

Red Hat

https://oreil.ly/wkOqS

Modernizing Enterprise Java
A Concise Cloud Native Guide for Developers

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Markus Eisele and Natale Vinto

Modernizing Enterprise Java
by Markus Eisele and Natale Vinto

Copyright © 2022 Markus Eisele and Natale Vinto. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com .

Editors: Suzanne McQuade and Amelia Blevins

Production Editor: Caitlin Ghegan

Copyeditor: Piper Editorial Consulting, LLC

Proofreader: TK

Indexer: TK

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

November 2021: First Edition

Revision History for the Early Release

2021-07-20: First release

http://oreilly.com/

2021-09-08: Second release

2021-10-05: Third release

See http://oreilly.com/catalog/errata.csp?isbn=9781098102142 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Modernizing Enterprise Java, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our
statement of editorial independence.

978-1-098-12156-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098102142
https://oreil.ly/editorial-independence

Dedication
To my family. Nothing of this would be possible without them.
—Markus

To Fabrizio Scarcello, modernizator, innovator, dear friend.
—Natale

From Platform to Ecosystem

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the foreword of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

Unless you’ve been in deep seclusion for the past few years, you can’t have
missed the fact that the enterprise world has been moving towards adopting
cloud technologies. This includes approaches such as microservices,
Kubernetes, Linux containers and so much more. However, despite the fact
Java has been the mainstay of enterprise developers for over two decades, it
hasn’t been immediately obvious that it has such a significant role in this
new cloud world. Java and the frameworks and stacks built with it are often
viewed as monolithic, slow to start, consuming a lot of memory or disk
space and the dynamic nature of Java itself seems to fly in the face of
Kubernetes’ immutability assumptions. For the many millions of Java
developers out there this could pose a serious problem, especially if we
need to to try recreate in another language the richness of the Java
ecosystem of IDEs, 3rd party libraries etc. which have helped to make
developers so incredibly productive over the years.

Fortunately the Java community of developers and vendors has met the
challenge of cloud native Java head on. Changes in the Java language,
frameworks etc. have been made and adopted quickly, allowing Java
developers to bring their skills to this new frontier. These include
technologies such as Quarkus, GraalVM, Eclipse Vert.x, Spring Boot and

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

OpenJDK. However, using them efficiently within a cloud environment is
not always obvious. Where does CI/CD come in to play? What about Linux
container images and Kubernetes? Monitoring, observability, health
checking of your microservices, and so much more can appear to be a
daunting challenge, even for the most experienced developer. Fortunately,
in this book, Markus and Natale have provided the answers. Within these
pages, you’ll be taken through a journey of understanding and appreciation
of what’s happening within the Java world to better embrace cloud and also
those technologies within the cloud which may not be familiar and yet are
important to ensure your distributed microservices function well. Whether
you’re an experienced Java developer or a relative novice, this book is a
great starting point for your journey into the cloud and beyond!

Mark Little Vice President, Middleware Engineering, Red Hat

Preface

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the preface of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/oreillymedia/title_title.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant

https://github.com/oreillymedia/title_title
mailto:bookquestions@oreilly.com

amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Book
Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder,
978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://www.oreilly.com/catalog/catalogpage.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We both want to thank Jason “Jay” Dobies for his wild passion for getting
through our German/Italian English. He not only helped us to be better
writers but also gave valuable insight as early reader. Thank you for having
been part of this journey. Everybody says writing a book isn’t easy. We did
know that before we started. What we bluntly underestimated was the fact
that we started writing at the beginning of a pandemic. We both went
through more ups and downs than expected, and it is only because of our
families and friends that we even got an opportunity to finish this book. We
also can’t praise the O’Reilly team enough for their patience, flexible
deadlines, and open ears when we needed them. Thank you Suzanne
McQuade, Nicole Taché, and Amelia Blevins! Thank you Red Hat. For
providing an amazing place to work, learn, and grow. We love open source

http://www.oreilly.com/catalog/catalogpage
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

and sharing knowledge as much as probably everybody else in this
company. To the many “Hatters” for their support on the way! Technical
reviewers catch you at your weakest. Whenever we tried to sneak a little
detail by them, they found it and asked the right questions. Thank you all
for your dedication and inspirations on the way: Sébastien Blanc, Alex
Soto, and Marc Hildenbrand! The heart of this book is not only the
combined experience accumulated by us but first and foremost an example.
This example was initialy created by Madou Coulibaly. He used this to
teach many developers how to effectivly build cloud-native applications
and allowed us to use his consise example as the base. #stayHealthy
#wearAMask #protectYourLovedOnes

Chapter 1. Revisiting Enterprise
Development

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

Enterprise development has always been one of the most exciting fields of
software engineering, and the last decade has been a particularly fascinating
period. The 2010s saw highly distributed microservices gradually replace
classic three-tier architectures, with the almost limitless resources of cloud-
based infrastructure pushing heavyweight application servers towards
obsolescence. While developers are challenged with putting the pieces of
the distributed world back together, plenty of voices question the necessity
for this complex microservices world. The reality is that most applications
are still well-crafted monolithic applications that follow a traditional
software development process.

However, the way we deploy and operate software has changed equally fast.
We have seen DevOps growing into GitOps, Expanding developers’
responsibilities beyond the application code including the required

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

infrastructure. Building on Markus’ book Modern Java EE Design Pattern,
this book puts more perspective on modernization than just modularization.
We want to help you understand the various pieces that lead to a modern,
Kubernetes-native development platform and how to build and maintain
applications on top of it.

This book aims to step back and evaluate the success factors and drivers for
application modernization and cloud-native architectures. We focus on
modernizing Java-based Enterprise Applications, including a selection
process for which applications are suitable for modernization and an
overview of tools and methodologies that help you manage your
modernization efforts. Instead of talking about patterns, this book provides
a set of examples to help you apply everything you learned. That said, this
book isn’t discussing monolithic vs. distributed applications extensively.
Rather, our goal is to help you understand how to seamlessly move your
applications to the cloud. You can use this book as a reference and read
chapters in any order. We have organized the material, though, starting with
higher-level concepts to implementation in iterations. First, it’s important to
start by looking at the different definitions of clouds and how we build
applications for them.

From public to private. Why clouds?
The differences between public clouds, private clouds, hybrid clouds, and
multi clouds were once easily defined by location and ownership. Today,
these two are no longer the only relevant drivers for the classification of
clouds. Let’s start with a more comprehensive definition of the different
target environments and why they are used.

A public cloud environment is usually created from resources not owned by
the end-user that can be redistributed to other tenants. Private cloud
environments solely dedicate their resources to the end-user, usually within
the user’s firewall, data-center, or sometimes on-premises. Multiple cloud
environments with some degree of workload portability, orchestration, and
management are called hybrid clouds. Decoupled, independent, and not

https://www.oreilly.com/library/view/modern-java-ee/9781492042266/

connected clouds are commonly referred to as multi clouds. Hybrid and
multi cloud approaches are mutually exclusive; you can’t have both
simultaneously because the clouds will either be interconnected (hybrid
cloud) or not (multi cloud).

Deploying applications to a cloud, regardless of the type of cloud, is
becoming more common across enterprises as they seek to improve security
and performance through an expanded portfolio of environments. But
security and performance are only two of many reasons to move workloads
into hybrid or multi cloud environments. The primary motivation for many
is the pay-for-what-you-use model. Instead of investing in costly on-
premises hardware that is hard and expensive to scale out, clouds offer
resources when you need them. You don’t have to invest in facilities,
utilities, or building out your own data center. You do not even need
dedicated IT teams to handle your cloud data center operations, as you can
enjoy the expertise of your cloud provider’s staff.

For developers, the cloud is about self-service and flexibility. You don’t
have to wait for environments to be promoted and you can’t choose
infrastructure components (e.g., databases, message brokers, etc.) as a need
arises to free you from unnecessary wait times and ultimately speed up
development cycles. Beyond these primary advantages, you can also find
custom features for developers in some cloud environments. OpenShift, for
example, has an integrated development console that provides developers
with direct edit access to all details of their application topology. Cloud-
based IDEs (e.g., Eclipse Che) provide browser-based access to
development workspaces and eliminate local environment configuration for
teams.

Additionally, cloud infrastructures encourage you to automate your
deployment processes. Deployment automation enables you to deploy your
software to testing and production environments with the push of a button
— a mandatory requirement for agile development and DevOps teams.
You’ve seen a need for 100% automation already when you’ve read about
microservices architectures. But automation goes well beyond the
application parts. It extends to the infrastructure and downstream systems.

https://www.eclipse.org/che/

Ansible, Helm, and Kubernetes Operators help you. We talk more about
automation in chapter four, and you’ll use an Operator in chapter seven.

What “Cloud Native” means
You’ve probably heard of the cloud-native approach for developing
applications and services, and even more so since the Cloud Native
Computing Foundation (CNCF) was founded in 2015 and released
Kubernetes v1. Bill Wilder first used the term cloud-native in his book,
Cloud Architecture Patterns. According to Wilder: A cloud-native
application is architected to take full advantage of cloud platforms by using
cloud platform services and scaling automatically. Wilder wrote his book
during a period of growing interest in developing and deploying cloud-
native applications. Developers had various public and private platforms to
choose from, including Amazon AWS, Google Cloud, Microsoft Azure, and
many smaller cloud providers. But hybrid-cloud deployments were also
becoming more prevalent around then, which presented challenges.

The CNCF defines cloud-native as:

Cloud-native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they
allow engineers to make high-impact changes frequently and predictably
with minimal toil.

—CNCF Cloud Native Definition v1.0,
https://github.com/cncf/toc/blob/master/DEFINITION.md[

github]]

Similar to cloud-native technologies are The Twelve-Factor Apps. The
Twelve-Factor apps manifesto defines patterns for building applications that
are delivered on the cloud. While these patterns overlap with Wilder’s cloud

https://www.ansible.com/
https://helm.sh/
https://github.com/operator-framework
http://shop.oreilly.com/product/0636920023777.do
https://12factor.net/

architecture patterns, the Twelve-Factor methodology can be applied to
apps written in any programming language and use any combination of
backing services (database, queue, memory cache, etc.).

Kubernetes-Native Development
For developers deploying applications to a hybrid cloud, shifting focus from
cloud-native to Kubernetes-native makes sense. One of the first mentions of
“kubernetes-native” found as early as 2017. A blog post on Medium
describes the differences between Kubernetes-native and cloud-native as a
set of technologies that are optimized for Kubernetes. The key takeaway is
that Kubernetes-native is a specialization of cloud-native and not separated
from what cloud-native defines. Whereas a cloud-native application is
intended for the cloud, a Kubernetes-native application is designed and built
for Kubernetes.

In the early days of cloud-native development, orchestration differences
prevented applications from being genuinely cloud-native. Kubernetes
resolves the orchestration problem, but Kubernetes does not cover cloud
provider services (for example Roles and Permissions) or provide an event
bus (for example Kafka). The idea that Kubernetes-native is a specialization
of cloud-native means that there are many similarities between them. The
main difference is cloud provider portability. Taking full advantage of the
hybrid cloud and using multiple cloud providers requires that applications
are deployable to any cloud provider. Without such a feature, you’re tied
into a single cloud provider and reliant on them being up 100% of the time.
To fully use the benefits of a hybrid cloud, applications have to be build in a
Kubernetes-native way. Kubernetes-native is the solution to cloud
portability concerns. We talk more about Kubernetes-native in chapter two.

Containers and Orchestration for Developers
One key ingredient for portability is the container. A container represents a
fraction of the host system resources together with the application. The

https://cloudark.medium.com/towards-a-kubernetes-native-future-3e75d7eb9d42

origins of containers go back to early Linux days with the introduction of
chroots and became mainstream with Google’s process containers which
eventually became cgroups. Their use exploded in 2013 primarily because
of Docker, making it accessible for many developers. There is a difference
between Docker the company, Docker containers, Docker images, and the
Docker developer tooling that we’re all used to. While everything started
with Docker containers, Kubernetes prefers to run containers through any
container runtime (e.g. containerd or CRI-O) which supports its Container
Runtime Interface (CRI). What many people refer to as Docker images, are
actually images packaged in the Open Container Initiative (OCI) format.

Container-native runtime

Containers offer a lighter-weight version of the Linux operating system’s
userland stripped down to the bare essentials. However, it’s still an
operating system, and the quality of a container matters just as much as the
host operating system. It takes a lot of engineering, security analysis, and
resources to support container images. It requires testing not just the base
images but also their behavior on a given container host. Relying on
certified and OCI compliant base images removes hurdles when moving
applications across platforms. Ideally, these base images already come with
the necessary language runtimes you need. For Java-based applications, the
Red Hat Universal Base Image is a good starting point. We’ll learn more
about containers and how developers use them in chapter four.

Kubernetes Flavors We’ve talked about Kubernetes as a general concept
so far. And we continue to use the word Kubernetes to talk about the
technology that powers container orchestration. The name Kubernetes (or
sometimes just K8s) refers to the open source project that is widely
understood to be the standards body for the core functionality of container
orchestration. We use the term “plain” Kubernetes throughout the book if
we refer to standard functionality inside Kubernetes. The Kubernetes
community created different distributions and even flavors of Kubernetes.
The CNCF runs the Certified Kubernetes Conformance Program which lists
over 138 products from 108 vendors at the time of writing. The list contains
complete distributions (e.g. MicroK8s, OpenShift, Rancher), hosted

https://containerd.io/
https://cri-o.io/
https://opencontainers.org/
https://developers.redhat.com/blog/2020/06/25/introducing-the-red-hat-build-of-the-openjdk-universal-base-images-now-in-red-hat-enterprise-linux-8-2/
https://kubernetes.io/
https://www.cncf.io/certification/software-conformance/

offerings (e.g. Google Kubernetes Engine, Amazon Elastic Kubernetes
Service, Azure AKS Engine), and installers (e.g. MiniKube, VanillaStack).
They all share the common core but add additional functionality or
integrations on top as the vendors see a need or opportunity. We don’t make
any suggestion what Kubernetes flavor to use in this book. You will have to
decide on your own which direction you want to take your production
workloads. To help you run the examples in this booklocally, we use
Minikube and do not require you to have a full-blown installation
somewhere in a cloud.

Managing Development complexity
One of the most critical areas of Kubernetes-native development is the
management of your development environment. The number of tasks that
need to be executed for a successful deployment or staging into multiple
environments has grown exponentially. One reason is the growing number
of individual application parts or microservices. Another the application
specific configuration of necessary infrastructure. Figure 1-1 gives a brief
overview of an example development environment with tools necessary for
a fully automated development. We will talk about a fraction of them in this
book to give you an easy start in your new environment. The core
development tasks haven’t changed. You will still write an application or
service with a suitable framework, like Quarkus, as we do in this book. This
part of the developer workflow is commonly referred to as “inner loop”
development.

We will spend most of our time in this book walking through changes and
opportunities in the “outer loop”. The outer loop takes your built and tested
application and puts it into production through various mechanisms. It is
essential to understand that we are expressing some very strong opinions in
this book. They reflect what we have learned about making Java developers
productive, fast, and maybe even happy by using the tools and techniques
we are recommending. As indicated in Figure 1-1, you have one or two
choices to make in some places. We chose the more traditional way for Java

https://minikube.sigs.k8s.io/
http://quarkus.io/

developers in this book. We use Maven instead of Gradle for the application
build and podman over docker to build the container images. We also use
the OpenJDK and not GraalVM and stick with JUnit instead of
Testcontainers in the examples.

But the cloud-native ecosystem, as mapped out by the CNCF landscape, has
even more tools for you to choose from. Think of this book as trail map for
the Enterprise Java developer.

Figure 1-1. Inner and Outer Loop Development, and author-recommended tools.

Besides the technology choices, you’ll also have to decide how you want to
use this new ecosystem. With the variety of tools available comes another
dimension that lets you choose your level of engagement with Kubernetes.
We differentiate between opinionated and flexible as outlined in Figure 1-2.
As a developer obsessed with details, you might want to learn all of the
examples from the trenches and use plain Kubernetes while crafting your
YAML files.

https://www.testcontainers.org/
https://landscape.cncf.io/

NOTE
Originally YAML was said to mean Yet Another Markup Language. This name was intended as a
tongue-in-cheek reference to its purpose as a markup language. But it was later repurposed as
YAML Ain’t Markup Language, a recursive acronym, to distinguish its purpose as data-oriented.

You may decide to focus exclusively on source code and don’t want
distraction from implementing business logic. This can be achieved with
developer tools provided by some distributions. Depending on what’s most
important to you in your development process, there are various options.
You can use the main Kubernetes command-line interface (CLI) kubctl
instead of a product-specific one like OpenShift’s CLI oc. If you want to be
closer to a complete product, we suggest you try CodeReady Containers. It
is an OpenShift cluster on your laptop with an easy getting started
experience. But, the choice is yours. Another great tool we would
recommend is odo, which is a general-purpose developer CLI for
Kubernetes based projects. Existing tools such as kubectl and oc are
more operations-focused and require a deep understanding of underlying
concepts. Odo abstracts away complex Kubernetes concepts for the
developer. Two example choices from the outer development loop are
Continous Integration (CI) solutions. We use Tekton in this book, and you
can use it in Chapter 6. It is also possible to use Jenkins on Kubernetes with
the Jenkins Operator or even Jenkins X. Whatever choice you make, you
will be the master of your Kubernetes-native journey after all.

https://developers.redhat.com/products/codeready-containers/overview
https://github.com/openshift/odo
https://tekton.dev/
https://github.com/jenkinsci/kubernetes-operator

Figure 1-2. Oppinionated vs Flexible - Technology choices in inner and outer development loops

DevOps and Agility
When modernizing your enterprise Java application, the next critical change
is in the creation of cross-functional teams that share responsibilities from
idea to operation. While some say that DevOps is solely focused on the
operational aspects and paired with self-service for developers, we firmly
believe that DevOps is a team culture focused on long-lasting impact. The
word “DevOps” is a mashup of “development’ and “operations,” but it
represents a set of ideas and practices much more significant than simply
the sum of both terms. DevOps includes security, collaborative ways of
working, data analytics, and many other things. DevOps describes
approaches to speeding up the processes by which a new business
requirement goes from code in development to deployment in a production
environment. These approaches require that development teams and
operations teams communicate frequently and work with empathy for their
teammates. Scalability and flexible provisioning are also necessary.
Developers, usually coding in a familiar development environment, work
closely with IT operations to speed software builds, tests, and releases

without sacrificing reliability. All this together results in more frequent code
changes and more dynamic infrastructure usage. Changing a traditional IT
organization from a traditional approach to a DevOps methodology is often
described as transformation and way beyond the scope of this book.
Nevertheless, it is an essential ingredient, and you will see this
transformation is beautifully described as “teaching elephants to dance” in
books, articles, and presentations.

Summary
In this chapter you learned some basic definitions and have heard about the
most important technologies and concepts we are going to use throughout
this book. The next chapter is taking you into the source code of your first
application modernization.

Chapter 2. The Path to Cloud
Native Java

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

Πάντα ῥεῖ (Panta rei) - A famous aphorism from Heraclitus, a philosopher,
describing the mutable condition of our existence where everything flows,
where our call is to react and adapt. This describes perfectly the right
approach with regards to the evolution we are experiencing in the IT world
in general, and specifically with programming languages and frameworks,
where heterogeneous, distributed, multi-cloud workloads are more common
and essential for business purposes.

Java and Jakarta EE (formely known as Java EE), are evolving as well in
that direction, balancing the benefits that come from the consolidated
experience on enterprise solutions, together with the need to a fast-changing
cloud-aware scenario where our applications can run in many clouds
seamlessly.

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

In this chapter we outline the components needed for a transition to Cloud
Native Java, walking you through an e-commerce store Java
implementation called Coolstore.

Cloud Native Workshop
Microservices are an accepted and well-recognized practice nowadays. For
JavaEE developers this means a lift-and-shift change of the paradigm,
where a single Application Server does not contain all our business logic.
Instead, it gets rather split into different microservices running in their
application servers, like Tomcat or Undertow, with a minimal footprint and
optimizations to keep this coexistence functional and performant also in the
Cloud Native world.

The monolithic approach today can be refactored into a heterogeneous and
even programming language agnostic model, where each module is
managed by a specific component running in a different application.
Beyond the best practices such as API-driven models, the challenge here is
how to maintain this diversity. However Java today provides a set of tools
and frameworks that help us focus on our preferred tools and collaborate
easily.

In this chapter, you will learn how to develop and deploy a microservices-
based application split across different Java frameworks.

Architecture
Our e-commerce application Coolstore, is a typical web app containing
three components:

Presentation Layer: a frontend to show available items to acquire

Model Layer: a backend providing the business logic to catalog
and index all items to sell

Data Layer: a database storing all records about transactions and
items

The outcome of these components is an online store with a catalog of
product items and an inventory of stock, that we can organize with the
architecture shown in Figure 2-1

Figure 2-1. Coolstore Architecture

We map the three previously mentioned components into several
microservices, each one responsible for its layer.

Catalog Service exposes using a REST API content of a catalog
stored in a relational database

Inventory Service exposes using a REST API the inventory stored
in a relational database

Gateway Service calls the Catalog Service and Inventory
Service in an efficient way

WebUI Service calls Gateway Service to retrieve all the
information.

The Presentation and the Model layer are represented by such
microservices, with the latter having an interface to the Data layer delegated
to some DBMS.

Our e-store implementation is called Coolstore and it looks like the picture
in Figure 2-2

Figure 2-2. Coolstore Dashboard

Create an Inventory Microservice with
Quarkus
Quarkus is a full-stack, Kubernetes-native Java framework made for Java
virtual machines (JVMs) and native compilation, optimizing Java
specifically for containers and enabling it to become an effective platform
for serverless, cloud, and Kubernetes environments.

It is designed to work with popular Java standards, frameworks, and
libraries like Eclipse MicroProfile and Spring, as well as Apache Kafka,

https://quarkus.io/

RESTEasy (JAX-RS), Hibernate ORM (JPA), Infinispan, Camel, and many
more. It also provides the correct information to GraalVM (a universal
virtual machine for running apps written in several languages, including
Java and JavaScript) for a native compilation of your application.

Quarkus is a good choice for implementing microservices architectures and
it provides a set of tools that help developers debug and test at ease. For our
e-commerce store, we will start using Quarkus for the Inventory
microservice (as shown in Figure 2-3).

Figure 2-3. Inventory Quarkus microservice

You can find all the source code for this example in the book’s GitHub
repository.

Create Quarkus Maven project
With Quarkus, you can scaffold a new project either with Maven than
Gradle.

TIP
Both Maven and Gradle are popular ways to setup a Java project and manage all dependencies.
They differs in the dependency management strategy and they have different configuration
formats (XML vs Kotlin DSL), but they are mostly equivalent in terms of capabilities. In this
book we will use Maven as it has wider support through IDEs and tools.

We set up a new Maven project using quarkus-maven-plugin with
this command:

mvn io.quarkus:quarkus-maven-plugin:2.1.4.Final:create \
 -DprojectGroupId=com.redhat.cloudnative \
 -DprojectArtifactId=inventory-quarkus \
 -DprojectVersion=1.0.0-SNAPSHOT \
 -DclassName="com.redhat.cloudnative.InventoryResource" \
 -Dextensions="quarkus-resteasy,quarkus-junit5,rest-assured,↳
 quarkus-resteasy-jsonb,quarkus-hibernate-orm-panache,quarkus-
jdbc-h2" \

TIP
You can also bootstrap a Quarkus app with the online configurator available at
https://code.quarkus.io/

This will create a skeleton project, with an InventoryResource class
that we will use for implementing our e-commerce Inventory microservice.

Let’s have a look at the generated pom.xml file:

https://github.com/modernizing-java-applications-book/inventory-quarkus
https://code.quarkus.io/

<?xml version="1.0" encoding="UTF-8"?>
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.cloudnative</groupId>
 <artifactId>inventory-quarkus</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <quarkus-plugin.version>2.1.4.Final</quarkus-
plugin.version>
 <quarkus.platform.artifact-id>quarkus-
bom</quarkus.platform.artifact-id>
 <quarkus.platform.group-
id>io.quarkus</quarkus.platform.group-id>

<quarkus.platform.version>2.1.4.Final</quarkus.platform.version>
 <compiler-plugin.version>3.8.1</compiler-plugin.version>
 <surefire-plugin.version>3.0.0-M5</surefire-
plugin.version>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>

<maven.compiler.parameters>true</maven.compiler.parameters>
 </properties>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-bom</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.rest-assured</groupId>

 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-jsonb</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-orm-panache</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-jdbc-h2</artifactId>
 </dependency>
 </dependencies>
...
 <build>
 <plugins>
 <plugin>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-maven-
plugin</artifactId>
 <version>${quarkus-plugin.version}
</version>
 <executions>
 <execution>
 <goals>
 <goal>native-image</goal>
 </goals>
 <configuration>
 <enableHttpUrlHandler>true↳
 </enableHttpUrlHandler>
 </configuration>
 </execution>
 </executions>
 </plugin>
...
 </profiles>
</project>

Here we setup groupId, artifactId and version. For a full list
of available options, please see Table 2-1

Here you find the import of the Quarkus BOM, allowing you to omit the
version on the different Quarkus dependencies.

Here you find all the dependencies for the project, that we expressed as
extensions to add. We included for our purposes:

JSON REST Services: It allows you to develop REST services to
consume and produce JSON payloadsHibernate ORM Panache: The de facto JPA implementation and
offers you the full breadth of an Object Relational Mapper.
Hibernate ORM with Panache focuses on simplifying Hibernate-
based persistence layer, making your entities easier to write and
maintain.Datasources (H2): Datasources are the main way of obtaining
connections to a database, in this example, we will use H2, an in-
memory database ready to use for Java apps.

The quarkus-maven-plugin which is responsible for the
packaging of the application and also providing the development mode

https://quarkus.io/guides/rest-json-guide
https://quarkus.io/guides/hibernate-orm-panache
https://quarkus.io/guides/datasource-guide#h2

T
a
b
l
e

2
-
1
.
Q
u
a
r
k
u
s
M
a
v
e
n

P
r
o
j
e
c
t
o
p
t
i

o
n
s

Attribute Default Value Description

projectGroupId org.acme.sample The group id of the created project

projectArtifactId mandatory The artifact id of the created project. Not passing it
triggers the interactive mode.

projectVersion 1.0-SNAPSHOT The version of the created project

platformGroupId io.quarkus The group id of the target platform. Given that all the
existing platforms are coming from io.quarkus this one
won’t practically be used explicitly. But it’s still an
option.

platformArtifactId quarkus-universe-
bom

The artifact id of the target platform BOM. It should be
quarkus-bom in order to use the locally built Quarkus.

platformVersion If it’s not specified,
the latest one will
be resolved.

The version of the platform you want the project to use.
It can also accept a version range, in which case the
latest from the specified range will be used.

className Not created if
omitted

The fully qualified name of the generated resource

path /hello The resource path, only relevant if className is set.

extensions [] The list of extensions to add to the project (comma-
separated)

TIP
To check all the extensions available, use this command from project dir: ./mvnw
quarkus:list-extensions

Create a Domain Model
It’s time to write some code now and create a Domain model and a RESTful
endpoint to create the Inventory service. Domain model is a popular pattern
in software engineering, and it fits very well also in the Cloud Native
World. The level of abstraction given by the pattern, makes it still valid as
an object-oriented way of modeling microservices business logic.

You can find the Domain Model definition in the Inventory class in this
book’s GitHub repository.

Our Domain Model implementation consists to an Entity mapped to the
Persistence Layer, representing an inventory of items.

package com.redhat.cloudnative;

import javax.persistence.Entity;
import javax.persistence.Table;

import io.quarkus.hibernate.orm.panache.PanacheEntity;

import javax.persistence.Column;

@Entity
@Table(name = "INVENTORY")
public class Inventory extends PanacheEntity{

 @Column
 public int quantity;

 @Override
 public String toString() {
 return "Inventory [Id='" + id + '\'' + ", quantity=" +
quantity + ']';
 }
}

@Entity marks the class as a JPA entity

@Table customizes the table creation process by defining a table name
and database constraint, in this case it is INVENTORY

https://github.com/modernizing-java-applications-book/inventory-quarkus/src/main/java/com/redhat/cloudnative/Inventory.java

Quarkus will generate getter/setter for you when using public attributes
and when you extend PanacheEntity. Additionally, you have an id
attribute automatically added.

Once we defined the model, we can update our Properties expressed in the
application.properties file, in order to provide the instructions on
how to populate data for our microservice.

quarkus.datasource.jdbc.url=jdbc:h2:mem:inventory;↳
DB_CLOSE_ON_EXIT=FALSE;DB_CLOSE_DELAY=-1
quarkus.datasource.db-kind=h2
quarkus.hibernate-orm.database.generation=drop-and-create
quarkus.hibernate-orm.log.sql=true
quarkus.hibernate-orm.sql-load-script=import.sql
%prod.quarkus.package.uber-jar=true

JDBC path for the in-memory DB, this can be changed for other types
of DB like any RDBMS.

An SQL script that we’ll use to populate the Coolstore with some data

An uber-jar contains all the dependencies required packaged in the jar to
enable running the application with java -jar. By default, in Quarkus, the
generation of the uber-jar is disabled. With the %prod prefix, this option
is only activated when building the jar intended for deployments.

Create a RESTful Service
Quarkus uses JAX-RS standard for building REST services. When
scaffolding a new project as we saw before, a hello example service is
created in the className path we defined. Now we want to expose REST
service to retrieve the number of available items in the store from the
inventory, defined as in Table 2-2.

T
a
b
l
e
2
-
2
.
I
n
v
e
n
t
o
r
y
R
E
S
T

A
P
I
e
n
d
p
o
i
n

t
s

Path HTTP Method Description

/api/inventory/
{item}

GET Returns the quantity for a given item id present in
the inventory database

Let’s change the InventoryResource class definition as the following.

package com.redhat.cloudnative;

import javax.enterprise.context.ApplicationScoped;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/api/inventory")
@ApplicationScoped
public class InventoryResource {

 @GET
 @Path("/{itemId}")
 @Produces(MediaType.APPLICATION_JSON)
 public Inventory getAvailability(@PathParam("itemId") long
itemId) {
 Inventory inventory = Inventory.findById(itemId);
 return inventory;
 }
}

By extending PanacheEntity, we’re using the Active Record persistence
pattern instead of a DAO. This means that all persistence methods are
blended with our own Entity.

We just implemented a parametric REST endpoint for our microservice,
serving the JSON representation of the items contained in our Coolstore. In
this way we provided a layer to query via HTTP GET requests our
Inventory Data Model we implemented in the previous step.

TIP
With Quarkus, there is no need to create an Application class. It’s supported, but not required.
In addition, only one instance of the resource is created and not one per request. You can
configure this using the different Scoped annotations (ApplicationScoped,
RequestScoped, etc).

Run the app in Dev Mode
Development mode in Quarkus is one of the coolest features we have today
for Cloud Native Java development. It enables hot deployment with
background compilation, which means that when you modify your Java
files or your resource files and then refresh your browser, the changes
automatically take effect. This also works for resource files such as the
configuration property file. In addition to that, refreshing the browser
triggers a scan of the workspace, and if any changes are detected, the Java
files are recompiled and the application is redeployed; your request is then
serviced by the redeployed application. If there are any issues with
compilation or deployment an error page will let you know.

You can start the app in dev mode with a built-in Maven goal for that
named quarkus:dev. It enables hot deployment with background
compilation, which means that when you modify your Java files or your
resource files and refresh your browser these changes will automatically
take effect. This works too for resource files like the configuration property
file.

./mvnw compile quarkus:dev

After you start the app in dev mode, you should see an output like this:

...
Hibernate:

 drop table if exists INVENTORY CASCADE
Hibernate:

 create table INVENTORY (
 id bigint not null,
 quantity integer,
 primary key (id)
)

Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (100000, 0)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (329299, 35)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (329199, 12)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (165613, 45)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (165614, 87)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (165954, 43)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (444434, 32)
Hibernate:
 INSERT INTO INVENTORY(id, quantity) VALUES (444435, 53)
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2020-12-02 13:11:16,565 INFO [io.quarkus] (Quarkus Main Thread)↳
inventory-quarkus 1.0.0-SNAPSHOT on JVM (powered by Quarkus
1.7.2.Final)↳
started in 1.487s. Listening on: http://0.0.0.0:8080
2020-12-02 13:11:16,575 INFO [io.quarkus] (Quarkus Main Thread)↳
Profile dev activated. Live Coding activated.
2020-12-02 13:11:16,575 INFO [io.quarkus] (Quarkus Main Thread)↳
Installed features: [agroal, cdi, hibernate-orm, jdbc-h2, mutiny,
narayana-jta,↳
resteasy, resteasy-jsonb, smallrye-context-propagation]

From the output, you can see that Hibernate created a database with the
name of our Domain Model and populated it with some initial data defined
in our Properties file.

NOTE
When we skaffolded the project at the beginning of this chapter, we included a series of
dependencies like Panache and we use it to map our Data Model as Entity into a database.

We can also see that our app is up and running, listening to port 8080. If
you open your browser now at http://localhost:8080 you will see a Quarkus
Welcome page (as in Figure 2-4)

Figure 2-4. Quarkus Welcome Page

TIP
You can stop the app running in dev mode by using CTRL-C from the same terminal where you
launched it.

You can now try querying one of the items we inserted from the
import.sql file, to test if our microservice is running properly.

Just navigate to http://localhost:8080/api/inventory/329299

http://localhost:8080/
http://localhost:8080/api/inventory/329299

You should have the following output:

{
 "id":"329299",
 "quantity":35
}

The REST API returned a JSON object representing the inventory count for
this product. Congratulations on your first Cloud Native microservice with
Quarkus!

NOTE
We are going now to develop the other microservices that will consume this one, so leave this
open in order to have the Coolstore up and running at the end of this chapter.

Create a Catalog Microservice with Spring
Boot
Spring Boot is an opinionated framework that makes it easy to create stand-
alone Spring based applications with embedded web containers such as
Tomcat (or JBoss Web Server), Jetty and Undertow that you can run
directly on the JVM using java -jar. Spring Boot also allows producing a
war file that can be deployed on stand-alone web containers.

The opinionated approach means many choices about Spring platform and
third-party libraries are already made by Spring Boot so that you can get
started with minimum effort and configuration.

Spring Boot is very popular for Cloud Native Java development because,
quoting the official website, it makes it easy to create stand-alone,
production-grade Spring based Applications that you can “just run” . We
will include Spring Boot in our architecture for a Catalog microservice (as
shown in Figure 2-5).

1

https://spring.io/projects/spring-boot
https://spring.io/

Figure 2-5. Catalog Spring Boot microservice

You can find all the source code for creating the Spring Boot microservice
in the book’s GitHub repository.

Create a Maven Project
Also in this case you can bootstrap your Spring boot project either with
Maven and Gradle. The easiest way to do it is with Spring Initializr, an

https://github.com/modernizing-java-applications-book/catalog-spring-boot
https://start.spring.io/

online configurator that helps to generate the project structure with all
dependencies needed.

In this case, we will use a Red Hat supported Spring boot version from Red
Hat Maven repositories, and will use these Project Metadata defined in
Table 2-3.

https://maven.repository.redhat.com/ga/

T
a
b
l
e

2
-
3
.
S
p
r
i
n
g

B
o
o
t
M
a
v
e
n

P
r
o
j
e
c
t

o
p
t
i
o
n
s

Key Value Description

modelVersion 4.0.0 POM model version (always 4.0.0).

groupId com.redhat.cloudnative Group or organization that the project belongs to.
Often expressed as an inverted domain name.

artifactId catalog Name to be given to the project’s library artifact (for
example, the name of its JAR or WAR file).

version 1.0-SNAPSHOT Version of the project that is being built

name CoolStore Catalog
Service

Name of the app

description CoolStore Catalog
Service with Spring
Boot

A description for the app

Let’s have a look at our pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"↳
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0↳
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.cloudnative</groupId>
 <artifactId>catalog</artifactId>
 <version>1.0-SNAPSHOT</version>

 <name>CoolStore Catalog Service</name>
 <description>CoolStore Catalog Service with Spring
Boot</description>
 <properties>
 <spring-boot.version>2.1.6.SP3-redhat-00001</spring-
boot.version>
 <spring-boot.maven.plugin.version>2.1.4.RELEASE-redhat-00001↳
 </spring-boot.maven.plugin.version>

<spring.k8s.bom.version>1.0.3.RELEASE</spring.k8s.bom.version>

<fabric8.maven.plugin.version>4.3.0</fabric8.maven.plugin.version
>
 </properties>
 <repositories>
 <repository>
 <id>redhat-ga</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-plugins</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </pluginRepository>
 </pluginRepositories>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>me.snowdrop</groupId>
 <artifactId>spring-boot-bom</artifactId>
 <version>${spring-boot.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-kubernetes-
dependencies</artifactId>
 <version>${spring.k8s.bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-
config</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 </dependency>
 </dependencies>
...
</project>

Project metadata we generated by Initializr or manually

Spring Boot version used

Dependencies we need:
JPA: Spring Data with JPASpring Cloud: support and tooling from Spring for Cloud Native
Java appsH2: an in-memory database that we will use for this purpose

TK

This is a minimal Spring Boot project with support for RESTful services
and Spring Data with JPA for connecting to a database. Any new project
contains no code other than the main class, in this case, the
CatalogApplication class which is there to bootstrap the Spring Boot
application.

You find it in this book’s GitHub repository

https://spring.io/projects/spring-cloud
https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/src/main/java/com/redhat/cloudnative/catalog/CatalogApplication.java

package com.redhat.cloudnative.catalog;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class CatalogApplication {

 public static void main(String[] args) {
 SpringApplication.run(CatalogApplication.class, args);
 }
}

A convenience annotation that adds auto-configuration, component scan
and also enables defining extra configurations. It is equivalent to using
@Configuration, @EnableAutoConfiguration, and
@ComponentScan with their default attributes

Create Domain Model
Next, we need to provide some data to consume for our microservice
representing the Catalog of our Coolstore e-commerce website. Also here,
we define a Domain model for the high-level interaction with the
Persistence Layer, and an interface that enables the communication between
a REST endpoint to expose the Service and the data model (as shown in
Figure 2-6).

Figure 2-6. Data Model flow

The database is configured using the Spring application configuration file
which is located in the properties file application.properties.
Let’s have a look at this file to see the database connection details.

You find it in this book’s GitHub repository

spring.application.name=catalog
server.port=8080
spring.datasource.url=jdbc:h2:mem:catalog;DB_CLOSE_ON_EXIT=FALSE

spring.datasource.username=sa
spring.datasource.password=
spring.datasource.driver-class-name=org.h2.Driver

JDBC URL for H2 DB

Use of H2 in-memory database

Let’s create our Domain model, which is similar to the one we created for
the Inventory microservice before.

You find it in this book’s GitHub repository

package com.redhat.cloudnative.catalog;

https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/src/main/resources/application.properties
https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/src/main/java/com/redhat/cloudnative/catalog/Product.java

import java.io.Serializable;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "PRODUCT")
public class Product implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 private String itemId;

 private String name;

 private String description;

 private double price;

 public Product() {
 }

 public String getItemId() {
 return itemId;
 }

 public void setItemId(String itemId) {
 this.itemId = itemId;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 @Override
 public String toString() {
 return "Product [itemId=" + itemId + ", name=" + name + ",
price=" + price + "]";
 }
}

@Entity marks the class as a JPA entity

@Table customizes the table creation process by defining a table name
and database constraint, in this case a table named CATALOG

@Id marks the primary key for the table

Create a Data Repository
Spring Data repository abstraction simplifies dealing with data models in
Spring applications by reducing the amount of boilerplate code required to
implement data access layers for various persistence stores. Repository and
its sub-interfaces are the central concept in Spring Data which is a marker
interface to provide data manipulation functionality for the entity class that
is being managed. When the application starts, Spring finds all interfaces
marked as repositories and for each interface found, the infrastructure
configures the required persistent technologies and provides an
implementation for the repository interface.

We create now a new Java interface named ProductRepository in
com.redhat.cloudnative.catalog_ package and extend the CrudRepository
interface in order to indicate to Spring that you want to expose a complete
set of methods to manipulate the entity.

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.core-concepts
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

You find it in this book’s GitHub repository

package com.redhat.cloudnative.catalog;

import org.springframework.data.repository.CrudRepository;

public interface ProductRepository extends
CrudRepository<Product, String> {
}

CrudRepository: interface used to indicate to Spring that we want to
expose a complete set of methods to manipulate the entity.

Now that we have a domain model and a repository to retrieve the domain
model, let’s create a RESTful service that returns the list of products.

Create a RESTful Service
Spring Boot uses Spring Web MVC as the default RESTful stack in Spring
applications. We now create a new Java class named CatalogController in
com.redhat.cloudnative.catalog package for that, exposing a REST
endpoint as defined in Table 2-4.

https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/src/main/java/com/redhat/cloudnative/catalog/ProductRepository.java
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

T
a
b
l
e
2
-
4
.
C
a
t
a
l
o
g
R
E
S
T

A
P
I
e
n
d
p
o
i
n
t
s

Path HTTP Method DescriptionPath HTTP Method Description

/api/catalog/ GET Returns a catalog for all items available in the store,
matching items from Inventory service with data from
Catalog service.

You find it in this book’s GitHub repository

package com.redhat.cloudnative.catalog;

import java.util.List;
import java.util.Spliterator;
import java.util.stream.Collectors;
import java.util.stream.StreamSupport;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping(value = "/api/catalog")
public class CatalogController {

 @Autowired
 private ProductRepository repository;

 @ResponseBody
 @GetMapping(produces = MediaType.APPLICATION_JSON_VALUE)
 public List<Product> getAll() {
 Spliterator<Product> products =
repository.findAll().spliterator();
 return StreamSupport.stream(products,
false).collect(Collectors.toList());
 }
}

@RequestMapping indicates the above REST service defines an
endpoint that is accessible via HTTP GET at /api/catalog

https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/src/main/java/com/redhat/cloudnative/catalog/CatalogController.java

Spring Boot automatically provides an implementation for
ProductRepository at runtime and injects it into the controller using the
@Autowire annotation.

The repository attribute on the controller class is used to retrieve
the list of products from the databases.

Everything now is ready to start our second microservice, which will listen
to port 9000 to avoid conflicts with the other one.

mvn spring-boot:run

You should see an output like this:

[INFO] --- spring-boot-maven-plugin:2.1.4.RELEASE-redhat-
00001:run (default-cli)↳
@ catalog ---
[INFO] Attaching agents: []
2020-12-02 17:12:18.528 INFO 61053 --- [main]↳
trationDelegate$BeanPostProcessorChecker : Bean
'org.springframework.cloud.autoconfigure.ConfigurationPropertiesR
ebinderAutoConfiguration' of type
[org.springframework.cloud.autoconfigure.ConfigurationPropertiesR
ebinderAutoConfiguration$$EnhancerBySpringCGLIB$$e898759c] is not
eligible for getting processed by all BeanPostProcessors (for
example: not eligible for auto-proxying)

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.1.6.RELEASE)
StandardService : Starting service [Tomcat]
2020-12-02 17:12:20.064 INFO 61053 --- [main]↳
org.apache.catalina.core.StandardEngine : Starting Servlet
Engine: Apache Tomcat/9.0.7.redhat-16
2020-12-02 17:12:20.220 INFO 61053 --- [main]↳
o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring
embedded WebApplicationContext

https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-spring-beans-and-dependency-injection.html

2020-12-02 17:12:20.220 INFO 61053 --- [main]↳
...

Your app is now listening on port 9000 to the endpoint we configured, you
can verify it by navigating to http://localhost:9000/

You should see this output from the REST API returning a JSON object
representing the product list:

[
 {
 "itemId":"100000",
 "name":"Red Fedora",
 "description":"Official Red Hat Fedora",
 "price":34.99
 },
 {
 "itemId":"329299",
 "name":"Quarkus T-shirt",
 "description":"This updated unisex essential fits like a
well-loved favorite,↳
 featuring a crew neck, short sleeves and designed with
superior combed and↳
 ring- spun cotton.",
 "price":10.0
 },
 {
 "itemId":"329199",
 "name":"Pronounced Kubernetes",
 "description":"Kubernetes is changing how enterprises work
in the cloud.↳
 But one of the biggest questions people have is: How do you
pronounce it?",
 "price":9.0
 },
 {
 "itemId":"165613",
 "name":"Knit socks",
 "description":"Your brand will get noticed on these full
color knit socks.↳
 Imported.",
 "price":4.15
 },
 {
 "itemId":"165614",
 "name":"Quarkus H2Go water bottle",

http://localhost:9000/

 "description":"Sporty 16. 9 oz double wall stainless steel
thermal bottle↳
 with copper vacuum insulation, and threaded insulated lid.
Imprinted. Imported.",
 "price":14.45
 },
 {
 "itemId":"165954",
 "name":"Patagonia Refugio pack 28L",
 "description":"Made from 630-denier 100% nylon (50%
recycled/50% high-tenacity)↳
 plain weave; lined with 200-denier 100% recycled polyester.
...",
 "price":6.0
 },
 {
 "itemId":"444434",
 "name":"Red Hat Impact T-shirt",
 "description":"This 4. 3 ounce, 60% combed ringspun
cotton/40% polyester↳
 jersey t- shirt features a slightly heathered appearance.
The fabric↳
 laundered for reduced shrinkage. Next Level brand apparel.
Printed.",
 "price":9.0
 },
 {
 "itemId":"444435",
 "name":"Quarkus twill cap",
 "description":"100% cotton chino twill cap with an
unstructured, low-profile,↳
 six-panel design. The crown measures 3 1/8 and this
features a Permacurv↳
 visor and a buckle closure with a grommet.",
 "price":13.0
 },
 {
 "itemId":"444437",
 "name":"Nanobloc Universal Webcam Cover",
 "description":"NanoBloc Webcam Cover fits phone, laptop,
desktop, Pc,↳
 MacBook Pro, iMac, ...",
 "price":2.75
 }
]

NOTE
The output has been formatted in pretty mode in book’s code listing. You’ll notice the
combination of our items from the Quarkus Inventory microservice with the description and the
price from the Spring boot Catalog microservice. If you recall the info from the previous test with
item 329299, it’s a Quarkus T-shirt.

Congratulations on creating your second microservice, now it’s time to
connect a Frontend to our Backends. In order to do it, we will use a
software API gateway with Reactive Java in the next section.

Create a Gateway Service with Vert.x
Eclipse Vert.x is an event-driven toolkit for building reactive applications
on the Java Virtual Machine (JVM). Vert.x does not impose a specific
framework or packaging model, it can be used within your existing
applications and frameworks in order to add reactive functionality by just
adding the Vert.x jar files to the application classpath.

Eclipse Vert.x enables building reactive systems as defined by The Reactive
Manifesto and build services that are:

Responsive: to handle requests in a reasonable time

Resilient: to stay responsive in the face of failures

Elastic: to stay responsive under various loads and be able to scale
up and down

Message-driven: components interact using asynchronous
message-passing

It is designed to be event-driven and non-blocking, in fact events are
delivered into an event loop that must never be blocked. Unlike traditional
applications, Vert.x uses a very small number of threads responsible for
dispatching the events to event handlers. If the event loop is blocked, the

https://vertx.io/
https://www.reactivemanifesto.org/

events won’t be delivered anymore and therefore the code needs to be
mindful of this execution model (as shown in Figure 2-7).

Figure 2-7. Vert.x Event Loop

In our Architecture, this microservice will act as an asynchronous software
API Gateway, developed as a reactive Java microservice that routes and
dispatches efficiently the traffic to the Inventory and Catalog component of
Cloud Native e-commerce website.

Figure 2-8. API Gateway Vert.x microservice

You find the source code of this microservice in this book’s GitHub
repository

Create Vert.x Maven project
Vert.x supports both Maven and Gradle, and the easiest way to bootstrap a
new Vert.x Maven project is through a template project structure offered by
Vert.x community available at https://github.com/vert-x3/vertx-maven-
starter .

https://github.com/modernizing-java-applications-book/gateway-vertx/
https://github.com/vert-x3/vertx-maven-starter

In our case we are using Red Hat Maven repositories and added the settings
shown in Table 2-5.

T
a
b
l
e

2
-
5
.
V
e
r
t
.
x

M
a
v
e
n

P
r
o
j
e
c
t
o
p
t
i

o
n
s

Key Value Description

modelVersion 4.0.0 POM model version (always 4.0.0).

groupId com.redhat.cloudna
tive

Group or organization that the project belongs to. Often
expressed as an inverted domain name.

artifactId gateway Name to be given to the project’s library artifact (a JAR
in this case)

version 1.0-SNAPSHOT Version of the project that is being built

name CoolStore Gateway
Service

Name of the app

Let’s have a look at how the pom.xml will look like:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"↳
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"↳
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.cloudnative</groupId>
 <artifactId>gateway</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>CoolStore Gateway Service</name>
 <description>CoolStore Gateway Service with Eclipse
Vert.x</description>

 <properties>
 <vertx.version>3.6.3.redhat-00009</vertx.version>
 <vertx-maven-plugin.version>1.0.15</vertx-maven-
plugin.version>

<vertx.verticle>com.redhat.cloudnative.gateway.GatewayVerticle↳
 </vertx.verticle>

<fabric8.maven.plugin.version>4.3.0</fabric8.maven.plugin.version
>
 <slf4j.version>1.7.21</slf4j.version>
 </properties>
...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-dependencies</artifactId>
 <version>${vertx.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-core</artifactId>
 </dependency>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-config</artifactId>
 </dependency>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web</artifactId>
 </dependency>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web-client</artifactId>
 </dependency>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-rx-java2</artifactId>
 </dependency>
 <dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-health-check</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>

 <version>${slf4j.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>${slf4j.version}</version>
 </dependency>
 </dependencies>
...
</project>

Project metadata

Vert.x version used

GatewayVerticle: the name of the main Verticle, it’s the entry
point for our app

A list of dependecies:
Vert.x libraries: vertx-core, vertx-config, vertx-web, vertx-web-
clientRx support for Vert.x: vertx-rx-java2

Create an API Gateway
Next, we want to create an API Gateway as the entry point for the web
frontend of our website, to access all backend services from a single place.
This pattern is predictably called API Gateway and is a common practice in
Microservices architecture.

The unit of deployment in Vert.x is called a Verticle. A verticle processes
incoming events over an event-loop, where events can be anything like
receiving network buffers, timing events, or messages sent by other
verticles.

We define our main Verticle as GatewayVerticle as we declared it
previously in the pom.xml, and expose the REST endpoint that will be
routed to the Catalog /api/catalog as shown in Table 2-6.

https://vertx.io/docs/vertx-rx/java/
http://microservices.io/patterns/apigateway.html

T
a
b
l
e
2
-
6
.
A
P
I
G
a
t
e
w
a
y
R
E
S
T

A
P
I
e
n
d
p
o
i
n

t
s

Path HTTP Method Description

/api/catalog/ GET Routes the traffic to Catalog and returns a JSON object
containing all items available in the store, matching
items from Inventory service with data from Catalog
service.

You find it in this book’s GitHub repository

package com.redhat.cloudnative.gateway;

import io.vertx.core.http.HttpMethod;
import io.vertx.core.json.JsonArray;
import io.vertx.core.json.JsonObject;
import io.vertx.ext.web.client.WebClientOptions;
import io.vertx.reactivex.config.ConfigRetriever;
import io.vertx.reactivex.core.AbstractVerticle;
import io.vertx.reactivex.ext.web.Router;
import io.vertx.reactivex.ext.web.RoutingContext;
import io.vertx.reactivex.ext.web.client.WebClient;
import
io.vertx.reactivex.ext.web.client.predicate.ResponsePredicate;
import io.vertx.reactivex.ext.web.codec.BodyCodec;
import io.vertx.reactivex.ext.web.handler.CorsHandler;
import io.vertx.reactivex.ext.web.handler.StaticHandler;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import io.reactivex.Observable;
import io.reactivex.Single;

import java.util.ArrayList;
import java.util.List;

public class GatewayVerticle extends AbstractVerticle {
 private static final Logger LOG =
LoggerFactory.getLogger(GatewayVerticle.class);

 private WebClient catalog;

https://github.com/modernizing-java-applications-book/vertx-gateway/tree/main/src/main/java/com/redhat/cloudnative/gateway/GatewayVerticle.java

 private WebClient inventory;

 @Override
 public void start() {
 Router router = Router.router(vertx);
 router.route().handler(CorsHandler.create("*")↳
 .allowedMethod(HttpMethod.GET));
 router.get("/*").handler(StaticHandler.create("assets"));
 router.get("/health").handler(this::health);
 router.get("/api/products").handler(this::products);

 ConfigRetriever retriever =
ConfigRetriever.create(vertx);
 retriever.getConfig(ar -> {
 if (ar.failed()) {
 // Failed to retrieve the configuration
 } else {
 JsonObject config = ar.result();

 String catalogApiHost =↳
 config.getString("COMPONENT_CATALOG_HOST",
"localhost");
 Integer catalogApiPort =↳
 config.getInteger("COMPONENT_CATALOG_PORT",
9000);

 catalog = WebClient.create(vertx,
 new WebClientOptions()
 .setDefaultHost(catalogApiHost)
 .setDefaultPort(catalogApiPort));

 LOG.info("Catalog Service Endpoint: " +
catalogApiHost↳
 + ":" + catalogApiPort.toString());

 String inventoryApiHost =↳
 config.getString("COMPONENT_INVENTORY_HOST",
"localhost");
 Integer inventoryApiPort =↳
 config.getInteger("COMPONENT_INVENTORY_PORT",
8080;

 inventory = WebClient.create(vertx,
 new WebClientOptions()
 .setDefaultHost(inventoryApiHost)
 .setDefaultPort(inventoryApiPort));

 LOG.info("Inventory Service Endpoint: "↳

 + inventoryApiHost + ":" +
inventoryApiPort.toString());

 vertx.createHttpServer()
 .requestHandler(router)
 .listen(Integer.getInteger("http.port",
8090));

 LOG.info("Server is running on port "↳
 + Integer.getInteger("http.port", 8090));
 }
 });
 }

 private void products(RoutingContext rc) {
 ...
 }

 private Single<JsonObject>
getAvailabilityFromInventory(JsonObject product) {
...
 }

 private void health(RoutingContext rc) {
...
 }
}

A Verticle is created by extending from AbstractVerticle
class

The start() method creates an HTTP server

A Router is retrieved for mapping the REST endpoints

A REST endpoint is created for mapping /api/catalog Catalog
endpoint through a product() function that will retrieve the content

An HTTP Server is created which listens on port 8090

Give Inventory microservice hostname and port to connect to

The microservice supports ENV vars to change its hostname and port
from Properties, this is important for the portability of our architecture
across clouds.

NOTE
We use port 8090 to avoid conflict while running it in local development. The port number can
be changed also with a property file like described in Vert.x Config doc. When developing with
Microservices, the use of environment variables to map hosts and ports is highly encouraged, we
use them to map Inventory and Catalog endpoints dynamically.

We are now ready to start our API Gateway:

mvn compile vertx:run

The output should be similar to this:

[INFO] Scanning for projects...
[INFO]
[INFO] -------------------< com.redhat.cloudnative:gateway >-----

[INFO] Building CoolStore Gateway Service 1.0-SNAPSHOT
[INFO] --------------------------------[jar]-------------------

[INFO]
[INFO] --- vertx-maven-plugin:1.0.15:initialize (vmp) @ gateway -
--
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-
resources) @ gateway ---
[WARNING] Using platform encoding (UTF-8 actually) to copy
filtered resources,↳
i.e. build is platform dependent!
[INFO] Copying 3 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.6.1:compile (default-compile)
@ gateway ---
[INFO] Changes detected - recompiling the module!
[WARNING] File encoding has not been set, using platform encoding
UTF-8,↳
i.e. build is platform dependent!

https://vertx.io/docs/vertx-config/java/

[INFO] Compiling 1 source file to↳
/home/bluesman/git/cloud-native-java2/↳
labs/gateway-vertx/target/classes
...
 com.redhat.cloudnative.gateway.GatewayVerticle↳
lambda$start$0
[INFO] INFO: Catalog Service Endpoint: localhost:9000
[INFO] dic 02, 2020 6:56:56 PM
com.redhat.cloudnative.gateway.GatewayVerticle↳
lambda$start$0
[INFO] INFO: Inventory Service Endpoint: localhost:8080
[INFO] dic 02, 2020 6:56:56 PM
com.redhat.cloudnative.gateway.GatewayVerticle↳
lambda$start$0
[INFO] INFO: Server is running on port 8090
[INFO] dic 02, 2020 6:56:56 PM

Let’s verify it is up and running and correctly routing traffic navigating to
http://localhost:8090

You should get the JSON object from Catalog’s endpoint, in the pretty
format:

[{
 "itemId" : "165613",
 "name" : "Knit socks",
 "description" : "Your brand will get noticed on these full
color knit socks.↳
 Imported.",
 "price" : 4.15,
 "availability" : {
 "quantity" : 45
 }
}, {
 "itemId" : "165614",
 "name" : "Quarkus H2Go water bottle",
 "description" : "Sporty 16. 9 oz double wall stainless steel
thermal bottle↳
 with copper vacuum insulation, and threaded insulated lid.
Imprinted. Imported.",
 "price" : 14.45,
 "availability" : {
 "quantity" : 87
 }
}, {
 "itemId" : "329199",

http://localhost:8090/

 "name" : "Pronounced Kubernetes",
 "description" : "Kubernetes is changing how enterprises work in
the cloud.↳
 But one of the biggest questions people have is: How do you
pronounce it?",
 "price" : 9.0,
 "availability" : {
 "quantity" : 12
 }
}, {
 "itemId" : "100000",
 "name" : "Red Fedora",
 "description" : "Official Red Hat Fedora",
 "price" : 34.99,
 "availability" : {
 "quantity" : 0
 }
}, {
 "itemId" : "329299",
 "name" : "Quarkus T-shirt",
 "description" : "This updated unisex essential fits like a
well-loved favorite,↳
 featuring a crew neck, short sleeves and designed with superior
combed and ring-↳
 spun cotton.",
 "price" : 10.0,
 "availability" : {
 "quantity" : 35
 }
}, {
 "itemId" : "165954",
 "name" : "Patagonia Refugio pack 28L",
 "description" : "Made from 630-denier 100% nylon (50%
recycled/50% high-tenacity)↳
 plain weave; lined with 200-denier 100% recycled polyester.
...",
 "price" : 6.0,
 "availability" : {
 "quantity" : 43
 }
}, {
 "itemId" : "444434",
 "name" : "Red Hat Impact T-shirt",
 "description" : "This 4. 3 ounce, 60% combed ringspun
cotton/40% polyester↳
 jersey t- shirt features a slightly heathered appearance. The
fabric laundered↳
 for reduced shrinkage. Next Level brand apparel. Printed.",

 "price" : 9.0,
 "availability" : {
 "quantity" : 32
 }
}, {
 "itemId" : "444437",
 "name" : "Nanobloc Universal Webcam Cover",
 "description" : "NanoBloc Webcam Cover fits phone, laptop,
desktop, Pc,↳
 MacBook Pro, iMac, ...",
 "price" : 2.75
}, {
 "itemId" : "444435",
 "name" : "Quarkus twill cap",
 "description" : "100% cotton chino twill cap with an
unstructured, low-profile,↳
 six-panel design. The crown measures 3 1/8 and this features a
Permacurv↳
 visor and a buckle closure with a grommet.",
 "price" : 13.0,
 "availability" : {
 "quantity" : 53
 }
}]

Our Backend is now complete. We are ready to provide some data to show
from a nice Frontend.

Create a Frontend with NodeJS and
AngularJS
NodeJS is a popular open source framework for asynchronous event-driven
JavaScript development. Even if this is a book about Modern Java
development, in Microservices architecture it is common to have a
heterogeneous environment with multiple programming languages and
frameworks involved. The challenge here is how to let them communicate
efficiently - one solution is having a common interface like API Gateway
exchanging messages via REST calls or queue systems.

AngularJS is a JavaScript-based front-end web framework whose goal is to
simplify both the development and the testing of such applications by

https://nodejs.org/

providing a framework for client-side model–view–controller (MVC) and
model–view–viewmodel (MVVM) architectures. When used with NodeJS,
it provides a fast way to easily bootstrap a frontend.

Figure 2-9. NodeJS + AngularJS Dashboard

You find the source code of this microservice in this book’s GitHub
repository

Run the Frontend

https://github.com/modernizing-java-applications-book/web-nodejs

All the HTML and Javascript code has been already prepared and we are
ready to just link this frontend to our backends showing our Coolstore app
up and running.

Get NPM
NPM is a package manager for Javascript, similar to Maven, that will help
us download all dependencies and starting our frontend.

Install Dependencies
We can resolve all dependencies within the web-nodejs directory and
launching npm command:

npm install

You should get an output like this:

...
added 1465 packages from 723 contributors and audited 1471
packages in 26.368s

52 packages are looking for funding
 run `npm fund` for details

found 228 vulnerabilities (222 low, 6 high)
 run `npm audit fix` to fix them, or `npm audit` for details

Start the app
We are now ready to verify if our frontend can consume correctly the
backend services through the API Gateway, mapping images with data
received.

Since we are in local development, we will use the environment variable to
change NodeJS default port to avoid conflicts. We will also use an
environment variable to map the API Gateway REST endpoint, as shown in
Table 2-7.

https://www.npmjs.com/get-npm

T
a
b
l
e

2
-
7
.
F
r
o
n
t
e
n
d

e
n
v
i
r
o
n
m
e
n
t
v
a
r
i

a
b
l
e
s

ENV Value Description

PORT 3000 Global env for NodeJS to map the port to use for starting
the process, we use 3000 in this case

COOLSTORE_GW_
ENDPOINT

http://localh
ost:8090

Enviroment variable defined in the frontend to map the
API Gateway service hostname

Start the app with this command:

COOLSTORE_GW_ENDPOINT=http://localhost:8090 PORT=3000 npm start

Navigate to the address where we exposed our NodeJS app at
http://localhost:3000

Congratulations! Your Cloud Native Coolstore e-commerce website is up
and running now, you can verify if from Figure Figure 2-10

http://localhost:3000/

Figure 2-10. Coolstore Demo Complete

Summary
In this chapter we walked through a complete Microservices-based
architecture implementation, using different Java frameworks for different
components. We gave an overview on how to split the typical monolithic
approach, into a more diverse and heterogeneous environment, lightweight
and ready to run in multiple contexts such as local development or
production system. This is an example of what we call Cloud Native
development.

1 https://spring.io/projects/spring-boot

https://spring.io/projects/spring-boot

Chapter 3. Travel light on your
pathway

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

He who would travel happily must travel light.
—Antoine De Saint-Exupéry

In the last chapter, you built a microservices-based system, and we also
showed you some migration steps from an existing application. But the
challenge with all examples is that they remove complexity for the sake of
easier understandability. What might seem clear for smaller examples
becomes challenging with real business systems. In particular, think about
complex, legacy systems. As outlined in the first chapter, technologies and
methodologies developed over the years and have lead to today’s best
practices and tools to develop modern enterprise systems. Just because our
industry now has a more extensive toolbox with shiny new things to work
with doesn’t mean you should always use them. If you think about this and
our growing number of frameworks, methodologies, and technologies, one

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

question becomes more pressing: What tools and architecture should I use
for my next system and how and where will I run them? Before you can
decide, you need to think a bit about the most prominent architectural styles
that have emerged for enterprise applications in the last couple of years (3-
tier, Enterprise Integration, Service Oriented Architecture, Microservices,
and Event Driven Architecture).

3-tier or distributed system
The enterprise Java world is dominated by monolithic applications. They
often are designed as single execution units that scale with server instances
and clustering functionality. They are also often referred to as “3-tier
systems” to reflect the three main parts they are composed of: a client-side
user interface, a server-side business logic implementation, and server-side
data persistence or integration layer. The server-side parts are called a
“monolith” since they are packaged as a single, large executable. Any
changes to the system typically involve building and deploying a new
version.

TIP
Learn more about building microservices in Sam Newman’s excellent book Building
Microservices, now in its second edition.

A microservices-based architecture is an approach to developing a single
application as a suite of small services, each of them running in its own
process and communicating with lightweight mechanisms, often an HTTP
resource API or as part of an event-driven architecture (EDA). These
services are built around business capabilities and are independently
deployable by fully automated deployment machinery. There is a bare
minimum of centralized management of these services, which may be
written in different programming languages and use different data storage
technologies.

https://learning.oreilly.com/library/view/building-microservices-2nd/9781492034018/

The difference between the monolithic and microservice styles can’t be
more fundamental. And so are the non-functional requirements leading to
the choice of one. The most critical requirements result from extremely
flexible scaling scenarios. As an experienced developer and architect, you
know how to evaluate functional and non-functional requirements to
conclude your specific project. In this chapter, we will help you navigate
your migration approach and target platform. Your journey starts by looking
at the motivation for modernization. Let’s take a deeper look at what makes
us think about modernization in general and where to start looking for
opportunities.

Technology updates, Modernization, and Transformation
Enterprise software is developed to put business value into code that can be
executed within non-functional and functional requirements. Creating value
depends on our ability to deliver applications quickly. Not only with better
quality, but also ready to be changed quickly, enabling businesses to
respond to new challenges or regulatory changes in the market. And these
challenges are multifaceted. First, you address scaling challenges with
cloud-native applications to handle bigger transaction volumes. New
business cases will also require you to analyze data further and might be
solved by artificial intelligence (AI) and machine learning (ML). And last
but not least, our interconnected world generates more data from the
internet of things (IoT). What might read like it is a natural progression of
architectures isn’t. In fact, the evolving business requirements drive
modernization and architectural evolution by changing functional and non-
functional requirements.

Aditionally, you will find operational concerns influencing modernization
needs. For example expiring maintenance contracts or outdated
technologies can drive technology updates. The continuously evolving Java
language with the shortened release cycles can also influence modernization
decisions. Modernization can happen at any level of your project, ranging
from the execution environment (e.g., virtual machines to container) to the

Java Virtual Machine (JVM version or vendor), individual dependencies,
external interfaces, and services.

It is essential to distinguish between three different angles to modernization
here. While the technology updates within existing processes and
boundaries are a familiar and well-established challenge for software
projects, modernization refers to something else. Often paired with the
word “digital”, the term modernization refers to adopting new technology.
It involves upgrading systems, platforms, and software with new
functionality. It can be as simple as taking an existing paper-based process
and turning it digital using new software and hardware, or more complex,
such as phasing out existing infrastructure and moving to the cloud.
Sometimes you’ll also hear transformation when someone talks about
modern systems. Digital transformation means taking advantage of modern
technology to reimagine an organization’s processes, culture, people, and
customer experiences. It can result in new business models, revenue
streams, policies, and values. Transformation is somewhat of a holistic lens
into an organization with a clear focus to fundamentally change business
performance. Modernization is embedded and becomes the centerpiece that
software developers and architects need to navigate.

Despite your project-specific reasons to take a first step at modernizing
your application, it is essential to remember that modernization itself does
not carry any particular mandates for specific target environments or
technologies. It is an ever-changing and growing set of candidate
technologies that enable companies to compete and grow in their industry.
You can find some of them in technology trend reports (e.g. the
ThroughtWorks Technology Radar) or on hype-cycles (Gartner Hype
Cycle). But as you’ve seen in the first chapter, two of the strongest
motivations to constantly innovate are speed and cost-pressure. Both are
addressed by a modern, cloud-native, microservices-based architecture.

The 6 R’s
Now you’ve learned the motivation behind application modernization, you
want to identify general approaches to modernization and define a

https://www.thoughtworks.com/radar
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

categorization for existing applications. Doing this helps you manage a
variety of different applications, especially in a platform modernization
project. Rather than looking at the details of a single application, consider
the complete runtime architecture of traditional enterprise Java applications.
In that case, you’ll commonly identify on-premise hardware, which usually
is virtualized and made available to projects via an individual set of
instances. Given that individual projects are rarely treated as islands without
any integrated systems, you get to a situation where a coordinated approach
for more than just one project needs to be found.

Let’s first have a look at what the 6 R’s are and where the concept comes
from. Essentially, you can think of each “R” as an available migration
strategy for your applications. Each strategy indicates a clear outcome for a
transformed application, but not necessarily the actual migration steps to
take. The concept was first mentioned by the Gartner analyst Richard
Watson in 2011. The 5 original strategies – namely the Rehost, Refactor,
Revise, Rebuild and Replace – were revived and adapted in a popular blog
post by Steven Orban of AWS in 2016. Orban kept some of Gartner’s
strategies, renamed some and added a new one. Thus, the 5 R’s became the
6 R’s. Today, the 6 R’s are used as a fundamental guideline for almost any
cloud transformation. Although there are still disputes about whether
further strategies should be added, and you can even find 7 R’s, we stick to
the 6 R’s in this book.

https://www.pressebox.com/pressrelease/gartner-uk-ltd/Gartner-Identifies-Five-Ways-to-Migrate-Applications-to-the-Cloud/boxid/424552
https://aws.amazon.com/de/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/

Figure 3-1. Six modernization approaches - An overview of the 6 R’s

Retain - Modernize later or not at all

Everybody has heard a stereotypical story of a mainframe in the basement
of some very well-known company, where all of its business secrets are
stored. Often times, these mainframes are programmed in CICS (Customer
Information Control System, is a family of mixed-language application
servers that provide online transaction management and connectivity for
applications on IBM mainframe systems) and data stored in IMS (IBM
Information Management System, an early database). And this isn’t
necessarily a bad thing. Maybe the existing system is a perfect fit for the
business and does not need to participate in a modernization project. In
order to correctly scope your transformation and modernization efforts, you
need to identify those systems and omit them from the modernization
process. Systems with this classification need a particular integration
approach that needs to be explicitly designed. Imagine a highly scalable

mobile application backend that connects directly to a mainframe. In this
scenario the requests from the potentionally many mobile devices would
overload the costly mainframe. Retain, in this case, does not mean
“untouched” but rather “not moved”.

Retire - Turn system off

Some candidates may clearly have reached end-of-life and are already
migrated and replaced or just a relic that isn’t needed going forward. Travel
light and make sure to flag these systems. Subsequent housekeeping is
equally essential as building new things. Investing time to validate and
decide on retiring a system is as valuable as a redesign would be.

Repurchase - Buy new version

In some cases, you can repurchase off-the-shelf software and get it ready
made for a new execution environment. That sounds straightforward but
will most likely include a migration project and reevaluation of feature lists.
Mostly because it is unlikely that you can update without changing the
product version or its APIs. In some rare cases, you might even find
missing integration documentation to be a blocker. This is why it is
essential to treat this as a modernization project and not as a simple
software update.

Rehost - Put into containers

Often referred to as “lift and shift”, one option for containerizing an
application is to simply port the existing architecture as-is to run inside of a
container. While this can be as simple as it sounds, there are some
challenges on the way. In particular, there can be difficulties when it comes
to optimizing the JVM for constrained container runtimes. Some existing
middleware application servers come with their vendor-supported base
images and make it convenient to switch runtimes. Particular focus should
be placed on storage for stateful application runtimes. Java application-
servers require some data to survive container restarts and require persistent
volume mappings. Transactions, load-balancing, and in-memory session
replication need extended configurations to ensure correct shutdown
behavior and node communication. Plan for sufficient research and testing

and make sure to adhere to the vendor recommendations. This step is
addressing infrastructure modernization and not concerned with application
code directly. Existing applications that qualify for such an approach are
those that need to move to a container runtime before a refactoring can
occur or as an interims step towards switching data center concepts.

Replatform - Make some slight adjustments

NOTE
Martin Fowler coined the term “strangler pattern” as a way to extract functionality out of a
monolithic application. It is named after the Australian strangler figs that grow roots from seeds in
the upper branches until they touch the ground.

As an extension to rehosting, replatforming categorizes applications that
undergo a conceptual or functional change while switching runtimes. It can
also be referred to by its own “lift” name variation, “lift and adjust”. It can
be related to a strangled functionality, which might be implemented on top
of a new technology stack or a change in data storage or integration
systems. We recommend using this approach as an initial step towards
refactoring and decoupling a monolithic application. Prepending this step
leads to smoother operations executing on subsequent extensions and
decoupling stages. By choosing to replatform, you are allowing a gentle
start to modernizing your applications and pragmatically evolve them.

Refactor - Build new

Refactoring is a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behavior.
Refactoring is the most time-consuming and costly way to move existing
applications onto a new runtime or platform. It may or may not include a
switch to different architecture styles or on-premise or cloud hosting.

Divide and containerize

https://martinfowler.com/bliki/StranglerFigApplication.html
https://refactoring.com/

Now that we have looked at different modernization strategies for existing
applications and we know how and when to apply them. It is time to think
about other prerequisites for our target platform.

Kubernetes as the new application server?
The word platform in the Enterprise Java world normaly refers to the
application server. Application server follow a guard-railed software
development approach with standardized APIs. The vertical layers are
defined by what is comonly refered to as technical layers of a 3-tier system.
Presentation on top of business on top of data access and/or integration.
Horizontally to this we usually find business components or domains.
While the vertical layers usually are well separated and decoupled, it is
comparably common to find shared classess and violated access rules
between the horizontal components. If this happens frequently across the
code base, we talk about entangled designs that turn into unmaintainable
monoliths over time. But no matter how entangled the application code is, it
still profits from the standard application server functionalities addressing
non-functional and functional requirements like security, isolation, fault
tolerance, transaction management, configuration management, et cetera.

If we fast forward to distributed architectures of today, where applications
consist of many small services, we observe two things. There is no longer a
shortcut to a good component design, and the standard application server
features are not available anymore to our components.

The first observation leads to a mandatory requirement. Distributed services
have to be well designed, loosely coupled, and strongly encapsulated
components. We will talk more about design principles and approaches for
modernizing monoliths in Chapter 5. The second observation holds a list of
missing funcionalities in cloud-native runtimes. If an application server
isn’t providing support for commonly used functionalities like we
mentioned above anymore there are only two places left. One can be the
microservices framework of choice (e.g. Quarkus), another one could be
additional frameworks or products on top of Kubernetes.

Let’s take a detailed look at some of the most critical functionalities needed
in the following chapters. We call them Microservicilities. The term refers
to a list of cross-cutting concerns that a service must implement apart from
the business logic to resolve these concerns as summarized in Figure 3-2.

Figure 3-2. Microservicilities for distributed applications

Discovery and Configuration

Container images are immutable. Storing configuration options inside them
for different environments or stages is discouraged. Instead, the
configuration has to be externalized and configured by instance. An
externalized configuration is also one of the critical principles of cloud-
native applications. Service discovery is one way to get configuration
information from the runtime environment instead of being hardcoded in
the application. Other approaches include using ConfigMaps and Secrets.
Kubernetes provides service discovery out of the box, but this might not be
sufficient for your application needs. While you can manage the
environment settings for each runtime environment through YAML files,

additional UIs or CLIs can make it easier for DevOps teams to share
responsibility.

Basic Invocation

Applications running inside containers are accessed through Ingress
controllers. Ingress exposes HTTP and HTTPS routes from outside the
cluster to services within the cluster. Traffic routing is controlled by rules
defined on the Ingress resource. Traditionally, this can be compared with
Apache httpd based load balancers. Other alternatives include projects like
HAProxy or Nginx. You can use the routing capabilities to do rolling
deployments as the basis for a sophisticated CI/CD strategy. For one-time
jobs, such as batch processes, Kubernetes provides job and cron-job
functionality.

Elasticity

Kubernetes’ ReplicaSets control scaling of pods. It is a way to reconcile a
desired state: you tell Kubernetes what state the system should be in, so it
can figure out how to reach the outcome. A ReplicaSet controls the number
of replicas, or exact copies, of a container that should be running at any
time. What sounds like a largely static operation can be automated. The
Horizontal Pod Autoscaler scales the number of pods based on observed
CPU utilization. It is possible to use a custom metric or almost any other
application-provided metric as input.

Logging

One of the more challenging aspects of a distributed application is the
correlation of logs from each active part. An area where the difference to
traditional application servers becomes very visible because it used to be so
simple and isn’t in the new world. Storing them individually, per container,
is not recommended because you lose sight of the bigger picture and have a
hard time debugging side effects and root causes for issues. There are
various approaches to this, with most of them using the ELK (Elasticsearch,
Logstash, Kibana) stack or a variant extensively. In those stacks,
Elasticsearch is the object store, where all logs are stored. Logstash gathers
logs from nodes and feeds them to Elasticsearch. Kibana is the web UI for

http://www.haproxy.org/
https://www.elastic.co/what-is/elk-stack
https://github.com/elastic/elasticsearch
https://github.com/elastic/logstash
https://github.com/elastic/kibana

Elasticsearch, which is used to search the aggregated log files from various
sources.

Monitoring

Monitoring in a distributed application is an essential ingredient to make
sure all of the bits and pieces continue working. In contrast to logging,
monitoring is an active observation often paired with alerting rather than
simply recording events. Prometheus is the defacto standard for storing the
generated information. Essentially, it is a complete open source monitoring
system that includes a time-series database. Prometheus’s web UI gives you
access to metric querying, alerting, and visualizations and helps you gain
insights into your systems.

Build and Deployment Pipelines

CI/CD (Continuous Integration/Continuous Delivery) aren’t anything new
to enterprise Java applications or distributed applications. As a good
software development practice, every production code should follow a strict
and automated release cycle. With a potentially large number of services
that compose an application, the automation should at least aim for 100%
coverage. Traditionally a job for the open-source tool Jenkins, modern
container platforms have moved away from a centralized build system and
embrace a distributed approach to CI/CD. One example is Tekton. The goal
is to create reliable software releases through build, test, and deployment.
We dig deeper into this in Chapter 4.

Resilience and Fault Tolerance

Psychologists define resilience as the process of adapting well in the face of
adversity, trauma, tragedy, threats, or significant sources of stress. In
distributed applications, it is the concept of recovering from failure or load
scenarios without human interaction. Kubernetes provides resilience
options for the cluster itself, but only sparsely supports application
resiliency and fault tolerance. For example, application-level resiliency can
be facilitated through PersistentVolumes that support replicated volumes or
with ReplicaSets ensuring a consistent number of pod replicas across the
cluster. On an application-level, there is resilience and fault-tolerance

https://prometheus.io/
https://www.jenkins.io/
https://tekton.dev/

support through Istio or various frameworks like Cloudstate. You want to
use features such as retry rules, circuit breaker, and pool ejection.

NOTE
Istio is an open-source service mesh that layers transparently onto existing distributed
applications. It is also a platform, including APIs that integrate into any logging platform,
telemetry, or policy system.

Security

Authentication or Authorization between services is not part of Kubernetes
itself. There are two ways to implement it. Using Istio, each service is
provided with a strong identity representing its role and enables
interoperability across clusters and clouds. It secures service-to-service
communication, as well as providing a key management to automate key
and certificate generation, distribution, rotation, and revocation. A more
application-centric alternative can be to use a single-sign-on component like
Keycloak or relying on Eclipse MicroProfile JSON-Web-Token (JWT).

Tracing

Tracing gives you a way to follow request paths and events throughout the
system across individual application parts by still allowing you to trace-
back to an origin. You can find different approaches across the community
today. Independent of languages, frameworks, or technologies you intend to
use, Istio can enable distributed tracing. There are other commercial and
open-source projects available helping with distributed tracing across your
application components. Zipkin and Jaeger are two possible solutions.

Define your target platform
It’s important to note that the nine elements mentioned above are focused
on application development and do not capture all the necessities of a
modern container platform. Just looking at this narrow focus leaves
important areas unaddressed. A container platform needs to provide

https://cloudstate.io/
https://istio.io/
https://www.keycloak.org/
https://github.com/eclipse/microprofile-jwt-auth
https://zipkin.io/
https://www.jaegertracing.io/

features and capabilities for the complete team from Dev to Ops.
Depending on specific needs, there is no one size fit’s all solution. A
comprehensive way to define your target platform is to start with the 3 main
layers: Core, Customer Experience, and Integration, then build your
application landscape on an optimized technology stack. What sounds like a
ready-to-use check-list is anything but. Companies are different in culture,
technologies, and requirements, and the following lists are a recommended
starting point without any claim to comprehensiveness. We recommend
using the bullet points as evaluation categories and define the individual
functional and non-functional requirements underneath with a fulfillment
score from zero (not available) to three (fully supported) with a middle
score of two (can make it work) as a medium evaluation. Finally, add
weighting logic to it to reach a complete evaluation based on a product
comparison. It can be the core framework for a direct product vs. do-it-
yourself (DIY) comparison and also the starting point for the platform
documentation.

Define the Core

Start with evaluating the core part of the platform. This category includes
basic capabilities like container orchestration, storage mapping, rolling-
upgrades, site reliability engineering (SRE) requirements, out-of-the-box
support for the desired deployment models, and might even include further
support for virtual machines. This category represents the technical
foundation for your target platform.

Existing Core Capabilities

Functional Gap Assessment

Hybrid-cloud support

Security integration

Managed Services Support

Operators/Marketplace available (e.g., Operatorhub, Red Hat
Marketplace)

https://operatorhub.io/
https://marketplace.redhat.com/en-us

Available Support levels

Target Deployment Model

Core Modernization Approach

Define the Customer Experience Layer

When thinking about platforms, one part gets too little attention, which is
the customer experience layer. It contains a technical definition for the
customer channels to the platform. A channel can be one of the B2X
(business to something) portals or various other specific frontends. To
achieve a cohesive platform that can host various applications also includes
a clear definition for the technical composition of the individual services.

Define Customer-Centric requirements

Assess Existing CX Framework vs. Build

Micro Frontends (e.g., Entando)

Integration Requirements

Data Gap Analysis

Mobile Support

Define the Integration

In a containerized world, integration becomes a new challenge. Coming
from a traditional enterprise landscape, it has either been a centralized
solution (Enterprise Service Bus or similar) or been part of the individual
applications using some common integration framework like Apache
Camel. Neither approach fits perfectly into a stateless container-oriented
platform. What you are looking for in a target platform is the smooth
integration between messaging components, data transformation logic, and
service integration. All the relevant parts need to scale well in a stateless
environment for distributed systems, and it should be easy to extend a
composed application with new capabilities.

Existing Integration Capabilities

Evaluate Partner Solution Ecosystem

Define Integration requirements (Data Sources, Service
Integration, Messaging, APIs)

Define Standards and Frameworks (e.g., Camel-K)

Evaluate Serverless/Knative Integration (e.g., Camel K)

Define the Technology Stack

The remaining category focuses on individual technologies and
frameworks. Think of it as a blueprint repository defining the relevant
technologies, services, and methodologies for a productive environment. An
underestimated influence on the requirements in this category is the
available development skill in an organization. With a traditional enterprise
Java background, it is not easy to completely switch to a reactive
development approach and a stateless application design. Also, familiarity
with existing APIs and time to productivity on a new platform play a crucial
role in picking the most suitable technology stack.

Technology Stack Assessment across Core, CX, and external
services)

Microservices Framework (e.g, Quarkus, Spring Boot)

Implementation recommendation (reactive, imperative, message-
driven, etc.)

Deployment model (IaaS, PaaS, Hybrid)

Define Target Development Platform

Development skills Gap Analysis

After completing this assessment, you are well prepared for a journey to a
containerized application platform. Next you will need to map out and plan
your containerization strategy.

https://camel.apache.org/camel-k/latest/

Mandatory migration steps and tools
Following the basic assumption that you have an existing application
landscape in place and cannot start everything as a green-field project, we
emphasize moving existing applications into containers. Coming back to
the 6'Rs from above, the first application you are taking a look at should fall
into one of the following Rs: Rehost, Replatform, and Refactor (Figure 3-
3). While they look similar in their description, the most significant
difference between the three approaches is business value vs. migration
time and cost.

Figure 3-3. Workload migration pattern

Which action to take and where to start modernizing depends on the
application. While the concrete steps may vary, the first thing to identify are
the correct candidates. Therefore we need to analyze the existing
applications, catalog them and group them to assign them to the final
migration pattern. The last step is to execute the individual migration
projects.

Create an application portfolio
There are many ways to create such an application catalog or portfolio. And
you most likely already have a way to select applications relevant for a

certain business domain. If not, feel free to fast forward to Chapter 5 where
I talk about the Konveyor project.

Prepare for big things
The most prestigious process in modernization is refactoring existing
applications. For coverage of a proven method on transitioning an existing
monolithic system to a microservice architecture, we recommend Monolith
to Microservices by Sam Newman. While he walks you through a lot of
different approaches and created a detailed process for various situations,
there are also simpler approaches. Like the one outlined by Brent Frye,
from the Software Engineering Institute at the Carnegie Mellon University.
His approach to modularization of existing applications is a lot more
generic. He recommends 8 simple steps to break down the monolith. He
focuses on components and component groups. Components are logical sets
of data objects and the actions that the system performs on those objects.
Component groups become what he calls macroservices. A macroservice is
similar to a microservice with two primary differences. First, a
macroservice may share the datastore with the legacy monolithic system or
other macroservices. Second, unlike a microservice, a macroservice may
provide access to multiple data objects. In the last step, the macroservices
are decomposed further.

The logical steps to breaking down your monolith according to Frye:

1. Identify logical components.

2. Flatten and refactor components.

3. Identify component dependencies.

4. Identify component groups.

5. Create an API for a remote user interface.

6. Migrate component groups to macroservices

a. Move component groups to separate projects

https://github.com/konveyor
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834/
https://insights.sei.cmu.edu/sei_blog/2020/09/8-steps-for-migrating-existing-applications-to-microservices.html

b. Make separate deployments

7. Migrate macroservices to microservices.

8. Repeat steps 6-7 until complete.

This is also the more general recommendation from Chris Richardson. As
he outlined in his O’Reilly SACON London keynote and many times after,
he is looking for an incremental approach starting with the most promising
functionality.

Figure 3-4. Do it incrementally

And repeat the extraction steps until the monolith is finally eliminated or
the initial software delivery problems are solved as illustrated in Figure 3-4.

The three approaches differ in depth, angle and details. While Richardson
talks about the most valuable functionality and focusses on extracting it
first, Frey created a simple methodology which can be applied in all
situations. Newmann finally, developed the most detailed handbook for
various situations in a modernization journey. All three will be helpful on
your personal journey. We are convinced though, that the approach

https://microservices.io/microservices/general/2018/11/04/potholes-in-road-from-monolithic-hell.html

Richardson takes is the best starting point. What Thomas Huijskens said for
data scientists is something we also strongly believe in.

…the code you write is only useful if it is production code.
—Thomas Huijskens

Every modernization effort has to follow business requirements and support
production functionality. Following this thought the entire modernization
project can only be successful if you identify the correct candidates.

Summary
This chapter walked you through some basic definitions for migration
strategies and showed you an evaluation path for the target development
platform. We’ve looked at technical recommendations, and you now know
how to assess existing applications for re-hosting, re-platforming, and
refactoring.

Chapter 4. A Kubernetes-based
Software Development Platform

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

In the previous chapter, we outlined our methodology around modernization
and the steps required to design and develop modern architectures. We
described the need for a platform like Kubernetes that can help you with
requirements to make your applications cloud-native, ready to scale up
proportionally to your business need.

We have also demonstrated that a microservices-based architecture is
usually implemented using container technology, which makes apps
portable and consistent. Let’s now see in detail how Kubernetes can help us
modernize our Java applications and what are the steps to achieve that using
its declarative approach through a rich set of APIs.

Developers and Kubernetes

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

Kubernetes, which in Greek translates to “pilot” or “governor”, is an open-
source project which is currently the “de facto” target environment for
modern architectures, and the most popular container orchestration
platform. Started from Google’s experience in managing distributed
complex applications for their software stack back in 2015, it is today one
the biggest open source community, managed by a foundation , the Cloud
Native Computing Foundation (CNCF), embraced by vendors and
individual contributors.

Figure 4-1. A Kubernetes Cluster running apps in Nodes

As a container-orchestration platform, its focus is primarily on ensuring that
our apps are running correctly, providing out-of-the-box self-healing,
recovery, and a powerful API to control this mechanism. You may be
wondering now: as a Developer, why should I care about Kubernetes if it is
so self-proficient?

That’s a good question, and maybe a better answer is with analogy: you
have a Formula1 car with auto-pilot, but if you want to win the race you
need to tune and setup your car to compete with all other good ones. The
same is for your apps, that can benefit from all the capabilities offered by
the platform to tune them so they run optimaly.

What Kubernetes does
When you have Kubernetes as a target platform to run your applications,
you can rely on an ecosystem of APIs and components put in place to make

https://kubernetes.io/

deployments easier, so that developers can focus only on the most important
part: coding. Kubernetes provides you with “a framework to run distributed
systems resiliently” .

In practice, this means you don’t need to reimplement custom solutions
when it comes to:

Service discovery: Kubernetes uses internal DNS resolution to
expose your apps, this is automatically assigned, and can also be
used to send the traffic to multiple instances of our app.

Load balancing: Kubernetes takes care of managing the load on
your apps, balancing the traffic, and distributing user requests
accordingly.

Self-healing: Kubernetes discovers and replaces failing containers
automatically, providing a health-check and self-healing
mechanism out of the box.

Rollout and Rollback: Kubernetes ensures your app is always
running consistently at the desired state, providing control to scale-
up and scale-down workloads. In addition to that, it offers the
capability to rollout or rollback to a specific version of your
application.

What Kubernetes doesn’t
Many headaches that developers usually need to deal with in production are
already solved and delegated to a platform, whose primary goal is to ensure
applications are running. But does that solve all that you need for
modernizing our apps? Probably not.

As we discussed in the previous chapter, the modernization steps towards a
cloud-native approach are more closely tied to a methodology rather than a
specific technology. Once you converted your mindset from building
monolithic apps to creating microservices, we are in a good position to start
thinking big. Nowadays, many apps run on cloud platforms targeting

1

Kubernetes, and those are the ones running global reach workloads.
Anyway, here’s some considerations:

Kubernetes doesn’t know how to handle our app. It can restart it if
fails, but cannot understand why that is happening, so we need to
ensure we have full control of our microservices-based architecture
and be able to debug each container. This is particularly important
in case of a large scale deployment.

Kubernetes doesn’t provide any middleware or application-level
services. Granular discovery services need to be addressed by
interacting with Kubernetes API or relying on some service on top
of Kubernetes, such as a Service Mesh framework. There is no
ecosystem for developers out of the box.

Kubernetes doesn’t build our app. You are responsible for
providing your app compiled and packaged as a container image or
relying on additional components on top of Kubernetes.

With that in mind, let’s start digging into a Kubernetes journey for
developers, to make our first steps to bring our app into the next cloud-
native production environment.

Infrastructure as a Code
Kubernetes provides a set of APIs to manage the desired state of our app as
well as the whole platform. Each component in Kubernetes has an API
representation that can be consumed. Kubernetes offers a declarative
deployment pattern that allows you to use a way to automate the execution
of upgrade and rollback processes for a group of Pods . The declarative
approach is granular and it is used also to extend Kubernetes APIs with the
concept of Custom Resources.

2

NOTE
Custom resources are extensions of the Kubernetes API. A Custom Resource represents a
customization of a particular Kubernetes installation, bringing additional objects to extend cluster
capabilities. You can get more info about it from the official Kubernetes documentation.

Some of the core objects you have to manage an application in Kubernetes
are:

Pod: A group of one or more containers deployed into a Kubernetes cluster.
This is the entity that Kubernetes manages and orchestrates, so any
application packaged as a container needs to be declared as a Pod.

Service: This is the resource responsible for service discovery and load
balancing. For any Pod to be discoverable and consumable, it needs to be
mapped to a Service.

Deployment: It allows describing an application’s life cycle, driving the
creation of Pods in terms of which images to use for the app, the number of
pods there should be, and how they should be updated. Furthermore, it
helps defining health checks and constraint resources for your application.

Each of these objects, along with all other resources in the cluster, can be
defined and controlled with a YAML representation, or by Kubernetes API.
There are also other useful API objects such as those related to Storage
(PersistentVolume) or specifically to manage stateful apps (StatefulSet). In
this chapter, we will focus on the fundamental ones to bring our app up and
running inside of a Kubernetes platform.

Container images
The first step for you in this journey is to containerize our microservices so
that they can be deployed into Kubernetes as Pod, and which are controlled
using a YAML file, invoking the API, or using a Kubernetes Java client.

You can use the Inventory Quarkus microservice from Coolstore as an
example to create your first container image. Containers are defined by a

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

manifest called Dockerfile or Containerfile, where you will define your
software stack as a layer, from the Operating system layer to your
application binary layer. The benefits of this approach are multiple: easy to
track versions, easy to inherit from existing layers, easy to add layers, and
expand the container. A diagram of layers is shown in Figure 4-2.

Figure 4-2. Container Image Layers

Dockerfile
Writing a Dockerfile to package our app as a container is pretty
straightforward for simple use cases. There are some basic directives called
Instructions to use, such as the ones listed below in Table 4-1.

T
a
b
l
e

4
-
1
.
D
o
c
k
e
r
f
i
l
e

I
n
s
t
r
u
c
t
i
o
n
s

Instruction DescriptionInstruction Description

FROM Used to inherit from a base image. It can be for example a Linux distribution
like fedora,centos,rhel,ubuntu.

ENV Use environment variable for the container. These variables will be visible to
the application and can be set at runtime.

RUN Execute a command in the current layer, like installing a package or executing
an application.

ADD Copy files from your workstation to the container layer, like a JAR file or a
configuration file.

EXPOSE If your application is listening to some port, you can expose it to the container
network so that Kubernetes can map it to a Pod and a Service.

CMD The command you use to start your application, the final step of the container
image building process where you have all your dependencies in the layers,
and you can run your app safely.

The process for creating your container from your Dockerfile is described
also in Figure 4-3.

Figure 4-3. Building Container Image

An example of a Dockerfile for the Inventory Quarkus Java microservice
that we created in Chapter 2 is listed below, and you find it in this book’s
GitHub repository

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/Dockerfile

FROM registry.access.redhat.com/ubi8/openjdk-11
ENV PROFILE=prod
ADD target/*.jar app.jar
EXPOSE 8080
CMD java -jar app.jar

Starting from OpenJDK 11 Layer to build our container image

Set an environment variable that can be consumed within the app for
differientiating profiles or configurations to load

Copy the JAR artifact built during compilation into the container image

Expose port 8080 to the container network

Run the application invoking the artifact we copied into the layer.

In this section we defined a Dockerfile with the minimum instructions set to
build up a container image. Let’s see now how to create container images
from a Dockerfile.

Building Container images
Now you need to create the container image. Docker is a popular open-
source project to create containers, you can download it for your operating
system, and start using it to build and run your containers. Podman is
another open-source alternative to do that, and it can also generate
Kubernetes objects.

When you have Docker or Podman on your workstation, you can start
building your container from the Dockerfile with this command:

docker build -f Dockerfile -t myreponame/inventory-quarkus:latest

This will generate your container image reading the instructions from the
Dockerfile. Then it will tag your container image in the form
<repository>/<name>:<tag>, in this case,

https://www.docker.com/
https://podman.io/

docker.io/modernizingjavaappsbook/inventory-
quarkus:latest. You will see an output similar to this:

STEP 1: FROM registry.access.redhat.com/ubi8/openjdk-11
Getting image source signatures
Copying blob 57562f1b61a7 done
Copying blob a6b97b4963f5 done
Copying blob 13948a011eec done
Copying config 5d89ab50b9 done
Writing manifest to image destination
Storing signatures
STEP 2: ENV PROFILE=prod
STEP 3: ADD target/*.jar app.jar
STEP 4: EXPOSE 8080
STEP 5: CMD java -jar app.jar
STEP 6: COMMIT inventory-quarkus:latest
Getting image source signatures
Copying blob 3aa55ff7bca1 skipped: already exists
Copying blob 00af10937683 skipped: already exists
Copying blob 7f08faf4d929 skipped: already exists
Copying blob 1ab317e3c719 done
Copying config b2ae304e3c done
Writing manifest to image destination
Storing signatures
--> b2ae304e3c5
b2ae304e3c57216e42b11d8be9941dc8411e98df13076598815d7bc376afb7a1

Your container image is now stored in Docker’s or Podman’s local storage
called Docker cache or Container cache, and it is ready to be used locally.

Run Containers
Running containers refers to pulling the container images from the
container cache to run applications. This process will be isolated by the
Container Runtime (such as Docker or Podman) from the other ones in our
workstation, providing a portable application with all dependencies
managed inside a container and not in our workstation.

To start testing the Inventory microservice packaged now as a container
image, you can just run the command below:

docker run -ti docker.io/modernizingjavaappsbook/inventory-
quarkus:latest

You see that the Quarkus microservice is up and running in a container,
listening to the port 8080. Docker or Podman takes care of mapping
container networking into your workstation, open your browser at
http://localhost:8080 and you will see the Quarkus Welcome page (as in
Figure 2-4).

TIP
Docker Network documentation contains more info on how to map ports and networks within
containers and hosts running Docker.

Registry
As we described in the previous section, container images are stored in a
local cache. However, if you want to make them available outside your
workstation, we need to send them over in some convenient way. A
container image’s size is generally around hundreds of megabytes. That’s
why you need a Container image registry.

The registry essentially acts as a place to store container images and share
them via a process of uploading to (pushing) and downloading from
(pulling). Once the image is on another system, the original application
contained within it can be run on that system as well.

Registries can be public or private. Popular public registries include
DockerHub, or Quay.io. They are offered as a SaaS on the internet and
allow images to be available publicly with or without authentication.
Private registries are usually dedicated to specific users, and are not
accessible for public usage. However, you may make them available to
private environments, such as private Kubernetes clusters.

In this example, we created an Organization at DockerHub for the book,
called modernizingjavaappsbook that maps into a repository of this

http://localhost:8080/
https://docs.docker.com/network/
https://hub.docker.com/
https://quay.io/

public registry where we want to push our container image.

First, you need to login to the registry. You need to authenticate against it in
order to be able to push new content, then you will leave the container
image publicly available.

docker login docker.io

After you log in successfully, you can start uploading the Inventory
container image to the registry.

docker push docker.io/modernizingjavaappsbook/inventory-
quarkus:latest

This command pushes the images to the registry, and you should get output
similar to the following as confirmation:

Getting image source signatures
Copying blob 7f08faf4d929 done
Copying blob 1ab317e3c719 done
Copying blob 3aa55ff7bca1 skipped: already exists
Copying blob 00af10937683 skipped: already exists
Copying config b2ae304e3c done
Writing manifest to image destination
Storing signatures

The Quarkus microservice, packaged as a container image, is now ready to
be deployed everywhere!

Deploying to Kubernetes
Deploying applications to Kubernetes is done by interacting with
Kubernetes API to create the objects representing the desired state of the
app in a Kubernetes cluster. As we discussed, Pods, Services, and
Deployments are the minimum objects created to let Kubernetes manage
the entire application life-cycle and connectivity.

NOTE
If you don’t have a Kubernetes cluster yet, you can download and use Minikube, a standalone
Kubernetes cluster designed for local development.

Every object in Kubernetes contains the following values.

apiVersion: Kubernetes API version used to create this object

kind: The object type (e.g. Pod, Service)

metadata: Pieces of information that help uniquely identify the
object, such as a name or UID

spec: The desired state for the object

We defined in this section the basic structure of any Kubernetes objects.
Let’s explore now the fundamental objects to run applications on top of
Kubernetes.

Pod
A Pod is a group of one or more containers, with shared storage and
network resources, and a specification for how to run the containers . In
Figure 4-4 you can see a representation of two Pods in a Kubernetes cluster,
with an example IP address assigned by Kubernetes to each one of them.

Figure 4-4. Pods and container

3

https://minikube.sigs.k8s.io/docs/start/

Kubernetes doesn’t work directly with containers, it relies on the Pod
concept to orchestrate containers. So you need to provide a Pod definition
that matches your container.

apiVersion: v1
kind: Pod
metadata:
 name: inventory-quarkus
 labels:
 app: inventory-quarkus
spec:
 containers:
 - name: inventory-quarkus
 image: docker.io/modernizingjavaappsbook/inventory-
quarkus:latest
 ports:
 - containerPort: 8080

Name for the Pod object, unique per Namespace

A list of key/value pairs to apply to this object

A list of containers used in this Pod

The container image URI, in this case a repository publicly available in
DockerHub

The port exposed by this container, to be mapped into a Pod

TIP
Generally one Pod contains one container, thus the mapping is 1 Pod : 1 Application. Although
you could have multiple containers in one Pod for some use cases (e.g. sidecars), the best practise
is to map 1 Pod to 1 App, because this ensures scalability and maintainability.

You can create any of the Kubernetes objects described above as YAML file
with the Kubernetes CLI kubectl. Run the command as shown below, to

deploy your first microservice as a single Pod. You can find it in this book’s
GitHub repository

kubectl create -f pod.yaml

To check that it is running on Kubernetes:

kubectl get pods

You should get an output similar to:

NAME READY STATUS RESTARTS AGE
inventory-quarkus 1/1 Running 0 30s

If you look at the STATUS column, it shows the Pod is running correctly
and all default health checks are correctly satisfied.

TIP
If you want further details on how to make more granular health checks, please refer to the official
Kuberentes documentation for liveness and readiness probes.

Service
Kubernetes Services are used to expose an application running on a set of
Pods . This is useful because a Pod gets a random IP address from
Kubernetes network, which may change if it is restarted, or moved to
another node within a Kubernetes cluster. Services offers a more consistent
way to communicate with Pods, acting as a DNS server and load balancer.

A Service is mapped to one or more Pods, it uses the internal DNS to
resolve to an internal IP from a mnemonic short hostname (e.g.
inventory-quarkus), and balances the traffic to the Pods as shown in
Figure 4-5. Each Service get its own IP address from a dedicated IP address
range, which is different from Pods IP address range.

4

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/kubernetes/pod.yaml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

NOTE
The balancing method offered by Kubernetes Services is Layer 4 (TCP/UDP). The only two
strategies usable are: Round-robin and Source IP. For application layer balancing (e.g. HTTP)
there are other objects like Ingress not covered in this book, but you can find the
documentation for them here.

Figure 4-5. Kubernetes Service

Let’s have a look at a Service that could map our Pod:

apiVersion: v1
kind: Service
metadata:
 name: inventory-quarkus-service
spec:
 selector:
 app: inventory-quarkus
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 8080

Name for the Service object.

https://kubernetes.io/docs/concepts/services-networking/ingress/

The label exposed by the Pod to match the Service.

The L4 protocol used, TCP or UDP.

The port used by this Service.

The port used by the Pod and mapped into the Service.

To create your Service, run the command as shown below. You also find it
in this book’s GitHub repository

kubectl create -f service.yaml

To check that it is running on Kubernetes:

kubectl get svc

You should get output similar to:

NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
inventory-quarkus-service ClusterIP 172.30.34.73 <none>
8080/TCP 6s

NOTE
You just defined a Service, mapped to a Pod. This is only accessible from the internal Kubernetes
network, unless you expose it with an object that can accept the traffic from outside the cluster,
like Ingress.

Deployment
Deployments are Kubernetes objects created for managing an application
lifecycle. A deployment describes a desired state and Kubernetes will
implement it using either a Rolling or Recreate deployment strategy. The
rollout lifecycle consists of progressing, complete, and failed states. A

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/kubernetes/service.yaml

deployment is progressing while it is performing update tasks, such as
updating or scaling pods.

Kubernetes deployments offer a set of capabilities on top of the basic Pod
and Service concepts as listed below and in Figure 4-6.

Deploy a ReplicaSet or Pod

Update Pods and ReplicaSets

Rollback to previous deployment versions

Scale a deployment

Pause or continue a deployment

Define health checks

Define resources constraints

Figure 4-6. Deployments manage applications life-cycle and updates

Managing applications with a Kubernetes deployment includes the way in
which an application should be updated. A major benefit of a deployment is
the ability to start and stop a set of pods predictably. There are two
strategies for deploying apps in Kubernetes:

Rolling update: It provides a controlled, phased replacement of
the application’s pods, ensuring that there are always a minimum
number available. This is useful for the business continuity of an
application, where the traffic is not routed into a new version of the
application until the health checks (probes) on the desired number
of Pods deployed are not satisfied.

Recreate: It removes all existing pods before new ones are created.
Kubernetes first terminates all containers from the current version
and then starts all new containers simultaneously when the old
containers are gone. This provides downtime for the app, but it
ensures there aren’t multiple versions running at the same time.

A Deployment object driving Pods deployment on Kubernetes is listed in
the example below:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: inventory-quarkus-deploy
 labels:
 app: inventory-quarkus
spec:
 replicas: 1
 selector:
 matchLabels:
 app: inventory-quarkus
 template:
 metadata:
 labels:
 app: inventory-quarkus
 spec:
 containers:
 - name: inventory-quarkus
 image: docker.io/modernizingjavaappsbook/inventory-
quarkus:latest
 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 path: /
 port: 8080
 scheme: HTTP
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 livenessProbe:
 httpGet:
 path: /
 port: 8080
 scheme: HTTP
 periodSeconds: 10

 successThreshold: 1
 failureThreshold: 3

Name for the Deployment object.

The label for this object.

The desired number of Pod replicas.

The selector to find which Pods to manage using labels.

The Pod template to use, including labels to inherit or containers to
create.

The container image to use

Kubernetes uses readiness probes to know when a container is ready to
start accepting traffic and a Pod is considered ready when all of its
containers are ready. Here we define an HTTP health check on the root
path as a readiness probe.

Kubernetes uses liveness probes to know when to restart a container.
Here we define an HTTP health check on the root path as a liveness
probe.

Run the command below, to create your deployment. You can also find it in
this book’s GitHub repository

kubectl create -f deployment.yaml

Run the command below to verify that the Deployment has been created,
and to get the status:

kubectl get deploy

You should get output similar to:

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/kubernetes/deployment.yaml

NAME READY UP-TO-DATE AVAILABLE AGE
inventory-quarkus-deploy 1/1 1 1 10s

Looking at READY column, you have your desired state correctly matched,
having requested one replica for the Inventory microservice running on
Kubernetes. You can cross-check that a Pod has been created:

kubectl get pods

You should get similar output:

NAME READY STATUS
RESTARTS AGE
inventory-quarkus 1/1 Running 0
1m
inventory-quarkus-deploy-5cb46f5d8d-fskpd 1/1 Running 0
30s

Now a new Pod has been created using a randomly generated name, starting
from inventory-quarkus-deploy Deployment name. If the app
crashes or if we kill the Pod managed by the Deployment, Kubernetes will
recreate it automatically for us. This is not true for the Pod generated
without a Deployment.

kubectl delete pod inventory-quarkus inventory-quarkus-deploy-
5cb46f5d8d-fskpd

You can see that the desired state is always met:

kubectl get pods

You should get output similar to:

NAME READY STATUS
RESTARTS AGE
inventory-quarkus-deploy-5cb46f5d8d-llp7n 1/1 Running 0
42s

Kubernetes and Java
Kubernetes has a tremendous amount of potential for managing
applications’ lifecycle, and there a number of studies on how developers
and architects could best fit in its architecture, like patterns. Kubernetes
patterns are reusable design patterns for container-based applications and
services.

From a Java developer perspective, the first step is to migrate from the
monolithic approach to a microservice-based approach. Once that is
complete, the next step is to get into the Kubernetes context and maximize
the benefit that this platform offers: API extendibility, a declarative model,
and a standarized process where the IT industry is converging.

There are Java frameworks that help developers connect to Kubernetes and
convert their apps to containers. You already containerized the
Inventory Quarkus microservice with a Dockerfile. Now let’s drive this
containerization from Java, generating a container image for the Catalog
Spring Boot microservice using Maven and Gradle.

Jib
Jib is an open source framework make by Google to build container images
compliant to the Open Container Image format (OCI), without the need of
Docker or any container runtime. You can create containers even from your
Java codebase, because it offers a Maven and Gradle plugin for that. This
means Java developers can containerize their app without writing and/or
maintaining any Dockerfiles, delegating this complexity to Jib.

We see the benefits from this approach as the following: as:

Pure Java: No Docker or Dockerfile knowledge is required,
simply add Jib as plugin and it will generate the container image
for you. The resulting image is commonly referred as distro-less,
since it doesn’t inherit from any base image.

5

https://github.com/GoogleContainerTools/jib

Speed: The application is divided into multiple layers, splitting
dependencies from classes. There’s no need to rebuild the
container image as is necessary for Dockerfiles, Jib takes care for
deploying the layers that changed.

Reproducibility: Unnecessary updates are not triggered as the
same contents always generate the same image.

The easiest way to kickstart a container image build with Jib, on existing
Maven, is by adding the plugin via command line:

mvn compile com.google.cloud.tools:jib-maven-plugin:2.8.0:build -
Dimage=<MY IMAGE>

Alternatively, you can do so by adding Jib as plugin into pom.xml:

<project>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>com.google.cloud.tools</groupId>
 <artifactId>jib-maven-plugin</artifactId>
 <version>2.8.0</version>
 <configuration>
 <to>
 
 </to>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

In this way you can also manage other settings such as authentication or
parameters for the build. Run the command below if you want to build the
Catalog service and push it directly to Docker Hub:

mvn compile com.google.cloud.tools:jib-maven-plugin:2.8.0:build↳
-Dimage=docker.io/modernizingjavaappsbook/catalog-spring-
boot:latest↳
-Djib.to.auth.username=<USERNAME>↳
-Djib.to.auth.password=<PASSWORD>

The authentication here is managed as command line options, but Jib is able
to manage existing authentication with Docker CLI, or read credentials
from your settings.xml.

The build takes a few moments, and the result is a distroless container
image built locally and pushed directly to a registry, in this case Docker
Hub.

[INFO] Scanning for projects...
[INFO]
[INFO] -------------------< com.redhat.cloudnative:catalog >-----

[INFO] Building CoolStore Catalog Service 1.0-SNAPSHOT
[INFO] --------------------------------[jar]-------------------

[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-
resources) @ catalog ---
[INFO] Copying 4 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.6.1:compile (default-compile)
@ catalog ---
[INFO] Nothing to compile - all classes are up to date
[INFO]
[INFO] --- jib-maven-plugin:2.8.0:build (default-cli) @ catalog -
--
[INFO]
[INFO] Containerizing application to
modernizingjavaappsbook/catalog-spring-boot...
[WARNING] Base image 'gcr.io/distroless/java:11' does not use a
specific image digest↳
- build may not be reproducible
[INFO] Using credentials from <to><auth> for
modernizingjavaappsbook/catalog-spring-boot
[INFO] Using base image with digest:↳
sha256:65aa73135827584754f1f1949c59c3e49f1fed6c35a918fadba8b4638e
bc9c5d
[INFO]
[INFO] Container entrypoint set to [java, -cp,

/app/resources:/app/classes:/app/libs/*,
com.redhat.cloudnative.catalog.CatalogApplication]
[INFO]
[INFO] Built and pushed image as modernizingjavaappsbook/catalog-
spring-boot
[INFO] Executing tasks:
[INFO] [==============================] 100,0% complete
[INFO]
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 27.817 s
[INFO] Finished at: 2021-03-19T11:48:16+01:00
[INFO] --

NOTE
Your container image is not present in your local cache, as you don’t need any container runtime
to build images with Jib. You won’t see it with docker images command, but you pull it from
Dockerhub afterwards and it will be stored in your cache. In case you also want to store it locally
from the beginning, Jib connects also to Docker hosts and can do it for you.

JKube
Eclipse JKube, a community project supported by the Eclipse Foundation
and Red Hat, is another open source Java framework to help interacting
with Kubernetes from a Java developer perspective. It supports building
container images using Docker/Podman, Jib and Source-2-Image. Eclipse
JKube also provides a set of tools to deploy automatically to Kubernetes,
and manage the application with helpers for debugging and logging. It
comes from Fabric8 Maven Plugin, as rebranded and enhanced project to
target Kubernetes.

https://github.com/eclipse/jkube

TIP
JKube supports Kubernetes and OpenShift. OpenShift brings Source-2-Image on top of
Kubernetes, a mechanism to compile automatically from source code a container image. In this
way also the build is made on Kubernetes, so developers can test and deploy their apps directly on
the target platform.

As with Jib, jKube provides Zero Configuration mode for a quick ramp-up
where opinionated defaults will be pre-selected. It provides Inline
Configuration within the plugin configuration using an XML syntax.
Furthermore, it provides External Configuration templates of real
deployment descriptors which are enriched by the plugin.

JKube is offered in three forms:

Kubernetes Plugin: It works in any Kubernetes cluster, providing
either distroless and Dockerfile-driven builds.

OpenShift Plugin: It works in any Kubernetes or OpenShift
cluster, providing either distroless, Dockerfile-driven builds or
Source-to-Image (S2I) builds.

JKube Kit: A toolkit and a CLI to interact with JKube Core, acts
also as a Kubernetes Client and provides an Enricher API to extend
Kubernetes manifests.

JKube offers more functionality than Jib, in fact, it can be considered as a
superset. You can do distroless Jib builds, but you can also work with
Dockerfile and deploy Kubernetes manifests from Java. In this case we
don’t need to write a Deployment or Service, JKube will take care of
building the container and deploy it to Kubernetes.

Let’s include jKube in our Catalog POM file, and configure it to do a Jib
build and a deploy to Kubernetes. Doing so will make the plugin persistent .
You can also find the source code in this book’s GitHub repository.

First we need to add JKube as a plugin:

https://github.com/openshift/source-to-image
https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/pom.xml

<project>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.eclipse.jkube</groupId>
 <artifactId>kubernetes-maven-plugin</artifactId>
 <version>1.1.1</version>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

After that, you can drive the container image build with properties. In this
case you may want to use Jib for building the image, and pushing it to
Docker Hub. Afterwards you will deploy it to Kubernetes.

...
<properties>
...
 <jkube.build.strategy>jib</jkube.build.strategy>

<jkube.generator.name>docker.io/modernizingjavaappsbook/catalog-
spring-boot:${project.version}</jkube.generator.name>
</properties>
...

Let’s build the image:

mvn k8s:build

You should get output similar to:

JIB>... modernizingjavaappsbook/catalog-spring-boot/1.0-
SNAPSHOT/build/deployments/catalog-1.0-SNAPSHOT.jar
JIB> :
JIB>... modernizingjavaappsbook/catalog-spring-boot/1.0-
SNAPSHOT/build/Dockerfile
...
JIB> [========================] 80,0% complete > building

image to tar file
JIB> Building image to tar file...
JIB> [========================] 80,0% complete > writing to
tar file
JIB> [==============================] 100,0% complete
[INFO] k8s: ... modernizingjavaappsbook/catalog-spring-boot/1.0-
SNAPSHOT/tmp/docker-build.tar↳
successfully built
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 36.229 s
[INFO] Finished at: 2021-03-19T13:03:19+01:00
[INFO] --

JKube using Jib created the container image locally, and it is now ready to
be pushed to Docker Hub. You can specify credentials in one of three ways:

Docker login: You can login to your registry, in this case
Dockerhub, and jKube will read ~/.docker/config.json
file to get authentication details.

Provide credentials inside POM: Provide registry credentials as
part of XML configuration.

Provide credentials inside Maven Settings: You can provide
registry credentials in your ~/.m2/settings.xml file like this
and plugin would read it from there.

In this case you use the third option and setup credentials into Maven
Settings, so you can copy this file using your credentials. You also find the
source code in this book’s GitHub repository.

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0↳
 http://maven.apache.org/xsd/settings-1.0.0.xsd">

https://github.com/modernizing-java-applications-book/catalog-spring-boot/tree/main/settings.xml

 <servers>
 <server>
 <id>https://index.docker.io/v1</id>
 <username>USERNAME</username>
 <password>PASSWORD</password>
 </server>
 </servers>
</settings>

To push it to Docker Hub you just run this maven goal:

mvn k8s:push

You should see output similar to:

JIB> [=========================] 81,8% complete > scheduling
pushing manifests
JIB> [=========================] 81,8% complete > launching
manifest pushers
JIB> [=========================] 81,8% complete > pushing
manifest for latest
JIB> Pushing manifest for latest...
JIB> [===========================] 90,9% complete > building
images to registry
JIB> [===========================] 90,9% complete > launching
manifest list pushers
JIB> [==============================] 100,0% complete
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 01:08 min
[INFO] Finished at: 2021-03-19T13:21:28+01:00

Now it’s time to deploy the Catalog on Kubernetes. JKube will connect to
your Kubernetes cluster reading the ~/.kube/config file on your
workstation.

mvn k8s:resource k8s:apply

You should get output similar to:

[INFO] Scanning for projects...
[INFO]
[INFO] -------------------< com.redhat.cloudnative:catalog >-----

[INFO] Building CoolStore Catalog Service 1.0-SNAPSHOT
[INFO] --------------------------------[jar]-------------------

[INFO]
[INFO] --- kubernetes-maven-plugin:1.1.1:resource (default-cli) @
catalog ---
[INFO] k8s: Running generator spring-boot
...
[INFO] k8s: Creating a Service from kubernetes.yml namespace
default name catalog
[INFO] k8s: Created Service:
target/jkube/applyJson/default/service-catalog.json
[INFO] k8s: Creating a Deployment from kubernetes.yml namespace
default name catalog
[INFO] k8s: Created Deployment:
target/jkube/applyJson/default/deployment-catalog.json
[INFO] k8s: HINT: Use the command `kubectl get pods -w` to watch
your pods start up
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 7.464 s
[INFO] Finished at: 2021-03-19T13:38:27+01:00
[INFO] --

The app has been deployed successfully to Kubernetes, using generated
manifests:

kubectl get pods

NAME READY STATUS RESTARTS AGE
catalog-64869588f6-fpjj8 1/1 Running 0 2m2s

kubectl get deploy

NAME READY UP-TO-DATE AVAILABLE AGE
catalog 1/1 1 1 3m54s

To test it, let’s have a look at the Service:

kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
catalog ClusterIP 10.99.26.127 <none> 8080/TCP
4m44s

TIP
By default, Kubernetes exposes the application only internally to the cluster, using ClusterIP
Service type. You can expose it externally using a Service Type NodePort or using an Ingress. In
this example you will use kubectl port-forward to map Kubernetes exposed port to our
workstation’s port.

Let’s try our app using kubectl port-forward command:

 kubectl port-forward deployment/catalog 8080:8080

If you open your browser now at http://localhost:8080/api/catalog you will
see the Coolstore’s Catalog JSON output.

Summary
In this chapter, we discussed how Java developers can benefit from
Kubernetes capabilities to modernize and enhance their apps, showing a
Developer’s inner loop with Kubernetes environments. We have
demonstrated how create container images and how to deploy them to
Kubernetes. We also walked through steps to drive containers creation and
deploy directly from Java with Maven thanks to Jib and JKube.

Modernization is important for developers in order to make apps Cloud
Native and portable, ready for serving highly available productions and

http://localhost:8080/api/catalog

services. In the next chapter we will look deeper into modernization of
existing Java application, and what are the steps needed for achieving it.

1 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

2 https://www.redhat.com/en/topics/containers/what-is-kubernetes-deployment

3 https://kubernetes.io/docs/concepts/workloads/pods/

4 https://kubernetes.io/docs/concepts/services-networking/service/

5 https://speakerdeck.com/coollog/build-containers-faster-with-jib-a-google-image-build-tool-
for-java-applications?slide=36

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.redhat.com/en/topics/containers/what-is-kubernetes-deployment
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://speakerdeck.com/coollog/build-containers-faster-with-jib-a-google-image-build-tool-for-java-applications?slide=36

Chapter 5. Beyond Lift and
Shift: Working with Legacy

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

Legacy is not what I did for myself. It’s what I’m doing for the next
generation.

—Vitor Belfort

Many organizations are faced with the challenges of keeping their existing
business operations running while also trying to innovate. There are
typically increased expectations to deliver new functionality faster and to
reduce cost, something which seems challenging when looking at the
existing application landscape and prevalence of legacy systems.

We often use the term “legacy system” to describe an old methodology, or
technology, or application that is not written according to the latest methods
or uses an outdated technology stack. Admittedly, many of the systems that
we created early on in our career belong to this category. We do know that
most of them are still in use. Some of them even paved the way for new

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

approaches or even standards that followed them. We usually also imply
that those systems would need a replacement, which ultimately contributes
to the perceived negative connotation. Thankfully, this isn’t always true.
Legacy also is a beautiful word to describe achievements and heritage.
Calling something “legacy” doesn’t automatically makes it outdated and
unusable. There are plenty of reasons to keep the legacy systems in place,
including:

The system works as designed, and there is no need to change.

Business processes implemented are no longer known or
documented, and replacing them is expensive.

The cost for replacing a system is higher than the benefit of
keeping it unchanged.

The book “Working Effectively with Legacy Code” by Michael Feathers
provides programmers with techniques to cost-effectively handle common
legacy code problems without having to go through the hugely expensive
task of rewriting all existing code.

Michael Feathers said: “To me, legacy code is simply code without tests.”.
If I read the term “legacy” today, it primarily refers to monolithic
applications. There are various approaches to handle legacy applications in
a modern enterprise landscape, and picking the right one is the first and
most crucial part of the modernization journey.

We’ve only talked about individual systems so far. And developers usually
only care about this specific system scope. Modernization plans should
follow overarching company goals and should also take the company-wide
IT strategy into account. A particular exciting approach for cloud migration
is presented in Gregor Hohpe’s book “Cloud Strategy - A Decision-based
Approach to Successful Cloud Migration”. It is a must-read if you want to
know more about building the abstraction above individual migration
efforts.

https://www.oreilly.com/library/view/working-effectively-with/0131177052/
https://architectelevator.com/book/cloudstrategy/

Managing Legacy
Every successful journey begins with a first step. The first step for an
application migration journey is the assessment of the existing applications.
We assume that you know the company-wide goals and directives. We can
map them into assessment categories now. Another source for assessment
categories is technical requirements—for example, existing blueprints or
recommended master solutions or framework versions. Building and
updating this list of assessment categories should be a recurring task that
becomes part of your governance process. Ultimately you can derive
migration criteria from these assessment criteria and use them as decision-
making cornerstones for your modernization journey.

Assessing Applications for Migration
When assessing a migration or modernization effort, it is essential to
consider the specific challenges that motivate or influence your
organization. Some examples of challenges that organizations might face:

Limited budgets for development

Development teams need to become more efficient, and their velocity has to
increase. Instead of working with complex specifications, they aim to
switch to lightweight frameworks and pre-build functionalities.
Modernizations usually should be scheduled as part of an ongoing
development or maintanance project.

Lack of in-house skills

The team skills for existing in-house technologies are decreasing. Examples
for this can be host programming or even earlier versions of Enterprise Java
specifications that are no longer taught or state of the art. Changing existing
systems that use older technologies might need to add specific skills for the
development project.

Perceived risks

Following a famous proverb popularized around 1977: “if it ain’t broken,
don’t fix it”, we do see a lot of perceived risks to change well-established
and running software. The reasons for this can be plenty fold and range
from knowledge issues about the system to fear of stopped production in
factories. These risks need to be addressed individually and mitigated
through suitable actions in the migration plan.

No known predictable process

This book helps you with this particular point. Navigating the unknown can
be a considerable challenge. Having a proven and repeatable process for
modernization efforts in place that all parties respect and follow is critical
for success.

Real effort estimation

Estimating migration efforts should not be magic. Unfortunately, many
companies have a minimal idea about the genuine efforts to modernize
Enterprise Java applications. Following a predictable and optimized
approach will remove this challenge.

Turning the above challenges into actionable items for your assessment, can
look like this:

Predicting the level of effort and cost

Scheduling application migrations and handling conflicts

Identifying all potential risks at a code, infrastructure, process, or
knowledge level

Predicting the return on investment to make the business case

Identifying and mitigating risks to the business

Minimizing disruption to existing business operations

It is sufficient to do this in a spreadsheet or document if you are only
looking at a single application. However, every mid to large-scale effort
needs a better solution. Large-scale efforts need automated routines and

rules to assess an install base and link applications to business services to
plan the next steps reliably. An open-source and straightforward way of
gathering and managing all relevant information comes from the Konveyor
project. It combines a set of tools that aim at helping with modernization
and migration onto Kubernetes.

The Konveyor subproject Forklift provides the ability to migrate virtual
machines to KubeVirt with minimal downtime. The subproject Crane
concentrates on migrating applications between Kubernetes clusters. Also
part of the suite is Move2Kube to help accelerate the re-platforming of
Swarm and Cloud Foundry-based applications to Kubernetes.

For application modernization, in particular, Konveyor offers the Tackle
project. It assesses and analyzes applications for refactoring into containers
and provides a standard inventory.

Tackle Application Inventory

Allows users to maintain their portfolio of applications, link them to the
business services they support, and define their interdependencies. The
Application Inventory uses an extensible tagging model to add metadata
which is a great way to link migration categories, as discussed earlier. The
Application Inventory is used to select an application for an assessment by
Pathfinder.

Tackle Pathfinder

It is an interactive, questionnaire-based tool that assesses the suitability of
applications for modernization so that they can be deployed in containers on
an enterprise Kubernetes platform. Pathfinder generates reports about an
application’s suitability for Kubernetes, including the associated risk, and
creates an adoption plan. Pathfinder does this based on the information
present in the application inventory and additional assessment questions. If
a fictitious application depends on a direct host system connection, it might
disqualify this particular application for a migration to Kubernetes because
it would overload the host parts. Some examples of assessment questions
are:

https://www.konveyor.io/
https://github.com/konveyor/tackle-documentation
https://tackle-docs.konveyor.io/documentation/doc-installing-and-using-tackle/master/index.html#about-pathfinder_tackle

Are third-party vendor components supported in containers?

Is the application under active development?

Does the application have any legal requirements (e.g. PCI,
HIIPA)?

Does the application provide metrics?

We strongly recommend looking at Pathfinder to manage large-scale
modernization projects across complete landscapes. It will help you
categorize and prioritize applications in your scope today and continuously
track your migration assessment for future changes.

Tackle Controls

Controls are a collection of entities that add different values to the
Application Inventory and the Pathfinder assessment. They comprise
business services, stakeholders, stakeholder groups, job functions, tag types,
and tags. In addition, you can capture company or project-specific attributes
by implementing your own entities. This will filter your application
inventory by for example all applications used by a certain “job function”.
E.g. to identify all applications used by the human resources department.

Tackle DiVA

Finally, DiVa is a data-centric application analysis tool. As a successor to
the project WindUp, it is the most exciting project to look at if you want to
assess individual applications. It focuses on the traditional monolithic
application and currently supports Servlets and Spring Boot applications.
You can import a set of application source files (Java/XML) and DiVA then
provides the following:

Service entry (exported API) inventory

Database inventory

Transaction inventory

Code-to-Database dependencies (call graphs)

https://github.com/konveyor/tackle-diva
https://github.com/windup

Database-to-Database dependencies

Transaction-to-Transaction dependencies

Transaction refactoring recommendation.

DiVa is currently under active development, and the incorporation of the
original WindUp project isn’t finished yet. However, it still gives you a
solid foundation for your modernization efforts. Additionally, it presents an
excellent opportunity to contribute your findings and become part of a
larger community dedicated to automating migrations.

Migration Toolkit for Applications

While we wait for WindUp to be fully integrated into DiVA, you can still
use an automated migration assessment for Enterprise Java based
applications by using the Migration Toolkit for Applications (MTA).

MTA assembles tools that support large-scale Enterprise Java application
modernization and migration projects across many transformations and use
cases. You can import your application binary or archives into it, and it
automatically performs code analysis, including the application portfolio,
application dependencies, migration challenges, and migration effort
estimation in the form of story points. Initialy it was designed to support
Java EE server migrations (e.g. WebSphere or Weblogic to JBoss EAP).
Still, it has a highly extensible rule set mechanism that allows developers to
create their own set of rules or even adapt existing ones to their needs.
Today it does also cover Spring Boot to Quarkus migrations. An excerpt
from an example rule in Java looks like this:

//...
JavaClass.references("weblogic.servlet.annotation.WLServlet")
 .at(TypeReferenceLocation.ANNOTATION)
)
 .perform(
 Classification.as("WebLogic @WLServlet")
 .with(Link.to("Java EE 6 @WebServlet",
 "https://some.url/index.html"))
 .withEffort(0)
 .and(Hint.withText("Migrate to Java EE 6

https://developers.redhat.com/products/mta/getting-started

@WebServlet.")
 .withEffort(8))
);
//...

This rule scans Java classes for @WLServlet annotations and adds an effort
(story points) to this finding. You can learn more about rules and how to
develop them in the WindUp documentation.

Beyond that, it can also support non-migration use cases as part of a build
process (via a Maven plugin or a Command Line Interface), either
validating code regularly against organizational standards or ensuring
application portability.

Some of the patterns MTA can detect include the following:

Proprietary libraries

Proprietary configurations

Service locators

Web services

EJB descriptors

Deprecated Java code

Transaction managers

Injection frameworks

Thread pooling mechanisms

Timer services

WAR/EAR descriptors

Static IP addresses

MTA and DiVa are two potent tools helping us identify overall technical
debt, resulting in a classification of migration needs and risks. However,

https://github.com/windup/windup
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.0/html-single/maven_plugin_guide/
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.0/html-single/cli_guide/

they do not allow us to identify the functionality that should be migrated or
modernized first. For this, we need to take a deeper look into the application
design and functionality.

Assessing Functionality for Migration
Traditional monoliths come in various shapes, forms and sizes. When
someone uses the term “monolith” they usually refer to the deployment
artifact itself. In Enterprise Java, this has traditionally been Enterprise
Archives (EAR) or Web Archives (WAR). You can also look at them as
single-process applications. They can be designed following modularity
recommendations like OSGi (Open Services Gateway Initiative) or
following more technical approaches like the three-tier design without
significant business modules. The overall direction of your modernization
efforts heavily depend on the type of monolith you are dealing with. As a
rule of thumb: The more modular an existing application already is, the
easier it is to modernize it. In a perfect world, modules directly translate
into service boundaries. But this rarely happens.

If the monolith seems like a giant box, we have to apply a logical model to
it. And we realize that inside this box are organized business and technical
components, like for example order management, PDF rendering, client
notifications, and similar. While the code is probably not organized around
these concepts, they exist in the codebase from a business-domain model
perspective. These business domain-boundaries often called “bounded
contexts” in Domain-Driven-Design (DDD), become the new services.

NOTE
Many consider Eric Evans book “Domain-Driven Design: Tackling Complexity in the Heart of
Software” the “de facto” standard introduction to DDD if you are interested in learning more.

Once you have identified the modules and functionality, you can start to
think about your modernizing order. But, first, make sure to look at the cost
vs. benefit tradeoffs for each module and start with the best candidate.

https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/

Figure 5-1 gives a very high-level overview of how this could look like for
a sample application with six modules. Let’s assume we are talking about a
fictitious online shop in this case. For modules that are heavily
interdependent like for example Order and Customer it will be complex to
extract them individually. If you also consider the necessity for scalability
and with that the benefit of removing them from a monolith, it might not be
very high. Those two modules resist on the lower left side of the graph. On
the opposite side we might find the Catalog service. It lists the available
products and is a read-only service with very little interdependencies.
During high demand on the website, this is the number one requested
module it and benefits heavily from being extracted. The upper right of the
graph. Do a similar exercise for all the modules in your application to
assess cost vs. benefit.

Figure 5-1. Cost vs. Benefit

You’ve now reached the last checkpoint to validate your earlier strategic
application assessment. Does the estimated modernization benefit outweigh
the estimated modernization cost? Unfortunately, there is no generally

applicable example to share as it heavily depends on the application itself,
the business requirements, and the overarching company goals and
challenges. Document your decisions and conclusions because now is the
time to decide about the future direction of your modernization effort.
Remember the 6 R’s from chapter three? Retain (change nothing), Retire
(turn off), Repurchase (a new version), Rehost (put into containers),
Replatform (some slight adjustments) or Refactor (Build something new).

We’ve now assessed the application for migration and we’ve evaluated the
functionality for migration. We know which aspects of the application
we’re ready to modernize. You’ve concluded that you do not want to build a
new application but rather gently modernize the existing legacy. In the next
section, we are going to take a deeper look at some approaches to
migration.

Migration Approaches
The aforementioned tools and assessments will help you on your journey to
identify the most suitable applications and services. Now it’s time to dig
deeper into the strategies and challenges of a single application.

Protecting Legacy (Replatform)
With only one or two modules needing a business refresh or added
functionality, the most straightforward way is to focus on the two modules
and keep as much as possible of the existing application, making it runable
on modern infrastructure. Besides changes of the relevant modules, this also
involes a re-evaluation of the runtime, libraries or even target infrastructure
while touching as little code as possible.

This can be achieved by simply containerizing the application and
databases and modifying relevant modules of a well-architected monolith,
or extracting certain functionality completely and re-integrating it to a
partly distributed system, as Figure 5-2 shows.

Figure 5-2. Putting the pieces back together

What is easily said isn’t quickly done. There are plenty of non-functional
requirements that need to be re-allocated from the application server
platform to the outer architecture. We are focusing on the more critical
pieces in the next chapter. In this chapter, we want to focus on the migration
of the application and database itself.

Service to Application

Once you’ve extracted certain functionality, the most pressing question is
how to integrate the remaining monolith with the newly extracted service.
Assuming that you switch to a container runtime, you should use an API
Gateway to load balance and switch traffic on a URL basis. We’ll cover this
in more detail in chapter six.

https://www.oreilly.com/library/view/microservices-for-modern/9781492049135/ch04.html

Another approach is to use an HTTP proxy. It is essential to have the proxy
up in production before you even try to extract parts of the monolith.
Ensure it does not break the existing monolith and take some time to push
the new service into production regularly, even without it being used by
end-users. Gradually switch over by redirecting traffic if everything looks
good.

For more simple service to monolith interactions, you can even think about
implementing a simple JAX-RS direct communication. This approach is
only suitable when you work with very few services, though. Make sure to
treat the extracted service as an integration system from the perspective of
the monolith.

All three approaches (API, Gateway, HTTP Proxy, and JAX-RS interface)
are a pathway to your first successful microservice. They all implement the
strangler pattern (refer to Chapter 3) and help you to refactor the monolith
into separate systems as a first step.

Interception is a potentially dangerous path: If you start building a custom
protocol translation layer that is shared by multiple services, you risk
adding too much intelligence to the shared proxy. This design approach
leads away from independent microservices and becomes a more service-
oriented architecture with too much intelligence in the routing layer. A
better alternative is the so-called Sidecar pattern, which basically describes
an additional container in the pod. Rather than placing custom proxy logic
in a shared layer, it becomes part of the new service. As Kubernetes sidecar,
it becomes a runtime binding and can serve Legacy clients and new clients.

NOTE
A sidecar is just a container that runs on the same Pod as the application container. It shares the
same volume and network as the application container and can “help” or enhance application
behaviour with this. Typical examples are logging, or more generally agent functionality.

Database to Databases

Once we have identified the functional boundary and the integration
method, we need to decide how to approach database separation. While
monolith applications typically rely on a single, large database, each
extracted service should operate on its own data. The correct way to solve
this puzzle again depends on the existing data layout and transactions.

A relatively easy first step is to separate the tables necessary for the service
into a read-only view and a write table and adjust the flow of the monolith
to use an interface for both read and write operations. These interfaces can
more easily be abstracted in a later step into a service access. This option
requires changes to the monolith application only and should have minimal
impact on the existing codebase. We can move the table into a separate
database and adjust the dependent queries in the next step.

All this solely happens in the old monolith as preparation. Evolving existing
code into a more modularized structure as preparation can be risky. In
particular, the risk increases as the data model complexity does. In the last
step we can separate the extracted tables into a new database and adjust the
monolith to use the newly created service for interactions with the business
object. This is relatively easy with pen and paper and quickly reaches the
end of practicality if the data access requires many joins across tables.
Simple candidates are master data objects, like “User”. More complex ones
could be combined objects, like an “Order”. What was said about the
modularization of the application code is even more true for the database.
The better the design and modularization already are, the easier it will be to
extract functionality and data into a separate service. There will be cases
where you won’t find an excellent solution to extract objects from the data
model. Or you may see different approaches not delivering suitable
performance anymore. This is the time to revisit your chosen modernization
path.

Continuing on the happy path, you now have two separate databases and
two very unequal “services” composing a system. Now it’s time to think
about data synchronization strategies between your services. Most
databases implement some functionality to execute behavior on data
changes. Simple cases support trigger functionality on changed rows to add

copies to other tables or even call higher-level features (e.g., WebServices)
on change. It is often proprietary functionality and heavily depends on the
database being used. This could be an option if you have a companywide
directive to use certain features or you’re confident enough in further
altering the original legacy database.

If this isn’t possible, there’s the batch job based synchronization. Changed
timestamps, versions, or status columns indicate a needed replication. You
can rely on this as a very mature and well-known version of data
synchronization, which you can find in many legacy systems. The major
drawback is that you’ll always end up with a discrepancy in data accuracy
in the target system no matter the implementation. Higher replication
intervals might also lead to additional costs for transactions or additional
load on the source system. This approach is only suitable for infrequent
updates that ideally have a non-time-sensitive process step in between. It is
unsuitable for real- or near-time update requirements.

The modern approach to solving data synchronization challenges relies on
log readers. As third-party libraries, they identify changes by scanning the
database transaction log files. These log files exist for backup and recovery
operations and provide a reliable way to capture all changes, including
DELETEs. This concept is also known as change-data-capture. One of the
most notable projects here is Debezium. Using log readers is the least
disruptive option for synchronizing changes between databses because they
require no modification to the source database, and they don’t have a query
load on the source systems. Change data events generate notifications for
other systems with the help of the Outbox pattern.

Build something new (Refactor)
If for whatever reasons, you reached the fork in the road where you decide
to re-implement and refactor your complete system into a new distributed
architecture, you are most likely thinking about synergies and ways to keep
effort small and predictable. Given the complexity of a full microservices
stack, this isn’t an easy task. One critical factor with this approach is team
knowledge. After many years of development on Enterprise Java

https://debezium.io/

application server, a team should profit from continuous API and standards
knowledge. There are various ways to implement services on the JVM that
all help teams with reusing the most critical functionalities we all already
know from Enterprise Java/Jakarta EE standards. Let’s discuss some of
these methods for implementing services on the JVM.

NOTE
Jakarta EE is a set of specifications that enables Java developers to work on Java enterprise
applications. The specifications are developed by well-known industry leaders that instill
confidence in technology developers and consumers. It is the open-source version of the Java
Enterprise Edition.

MicroProfile

MicroProfile was created in 2016 and quickly joined the Eclipse
foundation. The primary purpose of MicroProfile is to create a Java
Enterprise framework for implementing portable microservices in a vendor-
neutral way. MicroProfile is composed of a vendor-agnostic programming
model and configuration and services such as tracing, fault tolerance,
health, and metrics. MicroProfile API components are built upon the model
of Jakarta EE, making a transition to microservices more natural for Java
developers. You can reuse the existing knowledge of Jakarta EE you
already have accumulated in your career. MicroProfile defines 12
specifications as shown in Figure 5-3, and the component model underneath
uses a subset of the existing Jakarta EE standards. Contrasted to the full
Jakarta EE specification the more heavyweight specifications are missing.
Most relevant for larger monolithic applications are Enterprise Java Beans
(EJB) and Jakarta XML WebServices.

https://jakarta.ee/about/
https://microprofile.io/

Figure 5-3. MicroProfile technologies overview

There are various implementations of the MicroProfile specifications
available: OpenLiberty, Thorntail, Paraya Server, TomEE, SmallRye, etc.
As the MicroProfile relies on principles and components close to the Jakarta
EE Web Profile, it is comparably easy to migrate existing applications.

Quarkus

Quarkus is a relatively new member of the so-called microservices
frameworks. It is a full-stack, Kubernetes-native Java framework for JVMs
and native compilation. It is optimized specifically for containers and
constrained runtime environments. Its primary purpose is to be an ideal
runtime for serverless, cloud, and Kubernetes environments.

It works with popular Java standards, frameworks, and libraries like Eclipse
MicroProfile, Spring Boot, Apache Kafka, RESTEasy (JAX-RS), Hibernate
ORM (JPA), Infinispan, Camel, and many more.

The dependency injection solution is based on CDI (contexts and
dependency injection) coming from Jakarta EE, making it compatible with
established component models. An interesting part is the extension
framework, which helps expand functionality to configure, boot, and
integrate company-specific libraries into your application. It runs on JVMs
and supports GraalVM (a general-purpose virtual machine for many
languages).

http://quarkus.io/

Component Models to Services

One of the most common questions among developers is how to migrate
existing component models of Enterprise Java applications into
microservices. Commonly, this question refers to Enterprise Java Beans or
CDI Beans. Especially the container-managed persistence beans (before
EJB3) need to be recreated on a Java Persistence API (JPA) basis. We
strongly recommend checking if the underlying data/object mapping is still
accurate and suitable for the new requirements and recreate it entirely. This
is not the most time and cost-consuming part of modernization. Typically
the more challenging are the coded business requirements. While CDI
Beans are technically part of MicroProfile compatible implementations, the
decision of whether a simple code migration is appropriate depends on the
new business requirements. It is essential to look for existing code
transaction boundaries to ensure no downstream resource needs to be
involved. A general recommendation is to reuse as little source code as
possible. The reason here is mainly the different approaches in system
design between the two technologies. While I got away with a half way
modularized monolith, this isn’t possible with microservices anymore.
Taking extra care to define the bounded contexts will pay off for the
performance and design of the final solution.

Spring Applications to Services

We can take a similar approach with applications following a different
programing framework like Spring. While it will technically be easy to
update and copy existing implementations, the drawbacks stay the same. In
particular, it might be helpful for Spring-based development teams to use
compatibility APIs in different frameworks like Quarkus.

Quarkus’ Spring API compatibility includes Spring DI, Spring Web, and
Spring Data JPA. Additional Spring APIs are partially supported like Spring
Security, Spring Cache, Spring Scheduled, and Spring Cloud Config. The
Spring API compatibility in Quarkus is not intended to be a complete
Spring platform to re-host existing Spring applications. The intent is to offer

enough Spring API compatibility to develop new applications with
Quarkus.

Challenges
With assessment, planning, and care, you can decompose and modernize
existing monolithic applications. It is not an automated process most of the
time and will require a decent amount of work. There are some specific
challenges to watch out for.

Avoiding dual-writes

Once you build a few microservices, you quickly realize that the most
challenging part about them is data. As part of their business logic,
microservices often have to update their local data store. At the same time,
they also need to notify other services about the changes that happened.
This challenge is not so evident in the world of monolithic applications, nor
on legacy distributed transactions operating on one data model. This
situation isn’t easy to resolve. With a switch to distributed applications, you
most likely lose consistency. This is described in the CAP theorem.

NOTE
The CAP theorem or the “two out of three” concept states that we can only simultaneously
provide two of the following three guarantees: Consistency, Availability, Partitition tollerance.

Modern distributed applications use an event bus, like Apache Kafka to
transport data between services. Migrating your transactions from two-
phase commit (2PC) in your monolith to a distributed world will
significantly change the way your application behaves and reacts to failures.
You need a way to control long-running and distributed transactions.

Long-running transactions

The Saga pattern offers a solution to dual writes and long-running
transactions. While the Outbox pattern solves the more straightforward

https://en.wikipedia.org/wiki/CAP_theorem

inter-service communication problem, it is insufficient to solve the more
complex, long-running, distributed business transactions use case. The latter
requires executing multiple operations across multiple services with a
consistent all-or-nothing semantic. Every multi-step business process can be
an example of this when split out across multiple services. The shopping
cart application needs to generate confirmation emails and print a shipping
label in the inventory. All actions must be carried out together or not at all.
In the legacy world, or with a monolithic architecture, you might not be
aware of this problem as the coordination between the modules is done in a
single process and a single transactional context. The distributed world
requires a different approach.

The Saga pattern offers a solution to this problem by splitting up an
overarching business transaction into multiple local database transactions,
which are executed by the participating services. Generally, there are two
ways to implement distributed sagas:

Choreography: In this approach, one participating service sends a
message to the next one after it has executed its local transaction.

Orchestration: In this approach, one central coordinating service
coordinates and invokes the participating services. Communication
between the participating services might be either synchronous, via
HTTP or gRPC, or asynchronous, via messaging such as Apache
Kafka.

Removing old code too quickly

As soon as we extract a service, we want to get rid of the old source code,
maintenance costs and duplicate development. But be careful. You can look
at the old code as a reference and test changes in behavior against both code
bases. It might also be helpful from time to time to check the timing of the
newly created service. A recommendation is to run them side by side for a
defined period and compare the results. After this, you can remove the old
implementation. That is early enough.

Integration Aspects
Traditional monoliths have a solid relationship with complex integration
logic. This is mainly proxied behind session facades or integrated with data
synchronization logic. Every single system integrated into the overarching
business process needs to be treated as a separate service. You can apply the
same principles when extracting parts of the data from the existing data
model and do this step by step. Another approach is to treat your integration
logic as a service from the very beginning. A method that was primarily
designed to support microservices is Camel K. It builds on the foundation
of the well-known Apache Camel integration library and wraps integration
routes into containers or better individual services. This way, you can
separate the complete integration logic of your monolithic application and
your services.

Summary
Modern enterprise Java systems are like generations of families: They
evolve on top of legacy systems. Using proven patterns, standardized tools,
and open source will help you create long-lasting systems that can grow and
change with your needs. Fundamentally, your migration approach is directly
related to what problems you’re trying to solve today and tomorrow. What
are you trying to achieve that your current architecture doesn’t scale up to?
Maybe microservices are the answer, or perhaps something else is. You
must understand what you’re trying to achieve because it will be
challenging to establish how to migrate the existing systems without that
comprehension. Understanding your end goal will change how you
decompose a system and how you prioritize that work.

https://camel.apache.org/camel-k/latest/

Chapter 6. Building
Kubernetes-Native Applications

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

In the previous chapter, we outlined how to migrate from the traditional
Java enterprise pattern to a container-centric approach. In this chapter, we
will walk through the components needed to migrate to microservices-based
architectures, and how Kubernetes can connect the dots.

We also learned in previous chapters how much a microservices-based
approach helps to make our software reliable, portable, and ready to scale
upon demand. Modern architectures are planned with scalability already in
the scope since the beginning, and this offers both opportunities and
challenges. Enterprise Java developers know that their code is usually part
of the Business Logic, relying on frameworks to make it robust and
consistent with well-recognized software design patterns. It is more
common today that the same application could serve millions of requests
running on a Public Cloud, even distributed geographically. To do that, it

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

has to be architected to fit this model, decoupling functions, avoiding a
single point of failure and distributing the load to several parts of the
architecture to avoid service interruptions.

Find the right balance between Scalability
and Complexity
In an ideal world, all applications would be stateless, and they could scale
up independently. They wouldn’t crash and the network links would always
be reliable. The reality looks different. The migration from Monoliths to
Microservices-based architectures enables Cloud-Native deployments, and
we’ve covered some of the benefits that brings. However, that also brings
some challenges: managing multiple points of ingress for your app, keeping
the relationships between multiple microservices consistent, managing
distributed databases and schemas. In Figure 6-1 you can see the how the
transition from monolithic to microservices-based apps brings a new
approach, having multiple interconnections or even multiple databases to
work with.

Figure 6-1. From Monolith to Microservices Architectures

Similar to the CAP Theorem , it is very hard to simultaneously provide
scalability without increasing the complexity of a system.. That’s why
Kubernetes is so helpful because it’s ubiquitous, it runs in any cloud, and
you can delegate most of this complexity to this platform. This lets you
focus “just” on app development. On the other hand, we need to find a
solution also for stateful apps in the cloud-native world, and we will see
that Kubernetes also provides help on this side.

Functional Requirements for Modern
Architectures
Kubernetes is very helpful with defining distributed applications as shown
in Figure 3-1. Any Java developer should be well aware of Design Patterns
from Gang of Four , a masterpiece of software engineering where authors
define the most used software design patterns. Kubernetes extends this set
of patterns, creating a new set of cloud-native specific requirements to
make applications resilient to various load as shown in Figure 6-2. Let’s dig
into some of those in the next sections.

1

2

https://en.wikipedia.org/wiki/Design_Patterns

Figure 6-2. Functional requirements for Modern Architectures

API driven
The Microservices mantra is API-first. If you take a look again at Figure 6-
1, you’ll notice that splitting a monolithic app into a bunch of microservices
leads to the first challenge: how to let these pieces of software communicate
with each other? In Monoliths, you rely on the app scope of modules,
packages. Microservices usually communicate with each other via REST
calls, where each one can be either producer or consumer of services. This
is not the only way to connect your microservices, it’s also a common use
case to use queues, messages, or caches. But in general, each microservice

exposes its primitives or functions through a set of APIs, and this can also
be intermediated by an API gateway as we discussed in the Coolstore
example in Chapter 2.

Kubernetes itself is API-driven software. All core components of the
platform such as Pods, Services, Deployments are manipulated through
REST APIs. All operations and communications between components and
external user commands are REST API calls that the API Server handles .
When we interact with Kubernetes through kubectl or JKube, we are just
invoking an API via HTTPS sending and receiving JSON content. This
ecosystem of APIs is the perfect environment for an API-driven
architecture, such as one that uses microservices. Now that we know how
our microservices communicate, how do we discover new services?

Discovery
It’s pretty straightforward to let microservices communicate with each other
using REST calls. In addition to that, it would be nice to have the
invocation of other components and functions at ease, like when importing
a module or a package into our app. In modern architectures, the number of
microservices to invoke and connect could be potentially pretty high, thus it
may not enough to simply store the network endpoints such as IP address or
hostnames. As we discussed in Chapter 4, Kubernetes simplifies
networking with the Service object, allowing two or more Pods to talk to
each other within the platform’s internal networking. Kubernetes also
provides the capability to list objects inside the cluster from an application,
thanks to its API. Java developers can use frameworks such as JKube to
have a Java Kubernetes client for this purpose.

Listing Kubernetes Services and Pods, which represent some microservices,
is the first step to a real-time inventory of components of our software
stack, which additionally helps to maintain and extend at runtime
applications. Furthermore, Kubernetes enables integration with external
tools or frameworks for that, such as Service Mesh, which provides service
discovery protocol to detect services as they come up.

3

TIP
Service Mesh is an increasingly popular choice for microservices-based architectures. It provides
a control plane that also interacts with Kubernetes to manage service discovery, mutual
authentication, A/B testing, routing and circuit breaker pattern out of the box. Further details can
be found online .

Security and Authorization
Another challenge that modern app developers need to take into account is
security for the entire stack. From the app to the platform, best practices
also apply to modern architectures, and the complexity and the required
effort may rise significantly when there are many services to connect, many
databases to query, and many endpoints to serve. Again, Kubernetes comes
in to help.

Kubernetes provides security for the entire ecosystem. Role-Based Access
Control (RBAC) and fine graned permission rules are possible.
Furthermore, Pods are run by a special user called Service Account that has
access to the Kubernetes API Server, usually having limited scope to the
user’s Namespace. Beside that, Kubernetes provides a special API to
manage passwords and certificates called Secret. A Secret is a volume
mounted into the Pod by the platform at runtime, with its value stored into
Kubernetes’ database etcd, along with cluster state and configurations.

NOTE
etcd is a distributed key-value database used by Kubernetes to store the cluster state. The content
of the database can be also encrypted, and only the cluster administrator can access its content.

As we discussed, the communication between microservices is usually done
via HTTPS REST calls, whose certificates are managed via Secrets.
Containers and Kubernetes provide a good starting point for ensuring
security into applications, from which Java developer can start to
implement app security best practices.

4

https://en.wikipedia.org/wiki/Service_mesh
https://etcd.io/

Monitoring
Measuring resource consumption is essential in modern architectures, and
ever moreso in cloud environments with a pay-per-use consumption model.
It isn’t easy to estimate how many computational resources your app will
need under stress, and overestimation may increase costs. Kubernetes
enables monitoring at the Operating System level to application level, with
its ecosystem of API and tools.

A popular cloud-native tool to gather metrics from the platform and the app
is Prometheus, a time-series database that can export metrics from the
Kubernetes cluster and apps, using a query language called PromQL .

Metrics are also used to help Kubernetes decide when to scale your
application up or down according to the monitored load on the app. You can
drive this scale with custom metrics, such as JVM threads or queue size,
and make monitoring a proactive tool to empower your services.
Prometheus also provides Alerts and Alarms, useful to schedule automated
actions for your applications when they need to react faster.

Java developers can also interact with Prometheus and metrics inside
Kubernetes with Micrometer, an open-source tool that provides a
registration mechanism for metrics and core metric types. It is available for
any JVM-based workloads, and it is the popular choice for both Spring
Boot and Quarkus projects to interact with Prometheus and Kubernetes.
“Think SLF4J, but for metrics.”

Tracing
Observability is another key aspect in modern architectures, and measuring
latency between REST API calls is important facet of managing
microservices-based apps. It is crucial to ensure that the communication is
always clear and the latency is minimal. When the number of microservices
increases, a small delay in some part of the architecture can result in an
acceptable service interruption for the user. In these situations, Kubernetes
is helpful for debugging the majority of operational problems that arise
when moving to a distributed architecture.

5

6

https://prometheus.io/
https://micrometer.io/

Jaeger is a popular open-source tool that connects to Kubernetes to provide
observability. It uses distributed tracing to follow the path of a request
through different microservices. It provides a visual representation of the
call flows through a dashboard, and it is often also integrated with Service
Mesh. Jaeger is very helpful to developers for monitoring distributed
transactions, optimizing performance and latency, and performing root
cause analysis.

Logging
As we discussedm a single call in your microservices-based app, such as the
Coolstore example, can invoke different services that interact with each
other. It’s important to monitor and observe the app, but also to store
relevant pieces of information in logs. Your application’s logging approach
changes with modern apps. While in monoliths we usually rely on multiple
log files stored in different paths on the disk, usually managed by the
application server, distributed apps stream logs. As your app can scale up
rapidly and move to different nodes or even clouds, it makes no sense to
access the single instance to retrieve logs, a distributed log system is
needed.

Kubernetes makes logging easy as well. By default, it provides the
capability to access a pod’s logs by reading the application’s standard
streams such as STDOUT (Standard Output) and STDERR (Standard
Error). Thus, the app should not write logs into a certain path, but send logs
to standard streams.

NOTE
It is still possible to store logs in specific paths that can also be persistent in Kubernetes, but this is
considered an anti-pattern.

Kubernetes also interacts with distributed logging systems such as
Elasticsearch, an open-source document oriented NoSQL database based on
Apache Lucene to store logs and events. Elasticsearch usually comes with7

https://www.jaegertracing.io/
https://www.elastic.co/

a forwarder, such as FluentD, and a dashboard to visualize logs such as
Kibana. Together, this creates the EFK stack (Elasticsearch, Fluentd,
Kibana). With this logging stack, developers consult logs from multiple
microservices in an aggregated view through the Kibana dashboard, and
they are also able to make queries in a query language called Kibana Query
Language (KQL).

Distributed logging is the de-facto standard with cloud-native apps, and
Kubernetes connects and interacts with many offerings such as EFK to
provide centralized logging for the whole cluster.

CI/CD
Continuous Integration (CI) is a phase in the software development cycle
where code from different team members or different features is integrated.
This usually involves merging code (integration), building the application
(container), and carrying out basic tests, all within an ephemeral
environment.

Continuous Delivery (CD) refers to a set of practices to automate various
aspects of delivery software. One of these practices is called Delivery
Pipeline which is an automated process to define the steps a change in code
or configuration has to go through to reach upper environments and
eventually to production.

Together, they are often referred to as CI/CD, and it is one of the key
technology enablers for DevOps methodology.

Modern services need to react fast to changes or issues. As we can monitor,
trace and log distributed architectures, we should be also able to update
your microservices-based app faster. Pipelines are the best way to deploy
apps in production following the phases as shown in Figure 6-3.

https://www.fluentd.org/
https://www.elastic.co/kibana

Figure 6-3. Continuous Integration and Continuous Delivery

A Pipeline is a series of steps, sequential or parallel, that build and test the
app in all pre-production environments, before finally releasing it to
production. It can be fully automated or can interact with external tools for
manual step approval (e.g. Service Now, JIRA, etc). Kubernetes interacts
and connects with many external CI/CD tools such as Jenkins, and also
provides a native CI/CD subsystem called Tekton.

Tekton is a Kubernetes-native CI/CD system, which means it extends the
Kubernetes API and provides its Custom Resources that you can use to
create your pipelines. It relies on a catalog of Tasks that comes already
bundled with Tekton to compose your pipelines, such as Maven or Java
Source-to-Image Tasks.

TIP
Tekton can be installed in Kubernetes with an Operator from OperatorHub.io.

To create Kubernetes-native pipelines, the following custom resources are
provided by Tekton:

Task: a reusable, loosely coupled number of steps that perform a
specific function (e.g. building a container image). Tasks get
executed as Kubernetes Pods while steps in a task map onto
containers

Pipeline: a list Tasks needed to build and/or deploy your apps

TaskRun: the execution and result of running an instance of task

8

https://www.jenkins.io/
https://tekton.dev/
https://operatorhub.io/

PipelineRun: the execution and result of running an instance of
pipeline, which includes a number of TaskRuns

An example of a Tekton Pipeline for the Inventory Quarkus microservice
that we created in Chapter 2 is listed below, which you can find in this
book’s GitHub repository

apiVersion: tekton.dev/v1alpha1
kind: Pipeline
metadata:
 name: inventory-pipeline
spec:
 resources:
 - name: app-git
 type: git
 - name: app-image
 type: image
 tasks:
 - name: build
 taskRef:
 name: s2i-java-11
 params:
 - name: TLSVERIFY
 value: "false"
 resources:
 inputs:
 - name: source
 resource: app-git
 outputs:
 - name: image
 resource: app-image
 - name: deploy
 taskRef:
 name: kubectl
 runAfter:
 - build
 params:
 - name: ARGS
 value:
 - rollout
 - latest
 - inventory-pipeline

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/Pipeline.yaml

Java developers may also find convenient creating and controlling Tekton
Pipelines and Tasks direcly from the code, using Fabric8 Tekton Java client.
This option gives the full control from one single point, and you don’t need
to maintain external manifests such as YAML files.

First import Maven dependency in POM file.

 <dependencies>
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>tekton-client</artifactId>
 <version>${tekton-client.version}</version>
 </dependency>
 </dependencies>
 <properties>
 <tekton-client.version>4.12.0</tekton-client.version>
 </properties>

Then you can use Tekton Java API to create Tasks or Pipeline:

package io.fabric8.tekton.api.examples;

import io.fabric8.tekton.client.*;
import io.fabric8.tekton.resource.v1alpha1.PipelineResource;
import
io.fabric8.tekton.resource.v1alpha1.PipelineResourceBuilder;

public class PipelineResourceCreate {

 public static void main(String[] args) {
 try (TektonClient client = ClientFactory.newClient(args)) {
 String namespace = "coolstore";
 PipelineResource resource = new PipelineResourceBuilder()
 .withNewMetadata()
 .withName("client-repo")
 .endMetadata()
 .withNewSpec()
 .withType("git")
 .addNewParam()
 .withName("revision")
 .withValue("v4.2.2")
 .endParam()
 .addNewParam()
 .withName("url")

 .withValue("https://github.com/modernizing-java-
applications-book/inventory-quarkus.git")
 .endParam()
 .endSpec()
 .build();

 System.out.println("Created:" +
client.v1alpha1().pipelineResources().inNamespace(namespace).crea
te(resource).getMetadata().getName());
 }
 }
}

Debugging microservices
While distributed architectures have plenty of benefits, they also pose some
challenges.

Even if you eventually run your code inside a Kubernetes cluster, you still
develop (in general) locally where you have your IDE, compilers, etc.
There are several ways to explain the development cycle. There are two
loops, one closer to the developer, called the Inner-Loop: where your code,
test and debug iteratively. And another one further away from the
developer, called the Outer-Loop: where your code runs inside a container
image you have to build, push and deploy and that takes a lot longer.

Figure 6-4. Inner Loop and Outer Loop

While the Outer Loop is part of the CI/CD world, the Inner Loop is where
you start coding and testing your software before launching a Tekton
Pipeline to deploy your application into Kuberentes. Debugging
microservices is also part of the Inner Loop.

Developers can follow different approach to start debugging microservices:

Using Docker Compose and deploy all the services locally

Using minikube, or any local Kuberentes clusters and deploy all
the services there

Mocking up all the services you interact with

NOTE
Docker Compose helps create containers that run in any Docker hosts, without Kubernetes. It is
used for managing multiple containers in local development, but it is not mapped to any target
Kubernetes clusters, thus maintaining the local development setup separate from the target one
may be difficult.

They are all valid approaches, but there are times where services are
external and reachable only from the remote Kubernetes cluster, or
mocking-up that part of code is difficult or not possible.

Microcks is an open source Kubernetes-native debugging tool for API
mocking and testing. It helps turn API contract, collection or SoapUI
project into live mocks. It can be a convenient a way to develop faster on
Kubernetes without dependencies.

Let’s look at some additional options for in-Kubernetes microservices
debugging.

Port-forwarding
Kubernetes offers remote shelling into pods for quick debugging tasks such
as filesystem check. Additionally, you can set up port-forwarding between
your local machine connected to a Kubernetes cluster and your app running

9

https://docs.docker.com/compose/
https://minikube.sigs.k8s.io/
https://microcks.io/

in a pod. This option is useful when you want to connect to a database
running in a Pod, attach an administrative web interface you don’t want to
expose to the public, or, in this case, attach a debugger to the JVM running
our application server.

By port forwarding the debugging port for the application server, you can
attach the debugger from your IDE and actually step through the code in the
pod as it is running in real time. Remember, if your app is not in debug
mode, you first need to turn on the debug ports.

To start debugging, you need to expose the port for debugging. For example
for debugging the Inventory microservice you need to access the debugging
port 5005.

kubectl port-forward service/inventory-quarkus 5005:5005

Now when we connect on localhost:5005 it will get forwarded to the
Inventory instance running in the Pod.

NOTE
port-forwarding is only active as long as the kubectl port-forward command is allowed to
run. Since we run it in the foreground, we are able to stop port-forwarding by hitting [CTRL+c]
(or [CMD+c] on a Mac)

In order to debug the source code, you can either use your IDE of choice or
you can debug from the console as follow:

jdb -sourcepath $(pwd)/src/main/java -attach localhost:5005

Quarkus Remote Development Mode
Quarkus provides a Remote Development Mode that allows you to run
Quarkus in a container environment such as Kubernetes, and have changes
made to your local files immediately.

https://quarkus.io/guides/maven-tooling#remote-development-mode

To enable it, add this section below in your
application.properties

quarkus.package.type=mutable-jar
quarkus.live-reload.password=changeit
quarkus.live-reload.url=http://my.cluster.host.com:8080

Mutable applications are used in development mode to apply and test
changes live in a Quarkus Java application, without reloading the
artifact.

A password that is used to secure communication between the remote
side and the local side.

The URL at which your app is going to be running in dev mode at.

You can generate the mutable JAR with Maven. You can let Quarkus
deploy the app to Kubernetes as follow if you are connected with the
Kubernetes Registry.

eval $(minikube docker-env)

Deploy the app to Kubernetes:

mvn clean install -DskipTests -Dquarkus.kubernetes.deploy=true

TIP
In Minikube, you can connect to the Registry with the following command

Finally you connect in remote dev mode to the app:

mvn quarkus:remote-dev

This allows you to use Quarkus to connect the live coding features from
your local machine to a remote container environment such as Kubernetes.

Telepresence
Telepresence is an open-source tool that helps debug microservices in
Kubernetes. It runs a single service locally, while connecting that service to
a remote Kubernetes cluster. Telepresence is programming language-
agnostic, providing a convenient way to connect your local enviroment to
any workload running on Kubernetes to debug.

Debugging apps on Kubernetes with Telepresence it’s very easy. The first
thing to do is downloading and installing Telepresence CLI and have an
active session to your cluster, as Telepresence will read the
~/.kube/config file to connect to Kubernetes.

NOTE
Telepresence will modify the network in Kubernetes so that Services are reachable from your
laptop and vice versa.

Once the CLI is installed and configured in your workstation, you can run
this command to initialize and test the connection to your cluster with
Telepresence:

$ telepresence connect

You should get an output similar to the following:

Connected to context minikube (https://192.168.39.69:8443)

We can start debugging the Inventory microservice that you have deployed
in the previous steps. Before doing it, let’s list available apps to debug:

$ telepresence list

10

https://www.telepresence.io/
https://www.telepresence.io/docs/latest/howtos/intercepts/

You should get an output similar to the following:

inventory-quarkus-deploy: ready to intercept (traffic-agent not
yet installed)

To start debugging this microservice, you need to let Telepresence intercept
the internal Kubernetes traffic represented by the Service.

The Inventory’s Kubernetes Service is using port 8080 as you can see with
the following command:

$ kubectl get svc inventory-quarkus-service

You should get an output similar to the following:

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
inventory-quarkus-service ClusterIP 172.30.117.178 <none>
8080/TCP 84m

Now you can start intercepting the traffic connecting to your Deployment
with the port used by the Service. You can also pecify the path to a file on
which Telepresence should write the environment variables that your
service is currently running with:

$ telepresence intercept inventory-quarkus-deploy --port
8080:http --env-file inventory.env

You should get an output similar to the following:

Using Deployment inventory-quarkus-deploy
intercepted
 Intercept name : inventory-quarkus-deploy
 State : ACTIVE
 Workload kind : Deployment
 Destination : 127.0.0.1:8080
 Service Port Identifier: http
 Volume Mount Point : /tmp/telfs-844792531
 Intercepting : all TCP connections

Look at the content of the environment file inventory.env just created:

INVENTORY_QUARKUS_SERVICE_PORT=tcp://172.30.117.178:8080
INVENTORY_QUARKUS_SERVICE_PORT_8080_TCP=tcp://172.30.117.178:8080
INVENTORY_QUARKUS_SERVICE_PORT_8080_TCP_ADDR=172.30.117.178
INVENTORY_QUARKUS_SERVICE_PORT_8080_TCP_PORT=8080
INVENTORY_QUARKUS_SERVICE_PORT_8080_TCP_PROTO=tcp
INVENTORY_QUARKUS_SERVICE_SERVICE_HOST=172.30.117.178
INVENTORY_QUARKUS_SERVICE_SERVICE_PORT=8080
INVENTORY_QUARKUS_SERVICE_SERVICE_PORT_HTTP=8080
KO_DATA_PATH=/var/run/ko
KUBERNETES_PORT=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_ADDR=172.30.0.1
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_SERVICE_HOST=172.30.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
LOG_LEVEL=debug
NSS_SDB_USE_CACHE=no
TELEPRESENCE_CONTAINER=inventory-quarkus
TELEPRESENCE_MOUNTS=/var/run/secrets/kubernetes.io
TELEPRESENCE_ROOT=/tmp/telfs-777636888
TERM=xterm

Now you can access the Inventory microservice as you were connected to
the internal Kubernetes networking, and working with the environment
variables just retrieved.

curl http://inventory-quarkus-
service.coolstore:8080/api/inventory/329299

You should get an output similar to the following:

{"id":"329299","quantity":35}

Summary
In this chapter we discussed how Kubernetes patterns can help Java
developers with modernizing their apps, offering a platform that provides

many components to extend app capabilities. The API-driven, pluggable
architecture of Kubernetes, enables external tools at ease to provide an
ecosystem of software and utilities that reminds, but also extend the
application server model for Java enterprise. Essentials tasks such as
logging, monitoring or debugging apps are provided in a way that fits the
cloud native model, where apps are ubiquituous, and can run in multi places
and multiple clouds at the same time.

In the next chapter we will discuss about a new concept of serving and
delivering also enteprise application, resource-saving and cloud-ready: the
serverless way.

1 https://en.wikipedia.org/wiki/CAP_theorem

2 0-201-63361-2

3 https://kubernetes.io/docs/reference/using-api/

4 https://en.wikipedia.org/wiki/Service_mesh

5 https://prometheus.io/docs/prometheus/latest/querying/basics/

6 https://micrometer.io/

7 https://lucene.apache.org/

8 https://github.com/tektoncd/catalog

9 https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-
cluster/

10 https://www.telepresence.io/docs/latest/howtos/intercepts/

https://en.wikipedia.org/wiki/CAP_theorem
https://kubernetes.io/docs/reference/using-api/
https://en.wikipedia.org/wiki/Service_mesh
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://micrometer.io/
https://lucene.apache.org/
https://github.com/tektoncd/catalog
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://www.telepresence.io/docs/latest/howtos/intercepts/

Chapter 7. Tomorrow’s
Solutions: Serverless

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the authors at eisele.markus@gmail.com
and NVinto@redhat.com.

The second industrial revolution, unlike the first, does not present us with
such crushing images as rolling mills and molten steel, but with “bits” in
a flow of information traveling along with circuits in the form of
electronic impulses. The iron machines still exist, but they obey the
orders of weightless bits.

—Italo Calvino

The Serverless computing model has great momentum with public cloud
offerings, and recently also within the open-source community thanks to
many projects that enable it for any platform. But, what is Serverless
exactly? What are some use cases for Serverless? And, how can it be used
for modern Java applications?

mailto:eisele.markus@gmail.com
mailto:NVinto@redhat.com

What is Serverless?
The best definition of Serverless comes from the CNCF Serverless
Whitepaper:

“Serverless computing refers to the concept of building and running
applications that do not require server management. It describes a finer-
grained deployment model where applications, bundled as one or more
functions, are uploaded to a platform and then executed, scaled, and billed
in response to the exact demand needed at the moment.”

Running an application that “does not require server management” is the
most relevant part of that definition. In the previous chapters, we explored
how Kubernetes helps with functional requirements for modern
architectures, and how container images represent a convenient way to
package and ship applications to any cloud platform. There are still servers
in Serverless, however, they are abstracted away from app development.
While a third party handles the complexity of maintaining and managing
such servers, developers can simply package their code in containers for
deployment.

The main differentiator between the deployment model that we discussed in
Kubernetes and the Serverless model, is the so-called scale-to-zero
approach. With this approach, an application is automatically launched on
demand when called, and idle when not used. This execution model is also
called event-driven, and it is the core foundation of Serverless. We discuss
event-driven serverless architectures later in this chapter.

Typically, a series of events can trigger the launch of the application, which
will produce an outcome as you can see in Figure 7-1. This can be a single
action or can be a chain of actions where the output of one app is the input
of the subsequent app. And the event can be anything such as an HTTP
request, a Kafka message, or a database transaction. The application can be
auto-scaled to multiple replicas proportional to the needed amount to handle
the traffic load, and then scaled down when there isn’t any activity.

1

Figure 7-1. Serverless execution model

Architectural evolution
The Serverless model is not good for all use cases. In general, any
asynchronous, concurrent, easy-to-parallelize-into-independent-units-of-
work application it’s a good fit for this model. If you look at the diagram
shown in Figure 7-2, you can see how the microservices-based architectures
evolution started from a monolithic applications approach using Service
Oriented Architectures (SOA) model, and it is now evolving again into a
new model of functions.

Figure 7-2. Architectural evolution

These functions represent a minimal computing unit that accomplishes a
specific scope or task. Examples are:

Processing Web Hooks

Data Transformation (image, video)

PDF generation

Single-page apps for mobile devices

Chatbots

With this approach, you can focus on convenience, as it is generally offered
as best-effort. Failures are tolerated and short actions are preferred. That’s
why the serverless model is not good for use cases such as real-time
applications, long-running tasks, contexts where reliability and/or atomicity
are key. It’s up to the developer to take care of verifying that inputs and
outputs have been successfully processed by any serverless function
involved. This gives great flexibility and high scalability to at least some
part of the overall architecture.

Use cases: Data, AI and Machine Learning
The Serverless model helps avoid common headaches for capacity planning
for projects, as it mitigates over-provisioning and under-provisioning,
thereby reducing IT cost of idle resources. With Serverless, all of the
resources consumed are tailored to the actual usage as the applications start
only when invoked, and there’s no need to pre-allocate or measure-and-
update hardware resources.

This is very important when you have to analyze, in real-time, a large
amount of data, and that’s why Serverless is gaining lots of attention from
data scientists and ML experts, as the functions that can process data for
analysis are flexible and leave a minimal footprint. On the other hand,
Serverless doesn’t pair well with all of the design principles of existing ML
frameworks. A certain amount of tolerance is also required, in particular for
processes that may take longer such as model training.

If you look at Figure 7-3, we see an example of a Serverless-driven
architecture for Machine Learning for classification and prediction. The
process starts with a trigger to get an inference of a group of objects from a

trained model. This starts a sequence of asynchronous functions that run in
parallel, used to predict the class of the object based on its characteristics
and return the classification as output. The tolerance we expect is that one
of these functions may fail or not complete the task in time. However, those
are all independent workloads. It’s important to have workloads that can run
in parallel without a specific order so that any failure to a single function is
not affecting the whole system. In addition to that, the auto-scaling
component of the Serverless architecture will make sure that any high data
load will be processed faster on-demand than with traditional approaches.

Figure 7-3. Machine Learning with Serverless

Use cases: Edge Computing and IoT
Edge and IoT devices are everywhere. From vocal assistants to home
automation, nowadays nearly every item in our house can be connected to
the Internet, talking to some controller application. As a developer, you may
be responsible for either the backend logic or the device application logic.

An example of this scenario for Java developers comes from the Quarkus
for IoT project, which aims to collect pollution data from sensors with
Raspberry Pi devices using Quarkus and containers both on the device and
the server-side backend. The latter is running a Serverless application to
provide on-demand high-scalability of the huge amount of sensor data that

2
3

https://qiot-project.github.io/

may come in some bursty way. The project also offers a very good
reference on how IoT architectures should be implemented on top of Red
Hat OpenShift as shown in Figure 7-4. Serverless is used to scale up
Quarkus microservices from device messages using the MQTT protocol for
data ingestion, with Kafka streams used in the architecture as well for data
collectors. This makes the architecture complete and reliable, but also cost-
efficient as there’s no allocation of resources until they are needed.

Figure 7-4. Quarkus for IoT Project Architecture

Knative: Serverless for Kubernetes
Serverless can be considered as the engine of Functions-as-a-Service
(FaaS), which is a more convenient way for developers to package and
deploy apps. Often, particularly with public clouds, Serverless and FaaS fit
together, since packaging apps in containers is also automated. However, a
scale-to-zero app is not necessarily a function. As we discussed before,
Serverless is not just a prerogative of public clouds. For instance, anyone
can also adopt this model on any Kubernetes cluster thanks to an open-
source project called Knative.

https://knative.dev/

NOTE
Will will discuss FaaS in more detail later in this chapter.

Knative enables Serverless on Kubernetes, supporting event-driven
scale_to_zero applications. It provides a higher level of abstraction for
common app use-cases.

TIP
Knative can be installed on Kubernetes at ease through an Operator from OperatorHub.io

There are two main components in Knative:

Knative Serving: takes care of scale-to-zero, creating all
Kubernetes resources needed (e.g. Pod, Deployment, Service,
Ingress)

Knative Eventing: a subscription, delivery, and management
component for handling events on-cluster and off-cluster (e.g.
Kafka messages, external services)

It’s easy to make an app serverless in Kubernetes with Knative. An example
of a Knative Service for the Inventory Quarkus microservice that you
created in Chapter 2 is listed below, which you can find in this book’s
GitHub repository

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: inventory-svc
spec:
 template:
 spec:
 containers:
 - image: docker.io/modernizingjavaappsbook/inventory-
quarkus:latest

4

https://operatorhub.io/operator/knative-operator
https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/ksvc.yaml

 ports:
 - containerPort: 8080

This is the definition of Knative Service, a Custom Resource
representing a Serverless workload on Kubernetes

It is using the same container image we used for the Deployment object.
With Knative Service, a Deployment and a Service are automatically
created for you.

To create a Serverless version for the Inventory microservice, you can
create a Knative Service object as the following command:

kubectl create -f kubernetes/ksvc.yaml

TIP
Knative also provides a convenient CLI called kn to create Knative Services and manage all
Knative serverless components. You can find more info about it in the official documentation .

Immediately, you can verify that a new Knative Service has been created
with this command:

kubectl get ksvc

You should get output similar to the following:

NAME URL
↳
LATESTCREATED LATESTREADY READY REASON
inventory-svc http://inventory-
svc.coolstore.192.168.39.69.nip.io↳
 inventory-svc-00001 inventory-svc-00001 True

As you can see, all of the Kubernetes manifests, such as Pod, Deployment,
and Service have been created automatically from the Knative Service.

5

There’s no need to maintain them in this case, since you can rely on a single
object that controls deployment and networking.

kubectl get deploy,pod,svc

NAME READY UP-TO-DATE
AVAILABLE AGE
deployment.apps/inventory-svc-00001-deployment 1/1 1
1 58m

NAME READY
STATUS RESTARTS AGE
pod/inventory-svc-00001-deployment-58485ffb58-8lh9b 2/2
Running 0 13s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S)
AGE
service/inventory-svc ExternalName <none>
↳
kourier-internal.kourier-system.svc.cluster.local 80/TCP
58m
service/inventory-svc-00001 ClusterIP 10.109.47.140
<none> 80/TCP
58m
service/inventory-svc-00001-private ClusterIP 10.101.59.10
<none>

Under the hood, the traffic to a Knative Service is routed into the cluster
through the Knative networking. Invoking the Inventory microservice will
also trigger the Pod creation if the application is idling.

curl http://inventory-
svc.coolstore.192.168.39.69.nip.io/api/inventory/329299

You should get output similar to the following:

{"itemId":"329299","quantity":35}

After a certain amount of time with no new requests, the scale-to-zero
model applies and the Pod number is scaled down to zero.

kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
inventory-svc-00001-deployment 0/0 0 0 75m

Event-driven Serverless architectures
Events are everywhere. As we discussed in the previous section, an HTTP
request can trigger the start of an application which can be idling when not
used, which is consistent with the serverless execution model represented in
Figure 7-1. But there are plenty of events out there, such as Kafka message,
a database stream, or any event from Kubernetes, that an application may
want to subscribe to.

A popular pattern in this scenario is the Publish-Subscribe messaging
pattern where many senders can send messages to an entity on the server,
often called a topic, and receivers can subscribe to said topic to get
messages. According to the Serverless model, your application can be
registered and connected to process incoming events. One example for
Kubernetes is Knative Eventing component, which implements
CloudEvents, a specification for describing event data from multiple
protocols and formats (such as Kafka, AMQP, MQTT) in a common way .

With Knative Eventing, event producers and event consumers are
independent. A Knative Service is triggered by a source of events through a
broker as you can see in Figure 7-5. The goal of the eventing framework is
to decouple everything. The sender doesn’t directly call the subscriber or
even know how many subscribers there are. Instead, brokers and triggers
handle the communication.

6

7

https://knative.dev/docs/eventing/
https://cloudevents.io/

Figure 7-5. Knative Eventing architecture

Rather than relying on the inbound request cascading through all the
microservices, you could use an arbitrary HTTP event as an example of an
event to wake up the Inventory service.

First, we need to create a Knative Broker. An example of a Knative Broker
for the Inventory Quarkus microservice that we created in Chapter 2 is
listed below, which you can find in this book’s GitHub repository

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 name: default
 namespace: coolstore

Create the Broker:

 kubectl create -f kubernetes/kbroker.yaml

You should get output similar to the following:

NAME URL AGE READY REASON
default http://broker-ingress.knative-
eventing.svc.cluster.local/coolstore/default ↳
 11s True

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/kubernetes/kbroker.yaml

NOTE
We are using the internal Kubernetes networking for this part, so any endpoint we are using is a
Kubernetes Service in the Fully Qualified Domain Name (FQDN) format accessible only within
the cluster.

Now let’s create a Trigger to wake up the Inventory microservice. It can
be any event compliant with the CloudEvents specification. In this case,
you can use an HTTP request from another Pod.

An example of a Knative Trigger for the Inventory Quarkus microservice
that you created in Chapter 2 is listed below, which you can find in this
book’s GitHub repository

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: inventory-trigger
spec:
 broker: default
 filter:
 attributes:
 type: web-wakeup
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: inventory

Name of the Broker

Attribute type. This can be used to filter on which event to wake up.

Name of the Knative Service to connect to and wake up to field the
event.

Let’s create the Knative Trigger as follows:

 kubectl create -f kubernetes/ktrigger.yaml

https://github.com/modernizing-java-applications-book/inventory-quarkus/tree/main/kubernetes/ktrigger.yaml

You should get output similar to the following:

NAME BROKER SUBSCRIBER_URI AGE READY REASON
inventory-trigger default
http://inventory.coolstore.svc.cluster.local/ 10s True

Now you can simulate an external event that can wake up your
microservice. In this case, it’s a simple HTTP call, but it can also be
something like a database stream with Debezium or a Kafka message.

TIP
Debezium.io is an open-source data capture platform that enables streaming from popular
databases such as PostgreSQL, MySQL, etc. Check out the online documentation to learn more
about it .

Run this command to download a minimal container image containing the
curl command to run directly on Kubernetes as a Pod, sending an HTTP
POST to the Knative Broker to trigger the microservice start.

kubectl run curl --image=radial/busyboxplus:curl -ti --↳
curl -v "http://broker-ingress.knative-
eventing.svc.cluster.local/coolstore/default" \
 -X POST \
 -H "Ce-Id: wakeup" \
 -H "Ce-Specversion: 1.0" \
 -H "Ce-Type: web-wakeup" \
 -H "Ce-Source: web-coolstore" \
 -H "Content-Type: application/json"
 -d ""

The attribute we defined in the Knative Broker before.

A name for the event

You should get output similar to the following:

8

https://debezium.io/

> POST /coolstore/default HTTP/1.1
> User-Agent: curl/7.35.0
> Host: broker-ingress.knative-eventing.svc.cluster.local
> Accept: */*
> Ce-Id: wakeup
> Ce-Specversion: 1.0
> Ce-Type: web-wakeup
> Ce-Source: web-coolstore
> Content-Type: application/json
>
< HTTP/1.1 202 Accepted
< Date: Wed, 16 Jun 2021 11:03:31 GMT
< Content-Length: 0
<

You should now see the Inventory Pod has been started:

NAME READY STATUS
RESTARTS AGE
curl 1/1 Running
1 30m
inventory-svc-00001-deployment-58485ffb58-kpgdt 1/2 Running
0 7s

Functions-as-a-Service for Java applications
We previously discussed how Knative Serving helps to reduce the
complexity of maintaining multiple Kubernetes objects, and how scale-to-
zero helps optimize resource usage by scaling down and scaling up
applications on demand when needed. But there is another layer of
abstraction that helps with automatically building and deploying the
application following the Serverless model: the FaaS model which we
introduced earlier.

FaaS is an event-driven computing execution model where developers write
apps that are automatically deployed in containers fully managed by a
platform, then executed on-demand following the scale-to-zero model. As a
developer, you don’t have to write anything like a Kubernetes manifest with
this model. You can simply write the application logic and let the platform

package the application as a container and deploy it on the cluster as a
scale-to-zero serverless app.

Popular public cloud serverless solutions such as AWS Lambda, Azure
Functions, or Google Cloud Run provide a convenient SDK to start
developing functions written in the most popular programming languages,
to be packaged and deployed in the FaaS model. There are also available
open-source solutions like Apache OpenWhisk or Fn project implementing
FaaS with Docker. In the following sections, we will focus on Knative and
Kubernetes, as we have discussed throughout the book how Kubernetes
provides a complete ecosystem for easing the migration of Java enterprise
applications to the cloud-native paradigm.

Functions Deployment for Java Applications
Functions are a piece of code delivered according to the serverless model
and portable between different infrastructure configurations. The lifecycle
of a function is described in Figure 7-6 starting with code writing, as well as
specification and metadata. The building phase automatically happens
afterward, and the deployment publishes the function in the platform. This
enables a mechanism of updates that will trigger a new build and a new
publish when a new change is needed.

Figure 7-6. Functions deployment model

Boson Function CLI (func)

https://openwhisk.apache.org/
https://fnproject.io/

Boson Function CLI is an open-source CLI and framework that connects to
Knative to provide FaaS capabilities to Kubernetes. With this tool, you can
avoid writing Kubernetes manifests and building the container image
yourself, as it will be done automatically.

TIP
Download the latest func CLI from the official website and configure it to your system.

$ func
...
Available Commands:
 build Build a function project as a container image
 completion Generate completion scripts for bash, fish and zsh
 create Create a function project
 delete Undeploy a function
 deploy Deploy a function
 describe Show details of a function
 emit Emit a CloudEvent to a function endpoint
 help Help about any command
 list List functions
 run Run the function locally
 version Show the version
 ...

Functions can be deployed to any Kubernetes cluster that has been
configured to support Serverless workloads such as with Knative.

Currently func CLI supports these programming languages and
frameworks:

Golang

Node.js

Python

Quarkus

Rust

9

https://github.com/boson-project/func

Let’s create a Quarkus function inside the coolstore namespace that you
created in the previous sections.

An example of a Quarkus function is listed below, which you can find in
this book’s GitHub repository.

To create a new Quarkus function, run this command specifying the -l
option to select the language as follow:

$ func create -l quarkus quarkus-faas

You should get a similar output:

Project path: /home/bluesman/git/quarkus-faas
Function name: quarkus-faas
Runtime: quarkus
Trigger: http

This created a skeleton of a Maven project for Quarkus, with a POM file
containing all dependencies needed.

$ tree
.
├── func.yaml
├── mvnw
├── mvnw.cmd
├── pom.xml
├── README.md
└── src
 ├── main
 │ ├── java
 │ │ └── functions
 │ │ ├── Function.java
 │ │ ├── Input.java
 │ │ └── Output.java
 │ └── resources
 │ └── application.properties
 └── test
 └── java
 └── functions
 ├── FunctionTest.java
 └── NativeFunctionIT.java
8 directories, 11 files

https://github.com/modernizing-java-applications-book/quarkus-faas

This is the file containing configuration information for your function
project

The POM file for this Quarkus project

The Java class containing annotations and code to run the function

Let’s add some content for the func.yaml function’s configuration file to
transform your function into a runnable container image on Kubernetes.

name: quarkus-faas
namespace: "coolstore"
runtime: quarkus
image: "docker.io/modernizingjavaappsbook/quarkus-faas:latest"
imageDigest: ""
trigger: http
builder: quay.io/boson/faas-quarkus-jvm-builder
builderMap:
 default: quay.io/boson/faas-quarkus-jvm-builder
 jvm: quay.io/boson/faas-quarkus-jvm-builder
 native: quay.io/boson/faas-quarkus-native-builder
env: {}
annotations: {}

Name of the function.

The Kubernetes namespace where your function will be deployed.

The language runtime for your function declared at creation time.

This is the image name for your function after it has been built.

The invocation event that triggers your function. For example, http for
plain HTTP requests such as in this case, or event for CloudEvent
triggered functions.

Specifies the buildpack builder image to use when building the function

Reference to any environment variables that will be available to your
function at runtime.

Annotations for the function to be used to tag items.

TIP
func builds functions and transforms them in container images with Buildpack , a popular open-
source project used to build source code into a runnable application container image.

Let’s review the POM file:

<?xml version="1.0"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0↳
 https://maven.apache.org/xsd/maven-4.0.0.xsd" ↳
xmlns="http://maven.apache.org/POM/4.0.0"↳
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.acme</groupId>
 <artifactId>function</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <compiler-plugin.version>3.8.1</compiler-plugin.version>
 <maven.compiler.parameters>true</maven.compiler.parameters>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>
 <quarkus-plugin.version>1.13.0.Final</quarkus-plugin.version>
 <quarkus.platform.artifact-id>quarkus-universe-
bom</quarkus.platform.artifact-id>
 <quarkus.platform.group-id>io.quarkus</quarkus.platform.group-
id>

<quarkus.platform.version>1.13.0.Final</quarkus.platform.version>

 <surefire-plugin.version>3.0.0-M5</surefire-plugin.version>
 </properties>
 <dependencyManagement>
 <dependencies>

10

https://buildpacks.io/

 <dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-funqy-knative-events</artifactId>
 </dependency>
...
 </dependencies>
...
 <profiles>
 <profile>
 <id>native</id>
 <activation>
 <property>
 <name>native</name>
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>

<native.image.path>${project.build.directory}/${project.build.fin
alName}↳
-runner</native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager↳
</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>

 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <properties>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
 </profiles>
</project>

Version of Quarkus

Quarkus Funqy dependency, a Java API for FaaS environments.

Native profile, for building Quarkus native applications

Quarkus Funqy is part of Quarkus’s support for serverless workloads and
aims to provide a portable Java API to write functions deployable to various
FaaS environments such as AWS Lambda, Azure Functions, Knative, and
Knative Events (Cloud Events). Funqy is an abstraction that spans
multiple different FaaS providers and protocols, optimized for small
workloads and faster execution while providing a simple framework with
no overhead.

Let’s look at the source code of the Java function generated in the
src/main/java/functions/Function.java path:

package functions;
import io.quarkus.funqy.Funq;
public class Function {
 @Funq
 public Output function(Input input) {
 return new Output(input.getMessage());
 }
}

11

https://quarkus.io/guides/funqy

To enable a function, you simply need to annotate your method with
@Funq annotation that comes from Quarkus Funqy API.

Java classes can also be used as input and output. They must follow the
Java bean convention and have a default constructor. Here we are using
Input and Output beans.

Let’s look at the source code of the Input Java bean generated in the
src/main/java/functions/Input.java path that will be used to
represent input messages to the function.

package functions;

public class Input {
 private String message;

 public Input() {}
 public Input(String message) {

 this.message = message;
 }
 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

And let’s have look at the source code of the Output Java bean generated in
the src/main/java/functions/Ouput.java path:

package functions;

public class Output {
 private String message;

 public Output() {}

 public Output(String message) {

 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

We are now ready to build the function. By default, the Boson CLI by will
connect to the local Docker instance locally to create the container with
buildpacks, and then push to the container registry you declared in the
func.yaml configuration file.

$ func build

TIP
In future versions, Boson CLI will also delegate the building phase to Kubernetes via Tekton.

After a few minutes, you should get a similar output:

Function image built: docker.io/modernizingjavaappsbook/quarkus-
faas:latest

After the function has been built, you can test it locally as a running
container image before deploying it to Kubernetes.

$ func run

You should get an output similar to this:

exec java -Dquarkus.http.host=0.0.0.0 -
Djava.util.logging.manager=org.jboss.logmanager.LogManager -
XX:+ExitOnOutOfMemoryError -cp . -jar /layers/dev.boson.qua
rkus-jvm/app/app.jar

__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2021-06-25 16:51:24,023 INFO [io.quarkus] (main) function 1.0.0-
SNAPSHOT on JVM (powered by Quarkus 1.13.0.Final) started in
1.399s. Listening on: http://0.0
.0.0:8080
2021-06-25 16:51:24,027 INFO [io.quarkus] (main) Profile prod
activated.
2021-06-25 16:51:24,028 INFO [io.quarkus] (main) Installed
features: [cdi, funqy-knative-events]

In another terminal, verify the process is running:

$ docker ps | grep modernizingjavaappsbook/quarkus-faas:latest
cd1dd0ccc9b2 modernizingjavaappsbook/quarkus-faas:latest
"/cnb/process/web" 3 minutes ago Up 3 minutes 5005/tcp,
127.0.0.1:8080->8080/tcp
 musing_carson

Try to access it:

$ curl \
 -X POST \
 -H "Content-Type: application/json" \
 -d '{"message":"Hello FaaS!"}' \
http://localhost:8080

You should get an output similar to this:

{"message":"Hello FaaS!"}

Now let’s deploy it to Kubernetes and let Knative use it as a scale-to-zero
application. When we invoke the function via HTTP, Knative will start it
automatically, and it will scale down to zero when not used.

$ func deploy

After a few seconds, you should see an output similar to this:

Deploying function to the cluster
 Function deployed at URL: http://quarkus-
faas.coolstore.192.168.39.69.nip.io

Finally start your Quarkus function on Kubernetes!

$ curl \
 -X POST \
 -H "Content-Type: application/json" \
 -d '{"message":"Hello FaaS on Kubernetes!"}' \
http://quarkus-faas.coolstore.192.168.39.69.nip.io

You should get an output similar to this:

{"message":"Hello FaaS on Kubernetes!"}

You can verify that a new pod has started in your Kubernetes cluster inside
the coolstore namespace:

kubectl get pods -n coolstore
NAME READY STATUS
RESTARTS AGE
curl 1/1 Running 3
9d
quarkus-faas-00001-deployment-5b789c84b5-kc2jb 2/2 Running 0
80s

And, you should see that a new Knative Service has been created:

kubectl get ksvc quarkus-faas -n coolstore
NAME URL
LATESTCREATED LATESTREADY READY REASON
...
quarkus-faas http://quarkus-faas.coolstore.192.168.39.69.nip.io
quarkus-faas-00001 quarkus-faas-00001 True

You can now see all the details of your newly deployed function with the
following command:

kubectl describe ksvc quarkus-faas -n coolstore

You should get an output similar to this:

Name: quarkus-faas
Namespace: coolstore
Labels: boson.dev/function=true
 boson.dev/runtime=quarkus
Annotations: serving.knative.dev/creator: minikube-user
 serving.knative.dev/lastModifier: minikube-user
API Version: serving.knative.dev/v1
Kind: Service
Metadata:
 Creation Timestamp: 2021-06-25T17:14:12Z
 Generation: 1
....
Spec:
 Template:
 Metadata:
 Creation Timestamp: <nil>
 Spec:
 Container Concurrency: 0
 Containers:
 Env:
 Name: BUILT
 Value: 20210625T171412
 Image: docker.io/modernizingjavaappsbook/quarkus-faas@↳
sha256:a8b9cfc3d8e8f2e48533fc885c2e59f6ddd5faa9638fdf65772133cfa7
e1ac40
 Name: user-container
 Readiness Probe:
 Success Threshold: 1
 Tcp Socket:
 Port: 0
 Resources:
 Enable Service Links: false
 Timeout Seconds: 300
 Traffic:
 Latest Revision: true
 Percent: 100
Status:
 Address:
 URL: http://quarkus-faas.coolstore.svc.cluster.local
 Conditions:
 Last Transition Time: 2021-06-25T17:14:22Z
 Status: True
 Type: ConfigurationsReady
 Last Transition Time: 2021-06-25T17:14:22Z
 Status: True

 Type: Ready
 Last Transition Time: 2021-06-25T17:14:22Z
 Status: True
 Type: RoutesReady
 Latest Created Revision Name: quarkus-faas-00001
 Latest Ready Revision Name: quarkus-faas-00001
 Observed Generation: 1
 Traffic:
 Latest Revision: true
 Percent: 100
 Revision Name: quarkus-faas-00001
 URL: http://quarkus-
faas.coolstore.192.168.39.69.nip.io
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 4m15s service-controller Created Configuration
"quarkus-faas"
 Normal Created 4m15s service-controller Created Route "quarkus-
faas"

Summary
In this chapter, we analyzed how Java developers can create modern
applications following the Serveless execution model. We outlined some of
the most common use cases and architectures that Java developers are likely
to work with today, and tomorrow. Edge computing, Internet-of-Things,
data ingestion, and Machine Learning are all contexts where event-driven
architectures are a natural choice, and where Serverless and Java can play a
strategic and supporting role. We discussed FaaS, which represents the
latest evolution in software development, and how Kubernetes can
automate the whole lifecycle of applications deployed as decoupled,
asynchronous, easy-to-parallelize processed called functions.

With this chapter, we complete this “Concise Cloud Native Guide for
Developers”. From microservices to functions, Java developers today have
a complete set of frameworks, tools and platforms such as Kubernetes that
can help them modernize their architectures, innovate their solutions, and
look ahead to solve the next challenges in today’s IT context. This context

is one that is ever more heterogeneous, ubiquitous, large-scale and cloud-
native.

To you I have given wings, on which you may fly aloft

Above the boundless sea and all the earth […]

To all who care for them, even to those who are not yet born, you will be

Alike a theme of song, so long as Earth and Sun exist.
—Theognis of Megara

1 https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview

2 https://qiot-project.github.io/

3 https://www.raspberrypi.org/

4 https://operatorhub.io/operator/knative-operator

5 https://knative.dev/v0.22-docs/client/install-kn/

6 https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

7 https://github.com/cloudevents/spec

8 https://debezium.io/documentation/reference/1.5/

9 https://github.com/boson-project/func/releases/tag/v0.15.1

10 https://buildpacks.io/

11 footnote:[https://quarkus.io/guides/funqy

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://qiot-project.github.io/
https://www.raspberrypi.org/
https://operatorhub.io/operator/knative-operator
https://knative.dev/v0.22-docs/client/install-kn/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://github.com/cloudevents/spec
https://debezium.io/documentation/reference/1.5/
https://github.com/boson-project/func/releases/tag/v0.15.1
https://buildpacks.io/
https://quarkus.io/guides/funqy

Index

About the Author(s)
Markus Eisele is the developer adoption program lead for Red Hat in
EMEA. He has been working with Java EE servers from different vendors
for more than 14 years, and gives presentations on his favorite topics at
international Java conferences. He is a Java Champion, former Java EE
Expert Group member, and founder of German’s number one Java
conference “JavaLand”. He is excited to educate developers about how
microservices architectures can integrate and complement existing
platforms, as well as how to successfully build resilient applications with
Java and containers. He is also the author of Modern Java EE Design
Patterns and Developing Reactive Microservices by O’Reilly. You can
follow more frequent updates on his Twitter feed and connect to him on
LinkedIn.

Natale Vinto is a Software Engineer with more than 10 years of expertise
on IT and ICT technologies and a consolidated background on
Telecommunications and Linux operating systems. As a Solution Architect
with a Java development background, he spent some years as EMEA
Specialist Solution Architect for OpenShift at Red Hat. Today Natale is
Developer Advocate for OpenShift at Red Hat, helping people within
communities and customers having success with their Kubernetes and
Cloud Native strategy. You can follow more frequent updates on his Twitter
feed and connect to him on LinkedIn.

http://www.oreilly.com/programming/free/modern-java-ee-design-patterns.csp
https://www.oreilly.com/library/view/developing-reactive-microservices/9781491975640/
https://twitter.com/myfear
https://www.linkedin.com/in/markuseisele/
https://twitter.com/natalevinto
https://www.linkedin.com/in/natalevinto/

Colophon
The animal on the cover of Modernizing Enterprise Java is the Onager
(Equus hemionus), known as hemione or the Asiatic wild ass.

The Onager is similar to many wild donkeys in appearance, but slightly
smaller with a paler coat and a light brown dorsal stripe. They’re found
from Mongolia to Saudi Arabia and as far north as southern Russia and
Kazakhstan, inhabiting flat regions of the deserts and surrounding foothills.
In these harsh environments, Onagers’ diets consist of scarce grasses,
bushes, herbs, and foliage, but they must remain close to a site of open
water.

As opposed to horses, Onagers are not easy to frighten and are curious by
nature. This makes them especially susceptible to hunters—Onagers have
been hunted by humans in the past for their meat and hides. Starting in Iran
in 1971, Onagers became a protected species, and hunting them was
prohibited year-round. Despite efforts to curb human predation, it’s
estimated that only 395 mature Onagers remain in the wild.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from Brehms Tierleben. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	From Platform to Ecosystem
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Revisiting Enterprise Development
	From public to private. Why clouds?
	What “Cloud Native” means
	Kubernetes-Native Development
	Containers and Orchestration for Developers
	Managing Development complexity
	DevOps and Agility
	Summary

	2. The Path to Cloud Native Java
	Cloud Native Workshop
	Architecture
	Create an Inventory Microservice with Quarkus
	Create Quarkus Maven project
	Create a Domain Model
	Create a RESTful Service
	Run the app in Dev Mode

	Create a Catalog Microservice with Spring Boot
	Create a Maven Project
	Create Domain Model
	Create a Data Repository
	Create a RESTful Service

	Create a Gateway Service with Vert.x
	Create Vert.x Maven project
	Create an API Gateway

	Create a Frontend with NodeJS and AngularJS
	Run the Frontend

	Summary

	3. Travel light on your pathway
	3-tier or distributed system
	Technology updates, Modernization, and Transformation
	The 6 R’s

	Divide and containerize
	Kubernetes as the new application server?
	Define your target platform

	Mandatory migration steps and tools
	Create an application portfolio

	Prepare for big things
	Summary

	4. A Kubernetes-based Software Development Platform
	Developers and Kubernetes
	What Kubernetes does
	What Kubernetes doesn’t
	Infrastructure as a Code

	Container images
	Dockerfile
	Building Container images
	Run Containers
	Registry

	Deploying to Kubernetes
	Pod
	Service
	Deployment

	Kubernetes and Java
	Jib
	JKube

	Summary

	5. Beyond Lift and Shift: Working with Legacy
	Managing Legacy
	Assessing Applications for Migration
	Assessing Functionality for Migration

	Migration Approaches
	Protecting Legacy (Replatform)
	Build something new (Refactor)

	Challenges
	Integration Aspects
	Summary

	6. Building Kubernetes-Native Applications
	Find the right balance between Scalability and Complexity
	Functional Requirements for Modern Architectures
	API driven
	Discovery
	Security and Authorization
	Monitoring
	Tracing
	Logging
	CI/CD

	Debugging microservices
	Port-forwarding
	Quarkus Remote Development Mode
	Telepresence

	Summary

	7. Tomorrow’s Solutions: Serverless
	What is Serverless?
	Architectural evolution

	Use cases: Data, AI and Machine Learning
	Use cases: Edge Computing and IoT
	Knative: Serverless for Kubernetes
	Event-driven Serverless architectures
	Functions-as-a-Service for Java applications
	Functions Deployment for Java Applications
	Boson Function CLI (func)

	Summary

	Index

