Five framework makes

controlling everything from LEDs to various types of

sensors relatively simple and painfree. This is what many

NodeBots now use to achieve some very impressive feats!

Where To Start

If you’re completely new to the idea of building robots

and any sort of real-world, JavaScript-controlled device,

there are plenty of incredible resources for you to get

started with. The very first thing I’d recommend you do

is find yourself a good Arduino kit that provides a good

http://twitter.com/nonken
http://twitter.com/bassistance
http://twitter.com/voodootikigod
https://twitter.com/jagautier
https://twitter.com/rwaldron
https://github.com/voodootikigod/node-serialport
https://github.com/jgautier/firmata
https://github.com/rwaldron/johnny-five

range of components and sensors to give you a range of

items to play around with. Below, I’ve got a list of some

of the Arduino starter kits that are available from various

companies. If the below list looks overwhelming, don’t

worry! They all contain very similar components and are

all a good choice for beginners.

STARTER KITS

SparkFun Inventors Kit. This is the kit that started it all for me

years ago! It comes with a range of standard components like

colored LED lights, sensors, buttons, a motor, a tiny speaker and

more. It also comes with a guide and sample projects you can use

to build your skills. You can find it here: SparkFun Inventor’s Kit.

Freetronics Experimenter’s Kit for Arduino. This kit is by

an Australian-based company called Freetonics. It has very similar

components to the SparkFun one, with a few small differences. It

also has its own guide with sample projects to try as well. For

those based in Australia, these kits and other Freetronics parts are

available at Jaycar. You can also order it online here: Freetronics

Experimenter’s Kit.

Seeed Studio ARDX starter kit. Seeed Studio have their own

starter kit too, which is also very similar to the SparkFun and

Freetronics ones. It has its own guide and such too! You can find it

here: ARDX - The starter kit for Arduino.

Adafruit ARDX Experimentation Kit for Arduino. This kit

is also very similar to the ones above with its own guide. You can

find it here: Adafruit ARDX Experimentation Kit for Arduino.

Arduino Starter Kit. The guys at Arduino.cc have their own

official kit that’s available too. The starter kit is similar to the ones

above but has some interesting sample projects like a “Love-O-

Meter”. You can find it here and often at other resellers too:

Arduino Starter Kit.

With all of the above kits, keep in mind that none of

them are targeted towards NodeBot development. So the

examples in booklets and such are written in the

simplified C++ code that Arduino uses. For examples

using Node, see the resources below.

Resources for Learning NodeBots

https://www.sparkfun.com/products/12060
http://www.freetronics.com.au/collections/kits/products/experimenters-kit-for-arduino#.VaxII2SIFk0
http://www.seeedstudio.com/depot/ARDX-The-starter-kit-for-Arduino-p-1153.html
http://www.adafruit.com/products/170
https://store.arduino.cc/product/K000007

There are a few key spots where you can learn how to put

together various NodeBot projects on the Web. Here are

a few recommendations:

Controlling an Arduino with Node.js and Johnny-Five. This is a

free SitePoint screencast I recorded a little while ago that

introduces the basics of connecting up an Arduino to Node.js and

using the framework to turn an LED light on and off.

Arduino Experimenter’s Guide for NodeJS. An adaptation by Anna

Gerber and other members of the NodeBots community from the

SparkFun version of .:oomlout:.’s ARDX Guide. It shows how to

do many of the examples from the kits mentioned above in Node

instead of the simplified C++ code from Arduino.

The official Johnny-Five website. Not so long ago, the Johnny-Five

framework had a whole new website released that has great

documentation on how to use the framework on Arduino and

other platforms too!

Make: JavaScript Robotics Book. A new book released by Rick

Waldron and others in the NodeBot community that provides a

range of JS projects using various devices. Great for those who’ve

got the absolute basics down and want to explore some new

projects!

NodeBots Official Site. Check this page out if you’re looking for a

local NodeBots meetup near you, or to read more about NodeBots

in general.

NodeBots - The Rise of JS Robotics. A great post by Chris Williams

on how NodeBots came to be. It’s a good read for those interested.

THE SIMPLEBOT

Andrew Fisher, a fellow Australian NodeBot enthusiast,

put together a rather simple project for people to build

for their first NodeBot experience. It’s called a

“SimpleBot”, and it lives up to its name. It’s a NodeBot

that you can typically build in a single day. If you’re keen

on getting an actual robot up and running, rather than

just a basic set of sensors and lights going on and off, this

is a great project choice to start with. It comes available

to Australian attendees of NodeBots Day (see below) in

one of the ticket types for this very reason! It’s a bot with

wheels and an ultrasonic sensor to detect if it’s about to

run into things. Here’s what my own finished version

http://www.sitepoint.com/controlling-arduino-nodejs-johnny-five/
http://node-ardx.org/
http://johnny-five.io/
http://shop.oreilly.com/product/0636920031390.do
http://nodebots.io/
http://www.voodootikigod.com/nodebots-the-rise-of-js-robotics/

looks like — which I prepared as a sample for NodeBots

Day a few years ago:

A list of SimpleBot materials needed and some sample

Node.js code is available at the SimpleBot GitHub repo.

Andrew also has a YouTube video showing how to put

the SimpleBot together.

Andrew also collaborated with the team at Freetronics to

put together a SimpleBot Arduino shield that might also

be useful to people who’d like to give it a go as a learning

project without needing to solder anything: SimpleBot

Shield Kit.

Conclusion

That concludes a simple introduction into the world of

NodeBots! If you’re interested in getting involved, you’ve

got all the info you should need to begin your NodeBot

experience.

If you want to get more involved with NodeBots, keep an

eye out for the annual International NodeBots Day. (It

happens around July each year.) It’s a day where all sorts

of people get together at various events around the world

to build JavaScript powered bots and have a great time.

If you build yourself a pretty neat NodeBot with any of

the above resources, get in touch with me on Twitter

(@thatpatrickguy), I’d love to check out your JavaScript

powered robot!

https://github.com/nodebotsau/simplebot
https://youtu.be/KoACCjtkHIg
http://www.freetronics.com.au/collections/kits/products/simplebot-shield-kit#.Vax4WmSIFk1
http://www.twitter.com/thatpatrickguy

	9 Practical Node.js Projects
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Chapter 1: Build a Simple Beginner App with Node, Bootstrap & MongoDB
	by James Hibbard
	What We’ll Be Building
	Basic Setup
	Node.js
	npm
	MongoDB
	A MongoDB GUI
	Check that Everything Is Installed Correctly
	Check the Database Connection Using Compass

	Initialize the Application
	Install Express
	Install nodemon
	Create Some Initial Files
	Kick off the App

	Basic Templating with Pug
	Install Pug and Integrate It into the Express App
	Alter the Route to Use Our Template
	Define a Layout File for Pug
	Use the Layout File from the Child Template

	Dealing with Forms in Express
	Handle Form Input
	A Note about Request and Response Objects
	Validating Form Input

	Interact with a Database
	Specify Connection Details
	Connect to the Database
	Define a Mongoose Schema
	Save Data to the Database
	Retrieve Data from the Database

	Add HTTP Authentication
	Serve Static Assets in Express
	Style the App with Bootstrap

	Conclusion

	Chapter 2: How to Build a File Upload Form with Express and Dropzone.js
	by Lukas White
	Introducing DropzoneJS
	Features
	Browser Support

	Installation
	First Steps
	Basic Usage
	Basic Configuration Options
	Enforcing Maximum File Size
	Restricting to Certain File Types
	Modifying the Size of the Thumbnail
	Additional File Checks

	Sending Additional Headers
	Handling Fallbacks
	Handling Errors
	Overriding Messages and Translation
	Events
	A More Complex Validation Example: Image Dimensions
	A Complete Example
	Theming
	A Simple Server-Side Upload Handler with Node.js and Express
	Handling Upload Success
	Handling Upload Errors
	Summary

	Chapter 3: How to Build and Structure a Node.js MVC Application
	by James Kolce
	What is MVC?
	Laying out the Foundation
	Storing Our Settings
	Defining the Routes
	Building the Models
	Setting up the database
	Creating our Note model
	Synchronizing the Database

	Building the controllers
	The Home Controller
	Boilerplate of the Note Controller
	The “create” function
	The “read” function
	The “update” function
	The “delete” function
	Using the Note controller in our routes

	Building the Views
	The note component
	The base layout
	The home view
	The note view
	The JavaScript on the client
	Adding support for views on the server
	Setting the home view
	Setting the note view: create function
	Setting the note view: read function
	Setting the note view: update function

	Serving Static Files
	Conclusion

	Chapter 4: User Authentication with the MEAN Stack
	by Simon Holmes & Jeremy Wilken
	The MEAN Stack Authentication Flow
	The Example Application
	The Angular App
	The REST API

	Creating the MongoDB Data Schema with Mongoose
	Managing the Password without Saving It
	Generating a JSON Web Token (JWT)

	Set Up Passport to Handle the Express Authentication
	Configure Passport

	Configure API Endpoints
	Code the Register and Login API Controllers
	Securing an API Route

	Create Angular Authentication Service
	Local Storage: Saving, Reading and Deleting a JWT
	Check Whether a User Is Logged In
	Structuring the API Calls
	Calling the Register and Login API Endpoints

	Apply Authentication to Angular App
	Connect the Register and Login Controllers
	Change Content Based on User Status
	Protect a Route for Logged in Users Only
	Call a Protected API Route

	Chapter 5: Build a JavaScript Command Line Interface (CLI) with Node.js
	by Lukas White & Michael Wanyoike
	Why Build a Command-line Tool with Node.js?
	What We’re Going to Build: ginit
	The Application Dependencies
	Getting Started
	Adding Some Helper Methods
	Initializing the Node CLI
	Prompting the User for Input
	Dealing With GitHub Authentication
	Storing Config

	Communicating with the GitHub API
	Creating a Repository
	Creating a .gitignore File
	Interacting with Git from Within the App
	Putting It All Together
	Making the ginit Command Available Globally
	Taking it Further

	Chapter 6: Building a Real-time Chat App with Sails.js
	by Michael Wanyoike
	Prerequisites
	Project Plan
	Installing Sails.js
	Installing Front-end Dependencies
	1. Manual Download
	2. Using Bower
	3. Using npm + grunt.copy
	Testing Dependencies Installation

	Creating Views
	Home Page Design
	Navigation Menu
	Profile
	Chat Room Layout

	Routing
	Generating a User API
	Profile Form

	ChatMessage API
	Chat Messages UI
	Chat Post UI

	Basic Authentication
	Login/Sign Up Form
	Policy
	Auth Controller and Service

	Final Touches
	Summary

	Chapter 7: Passport Authentication for Node.js Applications
	by Paul Orac
	Express Web App
	Setting up Passport
	Implementing Facebook Authentication
	Implementing GitHub Authentication
	Conclusion

	Chapter 8: Local Authentication Using Passport in Node.js
	by Paul Orac
	Prerequisites
	Creating the Project
	HTML
	Setting up Express
	Setting up Passport
	Creating a MongoDB Data Store
	Retrieving Stored Data

	Connection Mongo to Node with Mongoose
	Implementing Local Authentication
	Conclusion

	Chapter 9: An Introduction to NodeBots
	by Patrick Catanzariti
	What is a Microcontroller?
	What are NodeBots?
	Where To Start
	Starter Kits

	Resources for Learning NodeBots
	The SimpleBot

	Conclusion

