

MobX Quick Start Guide

Supercharge the client state in your React apps with MobX

Pavan Podila
Michel Weststrate

BIRMINGHAM - MUMBAI

MobX Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudari
Acquisition Editor: Reshma Raman
Content Development Editor: Aditi Gour
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jason Monteiro
Production Coordinator: Arvindkumar Gupta

First published: July 2018

Production reference: 1230718

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-483-7

www.packtpub.com

http://www.packtpub.com

To my loving wife, Sirisha Vardhani, for supporting me all along.

– Pavan Podila

To my kids, Noa and Veria, who have to regularly pull me back to Earth when my thoughts are
wandering off. To my wife, Elise, who always encourages me to pursue new ideas. To God, who

shared His ability to be a creator with all of us.

– Michel Weststrate

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Foreword
I started my journey on Reactive Programming several years ago, when Reactive
Programming on frontend wasn't "a thing".

At the beginning, there weren't many references or books available to apply this paradigm
on frontend applications; therefore, I had to spent a lot of time extracting the key concepts
of Reactive Programming from books on Java or Clojure, university white papers, and blog
posts.

In the past two years though, slowly but steadily, the community started developing many
frameworks and libraries that shape the frontend Reactive ecosystem we know nowadays.

Reactive Programming is getting a lot of traction. Companies such as Netflix, Microsoft,
IBM, and many others are using this paradigm, leveraging the strong decoupling provided
out of the box by this paradigm and the unidirectional data flow used in many Reactive
state management systems.

From the developers, community, we had a strong push on sharing great reactive
implementations, such as Rx.JS, Cycle.js, VueX, SAM patterns, Angular with NGRX, and
many others.

There is one though that is standing out from the crowd, created by a bunch of smart
developers; it is called MobX.

MobX is the perfect companion for starting your journey on Reactive Programming. It is
easy to learn, applies reactivity with a few lines of code, and it could be used without
deeply knowing this paradigm. It can also be used for digging into the reactive
programming roots.

MobX ecosystem provides the flexibility of structuring small projects, such as a Proof of
Concept (PoC), or large projects managed by several teams, thanks to MobX State Tree
(MST).

I had the opportunity to work on both MobX and MST: I created some simple PoCs for
validating my theories, and also architected a micro-frontend system with tens of
developers working with MST.

I saw how well thought out and designed this system was and how fast it was, picking it
up from scratch, by other developers.

As you will discover in these pages, MobX will provide you with the flexibility smartness
behind architectural and design decisions that you were looking for. It is the perfect
companion for any experienced person or a newcomer to the reactive programming
movement.

Enjoy your journey into MobX and MST, I'm sure you won't regret it!

Luca Mezzalira

Author, Speaker, Chief Architect at DAZN, Google Developer Expert and manager of the
London JavaScript community

Contributors

About the authors
Pavan Podila has been building frontend applications since 2001 and has used a variety of
tools, technologies, and platforms, from Java Swing, WPF with .Net/C#, Cocoa on macOS
and iOS, to the web platform with frameworks such as React and Angular. He has been
working with React since 2013 and MobX since 2016. He is a colead of the Interactive
Practice at Publicis.Sapient, where he builds large financial applications for web and mobile
platforms.

He has been a Microsoft MVP for client application development (2008-2011), and a
published author of WPF Control Development Unleashed (Addison-Wesley). He
created QuickLens, a Mac app for UI designers/developers, and authored several articles
and video courses on Tuts+.

Pavan is a Google Developer Expert (GDE) for web technologies and currently authors
courses on The UI Dev. He is a regular speaker at meetups, conferences, and workshops.
When time permits, you can find him sketching on iPad or playing ping-pong.

Michel Weststrate (Msc) is tech lead and open source evangelist at Mendix. He has been
active as both a frontend and backend developer in different stacks. An occasional speaker
at software conferences, he has authored video courses on egghead.

Intrigued by several (transparent) reactive programming libraries, he researched and
worked on making the ReactJS framework more reactive while addressing predictability
and maintainability constraints in other solutions. This led to mobservable (nowadays
MobX), which was quickly adopted at Mendix.

He's very active in the open source software community, and he authored MobX, Immer,
and several small libraries, and coauthored MST.

About the reviewer
Naresh Bhatia is a passionate technologist and architect who has spent his career helping
developers write better software. He leads the Visualization Practice at Publicis.Sapient,
which builds interfaces and data visualizations for financial institutions and energy firms.
Before joining Sapient, he founded a startup that built domain modeling, code generation,
and reverse engineering tools. Naresh graduated with a master's degree in electrical
engineering from Illinois Institute of Technology.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to State Management 7
The client state 8

Handling changes in state 9
The side effect model 10
A speed tour of MobX 12

An observable state 12
Observing the state changes 13
It's time to take action 14
A comparison with Redux 16

Redux in a nutshell 16
MobX versus Redux 17

Summary 21

Chapter 2: Observables, Actions, and Reactions 22
Technical requirements 22
Observables 23

Creating observables 24
Observable arrays 26
Observable maps 27
A note on observability 28
The computed observable 29
Better syntax with decorators 31

Actions 33
Enforcing the use of actions 34
Decorating actions 35

Reactions 37
autorun() 37
reaction() 39

A reactive UI 41
when() 43

when() with a promise 44
Quick recap on reactions 45

Summary 46

Chapter 3: A React App with MobX 47
Technical requirements 47
The book search 47
Observable state and actions 49

Managing the async action 51

Table of Contents

[ii]

The Reactive UI 53
Getting to the store 56
The SearchTextField component 58
The ResultsList component 61

Summary 64

Chapter 4: Crafting the Observable Tree 65
Technical requirements 65
The shape of data 66
Controlling observability 66

Using @decorators 67
Creating shallow observables with @observable.shallow 67
Creating reference-only observables with @observable.ref 68
Creating structural observables with @observable.struct 69

Using the decorate() API 70
Decorating with observable() 72

Extending the observability 73
Derived state with @computed 75

Structural equality 76
Modeling the stores 79

Observable state 80
Derived state 81
Actions 83

Summary 84

Chapter 5: Derivations, Actions, and Reactions 85
Technical requirements 85
Derivations (computed properties) 86

Is it a side effect? 88
There's more to computed() 89
Error handling inside computed 93

Actions 94
Why an action? 94
Async actions 96

Wrapping with runInAction() 97
flow() 98

Reactions 100
Configuring autorun() and reaction() 103

Options for autorun() 103
Options for reaction() 104

When does MobX react? 105
The rules 105

Summary 108

Chapter 6: Handling Real-World Use Cases 110
Technical requirements 110

Table of Contents

[iii]

Form validation 111
The interactions 112
Modeling the observable state 112
Onto the actions 113
Completing the triad with reactions 115
React components 117

The UserEnrollmentForm component 118
Other observer components 121

Page routing 123
The Cart checkout workflow 123
Modeling the observable state 125

A route for a step, a step for a route 126
The WorkflowStep 128

 Actions and reactions of the workflow 130
Loading a step 132
The HistoryTracker 134

The React components 137
The TemplateStepComponent 139
The ShowCart component 142
A state-based router 143

Summary 144

Chapter 7: Special API for Special Cases 145
Technical requirements 145
Direct manipulation with the object API 146

Granular reads and writes 146
From MobX to JavaScript 148

Watching the events flow by 150
Hooking into the observability 150

Lazy loading the temperature 152
Gatekeeper of changes 154

Intercepting the change 155
observe() the changes 156

Development utilities 157
Using spy() to track the reactivity 157
Tracing a reaction 159
Visual debugging with mobx-react-devtools 160

A few other APIs 162
Querying the reactive system 162
Probing deeper into the reactive system 163

Summary 163

Chapter 8: Exploring mobx-utils and mobx-state-tree 164
Technical requirements 164
The utility functions of mobx-utils 165

Visualizing async-operations with fromPromise() 165
Using lazyObservable() for deferred updates 167

Table of Contents

[iv]

A generalized lazyObservable() with fromResource() 170
A view model to manage edits 171
There is lot more to discover 173

An opinionated MobX with mobx-state-tree 173
Models – properties, views, and actions 174

Defining actions on the model 175
Creating derived information with views 176

Fine-tuning primitive types 177
Composing trees 178
References and identifiers 180

Referencing by types.identifier() and types.reference() 182
Out-of-the-box benefits of declarative models 183

Immutable snapshots 184
JSON patches 185
Middlewares 186

Further reading 186
Summary 186

Chapter 9: Mobx Internals 188
Technical requirements 188
A layered architecture 189

The Atom 189
Reading atoms at runtime 192

Creating an Atom 193
The atomic clock example 194

ObservableValue 196
ComputedValue 198

Efficient computation 199
Derivation 200

The cycle of derivation 200
Exception handling 203

The API layer 204
Transparent functional reactive programming 205

It is Transparent... 206
It is reactive... 206
It is functional... 206
Value Oriented Programming 207

Summary 208

Other Books You May Enjoy 209

Index 212

Preface
Reactive programming has captured the imagination of programmers for decades. Once the
gang of four standardized the observer design pattern, the term has become part of the
standard vocabulary of every programmer:

Observer : Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

– Design Patterns, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995

Nonetheless, there is a wide variety of technologies, libraries, and frameworks
implementing the observer pattern. Yet, MobX is unique in the way it applies this pattern to
state-management. It has a very friendly syntax, a small core API that makes it easy to learn
as a beginner, and it can be applied in any JavaScript project. Moreover, the library has
proven scalable, not just at Mendix where the project was first applied, but also in famous
projects, such as Microsoft Outlook, Battlefield 1 by DICE, Jenkins, Coinbase, and many,
many more.

This book will not just guide you through the basics; it will also immerse you in the
philosophy of MobX: Anything that can be derived from the application state, should be derived.
Automatically.

MobX is not the first of its kind, but it is standing on the shoulders of giants and has pushed
the boundaries of what is possible with the transparent reactive programming paradigm.
For example, it is, as far as the authors know, the first major library that combines reactivity
with synchronous transactions and the first to explicitly distinguish the concept of derived-
values and automatic side effects (reactions).

Unlike many learning materials, this book guides you through the inner workings of MobX
and its many extension points. This book will hopefully leave a lasting impression that an
essentially simple (and very readable!) paradigm can be used to accomplish tasks that are
very challenging, not just in terms of domain complexity, but also in terms of performance.

Preface

[2]

Who this book is for
State management plays a crucial role in any application where state is relevant across
different places in the code base. This is either because there are multiple consumers or
multiple producers of data. In practice, this means that MobX is useful in any application
that has a non-trivial amount of data entry or data visualization.

MobX has official bindings for React.js, Preact, and Angular. However, many have used the
library in combination with libraries and frameworks such as jQuery, konva.js, Next.js,
Vue.js, and even Backbone. When working through the book, you will discover that the
concepts required to use a tool like MobX are universally applicable in any environment.

What this book covers
Chapter 1, Introduction to State Management, starts with a conceptual treatment of state-
management and its many nuances. It introduces the side-effect model and prepares you
with the philosophy needed to understand MobX. Finally, it gives a speed tour of MobX
and some of its core building blocks.

Chapter 2, Observables, Actions, and Reactions, takes a deeper look at the core building
blocks of MobX. It shows you the various ways of creating observables, using actions to
cause mutations on the observables, and, finally, the use of reactions to react to any changes
happening on the observables. These three form the core triad of MobX.

Chapter 3, A React App with MobX, combines the knowledge gained so far to power a React
App with MobX. It tackles the use case of searching books in an online store. The app is
built by first identifying the core observable state, using actions to mutate the state, and
using reactions via the observer() utility from mobx-react. The React components are the
observers that react to changes in the observable state and automatically render the new
state. This chapter will give you an early taste of how simple MobX can be for state
management in React apps.

Chapter 4, Crafting the Observable Tree, puts laser focus on designing the observable state
with the various options in MobX. We will tackle how to limit the observability in MobX
and learn how to create a tight observable state that only observes the necessary and
nothing more. In addition to limiting observability, we will also see how to expand the
observability with extendObservable(). Finally, we will look into computed properties
and look at the use of ES2015 classes to model the observable state.

Preface

[3]

Chapter 5, Derivations, Actions, and Reactions, goes further into the core building blocks of
MobX and explores the API in greater detail. It also touches upon the philosophies
governing these building blocks. By the end of this chapter, you will cement your
understanding and core intuitions around MobX.

Chapter 6, Handling Real-World Use Cases, is where we apply MobX to two important real-
world use cases: form handling and page routing. Both are very visual in nature, but we
will argue that they can be dealt with much more easily when represented as observable
state, actions, and reactions in MobX. This representation makes the React components (the
observers) a natural visual extension of the state. We will also develop our core intuitions
around state modelling with MobX.

Chapter 7, Special API for Special Cases, is a survey of APIs that are low level and capable
but hide in the shadows of the top-level APIs. such as observable(), action(),
computed(), and reaction(). We will explore these low-level APIs and then take a brief
tour of the debug utilities available for MobX developers. It is comforting to know that
MobX has your back from all angles, even in those rare, odd cases.

Chapter 8, Exploring mobx-utils and mobx-state-tree, gives you a taste of some useful
packages that can simplify the everyday use cases encountered in MobX-driven
development. As the name suggests, mobx-utils is a utility tool belt containing an
assortment of functions. On the other hand is the powerful mobx-state-tree, commonly
referred to as MST, that prescribes an approach for scalable MobX applications, baking in
patterns that you get for free, once you adopt the MST style of thinking. It is a
worthy upgrade to MobX and a must-have for serious users.

Chapter 9, MobX Internals, is where we culminate by peeling off the layers and peeking
into the inner workings of MobX. The core abstractions are surprisingly simple and well
defined, and they neatly separate the responsibilities. If the term transparent functional
reactive programming sounds like a black art, this is the chapter that will unravel the magic
and reveal how MobX embraces it. This chapter is also an initiation into the MobX code
base and a worthy read for anyone aspiring to be a core contributor to the MobX project.

To get the most out of this book
MobX is typically used in programming environments where long-living, in-memory state
plays an important role, most notably web, mobile, and desktop applications. The book
requires basic understanding of the JavaScript programming language, and will use
modern ES2015 syntax in its examples. Frontend examples are based on the ReactJS
framework, so some familiarity with it will be useful, but it's not necessary.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/MobX- Quick- Start- Guide. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/MobXQuickStartGuide_ ColorImages. pdf.

Code in Action
Visit the following link to check out videos of the code being run:
http://bit.ly/2NEww85

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/MobX-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MobXQuickStartGuide_ColorImages.pdf
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

connect(mapStateToProps, mapDispatchToProps, mergeProps,
options)(Component)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import { observable, autorun, action } from 'mobx';

let cart = observable({
 itemCount: 0,
 modified: new Date(),
});

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to State

Management
The heart of your React app lives in the client state (data) and is rendered via React
components. Managing this state can become tricky as you tackle user interactions (UI),
perform async operations, and handle domain logic. In this chapter, we will start with a
conceptual model of state management in UI, the role of side effects, and the flow of data.

Then, we will take a quick tour of MobX and introduce its core concepts. These concepts
will help in drawing some comparisons with Redux. You will see that MobX turns out to be
a more declarative form of Redux!

The topics covered in this chapter are as follows:

What is the client state?
The side effect model
A speed tour of MobX

Introduction to State Management Chapter 1

[8]

The client state
The UI that you can see and manipulate on screen is the result of painting a visual
representation of data. The shape of data hints at the kind of controls you provide for
visualizing and manipulating this data. For example, if you have a list of items, you will
likely show a List control that has an array of ListItems. Operations may include
searching, paginating, filtering, sorting, or grouping the items in the list. The state of these
operations is also captured as data and informs the visual representation.

The following diagram shows the direct relationship of an array with a List control:

In short, it is the data that takes on a pivotal role in describing the UI. Handling the
structure and managing the changes that can happen to this data is what we commonly
refer to as state management. State is just a synonym for the client-data that is rendered on
the UI.

State management is the act of defining the shape of data and the
operations that are used to manipulate it. In the context of the UI, it is
called client-side state management.

Introduction to State Management Chapter 1

[9]

As the complexity of the UI increases, more state is accumulated on the client. It gets to a
point where state becomes the ultimate source of truth for whatever we see on the screen.
This approach to UI development, where we elevate the importance of the client-state, has
been one of the biggest shifts in the frontend world. There is an interesting equation that
captures this relationship between UI and state:

fn is a transformation function that is applied on the state (the data) that produces a
corresponding UI. In fact, a subtle meaning that is hidden here is that, given the same state,
fn always produces the same UI.

In the context of React, the preceding equation can be written as follows:

The only difference here is that fn takes two inputs, props and state, which is the
prescribed contract of a React component.

Handling changes in state
However, the preceding equation is only giving half the story of a UI. It's true that the
visual representation is derived from the state (through the transformation function, fn),
but it does not account for the user operations that occur on the UI. It's like we have
completely ignored the user in the equation. After all, the interface is not just used to
visually represent data (state), but to also allow the manipulation of that data.

This is where we need to introduce the concept of actions that represent these user
operations, which results in a change in state. Actions are the commands that you invoke as
a result of various input-events that are fired. These actions cause a change in the state,
which is then reflected back on the UI.

Introduction to State Management Chapter 1

[10]

We can visualize the triad of State, UI, and Actions in the following figure:

It is worth noting that the UI does not change the state directly, but instead does it via a
message-passing system by firing actions. The action encapsulates the parameters that are
required to cause the appropriate change in state. The UI is responsible for capturing
various kinds of user events (clicks, keyboard presses, touches, voice, and so on) and
translating them into one or more actions that are then fired to change the state.

When the State changes, it notifies all of its observers (subscribers) of the change. The UI is
also one of the most important subscribers that is notified. When that happens, it re-renders
and updates to the new state. This system of data flow from the State into the UI is always
uni-directional and has become the cornerstone of state management in modern UI
development.

One of the biggest benefits of this approach is that it becomes easy to grasp how the UI is
kept in sync with changing data. It also cleanly separates the responsibilities between
rendering and data changes. The React framework has really embraced this uni-directional
data flow and you will see this adopted and extended in MobX as well.

The side effect model
Now that we understand the roles of UI, state, and actions, we can extend this to build a
mental model of how a UI needs to operate. Reflecting back on the triad of Action -
-> State --> UI, we can make some interesting observations that are not clearly answered.
Let's think about how we would handle operations such as the following:

Downloading data from a server
Persisting data back on the server

Introduction to State Management Chapter 1

[11]

Running a timer and doing something periodically
Executing some validation logic when some state changes

These are things that don't fit nicely in our data flow triad. Clearly, we are missing
something here, right? You might argue that you could put these operations inside the UI
itself and fire actions at certain times. However, that would tack on additional
responsibilities to the UI, complicating its operation and also making it difficult to test.
From a more academic perspective, it would also violate the Single Responsibility
Principle (SRP). SRP states that a class or a module should have only one reason to change.
If we start handling additional operations in the UI, it would have more than one reason to
change.

So, it seems like we have some opposing forces in action here. We want to retain the purity
of the data flow triad, handle ancillary operations such as the ones mentioned in the
preceding list, and not add extra responsibilities to the UI. To balance all of these forces, we
need to think about the ancillary operations as something external to the data flow triad. We
call these side effects.

Side effects are a result of some state-change and are invoked by responding to the
notifications coming from the state. Just like the UI, there is a handler, which we can call the
side effect handler, that observes (subscribes to) the state change notifications. When a
matching state change happens, the corresponding side effect is invoked:

Introduction to State Management Chapter 1

[12]

There can be many side effect handlers in the system, and each of them is an observer of the
state. When a part of the state they are observing changes, they will invoke the
corresponding side effects. Now, these side effects can also cause a change in state by firing
additional actions.

As an example, you could fire an action from the UI to download some data. This results in
a state change to some flag, which results in notifications being fired to all the observers. A
side effect handler that is observing the flag will see the change and trigger a network call
to download data. When the download completes, it will fire an action to update the state
with the new data.

The fact that side effects can also fire actions to update the state is an important detail that
helps in completing the loop around managing state. So, it's not just the UI that can cause
state changes, but also external operations (via side effects) that can affect a state change.
This is the mental model of side effects, which can be used to develop your UI and manage
the state that it renders. The model is quite powerful and scales very well over time. Later
in this chapter and also throughout this book, you will see how MobX makes this side effect
model a reality and fun to use.

With these concepts in mind, we are now ready to enter the world of MobX.

A speed tour of MobX
MobX is a reactive state management library that makes it easy to adopt the side effect
model. Many of the concepts in MobX directly mirror the terminology we encountered
earlier. Let's take a quick tour of these building blocks.

An observable state
The state is at the epicenter of all things happening in the UI. MobX provides a core
building block, called the observable, that represents the reactive state of your application.
Any JavaScript object can be used to create an observable. We can use the aptly named
observable() API as follows:

import {observable} from 'mobx';

let cart = observable({
 itemCount: 0,
 modified: new Date()
});

Introduction to State Management Chapter 1

[13]

In the preceding example, we have created a simple cart object that is also an
observable. The observable() API comes from the mobx NPM package. With this
simple declaration of an observable, we now have a reactive cart that keeps track of
changes happening on any of its properties: itemCount and modified.

Observing the state changes
Observables alone cannot make an interesting system. We also need their counterparts, the
observers. MobX gives you three different kinds of observers, each tailor-made for the use
cases you will encounter in your application. The core observers are autorun, reaction,
and when. We will look at each of them in more detail in the next chapter, but let's
introduce autorun for now.

The autorun API takes a function as its input and executes it immediately. It also keeps
track of the observables that are used inside the passed-in function. When these tracked
observables change, the function is re-executed. What is really beautiful and elegant about
this simple setup is that there is no extra work required to track observables and subscribe
to any changes. It all just happens automatically. It's not magic, per se, but definitely an
intelligent system at work, which we will cover in a later section:

import {observable, autorun} from 'mobx';

let cart = observable({
 itemCount: 0,
 modified: new Date()
});

autorun(() => {
 console.log(`The Cart contains ${cart.itemCount} item(s).`);
});

cart.itemCount++;

// Console output:
The Cart contains 0 item(s).
The Cart contains 1 item(s).

Introduction to State Management Chapter 1

[14]

In the preceding example, the arrow-function that was passed into autorun is executed
for the first time and also when itemCount is incremented. This results in two console logs
being printed. autorun makes the passed-in function (the tracking-function) an observer of
the observables it references. In our case, cart.itemCount was being observed and when it
was incremented, the tracking function was automatically notified, resulting in the console
logs getting printed.

It's time to take action
Although we are mutating cart.itemCount directly, it is definitely not the recommended
approach. Remember that the state should not be changed directly and instead should be
done via actions. The use of an action also adds vocabulary to the operations that can be
performed on the observable state.

In our case, we can call the state mutation that we were doing as
an incrementCount action. Let's use the MobX action API to encapsulate the mutation:

import { observable, autorun, action } from 'mobx';

let cart = observable({
 itemCount: 0,
 modified: new Date(),
});

autorun(() => {
 console.log(`The Cart contains ${cart.itemCount} item(s).`);
});

const incrementCount = action(() => {
 cart.itemCount++;
});

incrementCount();

The action API takes a function that will be called whenever the action is invoked. It may
seem superfluous that we are passing a function into action, when we could just wrap the
mutation inside a plain function and call the plain function instead. An astute thought, for
sure. Well, there is a good reason for that. Internally, action is doing much more than
being a simple wrapper. It ensures that all notifications for state changes are fired, but only
after the completion of the action function.

Introduction to State Management Chapter 1

[15]

When you are modifying a lot of observables inside your action, you don't want to be
notified about every little change immediately. Instead, you want to be able to wait for all
changes to complete and then fire the notifications. This makes the system more performant
and also reduces the noise of too many notifications, too soon.

Going back to our example, we can see that wrapping it in an action also improves the
readability of the code. By giving a specific name to the action (incrementCount) we have
added vocabulary to our domain. In doing so, we can abstract the details of what is needed
to actually increment the count.

Observables, observers, and actions are at the core of MobX. With these fundamental
concepts, we can build some of the most powerful and complex React applications.

In the MobX literature, side effects are also called reactions. Unlike actions
that cause state changes, reactions are the ones responding to state changes.

Note the striking similarity with the uni-directional data flow that we saw earlier.
Observables capture the state of your application. Observers (also called reactions) include
both the side effect handlers as well as the UI. The actions are, well, actions that cause a
change in the observable state:

Introduction to State Management Chapter 1

[16]

A comparison with Redux
If we were to talk about state management in React and we didn't mention Redux, it would
be a complete remiss. Redux is an extremely popular state management library and its
popularity stems from the fact that it simplified the original Flux architecture that was
proposed by Facebook. It got rid of certain actors in Flux, such as dispatchers, which resulted
in combining all the stores into one, commonly referred to as the single state tree.

In this section, we will do a head-on comparison with another state
management library called Redux. If you have not used Redux before, you
can certainly skip this section and move on to this chapter's summary.

MobX has some conceptual similarities with Redux as far as the data flow is concerned, but
that is also where the similarities end. The mechanism adopted by MobX is drastically
different than the one taken by Redux. Let's have a brief overview of Redux before we get
into a slightly deeper-level comparison.

Redux in a nutshell
The data flow triad that we saw earlier is also applicable to Redux in its entirety. It's in the
state update mechanism that Redux adds its own twist. This can be seen in the following
figure:

Introduction to State Management Chapter 1

[17]

When the UI fires the action, it is dispatched on the store. Inside the store, the action first
passes through one or more middleware, where it can get acted upon and swallowed
without further propagation. If the action passes through the middleware, it is sent to one
or more reducers, where it can be processed to produce a new state of the store.

This new state of the store is notified to all of the subscribers, with the UI being one of
them. If the state is different from the previous value that the UI has, the UI is re-rendered
and brought in sync with the new state.

There are few things here that are worth highlighting:

From the point where the action enters the store, until the new state is computed,
the entire process is synchronous.
Reducers are pure functions that take in the action and the previous state and
produce the new state. Since they are pure functions, you cannot put side effects,
such as a network call, inside a reducer.
Middleware is the only place where side effects can be performed, eventually
resulting in an action being dispatched on the store.

If you are using Redux with React, which is the most likely combination, there is a utility
library called react-redux, which can glue the store with React components. It does this
through a function called connect(), which binds the store with the passed in React
component. Inside connect(), the React component subscribes to the store for state-
change notifications. Binding to the store via connect() means that every state change is
notified to every component. This requires adding additional abstractions, such as a state-
selector (using mapStateToProps) or implementing shouldComponentUpdate() to
receive only the relevant state updates:

connect(mapStateToProps, mapDispatchToProps, mergeProps,
options)(Component)

We are deliberately skipping over a few other details that are required for a complete
React-Redux setup, but the essentials are in place for a deeper comparison of Redux with
MobX.

MobX versus Redux
In principle, MobX and Redux accomplish the same goal of providing a uni-directional data
flow. The store is the central actor that manages all state changes and notifies the UI and
other observers of the change in state. The mechanism to achieve that is quite different
between MobX and Redux.

Introduction to State Management Chapter 1

[18]

Redux relies on immutable state snapshots and reference-comparisons between two state
snapshots to check for changes. In contrast, MobX thrives on mutable state and uses a
granular notification system to track state changes. This fundamental difference in
approach has implications on the Developer eXperience (DX) of using each framework.
We will use the DX of building a single feature to perform a MobX versus Redux
comparison.

Let's start with Redux first. Here is the list of things you have to do when working with
Redux:

Define the shape of the state tree that will be encapsulated in the store. This is
normally called initialState.
Identify all actions that can be performed to change this state tree. Each action is
defined in the form { type: string, payload: any }. The type property is
used to identify the action and payload is additional data that is carried along
with the action. The action types are usually created as string constants and
exported from a module.
Defining raw actions every time you need to dispatch them becomes very
verbose. Instead, the convention is to have an action-creator function that
wraps the details of the action type and takes in the payload as an argument.

Introduction to State Management Chapter 1

[19]

Use the connect method to wire the React component with the store. Since every
state change is notified to every component, you have to be careful to not re-
render your component unnecessarily. The render should only happen when the
part of the state that the component actually renders has changed (via
mapStateToProps). Since every state change is notified to all connected
components, it might be expensive to compute mapStateToProps every single
time. To minimize these computations, it is recommended to use state selector
libraries such as reselect. This increases the effort required to properly set up a
performant React component. If you don't use these libraries, you have to take
the onus of writing an efficient shouldComponentUpdate hook for the React
component.
Inside every reducer, you have to make sure that you are always returning a new
instance of the state anytime there is a change. Note that the reducers are usually
kept separate from the initialState definition and that requires going back
and forth to ensure the proper state is changed in each of the reducer actions.
Any side effect you want to perform has to be wrapped in middleware. For more
complex side effects which involve async operations, it is better to rely on
dedicated middleware libraries, such as redux-thunk, redux-saga, or redux-
observables. Note that this also complicates how side effects are constructed
and executed. Each of the previously mentioned middleware have their own
conventions and terminology. Additionally, the place where an action is
dispatched is not co-located with the place where the actual side effect is
handled. This results in more jumping around files to construct the mental model
of how a feature is put together.
As the complexity of the feature increases, there is more fragmentation between
actions, action-creators, middlewares, reducers, and initialState.
Not having things co-located also increases the effort needed to develop a crisp
mental model of a how a feature is put together.

Introduction to State Management Chapter 1

[20]

In the MobX world, the developer experience is quite different. You will see more of this as
we explore MobX throughout this book, but here is the top-level scoop:

Define the observable state for the feature in a store class. The various properties
that can be changed and should be observed are marked with the observable
API.
Define actions that will be needed to mutate the observable state.
Define all of the side effects (autorun, reaction and when) within the same
feature class. The co-location of actions, reactions, and the observable state keeps
the mental model crisp. MobX also supports async state updates out of the box,
so no additional middleware libraries are needed to manage it.
Use the mobx-react package that includes the observer API, which allows the
React components to connect to the observable store. You can sprinkle observer
components throughout your React component tree, which is in fact the
recommended approach to fine-tune component updates.
The advantage of using the observer is that there is no extra work needed to make
the component efficient. Internally, the observer API ensures that the component
is only updated when the rendered observable state changes.

MobX shifts your mindset to think of the observable state and the corresponding React
components. You don't have to focus much on the wiring needed to achieve this. It is
abstracted away behind simple and elegant APIs, such as observable, action, autorun,
and observer.

Introduction to State Management Chapter 1

[21]

We can go as far as saying that MobX enables a more declarative form of Redux. There are no
action creators, reducers, or middleware to handle actions and produce the new state. The
actions, side effects (reactions), and observable state are co-located inside the class or
module. There are no complex connect() methods to glue a React component to the store.
A simple observer() does the job with no extra wiring.

MobX is declarative Redux. It takes the workflow associated with Redux
and simplifies it considerably. Some explicit setup is no longer needed,
such as the use of connect() in Container components, reselect for
memoized state selection, actions, reducers and of course the middleware.

Summary
The UI is the visual equivalent of data (the state) along with interactive controls to change
that state. The UI fires actions, which leads to the change in state. Side effects are external
operations that are triggered due to some state change. There are observers in the system
that look out for certain state changes and perform the corresponding side effects.

The data flow triad of Action --> State --> UI, coupled with side effects, creates a simple
mental model of the UI. MobX strongly adheres to this mental model and you can see that
reflected in its API, with observables, actions, reactions, and observers. The simplicity of this
API makes it easy to tackle some of the complex interactions in UI.

If you have used Redux before, you can see that MobX reduces the ceremony needed to
cause a state change and handle side effects. MobX strives to provide a declarative and
reactive API for state management without compromising on simplicity. Throughout this
book, this philosophy of MobX will be explored, with a deeper look at its API and real-
world use cases.

In the next chapter, we will dive into the world of MobX with a first hand look at its core
building blocks.

2
Observables, Actions, and

Reactions
Describing the structure of the client state is the first step in UI development. With MobX,
you do this by creating your tree of observables. As the user interacts with the app, actions
are invoked on your observable state, which in turn can cause reactions (aka side-effects).
Continuing from Chapter 1, Introduction to State Management, we will now take a deeper
look at the core concepts of MobX.

The topics covered in this chapter include:

Creating the various kinds of observables
Setting up the actions that mutate the observables
Using reactions to handle external changes

Technical requirements
You will be required to have JavaScript programming language. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ MobX- Quick- Start- Guide/ tree/ master/ src/
Chapter02

Check out the following video to see the code in action:
http://bit.ly/2NEww85

https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter02
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85
http://bit.ly/2NEww85

Observables, Actions, and Reactions Chapter 2

[23]

Observables
Data is the lifeblood of your UI. Going back to the equation that defines the relationship
between data and UI, we know that the following is true:

So, it makes sense to focus on defining the structure of data that will drive the UI. In MobX,
we do this with the observables. Take a look at this diagram:

Observables, as the name suggests, are entities that can be observed. They keep track of
changes happening to their values and notify all the observers. This seemingly simple
behavior has powerful implications when you start designing the structure of your client-
state. In the preceding diagram, every circle represents an Observable, and every diamond
is an Observer. An observer can observe one or more observables and get notified when
any of them change value.

Observables, Actions, and Reactions Chapter 2

[24]

Creating observables
The simplest way to create an observable is to use the observable() function. Take a look
at the following:

const item = observable({
 name: 'Party Balloons',
 itemId: '1234',
 quantity: 2,
 price: 10,
 coupon: {
 code: 'BIGPARTY',
 discountPercent: 50
 }
});

item is now an observable object and will start tracking changes to its properties. You
can use this object as a regular JavaScript object without any special API to get or set its
values. In the preceding snippet, you can also create an observable item using
observable.object().

In the following snippet, we can see simple mutations made to the observables, like any
regular JavaScript code:

// Set values
item.quantity += 3;
item.name = 'Small Balloons';

// Get values
console.log(`Buying ${item.quantity} of ${item.name}`);

Observable objects only track the properties provided in the initial value given
to observable() or observable.object(). This means if you add new properties later,
they will not become observable automatically. This is an important characteristic to
remember about observable objects. They are like records or classes with a fixed set of
attributes. If you do need dynamic tracking of properties, you should consider using
observable maps; these will be covered further ahead in the chapter.

Internally, MobX takes care of transparently tracking the property
changes and notifying the corresponding observers. We will look into this
internal behavior in a later chapter.

Observables, Actions, and Reactions Chapter 2

[25]

The observable() function automatically converts an object, an array, or a map into an
observable entity. This automatic conversion is not applied for other types of data—such as
JavaScript primitives (number, string, boolean, null, undefined), functions, or for class-
instances (objects with prototypes). So, if you call observable(20), it will fail with an
error, as shown here:

Error: [mobx] The provided value could not be converted into an observable.
If you want just create an observable reference to the object use
'observable.box(value)'

As suggested in the error, we have to use the more specialized observable.box() to
convert primitive values into an observable. Observables that wrap primitives, functions, or
class-instances are called boxed observables. Take a look at this:

const count = observable.box(20);

// Get the count
console.log(`Count is ${count.get()}`);

// Change count
count.set(22);

We have to use the get() and set() methods of a boxed observable instead of directly
reading or assigning to it. These methods give us the observability that is inherent to MobX.

Besides objects and singular values, you can also create observables out of arrays and maps.
They have a corresponding API, as can be seen in this table:

objects observable.object({ })

arrays observable.array([])

maps observable.map(value)

primitives, functions, class-instances observable.box(value)

As we mentioned earlier, observable() will automatically convert an object, array, or
a map into an observable. It is shorthand for observable.object(),
observable.array(), or observable.map(), respectively. For primitives, functions, and
class-instances, you should use the observable.box() API. Although, in practice, the use
of observable.box() is fairly rare. It is more common to use
observable.object(), observable.array(), or observable.map().

Observables, Actions, and Reactions Chapter 2

[26]

MobX applies deep observability when creating an observable. This means
MobX will automatically observe every property, at every level, in the
object-tree, array, or map. It also tracks additions or removals in the cases
of arrays and maps. This behavior works well for most scenarios but
could be excessive in some cases. There are special decorators that you can
apply to control this observability. We will look into this in Chapter
4, Crafting the Observable Tree.

Observable arrays
Using observable.array() is very similar to using an observable(). You pass an array
as initial value or start with an empty array. In the following code example, we are starting
with an empty array:

const items = observable.array(); // Start with empty array

console.log(items.length); // Prints: 0

items.push({
 name: 'hats', quantity: 40,
});

// Add one in the front
items.unshift({ name: 'Ribbons', quantity: 2 });

// Add at the back
items.push({ name: 'balloons', quantity: 1 });

console.log(items.length); // Prints: 3

Do note that the observable array is not a real JavaScript array, even though it has the same
API as a JS Array. When you are passing this array to other libraries or APIs, you can
convert it into a JS Array by calling toJS(), as shown here:

import { observable, toJS } from 'mobx';

const items = observable.array();

/* Add/remove items*/

const plainArray = toJS(items);
console.log(plainArray);

Observables, Actions, and Reactions Chapter 2

[27]

MobX will apply deep observability to observable arrays, which means it
will track additions and removals of items from the array and also track
property changes happening to each item in the array.

Observable maps
You can make an observable map with the observable.map() API. In principle, it works
the same way as observable.array() and observable.object(), but it is meant for
ES6 Maps. The observable map instance shares the same API as a regular ES6 Map.
Observable maps are great for tracking dynamic changes to the keys and values. This is in
stark contrast to observable objects, which do not track properties that are added after
creation.

In the following code example, we are creating a dynamic dictionary of Twitter-handles to
names. This is a great fit for an observable map, as we are adding keys after creation. Take a
look at this code block:

import { observable } from 'mobx';

// Create an Observable Map
const twitterUserMap = observable.map();

console.log(twitterUserMap.size); // Prints: 0

// Add keys
twitterUserMap.set('pavanpodila', 'Pavan Podila');
twitterUserMap.set('mweststrate', 'Michel Weststrate');

console.log(twitterUserMap.get('pavanpodila')); // Prints: Pavan Podila
console.log(twitterUserMap.has('mweststrate')); // Prints: Michel
Weststrate

twitterUserMap.forEach((value, key) => console.log(`${key}: ${value}`));

// Prints:
// pavanpodila: Pavan Podila
// mweststrate: Michel Weststrate

Observables, Actions, and Reactions Chapter 2

[28]

A note on observability
When you use the observable() API, MobX will apply deep observability to the observable
instance. This means it will track changes happening to the observable object, array, or map
and do it for every property, at every level. In the cases of arrays and maps, it will also
track the additions and removals of entries. Any new entry in an array or a map is also
made into a deep observable. This is definitely a great sensible default and works well for
most situations. However, there will be cases where you may not want this default.

You can change this behavior at the time of creating the observable. Instead of
using observable(), you can use the sibling APIs (observable.object(),
observable.array(), observable.map()) to create the observable. Each of these takes
an extra argument for setting options on the observable instance. Take a look at this:

observable.object(value, decorators, { deep: false });
observable.map(values, { deep: false });
observable.array(values, { deep: false });

By passing in { deep: false } as an option, you can effectively prune the observability
just to the first level. This means the following:

For observable objects, MobX only observes the initial set of properties. If the value of
property is an object, an array, or a map, it won't do any further observation.

Note that the { deep: false } option is the third argument for
observable.object(). The second argument, called decorators, gives
you more fine-grained control over the observability. We will be covering
this in a later chapter. For now, you can just pass an empty object as the
second argument.

For observable arrays, MobX only observes the addition and removal of items in the array.
If an item is an object, an array, or a map, it won't do any further observation.

For observable maps, MobX only observes the addition and removal of items in the map. If
the value of a key is an object, an array, or a map, it won't do any further observation.

Now, it is worth mentioning that observable() internally calls one of the preceding APIs
and sets the option to { deep: true }. This is the reason observable() has deep
observability.

Observables, Actions, and Reactions Chapter 2

[29]

The computed observable
The observables we have seen so far have a direct correspondence with the shape of the
client-state. If you are representing a list of items, you would use an observable array in
your client-state. Similarly, each item in a list can be an observable object or an
observable map. The story does not stop there. MobX gives you yet another kind of
observable, called a computed property or a computed observable.

A computed property is not an observable that is inherent to the client state. Instead, it is an
observable that derives its value from other observables. Now, why would that be useful? you
may ask. Let's take an example to see the benefits.

Consider the cart observable, which tracks a list of items. Take a look at this:

import { observable } from 'mobx';

const cart = observable.object({
 items: [],
 modified: new Date(),
});

Let's say you want to have a description property that describes the cart in this format:
There {is, are} {no, one, n} item{s} in the cart.

For zero items, the description says this: There are no items in the cart.

When there is only one item, the description becomes this: There is one item in the cart.

For two or more items (n), the description should be: There are n items in the cart.

Let's ponder how we can go about modeling this property. Consider the following:

Clearly, the description is not an inherent property of the cart. Its value
depends on items.length.
We can add an observable property called description, but then we have to
update it anytime items or items.length changes. That is extra work and easy
to forget. Also, we run the risk of someone modifying the description from the
outside.
Description should just be a getter with no setter. If someone is observing
description, they should be notified anytime it changes.

Observables, Actions, and Reactions Chapter 2

[30]

As you can tell from the preceding analysis, we can't seem to fit this behavior into any of
the previously-discussed observable types. What we need here is the computed property.
We can define a computed description property by simply adding a get-property to the
cart observable. It will derive its value from items.length. Take a look at this code
block:

const cart = observable.object({
 items: [],
 modified: new Date(),

 get description() {
 switch (this.items.length) {
 case 0:
 return 'There are no items in the cart';
 case 1:
 return 'There is one item in the cart';
 default:
 return `There are ${this.items.length} items in the
 cart`;
 }
 },
});

Now, you can simply read cart.description and always get the latest description.
Anyone observing this property would be automatically notified when
cart.description changes, which will happen if you add or remove items from the
cart.The following is an example of how this computed property can be used:

cart.items.push({ name: 'Shoes', quantity: 1 });
console.log(cart.description);

Note that it also satisfies all of the criteria from the previous
brainstorming on the description property. I'll let you, the
reader, confirm this is the case.

Observables, Actions, and Reactions Chapter 2

[31]

Computed properties, also known as derivations, are one of the most powerful tools in the
MobX toolbox. By thinking of your client-state in terms of a minimal set of observables and
augmenting it with derivations (computed properties), you can model a variety of scenarios
effortlessly. Computed properties derive their value from other observables. If any of these
depending observables change, the computed property changes as well.

You can build a computed property out of other computed properties too.
MobX internally builds a dependency tree to keep track of the
observables. It also caches the value of the computed property to avoid
unnecessary computation. This is an important characteristic that greatly
improves the performance of the MobX reactivity system. Unlike
JavaScript get properties, which are always eagerly evaluated, computed
properties memoize (aka cache) the value and only evaluate when the
dependent observables change.

As you develop experience using MobX, you will realize that computed properties are
possibly your best observable-friends.

Better syntax with decorators
All of our examples so far have used the ES5 API of MobX. However, there is a special form
of the API, which gives us a very convenient way of expressing the observables. This is
made possible with the @decorator syntax.

The decorator syntax is still a pending proposal (as of this writing) for
inclusion in the JavaScript language standard. But that doesn't stop us
from using it, as we have Babel to help us out. By using the Babel plugin,
transform-decorators-legacy, we can transpile the decorator syntax
into regular ES5 code. If you are using TypeScript, you can also enable
decorator support by setting your { experimentalDecorators: true}
compiler option in your tsconfig.json.

Observables, Actions, and Reactions Chapter 2

[32]

The decorator syntax is only available for classes and can be used for class declarations,
properties and methods. Here is an equivalent Cart observable, expressed with decorators:

class Cart {
 @observable.shallow items = [];
 @observable modified = new Date();

 @computed get description() {
 switch (this.items.length) {
 case 0:
 return 'There are no items in the cart';
 case 1:
 return 'There is one item in the cart';
 default:
 return `There are ${this.items.length} items in the
 cart`;
 }
 }
}

Notice the use of decorators to decorate the observable properties. The default @observable
decorator does deep observation on all the properties of the value. It is actually a shorthand
for using @observable.deep.

Similarly, we have the @observable.shallow decorator, which is a rough equivalent of
setting the { deep: false } option on the observable. It works for objects, arrays, and
maps. We will cover the more technically correct ES5 equivalent of observable.shallow
in Chapter 4 , Crafting the Observable Tree.

The snippet below shows the items and metadata properties, marked as shallow
observables:

class Cart {
 // Using decorators
 @observable.shallow items = [];
 @observable.shallow metadata = {};
}

We will be covering a few more decorators in a later chapter, but we did not want to wait
until then to discuss the decorator syntax. We definitely think you should pick decorators
as your first choice for declaring observables. Note that they are only available inside
classes. However, the vast majority of the time, you will be using classes to model your
observable tree, so decorators greatly help in making it more readable.

Observables, Actions, and Reactions Chapter 2

[33]

Actions
Although you can change an observable directly, it is highly recommended that you use
actions to do it. If you remember, in the previous chapter, we saw that actions are the ones
that cause a state-change. The UI simply fires the actions and expects some observables to
be mutated. Actions hide the details of how the mutation should happen or what
observables should be affected.

The diagram below is a reminder that UI can modify the State only via an Action:

Actions introduce vocabulary into the UI and give declarative names to the operations that
mutate the state. MobX embraces this idea completely and makes actions a first-class
concept. To create an action, we simply wrap the mutating function inside the action()
API. This gives us back a function that can be invoked just like the original passed-in
function. Take a look at this code block:

import { observable, action } from 'mobx';

const cart = observable({
 items: [],
 modified: new Date(),
});

// Create the actions
const addItem = action((name, quantity) => {
 const item = cart.items.find(x => x.name === name);
 if (item) {
 item.quantity += 1;
 } else {

Observables, Actions, and Reactions Chapter 2

[34]

 cart.items.push({ name, quantity });
 }

 cart.modified = new Date();
});

const removeItem = action(name => {
 const item = cart.items.find(x => x.name === name);
 if (item) {
 item.quantity -= 1;

 if (item.quantity <= 0) {
 cart.items.remove(item);
 }

 cart.modified = new Date();
 }
});

// Invoke actions
addItem('balloons', 2);
addItem('paint', 2);
removeItem('paint');

In the preceding snippet, we have introduced two actions: addItem() and removeItem(),
which add and remove an item to and from the cart observable. Since action() returns a
function that forwards arguments to the passed-in function, we can invoke addItem() and
removeItem() with the required arguments.

Besides improving the readability of the code, actions also boost performance of MobX. By
default, when you modify an observable, MobX will immediately fire a notification for the
change. If you are modifying a bunch of observables together, you would rather fire the
change notifications after all of them are modified. This would reduce the noise of too
many notifications and also treat the set of changes as one atomic transaction. These are, in
essence, the core responsibilities of an action().

Enforcing the use of actions
It should come as no surprise that MobX strongly recommends using actions for modifying
observables. In fact, this can be made mandatory by configuring MobX to always enforce
this policy, also called the strict mode. The configure() function can be used to set
the enforceActions option to true. MobX will now throw an error if you try to modify an
observable outside of an action.

Observables, Actions, and Reactions Chapter 2

[35]

Going back to our previous example with cart, if we try to modify it outside an action,
MobX will fail with an error, as you can see from the following example:

import { observable, configure } from 'mobx';

configure({
 enforceActions: true,
});

// Modifying outside of an action
cart.items.push({ name: 'test', quantity: 1 });
cart.modified = new Date();

Error: [mobx] Since strict-mode is enabled, changing observed observable
values outside actions is not allowed. Please wrap the code in an `action`
if this change is intended. Tried to modify: ObservableObject@1.items

There is one little thing to remember regarding the use of configure({
enforceActions: true }): It will only throw errors if there are
observers watching the observables that you are trying to mutate. If there
are no observers for those observables, MobX will safely ignore it. This is
because there is no risk of triggering reactions too early. However, if you
do want to be strict about this, you can also set { enforceActions:
'strict' }. This will throw an error even if there are no observers
attached to the mutating observables.

Decorating actions
The use of decorators is pervasive in MobX. Actions also get special treatment with the
@action decorator to mark class methods as actions. With decorators, the Cart class can be
written as shown here:

class Cart {
 @observable modified = new Date();
 @observable.shallow items = [];

 @action
 addItem(name, quantity) {
 this.items.push({ name, quantity });
 this.modified = new Date();
 }

 @action.bound
 removeItem(name) {

Observables, Actions, and Reactions Chapter 2

[36]

 const item = this.items.find(x => x.name === name);
 if (item) {
 item.quantity -= 1;

 if (item.quantity <= 0) {
 this.items.remove(item);
 }
 }
 }
}

In the preceding snippet, we used @action.bound for the removeItem() action. This is a
special form that pre-binds the instance of the class to the method. This means you can pass
around the reference to removeItem() and be assured that the this value always points
to the instance of the Cart.

A different way of declaring the removeItem action with a pre-bound this is with the use
of class properties and arrow-functions. This can be seen in the following code:

class Cart {
 /* ... */
 @action removeItem = (name) => {
 const item = this.items.find(x => x.name === name);
 if (item) {
 item.quantity -= 1;

 if (item.quantity <= 0) {
 this.items.remove(item);
 }
 }
 }
}

Here, removeItem is a class-property whose value is an arrow-function. Because of the arrow-
function, it binds to the lexical this, which is the instance of the Cart.

Observables, Actions, and Reactions Chapter 2

[37]

Reactions
Reactions can really change the world for your app. They are the side-effect causing
behaviors that react to the changes in observables. Reactions complete the core triad of
MobX and act as the observers of the observables. Take a look at this diagram:

MobX gives you three different ways to express your reactions or side-effects. These are
autorun(), reaction(), and when(). Let's see each of these in turn.

autorun()
autorun() is a long-running side-effect that takes in a function (effect-function) as its
argument. The effect-function function is where you apply all your side-effects. Now,
these side-effects may depend on one or more observables. MobX will automatically keep
track of any change happening to these dependent observables and re-execute this function
to apply the side-effect. It's easier to see this in code, as shown here:

import { observable, action, autorun } from 'mobx';

class Cart {
 @observable modified = new Date();
 @observable.shallow items = [];

 constructor() {
 autorun(() => {
 console.log(`Items in Cart: ${this.items.length}`);

Observables, Actions, and Reactions Chapter 2

[38]

 });
 }

 @action
 addItem(name, quantity) {
 this.items.push({ name, quantity });
 this.modified = new Date();
 }
}

const cart = new Cart();
cart.addItem('Power Cable', 1);
cart.addItem('Shoes', 1);

// Prints:
// Items in Cart: 0
// Items in Cart: 1
// Items in Cart: 2

In the preceding example we are logging an observable (this.items.length) to the
console. The logging happens immediately and also any time the observable changes. This is
the defining characteristic of autorun(); it runs immediately and also on every change to
the dependent observables.

We mentioned earlier that autorun() is a long-running side-effect and continues as long
as you don't explicitly stop it. But then, how do you actually stop it? Well, the return-value
of autorun() is a function that is in fact a disposer-function. By calling it, you
can cancel the autorun() side-effect. Take a look at this:

import { observable, action, autorun } from 'mobx';

class Cart {
 /* ... */

 cancelAutorun = null;

 constructor() {
 this.cancelAutorun = autorun(() => {
 console.log(`Items in Cart: ${this.items.length}`);
 });
 }
 /* ... */
}

const cart = new Cart();
// 1. Cancel the autorun side-effect
cart.cancelAutorun();

Observables, Actions, and Reactions Chapter 2

[39]

// 2. The following will not cause any logging to happen
cart.addItem('Power Cable', 1);
cart.addItem('Shoes', 1);

// Prints:
// Items in Cart: 0

In the preceding snippet, we are storing the return-value of autorun() (a disposer-
function) in a class property: cancelAutorun. By invoking it just after instantiating
Cart, we have canceled the side-effect. Now autorun() only prints once, and never again.

Quick Reader Question: Why does it print only once? Since we are
cancelling immediately, shouldn't autorun() skip printing
altogether? The answer to this is to refresh the core characteristic of
autorun.

reaction()
reaction() is yet another kind of reaction in MobX. Yes, the choice of the API name was
intentional. reaction() is similar to autorun() but waits for a change in the observables
before executing the effect-function. reaction() in fact takes two arguments, which
are as follows:

reaction(tracker-function, effect-function): disposer-function

tracker-function: () => data, effect-function: (data) => {}

tracker-function is where all the observables are tracked. Any time the tracked
observables change, it will re-execute. It is supposed to return a value that is used to
compare it to the previous run of tracker-function. If these return-values differ, the
effect-function is executed.

By breaking up the activity of a reaction into a change-detecting function (tracker
function) and the effect function, reaction() gives us more fine-grained control over
when a side-effect should be caused. It is no longer just dependent on the observables it is
tracking inside the tracker function. Instead, it now depends on the data returned by the
tracker function. The effect function receives this data in its input. Any observables used
in the effect function are not tracked.

Observables, Actions, and Reactions Chapter 2

[40]

Just like autorun(), you also get a disposer function as the return-value of reaction().
This can be used to cancel the side-effect anytime you want.

We can put this into practice with an example. Let's say you want to be notified anytime an
item in your Cart changes its price. After all, you don't want to purchase something that
suddenly shoots up in price. At the same time, you don't want to miss out on a great deal as
well. So, getting a notification when the price changes is a useful thing to have. We can
implement this by using reaction(), as shown here:

import { observable, action, reaction } from 'mobx';

class Cart {
 @observable modified = new Date();
 @observable items = [];

 cancelPriceTracker = null;

 trackPriceChangeForItem(name) {
 if (this.cancelPriceTracker) {
 this.cancelPriceTracker();
 }

 // 1. Reaction to track price changes
 this.cancelPriceTracker = reaction(
 () => {
 const item = this.items.find(x => x.name === name);
 return item ? item.price : null;
 },
 price => {
 console.log(`Price changed for ${name}: ${price !==
 null ? price : 0}`);
 },
);
 }

 @action
 addItem(name, price) {
 this.items.push({ name, price });
 this.modified = new Date();
 }

 @action
 changePrice(name, price) {
 const item = this.items.find(x => x.name === name);
 if (item) {
 item.price = price;
 }

Observables, Actions, and Reactions Chapter 2

[41]

 }
}

const cart = new Cart();

cart.addItem('Shoes', 20);

// 2. Now track price for "Shoes"
cart.trackPriceChangeForItem('Shoes');

// 3. Change the price
cart.changePrice('Shoes', 100);
cart.changePrice('Shoes', 50);

// Prints:
// Price changed for Shoes: 100
// Price changed for Shoes: 50

In the preceding snippet, we are setting up a price tracker in comment 1, as a reaction to track
price changes. Notice that it takes two functions as inputs. The first function (tracker-
function) finds the item with the given name and returns its price as the output of the
tracker function. Any time it changes, the corresponding effect function is executed.

The console logs also print only when the price changes. This is exactly the behavior we
wanted and achieved through a reaction(). Now that you are notified of the price
changes, you can make better buying decisions.

A reactive UI
On the topic of reactions, it is worth mentioning that the UI is one of the most glorious
reactions (or side-effect) you can have in an app. As we saw in the earlier chapter, UI
depends on data and applies a transformation function to generate the visual
representation. In the MobX world, this UI is also reactive, in the sense that it reacts to the
changes in data and automatically re-renders itself.

Observables, Actions, and Reactions Chapter 2

[42]

MobX provides a companion library called mobx-react that has bindings to React. By using
a decorator function (observer()) from mobx-react, you can transform a react
component to observe the observables used in the render() function. When they change, a
re-render of the react component is triggered. Internally, observer() creates a wrapper
component that uses a plain reaction() to watch the observables and re-render as a side-
effect. This is why we treat UI as being just another side-effect, albeit a very visible and
obvious one.

A short example of using observer() is shown next. We are using a stateless functional
component, which we are passing to the observer. Since we are reading the item
observable, the component will now react to changes in item. After two seconds, when we
update item, the ItemComponent will automatically re-render. Take a look at this:

import { observer } from 'mobx-react';
import { observable } from 'mobx';
import ReactDOM from 'react-dom';
import React from 'react';

const item = observable.box(30);

// 1. Create the component with observer
const ItemComponent = observer(() => {
 // 2. Read an observable: item
 return <h1>Current Item Value = {item.get()}</h1>;
});

ReactDOM.render(<ItemComponent />, document.getElementById('root'));

// 3. Update item
setTimeout(() => item.set(50), 2000);

We will cover mobx-react in Chapter 3, A React App with MobX, and also throughout this
book.

Observables, Actions, and Reactions Chapter 2

[43]

when()
As the name suggests, when() only executes the effect-function when a condition is met
and automatically disposes the side-effect after that. Thus, when() is a one-time side-effect
compared to autorun() and reaction(), which are long-running. The predicate
function normally relies on some observables to do the conditional checks. If the
observables change, the predicate function will be re-evaluated.

when() takes two arguments, which are as follows:

when(predicate-function, effect-function): disposer-function

predicate-function: () => boolean, effect-function: ()=>{}

The predicate function is expected to return a Boolean value. When it becomes true, the
effect function is executed, and the when() is automatically disposed. Note that when()
also gives you back a disposer function that you can call to prematurely cancel the side-
effect.

In this following code block, we are monitoring the availability of an item and notifying the
user when it is back in stock. This is the case of a one-time effect that you don't really have
to continuously monitor. It's only when the item count in the inventory goes above zero,
that you execute the side-effect of notifying the user. Take a look at this:

import { observable, action, when } from 'mobx';

class Inventory {
 @observable items = [];

 cancelTracker = null;

 trackAvailability(name) {
 // 1. Establish the tracker with when
 this.cancelTracker = when(
 () => {
 const item = this.items.find(x => x.name === name);
 return item ? item.quantity > 0 : false;
 },
 () => {
 console.log(`${name} is now available`);
 },
);
 }

 @action
 addItem(name, quantity) {

Observables, Actions, and Reactions Chapter 2

[44]

 const item = this.items.find(x => x.name === name);
 if (item) {
 item.quantity += quantity;
 } else {
 this.items.push({ name, quantity });
 }
 }
}

const inventory = new Inventory();

inventory.addItem('Shoes', 0);
inventory.trackAvailability('Shoes');

// 2. Add two pairs
inventory.addItem('Shoes', 2);

// 3. Add one more pair
inventory.addItem('Shoes', 1);

// Prints:
// Shoes is now available

when() here takes two arguments. The predicate function returns true when the
item.quantity is greater than zero. The effect function simply notifies (via
console.log) that the item is available in the store. When the predicate becomes true,
when() executes the side-effect and automatically disposes itself. Thus, when we add two
pairs of shoes into the inventory, when() executes and logs the availability.

Notice that when we add one more pair of shoes into the inventory, no logs are printed.
This is because at this time when() has been disposed and is no longer monitoring the
availability of Shoes. This is the one-time effect of when().

when() with a promise
There is a special version of when(), which takes only one argument (the
predicate function), and gives back a promise instead of the disposer function. This is a
nice trick where you can skip using the effect function and instead wait for when() to
resolve before executing the effect. This is easier to see in code, as shown here:

class Inventory {
 /* ... */

 async trackAvailability(name) {
 // 1. Wait for availability

Observables, Actions, and Reactions Chapter 2

[45]

 await when(() => {
 const item = this.items.find(x => x.name === name);
 return item ? item.quantity > 0 : false;
 });

 // 2. Execute side-effect
 console.log(`${name} is now available`);
 }

 /* ... */
}

In comment 1, we are waiting for the availability of the item using when() that only takes
the predicate function. By using the async-await operators to wait for the promise, we
get clean, readable code. Any code that follows the await statement is automatically
scheduled to execute after the promise resolves. This is a nicer form of using when() if you
prefer not to pass an effect callback.

when() is also very efficient and does not poll the predicate function to
check for changes. Instead, it relies on the MobX reactivity system to re-
evaluate the predicate function, when the underlying observables
change.

Quick recap on reactions
MobX offers a couple of ways to execute side-effects, but you have to identify which one
fits your needs. Here is a quick round-up that can help you in making the right choice.

We have three ways of running side-effects:

autorun(effect-function: () => {}): Useful for long-running side-1.
effects. The effect function executes immediately and also anytime the
dependent observables (used within it) change. It returns a disposer function
that can be used to cancel anytime.
reaction(tracker-function: () => data, effect-function: (data)2.
=> {}): Also for long-running side-effects. It executes the effect
function only when the data returned by the tracker function is different. In
other words, reaction() waits for a change in the observables before any side-
effects are run. It also gives back a disposer function to cancel the effect
prematurely.

Observables, Actions, and Reactions Chapter 2

[46]

when(predicate-function: () => boolean, effect-function: () =>3.
{}): Useful for one-off effects. The predicate function is evaluated anytime its
dependent observables change. It executes the effect function only when the
predicate function returns true. when() automatically disposes itself after
running the effect function. There is a special form of when() that only takes in
the predicate function and returns a promise. Use it with async-await for a
simpler when().

Summary
The story of MobX revolves around observables. Actions mutate these observables.
Derivations and Reactions observe and react to changes to these observables. Observables,
actions, and reactions form the core triad.

We have seen several ways to shape your observables with objects, arrays, maps, and
boxed observables. Actions are the recommended way to modify observables. They add to
the vocabulary of operations and boost performance by minimizing change notifications.
Reactions are the observers that react to changes in observables. They are the ones causing
side-effects in the app.

Reactions come in three flavors, autorun(), reaction(), and when(), and distinguish
themselves as being long-running or one-time. when(), the only one-time effector, comes in
a simpler form, where it can return a promise, given a predicate function.

3
A React App with MobX

Working with React is fun. Now, couple that with MobX for all your state management
needs, and you have a supercharged combination. With the basics of MobX out of the way,
we can now venture into building a simple React app using the ideas discussed so far. We
will tackle the process of defining an observable state, the actions that can be invoked on
that state, and the React UI that will observe and render the changing state.

The topics covered in this chapter include the following:

The book search use-case
Creating the observable state and actions
Building the Reactive UI

Technical requirements
You will be required to have JavaScript programming language. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ MobX- Quick- Start- Guide/ tree/ master/ src/
Chapter03

Check out the following video to see the code in action:
http://bit.ly/2v0HnkW

The book search
The use-case for our simple React app is one from traditional e-commerce applications, that
is, searching for a product in a giant inventory. In our case, the search is for books. We will
use the Goodreads API to search for a book by title or author. Goodreads requires us to
register an account to use their API.

https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter03
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW
http://bit.ly/2v0HnkW

A React App with MobX Chapter 3

[48]

Create a Goodreads account by visiting this URL: https:/ /www.
goodreads. com/ api/ keys. You can use your Amazon or Facebook account
to log in. Once you have the account, you need to generate an API key to
make the API calls.

Goodreads exposes a set of endpoints that give back the results in XML. Agreed, it's not
ideal, but they have an extensive collection of books and it's a small price to pay to convert
XML into a JSON object. In fact, we will use an npm package for this conversion. The
endpoint we will be using is search-books (https:/ / www.goodreads. com/ search/ index.
xml?key=API_KEYq= SEARCH_ TERM).

The UI for our app will look something like the following:

https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/api/keys
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM
https://www.goodreads.com/search/index.xml?key=API_KEY&q=SEARCH_TERM

A React App with MobX Chapter 3

[49]

Even in this fairly simple-looking interface, there are some non-trivial use-cases. Since we
are making a network call to fetch the results, we have an intermediate state of waiting-for-
results before we show the list-of-results. Also, the real world is harsh and your network call
could fail or return zero results. All these states will be handled in our React UI with the
help of MobX.

Observable state and actions
The UI is just a grandiose transformation of data. It is also an observer of this data and fires
actions to change it. Since data (aka state) is so central to a UI, it makes sense we start first
by modeling this state. With MobX, observables represent that state. Looking back at the UI
design from before, we can identify various parts of the observable state:

There is the search-text that the user types. This is an observable field of type
string.
There is an observable array of results.
There is meta information about the results, such as the current subset and the
total result count.
There is some state to capture the async search() operation that we will be
invoking. The initial status of the operation is empty. Once the user invokes the
search, we are in the pending state. When the search completes, we could either
be in the completed or failed state. This looks more like an enumeration of
<empty>, pending, completed, or failed, and can be captured with an
observable field.

Since all of these state properties are related, we could put them under one observable
object:

const searchState = observable({
 term: '',
 state: '',
 results: [],
 totalCount: 0,
});

A React App with MobX Chapter 3

[50]

This is certainly a good start and seems to capture most of what we need to show on the UI.
Besides the state, we also need to identify the operations that can be performed on the UI.
For our simple UI, this includes invoking the search and updating the term as the user
types characters into the text box. Operations in MobX are modeled as actions, which
internally mutate the observable state. We can add these as actions on the searchState
observable:

const searchState = observable({
 term: '',
 status: '',
 results: [],
 totalCount: 0,

 search: action(function() {
 // invoke search API
 }),

 setTerm: action(function(value) {
 this.term = value;
 }),
});

The searchState observable is slowly growing in size and also accumulating some
syntactic-noise in defining the observable state. As we add more observable fields,
computed properties and actions, this can definitely become more unwieldy. A better way
to model this is to use classes and decorators.

There is a little caveat with the way we have defined the actions for the
searchState observable. Note that we have deliberately avoided the use
of arrow-functions to define the action. This is because arrow-functions
capture the lexical this at the time the action is defined. However, the
observable() API returns a new object, which is of course different from
the lexical this that is captured in the action() call. This means, the
this that you are mutating would not be the object that is returned from
observable(). You can try this out by passing arrow-functions into the
action() calls.

By passing a plain-function into the action(), we can be assured that
this would point to the correct instance of the observable.

A React App with MobX Chapter 3

[51]

Let's see how this looks with classes and decorators:

class BookSearchStore {
 @observable term = '';
 @observable status = '';
 @observable.shallow results = [];

 @observable totalCount = 0;

 @action.bound
 setTerm(value) {
 this.term = value;
 }

 @action.bound
 async search() {
 // invoke search API
 }
}

export const store = new BookSearchStore();

The use of decorators makes it easy to see the observable fields of the class. In fact, we have
the flexibility to mix and match observable fields with regular fields. Decorators also make
it easy to tweak the level of observability (for example: a shallow observable for the
results). The BookSearchStore class captures the observable fields and actions with the
help of decorators. Since we only need one instance of this class, we are exporting the
singleton-instance as store.

Managing the async action
Things are more interesting with the async search() action. Our UI needs to know the
exact state of the operation at any point in time. For that, we have the observable field:
status, that keeps track of the operation state. It starts with the empty state initially and
goes to pending at the beginning of the operation. Once the operation completes, it can
either be in the completed or failed state. You can see this in the code, as follows:

class BookSearchStore {
 @observable term = '';
 @observable status = '';
 @observable.shallow results = [];

 @observable totalCount = 0;

 /* ... */

A React App with MobX Chapter 3

[52]

 @action.bound
 async search() {
 try {
 this.status = 'pending';
 const result = await searchBooks(this.term);

 runInAction(() => {
 this.totalCount = result.total;
 this.results = result.items;
 this.status = 'completed';
 });
 } catch (e) {
 runInAction(() => (this.status = 'failed'));
 console.log(e);
 }
 }
}

A few things stand out in the preceding code:

async actions are not very different from sync actions. In fact, an async-action is
just sync-actions at different points in time.
Setting the observable state is just a matter of assignment. We wrap the code after
await in a runInAction() to ensure all observables are mutated inside an
action. This becomes key when we turn on the enforceActions configuration
for MobX.
Because we are using async-await, we are handling the two future possibilities
in one place.
The searchBooks() function is just a service-method that makes the call to the
Goodreads API and fetches the results. It returns a promise, which we await
inside the async action.

At this point, we have the observable state of our app ready, along with the set of actions
that can be performed on these observables. The UI that we will create is simply going to
paint this observable state and expose controls to invoke the actions. Let's jump straight
into the observer-land of UI.

A React App with MobX Chapter 3

[53]

One observation you can make in the async search() method just seen
is the wrapping of the state mutation in runInAction(). This can get
tedious if you have multiple await calls with state mutation in between
those calls. Diligently wrapping each of those state-mutations can be
cumbersome and you may even forget to wrap!

To avoid this unwieldy ceremony, you could use a utility function called
flow(), which takes in a generator function and, instead of await, uses
the yield operator. The flow() utility correctly wraps the state-
mutations following a yield within action(), so you don't have to do it
yourself. We will use this approach in a later chapter.

The Reactive UI
In the core-triad of MobX, reactions play the role of affecting the outside world. In Chapter
2, Observables, Actions, and Reactions, we have seen a few of these reactions in the form of
autorun(), reaction(), and when():

The observer() is yet another kind of reaction that helps in binding the React world to
MobX. observer() is part of the mobx-react NPM package, a binding library for MobX
and React. It creates a higher-order-component (HOC) that wraps a React component to
automatically update on changes to the observable state. Internally, observer() keeps
track of observables that are dereferenced in the render method of the component. When
any of them change, a re-render of the component is triggered.

A React App with MobX Chapter 3

[54]

It is quite common to sprinkle observer() components throughout the
UI component tree. Wherever an observable is required to render the
component, an observer() can be used.

The UI that we want to build will map the observable state of the BookSearchStore to
various components. Let's decompose the UI into its structural components, as seen in the
following figure. The observer-components here include the SearchTextField and the
ResultsList:

A React App with MobX Chapter 3

[55]

When you start out mapping the observable state to React components,
you should start with one monolithic component that reads all the
necessary state and renders it out. Then, you can start splitting the
observer-components and gradually create the component hierarchy. It is
recommended to get as granular as you can with your observer-
components. This ensures React is not unnecessarily rendering the entire
component when only a small part of it is changing.

At the highest level, we have the App component that composes the SearchTextField and
ResultsList. In code, this looks as follows:

import {inject, observer} from 'mobx-react';

@inject('store')
@observer
class App extends React.Component {
 render() {
 const { store } = this.props;

 return (
 <Fragment>
 <Header />

 <Grid container>
 <Grid item xs={12}>
 <Paper elevation={2} style={{ padding: '1rem' }}>
 <SearchTextField
 onChange={this.updateSearchText}
 onEnter={store.search}
 />
 </Paper>
 </Grid>

 <ResultsList style={{ marginTop: '2rem' }} />
 </Grid>
 </Fragment>
);
 }

 updateSearchText = event => {
 this.props.store.setTerm(event.target.value);
 };
}

A React App with MobX Chapter 3

[56]

If it has caught your eye already, there is a new decorator on the App class that we have not
seen before: inject('store'), also part of the mobx-react package. This creates a HOC
that binds the store observable to the React component. This means that, inside the
render() of the App component, we can expect a store property to be available on the
props.

We are using the material-ui NPM package for various UI components.
This component library gives a material design look to our UI and
provides many of the utility components, such as TextField,
LinearProgress, Grid, and so on.

Getting to the store
Using inject(), you can connect the observable BookSearchStore to any of your React
components. The mystery question, however, is: How does inject() know about our
BookSearchStore? This is where you need to see what happens at one level above the App
component, where we render the entire React app:

import { store } from './BookStore';
import React, { Fragment } from 'react';
import ReactDOM from 'react-dom';
import { Provider } from 'mobx-react';

ReactDOM.render(
 <Provider store={store}>
 <App />
 </Provider>,
 document.getElementById('root'),
);

The Provider component from mobx-react establishes the real connecting glue with
the BookSearchStore observable. The exported singleton instance of BookSearchStore
(named store), is passed as a prop named store into Provider. Internally, it uses the
React Context to propagate the store to any component wrapped by the inject()
decorator. Thus, the Provider provides the store observable and inject() connects to
React Context (exposed by Provider), and injects the store into the wrapped component:

A React App with MobX Chapter 3

[57]

It is worth noting that there is nothing special about the named prop store. You can
choose any name you like, and can even pass multiple observable instances into Provider.
If our simple app needed a separate store for user-preferences, we could have passed it as
follows:

import { store } from './BookStore';
import { preferences } from 'PreferencesStore;

<Provider store={store} userPreferences={preferences}>
 <App />
</Provider>

Of course, this means inject() will also be referencing this as userPreferences:

@inject('userPreferences')
@observer
class PreferencesViewer extends React.Component {
 render() {
 const { userPreferences } = this.props;

A React App with MobX Chapter 3

[58]

 /* ... */
 }
}

The SearchTextField component
Getting back to our original example, we can leverage the power of Provider and
inject() to get access to store (an instance of BookSearchStore) at any level in the
component tree. SearchTextField component makes use of it to become an observer of
the store:

@inject('store')
@observer
export class SearchTextField extends React.Component {
 render() {
 const { store, onChange } = this.props;
 const { term } = store;

 return (
 <Fragment>
 <TextField
 placeholder={'Search Books...'}
 InputProps={{
 startAdornment: (
 <InputAdornment position="start">
 <Search />
 </InputAdornment>
),
 }}
 fullWidth={true}
 value={term}
 onChange={onChange}
 onKeyUp={this.onKeyUp}
 />

 <SearchStatus />
 </Fragment>
);
 }

 onKeyUp = event => {
 if (event.keyCode !== 13) {
 return;
 }

 this.props.onEnter();

A React App with MobX Chapter 3

[59]

 };
}

SearchTextField observes the term property of store and updates itself when it
changes. The change to the term is handled as part of the onChange handler of the
TextField. The actual onChange handler is passed as a prop into SearchTextField by
the App component. It is inside the App component where we fire the setTerm() action to
update the store.term property:

@inject('store')
@observer
class App extends React.Component {
 render() {
 const { store } = this.props;

 return (
 <Fragment>
 <Header />

 <Grid container>
 <Grid item xs={12}>
 <Paper elevation={2} style={{ padding: '1rem' }}>
 <SearchTextField
 onChange={this.updateSearchText}
 onEnter={store.search}
 />
 </Paper>
 </Grid>

 <ResultsList style={{ marginTop: '2rem' }} />
 </Grid>
 </Fragment>
);
 }

 updateSearchText = event => {
 this.props.store.setTerm(event.target.value);
 };
}

A React App with MobX Chapter 3

[60]

Now, SearchTextField not only handles the updates to the store.term observable, but
also shows the status of the search operation with the SearchStatus component. We
include this component right inside SearchTextField, but there are no props passed into
it. This may seem a little unsettling at first. How in the world is SearchStatus going to
know about the current store.status? Well, this should be obvious once you look at the
definition of SearchStatus:

import React, { Fragment } from 'react';
import { inject, observer } from 'mobx-react';

export const SearchStatus = inject('store')(
 observer(({ store }) => {
 const { status, term } = store;

 return (
 <Fragment>
 {status === 'pending' ? (
 <LinearProgress variant={'query'} />
) : null}

 {status === 'failed' ? (
 <Typography
 variant={'subheading'}
 style={{ color: 'red', marginTop: '1rem' }}
 >
 {`Failed to fetch results for "${term}"`}
 </Typography>
) : null}
 </Fragment>
);
 }),
);

Using inject(), we get access to the store observable, and by wrapping the component
with observer(), we can react to changes in the observable state (term, status). Notice
the use of the nested calls to inject('store')(observer(() => {})). The order
here is important. You first call inject() by requesting the Provider-prop that you want
injected. This returns a function that takes a component as input. Here we use observer()
to create a HOC and pass it to inject().

Since the SearchStatus component is pretty much self-contained, SearchTextField can
simply include it and expect it to work correctly.

A React App with MobX Chapter 3

[61]

When the store.status changes, only the virtual-DOM for SearchStatus changes, re-
rendering just that component. The rest of SearchTextField is left unchanged. This
rendering efficiency is built into observer(), and there is no extra work needed on your
part. Internally, observer() carefully tracks the observables that are used in render()
and sets up a reaction() to update the component when any of the tracked observables
change.

The ResultsList component
With SearchTextField, the search action will be invoked when you type some text and
hit Enter. This changes the observable state, which is partly rendered by
SearchTextField. However, when the results arrive, the list of books that match the
search-term are shown by the ResultsList component. As expected, it is an observer-
component, which connects to the store observable via inject(). But this time, it uses a
slightly different approach to connect to store:

import { inject, observer } from 'mobx-react';

@inject(({ store }) => ({ searchStore: store }))
@observer
export class ResultsList extends React.Component {
 render() {
 const { searchStore, style } = this.props;
 const { isEmpty, results, totalCount, status } = searchStore;

 return (
 <Grid spacing={16} container style={style}>
 {isEmpty && status === 'completed' ? (
 <Grid item xs={12}>
 <EmptyResults />
 </Grid>
) : null}

 {!isEmpty && status === 'completed' ? (
 <Grid item xs={12}>
 <Typography>
 Showing {results.length}
 of{' '}
 {totalCount} results.
 </Typography>
 <Divider />
 </Grid>
) : null}

A React App with MobX Chapter 3

[62]

 {results.map(x => (
 <Grid item xs={12} key={x.id}>
 <BookItem book={x} />
 <Divider />
 </Grid>
))}
 </Grid>
);
 }
}

Notice the use of the @inject decorator that takes in a function to extract
the store observable. This gives you a more type-safe approach rather than using a string
property. You will also see that we renamed store to searchStore in the extractor-
function. Thus, the store observable is injected with the name searchStore.

In the render method for the ResultsList, we are doing a few other things that are worth
calling out:

Checking whether the search results are empty with the isEmpty property. This
wasn't declared earlier but is really a computed property that checks the length
of the results array and returns true if it's zero:

class BookSearchStore {
 @observable term = 'javascript';
 @observable status = '';
 @observable.shallow results = [];

 @observable totalCount = 0;

 @computed
 get isEmpty() {
 return this.results.length === 0;
 }

 /* ... */
}

If the search operation has completed and no results were returned (isEmpty = true), we
show the EmptyResults component.

If the search completed and we got some results back, we show the counts and
also a list of results, with each result rendered with the BookItem component.

A React App with MobX Chapter 3

[63]

Thus, our component tree for our app looks as follows:

The Provider is literally the provider of the observable state. It relies on the React Context
to propagate the store observable in the component sub-tree. By decorating components
with inject() and observer(), you can connect to the observable state and react to
changes. The SearchTextField, SearchStatus, and ResultsList components rely
on observer() and inject() to give you a reactive-UI.

With the introduction of React.createContext() in React 16.3+, you
can create your own Provider component if you wish. It might be a little
verbose, but it achieves the same purpose—propagating the store across
the component sub-tree. Give it a shot, if you feel a little adventurous.

A React App with MobX Chapter 3

[64]

Summary
mobx and mobx-react are two NPM packages that are used extensively to build the
Reactive UI. The mobx package provides the API to build the observable state, actions, and
reactions. On the other hand, mobx-react gives the binding glue to connect the React
components to the observable state and also react to any changes. In our example, we made
use of these APIs to build a book search app. When creating your observer-driven component
tree, make sure to go granular with the use of observers. This way you will react to just the
observables you need to render the UI.

The SearchTextField, SearchStatus, and ResultsList components were created with
the intent of being granular and reacting to a focused observable surface. This is the
recommended way to use MobX with React.

In the next chapter we will dive deeper into MobX, with an exploration of the Observables.

4
Crafting the Observable Tree

Defining the reactive model of your application is usually the first step when working with
MobX and React. We know very well that this is all in the realm of the following:

Observables, which represent the application state
Actions, which mutate it
Reactions, which produce side effects by observing the changing observables

When defining the observable state, MobX gives you various tools to carefully control
observability. In this chapter, we will explore this side of MobX and take a deeper look at
crafting the observable tree.

The topics that will be covered in this chapter are the following:

The shape of data
Controlling observability with various decorators
Creating computed properties
Modeling MobX stores with classes

Technical requirements
You will be required to have JavaScript programming language. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ MobX- Quick- Start- Guide/ tree/ master/ src/
Chapter04

Check out the following video to see the code in action:
http://bit.ly/2uYmln9

https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter04
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9
http://bit.ly/2uYmln9

Crafting the Observable Tree Chapter 4

[66]

The shape of data
The data that we deal with within an application comes in all shapes and sizes. However,
these different shapes are fairly limited and can be listed as:

Singular values: These include primitives like numbers, booleans, strings, null,
undefined, dates, and so on.
Lists: Your typical list of items where each item is one of a kind. It is generally a
good practice to avoid putting items of different data types in the same list. This
creates homogenous lists which are easy to reason about.
Hierarchy: Many of the structures we see in UI are hierarchical, like a hierarchy
of files and f0lders, parent-child relationships, groups and items, and so on.
Composite: A combination of some or all of the preceding shapes. Most real
world data is in this form.

MobX gives us the API to model each of these shapes and we have already seen some
examples of this in earlier chapters. However, MobX makes one distinction between
singular values and other kinds like arrays and maps. This is reflected in the API as well,
where observable() can only be used to create objects, arrays, and maps. Creating an
observable out of a singular value requires us to box it with the observable.box() API.

Controlling observability
MobX, by default, applies deep observability on your objects, arrays, and maps. This allows
you to see changes happening at any level in the observable tree. Although this a great
default to start with, at some point, you will have to pay more attention to limit the
observability. Cutting down on the observability also improves performance as there are
fewer things to track from the point of view of MobX.

There are two distinct ways in which you can control observability:

By using the various @decorators inside classes
By using the decorate() API

Crafting the Observable Tree Chapter 4

[67]

Using @decorators
Decorators are a syntactic feature that allow you to attach behavior to a class and its fields.
We have already seen this in Chapter 3, A React App with MobX, so the following code
should be very familiar:

class BookSearchStore {
 @observable term = 'javascript';
 @observable status = '';
 @observable.shallow results = [];

 @observable totalCount = 0;
}

Using the @observable decorator, you can make properties of a class into observables.
This is the recommended approach to start modeling your observables. By
default, @observable applies deep observability, but there are some specialized decorators
that give you more control.

@observable is a shorter form or an alias of @observable.deep, which
is the default decorator. It applies deep observability at all levels of objects,
arrays, and maps. However, the deep observation stops at places where
the object has a constructor or a prototype. Such objects are usually instances
of classes and are expected to have their own observable properties. MobX
chooses to skip such objects during deep observation.

Creating shallow observables with
@observable.shallow
This decorator prunes the observability to just the first level of the data, also called one-
level-deep observation, and is particularly useful for observable arrays and maps. In the
case of arrays, it will monitor a reference change (for example, assigning a new array) of the
array itself, and the addition and removal of items in the array. If you have items in the
array that have properties, they would not be considered in the shallow observation.
Similarly, for maps, only the addition and removal of keys is considered, along with the
reference change of the map itself. Values of the keys in the observable map are left as-is
and not considered for observation.

Crafting the Observable Tree Chapter 4

[68]

The following snippet shows the application of the @observable.shallow decorator.

class BookSearchStore {
 @observable term = 'javascript';
 @observable status = '';
 @observable.shallow results = [];

 @observable totalCount = 0;
}

We chose to apply this decorator to the results property of the BookSearchStore. It is
clear that that we are not particularly observing the properties of each individual result. In
fact, they are read only objects that will never change values, so it makes sense that we
prune the observability to just the addition and removal of items, and reference changes in
the results array. Thus, observable.shallow is the right choice here.

A subtle point to remember here is that the length property of the array
(size, in the case of maps) is also observable. Can you figure out why it is
observable?

Creating reference-only observables with
@observable.ref
If you are not interested in any changes happening inside a data structure (object, array,
map) and only in the change in value, @observable.ref is what you are looking for. It will
only monitor reference changes to the observable.

import { observable, action } from 'mobx';

class FormData {
 @observable.ref validations = null;

 @observable username = '';
 @observable password = '';

 @action
 validate() {
 const { username, password } = this;
 this.validations = applyValidations({ username, password });
 }
}

Crafting the Observable Tree Chapter 4

[69]

In the preceding example, the validations observable is always assigned a new value.
Since we are never modifying the properties of this object, it is better to mark it as
@observable.ref. This way, we only track reference changes to validations and
nothing else.

Creating structural observables with
@observable.struct
MobX has a built-in behavior to track changes in values and works well for primitives like
strings, numbers, booleans, and so on. However, it becomes less than ideal when dealing
with objects. Every time a new object is assigned to the observable, it will be considered as a
change, and reactions will fire. What you really need is a structural check where the
properties of your object are compared instead of the object reference, and then decide if there
is a change. That is the purpose of @observable.struct.

It does a deep comparison based on property values rather then relying on the top-level
reference. You can think of this as a refinement over the observable.ref decorator.

Let's look at the following code, where we create an @observable.struct for the
location property:

class Sphere {
 @observable.struct location = { x: 0, y: 0 };

 constructor() {
 autorun(() => {
 console.log(
 `Current location: (${this.location.x},
${this.location.y})`,
);
 });
 }

 @action
 moveTo(x, y) {
 this.location = { x, y };
 }
}

let x = new Sphere();

x.moveTo(0, 0);
x.moveTo(20, 30);

Crafting the Observable Tree Chapter 4

[70]

// Prints
Current location: (0, 0)
Current location: (20, 30)

Notice that autorun() fires once immediately and then does not react to the next location
({ x: 0, y: 0}). Since the structural value is the same (0, 0), it is not treated as a
change and hence no notifications are fired. It's only when we set the location to a different
(x, y) value that autorun() is triggered.

We can now represent the level of observability of the decorators, as in the following
diagram. @observable (in this case, @observable.deep) is the most powerful, followed
by @observable.shallow, @observable.ref, and finally @observable.struct. As
you get more fine-grained with the observable decorators, you can prune the surface area to
track in the observable tree. This is shown with the orange-colored shapes. The more
observables there are, the greater the tracking area is for MobX:

Using the decorate() API
The use of @decorators is definitely very convenient and readable, but it does require
some setup with Babel (using babel-plugin-transform-decorators-legacy) or turning on the
experimentalDecorators flag in the compiler options for TypeScript. With version 4,
MobX introduced an ES5 API for decorating the observable properties of an object or class.

Crafting the Observable Tree Chapter 4

[71]

Using the decorate() API, you can selectively target properties and specify the
observability. The following code snippet should make this clear:

import { action, computed, decorate, observable } from 'mobx';

class BookSearchStore {
 term = 'javascript';
 status = '';
 results = [];

 totalCount = 0;

 get isEmpty() {
 return this.results.length === 0;
 }

 setTerm(value) {
 this.term = value;
 }

 async search() {}
}

decorate(BookSearchStore, {
 term: observable,
 status: observable,
 results: observable.shallow,
 totalCount: observable,

 isEmpty: computed,
 setTerm: action.bound,
 search: action.bound,
});

decorate(target, decorator-object)

 The target can be an object prototype or a class type. The second argument is an object
containing the target properties that you want to decorate.

In the preceding example, notice the way that we are applying the decorators to the class
type. From a developer standpoint, it feels natural to use them when you don't have the
syntax support of @decorators. In fact, the decorate() API can also be used for other
kinds of decorators such as action, action.bound, and computed.

Crafting the Observable Tree Chapter 4

[72]

Decorating with observable()
The decorate() style of the API also works when declaring observables using the
observable() API.

observable(properties, decorators, options):Its arguments are as follows:

properties: Declare the properties of the observable object
decorators: An object defining the decorators for the properties
options: Options for setting default observability and a debug-friendly name ({
deep: false|true, name: string })

The second argument to observable() is where you specify the decorators for various
properties in your object. This works exactly like the decorate() call, as can be seen in the
following code snippet:

import { action, computed, observable } from 'mobx';

const cart = observable(
 {
 items: [],
 modified: new Date(),
 get hasItems() {
 return this.items.length > 0;
 },
 addItem(name, quantity) {
 /* ... */
 },
 removeItem(name) {
 /* ... */
 },
 },
 {
 items: observable.shallow,
 modified: observable,

 hasItems: computed,
 addItem: action.bound,
 removeItem: action.bound,
 },
);

Crafting the Observable Tree Chapter 4

[73]

In the second argument, we have applied the various decorators to control the observability,
apply actions, and mark computed properties.

When using the observable() API, it is not required to mark the
computed properties explicitly. MobX will convert any getter property
of the passed in object into a computed property.

Similarly, for the modified property, there is actually no need to decorate
since observable() by default makes everything deeply observable. We
only have to specify the properties that need a different treatment. In
other words, only specify decorators for the exceptional properties.

Extending the observability
When modeling the client state, it is best to pre-define the observability we need in our
reactive system. This bakes in all the constraints and scope of the observable data in your
domain. However, the real world is always unforgiving and there will be times where you
need runtime abilities to extend the observability. This is where the extendObservable()
API comes in. It allows you to mix in additional properties at runtime and make them
observable as well.

In the following example, we are extending the observability of the cart for festive offers:

import { observable, action, extendObservable } from 'mobx';

const cart = observable({
 /* ... */
});

function applyFestiveOffer(cart) {
 extendObservable(
 cart,
 {
 coupons: ['OFF50FORU'],
 get hasCoupons() {
 return this.coupons && this.coupons.length > 0;
 },
 addCoupon(coupon) {
 this.coupons.push(coupon);
 },
 },
 {
 coupons: observable.shallow,
 addCoupon: action,

Crafting the Observable Tree Chapter 4

[74]

 },
);
}

extendObservable(target, object, decorators)

The first argument to extendObservable() is the target object that we want to extend.
The second argument is the list of observable properties and actions that will be mixed into
the target object. The third argument is the list of decorators that will be applied to the
properties.

In the preceding example, we want to add more observables to the cart for tracking festive
offers. This can only be done at runtime based on an active festive season. The
applyFestiveOffers() function is called when that condition is met.

extendObservable() is in fact the superset of observable(),
and observable.object(). observable() is really
extendObservable({}, object). It is no coincidence that this looks
similar to decorate(). MobX strives to keep the API consistent and
intuitive. While extendObservable() takes an actual object in its first
argument, decorate() requires it to be classes and object prototypes.

[Fun Fact] Before the introduction of decorate(), extendObservable()
was used to extend this inside the class
constructor: extendObservable(this, { }). Of course, now the
recommended approach is to use decorate(), which can be applied
directly on a class or object prototype.

One point to ponder on is that an observable Map could also be used to add observable
properties on the fly. However, they can only be state carrying properties and not actions or
computed-properties. When you want to dynamically add actions and computed properties as
well, go for extendObservable().

Crafting the Observable Tree Chapter 4

[75]

Derived state with @computed
One of the core philosophies of MobX is that the observable state should be as minimal as
possible. Everything else should be derived via computed properties. This perspective
makes sense when we talk about state management in UI. The UI is always nuanced on the
same observable state and needs different views of the state depending on the context and
task. This means that there are many possibilities for deriving a view-centric state (or
representation) within the same UI.

An example of such a view-centric state is a table view and a chart view of the same list of
observables. Both are operating on the same state but need different representations to
satisfy the UI (the view) needs. Such representations are prime candidates for state
derivations. MobX recognizes this core requirement and provides computed properties,
which are specialized observables that derive their value from other dependent
observables.

Computed properties are very efficient and cache the computation. Although the computed
property is re-evaluated whenever the dependent observables change, no notifications are
fired if the new value matches the previously cached value. Additionally, computed
properties also get garbage collected if there are no more observers of the computed
property. This automatic cleanup also adds to the efficiency. Caching and automatic clean-up
are the main reasons why MobX recommends liberal usage of computed properties.

Using computed properties, we can create separate observables as needed by the UI. As
your application grows in size, you will possibly need more derivations that depend on the
core state. These derivations (computed properties) can be mixed in using
extendObservable(), as and when needed.

MobX offers three different ways in which you can create computed properties: using
the @computed decorator, the decorate() API, or using the computed() function. These
can be seen in the following code snippet:

import { observable, computed, decorate } from 'mobx';

// 1. Using @computed
class Cart {
 @observable.shallow items = [];

 @computed
 get hasItems() {
 return this.items.length > 0;
 }
}

Crafting the Observable Tree Chapter 4

[76]

// 2. Using decorate()
class Cart2 {
 items = [];

 get hasItems() {
 return this.items.length > 0;
 }
}
decorate(Cart2, {
 items: observable.shallow,
 hasItems: computed,
});

// 3. Using computed()
const cart = new Cart();

const isCartEmpty = computed(() => {
 return cart.items.length === 0;
});

console.log(isCartEmpty.get());

const disposer = isCartEmpty.observe(change =>
console.log(change.newValue));

Using the computed() function directly has the feel of working with boxed observables.
You have to use the get() method on the returned computed function to retrieve the
value.

You also have the option of using the observe() method of the computed() function. By
attaching an observer, you can get the changed value. This technique can also be used to
handle side effects or reactions.

Both of these APIs can be seen in the preceding code snippet. This usage is not very
common, but can be leveraged when dealing with boxed observables directly.

Structural equality
If the return value of a computed property is a primitive, it is easy to know when there is a
new value. MobX compares the previous value of the computed property with the newly
evaluated value and then fires notifications if they differ. Thus, value comparisons become
important to ensure notifications are fired only on a real change.

Crafting the Observable Tree Chapter 4

[77]

For objects, this is not straightforward. The default comparison is done based on reference
checks (using the === operator). This treats the objects as being different even though the
values within them are exactly the same.

In the following example, the metrics computed property generates a new object every
time the start or end properties change. Since the autorun (defined in the constructor)
depends on metrics, it runs the side effect every time metrics changes:

import { observable, computed, action, autorun } from 'mobx';

class DailyPrice {
 @observable start = 0;
 @observable end = 0;

 @computed
 get metrics() {
 const { start, end } = this;
 return {
 delta: end - start,
 };
 }

 @action
 update(start, end) {
 this.start = start;
 this.end = end;
 }

 constructor() {
 autorun(() => {
 const { delta } = this.metrics;
 console.log(`Price Delta = ${delta}`);
 });
 }
}

const price = new DailyPrice();

// Changing start and end, but metrics don't change
price.update(0, 10);
price.update(10, 20);
price.update(20, 30);

Crafting the Observable Tree Chapter 4

[78]

However, notice that metrics doesn't really change, even though
the start and end properties are changing. This can be seen with the autorun side effect,
which keeps printing the same delta value. This happens because the metrics computed
property is returning a new object on each evaluation:

Price Delta = 0;
Price Delta = 10;
Price Delta = 10;
Price Delta = 10;

The way to fix this is to use the @computed.struct decorator, which does a deep
comparison of the object structure. This ensures that no notifications are fired when a re-
evaluation of the metrics property gives back the same structure.

This is one way to safeguard a costly reaction that depends on such a computed observable.
Decorate it with computed.struct to ensure only a real change in the object structure is
considered for notification. Conceptually, it is very similar to
the observable.struct decorator that we saw in the previous section of this chapter:

class DailyPrice {
 @observable start = 0;
 @observable end = 0;

 @computed.struct
 get metrics() {
 const { start, end } = this;
 return {
 delta: end - start,
 };
 }
 // ...
}

In practice, it is rare to use the computed.struct observable. The computed value only
changes when the dependent observables change. When any of the dependent observables
change, a new, computed value has to be created, and in most real world apps, it is
different most of the time. Thus, you don't really need to decorate with computed.struct,
since most computed values will be very different from each other in successive
evaluations.

Crafting the Observable Tree Chapter 4

[79]

Modeling the stores
It can seem like a daunting task when you start to model the client state for your React
Application with MobX. An idea that can help you on this journey is the simple realization
that your application is just a collection of features, composed together to form a cohesive unit.
By starting with the simplest feature, you can string the rest of the app together, one feature
at a time.

This style of thinking guides you to model your feature-level-stores first. The app-level-
store (also called the Root Store) is just a composition of these feature stores with a shared
communication channel. In the MobX world, you start with a class to describe the feature
store. Depending on the complexity, you can break the feature store into many sub stores.
The feature store acts as the coordinator of all the sub stores. This is the classic divide and
conquer approach to modeling software:

Let's take an example to illustrate this approach to modeling the reactive client state. In the
book-search app that we built in the previous section, we want to add the ability to create
wishlists. A wishlist can contain items that you would like to purchase in the future. You
should be able to create as many wishlists as you want. Let's model the wishlist feature
with MobX. We will not worry about the React side of things and instead just focus on
using MobX to model the client state.

Crafting the Observable Tree Chapter 4

[80]

The Wishlist feature

This adds the ability to create wishlists. A wishlist has a name and contains a list of items
to be purchased in the future. One can create as many wishlists as needed. A wishlist item
has the title of the item and a flag to track if it is purchased.

The first step in modeling with MobX is to identify the observable state and the actions that
can mutate it. We are not going to worry about reactions (or observers) as of now.

Observable state
We will start with a class, WishListStore, to track all the details of the wishlist feature.
This is our feature-level-store that contains the observable state for the entire feature. Based
on the description we saw earlier, let's distill the core observable state:

An array of wishlists, where each item is an instance of a WishList class
The WishList has a name and contains an array of WishListItem instances
Each WishListItem has a title and a boolean purchased property

An interesting thing to note here is that we have extracted some vocabulary from the earlier
description. This includes WishListStore, WishList, and WishListItem, which form
the backbone of our feature. Identifying this vocabulary is the hard part and can take a few
iterations to get to the right terms. It's no wonder that naming things is classified as one of
the two hard problems in Computer Science!

In code, we can now capture this observable state as follows:

import { observable } from 'mobx';

class WishListStore {
 @observable.shallow lists = [];
}

class WishList {
 @observable name = '';
 @observable.shallow items = [];
}

class WishListItem {
 @observable title = '';
 @observable purchased = false;
}

Crafting the Observable Tree Chapter 4

[81]

const store = new WishListStore();

Notice the use of the observable.shallow decorator for arrays. We don't need deep
observation for them. The individual items (WishListItem) have their own observable
properties. The wishlist feature is represented by the singleton instance of the
WishListStore (store). Since we will be creating instances of WishList and
WishListItem, we can add constructor functions to make this easier:

class WishList {
 @observable name = '';
 @observable.shallow items = [];

 constructor(name) {
 this.name = name;
 }
}

class WishListItem {
 @observable title = '';
 @observable purchased = false;

 constructor(title) {
 this.title = title;
 }
}

Derived state
Now that the core observable state has been established, we can give some consideration to
the derived state. Derived state (derivations) are computed properties that depend on other
observables. It is helpful to think of the derivations in the context of how the core
observable state is consumed.

One common use case when you have arrays is to think of the empty state. There is usually
some visual indication that the list is empty. Rather than testing the array.length, which
is quite low-level, it is better to expose a computed property called isEmpty. Such
computed properties focus on the semantics of our store rather than dealing directly with
the core observables:

class WishListStore {
 @observable.shallow lists = [];

 @computed
 get isEmpty() {

Crafting the Observable Tree Chapter 4

[82]

 return this.lists.length === 0;
 }
}

class WishList {
 @observable name = '';
 @observable.shallow items = [];

 @computed
 get isEmpty() {
 return this.items.length === 0;
 }

 /* ... */
}

Similarly, if we want to know the purchased items from the WishList, there is no need to
define any new observable state. It can be derived from the items by filtering the
purchased property. That is the definition for the purchasedItems computed property. I'll
leave it as an exercise for the reader to define this computed property.

You should always think of the observable state as a combination of a minimal core state and
a derived state. Think of the following equation to ensure that you are not putting too much
into your core state. What can be derived should always lie in the derived state:

In real-world apps, it is quite possible that a property being tracked in one
store may move to another due to refactoring. For example, the
purchased property of a WishListItem could be tracked by a separate
store (for example, ShoppingCartStore). In such a case, the
WishListItem can make it a computed property and depend on the
external store to keep track of it. Doing so does not change anything on
the UI since the way you read purchased still stays the same. Also, MobX
makes it simple to keep the purchased property always up-to-date
because of the implicit dependency created via the computed property.

Crafting the Observable Tree Chapter 4

[83]

Actions
Once the observable state is identified, it is natural to include the actions that can mutate it.
These are the operations which will be invoked by the user, and exposed by the React
interface. In the case of the wishlist feature, this includes:

Creating a new WishList
Deleting a wishlist
Renaming a wishlist
Adding items (WishListItem) to a wishlist
Removing items from a wishlist

Actions that add or remove wishlists go into the top-level, WishListStore, while actions
concerning items in a wishlist will be placed in the WishList class. The renaming of a
wishlist can also go into the WishList class:

import { observable, action } from 'mobx';

class WishListStore {
 @observable.shallow lists = [];

 /* ... */

 @action
 addWishList(name) {
 this.lists.push(new WishList(name));
 }

 @action
 removeWishList(list) {
 this.lists.remove(list);
 }
}

class WishList {
 @observable name = '';
 @observable.shallow items = [];

 /* ... */

 @action
 renameWishList(newName) {
 this.name = newName;
 }

Crafting the Observable Tree Chapter 4

[84]

 @action
 addItem(title) {
 this.items.push(new WishListItem(title));
 }

 @action
 removeItem(item) {
 this.items.remove(item);
 }
}

MobX gives a convenient API on observable arrays to remove items. Using
the remove() method, you can remove items that match by value or
reference. The method returns true if the item was found and removed.

Summary
Once you make the broad cuts on the observable state, it is time to tailor it further with the
observable decorators. This gives you better control of the observability and improves the
performance of the MobX reactivity system. We have seen two different ways of doing this:
one with the @decorator syntax and the other using the decorate() API.

It is also possible to add new observable properties on the fly with extendObservable(). In
fact, you can even add new actions and computed properties with extendObservable().

Observable State = Core State + Derived State

The core state and the derived state are two aspects of the observable state in MobX. This is easy
to model with classes and decorators, as shown in the preceding sections. Once you
identify the vocabulary of your feature, they become the class names that encapsulate the
observable state. To handle the complexity of the feature, you can break it into smaller classes
and compose them in the feature store. These feature stores are then composed in the top-level
root store.

Now that we have a deeper understanding of defining and crafting the observables, it's time
we look at the other pillars of MobX: actions and reactions. That is where we are heading
with the next chapter.

5
Derivations, Actions, and

Reactions
Now that the MobX foundations have been laid with the three pillars of observables, actions,
and reactions, it's time we go deeper and understand the finer aspects. In this chapter, we
will explore the core philosophies and nuances of the MobX API, as well as some special
APIs to simplify asynchronous programming in MobX.

The topics covered in this chapter include:

Computed properties (also known as derivations) and their various options
Actions, with special focus on async actions
Reactions and the rules governing when MobX reacts

Technical requirements
You will be required to have Node.js installed on a system. Finally, to use the Git repository
of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ MobX- Quick- Start- Guide/ tree/ master/ src/
Chapter05

Check out the following video to see the code in action:
http://bit.ly/2mAvXk9

https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
https://github.com/PacktPublishing/MobX-Quick-Start-Guide/tree/master/src/Chapter05
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9
http://bit.ly/2mAvXk9

Derivations, Actions, and Reactions Chapter 5

[86]

Derivations (computed properties)
Derivation is a term that is used quite frequently in the MobX parlance. It is given special
emphasis in client-state modeling. As we saw in the previous chapter, the observable state
can be determined by the combination of the core-mutable-state and a derived-read-only-state:

Observable State = (Core-mutable-State) + (Derived-readonly-State)

It is essential to keep the core state as lean as possible. This is the part that is expected to
stay stable and grow slowly during the lifetime of the application. It is only the core state
that is actually mutable and the actions always mutate only the core state. The derived state
depends on the core state and is kept up-to-date by the MobX reactivity system. We know
that computed properties act as the derived state in MobX. They can depend not only on the
core state but also on other derived states, creating a dependency tree that is kept alive by
MobX:

A key characteristic of the derived state is that it is read only. Its job is to generate a computed
value (using the core state) but never mutate the core state. MobX is smart to cache these
computed values and not perform any unnecessary computation. It also does efficient
clean-ups when there are no observers of the computed values. It is highly recommended to
leverage the computed properties as much as possible and not worry about the
performance impact.

Let's take an example where you can have a minimal core state and a derived state for
satisfying the UI needs. Consider the humble Todo, TodoList, and TodoManager. You can
probably guess what these classes do. They form the observable state of a Todos application:

import { computed, decorate, observable, autorun, action } from 'mobx';

class Todo {
 @observable title = '';
 @observable done = false;

Derivations, Actions, and Reactions Chapter 5

[87]

 constructor(title) {
 this.title = title;
 }
}

class TodoList {
 @observable.shallow todos = [];

 @computed
 get pendingTodos() {
 return this.todos.filter(x => x.done === false);
 }

 @computed
 get completedTodos() {
 return this.todos.filter(x => x.done);
 }

 @computed
 get pendingTodosDescription() {
 const count = this.pendingTodos.length;
 return `${count} ${count === 1 ? 'todo' : 'todos'} remaining`;
 }

 @action
 addTodo(title) {
 const todo = new Todo(title);
 this.todos.push(todo);
 }
}

class TodoManager {
 list = null;

 @observable filter = 'all'; // all, pending, completed
 @observable title = ''; // user-editable title when creating a new
 todo

 constructor(list) {
 this.list = list;

 autorun(() => {
 console.log(this.list.pendingTodos.length);
 });
 }

 @computed
 get visibleTodos() {

Derivations, Actions, and Reactions Chapter 5

[88]

 switch (this.filter) {
 case 'pending':
 return this.list.pendingTodos;
 case 'completed':
 return this.list.completedTodos;
 default:
 return this.list.todos;
 }
 }
}

As you can see from the preceding code, the core state is defined by the properties marked
with @observable. They are the mutable properties of these classes. For a Todos app, the
core state is primarily the list of Todo items.

The derived state, which is mostly to take care of the filtering needs of the UI, includes the
properties marked with @computed. Of particular interest is the TodoList class, which
only has one @observable: an array of todos. Rest is the derived state consisting of the
pendingTodos, pendingTodosDescription, and completedTodos, all marked by
@computed.

By keeping a lean core state, we can produce many variations of the derived state, as
needed by the UI. Such a derived state could also help in keeping the semantic model clean
and simple. This also gives you a chance to enforce the vocabulary of the domain rather than
exposing the raw core state directly.

Is it a side effect?
In Chapter 1, Introduction to State Management, we talked about the role of side effects.
These are the reactive aspects of the application that produce external effects based on
changes in state (also known as data). If we now look at computed properties through the lens
of side effects, you can find it very similar to the reactions in MobX. After all, a reaction in
MobX looks at observables and produces side effects. This is what a computed-property
does too! It depends on observables and produces an observable-value as side effect. So,
shouldn't computed properties be considered as side effects?

Very sound argument indeed. It can appear as a side effect from the way it is derived, but
the fact that it generates an observable-value brings it back into the world of client-state rather
than becoming an external effect. Computed properties are, in fact, data for the UI and
other state-management aspects. Unlike the side effect-causing functions of MobX, such
as autorun(), reaction(), and when(), computed properties don't cause any external
side effects and stay within the confines of the client-state.

Derivations, Actions, and Reactions Chapter 5

[89]

Another clear distinction between MobX reactions and computed properties is that there is
an implicit expectation that computed properties will give back a value, whereas reactions are
fire-and-forget with no expectation of getting back a value. Also, with computed properties
the re-evaluation (the side effect part of a computed-property) can stop as soon as there are
no more observers. However, with reactions, it is not always clear when to stop them. For
example, it is not always clear when logging or a network request should be stopped.

So, let's rest the case by saying that computed properties are only a partial side effect and not
the full-on, fire-and-forget reactions of MobX.

There's more to computed()
So far, we have looked at the use of the @computed decorator along with
@computed.struct, where structural equality was crucial. There is of course more to the
computed function, which also takes several options for a fine-grained customization.
These options are available when used in the decorate() function, the @computed
decorator, or when creating boxed-computed observables.

In the following snippet, we see the usage in the decorate() function, which is more
common:

class TodoList {
 @observable.shallow todos = [];
 get pendingTodos() {
 return this.todos.filter(x => x.done === false);
 }

 get completedTodos() {
 return this.todos.filter(x => x.done);
 }

 @action
 addTodo(title) {
 const todo = new Todo(title);
 this.todos.push(todo);
 }
}

decorate(TodoList, {
 pendingTodos: computed({ name: 'pending-todos', /* other options */ }),
});

Derivations, Actions, and Reactions Chapter 5

[90]

Options for computed() can be passed as an object-argument with several properties:

name: This is useful when combined with MobX DevTools (part of the mobx-
react-devtools NPM package). The name specified here is used in logs and also
when introspecting the observables of a rendered React component.
context: The value of "this" inside the computed function. In general, you don't
need to specify as it will default to the decorated instance.
set: A computed-property is most often used as a getter. But, you could supply a
setter too. This is not to replace the value of the computed property, but rather
acts as an inverse. Consider the following example, where the setter for fullName
is splitting it into firstName and lastName:

class Contact {
 @observable firstName = '';
 @observable lastName = '';

 get fullName() {
 return `${this.firstName} ${this.lastName}`;
 }

}

decorate(Contact, {
 fullName: computed({
 // extract firstName and lastName
 set: function(value) {
 const [firstName, lastName] = value.split(' ');

 this.firstName = firstName;
 this.last = lastName;
 },
 }),
});

To do the same inside the class, without decorate(), you just add a setter, as seen in the
following code:

class Contact {
 @observable firstName = '';
 @observable lastName = '';

 @computed
 get fullName() {
 return `${this.firstName} ${this.lastName}`;
 }

Derivations, Actions, and Reactions Chapter 5

[91]

 set fullName(value) {
 const [firstName, lastName] = value.split(' ');

 this.firstName = firstName;
 this.lastName = lastName;
 }
}

const c = new Contact();

c.firstName = 'Pavan';
c.lastName = 'Podila';

console.log(c.fullName); // Prints: Pavan Podila

c.fullName = 'Michel Weststrate';
console.log(c.firstName, c.lastName); // Prints: Michel Weststrate

keepAlive: There are times when you need a computed value to be always
available, even when there are no tracking observers. This option keeps the
computed value hot and always updated. One caution with this option is that the
computed value will always be cached and you may want to think more deeply for
possible memory leaks and expensive computations. Objects with computed
properties with { keepAlive: true } can only be garbage-collected when all
of their dependent observables are garbage-collected. So, use this option with
care.
requiresReaction: This is a property meant to safeguard against expensive
computations running more often than expected. The default is set to false, which
means even without an observer (also known as reaction) it will be evaluated the
first time. When set to true, it does not perform the computation if there are no
observers. Instead, it throws an error informing you of the need for an observer.
It is possible to change the global behavior by calling configure({
computedRequiresReaction: Boolean }).

Derivations, Actions, and Reactions Chapter 5

[92]

equals: This sets the equality checker for the computed property. The equality
check determines if a notification needs to be fired to inform all observers (also
known as reactions). As we know, only when the newly-computed value is
different from the previously-cached-value will a notification be fired. The default is
comparer.identity, which does a === check. In other words, a value and a
reference check. The other kind of equality check is with
comparer.structural, which performs a deep comparison of the values to
determine if they are equal. Conceptually, it is similar to
an observable.struct decorator. This is also the comparer used for the
computed.struct decorator:

import { observable, computed, decorate, comparer } from 'mobx';

class Contact {
 @observable firstName = '';
 @observable lastName = '';

 get fullName() {
 return `${this.firstName} ${this.lastName}`;
 }

}

decorate(Contact, {
 fullName: computed({
 set: function(value) {
 const [firstName, lastName] = value.split(' ');

 this.firstName = firstName;
 this.last = lastName;
 },
 equals: comparer.identity,
 }),

});

Derivations, Actions, and Reactions Chapter 5

[93]

Error handling inside computed
Computed properties have the special ability to recover from errors thrown during
computation. Rather than bailing out immediately, they catch and hold on to the error. It is
only when you try to read from a computed-property, that it will rethrow the error. This gives
you the chance to recover by resetting some state and getting back to some default state.

The following example is straight from the MobX docs, and aptly demonstrates the error
recovery:

import { observable, computed } from 'mobx';

const x = observable.box(3);
const y = observable.box(1);

const divided = computed(() => {
 if (y.get() === 0) {
 throw new Error('Division by zero');
 }

 return x.get() / y.get();
});

divided.get(); // returns 3

y.set(0); // OK

try {
 divided.get(); // Throws: Division by zero
 } catch (ex) {
 // Recover to a safe state
 y.set(2);
}

divided.get(); // Recovered; Returns 1.5

Derivations, Actions, and Reactions Chapter 5

[94]

Actions
Actions are the way to mutate the core state of your application. In fact, MobX strongly
recommends that you always use actions and never do any mutations outside of an action.
It even goes to the extent of enforcing this requirement across your app if you configure
MobX with: { enforceActions: true }:

import { configure } from 'mobx';

configure({ enforceActions: true });

Let the preceding lines of code be the starting point of your MobX-driven React app. It's
obvious that there are some benefits to using actions for all state-mutation. But so far, it
hasn't been very clear. Let's drill a little deeper to uncover these hidden benefits.

configure({ enforceActions: true }) isn't the only option
available for guarding state-mutation. There is a stricter form with {
enforceActions: 'strict' }. The difference is subtle but worth
calling out. When set to true, you are still allowed to make stray
mutations outside of an action, if there are no observers tracking the
mutating observable. This may seem like a slip on the part of MobX.
However, it is OK to allow this because there are no side effects
happening yet, since there are no observers. It won't cause any harm to
the consistency of the MobX reactivity system. It's like the old saying, If a
tree falls in the forest and no one is around, does it make a sound? Maybe too
philosophical, but the gist is: without observers, you have no-one tracking
observables and causing side effects, so you can safely apply the mutation.

But, if you do want to go the purist route, you can use {
enforceActions: 'strict' } and call foul even in cases where there
are no observers. It's really a personal choice here.

Why an action?
When an observable is changed, MobX immediately fires a notification informing every
observer of the change. So, if you happen to change 10 observables, 10 notifications will be
sent out. At times, this is just excessive. You don't want a noisy system that notifies too
eagerly. It is better to batch up the notifications and send them in one shot instead. It saves
on CPU cycles, keeps your battery on your mobile device happy, and in general leads to a
balanced, healthier app.

Derivations, Actions, and Reactions Chapter 5

[95]

That is exactly what an action() achieves when you put all your mutations inside it. It
wraps the mutating-function with untracked() and transaction(), two special-
purpose, low-level utilities inside MobX. untracked() prevents tracking of observables
(also known as creation of new observable-observer relationships) inside the mutating
function; whereas transaction() batches the notifications, coerces notifications on the
same observable, and then dispatches the minimal set of notifications at the end of action.

There is one more core utility function that is used by actions, which is
allowStateChanges(true). This ensures state changes do happen on the observables
and they get their new values. The combination of untracked, transaction, and
allowStateChanges is what makes up an action:

action = untracked(transaction(allowStateChanges(true, <mutating-function>)))

This combination has the following much-intended effects:

Reducing excessive notifications
Improving efficiency by batching up a minimal set of notifications
Minimizing executions of side effects, for observables that change several times in
an action

In fact, actions can be nested within each other, which ensures the notifications only go out
after the outermost action has finished executing.

Actions also help bring out the semantics of the domain and enable your app to become
more declarative. By wrapping the details of how the observables are mutated, you give a
distinct name to the operation that changes state. This emphasizes the vocabulary of your
domain and codifies it as part of your state-management. This is a nod to the principles of
Domain-Driven Design that brings the ubiquitous language (the terms of your domain) into
the client-side code.

Actions help in bridging the gap between the vocabulary of your domain and names used in
the actual code. Besides the efficiency benefits, you also get the semantic benefits that keep
the code more readable.

We saw earlier, in the Derivations (computed properties) section, that you
can also have setters. These setters are automatically wrapped by an
action() by MobX. A setter for a computed-property is not really
changing the computed-property directly. Instead, it is the inverse that
mutates the dependent observables that make up the computed-property.
Since we are mutating observables, it makes sense to wrap them in an
action. MobX is smart enough to do this for you.

Derivations, Actions, and Reactions Chapter 5

[96]

Async actions
Asynchronous programming is pervasive in JavaScript, and MobX fully embraces that idea
without adding too much ceremony. Here is a small snippet showing some async code
interspersed with MobX state mutation:

class ShoppingCart {
 @observable asyncState = '';

 @observable.shallow items = [];

 @action
 async submit() {
 this.asyncState = 'pending';
 try {
 const response = await this.purchaseItems(this.items);

 this.asyncState = 'completed'; // modified outside of
 action
 } catch (ex) {
 console.error(ex);
 this.asyncState = 'failed'; // modified outside of action
 }
 }

 purchaseItems(items) {
 /* ... */
 return Promise.resolve({});
 }
}

Looks normal, like any other async code. This is exactly the point. By default, MobX simply
steps aside and lets you mutate the observables as expected. However, if you configure
MobX to { enforceActions: 'strict' }, you get a warm red welcome on the console:

Unhandled Rejection (Error): [mobx] Since strict-mode is enabled, changing
observed observable values outside actions is not allowed. Please wrap the
code in an `action` if this change is intended. Tried to modify:
ShoppingCart@14.asyncState

What's wrong here, you may ask? It has to do with our use of async-await operators. You
see, the code that follows the await is not executed synchronously. It executes after the
await promise fulfills. Now, the action() decorator can only guard code that is executed
synchronously within its block. Code that is run asynchronously is not considered, and
thus runs outside the action(). Hence, the code following await is not part of action
anymore, causing MobX to complain.

Derivations, Actions, and Reactions Chapter 5

[97]

Wrapping with runInAction()
The way to circumvent this problem is to use a utility function provided by MobX, called
runInAction(). This is a handy function that takes in a mutating-function and executes it
inside an action(). In the following code, you can see the use of runInAction()
to wrap the mutations:

import { action, observable, configure, runInAction } from 'mobx';

configure({ enforceActions: 'strict' });

class ShoppingCart {
 @observable asyncState = '';

 @observable.shallow items = [];

 @action
 async submit() {
 this.asyncState = 'pending';
 try {
 const response = await this.purchaseItems(this.items);

 runInAction(() => {
 this.asyncState = 'completed';
 });
 } catch (ex) {
 console.error(ex);

 runInAction(() => {
 this.asyncState = 'failed';
 });
 }
 }

 purchaseItems(items) {
 /* ... */
 return Promise.resolve({});
 }
}

const cart = new ShoppingCart();

cart.submit();

Note that we have applied runInAction() to the code following await, both in the try-
block and in the catch-block.

Derivations, Actions, and Reactions Chapter 5

[98]

runInAction(fn) is just a convenience utility that is equivalent
to action(fn)().

Although async-await provides a beautiful, concise syntax to write async code, beware of
the parts of code that are not synchronous. The co-location of the code within the action()
block can be misleading. At runtime, not all statements execute synchronously. The code
that follows await is always run async, after the awaited-promise fulfills. Wrapping the
parts that are async with runInAction() gives us back the benefits of the action()
decorator. Now, MobX has no more complaints when you configure ({
enforceActions: 'strict' }).

flow()
In the previous, simple example, we only had to wrap two segments of the code in
runInAction(). That was quite straightforward and did not involve too much effort.
However, there will be cases where you will have multiple await statements within a
function. Consider the login() method shown next, which performs an action involving
multiple awaits:

import { observable, action } from 'mobx';

class AuthStore {
 @observable loginState = '';

 @action.bound
 async login(username, password) {
 this.loginState = 'pending';

 await this.initializeEnvironment();

 this.loginState = 'initialized';

 await this.serverLogin(username, password);

 this.loginState = 'completed';

 await this.sendAnalytics();

 this.loginState = 'reported';
 }

 async initializeEnvironment() {}

Derivations, Actions, and Reactions Chapter 5

[99]

 async serverLogin(username, password) {}

 async sendAnalytics() {}
}

Wrapping the state-mutations in runInAction() after each await can quickly turn
cumbersome. You can even forget wrapping some parts if there are more conditionals
involved or if the mutations are spread across multiple functions. What if there was a way
to automatically wrap the asynchronous parts of the code in action()?

MobX provides a solution for this use-case too. There is a utility function called flow()
that takes a generator-function as input. Instead of await, you use the yield operator
instead. Conceptually, it is very similar to the async-await kind of code, but uses a generator
function with yield statements to achieve the same effect. Let's rewrite the code from
the previous example, using the flow() utility:

import { observable, action, flow, configure } from 'mobx';

configure({ enforceActions: 'strict' });

class AuthStore {
 @observable loginState = '';

 login = flow(function*(username, password) {
 this.loginState = 'pending';

 yield this.initializeEnvironment();

 this.loginState = 'initialized';

 yield this.serverLogin(username, password);

 this.loginState = 'completed';

 yield this.sendAnalytics();

 this.loginState = 'reported';

 yield this.delay(3000);
 });

}

new AuthStore().login();

Derivations, Actions, and Reactions Chapter 5

[100]

Notice the use of the generator function*() instead of the regular function, which is
passed as argument to flow(). Structurally, it is no different than the async-await style of
code, but has the added benefit of automatically wrapping the parts of code following a
yield with an action(). With flow(), you are back to being more declarative with your
async code.

There is yet another benefit that flow() gives you. It is the ability to cancel execution of the
async code.

The return value of flow() is a function that you can invoke to execute the async code.
This is the login method of the AuthStore, in the preceding example. When you call new
AuthStore().login(), you get back a promise that has been enhanced by MobX with the
cancel() method:

const promise = new AuthStore().login2();
promise.cancel(); // prematurely cancel the async code

This is useful for canceling a long-running operation by giving user-level control.

Reactions
Observables and actions keep things within the confines of the MobX reactivity system.
Actions mutate the observables and, through the power of notifications, the rest of the
MobX system aligns to the mutation to keep the state consistent. To start making a change
outside of this MobX system, you need reactions. It is the bridge to the outside world that
informs the state-changes happening within the MobX world.

Consider reactions to be the reactive-bridge-crossing between MobX and the outside world. These
are also the side effect producers of your application.

We know that reactions come in three flavors: autorun, reaction, and when. These three
flavors have distinct characteristics that tackle the various scenarios within your app.

Derivations, Actions, and Reactions Chapter 5

[101]

When determining which one to pick, you can apply this simple decision-making process:

Each of the reactions give you back a disposer-function, which can be used to prematurely
dispose the reaction thus:

import { autorun, reaction, when } from 'mobx';

const disposer1 = autorun(() => {
 /* effect function */
});

const disposer2 = reaction(
 () => {
 /* tracking function returning data */
 },
 data => {
 /* effect function */
 },
);

const disposer3 = when(

Derivations, Actions, and Reactions Chapter 5

[102]

 () => {
 /* predicate function */
 },
 predicate => {
 /* effect function */
 },
);

// Dispose pre-maturely
disposer1();
disposer2();
disposer3();

Going back to the preceding diagram on the decision-tree, we can now define what it
means to be long-running: the reaction does not dispose itself automatically after executing
the first time. It continues to live until explicitly disposed using the disposer-function.
autorun() and reaction() fall under the category of long-running reactions, whereas
when() is one-time only. Note that when() also gives back a disposer-function, which can
pre-maturely cancel the when() effect. However, the one-time behavior means that after the
effect executes, when() will automatically dispose of itself, without requiring any clean up.

The second defining characteristic that is covered in the decision-tree is about selecting the
observables to track. This is a guarding condition for the effect-function to execute.
reaction() and when() have the ability to decide which observables to use for tracking,
whereas, autorun() implicitly selects all observables in its effect-function. In the case
of reaction() it's the tracking-function, and for when() it's the predicate-function. These
functions are expected to produce a value, and when it changes, the effect-function is
executed.

The selector-function of reaction() and when() is where the observable
tracking happens. The effect-function is only for causing side effects with
no tracking. autorun() implicitly combines the selector-function and the
effect-function into just one function.

Using the decision tree, you can classify the different side effects in your application. In
Chapter 6, Handling Real-World Use Cases, we will look at various examples that will make
this selection process more natural.

Derivations, Actions, and Reactions Chapter 5

[103]

Configuring autorun() and reaction()
Both autorun() and reaction() offer an extra argument to customize the behavior a
little more. Let's look at the most common properties that can be passed as options.

Options for autorun()
The second argument to autorun() is an object that carries the options:

autorun(() => { /* side effects */}, options)

It has the following properties:

name: This is useful for debugging purposes, especially in the context of MobX
DevTools, where the name is printed in the logs. The name is also used with the
spy() utility function provided by MobX. Both of these will be covered in a later
chapter.
delay: This acts as a debouncer for frequently changing observables. The effect-
function will wait for the delay period (specified in milliseconds) before re-
executing. In the example shown next, we want to be careful not to fire a network
request for every change to profile.couponsUsed. An easy guard is to use the
delay option:

import { autorun } from 'mobx';

const profile = observable({
 name: 'Pavan Podila',
 id: 123,
 couponsUsed: 3,
});

function sendCouponTrackingAnalytics(id, couponsUsed) {
 /* Make network request */
}

autorun(
 () => {
 sendCouponTrackingAnalytics(profile.id,
profile.couponsUsed);
 },
 { delay: 1000 },
);

Derivations, Actions, and Reactions Chapter 5

[104]

onError: Errors thrown during the execution of the effect-function can be safely
handled by providing the onError handler. The error is given as input to the
onError handler, which can then be used to recover, and prevent the exceptional
state for subsequent runs of the effect-function. Note that by providing this
handler, MobX continues tracking even after an error occurs. This keeps the
system running and allows other scheduled side effects, which are possibly
unrelated, to run as expected.
In the following example, we have an onError handler that deals with cases
where the number of coupons is greater than two. Providing this handler keeps
the autorun() running without interfering with the rest of the MobX reactivity
system. We are also removing the excess coupons to prevent this from happening
again:

autorun(
 () => {
 if (profile.couponsUsed > 2) {
 throw new Error('No more than 2 Coupons allowed');
 }
 },
 {
 onError(ex) {
 console.error(ex);
 removeExcessCoupons(profile.id);
 },
 },
);

function removeExcessCoupons(id) {}

Options for reaction()
Similar to autorun(), we can pass an extra argument to reaction() that contains the
options:

reaction(() => {/* tracking data */}, (data) => { /* side effects */},
options)

Some of the options, as shown below, are exactly like autorun, which keeps it consistent:

name

delay

onError

Derivations, Actions, and Reactions Chapter 5

[105]

However, there are additional options, specifically for reaction():

fireImmediately: This is a boolean value that indicates whether the effect-
function should be triggered immediately after the first invocation of the tracking-
function. Notice that this behavior gets us closer to autorun(), which also runs
immediately. By default, it is set to false.
equals: Notice that the tracking-function in a reaction() gives back data that is
used to compare with the previously produced value. For primitive values, the
default equality comparison (comparer.default), which is based on value, works
well. However, you are free to supply a structural comparer
(comparer.structural) to ensure a deeper comparison is performed. The
equality check is important, because only when the values (produced by tracking-
function) differ, will the effect-function be invoked.

When does MobX react?
The MobX reactivity system starts with the tracking or observation of the observables. This is
an important aspect of building the reactivity graph, so tracking the correct observables is
key. By following a simple set of rules, you can guarantee the outcome of the tracking
process and ensure your reactions fire correctly.

We will use the term tracking-function to mean any one of the following:

The function passed into autorun(). The observables used in that function are
tracked by MobX.
The selector-function (first argument) of a reaction() or when(). The
observables used in it are tracked.
The render() method of an observer-React-component. The observables used
during the execution of the render() method are tracked.

The rules
With each of the following rules, we will look at an example of the rule in action:

Always dereference observables during the execution of the tracking-
function. Dereferencing is the key to establishing the MobX tracker.

const item = observable({
 name: 'Laptop',
 price: 999,

Derivations, Actions, and Reactions Chapter 5

[106]

 quantity: 1,
});

autorun(() => {
 showInfo(item);
});

item.price = 1050;

In the preceding snippet, the autorun() is not invoked again since there is no observable
property being dereferenced. For MobX to react to changes, it needs an observable property
being read inside the tracking-function. One possible fix is to read the item.price inside
the autorun(), which will re-trigger anytime item.price is changed:

autorun(() => {
 showInfo(item.price);
});

Tracking only happens in the synchronously executing code of the tracking-
function:

The observables should be accessed directly in the tracking-
function and not in an async function inside.
In the following code, MobX will never react to the change in
item.quantity. Although we are dereferencing the observable
inside autorun(), it is not being done synchronously. Hence,
MobX will never re-execute autorun():

autorun(() => {
 setTimeout(() => {
 if (item.quantity > 10) {
 item.price = 899;
 }
 }, 500);
});

item.quantity = 24;

To fix, we can pull the code out from the setTimeout() and place it directly inside
autorun(). If the use of setTimeout() is to add some delayed execution, we can do that
with the delay option of autorun(). The following code shows the fix:

autorun(
 () => {
 if (item.quantity > 10) {
 item.price = 899;
 }

Derivations, Actions, and Reactions Chapter 5

[107]

 },
 { delay: 500 },
);

Only observables that already exist will be tracked:
In the following example, we are dereferencing an observable (a
computed property), which does not exist on the item at the
time autorun() executes. Hence, MobX never tracks it. Later in
the code, we are changing the item.quantity, resulting in a
change in item.description, but autorun() still doesn't
execute:

autorun(() => {
 console.log(`Item Description: ${item.description}`);
});

extendObservable(item, {
 get description() {
 return `Only ${item.quantity} left at
$${item.price}`;
 },
});

item.quantity = 10;

An easy fix is to ensure the observable actually exists before autorun() executes. By
changing the order of statements, we can get the desired behavior, as seen in the following
snippet. In practice, you should declare upfront all the properties you will need. This helps
MobX to track properties correctly when required, helps type-checkers (for example,
TypeScript) ensure the correct properties are being used, and also expresses the intent
clearly to the readers of your code:

extendObservable(item, {
 get description() {
 return `Only ${item.quantity} left at $${item.price}`;
 },
});

autorun(() => {
 console.log(`Item Description: ${item.description}`);
});

item.quantity = 10;

Derivations, Actions, and Reactions Chapter 5

[108]

In the snippet before the fix, if we had also read the item.quantity
in autorun(), then this tracking-function would re-execute on changes to
item.quantity. That happens as the observable property exists at the
time the autorun() executes for the first time. The second
time autorun() executes (due to change in item.quantity),
item.description would also be available and MobX can start tracking
that as well.

One exception to the previous rule is for Observable Maps where a dynamic key
is also tracked:

const twitterUrls = observable.map({
 John: 'twitter.com/johnny',
});

autorun(() => {
 console.log(twitterUrls.get('Sara'));
});

twitterUrls.set('Sara', 'twitter.com/horsejs');

In the preceding code snippet, autorun() will re-execute since twitterUrls is an
observable.map, which tracks the addition of new keys. Thus, the key, Sara, is still
tracked even though it is non-existent at the time autorun() executes.

In MobX 5, it can track not-yet-existing properties for all objects created
using the observable() API.

Summary
The mental model for MobX apps is geared towards thinking about the observable state. This
itself is divided into the minimal core state and a derived state. Derivations are how we handle
the various projections of the core state onto the UI and places where we need to perform
domain-specific operations. Before adding more core state, think about whether it can be
rolled in as derived state. Only when that is not possible should you introduce new core
state.

Derivations, Actions, and Reactions Chapter 5

[109]

We saw how an async action is quite similar to a regular action without much ceremony. The
only caveat is when you have configured MobX to enforceActions. In that case, you have
to wrap state mutations in the async code inside runInAction(). When there are several
async parts within the action, flow() is a better option. It takes a generator function
(denoted by function*(){ }) that is interspersed with yield to the various promise-based
calls.

reaction() and autorun() offer extra options to control their behavior. They share most
of the options, such as name, delay, and onError. reaction() has two more options: to
control how comparisons are made on the data produced by the tracking-function (equals),
and if the effect-function should be fired immediately after the first run of the tracking-
function (fireImmediately).

In Chapter 6, Handling Real-World Use Cases, we can start exploring approaches to tackling
various common scenarios with MobX. If the chapters until now seemed like science, the
next one is applied-science!

6
Handling Real-World Use

Cases
Applying the principles of MobX can seem daunting when you first start using it. To help
you with this process, we are gong to tackle two non-trivial examples of using the MobX
triad of observables-actions-reactions. We will cover the modeling of the observable state, and
then identify the actions and the reactions that track the observables. Once you go through
these examples, you should be able to make the mental shift in tackling state management
with MobX.

The examples we will cover in this chapter include the following:

Form validation
Page routing

Technical requirements
You will be required to have JavaScript programming language. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:

https://github.com/ PacktPublishing/ Mobx- Quick- Start- Guide/ tree/ master/ src/
Chapter06

Check out the following video to see the code in action:
http://bit.ly/2LDliA9

https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter06
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9
http://bit.ly/2LDliA9

Handling Real-World Use Cases Chapter 6

[111]

Form validation
Filling up forms and validating fields is the classic use-case of the web. So, it's fitting we
start here and see how MobX can help us simplify it. For our example, we will consider a
User Enrollment form that takes in some standard inputs like first name, last name, email,
and password.

The various states of enrollment are captured in the following figure:

Handling Real-World Use Cases Chapter 6

[112]

The interactions
Looking at the preceding screenshot, we can see some standard interactions going on, such
as:

Entering inputs for various fields
Validation on those fields
Clicking the Enroll button to perform a network operation

There are few other interactions here that do not meet the eye immediately:

Network-based validation for the email to ensure that we are not registering with
an existing email address
Showing a progress indicator for the enroll operation

Many of these interactions will be modeled with actions and reactions in MobX. The state
will, of course, be modeled with observables. Let's see how the Observables-Actions-Reactions
triad comes to life in this example.

Modeling the observable state
The visual design for the example already hints at the core state that we need. This includes
the firstName, lastName, email, and password fields. We can model these as observable
properties of the UserEnrollmentData class.

Additionally, we also need to track the async validation that will happen with email. We do
that with the boolean validating property. Any errors that are found during the
validation are tracked with errors. Finally, the enrollmentStatus tracks the network
operation around enrollment. It is a string-enum that can have one of four values: none,
pending, completed, or failed:

class UserEnrollmentData {
 @observable email = '';
 @observable password = '';
 @observable firstName = '';
 @observable lastName = '';
 @observable validating = false;
 @observable.ref errors = null;
 @observable enrollmentStatus = 'none'; // none | pending | completed |
failed
}

Handling Real-World Use Cases Chapter 6

[113]

You will notice that errors is marked with @observable.ref, as it only needs to track
reference changes. This is because the validation output is an opaque object, which does not
have anything observable besides a change in reference. Only when errors has a value do
we know that there are validation errors.

Onto the actions
The actions here are quite straightforward. We need one to set the field value based on user
changes. The other is do enrollment when the Enroll button is clicked. These two can be seen
in the following code.

As a general practice, always start with a call to configure({ enforceActions:
'strict' }). This ensures that your observables are only mutated inside an action, giving
you all the benefits we discussed in Chapter 5, Derivations, Actions, and Reactions:

import { action, configure, flow } from 'mobx';

configure({ enforceActions: 'strict' });

class UserEnrollmentData {
 /* ... */

 @action
 setField(field, value) {
 this[field] = value;
 }

 getFields() {
 const { firstName, lastName, password, email } = this;
 return { firstName, lastName, password, email }
 }

 enroll = flow(function*() {
 this.enrollmentStatus = 'pending';
 try {
 // Validation
 const fields = this.getFields();
 yield this.validateFields(fields);
 if (this.errors) {
 throw new Error('Invalid fields');
 }

 // Enrollment
 yield enrollUser(fields);

Handling Real-World Use Cases Chapter 6

[114]

 this.enrollmentStatus = 'completed';
 } catch (e) {
 this.enrollmentStatus = 'failed';
 }
 });

}

The use of flow() for the enroll action is deliberate. We are dealing with async
operations internally, so the mutations that happen after the operation completes must be
wrapped in runInAction() or an action(). Doing this manually can be cumbersome
and also adds noise to the code.

With flow(), you get clean looking code by using a generator function with yield
statements for the promises. In the preceding code, we have two yield points, one for
validateFields() and the other for enroll(), both of which return promises. Notice
that we have no wrapper code after these statements, making it easier to follow the logic.

One other action that is implicit here is validateFields(). Validation is actually a side
effect that is triggered any time the fields change, but can also be invoked directly as an
action. Here, again, we use flow() to handle the mutations after running through the
async validations:

We are using the validate.js (https:/ /validatejs. org) NPM package
to handle the field validations.

import Validate from 'validate.js';

class UserEnrollmentData {

 /* ... */

 validateFields = flow(function*(fields) {
 this.validating = true;
 this.errors = null;

 try {
 yield Validate.async(fields, rules);

 this.errors = null;
 } catch (err) {
 this.errors = err;
 } finally {
 this.validating = false;

https://validatejs.org
https://validatejs.org
https://validatejs.org
https://validatejs.org
https://validatejs.org
https://validatejs.org
https://validatejs.org

Handling Real-World Use Cases Chapter 6

[115]

 }
 });

 /* ... */
}

Notice how the flow() can take in arguments (eg: fields) just like regular functions.
Since the validation for email involves an async operation, we are tracking the entire
validation as an async operation. We do this with the validating property. When the
operation completes, we set it back to false in the finally block.

Completing the triad with reactions
When the fields are changed, we need to ensure that the values that have been entered are
valid. Thus, validation is a side effect of entering values for the various fields. We know
that MobX offers three ways in which you can handle this side effect, and they
are autorun(), reaction(), and when(). Since validation is an effect that should be
performed every time a field changes, when(), a one-time only effect, can be ruled out.
That leaves us with reaction() and autorun(). Typically, a form will only validate
when a field has actually changed. This means the effect needs to trigger only after a
change.

That narrows down our choice to reaction(<tracking-function>, <effect-
function>), as that's the only type of reaction that ensures the effect function triggers
after the tracking function returns a different value. autorun(), on the other hand,
executes immediately, which is too soon to perform validation. With that, we can now
introduce the validation side effect in the UserEnrollmentData class:

Technically, this could also be achieved with an autorun(), but will
require an additional boolean flag to ensure the validation is not
performed the first time. Either solution would work well in this situation.

class UserEnrollmentData {

 disposeValidation = null;

 constructor() {
 this.setupValidation();
 }

 setupValidation() {
 this.disposeValidation = reaction(

Handling Real-World Use Cases Chapter 6

[116]

 () => {
 const { firstName, lastName, password, email } = this;
 return { firstName, lastName, password, email };
 },
 () => {
 this.validateFields(this.getFields());
 },
);
 }

 /* ... */

 cleanup() {
 this.disposeValidation();
 }
}

The tracking function in the preceding reaction() picks up the fields to monitor. When
any of them change, the tracking function produces a new value, which then triggers the
validation. We have already seen the validateFields() method, which is also an action
that uses flow(). The reaction() is set up in the constructor of
UserEnrollmentData, so the monitoring starts immediately.

When this.validateFields() is called, it gives back a promise, which
could be canceled prematurely using its cancel() method. If
validateFields() gets called too frequently, a previous invocation of
the method could still be in progress. In those cases, we could cancel()
the previously returned promise to avoid unnecessary work.

We will leave it as a reader exercise to tackle this interesting use-case.

We also keep track of the disposer function returned by the reaction(), which we call
inside cleanup(). This is required to clean up and avoid potential memory leaks when
UserEnrollmentData is no longer needed. It is always good to have an exit point for
reactions where its disposer gets called. In our case, we call cleanup() from the root React
component, in its componentWillUnmount() hook. We will see that in the next section.

Now, validation is not the only side effect of our example. The more grandiose side effect is
the UI in the form of React components.

Handling Real-World Use Cases Chapter 6

[117]

React components
The UI as we know is a side effect in MobX and is identified by the use of observer()
decorators on the React components. These observers can read observables in the
render() method, which sets up the tracking. Any time those observables change, MobX
will re-render the component. This automatic behavior with minimal ceremony is very
powerful and allows us to create granular components that react to fine-grained observable
state.

In our example, we do have some granular observer components, namely the input fields,
the enroll button, and the app component. They are marked by orange boxes in the
following component tree:

Each field input is separated out into an observer component: InputField. The email field
has its own component, EmailInputField, since its visual feedback also involves showing a
progress bar during validation and disabling it while it checks if the entered email is
registered already. Similarly, the EnrollButton also has a spinner to show the progress
during the enroll operation.

We are using Material-UI (https:/ /material- ui.com) as the component
library. This provides an excellent set of React components styled to the
Material Design guidelines by Google.

https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com
https://material-ui.com

Handling Real-World Use Cases Chapter 6

[118]

The InputField observes just the field that it is rendering, identified by the field prop,
which is dereferenced from the store prop (using store[field]). This serves as the
value for the InputField:

const InputField = observer(({ store, field, label, type }) => {
 const errors = store.errors && store.errors[field];
 const hasError = !!errors;

 return (
 <TextField
 fullWidth
 type={type}
 value={store[field]}
 label={label}
 error={hasError}
 onChange={event => store.setField(field,
 event.target.value)}
 margin={'normal'}
 helperText={errors ? errors[0] : null}
 />
);
});

User edits (onChange event) to this input are notified back to the store with the
store.setField() action. The InputField is a controlled component in the React parlance.

The key idea of the InputField component is about passing the
observable (store) instead of the value (store[field]). This ensures the
dereferencing of the observable property happens inside the render() of
the component. This is important for a granular observer optimized for
rendering and tracking just what it needs. You can think of it as a design
pattern when creating MobX observer components.

The UserEnrollmentForm component
We use several of these InputFields in the UserEnrollmentForm component. Note that
the UserEnrollmentForm component is not an observer. Its purpose is to get hold of the
store via the inject() decorator and pass it down to some of its child observer components.
The inject() here uses the function-based argument, which is more type-safe than the
string-based argument of inject('store'):

import React from 'react';
import { inject } from 'mobx-react';
import { Grid, TextField, Typography, } from '@material-ui/core';

Handling Real-World Use Cases Chapter 6

[119]

@inject(stores => ({ store: stores.store }))
class UserEnrollmentForm extends React.Component {
 render() {
 const { store } = this.props;
 return (
 <form>
 <Grid container direction={'column'}>
 <CenteredGridItem>
 <Typography variant={'title'}>Enroll
 User</Typography>
 </CenteredGridItem>

 <CenteredGridItem>
 <EmailInputField store={store} />
 </CenteredGridItem>

 <CenteredGridItem>
 <InputField
 type={'password'}
 field={'password'}
 label={'Password'}
 store={store}
 />
 </CenteredGridItem>

 <CenteredGridItem>
 <InputField
 type={'text'}
 field={'firstName'}
 label={'First Name'}
 store={store}
 />
 </CenteredGridItem>

 <CenteredGridItem>
 <InputField
 type={'text'}
 field={'lastName'}
 label={'Last Name'}
 store={store}
 />
 </CenteredGridItem>

 <CenteredGridItem>
 <EnrollButton store={store} />
 </CenteredGridItem>
 </Grid>
 </form>

Handling Real-World Use Cases Chapter 6

[120]

);
 }
}

The store, an instance of UserEnrollmentData, is passed down via the Provider
component setup at the root of the component tree. This is created in the constructor for
the root component:

import React from 'react';
import { UserEnrollmentData } from './store';
import { Provider } from 'mobx-react';
import { App } from './components';

export class FormValidationExample extends React.Component {
 constructor(props) {
 super(props);

 this.store = new UserEnrollmentData();
 }

 render() {
 return (
 <Provider store={this.store}>
 <App />
 </Provider>
);
 }

 componentWillUnmount() {
 this.store.cleanup();
 this.store = null;
 }
}

With the Provider, any component can now inject() the store and get access to the
observable state. Notice the use of the componentWillUnmount() hook to invoke
this.store.cleanup(). This internally disposes the validation reaction, as described in
the earlier section ("Completing the triad with reactions").

Handling Real-World Use Cases Chapter 6

[121]

Other observer components
There are a few more granular observers in our component tree. One of the simplest ones is
the App component, which provides a simple branching logic. If we are still in the process
of enrolling, the UserEnrollmentForm is shown. Upon enrollment, the App shows the
EnrollmentComplete component. The observable tracked here is
store.enrollmentStatus:

@inject('store')
@observer
export class App extends React.Component {
 render() {
 const { store } = this.props;
 return store.enrollmentStatus === 'completed' ? (
 <EnrollmentComplete />
) : (
 <UserEnrollmentForm />
);
 }
}

The EmailInputField is fairly self-explanatory and reuses the InputField component. It
also includes a progress bar to show the async validation operation:

const EmailInputField = observer(({ store }) => {
 const { validating } = store;

 return (
 <Fragment>
 <InputField
 type={'text'}
 store={store}
 field={'email'}
 label={'Email'}
 />
 {validating ? <LinearProgress variant={'query'} /> : null}
 </Fragment>
);
});

Handling Real-World Use Cases Chapter 6

[122]

And finally, the last observer component is the EnrollButton, which observes the
enrollmentStatus and fires the enroll() action on the store. While the enrollment is
in progress, it also shows the circular spinner:

const EnrollButton = observer(({ store }) => {
 const isEnrolling = store.enrollmentStatus === 'pending';
 const failed = store.enrollmentStatus === 'failed';

 return (
 <Fragment>
 <Button
 variant={'raised'}
 color={'primary'}
 style={{ marginTop: 20 }}
 disabled={isEnrolling}
 onClick={() => store.enroll()}
 >
 Enroll
 {isEnrolling ? (
 <CircularProgress
 style={{
 color: 'white',
 marginLeft: 10,
 }}
 size={20}
 variant={'indeterminate'}
 />
) : null}
 </Button>
 {failed ? (
 <Typography color={'secondary'} variant={'subheading'}>
 Failed to enroll
 </Typography>
) : null}{' '}
 </Fragment>
);
});

Handling Real-World Use Cases Chapter 6

[123]

The collection of these granular observers improves the efficiency of the UI by speeding up
React's reconciliation process. As the changes are localized to a specific component, React
only has to reconcile the virtual-DOM changes for that specific observer component. MobX
encourages the use of such granular observers and sprinkling them throughout your
component tree.

If you are looking for a library built specifically for form validation with
MobX, look at mobx-react-form (https:/ /github. com/ foxhound87/ mobx-
react- form).

Page routing
Single page apps (SPA) have become commonplace in many of the web apps we see today.
These apps are characterised by the use of logical, client-side routes within a single page.
You can navigate to various parts (routes) of the application by modifying the URL without
a full page load. This is handled by libraries such as react-router-dom, which works
with the browser history to enable URL driven route changes.

Route change or navigation can be treated as a side effect in the MobX world. There is some
state change happening to the observables, which results in navigation happening in the
SPA. In this example, we will build this observable state, which tracks the current page
shown in the browser. Using a combination of react-router-dom and the history
package, we will show how routing becomes a side effect of the change in observable state.

The Cart checkout workflow
Let's look at a use-case where we can see the route change (navigation) as a MobX-driven
side effect. We will use the typical Cart checkout workflow as our example. As seen in the
following screenshot, we start at the home route, which is the entry point of the workflow.
From there, we go through the remaining steps: viewing the cart, selecting a payment option,
seeing the confirmation, and then tracking the order:

https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form
https://github.com/foxhound87/mobx-react-form

Handling Real-World Use Cases Chapter 6

[124]

We have deliberately kept the various steps visually simple. This allows us to focus more
on the navigation aspect rather than the details of what happens within each step.
However, there are certain elements that are common across all of these steps of the workflow.

Handling Real-World Use Cases Chapter 6

[125]

As seen in the following screenshot, each step has a load operation that fetches details for
that step. Once loaded, you can click on the button to go to the next step. Before the
navigation happens, there is an async operation that is performed. After it completes, we
navigate to the next step in the workflow. Since every step follows this template, we will
model it as such in the next section:

Modeling the observable state
The essence of this SPA is the checkout workflow that takes you step by step, where each
step is a route. Since a route is driven by a URL, we need a way to monitor the URL and
also have the ability to change it as we move between steps. The navigation between steps
is a side effect of some change in the observable state. We will model this workflow with a
CheckoutWorkflow class that contains the core observable state:

const routes = {
 shopping: '/',
 cart: '/cart',
 payment: '/payment',
 confirm: '/confirm',
 track: '/track',
};

export class CheckoutWorkflow {
 static steps = [

Handling Real-World Use Cases Chapter 6

[126]

 { name: 'shopping', stepClass: ShoppingStep },
 { name: 'cart', stepClass: ShowCartStep },
 { name: 'payment', stepClass: PaymentStep },
 { name: 'confirm', stepClass: ConfirmStep },
 { name: 'track', stepClass: TrackStep },
];

 tracker = new HistoryTracker();
 nextStepPromise = null;

 @observable currentStep = null;
 @observable.ref step = null;

}

As can be seen in the preceding code, we are representing each of the steps with a name
and a stepClass. The name is also how we identify the corresponding route for that step,
stored in the singleton routes object. The ordered list of steps is stored as a static
property of the CheckoutWorkflow class. We could have also loaded these steps from a
separate JavaScript file (module), but for simplicity, we have kept it here.

The core observable state is quite simple here: a currentStep property that stores the
string name of the current step and a step property, an instance of the stepClass, stored
as an observable.ref property. As we navigate between steps, these two properties
change to reflect the current step. We will see how these properties are used in handling the
route change.

A route for a step, a step for a route
You may be wondering why we need two separate properties to track the current step. Yes,
it may seem superfluous, but there is a reason for that. Since our workflow is going to be a
set of url-routes, the change in route can also happen by using the back button of the
browser or by directly typing a URL. One way to co-relate a route with a step is by using its
name, which is exactly what we do with the currentStep property. Notice how the name
of the step exactly matches the keys of the routes object.

Handling Real-World Use Cases Chapter 6

[127]

When a route changes externally, we rely on the browser history to notify us of the URL
change. The tracker property, which is an instance of HistoryTracker (a custom class
we will create), contains the logic to listen to browser history and track the current URL in
the browser. It exposes an observable property that is tracked by the CheckoutWorkflow.
We will look at its implementation a little later in this chapter:

Each step in the CheckoutWorkflow is a subtype of a WorkflowStep class. The
WorkflowStep captures the details of a step and its async operations. The workflow
simply orchestrates the flow of steps and transitions between them upon completion of the
async operation in each step:

class ShowCartStep extends WorkflowStep { /* ... */}

// A mock step to simplify the representation of other steps
class MockWorkflowStep extends WorkflowStep { /* ... */ }

class PaymentStep extends MockWorkflowStep { /* ... */ }
class ConfirmStep extends MockWorkflowStep { /* ... */ }
class TrackStep extends MockWorkflowStep { /* ... */ }

For most of the steps, we are extending the MockWorkflowStep that stamps out a template
WorkflowStep with some baked in defaults. This keeps the steps really simple, so we can
focus on the routing between steps. Notice in the following snippet, where we are simply
simulating a network delay for the load and main operations. The delay() function is just
a simple helper that returns a Promise that resolves after the given millisecond interval.

Handling Real-World Use Cases Chapter 6

[128]

We will see how the getLoadOperation() and getMainOperation() methods are used
in the next section:

class MockWorkflowStep extends WorkflowStep {
 getLoadOperation() {
 return delay(1000);
 }

 getMainOperation() {
 return delay(1000);
 }
}

function delay(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
}

The WorkflowStep
The WorkflowStep acts as a template for all the steps in the workflow. It contains some
observable state to keep track of the two async operations it performs: loading details and
doing the main work:

class WorkflowStep {
 workflow = null; // the parent workflow
 @observable loadState = 'none'; // pending | completed | failed
 @observable operationState = 'none'; // pending | completed |
 failed

 async getLoadOperation() {}
 async getMainOperation() {}

 @action.bound
 async load() {
 doAsync(
 () => this.getLoadOperation(),
 state => (this.loadState = state),
);
 }

 @action.bound
 async perform() {
 doAsync(
 () => this.getMainOperation(),
 state => (this.operationState = state),
);

Handling Real-World Use Cases Chapter 6

[129]

 }
}

load() and perform() are the two async operations that a WorkflowStep does. Their
status is tracked with the loadState and operationState observables, respectively. Each
of these operations calls a delegate method that is overridden by the subclass to provide the
actual promise. load() calls getLoadOperation() and perform() calls
getMainOperation(), each of which produces a promise.

doAsync() is a helper function that takes in a promise function and notifies the state using
the passed-in callback (setState). Notice the use of runInAction() here to ensure all
mutations happen inside an action.

load() and perform() use the doAsync() function to update the loadState and
operationState observables appropriately:

There is a different way of writing the doAsync() function. Hint: We
have seen it in an earlier chapter. We'll leave that as an exercise for the
reader.

async function doAsync(getPromise, setState) {
 setState('pending');
 try {
 await getPromise();
 runInAction(() => {
 setState('completed');
 });
 } catch (e) {
 runInAction(() => {
 setState('failed');
 });
 }
}

We can now see that the observable state is carried by the CheckoutWorkflow and the
WorkflowStep instances. One thing that may not be clear is how the orchestration is
performed by the CheckoutWorkflow. For that, we have to look at the actions and
reactions.

Handling Real-World Use Cases Chapter 6

[130]

 Actions and reactions of the workflow
We have already seen that the WorkflowStep has two action methods, load() and
perform(), that handle the async operations of the step:

class WorkflowStep {
 workflow = null;
 @observable loadState = 'none'; // pending | completed | failed
 @observable operationState = 'none'; // pending | completed |
 failed

 async getLoadOperation() {}
 async getMainOperation() {}

 @action.bound
 async load() {
 doAsync(
 () => this.getLoadOperation(),
 state => (this.loadState = state),
);
 }

 @action.bound
 async perform() {
 doAsync(
 () => this.getMainOperation(),
 state => (this.operationState = state),
);
 }
}

The load() action is invoked by CheckoutWorkflow as it loads each step of the workflow.
perform() is a user invoked action that happens when the user clicks the button exposed
on the React component for the step. Once perform() completes, the operationState
will change to completed. The CheckoutWorkflow tracks this and automatically loads the
next step in sequence. In other words, the workflow progresses as a reaction (or side effect)
to the change in operationState of the current step. Let's see all of this in the following
set of code snippets:

export class CheckoutWorkflow {
 /* ... */

 tracker = new HistoryTracker();
 nextStepPromise = null;

 @observable currentStep = null;

Handling Real-World Use Cases Chapter 6

[131]

 @observable.ref step = null;

 constructor() {
 this.tracker.startListening(routes);

 this.currentStep = this.tracker.page;

 autorun(() => {
 const currentStep = this.currentStep;

 const stepIndex = CheckoutWorkflow.steps.findIndex(
 x => x.name === currentStep,
);

 if (stepIndex !== -1) {
 this.loadStep(stepIndex);

 this.tracker.page = CheckoutWorkflow.steps[stepIndex].name;
 }
 });

 reaction(
 () => this.tracker.page,
 page => {
 this.currentStep = page;
 },
);
 }

 @action
 async loadStep(stepIndex) {
 /* ... */
 }
}

The constructor of CheckoutWorkflow sets up the core side effects. The first thing we need
to know is the current page served by the browser using this.tracker.page. Remember
that we are co-relating the currentStep of the workflow with the current URL-based
route using a shared name.

Handling Real-World Use Cases Chapter 6

[132]

The first side effect is executed using autorun(), which as we know, runs immediately
and then any time the tracked observables change. Inside the autorun(), we are loading
the currentStep by first making sure it is a valid step. Since we are observing the
currentStep inside the autorun(), we have to ensure that we are
keeping this.tracker.page in sync. We do this after successfully loading the current
step. Now, any time the currentStep changes, tracker.page is automatically brought in
sync, which means that the URL and route update to reflect the current step. We will see a
little later how the tracker, an instance of HistoryTracker, actually handles this
internally.

The next side effect is the reaction() to the change in tracker.page. This is a counter-
part to the previous side effect. Any time the tracker.page changes, we have to change
the currentStep as well. After all, these two observables have to work in tandem. Because
we are already tracking the currentStep with a separate side effect (the autorun()), the
current step is loaded with the instance of the WorkflowStep.

One thing striking over here is that, when currentStep changes, tracker.page is
updated. Also, when tracker.page changes, currentStep is updated. So, it may appear
that there is an infinite loop here:

However, MobX will see that once the change is propagated in one direction, there is no
update happening from the other side, as both are in sync. This means the two inter-
dependent values quickly reach stability and there is no infinite loop.

Handling Real-World Use Cases Chapter 6

[133]

Loading a step
The WorkflowStep is where a step comes to life and the only one that can create an
instance is the CheckoutWorkflow. After all, it is the owner of the entire workflow. It does
this in the loadStep() action method:

export class CheckoutWorkflow {
 /* ... */

 @action
 async loadStep(stepIndex) {
 if (this.nextStepPromise) {
 this.nextStepPromise.cancel();
 }

 const StepClass = CheckoutWorkflow.steps[stepIndex].stepClass;
 this.step = new StepClass();
 this.step.workflow = this;
 this.step.load();
 this.nextStepPromise = when(
 () => this.step.operationState === 'completed',
);

 await this.nextStepPromise;

 const nextStepIndex = stepIndex + 1;
 if (nextStepIndex >= CheckoutWorkflow.steps.length) {
 return;
 }

 this.currentStep = CheckoutWorkflow.steps[nextStepIndex].name;
 }
}

The interesting parts of the preceding code are outlined as follows:

We get the stepClass of the current step index by retrieving it from the list of
steps. We create an instance of this stepClass, which is assigned to the
observable step property.
We then trigger the load() of the WorkflowStep.
Possibly the most interesting part is awaiting the change in operationState of
the step. We know from earlier that the operationState tracks the status of
the main async operation of the step. Once it becomes completed, we know it's
time to move to the next step.

Handling Real-World Use Cases Chapter 6

[134]

Notice the use of the when() with a promise. This gives us a nice way to
demarcate code that needs to execute after the when() resolves. Also notice that
we are keeping track of the promise in the nextStepPromise property. This is
needed to ensure that we also cancel out the promise in case we move to a
different step before the current step completes. It is worth pondering when this
situation could arise. Hint: The flow of steps is not always linear. A step could be
changed via a route change as well, such as by clicking the back button of the
browser!

The HistoryTracker
The last piece of the observable state puzzle is the HistoryTracker, a class dedicated to
monitoring the browser's URL and history. It relies on the history NPM package (https:/
/github.com/ReactTraining/ history) to do most of the work. The history package also
powers the react-router-dom library, which we will be using for our React components.

The core responsibility of HistoryTracker is to expose an observable called page that
tracks the current URL (route) in the browser. It also does the reverse where it keeps the
URL in sync with the current page:

import createHashHistory from 'history/createHashHistory';
import { observable, action, reaction } from 'mobx';

export class HistoryTracker {
 unsubscribe = null;
 history = createHashHistory();

 @observable page = null;

 constructor() {
 reaction(
 () => this.page,
 page => {
 const route = this.routes[page];
 if (route) {
 this.history.push(route);
 }
 },
);
 }

 /* ... */
}

https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history

Handling Real-World Use Cases Chapter 6

[135]

With the reaction() set up in the constructor, a route change (URL change) is effectively
a side effect of a change in the page observable. This is achieved by pushing a route (URL)
onto the browser history.

The other important aspect of HistoryTracker, as the name suggests, is tracking the
browser history. This is done with the startListening() method, which can be invoked
by the consumers of this class. The CheckoutWorkflow calls this in its constructor to set up
the tracker. Note that startListening() is given a map of routes, with the key pointing
to a URL path:

export class HistoryTracker {
 unsubscribe = null;
 history = createHashHistory();

 @observable page = null;

 startListening(routes) {
 this.routes = routes;
 this.unsubscribe = this.history.listen(location => {
 this.identifyRoute(location);
 });

 this.identifyRoute(this.history.location);
 }

 stopListening() {
 this.unsubscribe && this.unsubscribe();
 }

 @action
 setPage(key) {
 if (!this.routes[key]) {
 throw new Error(`Invalid Page: ${key}`);
 }

 this.page = key;
 }

 @action
 identifyRoute(location) {
 const { pathname } = location;
 const routes = this.routes;

 this.page = Object.keys(routes).find(key => {
 const path = routes[key];
 return path.startsWith(pathname);
 });

Handling Real-World Use Cases Chapter 6

[136]

 }
}

When the URL changes in the browser, the page observable is updated accordingly. This
happens in the identifyRoute() method, which is called from the callback to
history.listen(). We have decorated it with action since it mutates the page observable.
Internally, MobX notifies all of the observers of page—for example, CheckoutWorkflow,
which uses the page observable to update its currentStep. This keeps the whole routing
in sync and ensures that the changes are bi-directional.

The following diagram shows the bi-directional syncing of the currentStep, page, and
the url-route. Note that the interactions with the history package are shown in grey
arrows, while the dependencies between observables are shown in orange arrows. This
difference in color is intentional and suggests that url-based-routing is effectively a side effect
of change in the observable state:

Handling Real-World Use Cases Chapter 6

[137]

The React components
In this example, modeling of the observable state is more interesting than the React UI
components. On the React side, we have the top level component that sets up the Provider
with the instance of CheckoutWorkflow as the store. The Provider comes from the
mobx-react package and helps in injecting the store to any React component decorated
with inject():

import React from 'react';
import ReactDOM from 'react-dom';
import { Provider } from 'mobx-react';
import { CheckoutWorkflow } from './CheckoutWorkflow';

const workflow = new CheckoutWorkflow();

export function PageRoutingExample() {
 return (
 <Provider store={workflow}>
 <App />
 </Provider>
);
}

The App component simply sets up all the Routes using the react-router-dom package.
The paths used in the <Route /> components match the URLs we saw earlier on the
routes object. Notice that the history from the HistoryTracker is used for the Router.
This allows sharing of the browser history between react-router and mobx:

import React from 'react';
import ReactDOM from 'react-dom';
import { Route, Router, Switch } from 'react-router-dom';
import { CheckoutWorkflow } from './CheckoutWorkflow';
import { Paper } from '@material-ui/core/es/index';
import { ShowCart } from './show-cart';
import {
 ConfirmDescription,
 PaymentDescription,
 ShoppingDescription,
 TemplateStepComponent,
 TrackOrderDescription,
} from './shared';

const workflow = new CheckoutWorkflow();

class App extends React.Component {
 render() {

Handling Real-World Use Cases Chapter 6

[138]

 return (
 <Paper elevation={2} style={{ padding: 20 }}>
 <Router history={workflow.tracker.history}>
 <Switch>
 <Route
 exact
 path={'/'}
 component={() => (
 <TemplateStepComponent
 title={'MobX Shop'}
 renderDescription=
 {ShoppingDescription}
 operationTitle={'View Cart'}
 />
)}
 />
 <Route exact path={'/cart'} component=
 {ShowCart} />
 <Route
 exact
 path={'/payment'}
 component={() => (
 <TemplateStepComponent
 title={'Choose Payment'}
 renderDescription=
 {PaymentDescription}
 operationTitle={'Confirm'}
 />
)}
 />
 <Route
 exact
 path={'/confirm'}
 component={() => (
 <TemplateStepComponent
 title={'Your order is confirmed'}
 operationTitle={'Track Order'}
 renderDescription=
 {ConfirmDescription}
 />
)}
 />
 <Route
 exact
 path={'/track'}
 component={() => (
 <TemplateStepComponent
 title={'Track your order'}

Handling Real-World Use Cases Chapter 6

[139]

 operationTitle={'Continue
 Shopping'}
 renderDescription=
 {TrackOrderDescription}
 />
)}
 />
 </Switch>
 </Router>
 </Paper>
);
 }
}

As mentioned earlier, we have deliberately kept the individual steps of the workflow very
simple. They all follow a fixed template, as described by the WorkflowStep. Its React
counterpart is TemplateStepComponent, which renders the step and exposes the button
for navigating to the next step.

The TemplateStepComponent
TemplateStepComponent gives the visual representation to the WorkflowStep. It renders
the feedback when the step is loading and also when the main operation is being
performed. Additionally, it shows the details of the step once it is loaded. These details are
shown via the renderDetails prop, which accepts a React component:

@inject('store')
export class TemplateStepComponent extends React.Component {
 static defaultProps = {
 title: 'Step Title',
 operationTitle: 'Operation',
 renderDetails: step => 'Some Description', // A render-prop to
render details of a step
 };

 render() {
 const { title, operationTitle, renderDetails } = this.props;

 return (
 <Fragment>
 <Typography
 variant={'headline'}
 style={{ textAlign: 'center' }}
 >
 {title}
 </Typography>

Handling Real-World Use Cases Chapter 6

[140]

 <Observer>
 {() => {
 const { step } = this.props.store;

 return (
 <OperationStatus
 state={step.loadState}
 render={() => (
 <div style={{ padding: '2rem 0' }}>
 {renderDetails(step)}
 </div>
)}
 />
);
 }}
 </Observer>

 <Grid justify={'center'} container>
 <Observer>
 {() => {
 const { step } = this.props.store;

 return (
 <Button
 variant={'raised'}
 color={'primary'}
 disabled={step.operationState ===
 'pending'}
 onClick={step.perform}>
 {operationTitle}
 {step.operationState === 'pending'
 ? (
 <CircularProgress
 variant={'indeterminate'}
 size={20}
 style={{
 color: 'black',
 marginLeft: 10,
 }}
 />
) : null}
 </Button>
);
 }}
 </Observer>
 </Grid>
 </Fragment>
);

Handling Real-World Use Cases Chapter 6

[141]

 }
}

The Observer component is something we have not seen before. This is a special
component provided by the mobx-react package that simplifies the creation of granular
observers. A typical MobX observer component will require you to create a separate
component, decorate it with observer() and/or inject() it, and ensure that the proper
observables are passed as props into that component. You can bypass all that ceremony by
simply wrapping a section of the virtual-dom with <Observer />.

It accepts a function as its only child, wherein you can read observables from the
surrounding scope. MobX will automatically track the observables being used in the
function-as-child component. A closer look at the Observer reveals these details:

<Observer>
 {() => {
 const { step } = this.props.store;

 return (
 <OperationStatus
 state={step.loadState}
 render={() => (
 <div style={{ padding: '2rem 0' }}>
 {renderDetails(step)}
 </div>
)}
 />
);
 }}
</Observer>

In the preceding snippet, we are passing a function as the child to <Observer />. Within
that function, we use the step.loadState observable. MobX automatically renders the
function-as-child component when the step.loadState changes. Notice that we are not
passing any props into the Observer or to the child component. It reads it directly from the
props of the outer component. This is the advantage of using Observer. You can create
anonymous observers without much effort.

A subtle point to note is that TemplateStepComponent is not an observer itself. It simply
gets hold of the store with inject(), which is then used inside the <Observer />
regions.

Handling Real-World Use Cases Chapter 6

[142]

The ShowCart component
ShowCart is the component that shows the list of items in the cart. Here, we are reusing the
TemplateStepComponent and plugin details of the cart with the renderDetails prop.
This can be seen in the following code. We are not showing the CartItem and TotalItem
components for simplicity. They are pure presentation components that render a single cart
item:

import React from 'react';
import {
 List,
 ListItem,
 ListItemIcon,
 ListItemText,
 Typography,
} from '@material-ui/core';
import { Divider } from '@material-ui/core/es/index';
import { TemplateStepComponent } from './shared';

export class ShowCart extends React.Component {
 render() {
 return (
 <TemplateStepComponent
 title={'Your Cart'}
 operationTitle={'Checkout'}
 renderDetails={step => {
 const { items, itemTotal } = step;

 return (
 <List>
 {items.map(item => (
 <CartItem key={item.title} item={item}
 />
))}

 <Divider />

 <TotalItem total={itemTotal} />
 </List>
);
 }}
 />
);
 }
}

function CartItem({ item }) {

Handling Real-World Use Cases Chapter 6

[143]

 return (
 /* ... */
);
}

function TotalItem({ total }) {
 return (
 /* ... */
);
}

A state-based router
You can now see how the routing between all the WorkflowStep instances is achieved
purely via a state-based approach. All of the navigation logic lies inside the MobX store,
which in this case is CheckoutWorkflow. By connecting the observables (tracker.page,
currentStep, and step) via a set of reactions, we have created side effects that update the
browser history as well as create instances of WorkflowStep, which are used by the
TemplateStepComponent.

Because we are sharing the browser history (via HistoryTracker) between react-
router-dom and MobX, we can keep the observables in sync with the URL changes.

This state-based approach to routing helps in keeping a crisp mental model of the
workflow. All of the logic of your feature stays inside the MobX Store, improving the
readability. Writing unit tests for such a state-based solution is also straightforward. In fact,
it is not surprising to have most of the unit tests in a MobX app to be centered around stores
and reactions. Many of the React components become pure observers of the observables and
can be treated as plain presentation components.

With MobX, you have the flexibility to focus squarely on the domain logic and ensure that
there is appropriate observable state that can be rendered on the UI. By encapsulating all of
the domain logic and state inside the stores, and all presentation in the React components,
there is clear separation of concerns. This greatly improves the developer experience
(DX) and helps you scale better over time. That is the true promise of MobX.

For a more feature-rich, state-based routing solution with MobX, look
at mobx-state-router (https:/ /github. com/ nareshbhatia/ mobx-
state- router).

https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router
https://github.com/nareshbhatia/mobx-state-router

Handling Real-World Use Cases Chapter 6

[144]

Summary
In this chapter, we applied a variety of techniques and concepts that we have learned over
the last few chapters. Each of the two examples, form validation and page routing, presented
a unique set of approaches for modeling the observable state. We also saw how to create
granular observer components to enable efficient rendering of the React components.

A practical application of MobX always starts with modeling the observable state. After all,
that is the data that drives the UI. The next step is to identify the actions that mutate the
observables. Finally, you need to call out the side-effects and see which observables these
effects depend on. This is the side effect model that's applied to real-world scenarios,
manifesting in the form of the MobX triad: Observables-Actions-Reactions.

With all of the knowledge we have accumulated so far, we are now ready to go deeper into
MobX, starting with Chapter 7, Special API for Special Cases.

7
Special API for Special Cases

The MobX API surface is very lean and exposes the right abstractions for dealing with your
state management logic. In most situations, the APIs we have seen thus far will suffice.
However, there will always be those gnarly edge cases that demand a slight deviation from
the well-trodden path. It is for these by-lanes for which MobX gives you some special APIs.
We will look at some of these in this chapter.

The topics we will cover in this chapter include the following:

Direct manipulation with the object API
Using inject() and observe() to hook into the internal MobX eventing
system
Special utility functions and tools that will help in debugging
Quick mention of some miscellaneous APIs

Technical requirements
You will be required to have JavaScript programming language. Finally, to use the Git
repository of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Mobx- Quick- Start- Guide/ tree/ master/ src/
Chapter07

Check out the following video to see the code in action:
http://bit.ly/2A1Or6V

https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter07
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V
http://bit.ly/2A1Or6V

Special API for Special Cases Chapter 7

[146]

Direct manipulation with the object API
When deciding on the data structures for your observable state, your natural choice should
be to reach out for observable.object(), observable.array(),
observable.map(), observable.box(), or to use the convenient observable() API.
Manipulating these data structures is as simple as mutating the properties directly or
adding and removing elements as needed.

MobX gives you yet another way to surgically make changes to your data structures. It
exposes a granular object API that can mutate these data structures at runtime. In fact, it
gives you some capabilities that are not even possible with the original data structures. For
example, adding new properties to observable objects and also keeping it reactive.

Granular reads and writes
The object API is focused on giving you granular control over the observable properties of
top-level data structures: objects, arrays, and maps. In doing so, they continue to play well
with the MobX reactive system and ensure the granular changes you make are picked up
by the reactions. The following APIs apply to observable objects/arrays/maps:

get(thing, key): Retrieves the value under the key. This key can even be non-
existent. When used in a reaction, it will trigger a re-execution when that key
becomes available.
set(thing, key, value) or set(thing, { key: value }): sets a value for
the key. The second form is better for setting multiple key-value pairs at once.
Conceptually, it is very similar to Object.assign(), but with the addition of
being reactive.
has(thing, key): Gives back a boolean indicating if the key is present.
remove(thing, key): Removes the given key and its value.
values(thing): Gives an array of values.
keys(thing): Gives an array containing all the keys. Note that this only applies
to observable objects and maps.
entries(thing): Gives back an array of key-value pairs, where each pair is an
array of two elements ([key, value]).

Special API for Special Cases Chapter 7

[147]

The following snippet exercises all of these APIs:

import {
 autorun,
 observable,
 set,
 get,
 has,
 toJS,
 runInAction,
 remove,
 values,
 entries,
 keys,
} from 'mobx';

class Todo {
 @observable description = '';
 @observable done = false;

 constructor(description) {
 this.description = description;
 }
}

const firstTodo = new Todo('Write Chapter');
const todos = observable.array([firstTodo]);
const todosMap = observable.map({
 'Write Chapter': firstTodo,
});

// Reactions to track changes
autorun(() => {
 console.log(`metadata present: ${has(firstTodo, 'metadata')}`);
 console.log(get(firstTodo, 'metadata'), get(firstTodo, 'user'));
 console.log(keys(firstTodo));
});
autorun(() => {
 // Arrays
 const secondTodo = get(todos, 1);
 console.log('Second Todo:', toJS(secondTodo));
 console.log(values(todos), entries(todos));
});

// Granular changes
runInAction(() => {
 set(firstTodo, 'metadata', 'new Metadata');
 set(firstTodo, { metadata: 'meta update', user: 'Pavan Podila' });

Special API for Special Cases Chapter 7

[148]

 set(todos, 1, new Todo('Get it reviewed'));
});

runInAction(() => {
 remove(firstTodo, 'metadata');
 remove(todos, 1);
});

By using these APIs, you can target specific properties of the observables and update them
as necessary. Reading and writing to keys that don't exist is considered valid with the object
API. Notice how we read the metadata property of firstTodo in autorun(), which does
not exist at the time of the call. However, MobX still tracks this key due to the use of the
get() API. When we set() the metadata later in an action, autorun() is re-triggered to
print it out on the console.

This can be seen in the following console output. Notice how the metadata check goes
from false to true and back to false when removed:

metadata present: false
undefined undefined
(2) ["description", "done"]
Second Todo: undefined
[Todo] [Array(2)]

metadata present: true
meta update Pavan Podila
(4) ["description", "done", "metadata", "user"]
Second Todo: {description: "Get it reviewed", done: false}
(2) [Todo, Todo] (2) [Array(2), Array(2)]

metadata present: false
undefined "Pavan Podila"
(3) ["description", "done", "user"]
Second Todo: undefined
[Todo] [Array(2)]

From MobX to JavaScript
All of the observable types are special classes created by MobX that not only store data but
also a bunch of housekeeping to track changes. We will explore this housekeeping in a later
chapter, but for our discussion now, it suffices to say that these MobX types are not always
compatible with other third-party APIs, especially when using MobX 4.

Special API for Special Cases Chapter 7

[149]

When interfacing with external libraries, you may need to send the raw JavaScript values
instead of the MobX-typed values. This is where you need the toJS() function. It will
convert the MobX observables to raw JavaScript values:

toJS(source, options?)

source: Any observable box, object, array, map, or primitives.

options: An optional argument to control behavior, such as:

exportMapsAsObject (boolean): Whether to serialize the observable maps as
objects (when true) or as JavaScript Maps (when false). Default is true.
detectCycles (boolean): This is set to true by default. It detects cyclic references
during serialization and reuses the already serialized object. This is a good
default in most cases, but for performance reasons this can be set to false when
you are sure of no cyclic references.

An important point to note with toJS() is that it does not serialize computed properties. This
makes sense since it's purely derived information that can always be recomputed. The
purpose of toJS() is to serialize the core observable state only. Similarly, any non-
enumerable properties of the observable will not be serialized nor will they recurse into any
non-observable data structures.

In the following example, you can see how the toJS() API is applied to observables:

const number = observable.box(10);
const cart = observable({
 items: [{ title: 'milk', quantity: 2 }, { title: 'eggs', quantity: 3
}],
});

console.log(toJS(number));

console.log('MobX type:', cart);
console.log('JS type:', toJS(cart));

The console output shows you the cart observable before and after applying the toJS()
API:

10
MobX type: Proxy {Symbol(mobx administration):
ObservableObjectAdministration$$1}
JS type: {items: Array(2)}

Special API for Special Cases Chapter 7

[150]

Watching the events flow by
The APIs we have seen in the previous chapters allow you to create observables and react
to the changes via reactions. MobX also gives you a way to tap into the events that flow
internally to make the reactive system work. By attaching listeners to these events, you can
fine-tune the use of some expensive resources or control which updates are allowed to be
applied to the observables.

Hooking into the observability
Normally, reactions are the place where we read observables and apply some side effects.
This tells MobX to start tracking the observable and re-trigger the reaction on changes.
However, if we look at this from the perspective of the observable, how does it know when
it is being used by a reaction? How can it do a one-time setup when it is read in a reaction
and also clean up when it's no longer being used?

What we need here is the ability to know when an observable becomes observed and when it
becomes unobserved: the two points in time where it becomes active and inactive in the
MobX reactive system. For that, we have the following aptly named APIs:

disposer = onBecomeObserved(observable, property?: string,
listener: () => void)

disposer = onBecomeUnobserved(observable, property?: string,
listener: () => void)

observable: Can be a boxed observable, an observable object/array/map.

property: An optional property of the observable. Specifying a property is fundamentally
different than referencing the property directly. For example, onBecomeObserved(cart,
'totalPrice', () => {}) is different compared
to onBecomeObserved(cart.totalPrice, () => {}). In the first case, MobX will be
able to track the observable property but in the second case it won't, since it is only
receiving the value rather than the property. In fact, MobX will throw an Error, indicating
that there is nothing to track in the case of cart.totalPrice:

Error: [mobx] Cannot obtain atom from 0

The preceding error may not make much sense now, especially the term atom. We will look
atoms in more detail in Chapter 9, Mobx Internals.

Special API for Special Cases Chapter 7

[151]

disposer: The return value of these handlers. This is a function that can be used to dispose
these handlers and clean up the event wiring.

The following snippet shows these APIs in action:

import {
 onBecomeObserved,
 onBecomeUnobserved,
 observable,
 autorun,
} from 'mobx';

const obj = observable.box(10);
const cart = observable({
 items: [],
 totalPrice: 0,
});

onBecomeObserved(obj, () => {
 console.log('Started observing obj');
});

onBecomeUnobserved(obj, () => {
 console.log('Stopped observing obj');
});

onBecomeObserved(cart, 'totalPrice', () => {
 console.log('Started observing cart.totalPrice');
});
onBecomeUnobserved(cart, 'totalPrice', () => {
 console.log('Stopped observing cart.totalPrice');
});

const disposer = autorun(() => {
 console.log(obj.get(), `Cart total: ${cart.totalPrice}`);
});
setTimeout(disposer);

obj.set(20);
cart.totalPrice = 100;

Special API for Special Cases Chapter 7

[152]

In the preceding snippet, the onBecomeObserved() handlers will be called
when autorun() executes for the first time. Upon calling the disposer function, the
onBecomeUnobserved() handlers are invoked. This can be seen in the following console
output:

Started observing obj
Started observing cart.totalPrice
10 "Cart total: 0"
20 "Cart total: 0"
20 "Cart total: 100"
Stopped observing cart.totalPrice
Stopped observing obj

onBecomeObserved() and onBecomeUnobserved() are great hooks to
lazily set up (and tear down) an observable on its first use (and last use).
This is useful in cases where there might be an expensive operation that is
required to set the initial value of the observable. Such operations can be
lazily performed by deferring until it is actually used somewhere.

Lazy loading the temperature
Let's take an example where we will lazy load the temperature for a city, but only when it is
accessed. This can be done by modeling the observable property with the hooks for
onBecomeObserved() and onBecomeUnobserved(). The following snippet shows this in
action:

// A mock service to simulate a network call to a weather API
const temperatureService = {
 fetch(location) {
 console.log('Invoked temperature-fetch');

 return new Promise(resolve =>
 setTimeout(resolve(Math.round(Math.random() * 35)), 200),
);
 },
};

class City {
 @observable temperature;
 @observable location;

 interval;
 disposers;

 constructor(location) {

Special API for Special Cases Chapter 7

[153]

 this.location = location;
 const disposer1 = onBecomeObserved(
 this,
 'temperature',
 this.onActivated,
);
 const disposer2 = onBecomeUnobserved(
 this,
 'temperature',
 this.onDeactivated,
);

 this.disposers = [disposer1, disposer2];
 }

 onActivated = () => {
 this.interval = setInterval(() => this.fetchTemperature(), 5000);
 console.log('Temperature activated');
 };

 onDeactivated = () => {
 console.log('Temperature deactivated');
 this.temperature = undefined;
 clearInterval(this.interval);
 };

 fetchTemperature = flow(function*() {
 this.temperature = yield temperatureService.fetch(this.location);
 });

 cleanup() {
 this.disposers.forEach(disposer => disposer());
 this.disposers = undefined;
 }
}

const city = new City('Bengaluru');
const disposer = autorun(() =>
 console.log(`Temperature in ${city.location} is ${city.temperature}ºC`),
);

setTimeout(disposer, 15000);

Special API for Special Cases Chapter 7

[154]

The preceding console output shows you the activation and deactivation for the
temperature observable. It is activated in autorun() and after 15 seconds, it
gets deactivated. We kick off the timer that keeps updating the temperature in the
onBecomeObserved() handler and clear it in the onBecomeUnobserved() handler. The
timer is the resource we manage that is created only when the temperature is accessed and
not before:

Temperature activated
Temperature in Bengaluru is undefinedºC

Invoked temperature-fetch
Temperature in Bengaluru is 22ºC
Invoked temperature-fetch
Temperature in Bengaluru is 32ºC
Invoked temperature-fetch
Temperature in Bengaluru is 4ºC

Temperature deactivated

Gatekeeper of changes
The changes you make to an observable are not applied immediately by MobX. Instead,
they go through a layer of interceptors that have the ability to keep the change, modify it, or
even discard it completely. This is all possible with the intercept() API. The signature is
very similar to onBecomeObserved and onBecomeUnobserved, with the callback function
(interceptor) giving you the change object:

disposer = intercept(observable, property?, interceptor: (change) =>
change | null)

observable: A boxed observable or an observable object/array/map.

property: The optional string name of the property you want to intercept on the
observable. As we saw earlier for onBecomeObserved and onBecomeUnobserved, there is
a difference between intercept(cart, 'totalPrice', (change) => {}) and
intercept(cart.totalPrice, () => {}). For the latter (cart.totalPrice), you are
intercepting a value instead of the observable property. MobX will throw an error, stating
that you haven't passed the correct type.

interceptor: A callback that receives the change object and is expected to return the final
change; apply as-is, modify, or discard (null). It is also valid to throw an error in the
interceptor to notify exceptional updates.

Special API for Special Cases Chapter 7

[155]

disposer: Gives back a function, which when called will cancel this interceptor. This is
very similar to what we have seen with onBecomeObserved(), onBecomeUnobserved(),
and even reactions like autorun(), reaction(), and when().

Intercepting the change
The change argument that is received has some known fields that give the details. The most
important of these are the type field, which tells you the type of change, and object, which
gives the object on which the change happened. Depending upon the type, a few other fields
add more context to the change:

type: Can be one of add, delete, or update
object: A boxed observable or the observable object/array/map instance
newValue: When the type is add or update, this fields contains the new value
oldValue: When the type is delete or update, this field carries the previous value

Inside the interceptor callback, you have the opportunity to finalize the type of change you
actually want to apply. You can do one of the following:

Return null and discard the change
Update with a different value
Throw an error indicating an exceptional value
Return as-is and apply the change

Let's take an example of intercepting the theme changes and ensuring that only valid
updates are applied. In the following snippet, you can see how we intercept the color
property of the theme observable. The color can either be light or dark, or have a shorthand
value of l or d. For any other value, we throw an error. We also guard against unsetting the
color by returning null and discarding the change:

import { intercept, observable } from 'mobx';

const theme = observable({
 color: 'light',
 shades: [],
});

const disposer = intercept(theme, 'color', change => {
 console.log('Intercepting:', change);

 // Cannot unset value, so discard this change
 if (!change.newValue) {

Special API for Special Cases Chapter 7

[156]

 return null;
 }

 // Handle shorthand values
 const newTheme = change.newValue.toLowerCase();
 if (newTheme === 'l' || newTheme === 'd') {
 change.newValue = newTheme === 'l' ? 'light' : 'dark'; // set
 the correct value
 return change;
 }

 // check for a valid theme
 const allowedThemes = ['light', 'dark'];
 const isAllowed = allowedThemes.includes(newTheme);
 if (!isAllowed) {
 throw new Error(`${change.newValue} is not a valid theme`);
 }

 return change; // Correct value so return as-is
});

observe() the changes
The utility that acts as the counterpart of intercept() is observe(). observe(), as the
name suggests, allows you to make granular observations on observables:

observe(observable, property?, observer: (change) => {})

The signature is exactly like intercept(), but the behavior is quite different. observe()
is invoked after the change has been applied to the observable.

An interesting characteristic is that observe() is immune to transactions. What this means
is that the observer callback is invoked immediately after a mutation and does not wait until
the transaction completes. As you are aware, actions are the places where a mutation
happens. MobX optimizes the notifications by firing them, but only after the top-most action
completes. With observe(), you get an unfiltered view of the mutations as and when they
happen.

It is recommended to use autorun() whenever you feel a need for
observe(). Use it only when you think you need immediate notification
for a mutation.

Special API for Special Cases Chapter 7

[157]

The following example shows the various details you can observe on mutating an
observable. As you can see, the change argument is exactly like intercept():

import { observe, observable } from 'mobx';

const theme = observable({
 color: 'light',
 shades: [],
});

const disposer = observe(theme, 'color', change => {
 console.log(
 `Observing ${change.type}`,
 change.oldValue,
 '-->',
 change.newValue,
 'on',
 change.object,
);
});

theme.color = 'dark';

Development utilities
As you scale your applications with more features, it becomes mandatory to understand
how and when the MobX reactive system is being used. MobX comes with a set of
debugging utilities that help you monitor and trace the various activities happening inside
it. These give you a real-time view of all the observable changes, actions, and reactions
firing inside the system.

Using spy() to track the reactivity
Earlier, we saw the observe() function, which allows you to "observe" the changes
happening to a single observable. But what if you wanted to observe changes happening
across all observables without having to individually set up the observe() handlers? That
is where spy() comes in. It gives you insight into how the various observables in your
system are changing over time:

disposer = spy(listener: (event) => { })

Special API for Special Cases Chapter 7

[158]

It takes in a listener function that receives an event object carrying all the details. The event
has properties very similar to the observe() handler. There is a type field that tells you
about the type of the event. The type can be one of:

update: For object, array, map
add: For object, array, map
delete: For map
create: For boxed observables
action: When an action fires
reaction: Upon execution of autorun(), reaction(), or when()
compute: For computed properties
error: In case of any caught exceptions inside actions or reactions

Here is a snippet of code that sets up a spy() and prints the output to the console. We are
also disposing this spy after five seconds:

import { spy } from 'mobx';

const disposer = spy(event => console.log(event));

setTimeout(disposer, 5000);

// Console output
{type: "action", name: "<unnamed action>", object: undefined, arguments:
Array(0), spyReportStart: true}
{type: "update", object: BookSearchStore, oldValue: 0, name:
"BookSearchStore@1", newValue: 2179, …}
{spyReportEnd: true}
{object: Proxy, type: "splice", index: 0, removed: Array(0), added:
Array(20), …}
{spyReportEnd: true}
{type: "update", object: BookSearchStore, oldValue: Proxy, name:
"BookSearchStore@1", newValue: Proxy, …}
{spyReportEnd: true}
{type: "update", object: BookSearchStore, oldValue: "pending", name:
"BookSearchStore@1", newValue: "completed", …}

Some of the spy events may be accompanied by spyReportStart or spyReportEnd
properties. These mark a group of events that are related.

Special API for Special Cases Chapter 7

[159]

Using spy() directly is probably not your best option during
development. It is better to rely on the visual debugger (discussed in the
following section), which makes use of spy() to give you more readable
logs. Note that the calls to spy() are a no-op for production builds when
you set the NODE_ENV environment variable to "production".

Tracing a reaction
While spy() gives you a lens to observe all changes happening in MobX, trace() is a
utility that is specifically focused on computed properties, reactions, and component
renders. You can find out why a computed property, reaction, or a component render is being
invoked by simply placing a trace() statement inside it:

trace(thing?, property?, enterDebugger?)

It has three optional arguments:

thing: An observable
property: An observable property
enterDebugger: A Boolean flag indicating whether you want to step into the
debugger automatically

It is quite common to invoke a trace with: trace(true), which will pause inside the
debugger upon invocation. For the book search example (from Chapter 3, A React App with
MobX), we can place a trace statement right inside the render() of the SearchTextField
component:

import { trace } from 'mobx';

@inject('store')
@observer
export class SearchTextField extends React.Component {
 render() {
 trace(true);
 /* ... */
 }

}

Special API for Special Cases Chapter 7

[160]

When the debugger is paused, you get a complete root-cause analysis of why this
computed property, reaction, or render got executed. Inside the Chrome devtools, you can
see these details like so:

Details on the Chrome devtools

Visual debugging with mobx-react-devtools
spy() and trace() are great for getting a code-level insight into the MobX reactive
system. However, when starting out your analysis of improving performance, visual
debugging is quite handy. MobX has a sister NPM package called mobx-react-devtools,
which gives you a simple <DevTools /> component that can help you visualize how your
component tree reacts to the observables. By including this component at the top of your
app, you will see a toolbar at runtime:

import DevTools from 'mobx-react-devtools';
import React from 'react';

export class MobXBookApp extends React.Component {
 render() {
 return (
 <Fragment>

Special API for Special Cases Chapter 7

[161]

 <DevTools />
 <RootAppComponent />
 </Fragment>
);
 }
}

The screenshot below shows the MobX DevTools toolbar showing up in the top-right corner of the screen.

By enabling the buttons, you can see which components render upon changes in
observables, see the dependency tree of observables connected to a DOM element, and
print console logs whenever an action/reaction executes. Components will flash with a
colored rectangle whenever they render. The color of the rectangle is an indication of how
long it takes to render, green being the fastest and red being the slowest. You can observe
the flashing rectangles to ensure that only the parts you intended to change are re-
rendering. This is a great way to identify components that are rendering unnecessarily and
possibly make more granular observers.

Special API for Special Cases Chapter 7

[162]

The mobx-react-devtools package relies on spy() to print the console
logs for executing actions and reactions.

A few other APIs
There are some miscellaneous APIs that are provided by MobX that are not that frequently
used. It is still worth mentioning them here for the sake of completeness.

Querying the reactive system
When dealing with the various abstractions in MobX (observables, actions, reactions), it is
sometimes useful to know if a certain object, function, or value is of a certain kind. MobX
has a set of isXXX APIs that help you to determine the type of the value:

isObservableObject(thing), isObservableArray(thing),
isObservableMap(thing): Tells you whether the passed in value is an
observable object, array, or map
isObservable(thing) and isObservableProp(thing, property?):
Similar to the preceding point but more generalized check for an observable
value
isBoxedObservable(thing): Whether the value is a boxed observable
isAction(func): Returns true if the function is wrapped by an action
isComputed(thing) and isComputedProp(thing, property?): Checks
whether the value is a computed property

Special API for Special Cases Chapter 7

[163]

Probing deeper into the reactive system
MobX builds up a reactive fabric internally that keeps all of the observables and reactions
connected. We will be exploring these internals in Chapter 9, Mobx Internals, where we will
see the mention of certain terms like atoms. For now, let's take a quick look at the APIs that
give you the internal representation of the observables and reactions:

getAtom(thing, property?): At the heart of every observable is an Atom,
which keeps track of the observers that depend on the observable value. Its
purpose is to report whenever anyone reads or writes to the observable value.
With this API, you get the instance of the Atom that backs the observable.
getDependencyTree(thing, property?): This gives you the tree of
dependencies that the given thing depends on. It can be used to get the
dependencies for a computed property or a reaction.
getObserverTree(thing, property?): This is a counterpart of
getDependencyTree(), which gives you the observers that depend on the
given thing.

Summary
Although there is a lean outer-level API for MobX, there is also a set of APIs for more fine-
grained observation and mutation. We saw how the Object API can be used to make very
surgical changes in your observable tree. With observe() and intercept(), you can
track the changes happening in an observable and also intercept to modify the change.

spy() and trace() are your friends during debugging, and coupled with mobx-react-
devtools, you have a visual debugger for identifying and improving render performance.
These tools and utilities give you a rich Developer eXperience (DX) when working with
MobX.

In Chapter 8, Exploring mobx-utils and mobx-state-tree, we will raise the bar on using MobX
with the special packages mobx-utils and mobx-state-tree.

8
Exploring mobx-utils and mobx-

state-tree
As you start going deeper into the world of MobX, you will realize that certain types of use
cases recur quite often. The first time you solve them, there is a definite sense of
achievement. However, after the fifth time, you want to standardize the solution. mobx-
utils is an NPM package that gives you several standard utilities to handle common use
cases in MobX.

To push the level of standardization even further, we can bring more structured opinions
into our MobX solutions. These opinions have been formed out of several years of MobX
usage, and carry a variety of ideas for rapid development. This is all possible with the
mobx-state-tree NPM package.

In this chapter, we will cover the following packages in greater detail:

mobx-utils for a tool belt of utility functions
mobx-state-tree (MST) for an opinionated MobX

Technical requirements
You will be required to have Node.js installed on a system. Finally, to use the Git repository
of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Mobx- Quick- Start- Guide/ tree/ master/ src/
Chapter08

Check out the following video to see the code in action:
http://bit.ly/2LiFSJO

https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter08
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO
http://bit.ly/2LiFSJO

Exploring mobx-utils and mobx-state-tree Chapter 8

[165]

The utility functions of mobx-utils
mobx-utils provides a variety of utility functions that can simplify programming tasks in
MobX. You can install mobx-utils using npm or yarn:

$ npm install mobx-utils

In the rest of this section, we will focus on some utilities that are frequently used. These
include the following:

fromPromise()

lazyObservable()

fromResource()

now()

createViewModel()

Visualizing async-operations with fromPromise()
Promises, a way of life in JavaScript, are great for dealing with asynchronous operations.
When representing the state of operations on the React UI, we have to ensure each of the
three states of a promise is handled. This includes the state when the promise is pending
(operation in progress), fulfilled (operation completed successfully), or rejected (in
case of failures). fromPromise() is a convenient way to handle a promise, and gives a nice
API to visually represent the three states:

newPromise = fromPromise(promiseLike)

promiseLike: instance of Promise or (resolve, reject) => { }

fromPromise() wraps the given promise and gives back a new, MobX-charged promise
with some additional observable properties:

state: One of the three string values: pending, fulfilled, or rejected: These
are also available as constants on the mobx-utils package:
mobxUtils.PENDING, mobxUtils.FULFILLED, and mobxUtils.REJECTED.
value: The resolved value or the rejected error. Use state to distinguish the
value.
case({pending, fulfilled, rejected}): This is used to provide the React
components for the three states.

Exploring mobx-utils and mobx-state-tree Chapter 8

[166]

Let's see all of this in action with an example. We will create a simple Worker class that
performs some operation, which can randomly fail. Here is the Worker class that tracks the
operation by calling fromPromise(). Notice that we are passing a promise as argument
into fromPromise():

import { fromPromise, PENDING, FULFILLED, REJECTED } from 'mobx-utils';
class Worker {
 operation = null;
 start() {
 this.operation = fromPromise(this.performOperation());
 }
 performOperation() {
 return new Promise((resolve, reject) => {
 const timeoutId = setTimeout(() => {
 clearTimeout(timeoutId);
 Math.random() > 0.25
 ? resolve('200 OK')
 : reject(new Error('500 FAIL'));
 }, 1000);
 });
 }
}

To visualize this operation, we can leverage the case() API to show the corresponding
React component for each state. This can be seen in the following code. As the operation
progresses from pending to fulfilled or rejected, these states will be rendered with
the correct React component. For the fulfilled and rejected states, the resolved value
or the rejected error is passed in as the first argument:

import { fromPromise, PENDING, FULFILLED, REJECTED } from 'mobx-utils';
import { observer } from 'mobx-react';

import React, { Fragment } from 'react';
import { CircularProgress, Typography } from '@material-ui/core/es/index';

@observer
export class FromPromiseExample extends React.Component {
 worker;

 constructor(props) {
 super(props);

 this.worker = new Worker();
 this.worker.start();
 }

 render() {

Exploring mobx-utils and mobx-state-tree Chapter 8

[167]

 const { operation } = this.worker;
 return operation.case({
 [PENDING]: () => (
 <Fragment>
 <CircularProgress size={50} color={'primary'} />
 <Typography variant={'title'}>
 Operation in Progress
 </Typography>
 </Fragment>
),
 [FULFILLED]: value => (
 <Typography variant={'title'} color={'primary'}>
 Operation completed with result: {value}
 </Typography>
),
 [REJECTED]: error => (
 <Typography variant={'title'} color={'error'}>
 Operation failed with error: {error.message}
 </Typography>
),
 });
 }
}

Instead of the case() function, we could have also switched manually on
the observable state property. In fact, case() does that internally.

Using lazyObservable() for deferred updates
For operations that are expensive to perform, it makes sense to defer them until needed.
With lazyObservable(), you can track the result of these operations and update only
when needed. It takes in a function that performs the computation and pushes values when
ready:

result = lazyObservable(sink => { }, initialValue)

Here, sink is the callback to be invoked to push the value onto lazyObservable. The
lazy-observable can also start with some initialValue.

Exploring mobx-utils and mobx-state-tree Chapter 8

[168]

The current value of lazyObservable() can be retrieved using result.current(). Once
a lazy-observable has been updated, result.current() will have some value. To update
the lazy-observable again, you can use result.refresh(). This will re-invoke the
computation and eventually push new values via the sink callback. Note that the sink
callback can be invoked as many times as needed.

In the following snippet, you can see the use of lazyObservable() to update the value of
the operation:

import { lazyObservable } from 'mobx-utils';

class ExpensiveWorker {
 operation = null;

 constructor() {
 this.operation = lazyObservable(async sink => {
 sink(null); // push an empty value before the update
 const result = await this.performOperation();
 sink(result);
 });
 }

 performOperation() {
 return new Promise(resolve => {
 const timeoutId = setTimeout(() => {
 clearTimeout(timeoutId);
 resolve('200 OK');
 }, 1000);
 });
 }
}

The call to the current() method is tracked by MobX, so make sure you
only call it when needed. The use of this method inside render() causes
MobX to re-render the component. After all, render() of a component
translates to a reaction in MobX, which re-evaluates whenever any of its
tracked observables change.

To use the lazy-observable inside a React component (an observer), we rely on
the current() method to fetch its value. MobX will track this value and re-render the
component whenever it changes. Notice in the onClick handler of the button, we are
causing an update of the lazy-observable by calling its refresh() method:

import { observer } from 'mobx-react';
import React, { Fragment } from 'react';
import {

Exploring mobx-utils and mobx-state-tree Chapter 8

[169]

 Button,
 CircularProgress,
 Typography,
} from '@material-ui/core/es/index';

@observer
export class LazyObservableExample extends React.Component {
 worker;
 constructor(props) {
 super(props);

 this.worker = new ExpensiveWorker();
 }
 render() {
 const { operation } = this.worker;
 const result = operation.current();
 if (!result) {
 return (
 <Fragment>
 <CircularProgress size={50} color={'primary'} />
 <Typography variant={'title'}>
 Operation in Progress
 </Typography>
 </Fragment>
);
 }
 return (
 <Fragment>
 <Typography variant={'title'} color={'primary'}>
 Operation completed with result: {result}
 </Typography>
 <Button
 variant={'raised'}
 color={'primary'}
 onClick={() => operation.refresh()}
 >
 Redo Operation
 </Button>
 </Fragment>
);
 }
}

Exploring mobx-utils and mobx-state-tree Chapter 8

[170]

A generalized lazyObservable() with fromResource()
There is also a more generalized form of lazyObservable() called fromResource().
Similar to lazyResource(), it takes in a function with the sink callback. This acts as a
subscribing function, which is invoked only when the resource is actually requested.
Additionally, it takes a second argument, an unsubscribing function, which can be used to
clean up when the resource is no longer needed:

resource = fromResource(subscriber: sink => {}, unsubscriber: () => {},
 initialValue)

fromResource() gives back an observable which will start fetching values when
its current() method is invoked the first time. It gives back an observable that also has
the dispose() method to stop updating values.

In the following snippet, you can see a DataService class relying on fromResource() to
manage its WebSocket connection. The value of the data can be retrieved with
data.current(). Here, data acts as the lazy-observable. In the subscribing function, we set
up our WebSocket and subscribe to a specific channel. We unsubscribe from this channel in
the unsubscribing function of fromResource():

import { fromResource } from 'mobx-utils';

class DataService {
 data = null;
 socket = null;

 constructor() {
 this.data = fromResource(
 async sink => {
 this.socket = new WebSocketConnection();
 await this.socket.subscribe('data');

 const result = await this.socket.get();

 sink(result);
 },
 () => {
 this.socket.unsubscribe('data');
 this.socket = null;
 },
);
 }
}

const service = new DataService();

Exploring mobx-utils and mobx-state-tree Chapter 8

[171]

console.log(service.data.current());

// After some time, when no longer needed
service.data.dispose();

We can explicitly dispose of the resource with the dispose() method. However, MobX is
smart enough to know when there are no more observers of this resource and automatically
calls the unsubscribe function.

A special kind of lazy-observable provided by mobx-utils is
now(interval: number). It treats time as an observable and updates at
the given interval. You can retrieve its value by simply calling now(),
which, by default, updates every second. By the virtue of being an
observable, it will also cause any reaction to execute every second.
Internally, now() uses the fromResource() utility to manage the timer.

A view model to manage edits
In a data-entry-based application, it is quite common to have forms to accept a variety of
fields. In these forms, the original model is not mutated until the user submits the form.
This allows the user to cancel out of the editing process and go back to the previous values.
A scenario like this requires creating a clone of the original model and pushing the edits
upon submit. Although this technique is not terribly complex, it does add some boilerplate.

mobx-utils provides a handy utility called createViewModel() that is tailor-made for
this scenario:

viewModel = createViewModel(model)

model is the original model containing observable properties. createViewModel() wraps
this model and proxies all the reads and writes. This utility has some interesting
characteristics, as follows:

As long as a property of viewModel is not changed, it will return the value from
the original model. After a change, it will return the updated value and also
treat viewModel as dirty.
To finalize the updated values on the original model, you must call the
submit() method of viewModel. To reverse any changes, you can invoke the
reset() method. To revert a single property, use
resetProperty(propertyName: string).

Exploring mobx-utils and mobx-state-tree Chapter 8

[172]

To check if viewModel is dirty, use the isDirty property. To check if a single
property is dirty, use isPropertyDirty(propertyName: string).
To get the original model, use the handy model() method.

The advantage of using createViewModel() is that you can treat the whole editing
process as a single transaction. It is final only when submit() is invoked. This allows you
to cancel out prematurely and retain the original model in its previous state.

In the following example, we are creating a viewModel that wraps the FormData instance
and logs the viewModel and model properties. You will notice the proxying effect of
viewModel and how values propagate back to the model upon submit():

class FormData {
 @observable name = '<Unnamed>';
 @observable email = '';
 @observable favoriteColor = '';
}

const viewModel = createViewModel(new FormData());

autorun(() => {
 console.log(
 `ViewModel: ${viewModel.name}, Model: ${
 viewModel.model.name
 }, Dirty: ${viewModel.isDirty}`,
);
});

viewModel.name = 'Pavan';
viewModel.email = 'pavan@pixelingene.com';
viewModel.favoriteColor = 'orange';

console.log('About to reset');
viewModel.reset();

viewModel.name = 'MobX';

console.log('About to submit');
viewModel.submit();

Exploring mobx-utils and mobx-state-tree Chapter 8

[173]

The log from autorun() is as follows. You can see the effect of submit() and reset() on
the viewModel.name property:

ViewModel: <Unnamed>, Model: <Unnamed>, Dirty: false
ViewModel: Pavan, Model: <Unnamed>, Dirty: true
About to reset...
ViewModel: <Unnamed>, Model: <Unnamed>, Dirty: false
ViewModel: MobX, Model: <Unnamed>, Dirty: true
About to submit...
ViewModel: MobX, Model: MobX, Dirty: false

There is lot more to discover
The handful of utilities described here is by no means exhaustive. mobx-utils provides
many more utilities, and we strongly encourage you to take a look at the GitHub project
(https://github.com/ mobxjs/ mobx- utils) to discover the remaining utility functions.

There are functions to convert between RxJS streams and MobX Observables, processor-
functions that can perform an operation anytime an observable-array is appended, a variant
of the MobX when(), which automatically disposes after a timeout, and many more.

An opinionated MobX with mobx-state-tree
MobX is very flexible in how you organize your state and apply the various actions and
reactions. However, it does leave some questions for you to answer:

Should classes be used or just plain objects with extendObservable()?
How should the data be normalized?
How to deal with circular references when serializing the state?
And many more

mobx-state-tree is a package that gives you prescriptive guidance for organizing and
structuring your observable state. Adopting the MST style of thinking gives you several
benefits out of the box. In this section, we will explore this package and its benefits.

https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils
https://github.com/mobxjs/mobx-utils

Exploring mobx-utils and mobx-state-tree Chapter 8

[174]

Models – properties, views, and actions
mobx-state-tree as the name suggests, organizes the state in a tree of models. It's a
model-first approach, where each model defines the state that needs to be captured.
Defining the model adds the ability to type-check the model assignments at runtime and
guard you against inadvertent changes. Combining the runtime checks with the use of a
language like TypeScript also gets you compile-time (or rather, design-time) type-safety.
With a strictly typed model, mobx-state-tree gives you safe guarantees and ensures the
integrity and constraints of your typed-models. This in itself is a huge benefit, especially
when dealing with a dynamic language like JavaScript.

Let's put MST into action with a simple model for Todo:

import { types } from 'mobx-state-tree';

const Todo = types.model('Todo', {
 title: types.string,
 done: false,
});

A model describes the shape of data it holds. In case of the Todo model, it only needs a
title string and a boolean done property. Note that we assigned our model to a capitalized
name (Todo). This is because MST really defines a type and not an instance.

All of the built-in types in MST are part of the types namespace. The types.model()
method takes two arguments: an optional string name (used for debugging and error
reporting) and an object defining the various properties of the type. All of these properties
will be qualified with strict types. Let's try creating an instance of this model:

const todo = Todo.create({
 title: 'Read a book',
 done: false,
});

Notice how we have passed the same structure of data into Todo.create() as defined in
the model. Passing any other kind of data will result in MST throwing type-errors. Creating
an instance of the model has also made all its properties into observables. This means we
can now use the full power of the MobX API.

Exploring mobx-utils and mobx-state-tree Chapter 8

[175]

Let's create a simple reaction that will log the changes to the todo instance:

import { autorun } from 'mobx';

autorun(() => {
 console.log(`${todo.title}: ${todo.done}`);
});

// Toggle the done flag
todo.done = !todo.done;

If you run this code, you will notice an exception being thrown, as follows:

Error: [mobx-state-tree] Cannot modify 'Todo@<root>', the object is
protected and can only be modified by using an action.

This happens because we have modified the todo.done property outside of an action. You
will recollect from earlier chapters that it's a good practice to wrap all observable-mutations
inside an action. In fact, there is even a MobX API: configure({ enforceActions:
'strict' }), to ensure this happens. MST is very protective about the data in its state-tree
and mandates the use of actions for all mutations.

This may sound very rigid, but it does come with added benefits. For example, the use of
actions allows MST to provide first-class support for middleware. Middleware can intercept
any changes happening to the state-tree and make it trivial to implement features such
as Logging, Time Traveling, Undo/Redo, Database Synchronization, and so on.

Defining actions on the model
The model type Todo that we created earlier can be extended with a chained API.
actions() is one such API that can be used to extend the model type with all the action
definitions. Let's do that for our Todo type:

const Todo = types
 .model('Todo', {
 title: types.string,
 done: false,
 })
 .actions(self => ({
 toggle() {
 self.done = !self.done;
 },
 }));

const todo = Todo.create({

Exploring mobx-utils and mobx-state-tree Chapter 8

[176]

 title: 'Read a book',
 done: false,
});

autorun(() => {
 console.log(`${todo.title}: ${todo.done}`);
});

todo.toggle();

The actions() method takes in a function that receives the instance of the model as its
argument. Here, we are calling it self. This function is supposed to return a key-value
map that defines all the actions. In the preceding snippet, we are leveraging the object-
literal syntax of ES2015 to make the actions object look more readable. There are some
striking benefits of this style of accepting the actions:

The use of a function allows you to create a closure that can be used to track the
private state that is only used by the actions. For example, a WebSocket
connection that is set up inside one of the actions that should never be exposed to
the outside world.
By passing an instance of the model to actions(), you can guarantee that the
this pointer is always correct. You never have to worry about the context of the
functions defined in actions() anymore. The toggle() action makes use of
self to mutate the model instance.

The actions defined can be invoked directly on the model instance, which is what we do
with todo.toggle(). MST has no more complaints about direct mutation, and autorun()
will also fire when todo.done changes.

Creating derived information with views
Similar to actions, we can also extend the model type with views(). Derived information
in a model is defined using views() in MST. Just like the actions() method, it can be
chained to the model type:

const Todo = types
 .model(/* ... */)
 .actions(/* ... */)
 .views(self => ({
 get asMarkdown() {
 return self.done
 ? `* [x] ~~${self.title}~~`
 : `* [] ${self.title}`;

Exploring mobx-utils and mobx-state-tree Chapter 8

[177]

 },

 contains(text) {
 return self.title.indexOf(text) !== -1;
 },
 }));

const todo = Todo.create({
 title: 'Read a book',
 done: false,
});

autorun(() => {
 console.log(`Title contains "book"?: ${todo.contains('book')}`);
});

console.log(todo.asMarkdown);
// * [] Read a book

console.log(todo.contains('book')); // true

There are two views introduced on the Todo type:

asMarkdown() is a getter that translates to a MobX computed-property. Like
every computed-property, its output is cached.
contains() is a regular function whose output is not cached. However, it does
have the ability to re-execute when used in a reactive context such
as reaction() or autorun().

mobx-state-tree introduces a very strict concept of models with clearly defined state,
actions, and derivations. If you feel uncertain about structuring your code in MobX, MST can
help you apply the MobX philosophy with clear guidance.

Fine-tuning primitive types
The single model type that we have seen so far is just the beginning and can barely be
called a tree. We can expand the domain-model to make it more realistic. Let's add a User
type, who will be creating the todo items:

import { types } from 'mobx-state-tree';

const User = types.model('User', {
 name: types.string,
 age: 42,

Exploring mobx-utils and mobx-state-tree Chapter 8

[178]

 twitter: types.maybe(types.refinement(types.string, v =>
 /^\w+$/.test(v))),
});

There are some interesting details in the preceding definition, as follows:

The age property has been defined as the constant 42, which translates to a
default value for age. When no value is provided for a user, it will be set to this
default value. Additionally, MST is smart enough to derive the type to be
number. This works well for all the primitive types, where the type of the default
value will be inferred as the type of the property. Also, by giving a default value,
we are suggesting that the age property is optional. A more verbose form of
declaring the property is: types.optional(types.number, 42).
The twitter property has a more complicated definition but can be broken
down easily. types.maybe() suggests that a twitter handle is optional, so it
could be undefined. When a value is provided, it must be of type string. But not
any string; only strings that match the provided regular-expression. This gives
you runtime type-safety and rejects invalid Twitter handles such as Calvin &
Hobbes or an empty string.

The type system provided by MST is very powerful and can handle a variety of complex
type specifications. It also composes well, and gives you a functional approach to
combining many smaller types into a larger type definition. These type specifications give
you runtime safety and ensure the integrity of your domain model.

Composing trees
Now that we have the Todo and User types, we can define the top-level App type that
composes the types defined previously. The App type represents the state of the application:

const App = types.model('App', {
 todos: types.array(Todo),
 users: types.map(User),
});

const app = App.create({
 todos: [
 { title: 'Write the chapter', done: false },
 { title: 'Review the chapter', done: false },
],
 users: {
 michel: {
 name: 'Michel Westrate',

Exploring mobx-utils and mobx-state-tree Chapter 8

[179]

 twitter: 'mwestrate',
 },
 pavan: {
 name: 'Pavan Podila',
 twitter: 'pavanpodila',
 },
 },
});

app.todos[0].toggle();

We have defined the App type by using higher-order types (types that take a type as input
and create a new type). In the preceding snippet, types.map() and types.array() create
these higher-order types.

Creating an instance of the App type is just a matter of providing the right JSON payload.
As long as the structure matches the type-specification, MST will have no problem in
constructing the model instances at runtime.

Remember: The shape of the data will always be validated by MST. It will
never allow data updates that don't match the model's type specification.

Notice in the preceding snippet, we are able to call the app.todos[0].toggle() method
seamlessly. This is because MST was able to build the app instance successfully and wrap
the JSON nodes with proper types.

mobx-state-tree elevates the importance of modeling your application
state. Defining the proper types for the various entities in your application
is paramount for its structural and data integrity. A nice way to get started
is to encode the JSON you receive from the server in MST models. The
next step is to fatten the model by adding more rigid typing, and
attaching actions and views.

Exploring mobx-utils and mobx-state-tree Chapter 8

[180]

References and identifiers
So far, this chapter has been entirely about capturing the state of the application in a tree.
Trees have many interesting properties and are easy to comprehend and explore. But often,
when one starts to apply a new technology to real problem domains, it turns out that trees
are conceptually not sufficient to describe problem domains. For example, friendship-
relationships are bidirectional and don't fit unidirectional trees. Dealing with relationships
that are not compositional in nature, but rather associative, often requires introducing new
abstraction layers and techniques such as data normalization.

A quick example of such a relationship can be introduced in our application by giving
Todo an assignee property. Now, it is clear that Todo does not own its assignee, and
neither is the inverse true; todos are not owned by a single user, as they can be reassigned
later. So when composition does not suffice to describe the relationship, we often fall back
to using foreign keys to describe the relationships.

In other words, the JSON of a Todo item could be like the following code, where
the assignee field of Todo corresponds to the userid field of a User object:

Using name to store the assignee relationship would be a bad idea, as
the name of a person is not unique and it might change over time.

{
 todos: [
 {
 title: 'Learn MST',
 done: false,
 assignee: '37',
 },
],
 users: {
 '37': {
 userid: '37',
 name: 'Michel Weststrate',
 age: 33,
 twitter: 'mweststrate',
 },
 },
}

Exploring mobx-utils and mobx-state-tree Chapter 8

[181]

Our initial take on this might be to type the assignee and userid attributes
as types.string fields. Then, whenever we need it, we could look up the designated user
in the users map, since the user is stored under its own userid. Since the user lookup
could be a commonly needed operation, we could even introduce a view and action to read
or write to that user. That will make our user model as seen in the following code:

import { types, getRoot } from 'mobx-state-tree';

const User = types.model('User', {
 userid: types.string, // uniquely identifies this User
 name: types.string,
 age: 42,
 twitter: types.maybe(types.refinement(types.string, v =>
/^\w+$/.test(v))),
});

const Todo = types
 .model('Todo', {
 assignee: types.string, // represents a User
 title: types.string,
 done: false,
 })
 .views(self => ({
 getAssignee() {
 if (!this.assignee) return undefined;
 return getRoot(self).users.get(this.assignee);
 },
 }))
 .actions(self => ({
 setAssignee(user) {
 if (typeof user === 'string') this.assignee = user;
 else if (User.is(user)) this.assignee = user.userid;
 else throw new Error('Not a valid user object or user id');
 },
 }));

const App = {
 /* as is */
};

const app = App.create(/* ... */);

console.log(app.todos[0].getAssignee().name); // Michel Weststrate

Exploring mobx-utils and mobx-state-tree Chapter 8

[182]

In the getAssignee() view, we conveniently use the fact that every MST node knows its
own location in the tree. By leveraging the getRoot() utility, we can navigate to
the users map and grab the correct User object. By using the getAssignee() view, we
obtain a real User object so that we can directly access and print its name property.

There are several useful utilities that can be used to reflect on or work
with the location in a tree, such
as getPath(), getParent() , getParentOfType(), and so on. As an
alternative, we could have expressed the getAssignee() view as return
resolvePath(self, "../../users/" + self.assignee).

We can treat the MST tree as a filesystem for state! getAssignee() just
translates to a symlink.

Additionally, an action to update the assignee property has been introduced. To make
sure the setAssignee() action can be conveniently invoked by either providing
userid, or an actual user object, we apply some type-discrimination. In MST, every type not
only exposes the create() method, but also the is method, to check if a given value is of
the respective type.

Referencing by types.identifier() and types.reference()
It is nice that we can neatly express these lookup/update utilities in MST, but if your
problem domain is large, this becomes quite a repetitive pattern. Luckily, this pattern is
built into MST. The first type we can leverage is types.identifier(), which indicates
that a certain field uniquely identifies an instance of a certain model type. So, in our
example, rather than typing userid as types.string we can type it
as types.identifier().

Secondly, there is types.reference(). This type indicates that a certain field is serialized
as a primitive value, but actually denotes a reference to another type in the tree. MST will
automatically match identifier fields with reference fields for us, so we can simplify
our previous state-tree model to the following:

import { types } from "mobx-state-tree"

const User = types.model("User", {
 userid: types.identifier(), // uniquely identifies this User
 name: types.string,
 age: 42,
 twitter: types.maybe(types.refinement(types.string, (v =>
/^\w+$/.test(v))))

Exploring mobx-utils and mobx-state-tree Chapter 8

[183]

})

const Todo = types.model("Todo", {
 assignee: types.maybe(types.reference(User)), // a Todo can be assigned
to a User
 title: types.string,
 done: false
})

const App = /* as is */

const app = App.create(/* */)
console.log(app.todos[0].assignee.name) // Michel Weststrate

Thanks to the reference type, reading the assignee attribute of Todo will actually resolve
the stored identifier and return the correct User object. Thus, we can immediately print its
name in the preceding example. Note that, behind the scenes, our state is still a tree. It is
also important to notice that we don't have to specify where or how references
to User instances should be resolved. MST will automatically maintain an internal type +
identifier based lookup table for resolving references. By using references and identifiers, MST
has enough type information to automatically handle the data (de)normalization for us.

types.reference is quite powerful and can be customized to, for
example, resolve objects based on relative paths (like a real symlink!)
instead of identifiers. In many cases, you will
combine types.reference with types.maybe as above, to express that
Todo does not necessarily have an assignee. Likewise, arrays and maps
of references can be modeled in similar ways.

Out-of-the-box benefits of declarative models
MST helps you organize and model complex problem domains in a declarative fashion.
Because of a consistent approach to defining the types in your domain, we get the benefit of
a clean and simple mental model. This consistency also gets us many out-of-the-box features,
since MST has deep knowledge of the state-tree. One example we saw earlier was with
automatic data-normalization with the use of identifiers and references. There are many more
features built into MST. Of the lot, a few stand out as being most practical. We will briefly
discuss them in the rest of this section.

Exploring mobx-utils and mobx-state-tree Chapter 8

[184]

Immutable snapshots
MST always keeps an immutable version of the state-tree in memory, which can be
retrieved using the getSnapshot() API. Essentially, const snapshot =
getSnapshot(tree) is the inverse of const tree =
Type.create(snapshot). getSnapshot() makes it very convenient to quickly serialize
the entire state of a tree. Since MST is powered by MobX, we can nicely track this as well.

Snapshots translate to computed-properties on the model instances.

The following snippet automatically stores the state of the tree in local-storage upon each
change, but no more than once per second:

import { reaction } from 'mobx';
import { getSnapshot } from 'mobx-state-tree';

const app = App.create(/* as before */);

reaction(
 () => getSnapshot(app),
 snapshot => {
 window.localStorage.setItem('app', JSON.stringify(snapshot));
 },
 { delay: 1000 },
);

It should be pointed out that every node in an MST tree is an MST tree in itself. This means,
any operation invoked on the root could also be invoked on any of its subtrees. For
example, if we only want to store a part of the entire state, we could just get a snapshot of
the subtree.

A corollary API that goes hand in hand with getSnapshot() is
applySnapshot(). This can be used to update a tree with a snapshot in
an efficient manner. By
combining getSnapshot() and applySnapshot(), you can build a time
traveler in just a few lines of code! This is left as an exercise for the reader.

Exploring mobx-utils and mobx-state-tree Chapter 8

[185]

JSON patches
Although snapshots efficiently capture the state of the entire application, they are not
suitable for frequent communication with a server or other clients. This is because the size
of a snapshot grows linearly with the size of the state you want to serialize. Instead, for
real-time changes, it is better to send incremental updates to the server. JSON-
patch (RFC-6902) is an official standard on how these incremental updates should be
serialized, and MST supports this standard out of the box.

The onPatch() API can be used to listen to the patches being generated as a side effect of
your changes. On the other hand, applyPatch() performs the inverse process: given a
patch, it can update an existing tree. The onPatch() listener emits the patches generated
as a result of the state changes made by actions. It also exposes the so-called inverse-patches:
a set that can undo the changes made by the patches:

import { onPatch } from 'mobx-state-tree';

const app = App.create(/* see above */);

onPatch(app, (patches, inversePatches) => {
 console.dir(patches, inversePatches);
});

app.todos[0].toggle();

The preceding code, which toggles the todo, prints the following to the console:

// patches:

[{
 op: "replace",
 path: "/todos/0/done",
 value: true
}]

// inverse-patches:

[{
 op: "replace",
 path: "/todos/0/done",
 value: false
}]

Exploring mobx-utils and mobx-state-tree Chapter 8

[186]

Middlewares
We briefly mentioned middlewares in an earlier section, but let's expand on it here.
Middlewares act as interceptors of the actions invoked on the state-tree. Because MST
mandates the use of actions, we are assured that every action will pass through the
middleware. The presence of middleware makes it trivial to implement several cross-
cutting features, such as the following:

Logging
Authentication
Time travel
Undo/Redo

In fact, the mst-middlewares NPM package contains some of the previously mentioned
middlewares, as well as a few more. For more details about these middlewares, refer
to: https://github. com/ mobxjs/ mobx- state- tree/ blob/ master/ packages/ mst-
middlewares/README. md.

Further reading
We have hardly scratched the surface of MobX-State-Tree, but hopefully it has left an
impression around organizing and structuring the observable state in MobX. It is a well-
defined, community-driven approach that bakes in many of the best practices discussed
throughout this book. For a deeper exploration of MST, you can refer to the official getting-
started guide at: https:/ / github. com/ mobxjs/ mobx- state- tree/ blob/ master/ docs/
getting-started. md#getting- started.

Summary
In this chapter, we covered the practical aspects of adopting MobX with packages such
as mobx-utils and mobx-state-tree. These packages codify the community wisdom
around using MobX for a variety of scenarios.

mobx-utils gives you a set of utilities for tackling asynchronous tasks, dealing with
expensive updates, creating view models for transactional-editing, and much more.

https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/packages/mst-middlewares/README.md
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started
https://github.com/mobxjs/mobx-state-tree/blob/master/docs/getting-started.md#getting-started

Exploring mobx-utils and mobx-state-tree Chapter 8

[187]

mobx-state-tree is a comprehensive package that is meant to simplify application
development with MobX. It takes a prescriptive approach to structuring and organizing the
observable state in MobX. With such a declarative approach, MST is able to get a deeper
understanding of the state-tree and offer a variety of features, such as runtime type-
checking, snapshots, JSON-patches, middlewares, and so on. Overall, it helps in developing
a crisp mental model of your MobX application and puts the typed-domain-model at the
forefront.

In the next chapter, we will culminate the journey on MobX with a peek into its inner
workings. If there are parts of MobX that seem like black magic, the next chapter will dispel
all such myths.

9
Mobx Internals

The MobX we have seen so far was from a consumer's standpoint, which focused on how it
should be used, the best practices, and the APIs for tackling real-world use cases. This
chapter takes it a level below and exposes the machinery behind the MobX reactive system.
We will look at the underpinnings and the core abstractions that makes the triad of
Observables-Actions-Reactions come to life.

The topics that will be covered in this chapter include the following:

The layered architecture of MobX
Atoms and ObservableValues
Derivations and reactions
What is Transparent Functional Reactive Programming?

Technical requirements
You will be required to have Node.js installed on a system. Finally, to use the Git repository
of this book, the user needs to install Git.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Mobx- Quick- Start- Guide/ tree/ master/ src/
Chapter09

Check out the following video to see the code in action:
http://bit.ly/2LvAouE

https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
https://github.com/PacktPublishing/Mobx-Quick-Start-Guide/tree/master/src/Chapter09
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE
http://bit.ly/2LvAouE

Mobx Internals Chapter 9

[189]

A layered architecture
Like any good system, MobX is built up of layers where each layer provides the services
and behaviors for the higher layers. If you apply this lens on MobX, you can see these
layers, bottom-up:

Atoms: Atoms are the foundation of MobX observables. As the name suggests,
they are the atomic pieces of the observable dependency tree. It keeps track of its
observers but does not actually store any value.
ObservableValue, ComputedValue, and Derivations: ObservableValue
extends Atom and provides the actual storage. It is also the core implementation
of boxed Observables. In parallel, we have derivations and reactions, which are
the observers of the atoms. They respond to changes in atoms and schedule
reactions. ComputedValue builds upon the derivations and also acts as an
observable.
Observable{Object, Array, Map} and APIs: These data structures build on top of
ObservableValue and use it to represent their properties and values. This also
acts as the API layer of MobX, the primary means of interfacing with the library
from the consumer's standpoint.

The separation of layers is also visible in the source code where there are
separate folders for different abstraction layers of MobX. It is not a one-to-
one match with what we have described here, but conceptually these
layers have lot of parallels in code as well. All of the code in MobX has
been written using TypeScript with first class support.

Mobx Internals Chapter 9

[190]

The Atom
The reactive system of MobX is backed by a graph of dependencies that exist between the
observables. One observable's value could depend on a set of observables, which in turn
could depend on other observables. For example, a shopping cart could have a computed
property called description that depends on the array of items it holds and any coupons
that were applied. Internally, coupons could depend on the validCoupons computed
property of the CouponManager class. In code, this could look like so:

class Coupon {
 @observable isValid = false;

 /*...*/
}

class CouponManager {
 @observable.ref coupons = [];

 @computed
 get validCoupons() {
 return this.coupons.filter(coupon => coupon.isValid);
 }

 /*...*/
}

class ShoppingCart {
 @observable.shallow items = [];

 couponManager = new CouponManager();

 @computed
 get coupons() {
 return this.couponManager.validCoupons;
 }

 @computed
 get description() {
 return `Cart has ${this.items.length} item(s) with ${
 this.coupons.length
 } coupon(s) applied.`;
 }

 /*...*/
}

Mobx Internals Chapter 9

[191]

Visualizing this set of dependencies could give us a simple diagram like so:

At runtime, MobX will create a backing dependency tree. Each node in this tree will be
represented by an instance of Atom, the core building block of MobX. Thus, we can expect
five atoms for the nodes in the tree in the preceding diagram.

An atom serves two purposes:

Notify when it is read. This is done by calling reportObserved().
Notify when it is changed. This is done by calling reportChanged().

As a node of the MobX reactivity fabric, an atom plays the important role
of notifying the reads and writes happening on each node.

Internally, an atom keeps track of its observers and informs them of the changes. This will
happen when reportChanged() is called. A glaring omission here is that the actual value
of the atom is not stored in the Atom itself. For that, we have a subclass called
ObservableValue that builds on top of the Atom. We will look at that in the next section.

Mobx Internals Chapter 9

[192]

So, an atom's core contract consists of the two methods we mentioned earlier. It also
contains a few housekeeping properties like an array of observers, whether it is being
observed, and so on. We can safely ignore them for our discussion:

class Atom {
 observers = [];

 reportObserved() {}
 reportChanged() {}

 /* ... */
}

Reading atoms at runtime
MobX also gives you the ability to see the backing atoms at runtime. Going back to our
previous example of the computed description property, let's explore its dependency
tree:

import { autorun, $mobx, getDependencyTree } from 'mobx';

const cart = new ShoppingCart();
const disposer = autorun(() => {
 console.log(cart.description);
});

const descriptionAtom = cart[$mobx].values.get('description');
console.log(getDependencyTree(descriptionAtom));

There are few details that stand out in the preceding snippet:

MobX gives you a special symbol, $mobx, that contains a reference to the internal
housekeeping structure of the observable. The cart instance maintains a map of
all of its observable properties using cart[$mobx].values. The backing atom
for the description property is obtained by reading from this
map: cart[$mobx].values.get('description').
We can get hold of the dependency tree for this property using the
getDependencyTree() function exposed by MobX. It takes in an Atom as its
input and gives back an object describing the dependency tree.

Mobx Internals Chapter 9

[193]

Here is the output of getDependencyTree() for the description property. A few extra
details have been removed for clarity. The reason why you see ShoppingCart@16.items
mentioned twice is because it points to the items (the reference) and items.length
properties:

{
 name: 'ShoppingCart@16.description',
 dependencies: [
 { name: 'ShoppingCart@16.items' },
 { name: 'ShoppingCart@16.items' },
 {
 name: 'ShoppingCart@16.coupons',
 dependencies: [
 {
 name: 'CouponManager@19.validCoupons',
 dependencies: [{ name: 'CouponManager@19.coupons' }],
 },
],
 },
],
};

There is also a convenient API, getAtom(thing: any, property:
string), to read atoms from observables and observers. For example, in
our previous example, instead of using the special symbol $mobx and
reading into its internal structure, we can get the description atom with
getAtom(cart, 'description'). getAtom() is exported from the
mobx package.

As an exercise, find out the dependency tree for autorun() in the
previous code snippet. You can get hold of the instance of the reaction
with disposer[$mobx] or getAtom(disposer). Similarly, there is also
the getObserverTree() utility that gives you the observers depending
on the given observable. See if you can find the connection
to autorun() from the atom backing the description property.

Creating an Atom
As a MobX user, you would rarely use an Atom directly. Instead, you would rely on other
convenience APIs exposed by MobX or data structures like ObservableObject,
ObservableArray, or ObservableMap. However, the real world always creates situations
where you may have to dive a few levels deeper.

Mobx Internals Chapter 9

[194]

MobX does give you a convenient factory function for creating atoms, aptly named
createAtom():

createAtom(name, onBecomeObservedHandler, onBecomeUnobservedHandler)

name (string): The name of the atom, which is utilized by the debugging and
tracing facilities in MobX
onBecomeObservedHandler (() => { }): A callback function to get notified
when an atom gets observed for the first time
onBecomeUnobservedHandler (() => { }): A callback function to get notified
when an atom is no longer being observed

onBecomeObserved and onBecomeUnobserved are the two points in time when an atom
becomes active and inactive in the reactivity system. These are normally meant for resource
management, to set up and tear down, respectively.

The atomic clock example
Let's look at an example of using Atom that also illustrates how an atom participates in the
reactive system. We will create a simple clock that starts ticking when an atom gets observed
and stops when it is no longer observed. In essence, our resource here is the timer (clock)
that is being managed by the use of an Atom:

import { createAtom, autorun } from 'mobx';

class Clock {

 constructor() {
 this.atom = createAtom(
 'Clock',
 () => {
 this.startTicking();
 },
 () => {
 this.stopTicking();
 },
);

 this.intervalId = null;
 }

 startTicking() {
 console.log('Clock started');

Mobx Internals Chapter 9

[195]

 this.tick();
 this.intervalId = setInterval(() => this.tick(), 1000);
 }

 stopTicking() {
 clearInterval(this.intervalId);
 this.intervalId = null;

 console.log('Clock stopped');
 }

 tick() {
 this.atom.reportChanged();
 }

 get() {
 this.atom.reportObserved();
 return new Date();
 }
}

const clock = new Clock();

const disposer = autorun(() => {
 console.log(clock.get());
});

setTimeout(disposer, 3000);

There are many interesting details in the preceding snippet. Let's list them out here:

In the call to createAtom(), we are supplying the handler when the atom
becomes observed and also when it is no longer being observed. It might seem a
little mysterious when the atom actually becomes observed. The secret here is the
use of autorun(), which sets up a side effect to read the current value of the
atomic clock. Since an autorun() runs immediately, clock.get() is called,
which in turn calls this.atom.reportObserved(). This is how the atom
becomes active in the reactive system.
Once the atom becomes observed, we start the clock timer, which ticks every
second. This is happening in the onBecomeObserved callback, where we call
this.startTicking().
Every second, we call this.atom.reportChanged(), which propagates the
changed value to all observers. In our case, we only have one, autorun(), which
re-executes and prints the console log.

Mobx Internals Chapter 9

[196]

We don't have to store the current time since we return a new value in every call
to get().
The other mysterious detail is when the atom becomes unobserved. This happens
when we dispose of autorun() after three seconds, causing the
onBecomeUnobserved callback to be invoked on the atom. Inside the callback,
we stop the timer and clean up the resource.

Since Atoms are just the nodes of the dependency tree, we need a construct that can store
the value of the observable. That is where the ObservableValue class comes in. Think of it
as an Atom with value. MobX internally distinguishes between two kinds of observable
values, ObservableValue and ComputedValue. Let's see them in turn.

ObservableValue
ObservableValue is a subclass of Atom that adds the ability to store the value of the
observable. It also adds a few more capabilities such as providing hooks for intercepting a
value change and observing the value. This is also part of the definition for
ObservableValue. Here is a simplified definition of ObservableValue:

class ObservableValue extends Atom {
 value;

 get() {
 /* ... */
 this.reportObserved();
 }

 set(value) {
 /* Pass through interceptor, which may modify the value (newValue)
... */

 this.value = newValue;
 this.reportChanged();
 }

 intercept(handler) {}
 observe(listener, fireImmediately) {}
}

Mobx Internals Chapter 9

[197]

Notice the calls to reportObserved() in the get() method and reportChanged() in the
set() method. These are the places where the atom's value is read and written to. By
invoking these methods, an ObservableValue participates in the reactivity system. Also
note that intercept() and observe() are not really part of the reactivity system. They
are more like event emitters that hook into the changes happening to the observable value.
These events are not affected by transactions, which means that they are not queued up till
the end of the batch and instead fire immediately.

An ObservableValue is also the foundation for all of the higher-level constructs in MobX.
This includes Boxed Observables, Observable Objects, Observable Arrays, and Observable
Maps. The values stored in these data structures are instances of an ObservableValue.

The thinnest wrapper around an ObservableValue is the boxed observable, which you
create using observable.box(). This API literally gives you back an instance of the
ObservableValue. You can use this to call any of the methods on ObservableValue, as
you can see in the following snippet:

import {observable} from 'mobx';

const count = observable.box(0);

count.intercept(change => {
 console.log('Intercepted:', change);

 return change; // No change
 // Prints
 // Intercepted: {object: ObservableValue$$1, type: "update", newValue:
1}
 // Intercepted: {object: ObservableValue$$1, type: "update", newValue:
2}
});

count.observe(change => {
 console.log('Observed:', change);
 // Prints
 // Observed: {object: ObservableValue$$1, type: "update", newValue: 1}
 // Observed: {object: ObservableValue$$1, type: "update", newValue: 2,
oldValue: 1}
});

// Increment
count.set(count.get() + 1);

count.set(count.get() + 1);

Mobx Internals Chapter 9

[198]

ComputedValue
The other kind of observable value that you can have in an observable tree is the
ComputedValue. This is different from an ObservableValue in many ways. An
ObservableValue provides storage for the underlying atom and has its own value. All the
data structures provided by MobX, such as Observable Object/Array/Map, rely on the
ObservableValue to store the leaf-level values. ComputedValue is special in the sense
that it does not have an intrinsic value of its own. Its value, as the name suggests, is
computed from other observables, including other computed values:

This becomes evident in the definition of ComputedValue, where it does not subclass Atom.
Instead, it has an interface that is similar to ObservableValue, except for the ability to
intercept. The following is a simplified definition that highlights the interesting parts:

class ComputedValue {
 get() {
 /* ... */
 reportObserved(this);
 /* ... */
 }

 set(value) { /* rarely applicable */ }

 observe(listener, fireImmediately) {}
}

Mobx Internals Chapter 9

[199]

An important thing to notice in the preceding snippet is that since a ComputedValue does
not rely on an Atom, it uses a different approach for reportObserved(). This is a lower-
level implementation that establishes a link between the observable and the observer. This
is also used by Atom internally so that the behavior is exactly the same. Additionally, there
is no call to reportChanged() as the setter for a ComputedValue is not well-defined.

As you can see, a ComputedValue is mostly a read-only observable. Although MobX
provides a way to set a computed value, in most cases, it doesn't really make much sense. A
setter for a computed value has to apply the reverse computation of the getter. This is
almost impossible in most cases. Consider the example from earlier in this chapter about
the description of a cart. This is a computed value that produces a string from other
observables, like items and coupons. What would the setter for this computed property
look like? It has to parse the string and somehow arrive at the values for items and
coupons. That is definitely not possible. Thus, in general, it is better to treat
ComputedValue as a readonly observable.

Since a computed value depends on other observables, the actual value computation is more
like a side effect. It is a side effect of a change in any of the depending observables. MobX
refers to this computation as a derivation. A derivation, as we will see a little later, is
synonymous with reactions, emphasizing the side effect aspect of computation.

A ComputedValue is the only kind of node in the dependency tree that is an observable as
well as an observer. Its value is an observable and due to its dependency on other
observables, it is also an observer.
ObservableValue = Observable only
Reaction = Observer only
ComputedValue = Both observable and observer

Efficient computation
The derivation function of a ComputedValue could be an expensive operation. So, it is
prudent to cache this value and compute as lazily as possible. That is the norm in MobX
and it employs a bunch of optimizations to make this a lazy evaluation:

To start with, a value is never computed unless explicitly requested or there is a
reaction that depends on this ComputedValue. As expected, when there are no
observers, it will not be computed at all.
Once computed, its value is cached for future reads. It will stay that way until a
depending observable signals a change (via its reportChanged()) and causes
the derivation to re-evaluate.

Mobx Internals Chapter 9

[200]

A ComputedValue can depend on other computed values creating a dependency
tree. It does not recompute unless the immediate children have changed. If there
is a change deep in the dependency tree, it waits until the immediate
dependencies have changed. This behavior improves efficiency and does not
recompute unnecessarily.

As you can see, there are multiple levels of optimization baked into a ComputedValue. It is
highly recommended to leverage the power of computed properties to represent the
various nuances of domain logic and its UI.

Derivation
So far, we have seen the building blocks of MobX, which represent the observable state
with Atoms, ObservableValue, and ComputedValue. These are good to construct the
reactive state graph of your application. But the true power of reactivity is unleashed with
the use of derivations or reactions. Together, the observables and reactions form the yin-
yang of MobX. Each relies on the other to fuel the reactive system.

A derivation or a reaction is where the tracking happens. It keeps track of all the
observables used in the context of a derivation or reaction. MobX will listen to their
reportObserved() and add them to the list of tracked observables (ObservableValue or
ComputedValue). Any time the observable calls reportChanged() (which will happen
when it's mutated), MobX will schedule a run of all the connected observers.

We will be using derivation and reaction interchangeably. Both are
intended to convey the execution of a side effect that uses the observables
to produce a new value (derivation) or a side effect (reaction). The tracking
behavior is common between these two types and hence we will use them
synonymously.

The cycle of derivation
MobX uses a globalState to keep a reference to the currently executing derivation or
reaction. Whenever a reaction is running, all observables that fire their
reportObserved() will be tagged to this reaction. In fact, the relationship is bi-directional.
An observable keeps track of all of its observers (reactions), while a reaction keeps track of all
the observables it is currently observing. The currently executing reaction will be added as
an observer for each of the observables. If the observer was already added, it will be ignored.

Mobx Internals Chapter 9

[201]

The observers all give back a disposer function when you set them up. We have already
seen this with the return values of autorun(), reaction(), or when(), which
are disposer functions. On calling this disposer, the observer will be removed from the
connected observables:

During the execution of a reaction, only the existing observables are considered for
tracking. However, it is possible that in a different run of the same reaction, some new
observables are referenced. This is possible when a piece of code executes that was
originally skipped due to some branching logic. Since new observables can be discovered
while tracking a reaction, MobX keeps a check on the observables. New ones are added to
the list of observables, while ones that are not used anymore will be removed. Removal of
an observable doesn't happen immediately; they are queued up for removal after
completion of the current reaction.

In this interplay between observables and reactions, the actions seem to be missing sorely.
Well, not entirely. They do have a role to play. As mentioned several times in this book,
actions are the recommended way to mutate observables. An action creates a transaction
boundary and ensures all change notifications are fired only after completion. These actions
can also be nested, resulting in a nested transaction. It is only when the top most action (or
transaction) completes that the notifications will be fired. This also means that none of the
reactions run while a transaction (nested or not) is in progress. MobX treats this transaction
boundary as a batch and keeps track of the nesting internally. During a batch, all reactions
will be queued up and executed at the end of the top-most batch.

When the queued up reactions execute, the cycle begins yet again. It will track observables,
link them with the executing derivation, add any newly discovered observables, and queue
up any reactions that are found during a batch. If there are no more batches, MobX deems
itself to be stable and goes back to waiting for any observable mutations.

Mobx Internals Chapter 9

[202]

An interesting thing about reactions is that they could re-trigger
themselves. Inside a reaction, you can read an observable and also fire an
action that mutates that same observable. This may happen within the same
block of code or indirectly via some function invoked from the reaction.
The only requirement is that it should not lead to an infinite loop. MobX
expects the reaction to become stable as quickly as possible.

If, for some reason, it takes more than 100 iterations and there is no
stability, MobX will bail out with an exception.

Reaction doesn't converge to a stable state after 100 iterations. There is
probably a cycle in the reactive function: Reaction[Reaction@14]

Without the upper limit of 100 iterations, it would cause a stack overflow
at runtime, making it much harder to track down its cause. MobX protects
you from this predicament by guarding with the 100-iterations limit. Note
that it does not forbid you from cyclic dependencies but assists in
identifying the code that is causing the instability (infinite loop).

A simple snippet that is unstable even after 100 iterations of the reaction is shown as follows.
This reaction observes the counter observable, and also modifies it by invoking the
spinLoop() action. This causes the reaction to run again and again until it gives up after
100 iterations:

class Infinite {
 @observable counter = 0;

 constructor() {
 reaction(
 () => this.counter,
 counterValue => {
 console.log(`Counter is ${counterValue}`);
 this.spinLoop();
 },
);
 }

 @action
 spinLoop() {
 this.counter = this.counter + 1;
 }
}

new Infinite().spinLoop();

Mobx Internals Chapter 9

[203]

/* Console log:
Reaction doesn't converge to a stable state after 100 iterations. Probably
there is a cycle in the reactive function: Reaction[Reaction@14]
*/

As you can tell, executing a derivation or reaction is crucial for establishing the link
between observables and observers. Without a reaction, there is no life in the reactivity system.
It would just be a collection of observables. You could still fire actions and mutate them, but
it would still be very static and non-reactive. Reactions (Derivations) complete the triad of
Observables-Actions-Reactions and pump life into this reactive system.

Ultimately, reactions are the ones that pull values from your state and fire up the whole
reactive process!

Exception handling
Handling errors is considered an essential part of MobX reactions. In fact, it provides an
option to supply an error handler (onError) for autorun(), reaction(), and when(),
and in the case of computed(), it will throw the error back to you any time the computed
value is read. In each of these cases, MobX continues to work as expected.

Internally, MobX puts additional try-catch blocks around the execution of reactions and
derivations. It will catch the errors thrown inside these blocks and propagate them back to
you via the onError handlers or when a computed value is read. This behavior ensures
that you can continue running your reactions and take any recovery measures inside the
onError handlers.

If there is no onError handler specified for a reaction, MobX also has a global
onReactionError() handler that will be called for any exception thrown in a reaction.
You can register a listener for these global reaction errors to do things like error monitoring,
reporting, and so on:

onReactionError(handler-function: (error, reaction) => { })

handler-function: A function accepting the error and the instance of a reaction as its
arguments.

Mobx Internals Chapter 9

[204]

Before a global onReactionError handler is called, MobX first checks for an onError
handler for the reaction that is failing. It's only when that doesn't exist that the global
handler is invoked.

Now, if for some reason you don't want this behavior where MobX catches the exception
and reports it on a global onReactionError handler, you have a way out. By configuring
MobX with configure({ disableErrorBoundaries: true }), you will get a regular
exception thrown at the point of failure. You will now be expected to handle it via a try-catch
block right inside the reaction.

configure({ disableErrorBoundaries: true }) shouldn't be used in normal
circumstances as leaving exceptions unchecked can corrupt the internal state of MobX.
However, turning on this configuration can help you in debugging since it will make the
exception uncaught. You can now pause your debugger on the exact statement that causes
the exception.

The API layer
This is the consumer facing, outermost layer of MobX and builds on the foundations
mentioned thus far. The prominent APIs that stand out in this layer include the ones seen
throughout this book: observable(), observable.box(), computed(),
extendObservable(), action(), reaction(), autorun(), when(), and others. Of
course, we also have the decorators, such as observable.ref, observable.deep,
observable.shallow, action.bound, computed.struct, and so on.

The core data structures such as ObservableObject, ObservableArray, and
ObservableMap rely on the ObservableValue to store all of their values.

For an ObservableObject...:

A key-value pair has its value backed by an ObservableValue.
Every computed property, as expected, is backed by a ComputedValue.
The keys() method of an ObservableObject is also backed by an Atom. This is
needed as you may be iterating on the keys() in one of your reactions. When a
key gets added or removed, you want your reactions to execute again. This atom
for keys() fires the reportChanged() for additions and removals and ensures
that the connected reactions are re-executed.

Mobx Internals Chapter 9

[205]

For an ObservableArray...:

Every indexed value is backed by ObservableValue.
The length property is explicitly backed by an Atom. Note that ObservableArray
has the same interface as JavaScript arrays. In MobX 4, it was an array-like data
structure, which has become a real JS Array in MobX 5 (backed by an ES6 Proxy).
The reads and writes on length will result in reportObserved() and
reportChanged() being called on the atom. In fact, when any of the methods
like map, reduce, filter, and so on are used, the backing Atom is used to fire
reportObserved(). For any mutating methods like splice, push, pop, shift, and so
on, the reportChanged() is fired. This ensures the connected reactions fire as
expected.

For an ObservableMap...:

A key-value pair has its value backed by an ObservableValue.
Just like ObservableObject, it too maintains an instance of Atom for the keys()
method. Any addition or removal of keys is notified with a reportChanged()
on the atom. Calling the keys() method itself will fire the reportObserved()
on the atom.

The collections in MobX, which are objects, arrays, and maps, are essentially collections of
observable boxes (ObservableValue). They may be organized as a list or as a map, or
combined to create complex structures.

All of these data structures also expose the intercept() and observe() methods that
allows granular interception and observation of values. By building on the foundations of
Atom, ObservableValue, and derivations, MobX gives you a powerful toolbox of APIs to
build sophisticated state management solutions in your applications.

Transparent functional reactive
programming
MobX is considered a Transparent functional reactive programming (TFRP) system. Yes,
too many adjectives in that line! Let's break it down word by word.

Mobx Internals Chapter 9

[206]

It is Transparent...
Connecting the observables to the observers, it allows the observers to react to changes in
observables. This is a basic expectation we have from MobX and the way we establish these
connections feels very intuitive. There is no explicit wiring besides the use of decorators
and dereferencing observables inside the observer. Because of the low overhead in wiring,
MobX becomes very declarative, where you express your intent without worrying about the
machinery. The automatic connections established between the observables and observers
enables the reactive system to function autonomously. This makes MobX a transparent system
as the work of connecting observables with observers is essentially lifted away. The usage
of an observable inside a reaction is enough to wire the two.

It is reactive...
This reactivity is also very fine-grained. The dependency tree of observables can be as
simple as you need and also equally as deep. The interesting part is that you never worry
about the complexity of wiring or the efficiency. MobX has a deep knowledge of your
dependencies and ensures the efficiencies by reacting only when needed. There is no
polling or excessive events being fired as the dependencies keep changing. Thus, MobX is
also a very reactive system.

It is functional...
Functional programming, as we know, is about leveraging the power of functions to
perform data flow transformations. By using a variety of functional operators like map,
reduce, filter, compose, and so on, we can apply transformations on input data and produce
output values. The catch in the case of MobX is that the input data is an observable, a time
varying value. MobX combines the qualities of a reactive system and ensures the functional
-transformations are automatically applied when the input data (observable) changes. It
does this in a transparent fashion, as discussed earlier, by establishing implicit connections
between the observables and reactions.

This combination of qualities makes MobX a TFRP system.

From the author's point of view, the origins of the acronymn TFRP has
come from the following article: https:/ /github. com/meteor/ docs/ blob/
version- NEXT/ long- form/ tracker- manual. md.

https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md
https://github.com/meteor/docs/blob/version-NEXT/long-form/tracker-manual.md

Mobx Internals Chapter 9

[207]

Value Oriented Programming
MobX is also about Value Oriented Programming (VOP), where you focus on the change
in values, its dependencies, and its propagation across the reactive system. With VOP, you
focus on What are the connected values? rather than the How are the values connected? Its
counterpart is Event Oriented Programming (EOP), where you focus on a stream of events
to notify changes. Events only report what has happened with no notion of dependencies.
It's at a lower level conceptually, compared to Value-Oriented-Programming.

VOP relies on events to do its job internally. When a value changes, events are raised to
notify the change. The handlers for these events will then propagate the value to all
listeners (observers) of that observable value. This usually results in a reaction/derivation
being invoked. Thus, reactions and derivations, which are the side effects of the value
change, are at the tail-end of the value propagation event.

Thinking in VOP raises the level of abstraction, bringing you closer to the domain that you
are dealing with. Rather than worrying about the mechanism of value propagation, you just
focus on establishing connections via observables, computed properties, and observers
(reactions/derivations). This, as we know, is the triad of MobX: Observables-Actions-
Reactions. This style of thinking is very declarative in nature: the What versus How of value
changes. As you get more steeped into this mindset, many of the scenarios in state
management become much more tenable. You will be amazed at the simplicity, power, and
efficiency that this paradigm offers.

If you do need to dive deeper into the eventing layer, MobX has the
intercept() and observe() APIs. They allow you to hook into the
events that are raised when observables are added, updated, or deleted. There
is also the fromStream() and toStream() APIs from the mobx-
utils npm package, which gives you a stream of events that are
compatible with RxJS. These events don't participate in the MobX
transaction (batching), are never queued up, and always fire immediately.

It is rare to use the eventing APIs in consumer code; they are mostly used
by tools and utility functions such as spy(), trace(), and so on to give
insight into the event layer of MobX.

Mobx Internals Chapter 9

[208]

Summary
With this under-the-hood peek at MobX, you can appreciate the power of the TFRP system,
exposed with a surprisingly simple API. The layers of functionality, starting with the
Atoms, wrapped by ObservableValue, with APIs and higher-level data structures, offer a
comprehensive solution to model your domains.

Internally, MobX manages all the connections between the observables and observers
(reactions/derivations). It is done automatically with minimal interference to your usual
style of programming. As a developer, you write code that feels natural, with MobX lifting
away the complexity of managing the reactive connections.

MobX is an open source project that has been battle-tested for various domains, accepted
contributions from developers all over the world, and has been constantly maturing over
the years. With this inside look at MobX, we sure hope to reduce the barriers to
contributing to this powerful state management library.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Vuex Quick Start Guide
Andrea Koutifaris

ISBN: 978-1-78899-993-9

Moving from classical MVC to a Flux-like architecture
Implementing predictable centralized state management in your applications
using Vuex
Using ECMAScript 6 features for developing a real application
Using webpack in conjunction with Vue single file components
Testing your Vue/Vuex applications using Karma/Jasmine and inject-loader
Simple and effective Test Driven Development
Extending your application with Vuex plugins

https://www.packtpub.com/web-development/vuex-quick-start-guide

Other Books You May Enjoy

[210]

Learning Redux
Daniel Bugl

ISBN: 978-1-78646-239-8

Understand why and how Redux works
Implement the basic elements of Redux
Use Redux in combination with React/Angular to develop a web application
Debug a Redux application
Interface with external APIs with Redux
Implement user authentication with Redux
Write tests for all elements of a Redux application
Implement simple and more advanced routing with Redux
Learn about server-side rendering with Redux and React
Create higher-order reducers for Redux
Extend the Redux store via middleware

https://www.packtpub.com/web-development/learning-redux

Other Books You May Enjoy

[211]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@computed
 about 89
 derived state 75
 error handling 93
 properties 90
@decorators
 used, for controlling observability 67
@observable.ref
 reference-only observables, creating 68
@observable.shallow
 shallow observables, creating 67
@observable.struct
 structural observables, creating 69

A
actions
 about 33, 34, 49, 94, 201
 async action, managing 51
 async actions 96
 decorating 35
 flow() function 98
 need for 94, 95
 using 14, 15, 34
API layer 204
async actions 96
async-operations
 visualizing, with fromPromise() 165
atoms
 about 190
 atomic clock example 194
 creating 193
 reading, at runtime 192
autorun()
 about 37
 configuring 103

 options 103, 104

B
batch 201
book search 47
boxed observables 25

C
Cart checkout workflow
 about 123, 125
 actions 130
 HistoryTracker 134, 135
 reactions 132
 route 126, 127
 step, loading 133, 134
 WorkflowStep 128
computed observable 29
computed properties
 about 29, 86
 versus MobX reactions 89
ComputedValue
 about 198
 computation 199

D
data, shapes
 composite 66
 hierarchy 66
 lists 66
 singular values 66
declarative models
 immutable snapshots 184
 JSON patches 185
 middleware 186
decorate() API
 used, for creating observability 70

[213]

decorators 28
derivation
 about 31, 86, 200
 exception handling 203
 process 200
derived state
 about 86
 example 86
 side effect 88
 with @computed 75
developer experience (DX) 18

E
error handling
 inside computed 93
Event Oriented Programming (EOP) 207

F
fine-tuning primitive types 177
flow() function 98
form validation
 about 111
 actions 113, 114
 interactions 112
 observable state, modeling 112, 113
 React components 117
 reactions 115, 116
functional programming 206

H
higher-order-component (HOC) 53

L
layered architecture
 about 189
 API layer 204
 atoms 190
 atoms, creating 193
 ComputedValue 198
 derivation 200
 ObservableValue 196
lazyObservable()
 generalizing, with fromResource() 170
 using, for deferred updates 167

lexical this 50

M
Material-UI
 reference 117
middlewares
 about 17
 URL 186
MobX reactions
 versus computed properties 89
MobX reactivity system
 about 105
 rules 105, 108
mobx-react 42
mobx-react-form
 reference 123
mobx-state-tree
 about 173
 actions, defining on model 175
 declarative models, advantages 183
 derived information, creating with views 176
 fine-tuning primitive types 177
 identifiers 180, 182
 model 174
 referencing, by types.identifier() 182
 referencing, by types.reference() 182
 trees, composing 178
mobx-utils, utility functions
 about 165
 async-operations, visualizing with fromPromise()

165

 exploring 173
 lazyObservable(), using for deferred updates

167

 URL 173
 view-model, used for managing edits 171
MobX
 versus Redux 17, 19

O
object API
 granular reads 146
 granular writes 146
 manipulation 146
 MobX observables, converting to JavaScript 148

[214]

observability
 controlling 66
 controlling, @decorators used 67
 creating, decorate() API used 70
 extending 73, 74
observable state 49
observable() API
 decorating with 72
observables
 about 12, 22, 23, 199
 arrays 26
 change argument, intercepting 155
 computed observable 29
 creating 24
 event flow, reviewing 150
 hooking up 150
 intercept() API, using 154
 maps 27
 observe(), using 156
 syntax, with decorators 31
 temperature, lazy loading 152
 working 28
ObservableValue 196
observer 13, 199
observer components 121, 123
one-level-deep observation 67
opinionated MobX
 with mobx-state-tree 173

P
page routing
 about 123
 Cart checkout workflow 123, 125
 observable state, modeling 125
 React components 137

R
React components
 ShowCart component 142
 state-based router 143
 TemplateStepComponent 139
 UserEnrollmentForm component 118
reaction()
 about 39
 configuring 103

 options 104
 reactive UI 41
reactions
 about 37, 100, 101
 autorun() 37
 overview 45
 reaction() 39
 when() 43
reactive system
 exploring 163
 querying 162
Reactive UI
 about 53
 ResultsList component 61
 SearchTextField component 58
 store, connecting 56
reducers 17
Redux
 comparing, with state management 16
 overview 16
 versus MobX 17, 19, 20
reference-only observables
 creating, with @observable.ref 68
runInAction() function 97

S
shallow observables
 creating, with @observable.shallow 67
ShowCart component 142
side effects 11
single page apps (SPA) 123
Single Responsibility Principle (SRP) 11
single state tree 16
state management
 about 8
 changes, handling in state 9
 client state 8
 side effect model 10
state-based routing solution
 reference 143
state
 changes, observing 13
stateless functional component 42
stores
 modeling 79

strict mode 34
structural equality 76, 78
structural observables
 creating, with @observable.struct 69

T
TemplateStepComponent 139
Transparent Functional Reactive Programming

(TFRP)
 about 205
 functional 206
 reactive 206
 transparent 206
 URL 206
 Value Oriented Programming (VOP) 207

U
user interactions (UI) 7

UserEnrollmentForm component 118
utilities
 about 157
 reaction, tracing 159
 spy(), used for tracking reactivity 157
 visual debugging, with mobx-react-devtools 160

V
Value Oriented Programming (VOP) 207

W
when()
 executing 43
 executing, with promise 44
WishListStore
 actions 83
 derived state 82
 observable state 80, 81

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to State Management
	The client state
	Handling changes in state

	The side effect model
	A speed tour of MobX
	An observable state
	Observing the state changes
	It's time to take action
	A comparison with Redux
	Redux in a nutshell
	MobX versus Redux

	Summary

	Chapter 2: Observables, Actions, and Reactions
	Technical requirements
	Observables
	Creating observables
	Observable arrays
	Observable maps
	A note on observability
	The computed observable
	Better syntax with decorators

	Actions
	Enforcing the use of actions
	Decorating actions

	Reactions
	autorun()
	reaction()
	A reactive UI

	when()
	when() with a promise

	Quick recap on reactions

	Summary

	Chapter 3: A React App with MobX
	Technical requirements
	The book search
	Observable state and actions
	Managing the async action

	The Reactive UI
	Getting to the store
	The SearchTextField component
	The ResultsList component

	Summary

	Chapter 4: Crafting the Observable Tree
	Technical requirements
	The shape of data
	Controlling observability
	Using @decorators
	Creating shallow observables with @observable.shallow
	Creating reference-only observables with @observable.ref
	Creating structural observables with @observable.struct

	Using the decorate() API
	Decorating with observable()

	Extending the observability

	Derived state with @computed
	Structural equality

	Modeling the stores
	Observable state
	Derived state
	Actions

	Summary

	Chapter 5: Derivations, Actions, and Reactions
	Technical requirements
	Derivations (computed properties)
	Is it a side effect?
	There's more to computed()
	Error handling inside computed

	Actions
	Why an action?
	Async actions
	Wrapping with runInAction()
	flow()

	Reactions
	Configuring autorun() and reaction()
	Options for autorun()
	Options for reaction()

	When does MobX react?
	The rules

	Summary

	Chapter 6: Handling Real-World Use Cases
	Technical requirements
	Form validation
	The interactions
	Modeling the observable state
	Onto the actions
	Completing the triad with reactions
	React components
	The UserEnrollmentForm component
	Other observer components

	Page routing
	The Cart checkout workflow
	Modeling the observable state
	A route for a step, a step for a route
	The WorkflowStep

	 Actions and reactions of the workflow
	Loading a step
	The HistoryTracker

	The React components
	The TemplateStepComponent
	The ShowCart component
	A state-based router

	Summary

	Chapter 7: Special API for Special Cases
	Technical requirements
	Direct manipulation with the object API
	Granular reads and writes
	From MobX to JavaScript

	Watching the events flow by
	Hooking into the observability
	Lazy loading the temperature

	Gatekeeper of changes
	Intercepting the change

	observe() the changes

	Development utilities
	Using spy() to track the reactivity
	Tracing a reaction
	Visual debugging with mobx-react-devtools

	A few other APIs
	Querying the reactive system
	Probing deeper into the reactive system

	Summary

	Chapter 8: Exploring mobx-utils and mobx-state-tree
	Technical requirements
	The utility functions of mobx-utils
	Visualizing async-operations with fromPromise()
	Using lazyObservable() for deferred updates
	A generalized lazyObservable() with fromResource()

	A view model to manage edits
	There is lot more to discover

	An opinionated MobX with mobx-state-tree
	Models – properties, views, and actions
	Defining actions on the model
	Creating derived information with views

	Fine-tuning primitive types
	Composing trees
	References and identifiers
	Referencing by types.identifier() and types.reference()

	Out-of-the-box benefits of declarative models
	Immutable snapshots
	JSON patches
	Middlewares

	Further reading

	Summary

	Chapter 9: Mobx Internals
	Technical requirements
	A layered architecture
	The Atom
	Reading atoms at runtime

	Creating an Atom
	The atomic clock example

	ObservableValue
	ComputedValue
	Efficient computation

	Derivation
	The cycle of derivation
	Exception handling

	The API layer

	Transparent functional reactive programming
	It is Transparent...
	It is reactive...
	It is functional...
	Value Oriented Programming

	Summary

	Other Books You May Enjoy
	Index

