

Modern Web

Development with

Deno

Develop Modern JavaScript and

TypeScript

Code with Svelte, React, and

GraphQL

Mayur Borse

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author,

nor BPB Online or its dealers and distributors, will be held liable for any damages

caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of

capitals. However, BPB Online cannot guarantee the accuracy of this

information.

Group Product Manager: Marianne Conor

Publishing Product Manager: Eva Brawn

Senior Editor: Connell

Content Development Editor: Melissa Monroe

Technical Editor: Anne Stokes

Copy Editor: Joe Austin

Language Support Editor: Justin Baldwin

Project Coordinator: Tyler Horan

Proofreader: Khloe Styles

Indexer: V. Krishnamurthy

Production Designer: Malcolm D'Souza

Marketing Coordinator: Kristen Kramer

First published: 2023

Published by BPB Online

WeWork, 119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55510-969

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to

"To all the Developers in the world"

About the Author

Mayur is a Dynamic and Result Oriented professional with a

passion for Software Engineering and Perfection. Currently,

working as a Full Stack Software Engineer on various

projects utilising Gatsby.js, Nikola, HTML,CSS, Bootstrap,

Javascript and so on. Mayur has also used various design

patterns such as CRUD, SearchBar, CSVDownloader, Loader

for UI creation of a network device and written blogs on

each of them. He has done Bachelors of Electronic

Engineering from University of Pune, along with a Diploma

in Electronics and Telecommunications. Apart from this, he

posseses 60+ certifications on Pluralsight, which includes

course subjects such as React, React Native, GraphQL,

Python, Django, Javascript, etc. He is also passionate about

philosophy and spirituality.

About the Reviewer

Chad Elofson is a Software Analyst using Node and Deno-

based technologies. He works at Thompson Rivers

University as a Software Analyst. He started his IT career 19

years ago as Network Administrator. For the past eight

years, he has moved to Software Engineering focused on

JavaScript runtime-based technologies.

Acknowledgement

I’m grateful to the team at BPB Publications for giving me

the opportunity to write the book.

Preface

This book introduces developers to the new JavaScript

runtime named Deno. It also shows how to create web

applications on the front-end and the back-end with

TypeScript using Deno.js.

This book takes a practical approach for web developers or

JavaScript. It covers a few realtime examples as well.

This book is divided into 9 chapters. They will cover

Introduction to Deno, Introduction to TypeScript, Create Web

Applications with React, Introduction to GraphQL, Creating

GraphQL API server, Creating Svelte Application etc. The

details are listed below.

Chapter 1 will cover what Deno is, why Deno was

introduced by the creator of Node.js (popular JavaScript

runtime), what are the differences between Deno and Node

etc. Will list features of Deno. Will explain different

technologies used in creating Deno. It will also provide

information about What is JavaScript runtime and What is

JavaScript engine.

Chapter 2 will cover What is TypeScript, benefits of

TypeScript, features of TypeScript etc. It will also explain the

basics of TypeScript for the JavaScript developers. It will also

provide details about how to set up TypeScript.

Chapter 3 will provide details on how to install Deno. It will

also list some of the widely used developer tools like VS

Code, Terminal etc. necessary for development.

Chapter 4 will cover details about the Deno Ecosystem.

Deno ecosystem includes Deno CLI details like Environment

variables, subcommands, how to pass arguments, File

watcher, Permission flags, Permission allow-list etc. It will

also list Deno runtime APIs like Web APIs, Global APIs etc.

Deno modules which are an essential part of the ecosystem

are listed as two categories Standard library and Third-party

modules. Also, Module registries like Deno’s own site

deno.land/x and nest.land will also be listed.

Chapter 5 will introduce Aleph.js, A Full-stack React

framework for Deno. It will list the concepts like pages,

routing etc. in brief. It will create a Todos App API using

provided API like GET, POST, DELETE etc. This will be helpful

for the developer to get familiar with the concepts utilized in

the next chapter.

Chapter 6 will continue the Todos app development and

will cover UI implementation. It will provide details on how

to use the Styled component library to create React

components with CSS styling. It will provide code to create

basic components like Button, Input etc. and will utilize

them in the app along with TodoList and TodoDetails

components.

Chapter 7 will introduce GraphQL and will provide details

about features like precise fetching, Single API Endpoint etc.

It will also list some of the core concepts like Type, Input,

Mutation, Resolver etc. It will then introduce oak module

along with oak-graphql which will be used to implement

GraphQL Server in the next chapter.

Chapter 8 will cover implementation of GraphQL server

using oak, oak-graphql for creating Phonebook app. It will

provide details on how to create a git repo, will use trex as

package manager and velociraptor as script runner. It will

also provide the code for server setup, Schema, Resolvers.

Database setup using ORM and authentication etc.

Chapter 9 will introduce the promising JavaScript

framework or compiler Svelte. Snel is a module for creating

Svelte applications using Deno. It will cover the setup

process for Snel and snel-carbon (UI component module). It

will then provide code for setting up public private routes for

the app along with Svelte components.

Coloured Images

Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/nbyzlk9

We have code bundles from our rich catalogue of books and

videos available at https://github.com/bpbpublications.

Check them out!

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every

book published, with PDF and ePub files available? You

can upgrade to the eBook version at

https://rebrand.ly/nbyzlk9
https://github.com/bpbpublications
mailto:errata@bpbonline.com

www.bpbonline.com and as a print book customer,

you are entitled to a discount on the eBook copy. Get

in touch with us at: business@bpbonline.com for

more details.

At www.bpbonline.com, you can also read a

collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

http://www.bpbonline.com/
mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy

If you come across any illegal copies of our works in

any form on the internet, we would be grateful if you

would provide us with the location address or website

name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming

an author

If there is a topic that you have expertise in, and you

are interested in either writing or contributing to a

book, please visit www.bpbonline.com. We have

worked with thousands of developers and tech

professionals, just like you, to help them share their

insights with the global tech community. You can make

a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own

idea.

Reviews

Please leave a review. Once you have read and used

this book, why not leave a review on the site that you

purchased it from? Potential readers can then see and

use your unbiased opinion to make purchase decisions.

We at BPB can understand what you think about our

products, and our authors can see your feedback on

their book. Thank you!

For more information about BPB, please visit

www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. The Deno Land

Introduction

Structure

Objectives

Introducing Deno

The Node Revolution

Event loop

Deno comparison with Node

Deno features

Deno foundation stack

The V8 Engine by Google

Rust

Tokio I/O library

What is a JavaScript engine

What is a JavaScript runtime

Conclusion

2. Introduction to TypeScript

Introduction

Structure

Objectives

Introducing TypeScript

TypeScript benefits

TypeScript features

Basics of TypeScript

Basic types

Interfaces

Optional properties

Read only properties

Type aliases

Interfaces versus type aliases

Type inference

Type assertions

Unions

Intersections

Classes

Modifiers

Getter and Setter

Static

Abstract

Static versus dynamic typing

Strong versus weak typing

TypeScript setup

tsconfig.json

Conclusion

3. Setting Up Deno

Introduction

Structure

Objectives

Installing Deno

Development tools

Terminal

zsh + oh my zsh

Vim

VS Code

VS Code extensions

Git and GitHub

Postman

Docker

Docker Compose

Silver Searcher

Databases

PostgreSQL

MongoDB and MongoDB Atlas

Redis

Heroku

Tmux

Pomodoro Technique

Conclusion

4. Deno Ecosystem

Introduction

Structure

Objectives

Deno CLI

Environment variables

Subcommands

Passing arguments

File watcher

Permission flags

Permissions allow-list

Deno runtime APIs

Web APIs

Deno global APIs

Variables

Classes

Deno modules

Standard library

Third-party modules

Module registries

Central dependencies in deps.ts

Conclusion

5. Todos App—API

Introduction

Structure

Objective

Introducing Aleph.js

Features

Command Line Interface

Concepts

Pages

Routing

Application Programming Interface (API)

Initializing Todos App

Project structure

Todos API

GET (list)

POST

GET (object), PATCH, and DELETE

Conclusion

6. Todos App—UI Implementation

Introduction

Structure

Objective

Styled components

Creating Todos components

TodoList

TodoDetails

Conclusion

7. Introduction to GraphQL, Oak, and Oak-GraphQL

Introduction

Structure

Objective

Introducing GraphQL

Features

Precise fetching

Single API endpoint

Validation and type checking

Fragments

Autogenerated API documentation

Core concepts

Schema

Type

Input

Query

Mutation

Relationship

Resolver

Introducing Oak framework

Introducing Oak-GraphQL middleware

Conclusion

8. PhoneBook App—API Implementation

Introduction

Structure

Objective

Initial setup

Version control using git

Trex as the package manager

Velociraptor as script runner

Oak GraphQL server setup

Schema

Database setup

Models

Controllers

Authentication

Conclusion

9. PhoneBook App - UI Implementation

Introduction

Structure

Objective

Initial setup

Snel setup

Snel Carbon installation

Routes

Login

Register

Home

NotFound

Private route

Contacts

ContactTable

ContactForm

Layout

Header

SideNav

Conclusion

Index

CHAPTER 1

The Deno Land

Introduction

After a decade of success of Node runtime, its creator Ryan

Dahl has come up with another exciting technology called

Deno, which is also a runtime like Node but is more secure

and provides many improvements and modern features in

comparison to Node. Dahl stormed the development world

by announcing Deno during a JSCONF EU talk in 2018

named 10 things I Regret about Node.js

(https://www.youtube.com/watch?v=M3BM9TB-8yA).

Since then, Deno has been a topic of excitement in the

software industry.

Structure

In this chapter, we will cover the following topics:

Introducing Deno

The Node revolution

Comparison of Deno and Node

Deno features

Deno foundation stack

What is a JavaScript engine?

What is a JavaScript runtime?

Objectives

After studying this chapter, you will be familiar with the

main features of Deno and its internal architecture. You will

also be able to understand the reasons for the creation of

Deno, the role of Node in the creation of Deno, the

similarities and differences between Deno and Node, and

the stack used for creating Deno, that is, Chrome V8 Engine

by Google, Rust by Mozilla, and Tokio.

You will also be familiar with how the JavaScript engine

works and how the JavaScript runtime works.

Introducing Deno

Deno is a secure and modern JavaScript runtime that uses

the V8 engine for JavaScript code conversion, Tokio (written

in Rust) for async event handling and the API backend

written in Rust. It provides features as follows:

Integrated security. Access to the network, file, and

environment is provided only through flags.

Built-in tools such as formatter, test-runner, debugger,

linter, and so on.

Typescript support out of the box.

Top-level await (without async).

ES Modules import (default).

No package manager is required as module imports are

done using URLs.

Deno is the creation of Ryan Dahl. Interestingly, Dahl is also

the creator of Node, which is also a runtime. In fact, Deno

was created to overcome the limitations of Node and

provide modern features out of the box, which is not part of

Node runtime. Hence, the journey of Deno begins with

Node, which changed the way JavaScript was perceived and

used in the industry. It is a fact that JavaScript has become a

widely used and revered language after the entry of Node.

Many developers are using only JavaScript for their entire

stack, thanks to Node. Therefore, to understand “The Deno

Evolution”, one must begin with “The Node Revolution”.

The Node Revolution

A decade ago, JavaScript was mocked as a funny and

peculiar language useful mostly for front-end Web

development. The scope of JavaScript was very limited

compared to mainstream languages like C++ or Java, as it

was mainly useful for browser-based applications only.

In 2009, Ryan Dahl introduced Node.js to the world. Node is

a JavaScript runtime written in C++ which uses V8 Engine

by Google (launched in 2008) and libuv event loop to

perform asynchronous operations in the background. Since

its release, Node.js has revolutionized JavaScript usability

and is being used by several tech giants such as PayPal,

LinkedIn, Netflix, and Uber to name a few. Let us see the

features that led to the rise of Node.

JavaScript everywhere

Node has been the reason that made JavaScript available

outside the browser. Nowadays, JavaScript is used for

development across many domains. Electron.js is used for

cross-platform desktop apps, React.js for Web

development, and React Native for mobile development.

Many companies and developers use JavaScript alone for

their entire stack as the code logic can be moved from client

to server because both are using the same language.

Asynchronous and event-driven architecture

Node is single-threaded, meaning it contains only one call

stack that executes only one program at a time. It has

event-driven architecture. This means executions in Node

are done according to some event occurrence. Node uses an

event loop libuv to handle executions asynchronously, i.e.,

in a non-blocking way.

Open-source and cross-platform

Node is open source which is one of the major factors for its

popularity and acceptance amongst the developers.

Cross-platform support is also an amazing feature node

offers to developers. It works on OSX, Linux and Windows

very well. Using this benefit, a developer can write node

code on OSX and can use Linux to deploy.

Very performant

Node uses V8 JavaScript Engine under the hood. The V8

engine is very fast, and this makes the Node a very high-

performing runtime. Performance is one of the major feature

node offers.

A node package manager (npm) for handling

dependencies

Node package manager npm is used to install packages and

manage package dependencies. It is also a centralized

registry where users can publish their node packages.

Event loop

Node uses libuv event loop for performing async i/o

operations. The event loop uses workers and a thread pool

for performing operations in the background. It also checks

if the call stack is empty and the main programme has been

executed so it can push the code from the callback queue to

the empty call stack. The JavaScript runtime process is

available in visualization here

(http://latentflip.com/loupe/). We will check the

JavaScript runtime architecture in detail later in this chapter.

http://latentflip.com/loupe/

Along with such great features, Node has several

shortcomings, which led its creator Ryan Dahl to start a new

project (Deno). In the next section, we will compare Deno

with Node and see how Deno overcomes Node’s

shortcomings.

Deno comparison with Node

Deno was created to address the shortcomings of Node. So,

it would be evident that both of them will have many

similarities and differences. Let us check each of these.

Feature Node Deno

Built using C++ Rust

JavaScript Engine V8 (C++ bindings and

backend)

V8 (Rust bindings and

backend)

Event loop libuv tokio

TypeScript support Need to be installed Out of the box

Package manager Npm (centralized) no package manager

(decentralized)

Import system CommonJS (require()) ES modules (import)

Security Full access by default No access by default

package.json Used Not used

Deno features

Deno has excellent support for modern features and

includes many features not available in Node out of the box

(TypeScript support). Let us have a look at some of its main

features.

External dependencies are loaded using URLs

Code execution in Sandbox

Runtime has no access to network file systems and

environments

Access needs to be granted explicitly

Typescript support out of the box

Top-level await

Standard modules library

Built-in tools provided like:

Bundler: Builds scripts and dependencies into a

single file

Dependency inspector: Inspects ES modules and

lists all their dependencies

Documents generator: Parses JSDoc

Formatter: For auto-formatting JS and TS Files

Test-runner: For testing using the assertions

module from the standard library

Linter: To catch code issues

Deno foundation stack

Deno has been created using some solid technologies,

which increase its chances of becoming highly successful.

Once we have gone through the stack used for creating

Deno, we can be assured about Deno’s future (a very bright

one). Let us check the tech stack used by Deno.

Uses Google’s V8 Engine

Written in Rust

Tokio (async runtime written in Rust) used for event

thread management

The V8 Engine by Google

An open-source JavaScript engine built using C++ by

Google. It converts JavaScript code (passed by Deno) into

bytecode/machine code. Deno supports Typescript out of

the box, so we can also provide Typescript code which gets

compiled to JavaScript by Deno. It executes the JavaScript

code and passes Deno API-related code (Rust code) to the

Rust backend via “rusty_v8” bindings written in Rust for the

V8 engine by the Deno team.

The combination of an interpreter (Ignition) and compiler

(TurboFan) makes V8 produce optimized machine code

which runs really fast.

Rust

Rust has been the “most loved” language in every

StackOverflow survey since 2016 (five years in a row). It is a

systems programming language that enables control over

low-level details. It provides memory-safety, thread-safety,

and type systems. For these and many other features, Rust

remains the most loved and wanted language for the last

five years in StackOverflow surveys.

Memory safe by default

Ownership and borrowing support

Performance is very close to other low-level languages

(C, C++)

Either one mutable or many immutable references

No NULL pointers, only options

Used by:

Amazon—firecracker

Google—Fuchsia

Facebook—Mononoke

Microsoft—IoT Edge

The Deno backend contains a file system, network and

environment access and is written in Rust. The

asynchronous i/o bindings are handled by tokio library.

Tokio I/O library

It is used to write asynchronous applications with Rust. It is

an event-driven, non-blocking i/o platform. It uses thread

pools and workers to perform the operations in the

background.

Whenever a code related to i/o, network, and so on is

passed to the V8 engine, it forwards it to Rust backend

using “rusty_v8” bindings. The execution of the received

code is done by tokio using workers.

Asynchronous I/O ops using non-blocking event

Uses Mio as an event queue

The event loop mechanism is used to monitor the call

stack and callback queue

Thread pool and workers are used to perform the tasks

in the background

What is a JavaScript engine

JavaScript engine is used to convert JavaScript/Typescript

code into bytecode (interpreter) or optimized machine code

(compiler) so the computer can execute it.

There are many JavaScript engines released since release.

V8 Engine by Google

SpiderMonkey by Mozilla

Chakra by Microsoft

In the JavaScript engine, the code is parsed into tokens,

which are used to generate the Abstract Syntax Tree. The

interpreter uses this tree to generate Byte Code. A profiler

monitors the byte code and passes it to the compiler if there

is a scope for optimization. Compiler outputs optimized

machine code which performs faster than the byte code.

Interpreter:

An interpreter translates the code one line at a time. It

provides a ByteCode as output. The interpreter is very fast

to get started coding but does not provide any

optimizations.

Compiler:

The compiler translates the entire code at once. The

compiler has a scope to analyze the entire program and

optimize it. It outputs optimized machine code. The compiler

takes longer to analyze and optimize the code as it goes

through the entire program.

JavaScript engine combines the functionality of interpreter

and compiler. This way, we get an optimized code that runs

faster. Such a compiler is called the “JIT Compiler”. A Profiler

is used to monitor the byte code and pass it to the compiler

(TurboFan) if there is any scope for optimization.

Figure 1.1: V8 JavaScript engine

What is a JavaScript runtime

JavaScript runtime is an environment that combines the

JavaScript Engine (V8 in Deno runtime), The API backend

written in some low-level language (Rust in Deno runtime), a

callback queue and an event loop that continuously

monitors the call stack and the callback queue.

Figure 1.2: Deno architecture

Memory heap:

JavaScript code is passed to the V8 engine that stores the

variables and functions from the code in the Memory Heap.

Call Stack:

It stores the functions invoked within the code. It operates

on the Last In First Out (LIFO) principle. It always points

to the currently running function. Once the function returns

or is passed to Deno API, it pops the function out and

executes the earlier one on the stack.

Deno API

Whenever Deno detects code related to i/o, network,

environment, and so on, it passes the code to the API

backend, which is written in Rust. It uses “rusty_v8”

bindings to pass the code to the backend.

Tokio:

It is an event-driven, asynchronous i/o platform. Deno API

passes the code to tokio.

This uses thread pool and workers to execute the operations

in the background and passes them on the callback queue.

Callback Queue:

It operates on the First In First Out (FIFO) principle. It

stores all the completed functions passed by Tokio. It

“waits” till the call stack is empty.

Event loop:

It monitors the call stack and the callback queue

continuously. If the call stack is empty and the callback

queue has a function in the queue, it passes the function on

the call stack where it gets executed.

Conclusion

Our journey in the Deno land has begun with this chapter.

We learnt the history of Deno and Node, compared Deno

with Node and listed Deno features. We also covered the

stack Deno is built from, i.e., V8 JavaScript engine, Tokio

event-loop, and Deno API backend written in Rust. Finally,

we covered the JavaScript engine and the JavaScript runtime

architectures, which are not mandatory but give us a solid

foundation to understand what is Deno and how it performs

the operations in the background.

While this chapter covered the Major Deno features,

TypeScript is one important section in Deno land that needs

to be covered. TypeScript support out of the box is a major

Deno feature, and learning TypeScript requires an entire

dedicated chapter to cover the basics. Hence, we will learn

TypeScript in the upcoming chapter, as we will be using

TypeScript for programming throughout this book.

As you have reached this point, it is evident that you are

interested and excited to learn Deno. Deno has many

exciting and modern features, which we will learn

throughout this book.

CHAPTER 2

Introduction to TypeScript

Introduction

TypeScript support out of the box is an exciting feature

offered by Deno runtime. TypeScript has been a popular

choice for large-scale applications and is being adopted

rapidly in the industry. It ranked second in the Most Loved

Languages

(https://insights.stackoverflow.com/survey/2020#mos

t-loved-dreaded-and-wanted) section of the Stack

Overflow Developer Survey 2020

(https://insights.stackoverflow.com/survey/2020).

Structure

In this chapter, we will cover the following topics:

Introducing TypeScript

TypeScript benefits

TypeScript features

TypeScript basics

Basic types

Interfaces

Type aliases

Interfaces versus Type aliases

Type inferences

Type assertions

Unions

https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020

Intersections

Classes

Dynamic versus static typing

Strongly versus weakly typing

TypeScript setup

Objectives

This chapter should help you become familiar with

TypeScript fundamentals and the use of TypeScript for

programming Deno applications. This chapter should also

help you understand the pros and cons of static type

checking and the benefits provided by TypeScript.

Introducing TypeScript

Announced publicly by Anders Hejlsberg in 2012, TypeScript

is a very popular and open-source superset of JavaScript. It

adds static type definitions to JavaScript code. It was

developed and maintained by Microsoft. TypeScript provides

type safety, type inference, type assertions, and many more

features, including ES Next features to JavaScript. Please

take a look at the following screenshot:

Figure 2.1: TypeScript

TypeScript benefits

JavaScript is very popular and widely used in our industry.

But while using JavaScript for large-scale applications, its

dynamic nature lets many type-related errors and bugs pass

through in the development phase and are caught only

during runtime. Runtime debugging is more awful compared

to compile-time debugging.

Statically typed languages caught errors and bugs during

compilation, even before running the code. TypeScript helps

us write and maintain large-scale applications by providing

type safety during the development cycle. TypeScript

catches type-related or other errors during compile time,

saving a lot of our precious time.

TypeScript was introduced to add types to JavaScript.

TypeScript code gets transformed into Javascript by

TypeScript compiler or babel transpiler. TypeScript enables

static type checking, which detects errors in the code

without running it, that is, in compile time. It preserves the

runtime behavior of JavaScript, meaning the code will run

the same way. Keeping the same runtime behavior is one of

the core features of TypeScript.

TypeScript features

TypeScript provides many es-next features out of the box,

along with features helpful for developing large-scale

applications. We will list some of the major features of

TypeScript.

Detects errors in compile-time, without running the

code

IDE can use type definitions for auto-completion

Static type system support for JavaScript code

Less prone to errors due to static type checking

ES-Next Features support out of the box

Tooling

Type safety

Type inference

Type assertions

Generics

Interfaces and type aliases

Language services

Same runtime behavior as that of JavaScript

Basics of TypeScript

Being a superset of JavaScript, TypeScript is easy to grasp

for a JavaScript developer. Assuming you are familiar with

JavaScript, we will learn the additional types included in

TypeScript.

Basic types

We are covering the commonly used data types in this

section. We will be using them for the majority of the time

during Deno’s development.

Boolean: Accepts either true or false value.

Number: Accepts either floating point values (for

example, 10.34) or integer values (for example, 39).

String: Accepts texts and characters, including

template string.

Array: Array of mentioned element type declared in

two ways:

[] symbol:

1. const shoppingList: string[] = [“milk”,

“vegetables”];

Generics:

1. const shoppingList: Array<string> = [“milk”,

“vegetables”];

Tuple: An array with a fixed number of elements of

either similar or different types. Tuple can be defined

as:

1. const deviceStage: [number, string] = [0, “OFF”];

Enum: Maps string values to a set of numeric values.

1. enum State {

2. OFF,

3. ON,

4. }

5. console.log(State.OFF, State[0]); // 0, OFF

Unknown: Accepts all types. This type of value is only

assignable to either unknown or any type.

Any: It also accepts all types of values like unknown,

but it is more permissible than an unknown type. It lets

us skip type checking for the variable.

Null: Accepts null value.

Undefined: Accepts undefined value.

Never: Used as a return type of function that never

returns.

Void: Used as a return type of function that does not

return any value.

Object: Represents non-primitive types.

Interfaces

Interfaces are used to define the shape of an entity or an

object. It describes the properties an object should have.

1. interface IPerson {

2. firstName: string;

3. lastName: string;

4. }

5.

6. const person: IPerson = {

7. firstName: “first”,

8. lastName: “last”

9. };

In the preceding example, IPerson is an interface (notice the

capital I for interface) that defines a shape that the object

person must have. Hence, the property place will cause a

compiler error as it does not exist in the interface IPerson.

Optional properties

In many cases, we need to provide a field that can be

optional. In an interface, “?” symbol can be used to make

the field optional.

1. interface IPerson {

2. name: string;

3. age?: number; // age is optional

4. }

5.

6. let printProfile = (person: IPerson): void => {

7. console.log(person.name);

8. };

9.

10. const person = { name: “name1” };

11. printProfile(person);

Read only properties

A readonly keyword before the property indicates we want a

property to be immutable after creation.

1. interface IPerson {

2. name: string;

3. readonly age: number; // age is read-only

4. }

5.

6. const person: IPerson = {

7. name: “me”,

8. age: 29,

9. };

10.

11. person.name = “you”;

12. // person.age = 25; // Cannot assign to age because it is

a read-only property

Type aliases

Type aliases work in a similar way to that of interfaces.

While interfaces are used to define the shape of an object,

type aliases can be used to provide names for primitive

types. They can also be used for union types.

1. type myInt = number; // type provides new name myInt for

primitive type number

2. let myId: myInt = 11; // Here myInt represents number type

3. let id: number = 11;

4.

5. // Unions

6. type unionId = number | string; // union types

7. let myUnionId: unionId = 25; // number

8. myUnionId = “1a2b”; // string

9.

10. // Similar functioning to interfaces

11. type PersonType = {

12. firstName: string;

13. lastName: string;

14. };

15.

16. const person: PersonType = {

17. firstName: “first”,

18. lastName: “last”,

19. // place: “unknown”, // Compiler error: place does not

exist in the type IPerson

20. };

Interfaces versus type aliases

Interface merging is allowed in TypeScript, whereas type

aliases merging will give a compile error.

1. interface IPerson {

2. name: string;

3. }

4.

5. interface Iperson {

6. // Merges place into existing Iperson

7. place: string;

8. }

9.

10. const person: Iperson = { name: “Name1”, place: “space” };

11.

12. type PersonType = {

13. name: string;

14. };

15.

16. // type PersonType = {

17. // // Compiler error: Duplicate identifier ‘PersonType’

18. // place: string;

19. // };

20.

21. // const person1: PersonType = { name: “name2”, place:

“time” }; // place does not exist

Type inference

There are two ways to handle type inference in TypeScript.

When we provide the type explicitly, it is called Explicit

typing, and when TypeScript infers the type implicitly using

the assigned value, it is called Implicit typing.

Explicit typing

Whenever we provide the type to a variable explicitly, it

is called explicit typing.

1. let myId: number = 25; // Explicitly typed as number

Implicit typing

TypeScript infers the data type of a variable even if the

type is not specified explicitly either by the initially

assigned value or function parameter default value, or

function return type. This is called implicit typing or

type inference.

If false is assigned to isAllowed variable without explicit

annotation, TypeScript concludes the data type to be

boolean using the false value.

1. let isAllowed = false; // Implicitly typed

2. // TypeScript infers type boolean as the value is

false

3. // let isAllowed: boolean = false;

4.

5. // Compiler error

6. // isAllowed = 25; // TS2322 [ERROR]: Type ‘number’ is

not assignable to type ‘boolean’.

If no value is provided during the declaration, any type is

inferred. This behavior can be disabled by setting

“noImplicitAny”: true; flag in tsconfig.json.

1. let anyVar; // ‘any’ type inferred

2. anyVar = 2.3;

3. anyVar = false;

4. anyVar = “I’m any”;

Type assertions

Type assertions are used to override types inferred by the

compiler. Type assertions can be defined in two ways:

as syntax

1. const word: unknown = “abcdefg”;

2. // const charCount: number = word.length; // error:

TS2571 [ERROR]: Object is of type ‘unknown’.

3. const charCount: number = (word as string).length;

Angle bracket <> syntax

1. const word: unknown = “abcdefg”;

2. // const charCount: number = word.length; // error:

TS2571 [ERROR]: Object is of type ‘unknown’.

3. const charCount: number = (<string>word).length;

Unions

In union types, a variable can hold values of two or more

types. Union is denoted by the vertical bar or pipe “|”

symbol.

1. let myNum: number = 24;

2. // myNum = “id2234”; // error: TS2322 [ERROR]: Type

‘string’ is not assignable to type ‘number’.

3. let myId: string | number = 25; // myId will accept either

string or number.

4. myId = “id2234”; // string is accepted

5.

6. // Using type

7. type myIdType = string | number;

8. let myId1: myIdType = 53;

9. myId1 = “id1234”;

Intersections

Intersection types are created by combining all the

properties and methods of two different types. Ampersand

is used to create intersection types.

1. interface IPerson {

2. name: string;

3. age: number;

4. }

5.

6. interface IEmployee {

7. employeeId: number;

8. }

9.

10. // PersonType will have all the props of IPerson &

IEmployee

11. type PersonType = IPerson & IEmployee;

12.

13. const printMe = (person: PersonType): PersonType => {

14. return person;

15. };

16.

17. const user: PersonType = {

18. name: “name1”,

19. age: 25,

20. employeeId: 555,

21. };

22.

23. const result = printMe(user);

24. console.log(result);

Classes

TypeScript allows an object-oriented programming approach

with the help of classes. In OOP terms, class is a blueprint

used to create an instance or object. In general, a class can

have the following entities:

constructor(): Invoked whenever an instance of the class

is to be created.

fields: A variable or property.

method: A function

Modifiers

Modifiers are access controllers for the fields of the class.

There are three modifiers named public, private, and

protected, used for fields and methods.

public

This is the default modifier which allows access to the

field/method outside class.

1. class Person {

2. name: string; // public

3. age: number; // public

4.

5. // Called during instance creation

6. constructor(name: string, age: number) {

7. this.name = name;

8. this.age = age;

9. }

10.

11. printMe() {

12. console.log(this.name, this.age); // this refers to

‘person’ instance

13. }

14. }

15.

16. const person = new Person(“me”, 99); // Calls

contructor,with name=”me” and age=99

17. person.printMe();

18. console.log(person.age); // public property is accessible

outside class

private

It does not allow access to the field/method outside class.

Even the subclasses do not have access to private

properties. It is defined by either a private keyword or

ECMAScript’s hash(#) modifier.

1. class Person {

2. name: string;

3. private _age: number;

4. #isActive: boolean; // private identifier

5.

6. constructor(name: string, age: number, isActive: boolean

= true) {

7. this.name = name;

8. this.age = age;

9. this.#isActive = isActive;

10. }

11.

12. printMe() {

13. console.log(this.name, this.age, this.#isActive);

14. }

15. }

16.

17. const person = new Person(“me”, 99);

18. person.printMe();

19. console.log(person.name);

20.

21. /**

22. * error: TS2341 [ERROR]: Property ‘age’ is private and

only accessible within class ‘Person’.

23. */

24. // console.log(person.age);

25.

26. /**

27. * TS18013 [ERROR]: Property ‘#isActive’ is not accessible

28. * outside class ‘Person’ because it has a private

identifier.

29. */

30. // console.log(person.#isActive);

protected

It does not allow access to the field/method outside class,

but the subclasses do have access to its fields.

1. class Person {

2. name: string;

3. protected age: number; // protected field

4.

5. constructor(name: string = “unnamed”, age: number = 0) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. printMe() {

11. console.log(this.name, this.age);

12. }

13. }

14.

15. class User extends Person {

16. userId: number;

17.

18. constructor(userId: number, name: string, age: number) {

19. super(name, age);

20. this.userId = userId;

21. }

22.

23. printMe() {

24. console.log(this.name);

25. console.log(this.age); // protected field age of

Person class is accessible to subclasses

26. }

27. }

28.

29. const user = new User(1, “me”, 99);

30. user.printMe();

31.

32. /**

33. * error: TS2445 [ERROR]: Property ‘age’ is protected and

only accessible within

34. * class ‘Person’ and its subclasses.

35. */

36. // console.log(user.age);

Getter and Setter

As we saw in the modifier section, private and protected,

fields/methods are not accessible outside the class. We will

need to access them in some situations. Getters and Setters

will be helpful in such cases.

1. class Person {

2. name: string;

3. private _age: number;

4. #isActive: boolean;

5.

6. constructor(name: string, age: number, isActive: boolean

= true) {

7. this.name = name;

8. this.age = age;

9. this.#isActive = isActive;

10. }

11.

12. printMe() {

13. console.log(this.name, this.age, this.#isActive);

14. }

15.

16. get _age() {

17. return this.age;

18. }

19.

20. set _age(value: number) {

21. this.age = value;

22. }

23.

24. get Is_active() {

25. return this.#isActive;

26. }

27. set Is_active(value: boolean) {

28. this.#isActive = value;

29. }

30. }

31.

32. const person = new Person(“me”, 99);

33. person.printMe();

34. console.log(person.name);

35.

36. /**

37. * error: TS2341 [ERROR]: Property ‘age’ is private and

only accessible within class ‘Person’.

38. */

39. // console.log(person.age);

40.

41. console.log(person._age);

42. person._age = 11;

43. console.log(person._age);

44.

45. /**

46. * TS18013 [ERROR]: Property ‘#isActive’ is not accessible

47. * outside class ‘Person’ because it has a private

identifier.

48. */

49. // console.log(person.#isActive);

50.

51. console.log(person.Is_active);

52. person.Is_active = false;

53. console.log(person.Is_active);

Static

It is used to define a property that belongs to the class and

not its instance. This means that the static field remains the

same for all class instances. It is useful in scenarios where

we want a single copy of a field shared across all the

instances. In the following example, we are using static

instanceCount to count the number of instances of the Person

object.

1. class Person {

2. name: string; // public

3. age: number; // public

4.

5. // static property shared across instances

6. static instanceCount: number = 0;

7.

8. constructor(name: string, age: number) {

9. this.name = name;

10. this.age = age;

11.

12. // TS2576 [ERROR]: Property ‘instanceCount’ is a

static member of type ‘Person’.

13. // this.instanceCount += 1;

14.

15. // Class property

16. Person.instanceCount += 1;

17. }

18.

19. printMe() {

20. console.log(this.name, this.age);

21. }

22. printTotalPersons() {

23. console.log(“Total persons: “, Person.instanceCount);

24. }

25. }

26.

27. const person = new Person(“me”, 99);

28. person.printMe();

29. person.printTotalPersons(); // instanceCount = 1;

30.

31. const person2 = new Person(“you”, 29);

32. person2.printMe();

33. person2.printTotalPersons(); // instanceCount = 2;

Abstract

Abstract class is a common base class (for example, Person)

with a basic structure that can be inherited by other classes

(for example, Employee, Employer).

1. abstract class Person {

2. name: string; // public

3. age: number; // public

4.

5. constructor(name: string, age: number) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. printMe() {

11. console.log(this.name, this.age);

12. }

13. }

14.

15. /**

16. * error: TS2511 [ERROR]: Cannot create an instance of an

abstract class.

17. */

18. // const person = new Person(“employee”, 39);

19. // person.printMe();

20.

21. class Employee extends Person {}

22. class Employer extends Person {}

23.

24. const employee = new Employee(“employee”, 39);

25. employee.printMe();

26.

27. const employer = new Employer(“employer”, 99);

28. employer.printMe();

Static versus dynamic typing

While writing applications, we come across programming

languages which fall into either static or dynamic type

systems. Static typing provides type safety during compile

time but takes more time in the development process,

whereas dynamic typing allows us to write code faster but

may have errors and bugs which get caught only during run

time.

1. // Static typing (TypeScript)

2. let id: number = 235; // Type is determined in compile-

time

3. // id = “332w”; // Error. Type change not allowed

4. // Type inferred by TypeScript

5. let myId = 235; // number type inferred by value

6. // myId = “332w”; // Error. Type change not allowed

7.

8. // Dynamic typing (JavaScript)

9. let id1 = 10; // Type is determined in the runtime

10. id1 = “132w”; // Type change allowed

Static typing Dynamic typing

Data type Needs to be specified

explicitly

No need to specify data type

explicitly

Type

checking

At compile-time At runtime

Type change Not allowed Allowed

Languages C, C++, Java, C# Python, JavaScript, Ruby

Strong versus weak typing

Strong typing means type conversions are not allowed

implicitly, whereas weak typing means type conversions can

be done implicitly.

Strong typing (Python)

1. id = 34 + “sfs” // Error: unsupported operand type(s) for

+: ‘int’ and ‘str’

// Weak typing (JavaScript)

1. let id = 34 + “abc”; // results “34abc” because of type

casting

Strong typing Weak typing

Languages Python JavaScript

Type

conversion

Only manual Automatic and manual

Example 1 + “2” // gives error in

Python

1 + “2” // results “12” in

JavaScript

TypeScript setup

Before Deno, TypeScript had to be installed via “npm”. But, as

Deno ships with TypeScript, we can start writing TypeScript

code directly. But, if you intend to use TypeScript outside the

Deno environment, you will have to install it using npm

globally.

Note: Make sure you have installed node & npm.

npm install -g typescript

Once done, check if typescript is installed by running:

tsc --version

tsc --help

tsconfig.json

It is a TypeScript configuration/settings file that indicates the

root of the TypeScript project and also specifies root files

and compiler options. Deno provides a default tsconfig.json,

which can be checked here.

(https://deno.land/manual/getting_started/typescript

#custom-typescript-compiler-options)

Conclusion

TypeScript is a widely revered and accepted superset of

JavaScript providing type safety. Its popularity in the

industry is one of the reasons Deno made it the primary

language in its setup.

We have covered the TypeScript basics in this chapter, and

there is much more we can learn in the entire journey, as

TypeScript will be our language of choice for Deno

programming. We will get hands-on practice with TypeScript

in upcoming chapters.

Meanwhile, you can always try different TypeScript features

directly in the TS Playground

(https://www.typescriptlang.org/play/).

With this chapter, our foundation section (Deno, TypeScript)

is completed, and we will get started with hands-on

programming with Deno in the upcoming chapter, where we

will setup Deno and get to know basic Deno commands.

https://deno.land/manual/getting_started/typescript#custom-typescript-compiler-options
https://www.typescriptlang.org/play/

CHAPTER 3

Setting Up Deno

Introduction

We are now ready to get our hands-on experience running

Deno in this section. Before getting started, we need to set

up the development environment for Deno. Coding or

programming is only one of the major aspects of software

engineering. There are other major factors involved that

allow us to engineer and ship well-crafted software

applications in an estimated timeframe.

Structure

In this chapter, we will cover the following points:

Installing Deno

Development tools

Terminal

zsh + Oh my zsh

Vim

VS Code (with extensions)

Git and GitHub

Postman

Docker

Silver searcher

Database

MongoDB + MongoDB Atlas

Postgres

Redis

Heroku CLI

Pomodoro Technique

Tmux

Objectives

We will be installing Deno via terminal, and we will also have

a brief overview of some major development tools and

technologies required during Deno development. We will be

using them while working on the projects later on. Though

optional, these tools will provide a better developer

experience and organization. We will also learn to set up

some of the popular development tools useful for

developers to be productive and organized.

Installing Deno

Installing Deno is quite easy and can be done using a single

terminal command. There are various ways to install Deno

on your machine as follows:

Shell (MacOS, Linux):

curl -fsSL https://deno.land/x/install/install.sh | sh

Install specific version:

curl -fsSL https://deno.land/x/install/install.sh | sh -s

v1.5.4

PowerShell (Windows):

iwr https://deno.land/x/install/install.ps1 -useb | iex

Install specific version:

$v=”1.5.4”; iwr https://deno.land/x/install/install.ps1 -useb

| iex

Homebrew (MacOS):

brew install deno

Check if Deno is installed by running:

deno --version

Deno can be upgraded by running:

deno upgrade

Deno can be upgraded to a specific version by running:

deno upgrade --version 1.5.3

Development tools

Productivity, focus, and organization are critical aspects of a

developer’s day-to-day life. They allow us to manage and

organize our workflow so we can create more value with a

systematic and organized approach.

Development tools are one important aspect of software

engineering that is often ignored or sidelined. These tools

are very helpful for increased productivity and better

organization. They let us focus on the prime part, that is,

software development, whereas they manage other factors

efficiently for us. Let us have an overview of some of the

major tools used by developers worldwide.

Terminal

This is where we live in the programming world for most of

our time. Getting familiar with it gives us an upper edge

while planning and executing daily tasks or scripts as they

are known in the software world. This is the place where we

will execute Deno commands (from installing Deno to

running Deno applications). You could use UNIX terminal for

Linux/mac or PowerShell for windows OS.

zsh + oh my zsh

While using the terminal, zsh (Z shell) and oh my zsh (zsh

framework) can level up your overall development

experience and productivity. Check out the GitHub page for

installation guides. Oh my zsh comes with some great

plugins, as shown in figure 3.1.

Install zsh

https://github.com/ohmyzsh/ohmyzsh/wiki/Installing-

ZSH

Install oh my zsh

https://github.com/ohmyzsh/ohmyzsh

Figure 3.1: Terminal with zsh + oh my zsh setup

Theme: powerlevel10k

Plugins: Git, zsh-syntax-highlighting, and zsh-

autosuggestions

Vim

Vim (also known as vi) is a legendary text editor used for

fast and efficient text operations. Vim has been in the

industry for decades and has maintained its ranking in the

topmost editors for all these years. It is a keyboard-centric

application that focuses on keyboard commands to perform

complex text operations. Vim has its own keybinding, which

needs some time to get used to, resulting in better control

over text manipulation and cursor movements.

https://github.com/ohmyzsh/ohmyzsh/wiki/Installing-ZSH
https://github.com/ohmyzsh/ohmyzsh

There are many legends associated with vim, and editor war

is perhaps the most famous of all. There is a famous legend

about the rivalry between vim and emacs back in the 90s.

Vim can be used via VS Code Extension or directly from the

terminal.

Install vim

https://www.vim.org/download.php

VS Code

VS Code is an open-source IDE developed by Microsoft. It is

available on all platforms (Windows, Linux, and macOS) and

is one of the most popular and widely used IDE at the

moment.

It is built with Electron—A JavaScript framework for the

development of cross-platform desktop applications. We will

be using it for coding Deno applications. Installing VS Code

on any platform is very easy. Open

https://code.visualstudio.com/download and download

and run the executable file for your OS.

VS Code extensions

We will list a few useful extensions while developing Deno

programs in VS Code. These extensions can be searched

and installed from VS Code.

Deno: Enables Deno support for VS Code

Prettier: A code formatter to prettify your Deno code

ESLint: A linter that analyses your ES code for issues

Vim: Enable vim support in VS Code

GitLens: Visualized git experience in VS Code

Git and GitHub

https://www.vim.org/download.php
https://code.visualstudio.com/download

Git is a distributed version control system developed by

Linus Torvalds (Creator of the Linux kernel). It is widely used

in the Software Industry for code versioning and

management. Head over to https://git-

scm.com/downloads to install it on your OS.

GitHub is a source code hosting site owned by Microsoft. It

uses Git for version control and source code management.

Head over to https://github.com/ and sign up if you have

not yet. We will use it for hosting our Deno code.

Postman

A platform for API development and testing, it helps us

manage the API collections and test our APIs with GUI. We

will be using it to test our APIs. Head over to

https://www.postman.com/downloads/ to download and

install Postman on your OS platform.

Docker

Docker is a container-based software development platform

that runs the entire application as an isolated process. It is a

very useful tool in containerization and microservices.

Docker has brought the container revolution that changed

the way an application is developed and deployed.

Docker was ranked #1 most wanted, #2 most loved, and #3

most popular platforms in Stack Overflow survey 2020.

Install docker

https://docs.docker.com/engine/install/

Docker Compose

Docker Compose is a tool developed by the Docker team to

compose and run multiple docker containers as a single

service. We will be using it to define multiple

services/containers in the docker-compose.yml file. We can

https://git-scm.com/downloads
https://github.com/
https://www.postman.com/downloads/
https://docs.docker.com/engine/install/

then run all the defined services with the YAML

configurations using a single command.

Install docker-compose

https://docs.docker.com/compose/install/

Silver Searcher

A free and open-source command-line tool for searching

code fast from the terminal. Check out

https://github.com/ggreer/the_silver_searcher for

installation instructions. This tool will be helpful for quick

code searches from the terminal during Deno development.

Databases

There are two types of databases widely used in the

industry, relational databases (SQL and PostgreSQL) storing

data in tables as columns and rows and non-relational

databases (MongoDB, Redis, and ElasticSearch) storing the

data in collections. Postgres (RDBMS) and MongoDB (NoSQL)

databases are the most popular amongst databases.

PostgreSQL

PostgreSQL (also known as postgres) is a free and open-

source relational database management system

(RDBMS). It is a SQL-based database that uses SQL for data

management and stores the data in table format.

Install postgres

https://www.postgresql.org/download/

MongoDB and MongoDB Atlas

MongoDB is an open-source NoSQL database system that

uses JSON-like documents to store the data. There are two

ways to use MongoDB in Deno projects as follows:

https://docs.docker.com/compose/install/
https://github.com/ggreer/the_silver_searcher
https://www.postgresql.org/download/

1. Install MongoDB locally

This will install MongoDB on your machine, which can

be used as a database.

During the local development of Deno applications.

https://docs.mongodb.com/manual/installation/

2. MongoDB Atlas

It is a cloud-based database service that lets us use

MongoDB services without installing them locally. It has

a free-tier plan that we will be using as a database for

Deno projects. You can register yourself to get started

with MongoDB Atlas.

https://www.mongodb.com/cloud/atlas

Redis

Remote Dictionary Server (Redis) is an open-source, in-

memory database that stores data in key-value format. We

can always try it locally by following instructions on

https://redis.io/topics/quickstart

Redis docker image

https://hub.docker.com/_/redis

Heroku

It is a platform as a service (PAAS) used to deploy

applications written using different programming languages

for free.

Signup on Heroku

https://www.heroku.com/home

Heroku CLI

https://devcenter.heroku.com/articles/heroku-

cli#download-and-install

https://docs.mongodb.com/manual/installation/
https://www.mongodb.com/cloud/atlas
https://redis.io/topics/quickstart
https://hub.docker.com/_/redis
https://www.heroku.com/home
https://devcenter.heroku.com/articles/heroku-cli#download-and-install

Tmux

It is an open-source terminal multiplexer program that lets

you create multiple terminals from a single screen. It will be

a very useful utility while using the terminal. Please take a

look at the following screenshot:

Figure 3.2: Tmux

Pomodoro Technique

It is a time management technique used to break down

work into time intervals known as Pomodoro (the Italian

word for “tomato”), followed by a short/long break. It helps

us break our work into smaller tasks and work on each task

for certain Pomodoros/Pomodori. It has been beneficial to

many developers (including myself), and hence, it has made

its way into this chapter. You can learn more about it from

the official website:

https://francescocirillo.com/pages/pomodoro-

technique

https://francescocirillo.com/pages/pomodoro-technique

Term Length

Pomodoro 25 minutes

Short break 5 minutes

Long break 15 or 25 minutes

Table 3.1: Pomodoro technique terms

Conclusion

We have explored some of the major tools useful during

software development. We will be using many of the

mentioned tools while creating Deno applications. Though

many of these tools are optional for Deno development, we

still recommend using them to have a better development

experience. We will learn about the Deno Ecosystem,

including CLI, Standard modules, and the nest.land (Deno

package registry that uses blockchain), and other stuff in

the upcoming chapter.

CHAPTER 4

Deno Ecosystem

Introduction

Before getting hands-on experience in Deno applications

development, we need to learn the runtime APIs, CLI

commands, and other functions. These APIs will provide

input/output and network-related functionality. We will

explore the Deno CLI, Deno runtime APIs (Web APIs + Deno

global APIs), standard modules library, third-party modules,

and module registries that together form the Deno

ecosystem.

Structure

In this chapter, we will cover the following points:

Deno CLI

Environment variables

Subcommands

Passing arguments

File watcher

Permission flags

Permissions allow-list

Deno runtime APIs

Web APIs

Deno global APIs

Variables

Classes

Deno modules

Standard library

Third-party modules

Module registries

deno.land/x

nest.land

Skypack CDN

esm.sh

jspm

Web

Dependency management

Objectives

We will be exploring the various sections of the Deno

ecosystem in this chapter. The ecosystem includes

command line interface (CLI) commands such as run,

install, and so on. The runtime APIs (Web + Deno global)

and standard modules (inspired by Go’s standard library)

such as uuid, http, fs, and so on. Apart from the standard

modules, there are thousands of third-party Deno modules

available for various applications such as http server (oak,

opine), graphql (oak-graphql), script runner (velociraptor),

orm (denodb), module managers (trex), file watcher

(denon), and so on.

We will be using some of them in the upcoming Deno

projects section. These modules are hosted on Deno’s

official registry at https://deno.land/x and also at

https://nest.land, which uses Permaweb where modules

can never be deleted. As Deno can import modules from

URL, modules hosted on, esm.sh, and skypack can also be

used for Deno application development.

https://deno.land/x
https://nest.land/

Deno CLI

Deno command-line interface (CLI) provides some

standard environment variables, subcommands, and options

out of the box. We will check some major ones in this

section.

Environment variables

Environment variables are stored outside the code program

and can be modified without any changes to the code itself.

These are very useful for setting values in different

execution environments (development, staging, production,

and so on). They are also used to store private/secret keys

that should not be exposed as part of the code. Deno offers

several environment variables, and we are listing a few

major ones as follows:

DENO_DIR: The directory used to cache downloaded

imports. Imports are downloaded only on the first

execution. The cached imports from DENO_DIR are then

used for subsequent runs

DENO_INSTALL_ROOT: The directory used to save modules

installed via Deno install command.

Subcommands

Deno subcommands are used to perform a variety of

operations, such as running the program, formatting the

code, installing scripts, and so on. We will be using the run

command most frequently along with the help to get help

about specific subcommands. We will check most of the

subcommands with a brief overview and code example in

the following section:

help: Useful to print general help information or of the

specified subcommand.

1. deno help # Lists subcommands, options, environment

variables

2. deno help run # Prints help info for the run command

run: It executes Deno program provided in any of the

following ways:

filename:

1. deno run welcome.ts # executes local welcome.ts

file

url:

1. deno run

https://deno.land/std@0.79.0/examples/welcome.ts

stdin:

1. cat welcome.ts | deno run -

install: Installs a Deno script as an executable in the

directory specified as DENO_INSTALL_ROOT.

1. # Install denon (file watcher) as an executable

2. deno install -qAf

https://deno.land/x/denon@2.4.5/denon.ts

fmt: Formatter for TypeScript/Javascript code.

1. deno fmt # Formats all the files in the current

directory recursively

doc: Prints documentation for provided source file

(module)

eval: Evaluate Javascript code from the terminal

1. deno eval “console.log(Deno.args)” deno land

2. # Output: [“deno”, “land”]

test: Runs tests using a built-in test runner. Files with

{*_,*.,}test.{js,mjs,ts,jsx,tsx} patterns are considered

for testing. Supports filter, coverage, fail-fast, and other

options.

cache: Downloads and compiles a module and saves all

its dependencies in the local cache without running the

code.

1. deno cache https://deno.land/std/http/file_server.ts

bundle: Bundles a single JavaScript file with all

dependencies.

completions: Outputs Deno shell completion script to

the provided source file.

1. # Install Deno completions as a plugin in oh-my-zsh

2. mkdir ~/.oh-my-zsh/custom/plugins/deno

3. deno completions zsh > ~/.oh-my-

zsh/custom/plugins/deno/_deno

4. # Add deno in ~/.zshrc plugin

5. plugins=(… deno) // … represents other plugins

compile: Compiles provided script into self-contained

executable.

Passing arguments

Arguments are useful whenever a dynamic value needs to

be provided to the code. Arguments can be passed to the

script by specifying them after the script name in the

following format:

1. deno run [FLAGS] [SCRIPT] [ARGUMENTS]

The preceding format starts with deno executable command

followed by run subcommand, which executes the provided

script followed by optional security flags such as --allow-net,

--allow-read, and so on. The path for the script to be

executed is then provided, followed by optional arguments.

All the entries (separated by space) provided after the script

are considered as arguments and are made available via

Deno.args variable.

We can use the preceding format for running Deno scripts

with arguments. Create a file named args.ts in the projects

folder (like home/my/work/deno/passing-arguments) with the

following code:

1. // args.ts

2. console.log(Deno.args);

The preceding code simply logs Deno runtime variable

Deno.args, which is an array of provided arguments. An

empty array [] is logged if no arguments are provided, as

shown in figure 4.1:

Figure 4.1: Passing arguments

We will now pass two arguments deno and land, to the args.ts

file. As shown in figure 4.1, the console should log [“deno”,

“land”] after running the following code:

1. deno run args.ts deno land

2. # Output: [“deno”, “land”]

The preceding code runs the args.ts file with two additional

parameters deno and land. As Deno considers all the entries

passed after the file name separated with space as

arguments, the entries are made available to the args.ts file

in Deno.args variable.

Note: Flags should not be passed after the script

name as they will be considered as arguments.

The --allow-net flag passed before args.ts script is

considered as a flag, as shown in the following code:

1. deno run --allow-net args.ts deno land # Args [“deno”,

“land”]. allow-net is a flag.

The --allow-net flag passed after args.ts script is considered

as an argument, as shown in the following code:

1. deno run args.ts name --allow-net # Args[“name”, “--allow-

net”]. Allow-net is not a flag

File watcher

Deno will run the script in watch mode if --watch option is

provided. It will rerun the script whenever a change is

detected in the script. Watch mode watches for changes in

the script and all its imports. This feature is still in unstable

mode, which means it is not suitable for production use and

will likely have breaking changes. For such features, we will

have to use the --unstable flag along with --watch flag:

1. # Watch welcome.ts and rerun if changes detected

2. deno run --watch --unstable welcome.ts

Permission flags

Unlike Node, Deno does not provide access by default to the

network, input/output, unless asked explicitly via permission

flags. This functionality makes Deno very secure compared

to Node. The following table includes all the major

permission flags:

Permission Description Command

--allow-net Allows network access deno run --allow-net example.ts

--allow-read Allows read operation deno run --allow-read

example.ts

--allow-write Allows write operation deno run --allow-write

example.ts

--allow-run Allows running subprocesses deno run --allow-run example.ts

--allow-env Allows environment access deno run --allow-env example.ts

--allow-plugin Allows use of plugins deno run --allow-plugin

example.ts

--allow-all Allows all permissions deno run -A example.ts # -A = -

-allow-all

Table 4.1: Permission flags

Permissions allow-list

By default, flags such as allow-write and allow-net provide

access to any path or domain. To limit access to a specific

domain/path, we use a permissions allow-list. Only

mentioned paths in the list are allowed access to the

resource.

Create a file named permission_list.ts and add code that

uses the fetch API to fetch resources from sites deno.land,

github.com, and google.com, respectively, as shown in the

following code:

1. // permission_list.ts

2. fetch(“https://deno.land”);

3. fetch(“https://github.com”);

4. fetch(“https://google.com”); // Throws error if not added

in permission_list

We would not get any network access error as all domains

are allowed when we run the permission_list.ts script with --

allow-net flag without permission list, as shown as follows:

1. # All domains are allowed to access the network

2. $ deno run --allow-net permission_list.ts

If we run the permission_list.ts script with the permission list

allowing network access deno.land and github.com only,

network access to all other domains will not be allowed, as

shown in the following code:

1. # Only ‘deno.land’ and ‘github.com’ domains are allowed

network access

2. $ deno run --allow-net=deno.land,github.com allow-

net_example.ts

We used the domain for the allow-net permission list.

Similarly, we can provide allowed paths for allow-read and

allow-write flags. The following code reads previously

created file args.ts and requires an allow-read flag. It uses

readTextFile function from Deno API to read the args.ts file

contents as utf8 encoded string.

1. // allow-read-list_example.ts

2. const argsContent = await Deno.readTextFile(“./args.ts”);

3. console.log(argsContent);

If we run the preceding code with the following command, it

would log the contents of args.ts to console:

1. # Only ‘args.ts’ file is allowed to be read

2. $ deno run --allow-read=args.ts allow-read-list_example.ts

The following command would throw PermissionDenied error

as args.ts is not added in the permission list:

1. # Only ‘args1.ts’, ‘args2.ts’ files are allowed to be read

2. $ deno run --allow-read=args1.ts,args2.ts allow-read-

list_example.ts

Deno runtime APIs

Deno provides several number of runtime API functions that

are useful during application development. All these runtime

functions are documented at doc.deno.land

(https://doc.deno.land/https/github.com/denoland/de

no/releases/latest/download/lib.deno.d.ts). These

functions can be categorized into two sections, namely, Web

(browser) APIs and Deno global APIs.

Web APIs

Deno focuses on using existing Web standard APIs instead

of creating new ones. Browser APIs such as fetch, setTimeout,

and many other Web APIs are available in Deno. This gives

an advantage that the developer familiar with web APIs can

use them directly. We will list these APIs in the following

table:

Web API Description

Fetch Used to make HTTP requests and fetch a resource

from the network. It returns a promise.

addEventListener Adds an event listener in the global scope.

removeEventListener Removes eventListener added by the addEventListener

function from the global scope

Alert A standard alert function that shows an alert message

and waits until Enter key is pressed

setInterval Calls provided function repeatedly after provided

interval until it is cleared using clearInterval function

clearInterval Cancels an action initiated by setInterval

setTimeout Invokes function after the specified time period

https://doc.deno.land/https/github.com/denoland/deno/releases/latest/download/lib.deno.d.ts

clearTimeout Cancels delayed action initiated by setTimeout

Btoa Creates base-64 ASCII encoded string from the

provided string

Atob Decodes string of data encoded by base-64 encoder

like btoa

Confirm Shows provided message and wait for user input.

Returns user input in boolean (only y and Y are true)

Prompt Shows provided message and wait for user input.

Returns user input in string format

dispatchEvent Dispatches event in the global scope and invokes

registered listeners. Returns false for a cancelable

event or if a listener called Event.preventDefault()

Table 4.2: Web APIs

Deno global APIs

All non-Web standard APIs are made available via Deno

global namespace. APIs for i/o (Deno.readFile, Deno.writeFile)

and networking (Deno.listen, Deno.connect) are available in

this namespace.

Note that many of the functions have synchronous versions

available.

For example, create function has a synchronous method

createSync.

We will list the Web APIs and their synchronous versions (if

available) in the following table:

Deno API Sync Description

listen – Used to create a listener with options

for hostname, port, and transport

close – Closes previously opened resource ID

(rid)

connect – Connects to the provided hostname,

port

copy – Copies from source to destination

cwd – Returns current working directory (cwd)

as a string

run – Spawns a new subprocess. The

subprocess command must be

defined as an array to the cmd key

exit – Exits the Deno process. An optional

error code can be provided as an

argument(default=0)

open openSync Open a file to perform read, write, and

create operations

copyFile copyFileSync Copies contents and permissions of

one file to another file

create createSync Creates a file if none exists or

truncates the existing one

mkdir mkdirSync Creates a new directory with a

provided string path

readDir readDirSync Reads directory at the provided path

and returns Deno.dirEntry iterable.

Error is thrown if the path is not a

directory

readFile readFileSync Reads file as an array of bytes. The

bytes can be converted to a string

using TextDecoder. Returns an empty

array if the path contains a directory

readTextFile readTextFileSync Reads file as an utf8 encoded string.

Throws an error if the path contains a

directory

remove removeSync Removes file or directory at the

provided path. Throws error for a non-

empty directory(with recursive option

is not set to true), the path not found,

permission denied

rename renameSync Renames/Moves resource (file or

directory) from old path to new path.

Overwrites a new path if it already

exists

chmod chmodSync Changes permissions of provided file

or directory using the three octal

sequence called mode

chown chownSync Changes owner of file or directory (not

available on Windows OS)

writeFile writeFileSync Writes data (Array of bytes encoded

by TextEncoder) at the provided path

by either creating a new file or

overwriting the existing one

writeTextFile writeTextFileSync Writes data (string) at the provided

path by either creating a new file or

overwriting the existing one

Table 4.3: Deno APIs

Variables

Deno provides variables for various applications. It includes

variables for CLI arguments, build-related info, environment

variables, and so on. The following table lists major

variables in the Deno runtime.

Variable Description

args Returns array of arguments in string. Arguments are

provided via CLI

build Provides system-related info such as os, target, arch,

vendor, and env

env Provides functions to set, get, and delete environment

variables. toObject function lists all the available

environment variables

mainModule Returns URL of the entrypoint module in a string

pid Returns the current process id of the runtime

stdin A handle for stdin (Standard Input)

stdout A handle for stdout (Standard Output)

stderr A handle for stderr (Standard Error)

version Provides version-related info for Deno, Typescript, and

v8

Table 4.4: Deno variables

Classes

There are several classes in Deno runtime for different

purposes. We will be using Request and Response classes in our

upcoming projects. The following list contains the major

classes with the description:

Class Description

Blob A file-like object containing raw, immutable data.

Event Class representing DOM Event. Contains target

attribute, PreventDefault() method, and so on.

File Provides file-related info like lastModified, name, type,

size, and so on. It is inherited from the Blob class.

FormData Represents form fields in key-value pair format.

Provides methods such as get, set, keys, values, entries,

and so on.

Headers Represents header-related data in object format.

Location Provides location/URL of the linked object via

globalThis.location

Request Represents a request related info

Response Represents a response to the request

TextEncoder Provides utf8 encoding functionality useful to encode

a string to an array of bytes

TextDecoder Provides decoding function to decode an array of

bytes to string

URL Provides object with static methods required to create

object URLs

WebSocket Provides APIs to create and manage WebSocket

connections and send and receive data

Table 4.5: Deno classes

Deno modules

The runtime ecosystem cannot be completed without the

modules (standard and third-party). In fact, the popularity of

Node is owed to a large number of third-party modules

available via npm. There are two types of modules available

in Deno: Standard Library and Third-Party modules. We will

check both types of modules in the following sections.

Standard library

Deno standard library is a collection of standard modules

and is inspired by the standard library of the Go language.

All the standard modules are reviewed by Deno Core Team

and do not have external dependencies. These modules are

available at https://deno.land/std. We have listed them in

the following table:

Module Description

archive Module providing Tar, Untar functionality.

Async Asynchronous task utility with deferred (Promise with

reject, resolve functions), delay (delay promise

resolve) functionality.

Bytes Provides helper functions to manipulate bytes.

Datetime Datetime module with parse (string to date), format

(date to string), difference (the difference between 2

dates), and some additional functions.

Encoding Ported from Go’s encoding module, this module is

useful for dealing with external data structures such

as csv, yaml, toml, and so on

flags A command-line argument parser based on minimist

npm module. It is useful for CLI tool development.

Fmt Provides i/o formatting functions like printf.

Fs Provides helper functions for file system manipulation.

Provides emptyDir, ensureDir, exists, move, copy, walk, and

other functions. This module is unstable as of now,

and hence, will need to use –unstable flag during

usage.

Hash Used to create a hash with a large number of

supported algorithms.

https://deno.land/std

http Useful for creating HTTP Web servers. It also includes

a file server function to serve local files over HTTP.

Io Provides functions like Reader, Writer, Streams, and so

on.

Log A logger module with log levels.

Mime Used to deal with multipart form data.

Node The Compatibility module for Node’s Standard Library.

Enables use of Node modules like lodash in Deno.

Path Provides path related functions.

Permissions Provides Permissions to the scripts.

Signal Provides APIs to capture and monitor OS signals like

SIGINT.

Testing Provides test-related utilities such as assert, equal,

and so on.

Textproto Inspired by Go’s textproto module.

Uuid Provides functions to generate and validate

Universal unique identifier (UUID) with support for

versions 1, 4, and 5.

Wasi Provides the implementation for WebAssembly

System Interface (WASI)

ws Useful to create WebSocket servers.

Table 4.6: Deno standard library

Third-party modules

Deno 1.0 was released in May 2020. Since then, there have

been a lot of modules already available for different

purposes, such as Web servers (oak), authentication (onyx),

databases (mongo), ORMs (denodb), JWT (djwt), and so on. We

are going to have a brief overview of many of such modules

in the following table:

Third-Party Module Description

oak An extremely popular web middleware framework,

including middlewares like routing. It is inspired by

koa framework.

Aleph A react framework inspired by Next.js that supports

Server-Side Rendering (SSR), Static Site

Generator (SSG), and so on.

Pagic A React framework for Static Site Generation

drash A lightweight REST MicroFramework that supports API

Development and Single Page Applications (SPA)

development using React and Vue.

Servest A web server compatible with std/http, it supports

WebSocket and JSX out of the box.

Denon A Deno alternative to Node’s nodemon that restarts

the app or server automatically whenever changes are

detected. It also serves as a replacement wrapper for

deno command.

Webview A cross-platform module for creating desktop GUI

apps.

Denodb ORM supports MySQL, PostgreSQL, MongoDB,

MariaDB, and SQLite databases.

Trex An NPM-like module manager that aligns with Deno’s

philosophy. It uses import_map.json as a module import

controller.

Velociraptor An alternative to npm scripts, it supports scripts

written in yaml, json, and ts format.

Postgres A driver module for the PostgreSQL database.

Redis A Redis client module for Deno.

Dvm A Deno version manager is similar to nvm.

Mongo A Mongo driver module for MongoDB database.

Vno A compiler and bundler module for Vue components.

Obsidian A GraphQL client and server module with caching

support.

Eta A lightweight JavaScript Template Engine is written in

TypeScript.

Mysql Driver module for MySQL database.

Sqlite Driver module for SQLite database.

Ssgo Static Site Generator (SSG) module built with Deno.

Onyx Authentication module inspired by passport.js, which

is compatible with oak.

Otpauth OTP authentication module.

Aqua A web framework module that is fast and minimal.

Denox A cross-platform script runner module.

Dejs EJS Template Engine module.

Dotenv A module to handle environment variables.

Udd A module to update Deno dependencies to the latest

versions.

Djwt A module to use JSON Web Token (JWT) in Deno.

Cotton A SQL Database Toolkit module.

Denomander A command-line interface (CLI) tool module.

Lume A Static Site Generator module for Deno inspired by

Jekyll.

Oak_graphql A GraphQL middleware module for oak framework.

Drake A Task Runner module inspired by make, rake, and

jake.

rhum A Testing framework module for Deno which is

lightweight from the creators of drash.

websocket A WebSocket module for Deno.

dext.js A Preact framework module inspired by next.js.

denoliver A static file server module with live reload support.

wocket A WebSocket module from the creators of drash.

dem A module version manager for Deno.

bundler A bundler module to transpile TypeScript code for the

web.

dmm A Deno module manager from the creators of drash.

opencv A pre-compiled OpenCV to JavaScript + WebAssembly

module.

garn_validator A validator module with many validation functions.

watch A file watcher module for Deno.

smtp A Simple Mail Transfer Protocol (SMTP) module

for sending and receiving mails.

nanoid A NanoID implementation module for Deno.

superoak HTTP Assertions module for oak framework.

dpx NPX like module runner (runs module without

installing) for Deno.

drash_middleware A middleware module for drash framework from the

creators of drash.

cors A Cross-Origin Resource Sharing (CORS) module

for Deno.

postcss A Postcss module for Deno.

oak_middleware A middleware collection module for oak framework

from the creators of oak.

Table 4.7: Deno third-party modules

Module registries

Module registries are places where the Deno modules are

hosted. Just like npm in Node, Deno has several module

registries built using modern features like blockchain.

After listing the standard and third-party modules for Deno,

we will be checking the major module registries available for

Deno:

Module Registry Description

deno.land/x An official module registry hosting large numbers of

third-party modules (1651 modules at the time of

writing)

nest.land A modern Deno module registry built using

blockweave, a derivative of blockchain. The

published modules are immutable, decentralized, and

permanent, meaning they can never be deleted.

Skypack CDN A CDN to host pre-optimized ES modules offered by

Pika. It provides minification, caching, polyfilling, and

converts npm packages to ES modules. Whenever ?

dts is appended to the module URL, it automatically

fetches type declarations using the X-TypeScript-

Types header.

esm.sh A CDN for ES modules from the creator of the aleph

framework that bundles all dependencies (except peer

dependencies) for every module. Node packages are

transformed to ES modules using esbuild to run on

Deno via polyfill. It provides type declarations via the

X-TypeScript-Types header by default.

jspm A module CDN that converts npm packages to ES

modules.

Web Any ECMAScript module hosted on the internet (e.g.,

GitHub) can be used via ESM import supported by

Deno.

Table 4.8: Deno module registries

Central dependencies in deps.ts

There is one convention in Deno land to import all the

dependencies in the deps.ts file. These dependencies are re-

exported and used throughout the project. This helps us

maintain all the dependencies in a single place. Similarly,

development dependencies are kept in a single file named

dev_deps.ts.

In the following code, we are importing all the dependency

URLs in the deps.ts file and exporting them to use across the

project. We are importing the titleCase function from a third-

party module case that returns each word in the title case.

We are also importing assertEquals function from the testing

module from Deno’s standard library.

// deps.ts

1. import titleCase from

“https://deno.land/x/case@v2.1.0/titleCase.ts”;

2. import { assertEquals } from

“https://deno.land/std@0.97.0/testing/asserts.ts”;

3.

4. export { titleCase, assertEquals };

We will now import the modules from deps.ts file in hello.ts

file, as shown in the following code:

// hello.ts

1. import { titleCase, assertEquals } from “./deps.ts”;

2.

3. console.log(titleCase(“hello world”));

4. assertEquals(“hello”, “helloz”);

The preceding code logs “hello world“ string in title case

“Hello World“ and the assertEquals function throws

AssertionError as actual (“hello”) and expected (“helloz”)

values are not equal, as shown in the following figure:

Figure 4.2: deps.ts example

Conclusion

We are now concluding this chapter on the Deno Ecosystem.

It outlined various sections of the Deno Ecosystem, such as

runtime API, CLI, standard and third-party modules, module

registries, and so on. Being a new technology in the

industry, the Deno Ecosystem is evolving at a rapid pace.

We would likely see the Deno community come up with new

and exciting ideas and implementations in the coming time,

as they have done until now.

With the end of this chapter, we are now ready to move to

the most exciting part of the book—writing code. We will

start with writing a Deno application from scratch in the

upcoming chapters. Till then, keep exploring the Deno

ecosystem.

CHAPTER 5

Todos App—API

Introduction

We are now ready to enter the Deno coding battlefield or

playground (it depends on how you see it). We will create a

CREATE, RETRIEVE, UPDATE, and DELETE (CRUD)

application in this chapter. A Todos app. It will be a great

way to begin our Deno coding journey. We will learn, tweak,

and play around with the Todos app created using a Full

Stack React framework called Aleph.js (aleph), listed in Table

4.7 of Chapter 4, Deno Ecosystem. The API will be

implemented in this chapter, whereas the UI will be

implemented in the next one.

Structure

In this chapter, we will cover the following topics:

Introduction to Aleph.js

Features

Concepts

Pages

Routing

APIs

Todos app API implementation

Routes

GET (list)

POST

PATCH

GET (object)

DELETE

Objective

We will be able to create a server-side API using the Aleph.js

framework after studying this chapter. The aim of this

chapter is to get familiar with Aleph.js and use its concepts

to create API. Aleph.js is a Full Stack React framework used

to create API and UI as well. We will start the chapter by

introducing Aleph.js features and concepts. The API for the

Todos app will then be developed using Aleph.js.

We will also learn to implement different Representational

State Transfer (REST) API actions like POST (CREATE), GET

(RETRIEVE), PATCH (UPDATE), and DELETE (DELETE) after

studying this chapter.

Introducing Aleph.js

Aleph.js is a Full Stack React framework inspired by Next.js.

It uses the ES module import syntax without the need for

Webpack or other bundlers. It does not re-bundle every

change but only the changed module and updates instantly

in the browser by Hot Module Replacement (HMR) with

React Fast Refresh.

Aleph.js can be installed using the following command:

1. deno install -A -f -n aleph

https://deno.land/x/aleph/cli.ts

Features

Aleph.js is a feature-rich framework that provides server-

side rendering, static site generation, API development, and

many other features. Some of the major features are as

follows:

File-system-based pages and API routing

API development

Server-side rendering

Static site generation

Zero config

Use of import maps

HMR with Fast Refresh

Access to Deno runtime within component via useDeno

hook

Command Line Interface

Aleph.js Command Line Interface (CLI) provides

commands for static site generation, creating a new app

with boilerplate code, upgrading Aleph.js, and so on. All

major commands are listed in the following table:

Command Description

aleph init Create new app with boilerplate code

aleph upgrade Upgrade aleph.js

aleph Prints all cli commands

aleph -h / aleph --help Prints help message

aleph -v / aleph --version Prints aleph.js version

aleph dev Starts server in development mode

aleph start Starts server in production mode

aleph build Builds the app to static site

aleph analyze Analyzes app dependencies

Table 5.1: Aleph.js CLI

aleph init command provides an example app with

boilerplate code. We will be using it to initialize the demo

app as follows:

1. aleph init hello-aleph // Creates hello-aleph folder with

boilerplate code

2. cd hello-aleph

3. aleph dev // Runs app in development mode

You can visit http://localhost:8080 to view the demo app,

as shown in the following figure:

Figure 5.1: Aleph.js Demo App

Concepts

There are three basic concepts we need to learn to develop

a full stack app using aleph. We will use these concepts for

creating pages, routing based on filenames, and API.

Pages

Any file with extension *.js, *.jsx, *.ts, *tsx, and *.mjs in

/pages folder having a default exported React component is

considered as a page. As aleph.js supports filename-based

routing, each page will then be associated with a route

based on the filename.

Example:

If we create pages/hello.tsx with the default exported React

component as shown in the following code, then we can

access that page at http://localhost:8080/hello, as shown

in figure 5.2.

1. // pages/hello.tsx

2. import React from “react”;

3.

4. export default function Hello() {

5. return “Hello Deno!”;

6. }

Figure 5.2: Hello Deno! Page

Every page is pre-rendered, meaning HTML for the page is

generated in advance, resulting in better performance and

SEO. Aleph.js also supports a hydration process, where

associated JavaScript code for the HTML is run when the

page is loaded by the browser, making it fully interactive.

Routing

Aleph.js supports file-system-based routing. It automatically

routes files named index to the root of the directory.

Dynamic Routes are also supported via bracket syntax

([]) or $ sign prefix.

// Index routing

pages/index.tsx => localhost:8080/

pages/hello/index.tsx => localhost:8080/hello

// Dynamic routing

// $ prefix

pages/hello/$name.tsx => pages/hello/buddy

The following code uses a params object of useRouter() hook to

obtain the passed parameter value. The property key of

params is determined by the filename ($name).

1. // pages/hello/$name.tsx

2. import React from “react”;

3. import { useRouter } from

“https://deno.land/x/aleph/framework/react/mod.ts”;

4.

5.

6. export default function Hello() {

7. const { params } = useRouter();

8. return `Hello ${params.name}!`;

9. }

If we enter route /hello/buddy in the browser, where buddy is

the value of the name parameter, we shall see the response

shown in figure 5.3.

Figure 5.3: Dynamic routes ($ Syntax)

// Bracket syntax []

pages/places/[place].ts => pages/places/munich

Similar to $ sign syntax, a bracket syntax [] does serve the

same purpose as shown as follows. Here, the parameter key

is the place (derived from the filename [place].ts). If we

enter /places/munich in the browser, where Munich is the

value of the place parameter, we shall see the response as

shown in figure 5.4.

1. // pages/places/[place].tsx

2. import React from “react”;

3. import { useRouter } from

“https://deno.land/x/aleph/framework/react/mod.ts”;

4.

5. export default function Places() {

6. const { params } = useRouter();

7.

8. return <h1>{`${params.place} is a wonderful place!`}</h1>;

9. }

Figure 5.4: Dynamic routes (bracket syntax)

Nested Routes are supported and can be achieved as

shown in the following code:

pages/users/[username]/account.tsx =>

pages/users/user1/account

1. // pages/users/[username]/account.tsx

2. import React from “react”;

3. import { useRouter } from

“https://deno.land/x/aleph/framework/react/mod.ts”;

4.

5. export default function UserAccount() {

6. const { params } = useRouter();

7.

8. return <h1>{`${params.username}’s account.`}</h1>;

9. }

Figure 5.5: Nested routes

Application Programming Interface (API)

Similar to pages, any file with *.ts, *.js, *.mjs extension

having default exported function inside api/ folder is

mapped to /api/* and is treated as an API endpoint. The

exported function will be of type APIHandler.

1. // api/users/index.ts

2. import type { APIHandler} from “aleph/types.d.ts”;

3.

4. const users = [

5. { id: 1, name: “abc”, place: “Munich” },

6. { id: 2, name: “name2”, place: “wonderland” },

7.];

8.

9. export const handler: APIHandler = ({response}) => {

10. response.status = 200;

11. response.json(users);

12. }

Figure 5.6: API routing

Dynamic API routes are also supported. We can create a

file like api/users/[id].ts with the default export function.

The id can then be passed as a parameter like api/users/1234

and will be obtained from the router.params object.

1. // api/users/[id].ts

2. import type { APIHandler } from “aleph/types.d.ts”;

3.

4. export const handler: APIHandler = async ({response,

router}) => {

5. response.json(router.params);

6. }

Figure 5.7: Dynamic API route

Initializing Todos App

We have checked the major Aleph.js concepts required for

full-stack application development. We will now initialize our

todos app using the aleph init command. Head over to the

terminal and type the following commands. Make sure you

have installed Deno, Aleph, and VS code before running the

commands.

1. aleph init todos-app

2. cd todos-app

3. code . // Make sure VS code is installed

4. aleph dev // Server running on http://localhost:8080

Project structure

The project structure shown in figure 5.8 is familiar to us.

We have already seen API and page concepts. The app.tsx

file is the entry point for our app. styles folder contains

styling-related files, the components folder contains React

Component files, the public folder contains all the static

files, and lib folder contains custom hooks and other utility

functions.

Figure 5.8: Aleph project structure

Our development approach will be creating API endpoints

first and then creating UI that consumes the API.

Todos API

Before creating the UI for Todos App, we will need to create

the API endpoints for CRUD actions. Create an index.ts file in

a folder called todos in the api folder. It should have a path

like api/todos/index.ts.

1. // api/todos/index.ts

2. import type { APIHandler} from “aleph/types.d.ts”;

3.

4. export const handler: APIHandler = ({response}) => {

5. response.json({ message: “Hello Aleph!” });

6. }

Preceding code exports a function of type APIHandler. If you

hit http://localhost:8080/api/todos using Postman, curl,

or browser, the function will be called with the context

argument containing request, response, and router objects.

The response.json function is then used to reply with JSON

content, as shown in figure 5.9.

Figure 5.9: api/todos endpoint

GET (list)

Now, we should modify the file to GET all existing todos

instead of the message. We will create a Todos array with

dummy todos, as shown here:

1. // api/todos/index.ts

2. import type { APIHandler} from “aleph/types.d.ts”;

3.

4. const todos = [

5. { id: 1, title: “todo1” },

6. { id: 2, title: “todo2” },

7.];

8.

9. export const handler: APIHandler = ({request, response})

=> {

10. switch (request.method) {

11. case “GET”:

12. response.json(todos);

13. break;

14.

15. default:

16. response.status = 405;

17. response.json({ message: “Action not allowed” });

18. break;

19. }

20. }

Here, we are using a switch statement with the request

method (GET, POST) as a case.

Figure 5.10: GET/api/todos endpoint

It will respond with all the existing todos for the GET method

(figure 5.10), and if the requested action is not defined in

the switch statement, it will reply with the 405 Method Not

Allowed code (figure 5.11). The break skips the following

cases and ensures that only matched case code is executed.

Figure 5.11: 405 code for undefined actions

POST

We will now implement CREATE (POST) action for adding todo.

1. …

2. export const handler: APIHandler = async ({request,

response}) => {

3. switch (request.method) {

4. case “GET”:

5. response.json(todos);

6. break;

7.

8. case “POST”:

9. let body;

10.

11. try {

12. body = await request.json();

13. } catch (error) {

14. response.status = 400;

15. response.json({ error: error.message });

16. break;

17. }

18.

19. const title = body.title ? body.title.toLowerCase() :

null;

20. if (!title) {

21. response.status = 400;

22. response.json({

23. message: “title not provided”,

24. });

25. break;

26. }

27.

28. let todo = todos.find((_todo) => _todo.title ===

title);

29.

30. if (!todo) {

31. todo = {

32. id: todos[todos.length - 1].id + 1,

33. title, // Shorthand for title: title

34. };

35.

36. todos.push(todo);

37. }

38. response.json(todo);

39. break;

40.

41. default:

42. …

We are decoding the request body using the request.json()

method that parses the request body as JSON. 400 code is

responded with an error message for invalid or no JSON and

also if the title is not provided. We are using the

toLowerCase() function to get todo titles in lowercase. This will

help us find existing Todo with the same title using the find

method. If an existing todo is not found, a new todo will be

created and added to the Todos list. The id property set uses

the id of the last todo item (last Todo id + 1). The Todo

(existing or created) will then be returned using the

response.json function. Now, try adding a todo, as shown in

figure 5.12.

Figure 5.12: POST api/todos API endpoint

The GET api/todos endpoint should contain the newly created

Todo, as shown in figure 5.13.

Figure 5.13: Newly created Todo in GET api/todos

Now, close the server by hitting Ctrl + c and start again

using the aleph dev command. You will not see the newly

created Todo. This is because we are not saving the data to

a file or database. To persist the data, we will create a

todos.json file with the following JSON data in db folder.

// db/todos.json

1. [

2. { “id”: 1, “title”: “todo1” },

3. { “id”: 2, “title”: “todo2” }

4.]

The saved todos can then be retrieved using readTodos utility

function created in lib/read_todos.ts file. We are using

Deno.readTextFileSync function to read the text synchronously

and then parse the JSON using JSON.parse.

1. lib/read_todos.ts

2. const readTodos = () =>

JSON.parse(Deno.readTextFileSync(“db/todos.json”));

3.

4. export default readTodos;

Now, we will obtain all saved todos using readTodos in the

index.ts file. Replace the existing todos code with the

following code:

1. // api/todos/index.ts

2. import type { APIHandler} from “aleph/types.d.ts”;

3. import readTodos from “../../lib/read_todos.ts”;

4.

5. export const handler: APIHandler = async ({request,

response}) => {

6. const todos = readTodos();

7. …

We will create another utility function named writeTodo in the

lib/write_todo.ts file to persist the added Todo by writing it

to the todos.json file.

1. // lib/write_todos.ts

2. const writeTodos = (todos) =>

3. Deno.writeTextFileSync(“db/todos.json”,

JSON.stringify(todos));

4.

5. export default writeTodos;

The typescript compiler shows a message for implicit any

type for todos parameter as shown in the following figure:

Figure 5.14: TypeScript warning for implicit any type

Let us fix this by adding an ITodo interface in the

interfaces/ITodo.ts file.

1. // interfaces/ITodo.ts

2. export default interface ITodo {

3. id: number;

4. title: string;

5. }

We will provide ITodo as a type for the Todos parameter in

write_todos.ts. The bracket [] after ITodo indicates an ITodo

array. The TypeScript warning should be gone now.

1. // utils/write_todos.ts

2. import ITodo from “../interfaces/ITodo.ts”;

3.

4. const writeTodos = (todos: ITodo[]) =>

5. …

We will use the writeTodo function and ITodo interface in the

index.ts file.

1. // api/todos/index.ts

2. …

3. let todo = todos.find((_todo: ITodo) => _todo.title ===

title); // Modified code

4. …

5. todos.push(todo);

6. writeTodos(todos); // New code

7. …

If you restart the server after adding a Todo, you should see

the created Todo persists in the todos.json file and is

included in the GET api/todos response.

GET (object), PATCH, and DELETE

We will now implement the remaining actions (GET, PUT, and

DELETE). All these actions will be performed on the existing

Todo. Hence, we will require a unique identifier like the id of

the Todo to be passed as a parameter. We will achieve this

with the use of the Dynamic API Route, which we learned

previously in the API section.

As we learned in the Routing section, the bracket syntax is

used to create a Dynamic Route. We will create the file

api/todos/[id].ts with the following code:

1. // api/todos/[id].ts

2. import type { APIHandler } from “aleph/types.d.ts”;

3.

4. export const handler:APIHandler = async ({request,

response, router}) => {

5. const id = parseInt(router.params.id);

6. response.json({ id: id });

7. }

The function looks for id param (derived from [id].ts

filename) in the router.params object. We are using the

parseInt function to convert the id from string to integer. The

parsed integer is then returned as a response.

If we hit the endpoint api/todos/3, we will get a response as

shown in figure 5.15.

Figure 5.15: Dynamic API route

1. …

2. import ITodo from “../interfaces/ITodo.ts”;

3. import readTodos from “../../lib/read_todos.ts”;

4.

5. …

6. const todos = readTodos();

7. const id = parseInt(router.params.id);

8. const todo = todos.find((_todo: ITodo) => _todo.id ===

id);

9.

10. if (todo) {

11. response.json(todo);

12. } else {

13. response.status = 400;

14. response.json({ error: “Todo not found” });

15. }

16. …

We will use the find function to get the existing Todo with

provided id. If the Todo exists, we will return it, or else we

will reply with 404 code, and a “Todo not found” error

message.

Just like index.ts, we will use a switch statement to match

request.method GET, PATCH, and DELETE. The modified code is

shown as follows:

1. …

2.

3. import writeTodos from “../../lib/write_todos.ts”;

4.

5. …

6. if (todo) {

7. switch (request.method) {

8. case “GET”:

9. response.json(todo);

10. break;

11.

12. case “PATCH”:

13. let body;

14. try {

15. body = await request.json();

16. } catch (error) {

17. response.status = 400;

18. response.json({ error: error.message });

19. break;

20. }

21.

22. const title = body.title ? lowerCase(body.title) :

null;

23. if (!title) {

24. response.status = 400

25. response.json({

26. error: “title not provided”,

27. });

28. break;

29. }

30.

31. todos.forEach((_todo: ITodo) => {

32. if (_todo.id === todo.id) {

33. _todo.title = title;

34. }

35. });

36. writeTodos(todos);

37. response.json(todo);

38. break;

39.

40. case “DELETE”:

41. const _todos = todos.filter((_todo: ITodo) => _todo.id

!== id);

42. writeTodos(_todos);

43. response.json({ message: “Deleted” });

44. break;

45.

46. default:

47. response.status = 405;

48. response.json({ message: “Action not allowed” });

49. break;

50. }

51. } else {

52. …

For GET method, we are simply returning the matched Todo.

This GET method differs from the one in the index.ts file. It

provides only a single todo (derived using provided id),

whereas the GET in index.ts provides a list/array of all the

todos.

For DELETE, we are filtering out the matched Todo from todos

and then writing the updated todos to the todos.json file

using the writeTodos function.

For PATCH, the initial code is similar to that of the POST method

from index.ts file. We obtain an updated title from the JSON

provided by readBody(“json”). Then using forEach, we are

updating only the matched Todo of todos data. The updated

Todos is then saved to the file using the writeTodos function,

and the updated Todo is replied.

Conclusion

The Todos App API endpoints have been implemented in this

chapter. We can now use Postman, or curl to test them. We

have also learned the features and basic concepts of

Aleph.js.

The next phase will be to implement the UI for Todos App.

We will check the unique features offered by Aleph.js for

React Development and implement the UI in the upcoming

chapter.

CHAPTER 6

Todos App—UI

Implementation

Introduction

We have implemented REST APIs for Todos App in the

previous chapter. We will implement UI for the same in this

chapter. We will be using a Full Stack React framework

named aleph.js for this purpose. We will also be using the

styled components library to create UI components and

the axiod to make network requests.

Structure

In this chapter, we will cover the following topics:

Styled components

Card

Text

Button

Input

Checkbox

Todos components

TodoList

TodoDetails

Objective

After completion of this chapter, you will be able to create UI

for react application using the aleph module. You should

also be able to create custom components using styled

components and integrate them into the app. You should

also be able to make network requests using axiod module.

Styled components

Styled components is a React library that allows us to create

components with css styles having a component-level

scope. We will use this library to create components such as

Button, Text, Card, and so on. Switch over to the todos-app

folder from a terminal that was initialized in the previous

chapter. To install styled-components, we will use the

following trex command:

trex -c styled=”https://esm.sh/styled-components@5.3.1”

Once installed, we will create various components in

StyledComponents.tsx file. The code for each component will

be as follows:

1. import styled, { css } from “styled”

2.

3. export const Card = styled.div`

4. display: flex;

5. flex-direction: row;

6. background: #ddd;

7. border-radius: 5px;

8. margin: 10px;

9. justify-content: space-between;

10. align-items: center;

11. max-width: 600px;

12. margin: “auto”;

13. `

14.

15. export const Text = styled.span`

16. font-size: 20px;

17. font-weight: bold;

18. flex: 1;

19. margin-left: 10px;

20. ${props => props.completed && css`

21. text-decoration: line-through;

22. color: grey

23. `}

24. `

25. export const Button = styled.button`

26. /* Adapt the colors based on primary prop */

27. background: ${props => props.primary ? “palevioletred” :

“white”};

28. color: ${props => props.primary ? “white” :

“palevioletred”};

29.

30. font-size: 1em;

31. margin: 1em;

32. padding: 0.25em 1em;

33. border: 2px solid palevioletred;

34. border-radius: 3px;

35. cursor: pointer;

36. ${props => props.disabled && css`

37. background: lightgrey;

38. cursor: not-allowed;

39. border: 2px solid lightgrey;

40. `

41. }

42. `;

43.

44. export const Input = styled.input`

45. flex:1;

46. padding: 10px;

47. margin: 10px;

48. border: none;

49. background: #ddd;

50. font-size: 20px;

51. font-weight: bold;

52. ${props => props.completed && css`

53. text-decoration: line-through;

54. color: grey

55. `}

56. `

57.

58. export const Checkbox = styled.input`

59. type: “checkbox”;

60. color: red;

61. margin-left: 10px;

62. `

63.

64. export const Header1 = styled.h1`

65.

66. `

In the preceding code, we are styling various components

such as Card, Button, Text, and so on using styled and css

from styled components. Each component is then exported

and used across the project. We are creating our own UI

library using this approach.

We are passing a function to some components. These

functions are used to set values based on props. We are

using the completed prop in Text and Input components to

adapt color and text decoration accordingly. We are using

the primary flag in the Button component to adapt the color

as per the prop.

Creating Todos components

We will now use the custom-styled components in

TodoDetails and TodoList components. We will start by adding

the TodoList component in pages/index.tsx file, which is the

entry point of our project as follows:

1. import React from ‘react’

2. import TodoList from “../components/TodoList.tsx”

3.

4. export default function Home() {

5. return <TodoList />

6. }

We will check the details of the TodoList component in the

next section.

TodoList

This component will be used to add new Todo and list

existing Todos. We will be using custom components from

StyledComponents.tsx file for this purpose. The API calls will be

made using axiod module. The code for this file is as follows:

1. // components/TodoList.tsx

2.

3. import React from ‘react’

4. import { useDeno } from

“https://deno.land/x/aleph/framework/react/mod.ts”;

5. import axiod from “axiod”;

6.

7. import TodoDetails from “./TodoDetails.tsx”;

8. import { Button, Card, Input, Header1 } from

“./StyledComponents.tsx”;

9.

10. import readTodos from “../lib/read_todos.ts”;

11.

12. export default function Page() {

13. const _todos = useDeno(async () => {

14. return await readTodos();

15. }, { revalidate: 1 });

16. const [todos, setTodos] = React.useState(_todos);

17. const [todoInput, setTodoInput] =

React. useState(“”);

18.

19. const getTodos = () => {

20. axiod.get(“/api/todos”).then((res) => {

21. console.log(res);

22. setTodos(res.data);

23. }).catch((err) => {

24. console.log(err);

25. });

26. };

27.

28. const addTodo = () => {

29. if (!todoInput) {

30. alert(“Please enter a todo text”);

31. return;

32. }

33. axiod.post(“/api/todos”, { title: todoInput

}).then((res) => {

34. console.log(res);

35. getTodos();

36. alert(“Todo added successfully”);

37. }).catch((err) => {

38. console.log(err);

39. alert(“Error adding todo”);

40. });

41. };

42. return (

43. <>

44. <Header1>Todos</Header1>

45. <Card>

46. <Input

47. placeholder=”Add Todo”

48. value={todoInput}

49. onChange={(e) =>

setTodoInput(e.target. value)}

50. />

51. <Button primary onClick={addTodo}>+</Button>

52. </Card>

53. {todos.map((todo: any) => <TodoDetails key={todo.id}

getTodos={getTodos} todo={todo} />)}

54. </>

55.);

56. }

In the preceding code, we are importing the custom

components, axiod module and readTodos function. We are

also importing the useDeno function that allows Deno runtime

usage in the component. We are fetching the Todos from

JSON file in it. The state todos is used to store the list of

Todos, whereas todoInput is used to store add Todo text box

input.

We are using getTodos function to fetch Todos by making an

API call using axiod module. The fetched Todos are then

stored in todos state. Similarly, the addTodo function is used to

make POST requests to add new Todo in the JSON file. We are

passing todoInput as title in the request body. If the Todo is

added successfully, we fetch the Todos using getTodos

function.

The styled-components Header1, Card, Input, and Button are

used for UI creation. TodoDetails component is used to render

each Todo detail. We will check its details in the next

section.

Figure 6.1 shows the TodoList component with Add Todo

Input.

Figure 6.1: TodoList component

TodoDetails

We will be using this component to render each added todo

element. We will provide two actions, namely, Save and

Delete. We will also use a checkbox element to mark the Todo

as completed. The code for this component is written in

TodoDetails.tsx file as follows:

1. // components/TodoDetails.tsx

2.

3. import React from “react”;

4. import { Button, Card, Checkbox, Input, Text } from

“./StyledComponents.tsx”;

5. import axiod from “axiod”;

6.

7. interface ITodo {

8. id: number;

9. title: string;

10. completed: boolean;

11. }

12.

13. interface IProps {

14. todo: ITodo;

15. getTodos: () => void;

16. }

17.

18. function TodoDetails(props: IProps) {

19. const { todo, getTodos } = props;

20. const [isCompleted, setIsCompleted] =

React.useState(todo.completed);

21. const [todoText, setTodoText] =

React.useState(todo.title);

22.

23. const editTodo = () => {

24. if (!todoText) {

25. alert(“Please enter a todo text”);

26. return;

27. }

28. axiod.patch(`/api/todos/${todo.id}`, {

29. title: todoText,

30. completed: isCompleted,

31. }).then((res) => {

32. console.log(res);

33. alert(“Todo updated successfully”);

34. }).catch((err) => {

35. console.log(err);

36. alert(“Error updating todo”);

37. setTodoText(todo.title);

38. });

39. };

40.

41. const deleteTodo = () => {

42. axiod.delete(`/api/todos/${todo.id}`, { title:

todoText }).then((res) => {

43. console.log(res);

44. alert(“Todo deleted successfully”);

45. getTodos();

46. }).catch((err) => {

47. console.log(err);

48. alert(“Error deleting todo”);

49. });

50. };

51.

52. return (

53. <Card>

54. <Checkbox

55. type=”checkbox”

56. defaultChecked={isCompleted}

57. onChange={() => setIsCompleted(!isCompleted)}

58. />

59. <Input

60. completed={isCompleted}

61. value={todoText}

62. onChange={(e) => setTodoText(e.target.value)}

63. disabled={isCompleted}

64. />

65. <Button primary onClick={editTodo}>Save</Button>

66. <Button onClick={deleteTodo}>Delete</Button>

67. </Card>

68.);

69. }

70.

71. export default TodoDetails;

72.

73.

In the preceding code, we are importing custom-styled

components Button, Card, Checkbox, Input, Text, and axiod. We

then defined two interfaces ITodo (Todo details) with id,

title, and completed fields and IProps (props passed by

parent component) with todo and getTodos fields. We have

also defined two states isCompleted (to mark Todo as

completed) with todo.completed as the initial value and

todoText (to store user input) with todo.title as the initial

value.

We have defined two actions editTodo and deleteTodo, for

updating the Todo and deleting the Todo, respectively. In

editTodo, we check if the edited todoText is empty or not. We

show the message if it is empty; else, we make a PATCH

request using axiod passing todoText as title and isCompleted

as completed flag. In deleteTodo action, we are passing todo.id

as a param and fetching the Todos list if the delete request

is successful.

Figure 6.2 shows the TodoDetails component with Save and

Delete actions along with a checkbox.

Figure 6.2: TodoDetails component

For the JSX part, we are using the Card element as a

container. The Checkbox element has isCompleted as default

value and the onChange function will invoke setIsCompleted

function with negated isCompleted (!isCompleted). The Input

element has completed prop set to isCompleted value. This is

done to change the styling of the element according to the

flag as shown in the StyledComponents.tsx file. The element is

bound with todoText using value and onChange attributes. The

disabled flag is also set to isCompleted similar to completed flag.

In the end, we are Button element with onClick attribute to

Edit or Delete the Todo by invoking the respective function.

Figure 6.3 shows the TodoDetails component with completed

status.

Figure 6.3: TodoDetails component with completed status

Conclusion

We have created a UI for the Full Stack React application in

this chapter. We used the Aleph framework for this purpose.

We also used the Styled components module to create

custom components. Axiod was used to make API calls.

This knowledge will be useful for creating a Full Stack App

having API endpoints and UI using aleph. Our Todos App is

completed, and we will create a different project in the

upcoming chapters. We will create a GraphQL API server

using oak and oak-graphql modules in the next chapter, and

then we will create UI for a svelte app using snel module in

the subsequent chapter.

CHAPTER 7

Introduction to GraphQL,

Oak, and Oak-GraphQL

Introduction

We are going to learn the core Graph Query Language

(GraphQL) concepts along with its features in this chapter.

Once we cover the basics, we shall create an API server

(GraphQL) for the Phonebook App using these concepts in

the upcoming chapter. We will also introduce the Oak Web

framework and Oak GraphQL. Both will be used for GraphQL

API server implementation in the upcoming chapter.

Structure

In this chapter, we will cover the following topics:

GraphQL intro

Features

Precise fetching

Single API endpoint

Validation and type checking

Fragments

Auto-generated API docs

Core concepts

Schema

Type

Input

Query

Mutation

Relationship

Resolver

Introducing Oak framework

Introducing Oak-GraphQL

Objective

After completion of this chapter, you will be able to

understand and apply GraphQL core concepts such as

query, mutation, resolvers, type definitions, and so on. You

should also be able to use the Oak framework to create

Deno Web servers and the Oak-GraphQL module to create

GraphQL servers.

Introducing GraphQL

GraphQL is an open-source query language for APIs

developed by Facebook and released in 2015. It allows the

client to control the resolved data structure as opposed to a

fixed data structure in REST. This way, the client can query

only for the exact necessary data. It also allows mutations

(writing or changing data) and subscriptions (subscribing

to data updates). It is used by many large organizations,

such as Facebook, GitHub, Coursera, and Pinterest, to name

a few.

Features

GraphQL allows clients to query or mutate data across

multiple resources in a single request. It creates a single

entry point or API endpoint POST /graphql to query or

mutate the data. GraphQL also provides resolved data in the

same format as that of the requested query. Other GraphQL

features are explained in detail as follows.

Precise fetching

By allowing the client to fetch only required data, GraphQL

solves the data-related issues where the client gets more

than required data (over fetching) or less than required data

(under fetching).

Single API endpoint

Unlike REST, GraphQL will always have a single Endpoint

/graphql (POST), which can be used by the client to fetch

any data defined in the schema as GraphQL resolves the

request using the query passed in the request body.

Figure 7.1 fetches users data using /graphql endpoint by

providing the users query in the body as follows:

Figure 7.1: Fetch users

Figure 7.2 fetches Todos data using the same endpoint

/graphql by providing todos query in the body as follows:

Figure 7.2: Fetch Todos

As shown in figures 7.1 and 7.2, GraphQL allows fetching

users and todos from a single API endpoint using query

operation.

We can even fetch users and todos in a single request.

This is a very powerful feature of GraphQL that lets the

client get all the required data in a single request, which is

extremely useful for devices with slower networks.

Figure 7.3 fetches both users and todos in a single request as

follows:

Figure 7.3: Fetch Users and Todos

Validation and type checking

GraphQL uses a type system to validate the query. The

client can check which fields are available (with field type)

and whether the query is valid or not before making the

request.

Figure 7.4 demonstrates validation and type-checking

concepts for todos where someField field is not defined in the

schema as follows:

Figure 7.4: Validation

Fragments

GraphQL allows writing a reusable code fragment that can

be used across multiple queries. We can create a fragment

that replaces the repeated code unit and makes the queries

less cluttered and more readable.

Figure 7.5 shows code units repeated for todos (fetch all

Todos) and todo (fetch single Todo by id) queries as follows:

Figure 7.5: Repeated code unit

We will move the repeated code unit in the todoData

fragment and use it with the spread operator (…) in both

queries.

Figure 7.6 demonstrates the use of fragment for fetching

todoData and userData as follows:

Figure 7.6: Fragments

Fragments are very useful in complex queries used in

multiple places with many fields.

Autogenerated API documentation

GraphQL generates API documentation using the schema for

queries and mutations.

Figure 7.7 shows autogenerated API documentation for todo

using schema.

Figure 7.7: API docs

As the documentation is generated according to the

schema, every change in the schema is synced and

reflected in the docs.

If we change the user type from User to Int, docs will reflect

it, as shown in figure 7.8.

Figure 7.8: Synced docs

Core concepts

GraphQL provides a Schema for defining the data model, a

Resolver that resolves the request, along with actions like

query for reading data, mutations for writing data, and

subscription for subscribing to real-time data. We will cover

these concepts in the following section.

Schema

A Schema (a type system) is a contract between client and

server that defines the shape of the data. The schema

defines types that describe an entity or field and the

relationship between types. It lets the client discover

available data fields, queries, and mutations. The client

uses this schema to define the structure of resolved data.

GraphQL uses Schema Definition Language (SDL) to

define the schema. A schema for a sample Todos app can be

defined as follows:

1. type User {

2. userId: String!

3. name: String! # Scalar Type

4. todos: [Todo!]! # Object Type

5. }

6.

7. type Todo {

8. todoId: String!

9. title: String!

10. user: User!

11. }

12.

13. input UserInput {

14. name: String!

15. }

16.

17. input TodoInput {

18. title: String!

19. userId: String!

20. }

21.

22. type Query {

23. todos: [Todo!]!

24. todo(todoId: String!): Todo!

25. users: [User!]!

26. user(userId: String!): User!

27. }

28.

29. type Mutation {

30. addTodo(todo: TodoInput!): Todo

31. addUser(user: UserInput!): User

32. }

This schema can also be viewed via GraphQL playground, as

shown in figure 7.9.

Figure 7.9: GraphQL schema

Let us explain various keywords (type and input) used in the

preceding schema:

Type

Type is used to define the shape of the resolved query. The

schema shown in figure 7.9 defines two Object types User

and Todo. User type defines fields userId, name, and todos (an

array of Todo object type). Todo type defines fields todoId,

title, and user (of type User). Both object types are used by

the Query type while returning the corresponding data.

Input

Input is used to define the shape of client input during

mutation. It defines two input types, UserInput and TodoInput.

UserInput accepts a name argument, and TodoInput accepts

title and userId arguments. Both Input types are used for

creating or updating the corresponding entity by the

mutation type.

Query

Defines entry points for read operations to be executed by

the client. Four fields todos, todo, users, and user are defined

in the query. todos and users fields accept no arguments and

return array corresponding types. todo and user fields accept

the id of the entity and return the entity of corresponding

types.

Mutation

Defines entry points for write operations to be executed by

the client. addTodo and addUser fields are defined in this type.

addTodo accepts arguments of type TodoInput and returns data

of type Todo, whereas addUser accepts arguments of type

UserInput and returns data of type User.

Relationship

The Todos schema defines the relationship of type one-to-

many between User and Todo types. It means every Todo has

one user, and every user has many Todos.

As shown in figure 7.10, GraphQL gives flexibility to the

client to fetch all user-related Todos in a single query.

Figure 7.10: Relationships

Resolver

A resolver is a function used to resolve a query or mutation

by populating data for a single field in a schema. The

following code demonstrates the use of resolvers for a

previously defined schema:

1. export const resolvers = {

2. Query: {

3. todos: (parent: any, args: any, context: any, info:

any) => {

4. if (args.userId) return

getTodosByUserId(args.userId);

5. return getTodos();

6. },

7. todo: async (parent: any, args: any, context: any,

info: any) => {

8. return getTodo(args._id);

9. },

10. users: (parent: any, args: any, context: any, info:

any) => {

11. return getUsers();

12. },

13. user: async (parent: any, args: any, context: any,

info: any) => {

14. return getUser(args._id);

15. },

16. },

17. Mutation: {

18. addTodo: async (parent: any, args: any, context: any,

info: any) => {

19. const { title, userId } = args.todo;

20. return createTodo(title, userId);

21. },

22. addUser: async (parent: any, args: any, context: any,

info: any) => {

23. const { name } = args.user;

24. const user = createUser(name);

25. return user;

26. },

27. },

28. Todo: {

29. title: (parent: any, args: any, context: any, info:

any) => {

30. return parent.title;

31. },

32. user: async (parent: any, args: any, context: any,

info: any) => {

33. const user = await info.rootValue.Query.user(

34. parent,

35. { _id: parent.userId },

36. context,

37. info

38.);

39. return user;

40. },

41. },

42. User: {

43. name: (parent: any, args: any, context: any, info:

any) => {

44. return parent.name;

45. },

46. todos: async (parent: any, args: any, context: any,

info: any) => {

47. const todos = await resolvers.Query.todos(

48. parent,

49. { userId: parent._id },

50. context,

51. info

52.);

53. return todos;

54. },

55. },

56. };

57.

Let us see what is happening in the preceding code. We

define Query, Mutation, Todo, and User objects. Query object

contains todos (list), todo, users, and user objects. Similarly,

Mutation contains addTodo and addUser objects, each with the

same signature. The other objects User and Todo are required

for resolving internal fields (title and so on) of the respective

type. The data can then be fetched from various sources.

Each object mentioned previously accepts optional

parameters: parent, args, context, and info.

The parent is the return value for the field’s parent, and args

contains all the provided GraphQL arguments, a context is an

object whose content is available across all resolvers, and

info contains information such as field name, path, and so

on.

Introducing Oak framework

Oak is a Web framework for Deno, inspired by the koa

framework of node.js. It provides middleware functions that

are invoked in between the request and the response. Oak

provides the use() method to use the middleware function.

The following code demonstrates the Hello World server in

oak:

1. import { Application } from

“https://deno.land/x/oak@v7.7.0/mod.ts”;

2.

3. const app = new Application();

4.

5. app.use((ctx) => {

6. ctx.response.body = “Hello World!”;

7. });

8.

9. await app.listen({ port: 8000 });

In the preceding code, the Application instance app invokes

each middleware with context, which contains necessary

info such as app, cookies, request, response, state, assert(), and

throw(). Finally, the server starts listening on port 8000 for

incoming requests using listen() method.

Introducing Oak-GraphQL middleware

Oak-GraphQL module allows us to create a GraphQL API on

top of the oak server. We will be using Oak-GraphQL

middleware for GraphQL API implementation. A simple Hello

World GraphQL API can be set up as follows:

1. // oak_graphql_server.ts

2.

3. import {

4. Application,

5. Router,

6. RouterContext,

7. } from “https://deno.land/x/oak@v9.0.0/mod.ts”;

8. import {

9. applyGraphQL,

10. gql,

11. GQLError,

12. } from “https://deno.land/x/oak_graphql/mod.ts”;

13.

14. const app = new Application();

15. const types = gql`

16. type Query {

17. hello(name: String): String

18. }

19. `;

20.

21. const resolvers = {

22. Query: {

23. hello: (parent: any, { name }: any, context: any,

info: any) => {

24. if (!name) throw new GQLError(“Name not provided”);

25. return `Hello ${name}`;

26. },

27. },

28. };

29.

30. const GraphQLService = await applyGraphQL<Router>({

31. Router, // Same as Router: Router,

32. typeDefs: types,

33. resolvers: resolvers,

34. });

35.

36. app.use(GraphQLService.routes(),

GraphQLService.allowedMethods());

37.

38. console.log(“Server listening on

http://localhost:8080/graphql”);

39. await app.listen({ port: 8080 });

Preceding code imports required methods and classes from

oak (Application, Router, and RouterContext) and oak-graphql

(applyGraphQL, gql, and GQLError). After creating an

Application instance, type definitions are defined using gql

along with resolvers for the type definitions.

A GraphQLService is then created using the applyGraphQL

function that accepts an object with a Router, typeDefs, and

resolvers. Middlewares GraphQLService.routes(),

GraphQLService.allowedMethods() are then added to the app

using the use() method. Finally, the server starts and listens

to incoming requests using the listen() method on port

8080.

If we run the preceding code with the command deno run --

allow-net oak_graphql_server.ts and open URL

http://localhost:8080/graphql with query { hello(name:

“ABC”) } we should see the results shown in figure 7.11 as

follows:

Figure 7.11: GraphQL API Hello World

Conclusion

We have covered the basic features and concepts of

GraphQL, such as schema, resolver along with type, query,

and mutation. We also introduced the oak framework used

to create a Web server along with the Oak-GraphQL module

used to create a GraphQL server.

We will use the preceding GraphQL concepts to create a

GraphQL API server for the PhoneBook App using Oak and

Oak-GraphQL modules in the upcoming chapter.

CHAPTER 8

PhoneBook App—API

Implementation

Introduction

We will implement Graph Query Language (GraphQL)

Application Programming Interface (API) server in this

chapter. The basics of GraphQL we learnt previously will be

applied in this chapter for API implementation. We will use

oak and oak-graphql modules (introduced previously) to

implement the API server.

Structure

In this chapter, we will cover the following topics:

Initial setup

Version control using git

Trex as the package manager

Velociraptor as script runner

Oak GraphQL Server setup

Schema

Resolvers

DenoDB setup

DB

ElephantSQL PostgreSQL setup

Models

User

Contact

Controllers

Authentication

Objective

After completion of this chapter, you will be able to create

GraphQL API server using Oak and Oak-GraphQL modules. You

will learn the use of Object–relational mapping (ORM)

using the denodb module to connect to different databases

such as MySQL, PostgreSQL, NoSQL, and so on. You will also

learn the use of JSON Web Token (JWT) to authenticate

users using djwt module. You will also learn to setup a Deno

server project using trex and velociraptor modules.

Initial setup

We will start coding by initiating a git repository. Then we

shall install the oak and oak-graphql modules for creating Web

server. We will use trex package management module for

installing these modules.

Version control using git

Figure 8.1 shows git repo initialization, installation of trex

module, and installation of oak and oak-graphql using trex

module.

Figure 8.1: Initial setup

Trex as the package manager

Trex caches installed packages and add them to the

import_map.json file. Figure 8.2 shows the list of installed

modules (oak, oak-graphql) in the import_map.json file.

Figure 8.2: Installed modules in import_map.json

The installed modules can then be accessed as follows:

1. import { Application } from “oak”;

Velociraptor as script runner

Create a file named mod.ts in src folder with the following

code:

1. console.log(“Hello Velociraptor!”);

What is velociraptor, you would ask. It is a script runner

module for Deno. We will install velociraptor and run the

mod.ts file using it. Velociraptor can be installed using

https://nest.land/ package registry as follows:

1. deno install -qAn vr

https://x.nest.land/velociraptor@1.1.0/cli.ts

We will now create scripts.yaml file to add the script to run

the mod.ts file. Velociraptor detects files named scripts or

velociraptor with extension yml, yaml, json, and ts as script

files.

Figure 8.3 shows scripts.yaml file with dev script that

executes src/mod.ts file.

https://nest.land/

Figure 8.3: scripts.yaml file

If we run vr command in the terminal, we will see a list of

available scripts. We can then run the available script as

follows:

1. vr dev

Figure 8.4 shows commands to list available scripts and run

a script.

Figure 8.4: Velociraptor CLI

We have setup a Deno server project using trex and

velociraptor. Now, we will set up a Web server in the next

section.

Oak GraphQL server setup

We will setup a simple GraphQL server using oak and oak-

graphql modules. We will use oak-graphql code from previous

Chapter 7, Introduction to GraphQL, Oak, and Oak-GraphQL

to setup the server with few changes. We no longer need to

mention the module URL. Instead, we can mention the

module name mentioned in the import_map.json file.

1. import { Application, Router } from “oak”;

2. import { applyGraphQL, gql, GQLError } from “oak_graphql”;

We will structure the project by having mod.ts (main file),

middlewares.ts (GraphQL Middleware), schema.ts (GraphQL

schema/type definitions), and resolvers.ts (GraphQL

Resolver) files.

Figure 8.5 shows the project structure with the preceding

files:

Figure 8.5: Project structure

We will write code for each file one by one, starting from the

mod.ts file as follows:

1. // src/mod.ts

2. import { Application} from “oak”;

3. import {GraphQLService} from “./middlewares.ts”

4.

5. const app = new Application();

6.

7. app.use(GraphQLService.routes(),

GraphQLService.allowedMethods());

8.

9. console.log(“Server listening on

http://localhost:8080/graphql”);

10. await app.listen({ port: 8080 });

In the preceding code, we are creating oak server with

GraphQL Middleware called GraphQLService that can be

accessed at /graphql route.

1. // src/schema.ts

2. import { gql } from “oak_graphql”;

3.

4. export const types = gql`

5. type Query {

6. hello(name: String): String

7. }

8. `;

In the schema.ts file, we have defined a hello query that

accepts name argument. GraphQL validates incoming

requests according to data models defined in types. The

incoming request will then be resolved by resolvers.

1. // src/resolvers.ts

2. import { GQLError } from “oak_graphql”;

3.

4. export const resolvers = {

5. Query: {

6. hello: (parent: any, { name }: any, context: any,

info: any) => {

7. if (!name) throw new GQLError(“Name not provided”);

8. return `Hello ${name}`;

9. },

10. },

11. };

We need to update scripts.yaml file for import_map file path

and permissions. The file after the update will have the

following code:

1. # scripts.yaml

2. imap: import_map.json

3. unstable: true

4. allow:

5. - net

6. scripts:

7. dev:

8. cmd: src/mod.ts

9. desc: “run graphql server in dev mode”

10. watch: true

In the preceding code, imap points to import_map file path,

unstable flag allows unstable Deno features to be executed,

and allow includes net for allowing network access. We have

also added cmd (execution command), desc (description), and

watch (file watcher) fields to dev command.

Schema

Schema is a type of system that defines the shape of data.

It provides available data fields, queries, and mutations to

clients. We have already learned schema-related concepts

in the following chapter with code. We will add types,

queries, and mutations for User and Contact entities as

shown in the following code:

1. // src/schema.ts

2. import { gql } from “oak_graphql”;

3.

4. export const types = gql`

5. type User {

6. userId: String!

7. name: String!

8. contacts: [Contact!]!

9. email: String!

10. }

11.

12. type Contact {

13. contactId: String!

14. name: String!

15. phone: String

16. email: String

17. address: String

18. user: User!

19. }

20.

21. type Login {

22. token: String!

23. }

24.

25. input RegisterUserInput {

26. name: String!

27. email: String!

28. password: String!

29. }

30.

31. input LoginUserInput {

32. email: String!

33. password: String!

34. }

35.

36. input UpdateUserInput {

37. name: String

38. }

39.

40. input CreateContactInput {

41. name: String!

42. phone: String

43. email: String

44. address: String

45. }

46.

47. input UpdateContactInput {

48. contactId: String!

49. name: String

50. phone: String

51. email: String

52. address: String

53. }

54.

55. type Query {

56. user: User

57.

58. contacts: [Contact]

59. contact(contactId: String!): Contact

60.

61. login(user: LoginUserInput): Login

62. }

63.

64. type Mutation {

65. registerUser(user: RegisterUserInput!): User

66. deleteUser: Boolean

67. updateUser(user: UpdateUserInput!): Boolean

68.

69. addContact(contact: CreateContactInput!): Contact

70. deleteContact(contactId: String!): Boolean

71. updateContact(contact: UpdateContactInput!): Boolean

72. }

73. `;

74.

We have defined various types and inputs in the preceding

code. Let us explain them one by one.

User type

We are defining fields userId, name, contacts, and email for this

type. The client receives user-related data as per this type.

Let us explain each one of the fields. An exclamation mark

“!” after the field type denotes a non-nullable type.

userId: identifier or primary key

name: user’s name

contacts: user’s contacts in array

email: user’s email

Contact type

We are defining fields userId, name, contacts, and email for this

type. The client receives user-related data as per this type.

Let us explain each one of the fields. An exclamation mark

“!” after the field type denotes a non-nullable type.

contactId: Identifier or primary key

name: Name of the contact

phone: Phone number of the contact

email: Email of the contact

address: Address of the contact

user: userId of the creator of the contact

Login type

We are defining a token field in this type.

token: Access token used to access protected API

endpoints and identify requesting users.

RegisterUser Input

We are defining name, email, and password in this input type. It

will be used as a mutation to create a user.

name: Name of the user

Email: Email of the user.

Password: Password of the user.

LoginUser Input

We are defining email and password in this input type. Email

and password created during registration will be used to

authenticate the user and return the token.

Email: Email of the user.

Password: Password of the user.

UpdateUser Input

We are defining a single field name for this input. It will be

used to update user information.

CreateContact and UpdateContact Input

Here, we are defining name, email, phone, and address fields for

these types. Both types have identical fields, whereas

UpdateContact has an extra field contactId, which is used to

identify the contact to be updated.

Query Type

We have defined login, user, contacts, and contact queries for

reading operations. Login query accepts input user of type

LoginUserInput and returns data of Login type. user query

returns details of the currently authenticated user.

contacts query returns an array of contacts added by the

current user. It returns an array of Contact type. Contact

query returns single Contact data using contactId.

Mutation Type

We have defined registerUser, deleteUser, updateUser,

addContact, deleteContact, and updateContact queries for write

operations. These queries perform create, update, and

delete operations on User and Contact entities.

Resolvers

Queries and mutations defined in the schema previously will

be resolved by the resolver for the respective

query/mutation. Each resolver will perform database

operations and return data for the query/mutation. The code

for each resolver is as follows:

1. import {

2. getUser,

3. getUserByEmail,

4. createUser,

5. deleteUser,

6. updateUser,

7. getContactsByUserId,

8. getContact,

9. createContact,

10. deleteContact,

11. updateContact,

12. userLoader,

13. } from “./controllers.ts”;

14. import { authenticate } from “./auth.ts”;

15. import { GQLError } from “oak_graphql”;

16.

17. export const resolvers = {

18. Query: {

19. user: async (parent: any, args: any, context: any,

info: any) => {

20. if (!context?.userId) throw new

GQLError(“Authentication error”);

21. return getUser(context.userId);

22. },

23. contacts: (parent: any, args: any, context: any, info:

any) => {

24. if (!context?.userId) throw new

GQLError(“Authentication error”);

25. return getContactsByUserId(context.userId);

26. },

27. contact: async (parent: any, args: any, context: any,

info: any) => {

28. if (!context?.userId) throw new

GQLError(“Authentication error”);

29. return getContact(args.contactId);

30. },

31. login: async (parent: any, args: any, context: any,

info: any) => {

32. const { email, password } = args.user;

33. const user = await getUserByEmail(email);

34. if (!user) throw new GQLError(`Invalid email or

password`);

35. const authToken = await authenticate(user,

password);

36. if (!authToken) throw new GQLError(`Invalid email or

password`);

37. return { token: authToken };

38. },

39. },

40. Mutation: {

41. registerUser: async (parent: any, args: any, context:

any, info: any) => {

42. const { name, email, password } = args.user;

43. const user = await createUser(name, email,

password);

44. console.log(“created user :>> “, user);

45. return user;

46. },

47. deleteUser: async (parent: any, args: any, context:

any, info: any) => {

48. if (!context?.userId) throw new

GQLError(“Authentication error”);

49. return deleteUser(context.userId);

50. },

51. updateUser: async (parent: any, args: any, context:

any, info: any) => {

52. if (!context?.userId) throw new

GQLError(“Authentication error”);

53. const { name, isActive } = args.user;

54. return updateUser(context.userId, { name, isActive

});

55. },

56.

57. addContact: async (parent: any, args: any, context:

any, info: any) => {

58. if (!context?.userId) throw new

GQLError(“Authentication error”);

59. const contact = await createContact(args.contact,

context.userId);

60. console.log(“created user :>> “, contact);

61. return contact;

62. },

63. deleteContact: async (parent: any, args: any, context:

any, info: any) => {

64. if (!context?.userId) throw new

GQLError(“Authentication error”);

65. return deleteContact(args.contactId);

66. },

67. updateContact: async (parent: any, args: any, context:

any, info: any) => {

68. if (!context?.userId) throw new

GQLError(“Authentication error”);

69. console.log(`args`, args);

70. const { contactId, …contactData } = args.contact;

71. if (contactId) return updateContact(contactId,

contactData);

72. },

73. },

74. User: {

75. name: (parent: any, args: any, context: any, info:

any) => {

76. return parent.name;

77. },

78. contacts: async (parent: any, args: any, context: any,

info: any) => {

79. const contacts = await resolvers.Query.contacts(

80. parent,

81. {},

82. context,

83. info

84.);

85. return contacts;

86. },

87. },

88. Contact: {

89. name: (parent: any, args: any, context: any, info:

any) => {

90. return parent.name;

91. },

92. user: async (parent: any, args: any, context: any,

info: any) => {

93. return await userLoader.load(parent.userId);

94. },

95. },

96. };

97.

Our code for resolvers is based on the resolver code from

the previous chapter. We have defined Query, Mutation, User,

and Contact objects, each containing resolvers. Query object

contains user, contacts, contact, and login resolvers. Mutation

contains registerUser, updateUser, deleteUser, addContact,

updateContact, and deleteContact resolvers. The other objects,

User and Contact, are useful for resolving internal fields

(name, and so on) of the respective type. The data can then

be fetched from various sources. Each resolver function

accepts optional parameters parent, args, context, and info,

which are already explained in the previous chapter.

Figure 8.6 shows a list of all the resolvers from the

resolvers.ts file

Figure 8.6: Resolvers

While resolving a query, we need to perform operations

such as read/write database, authentication, and so on. We

are handling database operations in the controllers.ts file

and authentication in the auth.ts file.

We will perform, create, update, and delete operations on

database models User and Contact defined in the models.ts

file. We need to set up a database and link it with the

models in order to use the models in controllers. Let us set

up a database and create models using the Deno module

named denodb.

Database setup

We will set up a PostgreSQL database using ElephantSQL.

Head over to https://www.elephantsql.com/ and

login/signup with your account. Once done, we need to

create an instance named phonebook with a tiny turtle (free)

plan. Open the created instance and copy the URL mentioned

in the Details section. We will set an environment variable

named DATABASE_URL in the .env file as follows:

https://www.elephantsql.com/

1. // .env

2. // Replace following url with elephantsql url

3. DATABASE_URL=postgres://deno_admin:deno_admin@localhost:54

32/deno_db

Now, to access DATABASE_URL in the code, we will add envFile

flag with .env file in scripts.yaml file as follows:

1. # scripts.yaml

2. …

3. allow:

4. - net

5. - env

6. envFile:

7. - .env

8. …

Install denodb using trex i -c https://deno.land/x/denodb/mod.ts

command and use PostgresConnector to connect with the

database URL in the db.ts file as follows:

1. import { Database, PostgresConnector } from “denodb”;

2.

3. const DATABASE_URL = Deno.env.get(“DATABASE_URL”) as

string;

4.

5. const connector = new PostgresConnector({

6. uri: DATABASE_URL,

7. });

8.

9. export const db = new Database(connector);

The preceding database will be used and linked with

database models User and Contact in the next section.

Models

We will define two models, User and Contact, using Model,

DataTypes, and Relationships from denodb module. The

code for both models is as follows:

1. // src/models.ts

2.

3. import { Model, DataTypes, Relationships } from “denodb”;

4. import { db } from “./db.ts”;

5. import { v4 } from “uuid”;

6.

7. export class User extends Model {

8. static table = “users”;

9. static timestamps = true;

10.

11. static fields = {

12. userId: {

13. type: DataTypes.STRING,

14. primaryKey: true,

15. },

16. name: { type: DataTypes.STRING, length: 50 },

17. isActive: { type: DataTypes.BOOLEAN },

18. email: { type: DataTypes.STRING },

19. password: { type: DataTypes.STRING },

20. };

21.

22. static defaults = {

23. userId: v4.generate,

24. name: “ABC”,

25. isActive: true,

26. };

27.

28. static contacts() {

29. return this.hasMany(Contact);

30. }

31. }

32.

33. export class Contact extends Model {

34. static table = “contacts”;

35. static timestamps = true;

36.

37. static fields = {

38. contactId: {

39. type: DataTypes.STRING,

40. primaryKey: true,

41. },

42. name: { type: DataTypes.STRING, length: 100 },

43. phone: { type: DataTypes.STRING, length: 50,

allowNull: true },

44. email: { type: DataTypes.STRING, length: 100,

allowNull: true },

45. address: { type: DataTypes.STRING, length: 200,

allowNull: true },

46. };

47.

48. static defaults = {

49. contactId: v4.generate,

50. name: “Learn Deno”,

51. isCompleted: false,

52. };

53.

54. static user() {

55. return this.hasOne(User);

56. }

57. }

58.

59. Relationships.belongsTo(Contact, User);

60.

61. db.link([User, Contact]);

62. await db.sync({ drop: true });

For both models, we have defined table, timestamps, fields,

defaults, and relationship static properties. The table will be

the name of the database table for the model, e.g., users

from User model and contacts for Contact model. We will set

timestamps to true in order to add created_at and updated_at

fields to the model.

The fields property will contain all the model fields defined

with the type (INTEGER, STRING, and so on), length (max

length), allowNull (nullable), and primaryKey. We can also

provide default values to the fields using the defaults

property. Here, we are using the v4.generate function

provided by uuid (standard Deno module) to generate UUID

for userId and contactId fields. Make sure you have installed

uuid module using the following command:

1. trex -c uuid=https://deno.land/std@0.132.0/uuid/mod.ts

Then, we added query methods to query relationship value

contacts for User and user for contact.

this.hasMany(Contact) will return Contact instances where

Contact.userId matches User.userId.

this.hasOne(User) will return User instance where

User.userId matches Contact.userId.

We will then add a foreign key using the

Relationships.belongsTo method. The database link is done

afterward using the link method. Finally, models are

synchronized using the sync method with a drop flag to

remove existing records.

Controllers

We need to map resolvers with models via controllers. Each

controller will perform database operations on models to

get, create, update, and delete an entity. All the controller

functions are added in the controllers.ts file as follows:

1. import { User, Contact } from “./models.ts”;

2. import { GQLError } from “oak_graphql”;

3. import DataLoader from “dataloader”;

4. import { hash } from “scrypt”;

5.

6. interface IContact {

7. name: string;

8. phone: string;

9. email: string;

10. address: string;

11. }

12.

13. export const getUser = async (userId: string) => {

14. return await User.find(userId);

15. };

16.

17. export const getUserByEmail = async (email: string) => {

18. const existingUser = await User.where(“email”,

email).first();

19. return existingUser;

20. };

21.

22. export const createUser = async (

23. name: string,

24. email: string,

25. password: string

26.) => {

27. const existingUser = await getUserByEmail(email);

28. if (existingUser) throw new GQLError(“User already

exists”);

29. const hashedPassword = await hash(password);

30. const user = await User.create({ name, email, password:

hashedPassword });

31. return user;

32. };

33.

34. export const deleteUser = async (userId: string) => {

35. await Contact.where(“userId”, userId).delete();

36. await User.deleteById(userId);

37. return null;

38. };

39.

40. export const updateUser = async (userId: string, userData:

any) => {

41. await User.where(“userId”, userId).update(userData);

42. return null;

43. };

44.

45. export const getContactsByUserId = async (userId: string)

=> {

46. return await User.where(“userId”, userId).contacts();

47. };

48.

49. export const getContact = async (contactId: string) => {

50. return await Contact.find(contactId);

51. };

52.

53. export const createContact = async (contactData: IContact,

userId: string) => {

54. const existingUser = await User.where(“userId”,

userId).get();

55. if (!existingUser.length) throw new GQLError(“User does

not exist”);

56. const contact = await Contact.create({ …contactData,

userId });

57. return contact;

58. };

59.

60. export const deleteContact = async (userId: string) => {

61. await Contact.deleteById(userId);

62. return null;

63. };

64.

65. export const updateContact = async (contactId: string,

contactData: any) => {

66. await Contact.where(“contactId”,

contactId).update(contactData);

67. return null;

68. };

69.

70. const batchGetUsersByIds = (ids: any) => {

71. const userPromises = ids.map(getUser);

72. const usersPromise = Promise.resolve(userPromises);

73. return usersPromise;

74. };

75.

76. export const userLoader = new

DataLoader(batchGetUsersByIds);

In the preceding code, we have defined getUser,

getUserByEmail, createUser, deleteUser, and updateUser

functions for User model related queries and

getContactByUserId, getContact, updateContact, and deleteContact

functions for Contact model related queries. We are using

find, where, create, deleteById, update, and delete model

methods to perform the operations.

We have also defined batchGetUsersByIds function that works

as dataloader function. It collects all the user’s ids and all the

users in a single database call. It then returns a promise

that resolves the array. We need to install dataloader using

the following command to enable this functionality.

1. trex -c

dataloader=https://esm.sh/dataloader@2.0.0/index.js

Also, we are hashing the password (transforming the

password into another string) in createUser function using the

hash function provided by scrypt module. We will install

scrypt module using the following command:

1. trex i -c https://deno.land/x/denOBodb/mod.ts

Authentication

In order to identify requesting users, we will use djwt module

to create and verify JSON Web Token (JWT). We need to

set a SECRET_KEY (random string) in .env file, which will be used

during JWT creation and verification. All the authentication-

related code is written in the auth.ts file as follows:

1. // src/auth.ts

2.

3. import { create, verify } from “djwt”;

4. import { RouterContext } from “oak”;

5. import { verify as hashVerify } from “scrypt”;

6.

7. const SECRET_KEY = Deno.env.get(“SECRET_KEY”);

8. const ALGORITHM = “HS512”;

9.

10.

11. export const authenticate = async (user: any, password:

string) => {

12. if (await verifyPassword(password, user.password)) {

13. return createToken(user);

14. }

15. };

16.

17. const verifyPassword = async (password: string,

hashedPassword: string) => {

18. const isValidPassword = await hashVerify(password,

hashedPassword as string);

19. return isValidPassword;

20. };

21.

22. const createToken = async (user: any) => {

23. if (!SECRET_KEY)

24. throw new Error(“SECRET_KEY not set as environment

variable”);

25. const jwt = await create(

26. { alg: ALGORITHM, typ: “JWT” },

27. { userId: user.userId },

28. SECRET_KEY

29.);

30. return jwt;

31. };

32.

33. export const setContextUser = async (ctx: RouterContext)

=> {

34. const token = await parseToken(ctx);

35. if (!token) return null;

36. const user = await verifyToken(token);

37. return user;

38. };

39. const parseToken = async (ctx: RouterContext) => {

40. const authorizationHeader =

ctx.request.headers.get(“authorization”);

41. const parts = authorizationHeader ?

authorizationHeader.split(“ “) : [];

42. const token =

43. parts.length === 2 && parts[0].toLowerCase() ===

“bearer”

44. ? parts[1]

45. : undefined;

46. return token;

47. };

48.

49. const verifyToken = async (token: string | undefined) => {

50. if (token) {

51. if (!SECRET_KEY)

52. throw new Error(“SECRET_KEY not set as environment

variable”);

53. const payload = await verify(token, SECRET_KEY,

ALGORITHM);

54. return payload;

55. }

56. return;

57. };

In the authenticate function, we are accepting user and

password as arguments. We are using verifyPassword function

to verify the password by checking it against the hashed

password. If the password is valid, we then create a JWT

token using SECRET_KE and ALGORITHM with payload userId.

In the setContextUser function, we are accepting ctx of type

RouterContext as an argument. We then pass the ctx to

parseToken function that returns a token provided in the

authorization header. The parsed token is then passed to

verifyToken function that verifies the token using SECRET_KEY

and ALGORITHM and returns the payload after successful

verification. The payload will then be available for all the

resolvers to identify the requesting user. We need to install

djwt module using the following command:

1. trex i -m djwt@v2.2

We will now use setContextUser as a context handler for

GraphQL middleware in the middlewares.ts file as follows:

1. // src/middlewares.ts

2.

3. import { Router } from “oak”;

4. import { applyGraphQL } from “oak_graphql”;

5. import { types } from “./schema.ts”;

6. import { resolvers } from “./resolvers.ts”;

7. import { setContextUser } from “./auth.ts”;

8.

9. export const GraphQLService = await applyGraphQL<Router>({

10. Router,

11. typeDefs: types,

12. resolvers: resolvers,

13. context: setContextUser,

14. });

In the src/middlewares.ts file, we are importing GraphQL

schema/type definitions from the types.ts file. We are also

importing resolvers from the resolvers.ts file. They are

passed along with Router to applyGraphQL service to create

GraphQL service. The setContextUser function uses JSON Web

Token (JWT) provided in the authorization header to

retrieve userId and set it in the context so every resolver

will have access to it.

Finally, we will add oakcors middleware in our app to enable

cross-origin resource sharing (CORS) to allow other

domains to access the resources on this server. We will also

use the PORT environment variable to set the server port.

Our mod.ts file will have the following code after changes:

1. import { Application } from “oak”;

2. import { GraphQLService } from “./middlewares.ts”;

3. import { oakCors } from “cors”;

4.

5. const app = new Application();

6.

7. const _PORT = Deno.env.get(«PORT»);

8. const PORT = parseInt(_PORT as string);

9. const port = isNaN(PORT) ? 8080 : PORT;

10.

11. app.use(

12. oakCors()

13.);

14.

15. app.use(GraphQLService.routes(),

GraphQLService.allowedMethods());

16.

17. console.log(`GraphQL Server listening on

${port}/graphql`);

18.

19. await app.listen({ port });

We will install cors module using the following command:

1. trex i -m cors@v1.2.2

Conclusion

We have implemented a GraphQL API in this chapter using

various Deno modules such as oak-graphql, djwt, scrypt, and

cors. Oak-GraphQL is useful for the creation of a GraphQL

API server along with the Oak framework. Djwt is useful to

create and verify JSON Web Tokens. Scrypt is useful for

hashing passwords. CORS is useful for allowing server

access via different domains. We learnt how to configure

settings (env variables, scripts, and permissions) using

velociraptor. We used trex module to install Deno modules

and add them to import_map.json file.

This knowledge will be helpful in setting up a new Deno

project. We can test the implementation in the playground

for now. We will create a Svelte front end using Snel module

and integrate the GraphQL API in the upcoming chapter.

CHAPTER 9

PhoneBook App - UI

Implementation

Introduction

We implemented the GraphQL API server in the previous

chapter for the PhoneBook App. The User Interface (UI) for

the application will be implemented in this chapter using

that API. We will be using snel module to create svelte

applications in deno along with snel-carbon module which

provides carbon components and icons based on carbon

design system by IBM. We will also use axiod module to

make network requests to the server.

Structure

In this chapter, we will cover the following topics:

Initial setup

Snel setup

Snel-carbon installation

Routes

Public routes

Login

Register

Private routes

Home

Contacts

ContactTable

ContactForm

Layout

Header

Sidebar

Objective

After completion of this chapter, you should be able to

create svelte UI applications using snel and snel-carbon

modules. You should be able to create public and private

routes for svelte applications afterwards. You will also learn

the use of axiod module to make network requests.

Initial setup

In this section, we will install snel and initialize a snel project

and then use trex to run the scripts. Once a snel project is

created, we will install snel-carbon components, icons

module and axiod module for network requests. Let’s start

with snel installation.

Snel setup

Snel is “A Cybernetical framework for svelte applications in

deno” that compiles Svelte components to javascript files.

We will install snel using following command:

1. deno run --allow-run --allow-read

https://deno.land/x/snel/install.ts

Above command will install snel, trex, bundler modules to

provide good developer experience. Once the command is

successfully executed, we will create new snel app using

following command:

1. snel create [project name]

Figure 9.1 shows creation of new snel project with default

settings.

Figure 9.1: Snel Project Creation

Once the project is created, we can use several commands

to run the project in various modes like development, watch,

build, and so on.

Figure 9.2 lists several commands available to run the snel

project.

Figure 9.2: Trex Commands for Snel Project

We will start the project by running trex run start command

as suggested in the message. This will run the server on

port 3000.

Figure 9.3 shows a sample snel project running on port

3000.

Figure 9.3: Snel sample project running on port 3000

Snel Carbon installation

Snel-Carbon is a deno module providing UI components for

svelte. It would help us to build a UI based on the Carbon

Design System. Let’s start by adding css in the index.html

file. This will add stylings required for the components.

1. <link rel=”stylesheet”

href=”https://cdn.jsdelivr.net/npm/carbon-components-

svelte@0.44.2/css/all.min.css” />

Snel provides snel.config.js file to configure snel settings. It

provides extendsImportMap field to link external import map to

the project. We will add import maps for components and

icons provided by snel-carbon library in this field as follows:

1. // snel.config.js

2.

3. export default {

4. port: 3000,

5. mode: “dom”,

6. plugins: [],

7. extendsImportMap: [

8. “https://denopkg.com/crewdevio/Snel-

carbon@main/components.map.json”,

9. “https://denopkg.com/crewdevio/Snel-

carbon@main/icons.map.json”,

10.],

11. };

We will now install axiod module using familiar trex

command as follows:

1. trex i -m axiod@0.20.0-0

Above command will add axiod in import_map.json file in the

project. We have installed all the required modules in this

section. We will now create routes for different pages in the

next section.

Routes

Snel module includes Svelte Routing library to create

routes. We will use it to create two types of routes named

public and private routes for our project. Public routes will

be available to all the users while private routes will be

available only to authenticated users.

Let’s start by adding Route component from

routes/index.svelte file in App.svelte file as follows:

1. // App.svelte

2.

3. <script>

4. import Routes from “routes/index.svelte”;

5. import { fade } from “svelte/transition”;

6. </script>

7.

8. <main transition:fade>

9. <Routes />

10. </main>

11.

12. <style>

13. main {

14. max-width: 240px;

15. }

16.

17. @media (min-width: 640px) {

18. main {

19. max-width: none;

20. }

21. }

22. </style>

In the preceding code, we are replacing code within the

main element (HTML element that represents the dominant

content of the body) by Route component. This way our app

will always render each page as per the route address. Let’s

implement the routes in the routes/index.svelte file as

follows:

1. <script>

2. // Modules

3. import Router from “svelte-routing/Router.svelte”;

4. import Route from “svelte-routing/Route.svelte”;

5.

6. // Routes

7. import Contacts from “./Contacts.svelte”;

8. import Login from “./Login.svelte”;

9. import Register from “./Register.svelte”;

10. import Home from “./Home.svelte”;

11. import NotFound from “./NotFound.svelte”;

12. import PrivateRoute from “./PrivateRoute.svelte”;

13.

14. import Content from “snel-

carbon/components/UIShell/Content.svelte”;

15. import Grid from “snel-

carbon/components/Grid/Grid.svelte”;

16. import Row from “snel-

carbon/components/Grid/Row.svelte”;

17. import Column from “snel-

carbon/components/Grid/Column.svelte”;

18.

19. // Components

20. import Layout from “@/components/Layout.svelte”;

21. </script>

22.

23. <Router>

24. <Layout />

25. <Content>

26. <Grid>

27. <Row>

28. <Column>

29. <Route path=”login” component={Login} />

30. <Route path=”register” component={Register} />

31. <Route path=”*” component={NotFound} />

32.

33. <PrivateRoute path=”/”>

34. <Home />

35. </PrivateRoute>

36. <PrivateRoute path=”contacts” let:location>

37. <Contacts />

38. </PrivateRoute>

39.

40. </Column>

41. </Row>

42. </Grid>

43. </Content>

44. </Router>

In the preceding code, we are using Router, Route

components from svelte-routing module. Router provides

route information via context to Route, Link components and

renders best matched Route.

In the Routes import section, we are importing Contacts, Login,

Home, and Register. Each route will be assigned a path. Apart

from these routes, we are also importing two special routes

named NotFound, PrivateRoute. NotFound renders when no other

route is matched. PrivateRoute is used to restrict access to

routes like Contacts for authenticated users only.

We are importing Carbon components such as Content, Row,

Grid, Column from snel-carbon module to create a responsive

UI along with Layout custom component having header and

sidebar implementation.

Let’s implement each route code one by one.

Login

Login will be the default page shown to every

unauthenticated user. We will use Form to handle validations

for email, password. The implementation for Login.svelte is as

follows:

1. // Login.svelte

2.

3. <script>

4. import { navigate } from “svelte-routing”;

5.

6. import Form from “snel-carbon/components/Form”;

7. import Tile from “snel-carbon/components/Tile”;

8. import TextInput from “snel-

carbon/components/TextInput/TextInput.svelte”;

9. import PasswordInput from “snel-

carbon/components/TextInput/PasswordInput.svelte”;

10. import Button from “snel-carbon/components/Button”;

11. import InlineLoading from “snel-

carbon/components/InlineLoading”;

12. import InlineNotification from “snel-

carbon/components/Notification/InlineNotification.svelte”;

13.

14. import axiod from “https://deno.land/x/axiod/mod.ts”;

15.

16. import { accessToken } from “../utils/stores.ts”;

17.

18. let email = “”;

19. let password = “”;

20. let loading = false;

21. let errors = [];

22.

23. const handleSubmit = (e) => {

24. loading = true;

25. const query = `

26. {

27. login(user:{email:”${email}”,

password:”${password}”}){

28. token

29. }

30. }

31. `;

32. axiod

33. .post(“http://localhost:8080/graphql”, { query })

34. .then((res) => {

35. if (res.data.errors) {

36. errors = res.data.errors;

37. }

38. if (res.data.data?.login?.token) {

39. localStorage.setItem(“accessToken”,

res.data.data?.login?.token);

40. $accessToken = res.data.data?.login?.token;

41. navigate(“/contacts”, {

42. replace: false,

43. });

44. }

45. })

46. .catch((err) => {

47. console.log(`err`, err);

48. })

49. .finally(() => {

50. loading = false;

51. });

52. };

53. </script>

54.

55. {#each errors as error (error.message)}

56. <InlineNotification timeout={5000} type=”error” title=

{error.message} />

57. {/each}

58.

59. <Tile>

60. <Form on:submit={handleSubmit}>

61. <TextInput

62. bind:value={email}

63. required

64. type=”email”

65. labelText=”Email”

66. placeholder=”Enter Email”

67. size=”sm”

68. />

69. <PasswordInput

70. bind:value={password}

71. required

72. type=”password”

73. labelText=”Password”

74. placeholder=”Enter Password”

75. size=”sm”

76. />

77. {#if loading}

78. <InlineLoading />

79. {:else}

80. <Button type=”submit” size=”small”>Login</Button>

81. {/if}

82. </Form>

83. </Tile>

In the above code, we are using various snel-carbon

components like Form, Tile, TextInput, PasswordInput, Button,

InlineLoading, InlineNotifications to create the UI. We are

using navigate function to redirect to contacts route on

successful login. We are also importing accessToken which is

stored in stores.ts file to check if the user is authenticated

or not and axiod will be used to make network requests to

GraphQL API Server.

We are using four states, email, password, errors, loading for

this component where email, password will be used to store

user input via TextInput, PasswordInput, loading will be used to

render loader during network request using InlineLoading

and errors will be used to store errors from the response.

In the UI part, the TextInput and PasswordInput are bound to

email, password states respectively. The Form component will

invoke handleSubmit function on submit event. The handleSubmit

function makes network request using axiod with login query.

If the response contains errors then those errors will be

stored as errors and will be rendered using InlineNotification

component. If the response provides token in the data, it will

be stored into localStorage as well as stores as accessToken

and the user will be redirected to contacts route.

Figure 9.4 shows login route with email, password input

fields.

Figure 9.4: Login Route

Register

This route is similar to login route with few changes. It will

have additional states and few changes in the query and the

network response handling. The implementation for

Register.svelte route is as follows:

1. <script>

2. import { navigate } from “svelte-routing”;

3.

4. import Form from “snel-carbon/components/Form”;

5. import Tile from “snel-carbon/components/Tile”;

6. import TextInput from “snel-

carbon/components/TextInput/TextInput.svelte”;

7. import PasswordInput from “snel-

carbon/components/TextInput/PasswordInput.svelte”;

8. import Button from “snel-carbon/components/Button”;

9. import InlineNotification from “snel-

carbon/components/Notification/InlineNotification.svelte”;

10. import InlineLoading from “snel-

carbon/components/InlineLoading”;

11.

12. import axiod from “https://deno.land/x/axiod/mod.ts”;

13.

14. let name = “”;

15. let email = “”;

16. let password = “”;

17. let confirmPassword = “”;

18. let loading = false;

19. let errors = [];

20.

21. const handleSubmit = (e) => {

22. if (password === confirmPassword) {

23. loading = true;

24. const query = `

25. mutation{

26. registerUser(user:{email:”${email}”,

password:”${password}”, name:”${name}”}){

27. name

28. }

29. }

30. `;

31. axiod

32. .post(“http://localhost:8080/graphql”, { query })

33. .then((res) => {

34. console.log(`res`, res);

35. if (res.data.errors) {

36. errors = res.data.errors;

37. }

38. if (res.data.data.registerUser?.name) {

39. alert(`user ${res.data.data.registerUser.name}

registered`);

40. navigate(“/contacts”, {

41. replace: false,

42. state: { accessToken: res.data.data.login },

43. });

44. }

45. })

46. .catch((err) => {

47. console.log(`err`, err);

48. });

49. } else {

50. alert(“Passwords do not match”);

51. }

52. };

53. </script>

54.

55. {#each errors as error}

56. <InlineNotification type=”error” title={error.message}

/>

57. {/each}

58.

59. <Tile>

60. <Form on:submit={handleSubmit}>

61. <TextInput

62. bind:value={name}

63. required

64. labelText=”Name”

65. placeholder=”Enter Name”

66. size=”sm”

67. />

68. <TextInput

69. bind:value={email}

70. required

71. type=”email”

72. labelText=”Email”

73. placeholder=”Enter Email”

74. size=”sm”

75. />

76. <PasswordInput

77. bind:value={password}

78. required

79. type=”password”

80. labelText=”Password”

81. placeholder=”Enter Password”

82. size=”sm”

83. />

84. <PasswordInput

85. bind:value={confirmPassword}

86. required

87. type=”password”

88. labelText=”Confirm Password”

89. placeholder=”Enter Confirm Password”

90. size=”sm”

91. />

92. {#if loading}

93. <InlineLoading />

94. {:else}

95. <Button type=”submit” size=”small”>Register</Button>

96. {/if}

97. </Form>

98. </Tile>

As we can see, the above code has many similarities with

Login.svelte code. We have added two additional states name

and confirmPassword each bound to an input component

(TextInput, PasswordInput). In the handleSubmit function, we are

using mutation instead of query as we are creating a new

user instance on the backend.

Figure 9.5 shows Register route with name, email,

password, confirm password fields.

Figure 9.5: Register Route

Home

This will be the home page for authenticated users. It will be

containing Link component that navigates to contacts path.

The code for this route is as follows:

1. <script>

2. import Link from “svelte-routing/Link.svelte”;

3. </script>

4.

5. <h1>Home</h1>

6. <Link to=”contacts”>Contacts</Link>

Figure 9.6 shows Home route with Link component for

Contacts route.

Figure 9.6: Home Route

NotFound

Whenever a user opens a non-existing path address, this

route will get rendered. We have used Asterisk (*) for that

purpose. The code for the route is as follows:

1. <script>

2. import Link from “svelte-routing/Link.svelte”;

3. </script>

4.

5. <h2>Page Not Found</h2>

6. Go back to <Link to=”/”>Home</Link>

7.

8. <style>

9. h2 {

10. color: red;

11. }

12. </style>

Above code is a simple page with Page Not Found message

and Link to Home page.

Figure 9.7 shows NotFound component rendered for undefined

path.

Figure 9.7: NotFound Route

Private route

While Login, Register are public routes (no authentication

required), Home, Contacts are private routes and should

only be accessible to authenticated users. We will protect

these pages by using PrivateRoute (a custom route) instead

of normal Route. The code for private route is as follows:

1. <script>

2. import Route from “svelte-routing/Route.svelte”;

3. import PrivateRouteGuard from

“./PrivateRouteGuard.svelte”;

4.

5. export let path;

6. </script>

7.

8. <Route {path}>

9. <PrivateRouteGuard>

10. <slot />

11. </PrivateRouteGuard>

12. </Route>

In the above code we are using the Route component as

wrapper. We are passing the path prop to it which is an route

address. The slot element is nothing but the component to

be rendered. We are wrapping it using PrivateRouteGuard

component. The code for PrivateRouteGuard is as follows:

1. <script>

2. import { onMount } from “svelte”;

3. import { navigate } from “svelte-routing”;

4. import { accessToken } from “../utils/stores.ts”;

5.

6. onMount(() => {

7. console.log(“Mounting…”);

8. if (!$accessToken) {

9. navigate(“/login”, {

10. replace: false,

11. });

12. }

13. });

14. </script>

15.

16. {#if $accessToken}

17. <slot />

18. {/if}

PrivateRouteGuard uses onMount function that gets called on

component mount. It checks the accessToken value in it. If

accessToken is null then it will navigate to login route else it

will render the child component.

Contacts

This route will be accessible to all the authenticated users

and it lists all the contacts of the user. The code for contacts

route is as follows:

1. <script>

2. import { onMount } from “svelte”;

3.

4. import Modal from “snel-

carbon/components/ComposedModal”;

5.

6. import axiod from “https://deno.land/x/axiod/mod.ts”;

7.

8. import ContactForm from

“../components/ContactForm.svelte”;

9. import ContactTable from

“../components/ContactTable.svelte”;

10.

11. let showForm = false;

12. let contacts = [];

13. const accessToken = localStorage.getItem(“accessToken”);

14. let editContact = null;

15.

16. const getContacts = () => {

17. console.log(“fetching contacts…”);

18. const query = `

19. {

20. contacts {

21. contactId

22. name

23. email

24. phone

25. address

26. }

27. }

28. `;

29. axiod

30. .post(

31. “http://localhost:8080/graphql”,

32. { query },

33. {

34. headers: { Authorization: `Bearer

${accessToken}` },

35. }

36.)

37. .then((res) => {

38. console.log(`res`, res);

39. if (res.data.errors) {

40. for (let error of res.data.errors) {

41. alert(error.message);

42. }

43. }

44. // console.log(`res.data.data.login`,

res.data.data.login);

45. if (res.data.data?.contacts) {

46. contacts = res.data.data.contacts;

47. }

48. })

49. .catch((err) => {

50. console.log(`err`, err);

51. });

52. console.log(“fetched contacts…”);

53. };

54.

55. const deleteContact = (contactId) => {

56. const query = `

57. mutation {

58. deleteContact(contactId: “${contactId}”)

59. }

60. `;

61. axiod

62. .post(

63. “http://localhost:8080/graphql”,

64. { query },

65. {

66. headers: { Authorization: `Bearer

${accessToken}` },

67. }

68.)

69. .then((res) => {

70. console.log(`res`, res);

71. if (res.data.errors) {

72. for (let error of res.data.errors) {

73. alert(error.message);

74. }

75. } else {

76. getContacts();

77. }

78. if (res.data.data?.contacts) {

79. contacts = res.data.data.contacts;

80. }

81. })

82. .catch((err) => {

83. console.log(`err`, err);

84. });

85. };

86.

87. onMount(async () => {

88. console.log(“Mounting…”);

89. await getContacts();

90. });

91.

92. const resetForm = () => {

93. showForm = !showForm;

94. editContact = null;

95. };

96.

97. const handleEdit = (event) => {

98. showForm = true;

99. editContact = event.detail.contact;

100. };

101. </script>

102.

103. {#if showForm}

104. <Modal

105. bind:open={showForm}

106. preventCloseOnClickOutside

107. modalHeading={`${editContact ? “Edit” : “Add”}

Contact`}

108. >

109. <ContactForm

110. on:resetForm={resetForm}

111. on:contactSaved={(event) => {

112. console.log(`event`, event);

113. showForm = event.detail.showForm;

114. getContacts();

115. editContact = event.detail.editContact;

116. }}

117. {editContact}

118. />

119. </Modal>

120. {/if}

121. <ContactTable

122. {contacts}

123. on:deleteContact={(event) =>

deleteContact(event.detail.contactId)}

124. on:edit={handleEdit}

125. on:openForm={resetForm}

126. />

Above code renders two components namely ContactForm and

ContactTable. Modal component from snel-carbon is used to

show ContactForm in modal view. It defines three states

showContact, contacts and editContact. showContact is a boolean

flag to show or hide the ContactForm modal. contacts is an

array of contacts. These contacts are fetched using

getContacts function that makes network request using axiod

to the GraphQL API server. It gets called once component is

mounted using onMount function. We have also defined

deleteContact function that make contact delete request to

the server. We have set Authorization header with accessToken

for each request for user authentication purpose. resetForm

function is used to reset the form fields on form close or

submission. handleEdit function is used to set selected entity

as editContact. The editContact data will then be passed to

the form to be edited. Let’s check ContactForm and

ContactTable components in detail.

ContactTable

We will show all the contacts in the table format using snel-

carbon components in ContactTable.svelte file. We will also

provide actions for create, delete, edit in the table. The code

for the component is as follows:

1. <script>

2. import { createEventDispatcher } from “svelte”;

3.

4. import DataTable from “snel-

carbon/components/DataTable”;

5.

6. import Toolbar from “snel-

carbon/components/DataTable/Toolbar.svelte”;

7. import ToolbarContent from “snel-

carbon/components/DataTable/ToolbarContent.svelte”;

8.

9. import OverflowMenu from “snel-

carbon/components/OverflowMenu/OverflowMenu.svelte”;

10. import OverflowMenuItem from “snel-

carbon/components/OverflowMenu/OverflowMenuItem.svelte”;

11.

12. import Button from “snel-carbon/components/Button”;

13.

14. import AddAlt16 from “snel-carbon/icons/AddAlt16”;

15. import Edit16 from “snel-carbon/icons/Edit16”;

16. import Delete16 from “snel-carbon/icons/Delete16”;

17.

18. const dispatch = createEventDispatcher();

19.

20. export let contacts;

21. $: {

22. contacts = contacts.map((contact, index) => {

23. contact.id = index + 1;

24. return contact;

25. });

26. }

27. </script>

28.

29. <DataTable

30. title=”Contacts”

31. sortable

32. headers={[

33. { key: “id”, value: “ID” },

34. { key: “name”, value: “Name” },

35. { key: “email”, value: “Email” },

36. { key: “phone”, value: “Phone” },

37. { key: “address”, value: “Address” },

38. { key: “overflow”, empty: true },

39.]}

40. rows={contacts}

41. >

42. <Toolbar>

43. <ToolbarContent>

44. <Button

45. on:click={() => {

46. dispatch(“openForm”);

47. }}

48. icon={AddAlt16}

49. />

50. </ToolbarContent>

51. </Toolbar>

52.

53.

54. {#if cell.key === “overflow”}

55. <OverflowMenu flipped>

56. <OverflowMenuItem

57. on:click={() => {

58. dispatch(“edit”, { contact: row });

59. }}

60. ><Edit16 />

61. </OverflowMenuItem>

62. <OverflowMenuItem

63. danger

64. on:click={() => {

65. dispatch(“deleteContact”, { contactId:

row.contactId });

66. }}

67. >

68. <Delete16 />

69. </OverflowMenuItem>

70. </OverflowMenu>

71. {:else}{cell.value}{/if}

72.

73. </DataTable>

In the preceding code, we are importing various

components from snel-carbon like DataTable, Toolbar,

Overflow, Button, and so on. We are also importing icons like

AddAlt16, Edit16, Delete16 from snel-carbon.

We are importing createEventDispatcher from svelte which will

be used to dispatch events to the parent component. The

contacts is passed as prop by parent components.

We are using $: (labeled statement) syntax for reactive

declarations meaning run the code on reference value

change. We are using it to add an id field to each contact.

We are doing this because the DataTable component requires

each row to have an id field. We are passing an object with

key, value keys as headers to the DataTable. These will be

used as header for each column. The contacts (each with id)

are passed as rows. In the DataTable, we are using Toolbar

with Add button that allows to add new contact.

Figure 9.8 shows ContactTable with Toolbar and headers:

Figure 9.8: ContactTable with toolbar

OverflowMenu is used to to provide actions such as edit,

delete the contact. We need to add { key: “overflow”, empty:

true } in the headers to enable the overflow menu. We are

using slot prop cell to identify the overflow cell and render

it or else render the normal value for the cell. The row prop

is passed to edit, delete actions to perform API requests

using the contact data. We are dispatching these actions

using dispatch. This means we will pass events edit,

deleteContact along with state to the parent. The parent will

then handle the events accordingly.

Figure 9.9 shows OverflowMenu with edit, and delete actions.

Figure 9.9: OverflowMenu with Edit, Delete actions

We will now check the form details used to create, edit

contact on click on the Add button in next section.

ContactForm

Whenever the user clicks on the Add button, we show a

modal with contact form for create or update purpose as

explained in Contacts section. We will implement this

component using snel-carbon components and axiod for API

calls. The code for ContactForm.svelte component is as

follows:

1. <script>

2. import Form from “snel-carbon/components/Form”;

3. import Tile from “snel-carbon/components/Tile”;

4. import TextInput from “snel-

carbon/components/TextInput/TextInput.svelte”;

5. import TextArea from “snel-carbon/components/TextArea”;

6.

7. import Button from “snel-carbon/components/Button”;

8. import InlineLoading from “snel-

carbon/components/InlineLoading”;

9.

10. import axiod from “https://deno.land/x/axiod/mod.ts”;

11. import { accessToken } from “../utils/stores.ts”;

12. import { createEventDispatcher } from “svelte”;

13.

14. const initialContact = {

15. name: “”,

16. email: “”,

17. phone: “”,

18. address: “”,

19. };

20.

21. const dispatch = createEventDispatcher();

22.

23. export let editContact;

24.

25. $: contact = editContact || initialContact;

26.

27. let loading = false;

28.

29. const handleSubmit = () => {

30. loading = true;

31. const addQuery = `

32. mutation {

33. addContact(contact: {name: “${contact.name}”, email:

“${contact.email}”, phone: “${contact.phone}”, address:

“${contact.address}”}){

34. name

35. }

36. }

37. `;

38. const updateQuery = `

39. mutation {

40. updateContact(contact: {contactId:

“${contact?.contactId}”, name: “${contact.name}”, email:

“${contact.email}”, phone: “${contact.phone}”, address:

“${contact.address}”})

41. }

42. `;

43. const query = editContact ? updateQuery : addQuery;

44.

45. axiod

46. .post(

47. “http://localhost:8080/graphql”,

48. { query },

49. {

50. headers: { Authorization: `Bearer

${$accessToken}` },

51. }

52.)

53. .then((res) => {

54. console.log(`res`, res);

55. if (res.data.errors) {

56. for (let error of res.data.errors) {

57. alert(error.message);

58. }

59. } else {

60. contact = initialContact;

61. dispatch(“contactSaved”, {

62. showForm: false,

63. editContact: null,

64. });

65. }

66. })

67. .catch((err) => {

68. console.log(`err`, err);

69. })

70. .finally(() => {

71. loading = false;

72. });

73. };

74. </script>

75.

76. <Tile>

77. <Form on:submit={handleSubmit}>

78. <TextInput

79. bind:value={contact.name}

80. required

81. labelText=”Name”

82. placeholder=”Enter Name”

83. size=”sm”

84. />

85. <TextInput

86. bind:value={contact.email}

87. required

88. type=”email”

89. labelText=”Email”

90. placeholder=”Enter Email”

91. size=”sm”

92. />

93. <TextInput

94. bind:value={contact.phone}

95. required

96. type=”number”

97. labelText=”Phone”

98. placeholder=”Enter Phone Number”

99. size=”sm”

100. />

101. <TextArea

102. bind:value={contact.address}

103. required

104. labelText=”Address”

105. placeholder=”Enter Address”

106. size=”sm”

107. />

108. {#if loading}

109. <InlineLoading />

110. {:else}

111. <Button type=”submit” size=”small”>Save</Button>

112. <Button

113. on:click={() => {

114. dispatch(“resetForm”);

115. }}

116. size=”small”

117. kind=”danger”>Cancel</Button

118. >

119. {/if}

120. </Form>

121. </Tile>

In the above code, we are importing Tile, Form, TextInput,

PasswordInput, Button components from snel-carbon. Tile is

used as card layout for the form. Form is used to handle

validations like email, number etc. and submission. TextInput

is as input field for name, email (type=”email”), phone

(type=”number”). Button is used to close the form and set

field values to empty or with type=”submit” that validates

all fields and invokes on:submit function handleSubmit.

Figure 9.10 shows ContactForm while creating new contact:

Figure 9.10: ContactForm for new contact

In the script section, we are using initialContact object to

set all fields to empty on new form creation or on form

close. editContact prop is used to identify whether form

values should be empty for new contact using initialContact

or existing form values to be used using editContact. The

reactive variable contact is set according to editContact

value.

The handleSubmit function contains two queries addQuery

(create contact) and updateQuery (update contact). Again, we

are using editContact to select the query accordingly. Then,

we are making network request for the selected query with

Authorization header.

Figure 9.11 shows ContactForm with editContact to update the

existing contact:

Figure 9.11: ContactForm for existing contact

Layout

We will create a layout using Header and Sidebar snel-carbon

components in this section. This will allow us to provide App

title in Header and add login/logout buttons in the Sidebar.

We will write all the layout related code in file Layout.svelte

as follows:

1. <script>

2. import Header from “snel-

carbon/components/UIShell/GlobalHeader/Header.svelte”;

3. import SideNav from “snel-

carbon/components/UIShell/SideNav/SideNav.svelte”;

4. import SideNavItems from “snel-

carbon/components/UIShell/SideNav/SideNavItems.svelte”;

5.

6. import Authentication from “./Authentication.svelte”;

7.

8. let theme = “g10”;

9. $: document.documentElement.setAttribute(“theme”,

theme);

10.

11. let isSideNavOpen = false;

12. </script>

13.

14. <Header

15. company=”Phonebook”

16. platformName=”App”

17. bind:isSideNavOpen

18. persistentHamburgerMenu={true}

19. />

20. <SideNav bind:isOpen={isSideNavOpen}>

21. <SideNavItems>

22. <Authentication />

23. </SideNavItems>

24. </SideNav>

In the preceding code, we are importing Header, SideNav,

SideNavItems from snel carbon. The Header will be placed at

top of the app while SideNav will be used to create a sidebar

where SideNavItems contains actions like login, register, and

so on. We have set theme to g10 that is a grey colored

theme. There are other themes available in the

documentation.

Header

We are providing few props to the component. The company

prop is used to set Title (Phonebook) for the App. The

platformName (App) is a subtitle. We are the using a state

isSideNavOpen to show hide the sidebar. The

persistentHamburgerMenu prop is used to show hamburger

button to open close the sidebar.

SideNav

We are using it along with SideNavItems to show Login,

Register and Logout buttons. Our logic will be to show Login

and Register buttons for unauthorized user and show Logout

button to authorized user. This logic is written in

Authentication.svelte file as follows:

1. <script>

2. import Button from “snel-carbon/components/Button”;

3. import ButtonSet from “snel-

carbon/components/Button/ButtonSet.svelte”;

4. import Link from “svelte-routing/Link.svelte”;

5. import { accessToken } from “../utils/stores.ts”;

6. import Login16 from “snel-carbon/icons/Login16”;

7. import Logout16 from «snel-carbon/icons/Logout16»;

8. </script>

9.

10. <div class=”auth-container”>

11. <ButtonSet stacked>

12. {#if !$accessToken}

13. <Link to=”/login”>

14. <Button kind=”ghost” icon={Login16}>Login</Button>

15. </Link>

16. <Link to=”/register”>

17. <Button kind=”ghost”>Register</Button>

18. </Link>

19. {:else}

20. <Link to=”/”>

21. <Button

22. kind=”ghost”

23. icon={Logout16}

24. on:click={() => {

25. localStorage.removeItem(“accessToken”);

26. $accessToken = “”;

27. }}

28. >

29. Logout

30. </Button>

31. </Link>

32. {/if}

33. </ButtonSet>

34. </div>

35.

36. <style>

37. .auth-container {

38. margin: 10px;

39. display: flex;

40. flex-direction: column;

41. justify-content: space-between;

42. }

43. </style>

In the preceding code, we are using carbon components

Button, ButtonSet along with carbon icons Login16, Logout16. We

are also importing Link component from svelte-routing and

accessToken from store. The Link component is used to set

url address to login, register etc. We are using accessToken to

show either Login, Register buttons or Logout button. If the

accessToken is valid, then we will show Logout button or else

Login and Register buttons.

The ButtonSet is used to show group of buttons (Login,

Register). We are passing few props to each Button

component. The kind defines type of button (here, ghost).

The icon prop is used to show icon in the button. We are

using Login16 and Logout16 icons from snel-carbon for

Login and Logout buttons respectively.

Conclusion

We have implemented a svelte application UI in this chapter

using various deno modules like snel, snel-carbon, axiod, and

so on. Snel module is useful for creation of Svelte

applications using deno runtime. Snel-carbon provides

components, icons based on carbon design system. We

used these components, icons to create our UI. Axiod is

used to make network requests to the server. Svelte

Routing module is used to define various routes (public and

private) for the app. We used trex provided by snel by

default to run the scripts.

This knowledge will be helpful to set up a new deno project

for Svelte UI Application. We can test the implementation by

running it along with the API server from previous chapter.

With this, our Phonebook App is completed and can be used

locally or can be deployed to cloud using various platforms.

Index

A

Aleph.js 66

Application Programming Interface (API) 71, 72

Command Line Interface (CLI) 67

features 66, 67

pages 68, 69

routing 69-71

arguments 47, 48

B

basic types, TypeScript 14

abstract 29

classes 22

Getter and Setter 26

interfaces 15, 16

interfaces, versus type aliases 18

intersections 21

modifiers 22

optional properties 16

read only properties 16

static 28

type aliases 17

type assertions 20

type inference 19

unions 20

bundle command 46

C

cache command 46

class 22

entities 22

classes 55, 56

command line interface (CLI) 44

compile command 47

compiler 8

completions command 47

ContactForm 169, 173, 174

ContactTable with Toolbar 168

cross-origin resource sharing (CORS) 141

D

databases

MongoDB 39

MongoDB Atlas 39

PostgreSQL 39

data types, in TypeScript

any 15

array 15

Boolean 14

enum 15

never 15

null 15

number 14

object 15

string 14

tuple 15

undefined 15

unknown 15

void 15

Deno 1, 2

features 2-5

installing 34, 35

versus, Node 4

Deno CLI 45

environment variables 45

file watcher 49

passing arguments 47, 48

permission flags 49

permissions allow-list 50, 51

DENO_DIR 45

Deno ecosystem 43

Deno foundation stack 6

Rust 6, 7

tokio I/O library 7

V8 engine by Google 6

Deno global APIs 52-54

DENO_INSTALL_ROOT 45

Deno modules 56

registries 61

standard library 56-58

third-party modules 58-61

Deno runtime APIs 51

classes 55, 56

Deno global APIs 52-54

variables 54, 55

Web APIs 51, 52

deps.ts

central dependencies 62, 63

development tools 35

databases 39

Docker 38

Docker Compose 38

Git 37

GitHub 37

Postman 38

Redis 40

Silver Searcher 38

terminal 35

Vim 36, 37

VS Code 37

VS Code extensions 37

zsh + oh my zsh 36

doc command 46

Docker 38

Docker Compose 38

Dynamic API routes 72

Dynamic Routes 69

dynamic typing

versus, static typing 30

E

Electron.js 3

environment variables 45

eval command 46

event loop 4

Explicit typing 19

F

file watcher 49

First In First Out (FIFO) principle 10

fmt command 46

G

Git 37

GitHub 37

GraphQL 100

autogenerated API documentation 104, 105

core concepts 105

features 100

fragments 103, 104

precise fetching 101

Schema 105, 106

single API endpoint 101, 102

validation and type checking 102

H

help command 45

Heroku 40

Hot Module Replacement (HMR) 66

hydration process 69

I

Implicit typing 19

install command 46

interpreter 8

J

JavaScript engine 7

compiler 8

interpreter 8

JavaScript runtime 9

call back 9

callback queue 10

Deno API 9

event loop 10

memory heap 9

reference link 4

tokio 9

JSON Web Token (JWT) 137

L

Last In First Out (LIFO) principle 9

layout, PhoneBook App 174, 175

header 175

SideNav 175, 177

libuv event loop 3, 4

M

modifiers 22

private 23

protected 24

public 22

module registries 61, 62

MongoDB 39

URL 39

MongoDB Atlas 39

URL 39

mutations 100

N

Nested Routes 71

Node 3

asynchronous and event-driven architecture 3

node package manager (npm) 4

performance 4

versus, Deno 4

O

Oak 111

Oak-GraphQL middleware 112-114

Oak GraphQL server setup 118-121

Object–relational mapping (ORM) 116

open-source 3, 4

OverflowMenu 168

P

pages, Aleph.js 68, 69

permission flags 49

permissions allow-list 50

persistentHamburgerMenu prop 175

PhoneBook App, API implementation 115

authentication 137-141

controllers 134-137

database setup 130, 131

initial setup 116

models 131-134

Schema 121-123

Trex, as package manager 117

velociraptor, as script runner 117, 118

version control, with git 116

PhoneBook App, UI implementation 143

initial setup 144

layout 174, 175

routes 147-149

Snel Carbon installation 146, 147

snel setup 144-146

platform as a service (PAAS) 40

Pomodoro 41

PostgreSQL 39

Postman 38

pre-rendered 69

Profiler 8

Q

query 100

R

React.js 3

React Native 3

relational database management system (RDBMS) 39

Remote Dictionary Server (Redis) 40

Representational State Transfer (REST) API 66

resolver 108-111

Route component 147

routes 147-149

ContactForm 169-174

contacts 160-165

ContactTable 165-168

home 157, 158

login 150-153

NotFound 158, 159

private 159, 160

register 153-157

routing 69

run command 46

Rust 6, 7

S

Schema Definition Language (SDL) 105

Schema, PhoneBook App 121, 123

contact type 124

CreateContact input 125

login type 124

LoginUser Input 124

Mutation type 125

Query type 125

RegisterUser Input 124

resolvers 125, 129, 130

UpdateContact input 125

UpdateUser Input 124

user type 123

Schema, Todos App 105, 106

inputs 107

mutation 108

query 107, 108

relationship 108

resolver 108-111

type 107

SideNavItems 175

Silver Searcher 38

Snel-Carbon 146

standard library 56-58

static typing

versus, dynamic typing 30

styled components 88-90

subcommands 45

bundle 46

cache 46

compile 47

completions 47

doc 46

eval 46

fmt 46

help 45

install 46

run 46

test 46

subscriptions 100

Svelte Routing library 147

T

test command 46

third-party modules 58-61

Tmux 40

Todos API 74

DELETE 82-86

GET (list) 75, 76

GET (object) 82-86

PATCH 82-86

POST 76-81

Todos App 66

initializing 73

project structure 73, 74

UI implementation 87

Todos components

creating 91

TodoDetails 94-97

TodoList 91-94

tokio I/O library 7

tsconfig.json 32

TypeScript 11, 12

basic types 14

benefits 13

features 13

setup 31

static, versus dynamic typing 30

strong, versus weak typing 31

tsconfig.json 32

type system 102

U

UI implementation

Todos App 87

PhoneBook App 143

V

V8 engine, by Google 6

V8 JavaScript engine 8

variables 54, 55

Vim 36, 37

VS Code 37

extensions 37

W

Web APIs 51, 52

Z

zsh + oh my zsh 36

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. The Deno Land
	Introduction
	Structure
	Objectives
	Introducing Deno
	The Node Revolution
	Event loop

	Deno comparison with Node
	Deno features
	Deno foundation stack
	The V8 Engine by Google
	Rust
	Tokio I/O library

	What is a JavaScript engine
	What is a JavaScript runtime
	Conclusion

	2. Introduction to TypeScript
	Introduction
	Structure
	Objectives
	Introducing TypeScript
	TypeScript benefits
	TypeScript features
	Basics of TypeScript
	Basic types
	Interfaces
	Optional properties
	Read only properties
	Type aliases
	Interfaces versus type aliases
	Type inference
	Type assertions
	Unions
	Intersections
	Classes
	Modifiers
	Getter and Setter
	Static
	Abstract

	Static versus dynamic typing
	Strong versus weak typing
	TypeScript setup
	tsconfig.json

	Conclusion

	3. Setting Up Deno
	Introduction
	Structure
	Objectives
	Installing Deno
	Development tools
	Terminal
	zsh + oh my zsh
	Vim
	VS Code
	VS Code extensions
	Git and GitHub
	Postman
	Docker
	Docker Compose

	Silver Searcher
	Databases
	PostgreSQL
	MongoDB and MongoDB Atlas

	Redis

	Heroku
	Tmux
	Pomodoro Technique
	Conclusion

	4. Deno Ecosystem
	Introduction
	Structure
	Objectives
	Deno CLI
	Environment variables
	Subcommands
	Passing arguments
	File watcher
	Permission flags
	Permissions allow-list

	Deno runtime APIs
	Web APIs
	Deno global APIs
	Variables
	Classes

	Deno modules
	Standard library
	Third-party modules

	Module registries
	Central dependencies in deps.ts
	Conclusion

	5. Todos App—API
	Introduction
	Structure
	Objective
	Introducing Aleph.js
	Features
	Command Line Interface
	Concepts
	Pages
	Routing
	Application Programming Interface (API)

	Initializing Todos App
	Project structure

	Todos API
	GET (list)
	POST
	GET (object), PATCH, and DELETE

	Conclusion

	6. Todos App—UI Implementation
	Introduction
	Structure
	Objective
	Styled components
	Creating Todos components
	TodoList
	TodoDetails

	Conclusion

	7. Introduction to GraphQL, Oak, and Oak-GraphQL
	Introduction
	Structure
	Objective
	Introducing GraphQL
	Features
	Precise fetching
	Single API endpoint
	Validation and type checking
	Fragments
	Autogenerated API documentation

	Core concepts
	Schema
	Type
	Input
	Query
	Mutation
	Relationship

	Resolver

	Introducing Oak framework
	Introducing Oak-GraphQL middleware
	Conclusion

	8. PhoneBook App—API Implementation
	Introduction
	Structure
	Objective
	Initial setup
	Version control using git
	Trex as the package manager
	Velociraptor as script runner

	Oak GraphQL server setup
	Schema
	Database setup
	Models
	Controllers

	Authentication
	Conclusion

	9. PhoneBook App - UI Implementation
	Introduction
	Structure
	Objective
	Initial setup
	Snel setup
	Snel Carbon installation

	Routes
	Login
	Register
	Home
	NotFound
	Private route
	Contacts
	ContactTable
	ContactForm

	Layout
	Header
	SideNav

	Conclusion

	Index

