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Preface

The book represents the original articles on important issues of risk theory, 
decision making under uncertainty, statistical decisions, problems of 
cryptography and control of stochastic systems and their applications to 
energy systems, among others. They share the common approach of applied 
quantitative risk management. The articles are outcomes of the series of 
international projects involving the leading scholars of different research 
institutions from Austria, Georgia, Moldova, Norway, Ukraine, USA and 
other countries in the field of modern stochastic optimization and decision 
making. These projects were directed towards development of study  
program in the risk management of master and PhD level. The articles 
included in this book contain novel research results and at the same time they 
were written keeping in mind the requirements of research based education 
on these topics.

The book consists of three parts. The first part presents the results 
concerning problems in the field of risk theory, optimization and information 
security. The second part focuses on modern mathematical methods of risk 
theory, stochastic and non-smooth optimization. statistical evaluation. In the 
third part we consider several applied problems of financial and insurance 
mathematics, energy and economics solved with the methods described in 
the first two parts. The structure of stochastic optimization solvers which are 
central for analysis of applied problems presented in the book is described 
in the first part. These solvers implement stochastic quasi-gradient methods 
for optimization and identification of complex nonlinear models including 
simulation models. These models constitute an important methodology for 
finding optimal decisions under risk and uncertainty. While a large part of 
current approaches towards optimization under uncertainty stems from 
linear programming (LP) and often results in large LPS of special structure, 
stochastic quasi-gradient methods confront nonlinearities directly without 
need of linearization. This makes them an appropriate tool for solving 
complex nonlinear problems, concurrent optimization and simulation models, 
and equilibrium situations of different types, for instance, Nash or Stackelberg 
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equilibrium situations. The solver finds the equilibrium solution when the 
optimization model describes the system with several actors. The solver is 
parallelizable, performing several simulation threads in parallel. It is capable of 
solving stochastic optimization problems, finding stochastic Nash equilibria, 
and of composite stochastic bilevel problems where each level may require 
the solution of stochastic optimization problem or finding Nash equilibrium. 
Several complex examples with applications to water resources management, 
energy markets, pricing of services on social networks are provided. 

For example, in the case of power system, regulator makes decision on the 
final expansion plan, taking into account the strategic behavior of regulated 
companies and coordinating the interests of different economic entities. Such 
a plan can be an equilibrium − a planned decision where a company cannot 
increase its expected gain unilaterally. The solver mentioned above can 
compute this equilibrium.

We dedicate this book to the memory of

Yuri M. Ermoliev (1936–2022) was a D.Sc., Professor, Academician of the 
Ukrainian National Academy of Sciences, and researcher at the International 
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a member of the V.M. Glushkov Institute of Cybernetics. Yuri M. Ermoliev, 
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M. Ermoliev served as a mentor and instructor to many of the book's authors, 
as well as an inspiration.

Dimitri I. Solomon (1951–2022) was a D.Sc., Professor, and Rector of the 
Academy of Transport, Informatics, and Communications of the Republic 
of Moldova, the Laureate of the State Prize in Science and Technology 
of Moldova. He made a significant contribution to the development of 
mathematical modeling of economic processes in transport, solving problems 
of non-differential optimization, fractional linear programming and discrete 
optimal control in dynamic networks, while working as the head of the project 
working group at the Academy. Dmitry I. Solomon was an attentive, kind 
friend, like-minded and responsible colleague for all of us.
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Chapter 1

Optimization of  Simulation Models 
and other Complex Problems with 

Stochastic Gradient Methods
 Alexei A Gaivoronski1,* and Yuri M Ermoliev2

1. Introduction

This chapter describes the solver SQG, which implements stochastic (quasi)
gradient methods for the solution of stochastic optimization problems. Its 
particular strength lies in its capability to solve problems with substantial 
nonlinearities and optimized functions, defined by complex stochastic 
simulation models. It can also solve the stochastic equilibrium problems of 
different types when the studied system includes constellations of independent 
actors, choosing their own decisions. Finding the Nash equilibrium and  
solving bilevel stochastic optimization problems and stochastic Stackelberg 
games are among the capabilities of this solver. Also, in the case of equilibrium 
problems the payoff functions of individual actors can be obtained by 
simulation models.

The simplest problem addressed by SQG is 

 ( )min ,
x X

f x ω
∈

E  (1)

which finds the values of the decision variables x of a single actor on the 
feasible set X ⊆ ℝn. The expectation in (1) is taken with respect to the vector 

1 Norwegian University of Science and Technology, Trondheim, Norway.
2 International Institute for Applied Systems Analysis, Laxenburg, Austria.
* Corresponding author: Alexei.Gaivoronski@ntnu.no
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of random parameters ω, which models the uncertainty and is defined on 
appropriate probability space. The SQG solves this problem by generating 
the sequence of points xs starting from some initial point x0 and applying the 
recursive rule

 ( )1 =s s s
X sx x ρ ξ+ Π −  (2)

where ∏X(.) is the projection operator on set X, ξ s is a statistical estimate of 
the gradient of function F(x) = Ef(x, ω) at point xs, meaning that it satisfies 
the property

 ( )| = ( )s s
s x sF x bξ +E B  (3)

where the conditional expectation in (3) is taken with respect to the σ – field 
Bs describing the history of the process and bs is some diminishing term. The 
step size ρs satisfies the property

 
=0

0, = ,s s
s

ρ ρ
∞

≥ ∞∑  (4)

which is weaker than what is normally required in stochastic approximation 
(Pflug 1996) because for optimization purposes we need a weaker notion of 
convergence than what is normally expected in statistics. Under additional 
technical assumptions, the sequence xs converges to the solution of (1) 
(Gaivoronski 1978, Ermoliev 1983, Gaivoronski 2005).

The basic problem in (1) is used in SQG as a building block for 
the construction of considerably more complex problems, including the 
equilibrium and bilevel problems mentioned above. Besides, SQG has the 
capability to process the problems where the expectation operators are present 
not only in the objective (1), but also in constraints. Such problems occur, 
for example, in portfolio optimization with risk constraints (Zenios 2007). 
This and other capabilities, like integration with simulation models, required 
substantial additional conceptual and algorithmic development, described in 
the rest of the chapter.

In Section 2 we define the three-level problem hierarchy implemented in 
SQG together with the basic algorithmic tools utilized there. This is followed 
by a discussion of the challenges of concurrent optimization and simulation, 
showing the approach taken by SQG on this issue in Section 3. Section 4 
describes examples of applied problems solved by SQG, concentrating on 
concurrent simulation and optimization.

We do not present in this paper the mathematical results of the convergence 
of algorithms, which underlie the operation of SQG. For such results, we refer 
a reader to Gaivoronski (1978), Ermoliev (1983), Pflug (1996), Becker and 
Gaivoronski (2014).
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2. Problem hierarchy in SQG

SQG is developed for solutions of stochastic optimization and equilibrium 
problems involving decision models of I ≥ 1 actors. We refer to an instance 
of such problems as stochastic decision problems (StDP). Such an instance is 
defined by a collection of functions Φ, which is the basic structure in SQG:

 ( ){ }= , , , , = 1: , = 0 :i i i
ij if x x y i I j Jω−Φ  (5)

Here x i ∈ ℝni is the vector of decision variables of actor i, while x–i is 
the vector of decision variables of all other actors, x–i = {xl, l = 1: I, l ≠ i}. 
We denote by x the vector of all decision variables: x = (xi, x–i) for any i. The 
vectors xi take values from feasibility sets Xi and collection Ψ of these sets 
constitutes another basic structure in SQG:

 { }= , = 1:iX i IΨ  (6)

The vector ω is the vector of all uncertain parameters in the decision 
models of all actors. We consider ω to be a random vector defined on 
appropriate probability space (Ω, B, P) with Ω being the event set equipped 
with σ-field B, on which the probability measure P is defined.

The vector yi is the vector of state variables of the decision model of the 
actor i. It is assumed that the state yi evolves in a discrete-time t = 1: T, where 
the time horizon T can be finite or infinite. Then the state yi takes the value yit 
at time period t. The subsequent values of state variables are connected with 
the state equation

 ( ), 1 = , , ,i t i i i ity x x y ω+ −Θ  (7)

The functions Θi can be quite complex and be defined by a simulation 
model. We define by Θ = Θi, i = 1:I the collection of all state equations for all 
actors. The SQG provides the meta language and conventions for defining the 
structure (Φ, Ψ, Θ) described above. Some of the elements of this structure 
can be empty. In particular, the state variables yi can be absent, and then the 
state equations (7) and the notion of time disappear. In this case, the decision 
problems become static. Besides, the set of actors can contain a single 
actor, I = 1. In this case there will be no stochastic equilibrium problem and 
StDP will become a stochastic optimization problem. We shall simplify our 
notations appropriately in such cases. For example, the functions from (5) 
will be denoted fj(x, ω), j = 1:J in the case of the single actor without the state 
variables.

Starting from some initial point xi0, i = 1:I the SQG generates iteratively 
the sequence of points xis possibly with additional auxiliary sequences, which 
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converge in a certain probabilistic sense to the solution of collection of 
problems defined on the structure (Φ, Ψ, Θ) while the number of iterations 
s tends to infinity. Naturally, the SQG solver does not perform the infinite 
number of iterations, instead, it stops the iteration process when a certain 
stopping criterion is satisfied. The solved problems and corresponding 
iterative processes are organized in the hierarchy shown in Figure 1.

Figure 1. Problem and process hierarchy in SQG.

8

Figure 1. Problem and process hierarchy in SQG

2.2 Intermediate level: optimization (O level)

This level takes the values of the estimates ,s s
ij ijF ξ supplied by the estimation level and generates the 

sequences , = 1: , = 1,...isx i I s which solves the following problem

( ) ( )0" " "max" ,min i i
iix

F x x− (23)

subject to

( ), 0, = 1:i i
ijF x x j J− ≤ (24)

i
ix X∈ (25)

That is, the generated sequence isx attempts to minimize or maximize the objective ( )0 ,i i
iF x x− of the 

actor i with respect to the decision variables ix of this actor. Such sequences are generated for each actor. 

These sequences may or may not actually converge to the solution of respective optimization problems due to 

the dependence of the objectives not only on the decision variables of respective actors but also on the 

decision variables of all actors. Still, depending on the coordination between the step sizes used for their 

2.1 Lower level: estimation (E level) 

Obtain statistical estimates of the values and gradients of functions  
Fij(xi, x–i), which are the expected values of functions from (5). These estimates 
serve as input to the upper levels of the problem hierarchy as specified in 
what follows. More precisely, SQG computes these estimates for one of the 
following functions

 ( ) ( ), = , ,i i i i
ij ijF x x f x x ω− −E  (8)

 ( ) ( )
=1

1, = , , ,
T

i i i i it
ij ij

t
F x x f x x y

T
ω− −∑E  (9)

 ( ) ( )
=1

1, = , , ,lim
T

i i i i it
ij ij

T t
F x x f x x y

T
ω− −

→∞
∑E  (10)

where E is the expectation operator with respect to random variables ω. The 
case (8) occurs in the absence of the state variables yi. The case (9) refers to 
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the dynamic problem with the finite time horizon, while the case (10) deals 
with the estimation of the steady state function values on the infinite time 
horizon.

1a. Estimation of function values: These estimates are obtained by the moving 
average iterative process

 ( )1 = 1s s s s s
ij i ij i ijF Fα α ϕ+ − +  (11)

where φs
ij is an observation of the quantities under the expectation sign in  

(8)–(10) satisfying the property

 ( ) ( )| = ,s is is s
ij s ij ijF x x aϕ − +E B  (12)

where as
ij tends to zero with s → ∞ and Bs is the σ-field describing the history of 

the iterative process, which generates the sequences (xis, Fs
ij) prior to iteration 

s. Some examples of observations φs
ij:

 ( )= , ,s is is s
ij ijf x xϕ ω−  (13)

 ( )
=1

1= , , ,
T

s is is is st
ij ij

t
f x x y

T
ϕ ω−∑  (14)

 ( )= , , ,s is is is s
ij ijf x x yϕ ω−  (15)

where ωs and ωst, s = 1,..., t = 1,... are independent observations of random 
parameters ω. In expressions above (13) corresponds to (8), (14) corresponds 
to (9) and (15) corresponds to (10). In the case (15), (10) the time step t 
corresponds to a single iteration step s. That is, in order to obtain the new 
update of the estimate Fs

ij through the process (11) it is enough to simulate the 
dynamics of the system for just one-time step obtaining the observation ωs of 
random parameters, computing yis as in (7):

 ( ), 1= , , ,is i is is i s sy x x y ω− −Θ

and obtaining φs
ij from (15). The SQG obtains the observations φs

ij by calling the 
external function fun written by the SQG user following the interface rules, 
which make it callable from SQG. This function takes as the input the values 
(xis, x–is) and additionally the value of yi,s–1 in case (15). Its output comprises 
the value φs

ij and the new state yis in the case (15). During the call, this function 
generates the new observation ωs of the random parameters, if it is required 
by the estimation process. The value of the additional input parameter signals 
this necessity to the fun. Alternatively, in the case of several concurrent 
estimation processes with different inputs of decision parameters, this function 
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provides the observations of φs
ij with the same values of random parameters. 

See the section on the estimation of the gradient for the explanation of such 
a necessity.

The estimates Fs
ij are fed to the upper levels of the problem hierarchy, where 

they are used in the iterative solution process of the upper-level problems. 
In particular, they are used in the stopping criterion of the whole iterative 
process, for the output of the optimal values of the objective functions, for 
estimation of gradients and for processing of constraints. They should satisfy 
the following fundamental convergence property

 ( ), 0s is is
ij ijF F x x−− →  (16)

in a certain probabilistic sense as s → ∞. In other words, we do not need 
here the precise estimates of the function values from (8)–(10) for any fixed 
value of decision variables (xi, x–i). Instead, the estimates should trace with 
gradually increasing precision the changing value of these functions while 
(xis, x–is) changes in the course of iterations. This is a very mild requirement, 
allowing it to make only a single observation of random parameters and 
a single estimation step per one update of decision parameters (xis, x–is). 
However, it requires a specific coordination between the estimation process 
(11) and the iterative updating process of decision variables (xi, x–i). Namely, 
the steps αs

i from (11) should be larger than the updating steps for the decision 
variables and their ratio should asymptotically approach infinity.

Besides tracing the values of functions (8)–(10) at changing (xis, x–is), 
other concurrent estimation processes of type (11) may compute the estimates 
Fls

ij, which traces the values of these functions for other sequences of points 
(xils, x–ils), which are connected with the original sequence. In particular, the 
output of such estimation processes may be used on the upper levels of the 
problem hierarchy for the estimation of the gradients of functions (8)–(10) 
using finite differences. In this case, one can take

 = , = 1:ils is s i
i l ix x e l nδ+  (17)

where ei
l is a unit vector of space ℝni.

1b. Estimation of gradient values: The SQG computes the estimates ξ s
ij of the 

gradient of function Fij(xi, x–i) at point (xis, x–is) from (8)–(10) with respect 
to variables xi. These estimates are sent to the higher levels of the problem 
hierarchy and should satisfy the following condition

 ( ) ( )| = ,s is is s
ij s i ij ijx

F x x bξ −∇ +E B  (18)

where bs
ij tends to zero with s → ∞. There are two possibilities
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 • The user includes the computation of ξ s
ij in the body of the external 

function fun. Then this function returns the value of ξ s
ij with each call 

of fun performed by SQG. This option is preferable when it is relatively 
easy to compute one of the following entities 

 ( )= , ,s is is s
ij i ijx

f x xξ ω−∇  (19)

 ( )
=1

1= , , ,
T

s is is is st
ij i ijx

t
f x x y

T
ξ ω−∇∑  (20)

 ( )= , , , ,s is is is s
ij i ijx

f x x yξ ω−∇  (21)

which similarly to (13)–(15) corresponds to the cases (8)–(10).
 • The complexity of functions (8)–(10) typical of simulation models makes 

it difficult to compute the values (19)–(21) directly. Then the estimates 
ξ s

ij are computed by the estimation level of SQG using only the function 
observations (12) and function estimates (11). In order to do this ni + 1 
tracing moving average processes (11) are performed in parallel for the 
same sequence of observations of random parameters ωs or ωst and ni + 
1 sequences of decision parameters xis, xils from (17). These processes 
produce the estimates Fs

ij, F
ls
ij and the SQG computes

 ( )
=1

1=
ni

s ls s
ij ij ijs

li

F Fξ
δ

−∑  (22)

2.2 Intermediate level: optimization (O level) 

This level takes the values of the estimates Fs
ij, ξ

s
ij supplied by the estimation 

level and generates the sequences xis, i = 1: I, s = 1,... which solves the 
following problem

 ( ) ( )0" " "max" ,min i i
i

ix
F x x−

 (23)

subject to

 ( ), 0, = 1:i i
ijF x x j J− ≤  (24)

 i
ix X∈  (25)

That is, the generated sequence xis attempts to minimize or maximize 
the objective Fi0(xi, x–i) of the actor i with respect to the decision variables xi 
of this actor. Such sequences are generated for each actor. These sequences 
may or may not actually converge to the solution of respective optimization 
problems due to the dependence of the objectives not only on the decision 
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variables of respective actors but also on the decision variables of all actors. 
Still, depending on the coordination between the step sizes used for their 
generation, the sequences may converge to the solution of optimization 
problems in a certain sense. In other cases, they will converge to the solutions 
of equilibrium problems, defined on the upper level of the problem hierarchy. 
For this reason, we put min or max from (23) in quotation marks. In the case 
of a single actor the problem (23)–(25) reduces to a proper optimization 
problem. We drop the index i then and the problem becomes the following:

 ( ) ( )0maxmin
x X

F x
∈  (26)

subject to

 ( ) 0, = 1:jF x j J≤  (27)

The problem (23)–(25) looks similar to deterministic nonlinear 
optimization (or equilibrium) problems. This similarity is deceitful, however, 
because functions Fij(xi, x–i), usually cannot be computed with the precision 
required the for application of deterministic nonlinear programming 
techniques. This is due to the presence of the expectation operator in the 
definition of these functions (8)–(10), which cannot be computed precisely for 
the problems of realistic dimensions and complexity. Therefore, the problem 
(23)–(25) belongs to the family of stochastic optimization (or equilibrium) 
problems (Birge and Louveaux (2011)). Other reasons are the long computing 
times necessary for precise simulations, when these functions are obtained 
through simulation models, and the transient dynamic behavior in the case of 
the steady state optimization (10) discussed in more detail in Section 3.

The SQG generates the sequences xis following the stochastic gradient 
iteration similar to (2):

 , 1
0

=1
=

mi
i s is s s s

X is i ij ij iji
j

x x Cρ ξ η ξ+
  

Π − +      
∑  (28)

 ( ) { }= max 0, >0
s s
ij ij sFij

Fη ∨ 1  (29)

Observe that in the case of a single actor, i = 1 and the absence of expectation 
type constraints, mi = 0, the sequence (28), (29) coincides with the basic SQG 
process (2). In the case of several actors, the step size ρis is individual for 
actor i. This is important for the solution of bilevel stochastic optimization 
problems and Stackelberg games. The second term in the internal parenthesis 
in (28) is dedicated to the processing of expectation constraints. It makes (28) 
to be a basic SQG process of type (2) for minimization of function Fi0(xi, x–i) 
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with added penalty term, which penalizes the violation of constraints (24). 
The positive constant Cij is the penalty coefficient, vector ξ s

ij is the stochastic 
gradient of constraint satisfying (18) and ηs

ij from (29) indicates the violation 
of constraint. Since exact values of Fij(xi, x–i) are unknown, ηs

ij substitutes 
them with the estimates Fs

ij provided by the estimation level of the problem 
hierarchy. The two alternatives for ηs

ij shown in (29) correspond to two types 
of penalties. The first alternative is the classical quadratic penalty, while the 
second one is the non-smooth linear penalty. In the case of maximization, the 
signs in (28) are changed to the opposite ones.

2.3 Upper level: equilibrium problems (Q level)

This level constructs specific problem types and their solutions from the 
solution sequences xis and function estimates Fs

ij provided by the two lower 
levels E and O, see Figure 1. We consider the following four problem types.

3a. Stochastic optimization (SO): This is a simple type of SQG problem with 
the empty third level of SQG hierarchy. In this case only single actor is present, 
i = 1. The problem formulation is shown in (26)–(27) where Fj(x) can belong 
to one of the types (8)–(10). Observe that also the problems of this type can 
be quite complex because they may include expectation constraints (27) and 
the observations of functions Fj(x) can be obtained by complex simulations.

3b. Bilevel stochastic optimization (BSO): These problems are known 
otherwise as leader-follower games or Stackelberg games with two actors 
(Stackelberg 1952). We describe them here in the interpretation of the leader-
follower game. In this case, there are two actors, i = 2. The actor 1 called the 
leader announces his decision x–1 to actor 2 called the follower. Knowing the 
decision of the leader the follower chooses his decision x–2 solving a stochastic 
optimization problem

 ( )2 1
20

2
2

,min
x

F x x
X∈  (30)

 ( )2 1
2 , 0, = 1:jF x x j J≤  (31)

for fixed x1 = x–1. In this way the decision x–2 will depend on x–1: x–2 = x–2 (x–1).  
Knowing this, the leader chooses his decision solving the problem

 ( )( )1 2 1
10

1
1

,min
x

F x x x
X∈  (32)

 ( )( )1 2 1
1 , 0, = 1:jF x x x j J≤  (33)
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Bilevel optimization problems are quite challenging numerically even in 
the deterministic linear case. The SQG solves them by running two concurrent 
SQG processes (28)–(29) with the asymptotically vanishing ratio between the 
leader and follower step sizes: ρ1s/ρ2s → 0.

3c. Stochastic Nash equilibrium (SNE): In this case, we have I > 1 actors with 
payoffs Fi0(xi, x–i) having one of the types (8)–(10) and possible constraints 
(24). The SQG runs I concurrent SQG processes (28)–(29), which under 
additional technical assumptions converge to the Nash equilibrium (Nash 
(1950)) if it exists.

3d. Bilevel stochastic Nash equilibrium (BSNE): This is the combination of 
problems 3b and 3c. There are the leader and follower levels as in (30)–(33), 
but there are I1 ≥ 1 leaders and I2 ≥ 1 followers, I = I1 + I2. Suppose that the 
actors’ i = 1:I1 are the leaders and the actors’ i = I1 + 1:I are the followers. 
Then SQG runs I concurrent SQG processes (28)–(29) with asymptotically 
vanishing ratios between leader step sizes and follower step sizes: ρis/ρjs → 0 
if 1 ≤ i ≤ I1 and I1 + 1 ≤ j ≤ I. 

We emphasize here again that in all the problem types mentioned above 
the payoff and constraint functions can originate from complex simulations.

3. Concurrent optimization and simulation with SQG

Here we discuss in more detail the issues regarding the integration of 
simulation and optimization using SQG. As we have mentioned above, the 
functions fij(xi, x–i, ω) or fij(xi, x–i, yit, ω) from (8)–(10) can result from running 
of complex simulation model implemented by the user inside the function 
fun required by SQG. Such simulation can be quite complex, including in 
its body yes or no decisions of actors based on reaching certain triggering 
quantities certain thresholds, like acceptance or rejection of an investment 
project based on the predictions of profit. Or, the decision to release a certain 
amount of water from a reservoir based on the level of water in it. It can also 
include solutions of simpler equilibrium or optimization problems. 

To be more specific, let us consider optimization of the steady state 
function Fij(xi, x–i) on the infinite horizon (10), operating in discrete time 
t = 1,..., where we assume that the state transformation from yit to yi,t+1 is 
performed by the simulation model. We describe here how the optimal or 
equilibrium values of decision variables xi can be obtained using I + ∑ini 
parallel simulation runs. In this case one simulation time step t coincides with 
one SQG iteration s from (28), so we use t also for indexing of SQG iterations. 
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The concurrent simulation and optimization process is presented in Figure 2. 
It is performed as follows below.

 1. Initialization: At the start the initial values xi0 are selected as the starting 
points for SQG iterations (28). Simulation processes Λli, i = 1:I, l = 0:ni 
are initialized. The points xi0 are sent to simulation processes Λ0i and 
points xil0, l = 1:ni obtained as in (17) for s = 0 are sent to processes Λli,  
l = 1:ni. The initial values of simulation state variables yil0 for processes Λli 
are selected: yil0 = yi0 for l = 0:ni.

 2. Generic step: By the beginning of simulation step t the current 
approximation to the optimal values of decision variables are xit and the 
current states of the simulation processes are yilt. The following actions 
are performed at step t.

 2a. SQG sends decision variables to simulation processes: The points xit 
are sent to simulation processes Λ0i and points xilt, obtained as in (17) 
for s = t are sent to processes Λli, l = 1:ni.

 2b. Observation of random parameters: The new observation ωt of 
random parameters Λli common to all simulation processes is made.

 2c. Simulation step: Simulation processes Λli obtain the observations  
fij(xi, x–i, yit, ω) and update the respective state variables yilt to yil,t+1 with 
equation (7), where xi = xilt, x–i = x–it, yit = yilt, ω = ωt for process Λli.

 2d. Simulation processes send function observations to SQG: The 
observations fij(xilt, x–it, yit, ωt) are sent to SQG.

 2e. SQG updates the decision variables: SQG uses observations of  
fij(xilt, x–it, yit, ωt) obtained from the simulation processes to update the 
function estimates Ft

ij, F
lt
ij as in (11), compute stochastic gradients ξ t

ij 
as in (22) and obtain the update of decision variables xi,t+1 as in (28).

Figure 2. Concurrent optimization and simulation on the infinite horizon.
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2. Generic step: By the beginning of simulation step t the current approximation to the optimal values of 

decision variables are itx and the current states of the simulation processes are .ilty The following actions 

are performed at step .t

2a. SQG sends decision variables to simulation processes: The points itx are sent to simulation processes 
0iΛ and points ,iltx obtained as in (17) for =s t are sent to processes ,liΛ = 1: .il n

2b. Observation of random parameters: The new observation tω of random parameters liΛ common to 

all simulation processes is made.

2c. Simulation step: Simulation processes liΛ obtain the observations ( ), , ,i i it
ijf x x y ω− and update the 
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 2f. Checking of stopping criterion: The stopping criterion is checked and 
if satisfied the value of xi,t+1 or its average over all or part of preceding 
iterations is taken as the solution of the problem, see (Nemirovski  
et al., 2009), Otherwise, the computations proceed with step t + 1.

In this manner, the optimal or equilibrium values of decision parameters 
will be obtained during a single concurrent run of I + ∑ini simulations. A finite 
simulation horizon as in (9) one has two choices. If T is small enough then 
the updates of decision parameters as in (28) can be made after the whole 
simulation run is performed and the values of the averaged observations as in 
the right-hand side of (9) are sent to the SQG. If T is large then the updates 
can be performed after each simulated time step as in the case of the infinite 
time horizon described above. 

In the case of the finite time horizon, alternative methods like nonlinear 
programming algorithms (NLP) or genetic algorithms encounter additional 
pitfalls related to the sample average approximation (Shapiro and Xu 2008). 
This approach generates a large sample M of observations ωm and substitutes 
the original problem with expectation functions Fij(xi, x–i) from (9) by sample 
average approximation FM

ij(x
i, x–i) of these functions:

 ( ) ( )
=1 =1

1 1, = , , , .
M T

M i i i i itm m
ij ij

m t
F x x f x x y

M T
ω− −∑ ∑  (34)

The optimal or equilibrium values of the decision variables are obtained 
then by solving the appropriate problem with functions FM

ij(x
i, x–i) using a variety 

of methods from nonlinear optimization approaches to genetic algorithms. 
This approach encounters substantial difficulties in the very common case 
when the simulation model includes yes or no decisions. In such cases, the 
approximate functions FM

ij(x
i, x–i) will be discontinuous for any finite M even 

when the limiting functions Fij(xi, x–i) exhibit smooth and unimodal behavior. 
Figures 3 and 4 show one example of an equilibrium problem in a simulation 
model of the energy market. The decision variables there are the thresholds, 
which trigger the acceptance of investment projects in the energy sector: 
following the industry practice, the project is accepted when the forecasted 
Return On Investment (ROI) exceeds the given threshold. It is necessary to 
find here the equilibrium values of the acceptance thresholds. Figures 3 and 4 
show that the functions FM

ij(x
i, x–i) are discontinuous and piecewise constant for 

any finite M, which provides insurmountable difficulties for the NLP methods 
and even for genetic algorithms. The stochastic gradients succeed in finding 
the solution here because they address directly the expectation functions  
Fij(xi, x–i), which is smooth and well behaved.
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4. Examples 

The SQG was applied to solution of complex optimization and equilibrium 
problems on simulation models: pricing of services on social networks 
(Becker and Gaivoronski 2014), optimization of water resources networks 
(Gaivoronski and Zuddas 2012), maritime transportation (Zuddas and 
Gaivoronski 2013), energy markets (Gaivoronski and Harbo 2017).

5. Implementation

SQG runs on top of Matlab using descriptive language for defining the problem 
hierarchy (Section 2) and the solver parameters. Matlab Parallel Computing 
Toolbox is used for parallelization.

Figure 3. Sample average approximation of payoff function.
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Figure 4. Sample average approximation of payoff function, magnified around the equilibrium.
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behavior. Figures 3 and 4 show one example of an equilibrium problem in a simulation model of the energy 

market. The decision variables there are the thresholds, which trigger the acceptance of investment projects in 

the energy sector: following the industry practice, the project is accepted when the forecasted Return On 

Investment (ROI) exceeds the given threshold. It is necessary to find here the equilibrium values of the 

acceptance thresholds. Figures 3 and 4 show that the functions ( ),M i i
ijF x x− are discontinuous and piecewise 



14 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

6. Conclusion 

SQG is a powerful tool for solving a variety of stochastic optimization and 
equilibrium problems on realistic simulation models.
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Chapter 2

Linking Catastrophe Modeling and 
Stochastic Optimization Techniques 

for Integrated Catastrophe Risk 
Analysis and Management 

Tatiana Ermolieva,1,* Yuri M Ermoliev,1 Nadejda 
Komendantova,1 Vladimir I Norkin,2 Pavel S Knopov2  

and Vasyl M Gorbachuk2

1. Introduction 

The increasing vulnerability of modern society is an alarming tendency. 
Losses from natural and human-made catastrophes are rapidly increasing. 
Catastrophes destroy communication systems, electricity supply and irrigation, 
affecting agricultural and energy production and provision systems. They 
affect consumption, savings, and investments. In the EU, from 1980 to 2020, 
natural hazards affected nearly 50 million people and cost Member States 
on average approximately €12 billion per year (See European Commission 
2021). In the US, the year 2021 brough very high share of natural disaster 
losses (roughly US$ 145 bn), of which some US$ 85 bn were insured, the 
overall and insured losses were significantly higher than in the two previous 
years (Overall losses 2020: US$ 100 bn, 2019: US$ 52 bn; insured losses 
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2020: US$ 67 bn, 2019: US$ 26 bn)—MunichRe 2022. Climate change is 
bringing along more extreme weather events worldwide (See Sigma 2022, 
Sigma 2021).

The primary reason for the increasing losses from catastrophes is the 
ignorance of risks leading to the concentration of industries, infrastructure, 
wealth, people in risk prone areas as well as the creation of new risk prone areas. 
This trend becomes alarming especially in the conditions of climate changes, 
increasing variability and frequency of natural hazards. Climate changes 
manifest in alteration of seasonal precipitation and temperature patterns and 
intensification of natural disasters. The impacts of climate changes can be 
magnified by the growing complexity of systemic interdependencies between 
economic sectors, introduction of new policies and technologies, rising 
demands, escalating frequency and severity of floods, hurricanes, storms, 
droughts, landslides, prolonged heatwaves. Climate changes put stress on 
water availability and quality, affect agricultural production, energy usage and 
production, thereby threatening the water-food-energy (WFE) security.

Continued urbanization and development in hazardous areas have been 
putting more people and wealth under risk. Urbanization and population 
concentration magnify the impact of hurricanes, windstorms, floods,  
heatwaves, epidemics, and other natural catastrophes, which can be 
further exacerbated by the systemic impacts stemming from the increasing 
interconnectedness between various socio-economic and environmental 
systems: “It is not just the nature of major catastrophe risks that seems to be 
changing, but also the context within which they appear and society’s capacity 
to manage them” (OECD 2003). 

This alarming tendency due to the combination of natural and  
human-induced risks calls for new risk-based approaches to economic 
development and catastrophe management. The economy can be considered 
a complex network of interdependent food, energy, water, and environmental 
systems, constantly facing shocks and changes, in particular, with catastrophic 
consequences. Economic assessment models involved in the risk analysis 
and impact assessment are primarily deterministic based on common  
utility-maximizing principles (See Ackerman et al. 2009, Boyle 2002, 
Chapman and Khanna 2000). They are not able to properly account for 
uncertainties, increasing variability and the frequency of extreme events, and 
catastrophic risks, inherent to climate change (See Fisher and Narain 2003, 
Goodess et al. 2003, Wright and Erickson 2003). Although climate change 
modelers recognize that the impact will be caused by extreme events along 
with changes in the patterns of variability, the ways to represent these variables 
in climate change assessment models are very limited (See Ackerman et al. 
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2009, Boyle 2002, Chapman and Khanna 2000, Fisher and Narain 2003, 
Goodess et al. 2003, Wright and Erickson 2003).

In traditional economic theory there is no special problem of catastrophic 
risks (See Arrow 1996, Chapman and Khanna 2000, Chichilinskii 1997). The 
modeling of economic behavior under uncertainty is often based, in fact, on 
rather strong assumptions of certainty. It is assumed that all economic agents 
know all possible shocks (states of the world), i.e., they know when, how often, 
and what may happen to each of them. Therefore, they can easily organize 
“markets”, where everyone insures everyone by pooling resources available 
in any state of the entire society, i.e., a catastrophe becomes small on a  
world-wide scale. In reality, this pool does not exist, which calls for more 
realistic models with explicit representation of uncertainties and risks 
associated with decisions under uncertainties, safety constraints, and risk-based 
criteria. The advanced computational approaches allow us today to deal with 
large-scale decision-making problems in the presence of multidimensional 
mutually dependent random variables.

This chapter analyzes some methodological challenges involved in 
catastrophe risk modeling and management. In a sense, it summarizes and 
extends the discussions in papers Amendola et al. 2013, Amendola et al. 2000, 
Amendola et al. 2000, Baranov et al. 2002, Compton et al. 2008, Ekenberg 
et al. 2003, Ermoliev and Hordijk 2003, Ermoliev et al. 2018, Ermolieva  
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev 
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, Ermolieva 1997, Ermoliev et al. 2010. We argue that 
catastrophe risk analysis and management have to be addressed with an 
Integrated Assessment and Management modeling framework (IAMM) linking 
catastrophe risk models (CRM) with stochastic optimization (STO) techniques 
for the design of optimal and robust mitigation and adaptation strategies for 
risks of all kinds. Section 2 outlines the main features of catastrophe risk 
management: endogenous risks, highly mutually dependent losses, the lack of 
information, the need for long-term perspectives and geographically explicit 
models, the involvement of various agents (such as individuals, farmers, 
producers, consumers, governments, insurers, investors), safety and security 
requirements, and the need for robust decisions (See Ermoliev and Hordijk 
2003). Section 3 discusses the main features of an integrated catastrophe 
management model, which can be considered as an IAMM. It may consist 
of several representative modules or submodels of various involved systems. 
Many authors (See, for instance, Boyle 2002, Clark 2002, Compton et al. 
2008, Embrechts et al. 2000, Walker 1997) define three modules in CRM: 
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A scientific or hazard module comprising of an event generator and a local 
intensity calculation; an engineering module for structural damage estimation; 
and an insurance coverage module for insured loss calculation. The modules 
for damage estimation can also include agricultural, energy, water submodels 
for the assessment of potential damages in the systems and possible dependent 
systemic risks due to the interconnectedness and synergies among them (OECD 
2003). The damage submodels are spatially detailed utilizing GIS data. 

A Monte Carlo simulation of a hazard module and a loss calculation 
module produce a scenario-by-scenario analysis and assessment of feasible 
catastrophe scenarios and respective scenario-dependent management 
strategies. However, such an analysis can easily lead to an infinite number 
of scenarios’, combinations of hazard loss and respective decisions. This 
analysis provides only a scenario-dependent evaluation without giving a 
clue what management options (decisions) are good (robust) with respect to 
all (or a percentile) of all catastrophe/hazard scenarios. Section 3 sketches 
out an appropriate decision-making model, which is an IAMM linking a 
hazard (loss calculation) model and an STO multiagent (multicriteria), spatial 
and dynamic model. This model emphasizes the cooperation of various 
involved agents in dealing with catastrophes, direct and indirect (negative 
and positive) effects, and the coexistence of anticipative (risk-averse)  
long-term ex-ante policies with adaptive (risk-taking) short-term ex-post policies.  
Sections 4 and 5 discuss in more detail the long-term economic effects of 
shocks. It points out that shocks which persist in time implicitly modify even 
sustained exponential economic growth towards stagnation. Proper injection 
of capital may be necessary only at certain stages of growth. Section 6 
concludes the chapter.

2. Catastrophic risks: main challenges 

There is a number of methodological challenges involved in catastrophic risk 
analysis and management, which we outline in this section.

2.1 Complex interdependencies

Catastrophes produce severe consequences, characterized by mutually 
dependent in space and time socio-economic and environmental impacts, 
structural and agricultural damages, losses of human lives, failures in energy 
and water production and supply systems, etc. The multivariate distribution 
of these losses is in general analytically intractable due to systemic 
interdependencies and interactions among various systems and policies. 
The distribution depends on the clustering of values and activities in the 
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region and the patterns of catastrophes. Besides, it may dramatically depend 
on policy variables. For example, a dam fundamentally modifies the flood 
conditions downstream and along the site. This creates favorable conditions 
for new developments, infrastructure investments, land-use transformations, 
and insurance activities. On the other hand, a failure of the dam may lead to 
rare but more devastating losses in the protected area. Such interdependencies 
of decisions and risks restrict the straightforward “one-by-one” evaluations of 
feasible risk management decisions and regional development strategies. The 
so-called “if-then” analysis can quickly run into an extremely high number of 
alternatives. For example, with only 10 feasible decisions regarding insurance 
coverage, say 10%, 20%, …, 100% loss coverage for a particular site 
(household, agricultural land, energy production facility, etc.) and 10 possible 
heights of a flood protection infrastructure (e.g., dam), the number of possible 
“if-then” combinations to be evaluated is 1010. 

The main idea in dealing with the problem of large dimensionality is to 
avoid exact evaluations of all possible alternatives and concentrate attention on 
the most promising directions. From a formal point of view, this is equivalent 
to the design of special search techniques (in the space of decision variables), 
making use of random simulations of catastrophes (catastrophe generator), 
respective losses/impacts (loss calculator), and iterative revision of feasible 
decisions towards the improvement of specific indicators (iterative STO 
procedure). This is a task of iterative stochastic optimization, e.g., stochastic 
quasigradients (SQG) methods (Ermolieva 1997, Ermolieva et al. 2017, 
Ermoliev and Wets 1988). The SQG iterative algorithms define a “searching” 
process, which resembles a sequential adaptive learning and improvement of 
decisions from data and simulations, i.e., the so-called Adaptive Monte Carlo 
optimization. The SQG methods are applicable in cases when traditional 
stochastic approximation, gradient or stochastic gradient methods do not 
work, in particular, to general two-stage problems with implicitly defined 
goals and constraints functions, nonsmooth and possibly discontinuous 
performance indicators, risk and uncertainties shaped by decision of various 
agents. The SQG-based procedures generate feedback to policy variables after 
each simulation and automatically drive them towards desirable combinations 
without going into exhausting “it-then” scenario analyses.

2.2 Rare events

The principal problem with the management of rare catastrophe risks 
is the lack of historical data on losses at particular locations, although 
rich data may exist on an aggregate regional level. Historical data are 
relevant to old policies and may have very limited value for new policies. 
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Models have to play a key role for generating plausible synthetic data and 
designing new robust policies (Ermoliev and Hordijk 2003, Ermolieva  
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev  
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev et al. 2010). 

Catastrophes may be of quite different in nature from episode to episode, 
exhibiting a wide spectrum of impact on infrastructures, public health, 
agricultural-energy-water and environment systems. Each of these episodes 
seems to be improbable and may be simply ignored in the so-called “practical 
approaches” or “scenario thinking”. This may lead to rather frequent 
“improbable” catastrophes: although each of N scenarios (episodes) has a 
negligible probability p, the probability of one of them increases exponentially 
in N as 1 – (1 – p)N = 1 – exp{N ln(1 – p)}. In other words, the integrated 
analysis of all possible, although rare, scenarios is essential.

2.3 Long-term perspectives

The proper assessment and management of rare risks requires long-term 
perspectives. The occurrence of a catastrophe within a small interval Δt 
is often evaluated by a negligible probability λΔt, but the probability of a 
catastrophe in an interval [0, T] increases as 1 – (1 – λΔt)T/Δt ≈ 1 – e– λT. Purely 
adaptive “learning-by-doing” or “learning-by-catastrophe” approaches may 
be extremely expensive. There are uncertainties regarding the real occurrence 
of rare events. In fact, a 1000-year flood may occur next year. For example, 
floods across Central Europe in 2002 were classified as 1000-, 500-,  
250-, and 100-year events. Another tendency in risk assessment is to evaluate 
potential losses by using so-called annualization (average annual evaluation), 
i.e., by spreading damages, fatalities, and compensations from a potential, say  
50-year flood, equally over 50 years (Atoyev et al. 2020, Dantzig 1979). 
In this case, roughly speaking, potential 50-year losses incurred, e.g., with 
a dam break, are evaluated as a sequence of independent annual events 
(failures), one meter of the breach in the first year, another—in the second 
year, and so on, until the final crash of the whole flood defense system in the  
50th year. The main conclusion from this type of deterministic analysis is that 
catastrophe is not significant. Here, the dramatic confusion is from the wrong 
representation of spatio-temporal aspects of catastrophes. Catastrophes do not 
occur on average with average patterns. They hit a “spike” in space and time 
requiring immediate financial support and adequate emergency actions. In 
other words, the distributional aspects, i.e., temporal and spatial distributions 
of values and risks, are key issues to capture the main sources of vulnerability 
for designing robust policies.
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2.4 Spatial aspects

Catastrophes have different spatial patterns and affect locations quite 
differently. For example, the location of properties or infrastructure with 
respect to the center of an earthquake is an extremely important piece of 
information. Together with the regional geology and the soil conditions, the 
location influences the degree of shaking, and, hence, damage incurred at the 
location. Deforestation at a particular location modifies the flood conditions 
only downstream and affects losses and respective risk management 
decisions, e.g., flood protection measures and insurance claims, only from 
specific locations. In other words, management of complex interdependencies 
among catastrophic risks, losses and decisions is possible only within a 
geographically explicit framework. Unfortunately, a general approach in risk 
assessment is to use so-called average hazard maps, i.e., maps showing average 
catastrophe patterns that will never be observed as a result of a real episode, as 
the map is the average image of all possible patterns that catastrophic events 
may have. Accordingly, social losses in affected regions are evaluated as 
the sum of individual losses computed on a location-by-location rather than  
pattern-by-pattern basis w.r.t. joint probability distributions. This highly 
underestimates the real socio-economic impacts of catastrophes, as the 
following simple example shows. 

Consider the dilemma between the social and individual losses. In a 
sense, this example shows that 100 >> 

100

1 1 1 ... 1+ + + +
 . Assume that each 

of 100 locations has an asset of the same type. An extreme event destroys 
all of them at once with probability 1/100. Consider also a situation without 
the extreme event, but with each asset still being destroyed independently 
with the same probability 1/100. From an individual point of view, these 
two situations are identical: an asset is destroyed with probability 1/100, i.e., 
individual losses and expected losses are also the same. Collective (social) 
losses are dramatically different. In the first case 100 assets are destroyed 
with probability 1/100, whereas in the second case 100 assets are destroyed 
only with probability 100–100, which is practically 0. This example also 
illustrates the potential exponential growth of vulnerability from increasing  
network-interdependencies.

2.5 Assessment vs. robust solutions

Uncertainty is associated with every facet of catastrophe risk assessment. 
The exact evaluation of all interdependencies between catastrophe patterns, 
potential strategies, and related outcomes is impossible. It may easily run into 
an extremely high number of alternatives. Also, a strategy optimal for one 
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scenario may not be optimal against multiple scenarios. In this situation the 
most important task seems to be the design of management strategies robust 
with respect to all potential scenarios. The straightforward assessment is 
never exact, while the preference structure among different decisions may be 
rather stable to errors. This is similar to the situation with two parcels: to find 
out their weights is a much more difficult task than to determine the heavier 
parcel. This simple observation, in fact, is the basic idea of the integrated 
management model and the stochastic optimization approaches discussed in 
Section 3: the evaluation of the robust optimal decisions is achieved without 
exact evaluation of all possible alternatives.

The underlying assumption of the robustness accounts for safety, 
flexibility, and optimality criteria of all agents against multiple potential 
scenarios of catastrophic events (See Ermoliev and Hordijk 2003, Ermoliev  
et al. 2018, Ermolieva et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev 
et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, 
Ermoliev and Norkin 1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 
2003, Ermolieva 1997, Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev 
et al. 2010). Foremost, the robustness is associated with the safety criteria 
(See ANCOLD 1998, Atoyev et al. 2020, Bowles 2007, CETS 1985, Dams 
and Development 2000, Daykin et al. 1994, Embrechts et al. 2000, Ermoliev 
and Hordijk 2003, Ermoliev et al. 2018, Ermolieva et al. 2016, Ermolieva 
and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev et al. 2000a, Ermoliev  
et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 1997, Ermolieva 
and Ermoliev 2005, Galambos 2003, 1997, Ermoliev et al. 1998, Ermolieva 
et al. 1997, Ermoliev et al. 2010, Ermolieva et al. 2016, Ermolieva 
et al. 2021, Gorbachuk et al. 2019, IAEA 1992), which deal with the  
Value-at-Risk considerations (See Artzner et al. 1999, Embrechts et al. 
2000, Ermoliev and Hordijk 2003, Ermoliev et al. 2018, Ermolieva et al. 
2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev  
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 
1997, Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev et al. 2010, 
Rockafellar and Uryasev 2000). These type of risk indicators is a key for 
the regulation of low probability-high consequences risks. The introduction 
of safety constraints induces risk aversion among the agents and identifies 
a trade-off between ex-ante precautionary and ex-post adaptive measures. 
These concerns, in particular, the trade-off between structural and financial 
measures, i.e., between expenditures for dam reinforcement, values and 
production reallocation, insurance coverage in the region exposed to floods 
or a dam break events. 
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The balance between the precautionary and adaptive decisions depends 
on the financial capacities of the agents: how much they can invest now into  
ex-ante risk reduction measures, say, reinforcement of dams, improving 
building quality. Or for how much insurance can they buy; and how much 
they can be allowed to spend for covering losses in the case of a catastrophe 
occurring. As mentioned by many insurance authorities, the dam break failure 
may cause losses that not every government can fund, insurance or reinsurance 
will be able to absorb.

The future losses highly depend on currently implemented strategies. The 
ex-post decisions may turn to be much costlier and, obviously, these costs often 
come unexpectedly at the wrong time and place. The need for coexistence of 
both measures is dictated by the potential disastrous losses (see discussion in 
Section 4). This decision-making framework implies, in particular, that the 
capacity for adaptive ex-post decision making has to be created in an ex-ante 
manner. In the discussed approaches, specific attention is paid to the modeling 
of endogenous extreme events (scenarios) and unknown catastrophic risks, 
i.e., events and risks induced by new decisions for the analysis of which there 
is no real observations available. 

The exact evaluation of all complex interdependencies is impossible 
and thus risk assessment will yield poor estimates. In this situation the most 
important task it the design of robust management strategies. This simple 
observation, in fact, is the basic idea of the stochastic optimization approaches 
proposed in Amendola, Ermolieva et al. 2013, Amendola et al. 2000, Amendola 
et al. 2000, Ermoliev and Hordijk 2003, Ermoliev et al. 2018, Ermolieva  
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev 
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev et al. 2010, Gorbachuk 
et al. 2019, the evaluation of the optimal decisions is achieved without exact 
evaluation of all possible alternatives.

2.6 Multiagent aspects

The high consequences of catastrophes call for the cooperation of various 
agents such as governments, farmers, producers, consumers, insurers, 
investors, and individuals. This often leads to multi-objective stochastic 
optimization problems and game-theoretical models with stochastic 
uncertainties. The issues of ethics relate to possible disagreements between 
the agents and the level of their risk perception, awareness, and involvement 
in catastrophe management. These primarily stem from the individual unique 
assumptions about the facts associated with the risks, the lack of knowledge 
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and perception of risks, and from the differences in their evaluation criteria. 
The disagreement in views also leads to discordance in actions. 

For example, dams associate with long-term developments. Their 
construction is evaluated from maximization of the intergenerational utility 
(See ANCOLD 1998, CETS 1985, Dams and Development 2000). Different 
views over the benefits of dams arise when individuals rate their instantaneous 
goals higher than the common wealth, which immediately results into a dissent 
about the schedule of actions to be taken (evaluations and the respective actions 
to be taken). Many recognize the benefits and potential risks associated with 
dam breaks. Yet, it may still be unclear how the losses associated with dam 
breaks can be shared among the concerned agents in a fair way. As estimated 
by many insurance companies, the losses from major dam failures cannot be 
borne by insurance companies or reinsurance companies alone. There is a need 
for appropriate balance between risk mitigation and risk sharing structural and 
financial instruments involving the main concerned agents. In this case, the 
model provides a tool to develop proper perception based on learning from 
modeling and simulation.

For all these reasons models become essential for catastrophic risks 
management. The occurrence of various episodes (scenarios) and dependent 
losses in the region can be simulated on a computer in the same way as the 
episode may happen in reality. The stochastic optimization techniques can 
utilize this information for designing robust management strategies.

2.7 Safety constraints

The occurrence of a disaster for each agent is often associated with the 
likelihood of some processes abruptly passing individual “vital” thresholds. 
The design of risk management strategies therefore requires introduction 
and regulation of the safety constraints of the agents. For example, in 
insurance industry, the vital risk process is defined by flows of premiums 
and claims, whereas thresholds are defined by insolvency constraints (See 
Amendola et al. 2013, Amendola et al. 2000, Amendola et al. 2000, Compton 
et al. 2008, Ermoliev and Hordijk 2003, Ermoliev et al. 2018, Ermolieva  
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev  
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev et al. 2010). A similar 
situation arises in the control of environmental targets, in private incomes 
and losses, in the design of disaster management programs (See Amendola, 
Ermolieva et al. 2013, Amendola et al. 2000, Amendola et al. 2000, Ermolieva 
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev 
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et al. 2000b, Ermolieva et al. 2003, Ermoliev et al. 1998). Formally, in the 
model it is represented as following. Assume that there is a random process Rt 
and the threshold is defined by a random ρt. Assume, Rt represents insurer’s 
risk reserve (or “wealth” of a household). In general, it can be written for  
t = 0,1,...,T – 1:

 R⬚
t+1 = R⬚

t + I⬚
t  + ∑m

j=1[π⬚
t  (qt) – c⬚

t  (qt)] – O⬚
t  – ∑j∈εt

(ωt)L⬚
t  (ωt)q⬚

t , 

where R⬚
0 is initial risk reserve (initial wealth), I⬚

t  are various inflows,  
O⬚

t  – stands for expenditures, qt
j is the coverage of a company in location j at 

time t, πt
j (q⬚

t ) is the premium from contracts characterized by coverages {qt
j}. 

Full coverages of losses correspond to qt
j = 1, qt = {qt

j, j = 1,m—}. In spatial 
multiagent modeling, Rt and ρt can be large-dimensional vectors reflecting the 
overall situation in different locations of a region. 

Let us define the stopping time τ as the first-time moment t when Rt is 
below ρt. By introducing appropriate risk management decisions x it is often 
possible to affect Rt and ρt in order to ensure the safety constraints P[Rt ≥ ρt] ≥ γ, 
for some safety level γ, t = 0,1,2,... (similar to model in Section 3). 

The use of this type of safety constraints is a rather standard approach for 
coping with risks in insurance, finance, and nuclear industries. For example, 
the safety regulations of nuclear plants assume that the violation of safety 
constraints may occur only once in 107 years, i.e., γ = 1 – 10–7. It is remarkable 
that the use of stopping time τ has strong connections with the dynamic safety 
constraints and dynamic versions of static CVaR risk measures (See Ermoliev 
and Hordijk 2003, Ermolieva and Obersteiner 2004, Ermolieva and Ermoliev 
2005, Ermolieva et al. 2003). 

The ethical question about losers and winners concerns not only the 
economic evaluation of the benefits and costs associated with the operation of 
critical infrastructure (e.g., dams), it also relates to human and environmental 
values, which are often difficult to appraise in monetary terms. The safety 
constraints allow it to control the actions within admissible norms on risky 
installation, environmental pollution, wellbeing, historical values, and cultural 
preferences, in particular, restrict the growth of the wealth in risk prone areas. 

Therefore, within the model ethical issues can be resolved by evaluating 
the overall safety coherent with spatio-temporal goals, constraints, and 
indicators of involved agents, whether these are households, farmers, 
governments, the business supplying the water, those living downstream of 
a large dam, or insurance covering the losses. The proper representation of 
safety constraints is a crucial aspect of catastrophe management problem. 
Catastrophic losses often have multi-mode distributions and therefore the use 
of standard mean value indicators (e.g., expected costs and profits) may be 
dramatically misleading.
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2.8 Discounting 

One of the fundamental ethical parameters in long term projects 
evaluation (e.g., critical infrastructure against floods) is the discount rate  
(see e.g., ANCOLD 1998, Chichilinskii 1997, Dams and Development 
2000, OECD 2003, Ramsey 1928, Weitzman 1999 and references therein). 
In particular, the social discount rate reflects the level to which we discount 
the value of future generations’ well-being in relation to our own. A social 
discount rate of 0, for example, means we value future generations’ well-being 
equally to our own. Ramsey 1928 argued that applying a positive discount rate 
r to discount values across generations is unethical. Koopman (see Weitzman 
1999), contrary to Ramsey, claimed that zero discount rate r would imply an 
unacceptably low level of current consumption.

There are several aspects of discounting in relation to critical infrastructure 
(e.g., dams) discussion. Traditional approaches to evaluation of infrastructure 
efficiency and safeness often use principles of the so-called net present value 
(NPV) or modified net present value (MNPV) to justify an infrastructure 
project. In essence, both rely on an assumption that the project is associated 
with an expected stream of positive or negative cash flows V0, V1,..., VT, 
Vt = Evt over a time horizon T ≤ ∞. These flows traditionally account for 
engineering variables and reflect the cash flows of infrastructure owners,  
e.g., governments. For example, the sum may comprise of several years 
negative cash values reflecting the costs of construction and commissioning, 
followed by positive cash flow during the years of operating life without 
essential maintenance costs, when the infrastructure is producing positive 
cash flows. Finally, a period of expenditures on reconstruction and 
maintenance. Spatio-temporal profiles of the benefits and the potential  
infrastructure-induced (dam-induced) losses are not explicitly included in 
the evaluation. Assume that r is a constant prevailing market interest rate, 
then alternative dam projects are compared V = V0 + d1V1 +...+ dTVT, where  
dt = dt, d = (1 + r)–1, t = 0,1,...,T, is the discount factor and V denotes NPV. If 
the NPV is positive, the project has positive expected benefits and, therefore, 
is justifiable for implementation. 

The time horizon T ≤ ∞ and the choice of a discount rate r may 
dramatically affect the evaluation of the project. Diverse assumptions about 
the discount rate may lead to dramatically different policy recommendations 
and management strategies, which may provoke additional catastrophes and 
significantly contribute to increasing vulnerability of the society. 

Behind the choice of the discount factor and the evaluation model are 
not really the fact but the ethical and intergenerational considerations (See 
Ramsey 1928). A lower discount rate emphasizes the role of distant costs 
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and benefits, i.e., shifts the emphasis to future time periods. For example, 
a flat discount rate of 5–6% (traditionally used in dam projects) orients the 
analysis on a 20–30-year time horizon. Meanwhile, the explicit treatment 
of a potential 200 year disaster would require at least the discount rate of 
0.5% instead of 5%. Otherwise, it can be easily illustrated that damages 
do not matter (they are discounted almost to 0). For the evaluation of truly  
long-term projects, e.g., “catastrophic” or economic developments projects, 
say, long-term investments into a dam or a dike system, the discount factors 
have to be relevant to expected horizons of potential catastrophes. The 
expected duration of projects evaluated with standard discount rate obtained 
from traditional capital markets does not exceed a few decades and, as such, 
these rates cannot match properly evaluations of projects oriented on 1000-, 
500-, 250-, 100-year catastrophes.

Disadvantages of the standard NPV criterion are well analyzed. In 
particular, the NPV critically depends on some average interest rate, the 
application of which for evaluation of a practical project may not be easily 
implementable. For example, the problem that arises from the use of the 
expected value Er and the discount factor (1 + Er)–t implies additional 
significant reduction of future values in contrast to the real expected discount 
factor E(1 + r)–t, since E(1 + r)–t >> (1 + Er)–t. 

In addition, the NPV does not reveal the temporal variability of cash flow 
streams. Two alternative streams may easily have the same NPV despite the 
fact that in one of them all the cash is clustered within a few periods, but in 
another it is spread out evenly over time. This type of temporal heterogeneity 
is critically important for dealing with catastrophic losses, which occur 
suddenly as a “spike” in time and space.

3. Catastrophe modeling and stochastic optimization as 
integrated catastrophe assessment and management model 

3.1 Integrated catastrophe modeling

Models for the analysis and management of catastrophic risks “link” several 
modules or submodels. Many authors (for instance, Baranov et al. 2002, Boyle 
2002, Clark 2002, Walker 1997) consider three main modules in catastrophe 
modeling: A hazard module comprising an event generator; an engineering 
module for damage estimation; an insurance business module for the analysis 
of insured losses vs. insurance premiums. 

In more general models, in addition to an engineering module for 
structural (infrastructure) damage estimation, sectorial agricultural, energy, 
water production and provision modules can be incorporated for calculating 
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plausible impacts from natural disasters to food, energy, and water (FEW) 
production and provision systems, thereby representing the aspects of food, 
energy, water security. Agricultural impacts can be estimated by land use 
and agriculture production planning models (See Bielza Diaz-Caneja et al. 
2009, Glauber 2015, Ermolieva et al. 2016, Ermolieva et al. 2021). These 
models incorporate the main crops and livestock production and management 
systems, characterized by systems-specific production costs, water and 
fertilizer requirements, emission factors, and other parameters. Catastrophic 
damages in agricultural systems can be caused by natural extreme events 
such as prolonged droughts, heat waves, seasonal variations in precipitation, 
wind storms, heavy precipitation, etc. The events affect crop and livestock 
yields, destroy agricultural land, diminish water infrastructure and supply, 
and cause production depletion, price volatility, market instability, trade bans, 
and tariff increases, to offset the impact of increasing world prices and cope 
with production shortages. In addition to exogenous shocks, endogenous 
policy-driven impacts in the agricultural sector can be caused by catastrophic 
damages (failures) in other sectors. Linkages between the agricultural and 
energy markets are tightened because of climate change concerns and the 
rapid energy sector transition towards renewable energy sources. Agricultural 
commodities become important energy resources because of biofuel mandates. 
Increasing frequency and variability of natural disasters, the vulnerability of 
crop yields, grain demand and price volatility influence, directly and indirectly, 
markets for transportation fuels and transportation costs. At the same time, 
crude oil, gas and electricity markets and prices have indirect effects on 
agricultural production costs and prices. Additional interactions between FEW 
systems emerge due to the uncertainties inherent to the introduction of new 
technologies, e.g., intermittent renewables, advanced irrigation, hydrogen 
production, water desalination, etc. For example, water desalination for 
agricultural water provision requires vast amounts of electricity. Therefore, 
a failure in the energy system due to an extreme event causes propagation of 
losses in interdependent FEW systems. 

Energy impact can be estimated by energy production and supply 
planning models. These models include the main stages of energy flows from 
resources to demands: energy extraction from energy resources, primary 
energy conversion into secondary energy forms, transport and distribution 
of energy to the point of end, and conversion into products for end users to 
fulfill specific demands. The model can incorporate various energy resources 
as, e.g., coal, gas, crude oil, and renewables; primary energy sources include 
coal, crude oil, gas, solar, wind, etc.; secondary energy sources are fuel oil, 
methanol, hydrogen, electricity, ammonia, etc.; final energy products are coal, 
fuel oil, gas, hydrogen, ammonia, methanol, electricity, etc. Demands for 
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useful energy products come from economic sectors: industrial, residential, 
transport, agricultural, water, and energy. Each technology is characterized 
by unit costs, efficiency, lifetime, emissions, etc. Catastrophic damages 
(failures) in energy systems can be induced by exogenous natural hazards 
such as, for example, windstorms, hurricanes, floods, and earthquakes, and 
by endogenous systemic failures, which can be triggered beyond the energy 
system. For example, intensive water pumping by farmers in water-scarce 
regions can cause water shortages for energy system cooling and lead to 
enforced energy production termination (Abrar 2016).

3.2 Catastrophic systemic risks

Interdependent agricultural, energy, and water sectors are connected through 
joint cross-sectoral relationships (balances) capturing, e.g., the requirements 
and limitations on the natural resource use and availability, and investments. 
Incorporation of joint food, energy, and water security constraints requires 
satisfaction of food, energy, and water demand by users in all potential scenarios 
of catastrophic shocks. In general, joint constraints impose restrictions on total 
production, resource use, and emissions by all sectors/regions. The constraints 
can establish supply-demand relationships between the systems. In addition, 
the balances can impose limitations (quotas) on total energy production by 
the energy sector (electricity, gas, diesel, etc.) and land use sector (biodiesel, 
methanol); total energy use by energy and agricultural sectors; total agricultural 
production by distributed farmers/regions, etc. 

Increasing interdependencies among FEW systems involving interactions 
between nature, humans, and technology resemble a complex chain network 
connected through supply-demand relations. Disruption of such networks 
triggered, for example, by a natural disaster, induces systemic risks associated 
with critical imbalances and exceedances of vital thresholds, affecting FEW 
security at various levels with possible global spillovers. Risks of disruptions 
and failures in such systems may be unlike anything, which has been 
experienced in the past. These risks can be induced by human decisions in 
combination with natural shocks. For example, an extra load in a power grid 
triggered by a power plant or a transmission line failure can cause cascading 
failures with catastrophic systemic outages (Abrar 2016). In financial 
networks, an event at a company level can lead to severe instability or even to a 
crisis similar to the global financial crisis of 2008. A hurricane in combination 
with inappropriate dams maintenance and land use management can result in 
human and economic losses, similar to those induced by Hurricane Katrina. 
Another example relates to an increase of biofuels production, which affects 
crops and food prices, destabilizes food and water provision, and worsens 
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environmental conditions. Systemic risks in interdependent systems can be 
defined as the risks of a subsystem (a part of the system) threatening the 
sustainable performance and achievement of FEW security goals. Thus, a 
shock in a peripheral subsystem induced (intentionally or unintentionally) by 
an endogenous or exogenous event, can trigger systemic risks propagation 
with impacts, i.e., instability or even a collapse, at various levels. The risks 
may have quite different policy-driven dependent spatial and temporal 
patterns. While standard risks analysis and assessment can rely on historical 
data, systemic cascading risks in FEW systems are implicitly defined by the 
whole structure and the interactions among the systems, in particular costs, 
production and processing technologies, prices, trade flows, risk exposure, 
FEW security constraints, risk measures, decisions of agents. 

Prediction of systemic risks in integrated natural and anthropogenic 
policy-driven FEW systems is a rather tedious task. The main issue in this 
case is robust management of the risks, which can be achieved by equipping 
the systems with precautionary and adaptive strategies enabling the systems 
sufficient flexibility and robustness to maintain sustainable performance and 
fulfill joint FEW security goals independently of what systemic shock occurs 
(Ermolieva et al. 2016, Ermolieva et al. 2021).

Therefore, catastrophe analysis and management in interdependent food, 
energy, water systems require an integrated approach to understand and deal 
with the numerous interactions between the systems and potential catastrophic 
losses due to exogenous and endogenous systemic risks. This approach, 
compared to independent analysis, contributes immensely to sustainable 
development within and across sectors and scales.

Systemic losses in interdependent food, energy, water systems requires 
proper approaches to the design of respective insurance and loss coverage 
programs. Thus, for example, agricultural insurance covers mainly production 
risks related to weather conditions, pests and diseases, market conditions, 
liberalization policies, climate change. Energy sector insurance covers risks 
typical for energy sector from installation to operational phases, including 
business interruption, photovoltaic insurance, insurance for wind turbines, etc.

3.3 Catastrophe generators

The lack of historical data on catastrophic losses and the absence of 
analytical forms of joint distribution create a rapidly increasing demand for 
integrated catastrophe modeling (See Amendola et al. 2013, Amendola et al. 
2000, Amendola et al. 2000, Baranov et al. 2002, Boyle 2002, Clark 2002, 
Ermolieva et al. 2003) incorporating natural catastrophe (hazards) models and 
socio-economic sectoral models. GIS-based computer catastrophe modeling 
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attempts to simulate samples (scenarios) of mutually dependent catastrophe 
losses on the levels of a household, a city, a region, or a sector, from various 
natural hazards, e.g., floods, droughts, earthquakes, and hurricanes. These 
models are used as a tool for planning, emergency systems, lifeline analyses, 
and estimation of losses. 

Most of the models involved in the analysis produce outputs that are 
distributional. That is, the results of catastrophe simulations are typically 
not simply an expected loss, but rather a set of geographically detailed loss 
scenarios enabling it to obtain of a multidimensional probability distribution, 
which may be analytically intractable and not follow a particular statistical 
distribution.

Natural catastrophe models have been developed for a wide range of 
catastrophic risks and geographic territories worldwide. All major natural 
hazards are modeled, including earthquakes, hurricanes, winter storms, 
tornadoes, hailstorms, and floods. The seismic hazard module simulates 
actual earthquake shaking. It uses or simulates locations and magnitudes 
of earthquakes. This module often comprises other physical phenomena 
associated with an earthquake including subsequent fires, and landslides. The 
movement of the seismic waves through the soil is modeled by attenuation 
equations. Seismic effects at a site depend on earthquake magnitude, distance 
from the source, and site characteristics, such as regional geology and soil 
types. The vulnerability module relates seismic shaking to structural and 
property damage. It determines the extent of damages to buildings and content 
at a site. In the general case, it calculates sectoral damages. The financial 
module assigns a cost to these damages and calculates the maximum potential 
and/or expected losses for either individual sites or regions. It calculates losses 
to structural damage, damage to property and content, agricultural losses, 
losses due to business interruption for example due to energy system failure, 
etc. This module includes data on building locations, building types, building 
contents, power sector values at risk, agricultural properties, etc.

The development of insurance instruments/products and programs can 
be an important risk mitigation strategy for power generation and agricultural 
activities (See Bielza Diaz-Caneja et al. 2009, Glauber 2015). Loss estimates 
can be presented, e.g., either in percentage terms (of the total value) or as a 
monetary value. 

From Monte Carlo simulation of natural catastrophe scenarios, histograms 
of aggregate losses for a single location, a particular catastrophe zone, a 
sector, a country or worldwide can be derived from the catastrophe modeling. 
But catastrophe modeling has only marginal benefits when it is used in a 
traditional scenario-by-scenario manner for obtaining estimates of aggregate 
losses. 
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Although catastrophe modeling is considered to be a decision-making 
tool by many researchers and insurance companies, however, the decision 
variables are not explicitly incorporated in the existing catastrophe models. 
Following Amendola, Ermolieva et al. 2013, Amendola et al. 2000, Amendola 
et al. 2000, Baranov et al. 2002, Ermoliev et al. 2018, Ermolieva et al. 2016, 
Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev et al. 
2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, Ermolieva et al. 1997, Ermoliev et al. 2010, we can 
admit that the currently existing form of catastrophe modeling can only be 
a necessary element/subset of more advanced extensive decision-support 
models enabling simultaneous integrated analysis of the catastrophic risk  
portfolios/scenarios and the optimization of catastrophe management policies 
within the same modeling framework. The explicit introduction of decisions 
in such models opens up a possibility for integrated catastrophic risks 
management based on the contribution of individual risks to aggregate losses. 

3.3.1 Example: A catastrophe flood model

Let us consider an example of a catastrophe model developed for the analysis 
of flood losses in case studies (see Ermoliev et al. 2018, Ermolieva et al. 
2016, Ermoliev et al. 2018, Ermolieva et al. 2003 and references therein), 
i.e., a catastrophe flood model. The aim of the model is to generate potential 
samples of mutually dependent losses for a given vector of policy variables. 
For example, when there is a lack of historical data, models can estimate 
distributions of losses and gains for different locations, households, farmers, 
energy providers, water authorities, insurers, and governments. This is 
critically important in the case of rare events or new policies that have never 
been implemented in practice.

As is shown in Figure 1, the model for catastrophe flood analysis links, 
in general, five submodels (modules): the “River” module, the “Inundation” 
module, the “Vulnerability” module, the “Multi-Agent Accounting System”, 
and the “Variability” module. 

The “River” module calculates the volume of discharged water to the pilot 
region from different river sections for given heights of dikes, given scenarios 
of their failures or removals, and rains. The latter are modeled by upstream 
discharge curves. Thus, formally, the “River” module maps an upstream 
discharge curve into the volume of water released to the region from various 
sections. The underlying submodel is able to estimate the discharged volume 
of the water into the region under different conditions, for example, if the 
rain patterns change, if the dikes are heightened, or if they are strengthened 
or removed.
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The next module is the spatial GIS-based “Inundation” submodel. This 
module maps water released from the river into levels of standing water at 
fine resolutions (of, e.g., 10 sq. m) and thus it can estimate the area of the 
region affected by different decisions. 

The “Vulnerability” module maps spatial patterns of released water 
into economic losses. This module calculates direct losses and may include 

Figure 1. Modules of the Catastrophe Model.
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possible cascading effects, such as floods causing fire and its consequences. 
It may also include loss reduction measures, e.g., new land-use modifications 
and flood preparedness measures. This module is able to indicate changes in 
economic losses from changes in risk reduction measures.

The “Multi-Agent Accounting System” module maps spatial economic 
losses into losses and gains of the involved agents. These agents are 
central and/or local governments, catastrophe insurance funds, investors, 
and “individuals” (cells) representing households, farmers, producers,  
consumers, etc.

Given sufficient data, the above-mentioned submodels can generate 
scenarios of losses and gains at different locations for specific scenarios of 
rains, dam failures, risk reduction measures and risk-spreading schemes. But 
there are significant uncertainties and considerable variability in the simulated 
losses and gains. A 50-year flood may occur in 5 days or in 70 years, which 
may induce considerably different losses depending on regional economic 
growth scenarios. Governments, mutual catastrophe funds, and insurers 
are especially concerned about the variability since they may not have the 
capacity to cover large losses. To maintain their solvency, they may charge 
higher premiums and taxes, which may result in overpayments by the insured 
(households, farmers, producers, consumers, etc.). Alternatively, they may 
undercharge contracts. 

There may be alternative opinions about loss-reduction measures. A 
higher dike may fail and cause more damage in comparison to a dike without 
modification. The “Variability” module, a Monte Carlo model, transforms 
spatial scenarios of losses and gains among agents into histograms of 
probability distributions. For example, it derives histograms of direct losses at 
a location or a subregion. It also calculates histograms of overpayments and 
underpayments for different agents.

3.4 Linking stochastic optimization and catastrophe models into 
integrated assessment and catastrophe management framework

3.4.1 Adaptive Monte Carlo procedures

Catastrophe modeling discussed in previous sections opens up the possibility 
for “if-then” scenario analyses, which allows the evaluation of a finite number 
of policy alternatives. These analyses may run quickly into an infinite number 
of possible combinations. For example, an insurer in the region can have 
different policies regarding the extent of coverage that it offers, say 0%, 10%, 
20%,…, 100%, i.e., altogether 11 alternatives. For 10 locations the number 
of possible combinations is 1011. With 100 locations, the straightforward  
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“if-then” analysis runs into an enormous number of scenarios leading to 
the “curse of dimensionality”. The same computational complexity arises 
in dealing with location-specific land use management decisions, flood 
protection measures, dikes, channels, improvement of building codes, 
premiums, investments in different critical infrastructures, etc.

The fundamental question concerns the evaluation of a desirable policy 
without the evaluation of all the options. The complexity of this task is 
due to the analytical intractability of stochastic catastrophe models, often 
precluding the use of standard optimization methods, e.g., genetic algorithms. 
Therefore, in general cases we have to rely on the stochastic optimization 
methods Ermoliev and Hordijk 2003, Ermoliev et al. 2018, Ermolieva  
et al. 2016, Ermolieva and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev  
et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 
1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, 
Ermoliev et al. 1998, in particular, on the so-called Adaptive Monte Carlo 
Optimization. “Adaptive Monte Carlo” (See Ermolieva 1997, Ermoliev  
et al. 1998, Ermolieva et al. 1997, Pugh 1966) means a technique that makes 
on-line use of sampling information to sequentially improve the efficiency of 
the sampling itself.

We use “Adaptive Monte Carlo Optimization” in a rather broad sense, i.e., 
the efficiency of the sampling procedure is considered as a part of more general 
improvements with respect to different decision and goals. The “Adaptive 
Monte Carlo Optimization” model consists of three main interacting blocks: 
“Feasible Decisions”, the “Monte Carlo Catastrophe Model”, and “Indicators” 
(Figure 2). 

For flood management, the block “Feasible Decisions” represents all 
feasible policies for coping with floods. They may include feasible heights 
of dikes, capacity of reservoirs, water channels, insurance coverage, land 
use modifications, etc. These variables affect performance indicators such as 
losses, premiums of funds and insurers, underpayments or overpayments by 
the insured, costs, insolvency, and stability indicators. 

The essential feature of the “Adaptive Monte Carlo Optimization” model 
is the feedback mechanism updating decisions towards specific goals and the 
improvement of insolvency and stability indicators. The updating procedure 

Figure 2. The Adaptive Monte Carlo Optimization Model.

23

methods Ermoliev and Hordijk, 2003, Ermoliev et al. 2018, Ermolieva et al. 2016, Ermolieva and

Obersteiner 2004, Ermoliev et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, Ermoliev et 

al. 2001, Ermoliev and Norkin, 1997, Ermolieva and Ermoliev 2005, Ermolieva et al. 2003,

Ermolieva 1997, Ermoliev et al. 1998, in particular, on the so-called Adaptive Monte Carlo 

Optimization. “Adaptive Monte Carlo” (See Ermolieva 1997, Ermoliev et al.1998, Ermolieva et 

al. 1997, Pugh 1966) means a technique that makes on-line use of sampling information to 

sequentially improve the efficiency of the sampling itself. 

We use “Adaptive Monte Carlo Optimization” in a rather broad sense, i.e., the efficiency of 

the sampling procedure is considered as a part of more general improvements with respect to 

different decision and goals. The “Adaptive Monte Carlo Optimization” model consists of three 

main interacting blocks: “Feasible Decisions”, the “Monte Carlo Catastrophe Model”, and 

“Indicators” (Figure 2). 

Figure 2. The Adaptive Monte Carlo Optimization Model

For flood management, the block “Feasible Decisions” represents all feasible policies for 

coping with floods. They may include feasible heights of dikes, capacity of reservoirs, water 

channels, insurance coverage, land use modifications, etc. These variables affect performance 

indicators such as losses, premiums of funds and insurers, underpayments or overpayments by the 

insured, costs, insolvency, and stability indicators. 

The essential feature of the “Adaptive Monte Carlo Optimization” model is the feedback

mechanism updating decisions towards specific goals and the improvement of insolvency and 

stability indicators. The updating procedure relies on Stochastic Quasigradient (SQG) 

optimization techniques as discussed in Section 3.4.2. Losses are simulated by the catastrophe 

model, causing an iterative revision of the decision variables after each simulation run. In a sense, 

the Adaptive Monte Carlo optimization simulates in a remarkably simple and evolutionary

manner the learning and adaptation process on the basis of the simulated reversible history of 

Feasible
Decisions

IndicatorsCatastrophe
Model

Feasible
Decisions

IndicatorsIndicatorsCatastrophe
Model



36 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

relies on Stochastic Quasigradient (SQG) optimization techniques as discussed 
in Section 3.4.2. Losses are simulated by the catastrophe model, causing 
an iterative revision of the decision variables after each simulation run. In 
a sense, the Adaptive Monte Carlo optimization simulates in a remarkably 
simple and evolutionary manner the learning and adaptation process on the 
basis of the simulated reversible history of catastrophic events. This technique 
is unavoidable when the outcomes of the catastrophe model do not have a 
well-defined analytical structure.

3.4.2 General stochastic optimization model

Stochastic optimization provides a framework for the iterative revision of 
decisions embedded in the catastrophe model. These decisions influence the 
contribution of location-specific risks on the overall catastrophe losses. Let 
us outline the approach developed for a number of catastrophe risks: seismic, 
catastrophe floods, hurricanes, wind storms, livestock epidemics.

The main idea is based on subdividing the study region into grid cells or 
homogenous simulation units (homogenous response units) j = 1,2,..., m. These 
units may correspond to a collection of households at a certain site, a collection 
of grids (zones) with a similar land-use structure, or an administrative district, 
or a grid with a segment of a gas pipeline or energy production facility. The 
choice of cell representation and resolution provides a desirable representation 
of losses. In our case, the cells consist of the value of the physical structures. 
Catastrophes, which are simulated by the catastrophe model, affect at random 
different cells and produce mutually dependent at time t losses Lt

j. These losses 
can be modified by various decision variables. Some of the decisions reduce 
losses, say a dike, whereas others spread them on a regional, national, and 
international level, e.g., insurance contracts, catastrophe securities, credits, 
and financial aid. If x = (x1, x2,..., xn) is the vector of the decision variables, 
then losses Lt

j to a cell j at time t are transformed into Lt
j (x). For example, we 

can think of Lt
j (x) as Lt

j being affected by the decisions of the insurance to 
cover losses from a layer [xj1, xj2] at a cell j in the case of a flood disaster at 
time t: 

 Lt
j (x) = Lt

j – max{xj1, min[xj2, L
t
j]} + xj1 + π t

j, (1)

where max{xj1, min[xj2, L
t
j]} – xj1 are retained by insurance losses, and π t

j is a 
premium function. The variable xj1 defines the deductible part (“trigger”) of 
the contract and xj2 defines its “cap”. 

In the most general of cases, vector x comprises decision variables of 
different agents, including governmental decisions, such as the height of 
a new dike or a public compensation scheme defined by a fraction of total 
losses ∑m

j=1 L
t
j . The insurance decisions concern premiums paid by individuals 
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and the payments of claims in the case of catastrophe. There are complex 
interdependencies among these decisions, which call for the cooperation of 
agents. For example, the partial compensation of catastrophe losses by the 
government enforces decisions on loss reductions by individuals and, hence, 
increases the insurability of risks, and helps the insurance to avoid insolvency. 
On the other hand, the insurance combined with individual and governmental 
risk-reduction measures can reduce losses, compensations and government 
debt and stabilize the economic growth of the region and the wealth of 
individuals.

3.4.3 Example: Design of a robust insurance program for catastrophe flood  
loss coverage

Let us now consider an example of designing a potential insurance system 
(a mutual catastrophe fund) and introduce some important indicators. In 
the following we do not, for the simplicity of notation, consider the most 
general situation, e.g., we consider only the proportional compensation by the 
government, proportional insurance coverages, and we do not use discount 
factors. 

In this application the system is modeled until a first catastrophic flood, 
which occurs within a given time horizon. We define this moment as the 
stopping time. This event can be associated with, e.g., a dike break that may 
occur only after a 100-year, 150- or 1000-year flood. They are characterized 
by upstream discharge curves and the probability of breaking each of the dikes. 
The timing of the first catastrophic flood significantly affects the accumulation 
of risk reserves by the insurance, and total payments of individuals; for 
example, a 100-year flood with the break of a dike may occur in two years.

Let τ be a random (stopping) time to a first catastrophe within a time 
interval [0, T], where T is some planning horizon, say, of 10 or 50 years. If no 
catastrophe occurs, then τ = T. Since τ is associated with the break of a dike, 
the probability distribution of τ is, in general, affected by some components 
of vector x, e.g., by decisions on dike modifications, the land use changes, 
building reservoirs, etc. In this paper we discuss only the case when τ does 
not depend on x. 

Let Lτ
j be random losses at location j at time t = τ. In our analysis we 

evaluate the capacity of the catastrophe insurance in the upper Tisza region 
only with respect to financial loss-spreading decisions. Let us use a special 
notation for their components such as πj, ϕj, v, q, y. If πj is the premium rate 
paid by location j to the mandatory insurance, then the accumulated mutual 
catastrophe fund at time τ together with the proportional compensation v ∑j 
Lτ

j by the government is equal to τ ∑j πj + v ∑j L
τ
j – ∑j ϕj L

τ
j, where 0 ≤ ϕj ≤ 1, 

is the insurance coverage for cell j. Thus, in this model we assume that the 
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compensation to victims by the government is paid through the mandatory 
insurance.

The stability of the insurance program depends on whether the 
accumulated mutual fund together with the governmental compensation is 
able to cover claims, i.e., on the probability of event:

 e1 = τ ∑j πj + v ∑j L
τ
j – ∑j ϕj L

τ
j ≥ 0. (2)

The stability also depends on the willingness of individuals to accept 
premiums, i.e., with the probability of overpayments:

 e2 = τπj – ϕj L
τ
j ≥ 0, j = 1,..., m. (3)

Apart from the compensation v∑j L
τ
j(x) the government arranges a 

contingent credit y with a fee q to improve the stability of the mandatory 
insurance by transforming event (2) into (4):

 e3 = τ ∑j πj + v ∑j L
τ
j – ∑j ϕj L

τ
j + y – τqy ≥ 0. (4)

Here we assume that the mandatory insurance pays the fee τqy and 
receives the credit y, whereas the government pays back the credit with the 
interest rate γ y, γ > 1.

The difference between compensation v ∑j L
τ
j and contingent credit y is 

significant: the outflow of fees is smooth, whereas the compensation of claims 
has a sudden impact at time τ, and without y it may require a higher government 
compensation (greater v) possibly exceeding the available budget. Therefore, 
without ex-ante contingent injections of capital y the diversion of capital from 
other governmental needs may occur. 

Let us note that the budget constraint, which is not considered explicitly 
in this model, raises a general question on the optimal dynamic management 
of the available budget in order to increase the stability of the mandatory 
insurance and its efficiency. For example, besides the contingent credit, a 
reasonable option may also be to invest some money in liquid assets. The main 
aim of our analysis is narrower: the evaluation of the mandatory insurance 
capacity and the demand for contingent credit. 

Inequalities (3)–(4) define important events, which constrain the choice of 
the decision variables specifying the insurance program, i.e., the compensation 
rate v by the government, coverages by the insurance company ϕj, premiums 
πj, and credit y with fee q. The likelihood of events (3)–(4) and values e2, e3 
determine the stability (resilience) of the program. In a rough way this can be 
expressed in terms of the probabilistic constraint

 P[e2 > 0, e3 < 0] ≤ p, (5)

where p is a desirable probability of the program’s default, say a default that 
occurs only once in 100 years.
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Constraint (5) is similar to the so-called insolvency constraint (See 
Amendola et al. 2013, Amendola et al. 2000, Amendola et al. 2000, Ermoliev 
and Hordijk 2003, Ermoliev et al. 2018, Ermolieva et al. 2016, Ermolieva 
and Obersteiner 2004, Ermoliev et al. 2018, Ermoliev et al. 2000a, Ermoliev  
et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 1997, Ermolieva and 
Ermoliev 2005, Ermolieva et al. 2003, Ermolieva 1997, Ermoliev et al. 1998, 
Ermolieva et al. 1997, Ermoliev et al. 2010), a standard for regulations of 
the insurance business. In the stochastic optimization constraint (5) is known 
as the so-called chance constraint. Unfortunately, this constraint does not 
account for the values e2, e3, what is important for the government, since it 
cannot walk away from the region in a distress. The main goal can now be 
formulated as the minimization of expected total losses F(x) = E ∑j (1 – ϕj) L

τ
j + 

γy including uncovered (uninsured) losses by the insurance contracts and the 
cost of credit γy, subject to the chance constraint (5), where vector x consists 
of the components πj, ϕj, y.

Constraint (5) imposes significant methodological challenges even 
in cases when τ(x) does not depend on x and events (3)–(4) are defined by 
linear functions of decision variables. This constraint is of “black-and-white” 
character, i.e., it accounts only for a violation of (3)–(4) and not for its size. 
There are important connections between the minimization of F(x) subject 
to highly non-linear and possibly discontinuous chance constraints (5) and 
the minimization of convex functions, which have important economic 
interpretation. Consider the following function
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where α, β are positive parameters.
It is possible to show (see, e.g., results in Ermoliev et al. 2000a, Ermoliev 

et al. 2000b, Ermoliev et al. 2001, Ermoliev and Norkin 1997) that for large 
enough α, β a minimization of function G(x) generates solutions x with F(x) 
approaching the minimum of F(x) subject to (5) for any given level p. 

The minimization of G(x) defined by (6) has a simple economic 
interpretation. Function F(x) comprises expected direct losses associated 
with the insurance program. The second term includes the expected shortfall 
of the program to fulfill the obligations; it can be viewed as the expected 
amount of needed for this purpose ex-post borrowing with a fee α. Similarly, 
the third term can be interpreted as the expected ex-post borrowing with a fee 
β needed to compensate overpayments. Obviously that large enough fees α, 
β will tend to preclude the violation of (3)–(4). Thus, the ex-post borrowing 
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with large enough fees allows for a control of the insolvency constraints (5). 
It is easy to see that the use of the ex-post borrowing (expected shortfall) in 
the second term of G(x) in combination with the optimal ex-ante contingent 
credit y controls the CVaR type risk measures. Indeed, the minimization of 
G(x) is an example of stochastic minimax problems (see Ermoliev and Wets 
1988, Chapter 22). 

By using standard optimality conditions for these problems we can derive 
the optimality conditions for the contingent credit y. For example, assuming 
continuous differentiability of G(x) which follows in particular from the 
continuity of underlying probability distributions, it is easy to see that the 
optimal level of the credit y > 0 satisfies the equation

 0.j j j jj j j

G P L v L y
y

τ τγ α φ τ π∂  = − − − > = ∂ ∑ ∑ ∑  (7)

Thus, the optimal amount of the contingent credit is defined as a quantile 
of the random variable ∑j ϕj L

τ
j – v ∑j L

τ
j – τ ∑j πj specified by the ratio γ/α, 

which has to be not greater than 1. Hence, the expectation in the second term 
of G(x) for optimal y is taken under the condition that y is the quantile of ∑j ϕj 
Lτ

j – v ∑j L
τ
j – τ ∑j πj. This is in accordance with the definition of CVaR. More 

general risk measures emerge from the optimality conditions of G(x) with 
respect to premiums πj, ϕj. 

The importance of such an economically sound risk measure as expected 
shortfall was emphasized by many authors (see Artzner et al. 1999, Embrechts 
et al. 2000, Ermoliev and Hordijk 2003, Ermolieva et al. 2016, Ermoliev  
et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, 
Rockafellar and Uryasev 2000, Yang 2000). Important connections of CVaR 
with the linear programs were discussed in Ermolieva et al. 2016, Ermoliev  
et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, Ermoliev et al. 2001, 
Rockafellar and Uryasev 2000. Let us note that G(x) is a convex function in 
the case when τ and Lτ

j do not depend on x. In this case the stochastic minimax 
problem (6) can be approximately solved by linear programming methods (see 
general discussion in Ermolieva 1997). The main challenge is concerned with 
the case when τ and Lτ are implicit functions of x. Then we can only use the 
Adaptive Monte Carlo optimization. Let us outline only the main idea of these 
techniques. More details and further references can be found in Amendola  
et al. 2013, Amendola et al. 2000, Amendola et al. 2000, Ermoliev and Hordijk 
2003, Ermoliev et al. 2018, Ermolieva et al. 2016, Ermolieva and Obersteiner 
2004, Ermoliev et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, 
Ermoliev et al. 2001, Ermoliev and Norkin 1997, Ermolieva and Ermoliev 
2005, Ermolieva et al. 2003, Ermolieva 1997.
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3.4.4 Adaptive Monte Carlo optimization

Assume that vector x incorporates not only risk management decision 
variables but also includes components affecting the efficiency of the 
sampling itself (for more detail see Ermolieva 1997, Pugh 1966). An adaptive 
Monte Carlo procedure searching for a solution minimizing G(x) of type (6) 
starts at any reasonable guess x0. It updates the solution sequentially at steps 
k = 0,1,..., by the rule xk+1 = xk – ρkξk, where numbers ρk > 0 are predetermined 
step-sizes satisfying the condition ∑∞

k=0 ρk = ∞, ∑∞
k=0 ρ2

k = ∞. For example, the 
specification ρk = 1/k + 1 would suit. Random vector ξk is an estimate of the 
gradient Gx(x) or its analogs for nonsmooth function G(x). This vector is 
easily computed from random observations of G(x). For example, let Gk be 
a random observation of G(x) at x = xk and G~k be a random observation of 
G(x) at x = xk + δkhk. The numbers δk are positive, δk → 0, k → ∞, and hk is 
an independent observation of the vector h with independent and uniformly 
distributed on [–1, 1] components. Then ξk can be chosen as ξk = [(G~k – Gk)/
δk]hk. The formal analysis if this method, in particular, for discontinuous goal 
functions, is based on general ideas of the stochastic quasigradient (SQG) 
methods (see Ermoliev and Wets 1988 and further references in Amendola  
et al. 2013, Amendola et al. 2000, Amendola et al. 2000, Ermoliev and Hordijk 
2003, Ermoliev et al. 2018, Ermolieva et al. 2016, Ermolieva and Obersteiner 
2004, Ermoliev et al. 2018, Ermoliev et al. 2000a, Ermoliev et al. 2000b, 
Ermoliev et al. 2001, Ermoliev and Norkin 1997, Ermolieva and Ermoliev 
2005, Ermolieva et al. 2003, Ermolieva 1997, Ermoliev et al. 1998, Ermolieva 
et al. 1997, Ermoliev et al. 2010).

4. The coexistence of ex-ante and ex-post decisions

The stochastic optimization model outlined in Section 3 includes  
long-term ex-ante (precautionary anticipative) and short-term ex-post 
(adaptive) decisions. The need for the coexistence of such decisions is 
especially evident for management of extreme situations and risks. Prediction 
of spatio-temporal patters of the risks is not possible. The main issue in this 
case is robust management of the risks, which can be achieved by equipping 
various involved agents and systems with precautionary and adaptive 
strategies enabling them sufficient flexibility and robustness to maintain safe 
and sustainable performance independently of what catastrophe scenario 
occurs. In the presence of uncertainties about catastrophe scenario, it is natural 
to employ two main types of strategies: the ex-ante strategic precautionary 
actions (engineering design, insurance contracts, mutual catastrophe funds, 
resource allocation, technological investments, water and grain reserves) and 
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the ex-post adaptive adjustments (subsidies, prices, costs, ex-post borrowing) 
that are made after the occurrence of the scenario. The precautionary and 
adaptive measures can lessen chances of exceedances of vital thresholds and 
safety constraints, which could otherwise lead to systemic failures and the 
lack of security. A portfolio of robust interdependent ex-ante and ex-post 
strategies can be designed by using a two-stage stochastic optimization (STO) 
approach incorporating both types of decisions. 

An ex-ante decision corresponds to risk-averse behavior and an ex-post 
decision models risk-prone behavior. The coexistence of these two types of 
behavior can be viewed as a rather flexible decision-making framework when 
we commit ourselves ex-ante only to a part of possible decisions and, at the 
same time, keep other options open until more information becomes available 
and can be effectively utilized by appropriate ex-post decisions. This type 
of model, the so-called two-stage stochastic optimization models, produces 
strong risk aversion even for linear utility functions. Consider a simple 
situation. Let us assume that there are two options to deal with catastrophe: 
to protect values against losses before the occurrence of a catastrophe or to 
borrow after its occurrence. We assume that the decision maker has a risk-
neutral, linear disutility function f(x, y) = cx + dy, where c is the marginal cost 
for protection x, and d(L) is the marginal cost for borrowing y in the case of 
losses L. The decision-making process has two stages. First of all, decision x is 
chosen before the observation of L. Decision y is chosen after the occurrence 
of the catastrophe, i.e., the observation of L. Therefore, we have (because of 
the linear disutility) y = max{0, L – x}. Thus, the decision x minimizes, in fact, 
the function F(x) = cx + Ed(L) max{0, L – x} = cx + ∫L–

x d(l)(l – x)ϕ(l)dl. Assume 
that the probability distribution of L, L ≤ L–, has a continuous density function 
ϕ. Then F(x) is a strictly concave continuously differentiable function and, as 
it is easy to verify,

 ( ) ( ) ( ) .
L

x
F' x c d l l dlφ= − ∫

The function F'(x) is monotonically increasing for x → L
–
. Therefore, if c 

< Ed, then there is a positive value x = x*, x* ≠ L
–
, such that F'(x*) = 0. Here x* 

= L
–
 is excluded because c > 0. Hence, the minimization of the linear expected 

disutility function does not lead to the dominance of the preferable on an 
average ex-ante decision (c < Eg): both types of decisions coexist.

5. Indirect effects

Apart from the visible direct damage, catastrophes produce long-term indirect 
systemic effects. The cost of a damaged bridge may be incomparable to the 
cost of interrupted activities. A large catastrophic loss may absorb domestic 
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savings and force the government into debt. The low-income countries lack 
the budgetary resources that would enable them to undertake the necessary 
growth adjustments. In Sections 2 and 3 it was discussed that the welfare 
growth (economic growth) can be represented by the growth in each location 
(cell). Inflows (investments, returns, etc.) are channeled through terms I t

j, 
whereas outflows (expenditures, costs, etc.) are affected by Lt

j (in general, 
losses depend on decisions x). The trade-off between these forces defines the 
growth path of the location j, its possible stagnation and the contribution to 
the wealth of the region. Let us consider this issue by using a stylized model 
of sustainable economic growth. This model illustrates the importance of 
stochastic versus deterministic approaches to the omic growth.

5.1 Economic growth under shocks: stochastic vs deterministic model

Let us assume that the wealth (output) of the economy is defined by two 
factors: “capital” and “labor”, and constant returns to scale. Then the output 
can be characterized in terms of capital-to-labor ratio k, and output-to-labor 
ratio y, y = f(k), where f(k) is the production function. Assume that output is 
subdivided into consumption and savings, and savings are equal to investments. 
If investments are simply a fraction s, 0 < s < 1 of the output, and productivity 
of capital f (k)/k is constant θ, then this leads to the very influential in growth 
planning Harrod-Domar model Ray 1998 with an exponential growth rate 
defined by the linear function

 ln y = ln y0 + (sθ – γ – δ)t, t > 0, (8)

where γ is an exponential population growth rate, and δ is the capital 
depreciation rate. Shocks occur at some random time moments T1, T2,... and 
transform the linear function (8) into a highly nonlinear jumping random 
function (Figure 3)

 ln y(t) = y0 + (sθ – y – δ)t – L1 – L2 –...– LN(t), (9)

where N(t) is the (random) number of shocks in the interval [0, t]. Let us ignore 
for a moment that shocks L1, L2,... may depend on the state of the economy, 
which is essentially important in the case of catastrophes. In our economy, it is 
y(t). Let us also assume that random sizes of shocks L1, L2,... are independent, 
and identically distributed with a mathematical expectation μ. They are also 
independent of the inter-shock times Tk+1 – Tk, and the inter-shock times have 
a stationary distribution with mathematical expectation λ. Then the expected 
exponential growth is still characterized by the linear in t function (Figure 3)

 E ln y(t) = y0 + (sθ – γ – δ – λμ)t. (10)
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From the strong law of large numbers, it follows that ln y(t)/t approaches 
sθ – γ – δ – λμ for large enough t and for each random path y(t). In other words, 
the sustainable exponential growth “takes off” only after a long random time 
T = T(y) specific for each path: ln y(t) ≈ y0 + (sθ – γ – δ – λμ)t, for t > T. On 
the way to sustained growth for t < T the economy may stagnate as Figure 3 
shows. The ignorance of risk, in this case, is equivalent to the substitution of 
the complex jumping process ln y(t) by the linear function (10). This function 
still shows exponential growth, although with a large depreciation rate δ + λμ, 
but it ignores possible stagnation of the economy in the interval [0, T]. The 
uncertainty analysis, which is usually recommended after such substitutions, 
can not reveal the possibility of stagnation either, since in our case it is 
equivalent to the turning around of the same linear function (10).

The behavior of ln y(t) is radically changed under endogenously generated 
shocks. In fact, not only shocks L1, L2,... but also all parameters are affected 
by the growth y(t). The saving rate s may critically depend on the overall 
level y and its distribution in the economy. Obviously, at low-income levels, 
saving rates are small. In this case, a shock may further reduce them even to 
negative values (borrowing). Let us make a rather optimistic assumption that 
only shocks depend on y, and shocks do not modify the production function 
of the economy. A shock at time t reduces current output y to a level y~, 0 < 
y~ ≤ y. The probability distribution of y~ is concentrated in the interval [0, y]. 
Assume that it has a density function Ψ, i.e., the probability of losses in the 
interval [h, h + dh] is Ψ(y, h)dh. Then the expected losses μ depend on y and 
has the form μ(y) = ∫ y

0 hΨ(y, h)dh. It is easy to see that the second derivative 
μ''(y) involves the derivative dΨ(y, y)/dy, which may be positive or negative 
at different levels of y. Therefore μ''(y) may also have an oscillating character, 
as is shown in Figure 4. 

From (9) follows that for the shocks independent of the inter-shock times, 
the change of a given y(t) to a random value y(t + Δt) in the interval [t, t + Δt] 

Figure 3. Expected and real growth rates.
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is such that the conditional expectation E{y(t + Δt)|y(t)} of y(t + Δt) for fixed 
y(t) changes approximately as follows

 [ ( ) | ( )] ( ) ( )[ ( ( ))].E y t t y t y t y t s y t
t

θ γ δ λµ+ ∆ −
≈ − − −

∆

As we can see from Figure 3, the value sθ – γ – δ – λμ(y) is positive 
in the interval (0, y1). Therefore, the economy is expected to grow in  
(0, y1). If the economy is in interval (y1, y2), the value y(t + Δt) is expected to 
decrease towards y1. The state y1 is expected to be a trap, i.e., the economy 
stagnates around y1. If the economy is pushed up to cross threshold y2, it enters 
a path of sustained growth until it reaches the next trap. These conclusions 
concern only expectations. Nevertheless, it is possible to show that in our 
economy every random path y(t) converges to a trap with probability 1. In 
other words, starting from the same initial conditions, the economy may end 
up (without assistance to growth) at different traps and stagnate within these 
traps thereafter. This simple model illustrates that assistance to growth is  
very important in such intervals as (y1, y2), (y3, y4). From the formal point of 
view, the assistance is equivalent to the increasing of sθ – γ – δ or decreasing 
λμ(y).

6. Concluding remarks

In this chapter, we argue that integrated modeling linking catastrophe 
models and stochastic optimization procedures is necessary for the analysis 
and management of exogenous (natural) disasters and anthropogenic  
(policy-driven) systemic risks emerging due to interdependencies between 
economic and natural systems. The existing catastrophe modeling involves 
three main modules: A hazard module, a module for loss calculation, and a 
module for loss coverage and spread between various involved agents such 
as insurers, governments, investors, and individuals. The catastrophe model 
is a Monte Carlo simulation model producing a scenario-by-scenario analysis 

Figure 4. Traps and thresholds.
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and assessment of alternative catastrophe scenarios and respective feasible 
catastrophe management strategies. This analysis may result in an infinite 
number of scenario combinations: hazard loss and respective management 
decision(s), without providing robust management options (decisions), 
which leave in better-off conditions independently of what catastrophe/
hazard scenario occurs. For the design of robust decisions, the linkage of 
catastrophe models and STO procedures is necessary. Section 3 sketches out 
an appropriate decision-making model, which is a multiagent (multicriteria), 
spatial and dynamic stochastic optimization model linked with a disaster 
simulation model. The model has been used in a number of case studies.

The Integrated Catastrophe Simulation and Stochastic Optimization 
model outlined in Section 3 can be used for risk management with the  
so-called rolling horizon. The model includes a time horizon τ, which may 
be a random variable, say the time of the first catastrophe from the given 
initial state at t = 0. This generates a sequence of decisions for t = 0,1,.... After 
implementing decisions at t = 0, new information on catastrophe occurrence, 
losses, constraints satisfaction, etc. becomes available. This new information 
can trigger the revision of decisions if, e.g., safety constraints are no longer 
fulfilled or losses exceed some critical level. At the next modeling time period 
t = 1 the model is updated, a new sequence of decisions for t = 1,2,... with a 
new time horizon is obtained, decisions for t = 1 are implemented, and so on. 
Several data-intensive numerical experiments with the type of models outlined 
in this paper are discussed in Amendola et al. 2013, Amendola et al. 2000, 
Amendola et al. 2000, Compton et al. 2008, Ermolieva et al. 2016, Ermolieva 
and Obersteiner 2004, Ermolieva et al. 2003. These case studies used data on 
earthquakes from Russia and Italy and data on floods from Hungary, Ukraine, 
the Netherlands, and Austria.
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Chapter 3

Authentication for Coalition Groups
Anatoly Anisimov1,* and Andrey Novokshonov2

1. Introduction

Modern technological systems fulfilling critically dependent tasks are marked 
by a rich variety of interaction types and exponentially growing complexity. 
These factors significantly affect the costs of risks and uncertainty in  
decision-making. Examples of such systems are various peer-to-peer 
networks, interactive human-machine and machine-to-machine complexes, 
military and corporative units, financial systems including cryptocurrencies 
and smart cards, the Internet of Things (IoT), and many others. Along 
with this, one can see the increasing activity of technologically elaborated 
adversarial attacks with the purpose of maliciously intruding into the work of 
such systems. In this regard, the speed and accuracy of entity authentication 
are of special importance. In many critical cases, establishing a well-founded 
identity of an object demands essential computational and managerial efforts, 
that may be inconsistent with the time-limited restrictions to an authentication 
query. Especially, since this problem is important due to the ubiquitous advent 
of IoT with hundreds and thousands of interacting “computationally weak” 
devices. Thus, in many critical cases, a quite complex problem arises. On the 
one hand, it is necessary to obtain a reasonable, secure, and mathematically 
grounded object identification. On the other hand, it should be done in minimal 
admissible time depending on specific applications.

A coalition group is a group of mutually trusted entities that act 
independently in an unreliable, possibly malicious, environment and 
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communicate through unsecured open channels. The main feature of coalition 
authentication is the necessity for both parties to not only prove the knowledge 
of their own secret identifying information but also to demonstrate belonging 
to the same authorized group. This could be implemented by secure sharing 
some secret unique information. Coalition units assume the implicit or explicit 
impact of a trusted third party (TTP) that acts as a coalition controller.

Mutual authentication means a case when entities simultaneously 
identify each other by executing the same authenticating protocol. Mutual 
authentication originates from the network authentication client-server 
protocols first presented in the famous Needham-Schroeder protocol that later 
evolved into the well-known Kerberos system: Needham and Schroeder 1978. 
Mutual authentication is one of the most important parts of customized IoT 
systems that are marked by the huge variety of specific cases reflecting broad 
areas of IoT applications. See surveys Liu and Nepal 2017, Yang et al. 2019.

With the development of zero-knowledge interactive proofs, the 
authentication problem obtains a new lightening. In the challenge-response 
zero-knowledge protocols, authentication is carried out through a verification 
process where a claimant, called a prover, must corroborate to another party, 
called a verifier, the knowledge of some secret identifying information without 
revealing any part of it. Zero-knowledge property is a very strong security 
requirement. In many cases, such protocols are mathematically substantiated, 
but they are unilateral and cannot be automatically adapted to the mutual case. 
Some considerations of this issue are given in Menezes et al. 1996.

Interactive and non-interactive zero-knowledge protocols mainly 
concentrate on optimization proofs for general NP relations: Goldwasser  
et al. 1985, Blum et al. 1988, Goldreich et al. 1991, Goldreich and Oren 
1994. Despite many impressive achievements in this direction, such protocols 
are still quite complex in implementation, mainly due to the form of an  
NP-problem representation, and are not well suited for the bilateral 
authentication response.

When applied to the coalition case, faster authenticating zero-knowledge 
protocols like the families of the Fiat-Shamir and the Schnorr protocols must 
maintain some extra interactions and setup computations: Fiat and Shamir 
1987, Fiege et al. 1987, Guillou and Quisquater 1988, Schnorr 1991. The 
security of the Fiat-Shamir protocol relies on the strong RSA assumption, i.e., 
the difficulty of factoring the product of two large prime numbers. The security 
of the Schnorr protocol is backed by the complexity of the discrete logarithm 
problem in a group. Using the Fiat-Shamir heuristic these schemes can be 
converted into unilateral non-interactive protocols based on digital signatures 
that confirm the prover’s identity. For mutual coalition authentication, such 
reduction demands additional interactions and/or setting procedures.
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In this communication we consider two cases of coalition groups:  
(1) a coalition group is defined through the possession of a static shared 
secret value and in the other case: (2) parties demonstrate to each other the 
possibility of fast finding the solution to a given computationally hard problem 
like inverting a one-way function. The first case is mostly used, especially for 
the IoT. For demonstration purposes, for the second scenario, we choose the 
case when entities can find secret factors of an RSA-modulus independently 
created by TTP. 

We start the description of the first scenario with a short survey of the 
family of Diffie-Hellman “handshaking” protocols establishing a shared 
secret key. The second case uses the implicit knowledge of a shared secret 
that in the considered case is a factor of a large RSA-number. These factors 
are created by TTP and can be easily computed by A and B only through their 
interactions.

2. Notations and definitions

We use standard notations that are commonly accepted in descriptions of 
cryptographic protocols: PubKA and PrivKA are public and private keys of an 
entity A, respectively; {m}K is a message m that encrypted or signed with the 
key K; notation A → B: m1, m2 means the following: A sends to B messages 
m1, m2; x ∈R ℳ denotes the random selection of x from the set ℳ; p is a 
prime number; Z*

p denotes the multiplicative group of residues modulo p; u ← 
random means the assignment to the variable u a random value taken from its 
domain; for this case we also use the notation u ∈R D when the domain D of 
u is specified.

Protocols are written with numerated lines. A set-up stage (key generation 
and distribution, basic agreements, etc.) is numerated with zeros. 

For the reader’s convenience, in number-theoretic protocols, we restrict 
our considerations only to the multiplication group of residues modulo a 
prime number p denoted as Z *

p. Nevertheless, it is necessary to stress that all 
these protocols can be reformulated for cyclic subgroups of any other finite 
commutative groups with known orders or inverse operations. For example, 
popular groups of points of elliptic curves over finite fields can be used. 

The central notion of public key cryptography is a one-way function, i.e., 
a function that is easy to compute but hard (computationally infeasible) to 
invert. There are some well-known candidates for one-way functions that 
use the widely believed hardness of inverse operations. Among them are 
integer factorization, discrete logarithm problems in a group, Diffie-Hellman 
problem, and modular square rooting. We consider a one-way function of a 
DL-form f(x) = gx, where g is a given element of a group.
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Hash functions. A cryptographic hash function h is a one-way function that 
maps Boolean strings of arbitrary size into Boolean strings of fixed size and 
satisfies the following conditions:

 1. For any input x it is easy to compute h(x).
 2. (Preimage resistance). For any randomly chosen output value y = h(x) it 

is computationally infeasible to find any x ́  such that y = h(x ́ ).
 3. (Collision resistance). It is computationally infeasible to find pairs x1, x2, 

x1 ≠ x2, such that h(x1) = h(x2).

The term “computationally infeasible” means that for any algorithm (PPT 
Turing machine) the probability to solve the problem is a negligible function 
depending on security parameters. The detailed mathematical specification 
of its definition can be found in any textbook on cryptography. Hereinafter, 
we do not specify intuitive terms “easy to compute” and “computationally 
infeasible” assuming by default the presence of necessary security restrictions.

Belare and Rogaway suggested considering an ideal hash function as an 
Oracle. At present, their approach is called the standard Oracle model. In the 
proposed model, Belare and Rogaway 1993, a hash function is considered 
as an Oracle which operates as follows: upon obtaining an input value x it 
outputs a uniformly distributed random value y = h(x) from the image domain. 
This value y is fixed for all subsequent uses of h(x). Many useful properties of 
cryptographic protocols have been proved in this model.

By a coalition group, we mean a group of mutually trusted entities that 
establish and maintain secure group communications in a possibly hostile 
environment. Usually, coalition principals establish beforehand a shared secret 
key or property that allows them to independently recognize each other and 
communicate through unsecure transmission channels. For technical details 
of secure group communication management, we address the book: by Zou 
et al. 2005. Coalition conditions assume an initial set-up with a trusted third 
party (TTP). We assume that after the set-up phase coalition members act 
independently and TTP does not take part in future coalition communications 
and cannot transfer any information about information of A and B to any  
other party.

3. “Handshaking” protocols

Many authentication requirements rely on sharing the same secret value 
among communicating parties. The first published famous solution for secure 
establishing a shared secret was suggested by Diffie and Hellman in 1976: 
Diffie and Hellman 1976.
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DH-protocol. Entities A (Alice) and B (Bob) establish a mutual secret number 
K (a key). 

begin DH
A

0.1. p, g ∈ Z*
p.

0.2. A ← B: g, p – public keys.
1. x1 ∈R [1, p – 1].
2. y1 ← ax1 mod p. 
3. A → B : y1.

B
4. x2 ∈R [1, p – 1].
5. y2 ← ax2 mod p.
6. B → A : y2.
7. K ← yx2

1 mod p
A 
8. K ← yx1

2  mod p
end DH

It is easy to check that K computed at step 7 and K at step 8 are the same 
and equal to gx1x2 mod p.

Applying recursively the Diffie-Hellman construction to the group of n 
entities A1, A2, ..., An with private keys x1, x2, ..., xn, respectively, one can obtain 
a formula for a shared secret K(A1, A2, ..., An) for the group of n entities, K(A1, 
A2, ..., An) = gK(A1, A2, ..., An–1)xn mod p. Thus, for three entities the group key is 
equal to ggx1x2x3 mod p. This construction is known as the Tree DH-protocol 
(TDH).

Unfortunately, the DH-protocol and its modifications are vulnerable to 
the attack known as the “man-in-the-middle”. In this attack, the adversary 
controlling communications between A and B can intercept, relay, and send 
their own messages in a way indistinguishable from communications between 
A and B. 

Hereinafter, we omit notification mod p assuming computations in 
any appropriate commutative group G with group operation denoted as 
multiplication. For example, at present, groups of points of elliptic curves 
with fast addition are popular.

In 1985 T. ElGamal managed to adapt the DH-scheme to data 
transmissions: ElGamal 1985. 
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The ElGamal protocol for a message transfer. Like the DH-protocol, А and 
В generate a shared secret key gab. А uses ga as a long-term public key, B 
operates with a one-time session key gb. B sends to A a message m ∈ G.

А
Like the DH-protocol, A generates a static public key c,
0.1. a ← random, c ← ga, a is a randomly chosen number.
0.2. A → B : c.

B
1. b ← random.
2. y ← gb, z ← mcb.
3. B → A : y, z.

 A
 4. u ← y–a.
 5. m = uz.

Correctness of the protocol follows from the consideration of the final 
expression : uz = y–a z = gb(–a) mgab = m.

This protocol assumes that in the group G one can effectively compute 
the inverse of any given element y (step 3). If Z*

p is used, then y–a = yp–1–a. Also, 
inverse operation is easy in elliptic curves. 

As was previously mentioned, all “hand-shaking” protocols that 
straightforwardly use the Diffie-Hellman approach are vulnerable to the 
“man-in-the-middle” attack. Nevertheless, in 1995 A. Meneses, M. Qu, and 
S. Vanstone suggested an original authentication protocol that, under some 
conditions, can resist that kind of attack: Meneses et al. 1995. The authors 
constructed a two-tier DH-protocol with two different pairs of public and 
private DH-keys for each principal. The first pair of public keys forms 
authorized static keys. A certification center is needed for their distribution. 
The second pair of private keys is used as session “ephemeral” keys. 

It is assumed that elements of a group used in the MQV-protocol have 
a unified numerical representation. There is a parameter λ depending on this 

representation. For Z*
p λ = 2

p 
  

, which is half of an average message length. 

For elliptic curves, λ = 80. 

MQV-protocol (basic version). A and B establish a shared secret.

Begin MQV
A

1. Choose randomly xA, α.
xA ← random, α ← random.

2. yA = Pub1KA ← gxA, zA = Pub2KA ← gα, Priv1KA ← xA, Priv2KA ← α.
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B
3. Choose randomly xB, β. 

xB ← random, β ← random.
4. yB = Pub1KB ← gxB, zB = Pub2KB ← gβ, Priv1KB ← xB, Priv2KB ← β.
5. A and B exchange public keys. As the result A and B knows, respectively:

A : yA, zA, yB, zB, xA, α;
B : yA, zA, yB, zB, xB, β.

A
6. SA ← zA mod 2λ + 2λ, TA ← zB mod 2λ + 2λ, UA ← (α + xASA), K = KA =  
(zB yB

TA)UA. 
B

7. SB ← zB mod 2λ + 2λ, TB ← zA mod 2λ + 2λ, UB ← (β + xBSB), K = KB ←  
(zAyA

TB)UB.
end MQV

Correctness of the MQV-protocol follows from equalities: SA = TB, SB = 
TA, KA = (zB yB

TA)UA  = g(β + xB TA)(α + xA SA) = g(β + xB SB)(α + xA TB) = (zAyA
TB)UB  = KB = K.

With the aim of the statistical alignment of numerical bits, the key should 
be set to the hash h(K).

Since the shared MQV-key depends on two sets of public and private keys 
of each of communicating participants, the MQV-protocol resists the session 
“man-in-the-middle” attack.

There exist a few strengthening improvements for the MQV-protocol: 
HMQV, FHMQV, and IEEE standard P1363 for ECMQV (Elliptic Curve 
MQV).

4. Static mutually shared secret

Herein, we consider the case when membership to a coalition group is 
provided by proving the possession of a mutually shared secret number. This 
number is known to all members of the group a priori. In a secure way, A and 
B must check their belonging to the same group, i.e., to prove that they know 
the mutual secret number without revealing it (zero-knowledge).

Authentication with a hash function. Let s be a secret coalition number, h is 
a publicly known hash function. Consider the following protocols.

Protocol H1.
begin
A

x ← random.
A → B: x, h(s + x). 

B
B → A: h(s – x). 

end



58 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Another variant:
Protocol H2.
begin
A

x ← random.
A → B: y = h(s + x).

B
B → A: h(s – y). 

end

If both A and B know s and share a public hash function h, then they can 
easily check the correctness of messages. Properties of a hash function imply 
that for both parties the probability to create a correct message by guessing s 
is a negligible value.

There is another way to check the knowledge of s using the ElGamal 
construction. 

Authentication with the ElGamal construction. In this protocol, both A and 
B send each other nonces encrypted as in the ElGamal encryption scheme. 
The only difference is in adding a secret coalition number to the power of a 
mutual DH-key.

Protocol ElGamal.
s is a shared secret. A proves to B the knowledge of s.
begin

DH-part
A
x ← random.
A → B: gx.

B
y ← random.
B → A: gy.
end of the DH-part

A
u ← random.
A → B: ugxys.

B
v ← random.
B → A: vgxys, u.

A
A → B: v.

end

Both A and B demonstrate the verifiable knowledge of s.
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5. Splitted secret 

We consider authentication procedures of the type “friend or foe”. Like the 
Fiat-Shamir protocol, this condition is equivalent to the natural assumption 
that a prover A and a verifier B both had one-time access to the same mutually 
trusted center T that acts as a coalition controller. This party generates a 
secret that can be revealed and shared by A and B only after authenticating 
interactions.

We assume that coalition members operate in a malicious cyberspace, 
i.e., the probability of an adversary’s attempts to learn an identifying coalition 
secret is high enough. Therefore, for security reasons communicating parties 
must keep their own independent secrets. These secrets became temporarily 
known only to the TTP during the set-up stage. Depending on this information 
the trusted third party creates some other independent secret information that 
is splitted between parties. It is included in the authentication process and 
allows parties to easily solve a hard problem P chosen and created by the TTP. 

There are many ways to choose a coalition secret property P based on a 
hard algorithmic or NP-complete problem. For demonstration purposes, we 
choose the scenario when a coalition secret is the factor of a randomly chosen 
large RSA modulus. These factors can be revealed by A and B only through 
a three-round interaction using their own private keys and combined keys 
generated for them by T. Principals A and B must prove to each other the 
knowledge of their private keys without revealing them, and, additionally, find 
factors of the RSA modulus selected by T, thereby demonstrating the coalition 
membership. We emphasize that even with additional combined keys neither 
party can predetermine the coalition and the other party’s secrets. Also, there 
is no need for them to publicly reveal factors of the RSA coalition number. 

Symmetrically, for parties A and B roles “prover/verifier” can be 
exchanged. Thus, the proposed scheme provides mutual authentication. Also, it 
maintains forward secrecy and possesses all desirable properties of interactive 
proofs such as completeness, soundness, and mutual zero-knowledge. 

In further detail: during the setup stage, parties A and B independently 
present to the trusted center T their private integer keys k1 and k2, respectively. 
The center T randomly generates a numerated list of RSA moduli n = pq 
where p and q are prime numbers being coprime with k1 and k2. The list of 
these moduli could be public or at least should be known to A and B. Also, 
the center T creates and safely distributes between A and B corresponding 
additional session keys depending on multipliers of n, private keys k1, k2, and 
a random parameter r selected by T. Using these combined keys and their 
own private keys, through interactions A and B themselves can compute the 
shared RSA multipliers of n. This way they demonstrate the knowledge of 
the corresponding private keys verifying their identity and corroborating their 
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belonging to the coalition group. The parameter r is a probabilistic seed of 
the verifier B which starts the interaction. After finishing the initial setup, the 
trusted center does not need to keep any secrets of A and B as well as prime 
factors of n.

We name the proposed scheme the αβ-protocol because it uses two 
basic simple interconnected procedures. We call them α and β. Procedure 
α is executed by the TTP. For A and B it generates an RSA modulus and 
additional session keys needed for easy finding factors of a coalition modulus. 
Procedure β is executed by A and B at runtime. It only consists of one modular 
multiplication of three integers and produces factors of the given RSA 
modulus. Compared with β, the procedure α is much more time-consuming 
mainly due to the necessity to find large prime numbers. For making this 
step easier, the TTP can compute the list of primes beforehand. Actually, the 
executing time of the procedure α does not affect the time of authentication 
because α is not used in interactions between A and B. 

We describe two variants of the αβ-protocol: a simplified basic version 
and its extension. The basic protocol is only two-round. In the basic variant, A 
proves to B that she knows her private value k1 and factors of the RSA number 
n without revealing k1 and factors of n. The principal B only demonstrates 
the knowledge of the additional starting session key given by T. Thus, the 
protocol provides only partial mutual authentication. After an initial setup, 
the basic protocol uses only two interactions and fixed roles for A and B: A is 
a prover, and B is a verifier. Augmented with the third interaction, which is 
the additional response from B, the modified extended protocol provides the 
reciprocal authentication of both parties. For security reasons, in this second 
variant, the starting random seed r must be kept by B and transmitted to A 
in an encrypted form. Any suitable specific encoding might be used. In our 
implementation, we exploit the ElGamal protocol on elliptic curves. During 
other rounds, interacting parties execute only one modular multiplication of 
three integers and a hashing procedure.

The security of the protocol is based on the assumptions of the difficulty 
of RSA factorization and the existence of a cryptographic hash function. 
Additionally, in practice, both parties can easily evaluate the expected 
responding time of a counterparty and reject it in the case of exceeding this 
time. Zero-knowledge properties are proved in the random oracle model.

We consider the αβ-protocol as a three-factor authentication scheme 
because it uses three independent sets of unique factors: two private keys of 
A and B and the set of combined keys with uniform distribution needed for 
integer factorization of a number generated by the TTP. 
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6. The αβ-protocol

By default, we assume that all numbers considered hereinafter are positive 
natural integers.

Let 1t be a security parameter, h a public hash function acting on strings, 
h: {0, 1}* → {0, 1}t. For integers x, y, z given in binary, when writing  
h(x, y, z) we assume that arguments are concatenated. 

In procedures α and β we use two interconnected functions fα(x, y, z) = 
x–1y–1 mod z and fβ(x, u, z) = xu mod z, respectively. For the first function 
arguments x, y should be coprime with z. We note that if u in fβ(x, u, z) is 
a multiple of y, u = yw, and integers x, y, w are less than z then the product  
fα(x, y, z) fβ(x, u, z)mod z returns w which is the factor of u. We use this property 
in the procedure β for finding factors of the RSA coalition number. 

First, we describe procedure α.
Procedure α(x, y, t).
Input: x, y, t.
Output: r, n, a, c.

{
1. Find a random prime number p of length t.
2. Find a random prime number q of length t.
3. Generate a random number r of length t.
4. n ← pq.
5. a ← fα(r, q, x) = r–1 q–1 mod x.
6. b ← h(r, p, x).
7. c ← fα(b, p, y) = b–1 p–1 mod y.
8. result ← (r, n, a, c).
}

We assume that in the procedure α integers r, q are coprime with x, and 
b, p are coprime with y. This condition, if necessary, could be achieved by 
varying the parameter r.

Procedure β(x, y, z, u).
Input: x, y, z, u.
Output: result.

result ← xyz mod u

The αβ-protocol consists of the initial setup interactions of A and B with 
the TTP T (steps marked by 0) and two subsequent authentication rounds 
between A and B. 
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Protocol αβ(k1, k2, t).
0. Initial setup.
01. A and B randomly select their own long-term secret keys k1 and k2, 
respectively, of the bitlength t + 1. A and B send the corresponding keys k1 
and k2 to T.

A → T: k1, B → T: k2.
02. T executes the procedure α(k1, k2, t) and obtains the resulting values r, n, 
a, c.
03. T publishes the number n (list of numbers).
T may create several such numbers n. For each n, several associated values 
r together with the depending on n values a, c may exist. It is convenient to 
consider all these values to be indexed by n through corresponding arrays. 
04. T sends the number a to A, the pair (r, c) to B, and the number n to A and B.

T → A: a, T → B: (r, c), T → A, B: n.
Parties A and B keep their numbers a and (r, c), respectively, as additional 

session keys. We assume that during the setup stage all parties A, B, and T 
behave honestly and cannot be impersonated by any other party.
1. B starts the interaction with A. From the list of the given RSA moduli, B 
randomly chooses a modulus n = pq and starts the interaction pointing out 
which n he chooses and sending to A the corresponding value r associated 
with the chosen n.

B → A: r.
2. (Weak acceptance of B). Upon obtaining r from B, A computes fβ(r, a, n, k1) 
= ran mod k1. Since a = r–1q–1 mod k1 and n = pq this number should be a divisor 
of n, namely it equals to p. If so, A weakly accepts B and continues. Otherwise, 
A rejects.

At step 2 of the protocol, B demonstrates to A only the knowledge of 
the right integer r that matches a, n, and k1 but neither the knowledge of his 
private secret k2 nor the ability to factorize n. We consider this as a weak 
identity proof of B.
3. A computes b ← h(r, p, k1) and sends it to B.

A → B: b.
4. (Acceptance of A). Upon receiving b, B calculates fβ(b, c, n, k2) = bcn mod 
k2 and accepts if and only if fβ returns a divisor of n. It should be q. Otherwise, 
B rejects the proof.
The protocol is successful if A weakly accepts B and B accepts A.

7. Properties of the αβ-protocol

While establishing properties of the developed αβ-protocol, we use main 
properties of hash functions: (1) it is infeasible to compute the given image 
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h(z) without getting z; (2) having z, it is infeasible to find another z ~ such 
that h(z) = h(z ~); (3) h(z) can be considered as statistically independent of z 
and uniformly distributed. The last property is known as the cryptographic 
random oracle model. Infeasible means that the probability of the stated event 
is a negligible function. Thereafter, we use commonly accepted notions of 
interactive proofs such as completeness, soundness, and zero-knowledge.

Theorem 1. The αβ-protocol satisfies the following properties: completeness, 
soundness, and honest-verifier zero-knowledge.
Proof. We remind that in the αβ-protocol A is the prover and B is the verifier.
Completeness. If A and B are honest parties and follow the protocol, then B 
always accepts the proof with probability 1. Indeed, from the structure of a, 
a = r–1 q–1  mod k1, it follows that ran mod k1 = p. Analogous statement holds 
true for b, c, n, k2 and q, bcn mod k2 = q, if and only if c = b–1 p–1  mod k2. 
If A and B are honest and follow the protocol then both A and B can easily 
determine factors of n. Principal A computes p (step 2) using given a, n, 
and the incoming number r and B computes q (step 3) using given c, n, and 
the incoming b. Also, A using the given key a and the derived factor p can 
compute the hash b = h(a, p, k1). Thus, if A and B follow the protocol then A 
and B interchange only by right numbers specified in the protocol. It follows 
that A weakly accepts B, and B accepts the proof of A. 

We stress that assuming the difficulty of the RSA factorization problem 
and because of a random choice of the starting number r without interactions 
neither A nor B can find factors of the coalition number n. 
Soundness. Soundness means that any dishonest prover A* (a PPT Turing 
machine) impersonating A will be unable to convince the honest verifier B 
that she knows the secret key k1 of A and factors of n except with negligible 
probability.

Assume that with non-negligible probability B accepts A*. After obtaining 
the initial number r, A* must respond by sending some b* to B. The honest 
verifier B can accept if and only if b* cn mod k2 = q. Numbers c and n have 
been given to B by the trusted (honest) center T. This implies that (c, n) are 
true numbers created during the setup stage. It follows that b* cn mod k2 ≡ b* 
(b–1 p–1)pq mod k2 = q. In its turn, this implies equalities: b*b–1 p–1p mod k2 ≡ 
1 mod k2, b*b–1 ≡ 1 mod k2. It follows that b* ≡ b mod k2. Since the bitlength 
of b* should be less than that of k2, we conclude that b* = b = h(r, p, k1). 
Properties of a hash function imply that if A* with non-negligible probability 
can compute b = h(r, p, k1), then with non-negligible probability during its 
activity A* should get access to a, p, and k1. This fact allows constructing a 
knowledge extractor simulating machine.

For extracting knowledge (r, p, k1), we construct a simulating PPT machine 
M fed by the program of A*. At the first round, M simply repeats actions of A* 
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until A* comes to the state s* that sends b* to B. Doing this, M simultaneously 
records on the tape internal coin tosses that leads A* to the state s*. Only the 
case b* = b = h(r, p, k1) allows B to get the factor of n equal to q and come to 
the accepting state. The assumption of non-negligible probability of accepting 
A by B implies that M also reaches the state s* with non-negligible probability. 
The function h is a hash function. This implies that A* can calculate b only 
when she got arguments r, p, k1 at preceding steps. It follows that M repeating 
initial steps of A* also must obtain parameters r, p, and k1 at preceding steps. 
Reaching the state s*, machine M makes a copy of b and at the next round will 
use it for the search of arguments (r, p, k1). 

At the second round, M rewinds to the starting state of A* and using 
the stored record of coin tosses deterministically repeats the behavior of A* 
leading it to the state s* and additionally makes the search for r, p. During this 
stage of execution, upon obtaining on the working tape any value v M checks 
if h(v) = b. After finding such v M uses it for extracting with non-negligible 
probability (the last t + 1 bits of v) and obtains p (the last t remaining prefix 
bits in the string v after extracting k1) and r (the remaining prefix part).

Thus, this way with non-negligible probability M extracts the secret 
parameter k1 of A and factors of n.
Honest-verifier zero-knowledge. Zero-knowledge means that there exists a 
PPT simulating Turing machine Sim that without knowledge of the value k1 
and factors of n using the program of the verifier B generates the transcript 
of communications between A and B indistinguishable from the original 
interactions of A and B in the protocol. In our case, both A and B are assumed 
to be honest and a singular interaction transcript has the form (r, b), where 
b = h(r, p, k1). In the random oracle model, the value b is considered an 
independent random value. Thus, the pair (r, b) can be considered as a pair of 
two random numbers of the length t. Such pairs can easily be generated by a 
PPT Turing machine. This ends the proof of Theorem 1.

In the αβ-protocol the value r is kept and transmitted to A in the plaintext 
form. To prevent many types of adversarial attacks impersonating B, we 
suggest keeping this value in an encrypted form. Let EA be an encryption 
function with the decryption DA known to A. Principal B obtains from TTP 
EA(r). For starting authentication, this encoded value is transmitted to A. After 
being decrypted, it allows A to find factors of n and to continue the protocol. 

8. Mutual authentication 

After accepting A, B can act as a prover similar to the considered αβ-procedure 
for verifier A. Thus, if the TTP adds one necessary additional parameter 
to A this makes the protocol to be symmetrical with respect to the role  
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“prover-verifier”. This gives mutual authentication with three communication 
rounds. We call this variant the extended αβ-protocol. 

9. Performance evaluation

The implementation of the mutual αβ-protocol was done using Python 
programming language. The testing environment consists of AMD Athlon  
64 X2 2,79 GHz CPU and 4 GB RAM. The bitlength of a is 128 bits;  
SHA-256 is used as a hash function h. Evaluation results are shown in Table 1.

Table 1. Performance of mutual αβ-protocol.

t Trusted center (sec.) Prover (sec.) Verifier (sec.)

64 0.02218965 0.00001027 0.00000207

128 0.05343343 0.00001129 0.00000264

256 0.12412936 0.00001428 0.00000430

512 0.45839436 0.00003285 0.00000847

1024 2.25825591 0.00004635 0.00002024

2048 14.37915106 0.00028879 0.00009394

Figure 1. Mutual αβ-protocol.Figure 1: Mutual αβ-protocol
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Chapter 4

Robust Constructions of  Risk 
Measures for Optimization  

under Uncertainty 
Vladimir S Kirilyuk

1. Introduction

The main problem with applying classical models of stochastic programming 
(SP) is the presence of a wide uncertainty in practice. In such models, 
knowledge of the probability distribution of random variables (r.v.) is 
assumed, the average values (or other statistical quantities) of which are used 
as criteria or constraints for finding optimal solutions. However, as a rule, 
this assumption is not justified. Even long-term observations do not always 
allow for identifying a probability distribution. Moreover, knowledge of the 
distribution extracted from the data reflects their past history, and not the 
future, which contains new uncertainties. In this regard, the SP models should 
be modified taking into account such practical realities.

The sense of such modifications is that the optimization takes into 
account the mentioned criteria not for a known distribution, but for a set of 
distributions (probability measures) that correspond to our knowledge about 
the distribution. Since in this case the values of statistical criteria are used, 
which are the worst by the set of distributions, the optimal solutions obtained 
using them will be resistant to such uncertainty. This line of research is called 
distributionally robust optimization, see, for example, Delage et al. 2010, 
Wiesemann et al. 2014, and Shapiro 2017.

V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine.
Email: vlad00@ukr.net
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In addition, the apparatus of coherent risk measures (CRM) introduced 
by Artzner et al. 1999 is now widely known. The dual representation of such 
risk measures quantifies the risk by the worst-case average loss when the 
probability measure varies over a set that depends on the initial probability 
measure and reflects the construction of the CRM. 

In this paper, both of these approaches are used to assess risk under 
uncertainty. If a certain risk measure is used to assess risk for a known 
probability measure, then under uncertainty, where such probability 
measure is determined accurate to a set, the risk is estimated by the  
worst-case risk measure when the probability measure is varied over the set. 
Such an estimate is called a robust construction of the initial risk measure 
and is described by the worst-case average losses over a set of probability 
measures constructed in a special way. 

We study such robust constructions of risk measures, their calculation, as 
well as optimal portfolio solutions on the reward-risk ratio, which is described 
with their use.

This chapter considers the apparatus of polyhedral coherent risk measures 
(PCRM), which allows one to represent a number of stochastic programming 
and robust optimization problems within a unified approach (Kirilyuk 2015). 
In addition, the use of PCRM and polyhedral uncertainty sets significantly 
simplifies calculations. Then the calculation of robust PCRM constructions 
with such uncertainty sets is reduced to linear programming problems (LPP). 
It is shown that problems of portfolio optimization on the reward-risk ratio 
using robust constructions of the average return and PCRM are reduced to the 
corresponding LPP as well.

Finally, we consider similar formulations of portfolio problems in the 
case of imprecise scenario estimates of r.v.

2. Dual representation of coherent risk measures 

Let a probability space (Ω, ∑, P0) and space Z ϶ X of r.v. be given, where  
X: Ω → R

–
 is a measurable function. Let r.v. X(ω) describes a value of random 

losses, which is characterized by preference “the less – the better”. 
A function ρ: Z → R

–
 is called a coherent risk measure (CRM) by Artzner 

et al. 1999 if it has the following properties:
A0) normalized ρ(0) = 0; 
A0a) lower semicontinuous (l.s.c.) and proper in sense of Rockafellar 1970; 
A1) convex: ρ(λX1 + (1 – λX2)) ≤ λρ(X1) + (1 – λ) ρ(X2), 0 ≤ λ ≤ 1;
A2) monotonous: ρ(X) ≤ ρ(Y) if X ≤ Y (on distribution); 
A3) translation invariant: ρ(X + a) = ρ(X) + a, a ∈ R;
A4) positive homogeneous: ρ(λX) = λρ(X), λ ≥ 0.
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Recall that a risk measure ρ(.) is called convex by Föllmer and Schied 
2002 if the positive homogeneity property A4) is not postulated.

Let the pair of dual spaces Z = Lp (Ω, ∑, P0), p ∈ [1, +∞) and Z* = Lq (Ω, ∑, 
P0), q ∈ (1, +∞], 1/p + 1/q = 1 be given. Action of a linear continuous operator 
ζ ∈ Z*

 on X ∈ Z has the following form

 0, ( ) ( ) ( ).X X dPζ ζ ω ω ω
Ω

= ∫
A risk measure ρ(.), by definition, is a convex proper and l.s.c. function. 

Recall that its conjugate function ρ*: Z* → R
–
 is defined as

 * ( ) sup , ( )
X Z

X Xρ ζ ζ ρ
∈

=  −   .

Using the Fenchel-Moreau theorem, ρ(.) can be presented by the following 
dual form (Shapiro et al. 2009, Theorem 6.4):

 * *
0( ) sup , ( ) sup ( ) ( ) ( ) ( )

M M
X X X dP

ζ ζ
ρ ζ ρ ζ ζ ω ω ω ρ ζ

∈ ∈ Ω

 
 = − = −  

 
∫ , (1)

where M = dom(ρ*) is the domain of function ρ*(.).

Remark 1. This representation is valid for the reflexive spaces Lp (Ω, ∑, P0),  
p ∈ (1, +∞). For the pair of spaces L∞ (Ω, ∑, P0) and L1 (Ω, ∑, P0), the first 
space is considered with the weak topology, and the second one – with the 
weak* topology (Shapiro 2017).

Note that for the CRM this representation (1) is greatly simplified:

 0( ) sup , sup ( ) ( ) ( ).
M M

X X X dP
ζ ζ

ρ ζ ζ ω ω ω
∈ ∈ Ω

= = ∫  (2)

Remark 2. We can assume that such set M is convex and weakly* closed, 
since ρ(.), as a support function, is in one-to-one correspondence with its 
convex and weakly* closed hull. 

Moreover, properties of monotonicity A2) and translation invariance A3) 
for ρ(.) are equivalent, respectively, to the following conditions (Shapiro et al. 
2009, Theorem 6.4):

 (.) 0 a.s.ζ ≥  and 0( ) ( ) 1.dPζ ω ω
Ω

=∫  (3)

Consequently, such ζ(.) from (1) and (2) are some probability densities.
It is easy to see that under conditions (3)

 { }0 0( ) (.) : ( ) ( ) ( ),
A

Q P P P A dP Mζ ω ω ζ= = ∈∫  (4)

is a set of probability measures of form dP = ζdP0 on (Ω, ∑), which is 
associated with set M of such densities (Radon-Nikodym derivatives).
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Accordingly, equality (2) is then represented as 

 
0 0

0
( ) ( )

( ) sup ( ) ( ) ( ) sup ( ) ( ) sup [ ].P
M P Q P P Q P

X X dP X dP E X
ζ

ρ ζ ω ω ω ω ω
Ω Ω∈ ∈ ∈

= = =∫ ∫  (5)

This fact was first shown in the fundamental work of Artzner et al. 1999. 
Note that the convex risk measure from (1) is described by Föllmer and Schied 
2002 in the following form:

 ( )
0( )

( ) sup [ ] ( ) ,P
P Q P

X E X Pρ α
∈

= −  (6)

where α(.) is some penalty function (see (1)).
The set of probability measures Q(P0) depends on the initial measure P0. 

Consequently, this is some multivalued mapping (m.m.) Q: Θ → 2Θ, where Θ 
is the set of probability measures, which represents the risk measure ρ(.) by an 
initial probability measure P0 in form (5). 

Definition 1. A risk measure ρ(.) of the form (2) will be called polyhedral 
CRM (PCRM) if M either is the set

 { }0 0(.) 0 . ., ( ) ( ) 1 ,M a s dPζ ζ ω ω
Ω

= ≥ =∫  (7)

or its intersection with any of the following two sets:

 { }1 0( ) ( ) ( ) , 1,...,i iM X dP c i kζ ω ω ω
Ω

= ≤ =∫  (8)

for some { }, , 1,...,i iX Z c R i k∈ ∈ = ;

 { }2 (.)  . .M a sζ γ= ≤  (9)

for some γ > 0. Here M0 is called the standard part of the description of M.

Remark 3. In set M1 from (8), we can take into account the restrictions on the 
first moments of some r.v. Xi ∈ Z.

Remark 4. In comparison with a similar definition from Kirilyuk 2004, this 
definition is more cumbersome, but it allows it to work with measurable 
spaces Lp (Ω, ∑, P0) and exactly corresponds with the risk representation in 
form (2).
Depending on the type of M consider the following four cases:
С0) M = M0; С1) M = M0 ∩ M1; С2) M = M0 ∩ M2; С3) M = M0 ∩ M1 ∩ M2. 

Examples:
E1) Maximum (worst) losses: esssup sup [ ]P

P
X E X

∈Θ
= , case С0),

 { }0 0 0(.) 0 . ., ( ) ( ) 1 ( ) ,M M a s dP Q Pζ ζ ω ω
Ω

= = ≥ = ⇒ = Θ∫
where Θ is the set of all possible probability measures of the form (4);
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E2) Average losses: EP0
[X], case С2),

 { } { }0 2 0 0 00 (.) 1 . ., ( ) ( ) 1 (.) 1 . . ( ) { };M M M a s dP a s Q P Pζ ζ ω ω ζ
Ω

= ∩ = ≤ ≤ = = = ⇒ =∫
E3) Conditional Value-at-Risk (CVaR) from Rockafellar and Uryasev 2000, 
case С2),

 
1( ) inf ( ) .

1R
CVaR X E Xα η

η η
α +∈

 = + − − 

Its dual representation (2) is described by Shapiro et al. 2009, p. 272 as 

 0
1( ) sup , : 0 (.)  . ., ( ) ( ) 1 .

1
CVaR X X a s dPα

ζ
ζ ζ ζ ω ω

α Ω

 
= ≤ ≤ = − 

∫
Therefore, Q(P0) is represented in the form (4) for

 
0 2 0

10 (.)  . ., ( ) ( ) 1 ,
1

M M M a s dPζ ζ ω ω
α Ω

 = ∩ = ≤ ≤ = 
− ∫

where M2 of form (9) for γ = 1/(1 – α). 

Discrete distributions. Let there be a finite set of elementary outcomes  
Ω = {ω1,..., ωn}, consider a discretely distributed probability measure (a vector 
of scenario probabilities) p0 = (p0

1,..., p
0
n), ∑

n
i=1 p

0
i = 1, p0

i ≥ 0 on it. Then r.v. X (as 
a distribution on scenarios) is represented by a vector x ∈ Rn, and a coherent 
risk measure of the form (5) is:

 0
0 0( ) ( )

( ) sup [ ] sup , ,p p
p Q p p Q p

x E x p xρ
∈ ∈

= =  (10)

where Q(p0) is a convex compact, Q(p0) ⊆ Sn, where  Sn is the unit simplex.
Accordingly, m.m. Q(.) has the following forms for examples E1)–E3) 

respectively:
E1) maximum (worst) losses, case С0),

 0
0 0 0

1 1
( ) : 1, 0 : 1, 0

n n
T T n

i i i
i i

Q p p p p p p p Sζ ζ ζ
= =

   
= = ≥ = = ≥ =   
   

∑ ∑ ;

E2) average losses, case С2), { }0 0 0( ) : (1,...,1) { }T TQ p p pζ ζ= = = ;
E3) CVaRα(.), case С2), 

0
0 0 0

1 1

1 1( ) : 0 , 1 : , 0, 1 .
1 1

n n
T

i i i
i i

Q p p p p Ip p p pζ ζ ζ
α α= =

   
= ≤ ≤ = = ≤ ≥ =   

− −   
∑ ∑
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For discrete distributions, set M1 for PCRM from Definition 1 can be 
described by a matrix B and a vector c with dimensions k × n and k respectively:

{ } { } { }1 0 0 0( ) ( ) ( ) , 1,..., : : ,T T
i iM X dP c i k p B p c p Bp cζ ω ω ω ζ ζ

Ω
= ≤ = = ≤ = ≤∫

where i-th row of matrix B describes scenario values of r.v. Xi.

For cases С1)–С3), sets Q(p0) are respectively of the following form: 

С1) 0
0 1 0 0 0 0

1
, ( ) : , 0, 1

n
T T T

i i
i

M M M Q p p B p c p pζ ζ ζ ζ
=

 
= ∩ = ≤ ≥ = ⇒ 

 
∑  

 0
1

( ) : , 0, 1 ;
n

i
i

Q p p Bp c p p
=

 
= ≤ ≥ = 
 

∑  (11)

С2) 0
0 2 0 0 0

1
, ( ) : 0 , 1

n
T T

i i
i

M M M Q p p p pζ ζ ζ γ ζ
=

 
= ∩ = = ≤ ≤ = ⇒ 

 
∑  

 0 0
1

( ) : , 0, 1 ;
n

i
i

Q p p Ip p p pγ
=

 
= ≤ ≥ = 
 

∑  (12)

С3) 0
0 1 2 0 0 0 0

1
, ( ) : ,0 , 1

n
T T T

i i
i

M M M M Q p p B p c p pζ ζ ζ γ ζ
=

 
= ∩ ∩ = ≤ ≤ ≤ = ⇒ 

 
∑  

 0 0
1 10

( ) : ,0 , 1 : , 0, 1 .
n n

i i
i i

cB
Q P p Bp c p p p p p p p

pI
γ

γ= =

      = ≤ ≤ ≤ = = ≤ ≥ =     
       

∑ ∑  (13)

Set Q(p0)  can be represented in the unified form as 

 0 0
1

( ) : ( ), 0, 1 ,
n

i
i

Q p p Bp c p p p
=

 
= ≤ ≥ = 
 

∑  (14)

where for cases C1)–C3) the following designations are used:

С1) B = B, c(p0) = c; С2) B = I, c(p0) = γp0; С3) 0
0

, ( ) .
cB

B c p
pI γ

  
= =   
   

Remark 5. Case C0) is considered in example E1). 

Remark 6. In contrast to the definition from Kirilyuk 2004, for discrete 
distributions Definition 1 more narrowly represents set Q(p0), since in (14) 
matrix B does not depend on p0, and c(p0) depends on a specific way described 
by cases C2)–C3). 

For such set Q(.), PCRM in accordance with (5) has the form:

 0
0 0( ) ( )

( ) sup [ ] sup , .p p
p Q p p Q p

x E x p xρ
∈ ∈

= =  (15)
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Remark 7. It is easy to see that nothing changes in the reasoning if the set of 
elementary outcomes Ω = {ω1,..., ωn,...} is countable and r.v. X is described 
by x = {x1,..., xn,...} ∈ l2 (known Hilbert space). Then ζ ∈ l2 and the appropriate 
linear operator are considered instead of matrix B, ⟨ζ, p⟩ instead of ζpT and 

series 
1i

∞

=
∑ instead of 

1

n

i=
∑.

3. Robust constructions of risk measures by uncertainty set

Suppose now that we cannot identify the initial probability measure P0, and 
define it up to an uncertainty set U in form of P0 ∈ U. Estimating the maximum 
(worst-case) risk in such a situation using measure (6), we obtain 

0
0 0 0( ), ( )

( ) sup ( ) sup ( [ ] ( )) sup ( [ ] ( )).U P P P
P U P Q P P U P Q U

X X E X P E X Pρ ρ α α
∈ ∈ ∈ ∈

= = − = −  (16)

If ρP0(.) is CRM, α(.) ≡ 0 (see (5)), and then

 
0

0 0
0

( )
( ) sup ( ) sup [ ] sup ( ) ( ),U P P

P U P Q U P U
X X E X dP Mρ ρ ζ ω ω ζ

∈ ∈ ∈ Ω

  = = = ∈ 
  
∫  (17)

Definition 2. Measure ρU(.) from (16), (17) will be called the robust 
construction of risk measure ρ(.) by uncertainty set U.

Remark 8. As is easy to see, for a coherent risk measure

 
( ) ( )

( ) sup [ ] sup [ ],U P P
P Q U P coQ U

X E X E Xρ
∈ ∈

= =


where co—
.  means convex weakly* closed hull of a set (see Remark 2).

Remark 9. Such constructions were called risk measures “induced by 
uncertainty sets” in Kirilyuk 2008, and by “robust constructions” – in  
Kirilyuk 2019. 

It is easy to see that ρU(.) retains properties of the initial risk measure ρ(.). 
Indeed, let us denote the initial risk measure as ρP0(.), indicating its dependence 
on the probability measure P0. Since each ρP(.), P ∈ U is constructed in form 
(1) taking into account conditions (3), then it is convex and the l.s.c. function 
of X. Therefore, its epigraph epiρP = {(X, r): ρP(X) ≤ r} is a convex closed set. 
Then, as follows from (8),

 .U P
P U

epi epiρ ρ
∈

=


The intersection operation retains properties of closedness and convexity 
for sets. Therefore, set epiρU is also closed and convex, which implies convex 
and l.s.c. properties of the function ρU(.).
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If ρP(.) are positively homogeneous, then epiρP are cones. Then their 
intersection is a cone as well. Therefore, ρU(.) is positively homogeneous.

Thus, the following elementary proposal is true. 

Proposal 1. Robust construction ρU(.) of a convex (coherent) risk measure 
ρP0

(.) is also a convex (coherent) risk measure.
It is easy to see that robust construction (16), (17) is determined by two 

factors: uncertainty set U and m.m. Q(.) from (4). Set U is determined by 
available information on probability measure P0, and m.m. Q(.)—by the 
initial risk measure ρ(.).

Usually, the data available in the applications does not allow identifying 
the initial probability measure P0, but permits estimating it by an uncertainty 
set as P0 ∈ U. Therefore, the formulation of problems using such robust 
constructions ensures stability relatively to such uncertainty for the problem’s 
solutions.

Definition 3. A set of probability measures will be called polyhedral if it is 
represented in the following form:

 0 0 1: ( ) ( ) ( ), ,
A

U P P A dP M Mζ ω ω ζ
  = = ∈ ∩ 
  

∫  (18) 

where M0, M1 are described by relations (7) and (8), respectively. 

Discrete distributions. In the case of discrete distributions, the polyhedral set 
U from (18) can be represented in form Q(P0) from (11) for case C1):

 
1

: , 1, 0 ,
n

u u i
i

U p B p c p p
=

 
= ≤ = ≥ 
 

∑  (19)

where Bu and cu are a matrix and a vector of corresponding dimensions.

Remark 10. Set U from (19) does not depend on the probability measure P0, 
which we do not know.

Consider a couple of elementary examples of such sets U. 

Example 1. Let a vector of scenario probabilities p0 be estimated from below 
and from above, respectively, by vectors p1 and pu, i.e., by the following 
uncertainty set U:

 
1

: , 0, 1 .
n

l u i
i

U p p p p p p
=

 
= ≤ ≤ ≥ = 
 

∑

It is presented in form (19), where ,  l
u u

u

pI
B c

pI
−−   

= =   
   

.
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Example 2. Suppose now there is an urn with balls, say, red, black and 
yellow. It is known that there are 30 red balls, and the total number of black 
and yellow balls is not less than 60, but not more than 70. Let pi, i = 1,2,3 
be the probabilities of choosing a red, black and yellow ball from the urn, 
respectively. Then set U has the following form:

 
3

1 2 3 1 2 3
1

1 2( , , ) : 0.3 , 0.7, 1, 0 .
3 3 i

i
U p p p p p p p p p

=

 
= = ≤ ≤ ≤ + ≤ = ≥ 
 

∑

It is presented in form (19), where 

1 0 0 0.3
1 0 0 1/ 3

,  
0 1 1 2 / 3
0 1 1 0.7

u uB c

− −   
   
   = =
   − − −
   
   

. 

Let us now consider a robust construction of a coherent risk measure (17) 
with a polyhedral uncertainty set of form (10). It is described as

 
( ) ( )

( ) sup , sup , ,U
p Q U p coQ U

x p x p xρ
∈ ∈

= =  (20)

where co— is the convex closed hull of set Q(U).
Then, for examples of risk measures E1)–E3), their robust constructions 

are described in the form (20), where sets Q(U) to have the form:

E1) for maximum (worst) losses 
1

( ) : 1, 0 ;
n

i
i

Q U p p p
=

 
= = ≥ 
 

∑

E2) for average losses 
1

( ) : , 1, 0 ;
n

u u i
i

Q U U p B p c p p
=

 
= = ≤ = ≥ 

 
∑

E3) for  CVaRα(.)

 
0

0 0
1

0
1

, 0, 1

1( ) : , 1, 0
1n

u u i
i

n

i
i

B p c p p

Q U p Ip p p p
α

=

=  ≤ ≥ = 
  

 
= ≤ = ≥ = 

− 
∑

∑

 
0

0 0 0 0
1 1

1: ( , ) , , 1, 1, , 0 .
1

n n

u u i i
i i

p p p B p c Ip p p p p p
α = =

  
= ∈ ≤ ≤ = = ≥  

−  
∑ ∑

For PCRM presented in form (10), such set has the following form

 
{ }

0
0 0

1

0

, 0, 1

( ) : ( ), 1, 0 .
n

u u i
i

n
ii

B p c p p

Q U p Bp c p p p

=

  ≤ ≥ = 
  

= ≤ = ≥

∑
∑
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Let us now write out robust constructions for the cases С1)–С3):

С1) 
1

( ) sup , : , 1, 0 ;
n

U p i
i

X x p Bp c p pρ
=

 
= ≤ = ≥ 

 
∑

С2) 0

0
( , ) 0 0 0

1 1
( ) sup , : , , 1, 1, , 0 ;

n n

U p p u u i i
i i

X x p B p c Ip p p p p pρ γ
= =

 
= ≤ ≤ = = ≥ 

 
∑ ∑

C3) 0

0
( , ) 0 0 0

1 1
( ) sup , : , , , 1, 1, , 0 .

n n

U p p u u i i
i i

X x p B p c Bp c p p p p p pρ γ
= =

 
= ≤ ≤ ≤ = = ≥ 

 
∑ ∑

Remark 11. In case C1), set Q(P0) does not depend on the initial probability 
measure P0; therefore, the risk measure coincides with its robust construction.
For convenience of presentation, we introduce the following notation:

 0 0

1...1 1
, ,

1... 1 1
B c   

= =   − − −   
 (21)

which allow us to represent the standard normalization condition for 
probabilities ∑n

i=1 pi = 1 in form B0p ≤ c0, as ∑n
i=1 pi ≤ 1  and – ∑n

i=1 pi ≤ –1.
Taking into account the notation (21), the calculation of the robust 

constructions ρU(X) for cases C1)–C3) reduces, respectively, to solve the 
following LP problems:

 

0 0

max , ,

, 0

p x p
B c

p p
B c

   
≤ ≥   

   

 (22)

 

0 0( , ) ( , )

0 1

0 0 10 0
0 0

2
0 0

01 00 0

max max, , ,

, 0
, , 0

, 0

p p p p

u uu u

x p x p
pI oII

p p
B c OB c

p p p p
BO cB c

p p
BO cB c

γ γ
=

   −    ≤ ≥      
        + ≤ ≥          ≤ ≥                 

 (23)

 

0 0( , ) ( , )

3

0 1

0 0 0 1 0 0 0

2
0 0

1 0 00 0

max max, , ,

, 0
, , 0

, 0

p p p p

u uu u

x p x p
B c O cB
I p p p oI I
B c B p O p c p p

BO cB c
p p

O B cB c

γ γ

=
      
      ≤ ≥ −      

        − ≤ ≥       
       

≤ ≥       
        

 (24)

where o1, O1, O2, O3 are zero vector and zero matrices of dimension n, 2 × n,  
l × n, m × n, and l, m are the number of rows of matrices Bu and B, respectively. 
Let us formulate this.
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Proposal 2. For cases C1)–C3), the calculation of the robust construction of 
risk measure is reduced to solving LPP of the form (22)–(24), respectively.

Corollary 1. For CVaRα(.), the calculation of the robust construction of risk 
measure CVaRα,U(X) is reduced to solving LPP (23) for γ = 1/(1 – α). 

4. Optimal solutions on reward-risk ratio and  
portfolio optimization

4.1 Robust construction of reward

In financial applications, decisions are usually made on a reward-risk ratio. 
If a certain risk measure is used to assess the risk, then a reward function 
must also be determined. Even in the classical work Markowitz 1952, the 
average return was considered in this capacity, which requires clarification 
under uncertainty.

Let us also specify the sign of the argument for the risk measure. If we 
take a random financial flow X as an initial, then the value (–X) describes its 
losses, therefore, we use them to construct a risk measure ρ(–X). Accordingly, 
the “–” sign is added to argument of the risk measure:

 0
0 0( ) ( )

( ) sup ( ( )) ( ) sup [ ].P P
P Q P P Q P

X X dP E Xρ ω ω
Ω∈ ∈

− = − = −∫
Let us consider the average return as a reward function r(.), i.e., rP0

(X) = 
EP0

[X]. For uncertainty set U, by analogy with the risk measure, we estimate 
the reward as the guaranteed (worst-case) reward on this set as

 0 0
0 0

( ) inf ( ) inf [ ].U P PP U P U
r X r X E X

∈ ∈
= =  (25)

Definition 4. Function rU(.) from (25) will be called the robust construction 
of reward rP0

(.) (average return) with respect to uncertainty set U. 
As it is easy to see, the function rU(.) possesses properties close to those 

for the CRM. It is normalized; its analogs of axioms A1)–A4) have the form:
А1a) rU(X + a) = rU(X) + a; 
А2a) rU(X1 + X2) ≥ rU(X1) + rU(X2); 
А3a) rU(λX) = λrU(X), λ ≥ 0; 
А4a) rU(X1) ≥ rU(X2), X1 ≥ X2.

These are quite rational properties. The concavity of the function means 
that asset diversification does not reduce the worst (guaranteed) reward.
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4.2 Portfolio optimization on the reward-risk ratio 

Let the distribution of the return of portfolio components rj, j = 1,...,k be 
described by a matrix H of dimension n × k, where j-th column represents the 
distribution of j-th component. Vector w = (w1,...,wk) describing the portfolio 
structure is considered as a variable, where 1

1, 0, 1,...,k
i iw w i k= ≥ =∑ . It is 

necessary to find a portfolio structure w that optimizes its result in term of the 
reward-risk ratio.

In the case of a known vector of scenario probabilities p0 = (p0
1,...,p0

n), if 
the portfolio risk is estimated by PCRM ρp0

(.) of form (15), (11)–(13), and the 
reward is estimated by the average return, the following two related problems 
can be considered: 

 1) minimization of the portfolio risk measure under lower bounds on its 
average return μ0;

 2) maximization of the average portfolio return under upper bounds on its 
risk measure ρ0.

These problems, respectively, have the following form:

 
0

0

1

0

min ( ).

1,  0

[ ]

p
k

i

p

Hw

w w

E Hw

ρ

µ

−

= ≥

≥
∑  

0

0

1

0

max [ ].

1,  0

( )

p
k

i

p

E Hw

w w

Hwρ ρ

= ≥

− ≤
∑

As is known from Kirilyuk 2004, 2008, both of them are reduced to the 
appropriate LPP, therefore, they can be efficiently solved.

In the case when the vector of scenario probabilities is estimated by 
uncertainties set U in form P0 ∈ U, similar problems are posed with their 
robust constructions:

 
1

0

min ( ).
1,  0

[ ]

U
k

i

U

Hw
w w

r Hw

ρ

µ

−
= ≥

≥
∑  (26)

 1

0

max [ ].
1,  0

( )

U
k

i

U

r Hw
w w

Hwρ ρ

= ≥

− ≤
∑  (27)

Let us show that for the case of a polyhedral set U, which is described in 
form (11), both problems are reduced to the appropriate LPP.
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Theorem 1. If problems (26) and (27) with reward function rU(.) (25) and risk 
measure ρU(.) for cases C1)–C3) in form (22)–(24) have solutions, then their 
optimal portfolios are, respectively, the components w of solutions (v, u, w) 
of the following LPP:

 

( , , ) 0

0

0 0

0

1

min ( , ),
( ) 0
( , ),

( ) 0

1, 0, 0, 0

w u v
T T

u

T T
u

k
i

c c u
B B u Hw

c c v

B B v Hw

w w u v

µ
+ ≥

− − ≥

− − − ≤

= ≥ ≥ ≥∑

 (28)

 

( )

( )

( , , ) 0

0

0 0

0

1

max ( , ), .
0

( , ),

0

1, 0, 0, 0

w u v u
T T
u

T T

k
i

c c v
B B v Hw

c c u

B B u Hw

w w u v

ρ

− −
− − − ≤

≤

+ ≥

= ≥ ≥ ≥∑

 (29)

 

( , , ) 1 0 0

2 10

101

0 0

0

1

min ( , , , ),

( , ),

( ) 0

1, 0, 0, 0

w u v u
T TT

T TT
u

u

T T
u

k
i

o c c c u
HwI O OB

u
oI B BO

c c v

B B v Hw

w w u v

γ

µ

−   
≥   −   

− − ≥

− − − ≤

= ≥ ≥ ≥∑

 (30)

 

( )
( , , ) 0

0

1 0 0 0

2 10

101

1

max ( , ), .
0

( , , , ),

1, 0, 0, 0

w u v u
T T
u

u

T TT

T TT
u

k
i

c c v
B B v Hw

o c c c u

HwI O OB
u

oI B BO

w w u v

ρ

γ

− −
− − − ≤

≤

−   
≥   −   

= ≥ ≥ ≥∑

 (31)
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( , , ) 1 0 0

2 10

13 01

0 0

0

1

min ( , , , , ),

( , ),

( ) 0

1, 0, 0, 0

w u v u
T T TT

T T TT
u

u

T T
u

k
i

c o c c c u
HwIB O OB

u
oIO B BO

c c v

B B v Hw

w w u v

γ

µ

−   
≥   −   

− − ≥

− − − ≤

= ≥ ≥ ≥∑

 (32)

 

( )
( , , ) 0

0

1 0 0 0

2 10

13 01

1

max ( , ), .
0

( , , , , ),

1, 0, 0, 0

w u v u
T T
u

u

T T TT

T T TT
u

k
i

c c v
B B v Hw

c o c c c u

HwIB O OB
u

oIO B BO

w w u v

ρ

γ

− −
− − − ≤

≤

−   
≥   −   

= ≥ ≥ ≥∑

 (33)

where case C1) corresponds to problems (28)–(29), C2)–(30)–(31),  
C2)–(32)–(33).
Proof. Since the proof for all cases is carried out similarly, we present it 
only for case C2). Let us write down problems (26) and (27) for the reward 
function rU(.) (22) and risk measure ρU(.) (23). Accordingly, they have the 
following form:

 

0

0

0 0
0 0

( , )

11

10 00 0
0 0

, 0 2

01 0

min max , ,
1, 0

min ,
, , 0

u u

w p p
k

i

p
B c

p p u uB c

Hw p
w w oII

OB cHw p
p p p p

BO c
BO c

γ
µ

   
≤ ≥   

   

−
= ≥ −    

   ≥     + ≤ ≥   
             

∑
 (34)

 

0

0

1
10 0

0 0
2

01 0

0

1
0 0

0 0( , ) 0

, , 0

max min , .
1, 0

, 0
max ,

u u

w p
k

i u u

p p
oII

OB cp p p pBO c
BO c

Hw p
w w B c

p p
B cHw p

γ

ρ
−    

   
+ ≤ ≥   

     
     

= ≥    
≤ ≥   − ≤    

∑
 (35)
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Since they have solutions, their internal LPP has solutions as well:

 

0( , )

1

10 0
0 0

2

01 0

max , ,

, , 0

p p

u u

Hw p
oII

OB c
p p p p

BO c
BO c

γ
−

−    
   
    + ≤ ≥   
             

 (36)

 
0 0

0 0
0 0

min , .

, 0

p

u u

Hw p
B c

p p
B c

   
≤ ≥   

   

 (37)

Moreover, due to specific constraints, they have finite solutions. 
Therefore, (36) and (37) are equivalent to their dual LPP, which, respectively, 
have the following form:

 
1 0 0

2 10

101

min ( , , , ), ,

, 0

u u
T TT

T TT
u

o c c c u
HwI O OB

u u
oI B BOγ

−   
≥ ≥   −   

 (38)

 ( )
0

0

max ( , ), .
0,  0

v u
T T
u

c c v
B B v Hw v

− −
− − − ≤ ≥

 (39)

Replacing problems (36), (37) by (38), (39) in problems (34), (35), 
respectively, we obtain

 

( )0

1 0 0

2 101

1010 0
0, 0

min min ( , , , ), ,
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, 0
max ( , ),

T T
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w u u
k T TT

i
T TT
uv u

B B v Hw v

o c c c u
w w HwI O OB

u u
oI B BOc c v γµ
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∑  (40)
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max max ( , ), .
1, 0 0,  0

min ( , , , ),
T TT

T TT
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w v u
k T T

i u

u u
O OB HwI

u u
oI B BO
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w w B B v Hw v
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It is also easy to see the equivalence of the following conditions:
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Replacing the left conditions of relations (42), (43) with their equivalent 
right conditions in problems (40), (41), respectively, we finally obtain
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It is easy to see those problems (30) and (31) are nothing but problems 
(44) and (45), respectively, which proves the theorem for case С2).

Corollary 2. If CVaRα(.) is used as the initial risk measure, then portfolio 
optimization problems are reduced to solving LPP (30)–(31) for γ = 1/(1 – α).

4.3 Portfolio optimization by Sharpe ratio 

Let us now consider for a portfolio the maximization of Sharpe ratio with 
robust constructions of the reward function and the risk measure
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We represent it as a minimization problem in the following form
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As known, its classical analogue for a known vector of scenario 
probabilities p0 is reduced to solving an LP problem (see, for example, Kirilyuk 
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2014). Let us show that problem (46) can also be reduced to an appropriate 
LP problem. 

Theorem 2. If the reward function rU(.) from (25) does not equal 0, then the 
optimal portfolios for the problem (46) with such rU(.) and risk measures ρU(.) 
for cases C1)–C3) in form (22)–(24) are w = w~/t in the solutions (w~, t, u~, v~) of 
the following LP problems, respectively:
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The theorem-proof can be easily obtained using arguments similar to 
those used in the proof of Theorem 6 from Kirilyuk 2014, or by applying 
Lemma 1 from Schaible 1974, taking into account the results of the previous 
theorem.

Remark 12. If ρU(.) ≥ 0, then, as follows from Schaible 1974, equality  
⟨(–cu, –c0), v~⟩ = 1 in the problem constraints can be replaced by an inequality 
⟨(–cu, –c0), v~⟩ ≥ 1.
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5. Risk measures for imprecise scenario values of  
random variables

Suppose that we know only the lower and upper bounds of scenario values of 
r.v. X, not their values. On probability space (Ω, ∑, P0) r.v. X is described by 
its measurable (random) lower Xl and upper Xu bounds in the form 

 Xl(.) ≤ X(.) ≤ Xu(.) a.s.

Such a situation was called in Kirilyuk 2018 the case of imprecise scenario 
estimates of r.v. X. In it the PCRM technique can be used as well.

So, then the risk measure for estimates Xl and Xu can be considered as 
their lower and upper estimates for risk measure of r.v. X as

 ρ(Xl) ≤ ρ(X) ≤ ρ(Xu).

In this case, the concept of a robust construction of a risk measure becomes 
much more complicated, since it is necessary to consider a whole set of Pareto 
optimal values for the following problem

 0

0
0
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p l

p U
p u

X

X

ρ
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→  

 
In this case, various problem statements are possible, for example, one 

can make a convolution of such criteria, or use one of these criteria ρU(Xl), 
ρU(Xu) for minimization with restrictions on the second. This can be done 
under uncertainty for the reward function also.

So, let’s turn to the problem of portfolio optimization. Suppose that we 
do not know the matrix H of return distributions of components of financial 
instruments by scenarios, but only its lower and upper estimates, represented 
by matrices Hl and Hu, respectively. Those, H = {rij}

n,k
i=1,j=1 is element-wise 

evaluated by matrices Hl = {rl
ij}

n,k
i=1,j=1 and Hu = {ru

ij}
n,k
i=1,j=1, where

 rl
ij ≤ rij ≤ ru

ij, i = 1,..., n, j = 1,..., k.

Then analogs of problems (26)–(27) in such a situation are, respectively, 
the following problems

 
1

0

0

0

min ( ),
1, 0

( )

( )

( )

u
U

n
i i

l l
U

u u
U

l l
U

H w
w w

H w

r H w

r H w

ρ

ρ ρ

µ

µ

−
= ≥

− ≤

≥

≥

∑
 

1

0

0

0

min ( ),
1, 0

( )

( )

( )

l
U

n
i i

u u
U

u u
U

l l
U

H w
w w

H w

r H w

r H w

ρ

ρ ρ

µ

µ

−
= ≥

− ≤

≥

≥

∑



Robust Constructions of Risk Measures for Optimization under Uncertainty 85

 
1

0

0

0

max ( ),
1, 0

( )

( )

( )

u
U

n
i i

l l
U

l l
U

u u
U

r H w
w w

r H w

H w

H w

µ

ρ ρ

ρ ρ

= ≥

≥

− ≤

− ≤

∑
 

1

0

0

0

max ( ),
1, 0

( )

( )

( )

l
U

n
i i

u u
U

l l
U

u u
U

r H w
w w

r H w

H w

H w

µ

ρ ρ

ρ ρ

= ≥

≥

− ≤

− ≤

∑

in which μ j
0, ρ

j
0, j = l, u, respectively, are the lower and upper constraints on the 

reward function (from below) and the robust construction of the risk measure 
(from above).

If the listed problems with reward functions rU(.) in the form (25), (19) 
and risk measures ρU(.) in the form (22)–(24) have solutions, then they, 
like problems (26) and (27), can be reduced using similar reasoning to the 
respective LPP.

At the same time, taking into account the number of restrictions in these 
problems, the obtained LPP will be of a significantly higher dimension 
compared to the problems described in Theorem 1. Nevertheless, such 
a reduction will greatly facilitate the solution of the original portfolio 
optimization problems. 

6. Conclusion

For the case of uncertainty, when the initial probability measure is not 
known and is described by an uncertainty set U, the robust construction of 
risk measure is proposed. Under using PCRM and a polyhedral set U, the 
calculation of such robust construction of risk measure is reduced to solving 
appropriate LPP.

The problems of portfolio optimization by a reward-risk ratio are 
considered, where the reward and risk are described by the robust constructions 
of the average return and PCRM, respectively. It is shown how tasks of 
maximizing the reward under upper bounds on the risk and minimizing the 
risk under lower bounds on the reward are reduced to appropriate LPP. It is 
described how the problem of maximizing the Sharpe ratio for a portfolio with 
these robust constructions reduces to the corresponding LP problem as well.

Similar statements of portfolio optimization problems and their reduction 
to LPP for the case of imprecise scenario estimates of r.v. are discussed also. 
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Chapter 5

On Minimum Length  
Confidence Intervals

Pavel S Knopov,1,* Arnold S Korkhin2 and Liliia B Vovk3

1. Introduction: Statement of the problem

In mathematical statistics, the determination of the interval estimate 
(confidence interval) of a certain parameter α0 ∈ ℝ1 is a widespread problem, 
which consists in finding such quantities A and B for which the equality  
P(A ≤ α0 ≤ B) = ν is satisfied, where the probability ν is a given value, A and 
B are the observation functions. Definition of A and B is based on equality

 P(A ≤ α0 ≤ B) = P(a ≤ X ≤ b),

where X is a random variable (r. v.) with known probability density f (x).

A confidence interval length is often determined by the equalities:

 B – A = c(b – a) (1)

or

 B – A = c(a–1 – b–1), (2)

where c is some value that depends on the sample, but does not depend on a 
and b. Therefore, for a particular sample, c is a constant.

1 V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine.
2 Pridneprovskaya Academy of Construction and Architecture, Dnipro, Ukraine.
3 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
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The question arises, how to choose a and b so that the length l = (b – a) for 
case (1) or l = (a–1 – b–1) for case (2) is minimal, which provides a minimum 
the length of the confidence interval for the unknown parameter α0. Note that 
minimizing l = (b – a) is the problem of the r. v. X probability interval [a, b] 
length minimizing.

A number of articles are devoted to this problem, among which we will 
point out Tate et al. 1959, Levy et al. 1974, Ferentinos et al. 2006. In the first 
two papers, a and b are determined to minimize the confidence intervals for 
the variance and variance ratio, respectively. The values of a and b are given 
for several values of ν, the number of degrees of freedom of the χ2 distribution 
2 ≤ q ≤ 29 in Tate et al. 1959 and twelve values of two degrees of freedom of 
Fisher distribution in Levy et al. 1974 for v = 0.95. The article Ferentinos et al. 
2006, which is a generalizing work, analyzes solutions to the problems of the 
confidence interval length minimizing for cases (1) and (2), when a probability 
density f (x) is a differentiable function. However, the necessary and sufficient 
conditions for a minimum in relation to the case (1) are not explicitly defined, 
and for case (2) there are no sufficient minimum conditions. The question of 
multiextremality, which arises when l = (a–1 – b–1), is not considered.

In this article, we present the necessary and sufficient conditions for 
minimum length confidence intervals existence for cases (1) and (2). For 
frequent cases when X has the χ2 distribution or Fisher distribution, conditions 
are given when the length l = (a–1 – b–1) minimization problem has one 
minimum. A simplification of this problem is proposed, which allows it to be 
reduced to the one-dimensional minimization problem on the interval [0,1].

This work also has a practical side: it describes the definition of intervals 
for the degrees of freedom of the χ2 distribution and Fisher distribution, which 
provides a decrease of the confidence interval length by a given relative value, 
i.e., the question of the effectiveness of using the minimum length confidence 
intervals is being studied.

2. Minimization of a probability interval length – Case (1)

Let us present the necessary and sufficient conditions for the minimum length 
of the probability interval l = (b – a), which coincides with the minimum of 
the confidence interval according to (1).

Theorem 1. Let a and b, respectively, be the left and right ends of some 100ν% 
probability interval of a random variable X having a unimodal probability 
density f(x) defined on the interval I. The probability ν is given. Then, for a = 
a* and b = b* to be the ends of the interval of the probability of the minimum 
length, it is necessary and sufficient to satisfy the following equalities for 
three possible cases of the position of f (x) mode.
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 1) Mode of f (x) is laying in the point d – the left point of the interval I, f (x) 
is strictly monotonically decreasing, then

 
** *, is found from theequality ( ) .

b

d
a d b f x dx v= =∫  (3)

 2) Mode of f (x) is laying in the point e – the right point of the interval I, f (x) 
is strictly monotonically increasing, then

 * *

*
, is found from theequality ( ) .

e

a
b e a f x dx v= =∫

 3) Mode of f (x) is the inner point of the interval I (the whole number axis or 
non-negative half-axis); f (x) is a differentiable function, then a* and b* are 
laying respectively to the left and to the right of the mode, and

 
** *

*
( ) ( ), ( ) .

b

a
f a f b f x dx v= =∫  (4)

Proof. 1) Finding the minimum length 100ν% probability interval is the 
following optimization problem.

It is necessary to find such quantities a and b for which

 b – a → min (5)

under constraints

 ( ) 0, 0.
b

a
f x dx v a d− = − ≥∫  (6)

Let us compose Lagrange function for the problem (5), (6).

 ( ) 1
1 2

2

( , ) ( ) ( ) ( ), ,
b

a

b
L b a f x dx v a d

a
λ

λ λ
λ
  

= − + − − − = =   
   

∫λ λz z  (7)

where λi, i = 1,2 are Lagrange multipliers.
The necessary minimum condition for the problem (5), (6) is

 2 2 2( , ) ; ( ) ; 0, 0
b

a
L f x dx v aλ λ∇ = − − = ≥∫λz z O  (8)

where ( , )
'L LL

b a
∂ ∂ ∇ =  ∂ ∂ 

λz z , O2 is a zero two-dimensional vector, stroke 

means transpose.

Condition (8) in expanded form is

 1 1 2 2 21 ( ) 0, 1 ( ) 0, ( ) 0, 0.L Lf b f a a d
b a

λ λ λ λ λ∂ ∂
= + = = − − − = − − = ≥

∂ ∂
 (9)

Hereinafter ( )f c
x

∂
∂

 means the derivative of f(x) at the point x = c.
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Let λ2 = λ*
2 = 0, where λ*

2 is a solution of the equalities and inequalities 
system (9). Then from the first two equations in (9) we obtain f (a*) = f(b*). 
This equality contradicts the condition of the theorem assertion 1) on the 
probability density strictly monotone decrease. Hence, λ2 > 0. From this and 
the third equation in (9), we obtain the first equality in (3) a = a* = d. Then the 
second equality is (3) follows from f(x) monotonic decrease.

It remains for us to prove that the solution of the system of equations (3) 
gives the minimum point in problem (5), (6). Let us denote the left-hand sides 
of the constraints g1(z) = ∫b

a f(x)dx – ν = 0, g2(z) = –a + d ≤ 0. Their gradients at 
the point z = z* = [a* b*]' are the problem (5), (6) solutions

 
*

* *
1 2*

( ) 0
( ) , ( ) .

1( )
f b

g g
f a

   
∇ = ∇ =   −−    

z z  (10)

Moreover, g1(z*) = 0, g2(z*) = 0.
We have f(b*) ≠ 0, since otherwise, due to the strictly monotonic decrease 

of f(x) we obtain ∫b*
d f(x)dx = 1, which contradicts the first restriction in (6). For 

f(b*) ≠ 0 vectors in (10) will be linearly independent, since the matrix [∇g1(z*) 
⁝ ∇g2(z*)] is non-degenerate.

So, at the point z* of the optimization problem (5), (6) solution all 
constraints are satisfied, and their left sides gradients are linearly independent. 
Then, according to Poliak 1983 Ch. 9, Sec. 2, Theorem 4 the points a* and b* 
are the ends of the minimum length probability interval.

 2) The proof of the theorem assertion 2) is similar to the proof of  
assertion 1).

 3) In this case, no restrictions are imposed on the ends of the minimum 
length probability interval, therefore condition (9) takes the form

 1 11 ( ) 0, 1 ( ) 0.L Lf b f a
b a

λ λ∂ ∂
= + = = − − =

∂ ∂
 (11)

We have from (11) λ1 = 
1
( )f a

−  < 0. Substituting this expression into the 

first equation in (11), we obtain the first equality in (4).

Let us show that condition (4) defines the minimum points of the problem

 1min, ( ) ( ) 0.
b

a
b a g f x dx v− → = − =∫z  (12)

According to Poliak 1983 Ch. 8, §1, Theorem 5, a* and b* determine the 
problem (11) minimum point on the plane, if s' (∇2

z L(z*, λ*
1))s > 0 for all vectors 

s ∈ ℝ2 satisfying the equality s'∇g1(z*) = 0. Here ∇2
z L(z*, λ*

1) is the matrix of 
second derivatives of Lagrange function with respect to a and b components 
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of z calculated for a = a*, b = b* and λ1 = λ*
1, s' (∇2

z L(z*, λ*
1))s is the quadratic 

form of s = [s1 s2]'.

We have from (10) s'∇g1(z*) = s1 f(b*) – s2 f(a*) = 0. Hence, 
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f as s
f b
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We get from (11) ∇2
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. Taking into 

account (13) we get s' (∇2
z L(z*, λ*

1))s = 
2* * *

* 2
1 2 *
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f b f a f as
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λ
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. 

Since λ*
1 < 0, for this value to be positive it is sufficient if 

*( )f b
b

∂
∂

 < 0 and 
*( )f a

a
∂
∂

 > 0. These inequalities are satisfied when f(x) mode is between the 

values a* and b*. Assertion 3) of the theorem is proved, which completes its 
proof.

Corollary 1. Let f(x) be a symmetric probability density with respect to x = 0. 
Then from the first condition in (4) we obtain f(–b*) = f(b*).

Theorem 1 combines the results obtained in Ferentinos et al. 2006 by 
another method.

Now let us compare the 100ν% probability interval of the minimum 
length with the interval, the boundaries of which are, respectively, the lower 
and upper 100p% percentage points of the distribution under consideration, 

moreover, p = 
1

2
v−

. This interval is usually used in practical calculations. See, 
for instance, Ledermann et al. 1984. Table 1 shows the results of comparing 
the lengths of the probability interval for Fisher distribution. In it, q1 and 
q2 are the degrees of freedom of this distribution, a, b are the boundaries 
of the interval, l and L are respectively the lengths of the interval got with 
the traditional method and its minimum length. The length decrease of the 
probability interval was determined by the formula (l – L) l–1 100%.

The boundaries of the minimum length probability interval a and b were 
obtained as a result of solving the optimization problem (5), (6). To solve this, 
the Mathcad 14 software system was used. The point with coordinates a = 2,  
b = 100 was chosen as the iterative solution process starting point.



92 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

It follows from Table 1 that the minimum length interval differs 
significantly from the traditionally calculated interval for Fisher distribution. 
The discrepancy is especially large for the probability density corresponding to 
the degrees of freedom q1 = 20, q2 = 2, for which the mathematical expectation 
and higher order moments do not exist.

Let’s look at Table 2, obtained similarly to Table 1 for χ2 distribution. In 
it, q is the number of degrees of freedom of this distribution.

Table 1. Comparison of the minimum length probability interval and the traditional interval for Fisher 
distribution lengths (ν = 0.95).

Degrees of freedom Values

q1 15 20 20 20 20 30 30 3

q2 12 2 5 12 15 15 10 50

Length decrease, % 13.7 50.5 26.3 13.3 11.2 10.8 15.1 15.9

Table 2. Comparison of the minimum length probability interval and the traditional interval for χ2 
distribution lengths (ν = 0.95).

Degrees of freedom Values

q 2 4 8 10 20 30 40 50 60 80

Length decrease, % 18.2 11.4 5.8 4.6 2.3 1.5 1.11 0.90 0.745 0.582

It follows from Table 1 and Table 2 comparison that the gain from using 
the minimum length probability interval for χ2 distribution is small and 
noticeably smaller than for Fisher distribution. According to the Table 2, the 
largest discrepancy between the lengths of intervals determined by different 
methods occurs for small samples.

Figure 1 shows the dependence of the interval of probabilities length 

decrease from Table 2 on the skew ratio Sk = 
2
q  (for χ2 distribution). For 

this distribution, the coefficient of skewness γas = 2Sk (See Zellner 1971, 
Appendix A3). It can be seen from Figure 1 that the difference between the 
probability interval minimum length and its length calculated in the traditional 
way increases as the skew ratio increases (the number of degrees of freedom 
q decreases).

For Fisher distribution, such a clear dependence on the coefficients 
characterizing the distribution density asymmetry as in Figure 1 does not 
exist, which can be explained, in particular, by the absence of the distribution 
moments necessary to calculate these coefficients for some degrees of 
freedom. 
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3. Minimization of a probability interval length – Case (2)

Theorem 2. Let a and b, respectively, be the left and right boundaries of some 
100ν% probability interval of a random variable with a known probability 
density f(x). The probability ν is given. Then, for the value a–1 – b–1 > 0 to be 
minimal, for the solution a = a*, b = b* of the problem

 1 1
1min, ( ) ( ) 0, .

b

a

b
a b g f x dx v

a
− −  
− → = − = =  

 
∫z z  (14)

it is necessary and sufficient to fulfill the following conditions: 
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Proof. Lagrange function for the problem (14)

 ( )1 1
1 1( , ) ( ) ( ) ,

b

a

b
L a b f x dx v

a
λ λ− −  

= − + − =  
 

∫z z  (17)

where λ1 is Lagrange multiplier.

A necessary minimum condition for this problem

 1 2( , ) , ( ) .
b

a
L f x dx vλ∇ = =∫z z O  (18)

From (18) we obtain equations for three unknowns a, b and λ1: 

 2 2
1 1( ) 0, ( ) 0, ( ) .

b

a

L Lb f b a f a f x dx v
b a

λ λ− −∂ ∂
= + = = − − = =

∂ ∂ ∫  (19)

Figure 1. Influence of the skew ratio on the efficiency of using the minimum length probability 
interval for χ2 distribution.

7

corresponding to the degrees of freedom 𝑞𝑞𝑞𝑞1 = 20, 𝑞𝑞𝑞𝑞2 = 2, for which the mathematical expectation and 

higher order moments do not exist.

Let's look at Table 2, obtained similarly to Table 1 for 𝜒𝜒𝜒𝜒2 distribution. In it, q is the number of de-

grees of freedom of this distribution.

Table 2
Comparison of the minimum length probability interval and the traditional 

interval for 𝝌𝝌𝝌𝝌𝟐𝟐𝟐𝟐 distribution lengths (ν = 0.95)

Degrees of freedom Values
q 2 4 8 10 20 30 40 50 60 80

Length decrease, % 18.2 11.4 5.8 4.6 2.3 1.5 1.11 0.90 0.745 0.582

It follows from the Table 1 and Table 2 comparison that the gain from using the minimum length 

probability interval for 𝜒𝜒𝜒𝜒2 distribution is small and noticeably smaller than for Fisher distribution. Accord-

ing to the Table 2, the largest discrepancy between the lengths of intervals determined by different methods 

occurs for small samples.

Figure 1 shows the dependence of the interval of probabilities length decrease from Table 2 on the 

skew ratio 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
2
𝑞𝑞𝑞𝑞

(for 𝜒𝜒𝜒𝜒2 distribution). For this distribution, the coefficient of skewness 𝛾𝛾𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (See 

Zellner 1971, Appendix A3). It can be seen from Figure 1 that the difference between the probability inter-

val minimum length and its length calculated in the traditional way increases as the skew ratio increases 

(the number of degrees of freedom q decreases).

Figure 1. Influence of the skew ratio on the efficiency of using the minimum length 
probability interval for 𝝌𝝌𝝌𝝌𝟐𝟐𝟐𝟐 distribution
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From the first two equations in (19) we obtain

 
* 2

*
1 1 *

( )
( )

a
f a

λ λ
−

= = −  (20)

and the theorem condition 1).
The sufficient condition for the minimum of problem (14) will be of the 

same form as in the proof of Theorem 1: s' (∇2
z L(z*, λ*

1))s > 0, where L is given 
by formula (17); z* = [b* a*]'; the components s = [s1 s2]' satisfy condition (13).

Using expressions for the derivatives of Lagrange function (19), we obtain

 

*
* 3 *

1
2 * *

1 *
* 3 *

1

( )2( ) 0
( , ) .

( )0 2( )

f bb
bL

f aa
a

λ
λ

λ

−

−

 ∂
− + ∂ ∇ =
 ∂

− ∂ 

z z

Taking into account (13), we obtain
2 2* * * *

2 * * 2 * 2
1 2 1 2* 3 * 3 * *

1 1 ( ) ( ) ( ) ( )( ( , )) 2 .
( ) ( ) ( ) ( )

f a f b f a f a' L s s
a b f b b f b a

λ λ
      ∂ ∂   ∇ = − + −      ∂ ∂      

zs z s

Hence, using the first equality in (15), and, since s2
2 > 0, we have (16). ◊

Corollary 2. The mode of f(x) lays between the values a* and b* which are the 
solution to problem (14).

Proof. In (16), the first term is negative. For this inequality to be satisfied, the 
second term must be positive. Since according to (20) λ*

1 < 0, the second term 

in (16) will be positive if 
*( )f b

b
∂
∂

 < 0, 
*( )f a

a
∂
∂

 > 0.◊

Unlike the problem considered in Theorem 1, where there is one 
minimum, the fulfillment of Theorem 2 conditions allows us to check that 
the obtained problem (14) solution a*, b* is a local minimum point. Finding 
the global minimum in case when this problem has several local minima, is 
a separate difficult task. Therefore, it is important to know the cases when 
it is possible to guarantee the existence of one minimum in problem (14). 
The most common cases are when f(x) in (14) is the probability density of 
χ 2 or Fisher distribution. The two statements below allow us to guarantee the 
uniqueness of solution (14) for the indicated cases.

First of all, let us simplify problem (14). Using the first condition in (15), 
we exclude one variable in (14). We have from (15) an equation connecting 
the sought variables a and b:

 
2

2
2

( )
( )

f b a t
f a b

= =  (21)

where t ∈ [0,1].
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We put a = a(t), b = b(t). Moreover, according to (21)

 a(t) = tb(t). (22)

The solution of problem (14) a* = a(t*), b* = b(t*), where t* is the solution 
of the equation with respect to t 

 
( )

( )
( ) ( ) for 0 1,

b t

a t
t f x dx v tϕ = = ≤ ≤∫  (23)

must obey this equality.
The existence of a unique solution to equation (23) implies the existence 

of a unique solution to problem (14). Consider two statements that guarantee 
the uniqueness of the solution (23).

Statement 1. Let in (23) f(x) be χ 2 distribution density: f(x) = C(q)x(q–2)/2 e–1/2, 
x > 0; f(x) = 0, x ≤ 0, where q is a number of degrees of freedom, C(q) is a 
constant not depending on x. Then the function φ(t) is strictly monotonically 
decreasing on the interval (0,1].

Proof. From (21), formula for f(x) and equality a = tb, we get 

(1 )
( ) 2
( ) m

bt exp
f b
f a t

 − − 
 =  = t2, where m = 

2
q  – 1. Hence, we get

 b = b(t) = –(q + 2) ln t(1 – t)–1. (24)

The derivative of the integral (23) is

 
( ) ( ) ( )( ( )) ( ( )).d t db t da tf b t f a t

dt dt dt
ϕ

= −  (25)

Let us define the values on the right-hand side of this equality. We have, 
respectively, from (22) and (23)

 
( ) ( ) ( ),da t db t t b t

dt dt
= +  (26)

 2

( ) 1 ln( 2) .
(1 ) (1 )

db t tq
dt t t t

 
= − + + − − 

 (27)

Taking into account (26) and (21) we get from (25)

 
( ) ( )( ( )) ( 1) ( ) .d t db tf a t t t b t

dt dt
ϕ  = − −  

 (28)
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Substituting into this formula from (24) and (27) the expressions for the 

function b(t) and its derivative, we obtain 
( ) ln( ( )) 1 (1 )

1
d t tf a t t

dt t
ϕ  = + + − 

. 

Analysis of the function ln
1

t
t−
 shows that 

ln
1

t
t−
 ≤ – 1 for 0 ≤ t ≤ 1. Hence, as 

0 < a(1) < ∞, according to (22) and (24), we have ( )d t
dt
ϕ  for 0 < t ≤ 1. The 

statement is proven.

Statement 2. Let in (23) f(x) be Fisher distribution density,

 f(x) = C(q1, q2)x(q1–2)/2 (1 + lx)–(q1+q2)/2, x > 0; f(x) = 0, x ≤ 0 (29)

where q1 and q2 are the degrees of freedom, l = 1

2

q
q

, C(q1, q2) be a constant not 

depending on x, at that, q2 > 2. Then the function φ(t) is strictly monotonically 
decreasing on the interval (0,1].

Proof. We have from (21) and (29) for a = tb

 2( ) (1 )
( ) (1 )

m

m k

f b lbt t
f a lb t

+
= =

+
 (30)

where m = 1 2( )
2

q q+
, k = 1( 2)

2
q −

.

Under the condition of the statement q2 > 2, we obtain that u = 1

1 2

2q
q q

+
+  < 1. 

Then, having solved equation (30) with respect to b, we have

 
(1 )( )
( )

u

u

tb b t
l t t
−

= =
−

 (31)

Hence,

 
1 1

2

( ) (1 ) (1 )( 1) .
( ) ( )

u u u u

u u

db t t ut t ut
dt l t t l t t

− −− − −
= − −

− −

Let us determine the expression ( )db t
dt

 t(t – 1) – b(t), appearing in formula 

(28), as a function of t in explicit form. We have, according to the expressions 
obtained for the function b(t) and its derivative, after transformations

 
( ) (1 ) ( 1)( ) ( 1) ( ) 1 (1 ) .

( )

u u u

u u

db t t ut t t tV t t t b t t
dt l t t t t

 − − + −
= − − = − − − − − 

 (32)

Since under the condition of this statement u < 1, then ln tu = u ln t > ln t,  
ln tu < 0, 0 < t < 1. Hence,

 1 > tu > t for 0 < t < 1; tu = t for t = 0,1. (33)
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The minimum of the function ψ(t) = tu – utu (tu – t + 1) for t ∈ [0,1] is equal 
to zero. Therefore, tu ≥ utu (tu – t + 1) for t ∈ [0,1]. Using this inequality, as 
well as (33), we have

 ( 1)(1 ) (1 ) 1,0 1.
u u u

u u

ut t t t t tt t t
t t t t
− + − −

− ≤ − < < <
− −

 (34)

We denote: Q(t) = (1 – t) ( 1)u u

u

ut t t t
t t
− + −
−

, the value in square brackets on 

the equality (32) right side as S(t). Then S(t) = 1 – Q(t).
If Q(t) ≥ 0, 0 < t < 1 then according to (34) 1 > Q(t) ≥ 0, 0 < t < 1, 

what entails S(t) > 0 and from (32) we have V(t) < 0, 0 < t < 1, whence, in 
accordance with (28), it follows

 
( ) 0,0 1.d t t

dt
ϕ

< < <  (35)

If Q(t) < 0, 0 < t < 1, then S(t) > 0, what entails (35) as well.

We obtain from (22), (31) a(1) = (1 )
u

l u−  > 0, which gives from (29) 

f (a(1)) > 0. Analysis of the expression (32) shows that V(t) → – 2
(1 )

u
l u−

 < 0 

as t → 1. Then we have from (28) 
(1)d

dt
ϕ

 < 0. Statement 2 follows from this 
and (35).
The theorem below follows from the above two statements.

Theorem 3. If the length of the confidence interval for some distribution 
characteristic is proportional to the value a–1 – b–1, where a and b are the ends 
of the probability interval of a random variable with the known probability 
density f(x) of χ2 or Fisher distribution, and Fisher distribution satisfies the 
conditions of Statement 2, then there exists a unique minimum length of the 
confidence interval being the solution to equation (23).

Instead of solving equation (23), you can solve the optimization problem, 
which follows from this equation:

 
( )

( )
( ) ( ) min,0 1,

b t

a t
O t f x dx v t= − → ≤ ≤∫  (36)

where b(t) is defined by formula (24) (for distribution χ2) or (31) (for Fisher 
distribution), a(t) is got from (22).

The objective function in problem (36) depends on a variable t given 
on the interval [0,1]. According to Theorem 3, this function is unimodal. 
Therefore, problem (36) can be simply solved by the Fibonacci or golden ratio 
methods, described in detail in the monograph Wilde 1964 and in a number 
of manuals on optimization methods, for example Minoux 1989, pp. 2.4, 2.5.
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Let us determine the efficiency of using the confidence interval of the 
minimum length, determined by formula (2), depending on the degrees of 
freedom of Fisher and χ2 distributions.

Tables 3 and 4 show the decrease in the length of such an interval in 
comparison with the traditional method for these distributions.

Table 3. Comparison of a minimum length confidence interval and a traditional interval for χ2 
distribution lengths (v = 0.95).

An interval length is determined by formula (2).
Degrees of freedom Values

q 1 2 3 4 5 9 11 15 20 30
Length decrease, % 75.0 50.5 38.2 30.89 26.1 16.3 13.7 10.8 8.0 6.0

Table 4. Comparison of a minimum length confidence interval and a traditional interval for Fisher 
distribution lengths (v = 0.95).

An interval length is determined by formula (2).
No. Degrees of  

freedom
Length  

decrease, %
No. Degrees of 

freedom
Length  

decrease, %
q1 q2 q1 q2

1 15 12 12.1 16 5 10 26.7
2 20 4 15.8 17 5 50 26.1
3 20 12 10 18 8 15 18.5
4 20 15 9.5 19 4 15 31.1
5 30 15 7.3 20 10 30 15.1
6 30 10 8.6 21 12 24 13.1
7 3 50 38.2 22 18 24 9.5
8 20 5 14.2 23 15 4 17.3
9 3 20 38.2 24 15 8 13.4
10 1 50 75 25 10 5 19
11 4 50 30.9 26 10 3 22
12 3 20 38.2 27 24 12 9
13 4 20 31 28 12 24 13.1
14 5 20 26.3 29 20 8 11.5
15 3 10 38.4 30 3 30 38.2

It can be seen from Table 3 that a large enough confidence interval length 
decrease (about 20%) takes place for q ≤ 6…7. It was also found that a change 
in the confidence level in the range from 0.9 to 0.99 has little effect on a 
confidence interval for a variance with a fixed q length decrease.

For Fisher distribution, determined by two parameters, degrees of 
freedom, finding the area of a confidence interval effective length decrease is 
therefore much more complicated. The proposed solution is as follows.
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According to Table 4 regression parameters were estimated

 yt = α0
0 + α0

1 (qt1)–1/2 + α0
2 (qt2)–1/2 + εt, t =1,2,… (37)

where t is the number of degrees of freedom values combination, yt is a 
confidence interval length decrease in %, α0

i, i = 0, 1, 2 are unknown regression 
parameters, εt is a random variable.

The standard assumption was made that the sequence {εt}, t = 1, 2, ... is a 
sequence of centered pairwise independent random variables.
The resulting regression

 ŷt = –14.128
(1.068)

 + 84.003
(1.468)

 (qt1)–1/2 + 17.892
(2.325)

 (qt2)–1/2, t = 1,2,… (38)

where ŷt is yt estimate, in parentheses under the parameter estimates, their 
standard errors are indicated.

For the resulting model, the multiple coefficient of determination R2 = 
0.993, the significance of F-criterion is 9.33 . 10–30, the ratio of the standard 
error of the residuals to the average confidence interval length decrease, 

equal to 
30

1

30
t ty=Σ  was 5.58%. Thus, model (38) is adequate. Using the method 

described in Cox et al. 1974, based on estimates of the skewness and kurtosis 
coefficients at the 5% level, the hypothesis of normal noise distribution was 
adopted in (37).

Let us determine now Fisher distribution degrees of freedom q1 and q2 
range of values for which length decrease of the confidence interval in percent 
will be no less than the specified value Y. Let τ denote the number of the 
combination of q1 and q2 for which the decrease in length

 yτ = min
yt∈Ω

yt, Ω ={yt: yt ≥ Y, t ∈ θ} (39)

where θ is a set of combinations of q1 and q2.
Let τ ≠ t, t = 1,…,T, where T is the number of combinations q1 and q2, 

according to which the regression parameters (37) were estimated. In the case 
under consideration T = 30. Then, according to the accepted hypotheses about 
the normal distribution of random variables εt, t = 1, 2,… and their pairwise 
uncorrelatedness

 
ˆ

~ ( ),
y

y y t q
S

τ

τ τ−
 (40)

where ŷτ is determined by (38), t(q) is a random variable with Student’s 
distribution with q = T – 3 = 27 degrees of freedom.

In (40) Syτ = s(xτ' Kxτ + 1)1/2, where s is the standard residuals error, K 
is the estimate of the regression parameter estimates covariance matrix,  
xτ = [1 q1τ q2τ]'.
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Note that the fulfillment of the condition τ ≠ t, t = 1,…,T can always be 
achieved by changing Y by a small value.
We have from (40)
 P(yτ ≥ ŷτ – Syτ

 tp(q)) = 1 – p (41)

where p is small, –tp(q) is a quantile of order p of the distribution t(q).

Let

 ŷτ – Syτ
 tp(q) ≥ Y (42)

We get from (41) and (42) P(yτ ≥ Y) = P(yτ ≥ ŷτ – Syτ
 tp(q)) = 1 – p = ν.

Hence according to (39) we obtain P(yτ ≥ Y) ≥ P(yτ ≥ Y) = v, yt ∈ Ω.

To obtain values q1τ and q2τ, satisfying (41), let us solve the problem

 2 2 2
1/ 2 1/ 2 ' 1/ 2

1 2

max,3 100, integer,

14.128 84.003 17.892( ) ( ) ( 1)p

q q q

q q t q s Y
τ τ τ

τ τ τ τ
− −

→ ≤ ≤ − 
− + + ≥ + + x Kx

 (43)

where qτ1 acquires integer values 1,..., q–τ1, q–τ1 is the maximum value for which 
problem (43) has a solution.

For the probability, v = 0.95 the Table 5 shows q1 values and the 
corresponding intervals of variation q2 [1, q2τ], which provide a confidence 
interval decreased by no less than Y = 20% with a probability of no less than 
0.95. Wherein t0.05(2) = 1.703, s = 1.261,

 
0.154 0.284 0.77
0.284 1.107 0.988 .
0.77 0.988 6.471

− − 
 = − 
 − 

K

Table 5. The range of Fisher distribution degrees of freedom change, for which  
confidence interval length decrease will be 20% or more with a probability of at least 0.95.

q1 1 2 3 4 5 6 7 8 9

q2  [1; 100] [1; 100] [1; 100] [1; 100] [1; 100] [1; 72] [1; 13] [1; 5] [1; 3]

4. Conclusion

In this paper, the necessary and sufficient conditions for a confidence interval 
of the minimum length l for a certain parameter existence are obtained in 
the two most frequent cases of its specification: (1) l is proportional to the 
probability interval of some r. v. length; (2) l is proportional to the difference 
in reciprocal values of the ends of this interval.
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Since in the second case the problem of determining the minimum of l 
can be multiextremal, it is shown that for χ2 and Fisher distributions of r. v., 
there is one minimum, and it is proposed to simplify the original optimization 
problem by reducing it to one variable optimization.

The issue of use expediency is considered. A procedure is proposed that 
makes it possible to determine approximately the range of values of the number 
of Fisher distribution degrees of freedom, for which the confidence interval 
length will decrease by a given value in comparison with the traditional 
method.
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Chapter 6 

The Independence Number of  the 
Generalized Wheel Graphs Wp

2k+1
Oksana S Pichugina,1,2,* Dumitru I Solomon3  

and Petro I Stetsyuk4

1. Introduction

Combinatorial Optimization Problems (COPS) are ubiquitous and widespread 
in modeling of real-world problems of Geometric Design and Operational 
Research (see, for instance, Pardalos et al. 2013).

A huge contribution to Combinatorial Optimization and Computational 
Complexity Theory was made by N. Z. Shor. He proposed an original technique 
for obtaining dual bounds on the optimal value of the objective function 
in quadratic optimization problems (Shor 2011). This technique includes 
an algorithm for obtaining the quadratic dual bounds by solving auxiliary  
non-smooth continuous optimization problems called the r-algorithm (see Shor 
et al. 1997). Another component of the approach is searching for superflows 
constraints for the initial problem and then utilizing them to refine the dual 
bounds. The additional constraints depend on the type of problems and are 
selected such that the above bounds can be improved.
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Shor’s method of quadratic dual bounds can be used to solve numerous 
practical problems. One scope of its application is multiobjective optimization 
problems representable in the form of quadratically constrained quadratic 
problems (QPs).

Another wide application of Shor’s dual bounds technique is Combinatorial 
Optimization, particularly linear and quadratic binary optimization. Indeed, 
numerous NP-hard binary optimization problems are formulated as a problem 
of optimizing linear or quadratic objective functions with additional linear 
or quadratic constraints (see, for instance, Pardalos et al. 2013, Stetsyuk 
2018). The possibility of solving them as a QP consists in replacing the binary 
condition x ∈ Bn = {0,1}n with quadratic functional dependencies x2

i – xi = 0,  
i = 1,n

—
. For instance, after the replacement, a linear binary optimization problem 

turns into a problem of optimizing a linear function with linear and quadratic 
constraints. Such problems are commonly solved by switching to linear 
relaxation and solving a new problem on the corresponding combinatorial 
polytope. An issue in applying this manner to COPs is that most convex hulls 
of combinatorial sets are described by polytopes with an exponential number 
of constraints. As a result, linear programming methods become impractical.

At the same time, Shor’s method of Lagrange dual bounds allows finding 
the bounds in a polynomial time on the number of constraints and variables. 
It utilizes exact nonlinear formulations of these problems, which are often 
characterized by a relatively small number of constraints. Thereby, as shown 
by computer experiments, Shor’s dual bounds obtained are tighter than linear 
relaxation ones (see Shor et al. 1997, Shor 2011, Stetsyuk 2008, Stetsyuk 
2018). In a monograph by Shor 2011, the efficiency of the dual bounds is 
illustrated on optimization problems on graphs such as the Maximum Weight 
Independent Set Problem, the Maximum Cut Problem, the Maximum Graph 
Bisection Problem, and the Minimal k partition problem, etc. Highly important 
are the results concerning the Maximum Independent (Stable) Set problem, 
where the dual bounds obtained by N. Z. Shor are closely related to the  
well-known Lovasz numbers ϑ(G) and ϑ'(G) introduced in Grötschel et al. 2011.

Any Combinatorial Optimization problem allows many different 
formulations. Depending on the formulation used, a fitting solution method 
is selected. It turns out that the efficiency of the deriving solutions and their 
accuracy depends on a model and an optimization method used. Problems 
of constructing different formulations of COPs are studied in the research 
domain of continuous functional representations of combinatorial sets (see, 
for instance, Pichugina et al. 2019, Stoyan et al. 2020), which is a subfield 
in the Euclidean Combinatorial Optimization Theory (ECO) (Stoyan et al. 
2020). For instance, in addition to the above continuous representation of a 
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binary set, it can be represented in the following forms: Bn: x
2
1 +...+ x2

n = n/4; 
0 ≤ xi ≤ 1, i = 1,n

—
, and Bn: x

2
1 +...+ x2

n = n/4; x4
1 +...+ x4

n = n/16. Two of the three 
binary set representations are quadratic, thus can be used in Shor’s dual bound 
approach. In ECO, the problem of finding different relaxations of COPs is 
also investigated. Its solutions can be used for deriving superflows constraints 
and linear relaxations of linear COPs.

In this chapter, we show the application of Shor’s technique of dual 
bounds for solving the maximum independent set problems (MISPs) on 
undirected graphs and investigating the complexity of the solutions. This 
chapter is organized as follows. A combinatorial formulation of MISP is 
given in Section 2. Section 3 provides the necessary information about the 
Euclidean combinatorial optimization and functional representations of  
point sets in Euclidean spaces, including discrete ones. Here, it is also 
formulated approaches to the relaxation of nonlinear continuous optimization 
problems. In Section 4, we build several mathematical formulations of MISP 
in the form of continuous, discrete or partially discrete optimization problems. 
Also, necessary information about polytope STAB(G) and its relaxations is 
given in this section. Section 5 introduces the general quadratic optimization 
problem and provides the theoretical foundations of Shor’s approach of dual 
bounds on objective function optimum value, including basic and refined, 
where the latter utilizes superflows constraints, adding them to the original 
problem conditions. Section 6 is directly dedicated to obtaining linear and 
quadratic bounds on the graph independence number α(G). Then polynomial 
solvability of MISP for t-perfect, h-perfect graphs and Wp

2k+1-perfect graphs is 
justified.

2. Problem statement

Let G = (V(G), E(G)) be an undirected graph with vertex set V(G) = {1,...,n} 
and edge set E(G) ⊆ V(G) × V(G).

An independent set (stable set) in G is a subset of V(G) (further  
S ⊆ V(G)), whose elements are pairwise nonadjacent.

Let S(G) be a set of all independent sets in G. Then

 ( ), , , : the condition { , } ( ) holds.S G i j S i j i j E G∀ ∈ ∀ ∈ ≠ ∉S  (1)

The maximum independent set problem (MISP) is to find an independent 
set S* ∈ S(G) of maximum cardinality. A maximal independent set (MIS) 
or maximal stable set is an independent set that is not a subset of any other 
independent set, i.e., MISP is a problem of finding an MIS S*. The size of a 
maximum independent set is called the stability number of G and is denoted 
by α(G). Thus the MISP consists in finding the stability number.
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In these notations, MISP can be modelled as follows: find

 
*

( )
( ) =| |= max | | .

S G
G S Sα

∈S  (2)

S* is an MIS in G.

3. Euclidean combinatorial optimization problems and  
their formalisations

3.1 COPs and ECOPs

In terminologies offered by Stoyan et al. 2020 and Yakovlev et al. 2021, the 
MISP-model (1), (2) is an example of Combinatorial Optimization Problem’s 
formulations (COPs): find

 
* *= ( ) = ( ),f f extr f

π
π π

′∈Π ⊆Π  (3)

where Π is a search domain, which is a combinatorial space, such as 
permutations, sets of graphs, and Π* is a feasible set or a feasible domain.

A narrow subclass of COPs allows reformulations in the form of discrete 
optimization problems over a finite set X' of vectors in Euclidean space. To 
emphasize that a search domain is a subset of ℝn, such formulations are called 
Euclidean Combinatorial Optimization Problems (ECOPs) (see Stoyan et al. 
2020 and Yakovlev et al. 2021): find

 
* *= ( ) = extr ( ),

x X X
x xϕ ϕ ϕ

′∈ ⊆  (4)

where X' and X are feasible and search domains, respectively,

 .nX X′ ⊆ ⊆ 
We will assume that X' and X are images of Π, Π' under a bijective 

mapping ψ, hence there exists ψ: Π → X  such that:

 1 1= ( ), = ( ), and = ( ), = ( ).X X X Xψ ψ ψ ψ− −′ ′ ′ ′Π Π Π Π  (5)

Problems (3) and (4) are equivalent if f * = φ*. Interest in finding a 
Euclidean reformulation (4) of a COP (3) is in the possibility of solving them 
as discrete optimization problems with further deriving an optimizer of the 
initial COP (4) using (5):

 
* 1 * *= ( ), where = argextr ( ).

x X X
x xπ ψ π ϕ−

′∈ ⊆

Remark 1. If π is a finite set of cardinality n, i.e., π ⊆ M = {μi}i=1,n— , |M| = n < ∞,  
such as an independent set, a standard way to construct an ECOP associated 
with such a COP is considering incidence vectors corresponding to a set π:

 = : ( ) = { : = 1,  if ;  0,  otherwise}.n
i ix xψ χ π χ π µ π→ ∈ ∈  (6)
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Clearly, the mapping χ in (6) is bijective, thus satisfying condition (5). 
Moreover, the cardinality of π is determined as a sum of χ(π)-coordinates. 

3.2 f-representations with applications

The results of this section are partially based on the work of Pichugina  
et al. 2020.

Let E be a finite set in ℝn and E' be a superset of E and

 =1,= { ( )} ,j j Mf x  (7)

where fi: E → ℝn are continuous functions for j = 1,m
—

. 

Definition 1. A representation of E by functional dependencies:

 ( ) = 0, = 1, ,jf x j m  (8)

 ( ) 0, = 1,jf x j m M≤ +  (9)

is called a continuous functional representation (an f-representation) of  
E on E'. 

Further, we restrict our consideration to the case where E' = ℝn is simply 
calling the collection of constraints (8), (9) by an f-representation of E. Thus, 
the system of constraints (8), (9) is an f-representation of E if and only if it 
coincides with a solution set of the system.

In the f-representation of E: (a) (8) is a strict part; (b) (9) is a non-strict 
part; (c) m is an order, particularly, m' and m'' = m – m' are orders of its strict 
and non-strict parts, respectively.

Typology of f-representations can be given in different ways, such 
as according to: (a) the type of functions (7) including linear, nonlinear, 
differentiable, smooth, convex, polynomial, trigonometrical, etc.; (b) the 
combination of parameters m, m', m''.

Definition 2. System (8), (9) is called: 

 • a strict f-representation E (further referred to as E.SR) if it contains only 
a strict part meaning that m' = m, m'' = 0;

 • a non-strict (further referred to as E.NR) if an f-representation contains 
only a non-strict part hence m' = 0, m'' = m; 

 • a mixed (further referred to as E.MR), if it contains both strict and non-
strict parts, i.e., m' (m – m') > 0. 

System of constraints (8), (9) is called an irredundant f-representation of 
a set E (E.IR) if the exclusion of any of its constraints leads to a formation 
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of a proper superset of E. Otherwise, the representation is a redundant 
f-representation of E.

Example 1. Let E be a finite set of numbers E ={e1,...,ek} ⊂ ℝ1. The following 
polynomial constraint can be used:

 1( ) ... ( ) = 0kx e x e− ⋅ ⋅ −  (10)

as an f-representation of E.
The f-representation (10) is polynomial, strict, having the order 1. 
Most common application of the expression (10) is a continuous 

reformulation of binary constraint x ∈ {e1, e2} = {0,1} by (x – e1).(x – e2) = 
x(x – 1) resulting in equation

 x2 – x = 0. (11)

The main application of f-representations of combinatorial sets is a 
reformulation of discrete optimization problems as continuous with further 
application of nonlinear continuous optimization methods or their combination 
with discrete optimization techniques for solving these problems.

For instance, the Quadratic Unconstrained Binary Problem (QUBO) (see, 
for instance, Kochenberger et al. 2014):

 ( ) = max,f x x QxΤ →  (12)

where x ∈ Bn = {x ∈ ℝn : xi ∈ {0,1}, i = 1,n
—

}, Q ∈ ℝn×n is the symmetric matrix 
of the dimension n. It can be rewritten as a continuous quadratic optimization 
problem (12) with equality constraints

 2 = 0, = 1, .i ix x i n−  (13)

Evidently, there exists an infinite number of f-representations of any 
finite point set such as E. Finding new such representations results in deriving 
new formulations of the original COP. In turn, it opens up prospects for the 
application of existing and the development of new methods for solving these 
problems.

Also, f-representations are a powerful source for designing different 
relaxations of the original combinatorial optimization problem (COP): find

 * *= ( ) = max ( ),f f x f x  (14)

 x ∈ E. (15)

Relaxations themselves can be used for approximate solutions of 
COPs and getting bounds on optimal value f *. Also, combining relaxations 
of different types in some cases allows the guarantee of obtaining a global 
solution of a COP (for details, see Pardalos et al. 2013, Shor et al. 1997, Shor 
2011, Stoyan et al. 2020).
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For COPs, the most common is a polyhedral relaxation (PR), where a 
condition a condition

 x ∈ P = convE (16)

replaces the combinatorial constraint (15).
For instance, a PR of QUBO is (12), x ∈ conv Bn = [0,1]n. Another 

relaxation called spherical (SR) was proposed in by Yakovlev et al. 2021 for 
sets inscribed in a hypersphere Sr(a) with a radius r centered at a. Particularly, 
Bn is inscribed in a hypersphere having parameters a = (0.5,...,0.5) ∈ ℝn, 

= /2r n . In general, an SR has a form of (14), x ∈ Sr(a).
The relaxations PR and SR are closely connected with f-representations 

of such a set E, which analytically expresses the fact that E = P ∩ Sr(a). 
Respectively, condition (15) is equivalent to two – (16) and

 x ∈ Sr(a). (17)

Eliminating either (16) or (17), we get an SR or a PR. Iterative combining 
PRs and SRs of different dimensions are the basis of the Polyhedral-Spherical 
method of nonlinear optimization on combinatorial sets inscribing in a 
hypersphere introduced in Pichugina et al. 2021.

This way of constructing different relaxations of COPs can be generalized 
as the following: (a) firstly, deriving an irredundant f-representation of E; 
(b) secondly, eliminating a non-empty subset of constraints from further 
consideration (let a new feasible domain be E'' ⊃ E); (c) lastly, solving a 
problem (14) on E''.

Replacing some equality constraints in an irredundant f-representation by 
the corresponding inequalities also results in a relaxation of the original COP.

When direct nonlinear optimization methods are applied to a problem 
with the objective function (14) and constraints (8), (9) (to the model, we will 
further refer to as a continuous reformulation model, CRM), it is important 
to utilize irredundant f-representations in order to deal with as few constraints 
as possible.

At the same time, if dual methods are used, such as the Lagrange 
Multipliers Method, utilizing redundant f-representations has shown high 
efficiency in practice in some cases (see, for example, Shor et al. 1997, Shor 
2011, Stetsyuk et al. 2007, Stetsyuk 2018). Therefore, some ways to construct 
redundant f-representations are now outlined: 

 • multiplying or adding two or more constraints (8), while saving the 
equality sign, such as ∀i,  j = 1,m

—
: i ≠ j

 fi(x) . fj(x) = 0; (18)

 fi(x) + fj(x) = 0. (19)
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 • multiplying or adding two or more constraints out of (8), (9), while 
for multiplication, choosing a sign depending on a number of involved 
constraints of type (9), for addition, taking a sign ≤. Namely,

 , : < , = 1, , = 1, ( ) ( ) = 0;i ji j i m j i m j m M f x f x∀ ≤ + ⋅  (20)

 , : , , = 1, ( ) ( ) 0;i ji j i j i j m M f x f x∀ ≠ + ⋅ ≥  (21)

 , : < , , = 1,     ( ) ( ) 0.i ji j i m j i j M f x f x∀ ≤ + ≤  (22)

Remark 2. An example of a relaxation of a combinatorial constraint  
x ∈ {e1, ...,ek} ⊂ ℝ1, where e1 <...< ek, is x ∈ [e1, ek] or e1 ≤ x ≤ ek. 

4. MISP-related graphs and polytopes

4.1 MISP formalizations

Taking into account Remark 1, the following MISP-ECOP formulation can 
be found.

Let x = (x1,...,xn) be a vector of variables. MISP aims to find:

 
*

( )
( ) = = max = maxi

i V G
G x x xα Τ Τ

∈
∑e e  (23)

subject to constraints 

 is a preimage of a stable set ( ) under mapping given by (6),x S G ψ∈S

i.e.,

 = ( ), ( ),x S S Gχ ∀ ∈S  (24)

Respectively, x* = χ(S*).
Here, e is an n-dimensional vector of ones.
The MISP model (23), (24) is still a COP due to the form (24) of the stable 

set constraint.
Let us find different Euclidean forms of this constraint, thus formulating 

various ECOPs of MISP.

A combinatorial vertex constraint

 {0,1}, = 1, ,ix i n∈  (25)

evidently holds.
(25) implies that any variable xi can be in two states: xi = 1 when i ∈ A or 

xi = 0 when i ∉ A for A ⊆ V(G), while x = χ(A).
By definition of an independent set S ∈ S (see (1)), adjacent vertices of 

the corresponding induced subgraph cannot be simultaneously in S, thus there 
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are only three possible combinations of pairs of variables incident to edges 
of G:

 ( , ) ( ) ( , ) = {(0,0), (0,1), (1,0)}.i ji j E G x x B∀ ∈ ∈  (26)

This means that the sum of variables xi, xj takes values 0, 1 only, i.e.,

 {0,1},( , ) ( ).i jx x i j E G+ ∈ ∈  (27)

To the combinatorial MISP-model (23), (25), (27), we will refer to as 
(edge-constraint MISPModel 1, MISP.EM1).

The combinatorial edge constraint (27) can be rewritten by applying the 
f-representation (11) to x = xi + xj. This substitution yields

 2( ) ( ) = 0,( , ) ( ).i j i jx x x x i j E G+ − + ∈

Simplifying the expression with further applying (25) results in

 2 2( ) ( ) 2 = 2 = 0,( , ) ( ),i i j i i j i jx x x x x x x x i j E G− + − + ∈

wherefrom an equivalent combinatorial formulation of MISP (further MISP.
EM2) is obtained having the form of (23) subject to the combinatorial vertex 
constraint (25) and nonlinear conditions

 (quadratic edge constraints) : = 0,( , ) ( ).i jx x i j E G∈  (28)

One more combinatorial MISP model (further MISP.EM3) has the form 
of (23), (25),

 (linear edge constraints) : 1, ( , ) ( ).i jx x i j E G+ ≤ ∈  (29)

Indeed, by Remark 2, the constraint (27) can be relaxed to two-sided 
inequalities 0 ≤ xi + xj ≤ 1, (i, j) ∈ E(G). The left one 0 ≤ xi + xj is redundant 
because of presence of (25). Moreover, a solution set of xi, xj ∈ {0,1},  
xi + xj ≤ 1 is exactly set B (see (26)). (29) implies that, among adjacent vertices, 
at most one can be selected as a member of a stable set.

MISP.EM3 is a famous formulation (see, for example, Grötschel et al. 
2011, Shor 2011, Schrijver et al. 2002) of the problem MISP, which relaxation 
(23) subject to the continuous edge constraints (29) and continuous vertex 
constraints

 (vertex constraints) : 0 1, = 1,ix i n≤ ≤  (30)

is a linear program (further referred to as MISP.LR1) in which a solution 
yields an upper bound on α(G).

Finally, in MISP.EM3, by replacing the binary constraint (25) with 
its continuous representation (13) we come to a well-known continuous  
MISP-formulation presented in Shor 2011 (further referred to as MISP.EM4). 
It has the form of (13), (23), (28).
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Remark 3. In addition to MISP.EM1-MISP.EM4, two more edge-constraint 
MISP-models (further MISP.EM5-MISP.EM6) can be formed if all six 
possible combinations of vertex constraints (combinatorial and continuous) 
and edge constraints (combinatorial, linear and quadratic) are selected. 

Another source of MISP-reformulations lies in applying properties of 
cliques in G. Let Q(G) be a clique set in G. Then the following constraint is 
satisfied for any graph G:

 
( )

(linear clique constraints) : 1 ( ),i
i V Q

x Q G
∈

≤ ∀ ∈∑ Q  (31)

where V(Q) is a vertex set of a clique Q.
(31) is a generalization of the edge constraints (29). It means that, since 

a clique is a complete subgraph in G, in its stable set, there can be present at 
most one vertex of the clique. Respectively, it is degenerated into (29) if only 
cliques of order 2 are considered.

This discussion leads to one more famous combinatorial  
MISP-formulation (further a clique-constraint MISP-Model 1, MISP.
CM1) having the form of (23), (25), (31), which linear relaxation involving 
constraints (30), (31) (further referred to as a MISP.LR2) is, generally, tighter 
than MISP.LR1. An issue with utilizing this relaxation is that the number of 
clique constraints can be exponential, making it impractical to get an upper 
bound on α(G) with the help of this relaxation.

Now, we introduce a way to produce quadratic equality constraints from 
linear inequality constraints (31) by conducting in the opposite direction 
of the above process of producing the linear edge constraints (29) from the 
corresponding combinatorial ones. For that, we take into account that our 
variables are binary, and we replace (31) in MISP.CM1 by a combinatorial 
clique constraint:

 
( )

(combinatorial clique constraint) {0,1} ( ).i
i V Q

x Q G
∈

∈ ∀ ∈∑ Q  (32)

Applying now the f-representation (11) to 
( )

= ii V Q
x x

∈∑ , we obtain:

 

2

( ) ( ) , ( ) ( )
2

< , , ( ) ( )

( ) ( ) = =

= 2 ( ) = 0.

i i i j i
i V Q i V Q i j V Q i V Q

i j i i
i j i j V Q i V Q

Q G x x x x x

x x x x
∈ ∈ ∈ ∈

∈ ∈

∀ ∈ − −

⋅ + −

∑ ∑ ∑ ∑

∑ ∑

Q

Finally, applying the f-representation (11) to the expression, we come to 
an equivalent form of (31) in the form of quadratic equations:

 
< , , ( )

(quadratic clique constraint) = 0 ( ).i j
i j i j V Q

x x Q G
∈

∀ ∈∑ Q  (33)
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In such a way, we have derived another quadratic MISP-formulation 
utilizing clique constraints having the form of (23), (25, (33) (further referred 
to as MISP.CM2).

Remark 4. In the same manner as in Remark 4, six clique-constraints’  
MISP-models MISP.CM1MISP.CM6 can be derived by combining vertex 
constraints (combinatorial or continuous) with involved clique constraints 
(combinatorial (32), linear (31) or quadratic (33)). 

Among MISP.EM1-MISP.EM6 and MISP.CM1-MISP.CM6, there are 
only two continuous models. These are MISP.EM2 and (13), (23), (33) 
(further referred to as MISP.CM3). These two can be solved by nonlinear 
optimization methods listed in Section 4 and by general nonlinear solvers 
such as IPopt or APopt or quadratic solvers supported non-convex constraints 
and objective functions such as CPLEX. All others contain one or two binary 
constraints. They can be solved by integer optimization solvers, linear or 
quadratic dependent on either quadratic constraints are involved, or nonlinear 
solvers supporting integer variables such as CPLEX and Gurobi.

4.2 The polytope STAB(G) and its relaxations

A feasible set X' in MISP is a set of all incident vectors of stable sets in G. So, 

 1= { : = ( ) ( )},X x X x Gπ χ−′ ∈ ∈S  (34)

where the mapping χ is given by (6), while a search domain is X = {0,1}n.
Respectively, the polyhedral relaxation of MISP (see (16)) is to optimize 

(23) subject to a constraint

 = ( ),x P conv X′ ′∈  (35)

where X' is given by (34).
The polytope P' conventionally is denoted as STAB(G), thus

 ( ) = { ( ) : ( )}.STAB G conv S S Gχ ∈S

Let a polyhedral outer approximation of STAB(G) given by linear 
constraints L be denoted as LSTAB(G). Thus,

 ( ) = { : satisfies linear constraints },nSTAB G x x∈L L  (36)

such that

 ( ) ( ).STAB G STAB G⊆ L  (37)

STAB(G) is bounded, i.e., it is a polytope.
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Definition 3. If for a graph G

 ( ) = ( ),STAB G STAB GL  (38)

then the graph G is called G(L) graph, where function G is given in two-line 
notation in Table 1.

Table 1. Correspondence of L-polytopes to G(L)-types of graphs.

L F Q C H W 1
2k+1 W p

2k+1

G(L) bipartite perfect t-perfect h-perfect W 1
2k+1-perfect W p

2k+1-perfect

Above, some valid linear inequalities for STAB(G) were already listed. 
These are vertex constraints (30), linear edge constraints (29), and linear clique 
constraints (31). Without loss of generality, suppose that the vertex constraints 
(30) are satisfied. Since we can restrict our search by a unit hypercube [0,1]n, 
it allows refining (36) as the following:

 ( ) = { [0,1] : satisfies constraints '}.nSTAB G x x∈L L  (39)

Here, L' is constraint L' without (30).
Let

 
= ' = { satisfies (29)},
= ' = { satisfies (31)}.

F x
Q x
′
′

L
L

According to Table 1, for L = F, we have the relation

 FSTAB(G) = STAB(G), (40)

which is a polytope of independent sets bipartite graphs (see, for instance, 
Asratian et al. 2008). The polytope FSTAB(G) is called a fractional polytope 
(fractional matching polytope, FMP) (Shor et al. 1997, Shor et al. 1997). 
A bipartite graph is normally defined as a graph that does not contain any  
odd-length cycles. (40) leads to another definition of a bipartite graph as a 
graph satisfying this condition.

Likewise, for L = Q, the same relation holds for a polytope of independent 
sets in a perfect graph G (see Trotignon 2015 for details). It has the form 
of QSTAB(G) = STAB(G), while the polytope QSTAB(G) is called a clique 
polytope in Shor 2011. Usually, a perfect graph is defined equivalently as 
the one in which the chromatic number of every induced subgraph equals the 
clique number.

From Table 1, we see that there exist four more families of different 
graphs satisfies the relation (38). They are related to utilization either (29) 
or (31) along with singling outing and applying other valid inequalities of 
STAB(G).
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Let us list some of them required for the construction of the table.

 2 1
( 2 1

(odd cycle constraints) : ( ),
)

i k
i V C k

x k C G+
∈ +

− ≤ ∀ ∈∑ C  (41)

where C2k+1 is an odd cycle in graph G, k ∈ ℕ\{1}, C(G) is a set of cycles in G.

Similarly,

 2
( 2

(even cycle constraints) : ( ),
)

i k
i V C k

x k C G
∈

− ≤ ∀ ∈∑ C  (42)

where C2k ∈ C(G) is an even cycle in graph G, k ∈ ℕ\{1}.
Let a vertex set and an edge set of an even cycle C2k be V(C2k) = 1,2k, 

E(C2k) = {{1,2}, {2,3},..., {2k – 1, 2k}, {1, 2k}}. For the cycle, the inequality 
(42) holds since the maximum independent set in C2k consists of k vertices 
with either all even or odd labels. If k = 1, the cycle degenerates into an edge, 
whose independence set consists of at most k = 1 vertices. Thus (42) is valid 
for any k ∈ ℕ. Adding one more vertex into the circle C2k, such that an odd 
cycle C2k+1 is formed with

 2 1

2 1

( ) = 1,2 1,
( ) = {{1,2},{2,3},...,{2 ,2 1},{1,2 1}},

k

k

V C k
E C k k k

+

+

+

+ +
 (43)

does not increase the C2k-independence number. It is clear from the above 
discussion that the value of k is a tight upper bound on a sum of incidence 
vector components associated with cycles C2k and C2k+1. Thus (41), (42) are 
always satisfied.

Note that the even-cycle constraints (42) are redundant and can be 
obtained by a summation of the edge constraints (29) over the edge set of C2k. 
In contrast, the odd-cycle constraints (41) are candidates for participating in 
an irredundant H-representations of STAB(G) for certain graphs. In this case, 
these are face-defining constraints.

Next family of valid constraints of STAB(G) concerns odd wheels in G. 
First one is (see Stetsyuk 2018, Stetsyuk et al. 2019):

 
1 1

2 12 2
( 2 1

(odd wheel constraints) , ( ),
)

i i kk
i V C k

x kx k W G++
∈ +

− + ≤ ∀ ∈∑ W  (44)

where W1
2k+1 is an odd-wheel graph on 2k + 1 vertices in a graph G, which is 

a join of an odd cycle C2k+1 ∈ C(G) with a vertex 2k + 2 connected to each of 
the cycle vertices, k ∈ ℕ, W1(G) is a set of odd-wheel graphs with a single 
central vertex.
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Suppose the cycle C2k+1 satisfies (43), while V(W1
2k+1) = 1,2k+2, hence

 1
2 1 2 1( ) = ( ) {{1,2 2},{2,2 2},...,{2 1,2 2}}.k kE W E C k k k k+ + ∪ + + + +

(44) is valid for the wheel due to only two options exist for a stable set 
in W1

2k+1: the central vertex 2k + 2 of the wheel is included in its independent 
set S(W1

2k+1) ∈ S(G), hence x2k + 2 = 1. Since this vertex is adjacent to all other 
vertices of the wheel, the other vertices cannot be included in S(W1

2k+1). 
Respectively, other variables are null. So, the first term in (44) takes zero 
value, and the second takes the value of k. Thus the whole inequality turns into 
an identity k ≡ k in this case.

If the central vertex 2k + 2 is not in the independent set S(W1
2k+1), then  

xi2k + 2
 = 0, and the independent set involves only vertices of the odd cycle C2k+1. 

In this case, the second term on the left-hand side (44) is cancelled, turning 
the odd-wheel inequality into the odd-cycle inequality (41), which is valid.

This means that the inequality (44) holds for all odd wheels of type W1
2k+1.

Let us generalize (44) from an odd-wheel graph W1
2k+1 into an odd-wheel 

graph Wp
2k+1, where p ∈ ℕ is a parameter. The graph Wp

2k+1 is a join of an odd 
circle C2k+1 ∈ C(G) and a p-clique Qp, where k, p ∈ ℕ. Let W(G) be a set of 
Wp

2k+1-type graphs, i.e., W(G) = {Wp
2k+1}k, p∈ℕ. The generalized inequality for 

(44) looks like

 2 1
( (2 1

(generalized odd wheel constraints) ,  ( ),
) )

p
i j k

i V C j V Qk p

x k x k W G+
∈ ∈+

− + ≤ ∀ ∈∑ ∑ W  (45)

where k, p ∈ ℕ.
In order to show that (45) holds for any Wp

2k+1 ∈ W(G), the same arguments 
as for the odd-wheel constraints can be applied. Namely, if vertices of the 
clique Qp are involved in a stable set of Wp

2k+1, then α(Wp
2k+1) = 1 (Case 1); 

otherwise, only C2k+1-vertices can participate in the set, while their sum does 
not exceed k according to (44) (Case 2).

Other valid constraints of STAB(G) can be found in the literature, 
particularly, in Shor 2011, Stetsyuk et al. 2007, Stetsyuk 2018, such as  
anti-hole constraints.

Different combinations of (41) and (45) together with either linear edge 
or clique constraints, taken as L, induce various classes of G(L)-type graphs.

Remark 5. For bipartite graphs, the relation (38) follows from the following 
theorem. 

Theorem 1. [Grötschel et al. 2011] The inequalities (29), (30) give a full 
description of STAB(G) if and only if G is bipartite. 
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For perfect graphs, we rely on the following statement. 

Theorem 2. [Lovász 1979] Graph G is perfect if and only if

 STAB(G) = QSTAB(G). (46)

Theorem 2 can be interpreted as any perfect graph G can be defined as a 
graph satisfying the relation (46).

It is known from Shor et al. 1997 that if ∃k ∈ Z such that C2k+1 ∈ C(G), then 
the polytope FSTAB(G) is not integral, respectively, FSTAB(G) ≠ STAB(G). 
Adding the odd-cycle constraints, in some cases, makes the polytope 
LSTAB(G) integral. The same is true for QSTAB(G), implying that it occurs 
that FSTAB(G) ≠ STAB(G), but adding the odd-cycle constraints can make the 
obtained polytope integral.

In this regard, let

 
= ' = { satisfies (29), (41)};
= ' = { satisfies (31),(41)}.

T x
H x
′
′

L
L

From Table 1, it is seen that TSTAB(G) is a polytope of independent sets of 
a t-perfect graph, while HSTAB(G) is the one for an h-perfect graph G (Sbihi  
et al. 1984). The family of t-perfect graphs including bipartite, almost bipartite, 
series-parallel graphs, and nearly bipartite planar graphs as subclasses, was 
introduced in Chvátal 1975. The class of h-perfect graphs was introduced in 
Sbihi et al. 1984. It is a superclass of perfect and t-perfect graphs. These two 
are interconnected as follows TSTAB(G) ⊇ HSTAB(G) because (31) is stronger 
than (29). Note that, in contrast to bipartite and perfect graphs, t-perfect and 
h-perfect graphs are defined directly through the relation (38).

Finally, Table 1 indicates one more class of graphs and polytopes with a 
full description that involves the generalized odd-wheel constraint (45). Let us 
introduce a polytope LSTAB(G) such that

 2 1 = ' = { satisfies (29), (41), (45)}.p
kW x′
+ L  (47)

It induces Wp
2k+1 STAB(G) = STAB(G) as a polytope of an independent sets 

of a wp
2k+1-perfect graph G for k, p ∈ ℕ.

Respectively, w1
2k+1-perfect graphs (odd-wheel-perfect graphs) form a 

subclass of G is a subclass of wp
2k+1-perfect graphs corresponding to p = 1.

Replacing in (47) the edge constraint (29) by the clique one (31) results 
in forming another family of graphs further referred to as a-perfect graphs, in 
which polytope ASTAB(G) of independent sets is defined as

 = ' = { satisfies (31), (41), (45)}.A x′ L  (48)
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Finally, eliminating odd-cycle constraints from (47), (48) leads to 
introducing two more types of graphs and polytopes. Namely, let

 
= ' = { satisfies, (29), (45)},
= ' = { satisfies, (31), (45)}.

B x
C x
′
′

L
L

The corresponding classes of graphs are b-perfect and  c-perfect.
In the next section, it will be shown that MISP is polynomially solvable 

for all listed families of graphs.

5. Shor’s dual bounds on Q*
0

Naum Shor introduced a new approach to finding upper bounds on the optimal 
value of the objective function in quadratic problems based on applying the 
Lagrange multiplies method. The main advantage of the bounds is that they 
can be found in polynomial time on a number of variables and constraints. The 
complexity of the approach is O(n3) + O(M2), where n is the problem dimension, 
and M is the number of constraints. A disadvantage is a necessity, in some cases, 
to solve a non-smooth optimization problem in their evaluation process. 

5.1 The simple bound ψ*

Let us consider a quadratic optimization problem in the following formulation: 
it is required to find

 
* *
0 0 0= ( ) = sup ( )

nx

Q Q x Q x
∈

 (49)

subject to constraints

 ( ) 0, = 1, , ,
( ) = 0, = 1, , ,

i

i

Q x i m
Q x i m M

≤

+





 (50)

where M ≥ 0.
Here, for each i = 0,...,M, function Qi(x) is representable as Qi(x) = (Kix, x)  

+ (bi, x) + ci, where Ki is a symmetric matrix of the dimension n, bi ∈ ℝn, ci is a 
scalar. This means that we restrict our consideration with quadratic (if Ki ≠ 0) 
and linear (if Ki = 0) functions (further, 0 is a null matrix of the dimension n).

If problem (49), and (50) are incompatible, we assume that Q*
0 = –∞. 

Generally, this problem is multi-extremal and belongs to the class of NP-hard 
problems. An upper bound on Q*

0 can be obtained as follows. Let u = (u', u'') 
such that u' = (u1,...,um) ∈ ℝm

+, u'' = (um+1,...,uM) ∈ ℝM–m be a vector of Lagrange 
multipliers corresponding to the constraints (50). Namely, the multipliers in u' 
correspond to inequality constraints while u'' is associated with equality-type 
constraints.
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In these notations, the following Lagrangian is associated with the 
problem (49), (50):

 0
=1

( , ) = ( ) ( ) = ( ( ) , ) ( ( ), ) ( ),
M

i i
i

L x u Q x u Q x K u x x b u x c u+ + +∑  (51)

where

 0 0 0
=1 =1 =1

( ) = ( ) ( ), ( ) = , ( ) = .
M M M

i i i i i i
i i i

K u K x u K x b u b u b c u c u c+ + +∑ ∑ ∑

Let  X be a feasible domain of the problem (49), (50) and U+ = ℝm
+ × ℝM–m. 

Then X × U+ is a feasible domain of the unconstrained optimization problem:

 
* * *

0( , ) = = sup ( , )
,nx

L x u Q L x u
u +∈ ∈ U  (52)

associated with the problem (49), (50). Clearly, for any (x', u') ∈ X × U+, there 
holds L(x', u') ≥ Q*

0. This means that a function

 ( ) = sup ( , ) = sup [( ( ) , ) ( ( ), ) ( )]
n nx x

u L x u K u x x b u x c uψ
∈ ∈

+ +
 

 (53)

serves as an upper bound on Q*
0 for each u ∈ U+.

The best one from all the bounds (53) depending on u is

 
* = inf ( ).

u
uψ ψ

+∈U
 (54)

The domain U+ can be partitioned as follows: U+ =  Ω– ∪ Ω0 ∪ Ω+, where 
Ω– = {u : K(u) ≺ 0}, Ω+ = {u : K(u) ≻ 0}, Ω0 = {u : K(u) ≺–  0}\Ω–. Let λmax 
(K(u)) be the maximum eigenvalue of the matrix K(u). Then these three sub-
domains can be represented in the following way: Ω– = {u ∈ U+: λmax [K(u)] < 
0}, Ω0 = {u ∈ U+: λmax [K(u)] = 0}, Ω+ = {u ∈ U+: λmax [K(u)] > 0}.

If u ∈ Ω+, then ψ(u) = +∞, i.e., this function is unbounded from above, 
hence,

 Q*
0 = ψ* = +∞. (55)

For u ∈ Ω
––, where Ω

–– = Ω– ∪ Ω0, then function L(x, u) is convex. In this 
case, the problem of finding ψ(u) is a convex optimization one. Moreover, for 
u ∈ Ω–, the matrix K(u) is non-singular hence the value of ψ(u) can be found 
by solving the linear algebraic system

 ( , ) = 2 ( ) ( ) = 0L x u K u x b u
u

∂
+

∂
 (56)

with consecutive substitution of the solution into ψ(u). From (56), it follows 
that x = x(u) = – 1

2
K–1(u)b(u) and ψ(u) = – 1

4
(K–1(u)b(u),b(u)) + c(u).
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If u ∈ Ω0, then the matrix K(u) is singular. If the system (56) is compatible, 
it can have multiple solutions, while function ψ(u) is non-smooth. Generally, 
if U+ ≠ ∅, then there is a nontrivial upper bound on Q*

0 given by (54).
With any predetermined accuracy, the bound ψ* can be found in polynomial 

time by methods for minimizing convex non-differentiable functions, such as 
the ellipsoid method or specific versions of r-algorithms (see Shor 2011). For 
instance, an outline of the r-algorithm with an adaptive step control is given 
in detail in Shor et al. 1997.

If ψ* is attained at u* ∈ Ω–, then

 * * * *
0 0= ( ) = = ( ( )),u Q Q x uψ ψ

where x(u*) is a solution of the system (56) for u = u*. Otherwise, ψ* is attained 
at the boundary of the domain Ω–. In this case, there may exist a so-called 
“duality gap”

 * * *
0= > 0.Qψ∆ −

5.2 The improved bound ψ*
1

A way to reduce the gap Δ*, thus improving the bound ψ* was proposed by  
N. Z. Shor in Shor 2011. It is associated with introducing and utilizing 
superflows constraints in the problem (49), (50). To the new optimization 
problem, we will refer to it as Problem 1. Superflows constraints leave a 
feasible domain of the problem unchangeable. Hence an optimizer or a set of 
optimizers remains the same. At the same time, a problem of finding a new 
upper bound  ψ*

1 on Q*
0 similar to finding ψ*, where the superflows constraints 

are also utilized, has another form, namely, it is of higher dimension with 
another Lagrangian L1(x,  U) different from L(x,  u), i.e., L1(x,  U) ≠ L(x,  u). 
Here, U is a vector of Lagrangian multipliers of Problem 1. It turns out that ψ*

1 
is at least as tight as ψ*. Sometimes, in this case, it is more accurate than ψ*. 
Thus, utilization of superflows constraints is capable od reducing the duality 
gap Δ* resulting in achieving the duality gap Δ*

1 associated with Problem 1, 
which is lower than Δ*, hence Δ*

1 ≤ Δ*.
Suppose that all superflows constraints added to the problem (49), (50) 

than turn it into Problem 1 are quadratic, i.e., Problem 1 has the form of (49) 
subject to constraints (50),

 
( ) 0, = 1, , ;
( ) = 0, = , , ,

i

i

Q x i M M l
Q x i M l M L

≤ + +

+ +





where 0 ≤ l ≤ L, each function Qi(x) = (Kix, x) + (bi, x) + ci is either linear or 
quadratic, i.e., Ki is a symmetric matrix of the dimension n, bi ∈ ℝn, ci ∈ ℝ1 for 
i = M + 1,M + L .
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The Lagrangian of Problem 1 is

 1 0 1 1 1
=1

( , ) = ( ) ( ) = ( ( ) , ) ( ( ), ) ( ),
M L

i i
i

L x U Q x u Q x K U x x b U x c U
+

+ + +∑  (57)

where

 

{ }1 1

1 0 0
=1 =1

0
=1

= { }, , , , 0, , 0,

( ) = ( ) ( ), ( ) = ,

( ) = .

M M L M M l

M L M L

i i i i
i i

M L

i i
i

U u u u u u

K U K x u K x b U b u b

c U c u c

+ + + +

+ +

+

≥ ≥

+ +

+

∑ ∑

∑

 

The same arguments as for the problem (49), (50) are valid for  
Problem 1, hence

 1 1( ) = sup ( , ),
nx

U L x Uψ
∈

where U ∈ U+
1 = U+ × ℝl

+ × ℝL–l, is an upper bound on Q*
0 for any U ∈ U+

1.

In the family of the bounds {ψ1(U)}U ∈ U+
1
, the most accurate is

 
*
1 1

1

= inf ( ).
U

Uψ ψ
+∈U

 (58)

Lemma 1. The bounds (54) and (58) a related as the following:

 ψ*
1 ≤ ψ*. (59)

Proof. Take an arbitrary u ∈ U+  an extend it by L zeros. The obtained vector 
U = (u, 0,...,0) ∈ U+ 1. Moreover, L1(x,  U) = L(x,  u), wherefrom ψ1(U) = ψ(u).

At the whole,

 
* *
1 1

1

= inf ( ) inf ( ) = .
U u

U uψ ψ ψ ψ
+ +∈ ∈

≤
U U

Lemma 1 states that the upper bound ψ*
1 is at least as accurate as ψ*, i.e., 

it makes sense to consider Problem 1 and solve the problem of finding ψ*
1 

instead of ψ*, because involving superflows constraints capable of improving 
an upper bound in ψ* and reduce the duality gap.

Now the question arises of which redundant constraints can improve the 
upper bound ψ* on Q*

0. There are several ways to construct them listed in 
Sec. 3.2 that are based on the utilization of frepresentations of combinatorial 
sets. Two equality types can be singled out from them: Type 1 – linear 
combinations of constraints’ components such as (19) and (22); Type 2 – 
utilizing multiplication of constraints’ components, e.g., (18), (20), (21).
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The next lemma establishes that adding constraints of Type 1 to the 
original problem (49), (50) does not improve the bound ψ*. 

Lemma 2. If, for Problem 1, l = 0 and

 

1

= 1

, = 1, , = 1, ,

such that = for = 1, ,

ik
M

M k ik i
i m

i m M k l L

Q Q k l L

λ

λ+
+

∃ ∈ + +

+∑


 (60)

then

	 ψ*
1 = ψ*. (61)

Proof. If (60) holds then the Lagrangian (57) becomes

 

1 0
=1 =1

0
=1 = 1 = 1

0
=1 = 1 = 1

( , ) = ( ) ( ) ( ) =

= ( ) ( ) =

= ( ) ( ) ( )( ) = ( , ),

M L

i i M k M k
i k

M L M

i i M k ik i
i k l i m
m M L

i i i i ik
i i m k l

L x U Q x u Q x u Q x

Q x u Q x u Q

Q x u Q x Q x u L x u

λ

λ

+ +

+
+ +

+ +

+ +

+ +

′+ + +

∑ ∑

∑ ∑ ∑

∑ ∑ ∑
where u' ∈ ℝM, u'i = ui, u'i ≥ 0, i = 1,m— ; u'i = ui + ∑L

k=l+1 λik ∈ ℝ1, i = m + 1,M, 
i.e., it has a form of the Lagrangian (51). Hence problems of maximization of 
L(x, u) and L1(x, U) are equivalent. The same concerns (58), wherefrom (61) 
directly follows. 

Lemma 2 says that the equality part of the original model (49), (50) used 
as a base for superflows equality constraints obtained by linear combinations 
is not capable of improving the bound ψ* induced by Problem 1 with better 
bound ψ*

1 by solving the correspondent Problem 1.

Remark 6. Taking into account the number of constraints in the original 
problem and Problem 1, the computational complexity of finding ψ* by the 
ellipsoid method and r-algorithm is O(n3) + O(M2), while ψ*

1 can be found 
in time O(n3) + O((M + L)2). This means that the polynomial solvability of 
getting the Shor’s bounds ψ*, ψ*

1 is ensured only if the number of constraints 
is fixed or polynomially depends on n. 

6. Upper bounds on α(G)

This section discusses two types of upper bounds on α(G) – linear 
approximation implying solution of polyhedral relaxations and dual bounds 
consisting of solution of MISP in continuous quadratic formulation by Shor’s 
r-algorithm. It continues the research started in Stetsyuk et al. 2007, Stetsyuk 
2018, Stetsyuk et al. 2019.
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6.1 Linear approximation bound αL(G)

Since objective function in MISP is linear, a polyhedral relaxation of MISP is 

 
( )

( ) = max , ( ),i
i V G

G x x STAB Gα
∈

∈∑
i.e., it is equivalent to the binary linear problem MISP. An issue is that an 
H-representation of STAB(G) is generally unknown and may consist an 
exponential number of constraints. That is why LP-programs are solved for 
various outer approximations of STAB(G).

Introduce the following linear program (LP-program):

 
*

( )
( ) = max , ( ),i

i V G
G x x STAB Gα

∈

∈∑L L  (62)

where LSTAB(G) is a polytope satisfying (37).

Clearly,

 α*
L(G) ≥ α(G), (63)

i.e., α*
L(G) is an upper bound on α(G). The bound is exact if (38) holds. By 

definition, it is true for polytopes with L listed in Table 1. For them,

 α*
L(G) = α(G), (64)

i.e., a MISP solution is reduced to solving its linear relaxation over α*
L(G).

If L = F, we deal with the polytope FSTAB(G) described by n double-

vertex inequalities (30) and |V(G)| = m ≤ ( 1)
2

n n −  edge constraints (29).

All other polytope corresponding to L ∈ L = {a,b,c,Q,C,H,W 1
2k+1, W

p
2k+1} 

includes at least one family of constraints (31), (41), (44), (45). Each of them, 
generally, involves an exponential number of constraints.

This means that, among α*
L(G), L ∈ L, the only estimate α*

F(G) is guaranteed 
to be found in polynomial time on n and m by linear programming techniques. 
Hence, a MISP is polynomially solvable for any bipartite graph with the help 
of LP-methods. Regarding other classes of MISP-related polytopes listed in 
Table 1, there exist nonlinear programming methods, such as ellipsoid methods 
and r-algorithms (see, for instance, Shor et al. 1997, Shor 2011) enabling to 
find an upper bound on α(G) which is at least as precise as α*

L(G).

6.2 Dual bounds ψ*(G) and ψ*
1(G) 

In this section, we introduce dual bounds ψ*(G) and ψ*
1(G) on α(G) 

corresponding to ψ* and ψ*
1 for MISP on a graph G, respectively. They are 
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associated with construction quadratic formulations of MISP with polynomial 
number of constraints and applying results of Section 5.

6.2.1 MISP “superflows” constraints with applications

The first step will be the construction of superflows constraints that can 
be found by multiplying functions of MISP-formulations presented in  
Section 4.1. Therefore, some redundant constraints will be constructed 
following the approaches to construct relaxations described above. Then, 
connections with some MISP valid constraints will be established.

Let us introduce denotations for (29) and components of the 2-sided 
constraints (30):

 

= 1 0,( , ) ( );

= 0, = 1, ;

= 1 0, = 1, .

ij i j

k k

k k

f x x i j E G

f x k n

f x k n

+ − ≤ ∈

′ − ≤

′′ − ≤

By (21),

1. = ( )( ) 0, , = 1,k k k kf f x x k k n′ ′′ ′ ′⋅ − − ≥

or
 0, , = 1, .k kx x k k n′ ′≥  (65)

2. = ( 1)( 1) 0, , = 1,k k k kf f x x k k n′ ′′′ ′′ ′⋅ − − ≥

or
 1 0, , = 1, .k k k kx x x x k k n′ ′ ′− − + ≥  (66)

3. = ( 1)( ) 0ij k i j kf f x x x′⋅ + − − ≥

after simplification becoming

 , ( , ) ( ), = 1, .i k j k kx x x x x i j E G k n+ ≤ ∈

 ( ) , ( , ) ( ), = 1, .k i j kx x x x i j E G k n+ ≤ ∈  (67)

4. = ( 1)( 1) 0ij k i j kf f x x x′′⋅ + − − ≥

resulting in
 1, ( , ) ( ), = 1, .i k j k k i jx x x x x x x i j E G k n+ ≥ + + − ∈

or
 1, ( , ) ( ), = 1, .k i j i k j kx x x x x x x i j E G k n+ + − − ≤ ∈  (68)
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5. = ( )( 1) 0, , = 1,k k k kf f x x k k n′ ′′ ′ ′′′ ′′ ′ ′′⋅ − − ≥

resulting in

6. , , = 1, .k k kx x x k k n′ ′′ ′ ′ ′′≤

 = 0, , = 1, .k k k kf f x x k k n′ ′′ ′ ′′′ ′ ′ ′′⋅ ≥  (69)

7. = ( 1)( 1) 0, , = 1,k k k kf f x x k k n′ ′′ ′ ′′′′ ′′ ′ ′′⋅ − − ≥

or
 1, , = 1, .k k k kx x x x k k n′ ′′ ′ ′′ ′ ′′+ − ≤  (70)

Further in this section, we will show how adding the “superflows” 
constraints (67) can improve an upper bound on α(G). All the derived 
“superflows” constraints (65)–(70) can be used in the same manner separately 
or in a combination.

6.2.2 The bounds ψ*(G)

For MISP, as a basic model (49), (50), the model MISP.EM4 is chosen. It 
consists of the objective function (23), vertex quadratic constraints (13), 
and edge quadratic constraints (28). To specify that a MISP is solved for 
a particular graph G, ψ*(G) denotes the upper bound ψ* in this case, while  
Q*

0 = α(G). It follows that ψ*(G) is an upper bound on α(G), i.e., ψ*(G) ≥ α(G).
The following theorem establishes a connection of ψ*(G) with αL(G).
Let us assume that a feasible domain X of the problem (49), (50) is a finite 

set and a polytope P = convX.

Theorem 3. If Q0(x) is a linear function and linear constraints of P follow 
from constraints (49), (50), then

 
** *
0 0 0= ( ) ,max

x
Q Q x Q

∈
≥

P

i.e., Q**
0 is an upper bound on Q*

0. 

Corollary 1. If constraints of LSTAB(G)-polytope follow from constraints of 
a Euclidean formulation of MISP, then 

 ψ*(G) ≥ αL(G). (71)

Theorem 4. For a clique Qp ∈ Q(G), the linear clique constraint (31) holds 
for any incidence vector x ∈ X satisfying constraints of the continuous model 
MISP.EM4. 
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Proof. Take an arbitrary Qp ∈ Q(G). Let its vertices be denoted {j1,...,jp} 
⊆ {1,...,n}. By assumption, the constraints (13) and (28) are fulfilled at x. 
Particularly,

 2 = 0, = 1, ;j ji i
x x i p−  (72)

 = 0, , = 1, , .j js t
x x s t p s t≠  (73)

Consecutively applying (72), (73), we get:

 1 1 1 1 1 1
=1 =2, 1(

2 2= = = = .
)

p p

j i j j j j j j ji i
i i ii V Qp

x x x x x x x x x
≠∈

+∑ ∑ ∑

Similarly, for a fixed i' ∈ {1,...,p}, 

 
=1 =1,(

2 2= = = = .
)

p p

j i j j j j j j ji i i i i i i i
i i i ii V Qp

x x x x x x x x x
′ ′ ′ ′ ′ ′

′≠∈

+∑ ∑ ∑  (74)

Due to xji'
 ∈ {0,1}, consider two situations. The first one is if there exists 

j' = 1,p
—

 such that xji'
 = 1. Choosing such xji'

 and substituting it into (74) we get: 

 
=1 ( )

= = 1.
p

j ii
i i V Qp

x x
∈

∑ ∑  (75)

Another situation occurs if there in no i' = 1,p
—

 such that xji'
 = 1. In this 

case, xji'
 = 0, i = 1,p

—
 . Respectively,

 ( )
= 0.i

i V Qp

x
∈

∑  (76)

Uniting (75) with (76) yields exactly the linear clique inequality (31) for 
the clique Qp. Due to the random choice of Qp from Q(G), the inequality holds 
∀Qp ∈ Q(G) at x, hence (31) is true. 

Corollary 2. The polytope CSTAB(G) satisfies conditions of Cor. 1. That is 
why, relations (64) and (71) can be combined for L = C and yield

 * *( ) = ( ) = ( ).C G G Gα ψ α

Remark 7. This corollary establishes the polynomial solvability of MISP on 
t-perfect graphs by solving it in the continuous formulation MISP.EM4 by the 
ellipsoid method or r-algorithms. 

Corollary 3. The linear edge constraint (29) holds for any incidence vector  
x ∈ X satisfying constraints of the continuous model MISP.EM4. 



126 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

From this corollary, it follows that Cor. 2 works for L = C too. Thus 
relations

 * *( ) = ( ) = ( )Q G G Gα ψ α

are satisfied. Respectively, on perfect graphs, MISP is polynomially solvable 
by the ellipsoid method or r-algorithms in the form of MISP.EM4.

6.2.3 The bound ψ*
1(G)

For h-perfect, wheel-perfect and generalized wheel-perfect graphs, we will 
show a polynomial solvability of Problem 1 for MISP. Problem 1 will be 
constructed from the basic model MISP.EM4 by adding superflows constraints 
(67) (further referred to as MISP.EM7).

First, we extend the results of Cor. 1 to this case. 

Corollary 4. If constraints of LSTAB(G)-polytope follow from constraints 
of Problem 1, which is a Euclidean formulation of MISP with superflows 
constraints, then

 *
1 ( ) ( ).G Gψ α≥ L  (77)

Theorem 5. For any odd cycle C2k+1 ∈ C(G), the odd-cycle constraint (41) is 
satisfied for any incidence vector x associated with its independent set in G 
and satisfied constraints of the continuous model MISP.EM7. 

Proof. Let vertices of the cyrcle C2k+1 be denoted as {i1,i2,...,i2k+1} ⊆ {1,...,n}, 
then (xi1

,...,xi2k+1
) be an incidence vector associated with the corresponding 

independent set in C2k+1. By assumption, x satisfies the constraints (13), (28), 
and (67), particularly,

 2 = 0, = 1,2 1;i ij j
x x j k− +  (78)

 1 2 1 1
= 0, = 0, = 1,2i i i ik r r

x x x x r k
+ +  (79)

 
2 1 2

( ) , = 2,2 , = 1, .i i i ir s s r
x x x x r k s k

−
+ ≤  (80)

Let us fix j = 1. Likewise proof of Theorem 4, we will apply (78)–(80) to 
the following relation: 

2 1

1 1 1 1 2 1 2 1 2 1 2 1 1 1 1
( ) =1 =22 1

2= = ( ) 0 ( 1) = .
k k

i i i i i i i i i i i i i i ir s s k
i V C r sk

x x x x x x x x x x x x x k x kx
+

− +
∈ +

+ + + + ≤ + + −∑ ∑ ∑



The Independence Number of the Generalized Wheel Graphs Wp
2k+1 127

Generalizing this reasoning into j ∈ {1,...,2k + 1}, we get two situations 
depending on parity of j. Situation 1 when j is odd, namely, j = 2k' + 1 for 
some k' ∈ ℕ+. Then
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If j is even, namely, j = 2k' for some k' ∈ ℕ. Then we face the situation 2 
when
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Together, (81), (82) imply that

 
( )2 1
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x x kx r k
∈ +
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i.e., for the cycle C2k+1, the odd-cycle constraint (41) holds. Due to its random 
choice, the constraint is valid for any odd cycle in G. 

Theorem 6. For an odd-wheel W p
2k+1 ∈ W(G), the generalized odd-wheel 

constraint (45) is satisfied for any incidence vector x associated with its 
independent set in G and satisfied constraints of the continuous model MISP.
EM7. 

Proof. Vertices of an odd cyrcle C2k+1 will be denoted by I = {i1,i2,...,i2k+1}, 
and the vertices of the clique Qp we will be denoted J = {j1,...,jp}, where  
I ∩ J = ∅. For them, in addition to (72), (73) and (78)–(80), the following 
quadratic constrains are valid, where vertices from and J are involved:

 = 0, = 1,2 , = 1, ,i jr s
x x r k s p  (83)

Given that for the vertex i1 ∈ V(C2k+1) the equation x2
i1
 = xi1

 is valid by 
(78), and from the equations (79) we get xi1 

xi2
 = 0 and xi1 

xi2k+1
 = 0; from the 
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constraint (83) we obtain xi1 
xjs

 = 0, s = 1,...,p; from the inequalities (80) we 
have xi1 

(xir
 + xir+1

) ≤ xi1
, r = 3,5,...,2k–1. From here, it follows that
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Similarly, for all r ∈ {1,...,n}, we have:

 ( ) ( )2 1

( ) , = 1,2 1.i i j ir r
i V C j V Qk p
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We are given that, for a vertex j1 ∈ V(Qp), the equation x2
j1
 = xj1

 is true 
by (72); by (73), we have xj1 

xjs
 = 0, s =  2,p—; with respect to (83) we have  

xir
 xj1

 = 0, r = 1,2k+1. Wherefrom we can derive the following relation:
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Similarly, we get
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If we add inequality (84) and inequality (85) multiplied by the value of k, 
we obtain another inequality:
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It results in another inequality: 
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wherefrom we get
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( ) ( )2 1
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which is exactly the generalized odd-wheel constraint (45).
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Theorem 7. MISP in a formulation MISP.EM7 by the ellipsoid method and 
r-algorithms for h-perfect and W p

2k+1-perfect graphs. 

Proof. From Theorems 5 and 6, it follows that LSTAB(G)-polytopes for  
L ∈ {H, W p

2k+1} satisfy conditions of Cor. 4, thus (77) holds and becomes

 
*
1
*
1

2 1

( ) ( ),
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For these two cases, (64) takes the form of
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Together, (86) with (87) result in
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H H

p pW Wk k

G G G
G G G

α ψ α

α ψ α
+ +
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Hence, the statement of Theorem 7 is true. 

7. Conclusion

This work is dedicated to applying Shor’s technique of quadratic dual bounds 
to MIS problems and deriving classes of polynomially solvable MISPs. In 
particular, the paper substantiates the polynomial solvability of MISPs on 
wheel-perfect graphs Wp and their generalizations, such as generalized wheel-
perfect graphs W p

2k+1. The theory of continuous functional representations of 
discrete sets was applied in designing a variety of different formulations of 
MISP. These results underly the theoretical justification of the polynomial 
solvability of MISP for some classes of graphs. In such a way, we provide 
a new proof of MISP polynomial solvability for perfect, t-perfect, h-perfect 
graphs and substantiate this for the first time for a family of W p

2k+1-perfect 
graphs. In particular, with the help of functional representations techniques, 
all known so far continuous, binary and partially binary mathematical models 
were constructed, and several new models were obtained. Based on this, 
new families of superflows constraints of the polytope STAB(G) of incidence 
vectors of independent sets in a graph G were also derived. As expected, these 
families of constraints will allow proving a polynomial solvability of other 
classes of graphs, in particular, superclasses of W p

2k+1-perfect graphs. The 
presented technique of obtaining new mathematical formulations of COPs 
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and the models themselves has theoretical value. In the future, the results can 
be applied in computation experiments to identify more efficient models in 
certain cases of input data. 
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Chapter 7

Approximations for Estimating 
Some Options Using the Inverse of  

the Laplace Transform
Robert Mnatsakanov1 and Omar Purtukhia2,*

1. Introduction

In this work, we propose several approximations for the evaluation of some of 
the option prices based on the inversion of the scaled version of the Laplace 
transform which was suggested by Mnatsakanov and Sarkisian 2013. The 
proposed method is also applied to the Black-Scholes model for the estimation 
of option prices. In addition, we precisely solve the problem of pricing Asian 
options in the Bachelier model.

Financial markets have become increasingly more sophisticated in recent 
years and therefore, have the offered products. More complex financial options 
and derivatives have replaced the simple buy/sell trade deals of earlier years 
(see Lee and Sheen 2009). The determination of the actual value of financial 
options is a major concern for market participants.

 1 West Virginia University, Department of Mathematics, Morgantown, WV 26506, USA.
2 Ivane Javakhishvili Tbilisi State University: Department of Mathematics; A. Razmadze Mathematical 
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While the writer of an option contract might be largely concerned by 
how much to charge for the contract and what his profit margin would be, the 
holder of the contract wants to be certain that he is paying a fair price and that 
he stands to make gains from the exercise of the contract. These and many 
other concerns have motivated a large volume of research, too numerous to 
mention, in the area of option pricing. 

Financial derivatives such as American and European call-and-put 
options are referred to as plain vanilla products. Derivative securities which 
have certain features that make them more complex than the commonly traded 
plain vanilla products are called exotic options or simply, exotics. In other 
words, the payoff functions of derivative securities with more complicated 
forms than standard European or American call-and-put options are known as 
Exotic Options.

One such kind of Exotic Option is the so-called Binary Option. It is an 
option with discontinuous payoff function. The simplest examples of Binary 
Options are call and put options “cash or nothing”. The payoff function of the 
call option has the form BCT = QI{ST>K}, and for the put option --BPT = QI{ST<K}, 
where K is the strike price at the time of execution T. It is also common the 
Binary Option “an asset or nothing”. 

These are the same conditions as in the “cash or nothing” option, but 
the difference is that owner of the call option receives the price of the asset 
ST instead of amount Q. The Standard European Call Option (i.e., the option 
with the payoff function: (ST – K)+) is equivalent to a long position (the bought 
asset) in the “an asset or nothing” option and short position (the sold asset) in 
the “cash or nothing” option when Q = K. 

These products are traded in the over-the-counter (OTC) derivative 
market. Exotic options are important aspects of the portfolio of an investment 
bank because they are usually more profitable than plain vanilla products. 
Examples of exotic options are the compound option, chooser option, barrier 
option, binary/digital option, lookback option, constant proportion portfolio 
insurance (CPPI), cliquet or ratchet option, variance swap, rainbow option, 
and Bermudan option (see James 2003, Hull 2006).

Let V(S, t) be the pay-off function. When t = T, for a European call option, 
the pay-off is defined by

 V(S, T) = max(S – K,0) = (S – K)+.

Similarly, for a put option,

 V(S, T) = (K – S)+.
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From Wilmott et al. 1995, it has been shown that V(S, t) is a unique 
solution to the partial differential equation
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where r1(t), r2(t) are chosen appropriately to match h(S).
The widely-used formula by Black and Scholes 1973, Merton 1973, 

provides an exact pricing formula for the simplest model in the case of constant 
coefficients. However, such a technique is not applicable in the general case 
with time and space-dependent coefficients. Hence, numerical methods are 
required for the evaluation of non-standard options. 

To evaluate special options such as the American put and call options, 
Asian options, discretely monitored barrier options, and options with  
non-standard pay-offs that are characterized by discontinuities which arise 
at each monitoring date, carefully chosen numerical methods are required to 
avoid spurious oscillations when low volatility is assumed. 

Several numerical methods have been used to solve the Black-Scholes 
equation. In Seydel 2017, Glasserman 2003, Tavella and Randall 2000, 
Wilmott et al. 1995 and the references there in, one can find well-known 
numerical methods for option pricing. Since financial markets are prone to 
stochastic fluctuations, stochastic approaches like the Monte Carlo methods, 
which are based on formulating and simulating stochastic differential 
equations, provide natural tools for simulating asset prices. Time marching 
methods like the Crank-Nicholson and Explicit and Implicit finite-difference 
methods are used with suitable spatial discretization schemes. 

A major drawback of these time-marching schemes is that they usually 
require as many time steps as spatial meshes to balance errors arising from 
discretization. Lee and Sheen 2009 claimed that in particular, for the estimation 
of basket options of reasonable size, the usual time marching schemes seem to 
be too slow in practice since the cost of solving an elliptic system to advance 
to the next time step is usually computationally expensive. 

Some related works in which the Laplace transform method was applied 
include Fu et al. 1998, Geman and Yor 1996, Lee and Sheen 2009, Mallier 
and Alobaidi 2000, Pelsser 2000, Tagliani and Milev 2013. Most of the 
earlier works in which the Laplace transform method was applied to solve the  
Black-Scholes equation were used to obtain the analytic solutions of the 
various options they studied rather than develop an efficient numerical scheme. 
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In Geman and Yor 1996, and Pelsser 2000, the Laplace transform is applied 
for the pricing of a double barrier option and in Mallier and Alobaidi 2000, 
the pricing of the American call option is considered. The Mellin transform 
method which is similar to the Laplace transform was used to obtain the 
analytic solution of an option price by Cruz-Baes and Gonzaelez-Rodriguez 
2005, Jodar et al. 2005, Panini and Srivastava 2005. 

Tagliani and Milev 2013 suggested a method they called the mixed method 
for a discretely monitored barrier option. The method involves solving the 
resulting ordinary differential equation (ODE) by computing the Laplace 
transform of the Black-Scholes equation by a finite-difference scheme and 
then transforming the solution of the ODE with the well-known Post-Widder 
inversion formula, see Cohen 2007. The authors showed that the mixed 
method is positivity-preserving, satisfies the discrete maximum principle, is 
spurious oscillations free, and is convergent to the exact solution. 

Goffard et al. 2017, applied a Laplace transform inversion method 
involving an orthogonal projection of the probability density function with 
respect to a probability measure that belongs to the Natural Exponential 
Family of Quadratic Variance Function (NEF-QVF) to compute bivariate 
probability distributions from their Laplace transforms. 

In this work, we present applications of the moment recovered approximation 
method in the estimation of the prices of some well-known financial options 
and derivatives. We apply the scaled Laplace transform method to solve the  
Black-Scholes equation. Our approach does not require either change of 
variables or solving diffusion equations. The resulting ordinary differential 
equation (ODE) is a Euler equation which has a closed-form solution. Moreover, 
based on the Glonti-Purtukhia generalization (see Glonti and Purtukhia 2017) of 
Clark-Ocone formula, we precisely solve the problem of pricing of Asian type 
option in the Bachelier model, which is impossible in the Black-Scholes model. 
Finally, we derive a constructive integral representation for one class of path-
dependent Brownian functionals.

2. Auxiliary concepts and results

We apply the scaled Laplace transform method to solve the Black-Scholes 
equation which depends on one stock asset. Applying the moment recovered 
(MR) inversion method, we obtain approximations of the European-style put 
and call options. For the rate of approximation of the inversion method (see 
Fadahunsi and Mnatsakanov 2018).

Put Option. Let P(S, τ) be the value of a European put option, where S is the 
current value of the underlying asset and τ = T – t is the time left till maturity. 
Assume that the volatility σ and the risk-free interest rate r depend only on 
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S (i.e., σ = σ(S) and r = r(S)). The price P(S, τ) satisfies the Black-Scholes 
equation
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with boundary conditions

 P(S, 0) = max{K – S,0},

 P(S, τ) → Ke–rτ as S → 0, P(S, τ) → 0 as S → ∞. 

To solve (1), we take the scaled Laplace transform of P(S, τ) and its partial 
derivatives as follows:
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Transforming the boundary conditions, we get
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Applying (2)–(7), (1) becomes,
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with boundary conditions

 ( ( , ))   as 0 and ( , ) 0 as ,KP S S P S S
r cλ λµ µ
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Solving the homogeneous part of (8), we get
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and observe that (10) is an Euler equation. By setting μλ = CS γ, μ'λ = CγS γ–1 and 
μ''λ = Cγ(γ–1)S γ–2, for some γ, C ∈ R. Substituting this into (11), we get
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Hence, the solution to (11) is

 μ(c)
λ  (P(S,.)) = C1S γ1 + C2S γ2, (14)

where the superscript (c) indicates that the solution is the complementary 
solution of (8), which is also the solution in cases when S ≥ K.

When K ≥ S at maturity T, i.e., τ = 0, P(S, 0) = K – S. So, the  
non-homogeneous part of (8) corresponds to cases when the strike K is greater 
than the underlying stock price. Hence, the put option will be exercised.
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Let μ(p)
λ  (P(S,.)) = AS + B be a particular solution of (10), for some A, B ∈ 

R. Then, μ(p)'
λ  = A and μ(p)''

λ  = 0. Substituting these into (8) we get

 rSA – (r +	λ	ln(b))(AS + B) = –(K – S),

from here

 – (r +	λ	ln(b))B – λ ln(b)AS = –(K – S). (15)

Comparing the coefficients of the left and right sides (15), we obtain

 1 and .
ln( ) ln( )

KA B
b r bλ λ

= − =
+

Hence,

 ( ) 1( ( , )) .
ln( ) ln( )

p KP S S
b r bλµ λ λ

⋅ = − +
+

 (16)

Combining (14) and (16), we get the general solution of (8)

 1 2
( , ), 1 2

1( ( , )) ( ) .
ln( ) ln( )P S b

KP S L C S C S S
b r b

γ γ
λµ λ

λ λ⋅⋅ = = + − +
+

Thus,

 

1 2
1 2

1 2
1 2

1 , ;
ln( ) ln( )( ( , ))

, .

KC S C S S S K
b r bP S

C S C S S K

γ γ

λ
γ γ

λ λµ
 + − + < +⋅ = 
 + ≥

We have that γ1 ≥ 0 ≥ γ2. Therefore in the case when S < K, C2 = 0 ensures 
the boundedness of the derivative μ'λ (P(S,.)). In the case when S ≥ K, C1 = 0 
ensures that the value of the option goes to zero when the stock price goes to 
infinity. Thus, the general solution to (8) reduces to

 
1

1

2
2

1 , ;
ln( ) ln( )( ( , ))

, ,

KC S S S K
b r bP S

C S S K

γ

λ
γ

λ λµ
 − + < +⋅ = 
 ≥

 (17)

where (17) satisfies the boundary conditions in (9). Next, we solve for C1  
and C2:

 1
1( ( , )) , ,

ln( ) ln( )S K
K KP S C K S K

b r b
γ

λµ λ λ=⋅ = − + <
+

 (18)

 μλ (P(S,.))|S=K = C2K γ2, S ≥ K, (19)
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 1 1
1 1

1( ( , )) , ,
ln( )

'
S KP S C K S K

b
γ

λµ γ
λ

−
=⋅ = − <  (20)

 μ'λ (P(S,.))|S=K = γ2C2K γ2–1, S ≥ K. (21)

Setting (18) = (19) and (20) = (21), we get

 1 2
1 2 ,

ln( ) ln( )
K KC K C K

b r b
γ γ

λ λ
− + =

+
 (22)

 1 21 1
1 1 2 2

1 .
ln( )

C K C K
b

γ γγ γ
λ

− −− =  (23)

Multiply (22) by γ2/K and subtract (23) to get

 1 11 1 2 2
2 1 1 1

1 0.
ln( ) ln( ) ln( )

C K C K
r b b b

γ γ γ γ
γ γ

λ λ λ
− −− + − + =

+

Solving for C1, we get

 
11

2 2
1

1 2

1 .
ln( ) ln( )

KC
r b b

γγ γ
λ λ γ γ

− −
= − ⋅ + − 

 (24)

Substituting in (23), we get

 
21

1 1
2

1 2

1 .
ln( ) ln( )

KC
r b b

γγ γ
λ λ γ γ

− −
= − ⋅ + − 

 (25)

Finally, to estimate the value of the put option, we apply the moment 
recovered (MR) inversion method to (17). Thus, the value of the European put 
option is approximated by

 [ ] [ ]
, 0

( 1) ( ( , ))[ ]ln( ) ( 2)( , ) ,
([ ] 1) !( [ ] )!

m
mb b

b m

P Sb bP S
b m b m

τ τ
τ

α α α
α τ τ

µα ατ
α α α α

− −
−

− +
− −=

− ⋅Γ +
=

Γ + − −∑
where

 Γ(α) = ∫
∞

0
xα–1 e–x dx

is the gamma function and

1
1

[ ]
2

2

1 , ;
ln( )( [ ]) ln( )( [ ])( ( , ))

, .
m b

KC S S S K
b m b r b m bP S

C S S K
τ

γ
τ τ

α
γ

α λ αµ −

− −

+

 − + < + + +⋅ = 
 ≥

In C1 and C2, λ ≡ m + [αb–τ].



140 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Call Option. Recall, the Black-Scholes equation for a European style call 
option is

 
2

2 2
2

1 ( , ) ( , ) ( , ) ( , ) 0,
2

C S C S C SS rS rC S
S S

τ τ τσ τ
τ

∂ ∂ ∂
+ − − =

∂ ∂ ∂
 (26) 

with boundary conditions

 C(S,0) = max{S – K, 0},

 C(S, τ) → 0 as S → 0, C(S, τ) → S as S → ∞.

We take the scaled Laplace transform of (26) and solve the resulting 
ordinary differential equation with boundary conditions μλ(C(S,.)) → 

S
cλ

 as 
S → ∞ and μλ(C(S,.)) → 0 as S → 0. We get the general solution

 
1 2

1 2

1 2
1 2

1 , ;
ln( ) ln( )( ( , ))

, ,

KC S C S S S K
b r bC S

C S C S S K

γ γ

λ
γ γ

λ λµ
 + + − > +⋅ = 
 + ≤

where γ1, γ2, C1 and C2 are as defined in (12), (13), (24), and (25), respectively.
We observe that in the case when S > K, C1 = 0 ensures the boundedness 

of the derivative μ'λ (C(S,.)) and in the case when S ≤ K, C2 = 0 ensures that the 
option value goes to zero as the stock price goes to zero (see Kumar 2008). 
Thus, the general solution reduces to

 
2

2

1
1

, ;
ln( ) ln( )( ( , ))

, ,

S KC S S K
b r bC S

C S S K

γ

λ
γ

λ λµ
 + − > +⋅ = 
 ≤

 (27)

where (27) satisfies the boundary conditions. 

Applying the MR inversion method, the call option can be approximated by 

 [ ] [ ]
, 0

( 1) ( ( , ))[ ]ln( ) ( 2)( , ) ,
([ ] 1) !( [ ] )!

m
mb b

b m

C Sb bC S
b m b m

τ τ
τ

α α α
α τ τ

µα ατ
α α α α

− −
−

− +
− −=

− ⋅Γ +
=

Γ + − −∑
where λ ≡ m + [αb–τ] in γ1, γ2, C1 and C2.

3. Double-barrier options

A double-barrier option is a type of financial option where the option to 
exercise depends on the price of the underlying asset crossing or reaching two 
barriers namely: L (lower barrier) and U (upper barrier). The payoff depends 
on whether the underlying asset price reaches L or U during the transaction 
period. 
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The option knocks out (becomes worthless) if either barrier is reached 
during its lifetime. If neither barrier is reached by maturity T, the option pays 
the standard Black-Scholes pay-off max{0.S(T) – K}, where K, the strike price 
of the option, satisfies L < K < U. 
A double-barrier knock-out call option satisfies the following equation:

 
2

2 2
2

1 ( , ) ( , ) ( , ) ( , ) 0,
2

B S B S B SS rS rB S
S S

τ τ τσ τ
τ

∂ ∂ ∂
+ − − =

∂ ∂ ∂
 (28)

with boundary conditions

 B(S, 0) = max{S – K, 0}I[L,U] (S),

 B(S, τ) → 0 as S → 0 or S → ∞,

where τ	=	T	–	t and B(S, τ) is the price of a Barrier call option and

 [ , ]

, [ , ] ;
( ,0) max{ ,0} ( )

0, [ , ] .L U

S K S L U and S K
B S S K I S

S L U and S K
− ∈ >

= − =  ∉ ≤
Taking the scaled Laplace transform of (28) and solving the resulting 

ordinary differential equation, we get the general solution
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2

1
1

, [ , ];
ln( ) ln( )( ( , ))
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S KC S S K and S L U
b r bB S

C S S K and S L U

γ

λ
γ

λ λµ
 + − > ∈ +⋅ = 
 ≤ ∉

Applying the MR inversion method, a barrier call option can be 
approximated by

 [ ] [ ]
, 0

( 1) ( ( , ))[ ]ln( ) ( 2)( , ) ,
([ ] 1) !( [ ] )!

m
mb b

b m

B Sb bB S
b m b m

τ τ
τ

α α α
α τ τ

µα ατ
α α α α

− −
−

− +
− −=

− ⋅Γ +
=

Γ + − −∑
where λ ≡ m + [αb–τ] in γ1, γ2, C1 and C2.

Hedging of the Knock-Out Barrier Option

For one functional of Brownian motion, which is the payoff function of  
Knock-Out Barrier Option in the case of Bachelier’s model of financial market, 
the Clark’s integral representation with an explicit form of integrand was 
obtained by Glonti and Purtukhia 2014a. This functional is a multiplication of 
the payoff function of European Call Option and an indicator of some event. 
Hence, it is impossible to use Clark-Ocone’s formula (Ocone 1984) because 
the indicator of the event is not Malliavin differentiable if the probability of 
this event is not equal to zero or one. There, according to the generalized 
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Clark-Ocone formula obtained by Glonti and Purtukhia 2017, is derived the 
explicit form of the integrand. This integrand is the optimal hedging strategy 
replicating the Knock-Out Barrier Option in the case of Bachelier’s model.

Let B = (Bt), t ∈ [0,T] be the Brownian motion on the probability space  
(Ω, ℑ, P). Let (ℑB

t ), t ∈ [0,T] be the natural filtration generated by the Brownian 
motion. Assume that the ℑB

t -measurable FT functional has the following form:

 FT = (BT – K)+ I{B*T ≤ L}, (29)

where B*
T = max

0≤t≤T
 Bt, K and L are positive constants such that L ≥ K and IA is the 

indicator of event A.
The following stochastic integral representation is fulfilled (see,  

Theorem 2 in Glonti and Purtukhia 2014a)

 
0 0

2( )2( ) ,
T Tt t t

T T t t
L B B K B L KL KF EF dB dB

T t T t T t T t
ϕ

 − − − −−      
= − + Φ −Φ      − − − −      

∫ ∫  (30)

where

 
2 21 1( ) and ( ) .

2 22 2
xx zx exp x exp dzϕ

π π −∞

   
= − Φ = −   

   
∫

Consider now Knock-Out Barrier Option in the financial market, 
represented by Bachelier ’s model. In this case the stock price S is described by

 St = S0 + μt + σBt.

The payoff of Up-and-Out Call Barrier Option is (see Musela and 
Rutkowski 1999) the functional FT from (29).

Consider the unique martingale (risk neutral) measure P
–
 ~ P such that 

(see Shyriaev 1999) dP
–
 = ZTdP with

 
21 .

2T tZ exp B tµ µ
σ σ

   = − −  
   

It is well-known that under this measure the following relation is fulfilled:

 Law{S0 + μt	+ σBt, t ≤ T|P
–
} = Law{S0 + σBt, t ≤ T|P}

and if σ = 1 

 EP– [FT |ℑ
B
t ] = E[F

–
T |ℑ

B
t ],

where F
–

T is given in (29) with K
–
 = K – S0 and L

–
 = L – S0.

Now, using representation (30), it is easy to find the optimal hedging 
strategy.
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4. Asian options

Asian options belong to the so-called path-dependent derivatives. They are 
among the most difficult to price and hedge both analytically and numerically. 
Basket options are even harder to price and hedge because of the large number 
of state variables. Several approaches have been proposed in the literature, 
including Monte Carlo simulations, tree-based methods, partial differential 
equations, and analytical approximations among others. The last category is the 
most appealing because most of the other methods are very complex and slow.

In the 80th of the past century, it turned out (see, Harison and Pliska 1981) 
that the martingale representation theorems (along with the Girsanov’s measure 
change theorem) play an important role in modern financial mathematics. The 
well-known Clark (see, Clark 1970) formula says nothing on finding explicitly 
the integrand which takes part in the integral representation. In the case when 
the Wiener functional has the stochastic derivative, the Ocone-Clark’s (see, 
Ocone 1984) formula is fined explicitly this integrand. 

Our approach (see, Jaoshvili and Purtukhia 2005), within the classical 
Ito’s calculus, allows one to construct explicitly integrand by using both the 
standard L2 theory and the theories of weighted Sobolev spaces, allows one to 
construct explicitly the integrand if the Brownian functional has no stochastic 
derivative. Later, we proposed an approach that instead of the smoothness of 
the functional required only the smoothness of the Levy martingale associated 
with it and generalized the Clark-Ocone formula for stochastically non-
smooth functionals (see, Glonti and Purtukhia 2017).

Asian Options also are a type of Exotic Option. The payoff function of 
this option depends on the average value of the price of an asset during a 
certain period of the option lifetime. The payoff function of the Asian Option 
by definition has the following representation: CA

T = [AS(T0, T) – K]+, where

 
0

0
0

1( , )
T

S tT
A T T S dt

T T
=

− ∫
is the arithmetic mean of the prices of an asset at time interval [T0, T], K is a 
strike and S = (St) (0 ≤ t ≤ T) is geometrical Brownian motion. 

The main difficulty in pricing and hedging of the Asian Option is that 
the random variable AS(T0, T) is not lognormal distributed and therefore, it is 
rather difficult to obtain explicit formulas of pricing of this option.

Let us now recall some concepts and facts from Nualart 2006.
Let Bt be a Brownian motion on a standard filtered probability space  

(Ω, ℑ, ℑt, P) and let ℑt = ℑB
t  be the augmentation of the filtration generated 

by B.
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Definition 1. The class of smooth Brownian functionals ℘ is the class of a 
random variable which has the form F = f (Bt1

,...,Btn
), f ∈ C ∞

p (R
n), ti ∈ [0,T],  

n ≥ 1, where C ∞
p (Rn) is the set of all infinitely continuously differentiable 

functions f : Rn → R such that f and all of its partial derivatives have polynomial 
growth.

Definition 2. The stochastic (Malliavin) derivative of a smooth random 
variable F ∈ ℘ is the stochastic process DB

t F given by

 1 [0, ]1
( ,..., ) ( ).

n i

nB
t t t ti

i

fD F B B I t
x=

∂
=

∂∑
Definition 3. DB

. is closable as an operator from L2(Ω) to L2(Ω; L2[0,T]). We 
will denote its domain by DB

2,1. That means, DB
2,1 is equal to the adherence of 

the class of smooth random variables with respect to the norm

 ||F||2,1 = {E[|F|2 + (||DB
. F||2L2 ([0,T]))]}

1/2.

In general, as is familiar in Malliavin calculus, we introduce the norm

 ||F||p,1 = {E[|F|p + (||DB
. F||2L2 ([0,T]))

p/2]}1/p,

where DB
.  is the Malliavin derivative operator and DB

p,1 denotes the Banach 
space which is the closure of the class of smooth Brownian functionals ℘ with 
respect to the norm ||.||p,1 (p ≥ 1). 

When the random variable F belongs to the Hilbert space DB
2,1, it turns out 

that the integrand in the Clark representation can be identified as the optional 
projection of the Malliavin derivative of F. 

Theorem 1. (see, Ocone 1984). If F is differentiable in Malliavin sense,  
F ∈ DB

2,1, then the stochastic integral representation is fulfilled

 F = EF + ∫T
0 E[DB

t |ℑ
B
t ]dBt (P -a.s.).

Theorem 2. (see, Glonti and Purtukhia 2017). Suppose that Gt = E[F|ℑB
t ] is 

Malliavin differentiable Gt ∈ DB
2,1 for almost all t ∈ [0,T). Then we have the 

stochastic integral representation

 Gt = F = EF + ∫T
0  νu dBu (P -a.s.),

where

 νu:= lim
t↑T

 E[DB
u Gt |ℑ

B
u] in the L2([0,T] × Ω).

It is clear that there are also such functionals which don’t satisfy even 
the weakened conditions, i.e., the non-smooth functionals whose conditional 
mathematical expectations is not stochastically differentiable too. In 
particular, to such functional belongs the integral type functional ∫T

0  us ds with 
non-smooth integrand us(ω).
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It is well-known that if us(ω) ∈ DB
2,1 for all s, then ∫T

0  us (ω) ds ∈ DB
2,1 and

 DB
t  {∫T

0  us (ω) ds} = ∫T
0 DB

t  [us (ω)]ds.

But if us (ω) is not differentiable in Malliavin sense, then the Lebesgue 
average (with respect to ds) also is not differentiable in Malliavin sense (see, 
for example, Glonti and Purtukhia 2014b).

Asian options give the holder of the contract the right to buy or sell an 
asset for its average price over a pre-set transaction period. Consider a time 
interval [0,T], and let {A(x), x ≥ 0} be the average underlying price. Then

 0

1( ) .
x

uA x S du
x

= ∫
Hence pay-off at maturity T is 

 [A(T) – K]+ = max{A(T) – K, 0}.

The price V of an Asian option is a function of the underlying asset price 
S, the average price A, and time to maturity T.

Bachelier Model 

Let on the probability space (Ω, ℑ, P) is given the Brownian motion B = (Bt), 
t ∈ [0,T] and (ℑB

t ), t ∈ [0,T] is the natural filtration generated by the Brownian 
motion B. Consider the Bachelier market model with risk-free asset price 
evolution described by

 dMt = rMt dt, M0 = 1.

where r ≥ 0 is an interest rate and risky asset price evolution

 dSt = μdt + σdBt,  S0 = 1,

where μ ∈ R is appreciation rate and σ > 0 is volatility coefficient.

Let

 
21

2T T
r rZ exp B Tµ µ

σ σ

 − −  = − −  
   

and P
~

 is the measure on (Ω, ℑB
T) such that

 dP
~

 = ZTdP.

From Girsanov’s Theorem it follows that under this measure (martingale 
measure)

 t t
rB B tµ

σ
−

= +
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is the standard Brownian motion and

 dSt = rdt + σdB~t, S0 = 1

or

 St = 1 + rt + σB~t.

Consider the problem of “replication” the European Option of Exotic 
Type with the pay-off of integral type G = CA

T, i.e., one needs to find a trading 
strategy (βt, γt), t ∈ [0,T] such that the capital process

 Xt = βt Mt + γt St,  XT = G

under the self-financing condition

 dXt = βt dMt + γt dSt.

Let for simplicity r = 0. According to the well-known properties of 
the Malliavin derivative, Brownian motion and conditional mathematical 

expectation, using the fact that 
3

0
~ (0, )

3
t

s
tB ds N∫  (see, (35) in Appendix), it 

is not difficult to verify that
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Hence, we obtain the following integral representation

 
0 03
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∫ ∫

Therefore, we can find the component γt of the hedging strategy π = (βt, γt), 
t ∈ [0,T], which is defined by integrand of last representation and is equal
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Moreover, we have
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∫ ∫

Further, we can find the capital process

 Xt = E
~

 [C A
T |ℑB ~

t] = E
~

[C A
T ] + ∫t

0 γs dB~s;

the second component βt of hedging strategy π:

 βt = Xt – γt St
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and the price C of this option:

 1 3 1 3[ ] (1 ) 1 .
3

A
T

K T KC E C K
T T

σ ϕ
σ σ

    − −
= = − −Φ +            


Black-Scholes Model

Consider now the Black-Scholes market model with risk-free asset price 
evolution described by

 dMt = rMt dt,  M0 = 1.

where r ≥ 0 is an interest rate and for risky asset price evolution we have

 dSt = μSt dt + σSt dBt, S0 = 1,

where μ ∈ R is appreciation rate, and σ > 0 is volatility coefficient.
Unlike the Bachelier model, it is not possible to determine the distribution 

of pay-off function of Asian option here and it is impossible precisely solve 
the problem of pricing.

Geman and Yor 1996 established that the Asian option can be valued by 
the Laplace transform method. They showed that the price V(t) is given as
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where r is the constant interest rate,
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and the Laplace transform of C(v)(h, q) with respect to h is given as
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Applying the MR-inversion method, we approximate V(t) by
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with values of LHS of previous equation evaluated at h = 
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5. Appendix

Constructive integral representation

Here we will consider one class of Brownian functionals, and for them an 
integrand will be found for the Clarke stochastic integral representation in 
an explicit form. More precisely, we will study path-dependent Brownian 
functionals of the following type

 G(n, K) = [(∫T
0 Bs ds)n – K]+,

which in a particular case will be the pay-off function of an Asian option in the 
Bachelier model. Indeed, we have

 0 0

1 1 1[ ( ) ] (1, ).
T T
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T T T

+ +
+    − = − = − =     ∫ ∫

Remark. In addition, note that if a functional F has a Clarke representation 
with an integrand φ, then its linear transformation aF + b also has a Clarke 
representation with an integrand aφ.

Let us introduce the following notation:
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where [i/2] denotes the integer part of i/2.

Lemma 1. For any natural number n ≥ 1 and a real number y the following 
relation holds:
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Proof. For n = 1, due to the standard integration technique, we have
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Suppose now that (31) is true for n, and prove its validity for n + 1. Using 
the partial integration formula, we easily obtain that
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Hence, the method of mathematical induction completes the proof of the 
lemma.

Analogously one can verify the validity of the following result.

Lemma 2. For any natural number n ≥ 1 and a real number y the following 
relation holds:
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Lemma 3. Combining relations (31) and (32) from the previous lemmas, we 
conclude that
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Theorem 3. For any odd natural number, the functional G: = G(n, K) admits 
the following stochastic integral representation
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Proof. It is not difficult to see that the random variable ∫T
0 Bs ds has a normal 

distribution with parameters zero and T3/3. Indeed, due to the stochastic 
version of integration by parts, we have

 ∫T
0 Bs ds = sBs|

T
0 – ∫T

0 sdBs =	∫
T
0 (T – s)dBs. (34)

Hence, we easily ascertain that

 ∫T
0 Bs ds ≅ N(0,E ∫T

0 (Bs)2 ds) = N(0, T3/3): = N(0, μ2) (35)

and

 ∫T
t (T – s)dBs ≅ N(0, (T – t)3/3):= N(0, σ2). (36)

Using the relation (35) and Lemma 1, we can write

 

2 2 2 2

1/

2 2

1 1/ 1 1/

2

1 1/

/(2 ) /(2 )

{ }

/ 2 / 2
{ }

1/
/ 2

1 1( ) ( )
2 2

1 ( )
2 2

1 ( 1)!! 1 ( ,
22 2 2

n

n n

n

x x
n n

x K

n
n n x n x

x K K

n n
x n

K

EG x K e dx x K I e dx

x K I e dx x e dx

K x Ke dx n erf n

µ µ

µ µ

µ

π µ π µ
µµ

π π

µ πµ γ
µπ π

− −

−

− −+∞ +∞+
>−∞ −∞

+∞ +∞− −
>−∞

+∞ −

= − = − =

= − = −

  − = − − +  
  

∫ ∫

∫ ∫

∫
1/

1/

)

1 .

n

n

K

KK

µ

µ

   − 
  

  
− −Φ  

  

According to the rule of stochastic differentiation of a composite function 
(see, Proposition 1.2.4 in Nualart 2006), using the well-known properties of 
the Malliavin derivatives and the relation (34), we have
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Further, due to the well-known properties of conditional mathematical 
expectation and Brownian motion, based on the relation (36), we can write that
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Based on the relations obtained above by the Clarke-Ocone formula 

(see, Theorem 1) and using relation (33), the proof of the theorem is easily 
completed.
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Chapter 8

A Nash Equilibrium based Model 
of  Agents Coordination through 

Revenue Sharing and Applications 
to Telecommunications

Paolo Pisciella* and Alexei A Gaivoronski

1. Introduction

Digitalization is reshaping the way economic sectors conduct business. 
Moreover, digitalization is the main enabler of the platform economy. Platforms 
create new market opportunities by facilitating the interaction between 
different user groups. Platforms offer a wide array of services, such as online 
marketplaces, social networks, collaborative economy platforms and online 
gaming. Platform businesses may be defined as businesses creating significant 
value through the acquisition and/or matching, interaction and connection of 
two or more customer groups to enable them to transact (Murati (2021), Reillier 
and Reillier (2017)). In this respect, the platform works as a broker between 
supply and demand, where the supply side might consist of a single as well as of 
a group of actors, capturing a part of the value exchanged between these parties. 
In simple cases the supply side for digital services consists of only two agents: 
the developer and the platforms themselves. In more complex cases there might 
be a group of different developers, each contributing with one component to 
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the overall service provision. A platform can therefore be considered an entity 
coordinating interactions between groups of stakeholders. Such organizations 
are normally distinct business actors, each interested in the maximization of 
their own profits. In order to align the efforts of each participant the platform 
can employ different mechanisms. One of the most used is revenue sharing, 
widely used in mobile apps development. Nowadays the 30/70 splitting ratio 
introduced by Apple has de facto become a standard in the mobile industry. 
Nevertheless, a steadily growing share of developers complains about the 
rigidity of the application of such a business model (Hillegas 2012), with 
videogames platforms such as Steam or Microsoft trying to define different 
sharing schemes depending on the importance of the developer.

In this chapter we tackle the problem of aligning incentives between a 
group of agents engaging in the collaborative provision of service around a 
platform. We consider the presence of an aggregator and multiple followers, 
coordinated by the aggregator through a revenue-sharing mechanism. 
Followers are assumed to consider the choices of their peers when defining 
their contribution to the platform service. The aggregator uses revenue 
sharing to incentivize the followers to choose an output level which delivers 
the highest profit to herself. This will result in providers reaching a Nash 
Equilibrium (NE) on the level of involvement in the collaborative provision 
of a given service. Such an equilibrium solution is in line with current industry 
trends since the delivery of advanced data services is expected to increasingly 
replace that of basic data services and they require the involvement of multiple 
contributors. In this respect, our contribution can be placed in the analysis of 
supply chain coordination.

The novel contribution of this paper consists in the following.

 1. We develop a set of bilevel stochastic optimization models for the 
optimization of aggregator-led platform provision of a bundle of modular 
services that share some of the same components in different proportions. 
The problem is viewed as a stochastic Stackelberg game with one leader 
and multiple followers. The leader (aggregator) decides the revenue 
distribution, while the followers (service providers) select the level 
of involvement in the service definition by allocating their provision 
capacities. This portfolio selection is defined through an appropriate 
Nash equilibrium. We pursue two complementary approaches to develop 
solvable optimization models within this framework. The first one 
extends to the bilevel case of the linear stochastic programming models 
with a finite number of scenarios of uncertain demand (Sections 3, 4). 
The second approach considers continuous demand distributions and 
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involves the analytical study of the set of possible Nash equilibria on the 
lower level (Sections 5, 6). We obtain an explicit characterization of the 
set of Nash equilibria that considerably simplifies the resulting integrated 
bilevel model and facilitates the application of nonlinear programming 
techniques.

 2. We employ a linearization technique for a special class of quadratic 
complementarity problems in order to obtain the MILP model for the 
case of demand described by a finite number of scenarios (Section 4 and 
Appendix).

 3. Portfolio theory of investment science (Markowitz (1991)) is extended 
from the classical single-actor case to the case of multiple competing 
actors in the single leader/multiple followers setting of our problem. We 
provide portfolio selection models for risk-averse actors in Section 6 that 
extend the notion of efficient frontier familiar from investment science. 
Examples are provided that highlight the new features of multi-actor 
efficient frontiers not found in the classical case.

Besides, we provide in Section 2 a brief overview of the existing literature 
on coordination models for supply chains and the related applications in 
telecommunications, placing this paper in the general research context. 
Section 5 contains a case study and related numerical results of the application 
of the models from Sections 3, and 4 to a problem of the design of mobile 
platform services.

2. Literature review

Literature in incentive definition for supply chain coordination is less 
extensive than its counterpart on centralized supply chains, where one entity 
aims to optimize the entire system performance. This is mainly due to the 
intrinsic difficulties that this approach entails. The policymaker faces the 
same challenges to optimize system performance but, on top of that, a revenue 
reallocation scheme is required to maintain the interest and participation of all 
the agents. Many incentive schemes have been studied assuming deterministic 
demand. Some research was focused on collaboration patterns stemming from 
the use of quantity discounts by Crowther (1964), Dolan (1987), Lal and Staelin 
(1984) and in particular Parlar and Wang (1994) who studied the coordination 
of production and ordering decisions as a Stackelberg game between a supplier 
and a retailer considering a quantity discount pricing. However, quantity 
discounts are usually not able to optimize system performance when there are 
heterogeneous buyers and/or multiple products.
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In addition to quantity discount policies, an alternative approach based 
on revenue-sharing mechanisms has been proposed. Under this viewpoint, 
the system is first jointly optimized and after this the revenues are shared 
between the supplier and the retailers. The effective implementation of such 
a policy strictly depends on the availability of a revenue-sharing scheme that 
is acceptable to all parties. Goyal (1976) proposes to distribute the revenues 
to supply chain members proportionally according to their costs. Jogeklar and 
Tharthare (1990) allocated the profit by requiring the customers to pay for the 
processing cost they impose on the producer, while the producer lowers the 
unit price in return.

The paper closest to ours is that of Gerchak and Wang (2004). They 
obtain coordination by considering a Stackelberg game between the retailer 
and a group of suppliers which are supposed to interact among themselves to 
reach a Nash Equilibrium on quantities delivered to the retailer. In turn, the 
retailer picks an appropriate vector of revenue shares in order to induce the 
Nash Equilibrium of the followers which is most profitable to her. The authors 
find out that the final quantity delivered and assembled, which is determined 
by the revenue shares set by the assembler to maximize her own profit, is in 
general not equal to the quantity which would optimize the entire system. The 
paper of Cachon and Lariviere (2005) presents the opposite viewpoint, letting 
the suppliers choose the revenue sharing vector, while the retailer selects the 
quantities to order.

The literature classifies two kinds of business models for the collaborative 
provision of services around platforms (Ballon and Heesvelde (2011)): a 
brokered model where the provision is hierarchically coordinated by one of 
the agents who aims at extracting the largest possible share of value out of 
the provision, and a distributed model, where the distribution of bargaining 
power is balanced among the agents involved. The brokered model can be 
mathematically described by utilising the concept of Stackelberg Game, as 
done in Gerchak and Wang (2004), Chernonog et al. (2015), Avinadav and 
Perlman (2015a,b), Yang and Wang (2017), Govindan and Malomfalean 
(2019) and solved by means of bilevel coordination problems as in Gaivoronski 
and Zoric (2008), Pisciella and Zoric (2009), Pisciella (2012), Pisciella and 
Gaivoronski (2017). Recent research has introduced risk management in the 
coordination of a single seller and single purchaser (Fan and Shou (2020)).

This paper distinguishes itself from the previous literature by considering 
the provision of several services that share some of the same components in 
different proportions in a stochastic setting with both discrete and continuous 
probability distributions. Besides, we consider more realistic models of service 
providers who possess different provision capacities and different risk attitudes. 



158 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

This allows us to develop and solve novel bilevel stochastic optimization models 
that show how the actors can select the portfolios of services to participate 
in, something that was not possible with the previous approaches. In addition, 
due to the complexity of the resulting models, we place the emphasis on the 
combination of analytical study and numerical solution.

3. Modelling the collaborative service provision 

We model the design of a service platform that provides a portfolio of complex 
modular data services to a population of users. Each service j is defined by a 
set of modules i = 1,...,Nj. For the sake of uniformity we call here “modules” a 
large set of entities from which a service is actually composed and/or that are 
necessary for the functioning of the service. For example, it can be a software 
component or application that makes part of a service. These modules are 
measured with appropriate module-specific units like man/hours, bandwidth, 
monetary equivalent, etc. A service j is described by the amount of  λij of each 
module i necessary for provision of a service unit

 ( )1= ,..., ,..., .j j ij Njλ λ λ λ  (1)

The management of the service platform is the objective of an actor 
described as a Service Aggregator (SA). He/she has to decide which 
services to include in the platform service portfolio. This actor provides the 
aggregation module and possibly other modules to the platform services. The 
most important aspect of his/her role is to offer incentives that will make other 
actors eager to participate. We shall refer to these other actors uniformly as 
Service Providers (SP), while their established industrial designation can be 
various (service provider, developer etc.).

We consider a group I of such service providers. They may decide to 
contribute their modules to a set of composite platform services aggregated 
by Service Aggregator, or, alternatively, to engage in service provision 
outside this service platform. They make their decision by selecting the 
optimal allocation of their provision capacity among the platform services 
and off-platform service provision activities. For the sake of clarity, we shall 
assume here that each service provider supplies only one module i that is 
different from other modules. Thus, we can consider the provider i ∈ I as the  
agent-supplying module i. We denote by Pi the set of platform services to 
which the service provider i can contribute, and by εi the set of off-platform 
services to which he/she can supply his/her module. The set of actors who 
supply modules necessary for the provision of service j is denoted by Ij. 
We consider the detailed service composition as in (1) only for the platform 
services.
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Service provider i has provision capacity Wi. Denoting by qij the amount of 
provision capacity that provider i allocates to service j we obtain the following 
capacity constraint of the i-th service provider:

 
∈

≤∑
i i

ij
j

q W
P E

 (2)

The Service Aggregator decides the price pj for a unit of service j offered 
to the end users. In this paper we take this price as fixed and do not consider 
the problem of its selection. Since we are focusing on the problem of design 
of the service platform, it is natural to consider the future demand for different 
services in the platform service portfolio as uncertain. More specifically, it 
is assumed that the demand for service j ∈ Pi is random and takes the finite 
number of values djs with probabilities πs, where s is used to index demand 
scenarios, s ∈ Ω. The case when demand is distributed according to a more 
general and possibly continuous distribution is considered in Section 5.

Taking into account the service composition (1), the demand for module 
i resulting from demand djs for service j under scenario s ∈ Ω will be λijdjs. 
While modeling the design stage, we can assume that the service provider i 
allocates her capacity qij to service j before demand is known. Therefore, part 
of this capacity yijs may remain spare when the demand scenario s occurs. 
Thus, the actual volume of the module delivery by provider i to service j under 
scenario s will be qij – yijs. It can not exceed the required amount λijdjs: 

 , , .ij ijs ij js iq y d j sλ− ≤ ∈ ∈ΩP  (3)

In the case of external opportunities j ∈ Ei, we denote by djs the direct 
demand for module i under scenario s. Therefore the demand constraint 
similar to (3) in the case j ∈ Ei takes the form:

 , , .ij ijs js iq y d j s− ≤ ∈ ∈ΩE  (4)

If the provider i allocates capacity qij for supplying component i to 
service j and amount yijs goes unused under scenario s then according to (1)  
the maximal amount of demand for service j that will be served under  
scenario s is

 ,ij ijs

ij

q y
λ
−

which is true for any i ∈ Ij.  This yields an additional set of constraints on the 
decisions of the provider i:

 { }, \ij ijs kj kjs
j

ij kj

q y q y
k i

λ λ
− −

≤ ∈ I  (5)



160 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

The revenue from the sale of the bundled service is collected by Service 
Aggregator. In order to incentivize other providers to participate in service 
provision, he/she should share a part of this revenue with every required service 
provider. Let us denote by γij the share of the revenue from the provision of 
service j allocated to provider i by the Service Aggregator,

 0, = 1.ij ij
i j

γ γ
∈

≥ ∑
I

We have assumed here that Service Aggregator provides the aggregation 
module to every service j. Then the revenue of provider i from delivering his/
her component to service j under scenario s will be

 ( )ij
j ij ijs

ij

p q y
γ
λ

−

In addition, provider i will get revenue for delivering her module to 
external opportunities j ∈ Ei at price pij that under scenario s will be

 ( ).ij ij ijsp q y−

Besides, provider i will bear cost ci per unit of allocated capacity. We 
assume that this cost exists irrespective of the volume of actual delivery. Then 
the expected profit of service provider i is as follows: 

 ( ) ( )
γ

π π
λ∈Ω ∈ ∈Ω ∈ ∈

− + − −∑ ∑ ∑ ∑ ∑
i i

ij
s j ij ijs s ij ij ijs i ij

s j s j jiji i

p q y p q y c q
P E P E

 (6)

We shall assume in this section that the service providers are risk neutral 
and maximize their expected profits as in (6), the case of risk-averse service 
providers will be considered in Section 6. Therefore, component provider i 
has the problem of maximizing function (6) subject to constraints (2)–(5). We 
shall refer to this problem as the CP problem.

If not for constraint (5), for fixed γij this problem can be recognized as 
a linear stochastic programming problem with recourse with the first stage 
variables qij and recourse variables yijs, written in the form of deterministic 
equivalent (see Birge and Louveaux (1997), Kall and Wallace (1994) for further 
details on such problems). However, constraint (5) makes its solution depend 
on the decision variables of all providers i ∈ I. Therefore in order to define 
an appropriate solution for problem CP we have to invoke the equilibrium 
concepts of the game theory, in this case, the notion of Nash equilibrium. 
Thus, the CP problem constitutes a stochastic equilibrium problem.

Before we proceed with the analysis of problem CP, let us simplify it  
dispensing with the secondary features and concentrating on the main issues. 
First of all, let us assume that there is only one off-platform opportunity for 
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each provider with infinite demand and price p0
i > ci. Then from (6) follows 

that all the capacity that is left after the allocation to platform services will 
be allocated to this external opportunity. Denoting this capacity by q0

i we can 
reformulate constraint (2) as follows:

0 =i i ij
j i

q W q
∈

− ∑
P

Substituting this in (6) and remembering that εi is a singleton with 
corresponding qij and pij denoted by q0

i and p0
i we obtain the following 

expression for profit: 

0 0( ).ij j ij j
i ij s ijs i i i

j P j P sij iji i

p p
p q y W p c

γ γ
π

λ λ∈ ∈ ∈Ω

 
− − + −  

 
∑ ∑∑

Observing that the term Wi(p0
i – ci) does not depend on decision variables, 

we can reformulate the problem (2)–(6) as 

 0( ) = max,
ij j ij j

ij i ij s ijs
q j P j P sij ijs ij iji i

p p
SP p q y

y
γ γ

γ π
λ λ∈ ∈ ∈Ω

 
− −  

 
∑ ∑∑  (7)

subject to 
 ij i

j i

q W
∈

≤∑
P

 (8)

 , ,ij ijs ij js iq y d j P sλ− ≤ ∈ ∈Ω  (9)

 { }, \ , ,ij ijs kj kjs
j i

ij kj

q y q y
k i j s

λ λ
− −

≤ ∈ ∈ ∈ΩI P  (10)

0, 0ij ijsq y≥ ≥

where we have stressed the dependence of its solution on the revenue shares 
γij. Observe that the objective function in (7) can be equivalently expressed as 

 ( ) 0ij j
s ij ijs i ij

j P s j Piji i

p
q y p q

γ
π

λ∈ ∈Ω ∈

− −∑∑ ∑   (11)

Let us consider in more detail the set of constraints (10). Suppose that j is 
fixed. Since for any i, k ∈ Ij the constraint

ij ijs kj kjs

ij kj

q y q y
λ λ
− −

≤
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belongs to the set of constraints of the problem (7)–(10) of actor i and constraint

kj kjs ij ijs

kj ij

q y q y
λ λ
− −

≤

belongs to the set of constraints of the problem (7)–(10) of actor k then the 
feasible set of the strategies of both actors will be the same if the inequality 
signs in these constraints will be changed to equality:

=kj kjs ij ijs

kj ij

q y q y
λ λ
− −

which yields

= , .ijs ij kj kjs

ij ij kj kj

y q q y
s

λ λ λ λ
− + ∈Ω

Suppose now that i has the largest ratio qij/λij among all l ∈ Ij, k  has the next 
largest and 

> .ij kj

ij kj

q q
λ λ

Taking

= , =ij ij' '
ij kj ijs kjs

kj kj

q q y y
λ λ
λ λ

 

 
we get

= =
' '
ij ijs kj kjs ij ijs

ij kj ij

q y q y q y
λ λ λ
− − −

 
but q'

ij < qij. Therefore (q'
ij, y'

ijs, s ∈ Ω) belong to the feasible set of actor i. 
Besides, if we substitute decisions (qij, yijs, s ∈ Ω) of actor i with these decisions 
then the feasible sets and objective functions of all other actors will remain 
unchanged and the value of the objective of actor i will increase due to (11). 
Thus, the new set of strategies composed of strategy (q'

ij, y'
ijs, s ∈ Ω) of actor 

i and original strategies of all other actors will dominate the original set of 
strategies. Therefore, the equilibrium solution of the problems (7)–(10) will 
remain unchanged if constraint

=ij kj

ij kj

q q
λ λ

is added to the feasible set of actors i, k. Similarly we get to the same 
conclusion if several actors have the largest ratio qij/λij. Repeating this 
argument recursively we obtain that the set of constraints
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 = , ,ij kj
j i

ij kj

q q
k I j

λ λ
∈ ∈P  (12)

can be added to the problem (7)–(10) of every actor i ∈ I without changing  
the equilibrium solution. Constraints (10) in this case can be written 
equivalently as

 { }= , \ , ,ijs kjs
j i

ij kj

y y
k i j s

λ λ
∈ ∈ ∈ΩI P  (13)

Let us dispense with constraints (13) altogether, considering problems 
(7)–(9), (12). This will increase the feasible set of strategies for each actor. 
However, the equilibrium solution will remain unchanged again. To see this, 
let us consider a fixed j, actors i, k ∈ Ij and scenario s ∈ Ω. Suppose that for 
some decisions qij, qkj, yijs, ykjs feasible for problems (7)–(9), (12) we have 

> .ijs kjs

ij kj

y y
λ λ

Respective constraints (9) for these i, j, k, s take the form

 ijs ij
js

ij ij

y q
d

λ λ
≥ −  (14)

 kjs kj
js

kj kj

y q
d

λ λ
≥ −  (15)

Let us take

= <ij'
ijs kjs ijs

kj

y y y
λ
λ

Due to (12) and (15) y'
ijs will be feasible for (14). At the same time since  

y'
ijs < yijs the objective of actor i will increase due to (7). Therefore, the set of 

strategies where yijs is substituted by y'
ijs will dominate the original set, but for 

this set the respective constraint (13) is satisfied. Thus, any set of feasible 
strategies of the problem (7)–(9), (12) is dominated by a feasible set of 
strategies for which also constraint (10) is satisfied. Therefore the equilibrium 
solutions of the problems (7)–(9), (12) and (7)–(10), (12) coincide. With this 
we have proved that the set of equilibrium solutions of the problem (7)–(10) 
coincides with the set of equilibrium solutions of the following problem: 

 0( ) = max,
ij j ij j

ij i ij s ijs
q j P j P sij ijs ij iji i

p p
SP p q y

y
γ γ

γ π
λ λ∈ ∈ ∈Ω

 
− −  

 
∑ ∑∑  (16)
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subject to 

 ij i
j i

q W
∈

≤∑
P

 (17)

 , ,ij ijs ij js iq y d j sλ− ≤ ∈ ∈ΩP  (18)

 { }\ ,ij kj
j i

ij kj

q q
k i j

λ λ
≤ ∈ ∈I P  (19)

0, 0ij ijsq y≥ ≥

This problem has a smaller number of constraints compared to (7)–(10) 
and for this reason, we shall study its solution.

Let us assign index i = 1 to the Service Aggregator. Solving the equilibrium 
problem (16)–(19) for fixed shares γij he will obtain his optimal decisions 
q1j(γj) and y1js(γj) for each service j as the function of shares γj = {γij, i ∈ Ij}. 
Then he selects the shares γj, maximizing his equilibrium profit: 

 1 10
1 1 1

1 1

( ) ( )max j j j j
j j s js j

j P j P sj j ji i

p p
p q y

γ

γ γ
γ π γ

λ λ∈ ∈ ∈Ω

 
− −  

 
∑ ∑∑  (20)

subject to 
 = 1ij

i j

γ
∈
∑
I

 (21)

 0ijγ ≥

This decision process can be described as a Stackelberg game. In this 
game Service Aggregator is the leader and service providers are the followers. 
The leader selects revenue shares and communicates them to the followers. 
The followers select their capacity allocations solving the equilibrium 
problem (16)–(19). The leader divides the revenue by selecting the shares 
that maximize his equilibrium profit. In the next section, this model is further 
reformulated and solved using approaches of bilevel programming (see Bard 
(1998), Dempe (2002)).

4. MILP reformulation of nonlinear Stackelberg model 

In order to solve the bilevel problem with (20)–(21) as the upper level and 
(16)–(19) as the lower level we formulate the Karush-Kuhn-Tucker conditions 
for the Nash equilibrium of the lower level and add these conditions to the 
upper level, obtaining a single-level problem (see Bard (1998)).

The Nash Equilibrium is obtained as the joint solution of the optimality 
conditions of all the decision problems of all actors (Bazaraa and Shetty 
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(2006)). Adding these conditions for the problems (16)–(19) for all i ∈ I to 
the problem (20)–(21) yields the following single level optimization problem:

 1 10
1 1 1

1 1
max

, , , , ,
j j j j

j s js
c d eq j P j P sj jij ijs i ijs ikj ij i i

p p
p q y

y

γ γ
π

λ λµ µ µ γ ∈ ∈ ∈Ω

 
− −  

 
∑ ∑∑   (22)

 
= 1,ij

i j

j Jγ
∈

∈∑
I

 { }
0 , , ,

\

e
ikj ij jc d

i ijs i i
s ij ijk j

p
p i I j

i

µ γ
µ µ

λ λ∈Ω ∈

+ + ≥ − ∈ ∈∑ ∑
I

P

 , , , ,ij jd
ijs s i

ij

p
i I j s

γ
µ π

λ
≤ ∈ ∈ ∈ΩP

 , ,ij i
j i

q W i I
∈

≤ ∈∑
P

 , , ,ij ijs ij js iq y d i I j sλ− ≤ ∈ ∈ ∈ΩP

 { }0, , , \ ,ij kj
i j

ij kj

q q
i I j k i

λ λ
− ≤ ∈ ∈ ∈P I  (23)

 
= 0, ,c

i i ij
j i

W q i Iµ
∈

 
− ∈  

 
∑
P

 ( ) = 0, , , ,d
ijs ij js ij ijs id q y i I j sµ λ − + ∈ ∈ ∈ΩP

 { }= 0, , , \ ,kj ije
ikj i j

kj ij

q q
i I j k iµ

λ λ
 

− ∈ ∈ ∈  
 

P I  (24)

 { }
0 = 0, , ,

\

e
ikj ij jc d

ij i ijs i i
s ij ijk j

p
q p i I j

i

µ γ
µ µ

λ λ∈Ω ∈

 
 + + − + ∈ ∈ 
 
 

∑ ∑
I

P

 = 0, , , ,ij j d
ijs s ijs i

ij

p
y i I j s

γ
π µ

λ
 

− ∈ ∈ ∈Ω  
 

P

 , , , , , 0c d e
ij ijs i ijs ikj ijq y µ µ µ γ ≥
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This problem can be simplified. Observe that the set of constraints (23) 
contains the following pairs:

 0, 0, , ,ij kj kj ij
j

ij kj kj ij

q q q q
j i k

λ λ λ λ
− ≤ − ≤ ∈ ∈P I

Consequently,

 = , , ,ij kj
j

ij kj

q q
j i k

λ λ
∈ ∈P I  (25)

Therefore, complementarity constraints (24) become redundant and can 
be dropped. Besides, many constraints in (23) become redundant and can be 
pruned as follows. Let us select for every j ∈ P some index rj ∈ Ij. Then (23), 
(25) are equivalent to the following:

 { }= = , , , \
rj kj

j j j
kjrj

q j q
Q j i k r

jλ λ
∈ ∈P I  

Therefore, we can make in problem (22) the following substitution 

 = , ,ij ij j iq Q i I jλ ∈ ∈P

substituting maximization with respect to qij by maximization with respect to  
Qj, In addition, let us denote

 = , , ,ijs ij ijs iy z i I j sλ ∈ ∈ ∈ΩP

Making all these substitutions we obtain:

 ( )0
1 1 1 1 1max

, , , , , j j j j j s j js
c d e j j sij j ijs i ijs ikj

p p Q p z
Q zγ

γ λ π γ
µ µ µ ∈ ∈ ∈Ω

− −∑ ∑∑
P P

 (26)

  = 1,ij
i j

jγ
∈

∈∑
I

P   (27)

 
{ }

0 , , ,
\

c d e
ij j ij i ij ijs ikj ij i i

s k j

p p i I j
i

γ λ µ λ µ µ λ
∈Ω ∈

− − − ≤ ∈ ∈∑ ∑
I

P   (28)

    
 0, , , ,d

ij j s ij ijs ip i I j sγ π λ µ− + ≤ ∈ ∈ ∈ΩP   (29)

 , ,ij j i
j i

Q W i Iλ
∈

≤ ∈∑
P

 (30)

  , , ,j ijs js iQ z d i I j s− ≤ ∈ ∈ ∈ΩP  (31)
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  = 0, ,c
i i ij j

j i

W Q i Iµ λ
∈

 
− ∈  

 
∑
P

  (32)

 ( ) = 0, , , ,d
ijs js j ijs id Q z i I j sµ − + ∈ ∈ ∈ΩP  (33)

{ }
0 = 0, , ,

\

c d e
j ij i ij ijs ikj ij j ij i i

s k j

Q p p i I j
i

λ µ λ µ µ γ λ
∈Ω ∈

 
 + + − + ∈ ∈ 
 
 

∑ ∑
I

P  (34)

    
 ( ) = 0, , , ,d

ijs ij j s ij ijs iz p i I j sγ π λ µ− ∈ ∈ ∈ΩP  (35)

  , , , , , 0.c d e
ij j ijs i ijs ikjQ zγ µ µ µ ≥  (36)

This problem has quadratic terms γ1jz1js and γ1jQj in the objective and 
nonlinear complementary slackness constraints (32)–(35). In order to 
transform it into a mixed integer linear problem we utilize the following 
proposition.

Proposition 1 Consider the problem 

 
0

max
x

x Rx c xΤ Τ

≥
+  (37)

 1 1A x b≤  (38)

 ( )1 1 = 0x E A x bΤ Τ −  (39)

 2 2=A x b  (40)

where x ∈ Rn, matrices R, E, A1, A2 have dimensions n × n, m1 × n, m1 × n,  
m2 × n correspondingly and the following conditions are satisfied
 1. Any element of vector Ex coincides with some element of vector x and 

can not attain zero simultaneously with corresponding element of vector  
A1x – b1 at the optimal solution of problem (37)–(40).

 2. Feasible set defined by (38)–(40) is bounded.
Let x = (x^ , x–) where x– contains all elements of x for which exists identical 

element of Ex and u = (u^ , u–) is a vector with binary components with  u–
corresponding to x–. Then the problem (37)–(40) is equivalent to the following 
mixed integer linear programming (MILP) problem: 

 ( )1 1 2 2
, , 1 2 3

1
max, , 2x u

c x b b
σ

σ σ
σ σ

Τ Τ Τ+ +  (41)

 1 1A x b≤  (42)
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 2 2=A x b  (43)

 ( ) 1 1 2 2 3R R x A A E cσ σ σΤ Τ Τ Τ+ − − − ≤ −  (44)

 0x Mu− ≤  (45)

 ( ) 1 1 2 2 3 nR R x A A E Mu M cσ σ σΤ Τ Τ Τ− + + + + + ≤ +1  (46)

 1 11mA x Mu M b− + ≤ −1  (47)

 
1 0Muσ − ≤  (48)

 
1 0Muσ− − ≤  (49)

 3 1mMu Mσ + ≤ 1  (50)

{ }3, 0, 0,1 nx uσ ≥ ∈

where M is a large enough positive number and 1n, 1m1
 are column vectors of 

ones with lengths n and m1. 
The proof of this proposition can be found in the Appendix. In the 

notations of this proposition (γij, Qj, zijs, μc
i, μd

ijs, μe
ikj) corresponds to x, constraints  

(28)–(31) to constraint (38), constraint (27) to constraint (40), complementarity 
constraints (32)–(35) to constraint (39). Each row of matrix E in (39) in this 
case corresponds to one of the variables (Qj, zijs, μc

i, μd
ijs). It has one at the 

place that corresponds to its variable, while all other elements are zeros. 
Condition 1 is equivalent to the requirement that at the optimal solution of 
linear programming problem (16)–(19) for any fixed i primal (dual) variables 
can not be zeros if dual (primal) constraints are satisfied with equality.

Let us introduce binary and dual variables for constraints of problem  
(26)–(35) that correspond to (σ1, σ2, σ3, u, v) of problem (41)–(50). The 
following table (Table 1) shows the correspondence between the variables of 
the two problems.

Let us introduce the constraints of the resulting problem by groups that 
correspond to (44)–(50) (constraints that correspond to (42), (43) are original 
constraints (27)–(31)).
 1. Constraints that correspond to (44). In this group we place the 

corresponding variable to the left of the constraint for the purposes of 
clarity.
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 1 1 1 1: 0,z
j j j j s js j s js j

s s
p Q p z p jγγ π π θ θ

∈Ω ∈Ω

− + − ≤ ∈∑ ∑ P   (51)

 , 1: 0, , 1,z
ij j s ijs j i

s
i p i I i jγγ π θ θ

∈Ω

≠ − ≤ ∈ ≠ ∈∑ P

 
0

1 1 1: ,c d q
j j j ij i ijs ij j

i I i I s i Ij j j

Q p p jγ λ θ θ φ λ
∈ ∈ ∈Ω ∈

− − − ≤ ∈∑ ∑∑ ∑ P

 
1 1 1 1 1: 0, ,d z

js j s j js jsz p j sπ γ θ φ− + − ≤ ∈ ∈ΩP

 , 1: 0, , 1, , ,d z
ijs ijs ijs iz i i I i j sθ φ≠ − ≤ ∈ ≠ ∈ ∈ΩP

 : 0,c q c
i ij ij i

j i

i Iµ λ θ φ
∈

− ≤ ∈∑
P

 : 0, , , ,d q z d
ijs ij ij ij ijs ijs ii I j sµ λ θ λ θ φ− − ≤ ∈ ∈ ∈ΩP

 : 0, , ,e q
ikj ij ii I j k iµ θ ≤ ∈ ∈ ≠P

 2. Constraints that correspond to (45):

 0, ,ij ij iM i I jγγ δ− ≤ ∈ ∈P  (52)

 0, , ,q
j ij iQ M i I jδ− ≤ ∈ ∈P

 0, , , ,z
ijs ijs iz M i I j sδ− ≤ ∈ ∈ ∈ΩP

 0, ,c c
i iM i Iµ δ− ≤ ∈

 
0, , , ,d d

ijs ijs iM i I j sµ δ− ≤ ∈ ∈ ∈ΩP

 0, , , ,e e
ikj ikj iM i I j k iµ δ− ≤ ∈ ∈ ≠P

Table 1. Correspondence between variables of problem (41)–(50) and problem, resulting from  
(26)–(35).

 Problem (41)–(50)  Problem (26)–(35)

  x γij, Qj, zijs, μc
i, μd

ijs, μe
ikj 

  σ1 θ c
i, θd

ijs, θq
ij, θ z

ijs 

σ2  θ γ
j 

σ3  ϕc
i, ϕd

ijs, ϕq
ij, ϕz

ijs 

  u δγ
ij, δ

q
ij, δ

z
ijs, δc

i, δd
ijs, δe

ikj 

u–  δq
ij, δ

z
ijs, δc

i, δd
ijs 
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 3. Constraints that correspond to (46):

 1 1 1 ,z
j j j s js j s js j j

s s
p Q p z p M M jγ γπ π θ θ δ

∈Ω ∈Ω

− + − + + ≤ ∈∑ ∑ P   (53)

 
1 , , 1,z

j s js j ij i
s

p M M i I i jγ γπ θ θ δ
∈Ω

− + + ≤ ∈ ≠ ∈∑ P

 0
1 1 1 ,c d q q

j j ij i ijs ij j j
i I i I s i Ij j j

p M M p jγ λ θ θ φ δ λ
∈ ∈ ∈Ω ∈

− + + + + ≤ − ∈∑ ∑∑ ∑ P

 
1 1 1 1 , ,d z z

j s j js js jsp M M j sπ γ θ φ δ− + + ≤ ∈ ∈ΩP

 0, , 1, , ,d z z
ijs jjs ijs iM i I i j sθ φ δ− + + ≤ ∈ ≠ ∈ ∈ΩP

 ,q c c
ij ij i i

j i

M M i Iλ θ φ δ
∈

− + + ≤ ∈∑
P

 
, , , ,q z d d

ij ij ij ijs ijs ijs iM M i I j sλ θ λ θ φ δ− + + + ≤ ∈ ∈ ∈ΩP

 , , ,q e
ij ikj iM M i I j k iθ δ− + ≤ ∈ ∈ ≠P

 4. Constraints that correspond to (47):

 ,c
ij j i i

j i

Q M M W i Iλ δ
∈

− + ≤ − ∈∑
P

  (54)

 , , , ,d
j ijs ijs js iQ z M M d i I j sδ− + + ≤ − ∈ ∈ ∈ΩP

 0

\{ }
, , ,γ λ µ λ µ µ δ λ

∈Ω ∈

− + + + + ≤ − ∈ ∈∑ ∑c d e q
ij j ij i ij ijs ikj ij ij i i

s k j i
p M M p i I j

I

P

 , , , ,d z
ij j s ij ijs ijs ip M M i I j sγ π λ µ δ− + ≤ ∈ ∈ ∈ΩP

 5. Constraints that correspond to (48):

 0,c c
i iM i Iθ δ− ≤ ∈   (55)

 0, , , ,d d
ijs ijs iM i I j sθ δ− ≤ ∈ ∈ ∈ΩP

 0, , ,q q
ij ij iM i I jθ δ− ≤ ∈ ∈P

 0, , , ,z z
ijs ijs iM i I j sθ δ− ≤ ∈ ∈ ∈ΩP
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 6. Constraints that correspond to (49):

 0,c c
i iM i Iθ δ− − ≤ ∈   (56)

 0, , , ,d d
ijs ijs iM i I j sθ δ− − ≤ ∈ ∈ ∈ΩP

 0, , ,q q
ij ij iM i I jθ δ− − ≤ ∈ ∈P

 0, , , ,z z
ijs ijs iM i I j sθ δ− − ≤ ∈ ∈ ∈ΩP

 7. Constraints that correspond to (50):

 ,c c
i iM M i Iφ δ+ ≤ ∈   (57)

 
, , ,d d

ijs ijs iM M i I j sφ δ+ ≤ ∈ ∈ ∈ΩP

 , , ,q q
ij ij iM M i I jφ δ+ ≤ ∈ ∈P

 
, , , ,z

ijs ijs iM M i I j sφ δ+ ≤ ∈ ∈ ∈ΩP

Finally, we obtain an equivalent expression for the objective function 
from (41) that yields the MILP equivalent to (26)–(35):

0 0
1 1

1max
2

c d q
j j i i js ijs i ij ij j

j i I i I j s i I j ji i

p Q W d p γλ θ θ λ θ θ
∈ ∈ ∈ ∈ ∈Ω ∈ ∈ ∈

 
− + + + +  
 

∑ ∑ ∑∑∑ ∑∑ ∑
P P P P

 (58)

where maximization is performed subject to constraints (27)–(31), (51)–(57) with 
respect to γij, Qj, zijs, μc

i, μd
ijs, μe

ikj, θ c
i, θd

ijs, θq
ij, θ z

ijs, θ γ
j, ϕc

i, ϕd
ijs, ϕq

ij, ϕz
ijs, δ

γ
ij, δ

q
ij, δ

z
ijs, δc

i, δd
ijs, 

δe
ik with γij, Qj, zijs, μc

i, μd
ijs, μe

ikj, ϕc
i, ϕd

ijs, ϕq
ij, ϕz

ijs ≥ 0 and δγ
ij, δ

q
ij, δ

z
ijs, δc

i, δd
ijs, δe

ikj binary. This 
MILP problem provides the same solution of the original problem (16)–(21) and 
can be solved by available MILP solvers.

5. Nonlinear models with explicit characterization  
of Nash equilibria

In this section, we take an alternative route to the analysis of the Stackelberg 
game with the service aggregator as the leader and the service providers as 
followers. It begins with an analytical study of the properties of the solution 
of the profit-maximizing problems of the followers formulated in the most 
general nonlinear way with possibly continuous distributions. This allows us 
to find an analytical expression for the Nash equilibrium among the followers 
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and design a numerical algorithm for its computation. After this, we formulate 
the leader problem which consists of finding the Nash equilibrium that is 
optimal for the aggregator. The resulting nonlinear programming problem is 
solvable with available NLP software.

The advantage of this approach consists of the possibility to consider the 
risk aversion of the agents in a relatively easy way. It is done by adding to 
the problems of the actors’ constraints on risk which are handled similarly 
to the capacity constraints. Its drawback is that the leader problem is usually 
nonconvex and additional effort should be spent in order to find the global 
optimum and not a local one.

We start as in Section 3 by formulating service aggregator/service 
providers leader/followers’ problem. Similarly, to Section 3 we assume that 
there is infinite external demand for module i and there is the external price  
p0

i > ci for this module. Then all spare capacity will be utilized for serving the 
external demand. The service providers’ profit similar to (6) becomes 

0min , .min kj
ij j d j i i ij i ij k Ij jj kji i

q
p d p W q cWγ

λ∈∈ ∈

       + − −           
∑ ∑
P P



Here the first term is the sum of expected revenue shares that are due to 
provider i for his participation in platform services. The served demand is

 min ,min kj
j

k I j kj

q
d

λ∈

    
  

    
  (59)

that is, the smallest value between the actual realization of the demand and 
the smallest demand serving the capability allocated by the participating 
providers. The second term is the revenue generated by the satisfaction of 
the external demand for module i, while the third term is the provision cost 
which does not depend on the decision variables because the whole capacity 
is employed. Dropping the terms not depending on the capacity distribution 
qij among platform services and adding the capacity constraint we obtain the 
following problem: 

 0min ,max min
0

kj
ij j d j i ijj k Iq j jj kjij i i

q
p d p qγ

λ∈∈ ∈

     −  
≥     
∑ ∑
P P

  (60)

 ij i
j i

q W
∈

≤∑
P

 (61)

This problem is the exact reformulation of problem (7)–(10) for the case 
of arbitrary distributions of demand: constraints (9), (10) are incorporated into 
the nonlinear expression (59) for the satisfaction of demand.
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We start by describing the set of Nash equilibria for the game where the 
payoffs of the agents are defined by (60) and feasible sets of their strategies 
by (61). This is done by embedding (60)–(61) into the more general problem 
defined below.

Let us consider i = 1:N actors with actions xi ∈ X i ⊆ Rn. The set X i of 
admissible actions is defined as follows:

 ( ){ }= | , 0, 0, = 1:i i i i i i i
kX x x V x F x k K∈ ≥ ≤  (62)

The payoff function F i
0(x), x = (x1,...,xN) of agent i has the following form:

 ( ) ( )0 0 1( ) = ( , ), ( ) = ( ),..., ( ) , ( ) = .mini i i i
n j j

i
F x F x z x z x z x z x z x x   (63)

Let us define the collection x– = (x–1,...,x–N) of the agents’ strategies as follows

 ( )1 ˆ= ,..., , min ,≤ ∀k i
n j j

i
x x x x x k  (64)

where x^ i is some solution of the following problem

 0 ( , )max i i i

i ix
F x x

X∈
  (65)

The following proposition shows that under certain conditions any x– that 
satisfies (64), (65) is a Nash equilibrium and there are no other Nash equilibria 
in the game of actors with payoff functions (63). The vector inequalities are 
understood componentwise.

Proposition 2. Suppose that the following conditions are satisfied.
 1. Functions Fi

k(xi, z) are nondecreasing for xi ∈ X i, namely if yi, ui ∈ X i and  
yi ≥ ui then 

 ( ) ( ), ,i i i i
k kF y z F u z≥

 2. Sets V i ⊆ R+ are monotone, namely if ui ∈ V i and 0 ≤ yi ≤ ui, then yi ∈ V i.
 3. Function Fi

0(xi, z) is nonincreasing with respect to xi ∈ X i, namely if  
yi ≥ ui then (y i, z) ≤ Fi

0(ui, z).
 4. Function Fi

0(xi, xi) is monotonous to maximum on X i, namely if  
yi, ui ∈ X i are such that all their components coincide except y i

j ≠ ui
j then  

Fi
0(y i, yi) ≤ Fi

0(ui, ui) if y i
j ≤  ui

j ≤ x̂i.
Then an arbitrary collection x– of the agent’s strategies is defined in  

(64)–(65) is the Nash equilibrium for the noncooperative game with the 
agent’s payoffs defined by (63).

Suppose, in addition, that inequality in Condition 3 is strict and for any  
i, j there exists solution x̂i of (65) such that for any yi, ui defined as in  
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Condition 4 with y i
j = x̂ i

j and y i
j < ui

j we have Fi
0(y i, yi) > Fi

0(ui, ui). Then any 
Nash equilibrium is defined by (64), (65). 
In order to apply this proposition to (60)–(61) let us make a substitution

=ij ij ijq Qλ

and take Qi = {Qij, j ∈ P}, Q = {Qi, i ∈ I}. Then (60)–(61) takes the form 

 ( )( )
0

max ,
i

i
iQ

Q z Qψ
≥

 (66)

 ij ij i
j i

Q Wλ
∈

≤∑
P

 (67)

where,
 ( ) { } ( )0, = min , , = mini

i ij j d j j i ij ij j kjj k I jj ji i

Q z p d z p Q z Q Qψ γ λ
∈

∈ ∈

−∑ ∑
P P

  (68)

Besides that, we shall consider the problem

 { } 0min ,max
0 ij j d j ij i ij ijjQ j jij i i

p d Q p Qγ λ
∈ ∈

−
≥
∑ ∑
P P

  (69)

subject to constraint (67). We obtain the following characterization of Nash 
equilibria in (60)–(61).

Proposition 3 Suppose that the solution of problem (69) is unique. Then Nash 
equilibria for (60)–(61) exist and for any such equilibrium 

= , ,ij ij j iq Q i I jλ ∈ ∈P  

 { } 0, = arg min , ,max
0j ij i ij j d j ij i ij ijjQ j jij i i

Q Q Q p d Q p Q i Iγ λ∗ ∗

∈ ∈

≤ − ∈
≥
∑ ∑
P P

  (70)

where the maximum in (70) is taken subject to (67) and Qi = {Qij, j ∈ Pi}. 

Proof. The proof consists in checking the conditions of Proposition 2. We take  
Qi as xi in (62), (63), ψ i(Qi, z) from (68) as Fi

0(xi, z), K = 1,  

ij ij i
j i

Q Wλ
∈

−∑
P 

as Fi
1(xi, z), {Qi |Qi ≥ 0} as V i . Then Condition 1 is satisfied due to λij ≥ 0. 

Condition 2 is trivial. Condition 3 is satisfied with strict inequalities because  
p0

i, λij > 0 in (68). Condition 4 and the additional conditions are satisfied 
because ψ i(Qi, Qi) is concave, and has the unique maximum on the feasible 
set and is separable with respect to components of Qi. ▀
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Thus, Proposition 3 shows that the Nash equilibria of (60)–(61) can 
be described by solving problem (69). It is similar to the multi-product 
newsvendor problem with a budget constraint (see Hadley and Whitin (1963), 
Erlebacher (2000), Abdel-Malek and Montanari (2005), Chung and Kirca 
(2008), Dance and Gaivoronski (2012)). However, the second term in (69) is 
different from the second term in the classic newsvendor problems and these 
results can not be utilized here. Therefore, we derive its optimal solution from 
the following proposition

Proposition 4. Consider the problem 

 { }( )
0

min ,max j d j j j jjx j
a d x b x

≥
−∑   (71)

 j j
j

c x W≤∑  (72)

with aj, bj, cj > 0, denote Hj (xj) as the cumulative density function of demand   
dj, 0 ≤ dj  ≤ dj

+. Suppose that dj has positive bounded density hj (dj) for  
dj ∈ [0, dj

+]. Take 

 ( ) 1= 1 ,j j
j j

j

b c
x H

a
ρ

ρ −
 +
−  

 
 (73)

where H j
–1(x) = 0 for x ≤ 0 and suppose that ρ* is a solution of the equation 

 ( ) =j j
j

c x Wρ∑  

if it exists. Then solution of (71), (72) is unique and equals xj (0) if 

 ( )0 <j j
j

c x W∑  (74)

and xj (ρ*) otherwise. 
The proof of this proposition is given in the Appendix. Applying  

Proposition 4 to (70) from Proposition 3 we obtain the following 
characterization of Nash equilibria for (60)–(61).

Proposition 5. Suppose that demands dj are distributed on 0 ≤ dj  ≤ dj
+ with cdf  

Hj(dj) and positive bounded densities.
Then Nash equilibria for (60)–(61) exists and for any such equilibrium 

there exists Qj ≥ 0, j ∈ P such that 

 = , ,ij ij j iq Q i I jλ ∈ ∈P  (75)
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where, 
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=
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 (77)

Vice versa, any Qj satisfying (76), (77) generates a Nash equilibrium through 
(75). 

Proof. Assumptions of Proposition 4 are satisfied with aj = yijpj, bj = p0
iλij,  

cj = λij. Applying this proposition we obtain that the solution Q*
i of problem 

(69) is unique and 

 ( ) ( )0
1= = 1 .ij i i

ij ij i j
ij j

p
Q Q H

p
λ ρ

ρ
γ

∗
∗ ∗ −

 +
 −
 
 

 (78)

with ρ*
i from (77). Due to the uniqueness of the solution, we can apply 

Proposition 3. We substitute (78) into (70) and put maximum inside the 
argument of H j

–1 utilizing its monotonicity, which yields (76). ▀ 
In the most important cases when the service providers do not want to 

concentrate solely on supplying modules to the aggregator and have enough 
spare capacity, bound (76) simplifies to

 
0

1 1 .max ij i
j j

i j ij j

p
Q H

p
λ
γ

−

∈

 
≤ −  

 I
 

Thus, there is a multitude of Nash equilibria in problem (60)–(61). Being 
in a privileged position, the aggregator can strive to achieve the equilibrium 
that maximizes his/her profit. According to (69) and Proposition 5 this 
equilibrium is the solution of the problem (69) for i = 1 subject to additional 
constraint (76). This is a convex optimization problem. The aggregator can 
achieve this equilibrium by announcing it to the service providers because 
they will not have the incentive to deviate from it. In order to compute it the 
aggregator needs to know only the prices p0

i of the external opportunities for 
service providers, no knowledge of their costs is necessary.
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Having described the set of Nash equilibria, we can now formulate the 
upper-level problem of the aggregator in the framework of the single leader/
multiple followers Stackelberg game. As in Sections 3, and 4 we consider the 
following game structure.
 1. The aggregator selects the revenue sharing scheme yij, i ∈ I, j ∈ Pi and 

communicates it to service providers.
 2. The service providers select the equilibrium capacity allocations qij 

maximizing their profits as in (60)–(61).
 3. The aggregator selects the revenue shares that maximize his/her profit, 

taking into account the dependence of the capacity allocations on revenue 
shares.
Utilizing the characterization of the Nash equilibria from Proposition 5 

we obtain the following aggregator’s problem

 { } 0
1 1 10

max min ,, j
j j d j j j jjQij j j
p d Q p Q

γ
γ λ

≥
∈ ∈

−∑ ∑
P P

  (79)

  = 1,ij
i j

jγ
∈
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P   (80)

  1 1j j
j

Q Wλ
∈
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P
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\{1}
1 max ij i i

j j i j ij j

p
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γ

∗
−

∈

 +
 ≤ −
 
 

I
  (82)

where ρ*
i is obtained from (77). This problem has relatively few variables and 

constraints, as opposed to the problems derived in Sections 3, and 4. However, 
we have lost convexity and extra effort should be spent in order to obtain the 
global and not the local maximum.

6. Extension of portfolio theory for competing  
risk-averse agents

The approach developed in the previous section allows us to consider risk-
averse agents. In our selection of risk measures we follow the traditional 
choice of variance of profit, mainly because it is easier to treat analytically. 
Alternative risk measures like CVaR (Rockafellar and Uryasev (2000)) can be 
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also considered. Thus, we assume that agent i wants to limit the variance of 
profit, which following (60) takes the form 

( )
2

= min , min ,min minkj kj
ij j j d jjk I k Ij j jkj kji

q q
R q p d dγ

λ λ∈ ∈∈

               −                     
∑
P

   (83)

where q = {qi, i ∈ I}, qi = {qij, j ∈ Pi}. The problem of agent i becomes 

 0min ,max min
0

kj
ij j d j i ijj k Iq j jj kjij i i

q
p d p qγ
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     −  
≥     
∑ ∑
P P

  (84)

  ij i
j i

q W
∈

≤∑
P

 (85)

  ( ) 2R q σ≤  (86)

where σ2 is some positive number. Making the same substitution qij = λijQij as 
in the previous section, we can apply Proposition 2 in order to characterize 
the Nash equilibria in the game with agents having a payoff (84) and feasible 
sets (85), (86).

Proposition 6. Suppose that the solution Q*
i = {Q*

ij, j ∈ Pi} of problem 

 { } 0
1min ,max

0 ij j d j j ij jjQ j jj

p d Q p Qγ λ
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−
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∈
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∑
P

    (89)

is unique for all i ∈ I. Then Nash equilibria for (84)–(86) exists and any such 
equilibrium is defined by some Q = {Qj, j ∈ P} such that 

 minj ij
i

Q Q∗≤  (90)

taking qij = λijQij. Vice versa, any Q that satisfies (90) defines a Nash 
equilibrium for (84)–(86). 

Proof. Similar to the proof of Proposition 3 we have to check the satisfaction 
of the conditions of Proposition 2 in problem (84)–(86). The only novelty 
in (84)–(86) compared to (60), (61) is the risk constraint (86). Therefore we 
have to check only Condition 1 that is relevant for this constraint. Taking R(q) 
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from (83) as F i
2(xi, z) of Proposition 2 with xi = {qij, j ∈ Pi} we observe that 

F i
2(xi, z) is defined in such a way that does not depend on x i at all. Therefore  

Condition 1 of Proposition 2 is satisfied automatically. ▀
Similarly to (79), (82) the aggregator computes the optimal profit shares  

γij in the risk-averse case by solving the problem

 { }( )0
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  ( )
>1

0 minj ij i
i

Q Q γ∗≤ ≤   (95)

where Q*
ij (γi) are solutions of problems (87)–(89).

It is possible to obtain some analytical results that characterize the 
solutions to these problems in the direction of Proposition 4. However, 
these characterizations will be considerably more complex. The reasonable 
alternative is to organize a two-level solution process where the NLP solver 
of (91)–(95) calls the solver of (87)–(89) when processing the constraints, one 
example of such computation is presented below. Problem (87)–(89) takes a 
specific form depending on the considered demand distributions.

Example 7. Suppose that demands dj are independent and distributed 
uniformly on [0, dj

+]. Then (87)–(89) becomes 
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and constraint (88). 
The value of σ1 from (94) and σi from (89) are risk tolerances of aggregator 

and service providers. Solving problems (91)–(95) and (87)–(89) for different 
values of σi one obtains the dependence of actors’ profits on their risk 



180 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

tolerances. Having such dependencies, the respective decision makers can 
select the optimal balance between risk and profit and implement it selecting 
the optimal distribution of their capacities between the different services 
that the solutions to these problems provide. This capacity of distribution 
can be viewed as the efficient portfolio of services that each actor decides 
to contribute to. The dependence of profit on risk is conceptually similar to 
efficient frontier from finance (see Markowitz (1991)). 

Thus, the collection of problems (91)–(95), (87)–(89) can be seen as 
an extension of the portfolio theory of modern investment science to the 
multiagent environment of collaborative service provision. The structure of 
these problems is also similar to portfolio optimization problems from finance. 
One major novelty here is that, unlike in the traditional portfolio theory,  
the actors’ optimal portfolios depend not only on their own risk tolerances  
but also on the risk tolerances of other participants. For example, the 
aggregator, while solving his/her portfolio problem (91)–(95) should take into 
account also risk tolerances of service providers that enter his/her problem 
through (95).

Figures 1 and 2 highlight some of the differences between the classical 
efficient frontiers of portfolio theory and the multiagent efficient frontiers 
described in this section. They present efficient frontiers (dependence 
of optimal profit on risk) for the case when demand is distributed as in  
Example 7 and there are three agents contributing their modules to the 
composite services: A1, A2 and A3. Agent A1 takes also the role of coordinator. 
Generally, the figures show a pattern familiar to traditional portfolio theory: 
the optimal profit increases monotonically while agents become more risk 
tolerant but the rate of increase diminishes with increasing risk. However, 
there are also substantial differences that are due to the multiagent nature of 
our portfolio problem.

Figure 1 shows the effects of nonuniform risk attitudes among the agents. 
It compares two cases. In the first case, the risk tolerance of all agents in 
the same and simultaneously increases as shown on the horizontal axis. In 
the second case the risk tolerance of agent A1 increases as shown on the 
horizontal axis, but the risk tolerances of remaining agents A2 and A3 are 
kept constant. One can see that in the first case the profit of A1 and the total 
profit of all agents increases faster and reaches saturation sooner than in the 
second case. In other words, when some of the agents exhibit lower levels of 
risk tolerance, they still can achieve higher levels of profit that are associated 
with more aggressive risk-taking behavior in the classical case. However, 
in order for this to happen it is necessary that among them there exists an  
agent (or agents) who is willing to shoulder more risk than it would be 
necessary for him/her in the case of other more risk tolerant participants (in 
this case A1).
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Figure 2 illustrates the effects of capacity constraints and the phenomenon 
of bottleneck agents, unknown in the classical case. The capacity constraint 
like (85) or (93) is present in classical portfolio theory in the form of a budget 
constraint (Zenios (2007)). However, in the classical case it does not affect 
the trade-off between risk and profit because in the case of single agent the 
right-hand side of this constraint can be normalized to one and portfolio can 
be expressed in fractions of the total budget. The multiagent environment is 

Figure 1. Dependence of profit on admissible risk for uniform and nonuniform risk aversion among 
agents.
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very different in this respect, as Figure 2 shows. Three cases are compared 
there: no limit on capacity, a specific capacity constraint for each agent  
(constraint 1) and reduced by 13% constraint for A1, while constraints for 
A2 and A3 remain unchanged from the previous case (constraint 3). The risk 
tolerance of all agents is the same and increases as shown on the horizontal 
axis. One can observe that, in the presence of a capacity constraint, increasing 
the risk tolerance after some level does not lead to an increase in profit because 
the risk constraint becomes nonbinding. In addition, a more stringent budget 
constraint for A1 reduces profit also for A3 and he/she can not compensate for 
it by increasing his/her risk tolerance. This is because the capacity constraint 
of A1 becomes a bottleneck for the whole system.

7. Case study in provision of mobile apps 

The models described in the previous sections were developed for the business 
analysis of the delivery of advanced mobile data services. Such services are 
highly customizable, and are characterized by a high level of modularity and 
normally offered as service portfolios, i.e., packages of services interacting in 
order to satisfy the end-user’s needs. The delivery of these services is normally 
carried out through a so-called service platform, which hosts the services and 
makes them accessible to the end-users.

Let us assume that two developers engage in the collaborative provision 
of three different mobile apps to be sold through a platform, such as the Apple 
Store or the Google Play store and let us assume that one of the developers 
(A3) can charge an ever increasing price to sell its service off platform (or 
targeting other platforms with a large enough customer base). This will 
gradually incentivize such developer to exit the collaborative pattern and sell 
his/her service using a different channel. Figure 3 shows how the capacities 
of each developer are allocated for different levels of market power of the 
aforementioned developer. When the price that the developer can charge to sell 
his/her service off platform is low, every provider will invest entirely within 
the platform. As the price for such service increases, the Content Provider will 
move his/her investment outside the platform. To maintain a fixed balance 
over the different service amounts within the platform service portfolios the 
aggregator (platform operator, in this case) will have to grant an increasingly 
higher share of the revenues to the developer, which in turn will earn higher 
profits out of the collaborative provision within the platform. Conversely, the 
platform operator, which was earlier gaining extra profits, will have to give up 
on an increasing part of his/her revenue share to counterbalance the increase 
in market power for the developer. This is shown in Figures 5 and 6. The 
bias of the revenue share in favour of the Content Provider will eventually 
reduce the profits for the other developer (A2) and the platform operator (A1), 
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which will therefore opt for reducing the amount of their service provision 
to the platform as well. Figure 3 shows this effect of reduction of the total 
capacity dedicated to the platform for each of the providers. This reallocation 
of capacity for all the Providers will rebalance the revenue sharing scheme 
in favour of the platform operator, as shown in Figure 6, and a consequent 
slowdown of his/her decrease in profits. When the market power for developer 
A3 keeps increasing, the profit for this latter will increase further, while profits 
for the remaining providers will keep decreasing. It interesting to notice how 
the composition of the the offered mobile apps by the platform changes as a 
consequence of the market power increase for developer (A3). Figure 4 shows 
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reallocation of capacity for all the Providers will rebalance the revenue sharing scheme in favour of the 

platform operator, as shown in Figure 6, and a consequent slowdown of his/her decrease in profits. When the

market power for developer A3 keeps increasing, the profit for this latter will increase further, while profits 

for the remaining providers will keep decreasing.   It interesting to notice how the composition of the the 

offered mobile apps by the platform changes as a consequence of the market power increase for developer 

(A3). Figure 4 shows how the investments shift over the development of different apps. In our model 

implementation, developer A3 was asked to make his/her highest on-platform contribution on app 1P .

Therefore, for a fixed revenue sharing scheme, 1P is the app yielding the least contribution to the Content 

Provider's profit. As a consequence, one can expect such a developer to reduce his/her investments on the 

considered app and move his/her investments off-platform.

Figure 3. Dependence of platform services on the external opportunity price of the third provider.Figure 3. Dependence of platform services on the external opportunity price of the third provider.
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provider.
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how the investments shift over the development of different apps. In our model 
implementation, developer A3 was asked to make his/her highest on-platform 
contribution on app P1. Therefore, for a fixed revenue sharing scheme, P1 is 
the app yielding the least contribution to the Content Provider’s profit. As a 
consequence, one can expect such a developer to reduce his/her investments 
on the considered app and move his/her investments off-platform.

8. Conclusions 

In this chapter we have introduced and analyzed several novel models for 
the analysis of collaborative aggregator-led provisions of complex modular 

Figure 4. Dependence of the output of services on the external opportunity price of the third 

provider.

Figure 5. Dependence of profits on the external opportunity price of the third provider.
Figure 5. Dependence of profits on the external opportunity price of the third provider.

Figure 4. Dependence of the output of services on the external opportunity price of the third 

provider.

Figure 5. Dependence of profits on the external opportunity price of the third provider.

Figure 6. Dependence of revenue shares on the external opportunity price of the third provider.
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services under uncertainty. The approach has been twofold. Under discrete 
probability distribution settings, we have introduced a mixed integer linear 
model, which can readily account for different probability distributions 
over demand scenarios through sampling. Under the continuous distribution 
assumption, we have elaborated a non-linear modelling approach which 
has allowed us to account for risk aversion of each agent by explicitly 
characterizing the set of Nash equilibria. This has led to the extension of the 
portfolio theory of investment science to the single leader/multiple followers 
setting of the stochastic Stackelberg game of special structure. Numerical 
experiments and the case studies within the chapter confirm the validity of the 
theoretical results of this paper. 
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Appendix

Proof of Proposition 1.

Let us linearize complementarity constraint (39), introducing binary variables 
as in Bard (1998). Namely, constraint

 ( ) ( ) = 0f y g y

with bounded f (y), g(y) and f (y) ≥ 0, g(y) ≥ 0 is equivalent to pair of constraints

 ( ) ( ) ( ) ( ), , 0, 0.f y Mz g y M Mz f y g y≤ ≤ − ≥ ≥   (96)

where z ∈ {0, 1} and M > 0 is a large number. This transforms (37)–(40) into

 
,

max
x u

x Rx c xΤ Τ+

 1 1A x b≤   (97)

 Ex Mu≤   (98)

 1 1 1mb A x M Mu− ≤ −1   (99)

 2 2=A x b   (100)

 { } 10, 0,1 mx u≥ ∈
 

where  is a column vector of all ones of length . This problem can be viewed as 

 ( )max
u

uψ  (101)

{ } 10,1 mu ∈

where,

 ( )
0

= max
x

u x Rx c xψ Τ Τ

≥
+  (102)

subject to constraints (97)–(100).
Adding to (102) its Karush-Kuhn-Tucker conditions (Bazaraa and Shetty 

(2006)) will not change its solution, therefore

 ( )
0

= max
x

u x Rx c xψ Τ Τ

≥
+  (103)

subject to constraints (97)–(100) and
 

( ) 1 11 3 1 12 2 2 0R R x c A E A Aσ σ σ σΤ Τ Τ Τ Τ+ + − − + − ≤
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 ( )( )1 11 3 1 12 2 2 = 0x R R x c A E A Aσ σ σ σΤ Τ Τ Τ Τ Τ− + − + + − +  (104)

 ( )11 1 1 = 0b A xσ Τ −  (105)

 ( )12 1 11
= 0mM Mu b A xσ Τ − − +1  (106)

 ( )3 = 0Mu Exσ Τ −  (107)

 ( )2 2 2 = 0b A xσ Τ −   (108)

 11 12 3, , , 0x σ σ σ ≥

Summing up complementarity conditions (104)–(108) yields:

 
1 11 12 12 1 12 2 2 31

2 = mx Rx c x b Mu M b b Muσ σ σ σ σ σΤ Τ Τ Τ Τ Τ ΤΤ− + − + − + +1  

Substituting this into (103) and the resulting problem into (101) we obtain 
the following equivalent to (37)–(40):

( )1 11 12 12 1 12 2 2 31, , 11 12 2 3

1
max, , , 2 m

x u
c x b Mu M b b Mu

σ
σ σ σ σ σ σ

σ σ σ
Τ Τ Τ Τ Τ ΤΤ+ − + − + +1  (109)

 1 1A x b≤  (110)

 Ex Mu≤  (111)

 1 1 1mb A x M Mu− ≤ −1  (112)

 2 2=A x b  (113)

 ( ) 1 11 1 12 2 2 3 0R R x c A A A Eσ σ σ σΤ Τ Τ Τ Τ+ + − + − − ≤  (114)

 ( )( )1 11 1 12 2 2 3 = 0x R R x c A A A Eσ σ σ σΤ Τ Τ Τ Τ Τ− + − + − + +  (115)

 ( )11 1 1 = 0b A xσ Τ −  (116)

 ( )12 1 11
= 0mM Mu b A xσ Τ − − +1  (117)

 ( )3 = 0Mu Exσ Τ −  (118)

 { } 1
11 12 3, , , 0, 0,1 mx uσ σ σ ≥ ∈  

where we have dropped (108) due to its redundancy. Let us focus on the i-th 
row of constraints (110)–(112) and corresponding complementarity slackness 
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conditions (115)–(117). Denoting a1
i and ei the row vectors composed from the 

i-th row of matrices A1 and E correspondingly, we obtain: 

 1
1i ia x b≤  (119)

 i ie x Mu≤  (120)

 1
1i i ib a x M Mu− ≤ −  (121)

  ( )1
11 1 = 0i i ib a xσ −  (122)

 ( )1
12 1 = 0i i i iM Mu b a xσ − − +  (123)

 ( )3 = 0i i iMu e xσ −  (124)

If u–i = 1 then from (119) and (121) follows that b1i – a1
i x = 0. Suppose 

now that b1i – a1
i x = 0 and let us assume that in this case simultaneously  

eix > 0. This assumption restricts the feasible set of the problem (109)–(118), 
but it will not diminish its optimal value because b1i – a1

i x = 0 and eix = 0 can 
not happen simultaneously at the optimal solution according to Condition 1 
of Proposition. Due to (120) from eix > 0 follows u–i = 1. Thus, b1i – a1

i x = 0 if 
and only if u–i = 1. Consequently, (122) is equivalent to 

 ( )11 1 = 0i iuσ −  (125)

We have seen already that if u–i = 1 then b1i – a1
i x = 0, from this follows   

M – Mu–i – b1i + a1
i x = 0. Conversely, if M – Mu–i – b1i + a1

i x = 0 then u–i 
can not be zero because M exceeds any feasible value of b1i – a1

i x. Therefore  
M – Mu–i – b1i + a1

i x = 0 if and only if u–i = 1. Consequently, (123) is  
equivalent to 
 ( )12 1 = 0i iuσ −  (126)

If u–i = 0 then from (120) eix = 0 and Mu–i – eix = 0. Conversely, if  
Mu–i – eix = 0 then inevitably u–i = 0, eix = 0 because M exceeds any feasible 
value of eix and therefore this equality can not be satisfied if u–i = 1. Thus,  
Mu–i – eix = 0 if and only if u–i = 0. Therefore (124) is equivalent to 

 3 = 0i iuσ  (127)

From (127), (126) follows 

 3 12 121
= 0.mMu Mu Mσ σ σΤ Τ Τ− + 1  (128)

Besides (125), (127), (126), are equivalent to 

 11i iMuσ ≤  (129)
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 12i iMuσ ≤  (130)

 3i iM Muσ ≤ −  (131)

correspondingly. Let us substitute now (128)–(130) into (109)–(118), utilizing 
equivalence between (131) and (124) and between (130) and (123). 

 ( )( )1 11 12 2 2
, , , 11 12 2 3

1
max, , , 2x u v

c x b b
σ

σ σ σ
σ σ σ

Τ Τ Τ+ − +  (132)

subject to (110), (112), (113) and

 ( ) ( )1 11 12 2 2 3 0R R x c A A Eσ σ σ σΤ Τ Τ Τ+ + − − − − ≤  (133)

 ( ) ( )( )1 11 12 2 2 3 = 0x R R x c A A Eσ σ σ σΤ Τ Τ Τ Τ− + − + − + +  (134)

 Ex Mu≤  (135)

 11 Muσ ≤  (136)

 12 Muσ ≤  (137)

 3 1mM Muσ ≤ −1  (138)

 { } 1
11 12 3, , , 0, 0,1 mx uσ σ σ ≥ ∈

Let us denote in (132)–(134)
 1 11 12=σ σ σ−  (139)

and substitute constraints (136), (137) by 

 1 ,Mu Muσ− ≤ ≤  (140)

let us name the resulting problem Problem S1. Any feasible point of  
(132)–(138) will become a feasible point of S1 by applying (139), while 
the value of objective remains unchanged. Conversely, any feasible 
point of S1 can be transformed to feasible point of (132)–(138) by taking  
σ11 = max{0, σ1}, σ12 = –min{0, σ1}. Thus, substitution (139), (140) yields an 
equivalent problem to (132)–(138).

Let us make this substitution and express complementarity constraint 
(134) as a pair of “big M” constraints following (96). Then the problem 
becomes that of maximization of (132) subject to (113) and

 ( ) 1 1 2 2 3R R x A A E cσ σ σΤ Τ Τ Τ− + + + + ≥  (141)

 ( ) 1 1 2 2 3 nR R x A A E c M Mvσ σ σΤ Τ Τ Τ− + + + + ≤ + −1  (142)
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 x Mv≤  (143)

 1 1 0b A x− ≥  (144)

 1 1 1mb A x M Mu− ≤ −1  (145)

 Ex Mu≤  (146)

 1 ,Mu Muσ− ≤ ≤  (147)

 3 1mM Muσ ≤ −1  (148)

 { } { }1
3, 0, 0,1 , 0,1m nx u vσ ≥ ∈ ∈

Due to Condition 1 for any element (Ex)i of vector Ex there exists k such 
that (Ex)i = xk and corresponding constraint from (146) becomes
 .k ix Mu≤  

Let us consider together the k-th constraint from each of the constraint 
sets (141)–(143) and the i-th constraint from each of the constraint sets  
(144)–(148):

 ( )( )1 1 2 2 3 kk
R R x A A E cσ σ σΤ Τ Τ Τ− + + + + ≥  (149)

 ( )( )1 1 2 2 3 k kk
R R x A A E c M Mvσ σ σΤ Τ Τ Τ− + + + + ≤ + −  (150)

 k kx Mv≤  (151)

 
k ix Mu≤

 1
1 0i ib a x− ≥

 1
1i i ib a x M Mu− ≤ −

 
1 ,i i iMu Muσ− ≤ ≤

 3i iM Muσ ≤ −  (152)

Let us take u–i = vk = 0. Then (149)–(152) reduces to

 ( )( )1 1 2 2 3 kk
R R x A A E cσ σ σΤ Τ Τ Τ− + + + + ≥  (153)

 = 0kx

 1
1 0i ib a x− ≥
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1 = 0,iσ

 3 0iσ ≥  (154)

If we take u–i = 0, vk = 1 then (149)–(152) yields:

 ( )( )1 1 2 2 3 = kk
R R x A A E cσ σ σΤ Τ Τ Τ− + + + +  (155)

 
= 0kx

 1
1 0i ib a x− ≥

 
1 = 0,iσ

 3 0iσ ≥  (156)

Thus, the set defined by constraints (155)–(156) is a subset of the set, 
defined by constraints (153)–(154). Similarly one can show that the set, 
defined by constraints (149)–(152) with u–i = 1, vk = 0 is a subset of the set, 
defined by constraints (149)–(152) with u–i = vk = 1. Therefore variable vk is 
redundant and can be substituted by variable u–i in (149)–(151). Suppose now 
that k is such that (Ex)i ≠ xk for any i. Then vk is not redundant and remains in 
constraints (149)–(151). Let us collect all such vk in one vector and denote it 
by u^ . Taking u = (u^ , u–) and pruning redundant constraints from (141)–(148) 
we obtain (41)–(50). ▀
Proof of Proposition 2. Let us select an arbitrary i. From (64) follows that  
x– i ≤ x^ i. Besides, x^ i

j ∈ Vi as the solution of (65). Therefore x– i ∈ Vi due to 
Condition 2. Since x^ i ∈ X i as the solution of (65) then F i

k(x
^ i) ≤ 0. Since F i

k(x i) 
is nondecreasing on Vi and x– i ≤ x^ i this yields F i

k(x– i) ≤ 0 for all k. Thus, x– i is 
feasible for all i.

Suppose now that x– is not Nash equilibrium. This means that for some i 
there exists yi ∈ X i such that 

 ( ) ( )0 0( , ) > ( , ),i i i i
yF y z x F x z x  (157)

where x–y = (x–1,..., x– i–1, yi, x– i+1,..., x–N). Let us assume that there exist 
components  x– i

j and yi
j of vectors x– i and yi such that x– i

j < yi
j and take  

y~ i = (y i
1 ,..., y i

j–1, x– i
j, y i

j+1 ,..., yi
n), x

~
y = (x–1,..., x– i–1, y~ i, x– i+1,..., x–N). Then y~ i ≤ yi 

componentwise and therefore yi ∈ X i due to Conditions 1, 2. Besides,  
z(x–y) = z(x~ y) because x–y and x~ y differ only in the j-th component of the strategy 
of agent i which in both cases is not smaller than this component of the 
strategies of other agents, and the strategies of other agents in both x–y and x~ y 
are equal. Thus, Condition 3 yields:

 ( ) ( ) ( )0 0 0( , ) = ( , ) ( , )i i i i i i
y y yF y z x F y z x F y z x≤    



Agents Coordination through Revenue Sharing 193

In other words, by substituting the point y i by the point y~ i that coincides 
with y i with the exception of component y i

j that is changed to min{y i
j, x– i

j} 
the agent i will obtain the feasible strategy with at least as good value of his 
objective when the strategies of other agents do not change. Making a similar 
substitution for all other components y i

k : x– i
k < y i

k we shall obtain a feasible 
point ui = min{y i, x– i} such that for x–u = (x–1,..., x– i–1, ui, x– i+1,..., x–N)

 ( ) ( )0 0( , ) ( , )i i i i
y uF y z x F u z x≤  

and, consequently, 
 ( ) ( )0 0( , ) > ( , )i i i i

uF u z x F x z x  (158)

due to (157). Then there exist component ui
j such that ui

j < x– i
j, otherwise 

we would have ui
j = x– i

j and (158) will not be satisfied. Let us take  
u~ i = (ui

1 ,..., ui
j–1, x– i

j, u i
j+1 ,..., ui

n), x~ u = (x–1,..., x– i–1, u~ i, x– i+1,..., x–N). Again,  
u~ i ∈ X i due to u~ i ≤ x– i and Conditions 1, 2. Due to the definition of operator  z(x)  
from (63) and construction of points ui, x–u, x

~
u we have z(x–u) = ui, z(x~ u) = u~ i  

and, consequently, ( )0 0( , ) = ( , ),i i i i i
uF u z x F u u  ( )0 0( , ) = ( , ).i i i i i

uF u z x F u u     In 
addition, ˆ .i i i

j j ju u x≤ ≤  This, together with the unimodality from Condition 4 
yields: 
 ( ) ( )0 0 0 0( , ) = ( , ) ( , ) = ( , )i i i i i i i i i i

u uF u z x F u u F u u F u z x≤      

In other words, by substituting the point ui by the point u~ i that coincides 
with ui with the exception of component ui

j < x– i
j that is changed to x– i

j the agent  
i will obtain the feasible strategy with at least as good value of his objective. 
Performing this substitution for all components uk : x– i

k > uk we obtain 

 ( ) ( )0 0( , ) ( , )i i i i
uF u z x F x z x≤  

which contradicts (158). The first assertion of this proposition is proved.
Let us take now the additional assumption of the Proposition and suppose 

that x' is some Nash equilibrium point that is not described by (64), (65). Let 
us assume that there exist i and k such that x'i

j > x'k
j for some fixed j and define 

x~ i = (x'i
1 ,..., x'i

j–1, x'k
j , x'i

j–1 ,..., x'i
n), x

~  = (x'1 ,..., x'i–1, x~ i, x'i+1 ,..., x'N). Since x~ i ≤ x'i 
we have x~ i ∈ X i due to Conditions 1, 2. Due to (63) we have zj(x

~) = zj(x'), 
z(x~) = z(x') that together with Condition 3 where we have assumed the strict 
inequality yields:

 ( ) ( ) ( )0 0 0( , ) < ( , ) = ( , ).i 'i ' i i ' i iF x z x F x z x F x z x  

 

This contradicts with the assumption that x'  is the Nash equilibrium 
because x'  and x~  differ only in the strategies of the i-th actor. Thus, x'i

j = x'k
j = x'

j 
for any Nash equilibrium point x' , any i, k and fixed j. Therefore for operator  
z(x) from (63) we have z(x') = x'i for any i.
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Let us assume that there exists i such that x'
j > x̂ i

j for some j and any x̂ i  that 
solves the problem (65). Selecting x̂ i as in additional assumption and taking   

( )1 1 1ˆ= ,... , , ,..., ,i 'i 'i i 'i 'i
j j j nx x x x x x− +  ( )1 1 1= ,..., , , ,...,' 'i i 'i 'Nx x x x x x− +

   we obtain that  
x~ i ∈ X i due to x~ i ≤ x'i and Conditions 1, 2. In addition, z(x~) = x~ i due to  
x'

j > x– j and definition of operator z(x). Applying the additional assumption we 
obtain: 
 ( ) ( )0 0 0 0( , ) = ( , ) < ( , ) = ( , )i 'i ' i 'i 'i i i i i iF x z x F x x F x x F x z x   

 

which shows again that x'  can not be the Nash equilibrium. Thus, all Nash 
equilibria are described by (64), (65). ▀ 

Proof of Proposition 4. The objective function in (71) is concave, therefore 
we can use necessary and sufficient conditions for global maximum from 
Bazaraa and Shetty (2006) to analyze its solution. Since dj takes values from 
[0, dj

+] and has positive bounded density hj(dj) on this interval then Hj(dj) is 
continuous strictly increasing function on [0, dj

+] with Hj(0) = 0, Hj(dj) = 1. 
Therefore solution H–1

j (x) of equation Hj(dj) = x exists and is unique for any x 
: 0 < x < 1. Two cases can occur.
 1. Constraint (72) is not binding. Then the problem (71), (72) is decomposed 

into individual problems 

 { }( )min ,max
0 j d j j j jjx j

a d x b x−
≥

  (159)

which objective function can be written as follows

 { }
0 0

min , ( ) = ( ) ( ) .
x j

j j j j j j j j j j j j
x j

a y x h y dy b x a yh y dy a x h y dy b x
∞ ∞

− + −∫ ∫ ∫  

Differentiating this with respect to xj and equating the derivative with 
zero we obtain

 ( ) = 0j j j
x j

a h y dy b
∞

−∫  (160)

Due to positivity of hj(y) for y ∈ [0, dj
+] this equation has unique solution  

xj(0) from (73). For this solution (74) is satisfied, because otherwise constraint 
(72) will be binding.
 2. Constraint (72) is binding. Then the optimality conditions for the problem 

(71), (72) yield that in order to solve (71), (72) it is necessary to find 
solution xj(ρ) of the problem

 { } ( )( )min , .max
0 j d j j j j jjx jj

a d x b c xρ− +
≥
∑    (161)
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and find appropriate ρ by solving

 ( ) = .j j
j

c x Wρ∑  (162)

In addition, solution of this equation will exist for ρ ≥ 0. Similarly to the 
previous case, the problem (161) decomposes into problems

 { } ( )( )min ,max
0 j d j j j j jjx j

a d x b c xρ− +
≥

  

which similarly to (159) has solution x(ρ) from (73). It will be unique due 
to positivity of hj(y) for y ∈ [0, dj

+] and for the same reason the solution of 
equation (162) will be unique too. ▀



Chapter 9

 Nash Equilibrium and its  
Modern Applications

Vasyl Gorbachuk* and Maxym Dunaievskyi

1. Introduction

The strategic interaction is a key issue for such areas as international trade, 
comparative advantage, perfect and imperfect competition, market entry, 
innovation race, market power, organizational change, and others. It stems 
from the advanced equilibrium concepts and their applications. The concept 
of the Cournot–Stackelberg–Nash equilibrium is proposed in which the 
leader’s payoff is no less than its payoff in the case of the Cournot–Nash 
equilibrium and the follower’s payoff is no less than its payoff in the case 
of the Stackelberg–Nash equilibrium. The generalized equilibrium coincides 
with the Cournot–Nash and Stackelberg–Nash equilibria for extreme values 
of a parameter. The impact of a random production output on the expected 
market supply and price is investigated as well as the impact on the outputs and 
profits of companies. It is proved that the asymmetry of interactions between 
decision makers (DMs), in particular, the asymmetry of uncertainty can lead 
to the advantage of a leader and to generalized Cournot–Stackelberg–Nash 
equilibria. An DM with a better defined (determined) strategy always wins 
over an DM with a worse defined strategy. For example, in the interaction 
between the government and the central bank, it can be expected that the 
leader in the generalized Cournot–Stackelberg–Nash equilibrium will be the 
organization with a better defined strategy.

V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine.
* Corresponding author: GorbachukVasyl@netscape.net
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2. Generalized Cournot–Stackelberg–Nash equilibrium

The concept of economic equilibrium introduced by A. Cournot (1801–1877) 
is a fundamental scientific concept. J. Nash (1928–2015) generalized it in such 
a manner (Nash 1950, Nash 1951) that it became one of the key concepts of 
applied mathematics and tools of modelling a trade cartel (J. Nash, R. Selten 
(1930–2016), and J. Harsanyi (1920 –2000) shared the Nobel Prize in 1994 for 
their investigations of Cournot–Nash equilibria).

The concept of the Cournot equilibrium was simultaneously developed 
in the direction of decision theory, in particular, decision-making in the 
context of asymmetric information. H. von Stackelberg (1905–1946) applied 
this concept to the interaction between two companies, one of which (the 
leader) makes a decision earlier, knowing the reaction of the other company 
(the follower) (Von Stackelberg 1934). The obtained nontrivial result was 
highly commended by W. Leontief (1905–1999) (Leontief 1936), a Nobel 
Prize laureate in 1973, and experts in game theory. Economic applications 
are well known in which decision-makers are a government or a central bank 
(Ermoliev and Uryasev 1982, Gorbachuk 1991, Gorbachuk 2007a, Gorbachuk 
2007b, Gorbachuk 2008a, Gorbachuk 2008b, Gorbachuk and Chumakov 
2008, Gorbachuk 2010, Chikrii et al. 2012, Gorbachuk and Chumakov 2011, 
Gorbachuk 2014, Ermoliev et al. 2019, Gorbachuk et al. 2019, Borodina et al. 
2020, Ermolieva et al. 2022, Gorbachuk et al. 2022). This part is an attempt 
to combine the concepts of the Cournot, Nash, and Stackelberg equilibria into 
one (Gorbachuk 2006). We assume that a homogeneous product is produced 
only by companies 1 and 2 and that the function of the inverse demand for this 
product is specified by the relationship

 P a bQ= − , (1)

where P is the (positive) price of the product, Q is its quantity (volume) 
produced by the companies, and a, b are positive parameters (Nagurney 
2009). The volume of output of the i-th company is qi ≥ 0 and its unit costs are 
ci, i = 1, 2. Note that we have
 1 2Q q q= + . (2)

The i-th company chooses a volume of output qi, trying to maximize its 
(non-negative) payoff
 i i i iPq c qπ = −  ≥ 0, (3)

whence, in view of relationships (1) and (2), we have

 1 2 1 2[ ( )] [ ( )]i i i i i ia b q q q c q a c b q q qπ = − + − = − − + .
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The Cournot–Nash equilibrium is understood to be a combination of 
outputs of companies qC

1 and qC
2  such that we have

 ),( 2111
CCC qqππ = ≥ ),( 211

Cqqπ  1q∀ ≥ 0, (4)

 ),( 2122
CCC qqππ = ≥ ),( 212 qqCπ  2q∀ ≥ 0. (5)

Theorem 1. Under conditions (1)–(3) and also 
 2 12a c c+ > , (6)

 1 22a c c+ > , (7)
the combination
 *

1 1 2( 2 ) /(3 )q a c c b= − + , (8)

 *
2 2 1( 2 ) /(3 )q a c c b= − +  (9)

is the Cournot–Nash equilibrium.

Proof. Conditions (2), (8), and (9) implies

 * *
1 2 1 2 1 2 1( , ) ( 2 ) /(3 )Q q q q q q a c c b= + = + − + ,

 * *
1 2 1 2 2 1 2( , ) ( 2 ) /(3 )Q q q q q q a c c b= + = + − + ,

whence
* *

1 2 1 2 1 2 1 2 1 1( , ) ( , ) [ ( 2 ) /(3 )] (2 2 ) / 3P q q a bQ q q a b q a c c b a c c bq= − = − + − + = + − −  ,
* *
1 2 1 2 1 1 2 1 2 2( , ) ( , ) [ ( 2 ) /(3 )] (2 2 ) / 3P q q a bQ q q a b q a c c b a c c bq= − = − + − + = + − −  .

Thus, the payoff
* *

1 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1( , ) [ ( , ) ] [(2 2 ) / 3 ] [2( 2 ) / 3 ]q q P q q c q a c c bq c q a c c bq qπ = − = + − − − = + − −

is maximized when
 2 1 12( 2 ) / 3 2 0a c c bq+ − − = ,

 *
1 1 2 1( 2 ) /(3 )q a c c b q= − + = ,

whence we obtain inequality (4) is true for qC
1 = q*

1 and qC
2  = q*

2 . Similarly, the 
payoff

* *
2 1 2 1 2 2 2 1 2 2 2 2 1 2 2 2( , ) [ ( , ) ] [(2 2 ) / 3 ] [2( 2 ) / 3 ]q q P q q c q a c c bq c q a c c bq qπ = − = + − − − = + − −

is maximized when
 1 2 22( 2 ) / 3 2 0a c c bq+ − − = ,

 *
2 2 1 2( 2 ) /(3 )q a c c b q= − + = ,

whence it follows that inequality (5) holds for qC
1 = q*

1 and qC
2  = q*

2 .
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By the Stackelberg–Nash equilibrium we understand a combination of 
the outputs of the company’s qS

1 and q S
2  that is such that we have

 ),( 2111
SSS qqππ = ≥ ),( 211

Sqqπ  1q∀ ≥ 0, (10)

where qS
1 = q S

2  (q1) is determined from
 ),( 2122

Sqqππ = ≥ ),( 211 qqπ  21,qq∀ ≥ 0. (11)

In this case, we call company 1 the leader with the strategy q1 and company 
2 the follower with the strategy q1(q1).

Theorem 2. Under conditions (1)–(3), (6), and (7), the combination 

 1 1 2( 2 ) /(2 )lq a c c b= − + ,

 1 1 2( 2 3 ) /(4 )fq a c c b= + − , (12)

is the Stackelberg–Nash equilibrium.

Proof. Taking into account conditions (1)–(3), the payoff
 

2 1 2 2 2 2 2 1 2 2 2( , ) ( ) ( ) [ ( ) ]q q P c q a bQ c q a b q q c qπ = − = − − = − + −

is maximized with respect to q2 when the best response of the follower is as 
follows:

 
** **

1 2 2 2 2 1 2
**
2 2 1 2 1

0 ( ) 2 ,
( ) /(2 ) ( ).S

a b q q c bq a c bq bq
q a c bq b q q

= − + − − = − − −

= − − =

Note that if q1 = ql
1, then we have

 

**
2 1 1 2

2 1 2 1 2 2

[ ( 2 ) /(2 )] /(2 )
(2 2 2 ) /(4 ) ( 2 3 ) /(4 ) ,f

q a c b a c c b b
a c a c c b a c c b q

= − − − + =

= − − + − = + − =

i.e., the equalities in conditions of Theorem 2 satisfy the equation above.
It follows from relationships (2), (10)–(12) that we have

 
** **

1 2 1 2 1 1 1 1 1( , ) ( ) /(2 ) ( ) /(2 ),Q q q q q q a c bq b bq a c b= + = + − − = + −

 
** **

1 2 1 2 1 2 2 1( , ) ( , ) ( ) / 2 ( ) / 2.P q q a bQ q q a bq a c a c bq= − = − + − = + −

Thus, the payoff
 ** **

1 1 2 1 2 1 1 2 1 1 1( , ) [ ( , ) ] ( 2 ) / 2q q P q q c q a c bq c qπ = − = + − −

is maximized when
 **

2 1 10 2 2 ,a c c bq= + − −

 
**
1 1 2 1( 2 ) /(2 ) .lq a c c b q= − + =

Thus, inequalities (10) and (11) hold when we have qS
1 = ql

1, q S
2  = q f

2.
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By virtue of inequality (3), for the parameters a = 2, b = 4, and  
c1 = c2 = 1, we have
 1 (2 2 1 1) /(2 4) 1/8,lq = − × + × =

 
2 2 1(2 2 1 3 1) /(4 4) 1/16 ( ).f S lq q q= + × − × × = =

First of all,

 

2
2 1 2 1 1 1 1

2 1 2 1 2 2
2 2 2

1 1 2 2 1 2 1 2

( , ) {1 4[ (1 4 ) /8]}(1 4 ) /8 (1 4 ) /16,
( , ) [1 4( )] ,

(1 4 ) /16 (1 4 ) 4( ) [(1 4 ) / 4 2 ] 0 , 0,

Sq q q q q q
q q q q q

q q q q q q q q

π
π

= − + − − = −
= − +

− − − + = − − ≥ ∀ ≥

whence it follows that relationship (11) holds.
Next, we have
 

1 1 2( , ) [1 4(1/8 1/16)]/8 1/ 32,l fq qπ = − + =

1 1 2 1 1 1 1 1 1 1( , ( )) {1 4[ (2 1 4 ) /(2 4)] (1 4 ) / 2 32 0,Sq q q q q q q q qπ = − + − − × = − ≤ ∀ ≥

i.e., the combination of ql
1 and q f

2 satisfies the relationship (10).

Theorem 3. Under conditions (1)–(3), (6), and (7) and also the condition 

 c1 ≥ c2, (13)
we have
	 πS

1 > πC
1, (14)

	 πS
2 < πC

2. (15)

Proof. From relationships (2), (8), and (9) we have

 )3/()2(),( 212121 bccaqqqqQQ CCCCC −−=+== /(3b),

whence, by virtue of equation (1), we obtain

 
1 2( ) ( ) / 3.C C cP P Q a bQ a c c= = − = + +

Then, according to equality (3), we have

 )9/()2( 2
211 bccaC +−=π /(9b), (16)

 )9/()2( 2
122 bccaC +−=π /(9b). (17)

From relationships (2), (12), and (13) we have

 )4/()23(),( 212121 bccaqqqqQQ SSSSS −−=+== /(9b),
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whence, by virtue of equation (1), we obtain

 1 2( ) ( 2 ) / 4.S S SP P Q a bQ a c c= = − = + +

Then, according to equality (3), we have

 2
1 1 2( 2 ) /(8 ),S a c c bπ = − +  (18)

 2
2 1 2( 2 3 ) /(16 ).S a c c bπ = + −  (19)

Equations (16) and (18) and condition (6) imply inequality (14).
In order to derive inequality (15), we use equations (17) and (19):

 
2 2 1 2 1 1(7 10 17 )(2 ) /(144 ).S C a c c c a c bπ π− = + − − −

Note that, by virtue of condition (6), we have

 2c1 – a – c2 < 0,

and, according to condition (7), we have

 7a + 7c1 – 14c2 > 0,

whence, in view of condition (13), we obtain

 7a + 10c1 – 17c2 > 0,

and this inequality together with the latter equation implies inequality (15).

Lemma 1. If conditions (1)–(3) and the inequality

 q1 > 0, (20)

are true, then the volume of output q1 of company 1 is of the form

 q1
Gl = γ(a – c1)/b, γ ∈ (0, 1). (21)

Proof. Based on relationships (1) and (2), we have

 q1 = Q – q2 = (a – P)/b – q2 ≤ (a – P)/b,

and, by virtue of inequalities (3) and (20), we obtain

 P > c1,

 q1
Gl < (a – c1)/b.

Theorem 4. If conditions (1)–(3) and (21) are true and inequality (13) is 
satisfied as the equality 
 c = c1 = c2, (22)

 q2
Gf = (a – c)(1 – γ)/(2b), (23)
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then the Cournot–Nash equilibrium is obtained when γ =1/3 and the 
Stackelberg–Nash equilibrium is obtained when γ =1/2.

Proof. Note that conditions (1)–(3) and (21) imply the condition

 c1 < P < a,

that, together with equality (22), gives inequalities (6) and (7).
When γ =1/3 and equality (22) is true, condition (21) implies the quantity

 q1
Gl = (a – c)/(3b),

that coincides with the quantity q1
* calculated by the formula (8), and condition 

(23) implies
 q2

Gf = (a – c)(1 – 1/3)/(2b),

that coincides with the quantity q2
* calculated by the formula (9).

When γ =1/2 and equality (22) holds, condition (21) implies the quantity

 q1
Gl = (a – c)/(2b),

that coincides with the quantity ql
1 calculated by the formula (12) and condition 

(23) implies the quantity
 q2

Gf = (a – c)(1 – 1/2)/(2b),

that coincides with the quantity q f
2 calculated by the formula (13).

By the generalized Cournot–Stackelberg–Nash equilibrium we 
understand a combination of outputs of companies q1

G and q2
G in which the 

payoff of the leader is no less than its payoff in the Cournot–Nash equilibrium 
and the payoff of the follower is no less than its payoff in the Stackelberg–
Nash equilibrium,
 ),( 2111

GGG qqππ =  ≥ C
1π , (24)

 ),( 2122
GGG qqππ =  ≥ S

2π , (25)

where q2
G = q2

G (q1) is determined from the inequality

 ),( 212
Gqqπ  ≥ ),( 212 qqπ  21,qq∀  ≥ 0. (26)

Theorem 5. If conditions (1)–(3) and (22) are true, then the following 
combination of conditions
 q1

Gl = γ(a – c)/b, γ ∈ (0, 1), (21)

 q2
Gf = (a – c)(1 – γ)/(2b) (23)
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is the generalized Cournot–Stackelberg–Nash equilibrium under the condition

	 γ ∈ [1/3, 1/2]. (27)

Proof. By conditions (2) and (21)–(23), we have

 QG = q1
Gl + q2

Gf = (1 + γ) (a – c)/(2b),

whence, because of relationship (1), we obtain

 [ ( )] / 2G GP a bQ a c a cγ= − = + − − . (28)
According to conditions (16), (21), (22), and (28), to prove inequality 

(24), it suffices to prove the inequality

 (a – c)2/(9b) ≤ 2[ ( )] / 2 } ( ) / (1 )( ) /(2 ),a c a c c a c b a c bγ γ γ γ+ − − − − = − −

 9γ (1 – γ) ≥ 2,

 9γ2 – 9γ + 2 ≤ 0,

 (γ  – 1/3) (γ  – 2/3) ≤ 0,

 1/3 ≤ γ	≤ 2/3. (29)

By conditions (19), (22), (23), and (28), to prove inequality (25), it 
suffices to prove the inequality

(a – c)2/(16b) ≤ {[a = c – γ(a – c)]/2 – c}(1 – γ)(a – c)/(2b) = (1 – γ)2(a – c)2/(4b),

 1 – γ ≥ 1/2,

	 γ	≤ 1/2. (30)

Inequalities (29) and (30) follow from condition (27). To prove inequality 
(26), it suffices to show that, when equality (22) holds, the quantity q2

**
 

determined by condition (12) coincides with that determined by condition 
(23) for the value of q1 determined by condition (21):

 **
2 [ ( ) / ] /(2 ) (1 )( ) /(2 ).q a c b a c b b a c bγ γ= − − − = − −

Thus, for the considered case, it is possible to parametrically relate the 
Cournot–Nash and Stackelberg–Nash equilibria by a parameter. In a more 
general case, the problem of parametrization of these equilibria remains open, 
as well as the parametrization of other well-known equilibria. Such a parameter 
is not simply a control variable but also the selection of the objective function 
itself and a way of behavior since a greater value of γ ∈ [1/3, 1/2] corresponds 
to a greater degree of leadership and a smaller one corresponds to a greater 
degree of competition (Gorbachuk 2006).
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3. An asymmetric Cournot–Nash equilibrium under 
uncertainty as a generalized Cournot–Stackelberg–Nash 
equilibrium

In solving economic problems, game theory models and methods, including 
game theory models under uncertainty, are often used. The importance 
of uncertainty is obvious after the fall of stocks of Internet companies in 
2000, the terrorist attack on September 11, 2001, oil price increase up to a 
threshold above 70 dollars per barrel, and drastic climatic change. Therefore, 
in the New Millennium, the need to further develop stochastic optimization 
methods arises. Here the influence of randomness in a production output on 
the expected commercial manufacture and price and also on the outputs and 
profits of companies is investigated (Gorbachuk 2007a).

We assume that a homogeneous product is manufactured by two decision 
makers (DMs) only, namely, by the 1-st company and the 2-nd company. 
The situation, in which the values of q1 and q2 are deterministic (are not 
random), was investigated in detail in many works. The randomness of one 
of these values can influence the strategies of both companies. Let the value 
of q2 be deterministic, and let the value of q1 be uniformly distributed over a 
(nondegenerate) segment [d1, D1], i.e., let that density function value be

 1 1 1 1 1 1 1 1 1( ) {1/( ), [ , ];0, [ , ]}.f q D d q d D q d D= − ∈ ∉

In particular, it is assumed in that the oil price is uniformly distributed 
between 17 and 51 dollars per barrel (De Wolf and Smeers 1997). The 2-nd 
company chooses the volume q2 of its production to maximize the expected 
value of its profit
 E(π2) = E[(P – c2)q2],

whence, because of formulas (1) and (2), we have

 E(π2) = E{[a – b(q1 + q2)]q2 – c2 q2} = E{[a – c2 – b(q1 + q2)]q2} 

= (a – c2)q2 – b(q2)2 – bq2q
–
1, 

(31)

where the expected value of the quantity q1 equals

 q–1 = E(q1) = (d1 + D1) /2. (32)

If the largest possible expected profit of a company is negative, this 
company can choose zero output, i.e., it will not bring its product to market. 
Since the strategy of one DM is deterministic and the strategy of the other DM 
is random, we operate under asymmetric uncertainty.
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The 1-st company chooses the expected volume q–1 of its output to 
maximize the expected value of its profit

 E(π1) = E(Pq1 – c1q1),

whence, because of formulas (1) and (2), we obtain

 E(π1) = E{[a – b(q1 + q2)]q1 – c1 q1} = E{[a – c1 – b(q1 + q2)] q1} 

= (a – c1)q
–
1 – bE[(q1)2]  – bq2q

–
1, (33)

where, by relationship (32), we have 

 
1

1

1

1

2 2 2 3
1 1 1 1 1 1 1 1 1 1 1[( ) ] ( ) ( ) ( ) /( ) ( ) | /[3( )]

D
D
d

d

E q q f q dq q dq D d q D d
∞

−∞

= = − = − =∫ ∫  

3 3 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1[( ) ( ) ] /[3( )] [( ) ( ) ] / 3 [( ) ] / 3 [4( ) ] / 3.D d D d D D d d D d D d q D d= − − = + + = + − = −

3 3 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1[( ) ( ) ] /[3( )] [( ) ( ) ] / 3 [( ) ] / 3 [4( ) ] / 3.D d D d D D d d D d D d q D d= − − = + + = + − = −

Thus, we have

 2
1 1 1 2 1 1 1 1( ) ( ) [4( ) ] / 3.E a c q bq q b q D dπ = − − − −

Then, for a random output of the 1-st company (under uncertainty), we 
call a Cournot–Nash equilibrium a combination of an output q2

C1 of the 2-nd 
company and expected output of the 1-st company

 –q1
C1 = (dC1 + DC1)/2

such that we have

 
1 1 1 1 1 1

1 1 1 1 1 2 1 1 1 1 2 1( ) [ ( , , , )] [ ( , , , )] 0;C C C C C CE E q d D q E q d D q qπ π π= ≥ ∀ ≥  (34)

 
1 1 1 1

2 2 1 2 1 1 2 2( ) [ ( , )] [ ( , )] 0.C C C CE E q q E q q qπ π π= ≥ ∀ ≥  (35)
Next, we assume that the lower bound d1 for the values of the quantity q1 

is a constant (such a constant can always be, for example, zero). It is natural to 
assume that the volume of a deterministic Cournot–Nash equilibrium output  
q2

C1 of the 1-st company belongs to the segment [d1, D1].

Theorem 6. Given formulas (1), (2), (31)–(33) and also the relationships

 d1 ≤ q1
C = (a – 2c1 + c2)/(3b), (36)

 a + c1 ≥ 2c2, (37)

 a ≥ c2 + bd1, (38)
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the combination
 *

1 1 2[3( 2 ) 4 ]/(13 ),q a c c bd b= − + +

 *
2 2 1(5 8 3 2 ) /(13 )q a c c bd b= − + −

is a Cournot–Nash equilibrium for a random output of the 1-st company.
The unstrict inequality (37) corresponds to a strict inequality of  

Theorem 1 and, when d1 > 0, another strict inequality of Theorem 1 follows 
from inequality (36).

Let us take advantage of the concavity of the expected profit concerning  
q2 to maximize E(π2) with respect to q2:

 2 2 2 2 10 ( ) / 2 .E q a c bq bqπ= ∂ ∂ = − − −  (39)

Let us take advantage of the concavity of the expected profit E(π1) with 
respect to –q1 to maximize E(π1) with respect to q1:

 1 1 1 2 1 1 1 10 ( ) / [8 ( ) / ] / 3.E q a c bq b q D d qπ= ∂ ∂ = − − − − ∂ ∂  (40)

In a view of equality (32) and the deterministic character of d1, we obtain 
the equality
 1 1 1 1 1 1 1 1 1 1( ) / / / 2D d q D d q d D q d∂ ∂ = ∂ ∂ + ∂ ∂ =

and substitute it into equation (40):

 1 2 1 10 (8 2 ) / 3.a c bq b q d= − − − −  (41)

Equation (39) implies the expression

 )2/()( 122 bqbcaq −−= / (2b), (42)

that is substituted into equality (41):

 1 2 1 1 1

1 2 1 1 1 1 2 1 1

0 ( ) / 2 (8 2 ) / 3,
0 6( ) 3( ) 4 (4 ) 3( 2 ) 4 13

a c a c bq b q d
a c a c bq b q d a c c bd bq

= − − − − − −
= − − − − − − = − + + − 

1 2 1 1 1

1 2 1 1 1 1 2 1 1

0 ( ) / 2 (8 2 ) / 3,
0 6( ) 3( ) 4 (4 ) 3( 2 ) 4 13

a c a c bq b q d
a c a c bq b q d a c c bd bq

= − − − − − −
= − − − − − − = − + + −

 1
1 1 2 1 1[3( 2 ) 4 ]/(13 ) .Cq a c c bd b q= − + + =  (43)

In a view of equality (32) and the inequality D1 ≥ d1, we have

 d1 ≤ 1 1 1 2 1( ) / 2 [3( 2 ) 4 ]/(13 ),Cd D a c c bd b+ = − + +

 13bd1 ≤ 3(a – 2c1 + c2) + 4bd1,

which is guaranteed by condition (36).



Nash Equilibrium and its Modern Applications 207

From relationships (42) and (43), we finally obtain

q2 = {a – c2 – [3(a – 2c1 + c2) + 4bd1]/13}/(2b) = 

= (13a – 13c2 – 3a + 6c1 – 3c2 – 4bd1)/(26b) = 

= (10a + 6c1 – 16c2 – 4bd1)/(26b) = (5a + 3c1 – 8c2 – 2bd1)/(13b) = q2
C1.

Note that, by inequalities (37) and (38), the inequality q2
C1 ≥ 0 is fulfilled.

Corollary 1. By Theorem 6, we have

 1 1 2 1[6( 2 ) 5 ]/(13 ).CD a c c bd b= − + −

The statement follows from the equalities
 1

1 1 1 1 2 1( ) / 2 [3( 2 ) 4 ]/(13 ).C Cd D q a c c bd b+ = = − + +

Corollary 2. If condition (36) is satisfied as the equality, we have D1 = d1, i.e., 
the output of the 1-st company is deterministic.

Thus, the randomness of the output of the 1st company leads to the change 
in the Cournot–Nash equilibrium from q2

C to q2
C1 and also from q1

C to –q1
C1. The 

answer concerning the direction of these changes is given by the theorem 
formulated below.

Theorem 7. Under the conditions of Theorem 6, we have

  –q1
C1 ≤ q1

C, (44)

 q2
C1 ≥ q2

C. (45)

We have

 

1
1 1 1 2 1 1 2

1 2 1 1 2

1 2 1 1 2

1 2 1 1 1 2

[3( 2 4 ]/(13 ) ( 2 ) /(3 )
[9( 2 ) 12 13( 2 ) /(39 )

(9 18 9 12 13 26 13 ) /(39 )
( 4 8 4 12 ) /(39 ) 4(2 3 ) /(39 ) 0;

C Cq q a c c b d b a c c b
a c c b d a c c b

a c c b d a c c b
a c c b d b c b d a c b

− = − + + − − + =
= − + + − − + =

= − + + − + − =
= − + − + = + − − ≤

 

1
2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 1

(5 3 8 2 ) /(13 ) ( 2 ) /(3 )
[3(5 3 8 2 ) /(13 ) 13( 2 ) /(39 )

(15 9 24 6 13 26 13 ) /(39 )
(2 4 2 6 ) /(39 ) 2( 2 3 ) /(39 ) 0.

C Cq q a c c b d b a c c b
a c c b d b a c c b
a c c b d a c c b

a c c b d b a c c b d b

− = + − − − − + =
= + − − − − + =
= + − − − + − =

= − + − = + − − ≥

Inequalities (36)–(38) mean that the maximally possible price a must be 
sufficiently high:
 2 1 2 1 1 2 1max{2 ; ;2 3 }.a c c c bd c c bd≥ − + − +
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If the cost per unit for the 1-st company with a random output is no less 
than the cost per unit for the 2-nd company with a deterministic output,

 c1 ≥ c2, (46)

then inequality (36) implies condition (37) of Theorem 6.

Corollary 3. Under conditions (1)–(33), (38), and (46), inequality (36) is the 
necessary and sufficient condition of inequalities (44) and (45).

Theorem 7 testifies that, under the conditions of Theorem 6, the 
randomness of q1 leads to a decrease in the expected equilibrium value of –q1

C1 
in comparison with that of q1

C and also to an increase in q2
C1 in comparison with 

q2. Let us compare the total equilibrium commercial manufacture QC with the 
total expected equilibrium commercial manufacture,

 
1 1 1

1 2 1 2 1 1 2 1

1 2 1

(3 6 3 4 5 3 8 2 ) /(13 )
(8 3 5 2 ) /(13 ).

C C CQ q q a c c b d a c c b d b
a c c b d b

= + = − + + + + − − =
= − − +  

Theorem 8. Under the conditions of Theorem 6, we have  –QC1 ≤ QC.
We have
 1

1 2 1 1 2 1 2 1(24 9 15 6 26 13 13 ) /(13 ) ( 2 4 2 6 ) /(13 ) 0.C CQ Q a c c b d a c c b a c c b d b− = − − + − + + = − + − + ≤

Corollary 4. According to the conditions of Theorem 6, we have

 PC ≤  –PC1 = a – b –QC1.

By Theorem 8, under the conditions of Theorem 6, the randomness of q1 

leads to a decrease in the expected equilibrium commercial manufacture –QC1 
in comparison with QC.

Theorem 9. By Theorem 6, the 2-nd company whose output is deterministic 
and whose DM knows the expected output of the 1-st company obtains an 
additional payoff
 E(π2

C1) – π2
C = (G2 – F2)/b ≥ 0,

where
 F = (a – 2c2 + c1)/3,

 G = (5a + 3c1 – 8c2 – 2bd1)/13.

The additional payoff of the 2-nd company is specified by the expression
1 1 2 2 2

2 2 1 2 1 2 1 2 1
2 2

( ) / (5 3 5 2 13 )(5 3 8 2 ) /(13 ) /
/ / ( )( ) / .

C CP c q F b a c c b d c a c c b d b F b
G b F b G F G F b

− − = + + − − + − − − =

= − = + −
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Since we have F ≥ 0, G ≥ 0, the multiplier (F + G) is nonnegative. The 
other multiplier is nonnegative by inequality (36):

 1 2 1 2 1

1 2 1 2 1 1

15 9 24 6 13 26 13
2 4 2 6 2( 2 3 ) 0.

G F a c c b d a c c
a c c b d a c c b d

− = + − − − + − =
= − + − = + − − ≥

  

As a random output of the 1-st company increases the profit of its 
competitor (the 2-nd company with a deterministic output), the question about 
motivations of the 1-st company concerning its random output (the question 
about changes in the profit of the 1-st company) arises.

Theorem 10. The expected equilibrium profit of the 1-st company under the 
conditions of Theorem 6 is no more than its profit under the conditions of a 
Cournot–Nash equilibrium:
 E(π1

C1) ≤ π 1
C.

We denote H = a – 2c1 + c2. Then, by Corollary 1, we have
1 1 1 1 2

1 1 2 1 1 1 1
2

1 1 2 1 1
2 2 2

1 1 1 1 1
2 2

1 1 1

( ) ( ) [4( ) ] / 3
(13 13 5 3 8 2 )(3 4 ) /(13 )

[4(3 4 ) /(13 ) (6 5 ) /(13 )]/ 3 2(4 )(3 4 ) /(13 )
[4(3 4 ) 13 (6 5 ) ]/(13 )

[6(4

C C C C CE a c b q q b q d D
a c a c c b d H b d b

b H b d b H b d d b H b d H b d b
H b d b H b d d b

H

π = − − − − =

− − − + + + −

− + − − = + + −

− + − − =

= 2 2
1 1 1 1 1

2
1 1 1 1 1

2
1 1 1 1 1

2
1 1 1

)(3 4 ) 4(3 4 ) 13 (6 5 )]/(13 3 )
{(3 4 )[6(4 ) 4(3 4 )] 13 (6 5 )}/(13 3 )

[2(3 4 )(12 3 6 8 ) 13 (6 5 )]/(13 3 )
(6 5 )(6 8 13 ) /(13 3 ) (6

b d H b d H b d b d H b d b
H b d H b d H b d b d H b d b

H b d H b d H b d b d H b d b
H b d H b d b d b

+ + − + + − =

= + + − + + − =

= + + − + + − =

= − + + = 2
1 1

2 2 2 2 2 2
1 1 1 1 1

5 )(2 7 ) /(13 )
[12 42 10 35( ) ] /(13 ) [12 32 35( ) ] /(13 ).

H b d H b d b
H b d H b d H b d b H b d H b d b

− + =

= + − − = + −

 

Thus, we obtain
1 2 2 2 2

1 1 1 1
2 2 2 2 2 2 2

1 1 1 1

( ) /(9 ) [12 32 35( ) ] /(13 )
[169 108 288 315( ) ] /(13 9 ) [61 288 315( ) ] /(13 9 ).

C CE H b H b d H b d b
H H b d H b d b H b d H b d b

π π− = − + − =

= − − + = − +

To estimate the sign of the numerator, we find its roots,

 2 0.5
1 [288 (288 4 61 315) /(2 315) (288 78) / 630.b d H H H= ± − × × × = ±   

Thus, the sign of the numerator coincides with the sign of the expression

 
1 1 1 1( 366 / 630)( 210 / 630) ( 61 /105)( / 3).b d H b d H b d H b d H− − = − −  

Since both multipliers of the latter expression are nonpositive by the 
Theorem 10 conditions, this expression is nonnegative. Theorem 10 is  
proved.
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Theorems 9 and 10 assert that the randomness of the output of the 1-st 
company provides an additional payoff for its competitor (for the 2-nd 
company with a deterministic output) but not for the 1-st company itself since 
the determinacy of its output is preferable for its DM than the randomness. 
This conclusion explains enhanced attention to prediction and planning.

Thus, the asymmetry of uncertainty leads to the leadership of the DM 
with a deterministic output and the DM with a random output becomes its 
follower (Gorbachuk 2007b). The DM with a deterministic output does not 
know the random volume of the output of the other DM, but he knows the 
expected volume of the random output of the competitor.

Theorem 11. Under the conditions of Theorem 6, a Cournot–Nash equilibrium 
for a random q1 is a generalized C0ournot–Stackelberg–Nash equilibrium.

By Theorem 9, a Cournot–Nash equilibrium under uncertainty is a 
generalized Cournot–Stackelberg–Nash equilibrium if, when c = c1 = c2, we 
have
 E(π1

C1) ≥ (a – c)2/(16b).

Let us take into account the equality above,

 
1 2 2 2 2 2

1 1 1
2 2 2

1 1

( ) /(16 ) [12 32 35( ) ] /(13 ) /(16 )
[560( ) 512 13 ]/(13 16 ).

CE H b H b d H b d b H b
b d H b d H b

π − = + − − =

= − − −

To prove the positivity of the latter expression, we find the roots of the 
square-law function in the numerator:

2 2 2 0.5
1 [512 (512 4 560 23 ) ]/(2 560) (512 8 4901) /1120.b d H H H H= ± + × × × = ±

From this, we obtain that the sign of the numerator coincides with the sign 
of the product
 

1 1[ (512 8 4901) /1120][ (512 8 4901) /1120],b d H b d H= − − + − −

or, with sufficiently high accuracy, with the sign of the following product:

 1 1

1 1

[ (512 8 70) /1120][ (512 8 70) /1120]
(1078 /1120 ))( 48 /1120).

b d H b d H
H b d b d H

= − − + × − − × =
= − +

Given condition (36), this sign is positive, which is what had to be proved.
The results obtained show that the asymmetry of the interaction of DMs, 

in particular, the asymmetry of uncertainty can provide an advantage for a 
leader and can lead to generalized Cournot–Stackelberg–Nash equilibria.
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4. The Cournot–Nash equilibria under mutual uncertainty

In high-technology industries, producing new products or offering new 
services, a small number of companies, capable of producing such products 
or services, are engaged into a market. In addition, markets of new products 
or services are characterized by uncertainty in demand or output (Gorbachuk 
2008b). The importance of uncertainty after the apparent collapse of shares 
of Internet companies during 2000, terrorist attacks in the United States on 
September 11, 2001, exceeding a threshold of 130 dollars per barrel by oil 
prices, and abrupt climate change is obvious. The uncertainty often constrains 
the business activity of people accustomed to the so-called centralized 
planning. In this work, the influence of random outputs on the expected 
market output and price, as well as on the company’s outputs and profits, is 
investigated.

Let us suppose that a homogeneous product is produced only by two  
DMs – companies 1 and 2. Let the function of inverse demand for this product 
be given by the equation (1). 

The case, when the values q1 and q2 are deterministic (i.e., are not  
random), has been studied in detail. The randomness of one of these values 
can affect the company’s strategy. Let us investigate the situation where both 
of these values are independent random values. Let us assume q1 and q2 that 
have a uniform distribution on the (nondegenerate) segments [d1, D1] and 
[d2, D2] respectively, whereas the density functions are determined by such 
equations:
 

1 1 1 1 1 1 1 1 1( ) {1/( ), [ , ];0, [ , ]},f q D d q d D q d D= − ∈ ∉

 2 2 2 2 2 2 2 2 2( ) {1/( ), [ , ];0, [ , ]}.f q D d q d D q d D= − ∈ ∉

For example, it was assumed that the price of oil is uniformly distributed 
in the range from 17 to 51 dollars per barrel (by the way, this scenario is of 
interest today, 35 years later the year of publication by De Wolf and Smeers 
1997), but analytical estimations are not obtained.
The expected value of q1 is

 2/)()( 1111 DdqEq +== , (47)

and that of q2 is
 2/)()( 2222 DdqEq +== . (48)

Company 1 chooses the expected value  –q1 of output, seeking to maximize 
the expected value of its profit:

  E(π1) = E(Pq1 –c1q1) ≥ 0.
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From this expression, taking into account (1) and (2), one gets

 
1 1 2 1 1 1 1 1 2 1

2
1 1 1 2 1

( ) {[ ( )] } {[ ( )] }
( ) [( ) ] ,

E E a b q q q c q E a c b q q q
a c q bE q bq q

π = − + − = − − + =

= − − −

where due to relationship (47)
1

1
1

1

2 2 2 3
1 1 1 1 1 1 1 1 1 1 1

3 3 2 2
1 1 1 1 1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1

[( ) ] ( ) ( ) ( ) /( ) ( ) | /[3( )]

[( ) ( ) ]/[3( )] [( ) ( ) ]/ 3

[( ) 2 ( ) ]/ 3 [( ) ]/ 3 [4( ) ]/ 3.

D
D
d

d

E q q f q dq q dq D d q D d

D d D d D D d d

D D d d D d D d D d q D d

∞

−∞

= = − = − =

= − − = + + =

= + + − = + − = −

∫ ∫1
1
1

1

2 2 2 3
1 1 1 1 1 1 1 1 1 1 1

3 3 2 2
1 1 1 1 1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1

[( ) ] ( ) ( ) ( ) /( ) ( ) | /[3( )]

[( ) ( ) ]/[3( )] [( ) ( ) ]/ 3

[( ) 2 ( ) ]/ 3 [( ) ]/ 3 [4( ) ]/ 3.

D
D
d

d

E q q f q dq q dq D d q D d

D d D d D D d d

D D d d D d D d D d q D d

∞

−∞

= = − = − =

= − − = + + =

= + + − = + − = −

∫ ∫

Due to the independence of random variables q1 and q2 

 212121 )()()( qqqEqEqqE == .
Thus,
 3/])(4[)()( 11

2
121111 dDqbqqbqcaE −−−−=π .  (49)

Similarly, taking into account the symmetry,

 3/])(4[)()( 22
2

212222 dDqbqqbqcaE −−−−=π .  (50)

If the highest possible expected profit of the company is negative, then 
the company may choose zero output, that is not to enter the market. Since 
the strategies of both DMs are random, then there is a mutual (symmetric) 
uncertainty.

In this case, while random outputs of both companies (in conditions of 
mutual uncertainty), the combination of the expected outputs 

  –q1
C = (d1

C + D1
C)/2,

  –q2
C = (d2

C + D2
C)/2,

that
 

1 1 1 1 1 2 2 2 1 1 1 1 2 2 2( ) [ ( , , , , , )] [ ( , , , , , )]C C C C C C C C C CE E q d D d D q E q d D d D qπ π π≡ ≥

for any nonnegative  –q1, as well as
 

2 1 1 1 1 2 2 2 2 1 1 1 2 2 2( ) [ ( , , , , , )] [ ( , , , , , )]C C C C C C C C C CE E q d D d D q E q d D d D qπ π π≡ ≥

for any nonnegative –q2, is called the Cournot–Nash equilibrium.
Next, assume the lower limit di for the values of magnitude qi is some 

constant (for example, zero can always be such constant), i = 1, 2. It is natural 
to assume that the value of the determined equilibrium by Cournot–Nash 
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output qC
i of the company i belongs to the segment [di, Di], i = 1, 2. Then the 

market output of the companies under uncertainty is not less than the sum of 
the lower boundaries of random outputs of these companies;

 QC ≡ q1
C + q2

C  ≥ d1 + d2.

Theorem 12. Under conditions (1), (2), (47)–(50), as well as while

 d1 ≤ q1
C = (a – 2c1 + c2)/(3b), (51)

 d2 ≤ q2
C = (a – 2c2 + c1)/(3b), (52)

the combination

 *
1 2 1 1 2[3(5 3 8 ) 2 (8 3 )]/(55 ),q a c c b d d b= + − + −  (53)

 *
2 1 2 2 1[3(5 3 8 ) 2 (8 3 )]/(55 ),q a c c b d d b= + − + −  (54)

is a Cournot–Nash equilibrium under mutual uncertainty.

Proof. For di > 0, i = 1, 2, the inequalities (51) and (52) yield strict inequalities 
(6) and (7) from the work (Gorbachuk 2006) respectively.

Since the function of expected profit E(π1) is concave by  –q1, maximization 
of E(π1) by  –q1 gives

 1 1 1 2 1 10 ( ) / 2 (4 ) / 3,E q a c bq b q dπ= ∂ ∂ = − − − −  (55)

where the equality (47) and fixity of d1 are taken into account:

 1111111111 2///)( dqDdqdDqdD =∂∂+∂∂=∂∂ .

Similarly, because of the symmetry

 3/)4(2/)(0 221222 dqbqbcaqE −−−−=∂∂= π ,
where from we get
 1 2 2 2[3( ) 2 (4 )]/(3 ).q a c b q d b= − − −

Substitute the last expression into equality (55):
 −−−=−−−−= )(3)4(2)(30 211121 qbcadqbqbca
 

2 2 2 12 {4[3( ) 2 (4 )]/(3 ) },b a c b q d b d− − − − −

 
1 2 2 2 2 10 9( ) 2[12( ) 8 (4 ) 3 ]a c bq a c b q d bd= − − − − − − − =

 
1 2 2 2 2 19( ) 9 24( ) 64 16 6 ,a c bq a c bq bd bd= − − − − + − +

 2 1 2 2 155 15 9 24 2 (8 3 ).bq a c c b d d= + − + −  (56)

The latter equation yields the relationship (54).
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Note that in the light of conditions (51), (52) we have

 2a – 4c1 + 2c2 – 6bd1 ≥ 0,

 13a + 13c1 – 26c2 + 16bd2 ≥ 0

respectively. The sum of these two inequalities shows that the right side of 
equation (56) is nonnegative, i.e., q– *

2 is nonnegative.
Similarly, we get the relationship (53). Theorem 12 is proved.

Corollary 5. Under the conditions of Theorem 12

 1 2 1 1 2[(5 3 8 ) (23 12 )]/(55 ),CD a c c b d d b= + − − +

 2 1 2 2 1[(5 3 8 ) (23 12 )]/(55 ).CD a c c b d d b= + − − +

that follows from the equality

 
1 1 1 2 1 1 2( ) / 2 [3(5 3 8 ) 2 (8 3 )]/(55 ),C Cd D q a c c b d d b+ = = + − + −

 2 2 2 1 2 2( ) / 2 [3(5 3 8 ) 2 (8 3 1)]/(55 ).C Cd D q a c c b d d b+ = = + − + −

Corollary 6. If conditions (51) and (52) become equalities, then DC
1 = d1 and 

DC
2 = d2, that is, the outputs of both companies are determinate.

So, the randomness of the outputs of companies leads to changes in 
the Cournot–Nash equilibrium from q1

C (Gorbachuk 2007a) to –q1
C and from 

q2
C to –q2

C. The direction of these changes is determined by the following  
theorem.

Theorem 13. Let the conditions of Theorem 12 be met. If the inequality

 c2 – c1 + b(d2 – d1) ≥ 0, (57)
holds, then
 –q2

C ≤ q1
C; (58)

if the inequality (57) does not hold, then
 –q2

C < q2
C. (59)

Proof. Really,

1 1 1 2 2 1 1 2( 2 ) / (3 ) [3(5 3 8 ) 2 (8 3 )] / (55 )C Cq q a c c b a c c b d d b− = − + − + − + − =
 

1 2 2 1 1 2[55( 2 ) 9(5 3 8 ) 6 (8 3 )] / (165 )a c c a c c b d d b= − + − + − − − =
 

1 2 2 1 1 2(55 110 55 45 27 72 48 18 ) / (165 )a c c a c c bd bd b= − + − − + − + =

 1 2 1 2(10 38 28 48 18 ) / (165 )a c c bd bd b= − + − + . (60)
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From the inequality (51) one gets

 10a – 20c1 + 10c2 – 30bd1 ≥ 0,

and from the inequality (57) –

 18c2 – 18c1 + 18bd2 – 18bd1 ≥ 0.
The value of the sum of the latter two inequalities proves the 

nonnegativeness of the numerator in expression (60), which yields the 
inequality (58).
Similarly, we find 

2 2 2 1 1 2 2 1

2 1 2 1

( 2 ) /(3 ) [3(5 3 8 ) 2 (8 3 )]/(55 )
(10 38 28 48 18 ) /(165 ).

C Cq q a c c b a c c b d d b
a c c bd bd b

− = − + − + − + − =
= − + − +

    (61)
From the inequality (52) one gets

 10a – 20c2 + 10c1 – 30bd2 ≥ 0,

and from the negation of inequality (57) –

 –18c2 + 18c1 – 18bd2 + 18bd1 > 0.

The sum of the latter two inequalities shows the nonnegativeness of the 
numerator in expression (61); therefore, inequality (59) holds. Theorem 13 is 
proved.
Note that condition (57) is fulfilled for 

 c = c1 = c2, (62)

 d1 = d2. (63)

The condition (57) means that if the product cost of company 1 is higher, 
then the lower limit of a random output of this company is to be lower:

 d2 – d1 ≥ (c1 – c2)/b.

Lemma 2. Let the conditions of Theorem 12 and inequality (10) of Theorem 
1 from the work (Gorbachuk 2007a)

 a ≥ c2 + bd1. (64)
is met. Then, if the inequality

 a ≥ c1 + b(2d1 + d2), (65)
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is fulfilled, then the upper limit D1
C of the random output of company 1 under 

mutual uncertainty is not less than the upper limit D1 of the output of this 
company under asymmetric uncertainty (Gorbachuk 2007a):

 1 2 1 1 2[6(5 3 8 ) (23 12 )] / (55 )CD a c c b d d b= + − − + ≥
 ≥ 1 2 1 1[6( 2 ) 5 ] / (13 )a c c bd b D− + − = .

Proof. Really,
 

1 1 2 1 1 2715 ( ) 13[6(5 3 8 ) (23 12 )]Cb D D a c c b d d− = + − − + −
 

1 2 155[6( 2 ) 5 ]a c c bd− − + − =

2 1 1 2 1 2 1390 234 624 299 156 330 660 330 275a c c bd bd a c c bd= + − − − − + − + =
 

2 1 1 260 96 36 24 156a c c bd bd= − + − − =

 2 1 1 212(5 8 3 2 13 )a c c bd bd= − + − − . (66)

Condition (52) yields the inequality

 4a – 8c2 + 4c1 – 12bd2 ≥ 0,

adding it up with inequality (65), we get the nonnegativeness of the numerator 
in expression (66). Lemma 2 is proven.

Note that for relations (62), (63) condition (65) follows from inequality 
(51) or (52).

Corollary 7. Under the conditions of Theorem 3 and relations (64), (65) the 
expected output –q1

C of company 1 under mutual uncertainty is not less than the 
expected output –q1

C1 (Gorbachuk 2007a) under asymmetric uncertainty.
Corollary 7 yields that the degree of uncertainty of output of corporation 

1 orders equilibrium values of its outputs:

 q1
C ≥  –q1

C ≥  –q1
C1.

Conditions (51), (52), (64), (65) indicate that the maximum possible price  
a should be large enough:

 a ≥ 1 2 1 2 1 2 2 1 1 1 2max{2 3 ;2 3 ; ; (2 )}c c bd c c bd c bd c b d d− + − + + + + .

Theorem 14. Under the conditions of Theorem 12 the expected market output

 Q–C ≡ –q1
C + –q2

C

in the case of mutual uncertainty is not greater than the market output QC 
(Gorbachuk 2006) while the Cournot–Nash equilibrium.
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Proof. Indeed, because of equations (53) and (54)

 
2 1 1 2 1 2[3(5 3 8 ) 2 (8 3 ) 3(5 3 8 )CQ a c c b d d a c c= + − + − + + − +

 2 12 (8 3 )] / (55 )b d d b+ − =

1 2 1 2 1 2 1 2[(30 15 15 10 ( )] / (55 ) [3(2 ) 2 ( )] / (11 )a c c b d d b a c c b d d b= − − + + = − − + + .

Furthermore,

 1 2 1 2 1 2(2 ) / (3 ) [2(2 ) 2 ( )] / (11 )C CQ Q a c c b a c c b d d b− = − − − − − + + =

 1 2 1 2 1 2[11(2 ) 9(2 ) 6 ( )] / (33 )a c c a c c b d d b= − − − − − − + =

 1 2 1 22(2 3 3 ) / (33 )a c c bd bd b= − − − − .

Adding up inequalities (51) and (52), we conclude that the numerator in 
the latter expression is nonnegative. Theorem 14 is proved.

Theorem 14 implies that mutual uncertainty results in reducing the 
expected market output. 

Theorem 15. Under conditions of Theorem 12 and fulfilment of inequalities 
(64), (65) the expected market output Q–C under mutual uncertainty is not 
greater than the expected market output

 1
1 2 1(8 3 5 2 ) / (13 )CQ a c c bd b= − − +

under asymmetric uncertainty (Gorbachuk 2007a).

Proof. Really.
1

1 2 1 2 1 2 1[3(2 ) 2 ( )] / (11 ) (8 3 5 2 ) / (13 )C CQ Q a c c b d d b a c c bd b− = − − + + − − − + =
 

1 2 1 2 1 2 1[39(2 ) 26 ( ) 11(8 3 5 2 )] / (143 )a c c b d d a c c bd b= − − + + − − − + =

1 2 1 2 1 2 1(78 39 39 26 26 88 33 55 22 ) / (143 )a c c bd bd a c c bd b= − − + + − + + − =

 1 2 1 22(5 3 8 2 13 ) / (143 )a c c bd bd b= − + − − − . (67)

By the condition (52) let us write the inequality

 4a – 8c2 + 4c1 – 12bd2 ≥ 0.

Adding it with the inequality (65), we get the negativeness of the 
numerator in expression (67). Theorem 15 is proved.

Theorem 15 implies that the equilibrium values of market outputs depend 
upon the degree of determinacy of the outputs of companies:

 QC ≥  –QC1 ≥  –QC.
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Corollary 8. Under the conditions of Theorem 15 we have

 

1
1 2 1 2

1 2 1 2

[3(2 ) 2 ( )]/(11 )
[5 3 3 2 ( )]/11.

C C C CP P P a bQ a b a c c b d d b
a c c b d d

≤ ≤ ≡ − = − − − + + =
= + + − +

Theorem 16. If the conditions of Theorem 12, conditions (62) are fulfilled, 
and
 1 2 5( )( 183 12) /(39 ) 0.195( ) / ,d d a c b a c b∆ ≡ − ≥ − − > −  (68)
then
 E(π1)C ≥ π1

C.

Proof. Note that inequality (68) implies the negation of inequality (57).
From equation (49) we find

 2 2
1 1 2 1 1 1 1 1( ) ( ) ( ) [ ( ) ] / 3C C C C C C CE a c q bq q b q b D d qπ = − − − + − =

 2
1 1 1 1( ) [ ( ) ] / 3C C C CP c q b D d q= − + − . (69)

On account of corollary 8

 1 2 1 2[5 6 2 ( ) 11 ] /11 [5( ) 2 ( )] /11CP c a c b d d c a c b d d− = + − + − = − − + ,
where from, taking into account equation (53), we get

2
1 1 2 1 2( ) [5( ) 2 ( )][15( ) 2 (8 3 )] / (11 5 )C CP c q a c b d d a c b d d b− = − − + − + − .  (70)

According to equation (53) and corollary 5,
2 2 2 2

1 1 1 1 2 1 1 2
2 2 2 2

1 2 1 1 2

( ) [15( ) 2 (8 3 )] /(55 ) [30( ) (23 12 )]/(55 )

{[15( ) 2 (8 3 )] 55 [30( ) (23 12 )]}/(11 5 ).

C Cq D d a c b d d b d a c b d d b

a c b d d bd a c b d d b

− = − + − − − − + =

= − + − − − − +  
(71)

Substitute relationships (70) and (71) into equality (69):
 

1 1 2 1 2( ) {15[5( ) 2 ( )][15( ) 2 (8 3 )]CE a c b d d a c b d dπ = − − + − + − −
2 2 2

1 2 1 1 2[15( ) 2 (8 3 )] 55 [30( ) (23 12 )]} / (11 5 3 )a c b d d bd a c b d d b− − + − + − − + =

 
1 2 1 2{[15( ) 2 (8 3 )]{15[5( ) 2 ( )]a c b d d a c b d d= − + − − − + −

2 2
1 2 1 1 2[15( ) 2 (8 3 )]} 55 [30( ) (23 12 )]} / (11 5 3 )a c b d d bd a c b d d b− − + − + − − + =

 
1 2 1 2{[15( ) 2 (8 3 )][75( ) 30 ( )]a c b d d a c b d d= − + − − − + −

2 2
1 2 1 1 215( ) 2 (8 3 )] 55 [30( ) (23 12 )]} / (11 5 3 )a c b d d bd a c b d d b− − − − + − − + =

2 2
1 2 1 2 1[30( ) (23 12 )]{2[15( ) 2 (8 3 )] 55 } / (11 5 3 )a c b d d a c b d d bd b= − − + − + − + =

2 2
2 1 2 1[30( ) 12 23 ][30( ) 12 87 ] / (11 5 3 )a c bd bd a c bd bd b= − − − − − + . (72)
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The nonnegativeness of E(π1
C) is guaranteed by conditions (51) and (52). 

Comparing the latter expression with the equality 

 π1
C = (a – c)2/(32b),

we get
 2 2 2

1 111 5 3 [ ( ) ]C Cb E π π− =

 2
2 1 2 13[30( ) 12 23 ][30( ) 12 87 ] 3025( )a c bd bd a c bd bd a c= − − − − − + − − =

 2
1 13[30( ) 12 35 ][30( ) 12 75 ] 3025( )a c b bd a c b bd a c= − + ∆ − − + ∆ + − − =

 2 2
1325( ) 1080( ) 6750( ) 1080( ) 432( )a c a c b a c bd a c b b= − − + − ∆ + − + − ∆ + ∆ +

 2 2
1 1 1 12700( )( ) 3150( ) 1260( )( ) 7875( ) 325( )bd b a c bd bd b bd a c+ ∆ − − − ∆ − = − − +

 2 2
1 1 12160( ) 3600( ) 1440 432( ) 7875( )a c b a c bd bd b b bd+ − ∆ + − + ∆ + ∆ − ,

where from, taking into account the inequality

 bΔ ≤ bd1 ≤ (a – c)/3, (73)

it follows
 2 2 2

1 111 5 3 [ ( ) ]C Cb E π π−  ≥

 ≥ 2 2325( ) 2160( ) 3600( ) 1440( )a c a c b a c b b− − + − ∆ + − ∆ + ∆ +
2 2 2 2432( ) 7875( ) / 9 1200( ) 5760( ) 1872( )b a c a c a c b b+ ∆ − − = − − + − ∆ + ∆ =

 2 248[ 25( ) 120( ) 39( ) ]a c a c b b= − − + − ∆ + ∆ . (74)

To estimate the sign of the latter expression, we will find its roots: 

 2 2 2 0.5{ 120( ) [120 ( ) 3900( ) ] } / 78b a c a c a c∆ = − − ± − + − =

 ( )( 120 10 183) / 78 5( )( 183 12) / 39a c a c= − − ± = − ± − .

The sign of expression (74) coincides with the sign of product

 [ 5( )( 183 12) / 39][ 5( )( 183 12) / 39]b a c b a c∆ − − − ∆ + − + ,

and for nonnegativity of expression (68), it is sufficient the fulfilment of 
inequality (74). Theorem 16 is proved.

Theorem 17. Under the conditions of Theorem 16 the Cournot–Nash 
equilibrium under mutual uncertainty is a generalized Cournot–Stackelberg–
Nash equilibrium.
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Proof. Theorem 16 implies that the Cournot–Nash equilibrium under 
mutual uncertainty is a generalized Cournot–Stackelberg–Nash equilibrium 
(Gorbachuk 2006) if
 E(π2)C ≥ (a – c)2/(16b).

Because of symmetry
2 2

2 1 2 1 2( ) [30( ) 12 23 ][30( ) 12 87 ] / (11 5 3 )CE a c bd bd a c bd bd bπ = − − − − − + =

 2 2
1 1[30( ) 23 35 ][30( ) 87 75 ] / (11 5 3 )a c b bd a c b bd b= − + ∆ − − − ∆ + .

From this expression, taking into account inequalities (73), we get:

 2 2 2
216 ( ) 11 5 3 ( )CbE b a cπ − − =

2 2
116 [900( ) 2610( ) 2250( ) 690( ) 2001( )b a c a c b a c bd a c b b= − − − ∆ + − + − ∆ − ∆ +

2 2
1 1 1 11725 1050( ) 3045 2625( ) ] 9075 ( )bd b a c bd bd b bd b a c+ ∆ − − + ∆ − − − =

 2
1 116 [900( ) 1920( ) 1200( ) 4770b a c a c b a c bd bd b= − − − ∆ + − + ∆ −

 2 2 2
12001( ) 2625( ) ] 9075 ( )b bd b a c− ∆ − − − ≥

 ≥ 2 216 [900( ) 1920( ) 1200( ) 4770( )b a c a c b a c b b− − − ∆ + − ∆ + ∆ −

 2 2 22001( ) 2625( ) / 9] 9075 ( )b a c b a c− ∆ − − − − =

2 2 216 [(900 875 / 3)( ) 720( ) 2769( ) ] 9075 ( )b a c a c b b b a c= − − − − ∆ + ∆ − − =

 2 2 2 2[( ) 1975 / 3 4 720( ) 4 2769( ) ]b a c a c b b= − − − ∆ + ∆ . (75)

To estimate the sign of the latter expression, let us find the roots of its 
quadratic function: 

 2 4 2 2{4 720( ) [4 720 ( )b a c a c∆ = − ± − −

 3 2 0.5 24 1975 2759( ) / 3] } / (2 4 2769)a c− × − × =

 = 2 2 2 2 2 0.5 5( ) [4 720 8(144 5 4 5 79 923) ] / (2 2769)a c− ± − × =

 2 5 2( )(4 720 40 10027)(2 2769) ( )(1440 5 10027) / (2 2769)a c a c= − ± = − ± .

It implies that the sign of expression (75) coincides with the sign of 
product

2 2[ ( )(1440 5 10027)(2 2769)][ ( )(1440 5 10027) / (2 2769)]b a c b a c∆ − − + ∆ − − − ,
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or, with a very high probability, with the sign of a product

 
2 2[ ( )(1440 500)(2 2769)][ ( )(1440 500) / (2 2769)]b a c b a c∆ − − + ∆ − − − =

 
2 2[ ( )1940 / (2 2769)][ ( )940 / (2 2769)]b a c b a c= ∆ − − ∆ − − =

 [ ( )485 / 2769][ ( )235 / 2769]b a c b a c= ∆ − − ∆ − − .

Given condition (68) this sign is positive. Theorem 17 is proved.

Example 1. The values

 d1 = 0.2(a – c)/b, d2 = 0,  (76)

satisfy the conditions (51), (52), (68). Based on Theorem 12

 1 18.2( ) / (55 )Cq a c b= − , (77)

 2 213.8( ) / (55 ) ( ) / (3 )C Cq a c b a c b q= − < − = , (78)

While equalities (62) and (76) hold true, inequalities (57) and (59) do 
hold true by theorem 13.
Taking into account corollary 5, we get

 1 25.4( ) / (55 )CD a c b= − , (79)

 2 127.6( ) / (55 )C CD a c b D= − > ,

and corollary 8 stipulates that the equality

 (4.6 6.4 ) /11CP a c= + . (80)

While equalities (69), (76), (77), (79), (80) are fulfilled,

 2
1 1 1 1 1( ) ( ) [ ( ) ] / 3C C C C CE P c q b D d qπ = − + − =

 (4.6 6.4 11 )25.4( ) / (55 11)a c c a c b= + − − +

 2 2 2 2 2[25.6( )0.2( ) / (55 ) 18.2 ( ) / (55 ] / 3b a c a c b a c b+ − − − − =

 2 2 2 24.6( ) 25.4 / (55 11) [55( )25.6( )0.2 18.2 ( ) ] / (55 3 )a c b a c a c a c b= − + − − − − =

 2 2 2 2 2[15( ) 116.84 11( ) 25.6 18.2 ( ) ] / (55 3 )a c a c a c b= − + − − − =

 2 2 2[1752.6( ) 281.6( ) 331.24( ) ] / (9075 )a c a c a c b= − + − − − =

 2 2 2
11702.96( ) / (9075 ) 0.187( ) / ( ) / (9 ) Ca c b a c b a c b π= − > − > − = ,

which confirms the result of Theorem 16.
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Similarly, because of symmetry 
 2

2 2 2 2 2( ) ( ) [ ( ) ] / 3C C C C CE P c q b D d qπ = − + − ,

where from, taking into account equalities (76), (78), (80), we get

 2 2 2
2( ) (4.6 6.4 11 )13.8( ) / (55 11) 13.8 ( ) / (55 3 )CE a c c a c b a c bπ = + − − − − =

 2 2 2[15( )4.6( )13.8 13.8 ( ) ] / (55 3 )a c a c a c b= − − − − =

 2 213.8( ) (69 13.8) / (55 3 )a c b= − − =

 2 2 2
2761.76( ) / (9075 ) 0.083( ) / ( ) / (16 ) Sa c b a c b a c b π= − > − > − = .

Thus, the result of Theorem 17 is also confirmed.

Lemma 3. Under the conditions of Theorem 12 and fulfilment of equality 
(62) negation of inequality (57) results in

 2 1 1 2( ) / 5 0C CD D d d− = − > .

Indeed, because of corollary 5 and equality (62)

 1 1 2[30( ) (23 12 )] / (55 )CD a c b d d b= − − + ,

 2 2 1[30( ) (23 12 )] / (55 )CD a c b d d b= − − + ,

 2 1 1 2 2 1 1 2(23 12 23 12 ) / 55 ( ) / 5 0C CD D d d d d d d− = + − − = − > .

Theorem 18. Suppose the value qi has a discrete distribution with the average

 q–i = pidi + (1 – pi)Di, i = 1, 2,

where pi is a given probability on the interval [0, 1]. Let equality (62) and the 
inequalities

 2 ( )(1 ) (1 ), , 1, 2, ,i i i j j ibp d a c p bp d p i j i j< − + + − = ≠

be fulfilled. Then for i, j = 1, 2, i ≠ j,

 [(1 )( ) 2( )] / {[4 (1 )(1 )] }C
j i i j j i jD p bp d a c a c bp d p p b= − − + + − − − − − .

Proof of Theorem 18 is similar to the proof of Theorem 12. It is not difficult 
to see that under the conditions of Theorem 18 the assertion of Lemma 3 that 
D2

C ≥ D1
C remains valid.

Lemma 4. While the fulfilment of the conditions of Theorem 18 and 
inequalities
 d2 ≤ d1 ≤ (a – c)/(2b)

the inequality D2
C ≥ D1

C holds.
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In general, the case, to obtain estimates computer modeling is used 
(Tramontana et al. 2011). Analytical estimates are usually obtained for certain 
types of distributions (Prokopovych and Yannelis 2014).

Thus, when the unit costs of companies for output are the same, then,  
while the Cournot–Nash equilibrium, they have the same outputs and  
profits. If the output of one of the companies is random in the class of 
uniform distributions, then, while the generalized Cournot–Stackelberg–Nash 
equilibrium, this company, for rather general conditions, becomes a follower, 
a company with determinate output – a leader. If the output of each company is 
random, then, while the generalized Cournot–Stackelberg–Nash equilibrium, 
a company with a wider range of random values of outputs (under condition 
(68)) is a follower, a company with a narrower range of random values of 
outputs – a leader. So, a company with a more definite output in all the cases 
receives priority over the company with less certain outputs (Gorbachuk 
2008b).

Similarly, while the interaction of government and the central bank it can 
be expected that a leader while the generalized Cournot–Stackelberg–Nash 
equilibrium will be an organization with a more definite strategy.
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Chapter 10

 On the Vector Optimal Control  
of  Risk Processes

Bogdan V Norkin,1,* Vladimir I Norkin1 and Roman V Sukach2 

1. Introduction

In this section, optimization, and vector optimal control problems for 
stochastic risk processes are considered. Mathematical models in the form 
of risk processes describe stochastic systems with a wholly ordered state 
space, i.e., for each pair of different states, one is better or worse than the 
other. Typical examples of such systems are banking, financial and insurance 
systems, stochastic business processes, inventory management systems, 
and energy storage. The goal of control is to transfer the system from the 
initial state to better states while avoiding bad states. This goal is formalized 
as a vector optimality criterion, in which some indicators characterize the 
effectiveness of management while others characterize the risk of getting 
into unfavorable states. Formally, the problem of vector optimal control is 
constructing an effective frontier in the space “efficiency - risk” and finding 
the corresponding Pareto-optimal controls.

In the paper, several approaches are proposed for the numerical 
implementation of this scheme.
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The basic approach consists of finding the optimal control among 
some parametric controls. This approach is supported by the fact that many  
stochastic optimal control problems have analytical solutions up to unknown 
numerical parameters. Thus, the original problem is reduced to the finite-
dimensional vector stochastic programming problem concerning these 
parameters. The values   of efficiency and risk indicators under fixed control 
can be estimated by multiple process simulations. In addition, it is shown that 
the discounted indicators of efficiency and risk under a fixed control satisfy 
some integral equations, which can be effectively solved by a successive 
approximation method. Thus, the problem of vector stochastic optimal 
control is reduced to the problem of stochastic vector optimization on a finite-
dimensional set of parameters.

In the case of a small number of parameters, this problem is solved 
by finite deterministic or random approximation of a continuous set of  
parameters with a discrete one. For a finite number of vectors in the criteria 
space, finding the Pareto-optimal points is carried out by directed enumeration 
and is not a significant problem. In parallel, the corresponding Pareto-optimal 
parametric controls are found, which give an approximate solution to the 
original problem.

In the case of a large number of parameters, to find Pareto optimal 
solutions, it is possible to optimize the convolutions of the criteria. Since 
optimal strategies are non-convex, non-smooth, or discontinuous functions 
of state variables and parameters, the corresponding stochastic programming 
problems turn out to be non-convex, non-smooth, or even discontinuous. For 
its approximate solution, stochastic generalized gradient directed random 
search, and successive smoothing methods are used.

One more approach formalizes the control problem as a finite-dimensional 
vector stochastic programming problem with fixed unknown control. The 
efficiency indicator is the gain from the decisions made, and the risk indicator 
is the probability of falling into unfavorable states. The obtained optimal 
solution as a function of the initial state of the process can be used in a rolling 
horizon manner, i.e., at each new current state, the decision is recalculated. 
In the case of a finite number of process evolution scenarios, the problem is 
reduced to high-dimensional mixed-integer programming problems.

Thus, the following results are displayed in the work.
The methodology of two-stage and vector (multi-criteria) optimal control 

of risk processes is developed.
For controlled risk processes, integral efficiency and risk functionals are 

formulated.
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Linear integral equations are derived to calculate the values   of the 
efficiency and risk functionals for a particular control strategy.

Successive approximation methods for solving these integral equations 
are developed and substantiated.

A scheme is developed for reducing a vector optimal control problem with 
a parametrically specified family of admissible controls to vector stochastic 
programming problems.

For the vector stochastic optimization problems, an approximation 
method for constructing the Pareto-optimal frontier in the space “efficiency 
- risk” and for finding the corresponding Pareto-optimal set of controls is 
developed and substantiated.

The developed approaches to solving vector optimal control problems are 
applied to the problems of managing an insurance company’s reserves and 
inventory control problems.

2. Stochastic risk processes in insurance and inventory  
control theory

The general theory of single-criteria optimal control of Markov decision-
making processes is described, for example, in Dynkin and Yushkevich 
1979, Bertsekas and Shreve 1996, Feinberg and Shwartz 2002, Powell 
2011. In this paper, we consider a particular class of processes, the so-called 
controlled risk processes describing the stochastic evolution of some assets. 
The management of such processes is considered in terms of efficiency and 
risk. Risk is understood as the possibility of getting into some undesirable 
region of the state space. Thus, the management of these processes is two-
criteria or multicriteria. In this case, usually, one criterion is chosen as the 
objective function, and the rest are used in the constraints. The Lagrange 
multiplier method, the dynamic programming method, and the Pontryagin 
maximum principle are usually used to solve the problem. The difficulties of 
these approaches are related to the nonconvexity of optimal control problems, 
the nonsmoothness of the Bellman function, the necessity to find viscosity 
solutions for Bellman equations, and the curse of dimensionality. In this 
paper, we propose a different approach to the multicriteria optimal control 
of (discrete-time) risk processes, namely, its reduction to a multicriteria 
stochastic programming problem by using parametric control strategies.

2.1 Risk processes in insurance mathematics

This section considers stochastic optimization models of insurance 
mathematics and methods for their solution from the point of view of the 
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methodology of stochastic programming and stochastic optimal control 
with vector optimality criteria. The evolution of the capital of an insurance 
company is considered in discrete time. The main random variables that 
influence this evolution are payment levels, which are ratios of paid claims to  
the corresponding premiums per unit of time. The main optimization  
variables are the structure of the insurance portfolio (the structure of the 
total premium) and the number of dividends. The performance criteria are 
profitability indicators of the insurance business, and the risk criteria are the 
probability of ruin and the capital necessary to prevent the ruin. Optimization 
aims to build efficient frontiers and efficient (Pareto) feasible solutions. 
Methods for solving these problems are proposed.

The traditional insurance theory is based on the expected utility theory 
(see, e.g., Bowers et al. 1997). An alternative approach is based on the 
optimization of return and/or risk (see de Finetti 1957, Borch 1974, Gerber 
1979, Beard et al. 1894, Nakonechnyi 1996, Lyubchenko and Nakonechnyi 
1998, Bayraktar and Young 2008, Schmidli 2008, Norkin 2011, Ascue and 
Muler 2014). The probability of ruin (probability of insolvency) is most 
often used as a risk indicator (see Asmussen and Albrecher 2010, Korolev  
et al. 2011, Ascue and Muler 2014). The difficulty of the arising optimization 
problems is explained by the fact that they belong to the class of nonconvex 
problems of stochastic programming or stochastic optimal control under 
probabilistic constraints. This paper shows how insurance optimization 
tasks can be posed and numerically solved according to several criteria. In 
contrast to the classical Cramer-Lundberg collective risk model (see, e.g., 
Bowers et al. 1997), in this paper, the stochastic evolution of the capital of 
an insurance company is considered in discrete time, which is justified by 
discrete-time (quarterly, annual) reporting on a company activity results (see, 
e.g., Forinshurer 2022). The primary source of randomness in insurance is 
insurance claims that appear at random times and have random sizes. In the 
discrete-time models considered below, the primary random variable is the 
level of insurance payments, which is the ratio of claim payments to premiums 
per unit of time (year, quarter) (see Norkin 2014, Ermoliev et al. 2020).

Discrete-time dynamic actuarial risk models. Let the reserves of an insurance 
company evolve over (discrete) time according to the following law:

 1 0( )( ) , , 0,1,..., ,t t t tX X c y u Xy x t Tξ+ = + − − = = ≤ ∞  (1)

where y = (y1,...,yn) ∈ Y is a fixed deterministic vector parameter, which 
determines insurance premiums c(y) and influence on the insurance claims 
ξ t(y); u t ∈ [0, X t];  is the collected dividends in the time interval [t, t + 1). 
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For example, vector y can describe the insurance portfolio with 
components yi ≥ 0, ∑n

i = 1 yi ≤ 1; c(y) is the net deterministic premiums per 
unit of time from the insurance portfolio y, e.g., c(y) = (1 – ν)∑n

i = 1 yi, where  
ν ∈ (0,1) is the level of operational expenses; ξ t(y) is realizations of the level 
of insurance claims under the portfolio y, for example, ξ t(y) = ∑n

i = 1 yi ξ
t
i, where 

ξ t
i is random payment level for insurance type i in the time interval [t, t + 1),  yi 

is the premium from the i-th type of insurance in this time interval. 
In another example, y may describe a stop-loss reinsurance contract with 

net premiums c(y) = c0 – c1y and bounded claims ξ t(y) = min {y, ξ t} in the 
time interval [t, t + 1), where c0 and ξ t  are the premiums and claims without 
reinsurance, c1 is the cost of reinsurance of the stop-loss level y. Process (1) 
is called a discrete-time risk process. Under the event of ruin (or insolvency) 
of the risk process, one means such realization of the process (1), when  
X t < 0 for some t > 0. 

A similar approach to modelling investment risk insurance was used in 
Norkin VI 2007, and Ermol’yev et al. 2001.

The expected accumulated dividends as performance indicators. Let us 
denote the first random moment τ when the process (1) stops, i.e., when the 
company’s reserves become negative:

 { }0
sup [0, ] : min 0 .k

k t
t T Xτ

≤ <
= ∈ ≥

The dividend optimal control problem (under the fixed portfolio y) has 
the form:

 
1

: [0, ]0
( ) max ,

t t

t

u u Xt
F u u

τ −

∈=

= →∑E  (2)

where {X t} satisfy equation (1), E denotes mathematical expectation.
The paradox (see de Finetti 1957) for this problem is that under the 

optimal dividend strategy the probability of ruining the risk process can be 
equal to one. Therefore, it is necessary to limit the set of   admissible controls 
and/or take into account additional control criteria. This problem has attracted 
considerable attention of researchers (see Piunovsky 1997, Sethi 1997, Hipp 
2003, Paulsen 2003, Dickson and Waters 2004, Gerber et al. 2006, Thonhauser 
and Albrecher 2007, Bayraktar and Young 2008, Avanzi 2009, Ascue and 
Muler 2014). 

Parametric control strategies. In this paper, we consider this problem as 
a multiobjective stochastic optimal control one and solve it approximately 
by using parametric control strategies. For example, one can use positional 
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parametric control strategies of the form ut = u(X t, z), where u(.,.) is a given 
function, and z ∈ Z is a vector of parameters from the set Z. In particular, 
{ut} can be a deterministic strategy {ut = zt, t = 0,1,...,T < ∞}. An indicator 
of the effectiveness of the management strategy is the expected accumulated 
dividends for the time τ before the ruin:

 
1

0
( , , ) ( , ).t

t
D x y z u X z

τ −

=

= ∑E  

It appears that in optimal control actuarial problems, the optimal controls 
often have the so-called band structure (see Chapter 5 in Ascue and Muler 
2014 and references therein). This means that there is a band partition  
{Bk, k = 1,2,...} of the state space R+ = ⋃k Bk, where {Bk} are disjoint subsets 
with boundary points b = {0 = b0 < b1 < ... < bk < ...}. For each partition set Bk 
there is a corresponding analytically known control rule Bk(x, b,...) depending 
on the state variable x, partition points b, and maybe some other parameters. 
The whole control strategy has the form

 { }( , ) ( , ,...), , 1,2,... .k ku x b u x b x B k= ∈ =  (3)

The class of band controls includes some other particular controls like 
barrier control, (B, b)-control, proportional control and other known rules. 
Substituting the control ut = u(X t, b,...) into the original control problem 
(2) transforms it into a finite-dimensional stochastic programming problem 
concerning the unknown parameters (b,...). For example, in the case of barrier 
control, (b > 0), 

 
, ,

( , )
0, 0 ;

x b x b
u x b

x b
− >

=  ≤ ≤

in the case of (B, b)-control, (B > b), 

 
, ,

( , , )
0, 0 ;

x b x B
u x B b

x B
− >

=  ≤ ≤

In the case of proportional control 

 { }( , ) , , 1,2,... , [0,1], R .k k k k ku x b x x B k Bα α += ∈ = ∈ =

Remark that the control function (3) can be nonsmooth and even 
discontinuous on its variables, so the output stochastic programming problem 
may occur nonconvex, nonsmooth, and multiexremal.
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The probability of ruin is the risk indicator. Let ψ t(x) denote the probability 
of ruin, and φ t(x) be the probability of non-ruin of process (1) in the time 
interval [0, t] and with the initial capital X 0 = x:

 { }{ }0( ) Pr 0,1,..., : 0; ,t kx k t X X xψ = ∃ =<∈

 { }0( ) 1 ( ) Pr 0, 0 , ,t t kx x X k t X xϕ ψ= − = ≥ ≤ ≤ =

where Pr{.} denotes the probability of the event in the curly braces. Functions 
ψ t, φ t depend not only on x, but also on other parameters (y, z) of the process 
(1), but in this context, this dependence is not explicitly indicated. 

Assumption 1. All {ξ t  ∈ R1} are independent identically distributed random 
variables, distributed as a random variable ξ  ∈ R1 with the cumulative 
distribution function Φ(w) = Pr{ξ ≤ w}; ξ t(y) = yξ t  with y ∈ R1. 

Under Assumption 1, the sequence of functions {φ t(.), t = 0,1,...} satisfies 
the following integral relations:

 
( )

1( ) Pr{ ( ) ( , ) 0}
Pr{ ( ( ) ( , )) }

( ( ) ( , )) ,

x x c y u x z y
x c y u x z y

x c y u x z y

ϕ ξ
ξ

= + − − ≥ =
= ≤ + − =

= Φ + −

 1( ) ( ( ) ( , ) ), 1,2,...,t tx x c y u x z y tξϕ ϕ ξ+ = + − − =E

where Eξ denotes the expectation operator (Lebesgue integral over the measure 
induced by the random variable ξ ); by definition, φ t(x) = 0, x < 0, for all t.
The non-ruin probability of the process (1) on the infinite time interval

 0( ) Pr{ 0 0, },tx X t X xϕ = ≥ ∀ ≥ =

as a function of the initial state x, satisfies under Assumption 1 for fixed y, z 
the (integral) equation

 
( )

( )
{ : ( ) ( , ) 0}

( ) ( ) ( , )

( ) ( , ) ( ),
w c y u x z ywx

x x c y u x z y

x c y u x z yw d w

ξϕ ϕ ξ

ϕ
+ − − ≥

= + − − =

= + − − Φ∫
E

 (4)

where, by definition, φ(x) = 0 for x < 0. This is a linear integral equation that 
always has a zero solution. However, we are interested in conditions under 
which there exists a nondecreasing solution φ(.) such that

 
{ }

0 ( ) 1, lim ( ) 1.
x

x xϕ ϕ
→+∞

≤ ≤ =   (5)
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Such solutions can be found by the successive approximations method:

 ( )1 0( ) E ( ) ( , 1, 0,1,..) , . .k kx x c y u x y kzξϕ ϕ ξ ϕ+ ≡ == + − −   
The existence of solutions to the problem (4), (5) and the convergence 

conditions for the successive approximations method were studied by Norkin 
2007 and Norkin 2008.

Discounted risk functionals in insurance mathematics. For the process (1), 
we consider several additive utility and risk functionals. Let, at each step, the 
process (1) be characterized by an indicator r (., ξ (y)), then define the additive 
functional 

 ( )
1

0

(( ; , ) , ,)t t t

t

yV x y z r X
τ

γ ξ
−

=

= ∑E

where γ ∈ (0,1) is the discount factor, the mathematical expectation E is taken 
over all possible trajectories of the process, and τ is a random moment of the 
ruin of the process, i.e., τ = sup{t : min0 ≤ k < t X

k ≥ 0}.
If function r (.) grows no faster than a linear one, then the function   

V(.; y, z) satisfies the equation (see Norkin 2014b):

 ( ) ( )( ; , ) E , ( ) E ( ) ( , ) ( ); , ,V x y z r x y V x c y u x z y y zξ ξξ γ ξ= + + − −  (6)

where V(x; y, z) for x < 0. Note that, in contrast to the standard Bellman 
equation, the right-hand side of (6) does not contain any supremum or infimum 
operations.

If r (x, ξ ) = r (x) is upper semicontinuous and c(y) and u(x, z) are continuous 
in their arguments, then V(x; y, z) is upper semicontinuous and, for each fixed 
pair (y, z), its values can be found by the successive approximations method 
(see Norkin 2014b and Norkin 2014c):

( )1 0( ; , ) ( ) E ( ) ( , ) ( ); , , ( ; , ) 0, 0,1,....k kV x y z r x V x c y u x z y y z V u x y kξγ ξ+ = + + − − = =

For example, 

 0
( , ), 0,

( )
0, 0,

t t
t

t

u X z X
r X

X

 ≥= 
<

then the mean discounted dividends until the ruin are expressed as follows

 

1

0
0

( ; , ) E ( , ),t t

t

V x y z u X z
τ

γ
−

=

= ∑
and function V0(.; y, z) satisfies the equation

 ( )0 0( ; , ) ( , ) E ( ) ( , ) ( ); , .V x y z u x z V x c y u x z y y zξγ ξ= + + − −



On the Vector Optimal Control of Risk Processes 233

If

 1
1, 0,

( )
0, 0,

t
t

t

X
r X

X

 ≥= 
<

then the discounted ruin probability

 
1

2 { (( ) ( , ) 0}
0

)( , , ) t t t
t

X c y u X z y
t

V x y z
τ

ξγ
−

+ − − <
=

= ∑E 1

under Assumption 1 satisfies the equation

( )2 { ( ) ( , ) ( ) 0} 2

2

( ; , ) E E ( ) ( , ) ( ); ,

(1 (( ( ) ( , )) ) E ( ( ) ( , ) ; , ).
x c y u x z yV x y z V x c y u x z y y z

x c y u x z y V x c y u x z y y z
ξ ξ ξ

ξ

γ ξ

γ ξ
+ − − <= + + − − =

= −Φ + − + + − −

1

Consider another risk functional for a non-stop process (1). Let us 
introduce a reward function for the one-time step of the form (see Norkin 
2014b and Norkin 2014c):

 3 ( , , , ( )) ( , ) min{0, ( ) ( , ) ( )},r x y z y u x z x c y u x z y yξ λ ξ= + + − −

which combines the gain (dividends) u(x, z) and the risk factor (capital deficit) 
with the penalty factor λ ≥ 0. Let us denote the discounted function of net 
income under the control strategy u(., z):

 ( )3 30
( , , ) , , , ( ) ,k t t

t
V x y z r X y z yγ ξ∞

=
 =  ∑E

where γ is the discounting factor, 0 < γ ≤ 1.
All listed indicators Vi(x; y, z), i = 0,1,2,3, as functions of the initial 

state x at a fixed value of parameters (y, z), satisfy integral equations of the 
form Vi(x; y, z) = f (x; y, z) + Ai(x; y, z) ◦ Vi(∙), where Ai(x; y, z) is some 
integral operator, f (x; y, z) is a given function. Similar integral equations 
were considered in Borch 1974, and Gerber 1979. Therefore, the indicator 
functions Vi(x; y, z) can be found by the successive approximation’s method:

1 0( ; , ) ( ; , ) ( ; , ) ( ), ( ; , ) 0, 0,1,... .k k
i i i iV x y z f x y z A x y z V V x y z k+ = + ⋅ = =

(7)

Details of the implementation of the successive approximation method 
for these equations are described in Norkin 2007, Norkin 2008, Norkin 2014b, 
and Norkin 2014c. Thus all indicators Vi(x; y, z) can be efficiently calculated 
for any fixed control u(., z). An alternative method for calculating the values 
of the indicators Vi(x; y, z) is the method of statistical simulations (the Monte 
Carlo method) (see Norkin 2014a).
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2.2 Stochastic risk processes in inventory theory

Stochastic inventory theory provides another example of risk processes (see, 
e.g., Prabhu 1998). The evolution of the stock X t in a discrete-time follows 
the equation

 1 0( , ), , 0,1,..., ,t t t t t tX X u g X u X x t Tξ+ = + − + = = ≤ ∞  (8)

where t = 0,1,... is the discreet time, X t is the value of the stock at the 
beginning of the time interval [t, t + 1); ut is the replenishment of the stock 
at the beginning of the time interval [t, t + 1); ξ t  is the demand of the good 
in the t-th time interval; g(X t + ut, ξ t) is the actual satisfying demand in the 
time interval t. Obviously, g(X t + ut, ξ t) ≤ ξ t . The storage capacity is bounded,  
X t ∈ [0, Q], t = 0,1,... . 

There may be two models, (a) with possibly negative and (b) with 
nonnegative stock.
 (a) The stock can be negative, X t+1 = X t + ut – ξ t , t = 0,1,..., i.e., g(X t + ut, ξ t) 

= ξ t .
The deficit at the time t + 1 is equal to Bt + 1 = max{0, – X t+1} = –min{0,  
X t + ut – ξ t}.
 (b) The physical stock in the warehouse can only be non-negative,  

X t+1 = max{0, X t + ut – ξ t} = {X t + ut – ξ t}+, t = 0,1,..., 

i.e., g(X t + ut, ξ t) = min{X t + ut, ξ t}. The deficit at the time t + 1 is equal to

 { } { }1 1 1 1max 0, min 0, .t t t t tD Z Z u ξ+ + + += − = − + −

An alternative variant of this equation is the following:

 ( ) { }1 max 0, , 0,1,..., ,t t t t t t tX X u X u t Tξ ξ+

+
= − + = − + =

The stock replenishment at the beginning of the time interval [t, t + 1) 
can be selected as a function of the amount of stock X t. For example, the 
so-called (s, S)-replenishment strategy is determined by two parameters,  
(s, S) = z, namely,

 
0, ,

( , )
, .

x s
u x z

S x x s
≥

=  − <

Probability of deficit. Let the random variables (demand) {ξ t} be independent 
and identically distributed with a common distribution function Φ. Let the 
stock replenishment strategy depends only on the stock level ut = u(X t), i.e., 
the equation of stock dynamics has the form:

 X t+1 = X t + u(X t) – ξ t ,  t = 0,1,... .
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Denote the probability of debt (ruin)

 { }0( ) 0 : 0 |tx P t X X xψ = ∃ ≥ < =

and the non-ruin (survival) probability

 { }0( ) 1 ( ) 0, 0 | .tx x P X t X xϕ ψ= − = ≥ ∀ ≥ =

The latter probability satisfies the (integral) equation

 ( )
{ }

{ } ( )( )
: ( )

( ) ( ) ( ) ( ) ,x u x
x u x

x x u x dF x u xω
ω ω

ϕ ϕ ω ω ϕ ω≤ +
∈Ω ≤ +

= + − = + −∫ E1

where 1{ω ≤ x + u(x)} is the indicator function of the event in parentheses, which is 
equal to one if the event occurred, and zero otherwise.

Efficiency indicator. The expected total losses for shortages and surpluses 
of goods in the stock under a parametric control strategy ut = u(X t, z) are as 
follows,

 { }0
( , ) ( ) max ( ), ( ) ,t t t t t t t

t
V x z d X u d X uλ ξ ξ∞ + −

=
= + − − −∑E

where E is the mathematical expectation sign; λ is a discount factor,  
λ ∈ (0, 1]; d+ denotes the cost of storing a unit of stock; d– is the costs due to 
stock shortage. It is natural to assume that the warehouse has a limited volume  
Q, i.e., ut ∈ [0, Q]. If all random variables ξ t  are independent and  
equally distributed (like some random variable ξ , for example, discretely 
distributed), then function V (x, z) under fixed parameter z satisfies the 
following equation:

 
( )

( , ) max{ ( ( , ) ), ( ( , ))}

( , ) ( ( , ) ), ,

V x z d x u x z d x u x z

V x u x z g x u x z z
ξ

ξ

ξ ξ

λ ξ

+ −= + − − − +

+ + − + −

E

E
.

which can be solved by the numerical successive approximation method.

Estimation of performance indicators by simulation and Monte Carlo method. 
Consider an approach to the inventory management problem based on the 
search for parametric control strategies. Often the solution to the inventory 
optimal control problem takes the form of the so-called (s, S)-strategy (see 
Prabhu 1998, Daduna et al. 1999):

 
, ,

( , ), 0,1,..., , ( , ) 0, , ,
, , .

t
t

xX

s S
u u s S t T u s S s S s x

S x s S s x

∅ >
= = = ≤ <
 − ≤ ≥

 (9)

where pare (s, S) are parameters of the strategy, 0 ≤ s < S ≤ Q. Remark that 
function ux(s, S) is discontinuous in both variables x and (s, S).
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A cost function associated with each time interval [t, t + 1): r t = r(xt, ut, ξ t),  
consists of three terms: c(X t, ut, ξ t) is storage cost of goods, d(ut) is the  
cost of buying goods, and e(X t, ut, ξ t) is the revenue from selling goods, 
where

{ }

( , , ) ( , , ) ( ) ( , , ),
( ), ,

( , , ) max ( ),0
0, ;

0, 0, , ,
( ) ( , , ) , , , 0.

, 0; ( ), ;

r x u c x u d u e x u
x u x u

c x u x u
x u

u x u
d u e x u a b

a bu u x u x u

ξ ξ ξ
α ξ ξ

ξ α ξ
ξ

βξ ξ
ξ α β

β ξ

= + −

+ − + >
= + − =  + ≤

= + > 
= = ≥ + > + + ≤ 

Then the cost function f x,ξ (s, S) = r(x, ux (s, S), ξ ), for the simplest (s, S) 
restocking strategy takes on the form:

,

, ;
( ) , , , ;

( , ) ( , ( , ), ) , , , ;
( ) ( ) , , , ;
( ) , , , .

x x

s S
x s S s x x

f s S r x u s S x s S s x x
a b S x S s S s x S
a b S x S s S s x S

ξ

α ξ βξ ξ
ξ β ξ

α ξ βξ ξ
β ξ

∅ >
 − − ≤ ≤ >= = − ≤ ≤ ≤
 + − + − − ≤ > >

+ − − ≤ > ≤

The cost function f x,ξ (s, S) is defined on the set {(s, S) ∈ R2 : 0 ≤ s ≤ S ≤ Q}.  
Remark that functions d(u), r(x, u, ξ ) and f x,ξ (s, S) are discontinuous. Other 
parametric restocking strategies are considered in Knopov and Norkin 2022.

The evolution of process (8) on the time interval [0,T ] under the (s, S)  
restocking strategy (9) can be characterized by the following cost and ruin 
probability criteria:

 
1

0 ,
0

1( , ) ( ) ( , ),t t

T
t

X
t

V s S f s S
Tξ ξ

γ
−

=

= ∑E  (10)

and

 { }{ } { }
1

1 ( , )
0

( , ) Pr 0, : ( , ) ,t t t
tX

T
t t

X X u s S
t

V s S t T X u s S ξ ξ
ξ

−

+ <
=

= ∃ ∈ + < = ∑E 1  (11)

subject to dynamic constraints (8), (9). Here Eξ denotes mathematical 
expectation with respect to random variable ξ  = (ξ 0, ξ 1,...,ξ T – 1); γ is a 
discounting factor, 0 < γ ≤ 1; 1{∙} is the indicator function of the event in the 
brackets. 
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The vector stochastic optimization problem for selecting the optimal 
restocking (s, S)-strategy is as follows:

 { }0 1 0( , ) ( , ), ( , ) min .s S QV s S V s S V s S ≤ ≤ ≤= →


 (12)

In general, the function f x,ξ (s, S) is discontinuous on the set  
{(s, S) : 0 ≤ s ≤ S ≤ Q} both due to the discontinuity of the control u and cost 
d. The indicator function { }, ( , )

( , )t t t t
tX

X X u s S
I s S

ξ ξ+ <
= 1  is also discontinuous, and 

these circumstances make the problem particularly difficult. 
Mathematical expectations in (10), (11) can be estimated by sample 

average values (see Shapiro 2003, Pagnoncelli et al. 2009, Knopov and 
Norkin 2020):
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0,0
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1 1( , ) ( ) ( , ) min ,t t
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N
T t

N s S QXt
n

F s S f s S
N T ξ

γ−

≤ ≤ ≤=
=
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 1
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1( , ) ( , ) min ,t t
n n

N
T

N s S QXt
n

F s S I s S
N ξ

−

≤ ≤ ≤=
=

= →∑∑

where ξ n = (ξ 1
n,..., ξ n

T –1) are independent samples ξ t
n of the random demand 

in independent series n = 1,..., N ; {X t
n , t = 0,...,T –1} is an evolution 

of the store under sample ξ n according to dynamic equations (8);  
{ }0 1

0 1( , ),..., ( , )T
n n

T
n n nX X

u u u s S u u s S−
−= = =  is a sequence of controls, which 

corresponds to samples of the demand ξ n. Functions FN(s, S) can be 
discontinuous and multi-extremal. In the case of barrier strategies, they may 
be continuous but still nonsmooth nonconvex and multiextremal. For their 
optimization, one can apply the so-called stochastic smoothing method from 
Norkin 2020, Knopov and Norkin 2022.

3. Multicriteria risk process control and optimization 

3.1 Reduction to vector optimization

The problem of vector optimal control of the risk process (1) is to find non-
dominant values of the vector indicator V 

→
(x; y, z) = {Vi(x; y, z), i = 0, 1,...}:

 , ,( ; , ) extr ,x X y Y z ZV x y z ∈ ∈ ∈→


 (13)

and the corresponding Pareto-optimal values of the parameters (x, y, z), 
where x ∈ X indicates an initial state of the risk process (1), y ∈ Y describes 
a structure and the volume of the insurance portfolio, and the parameter  
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z ∈ Z is responsible for choosing a control strategy. For example, from heuristic 
reasons for the numerical approximation of the Pareto-optimal frontier, the 
so-called dividend barrier-proportional control strategies are considered, i.e., 
u(x, z) = z1 max{0, x – z2}, z = (z1, z2), z1 ∈ [0, 1], z2 ≥ 0, . 

The complexity of this problem lies in the fact that, firstly, the 
indicators Vi(x; y, z) themselves are not known explicitly but are solutions 
of corresponding integral equations; secondly, these indicators can be non-
convex functions; and thirdly, the corresponding Pareto-optimal set can 
have a rather complex structure. Function values Vi(x; y, z) can be found by 
successive approximations (7) or by statistical simulations, particularly by 
their parallel versions (see Norkin 2008, Norkin 2014a, Norkin 2014b).

For small dimensions of the parameter vector (x, y, z), problem (13) 
can be approximately solved by discrete approximation of sets X, Y, Z by  
finite N-point sets XN, Y N, Z N and solving a discrete vector optimization 
problem:

 ,,( ; , ) xtr .e N N Nx zX Zy YV x y z
∈ ∈∈

→


A similar method for solving vector optimization problems was  
considered by Statnikov and Matusov 2002, and its asymptotic convergence 
under N → ∞ was studied in Norkin 2015a and Norkin 2015b.

A similar approach can be applied to the two-criteria inventory control 
problem (12) for searching the (s, S)-strategy and other parametric control 
strategies.

Remark. As a very particular case, one can consider in (1) just a deterministic 
and fixed control strategy u(., z) = z ∈ R1. Then the stochastic optimal 
control problem turns out into a vector optimization problem with a complex 
performance criteria {Vi(.)}, which still can be calculated by the successive 
approximation method or by the Monte Carlo method. The obtained optimal 
controls z*(x), x ∈ X, as functions of the initial state x can then be applied for 
the risk process control dynamically by using controls ut = z*(X t). 

Results of numerical experiments on the application of the proposed 
methodology to solving insurance business optimization are presented in 
Norkin 2008, Norkin 2014a, Norkin, B.V. 2014b.

3.2 Solution of the problem in case of a finite number of scenarios

Consider the following stochastic programming model for finding a 
deterministic optimal control strategy {u t} (see Norkin 2014a):

 1
,0

max ,T t
y ut

u−

=
→∑  (14)
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1 0

1
( ) , , 0,1,..., 1, 1,..., ;

n
t t t t

i i
i

X X c y u y X x t T j m+

=

= + − − ξ = = − =∑  (15)

 
1

, 0, 1,..., ;
n

i i
i

y c y i n
=

≤ ≥ =∑  0, , 0,1,..., 1;t tu X t T ∈ = −   (16)

   { }P , 1,..., 1 .t tX a i T≥ = ≥ − α  (17)

Here, the variable y = (y1,..., yn) specifies the (unchanged) structure of the 
company’s portfolio of insurance contracts; the variable u = (u0, u1,...,uT –1)  
specifies planned deductions from premiums unrelated to claim payments (for 
example, investments, dividends, etc.); the random variable X = (X 0, X 1,..., X T)  
describes the dynamics of the company’s capital. The parameter c 
specifies the total premium under insurance contracts; x is the initial 
capital; [ ) ( )1

( ) (1 ) ; 0,1 , 0, 0,1n t
ii

c y y aν ν α
=

= − ∈ ≥ ∈∑  are the company’s 
reliability parameters (α ∈ [0, 1]); T is the planned time horizon (the 
number of quarters or years taken into account to assess the probability 
of ruin). Thus, the values   ξ t = (ξ t

1,..., ξ n
t ) specify (random) loss per unit 

of premium in various types i = 1,...,n of insurance in the time interval  
[t, t + 1) (a quarter, a year), i.e., ξ t

i yi is the total insurance claims from the i-th 
type of insurance in the period [t, t + 1). The function

 1

0
( , ) T t

t
f y u u−

=
= ∑

is the total reward, 

 { }( , , ) Pr , 1,...,t tg x y u X a i T= ≥ =

is the probability that the reserves fall below the prescribed levels  
at, t = 0,1,...,T. If at ≡ 0, then g(x, y, u) describes the probability of the 
company not going bankrupt over periods T under a constant total premium c, 
portfolio structure y and deductions {ut}. 
 Problem (14)–(17) is a complex stochastic programming model with a 
probabilistic constraint (17). In the case of a finite set of independent scenarios 
(ξ 1, ξ 2,...,ξ T ) j, j = 1,...,m  for trajectories {ξ 1, ξ 2,...,ξ T } of a vector random 
variable ξ  occurring with probabilities pj, problem (14)–(17) can be reduced 
to a partially integer linear programming problem.

Let us denote ξ t
ij the value of the quantity ξ t

i in the j-th scenario. Assume 
that all ξ t

ij do not exceed some maximum value M. Let for each scenario 
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j, there corresponds a trajectory of the reserves {x1
j, x2

j ,...,xT
j }. Note that  

– cMt ≤ x t
j ≤ x + ct for all t. Let us introduce Boolean variables μ j that take on 

the value 1 if at least one value x t
j – at, t = 1, 2,...,T, in scenario j is negative, 

i.e., a ruin has occurred in this scenario. Consider the restrictions:

 ( ) , 1,..., .t t t
j jx a cMt a t Tµ− ≥ − − =  (18)

If at least one x t
j
' – at', t' ∈ {1, 2,...,T},  in (18) is negative, then the 

corresponding constraint x t
j
' – at' ≥ (–cMt' – at' )μ j implies that μ j is equal to 

one. Relations (18), in which x t
j – at ≥ 0, do not impose restrictions on the 

values of μ j ∈ {0, 1}. When restrictions (18) are satisfied for all scenarios j, 
i.e.,

 ( ) , 1,..., , 1,..., ,t t t
j jx a cMt a t T j mµ− ≥ − − = =

the value ∑m
j = 1 pjμ j gives an upper estimate for the ruin probability over all 

scenarios, so constraint (17) can be written as:
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Thus, problem (14)–(17) in the case of a discrete set of scenarios can be 
equivalently represented in the following form:
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This model is a large-scale mixed integer linear programming problem 

and can be solved numerically by standard optimization methods. Obviously, 
it has nontrivial solutions for α ≥ min j pj. 

4. Conclusions

The article proposes a new approach to practical multicriteria (vector) 
optimization and control of risk processes in discrete time. These processes 
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describe a stochastic evolution of some asset, for example, the evolution 
of reserves of an insurance company or the state of stock in a warehouse 
under conditions of random demand. In the case of the insurance model, the 
so-called level of payments acts as the main random factor, i.e., the ratio of 
insurance claim payments to premiums under relevant contracts. In inventory 
theory, the primary random variable is the demand for a product. Control 
affects the parameters of the risk process, such as the rate of replenishment or 
consumption of an asset. The quality of management is evaluated according 
to utility and risk criteria. The expected asset accumulation level, expected 
cumulative dividends, expected satisfied demand, and other additive indicators 
can be used as utility criteria. The risk criteria are, for example, the probability 
of ruin, i.e., the probability that the process falls into some risk area, as well 
as the expected cost of ruin prevention. The optimal control is sought in 
the class of parametric strategies, i.e., in the class of functions depending 
on the state of the process and a finite number of unknown deterministic 
parameters. The heuristic basis for choosing the class of parametric control 
strategies are theoretical results on analytical forms of optimal controls, 
for example, results on the barrier or band structure of optimal controls. 
When such a parametric control is substituted into the control criteria, the 
problem of stochastic optimal control is transformed into a finite-dimensional 
stochastic optimization problem with complex probabilistic criteria in the 
form of mathematical expectations and ruin event probabilities. This paper 
shows that there are two options for calculating optimization criteria, these 
are the solution of some integral equations and the Monte Carlo method. 
To find the Pareto-optimal frontier, it is proposed to use a deterministic or 
random discrete approximation of a finite-dimensional region of optimization 
parameters. As a result, the original vector optimal control problem is reduced 
to a discrete finite-dimensional vector optimization problem, which is solved 
by enumeration algorithms. Numerical experiments show the efficiency of 
this approach.  
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Chapter 11

The Type-Variety Principle in 
Ensuring the Reliability, Safety and 

Resilience of  Critical Infrastructures
Volodymyr A Zaslavskyi* and Oleh A Horbunov

1. Introduction 

Ensuring the security of the country, regions, critical objects, and infrastructures 
is an important scientific and technical problem. The solution to it defines 
directions, requirements, and resources to ensure system security, formation 
and implementation of sustainable development of the country (Lewis 2015, 
Zaslavskii and Greindl 1998, IIASA 2016, Ushakov 2006, Zaslavsky 2011).

Effective support for the functioning of critical infrastructure (CI) 
facilities (government agencies, military facilities, nuclear power plants, oil, 
and gas production platforms, etc.), protecting them from external influences 
and counteracting cyber-attacks, efficient work of personnel ensuring the 
reliable functioning of systems requires constant attention to the problem of 
security to identify and eliminate sources of threats and develop adequate 
ways to overcome them (Ushakov 2006, Zaslavsky 2011, Zaslavsky and 
Pasichna 2019a, Norkin et al. 2018).

The reliability and safety of CI object functioning depend on the reliability 
of the technical and information as well communication components, including 
security systems and the human factor - decision-making (DM) personnel 
(human operator, platform worker, pilot, etc.), as well as various external and 
environmental influences (Taylor 2014).
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CI and its security systems consist of many various highly reliable 
functional components and monitoring, telemetry, and control systems for 
detecting, collecting, processing and tracking various information. CI security 
support is based on monitoring data for the purpose of continuous information 
support of the processes of generation, coordination, and decision-making 
in a real situation, considering the activation of various threats, such as 
terrorist actions, as well as ensuring the safety of personnel and their normal 
physical and psychological state (Ushakov 2006, Taylor 2014). Violation of 
the functioning of the CI can lead to severe negative social and economic 
consequences for the state, national security and defence (Lewis 2015, Tagarev 
and Pavlov 2007, Biryukov and Kondratov 2015). The close relationship of 
CI with government, organizational and informational interaction, increased 
social and economic dependence on the services of CI set new requirements in 
extreme situations for their safety and reliability of operation using innovative 
developments. In the process of creating critical systems, topical problems 
of reliability optimization (optimal redundancy) are considered, which are 
associated with the choice of the composition of the components (various types 
and implementations of systems, subsystems, nodes, blocks, and elements) 
and their integration, taking into account various efficiency criteria and 
resource constraints (Volkovich et al. 1992, Afanasiev et al. 1993, Zaslavsky 
and Ievgiienko 2010). The human factor, i.e., professional qualifications 
of personnel, their reliability in performing a list of highly important 
operations, normal physical condition and working capacity are also very 
important components of the safety and reliability of the CI functioning with  
human-machine and cybernetic systems (Taylor 2014, Rasmussen and Taylor 
1976).

The global pandemic of the coronavirus, COVID-19 has led to a restriction 
of interaction between countries, business companies, and education systems, 
mass illness of staff, high psychological stress on people and teams in 
organizations and the transition to online mode (Tsai et al. 2020, Galea et al. 
2020). Significant health problems and stress for the population were brought 
about by the unleashed large-scale war of Russia against Ukraine. The presence 
of military personnel and citizens in the zones of violent hostilities, genocide 
against the civilian population in the occupied territories, rocket attacks and 
often announced alarms throughout Ukraine have caused a significant long-
term deterioration in the health of people, various physical disabilities, and 
psychological disorders (Podkovka et al. 2021, Panchenko et al. 2015).

Identification with a certain probability of human functional states that 
are dangerous in terms of maintaining the level of professional performance 
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and reliability is an important task. The solution to it makes it possible to 
prevent the occurrence of errors and accidents in critical systems.

In Sections 1 and 2, mathematical models and an algorithm of the type-
variety principle are considered in ensuring the reliability of critical systems 
during their design and the detection of defects during operation. Based 
on mathematical models and the algorithm of the type-variety principle,  
Section 3 proposes an approach to solving the problem of minimizing human 
errors through the purposeful organization of a variety of physical exercises 
that help eliminate physical deficiencies that, for example, can be associated 
with human pain. Their elimination increases the reliability of the human 
factor while ensuring the safety of critical systems.

2. Application of the type-variety principle in ensuring the 
reliability and security of critical infrastructures

2.1 Type-variety principle and its applications

One of the fundamental concepts in nature, natural science, mathematics, 
cybernetics and systems analysis is the concept of “diversity”, meaning that 
either two materials, things of a process, element, model, algorithm or service 
are significantly different, or they have changed and continue to change over 
time. The concept of diversity proposed by Ashby in biology, command and 
control systems are currently widely used by researchers in various fields 
of knowledge and applied fields (Ashby 1956). This concept initiated the 
emergence of problem statements, mathematical models, and optimization 
methods in the economy, which significantly affect changes in organizations, 
business processes, education, and the formation of innovation processes in 
various applied fields (Ottosson 2013, Zaslavsky 2014).

The practical application by the authors of the idea of diversity concepts 
for solving various applied problems (Volkovich et al. 1992, Afanasiev et al. 
1993, Zaslavsky2014, Volkovich and Zaslavsky 1986, Zaslavsky and Strizak 
2006a), made it possible to formulate the type-variety principle in the study 
of complex systems as the principle of system analysis in the following 
formulation (Zaslavsky 2006b).

Type-variety principle - is focused on the usage of different nature (the 
principle of operation, construction) components (e.g., systems, subsystems, 
elements, technologies, raw materials of different origins, various types of 
models, algorithms, software components, experts, tools, etc.) that perform 
the same functions, each of them may be used separately (independently), 
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but their simultaneous integration (consolidation, combination, utilization, 
application) and interaction provide better solutions for emerging issues 
(e.g., providing a highly reliable system operation, exception of a possible 
repetition of the failure in general reason, defect detection, analysis of projects, 
developing of innovative products, business processes, etc.).

The ideas of the type-variety principle were used in solving a number 
of applied problems: designing critical facilities and CI, forming a water 
purification system in a river basin, forming a complex of various non-
destructive testing devices to detect defects in complex systems, building 
mathematical models and algorithms to detect fraudulent transactions in 
the payment system, formation of a diverse energy portfolio of generating 
companies, the security of information systems (Zaslavsky 2011, Zaslavskyi 
and Pasichna 2019a, Zaslavsky and Strizak 2006a, Zaslavskyi and Pasichna 
2019b, Zaslavsky 2016, Kadenko et al. 1999. Zaslavsky 2001).

In connection with the intensification of terrorist activity, it is necessary 
to review measures and develop new approaches to ensure the systemic 
security of critical infrastructures, provision the physical protection of critical 
facilities, and introduce new methods of countering terrorism (Ushakov 2006, 
Norkin et al. 2018, Harris 2004). Section 3 describes the mathematical model 
and algorithm for optimizing the structures of protection systems in conditions 
of limited resources using typical redundancy, and Chapter 4 describes the 
application of this idea to detect defects in security systems.

2.2 Type-variety principle and reliability optimization

Models and methods for reliability optimization and optimal redundancy 
are effective methods for increasing the reliability of critical infrastructures, 
protection systems, and complex technical and information systems, by 
selecting and including additional (redundant) elements and links compared 
to the minimum required to perform the specified functions under certain 
conditions trouble-free operation (Ushakov 2006). At the same time, the main 
devices (element, block, subsystem) necessary to ensure the functioning of 
the system are distinguished in the system design, and the elements intended 
to ensure the device’s operability in the case of failure of the main elements 
are called backup (Volkovich et al. 1992, Afanasiev et al. 1993, Ushakov 
1969, Barlow and Proschan 1975). The problems of optimal redundancy of 
complex systems were considered in numerous works by various authors 
(Ushakov 1969, Barlow and Proschan 1975). However, when implementing 
redundancy, as a rule, the same type (identical to the main) reserve elements 
were considered. The study of problems of multi-type redundancy, analysis, 
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formalization, and algorithm for solving the problem of optimal redundancy 
with type-variety elements was developed and presented in works (Volkovich 
et al. 1992, Afanasiev et al. 1993, Volkovich and Zaslavsky 1986). An 
important factor in the analysis of this applied optimization problem is the 
following: different types of elements that are used in the construction of 
modules for subsystems of a complex system have different technical and 
economic characteristics but are identical in their functionality. With this 
method of redundancy (diverse redundancy), a common cause failure is 
eliminated, which increases the time of active existence of complex systems, 
CI, and the stage of their life cycle - operation, and this approach also  
allows finding new optimal design solutions that have never been considered 
before.

The problem of CI safety is associated with the high cost of their failure, 
which requires the presence of redundant elements in the system structure that 
ensure risk diversification and failure prevention due to the common cause 
of failure based on various types of redundancy. An important component 
in ensuring the safety and fault tolerance of CI is the human factor. In the 
following sections, the formulations, and the algorithm for solving problems 
of ensuring reliability for CI, considering into account the human factor, are 
considered, in which the mechanism for generating and analysing options is 
used as an implementation of the type-variety principle.

2.3 Mathematical models and methods for ensuring high reliability 
and safety of critical systems

In this chapter, we consider the formulation of the reliability optimization 
(redundancy) problem to optimization structure of critical infrastructure 
protection systems under resource constraints. The critical infrastructure 
protection system is considered structurally a monotonic (coherent) system 
(Barlow and Proschan 1975). Redundancy in such a system, as distinct from 
traditional redundancy, is achieved by using elements of different types 
(the type-variety redundancy) (Volkovich et al. 1992, Afanasiev et al. 1993, 
Volkovich and Zaslavsky 1986). Let the CI protection system consists of n 
subsystems uj, j ∈ J = {1,2,...,n},  that implements different types of protection 
methods. A subsystem j may be implemented in alternative versions νj with 
the usage of a set Uj = {ujk, k ∈ Kj} of elements ujk with different types, where  
Kj = {1,2,...,k*

j} is the index set of element types. Elements of different 
types have different rates of techno-economic characteristics pj(ujk), gij(ujk),  
j ∈ J, i ∈ I = {1,2,...,m} but are identical in their functional purpose.  
We define a method for the formation of the subsystem structure from 
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elements of different types. Let R j = {1,2,...,rj,..., k*
j} be the set of lengths of 

the alternative version of the subsystem j and set of combinations of rj indexes 
from the set Kj 

 { }{ }1( ) ,..., ,..., , ,j j j j j

j j j

r l l l l
K l j p r p jM k r k k k k K= = ∈  (1)

where 
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| | | | *

!
1,2,..., ,

!( )!
jrj rj

j Kj Kj
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k
l C C

rj k rj
= =

−
, lj – index of combination in set Mrj

Kj. 

For each combination klj
(rj) of length rj the set Vjk(rj) of possible combinations 

is defined:

 ( )1( ) ,..., ,..., .
p rjjk rj jk jk jkv u u u=  (2)

Let ( )( )
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rj jj K j

r
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=   be the set of alternatives of subsystem j of length rj.

Then j
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r
j r R jV V∈=   is the set of possible variants and 

( )1( ) ( ) ( ),..., ,...,
j njk r jk r jk rv v v v=  is the implementation of subsystem j, and  

V = ∏ j ∈ JVj is the set of possible implementations of the complex system.

The number of possible implementations of subsystem j is given by:
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The reliability of the CI protection subsystem and the resource indexes on 
the alternative vjk(rj)

 is given by:
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( ) ( )
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We have to choose the implementation of the complex CI protection 
system v, which has the maximum reliability score for the given constraints  
bi, i ∈ I on resources. The formulated problem of protection system structure 
optimization is a two-level problem of discrete monotonic programming, 
which general notation is the following (Problem A):
Maximize:
 1

( ) ( )( ) ( ) ( ) (1 ( )) ,j jx x
x X j J j jk r j jk rP v Y x p v p v −
∈ ∈= ∑ ∏ −  (3)

under constraints:
 ( )( ) ( ) , ,

ji j J ij jk r ig v g v b i I∈= ∑ ≤ ∈  (4)

 
1( ) ( ) ( )( ,..., ,..., )

j njk r jk r jk r j J jv v v v V V∈= ∈ = ∏ , (5)
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where P(v), gi(v), i ∈ I are, respectively, the reliability and technical-economic 
indexes of the alternative v. Note that each j-th subsystem may be in one of 
two states:

 
1, operational,
0, failed.jx 

= 
  

and if boolean structure function Y(x) = 1 in state x = (x1,...,xj,...,xn) then 
CI protection system is operational, otherwise if Y(x) = 0 protection system 
is failed. The algorithm for solving the problem is based on the Sequential 
Analysis and Sifting of Variants technique (Volkovich et al. 1992, Volkovich 
and Zaslavsky 1986).

Problem (3)–(5) can also be considered to study systems with serial 
connection of elements (serial structure), then the system reliability indicator 
is calculated by the formula P(v) = ∏ j ∈ J pj(vjk(r)), and the scheme for solving 
the problem is considered as a special case of criterion (3) and remains 
unchanged.

The approach to solve problems (3)–(5) includes the calculation of 
tolerances on two levels (Volkovich et al. 1992, Volkovich and Zaslavsky 
1986). The first level tolerances on resources should be defined for a set of 
variants vjk(rj)

, and the second level tolerances should be defined for sets of 
elements Uj that are used to create variants of the subsystem.

The procedures Ψ1 and Ψ2 are the basis of the algorithm, we compute 
the tolerances of the first and second levels, improve them, and reduce the 
length of subsystems variants, i.e., reduce the problem dimension. Rules 
for calculation tolerances of the first level are established by the following 
theorem.

Theorem 1. Value

 
( )

, ( )min { ( )}, , ,
jk r

ij i J j i jk rv V
d b g v i I j J∈ ≠ ∈

= − ∑ ∈ ∈






  

 (6)

is a first-level tolerance for the set Vj, by the i-th constraint.
Analysis of the sets Vj by the tolerances dij is performed using the 

following constraint subsystems:

 ( )( ) , ,
jij jk r ijg v d i I≤ ∈  (7)

 ( ) .
jjk r jv V∈  (8)

Let Qj = {dij, i ∈ I} be the set of tolerances for the constraint subsystems 
(7)–(8), Q = ⋃j ∈ J Qj is a “tolerance system”. The set of tolerances  
Qj = {dij, i ∈ I} is preferred to set of tolerances Q'j = {d'ij, i ∈ I} (notation  
Q ≥ Q') if dij ≤ d'ij and at least for one i ∈ I inequality is strict. The tolerance 
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system Q is preferred to the tolerance system Q' = ⋃j ∈ J Q'j if at least for one  
 j ∈ J the preference Qj ≥ Q'j is strict. The tolerance system Q is computed and 
improved by the procedure Ψ1 both by improving the values and by restricting 
the set Vj. The constraint subsystems (10)–(11) with the tolerances dij are 
applied for the following purposes in the analysis of the sets of elements by 
second-level tolerances performed by the procedure Ψ2: 
 (1) to eliminate the types of elements k ∈ Kj, thus reducing the number of 

combinations k(rj) ∈ M rj
Kj and eliminating the sets Vjk(rj)

; 
 (2) to reduce rj ∈ Rj, i.e., the lengths of the subsystem alternatives.

Theorem 2. Let 
1

( 1)

( )
( 1) ( 1)arg min ( ), .

j
rjk r Mj K j

i
jk rj ij jk rv g v i I

−
− ∈

− −= ∈  Then

 ( )
( 1)( ), ,j

j

r i
ij ij ij jk r j jd d g v r R−= − ∈  (9)

is the second-level tolerance for the set of elements ujk ∈ Uj by the i-th 
constraint (7) in the analysis of the alternatives vjk(rj) of length rj of the j-th 
subsystem. Note that for rj = 1 we analyse alternatives consisting of elements 
of one type and then gij(vjk(rj – 1)) = 0.

Proposition 1. Let d rj
ij be the tolerance (9). If for at least one i ∈ I

 gij(ujk)  > d rj
ij,  (10)

then the k-th type element is not used in the construction of the alternative 
vjk(rj) of length rj .
From this Proposition 1 follows that if

 |K'j | < rj, (11)

where K'j  is the set of element types remaining in Kj after a check of the 
condition (13), then there exist no alternatives of length rj of the subsystem  j 
which satisfy (3)–(4). Thus, analysis of the conditions (7)–(8) produces a new 
set of alternatives for subsystem j:

 , ,j

j j

'r'
j r R j jV V V j J∈= ⊆ ∈  

where

 ( )
( )

, , .
∈

= ⊆ ⊆


j j j

j jjrj
j K j

r r r
j jk r K j jK

k r M

V V M M R R  

Note that for R'j  = Ø exists no alternative realizations of subsystem 
j satisfying the tolerance dij. Clearly, if V'j  = Ø, i.e., the application of the 
procedure Ψ2 has eliminated the entire set of alternatives Vj, the problem is 
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infeasible. If the number |V'j |, j ∈ J of elements in the sets V'j , j ∈ J is small (not 
exceeding some number N determined by the computer resources), then an 
aggregated problem A(0) is generated and solved. The optimal solution to this 
aggregated problem, to be considered below, is also the optimal solution to the 
original problem. If the set V'j , j ∈ J is large, the search for the optimal solution 
is continued by introducing a supplementary constraint on the reliability of 
the protection system:
 P(v) ≥ P*, (12)

where P* is defined on [Pmin, Pmax], Pmin = min v ∈ V P(v), Pmax = max v ∈ V P(v).
We represent P(v) in the form P(v) = φ(p1,...,pj ,...,pn), where the reliability 

function φ(p1,...,pn) is defined on ∏ j ∈ J Hpj (Vj). Here Hpj (Vj) is the ordered 
value set of the function pj.

The first-level reliability tolerances (constraint 12) are determined by the 
following theorem.

Theorem 3.

 *
( ) 1 1 1min ( ,..., , , ,..., ) ,

j J j jj Hp V j j j nd p p p p p Pϕ
∈∏ − += ≥     (13)

where max ( ),
j j

j j jv V
p p v j J

∈
= ∈ is a first-level reliability tolerance for the set Vj. 

We supplement the constraint subsystem (7)–(8) with the set of tolerances Qj 
with the constraint
 pj(vjk(rj)

) ≥ dj. (14)

Then Q = ⋃j ∈ J Qj is a complete tolerance system for the constraint 
subsystem (7)–(8), (14) where –Qj = Qj ⋃ {dj}. Using these constraints 
subsystems, we apply the procedure Ψ2 to continue our analysis of the set of 
elements.

Theorem 4. Let dj be the tolerance (11), 

( )1 1
1

( 1)

( 1) ( 1),..., ,..., arg max ( ).
j p r jj

rjk r Mj K j

jk r jk jk jk j jk rv u u u p v
−

−
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− −= =  Then 

 ( )( )( 1)lg(1 ) lg 1 , ,j

p j p

r
j j k k r j jk j jd d p u r R∈ −= − − ∑ − ∈  (15)

is a second-level reliability tolerance for the set of elements in the analysis of 
the alternatives vjk(rj)

 of the length rj of subsystem j.

Proposition 2. Let d rj
j  be the tolerance (14). If

 lg(1 – pj (ujk)) > d rj
j,
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then the element ujk of type k is not used in the alternatives vjk(rj)
 of length rj. If

 0 <] d rj
j  * lg(1 – pj (ujk))–1[, (16)

then the element ujk of type k may not be used in alternatives vjk(rj)
 of length rj.

Proposition 2 implies that if

 |K'j | < rj, (17)

where K'j  is the set of element types remaining in Kj after a check of the 
condition (16), then there no alternatives of length rj of subsystem j exists 
which satisfy the condition (14). Thus, by applying the procedure Ψ2 to 
eliminate the uncompetitive alternatives, we obtain a set V t, such that V t ∈ V, 
which is further investigated for the possible presence of optimal alternatives. 
The procedure Ψ2 for the analysis of alternatives vjk(rj)

 of length rj of subsystem  
j may be formalized as follows.

Procedure Ψ2

Step 0. Set K (0)
j,rj

 = Kj, rj ∈ Rj, v = 0.

Step 1. Find the tolerance dij
(v – 1)rj, i ∈ I, j ∈ J, rj ∈ Rj

(v – 1) from (10), where

 1
( 1) ( 1),

( )
( 1) ( 1)arg min ( ).j

j j
rjk r M vj K rj j

i
jk r ij jk rv g vα

−
− ∈ −

− −=
 

Checking the conditions (10)–(11) and applying the formula (12), generate 
the following sets K'

j,rj
(v – 1), R'

j
(v – 1).

Step 2. If R'
j
(v – 1) = Ø, end.

Step 3. Compute the tolerances dij
(v – 1)rj, rj ∈ R'

j
(v – 1),  from (20), where

 
1

( 1) ( 1),

( 1) ( 1)arg max ( ),
j j

rjk r M vj K rj j

jk r j jk rv p v
−

− ∈ −

− −= . 

By checking the conditions (16)–(17) generate the sets K (v)
j,rj

, R(v)
j .

Step 4. If R(v)
j  = Ø, end.

Step 5. If K (v)
j,rj

 = Kj,rj
(v – 1)

    , 
R(v)

j  = Rj
(v – 1) end. Else go to step 1, setting v = v + 1.

Procedure Ψ1

Step 0. Let V j
(0) = Vj, j ∈ J, V (0) = ∏ j ∈ JV j

(0). On the set V (0) define the system of 
tolerances Q– (0) = ⋃ j ∈ J Q–j

(0), Q–j
(0) = Qj

(0) ∪ {dj
(0)}, Qj

(0) = {dij
(0), i ∈ I}, where the 

tolerances dij
(0) and dj

(0) are computed from (9), (19), respectively.
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Step 1. To the constraint system (7), (8), (14) with the tolerances Q–j
(v – 1), j ∈ J  

apply the procedure Ψ2. Find a new tolerance system Q– (v) = ⋃ j ∈ J Q– j
(v), where 

the tolerances dij
(v) and dj

(v) are computed from the analogues of (9), (18), 
respectively. Go to step 2.

Step 2. If Q– (v) = Q– (v – 1), end. Otherwise, since Q– (v) ≥ Q– (v – 1), set v = v + 1 and 
go to step 1.

Optimization algorithm

The algorithm to solve the problem (3)–(5) is described below.

Step 0. On the set V apply the procedure Ψ1. It generates the set V (0) = ∏ j ∈ JV j
(0)  

and the tolerance system Q– (0) = ⋃ j ∈ J Q–j
(0). If the number of alternatives in V (0) 

is sufficiently small, then solve the problem A by direct enumeration of the set 
V (0). Else go to step 1.

Step 1. If M1 = ∑ j ∈ J |V j
(0)| > N1, then set Pmin = min

v ∈ V (0) 
P(v), Pmax = max

v ∈ V (0) 
P(v),  

γ = 1, P*
(γ) = (Pmin + Pmax)/2 and go to step 2. N1 is determined by the computer 

resources. Otherwise, use direct enumeration to eliminate from the sets V j
(0) 

those alternatives which do not satisfy the tolerances V '
j
(0) to generate the 

aggregated discrete monotone programming problem A(0):

 P(v) = P(p1(v1ℓ1
),...,pj(vjℓj

),...,pn(vnℓn
)) → max;

 gi(v) = ∑ j ∈ J gij(vjℓj
) ≤ bi , i ∈ I,

 v = (v1ℓ1
,...,vjℓj

,...,vnℓn
) ∈ V (0) = ∏ j ∈ JV j

(0), 

where V '
j
(0) = {v1ℓ1

,...,vjℓj
,...,vjℓ*jn

} is a finite set of alternatives of subsystem j 
satisfying the constraint subsystem (7), (8), (13) with the tolerances Q–j

(0).

If |V ' (0)| < N, then solve the problem A (0) by direct enumeration of alternatives, 
otherwise apply the algorithm (Volkovich and Zaslavsky 1986) to solve the 
problem A (0).

If we have found an optimal alternative v* = (v*
1ℓ1

,...,v*
jℓj

,...,v*
nℓn

) of the problem 
A (0), then choose the j-th subsystem alternative vjk(rj)

 ∈ V j
(0) corresponding to 

the component v*
jℓj

, in order to obtain an optimal solution of a problem A.

If the solution of the problem A (0) runs into computational difficulties (the 
parameter N1 is fairly large), then set γ = 1, P*

(γ) = (Pmin + Pmax)/2,  and go to step 
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2. If at least for one j ∈ J we have V '
j
(0) = Ø or the problem A (0) has no solution, 

then the original problem A has no solution.

Step 2. Apply the procedure Ψ1 using the constraint (13) with P*
(γ). This 

generates the tolerance system Q– (γ) and the set V (γ) = ∏ j ∈ JV '
j
(γ).

The following three cases are possible:

1. V (γ) = Ø. Go to step 3.

2. M1 = ∑ j ∈ J |V j
(γ)| ≤ N1. Using the tolerance Q– (γ) generate on the set V (γ) 

the aggregated problem A(γ) analogous to A (0) and solve it either by direct 
enumeration (if |V (γ)| ≤ N) or by the algorithm (Volkovich and Zaslavsky 
1986). The solution to the problem may lead to the following sub-cases:

2.1. v' - the optimal alternative of the problem A(γ) - has been found. Check v' 
for optimality using the optimality tests (Theorem 2). If the optimality tests 
are not satisfied, then v' is an approximate solution to the problem A.

If v* is an optimal or an acceptable approximate solution of the problem A, 
then end. Otherwise, set P'min P*

(γ + 1) = Pmin, γ = γ + 1,  and go to step 2.

2.2. The problem A(γ) has no feasible solutions. Go to step 3.

2.3. The solution of the problem A(γ) runs into computational difficulties. Go 
to step 4.

Step 3. Reduce the value of P*
(γ), setting P*

(γ + 1) = (Pmin + P*
(γ))/2, P (γ)

max = P*
(γ) and 

go to step 2 with γ = γ + 1. Here P (γ)
max is the upper bound on the value of the 

reliability function in step 2.

Step 4. Increase P*
(γ), setting P*

(γ + 1) = (P*
(γ) + P (γ)

max
)/2, γ = γ + 1 and go to step 2. 

When going to step 2 with γ = γ + 1, we check the condition P*
(γ + 1) – P*

(γ) > ε1, 
where ε1 ≥ ε0, ε0 is some positive constant which is determined by the rounding 
errors.

If P*
(γ + 1) – P*

(γ) ≤ ε1, where ε1 ≥ ε0, ε0, is sufficiently small, but |V (γ)| > N and 
M1 > N1, then increase the parameters N, N1 or stop after finding an acceptable 
approximate solution.

The algorithmic scheme for solving two-level discrete monotone 
programming problem (3)–(5) and the procedure of unpromising variants 
exclusion are based on the Sequential Analysis and Sifting of Variants 
technique that is used for formalizing and solving various applications 
(Volkovich et al. 1992, Afanasiev et al. 1993, Zaslavsky and Ievgiienko 2010, 
Kadenko et al. 1999a).

The considered procedures for the analysis and elimination of variants 
and the algorithmic scheme implement the mechanism of the type-variety 
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principle when it is applied in the problem of optimal redundancy. The next 
section discusses the application of the type-variety principal mechanism for 
solving very important problems of ensuring the safety of the functioning of 
critical systems at the stage of their life cycle - operation. During the operation 
of critical systems, failures of their components occur due to various external 
influences, ageing of elements, etc. In this regard, the tasks of scientific and 
technical support of CIs arise to prevent possible failures due to the timely 
detection of various defects and the timely replacement of elements of these 
systems, which is implemented during the maintenance period.

2.4 Implementation of the mechanism of the type-variety principle  
for revealing defects in critical systems

The functioning of critical infrastructures, their security systems and other 
important components during operation may be disrupted due to defects, 
malfunctions, ageing, exposure to aggressive environmental factors, cyber-
attacks, accidents, etc. To ensure the reliable operation of such systems, it 
is necessary to form a set of instruments, tools, and diagnostic systems 
for detecting defects and malfunctions, and failures with high reliability 
(Kadenko et al. 1999a, Zaslavsky and Kadenko 1999b). Indicators of the 
effectiveness of diagnostic systems are the probability of detecting defects, 
their accuracy, sensitivity and resolution, cost, duration of observation and 
other characteristics. The reliability of the control is characterized by a stable 
correspondence of the test results to the actual value of the calculated value, 
carried out under the same conditions. The use of the most sensitive methods 
does not mean that the reliability of the data will be correspondingly the greatest 
and considering the priority of technical indicators can lead to contradictions 
with economic criteria, and the formation of such a set of instruments becomes 
inefficient from an economic point of view. This contradiction actualizes the 
task of forming an optimal complex of different types of methods, instruments, 
and technologies for diagnosing various components of critical infrastructures 
and their objects.

Let us consider an important optimization problem of forming a set 
of methods for detecting various defects, which must be considered when 
ensuring and improving the reliability of critical infrastructures, their safety 
and security systems at the operational stage. This task is important in the 
implementation of the maintenance phases of the systems.

Defect detection could be performed by using a variety of inspection 
methods (devices, measuring techniques, expert inspections, etc.). Let us 
consider the mathematical formulation of the problem for designing the 
complex of inspection methods for defect detection.
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Let’s assume that the finite set of possible defects dℓ ∈ D, are given, that 
may be present in a variety of systems and components, security systems, 
where D = {dℓ, ℓ ∈ L = {1,2,...,ℓ*}} is a set of different types of defects, 
and L is a set of indexes types of defects. Defect means a mismatch of the 
given values of parameters required for the system’s safety. The defects  
dℓ ∈ D are characterized by various parameters, for example, the potential 
hazard indicators, the inability to receive and distinguish signal, aggregate, 
and transmit information etc.

Let us assume that, for monitoring and diagnostics defects dℓ ∈ D, 
various methods, devices, techniques, etc., are used, which have different 
characteristics of defect detection probability and cost of resources in the 
implementation of control.

Every modification mjk of j-th method characterized pj(mjk, dℓ) probability 
of detection of defect dℓ, and giℓ(mjk, dℓ), i ∈ I - resource expenses for the 
realization the diagnostic by method mjk (time required to oversee by a group 
of experts, cost of the control etc.), where I = {1,... ,i, ... ,i*} is a set of indexes 
of expenses resources parameters.

It is necessary to design a set of detection methods that allow to detection 
defects from D. These methods would be most effective for the process of 
detecting of defects dℓ ∈ D in the safety and protection systems.

We suggest that strategy order (technology) application of methods 
for the design and the choice of set of methods are fixed. Let’s designate  
Sℓ = {sℓ = {j1, j2,..., jℓ*}| j1, j2,..., jℓ* ∈ Jℓ}set of combinations sℓ index types of 
methods used to diagnose the defect dℓ. A combination sℓ would be interpreted 
as technology combined methods for the diagnosis of components and 
systems, which considers the specificity of methods, devices, and technologies 
for the implementation of effective control and security system specifics. For 
each combination sℓ we shell define a complex vsℓ

 = (mjk)j ∈ sℓ
 of various types 

of methods, which can be used for the diagnosis and detection of the defect  
dℓ ∈ D. Let us assume, that the order of application of methods is fixed (based 
on existing experience of priority use of different methods in the study of 
different types of systems) by the order of indices combination.

The following sets could be defined: Vsℓ
 = ⨂j ∈ sℓ 

Mjℓ is a set of complexes 
of methods, which determine possible variants realization of technology  
sℓ; Vℓ = ⋃sℓ ∈ sℓ

Vsℓ 
is a set of all possible complexes, which can be used for 

detection of defect dℓ. Here ⨂ is Cartesian product of the sets. The multitude 
of complexes for detection of all set of defects dℓ ∈ D is defined as follows: 
V = ⨂ℓ ∈ L 

Vℓ.
The probability of defects detections by the complex methods defines 

through the probability of defects detection parameters of by separate methods, 
which are part of the technology sℓ. Objective evaluation of the state of security 
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systems can be significantly hampered by the effect of interference of elements 
on each other, which is amplified in the process of long-term operation. To 
increase the reliability of control in these conditions it is advisable to use 
the principle of redundancy control and for evaluation of the same parameter 
used in controlling various physical methods to investigate the nature of 
the components of safety systems. The use of the combination of different 
methods, and their consequent application only increase the probability of 
defects detection. The probability of defect detection dℓ by complete vsℓ

 with 
a usage of a fixed set of methods in technology sℓ is calculated as follows:

 P(vsℓ
) = 1 – ∏ j ∈ Jℓ

(1 – pj(mjk, dℓ)).  (18)

The formula (18) gives the bottom estimation for the probability of defect 
detection by a complex of methods vsℓ

.
Integrated usage of the methods in the diagnosis aimed at identifying the 

actual state of the component, increases reliability, and efficiency and reduces 
risk with safety systems. Due to aging of components of security systems, 
increasing demands for defect detection using various techniques and control 
systems. Different defects D that occurs during the operation may have 
varying importance to provides interference with each other or is insignificant 
even after the prolonged operation of safety systems. Consider the following 
formal statement of optimization problems.

Problem 1. When implementing control all defects are to be detected.

The given condition could be interpreted as follows. The set of defects D 
could be considered, as a complex system, which consists of ℓ* subsystems 
(subsystems, in this case, are defects). Thought a parameter of the probability 
of non-failure operation of the consecutive system (when the refusal even 
in one of the subsystems could lead to failure of the system as a whole) 
it is possible to consider as a parameter of the probability of detection of 
defects set by the complex v = (vs1

, vs2
,..., vsℓ*

), which is defined as follows:  
PD(v) = ∏ ℓ  ∈ L P(vsℓ

), where P(vsℓ
) is defined by the formula (18).

Problem 2. In the realization of diagnosis, some unimportant (non-essential) 
defects are considered not to be detected.

Defects of set D could have various importance and therefore it is possible to 
speak about the inadmissibility of opportunity of detection or not detection 
of essential and unessential defects, and they cannot result in dangerous 
consequences, the probable price of elements refusal is insignificant for 
serviceability the protection system.

This task is interpreted in terms of determining the reliability of complex 
systems with (monotone) structure (Barlow and Proschan 1975).
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Let us xℓ, l ∈ L,  is Boolean variable that is

 0, than missing of  defect  can be accepted,
1, than missing of  defect  can not be accepted.

d
x

d


= 






 

Then x = (x1,...,xℓ,..., xℓ*) is a vector of possible combination of defect 
revealing. X is a set of all possible combinations x ∈ X. For example, a 
combination x = (1,...,1,...,1) is not admitted of any not revealed defect and in 
a combination x = (0,1,....,1) “no detection” of one insignificant defect d1 is 
admitted.
Let us ω(x) Boolean indicator function that is:

 
0, combination  is not allowed to control object,

( )
1, combination  is allowed to control object.

x
x

x
ω


= 


 

For example, if a combination x = (1,...,1,0ℓ,1,...,1), and ω(x) = 1, in this 
case for the safety system is not allowed the identification of the defect dℓ. It 
is necessary to generate such a variant of methods complex v = (vsℓ

) ∈ ⨂ℓ ∈ LVℓ,  
which has a maximum efficiency of revealing defects set D in view of the 
given constraints on resources bi, i ∈ I = {1,....,i*}. The mathematical model 
of the formulated problem is: 
maximize

 ( ){ }1
( ) max ( ) ( ) 1 ( ) ,

xx
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−
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 (19)

under constraints

 Gi(v) = Gi(gi1(vs1
),...,giℓ(vsℓ

),...,giℓ*(vsℓ*
)) ≤ bi, i ∈ I, (20)

 v = (vs1
, vs2

,...,vsℓ*
) ∈ V  = ⨂ℓ ∈ LV ℓ. (21)

Parameters of resource expenses Gi(v), i ∈ I for using the control system 
which a complex of methods V are defined, for example, by total control cost 
of using methods that are part of a complex, by the cost of auxiliary operations 
accompanying to the control, by the cost of expenses connected with the 
charge of energy and use of premises, the cost of replacement items etc. Thus 
Gi(v), i ∈ I is additive function Gi(v) = ∑ℓ  ∈ L giℓ(vsℓ

), i ∈ I and the parameters of 
resource expenses for a vector vsℓ

 could be determined (Volkovich et al. 1992). 

 giℓ(vsℓ
) = ∑ j ∈ sℓ

giℓ(mjk, dℓ), i ∈ I, l ∈ L. 

In the general case, indicators of resource costs can be calculated 
more difficult to be set in tabular form, dependent on the technology sℓ 
application methods. The problems (19)–(21) are a two-level discrete 
monotone programming problems, and it could be solved using procedures 
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and algorithms discussed in Chapter 1.2. Problems (3)–(5) and (19)–(21) are 
also of interest in a multi-criterion setting, and their solution may give other 
alternatives that depend on the weights of the criteria.

3. The human factor in ensuring reliability, safety and fault 
tolerance of critical infrastructures

3.1 Use of the human health index for reliability

In the QRAQ Project Volume 27 (Taylor 2014) devoted to the problem of 
quantitative risk assessment (QRA) in the requirements section for eliminating 
deficiencies in the analysis risks, a requirement is included on the need to 
implement methods of reliability analysis of a human (human factors) in QRA 
and security management processes, including the number of actions of the 
decision maker, the operator. The works Rasmussen and Taylor 1976, and 
Kirwan 1994 present recommendations for the analysis of the quantitative 
assessment of human reliability, which has been used in this work.

It is important to note that the human factor, i.e., professionalism and the 
reliability of the performance of various operations by employees is a very 
important component of the reliability of functioning critical infrastructures 
and man-machine systems. Impact Study of Human Factors by the BP 
Сompany (BP and Chem 2008) showed that the occurrence of accidents at 
the refinery and the proportion of human errors (caused by personnel) is 33%. 
According to official data on railway transport in Ukraine, more than 80% of 
accidents are caused by the human factor (Gus et al. 2008).

Consider a CI object as a two-component system consisting of technical 
parts and personnel (decision maker (DM)). The probability of failure-free 
operation of the object P(t), at a separate stage of operation in point in time 
ti due to reliability of the functioning of the technical part of object PT (ti) in 
point in time ti and the reliability of the DM performing various operations 
PH(ti) on the object is defined as follows 

 P(ti) = PT (ti) ∙ PH(ti).

For fail-safe execution of the stage at time ti should the technical 
component of CI as well as personnel be functioning. Object failure probability 
(risk value) is calculated by the formula

 R(ti) = 1 – P(ti) = 1 – PT (ti) ∙ PH(ti).

At the heart of the idea of improving the reliability of the functioning of 
personnel, the approach, which is based on the selection of special physical 
exercises that belong to various physical practices to increase individual 
health index (Health index – HI) is proposed Belov et al. 2001, Horbunov  
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et al. 2019. The human health index is considered in concepts of the 
information paradigm of the individual index of human health HI as a trinity 
of its physical, mental, and social side and is presented as expression: 

 ( ) ( ) ( )( ), , ,ph ph ps ps so so
n n n n nHI F HI I HI I HI I=  (22)

and is the initial state of the indicator HI. Function Fn parameters are exponents: 
HI ph(In

ph) is a health index, which characterizes the physical state of human 
health, where In

ph is an impact on the physical component of human health, 
which have standard methods for supporting and treating staff. Respectively  
HI ps(In

ps) is the psychological index, and HI so(In
so) is the social health index,  In

ps 

is the impact on psychological and In
so is an impact on the social components 

of health.
Standard methods of support and impact on human health, defining 

influences In
ph, In

ps, In
so are formed based on the developed programs, 

professional selection of specialists (DM, operators), organization of their 
work, recreation, special nutrition, methods of physical culture, and medical 
support. In the absence of crisis situations and stressful effects on decision-
makers, the reliability and safety of CI operations are usually maintained on 
a given level.

In times of crisis, when the vast majority of the population is exposed 
to prolonged, significant stress on the physical, psychological and social 
level (pandemic, war, food and financial crises), reliability and the safety of 
critical facilities and CI can be violated through the human factor, due to the 
deterioration of the health and professional activities of the personnel (Galea 
et al. 2020, Panchenko et al. 2015).

The traditional medical indicators used in this case (measurement of heart 
rate, blood pressure) with a certain probability do not always make it possible 
to identify functional states that are dangerous from the maintaining the level 
of professional reliability point of view but not included in pathology. These 
conditions, in many cases, lead to the emergence of personnel errors and 
consequently – accidents (Gus et al. 2008).

Using additional, unified complexes of physical exercises (USPE), 
selected individually for each DM, it is possible to improve health, eliminate 
dysfunction in the musculoskeletal system (MSS) and improve its professional 
functional state (Horbunov et al. 2021a). Impact of the USPE complex on 
physical, psychological, and social health is defined as In

ph, In
ps, In

so, respectively, 
the index of individual health:

 HIn + u = Fn + u(HI ph(I n
ph, I u

ph), HI ps (I n
ps, I u

ps), HI so (I n
so, I u

so)).

Meaning of HIn + u is characterized, as an indicator, the state of health of 
personnel which is restored by two influences: the first – is developed for 
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work in a peaceful time, without stress and is determined by (22); the second 
is additional, for the time of pandemic and war, with additional complex 
UCPE. Moreover, both influences affect all components of health. Function  
Fn + u parameters are exponents: HI ph (I n

ph, I u
ph) – health index that characterizes 

the physical state of human health under the influence of the UCPE complex, 
where I u

ph – impact on the physical component of the health of DMs by 
standard methods, and  I u

ph – impact on the physical component of health due 
to complex UCPE. Respectively HI ps (I n

ps, I u
ps) – index of psychological and 

HI so (I n
so, I n

so) – index of human social health and corresponding influences.
Then the reliability and safety of the functioning of the CI, on a series of  

n serial time steps ti by time t can be defined:

 P(t) = ∏n
i =1 PT (ti) ∙ PH(ti).

In the diagram shown in Figure 1, the time point ti is defined separately, 
which considers the possibility of implementing the UCPE complex in 
free time or at the facility during breaks between operations carried out by 
personnel.

In Figure 1, the indicators PH(t i
H) - the probability of non-failure 

operation of a person on ti stage of the system operation during the time t i
H .  

ΔP(HIn + u) – the result of a positive impact of UCPE implementation, is 
determined by the increase in the index of individual health by the value  
ΔHIn + u = HIn + u – HIn, which determines the additional reliability of the 
functional professional state by its impact ΔHIn + u ⇒ □P(HIn + u) and represents 
an addition to the value of the object reliability indicator by increasing the 
reliability of the human factor.

To implement the process of supporting the normal physical condition 
of a person, and organizing his recovery based on the results of a video 
analysis of his condition, video image processing software is used using the 
“Skeleton” technology (Horbunov and Shcherbina 2021b). According to the 

The traditional medical indicators used in this case (measurement of heart rate, blood pressure) with a 
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the maintaining the level of professional reliability point of view but not included in pathology. These 
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Figure 1. Scheme of serial stages in the operation of CI with the possibility of results inclusion of the 
UCPE complex impact.
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video analysis of human movements, the doctor determines the elements 
of the musculoskeletal system that require therapeutic effects, including by 
performing physical exercises set UCPE.

Physical practice is a set of exercises that affect a certain structural part of 
the human body or its separate element. In this work, the problem of forming 
a complex of physical exercises from a variety of practices is considered. 
Experience of cooperation with medical institutions has shown the need 
to include in the therapeutic complex of exercises the following practices 
(Horbunov et al. 2021a):
 1. The practice of “Cardio” is a set C = {pc1

, pc2
,...,pcℓ*}, of all possible 

exercises pcℓ
 that affects a person’s cardiovascular system to train it, 

where is the number of exercises in the «Cardio» practice.
 2. The practice of “Flexibility” is a set F = {pf1

, pf2
,...,pfℓ*}, of all possible 

exercises  pfℓ that affect the elasticity of the musculoskeletal system;
 3. The practice of “Strength” is a set S = {ps1

, ps2
,...,psℓ*} of all possible 

exercises psℓ 
that affect the strength qualities of the muscles;

 4. The practice of “Breathing” is a set B = {pb1
, pb2

,...,pbℓ*}, of all possible 
exercises  pbℓ that affect the respiratory system;

 5. The practice of “Meditation” is a set M = {pm1
, pm2

,...,pmℓ*}, of all possible 
exercises pmℓ

 that affects the central nervous system;
 6. The practice of “Neuro-cognition” is a set N = {pn1

, pn2
,...,pnℓ*}, of all 

possible exercises that pnℓ
 affects the structures of the brain; 

 7. The practice of “Attention” - this is a set A = {pa1
, pa2

,...,paℓ*} of all 
possible exercises paℓ

 develops concentration and memory.
 8. The practice of “Pain” is a set P = {pp1

, pp2
,...,ppℓ*}, of all possible exercises 

ppℓ
 and those that affect trigger points in the muscles;

Table 1 shows the types of physical practices and their controlled 
parameters, which are used in the analysis and monitoring of health status 
based on the technology of video images analysis of human movements.

On the basis of a finite set of all types of physical practices  
E = C ∪ F ∪ S ∪ B ∪ M ∪ N ∪ A ∪ P, various variants of complexes UCPE are 
formed using certain physical practices and exercises, combinations of various 
types of practices and exercises in them that affect the human body, taking 
into account its functional state, the consequences of being under stress, the 
presence of motor pathology and various indicators and limits. The influence 
of the complexes UCPE is presented in Figure 2 in the form of a diagram 
of the influence on the components of health: physical, psychological, and 
social.
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The result of the complex impact IUCPE obtained after UCPE can be 
expressed as HIn + u:

 IUCPE => HIn + u = Fn + u(HI Ph
n + u, HI Ps

n + u, HI So
n + u).

Components of health presented through individual indices HI Ph
n + u, HI Ps

n + u, 
HI So

n + u, which are defined through functions F ph
n + u, F

ps
n + u, F so

n + u, as an example  

Table 1. Exercise parameters of various types of physical practices that are calculated using video 
analysis methods.

Type of physical practice Physical practice Controlled parameters of  
physical practice

1 2 3 4 5 6 7 8

1. CARDIO (C) Walking + + + -- -- + + *

Nordic walking + + + -- * + + *

Gym + + + + * + + *

Swimming + -- + -- * -- -- *

2. FLEXIBILITY (F) Exercises in the hall on 
the mat

-- + + -- * + + *

Swedish wall + + + + * + + *

Yoga - + + -- * + + *

Usha -- + + -- * + + +

3. STRENGTH (S) Exercises with dumbbells + -- + + * + + +

Exercises with projectiles + -- + + * * * *

Exercises with a rubber 
band

+ -- + + * + + +

4. BREATHING (B) Strelnikova’s system + -- + + * * * *

Buteyko system -- -- + -- + * * *

Testing system -- -- -- -- -- + -- --

5. MEDITATION (M) Complex “Lotus” -- -- + * * * * *

Calligraphy -- + + * * + * +

6. NEURO-COGNITIVE (N) Finger exercises -- + -- + * * * +

“Key” exercises -- + -- + * * * *

Synchronization 
exercises

-- + + + * + * +

7. ATTENTION (A) Complex “Awakening” -- + + -- * + + +

8. PAIN (P) PIR complex -- + + -- * + + +

“ROLL” complex -- + + + * * * *

Table 1 shows the following indicators: 1 - intensity, 2 - movement pattern, 3 - temporary 
load, 4 - number of iterations, 5 - displacement of test points of control, 6 - ratio of body parts,  
7 - the volume of the movement, 8 - attention. Control parameters of physical practice: “+” – fixed,  
“--” – not fixed, “*” – not used.
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HI Ph
n + u = F Ph

n + u(HIC
Ph, HIF

Ph, HIS
Ph, HIB

Ph, HIM
Ph, HIN

Ph, HIA
Ph, HIP

Ph), and which take 
into account the total impact of exercises of the complex UCPE, which can be 
built on the basis of a set of all practices E = C ∪ F ∪ S ∪ B ∪ M ∪ N ∪ A ∪ P.

Calculating the health index HIn + u after applying a set of exercises UCPE, 
we obtain the value of the health effect: ΔHIn + u: ΔHIn + u = HIn + u – HIn.

The formed set of exercises in UCPE is intended for the purpose of its 
use by personnel independently, both in their free time and when performing 
professional activities at the workplace with the minimal participation of 
medical personnel. The initial data for the implementation of the process 
of supporting and restoring the health of personnel are the parameters of 
human movements, which are obtained using an intelligent software package 
(Horbunov and Shcherbina 2021b). Based on the video analysis data, 
individual sets of exercises UCPE are formed. The intelligent software package 
implements the function of monitoring the health status of CI personnel and 
informing responsible persons about various undesirable changes that may 
affect the health of personnel.
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3.2 Formation of a complex of exercises UCPE using the mechanism  
of the principle of type-variety

As already noted, when choosing complex physical exercises UCPE, methods 
of computer video analysis of posture and elementary movements (tilts, turns 
of various parts of the body, and others) are used. Analysis of the parameters 
of video image tests allows us to identify some dysfunctions in the MSS, in 
muscles and ligaments, which manifest themselves in shortening the length 
of muscles and/or in increasing their tone (muscles or part of the muscles 
become dense and lose their ability to relaxation and stretching) (Travell  
et al. 2018).

Such conditions are not pathological MSS but are functional in nature. 
The danger of such dysfunctions lies in the fact that a person gets used to them 
and a certain stereotype is developed in movement, walking, and posture, 
which creates conditions for an increase in dysfunctions by the type of chain 
reaction (it develops especially actively in a state of stress).

If this process is not interrupted in time, then organic lesions develop 
in many elements of the MSS, which are expressed in the occurrence of 
chronic pain sensations and the appearance of specific pain points - trigger 
points (Travell et al. 2018). The danger of trigger points is that with a certain 
movement a person will experience sharp, unbearable pain. Therefore, the 
presence of MSS elements with dysfunctions in a person is a negative factor 
that reduces his functional professional reliability.

In connection with the importance of eliminating dysfunctions in the MSS 
elements in a person, we will consider an optimization problem, the purpose 
of which is to form a set of physical exercises UCPE that would optimally 
contribute to the elimination of existing dysfunctions and create conditions 
for blocking their development.

One of the types of exercises capable of solving this problem are exercises 
of physical practice “Flexibility”, exercises that stretch certain elements 
of a person’s MSS. Important requirements to UCPE in flexibility are the 
following restrictions and requirements:
 • time limit for the duration of the lesson, since the time for completing the 

complex UCPE at different stages of life is different and limited;
 • take into account the priorities of the impact of the complex UCPE on the 

elements of the MSS;
 • the ability to add in UCPE new exercises based on the basic one, 

purposefully supplementing it. For example, if there are dysfunctions 
(shortenings) in the elements of the MSS, then it is necessary to select, on 
the basis of the basic complex UCPE, a new complex in which there are 
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additional influences (stretch marks) acting on the necessary elements of 
the MSS;

 • in the absence of dysfunctions in the MSS, it is necessary to achieve a 
uniform effect on its elements.

 • exclude or limit exposure to MSS elements with contraindications for 
various other reasons.
To provide a solution to the problem of restoring the dysfunction of 

“muscle shortening” as a well-known practice, we use the type of physical 
practice “Flexibility”, which is presented in Table 1, and select the physical 
practice in it - “Yoga”. The task of forming a complex UCPE using the practice 
of “Flexibility” is formulated as follows.

Assume that as a result of the analysis of a video image of human 
movements, experts have identified a finite set of elements U = {un, n ∈ N},  
N = {1,2,...,n,...,n*}MSS, for which it is necessary to use a certain set of 
additional physical exercises built on the basis of the well-known exercises of 
the “Flexibility” practice in order to support the normal functioning of the DM 
and eliminate the possibility of pain.

Let qn(un) the probability of pain in the element un, and pn(un) = 1 – qn(un)  
the probability of the absence of pain. During the functioning of personnel in 
a normal environment, outside of crisis situations, the values of the indicators  
pn(un), n ∈ N for the elements will be approximately the same (the principle 
of equal strength [12]) and the specified standard health requirement p* for 
personnel is fulfilled, that is, pn(un) ≥ p*, n ∈ N. During a crisis, this inequality 
is not met, while pn1

(un1
) ≠ pn2

(un2
), n1, n2 ∈ N, and increases the likelihood of 

staff illness.
Let all elements of the set U = {un, n ∈ N} be equivalent in terms of 

applying certain sets of exercises to them to implement the recovery process, 
built based on the practices presented in Table 1. Define FY = {y1,...,yj,...,ym} 
- the set of Yoga practice exercises, j ∈ JY = {1,2,...,j,...,m} which can be 
used to restore all elements of the set U. When formalizing the problem of 
forming a set of exercises UCPE for restoring elements in a set U, we will 
use formalization, as in setting problem (3)–(5), since this problem is largely 
invariant to the original problem.

So, the analogue of the set U in problem (3)–(5) is the set of subsystems, 
and different types of exercises yj ∈ FY are those elements that are used to 
build different types of subsystems. The difference between this task and task 
(3)–(5) is that physical exercises yj ∈ FY are simultaneously used to restore 
different elements un ∈ U, which means they are used in different subsystems 
in the task (3)–(5).
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The number of possible types of physical practices and elements in them 
yj ∈ FY that can be used for recovery is usually much greater than the number 
of elements un ∈ U, which leads to the combinatorial problem of choosing 
from the set of possible types of practices (exercises) such a minimum set 
of practices that will ensure the restoration of all elements of the set un ∈ U,  
n ∈ N. The specificity of the recovery task is also that some exercises yj ∈ FY  
from physical practice can be repeated. Therefore, the question arises of 
determining the volume of the load when performing different exercises 
yj ∈ FY for each element un ∈ U, that is, fixing quantitative indicators, such 
as service time, the amount of load - the number of repetitions of exercises 
when implementing the decision maker of physical practices from the set E. 
Conditions of uniformity of load formation by physical exercises for different 
elements un ∈ U can act as additional restrictions of the task.

When choosing possible physical exercises yj ∈ FY for their implementation 
on a set of elements un ∈ U, all possible combinations of exercises are considered, 
just as the set of combinations { }{ }1( ) ,..., ,..., , ,j j j j j

j j j

r
K j p r p jM k r k k k k K= = ∈   



 
(1) is formed, which is considered when formalizing the optimization problem 
(3)–(5). When forming a set of combinations of physical exercises, the wishes of 
the person who will perform them, the suggestions of an expert are considered 
in order to purposefully form the procedures for undergoing recovery, the 
availability of various devices for the implementation of exercises.

Suppose that for each element un ∈ U, n ∈ N, sets of exercises  
FY(un) = {yj1

un, yj2
un,..., yjkn

un }, J n
Y = {j1, j2,..., jkn

}, FY(un) ⊆ FY , n ∈ N,  
FY  = ⋃n ∈ N FY(un), JY = ⋃n ∈ N J n

Y, , are defined, which can be used to restore 
the element un ∈ U, n ∈ N. Moreover, the same exercises yj ∈ FY can affect 
different elements ui ∈ U, i ∈ N.
Consider the sub-variant xun

 = (xn
j1,...,xn

jℓ ,...,xn
jkn

) = (xn
j), j ∈ J n

Y, with Boolean 
components

 
1, for element  the exercise  is involved,
0, otherwise.

n jn
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u y
x
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which is formed from a set of exercises FY(un) to build a possible set of 
physical exercises for the element un ∈ U.

The sub-variant xun
 = (xn

j1,...,xn
jℓ ,...,xn

jkn
) ∈ Xun

 = ∏ j ∈ J n
Y
 Bj, Bj = {0,1}, j ∈ J Y 

is a certain analogue of the variant vjk(rj)
 = (ujk1

,...,ujkp,...,ujkrj
), which is defined 

in (2) when formalizing problems (3)–(5). Define τjn - the time quantum during 
which the exercise yj ∈ FY(un) is used to restore the element un ∈ U. Then
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( ) ,

n
n
Y

n
n u jn j

j J

x x n Nτ τ
∈

= ⋅ ∈∑

- the total time of action of exercises yj ∈ FY(un) on the element un ∈ U, which 
are fixed in the sub-variant xun

. Let the effect of the exercise yj ∈ FY(un) 
over time τjn lead to an improvement in the state of the element un ∈ U and 
an increase in its reliability index by the value Δpjn, Δpjn ∈ (0,1). Then, to 
the value of the reliability indicator pn(un), it is necessary to add the values 
Δpjn, j ∈ J n

Y obtained as a result of performing the exercises indicated in the 
corresponding sub-option xun

. This additive acts as a parallel reserve and is 
calculated as follows:

 
( , ) 1 (1 ( )) (1 ) 1 ( ) ( ) ,

( ), .

n n
j j

n nn Y Y

n

x x
n n u n n jn n n jnj J j J

n n
u j Y

p u x p u p q u q

x x j J
∈ ∈

= − − ∏ − ∆ = − ∏ ∆

= ∈

The indicator pn(un, xun
) can act as a maximizable criterion, which leads 

to the minimization of the value qn(un, xun
), i.e., a decrease in pain. Then the 

indicator ΔP(HIn + u) presented in Figure 1 will also improve. And it is possible 
to determine the magnitude of the healing effect from the complex UCPE, 
which is formed on the basis of one practice of “Flexibility” on the physical 
component of health: ΔHIn + u = HI p□

F,n + u – HI p□
F,n.

When forming variants of physical exercises xun
 for elements un ∈ U, the 

following restrictions are considered from the subsystem (23)–(25) (similarly 
to the subsystems of restrictions (4)–(5)).

 pn(un, xun) ≥ p*
n, (23)

 min max ,n
Y

n
n jn j nj J

xτ τ τ
∈

≤ ∑ ⋅ ≤  (24)

 xun = (xn
j1,...,xn

jℓ ,...,xn
jkn) ∈ Xun, (25)

As a result of applying the procedures for analyzing and screening out 
options Ψ1 and Ψ2, and executing the algorithm according to the general 
scheme of the heterogeneity mechanism, the following two-level optimization 
Problem A is explicitly formed and solved, with explicitly given sets of 
possible options for exercise complexes xA

un
 ∈ XA

un for each element un ∈ U. 
Problem A.

 R(xA) = R(xA
u1

,..., xA
u1

,..., xA
u1

) → max(min); 

under restrictions
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When forming an aggregated Problem A, various additional criteria are 

considered, for example, time minimization

 .

min,
n
Y

n
jn j

j J

xτ
∈

⋅ →∑ ∑

the condition for the need to influence all elements un ∈ U.

 
* ,

n
Y

n
j

n N j J

x n
∈ ∈

=∑ ∑
fulfilment of the requirement to coordinate the application of a group of 
exercises to several elements, and others. The search xA

opt ∈ X for the optimal 
solution to the problem of the Problem A, which is a set of exercises UCPE for 
restoring elements in the set U, is carried out by the algorithm of Sequential 
Analysis and Sifting of Variants (Volkovich et al. 1992). 

4. Conclusion

The type-variety principle has been demonstrated in solving the problems of 
ensuring the reliability, security, and resilience of CIs for a technical component 
and considering into account the human factor. Attention is paid to the 
formulation of the reliability optimization problem with type-variety elements 
with a demonstration of procedures and an algorithm for finding solutions 
that implement the type-variety mechanism. The problem of constructing 
optimal complexes of non-destructive testing methods for detecting defects 
in such systems is considered. When implementing scientific and technical 
support for CIs at the stages of their life cycle during crises, pandemics, and 
hostilities, it is necessary to pay special attention to the human factor - the 
personnel who are busy ensuring their reliable functioning.

From the standpoint of the type-variety principle, the influence of the 
human factor has been investigated and ways to improve the reliability 
of human functioning, when performing operations in such systems, by 
performing a formed heterogeneous complex of physical exercises UCPE, 
have been indicated. It has been shown how the elements of the human MSS 
identified by video analysis un ∈ U can be used to improve the health and 
professional reliability of critical systems personnel using a complex of 
various types UCPE. The research results are implemented while ensuring the 
reliability and safety of CIs.
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Chapter 12

Informational Extended Games  
and Decision-Making Processes  

at Risk and Uncertainty
Hâncu Boris

1. Introduction

Information issues are very important for mathematical modeling decisions 
making problems in situations of risk and conflict. The problems with access to 
information generate conditions of perfect, imperfect, complete, incomplete, 
uncertain or asymmetric information. For the mathematical modeling of 
decision-making problems in situations of risk, uncertainty and informational 
impact a new class of games is studied. Different ways of solving games with 
complete and perfect information (or over the set of informational extended 
strategies) are studied. In the paragraphs below is a theoretical and practical 
analysis of how to solve games with informational extended strategies. 

The Nash and Bayes-Nash solutions for informational extended games are 
discussed. We propose to use the new methodology for solving the complete 
and perfect information game. To solve games of this type we construct the 
incomplete and imperfect information game generated by the informational 
extended strategies. Then we construct an associated Bayesian game with 
non-informational extended strategies and determine Bayes-Nash equilibria 
in the incomplete information games.

Moldova State University, Republic of Moldova.
Email: boris.hancu@gmail.com
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2. Information flows and the normal form of games in 
information extended strategies

2.1 Normal forms of the one–way informational extended game

One of the main problems in the game theory is to define (or to construct) the 
normal form (or strategic form) of the game using the “verbal” description 
of the game. The normal form allows beginning the more detailed studies 
of all approaches to solving the game. The strategic form or normal form of 
the game consists of a number of players, a set of strategies for each of the 
players, and a payoff function that associates a payoff to each player with a 
choice of strategies by each player.
Let 

	 Γ	=	⟨I; Xi, i ∈ I; Hi:	X	→	R⟩

be the strategic form or normal form of the static games, where I	=	{1,2,...,n} 
is the set of the players, Xi is a set of available alternative of the player i ∈ I,  
Hi: Xi	→	R is the payoff function of the player i ∈ I and X =	∏i ∈ I	Xi is the set 
of strategy profiles for the game. We will define the informational extension 
of	the	game	Γ,	generated	by	a	one-way	directional	informational	flow	(Novac	
2008), denoted by “j	→	 i”, which meaning is: the player i, and only him, 
knows exactly what value of the strategy will be chosen by the player j. In 
the shot, we named these games as “one–way j	→	i informational extended 
game” or “j	→	i games”. In this case the game is done in the following way: 
the player i independently will choose the “actions program” as a response 
to the non-extended informational strategies chosen by the player j. The 
strategy of the player i will be defined by taking in account of all accessible 
pieces of information about the chosen strategy of the player j. Namely, 
the informational extended strategy will be constructed by the following 
deduction: “if the strategy xj of the player j belongs to the specified domain 
then the player i will choose the specified strategy xi”, etc. On the other hand, 
the informational distended strategy of the player i is a response function of 
the player i from the chosen strategy of the player j. The normal form of the 
one-way j → i informational extended game will be 

	 Γ(j	→	i)	=	⟨I,	Θi, X[–i],	{H̃p}p∈I)⟩,

where the set of the informational extended strategies of the player i is  
Θi = {θi

k : Xj → Xi
k, k = 1,..., χi}, Xi

k is the action set strategy for the player i, 
for	all	informational	extended	strategy	θi

k define	the	set	X(θi
k)	=	{(xi

k, xj, x–[i,j]):  
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xi
k =	 θi

k (xj), ∀xj ∈ Xj, ∀x–[i,j]	∈ X–[-ij]} of the strategy profiles for the non 
informational	extended	game	Γ	generated	by	 the	θi

k strategy and the payoff 
functions 

  H	̃p (θi
k, xj, x–[i,j])	=	Hp (xi

k, xj, x–[i,j]), (xi
k, xj, x–[i,j]) ∈ X(θi

k).

2.2 Normal forms of the double-way informational  
extended game

We say that the player i is of the “j → i informational type” and as well 
as for the player j respectively if at any time the player i knows the precise 
value of the strategy which will be chosen by the player j. Now we construct 
the normal form of the informational extension of the game generated by a 
double-way	 informational	 flow	(Hancu	2011),	denoted	by	 j	↔	 i. For these 
games, we assume that, from the informational point of view, the player i is 
of the “j → i informational type” and simultaneously, the player j is of the  
“j → i informational type”. It means that at any time the player i knows exactly 
the value of the strategy chosen by the player j, as well as, simultaneously, 
the player j knows exactly the value of the strategy chosen by player i. It 
should be mentioned that the players don’t know the informational type of 
each other. In other words, the players don’t know the informational extended 
strategies of each other and from this point of view, we can consider that 
game is an incomplete information structure. In this case, the game could be 
done in the following way: the player i independently will choose an “actions 
program” as a respond to the non extended informational strategies chosen 
by the player j and simultaneously the player j independently will choose an 
“actions program” as a response to the non-extended informational strategies 
chosen by the player i.

The action sets strategy of the payer i (correspondingly of the player j)  
noted by Xi

α (correspondingly Xj
β), represent the sets of the non-informational 

extended strategy chosen by the player i (correspondingly by the player j) 
in the capacity of the response to the every chosen strategy by the player 
j (correspondingly by the player i). As mentioned above, the informational 
extended strategy of the player is the detailed agenda of the chosen value 
of the strategies from the action sets strategy. These agenda can be defined 
using the functions of the following type θi

α:Xj →	Xi
α that ∀xj ∈ Xj, θi

α (xj) ∈ Xi
α 

(correspondingly θj
β: Xi →	Xj

β that ∀xi ∈ Xi, θj
β (xi) ∈ Xj

β. We denote by

	 Θi	=	{θi
α : Xj →	Xi

α, α =	1,...,	χi}
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and correspondingly

	 Θj	=	{θj
β : Xi →	Xj

β, β =	1,...,	χj}

the sets of the informational extended strategies of the player i and 
correspondingly j, in the i ↔ j informational extended game. The  
(θi

α ∈ Θi, θj
β ∈ Θj, x[–ij] ∈ X[–ij]) denotes the strategy profile in the double-way 

informational extended game.
Our goal is to determine the values of the payoff functions for the players 

so that the concrete value of the payoff will be determined using the payoffs 
of	the	players	in	the	non-informational	extended	game	(parent	game)	Γ.	This	
problem is more difficult than in the one-way informational extended game. 
Let player i and j choose the informational extended strategy θi

α ∈ Θi and  
θj

β ∈ Θj respectively. Denote by X(θi
α, θj

β) ⊆ X the set of the strategy profiles of 
the	players	in	the	game	Γ	“generated”	by	the	informational	extended	strategy	
θi

α and θj
β. It is easy to show that

 X(θi
α, θj

β)	=	(grθi
α ⋃grθj

β) ⋃X[–ij].

We mention that there exists the strategies θi
α and θj

β such that X(θi
α, θj

β)	=	∅,  
i.e., not for any couple (θi

α, θj
β) we can construct the carryout strategy profile 

in the non-informational extended game. Let us assume that the players want 
maximize their payoffs. Then we define payoff functions of the player as 
following 

Hp (θi
α, θj

β, x[–ij])	=	
       max             Hp (xi, xj, x[–ij]) if  X(θi

α, θj
β)	≠	∅,

–	∞	 																																				 if		X(θi
α, θj

β)	≠	∅.
(xi, xj)∈[grθi

α⋂grθj
β]{  

Finally	the	normal	form	of	the	double-way	i	↔	j	informational	extended	
game will be 

	 Γ(i	↔	j)	=	⟨I,Θi,	Θj,	{X}p∈I\{i,j},{Hp}p∈I⟩.

We denote the set of all strategies profiles that satisfied these definitions by 
NE[Γ(i	↔	j)]. 

3. Properties of the Nash equilibrium profiles in the 
informational extended games

In this paragraph we study the properties of the strategy profiles of the non-
informational extended game which can be generated by the Nash equilibrium 
profiles	of	the	informational	extended	games	Γ(i →	j),	Γ(j →	i)	and	Γ(i ↔	j). 
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Theorem 3.1. The following relations are true:

 NE[Γ]⊆
(θi

k, x[–j])∈NE[Γ(j→i)]

k=1,...,χi

⋃  X(θ i
k) ⊆

(θi
α, θj

β, x[–ij])∈NE[Γ(j→i)]

α=1,..., χi, β=1,...,χj

⋃  X(θi
α, θj

β).

Proof. It can easily be proved that there are |Xj| informational extended 
strategies	 θ̂ i

α	∈ Θi,	α	=	1,|Xj|
—  of the player i, respectively |Xi| informational 

extended	strategies	θ̂ j
β	∈ Θj,	β	=1,|Xj|

—		of	the	player	j,	such	that	X(θ̂ i
α,	θ	j

β)	=	X(θ̂ i
α)  

for	all	θjβ	∈ Θj,	respectively	(θ	i
α,	θ̂ j

β)	=	X(θ̂ j
β)	for	all	θi

α ∈ Θi. Let x ̃∈NE[Γ]	then	 
Hp (x̃)	 ≥	 Hp (xp, x[̃–p]) for all xp∈ Xp and for all p ∈ I. We consider the 
following informational extended strategy θ̂i

α (xj)	=	xĩ for all xj ∈ Xj, and then  
Hi (x̃i, x̃[–i])	≥	Hi(xi, x̃[–i]) ∀xi∈ Xi. So in this case we have have x ̃∈X(θ̂i

α) since  
X(θ̂i

α)	=	grθ̂i
α∪X[–ij]. Now we have to prove that (θ̂i

α, x̃[–i])∈NE[Γ(j→i)],	that	is	 
Hi(θ̂i

α (x̃j), x̃j, x̃–[i,j])	 =	Hi (x̃i, x̃j, x̃–[i,j])	 ≥	Hi (θ̂i
α (x̃j), x̃j, x̃–[i,j]) for all α =	1,χ—

i,  
Hj (x̃i,x̃j,x̃–[i,j])	≥	Hj (x̃i,x̃j,x̃–[i,j]) ∀xj∈Xj, Hp (x̃i,x̃j,x̃–[i,j])	≥	Hp (x̃i,x̃j,xp,x̃–[i,jp]) ∀xp∈Xp 
for all p ∈ I \{i, j}. But these inequalities are true since x̃∈NE[Γ].	 So	we	
proof	 that	 there	 is	 the	 strategy	 profile	 (θ̂i

α,x̃[–i]) ∈	NE[Γ(j→i)],	 respectively	 
(θ̂	j

β, x̃[–i]) ∈	NE[Γ(j→i)]	such	that	x	̃∈X(θ̂ i
α) respectively x ̃∈X(θ̂	j

β). Consider the 
informational extended strategy of player i(θ̂i

α (xj)	=	x̃i ∀xj∈Xj, and for player 
j the informational extended strategy of player θ̂j

β (xj)	=	x̃j ∀xi ∈ Xi, and then  
Hi(xi, x̃[–i]) ≥	Hi (xi,x̃[–p]) ∀xi∈ Xi and Hj(x̃j, x̃[–j]) ≥	Hj(xj, x̃[–j]) ∀xi∈ Xi. Based on 
the above we obtained that x̃∈X(θ̂i

α)	∩	X(θ̂i
β). Since grθ̂i

α ∩	grθ̂i
β =	(x̃i, x̃j) and  

x̃∈ NE[Γ]	 we	 can	 prove	 that	         max             
(xi, xj)∈[grθ~i

α⋂grθ~j
β]

 Hi(xi, xj, x~[–ij])	 ≥	         max             
(xi, x̃j)∈[grθi

α⋂grθ~j
β]

  

Hi(xi, x̃j, x̃[–ij]),         max              
(x̃i, x̃j)∈[grθ~i

α⋂grθ
~
j
β]

 Hj(x̃i, x̃j, x~[–ij])	 ≥	        max              
(x̃i, xj)∈[grθ~i

α⋂grθj
β]

Hj(x̃i, xj, x̃[–ij]), 

        max              
(x̃i, x̃j)∈[grθ~i

α⋂grθ
~
j
β]

 Hp(x̃i, x̃j, x
~

[–ij])	≥	       max              
(x̃i, x̃j)∈[grθ~i

α⋂grθ
~
j
β]

Hp(x̃i, x̃j, xp, x
~

[–i,jp]) ∀p ∈ I\{i,j}.

So we prove that (θ̂i
α, θ̂j

β, x̃[–ij])∈NE[Γ(i ↔	j)]. Now we have that 

 NE[Γ]⊆
(θi

k, x[–j])∈NE[Γ(j→i)]

k=1,...,χi

⋃  X(θ i
k) ⊆

(θi
α, θj

β, x[–ij])∈NE[Γ(j→i)]

α=1,..., χi, β=1,...,χj

⋃  X(θi
α, θj

β).

Finaly it is easy to see that under the above 

 
(θi

k, x[–j])∈NE[Γ(j→i)]

k=1,...,χi

⋃  X(θ i
k) ⊆

(θi
α, θj

β, x[–ij])∈NE[Γ(i→j)]

α=1,..., χi, β=1,...,χj

⋃  X(θi
α, θj

β)

which	proves	the	theorem.	■	
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This theorem shows that the set of the equilibrium profiles in the non-
informational extended games is contained in the set of non-informational 
extended strategy profiles generated by the Nash equilibrium profiles in 
the informational extended game. Moreover, the set of non-informational 
extended strategy profiles generating by the Nash equilibrium profiles in 
the	game	Γ(j	→	i)	or	Γ(i	→	j)	 is	contained	 in	 the	set	of	non-informational	
extended strategy profiles generating by the Nash equilibrium profiles in the 
game	Γ(i→j). 

4. Informational non-extended game generated by the 
informational extended strategies

In this paragraph we study the case when the informational strategies of the 
players have already been chosen and so appears the necessity to study the 
informational non-extended game generated by the chosen informational 
extended	 strategies	 (Hancu	 2012).	 These	 games	 differ	 in:	 (a)	 the	 sets	 of	
the strategies that are the subsets of the sets of strategies in the initial non-
extended informational game; (b) how the payoff functions of the players will 
be constructed.
Let the payoff functions of the players be defined as H	̃p:∏p∈I Xp →	R where for 
all xi∈Xi, xj∈Xj, x[–ij]∈X[–ij],

 H̃p (xi, xj, x[–ij])	≡	Hp (θi (xj), θj (xi), x[–ij]).

The	 game	 with	 the	 following	 normal	 form	 Γ(θi,	 θj)	 =	 ⟨I,{Xp}p∈I, 
{H̃p}p∈I)⟩ will be called informational non-extended game generated by the 
informational	 extended	 strategies	θi	 and	θj.	The	game	Γ(θi, θj) is played as 
follows: independently and simultaneously each player p ∈ I chooses the 
informational non-extended strategy xp∈Xp, after that the players i and j 
calculate the value of the informational extended strategies θi(xj) and θj(xi) 
after that each player calculates the payoff values Hp(θi(xj),θj(xi),x[–ij]), and 
with this the game is finished. To all strategy profiles (xi, xj, x[–ij]) in the game 
Γ	the	following	realization	(θi(xj), θj (xi), x[–ij]) in terms of the informational 
extended strategies will correspond. We denote by NE[Γ(θi, θj)] the set of 
Nash	equilibrium	profiles	of	the	game	Γ(θi, θj).

Theorem 4.1. Let the game Γ(θi, θj) satisfy the following conditions:
	 1.	 the Xp is a non-empty compact and convex subset of the finite-dimensional 

Euclidean space for all p∈I;
 2. the functions θi (correspondingly θj ) are continuous on Xj (correspondingly 

on Xi) and the functions Hp are continuous on X for all  p∈I;
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 3. the functions θi (correspondingly θj) are quasi-concave on Xj 
(correspondingly on Xi), the functions Hp are quasi-concave on Xp, p∈I\{i,j}  
and monotonically increasing on Xi × Xp. 

Then NE[Γ(θi, θj)]	≠	∅.

Proof. We define the following correspondence (point-to-set mapping)  
Br: X → X such that 

 Br(x)	=	(Br1 (x[–1]),...,Bri (x[–i]),...,Brn (x[–n]))

then if x*∈Br(x*), then xi*∈Bri(x*[–i]) for all i∈I and hence x*∈NE. According to 
the Tikhonov’s theorem: X =	∏p∈I 	Xp is compact, and according to conditions 
(1)	and	(2)	for	all	x[–i] the set Bri (x[–i]) is non-empty. According to condition 
(3) Bri (x[–i])is also convex because Hĩ is quasi-concave on Xi. Hence the set 
Br(x) is nonempty convex and compact for all x∈X. The mapping Br has a 
closed graph because each function Hp̃ is continuous on X for all p∈I. Hence 
by Kakutani’s theorem, the set-valued mapping has a fixed point. As we have 
noted,	any	fixed	point	is	a	Nash	equilibrium.	■

4.1 Informational extended strategies in the duopol games

In this paragraph, we study Cournot’s Duopol games generated by the 
informational extended strategies. There are two firms operating in a limited 
market. Market production is p(Q)	=	{a – Q

0
for
for

Q < a
Q ≥ a  where Q =	q1	+ q2  

for two firms, a > 0 represents the volume of products of type q1 and q2 that 
is in the market, p represents the price of the good. Both firms will receive 
profits derived from a simultaneous decision made by both on how much to 
produce, and also based on their cost functions: Ci(qi)	=	cqi + Ci where c ≤ a 
represents the marginal cost (consumption for both firms) and Ci ≤ a the fixed 
cost. Both firms simultaneously choose the quantity of the goods that they 
offer on the market.

We will model the activity described in the example using game theory. 
Since both firms simultaneously choose the quantity of good that they offer 
on the market and do not cooperate, then we will use the non-cooperative 
static game. The normal form of these games is Γ =	⟨I ={1,2},	X =	[0,	N1],  
Y =	[0.N2],H1,H2⟩ where I	 is	 the	set	of	players:	 firm	1	and	firm	2;	X, Y are 
the sets of strategies (the x and y represents the volume of products of type 
q1 and q2 that is in the market) of the players, H1 (x,y)	=	x(a – x – y – c) – C1,  
H2 (x,y)	=	y(a – x – y – c) – C2,	represents	the	payoffs	of	the	player	1	and	2.	 
The Nash equilibrium profile is (x*, y*)	 =	 a – c

3
a – c

3
,( ) and firms will 

receive the following profits Hi (x,y)	=	(a – c)
3  – Ci if x + y < a that is if a > 2c. 
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From the property of the equilibrium profile, we obtain that none of the firms 
is unilaterally convenient to offer on the market a volume of goods other than 
the value a – c

3
, otherwise the firm will lose income. 

We analyze different forms of informational extended strategies.
 (A) In this case, the sets of strategies of the player 1, respectively the player 2,  

will	be	Θ1	=	{θ1: Y →	X such that

  ∀y∈Y, θ1 (y)	=	argmaxx∈X        
H1 (x, y)},

respective	Θ2 =	{θ2: X	→	Y such that

 ∀x∈X, θ2 (x)	=	argmaxy∈Y        
H2 (x, y)}.

Players do not know which function θ1 or θ2 will be chosen by the 
partners	(but	this	is	not	significant	because	the	sets	Θi contain one element). 
We determine the functions θ1	(y) si θ2 (x). The functions H1 (x,y) and H2 (x,y) 
are concave, then using the necessary conditions of the functions extreme we 
obtane that argmax

x∈X        
H1 (x, y)}	=	x ∈ X: x =	{ a – y – c

2 }  and argmax
y∈Y        

H2 (x, y)}	=	 

y ∈ Y: y =	{ a – x – c
2 }. Then  θ1	(y)	=	

a – y – c
2  such that ∀y ∈ Y, a – y – c

2  ∈ X 

(but no θ1 (y)	=	a – 2x – c) and θ2 (x)	=	
a – x – c

2  such that ∀x ∈ X, a – x – c
2  ∈ Y  

(but no θ2 (y)	=	a – 2y – c). So, H ̃1(θ1(y), θ2(x))	=	
1–
2 [y(a – y – x – c) + x(a – c)] –C1.  

Similarly we will get H2̃(θ1(y), θ2(x))	=	
1–
2 [x(a – y – x – c) + y(a – c)] –C2. Then 

Nash equilibrium profile is (x*, y*)	=	(a – c, a – c), which does not coincide 
with the situation in the classical case, and each company’s payoffs will be

 H ̃i(θ1(y*), θ2(x*))	=	1–2 (a – c) [(c – a) +  (a – c)2] –Ci. 

So if every firm knows what the volume of goods is going to launch 
on the market, and each of them takes advantage of this, choose its 
strategies based on the functions of type θ1(y)	=	argmaxx∈X       

H1(x, y), respectively  
θ2(y)	=	argmaxy∈Y     

H2(x, y), then the volume of goods released on the market, based 
on Nash equilibrium profile, is higher than when firms do not possess that 
information, and the payoffs is much higher. 
 (B) Analise the case when “firm 1 knows what volume of goods firm 2 

will be launched on market, while firm 2 does not know what volume 
of goods will launch firm 1”. Consider	 the	 case	 when	 the	 firm	 1	
informational extended strategy is a function θ1(y)	 =	 argmaxx∈X      

H1(x,y)  
∀y ∈ Y, but on the firm 2 is the function θ2(x)	= y ∀x ∈ X. The payoffs will be  
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H̃1(θ1 (y), θ2 (x))	=	y a – y – c
2( ) – C1 and H2̃(θ1 (y), θ2 (x))	=	y a – y – c

2( ) 

– C2. In this case, the player’s 1 payoff  does not depend on the x strategy. 
We determine equilibrium profiles for this game. This is where the notion 
of equilibrium is already lost. Then the solution will be determined 
accordingly. Player 2 determines y* that realizes max

y∈Y
   {y ( a – y – c

2 )}, 

and so y*	=	 a – c
2

.	Then	x*	=	θ1 (y*)	=	θ1 ( a – c
2 )= a – c

4
. We note that  

( a – c
4

, a – c
2 )  profile coincides with the Stachelberg equilibrium profile 

in which player 2 makes the first move. 

5. Converting the two person game with informational 
extended strategies to bayesian game

Consider the two person informational extended game with the following sets 
of the informational extended strategies

	 Θ1	=	{θ1
j:Y→X|∀y∈Y, θ1

j(y) ∈ X, j =	—1,m1}

of the player and

	 Θ2 =	{θ1
k: X→Y|∀x∈X, θ2

k(x) ∈ Y, k =	—1,m2}.

The payoff functions of the players are defined as follows: for all θ1∈ Θ1, 
θ2∈Θ2, Hi(θ1,θ2)	=	Hi (θ1(y), θ2(x)) for all x ∈ X, y ∈ Y. The game is played as 
follows: independently and simultaneously each player i ∈ I =	{1,2}	chooses	
the informational extended strategy θ1	∈ Θ1 and θ2 ∈ Θ2 (and players do not 
know what kind of the informational extended strategy will be chosen by each 
other’s), after that the players and calculate the value of the payoff values  
Hi(θ1(y), θ2(x)) and with this the game is finished.

Remark 5.1. The game described above will be denoted by Game(1	↔	2)	
and is the game with incomplete information because players do not know 
what kind of the informational extended strategy θ1	∈ Θ1 will be chosen by the 
player 1	(for example) and so the player 1	generates the uncertainty of the 
player 2 about the complete structure of the payoff function H2 (θ1 (y), θ2(x)) 
in the game with non-informational extended strategies. So the players do 
not know exactly the structure of your payoff functions and the game is in the 
incomplete information. 

Denote also by

 Xj̃	={x̃j ∈ X: x̃j	=	θ1
j (y), ∀y ∈ Y}
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and

 Ỹk	=	{ỹk∈Y: y	̃k =	θ2
k (x), ∀x∈X}

the set of all ranges of the informational extended strategy θ1
j	of	player	1	and	

θ2
k of player 2. The sets  X	̃j and Y ̃k are the sets of informational non-extended 

strategies	generated	by	the	informational	extended	strategies	of	player	1	and	
2	 respectively.	According	 to	 Harsanyi–Selten	 (Harsanyi	 and	 Selten	 1998)	
principle we can reduce the analysis of a game with incomplete information 
to the analysis of a game with complete (but imperfect) information, which 
is fully accessible to the usual analytical tools of game theory. So to solve the 
game Game(1	↔	2)	we	must	do	the	following	step-intervals:
	 1.	 Construct	the	Bayesian	game

	 ΓB =	⟨I =	{1,2},	S1	(Δ1), S2	(Δ2),	Δ1,	Δ2, p, q, H	̃1, H̃1⟩

that corresponds (is associated) to the game Game(1	↔	2).	The	normal	form	
must consist of the following.
	 •		A	set	of	possible	actions	for	player	1	is	X,	a	for	player	2	is	Y.
 • Because players do not know what kind of informational extended 

strategy will be chosen by the other player, then the uncertainty of player 
1	 about	 their	 own	 payoff	 function	 structure	 is	 generated	 by	 player	 2	
selected informational extended strategy and respectively, the uncertainty 
of player 2 about the own payoff function structure is generated by the 
player	 1	 selected	 informational	 extended	 strategy.	The	 set	 of	 types	 for	
player	1	(player	2)	is	Δ1	=	{δ1j,	j	∈ J1}(Δ2 =	{δ2

k, k ∈ J2}). In other words, 
player	1	(player	2)	is	of	the	type	δ1j	(of	the	type	δ2

k) if he generates to the 
player	2	(to	the	player	1)	payoff	structure	uncertainty,	selecting	the	θ1

j∈Θ1 
(θ2

k ∈ Θ2) informational extended strategy. 

 • The	 probability	 function	 p:	 Δ1	→	 Ω(Δ2)	 of	 the	 player	 1,	 respectively	 
q:Δ2 →	Ω(Δ1)	of	the	player	2,	means	the	following:	if	the	player	1	(player	2)	 
chooses the informational extended strategy θ1

j	 (strategy	 θ2
k), then 

he	 believes	 that	 the	 player	 2	 (player	 1)	 with	 the	 p(δ2
k/δ1

j)	 =	
p(δ2

k∩δ1
j)

p(δ1
j)  

(respectively	p(δ1
j/δ2

k)	=	
p(δ2

k∩δ1
j)

p(δ1
j) ) chooses the informational extended 

strategy	θ2
k (strategy	θ1

j).
 • The set of the strategies of the players are the set of all range of the 

informational extended strategies of the players

  S1(Δ1)	=	{x̃j∈X:x̃j	=	θ1
j(y), ∀y ∈ Y,	∀j∈J1}	≡	{X̃j,	j	=	1,...,	m1},
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and

 S2(Δ2)	=	{ỹk∈Y:ỹk =	θ1
k(x), ∀x ∈ X, ∀k ∈ J2}	≡	{Ỹk,	k	=	1,...,	m2},

So	 if	 the	 player	 1,	 for	 example,	 is	 of	 the	 type	 j,	 i.e.,	 he	 chooses	 the	
informational	 extended	 strategy	 θ1

j, then the set of the informational non 
extended	strategies,	generated	by	θ1

j	is X̃j. 
 • The payoff functions of the player is defined as following

 H̃1:S1(Δ1) × S2(Δ2)×Δ1×Δ2 →	R,	H̃2:S1(Δ1)×S2	(Δ2)×Δ1×Δ2 →	R.	

More exact, for all fixed s1∈S1	(Δ1) and s2∈S2	(Δ2), 

 H̃1 (s1(.), s2(.),	δ1
j,	δ2

k)	=	H1 (x̃j,	ỹk,	δ1
j,δ2

k),

and 

 H̃2 (s1(.), s2(.),	δ1
j,	δ2

k)	=	H2 (x̃j,	ỹk,	δ1
j,δ2

k)

for all x̃j	∈ X̃j,	ỹk ∈ Ỹk,	j	=	
—1,m2,	k=	

—1,m2. 
 2. For game construct the Selten-Harsanyi game

	 ΓB
*	=	⟨J,{Rj}j∈J,{Uj}j∈Jj⟩ 

with complete and imperfect information on the sets of non-informational 
extended strategies. Denote by J =	{j =	(i,δi

j), i =	1,2,	j =	1,...,	m1	+ m2} the 
set of type-players that is equal to the sets of all informational extended 
strategies of the players J =	 J1	∪ J2. The strategy of the type-player j is  

rj =	 { x̃j∈X̃j

ỹj∈Ỹj

j∈J1,
j∈J2

 and means the following: if player is of type j =	 (i, δi
j)  

(i.e., player i,i =	1,2,	chooses the informational extended strategy θi
j), then 

the strategy will be equal to value of the informational extended strategy  
xj =	θi

j (y) for a fixed value of the non-extended strategy y ∈ Y. The sets of 

pure strategies of the players will be Rj =	{ X̃j

Ỹj

j∈J1,
j∈J2.

, and R =	∏j=1
m1+m2 Rj. For 

all type-player j =	(1,δ1
j), j∈J1, payoff function Uj: Xj̃ × (k∈J2

 × Ỹk) is defined as 
following 

 Uj(rj,{rk}k∈J2
)	=	Uj(x̃j,	{ỹk}k∈J2

)	=	∑
k∈J2 

p(δ2
k |δ1

j) H1(x̃j, ỹk), ∀x̃j∈Xj̃, ỹk∈Ỹk.

In the similar mode for all type-player j =	(2,δ2
j), j∈J2 payoff function Uj: 

(k∈J2
 × Xk̃) × Y	̃j is defined as follows

 Uj({rk}k∈J2
, rj)	=	Uj({x̃k}k∈J1

, ỹj)	=	∑
k∈J1	

q(δ1k |δ2
j) H2(x̃k, ỹj), ∀x̃k∈Xk̃, ỹj∈Ỹj. 
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These utility functions have the following meaning. If, for example, 
player	1,	had	chosen	information	extended	strategy	θ1j, which also means he 
has	a	type-player	j	=	(1,δ1

j),	and	with	the	probability	p(δ2
k│δ1

j) he assumes that 
the	player	2	will	choose	the	information	extended	strategy	δ2

k, i.e., as we have 
the	type	player	k	=	(2,δ2

k), for all k ∈ J2, then for all information not extended 
strategy x ∈ X and y ∈ Y, average value of the payoff will be

 ∑
k∈J2 

p(δ2
k|δ1

j) H1(x̃j, ỹk)	≡	∑
k∈J2 

p(δ2
k|δ1

j) H1(θ1
j (y),θ2

k(x)

 3. Determine	Nash	equilibrium	profiles	in	the	game	ΓB* that is the Bayes-
Nash	equilibrium	in	the	game	ΓB.

	 4.	 As	 the	 solution	 of	 the	 game	Game(1	↔	 2)	we	will	 consider	 the	 non-
informational extended strategy profile (x*, y*) which is generated by the 
Nash	strategy	profile	in	the	game	ΓB

*. 

Denote by BE[ΓB] the set of all Bayes-Nash strategies profile of the 
game	ΓB.	Really,	 solving	 the	game	ΓB is difficult, because it is transformed 
in the two levels dynamic game. On the first level player Nature chooses 
the informational extended strategies of the players, for example, (θ1

j,θ2
k), 

and on the second level each player chooses the informational non-extended 
strategies from the set X̃j	(player	1)	and	from	the	set	Y ̃j (player 2). The games 
Γ(θ1

j,θ2
k) are the subgames in the dynamic game defined above. Here we do 

not investigate a such method to solve informational extended games.
The	 game	 ΓB

* is played as follows: for all fixed probabilities p(δ2
k|δ1

j) 
and q(δ1k|δ2

j), independently and simultaneously each type-player j =	 (i,δi
j) 

chooses the strategy rj ∈ Rj, after that each player calculates the payoff using 
the functions Uj(rj,{rk}k∈J2

) or Uj({rk}k∈J1
,rj)  and whereupon the game is 

finished. In other words, because strategies defined by the informational non-
extended strategies from sets X and y, for all y ∈ Y (respectively for all x ∈ X)  
type-player j =	(1,δ1

j) (respectively type-player k =	(2,δ2
k)) chooses the strategy 

x̃j	=	θ1
j (y) (respectively ỹk =	θ2

k (x)), calculates the payoff values using the 
functions Uj(x̃j,{ỹk}k∈J2

) (respectively (Uj({(x̃k}k∈J2
, ỹk))). and with this the 

game is finished.

We introduce the following definition.

Definition 5.1. Strategy profile r* = (r1*,...,rj
*,...r|J|

* ) is the Nash equilibrium in 
the game ΓB

* if an only if the following conditions are fulfilled:

 
Uj(rj

*,{rk
*}k∈J2

)	≥	Uj(rj,{rk
*}k∈J2

) for all j ∈ J1,

Uj({rk
*}k∈J1

, r*
j)	≥	Uj({r*

k}k∈J1
, rj) for all j ∈ J2.{
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We get for all fixed probabilities p(.),q(.) t that strategy profile  
({x̃j

*}l∈J1
,{ỹk

*}k∈J2
)	is	Nash	equilibrium	for	the	game	ΓB*	=	⟨J,{Rj}j∈J,{Uj}j∈J⟩ if 

and only if the |J1| + |J2| conditions are fulfilled:

 
∑
k∈J2 

p(δ2
k|δ1

j) H1(x̃j
*, ỹk

*)	≥	∑
k∈J2 

p(δ2
k|δ1

j) H1(x̃j
*, ỹk

*) for all x̃j ∈ X̃j, j ∈ J1,

∑
k∈J1	

p(δ1j|δ2
k) H1(x̃j

*, ỹk
*)	≥	∑

k∈J2 

p(δ1
j|δ2

k) H2(x̃j
*, ỹk

*) for all ỹk ∈ Ỹj, k ∈ J2,{
Denote by NE[ΓB

*] the set of all Nash equilibrium strategies profile in the 
game	ΓB

*.	The	relation	between	the	Nash	equilibrium	in	the	Harsanyi	game	ΓB
* 

and	the	equilibrium	at	the	Bayesian	game	ΓB
 was given by Harsanyi theorem: 

The set of Nash equilibria of the game ΓB
* is identical to the set of Bayesian 

equilibria of the game ΓB
Let	 strategy	 profile	 ({x̃j

*}j∈J1
,{ỹk

*}k∈J2
) ∈ NE[ΓB

*] then we introduce the 
following definition.

Definition 5.2. For all fixed probabilities p(.), q(.) strategy profile (x*, y*) ≡ 
(x* (p), y*(q)) x* ∈ X, y*∈Y, for which the following conditions 

 
x̃j

* = θ1
j (y*) ∀j ∈ J1

ỹk
* = θ2

k (x*) ∀k ∈ J2
{

are fulfilled, is called the Bayes-Nash equilibrium profile in non-informational 
extended strategies of the game Γ generated by the ({x̃j

*}j∈J1
,{ỹk

*}k∈J2
) ∈ NE[ΓB

*].
Denote by BN[G(1↔2)]	the	set	of	all	Bayes-Nash	equilibrium	profiles	in	

the game G(1↔2).	So,	such	as	solutions	of	the	informational	extended	games	
Game(1	 ↔	 2)	 we	 consider	 the	 informational	 non-extended	 Bayes-Nash	
equilibrium profiles (x*, y*)	≡	(x* (p), y* (q)) for which the relations from 
Definition 5.2 are fulfilled for all fixed probabilities p(.) and q(.) of the beliefs 
about the choice of the informational extended strategy of the other player.

For all j =	1,2,	k =	1,2,	denote	by	ϑ1
j (respectively ϑ2

j) an inverse function 
of the θ1

j (respectively θ2
k). If informational extended strategies θ1

j(y) and θ2
k(x)  

for all j =	1,2,	k =	1,2	are	bijective,	then	there	are	the	inverse	functions	ϑ1
j and ϑ2

k  
for all j =	1,2,	k =	1,2	and,	so,	we	have	that	for	all	({x̃j

*}j∈J1
,{ỹk

*}k∈J2
) ∈ NE[ΓB

*]
there is (x*, y*) such that y* = ϑ1

j (x̃j
*) ∀ j ∈ J1 and x* = ϑ(ỹj

*) ∀ k ∈ J2. We can 
prove the following theorem.

Theorem 5.1. Let the game satisfy the following conditions:
	 1.	 X and Y are non-empty compact and convex subsets of the finite-

dimensional Euclidean space;
 2. the functions θ1

j,∀j ∈ J1, and θ2
k,∀k ∈ J2, are continuous on Y (respectively 

on X) and the functions H1, H2 are continuous on X × Y; 
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 3. the functions θ1
j,∀j ∈ J1, (respectively θ2

k,∀k ∈ J2), are quasi-concave on Y 
(respectively on X), the functions H1	(respectively H2) are quasi-concave 
on X (respectively Y) and monotonically increasing on X × Y. 

Then BN[G(1	↔	2)]	≠	∅.

Proof. Another, and some times more convenient way of defining Nash 
equilibrium	in	the	game	ΓB

* is via the best response correspondences that are 
defined as following. For all j ∈ J1, Brj:∏k∈J2

 Ỹk →	2X̃j, Brj	({ỹk}k∈J2
)	=	{x̃j ∈ X̃j: 

Uj (x̃j,{ỹk}k∈J2
)	≥	Uj(x̃j',{ỹk}k∈J2

) ∀ x̃j' ∈ X̃j}. For all j ∈ J2, Brj:∏k∈J1
	Xk̃ →	2Ỹj,  

Brj	({x̃k}k∈J1
)	=	{ỹj∈Ỹj:Uj	({x̃k}k∈J1

, ỹj)	≥	Uj	({x̃k}k∈J1
, ỹj') ∀ ỹj' ∈Ỹj}. We define 

the following point-to-set mapping Br({x̃k}k∈J1
,{ỹk}k∈J2

)	 =	 ({Brj({ỹk}k∈J2
}j∈J1

, 
{Brj({x̃k}k∈J1

)}j∈J2)	and	if	({x̃j
*}l∈J1

,{ỹk
*}k∈J2

) ∈ Br({x̃j
*}l∈J1

,{ỹ*
k}k∈J2

), then we have 
that	({x̃j

*}j∈J1
,{ỹk

*}k∈J2
) ∈ NE[ΓB

*]. Here x̃j =	θ1
j(y), ∀ j ∈ J1 and ỹk =	θ2

k(x), ∀ j ∈ J2. 
Denote by X̃ =	∏k∈J1

 X̃k by Ỹ =	∏k∈J2
Y ̃k and by grBr the graph of the point-

to-set mapping Br. Since x̃j =	θ1
j(y) ∀ j ∈ J1 and ỹk =	θ2

k (x) ∀k ∈ J2, then, 
according to condition 2), the sets Xk̃ ∀k ∈ J1 and Ỹk ∀k ∈ J2 are compacts and, 
according to the Tikhonov’s theorem the sets X ̃	and	Ỹ are a non-empty compact 
and	convex	subsets	of	the	Euclidean	finite-dimensional	space.	For	all	{ỹk}k∈J2

 
and	{x̃k}k∈J1	

the sets Brj({ỹk}k∈J2
) and Brj({x̃k}k∈J1

) are non-empty because of 
conditions	1)	and	2).	According	to	condition	3),	Brj({ỹk}k∈J2

) and Brj({x̃k}k∈J1
) 

are also convex sets. Hence the set Br({x̃k}k∈J1
,	{ỹk}k∈J2

) is a nonempty convex 
and compact for all x̃k ∈ X̃k, k ∈ J1 and ỹk ∈ Yk̃, k ∈ J1. According to condition 2)  
the mapping Br has a closed graph. Hence by Kakutani’s theorem, the set-
valued mapping has a fixed point. As we have noted, any fixed point is a Nash 
equilibrium. From the continuity of the functions θ1

j, ∀j ∈ J1 and θ2
k, ∀j ∈ J2 it 

results that there exist inverse functions θ1
j and θ2

k for all j =	1,2,	k =	1,2	and	
so,	we	have	that	for	all	({x̃l

*}l∈J1
,{ỹk

*}k∈J2
) ∈ NE[ΓB

*] there is (x*, y*) such that  
y*	=	ϑ1

j (x̃j
*) ∀j ∈ J1 and x*	=	ϑ1

k (ỹj
*) ∀j ∈ J2. The theorem is completely  

proved.	■	

The following example illustrates the above context.

Example 5.1. Consider the two persons game in the complete and perfect 
information, for which which X = [0,1], Y = [0,1], are the sets of strategies 
and H1 (x,y) = 3–

2
 xy – x2, H2 (x,y) = 3–

2
 xy – y2 the payoff functions of the player. 

Solve this game using the described above Harsanyi’s principle. 

Solution. In the capacity of the informational extended strategies we will use 
the θ1

1(y)	=	argmax
x∈X    

H1(x, y)	=	3–
2
 y, θ1

2 (y)	=	y2, θ2
1(x)	=	argmax

y∈Y    
H2(x, y)	=	 3–

4
 x,  

θ2
2(x)	 =	 x2. If players will use  these strategies then the payoff functions 

will be H1(x,y) 


2
23 3 3 3 27 9

2 4 4 2 32 16
    = − = −    
    

y x y xy y  and  
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H2(x,y)	 =	


2
23 3 3 3 27 9

2 4 4 2 32 16
    = − = −    
    

y x x xy x . But	 because	 player	 1,	

for example, will not know that player 2 as information extended strategy 
choose exactly θ2(x)	=	3–2

 x, then he will not know its payoff function So the 
informational extended strategies generate uncertainty of the payoff functions, 
such that we already have a incomplete information game.

Construct	 the	Bayesian	game	ΓB associated to the initial informational 
extended game.
 (a) The actions sets are X =	[0,1]	and	Y =	[0,1].
	(b)	 The	 set	 of	 the	 type	 for	 player	 1	 is	 Δ1	 =	 {δ11,δ12} and for player 2 is  

Δ2	=	{δ2
1,δ2

2}	that	means	the	following:	player	1	(respectively	2)	is	of	δ11	
type (respectively δ2

1) if he choose the informational extended strategy 
θ1
1(y)	=	3–

2
 y (respectively θ2

1(x)	=	3–
4
 x) and of the δ12 type (respectively δ2

2) 
if he choose the informational extended strategy θ1

2(y)	=	y2 (respectively 
θ2

2(x)	=	x2). Type-players will be denoted by J1	=	{1,2},	J2 =	{1,2}.
 (c) If the player 2 is of the type δ2

k, then he supposes with the probability  

p(δ1j/δ2
k)	=	p(δ1j)	=	

1
1 2

=
 − =

p for j
p for j 	that	the	player	1	is	of	the	type	δ1j and, 

respectively,	 if	 the	player	1	 is	of	 the	 type	δ1j, then he suppose with the 

probability p(δ2
k/δ1

j)	=	p(δ2
k)	=	

1
1 2

=
 − =

q for k
q for k  

that the player 2 is of the 
type	δ2

k.

 (d) The strategies sets of the players are the following S1(δ11)	≡	X̃1	=	{x̃1∈[0,1]:	

x̃1	=	3–4
 y, ∀y ∈ [0,1]}	=	[0,3–

4] ⊆ X, S1(δ12)	≡	X̃2 =	{x̃2 ∈ [0,1]:	x̃2 =	y2, ∀ y ∈ [0,1]}	=	 

[0,1],	S2 (δ2
1)	 ≡	Y 1̃	=	 {ỹ1	∈ [0,1]:	Y 1̃	=	3–4

 x, ∀ x ∈ [0,1]}	=	 [0, 3–
4] ⊆ Y,  

S2(δ2
2)	≡	Y ̃2 =	{Y ̃2 ∈ [0,1]:	ỹ2 =	x2, ∀ x ∈ [0,1]}	=	[0,1].	

	(e)	 The	payoff	functions	of	the	player	1	is	H̃1 (x̃j,	ỹk,	δ1j,	δ1k)	≡		H1 (x̃j,	ỹk) and 
of the player 2 is H̃2 (x̃j,	ỹk,	δ1j,	δ1k)	≡		H2	(θ1j	(y),	θ2

k (x)). Finally

 H ̃1(x̃j, ỹk, δ1j,	δ1k)	=	

3–
2 

x̃1 ỹ1 – (x̃1)2,  j	=	1,	k	=	1,

3–
2 

x̃2 ỹ1 – (x̃2)2,  j	=	2,	k	=	1,

3–
2 

x̃1 ỹ2 – (x̃1)2,  j	=	1,	k	=	2,

3–
2 

x̃2 ỹ2 – (x̃2)2,  j	=	2,	k	=	2,
{
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and

 H ̃2(x̃j, ỹk, δ1
j,	δ1k)	=	

3–
2 

x̃1 ỹ1 – (ỹ1)2,  j	=	1,	k	=	1,

3–
2 

x̃2 ỹ1 – (ỹ2)2,  j	=	2,	k	=	1,

3–
2 

x̃1 ỹ2 – (ỹ1)2,  j	=	1,	k	=	2,

3–
2 

x̃2 ỹ2 – (ỹ2)2,  j	=	2,	k	=	2,
{

Thus	the	Bayesian	game	is	ΓB =	⟨I =	{1,2},	S1(Δ1), S2(Δ2),	Δ1,	Δ2, p, q, H̃1, H̃2 ⟩.
Now	 we	 can	 construct	 the	 game	 ΓB

* in complete and imperfect 
informations, associated to the Bayesian game recently constructed. The set 
of the type-players is J =	J1∪J2, where J1	=	{j =	(1,	θ1

j)|j =	1,2}	=	{1,2}	and	 
J2 =	{k =	(2,	θ2

k)|k =	1,2}	=	{3,4}.	Finally,	J =	{1,2,3,4}.	The	set	of	the	strategy	

of the type-player j ∈ J is Rj = { X̃j

Ỹj

j ∈ J1,
j ∈ J2.

and the strategy of the type-player  

j ∈ J is rj = { x̃j ∈ X̃j

ỹ ∈ Ỹj

j ∈ J1,
j ∈ J2

. So, for type player J	 =	 1	 the	 strategy	 set	 is	 

R1	=	X̃1	=	[0, 3–
4], for type-player j	=	2	the	strategy	set	is	R2 =	X̃2 =	[0,1],	for	type-

player j	=	3	(or	k	=	1)	R3 =	Ỹ1	=	[0, 3–
4] and for type-player j	=	4,	the	strategy	

set is R4 =	Ỹ2 =	 [0,1].	According	 to	 these,	 the	 strategy	 profile	 in	 the	 game	 
ΓB

* is r =	(r1, r2, r3, r4)	=	(x̃1, x̃2, ỹ1, ỹ2), where x̃1	∈ [0, 3–
4], x̃2 ∈ [0,1],	ỹ1	∈ [0, 3–

4] 
and ỹ2 ∈ [0,1].	Payoff	functions	of	the	type-players	are	defined	as	following	
U1(x̃1,ỹ1,ỹ2,q)	=	qH1 (x̃1,ỹ1)	+	(1	–	q)H1 (x̃1,ỹ2)	=	–(x̃1)2 +  3–

2
 x̃1	(qỹ1	+	(1	–	q)	ỹ2),  

U2(x̃2,ỹ1,ỹ2,q)	=	qH1 (x̃2,ỹ1)	+	(1	–	q)H1 (x̃2,ỹ2)	=	–(x̃2)2 +  3–
2
 x̃2 (qỹ1	+	(1	–	q)ỹ2), 

U3(x̃1,x̃2,ỹ1,p)	=	pH2 (x̃1,ỹ1)	+	(1	–	p)H2 (x̃2,ỹ1)	=	–(ỹ1)2 +  3–
2
 ỹ1 (px̃1	+	(1	–	p)x̃2), 

U4(x̃1,ỹ2,ỹ2,p)	=	pH2 (x̃1,ỹ2)	+	(1	–	p)H2 (x̃2,ỹ2)	=	–(ỹ2)2 +  3–
2
 ỹ2 (px̃1	+	(1	–	p)x̃2).  

Thus we have obtained the following strategic game 

	 ΓB
*	=	⟨J =	{1,2,3,4},Rj, Uj⟩.

Now, we can determine the equilibrium profile. Strategy profiles  
(x̃1*, x̃2

*, ỹ1*, ỹ2
*) ∈ NE(ΓB

*) using the “best response approach

 

x̃ 1
* ∈ Br1 (ỹ1*, ỹ2

*, q),
x̃ 2

* ∈ Br2 (ỹ1*, ỹ2
*, q),

ỹ 1
* ∈ Br3 (x̃1*, x̃2

*, p),
ỹ2

* ∈ Br4 (x̃1*, x̃2
*, p),

{
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where
Br1 (ỹ1*,ỹ2

*,q)	=	Arg max
x̃1∈X̃1

 U1(x̃1, ỹ1*, ỹ2
*,q), Br2 (ỹ1*,ỹ2

*,q)	=	Arg max
x̃2∈X̃2

 U2(x̃2, ỹ1*, ỹ2
*,q),  

Br3 (x̃1*,x̃2
*,p)	=	Arg max

ỹ1∈Ỹ1
 U3(x̃1*, x̃2

*, ỹ1,p), Br4(x̃1*,x̃2
*,p)	=	Arg max

ỹ2∈Ỹ2
 U4(x̃1*, x̃1*, ỹ2

 ,p).

This is equivalent to the following system

 

x̃1*	=	3–4 
[qỹ1* +	(1	–	q)ỹ2

*] ∈ [0, 3–
4],

x̃2
*	=	3–

4 
[qỹ1* +	(1	–	q)ỹ2

*] ∈ [0,1],

ỹ1*	=	3–4 
[px̃1* +	(1	–	q)x̃2

*] ∈ [0, 3–
4],

ỹ2
*	=	3–

4 
[px̃1* +	(1	–	p)x̃2

*] ∈ [0,1].
{

In	 the	 particular	 case,	 if	 player	 1	 chooses	 the	 informational	 extended	
strategy θ1

1(y)	=	3–4
y and assume with probability q that player 2 chooses the 

informational extended strategy θ1
2(x)	 =	3–4

x, and	with	 probability	 1	 –	q the 
informational extended strategy θ2

2(x)	= 
x2, and, respectively, if player 2 chooses 

the informational extended strategy θ1
2(x)	=	3–4

x and assume with probability 
p	 that	 player	 1	 chooses	 the	 informational	 extended	 strategy	 θ1

1(y)	 =	 3–
4

y  
and	with	probability	1	–	p the informational extended strategy θ2

1(y)	=	y2, then 
the informational non extended Bayes-Nash equilibrium profiles (x*(q), y*(p)) 
is calculated from the following system

 
θ1
1(y)	=	3–

4 
[qθ1

2(x) +	(1	–	q)θ2
2(x)],

θ1
2(x)	=	3–

4 
[pθ1

1(y) +	(1	–	p)θ2
1(y)].{

So we have the system

 
 3–
4 

y	=	3–
4 [q 3–

4 
x +	(1	–	q)x2],

 3–
4 

x	=	3–
4 [p 3–

4 
y +	(1	–	q) 3–

4 
x].{
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Finally,	all	solutions	of	this	example	are	described	in	the	following	Table	1.

Table 1

Players type Informational extended strategies Solutions from system

(1,1)	=	[(1,	θ1
1), (2, θ2

1)] (θ1
1 (y), θ2

1 (y))	=	( 
3–
4 

y, 3–
4 

x)
y	=

 [q 3–
4 

x	+	(1	–	q)x2]
x	=

 [p 3–
4 

y	+	(1	–	q) 3–
4 

x]{
(2,1)	=	[(2,	θ2

1), (2, θ2
1)] (θ1

2 (y), θ2
1 (y))	=	(y2, 3–

4 
x)

y2	=
 
3–
4 [q 3–

4 
x	+	(1	–	q)x2]

x	=
 [p 3–

4 
y	+	(1	–	q) 3–

4 
x]{

(1,2)	=	[(1,	θ1
1), (2, θ2

2)] (θ1
1 (y), θ2

2 (y))	=	(3–4 
y,

 
x2)

y	=
 [q 3–

4 
x	+	(1	–	q)x2]

x	=
 [p 3–

4 
y	+	(1	–	q) 3–

4 
x]{

(2,2)	=	[(2,	θ2
1), (2, θ2

2)] (θ1
2 (y), θ2

2 (y))	=	(y2, x2)

y2	=
 
3–
4 [q 3–

4 
x	+	(1	–	q)x2]

x2	=
 
3–
4 [p 3–

4 
y	+	(1	–	q)y2]{

With this we finished solving the example.
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Chapter 13

 Energy Production and Storage 
Investments and Operation 
Planning Involving Variable 
Renewable Energy Sources 

A Two-stage Stochastic Optimization 
Model with Rolling Time Horizon  

and Random Stopping Time
Yuri Ermoliev, Nadejda Komendantova and Tatiana Ermolieva* 

1. Introduction

European Commission adopted the new Strategic Energy Technology (SET) 
Plan (See European Commission 2016). The SET Plan aims, among other 
goals, to contribute to achieving the research and innovation objectives of 
the EU (European Union) to become the global leader in renewable energy; 
facilitate consumer participation and accelerate the progress to a smart 
energy system; develop and reinforce energy efficient systems. Industries 
and companies recognize that increasing the efficiency of energy use through 
implementing alternative decentralized methods of production and operation 
with renewable energy, energy conservation and saving technologies can 
increase profits and energy security. 

International, Institute for Applied Systems Analysis, Austria. 
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Decentralizing energy system enables renewable energy to be generated 
and stored close to loads/demands. Decentralizing the system encompasses a 
wide variety of different renewable technologies such as wind and solar power, 
geothermal, and biomass, etc., into the system (See Oree et al. 2017, Vezzoli 
et al. 2018, Weinberg et al. 1991). Relevant stakeholders, i.e., transmission 
system operators and distribution system operators, manufacturers and 
research establishments, and infrastructure managers now have more freedom 
in decisions to control energy sources and demand, with incentives to invest 
in renewable energy technologies and the possibility of participating in 
the energy market. Yet, this can lead to new systemic risks and potentially 
irreversible problems if the decisions are inappropriate for the situation that 
occurs. 

The main challenge associated with renewable energy sources is their 
stochastic and dynamic characteristic. Variable renewable energy sources 
such as wind and solar power are non-dispatchable due to their fluctuating 
nature, as opposed to controllable and relatively constant gas, oil, coal, and 
nuclear energy sources. The shift to more renewable energy, especially the 
variable ones such as wind and solar, raises a concern about the so-called 
“Power System Flexibility (PSF)”, i.e., “the extent to which a power system 
can modify electricity production or consumption in response to variability, 
expected or otherwise” (Babatunde et al. 2020). Flexibility can therefore refer 
to the capability to change the power supply-demand balance of the whole 
system or its particular units (e.g., a power plant or a factory). Load balancing 
is among the main services a power system must perform flexibly. 

The PSF requirement, the decentralization and the variable characteristics 
of renewable energy generation and transmission require specific modeling 
approaches and performance indicators enabling to manage of stochastic 
supply-demand imbalances to avoid or minimize the likelihood of systemic 
failures associated with, e.g., periods of unstable energy generation or/and high 
demands. Essential is to consider both traditional and renewable (dispatchable 
and non-dispatchable) energy technologies along with traditional energy 
storage and alternative possibilities, e.g., hydrogen production, to cover 
variations of the residual load curve. 

The scarcity of natural resources such as land and water can become an 
important limiting factor for renewable energy and green hydrogen production 
systems deployments (See European Commission 2016, Gao et al. 2018, 
International Energy Agency 2018). Land is required both for windmills 
and solar panels installation. While water demand in energy sector can be 
reduces through the use of renewable resources, green hydrogen production 
requires vast amounts of water. Often, areas suitable for wind and solar power 
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production lack sufficient water and land resources (See Ermolieva et al. 
2016, Ermoliev et al. 2022, Ermoliev et al. 2021, International Energy Agency 
2018). The competition for water and land increases systemic vulnerability 
in the interdependent energy-land-water-environmental (ELWE) systems 
exacerbated by exogenous shocks from weather events and climate change. 
Inconsistent policies across the interacting ELWE sectors can further increase 
the likelihood of vital supply-demand disequilibrium in the ELWE networks 
leading to systemic failures similar to recent electricity deficits and price 
surges in US due to disintegrated electricity production and transmission based 
on renewables. Disruptions in ELWE networks can affect food, energy, water, 
and environmental security at different levels with possible global spillovers. 

Therefore, our proposed energy planning methodology is a part of 
a broader EFWE nexus approach presented in Ermolieva et al. 2016, 
Ermoliev et al. 2022, Ermoliev et al. 2021. The nexus approaches consider 
the dynamic interlinkages between economic and natural systems, namely, 
energy, agricultural, water sectors and natural resources. Coherent ELWE 
solutions can be revealed through the use of the nexus approach, rather than 
conventional approaches that often overlook the interdependencies and joint 
resource constraints. The integrated EFWE decision support system (DSS) 
enables to develop of robust systemic regulations for disintegrated distributed 
EFWE systems in the presence of risks and uncertainties of various kinds 
relying on robust distributed models’ linkage and optimization methods (See 
Ermoliev et al. 2021). 

In what follows, we present the energy planning model, which is an 
important building block of the EFWE DSS. The model incorporates the main 
stages of energy flows from resources to demands: energy extraction from 
energy resources, primary energy conversion into secondary energy forms, 
transport and distribution of energy to the point of end use that results in 
the delivery of final energy, and the conversion at the point of end use into 
useful energy forms that fulfill the specific demands. Demands for useful 
energy products come from the main sectors of the economy: industrial, 
residential, transport, agricultural, water, and energy. The model accounts 
for the interactions and dependencies across renewable and traditional 
energy systems. It enables support for the design and evaluation of hybrid 
green energy (wind and PV)—hydrogen production-supply-demand-storage 
energy system accounting for potential uncertainties and risks associated 
with plausible production-supply-demand-storage mismatches and natural 
resource scarcity.

The key methodological advancement of the proposed energy planning 
model is that it has a random planning horizon defined by a stopping time. The 
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stopping time represents new conditions such as a natural disaster, a market 
shock, the emergence of new technologies or policies, or safety constraint(s) 
violation, which can trigger a system’s failure. The stopping time moments 
induce endogenous risk aversion in strategic decisions in a form of dynamic 
VaR-type systemic risk measures dependent on the system’s structure (See 
Cano et al. 2016, Cano et al. 2014, Ermolieva et al. 2016, Ermoliev et al. 
2022, Ermoliev et al. 2021, Ermoliev and Wets 1988, Ermoliev et al. 2012, 
Ermoliev and Winterfeldt 2012). Moving time horizons of the model can 
also be determined by the possible outcomes of stakeholders’ discussions. 
The model builds on the advances in effective coping with uncertainty (See 
Ermolieva et al. 2016, Ermoliev et al. 2022, Ermoliev and Wets 1988, Gao  
et al. 2018, Gritsevskii and Ermoliev 1999, Gritsevskii and Nakicenovic 2000, 
Gritsevskii and Ermoliev 2012, O’Neill et al. 2006), which allows reducing 
energy consumption along with integrated management of risks, especially 
due to uncertainties in energy prices and loads, e.g., by employing financial 
instruments available for managing market risks and stochastic loads. 

In the presence of deregulations and uncertainties, there is a dilemma 
to choose an efficient technological portfolio in real-time while pursuing 
long-term goals. The solution to the problem involves the so-called two-stage 
dynamic stochastic optimization models. Some decisions (so-called first-stage 
strategic decisions) regarding the deployment of new technologies are taken 
before uncertainties are resolved and some others (so-called second-stage 
operational decisions) are taken once values for uncertain parameters become 
known, thereby providing a trade-off between long- and short-term decisions. 

Investment planning and operational optimization decisions concern the 
demand and supply sides of different energy sources (gas, heat, wind, solar, 
hydrogen, water, etc.). The demand side is affected by old and new technologies 
and activities including such end uses as electricity only, heating, cooling, 
hydrogen and fertilizers production, water desalination, smart agriculture, and 
energy storage and saving technologies, etc. New activities may alter peak 
loads whereas traditional accumulators (storage) may considerably smooth 
energy demand-supply processes. Green hydrogen production is being 
frequently considered as a “missing link” to provide additional (alternative) 
energy storage and to buffer volatility and intermittency of renewable energy 
generation. Hydrogen technologies enable the decisive step of the energy 
sector transformation (See European Commission 2016, International Energy 
Agency 2018). 

Most existing energy planning models are based on a deterministic 
optimization approach that is unable to provide decisions robust against 
uncertainties and risks. The deterministic approach performs analysis 
of ‘what-if’ cases and derives scenario-specific solutions. This can lead 
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to system failure if other than expected scenario happens. Contrary to the 
deterministic approach, this model allows stakeholders to analyze a portfolio 
of interdependent strategic long-term and operational short-term decisions, 
which ensures the robust performance of energy systems. 

Unlike the static nature of deterministic models, the proposed stochastic 
model delivers solutions that are responsive to revealed information about 
systemic uncertainties and risks such as those related to stochastic supply, 
demand, prices, weather variability, and technological change, in order to 
adjust local or regional energy management policies in a cost-effective and 
risk hedging manner. Integration of the operational and strategic models under 
the umbrella of stochastic optimization provides an effective way to make 
real-time decisions consistent with the long-term strategic goals of energy 
system planners to guarantee secure energy provision. The solution of the 
problem involves adjusting operational decisions to hit long-term targets if 
additional information about prices, subsidies, demand, weather, and new 
technologies can become available in the future. 

The paper is organized as follows. Section 2.1 formulates the basic 
deterministic energy planning model. A stochastic model is presented in 
Section 2.2. In particular, a basic two-stage stochastic dynamic energy 
sector planning model is described in Section 2.2.1. Sections 2.2.2–2.2.3. 
illustrate the emergence of safety constraints in the form of Value-at-Risk 
systemic indicators. Numerical methods are covered in sections 2.2.4–2.2.6 
including the concept of a two-stage STO (stochastic optimization) model 
with a rolling (moving) horizon. Section 3 illustrates the benefits of STO 
approaches compared with deterministic counterparts using the definition of 
the value of stochastic solutions (VSS) or/and the value of stochastic modeling 
(VSM). Section 4 concludes and presents potential and current case studies 
involving the presented stochastic energy planning model. In particular, the 
model enables modeling the renewable energy system elements together with 
hydrogen production, which can be effectively used as energy storage and 
transfer media.

2. Energy planning model

Below, we discuss a rather general energy system model accounting for the 
available resources for energy production, potential secondary and final 
energy requirements/demands, and possible energy storage and transfer 
infrastructure. The use of storage is intended to overcome various supply-
demand dis-equilibriums at different levels, in particular, in a (stand-alone 
off-grid) green energy production system. The model can incorporate the 
following five main stages of energy flows from resources to demand: energy 
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extraction from energy resources, primary energy conversion into secondary 
energy forms, transport, and distribution of energy to the point of end use that 
results in the delivery of final energy, and the conversion at the point of end 
use into useful energy forms that fulfills the specific demands. Primary energy 
sources are coal, crude oil, gas, methanol, the solar, wind, etc. Secondary energy 
sources are coal, fuel oil, gas, methanol, hydrogen, electricity, ammonia, etc. 
Final energy products are coal, fuel oil, gas, hydrogen, ammonia, methanol, 
electricity, solar and wind onsite. Demands for useful energy come from the 
main sectors of the economy: industrial, residential, transport, agricultural, 
and water.

Each energy technology is characterized by united costs, efficiency, 
lifetime, emissions, etc. Additional sectoral (and cross-sectoral joint) 
constraints are imposed to capture the requirements and the limitations on 
natural resource use and availability and investments. The model can include 
the existing technologies, as well as the new zero-carbon green technologies, 
technologies at the beginning of implementation or even in the research stage, 
e.g., various renewable and carbon capture technologies. For example, the 
model can study the feasibility of green hydrogen and ammonia production 
as they have the capability to substantially impact the transition towards a 
zero-carbon economy. Hydrogen and ammonia can serve as effective media 
to store and transport energy. Both could form the basis of a new, integrated 
worldwide renewable energy storage and distribution solution. Depending on 
case study goals, the model can include further details of modeling specific 
energy forms and production processes, for example, green hydrogen and 
ammonia production. 

2.1 A basic case: deterministic model

Within some time horizons, e.g., T years, the demand for electricity 
and other energy can be characterized by a demand profile 
reflecting the dynamics of demand changes over time (See Cano  
et al. 2016, Cano et al. 2014, Ermoliev et al. 2021, Gritsevskii and Ermoliev 
1999, Gritsevskii and Nakicenovic 2000, Gritsevskii and Ermoliev 2012). For 
illustration purposes, let us consider only electricity demand. The demand 
profile within each year (time period) t = 1 ,..., T can be adequately characterized 
by the demand within representative periods j = 1,..., J as in Figure 1, where 
dt

j, ct
ij denote the energy demand and costs of technology i in period of year 

t, Pt
ij, denotes the matrix of other parameters, and yt

ij are operational decisions 
for technology i in period j of year t. Distinguishing energy production by 
representative periods allows to explicitly account for seasonal, monthly, and 
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even daily variations of loads, energy prices, renewable energy resources, 
natural and economic resource uncertainty and variability. 

The goal of the strategic model is to identify such technologies with 
capacities x i

t, i = 1,...,n, installed at the beginning of the year (or of planning 
period) t that the demands dt

j, in each representative period j = 1,..., J and year 
t are satisfied. 

Assume the planning time horizon of T years. Let xt
i be the capacity of 

technology, i = 1,..., n installed in year t, St
i – total supply by available in t,  

t = 1,..., T. Then 

 xi
t ≥ 0, i = 1,..., n, t = 1,..., T,  (1)

 Si
t = Si

t–1 + xi
t – xi

t–Li (2)

where Li is the lifetime of technology i, S0
i is the initial capacity of existent 

before t = 1. 
In these equations for the simplicity of exposition, we assume that Si

t is 
the energy already converted to electricity end-use to satisfy demand. For each 
period j = 1: J within t = 1,..., T we introduce the production plan decisions 
yt

ij defining how much of technology i operates in period j to satisfy demand 
dj

t, j = 1: J:

 ∑n
i=1yt

ij = dj
t, j = 1,..., J, t = 1,..., T, (3)

 yt
ij ≤ γt

ij Si
t, i = 1,..., n, j = 1: J, t = 1,..., T,  (4)

 yt
ij ≥ 0, (5)

where γ t
ij, 1 ≤ γt

ij ≤ 1, may be interpreted as availability factor of technology i 
operating in period j in t (γt

ij = 0 for not yet existing technologies). 

Figure 1. Temporal resolutions of the strategic planning model. 
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The deterministic dynamic strategic planning problem is to minimize the 
total cost 

 ∑T
t=1 (∑

n
i=1Ci

t xi
t + ∑n

i=1 ∑
J
j=1cij

t Tj
t yt

ij),  (6) 

where Ci
t—is unit investment cost for technology i in year t, cij

t—unit 
production cost (including fuel costs) for i in period j in t, and Tt

j is a duration 
of period j in t that can also be denoted as ∑i,j qt

ij yt
ij. 

The energy efficiency and aging processes may be introduced in equation 
(2) as 

 Si
t =et

i Si
t–1 + xi

t – xi
t–Li, (7)

where ei
t denotes the “depreciation” (aging) rate in t. Aging can be also modeled 

as a dynamic process in a detailed technology-based manner as suggested in 
Section 2.1.5. Investment constraint may be introduced for each t = 1,..., T as 

 ∑n
i=1Ci

t xi
t ≤ I t.

2.1.1 Energy types

In general cases, there is a set E of available energy sources (gas, coal, solar, 
wind, water, biomass, hydrogen). Each technology i is characterized by its 
set of input-output (conversion) coefficients at

ilk, which convert the unit input 
energy type l into at

ilk units energy type k. In this case, i denotes different 
energy technology i = 1,..., m to satisfy demand dkj

t of energy type k = 1,..., K in 
period j = 1,..., n in t = 1,..., T. Define nonnegative decisions yt

ijk representing 
technology i operating in period j of energy type k. Therefore, 

 ∑i,l at
ilk yt

ijk ≥ dt
jk  (8)

 yt
ijk ≤ yt

ij Si
t.  (9)

Thus, ∑i,l at
ilk yt

ijk is the input of energy l required to satisfy demand in energy 
k by production plan yt

ijk for technology i. Operation costs of technology i are 
spread over technology life Li. For simplification of notation, total operation 
cost ∑i,j,l,k qt

ijlk yt
ijk of technologies in t in all periods j includes resource costs and 

conversion costs from i to k. 

2.1.2 Remark 1 (Purchasing, energy efficiency and availability factors) 

Purchased electricity can be modeled as a technology, with electricity on both 
input and output and purchase cost on the input. Total available electricity 
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would be a sum of electricity generated by technologies and purchased from the 
market. The availability factor γ t

ij defines if the whole (γ t
ij = 1) or only a certain 

portion of the capacity/output St
i can be used during time t and period j. This 

may apply, e.g., for wind-power plants and heating devices. If equation (9) is 
turned into equality, the portion defined by γ t

ij has to be used during each time 
period. This may describe efficiency improvements (energy conservation). 
For wall insulation, which has a certain time-dependent influence on the heat 
demand, γ t

ij is large in the winter but small in the summer. 

2.1.3 Pollution constraints 

Besides cost minimization and the investment constraints, there may exist 
environmental constraints, say, on feasible CO2 and other pollutants l = 1,..., L  
emissions:

 ∑ijl π s
ilk at

ilk yt
ijk ≤ π s̄

t, s = 1,..., S, t = 1,..., T  (10)

where π s
ilk is the unit pollution, π s̄

t is the critical level of pollution. 

2.1.4 Batteries

While we have argued that the definition of technology should be general 
enough to accommodate all possible technologies, there is (at least) one 
exception–batteries and other types of energy storage. The reason is that 
batteries do not convert one type of energy into another, but move the 
energy in time (with some losses). Explicitly, storage processes can be easily 
represented in the operational model. In the case of a strategic model, as we 
assume, the load profiles are approximated by a proper number of periods j. 
In this case, it is possible to represent the accumulators by additional decision 
variables vt

jk, ut
jk on energy storage and its use at t and j. Equations (8) then can 

be modified as 

 ∑iat
ilk yt

ijk = dt
jk + vt

jk – μt
jk ujk

t–1, vt
jk ≥ 0, ut

jk ≥0,  (11)

 rk
t ≥ ∑jv t

jk ≥ ∑j ut
jk,  (12)

where rk
t is the capacity of accumulators for energy k at time t, ut

jk—loss per 
unit stored energy. These equations in an aggregate manner redistribute loads 
among periods. With a shorter time scale, it may be reasonable to introduce 
shifts of demands in time by substituting ut

jk in (11) with ut–1. In the case of the 
operational model, we can further specify storage processes by introducing 
decision variable denoting overproduction of energy at time stored/saved for 
production at τ > t.
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2.1.5 Modeling aging processes

From (7) it follows that each technology i has a fixed lifetime Li. This does 
not allow for possible replacements during the technology’s lifetime (either 
because the maintenance costs become too high or because new technology 
becomes available). Since the purpose of the strategic model is to decide 
which equipment to buy and when it is rational to do, this aspect should be 
modeled properly. In model (2)–(6) the driving force for the installation of 
new technologies is aging process, modeled by (in general random) lifetime 
Li, availability factor γi

t, and equations (6) or (7). We shall keep in mind that the 
efficiency of each technology may differ, especially in the beginning (initial/
learning effect) and closer to the end (diminishing marginal efficiency/aging). 
Ageing of technologies can be taken into account as a dynamic process by 
replacing (2) with 

 Si
t = ∑t

τ=0ei,t–τ xi
τ,

where ei,a denotes efficiency of technology i at age a. Note that we can rewrite 

 Si
t = Si

t–1 + ei,0 xi
t + ∑

t

τ=0
(ei,t–τ – ei,t–τ–1)xi

τ = Si
t–1 + ei,0 xi

t + (ei,t – ei,t–1) xi
0 +

 (ei,t–1 – ei,t–2) xi
1 +...+ (ei,1 – ei,0)xi

t–1. 

One advantage we see in doing it this way is that we could let the 
maintenance cost depend on the age of the equipment: the cost of the installed 
technology i at time t would then be

 ∑t
τ=0ct

i,t–τ xi
τ,

where ct
i,a is the cost of technology i of age a at time t, i.e., technology bought 

at time t – a:

 ct
i,a = 

purchase and maintenance cost  if  a = 0,
maintenance cost                           if  a > 0.{

Note that we can again let the sum over τ let start from a negative value to 
include the maintenance cost of already installed equipment. 

2.1.6 Replacement of installed technologies

In the deterministic model each technology i has a fixed lifetime Li, after which 
it simply stops working. This assumption does not allow for replacement 
during the technology’s lifetime (either because the maintenance costs become 
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too high, or because a new technology becomes available). Since the main 
purpose of the strategic model is to decide which equipment to buy (if any—
we might decide to wait for better technologies), this aspect is important and 
should be included in the model. The most “natural” way to model this would 
be adding binary variables for each i and t, denoting whether it is installed or 
not. The problem with this simple approach is that it can increase the solution 
time significantly, especially since we do not have any other integer variables 
(yet). Instead, we propose the following linear approximation, using new non-
negative variables zi

t,τ denoting the amount of technology i bought at time and 
decommissioned at time τ > t. Obviously, this implies ∑τ > t zi

t,τ ≤ xi
t.

The approximation of this approach (compared to using binary variables) 
lies in the fact that we can decommission only parts of the technology—
which, we hope, would not influence the model much. With this notation, the 
amount of technology i installed at time t would be

 ∑t
τ=0 (xi

τ – ∑a=1
t–τ zi

τ,τ+a) = ∑t
τ=0 (xi

τ – ∑t
τ ̂ = τ + 1zi

τ,τ ̂ ),

and the available capacity, using efficiency ei,a defined in (11) would become

 Si
t = ∑ t

τ=0 ei,t–τ (xi
τ – ∑τ ̂ =τ+1zi

τ,τ ̂ ). 

We can also design price ĉ t
i,a to decommission technology i aged a at time t.  

The cost could be negative for a price bigger than the de-installation costs. 
The total costs of the technology at time t, including the maintenance costs ct

i,a 
proposed in the previous section, would then become 

 ∑
t

τ=0
 ct

i,t–τ (xi
τ – ∑

t

τ̂ =τ+1
zi

τ,τ̂ ) + ∑
t–1

τ=0
 ĉ t

i,t–τ zi
τ,t 

where the first element denotes the purchase and maintenance cost and the 
second element the decommissioning costs. For “accounting purposes”, it 
could be better to take the purchase costs out of ct

i,a, which would add one 
more element to the above sum.

2.2 Stochastic model

Since uncertainties may seriously affect long-term decisions, the model should 
be formulated as a dynamic stochastic optimization problem. Among the main 
stochastic parameters are supply, demand, fuel prices, operational costs, and 
lifetime of technologies. The demands may be affected by weather conditions. 
It may also substantially differ by the time of the day and the day of the week. 
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The model can run at a rather detailed dynamic resolution (hourly, daily). 
Instead of considering hourly values, we can aggregate variables (demands, 
supply, prices, costs) into J periods representatively describing the behavior 
of the system within a year. In some cases, hourly values can be aggregated 
by month, including peak values, working days peak and peak values, and 
Saturday and Sunday values. Since uncertainties may seriously affect long-
term decisions, the proposed model is formulated as a dynamic stochastic 
model. We show how the model operates in a two-stage manner with time 
intervals t = 1,..., T implementing a rolling time horizon concept for T. Time 
intervals define planning intervals, for example, annual, 5- or 10-year plans, 
etc. The two-stage dynamic decisions suppose that so-called long-term first-
stage decisions regarding investments into new energy technologies have to 
be taken before uncertainties are resolved and some others (so-called second-
stage decisions) will be taken once values for uncertain parameters become 
known, thereby providing a trade-off between long- and short-term decisions. 

In the presence of uncertainties, there is a dilemma to choose an efficient 
technological portfolio in real-time while pursuing long-term goals and 
continuously updating new information about uncertainties. Therefore, the 
solution of the problem involves the so-called two-stage dynamic stochastic 
optimization modeling with a rolling horizon. The model delivers solutions 
that are responsive to newly revealed information about systemic uncertainties 
and risks such as stochastic supply, demand, prices, weather variability, and 
technological change, in order to adjust local or regional energy structure and 
management policies in a cost-effective and risk hedging manner. Integration 
of the operational and strategic models under the umbrella of the two-stage 
stochastic optimization provides an effective way to make real-time decisions 
consistent with the long-term strategic goals of energy system planners to 
guarantee secure energy provision in all uncertainty scenarios. The solution to 
the problem involves adjusting operational decisions to hit long-term targets 
if additional information about prices, subsidies, demand, weather, and new 
technologies can become available in the future.

In the two-stage stochastic model, some decisions (so-called first-stage 
decisions) including investments into new energy technologies have to be 
taken before uncertainties are resolved and some others (so-called second-
stage decisions) will be taken once values for uncertain parameters become 
known, thereby providing a trade-off between long- and short-term decisions. 

The main goal of the dynamic stochastic two-stage strategic planning 
model is to find such a combination of technologies installed at the beginning 
of each year that the mixture of these technologies operating in each period 
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j would ensure safe energy “provision” plan minimizing investment costs, 
possibly deterministic equipment maintenance costs and stochastic operation 
costs which may include stochastic fuel prices. Schematically, the structure of 
the modeling framework is similar to Figure 1.

2.2.1 A basic two-stage stochastic dynamic optimization model

Let us consider the stochastic version only of the basic dynamic deterministic 
model (Section 2.1). Its generalizations can be formulated in a similar manner, 
but for the sake of simplicity, they are not presented in this paper. For the 
simplicity of notation, we consider the case when only the evolution of costs 
Ci

t, cij
t, and demands dj

t is uncertain. Also, we discuss the case of uncertain 
lifetimes and other parameters. 

Strategic first stage investment decisions xi
t, t = 1:T

— 
, are made at the 

beginning of planning horizon t = 1 using a perception of stakeholders about 
potential future scenarios  Ci

t (ω), cij
t (ω), dj

t (ω), of costs and energy demands 
dependent on stochastic parameter ω. Here we use ω to denote a sequence of 
ω = (ω1, ω2,..., ωt,..., ωT) of uncertain vectors ωt of in general independent 
parameters, which may affect outcomes of the strategic model, e.g., market 
prices, weather conditions, demands. In general, there are different components 
of ωt, say, components ωt

dem
 characterizing the variability of the demand and 

other components ωt
str, ωt

ope characterizing uncertainties associated with 
strategic and operational decisions. Therefore, functions Ci(ω), cij

t(ω), di
t(ω),  

depend in general only on some components of ωt, although we indicate 
dependence on for simplicity of notation. 

There are essential differences between the basic deterministic  
model (1)–(6) and its stochastic version. Because strategic decisions xi

t 
depend only on t, equations (1), (2) remain the same. The second stage 
adaptive operational decisions yij

t are made after observing real demands and 
costs. They depend on observable scenario ω, i.e., yij

t = yij
t (ω). Therefore, any 

choice of investments decisions xi
t, t = 1:T

— 
, does not yield feasible second 

stage solutions yij
t (ω) satisfying following equations (13)–(15) for all :

 ∑n
i=1 yij

t (ω) = dj
t(ω), j = 1:J

— 
, t = 1:T

— 
,
 

(13)

 yij
t (ω) ≤ γij

t Si
t, i = 1:n—, j = 1:J

— 
, t = 1:T

— 
, (14) 

 yij
t (ω) ≥ 0,  (15)
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where 

 Si
t = Si

t–1 + xi
t – xi

t–Li  (16)

 xi
t ≥ 0, i = 1:n—, t = 1:T

— 
. (17)

The feasibility of constraints (13)–(15) for any scenario ω can be 
guaranteed by assuming the existence of a back-stop technology with high 
operating costs that can also be viewed as purchasing without delay but at a 
high price. Without losing generality, we assume that for any period j and time 
t it is the same technology i = 1. Then the basic dynamic stochastic two-stage 
model is formulated as a minimization of the expected total cost’s function 

 F(x) = Eω ∑T
t=1∑n

i=1[Ci
t (ω)xi

t + ∑J
j=1cij

t (ω)Tj
t yij

t (ω)] = ∑T
t=1 ∑n

i=1[Ci
t xi

t + 

 Eω ∑J
j=1cij

t (ω)Tj
t yij

t (ω)] = ∑T
t=1∑

n
i=1[Ci

t xi
t + Eω  min

yji
t (ω)

∑J
j=1 cij

t (ω)Tj
t yij

t (ω)] (18)

where Ci
t is expected investments cost, Ci

t = EωCi
t(ω). Because the backup 

technology is available in unlimited amounts, C1
t = 0, t = 1,..., T; c1j

t = C for 
all j where C is a large enough positive number. If optimal yij

t > 0 for some 
scenarios ω, then this indicated the existence of risk that installed technologies 
(excluding i = 1) are not able to satisfy demands. The following example 
illustrates this risk. 

2.2.2 Example 1 (Back-stop technology and induced risks)

As this simple example shows, the back-stop technology i = 1 induces 
critically important safety constraints connected with a type of Value at 
Risk (VaR) measures of risks. Assume that T = 1, J = 1, and there are only 
two electricity-supplying technologies i = 1,2, where i = 1 is the back-stop 
technology enabling instantaneous “purchasing” electricity at a high price  
c1

1; i = 2 is a traditional technology that may require investments with expected 
unit costs c1

2 > 0, whereas c1
1 = 0. Demand d1 (ω) depends on ω. In this case the 

model (13)–(17) is formulated as minimization of the function 

 C2
1 x2

1 + Eω [c11
1 y11

1 (ω) + c21
1 y1

21 (ω)]

subject to 

 y1
11 (ω) + y21

1 (ω) = d1 (ω),
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 S1 = x2
1,

 y1
21 ≤ x2

1,

 x2
1 ≥ 0, y1

11 ≥ 0, y1
21 ≥ 0,

where S0 = 0, γ21
1  = 1. The capacity of the back-stop technology i = 1 is assumed 

to be unlimited, and c1
11 > C2

1 > c21
1 . Therefore, the back-stop technology i = 1 

ensures the satisfaction of the constraints (14) at high operations costs c1
11 y1

11. 
For any strategic decision x1

2 and scenario ω there may be two situations 

 x2
1 ≥ d1 (ω) or x2

1 < d1 (ω).

From the structure of costs follows, the corresponding optimal operations 
decisions

 y21
1 Opt (ω) = d1 (ω), y11

1Opt (ω) = 0, or 

 y21
1 Opt (ω) = x2

1, y11
1Opt (ω) = max{0, d1 (ω) – x2

1}.

Therefore, the minimization of function (18) subject to constraints  
(13)–(17) in this example is reduced to minimizing the function 

 F(x2
1) = C2

1 x2
1 + Eω [c1

11 max{0, d1 (ω) – x2
1} + c21

1  max{x2
1, d1 (ω)}]

 for x2
1 ≥ 0.

Consider only the case when has a continuous probability density, i.e.,  
function F(.) is continuously differentiable. Otherwise, we need to use a more 
complicated lengthy analysis. It is clear that an optimal strategic decision x2

1 

is positive, therefore, the optimality condition F'(x2
1) = 0 yields the following 

important equations:

 C2
1 – c1

11 Prob [d1 (ω) ≥ x2
1] + c21

1  Prob[d1 (ω) < x2
1] = 0 

that can be easily rewritten as C2
1 + c1

21 (C21
1 – c1

11) Prob [d1 (ω) ≥ x2
1] = 0 or 

 Prob [d1
2(ω) ≥ x2

1] = (C2
1 + c1

21)/(C11
1 – c1

21). (19)

Under large enough back-stop unit costs C11
1 , the value (C2

1 + c1
21)/ 

(C11
1 – c1

21) < 1, i.e., the optimal solution satisfies important safety constraints 
(19). Therefore, the use of back-stop technologies induces safety constraints 
(19) which are used in reliability theory, the insurance industry, and financial 
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applications. The safety level (right hand of equations (19)) can be regulated 
by the back-stop unit cost C11

1.

2.2.3 Remark 2 (VaR and CVaR risk measures)

In model (13)–(18) the variability of outcomes is characterized by stochastic 
second-stage operational decisions yij

t(ω) with unit costs cij
t(ω). Although 

strategic first-stage decisions xt
i have random costs ci

t(ω), total cost function 
(18) ignores their variability by using mean values Ci

t = ECi
t (ω). If total 

stochastic costs ∑n
i=1Ci

t(ω)xi
t cannot well enough approximate a normal 

distribution, then instead of the mean value of these costs, it is advantageous to 
use in equation (18) the median or other quantiles, especially when these costs 
may be affected by extreme events. This variability can be easily modeled 
by additional decision variables zt ≥ 0 which jointly with variables xt

i, yt
i,j(ω) 

minimize the function

 ∑T
t=1[zt + (1 – ρt)–1 E max{0,∑Ci

t (ω)xi
t – zt} + E∑J

j=1cij
t (ω)yij

t (ω)] (20)

subject to constraints (13)–(17). The minimization of function (20) includes 
now additional subproblems on minimization of functions with respect to  
zt ≥ 0, t =1,..., T,

 R(zt) = zt + (1 – ρt)–1 E max{0, ∑Ci
t (ω)xi

t – zt}  (21) 

subject to zt ≥ 0, where ρt is a risk factor controlling those stochastic costs 
∑n

i=1Ci
t (ω)xi

t don’t exceed a desirable robust safety level zt. 
If the safety vector ρt < 1, then the minimization of risk function (20) 

yields optimal values zt
* satisfying the following safety constraints which in 

financial applications are well known as the Value at Risk indicator

 Prob [∑Ci
t (ω)xi

t ≥ zt] = ρt, t = 1,...,T.  (22)

Sub-problems (21) correspond to Conditional Value at Risk (CVaR) 
minimization. This problem has the following interpretation. Foreseen 
investments costs ∑n

i=1Ci
t (ω)xi

t at time t are planned to be covered by  
ex-ante credit at price ρt < 1 and ex-post borrowing max{0,∑n

i=1Ci
t (ω)xi

t – zt}  
fore relatively greater price. This provides more flexibility (robustness) 
compared only with ex-ante planning of investments using mean values 
of perceived unit costs ECi

t (ω). It is also important that ex-ante credit is 
evaluated by (22) as the quantile with desirable safety levels ρt, t = 1,..., T, 
rather than mean values which are especially misleading in the case of non-
normal distributions. 
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2.2.4 Numerical methods

The model (13)–(18) is formulated in the space of variables  
(x1 , yij

t (ω), t = 1:T—, i = 1:n— , j = 1:J
—

, ω∈Ω), where the set of scenarios Ω may 
include a finite number of implicitly given scenarios, e.g., by scenario trees. 
This induces often extremely large size of models. A realistic practical model 
(13)–(18) excludes analytically tractable solutions, although the model has an 
important block-structure that is usually utilized for most effective numerical 
solutions. In particular, the second-stage submodels often have simple 
solutions as in Example 1. In this case, the two-stage model is reduced to 
optimization in the space of only strategic solutions  xt , t = 1,..., T, similar to 
optimization of function F(.) in this Example. 

In a rather general case, Ω contains or can be approximated by scenarios  
ωs , s = 1:S—, characterized by probabilities ps, s = 1:S—. Then the model (13)–(18)  
is formulated as minimization of function

 ∑S
s=1ps[∑T

t=1∑
n
i=1Ci

t (ωs)xi
t + ∑J

j=1cij
t (ωs)Tj

t yij
t (ωs)] (23)

subject 

 ∑n
i=1yij

t (ωs) = dj
t (ωs), j = 1:J

—
, t = 1:T

—
, s = 1:S

— 
,

 yij
t (ωs) ≤ γij

t Si
t, i = 1:n—, j = 1:J

—
, t = 1:T

—
, s = 1:S

— 
,

 Si
t = Si

t–1 + xi
t – xi

t–Li, i = 1:n—, j = 1:J
—

, t = 1:T
—

, s = 1:S
— 

,

 xi
t ≥ 0, i = 1:n—, t = 1:T

—
.

2.2.5 Remark 3 (General model). 

Example 1 shows that although objective function (18) uses mean values of total 
costs, ∑n

i=1 Ci
t xi

t, from equations (19) follows that the optimal solution, in fact, 
is a quantile of the energy demand. Stochastic versions of more general Section 
2 models are formulated similarly to the basic deterministic model (1)–(5).  
Example 1 also illustrates the main ideas involved in the formulation of 
general stochastic models. In general cases, the main issue is the “curse 
of dimensionality”, i.e., the use of proper solution methods. For example, 
stochastic quasigradient (SGQ) methods (See Ermoliev 2009, Ermoliev 
1976) allow to avoid a priori generations of a large number of scenarios that 
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dramatically increase the size of models. Instead, SQG methods use only a 
single sequentially generated at each iteration jointly with adjustments of a 
current approximate solution.

2.2.6 Remark 4 (Two-stage models with rolling horizons)

Initial model is focused on time horizon [1,T]. Robust strategic solution can 
be written as x [1,T] = (xi

1,[1,T],..., xi
T,[1,T], i = 1:n— ). Solutions (xi

1,[1,T]), i = 1:n— , 
are implemented at t = 1. This creates a basis for readjustments of scenarios 
ω[1,T] perceived at the beginning of time horizon [1,T]. New set of scenarios 
ω[2,T] are evaluated, new robust strategic solutions (xi

2,[1,T]), i = 1:n— and so on. 
Thus, initially a long-term strategic trajectory x [1,T] is evaluated, the first time 
interval solutions (xi

1,[1,T]), i = 1:n— , are implemented, new data is received, new 
scenarios ω[2,T+1] are adjusted, and so on. 

3. Value of stochastic solution

In this section, we discuss the value of stochastic optimization models that 
is often (See, for instance, Birge 1982, Ermoliev and Wets 1988) termed as 
the value of stochastic solutions (VSS) although this notion has a misleading 
character because the two-stage models incorporate both ex-ante deterministic 
first stage decisions chosen before observations of uncertain parameters 
(events) and ex-post stochastic adaptive decisions chosen when additional 
information becomes available. We have to emphasize that the VSS or maybe 
better the VSM (Value of Stochastic Modeling) is different from the expected 
value of perfect information which is defined as the improvement of the 
objective function by learning perfect information about parameters of the 
true deterministic model. In other words, the advantage of using deterministic 
models with exact values of parameters which are the mean values of 
observable random variables. Contrary, the VSS considers deterministic 
models as an approximation of real stochastic optimization models with 
inherently uncertain parameters which cannot be evaluated by using real 
observations. The disadvantages of using deterministic approximations of 
stochastic models become clear from Example 1. In this example only demand 
d1 (ω) is uncertain because the stock of back-stop technology is unbounded. 
In the deterministic version of the model d1 (ω) is replaced by the mean value  
d1  = Ed1 (ω). Accordingly, the stochastic strategic planning model is reduced 
to minimization of the cost function 

 C2
1 x2

1 + c1
11 y1

11 + c1
21 y1

21
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subject to 

 y1
11 + y1

21 = d1 ,

 S1 = x2
1 ,

 y1
21 ≤ x2

1 ,

 x2
1 ≥ 0, y1

11 ≥ 0, y1
21 ≥ 0,

That clearly has a trivial degenerated solution x2
1  = d1  , y1

11 = 0, y1
21 = d1 . 

This solution assumes that the future demand is exactly known, therefore 
the operational decision coincides with the strategic decision. Definitely, 
this is an unrealistic solution because the average energy demand d2

1 never 
occurs in reality. The strategic robust solution of the stochastic energy supply 
model may be significantly different from the mean value as it is indicated by 
equation (19). 
The VSS is calculated by the non-negative difference

 F(x*det) – F(x*sto) 

where F(x) is defined by (18), x*det is the optimal solution of deterministic 
model (1)–(6) used in the objective function of the stochastic model (18), (22), 
and x*sto is the optimal solution of this stochastic model. Definitely, the value  
F (x*sto) is smaller than F (x*det) because the stochastic model has a richer set of 
feasible solutions, i.e., the deterministic solution x*det is a degenerated version 
of x*sto.

The solution x*det is often combined with the sensitivity analysis of the 
deterministic model with respect to variations of parameters (say, demand) 
which have been substituted by mean values. This analysis may be rather 
misleading because the deterministic model is focused on one only scenario 
(mean value) that may never occur in reality. As (19) demonstrates, the robust 
solution of the stochastic model depends on the whole probability distribution, 
therefore variations in the mean values may be misleading especially for 
multimodal distributions. For example, in the case of two scenarios ±10 with 
a probability 0.5, the mean value is even outside the set of feasible scenarios. 
In addition to the sensitivity analysis, the so-called scenario analysis is 
applied, i.e., a set of possible future “trajectories” of uncertain parameters is 
considered and for each of them, optimal solutions of the deterministic model 
are calculated. This generates a set of degenerated deterministic solutions 
without identifying a solution that is good enough (robust) with respect to 
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all potential scenarios. Again, Example 1 nicely illustrates this: any scenario  
ωs , s = 1,..., N, of deterministic model has trivial solution x2

1 = d1 (ωs),  
y1

11 = 0, y1
21 = d1 (ωs), s = 1,..., N. The analysis ignores the essential specifics 

of strategic solutions which have to be made before scenarios ωs , s = 1,..., N,  
become known. The strategic stochastic optimization (programming) 
model aims to find solutions robust with respect to all potential scenarios.  
Equations (19) show that solutions of such models depend on the whole 
probability distribution, i.e., on all scenarios. 

4. Conclusions

Energy systems investment planning for sustainable energy transition is 
a critical component of the EU’s policy. Rapid shift towards intermittent 
renewable energy resources such as wind and solar raises concerns about 
the Power System Flexibility (PSF) defined by the extent to which a power 
system can balance stochastic energy supply and demand relations. Also, 
areas suitable for wind and solar power production often lack sufficient water 
and land resources. The competition for water and land increases systemic 
vulnerability in the interdependent energy-land-water-environmental (ELWE) 
systems exacerbated by exogenous shocks from weather events and climate 
change. Therefore, our stochastic energy investments and operation planning 
model is a part of a broader modeling framework for the analysis of the energy-
land-water-environmental (ELWE) security nexus. The model uses two-stage 
stochastic programming techniques. The model can include both traditional 
and renewable, dispatchable and non-dispatchable, energy technologies, 
traditional energy storage and alternative possibilities, such as, e.g., hydrogen 
production, to cover variations of the residual load curve.

The PSF requirement, the decentralization and the variable characteristics 
of renewable energy generation and transmission required specific two-
stage dynamic stochastic optimization modeling techniques and robust 
performance indicators enabling to the management of stochastic supply-
demand imbalances to minimize systemic failures due to, e.g., unstable wind 
or solar energy availability. The model incorporates rolling random planning 
time horizons bounded by stopping time moments defined either by the 
model’s security indicators or by stochastic events of new policy introduction 
or market conditions requiring revisions of decisions. This allows us to 
analyze and model systemic impacts of potential extreme events and structural 
changes emerging from policy interventions and experts’ and stakeholders’ 
dialogues, which may occur at any moment of the decision-making process. 
In fact, model-based decision-making provides an environment that can 
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guide the necessary experts and stakeholders’ dialogues and negotiations 
with the model and among the stakeholders themselves, likely with different 
conflicting motivations and targets. Therefore, these dialogues/negotiations 
can provide endogenous and exogenous feedback into the decision-making 
process. Since the decision-making can be considered as an iterative process, 
the model experts/stakeholder outcomes may provide endogenous feedback 
and revisions of the model and the energy system structure through stopping 
time moments and moving time horizons. 

The presented energy model allows the representation of all relevant 
energy subsystem components (e.g., traditional and renewable) and their 
interactions, dealing with both strategic and operational planning, and 
including technological and financial-oriented decisions. Energy storage are 
represented and modeled in a rather general way. For example, the excess 
electricity can be used for hydrogen production and fertilizer production or 
“exported”. The stopping time moments induce endogenous risk aversion in 
strategic decisions in a form of dynamic VaR-type systemic risk measures 
dependent on the system’s structure. Unlike the static nature of deterministic 
models, the proposed stochastic model and the DSS deliver solutions that are 
responsive to revealed information about systemic uncertainties and risks 
such as those related to stochastic supply, demand, prices, weather variability, 
technological change, in order to adjust local or regional energy structure and 
management policies in a cost-effective and risk hedging manner. Integration 
of the operational and strategic models under the umbrella of the two-stage 
stochastic optimization provides an effective way to make real-time decisions 
consistent with the long-term strategic goals of energy system planners to 
guarantee secure energy provision in all uncertain scenarios. The solution of 
the problem involves adjusting operational decisions to hit long-term targets 
if additional information about prices, subsidies, demand, weather, and new 
technologies can become available in the future. 

The energy model has been used within the EnRiMa (Energy Efficiency 
and Risk Management in Public Buildings) project (Cano et al. 2016, Cano 
et al. 2014, EnRiMa 2015), whose overall objective is to develop a DSS for 
operators of energy-efficient buildings and spaces of public use. The model 
permitted for a decision-making process on optimal planning and operation of 
building infrastructure in a dialogue with stakeholders. The model was revised 
in Gao et al., 2018 to address the energy-water-agricultural security nexus 
in the case study of coal-based energy production expansion in water-scarce 
China regions characterized by competition among energy, agricultural, and 
industrial sectors for natural resources. 
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The energy model enables to investigate the feasibility of green energy 
sector developments in the presence of competition for natural resources 
between energy and agricultural sectors, in view of potential water and 
agricultural land scarcity, climate change, market risks and other inherent 
risks (see Ermoliev et al. 2021). 
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Chapter 14

 How the Market Power of  
Electricity Suppliers and a 

Carbon Price Together Affect the 
Restructured Electricity Markets

Zhonghua Sua,* and Alexei A Gaivoronskia

1. Introduction

The restructuring of electricity markets worldwide leads to more competition 
and less regulation, but the market power of electricity suppliers still exists 
here and there (Ciarreta et al. 2016). Suppliers can affect the market price of 
electricity by withholding the electricity generation capacity (or ramp rate 
(Moiseeva et al. 2015)) to get the maximum profits. In some special cases, 
they can even take advantage of the network structure and/or transmission 
constraints to achieve local monopoly (Moreno et al. 2012). Accordingly, there 
are some negative effects on the electricity markets, e.g., lower consumers’ 
welfare. Furthermore, the development of electricity markets is intertwined 
with the development of carbon markets (Maryniak et al. 2019). All the time, 
the electricity industry is an important area for greenhouse gas reduction and 
carbon dioxide is the key greenhouse gas traded in any emissions trading 
scheme (Teng et al. 2017). A proper carbon price can curb greenhouse gas 
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emissions and promote the development of electricity markets sustainable 
(Brauneis et al. 2013). However, low carbon prices exist widely (Lundgren 
et al. 2015), for which too many (free) allocation of carbon permits should 
bear some of the blame (Teixidó et al. 2019). Then, a proper carbon tax or 
carbon price floor has been imposed in more and more countries (Ramaker 
2018). Finland is a pioneer in imposing a carbon tax in 1990 (Vehmas, 2005). 
Thereafter, Sweden, Norway, Slovenia, Italy, Germany and some other 
countries also imposed carbon taxes (Ghazouani et al. 2020). In 2013, the 
UK implemented a carbon price floor. Accordingly, the coal power output 
dropped from 13.1 TWh in 2013 to 0.97 TWh in 2019.

The trends of restructuring electricity markets and regulating carbon 
prices can have great effects on the electricity markets, especially when the 
two trends are interacting with each other (Teng et al. 2017). In this paper, 
we quantitatively analyze how the market power of electricity suppliers and a 
carbon price together affect the restructured electricity markets on generation 
capacity expansion, consumption, carbon emissions, and electricity price.

Many researchers have investigated the effects of market power on 
the electricity markets, e.g., higher prices of electricity (Amountzias et al. 
2017), lower electricity consumption and lower social welfare (Nazemi and 
Mashayekhi 2015). Moreover, market power could lead to inefficient dispatch 
of electricity, e.g., more usage of carbon-intensive power generators and less 
usage of low-carbon power generators, especially during peak demand periods, 
as the study by Browne et al. (2015) indicates. Further, when the market 
power of suppliers goes deep into the emission permit market, the permit 
price tends to be lowered, thereby increasing carbon emissions (Viskovic  
et al. 2021). Then, to reduce market power many efforts have been made,  
e.g., transmission network switching (Tohidi et al. 2017), and demand shifting 
(Ye et al. 2018). More importantly, the overall reform of electricity markets 
can make a bigger impact. For example, Yin et al. (2019) investigate different 
scopes of Chinese electricity market reform and the results indicate that more 
competition (i.e., weaker market power) on the generation and distribution 
sides can enhance efficiency in the electricity sector.

The effects of a carbon price/tax on the electricity markets have been 
studied extensively. Generally, the higher a carbon price/tax is, the lower the 
electricity production/consumption (Ghaith and Epplin 2017, Zhao et al. 2018) 
and carbon emissions (Rocha et al. 2015, Zhao et al. 2018) are; the higher the 
carbon price/tax is, the higher the electricity price/cost (Woo et al. 2018, Wild 
et al. 2015) is. Besides, the comparative cost-advantage of renewable power 
is largely influenced by the carbon price, as Li et al. (2015) show. Moreover, 
Petitet et al. (2016) indicate that a high and stable carbon price can boost the 
development of wind power. Further, Wilson and Staffell (2018) find that a 
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strong carbon price floor boosts the switching of coal power to gas power in 
Great Britain. 

Very few researchers have investigated the effects of market power 
along with a carbon/tax price on the electricity markets. Luckily, the two 
factors attract the attention of Leslie (2018), due to a real-world example of 
the Western Australian wholesale electricity market. When a carbon tax was 
imposed on the electricity market in a certain market structure/power setting, 
the corresponding carbon emissions increased. Two years later, when the 
market structure/power changed and this carbon tax was repealed, the carbon 
emissions decreased. Leslie (2018) analyzes how the carbon tax and market 
power/structure affect electricity generation, carbon emissions, and the day-
ahead price of electricity in a short-term period. However, neither capacity 
expansion nor renewable power is discussed and very few cases of a carbon 
tax and market power are analyzed. 

Additionally, the research question and method in Oderinwale and van 
der Weijde (2017) are closer to this paper. They use a Nash-Cournot model to 
depict the oligopolistic generators and the price-taking transmission system 
operator. Totally 12 cases of a carbon tax and/or feed-in tariff, the number 
of competing generators, and the transmission condition are investigated 
to compare the market responses, e.g., capacity expansion, and electricity 
prices. The results imply that a different combination of a carbon policy 
and market competition degree causes a different set of market responses. 
However, the results are based on the assumption of Nash-Cournot market 
power. In practice, the degree of market power to influence the electricity  
price/quantity can be from Nash-Cournot market power to no market power 
(i.e., perfectly competitive), where some intermediate cases of market power 
lie. 

Then, by referring to Huppmann and Egging (2014), in this paper, we 
construct an equilibrium model with market power parameters (Egging et al. 
2010, Huppmann and Egging 2014, Su et al. 2015) that can flexibly depict  
the degree of market power. We implement the model on a stylized market 
setting based on Chinese electricity market data in 2016 and investigate 
thousands of cases of market power and carbon price. To the best of our 
knowledge, this is the first time quantitatively analysis on how the market 
power of electricity suppliers and a carbon price together affect the restructured 
electricity markets.

The remainder of the paper is organized as follows. Section 2 discusses 
market power. Section 32 presents the mathematical formulation of the 
equilibrium model. Section 43 shows the basic assumptions, the cases of 
market power and a carbon price, and the market setup. Section 54 analyzes 
the results. Section 65 concludes and proposes some future work.
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2. A discussion of market power

In this paper, we define the market power of electricity suppliers as the ability 
to affect the market price of electricity by withholding generation capacity. 

Market power can be broadly extended to the degree of market competition, 
the distinction of which two concepts is not always clear-cut. The degree of 
market competition among electricity supplies is affected by several factors, 
e.g., the market rules, the number of competing suppliers, the capacities, and 
the transmission conditions. To measure the degree of market competition, 
there are several indicators. For instance, the Herfindahl-Hirschman Index 
(HHI) is defined as the sum of the square of each market share (Hirschman 
1964). The 4-firm concentration ratio is the total market share of the four 
biggest suppliers. Besides, the Lerner Index compares the actual market price 
with the associated marginal cost (Spierdijk and Zaouras 2016). However, 
they all are ex-post indicators based on historical data, which can not predict 
current and future market competition, especially during a market transition 
time. 

Then, when making ex-ante studies of market power, researchers resort 
to equilibrium models. In an equilibrium model, the strategic behavior 
of suppliers is specified and that is pre-existing market power. The most 
widely used equilibrium model in electricity markets is the Nash-Cournot 
equilibrium model, where each independent oligopolistic supplier makes 
the optimal decision on quantity with a belief that the rival will not alter the 
quantity. Every belief affects every supplier to make the decision, resulting in 
the equilibrium market price, which in reverse indicates the strategic behavior 
of suppliers. 

The market power parameter in this paper is essentially conjectural 
variation (CV), which is a generalization of the Nash-Cournot conjecture. 
Moreover, CV is a belief a supplier has on how the rival will react to its decision. 
In this paper, we define the market power parameter as the first-order partial 
derivative of the total quantity with respect to its own supplied quantity, i.e., 
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. In Appendix B, we use a stylized model to mathematically 

justify how the market power parameter affects the electricity market price and 
quantity. Generally, as the market power parameter increases, the market price 
of electricity increases; the total quantity of electricity decreases. Furthermore, 
the market power parameter to some extent can reflect the competition degree 
of suppliers. That is why in this paper we use market power parameters to 
depict market power, though it is an approximation. Besides, a similar CV 
approach can be found in Ruiz et al. (2012), Yang et al. (2018), Mousavian  
et al. (2020) and Oliveira and Ruiz (2021). 
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3. The equilibrium model

By referring to Huppmann and Egging (2014), we construct an equilibrium 
model to depict the interactions of suppliers, consumers, and a carbon permit 
auctioneer (CPA) in the electricity markets, as illustrated in Figure 1. The 
suppliers buy carbon permits from CPA and sell electricity to the consumers. 
Besides, all the agents solve their own optimization problems to maximize 
profits, which results in an equilibrium problem.

equilibrium problem. 
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Figure 1. An illustration of the equilibrium model. 

Moreover, all the agents are assumed to play a static game based on 
complete information, simultaneously making decisions on multi-period 
investments and/or operations. The suppliers are assumed to be able to exert 
market power to some extent to affect the electricity price. Meanwhile, the 
suppliers are assumed to be price takers with respect to the price of carbon 
permits.

Specifically, we differentiate two timescales in the model. The timescale 
of operation is a short-term period, e.g., hours/days/months/seasons, denoted 
by t ∈ T. The timescale of investment is a long-term period, e.g., years, denoted 
by o ∈ O. Here, O is an ordered set. Besides, we use shorthand notation  
o' < o to denote years o' previous to years o. Likewise, o' > o denotes years 
after years o. Due to the mathematical characterization of the model, there is 
no capacity expansion in the last investment period.

3.1 The agents’ optimization problems

The supplier
There are several electricity suppliers in the markets. Each supplier uses one 
or several generation technologies k ∈ K (e.g., wind power, coal power) to 
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produce electricity and sell it to the consumers. To transmit electricity to the 
consumers, the supplier is charged of an electricity transmission fee. Further, 
it is assumed that all electricity generated (after production and transmission 
losses) is consumed by the consumers.

The supplier’s profit comes from electricity sales, subtracting costs of 
transmission, production, investment in capacity expansion, and buying carbon 
permits. Moreover, the time value of profits in future periods is considered by 
the suppliers. Then, the supplier’s problem is specified as below. (see Table 1 
for the notation explanation.) 
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In the objective function, we assume linear cost functions of production, 
transmission, investment and buying carbon permits. Moreover, we bring in 
the market power parameter hi

o (Egging et al. 2010), which describes to what 
degree the supplier can influence the market price of electricity. Specifically,  
hi

o takes value from the range [0,1]. When hi
o = 1, based on the knowledge of 

the inverse demand curve ∏ot(∙), the supplier exerts Nash-Cournot market 
power to influence the market price of electricity. When hi

o = 0, the supplier 
has no market power (i.e., a perfectly competitive market) to influence the 
price. Other values of hi

o can describe intermediate cases of market power.
Equation (2) regulates that the quantity of electricity generation is no 

greater than the available generation capacity. It is assumed that the generation 
capacity to expand in the investment period o' is put into operation since 
the next neighboring investment period o. Besides, what is in parenthesis 
represents the corresponding dual variable of the constraint. Equation (3) is a 
mass balance constraint regulating that the quantity of electricity sold must be 
equal to the quantity of electricity generation after losses of production and 
transmission.

The carbon permit auctioneer
The carbon permit auctioneer (CPA) is an authority that allocates limited 
carbon permits to electricity suppliers. Here, a uniform-price auction with 
a price floor of carbon permits is adopted. Then, the CPA’s problem can be 
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Table 1. Notation explanation.

Notation Explanation

Sets:

i ∈ I electricity suppliers

k ∈ K electricity generation technologies

o, o' ∈ o long-term investment periods

t ∈ T short-term operation periods

Parameters:

aot intercept of the inverse demand curve

bot slope of the inverse demand curve

cik
ot unit operation cost of generating electricity

do discount factor

eik
ot unit electricity transmission cost

gik
ot production loss rate

hi
o market power parameter

l ik
ot availability factor of generation capacity

mik
o unit investment cost of expanding generation capacity

Qik existing generation capacity

r ik
ot carbon emissions rate of generating electricity

sik
ot transmission loss rate

Vot carbon permit cap

wot price floor of carbon permits

Variables:

f ik
ot quantity of electricity generation

pot market-clearing price of electricity

qik
ot quantity of electricity sold to consumers

uot market-clearing price of carbon permits

vot quantity of carbon permits

zik
o quantity of generation capacity expansion

αik
ot dual variable for the constraint of available generation capacity

βot dual variable for the constraint of carbon permit cap

ϕik
ot dual variable for the constraint of mass balance

Function:

∏ot(∙) inverse demand curve of the consumers
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modeled through the following linear program. (see Table 1 for the notation 
explanation.) 

  ( )max ot ot ot
vot

u w v−  (4)

  s.t.    ( )ot ot otv V β≤  (5)

Specifically, Equation (5) regulates that the carbon permit quantity vot can 
not exceed the cap Vot. The mathematical form of Equation (4) ensures that the 
market-clearing price of carbon permits uot is no lower than the price floor wot. 
Both the carbon permit cap and the price floor are exogenous parameters set 
by the policymaker. Besides, we assume that the quantity of carbon permits 
allocated to the suppliers is equivalent to the number of carbon emissions 
during electricity generation. Then, market clearing of carbon permits is 
specified in Equation (6). 
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The consumer
A linear inverse demand curve is assumed to depict the relationship between 
the electricity demand of rational consumers and the electricity price. (see 
Table 1 for the notation explanation.) 
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3.2 Mixed complementarity problem

After specifying each agent’s optimization problem, we derive the 
corresponding Karush-Kuhn-Tucker (KKT) conditions for the optimal 
solution of each problem (Cottle et al. 1992). Concatenating all the KKT 
conditions and the market-clearing conditions (in Appendix A), we pose a 
mixed complementarity problem (MCP), to solve which we get a Nash 
equilibrium solution of the equilibrium problem. Since every agent’s 
maximization problem is with a concave objective function and convex 
inequality constraints and/or linear equality constraints, we guarantee the 
existence of a global optimum solution, but not necessarily an unique solution 
(Oggioni et al. 2012, Gabriel et al. 2012). All the cases in the following are 
solved by using the PATH solver in GAMS (Brook et al. 1988, Ferris and 
Munson 2000).
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4. Case study

The equilibrium model is implemented in a stylized market setting based on 
Chinese electricity market data in 2016. Wherein, we investigate 6611 cases 
of market power and a carbon price to find how sensitive the market responses 
(during years 2016–2046) are to market power and a carbon price. The 
interesting market responses of interest are the aggregate generation capacity 
expansion during 2016 –2036, the aggregate electricity consumption, the 
aggregate carbon emissions, and the average electricity price during 2016–
2046. Figure 2 shows the inputs and outputs of one-time estimation using the 
equilibrium model.

4 Case study 
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4.1 Basic assumptions

From the year 2016 to 2046, every investment period is ten years, and 
every operation period is one hour. Besides, we assume the parameters do 
not change the values within each investment period. Then, by watching the 
electricity market dynamics during a typical hour, we roughly estimate the 
market responses over ten years. We assume a discount rate of 5% annually 
for all the agents. Moreover, we set a very large value of the carbon permit cap 
(indicating an infinite cap) to ignore the influence of the carbon permit cap 
on carbon price formation. Then, the market-clearing price of carbon permits 
equals the carbon price floor.

4.2 The cases of market power and a carbon price

Here, we investigate 11 cases of market power, where hi
o takes value from a 

discrete set of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. In each case, 
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it is assumed that all the suppliers have the same market power in all the 
periods. We use notations MP-0, MP-0.1, MP-0.2, MP-0.3, MP-0.4, MP-0.5, 
MP-0.6, MP-0.7, MP-0.8, MP-0.9, and MP-1.0 to represent the cases. For 
example, MP-0.4 denotes the case hi

o = 0.4. In each case of market power, 
we investigate 601 cases of a carbon price, which is imposed in 2016 and 
increases at a rate of 5% per year. The 601 cases of a carbon price are of 
values from 0 to 600 Yuan/tonne with a step size of 1. Altogether, we estimate  
6611 cases of market power and a carbon price.

4.3 The market setup

Our study is based on Chinese electricity market data on generation quantities 
and capacities of various generation technologies in 2016. We assume that 
in the markets there are six electricity suppliers each with a unique type of 
generation technology, i.e., hydropower, coal power, gas power, nuclear 
power, wind power, and solar power. We illustrate the economic meaning of 
the market setting in Appendix C by mathematical proof. Data relevant to the 
suppliers’ investment and operation in 2016 are summarized in Table 2. 

Table 2. Data relevant to the suppliers’ investment and operation in 2016.

 Operation cost 
(thousand Yuan/GWh) 

Investment cost 
 (Yuan/kW) 

Emissions rate 
 (tonnes/GWh) 

Generation  
capacity (GW) 

hydro power 65.0055 8783.70 0 332.11 

coal power 244.401 4999.95 890 983.62 

gas power 459.528 3856.05 390 70.26 

nuclear power 102.3975 13776.00 0 33.64 

wind power 60.024 8583.60 0 148.64 

solar power 104.4885 7472.70 0 77.42 

1 See http://www.nea.gov.cn/2017-01/16/c_135986964.htm.

Generation capacity
The existing generation capacity data in 2016 are mainly from National 
Energy Administration.1 Since we omit oil power, we slightly adjust data of 
coal power and gas power by further referring to World Energy Outlook 2017 
2017 (IEA 2017) and China Electricity Council’s data.

Emissions rate
The data of emissions rate of coal power and gas power in 2016 derive 
from China’s Thirteenth Five-Year Plan (2016–2020) on Electric Power 
Development. Further, we assume the rates reduce at a rate of 1% annually.

http://www.nea.gov.cn


Restructured Electricity Markets Affected by Uncertainties 327

Operation cost
The operation cost data in 2016 come from NEA et al. (2015). We assume that 
the operation cost data remain the same during 2016–2046.

Investment cost
The investment cost data of hydro power, wind power, and solar power 
are collected from REN21 (2017) by using the exchange rate of 6.9 for  
USD-Yuan on 31 December 2016; The data for coal power, gas power, and 
nuclear power is collected from NEA et al. (2015) by using the exchange 
rate of 6.15 as the paper suggested. We assume that the investment costs of 
hydropower, coal power, gas power, and nuclear power remain the same during 
2016–2036. However, the investment cost of wind/solar power is assumed to 
drop greatly according to BloombergNEF’s prediction that wind/solar power 
cost falls by 58%/71% from 2018 to 2050.2 Based on their prediction, we 
derive the compound annual growth rates to obtain the wind/solar investment 
costs in 2026 and 2036.

Availability factor
Recall that in the case study we estimate the power market dynamics for 
ten years by watching the dynamics during a typical hour. Then, we should 
cautiously choose data for the typical hour to approach the real markets. Note 
that the model itself ignores several features of generation technologies, e.g., 
the starting time of each generator, and the intermittency of renewable power. 
Here, we collect data of capacity factors to serve as the availability factors. 
The capacity factor of a certain generation technology describes its average 
utilization ratio during a long period, which aids to make up for the model 
deficiency.

In Table 3, the data for 2016 are generally derived by using the real 
generation capacity and quantity data from National Energy Administration,3 
National Bureau of Statistics of China4 and IEA (2018). Data for 2020 and 
2030 are derived by using the projected generation quantities and capacities in 
New Policies Scenario in World Energy Outlook 2017 (IEA 2017).

2 See https://bnef.turtl.co/story/neo2018.
3 See http://www.nea.gov.cn/2017-02/04/c_136030860.htm.
4 See http://data.stats.gov.cn/easyquery.htm?cn=C01.

https://www.bnef.turtl.co
http://www.nea.gov.cn
http://www.nea.gov.cn
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Table 3. Specification of availability factors.

 2016 2026 2036 

 hydro power 0.410194 0.356129 0.350827 

coal power 0.491289 0.447733 0.431946 

gas power 0.331239 0.415362 0.429542 

nuclear power 0.723786 0.846036 0.86675 

wind power 0.182069 0.234427 0.252375 

solar power 0.097611 0.147042 0.154555 

Inverse demand curve parameters
To derive the values of aot and bot in 2016, we use the real data of price elasticity 
of electricity demand (i.e., 0.84), the real data of electricity consumption in 
2016 as the equilibrium quantity, and an assumed equilibrium electricity 
price. Specifically, the assumed equilibrium electricity price (i.e., 614.83 
thousand Yuan/GWh) is the real average electricity price in 2016 collected 
from National Energy Administration. We deduce that aot =1346.770476 
(Thousand Yuan/GWh) and bot = 1.177469 (Thousand Yuan/GWh2) in 2016. 
Further, we assume that aot varies over time at a growth rate of 2.4% annually;   
bot is constant over time.

Other parameters
We get the data on the transmission loss rate and production loss rate in 2016 
from the National Energy Administration. Further, we assume them to decrease 
at a rate of 1% annually. In the model, we don’t consider any subsidy on any 
type of generation technology and assume the electricity transmission costs 
0. This facilitates the data consistency in 2016 and avoids the equilibrium 
electricity price (obtained by running the model) from upwardly deviating 
from the assumed value due to the high costs of renewable power in 2016.

5. Result analysis

To manage the numerical magnitude, when running the model, we 
proportionally contract data from a ten-year scale to a one-hour scale. We 
don’t focus on any specific number in the results. However, regarding each 
market response, we compare the results under all the cases of market power 
and a carbon price in the same picture. In this visualisation way, we can see 
the market trends as market power or/and carbon price varies.

In practice, before running the three-period equilibrium model, we run a 
one-period equilibrium model and test a lot more cases of market power to 
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check data consistency in 2016. We find that the market power parameters 
in the range of [0,0.67] can support the data consistency in 2016. However, 
market power can change over time. Anyway, in the following, we will display 
the results under all the cases of market power and then discuss some market 
responses when the market power parameters decrease from 0.6 to a certain 
level.

5.1 Electricity consumption during 2016–2046

Figure 3 shows the quantity of total electricity consumption during  
2016–2046. Generally, the consumption quantity has a decreasing tendency as 
the carbon price increases, independent of the market power. We can average 
the results in all the cases of market power to get the average consumption 
quantity with respect to the carbon price. For example, as the carbon price 
increases from 0 to 50, 100, 200, or 300 (Yuan per tonne), the respective 
consumption quantity is reduced by 0.71%, 1.97%, 4.71%, or 6.77% average. 
When the carbon price varies in a relatively low range, i.e., [0, 200], and when 
the market structure tends to be perfectly competitive, i.e., the cases of MP-0, 
MP-0.1, and MP-0.2, to increase the carbon price has very small effects on the 
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total electricity consumption quantity. Moreover, the consumption quantity 
has an increasing tendency as the market power decreases, independent of the 
carbon price.

Besides, the market share of electricity generated from each technology 
is demonstrated in Figure 4. Generally, in each case of market power, as the 
carbon price increases, the market share of nuclear/hydro power increases; 
the market share of coal power is decreasing. Independent of the carbon price, 
as the market power decreases, the market share of gas/wind/solar power 
decreases; the share of nuclear power increases.

Moreover, Figure 5 displays the market share of electricity generated from 
the renewable technologies including hydro power, wind power, and solar 
power. Generally, there is an increasing tendency of the share of renewable 
power as the carbon price increases, independent of the market power. 
However, as the market power decreases, the share generally decreases, 
independent of the carbon price.

5.2 Generation capacity expansion during 2016–2036

Figure 6 displays the quantity of total generation capacity expansion during 
2016–2036. Generally, a higher carbon price together with stronger market 
power promotes more expansion. For instance, as the carbon price increases 
from 0 to 50, 100, 200, or 300 (Yuan per tonne), the respective expansion 
quantity is increased by 3.35%, 18.10%, 57.15%, or 70.10% on average of the 
results in all the cases of market power. However, there is a threshold value 
of the carbon price in each case of market power, beyond which the value 
the expansion quantity doesn’t vary as the carbon price further increases. 
Moreover, the smaller the market power is, the smaller the threshold value is.

Besides, Figure 7 displays the share of each type of generation capacity 
expansion quantity in the total capacity expansion quantity. The capacity 
expansion in nuclear power always occurs regardless of the market power. 
Regardless of the market power and carbon price, there is always capacity 
expansion in nuclear; there is no capacity expansion in coal. Also, except 
in the extreme case of MP-0 (i.e., a perfectly competitive market), there is 
always capacity expansion in hydropower; there is no capacity expansion in 
coal power. Generally, weaker market power promotes capacity expansion 
in nuclear power and hydropower. When the market power parameters start 
to decrease from 0.6, the capacity expansion in gas power and solar power 
disappears. Further, when the market power parameters are lower than 0.2, 
there is no capacity expansion in wind power. As the market power decreases, 
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Figure 5. The market share of electricity generated from renewable technologies during 2016–2046.
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the share of gas/solar power has a decreasing trend; the share of nuclear 
power noticeably increases. When the market power is relatively strong, as 
the carbon price increases, the share of gas power capacity expansion quantity 
in the total capacity expansion has a decreasing trend; the share of solar 
power has an increasing trend. Specifically, strong market power promotes 
the capacity expansion in gas power, only if the carbon price is relatively 
low the expansion in gas power occurs when the carbon price is relatively 
low and the market power is relatively strong. In fact, to generate one unit 
quantity of electricity, gas power emits more than half the carbon dioxide of 
coal power. (see Table 2 for the emissions rates.) Strictly, gas power is not 
a carbon-friendly substitute for enough to substitute coal power. Generally, 
weaker market power facilitates the capacity expansion of nuclear power and 
hydro power. In the extreme case of MP-0, the only expansion happens to 
nuclear power.

Further, Figure 8 displays the share of renewable capacity expansion 
quantity in the total capacity expansion quantity during 2016–2036. Generally, 
the share decreases as the market power decreases (except for a small number 
of cases).

5.3 Carbon emissions quantity during 2016–2046

Figure 9 shows the total carbon dioxide emissions quantity during 2016–
2046. Obviously, the emissions reduction is significant when the carbon price 
comes into play in the electricity markets. As the carbon price increases from  
0 to 50, 100, 200, or 300 (Yuan per tonne), the respective emissions quantity 
is reduced by 11.81%, 28.96%, 57.44%, or 67.98% on average. Generally, 
the carbon price has a much greater impact on the emissions quantity than the 
market power. However, when the carbon price is higher than 300 Yuan per 
tonne, the weaker the market power is, the more emissions quantity there is.

5.4 Averagely discounted-to-present price of electricity during  
2016–2046

Figure 10 shows the averagely discounted-to-present (i.e., discounted to 
2016) price of electricity during 2016–2046. We assume a discount rate of 
5% per year. Generally, the electricity price increases as the carbon price 
increases. Besides, it decreases as the market power decreases. As the carbon 
price increases from 0 to 50, 100, 200, or 300 (Yuan per tonne), the respective 
electricity price is increased by 1.90%, 4.33%, 9.69%, or 15.05% on average. 
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the carbon price increases. Besides, it decreases as the market power decreases. As the carbon price increases 

from 0 to 50, 100, 200, or 300 (Yuan per tonne), the respective electricity price is increased by 1.90% , 

4.33% , 9.69%, or 15.05%  on average. When the carbon price varies in a relatively low range, i.e., 

[0,200], and when the market structure tends to be perfectly competitive, i.e., the cases of MP-0, MP-0.1, and 

MP-0.2, to increase the carbon price has very small effects on the electricity price. 

 

Figure 9. The expected quantity of the total emissions during 2016–2046. 
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When the carbon price varies in a relatively low range, i.e., [0,200], and when 
the market structure tends to be perfectly competitive, i.e., the cases of MP-0, 
MP-0.1, and MP-0.2, to increase the carbon price has very small effects on 
the electricity price.

5.5 Some average data

Regarding each market response, we average over the results in all the cases of 
market power to get the average rates of change when the carbon price increases 
from 0 to a certain value. (see Table 4.) As the carbon price increases, there are 
decreasing tendencies of the carbon emissions and consumption, increasing 
tendencies of the generation capacity expansion and the electricity price.

Regarding each market response, we average over the results in the cases 
of a carbon price from 0 to 200 (Yuan per tonne) to get the average rates of 
change when the market power parameters decrease from 0.6 to a certain 
level. Table 5 summarizes the rates of change.

When the carbon price varies in a relatively low range (e.g., [0, 200]), 
decreasing the market power (from a medium level) can reduce the electricity 
price and increase the consumption quantity. However, it does not necessarily 
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Table 4. The average rates of change of the electricity price, the emissions quantity, the consumption 
quantity and the expansion quantity when the carbon price increases from 0 to a certain value. 

 Rate of change 

 Carbon price 
(Yuan per tonne) 

 Electricity 
price

 Emissions 
quantity

Consumption 
quantity

Expansion 
quantity

 50 1.90%  –11.81%  –0.71%  3.35%

100 4.33%  –28.96%  –1.97%  18.10%

150 7.02%  –45.97%  –3.43%  40.19%

200 9.69%  –57.44%  –4.71%  57.15%

250 12.33%  –64.43%  –5.81%  67.23%

300 15.05%  –67.98%  –6.77%  70.10%

350 17.83%  –70.78%  –7.71%  71.16%

400 20.93%  –74.04%  –8.76%  72.18%

450 24.04%  –77.16%  –9.80%  72.87%

500 27.12%  –80.17%  –10.83%  72.87%

550 30.21%  –83.19%  –11.85%  72.87%

600 33.30%  –86.20%  –12.87%  72.87%

Table 5. The average rates of change of the electricity price, the emissions quantity, the consumption 
quantity and the expansion quantity when the market power parameters decrease from 0.6 to a certain 

level. 

 Rate of change 

 Market power 
parameters 

 Electricity 
price

 Emissions 
quantity

Consumption 
quantity

Expansion 
quantity

 0.5 –3.79%  0.66%  2.33%  1.36%

0.4 –7.33%  –0.32%  4.61%  1.92%

0.3 –10.65%  –3.79%  6.89%  1.01%

0.2 –14.23%  –9.17%  9.55%  –0.38%

0.1 –18.44%  –16.78%  12.82%  –4.65%

0 –25.51%  –29.91%  18.40%  –13.97%

reduce the emissions quantity or increase the capacity expansion quantity, 
which depends on the degree of market power.

6. Conclusion

In this paper, we investigate how the market power of electricity suppliers 
and a carbon price together affect the restructured electricity markets on 
generation capacity expansion, consumption, carbon emissions, and electricity 
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price. To do so, we construct an equilibrium model to depict the interactions 
of suppliers, consumers, and a carbon permit auctioneer. The suppliers can 
exert market power to influence the market price of electricity to some extent; 
however, they are price takers with respect to the price of carbon permits. We 
implement the model on a stylized market setting based on Chinese electricity 
market data in 2016, where various generation technologies play a role. By 
analyzing the results of 6611 cases of market power and a carbon price, we 
find how sensitive the restructured electricity market is to a carbon price or/
and market power.
 1. Introducing a carbon price can greatly reduce carbon emissions quantity; 

obviously increase the generation capacity expansion quantity; modestly 
increase the electricity price; slightly reduce the consumption quantity.

 2. Strong market power promotes the capacity expansion in gas power, only 
if the carbon price is relatively low. After all, gas power is not a carbon-
friendly substitute for coal power.

 3. Regardless of the market power, there is a threshold value of the carbon 
price, beyond which value the total generation capacity expansion quantity 
doesn’t vary as the carbon price further increases. However, when below 
the threshold value, generally the expansion quantity increases rapidly 
as the carbon price increases. Moreover, the weaker the market power 
is, the smaller the threshold value is. From an economic perspective, a 
carbon price can drive up the electricity price, to some threshold of which 
there comes saturated consumption. Then, there is no incentive for more 
investment, thereby a threshold appearing. 

 4. At any carbon price, decreasing the market power can decrease the 
electricity price and increase the electricity consumption quantity. 
However, it does not necessarily reduce the emissions quantity or increase 
the capacity expansion quantity, which actually depends on the levels of 
carbon price and market power. For instance, when the carbon price is 
higher than 300 (Yuan per tonne), the weaker the market power is, the 
more emissions quantity there is.

 5. Regardless of the market power, as the carbon price increases, both 
renewable power and nuclear power increase their market shares. 
Moreover, regardless of the carbon price, the weaker the market power is, 
the less renewable (/the more nuclear) power is in the shares of capacity 
expansion and consumption. From an economic perspective, the weaker 
the market power is, the easier the advantage of the levelized cost of each 
generation of technology displays. Though both the production cost and 
investment cost of nuclear power are high, the high utilization ratio of 
nuclear power makes its levelized cost the most competitive. That is why 
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renewable power loses the market shares of nuclear power as the market 
power decreases. 
We expect the findings in this paper to hold true for more complicated 

market settings. This paper can provide some insights for policymakers to set 
carbon prices (floor) in consideration of the market power so as to balance 
among the factors of energy, environment and economy. For instance, if 
policymakers want to promote the investment in renewable power and do not 
want to decrease a lot electricity consumption, pay attention to the threshold 
value of a carbon price. Moreover, if policymakers want gas power to serve 
for energy security in the existence of a carbon price, more subsidies (e.g., in 
carbon capture and sequestration) should be given to gas power, especially 
when the electricity markets tend to be more competitive. Besides, in 
consideration of the market trends castcasted in this paper, e.g., electricity 
price variation with a carbon price or market power, some price-taking take 
suppliers can decide how much to produce to create more profits.

In the future, we may update the equilibrium model by involving uncertain 
characteristics of renewable power and electricity storage. Besides, a more 
complicated market setting, e.g., involving competitive fringe suppliers, 
could be studied to further investigate the market trends.
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Appendix

A. The Karush-Kuhn-Tucker (KKT) conditions and the 
market clearing conditions

KKT conditions of the suppliers 
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KKT conditions of the carbon permit auctioneer 
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The market clearing conditions 
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B. A mathematical justification of how the market power 
parameter affects the electricity market price and quantity 

In an electricity market, there are electricity suppliers i, i' ∈ I, each using 
a generation technology of a unit cost xi, to make a one-period electricity 
production decision qi. A linear inverse demand curve is assumed: 

 = i

i I
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The electricity price p is assumed high enough for all the generators to run, 
i.e., qi > 0(∀i ∈ I). For each supplier i, it solves an optimization problem as 
below: 
  ( )max i i i

iq
pq x q−  (17)

 s.t.         ( )i i iq Q α≤  (18)

Here, αi is the dual variable associated with the capacity constraint. The KKT 
conditions of supplier ’s problem are: 
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The KKT conditions are sufficient and necessary for an optimal solution since 
the objective function and constraint are linear. By solving the system of KKT 
conditions of all the suppliers, we can obtain an equilibrium solution. 

By defining a market power parameter: 
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which is the conjecture of supplier i about how the total market quantity varies 
as its own quantity varies, we rearrange Equation (19) into: 
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Assuming hi ≠ 0, we divide both sides of Equation (22) by hi and obtain: 
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To sum the above equation over all i ∈ I, we obtain: 
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To solve for the total quantity, we rearrange the terms in the above equation 
to obtain: 
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Taking the first-order partial derivative of the total quantity ∑i ∈ Iqi with respect 
to a market power parameter hi, we obtain: 
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By rearranging the terms in Equation (22), we obtain: 
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Substituting Equation (27) into Equation (26), we obtain: 
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Hence, as the market power parameter increases, the market price of electricity 
increases; the total quantity of electricity decreases. 

C. An illustration of the economic meaning of the market  
setting in the case study 

To illustrate the meaning of the market setting in the case study of the paper, 
we apply two equilibrium problems, i.e., problem (EP-A) and problem  
(EP-B), each occurring in a different market setting. 

Problem (EP-A) 
In problem (EP-A), the electricity suppliers make one-period electricity 
production decisions in an electricity market. The market setting is that: 
 (1) there are electricity suppliers (i ∈ I ) and consumers, all of which are 

price-takers and no one exerts market power; 
 (2) all the suppliers are symmetric/identical, each applying the same types 

of generation technology (k ∈ K) with the same production capacities  
(Qik = Qi'k, ∀i, i' ∈ I, ∀k ∈ K), and the same production costs (xk) to generate 
electricity qik; 
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(3) the market price of electricity is p = a – b ∑i ∈ I , k ∈ Kqik and p is assumed 
high enough for all the generators to run, i.e., qik > 0(∀i ∈ I, ∀k ∈ K). 
For each supplier i, it solves an optimization problem, referred to as 

problem (OP-A) hereafter. 

 (OP A):      ( )max ik k ik

ikq k K
pq x q

∈

− −∑  (30)

 s.t.         ( )ik ik ikq Q α≤  (31)

Here, αik is the dual variable associated with the capacity constraint. 

Problem (EP-B) 
In problem (EP-B), the electricity suppliers make one-period electricity 
production decisions in an electricity market. The market setting is that: 
 (1) there are electricity suppliers and consumers, all of which are price-takers 

and no one exerts market power; 
 (2) each supplier uses a different generation technology k ∈ K (i.e., total  |K | 

suppliers) with the production capacity Qk and the production cost xk to 
generate electricity qk; 

( 3) the market price of electricity is p = a – b ∑k ∈ Kqk and p is assumed high 
enough for all the generators to run, i.e., qk > 0(∀k ∈ K ). 
For each supplier with its particular technology k, it solves an optimization 

problem, referred to as problem (OP-B) hereafter. 

 (OP B):      ( )max k k k

kq k K
pq x q

∈

− −∑  (32)

 s.t.       ( )k k kq Q α≤  (33)

Here, αk is the dual variable associated with the capacity constraint. 

Assumptions on the two market settings 

We assume several factors in the two market settings to be the same. They are: 
 (1) the types of generation technology (represented by the same notation  

k ∈ K ); 
 (2) the production cost of each generation technology (represented by the 

same notation xk); 
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 (3) the total capacity of each power generation technology (Qk = | I |Qik,  
∀i ∈ I, ∀k ∈ K); 

 (4) the market price-quantity relationship. 
The above assumptions provide conditions for the following theorem. 

Theorem 1. Problem (EP-A) and problem (EP-B) are equivalent in achieving 
the same electricity price and quantity. 

Proof. To solve the problem (EP-A), we begin with the problem (OP-A), 
whose KKT conditions are sufficient and necessary for an optimal solution 
(due to the linear objective function and constraint). Next, we concatenate the 
KKT conditions of all the suppliers’ problems, to solve which we obtain an 
equilibrium solution of the problem (EP-A). Recall that in problem (EP-A),   
qik is assumed strictly positive. Then, the KKT conditions of the problem  
(OP-A) are: 

 
,

= 0ik k ik

i I k K
x a b qα

∈ ∈

+ − + ∑  (34)

 0  0ik ik ikQ q α− ≥ ⊥ ≥  (35)

Due to the symmetric feature of the suppliers, we have the relationship of the 
variables: 

 = ,  , ,ik i kq q i i I k K′ ′∀ ∈ ∀ ∈  (36)

 = ,  , ,ik i k i i I k Kα α ′ ′∀ ∈ ∀ ∈  (37)

Then, the KKT conditions can be recast into: 

 | | = 0,ik k ik

k K
x a b I qα

∈

+ − + ∑  (38)

 | | | | 0  0ik ik ikI Q I q α− ≥ ⊥ ≥  (39)

Let’s bring in new variables qk and αk and let 

 =| | ,k ikq I q  (40)

 = .k ikα α  (41)
Recall the assumption: 

 =| | .k ikQ I Q  (42)
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Substituting Equation (40), Equation (41) and Equation (42) into Equation 
(38) and Equation (39), we obtain: 

 = 0,k k k

k K
x a b qα

∈

+ − + ∑  (43)

 0  0.k k kQ q α− ≥ ⊥ ≥  (44)

Equation (43) and Equation (44) are the KKT conditions of the 
problem (OP-B). Similarly, we get the equilibrium solution of problem  
(EP-B), by concatenating the KKT conditions of all the suppliers’ problems, 
i.e., problem (OP-B), and solving them. 

Obviously, a solution to the problem (EP-B) can lead to a solution to the 
problem (EP-A) by a linear transition in Equation (40), and vice versa. The 
electricity quantities in the two problems lead to the same electricity prices in 
the two problems. Hence, problem (EP-A) and problem (EP-B) are equivalent 
in achieving the same electricity price and quantity.                  

A discussion of the market setting in the case study of the paper 

Recall the market setting in the case study of the paper: six electricity 
suppliers each with a unique type of generation technology, which in the case 
of perfectly competitive markets (i.e., MP-0) is similar to that in problem 
(EP-B) (e.g., the costs of transmission and buying carbon permits can be 
counted as the production cost in problem (EP-B)). Problem (EP-B) displays 
the competition among different generation technologies, but in a perfectly 
competitive market, it is equivalent to the problem (EP-A) where there are 
symmetric competing suppliers each using several generation technologies. 

In either perfectly competitive markets or imperfectly competitive 
markets, every rational supplier with several generation technologies gives 
priority to generation technologies with lower average costs. This implicitly 
reflects the competition among different generation technologies in electricity 
markets. This is an ideological basis for the market setting in the case study 
of the paper, especially when the paper is focusing on the electricity industry 
trends (rather than a big supplier squeezing a small one).
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 Safety of  Water Resources  
of  a River Basin 
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1. Introduction

At the turn of the 21st century, experts from different countries are trying 
to answer the question: what could cause conflicts in the next century? 
Often they name territorial claims, racial and ethnic problems, and religious 
contradictions. Recently, the most probable reason for the outbreak of war 
is associated with the problem of access to water resources. Such a forecast 
is contained in the materials of the International Congress held in Tashkent 
in November 2018 and which considered the political and environmental 
problems related to water. This congress was attended by more than 50 states 
of the Middle East, Africa and Southeast Asia (Independent Newspaper 2001, 
Resolution of the International Conference of the NWO EECCA 2018). 
According to the UN, two million people on the earth do not have direct 
access to drinking water. Its sharp shortage is noted in 80 countries. Poorly 
treated drinking water containing life-threatening bacteria caused the death 
of at least one million people in a year. According to the documents of the 
congress, 2% of the 3% of the world’s freshwater reserves, are the glaciers of 
the Arctic and Antarctic. The remaining 1% is sufficient to provide water for 
future generations unless it is polluted and used unreasonably.

1 Batumi Shota Rustaveli State University, Georgia. 
2 Taras Shevchenko National University of Kyiv, Ukraine.
* Corresponding author: zas@unicyb.kiev.ua
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2. Problems of water resources 

Environmental pollution, which is the result of human activity, directly 
depends on the number of people. The population of the earth doubled  
from 1650 to 1850, i.e., for 200 years, then from 1850 to 1950, i.e., for  
100 years, then from 1950 to 1975, i.e., for 25 years (Independent Newspaper 
2001). The American weekly magazine “US News & World Report” has 
published the following data on the population of the earth and large cities 
(Tables 1 and 2).

In the 21st century, more than two dozen countries of the world, in 
particular the Arab countries, face a sharp water shortage. This data is 
presented in the materials of the seminar “Resources of the Middle East”, 
which was held in Damascus. Today, the region’s population has reached  
300 million people who consume water with a norm of 200 litres per day  
per person. Under these circumstances, a sharp shortage of water is already 
felt. The experts participating in the seminar raised the question: what will 
happen in 25 years when the number of people living in the region reaches 
500 million, considering that the neighboring 8 states control 87% of the water 
resources of rivers flowing through the territory of the Arab states?

At an international conference on water supply issues, held in 1998 in 
Cairo, scientists from 32 countries in Asia and Africa spoke about the need 
to take urgent measures to prevent a future crisis (Independent Newspaper 
2001). In the mid-21st century, China may face severe water shortages. 
This was stated in special reports of the Chinese Academy of Sciences and 
a number of National institutes. The materials emphasized that only urgent 
measures can save the country from the crisis since almost 300 large cities are 
already experiencing water shortages.

Many examples can be given. But it is not only the lack of water that 
creates tension. Today there are more than 40 thousand dams that regulate 

Table 1. Population growth in some regions of the world (million people).

Region 1983 2000 Growth %

Africa 513 851 65.9

Latin America 390 564 44.6

Asia 2730 3564 30.5

Oceania 24 29 20.8

North America 259 302 16.6

Europe 489 511 4.3

Total 4677 6130 31.1
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the flow of rivers and affect the economic development of arid regions 
in the world. Dams and ponds have been built on around 200 large rivers  
that cross state borders. Moreover, a third of these rivers do not have 
international agreements which would regulate the consumption of water 
from these rivers.

These conflicts are probably related to the access to drinking water 
which are most likely related to the Middle East. The flowing rivers Tigris 
and Euphrates flow here and originate in the territorial region of Turkey  
(Figure 1), they can regulate the flow of water to the northern regions of Iraq 

Table 2. Population growth in some large cities (million people).

City 1983 2000 Growth %

Beijing 13.5 22.5 68.9

Mexico 17.0 27.6 62.4

Shanghai 16.6 25.9 57.0

Sao Paulo 14.0 21.5 53.6

Tokio-Yokohama 21.1 23.8 12.8

New York 18.1 19.5 7.7
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and Syria at their own wish. In the territory of Turkey, in the province of 
Anatolia, 22 dams and hydroelectric power plants were built, which limited 
the supply of water to Iraq and Syria by a third (Independent Newspaper 2001). 
Iraq and Syria viewed the construction of dams as a violation of international 
standards and a violation of the rights of the populations of neighboring 
countries to use the water of these rivers.

Western observers believe that a conflict between Ethiopia, Sudan and 
Egypt due to the waters of the Blue Nile is possible (Figure 2). Ethiopia, whose 
population has reached 60 million people, is facing a population explosion. 
Therefore, today the country has been claiming its rights to tributaries of the 
river Nile, which are necessary for watering fields and generating electricity. 
Egypt fears that Ethiopia, where the upper reaches of the river are located, 
may regulate the water, which will lead to a decrease in the flow rate of the 
region’s full-flowing river. International experts do not count out that in the 
case of such a development of phenomena, Egypt will not abandon the use of 
military forces (Resources of surface waters of the USSR 1974).

Israel, for its part, regulates the flow of water from sources located in 
the upper river Jordan in the Golan Heights, where drinking water comes 
from (Figure 3). This is constantly a hotbed of tension. Many experts believe 
that Syria will not abandon the Golan Heights, while Israel will not allow 
anyone to control the sources of water located in this territory (Independent 
Newspaper 2001).

The Zambezi River flows through six countries of southern Africa 
- Angola, Botswana, Zambia, Mozambique, Zimbabwe and Namibia  
(Figure 4). There are two of the region’s largest hydroelectric power plants 
located there - Cabora Bassa in Mozambique and Cariba on the border of 
Zambia and Zimbabwe. There is a plan to build several more dams in the 
region. Zimbabwe is going to carry water from the river to arid provinces. 
With this in mind, tension has arisen between Zambia and Zimbabwe.

In fact, two African countries were on the verge of starting a “Water 
War”. The reason was the beginning of the construction of a water supply 
system from the Zambesi River to the second largest city in Bulawayo from 
Zimbabwe. The project, valued at US$ 437 million, aims to provide water 
to the city and nearby arid lands. Zambia and Botswana were against this  
project. They believe that taking such a quantity of water will significantly 
reduce the proportion of water resources. Zambia is particularly against the 
project as it believes that the project puts the implementation of the Zambian 
program for the development of the southern and southwestern regions 
of the country in doubt, also it will reduce the capacity of the Livingston 
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Hydroelectric Power Station and reduce the water level at Victoria Falls, the 
source of tourism revenue in this part of the country (Independent Newspaper 
2001).

Under the given circumstances, experts propose the creation of a 
regional council on the use of water. A significant step in this direction can 
be considered with the creation of the “Commission on Water” within the 
framework of the Commonwealth of Development of South Africa. Countries 
were recommended to adopt a law to avoid the desire of resolving the water 
issue by using weapons.

185 km section of the upper river Mtkvari is located in Turkey. Only  
27 km of the 435 km long river Chorokhi is on the territory of Georgia  
(Figure 5) (The State Water Cadastre 1985). The construction of river  
dams in Turkish territory has already caused environmental problems for 
Adjarian Black Sea coast of Georgia. Dam construction has reduced the 
amount of river sediment discharged into the Black Sea. This creates the 
danger of erosion of the coastal zone of Adjara.

Industrial development in those regions of Turkey where the river  
Mtkvari flows can affect not only the flow of the river but also the quality of 
the water, which can affect the drinking water resources in Georgia. On this 
basis, the rational use of water resources is an urgent issue for two neighboring 
countries.
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3. Methodology for calculating environmental damage

Not only can unreasonable decisions on the use of waters of transboundary 
rivers and anthropogenic pollution of the environment lead to armed conflicts, 
but it can also create serious environmental problems. This is due to river 
pollution with various substances and excess MPC during the development 
of the industrial potential of neighboring countries. Experts see a way out in 
holding two multilateral conferences and treaties, in developing international 
documents that will regulate equal access to drinking water resources for the 
entire population of the earth (Resolution of the International Conference of 
the NWO EECCA 2018, Kazakhstan Today 2001).

One of the issues for international discussion and development of a 
common approach may be the methodology for determining the damage 
caused to the environment proposed by us.

Determining the damage to the environment from wastewater discharges 
taking into account biological, chemical, and physics-chemical changes is 
almost impossible. Changes caused by wastewater discharges into water ponds 
can occur after decades when it will be impossible to correct the changes 
(Zaslavskyi 2005, Baglaeva et al. 2013).
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The value of environmental and economic damage can be represented as 
the sum of various costs (Megrelishvili et al. 2014):

 
1

n
i i ii

x qU
=

= ∑  (1)

where xi – changes i-like factor qi – price evaluation of  i-like factor.
Considering xi = Vi ni and marking qi through qB, damage to the 

environment, caused by wastewater discharge, can be calculated with the 
following formula: 
 Ui = Vi ni qB (2)

where Vi  – is the volume of wastewater discharged into the reservoir per 
unit time, with the i - pollutant, m3; ni - required dilution ratio for reaching 
the maximum permissible concentration (MPC) for the first substance;  
qB - economic assessment of the water resource (cost of natural water) lari/m3.

Since the water of the reservoir may contain the i pollutant, the dilution 
ratio is determined depending on:

 i
i

impc iv

cn
c c−

=  (3)

where ci  – is concentration, i-того substance in wastewater, g/m3;  
cimpc  – maximum permissible concentration of the i-like substance in natural 
water, g/m3;  civ - concentration of the i-like substance in the reservoir, g/m3;

The expression Vi ni in formula (2) is the amount of natural water that 
is necessary to dilute the wastewater in order to achieve the MPC for the 
substance. Taking into account this fact, formula (2) will look as follows: 

 Ui = Wi qB (4)

where Wi - volume of natural water required for dilution with respect to the 
i-like substance, m3 per unit time.

According to the current legislation of Georgia, the amount of payment 
for the use of water resources is different and varies from 10 to 3% depending 
on the market price. For thermal power plants and enterprises of irrigation 
systems, the value is 1% of the basic payment, for hydro power plants 0.01% 
of the basic payment, for municipal and agricultural water supply, the payment 
for 1 m3 of water is 0.01 tetri (tetri- the hundredth part of the lari). Since the 
market price of 1 m3 of natural water is 1.0 GEL, according to the minimum 
payment for the use of water resources is 3.0, for thermal power plants 1.0, 
for hydro power plants 0.01, for communal and agricultural water supply  
0.01 tetri.
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Payment (fine) for environmental pollution with a harmful substance in 
accordance with the current legislation of Georgia, in certain cases does not 
correspond to the real damage to the environment. Table 3 shows the results 
of calculation of damage during the discharge of one ton of pollutants, carried 
out according to the formulas (1)–(4) and according to the methodology of the 
current legislation.

In the calculation, the assumption was made that there is no pollutant in 
natural water. In another case, the amount of natural water for dilution and, 
consequently, damage to the environment will increase. The cost of natural 
water is a minimum of 0.01 tetri. 

The obtained data shows that the damage calculated according to the 
proposed methodology is 1.4–250 times higher than the amount calculated 

Table 3. Calculation of damage to the environment.

No. Pollutant Cimpc

mg/lt
Minimum amount of 
water to dilute up to 

Cimpc, m3

Payment, Lari 

According to the 
proposed method

 According to 
the legislation 

1 2 3 4 5 6

1. Chlorides 350 2857 0.29 0.2

2. Titanium 0.1 107 1000 390

3. Selenium 0.001 109 1000000 39000

4. Tellurium 0.01 108 10000 3900

5. Arsenic 0.05 2*107 2000 790

6. Iron 0.5 2*105 200 78

7. Aluminum 0.1 107 1000 78

8. Beryllium 0.0002 5*109 500000 390000

9. Surfactants*

minimum 10 105 10 390

maximum 0.001 109 100000 390

10. Oil products 0.05 2*107 2000 780

Gasoline 0.1 107 1000 780

11. Ketones**

minimum 2.0 5*105 50 780

maximum 0.02 5*107 5000 780

12. Phenols 0.001 109 100000 39000

* Surfactants – 4 items.
** Ketones – 11 items.
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according to the current legislation. It should be noted that taking into  
account the market price of water, the amount of damage will increase 
significantly.

Along with this, attention must be paid to the amount of water that is 
needed to dilute the substance to the MPC. Most rivers (especially in the 
Transcaucasian republics, and particularly in Georgia) cannot provide such a 
quantity of water. This is clearly seen in Table 2, which is compiled according 
to (The State Water Cadastre 1985, Resources of surface waters of the USSR 
1974).

A full-flowing river (Table 4) 680 hours will be required for the  
allocation of the maximum amount of dilution water (Table 3). During this 
time, the river water, with an average speed of 2.0 m/s, will pass 4896 km-s, 

Table 4. Hydrogeological data of some rivers of Georgia.

No. River Long-term 
average 

consumption, m3/s

Flow 
speed, 

m/s

Length, 
km

Consumption 
m3/h

Pollution** 
according 

to the 
legislationИсток Устье

1. Rioni 10.3 409.0 0.3–4.2 337.0 1.47*106 1

2. Mtkvari* 32.6 291.0 0.2–2.0 513.0 1.05*106 2,3

3. Inguri 45.5 192.0 0.6–5.8 213.0 691200 2

4. Chorokhi* – 159.0 0.7–2.5 26.0 572400 –

5. Alazani 14.4 112.0 0.8–3.5 351.0 403200 3

6. Tskhenistkali 23.0 90.4 0.5–1.5 176.0 325440 –

7. Adjaris tskali 8.73 51.5 0.6–1.3 90.0 185400 –

8. Khobi 7.43 50.5 0.5–2.5 150.0 181800 3

9. Supsa 2.56 46.0 0.5–1.2 108.0 165600 –

10. Natanebi 2.12 33.5 0.4–1.5 60.0 120600 3

11. Mokva 4.50 18.1 1.0–1.5 47.0 65160 3

12. Kintrishi 4.25 17.3 0.7–1.8 45.0 62280 3

13. Gubis tskali 7.55 16.4 0.2–0.4 36.0 59040 1

14. Choloki 0.66 7.03 0.3–2.5 24.0 25308 –

15. Zhokvera 1.79 6.11 0.5–3.5 20.0 21996 1

16. Achkva – 1.66 0.1–1.1 19.0 5979 –

* On the territory of Georgia.
** Pollution: 1- pollution of a special level, 2 – pollution of a high level, 3 – polluted.
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which is significantly longer than its length. This means that the concentration 
of the harmful substance in water will be significantly higher than the 
maximum permissible concentration. Similar calculations are possible for 
any of the given rivers. If such a river crosses the state border, the problem 
of water quality will be the cause of a possible conflict between neighboring 
countries. 

4. Conclusions

Many transboundary rivers flowing through the territories of several states 
do not have bilateral or multilateral agreement documents on the use or 
accessibility of these rivers. Modern equipment and technologies make it 
possible to significantly regulate the flow of such rivers, which can cause future 
conflicts without an agreement between neighboring countries. Unreasonable 
decisions on the use of waters of transboundary rivers and anthropogenic 
pollution of the environment can not only lead to armed conflicts but also 
create serious environmental problems. Experts see a way out in holding two 
multilateral conferences and agreements, as well as in developing international 
documents that will regulate equal access to drinking water resources for the 
entire population of the earth. The methodology for determining the damage 
to the environment caused by wastewater discharges, which may become one 
of the subjects for discussion in the development of international solutions for 
transboundary rivers, is discussed and proposed.
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Chapter 16

Optimization Problems for Retrial 
Queues with Unreliable Server

Eugene A Lebedev and Mykhailo M Sharapov*

1. Introduction

Nowadays, the interest in stochastic systems with repeated calls is due to 
their widespread use in various models for computers, satellites, telephones, 
security, telecommunication systems, etc. In such systems, the call that was 
refused becomes a source of repeated calls. Queueing systems with retrials 
are a specific class of stochastic models that describes important properties 
of the service process and is very useful and efficient for modeling real-life 
structures. 

A large number of works are devoted to the classical models of systems 
with repeated calls (see, for instance, Falin et al. 1997, Yang et al. 1987, 
Artalejo et al. 2008, Nazarov et al. 2018, Lebedev et al. 2011, Gomez-Corral 
et al. 1999, Walrand 1998). In comparison with the classical models, the case 
of unreliable servers is much less commonly used (Thiruvengadam 1963, 
Li et al. 1997, Artalejo 1994, Wartenhorst 1995, Vinod 1985, Wang et al. 
2001, Artalejo et al. 2002). In these models, the problem of calculating the 
basic system characteristics is in general significantly more complicated. If 
we consider stochastic processes describing the operation of such systems, 
they are Markov processes which have a countable number of states, and the 
infinitesimal matrix usually does not have any special properties that would 
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help to obtain a solution in an explicit form. In this chapter, we consider one of 
these models with an unreliable server as well as approaches to its stationary 
distribution calculation.

2. Model description, statement of the problem and main result

In this chapter, we consider a system with repeated calls and one unreliable 
server. Thus, the system consists of one server and an orbit. If the orbit is not 
empty, then the orbital call flow rate θ > 0 is constant, and if the orbit is empty, 
then this rate is zero. Let the input flow of primary calls arrive in the system, 
its rate λ = λk > 0 is assumed to be dependent on the number of calls at the orbit 
k = 0,1,... . If a primary (or repeated) call arrives into the system and finds the 
server idle, its service begins immediately. Service rate is μ > 0. If the server 
is busy, the call is directed to the orbit. The server is assumed to be unreliable. 
It means that its lifetime is exponentially distributed random variable a with 
failure rate α > 0. When the server breaks down, it is directed for repairing, 
service of a call is interrupted, and this call goes to the orbit, all new calls 
arriving for the service are directed to the orbit immediately. The rate of the 
recovery time is β > 0. The next service of an interrupted call is independent 
of the failed one.

We introduce a service process in the system with repeated calls and an 
unreliable server as two-dimensional Markov chain Q T(t) = (Q1(t), Q2(t)). The 
first component of the chain Q1(t) ∈ {0, 1, 2} points out the status of the 
server at time t: if its state is 0, it means that the server is idle and ready 
to serve calls, if it is 1, then the server is busy, if it is 2, then the server in 
on repairing (restoring of working condition). The second component  
Q2(t) ∈ {0, 1, 2...} is the number of sources of repeated calls. For (i, j) ≠ (i', j'),  
(i, j), (i', j') ∈ S ={0, 1, 2} × {0, 1,...}, infinitesimal transition rates a(i, j)(i', j')  
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Figure 1. A system with repeated calls and one unreliable server.
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of the Markov process Q(t) can be expressed via the system parameters,  
λk, k = 0, 1,... , μ, α, β, θ as follows:
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The graph of transition rates for Q(t) has the form:
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Figure 2. Graph of transition rates for the service process in a system with repeated calls and an unreliable server. 
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unreliable server.
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The main goal of the work is to find the conditions of the existence of a 
stationary regime for Q(t), t ≥ 0, and to obtain explicit vector-matrix formulas 
for stationary probabilities.

For the case when a stationary regime for Q(t), t ≥ 0, exists, we will 
denote the stationary probabilities by πij, (i, j) ∈ S. We introduce also the 
following notations:
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Theorem 1. Let lim kk
λ λ

→∞
= < ∞ and the following condition be satisfied:

 ( )( )
( )( )

β µθ λ λ θ
α

λ λ θ β

− +
<

+ +
 (1) 

 
Then for Q(t), t ≥ 0, there exists a stationary regime and the stationary 

probabilities are of the form:

 0 00 0 00 1 0 0, ,  1j jA A jπ π δ π π δ−= = × × ≥  (2)
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Proof. □ When searching for conditions for the existence of a stationary 
distribution, one can use the Lyapunov functions, on which the analysis of 
classical models of systems with repeated calls was based (see Falin et al. 
1997, Section 2.2).

Let x
‿

k = (0, 0, k), y
‿

k = (0, 1, k), z
‿

k = (1, 1, k). We take φ(i, j, k) = ai + bj + k  
as the Lyapunov function (i.e., φ(x

‿
k) = k, φ(y

‿
k) = b + k, φ(z

‿
k) = a + b + k), 

where numbers a, b will be chosen later. Under such a choice of the Lyapunov 
function, the mean shift function ( ) ( )( )( ) ,    spp s

s q p s s Sϕ ϕ
≠

∆ = − ∈∑  ( ) ( )( )( ) ,    spp s
s q p s s Sϕ ϕ

≠
∆ = − ∈∑  is

( )( ) 1 , ( ) ( 1), ( ) ( ).k k k k k kx b b y b a z a +bλ θ µ λ α λ β∆ = + − ∆ = − + + + ∆ = −  



364 Modern Optimization Methods for Decision Making Under Risk and Uncertainty

The function Δ(s) will be bounded from above according to the condition 
of the theorem, i.e.,

 Δ(s) < ∞, for all s ∈ S.

For the existence of ε > 0 such that for all k ≥ k0 = k0(ε) holds
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The locus of points (a, b) whose coordinates satisfy the last system of 
inequalities is shown in the figure below.
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of point 
( )

;B µθ λ α θ
α λ θ α λ θ
 +

−  + + 
, i.e., 

( )
λ θ µθ λ α
β λ θ α λ θ α

+
− < −

+ +
. 

This inequality is equivalent to (1).
Thus, when (1) is fulfilled, the specified locus of points is not empty. By 

fixing any point (a, b) from it, we define a Lyapunov function that satisfies 
the conditions of Statement 8 from Falin et al. 1997, p. 97. This implies the 
ergodicity of the process Q(t), t ≥ 0.

Let’s deal with construction of stationary probabilities. They satisfy an 
infinite system of linear equations:
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 + = + = +  Let S( j) = {(p, q) ∈ S : q ≤  j} ⊂ S, j = 0, 1,... , be a subset of states of the 
phase space S. Using the equality of the probability flows in the stationary 
mode for S( j), we write

 ( )0, 1 1 2 , 0.j j j j j jθπ λ α π λ π+ = + + ≥  (5)

Substituting (5) into the original system of linear equations, we find
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, j ≥ 1, from the equations 

( ) 0 1 2 ,j j j jλ θ π µπ βπ+ = +  j ≥ 1, and substitute them into the rest of the 
equations of the system, then we obtain a system of linear equations for  
π1j, π2j,  j ≥ 1:
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We write this system of linear equations in vector-matrix form 

1 1 1,j j j jA Bπ π− − −=   1
1 1 1j j j jA Bπ π−
− − −=    or 1 1j j jAπ π− −= , whence (2) follows. 
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Expressions (3) are vector form (5), and (4) follows from (2), (3) and the 
normalization condition. The theorem is proved. ■

Note, that when constructing the algorithm for calculating stationary 
probabilities based on formulas (2)–(4), it is necessary to solve the problem of 
estimating the remainder of the series
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Obviously, this will allow controlling the accuracy of the calculation π00 
and other stationary probabilities.

Let us choose λ' > λ. In order to estimate T(n), we need the Perron root h1 
of the matrix
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For T(n) such an upper bound is true.

Theorem 2. Let the conditions of Theorem 1 be satisfied and the choice of  
λ' > λ be given. Then 
 T(n) ≤ C .h n

1, as n ≥ N = N(λ' ),

where the constant C = C(λ' ) is independent of n.

Proof. □ Let’s start estimating the remainder of the series
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where n ≥ N and N = N(λ' ) such that for all j ≥ N the condition λj ≤ λ' is 
satisfied.
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It is easy to show that 1
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and comparison of matrices is performed element by element.
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as required to prove. ■
Thus, the rate of T (n) decreasing to zero has an exponential upper 

estimation. The proof of Theorem 2 also yields possibility of constructive 
definition for C(λ' ) and N (λ' ) on λ' .

In the case of a Poisson flow of primary calls (λ k = λ > 0), the normalizing 
constant in formulas (2), (3) (that is probability π00) can be written in explicit 
form.

Corollary 1. Let λ k = λ > 0, k ≥ 0, and condition (1) be satisfied. Then for  
Q(t), t ≥ 0, there exists a stationary regime, and stationary probabilities are 
defined with (2), (3), where π00 is of the following form:
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3. Numerical experiments

Now let us show how one can use formulas (2), (3) for calculating such an 

important system characteristic as the blocking probability 
0

T
b j

j
P π

∞

=

=∑1 .  

Under fixed rates values λ k = λ = 2, μ = 23, θ = 3, the system blocking 
probabilities are given in Table 1 for different rates α and β.
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Tabular data can be presented graphically.

Table 1. System blocking probabilities for different rates α and β under defined rates values  
λ k = λ = 2, μ = 23, θ = 3.

 α   β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.173 0.13 0.116 0.109 0.104 0.101 0.099 0.098 0.097 0.096

0.2 0.258 0.174 0.145 0.13 0.122 0.116 0.112 0.109 0.106 0.104

0.3 0.342 0.217 0.174 0.152 0.139 0.13 0.124 0.12 0.116 0.113

0.4 0.423 0.261 0.203 0.174 0.157 0.145 0.137 0.13 0.126 0.122

0.5 0.502 0.304 0.232 0.196 0.174 0.159 0.149 0.141 0.135 0.13

0.6 0.577 0.348 0.261 0.217 0.191 0.174 0.161 0.152 0.145 0.139

0.7 0.646 0.391 0.29 0.239 0.209 0.188 0.174 0.163 0.155 0.148

0.8 0.71 0.434 0.319 0.261 0.226 0.203 0.186 0.174 0.164 0.157

0.9 0.766 0.477 0.348 0.283 0.243 0.217 0.199 0.185 0.174 0.165

1 0.815 0.52 0.377 0.304 0.261 0.232 0.211 0.196 0.184 0.174
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λ k = 2 + (k + 1)–1, μ = 23, θ = 3, the system occupancy rates are given in  
Table 2 for different rates α and β.
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Tabular data can be presented graphically.

Table 2. System occupancy rates for different rates α and β under defined rates values  
λ k = 2 + (k + 1)–1, μ = 23, θ = 3.

 α   β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.122 0.125 0.126 0.126 0.126 0.126 0.127 0.127 0.127 0.127

0.2 0.117 0.122 0.124 0.125 0.125 0.125 0.126 0.126 0.126 0.126

0.3 0.113 0.12 0.122 0.123 0.124 0.125 0.125 0.125 0.125 0.126

0.4 0.109 0.117 0.12 0.122 0.123 0.124 0.124 0.125 0.125 0.125

0.5 0.105 0.115 0.119 0.121 0.122 0.123 0.123 0.124 0.124 0.124

0.6 0.102 0.113 0.117 0.12 0.121 0.122 0.123 0.123 0.124 0.124

0.7 0.099 0.111 0.116 0.118 0.12 0.121 0.122 0.122 0.123 0.123

0.8 0.097 0.109 0.114 0.117 0.119 0.12 0.121 0.122 0.122 0.123

0.9 0.095 0.107 0.113 0.116 0.118 0.119 0.12 0.121 0.122 0.122

1 0.093 0.105 0.111 0.115 0.117 0.119 0.12 0.121 0.121 0.122
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λ k = 2 + (k + 1)–1, μ = 23, θ = 3.

4. Conclusions

For a system with repeated calls and an unreliable server, a condition for the 
existence of a stationary regime (Condition (1)) is found. It is important that 
it is convenient to verify Condition 1 in practice.

For calculating the stationary probabilities, vector-matrix formulas  
(2), (3) are obtained, and the normalizing constant (probability π00) is given 
by series (4). An estimate of the remainder of this series is obtained in  
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Theorem 2, which allows us to control the accuracy of the calculations in 
formulas (2), (3).

For the Poisson flow of primary calls, π00 is presented explicitly via the 
system parameters (formula (6)). The calculation of stationary probabilities 
and their derivative characteristics is demonstrated by the example of 
calculating the blocking probability (see Table 1) and occupancy rate (see 
Table 2).

The obtained results can be used to solve optimization problems in the 
class of threshold strategies (see, for example, Lebedev et al. 2011).
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