


Red Hat



https://red.ht/LearnKafka


Modernize Applications with Apache
Kafka

Discover the Next Generation of Messaging for Your Applications

Jennifer Vargas and Richard Stroop



Modernize Applications with Apache
Kafka

by Jennifer Vargas and Richard Stroop

Copyright © 2023 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://oreilly.com). For more information, contact our corporate/institutional

sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black

Development Editor: Gary O’Brien

Production Editor: Clare Laylock

Copyeditor: nSight, Inc.

Proofreader: Clare Laylock

Interior Designer: David Futato

http://oreilly.com


Cover Designer: Randy Comer

Illustrator: Kate Dullea

April 2023: First Edition

Revision History for the First Edition

2023-04-14: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Modernize Applications with Apache Kafka, the cover image, and related

trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not

represent the publisher’s views. While the publisher and the authors have

used good faith efforts to ensure that the information and instructions

contained in this work are accurate, the publisher and the authors disclaim all

responsibility for errors or omissions, including without limitation

responsibility for damages resulting from the use of or reliance on this work.

Use of the information and instructions contained in this work is at your own

risk. If any code samples or other technology this work contains or describes

is subject to open source licenses or the intellectual property rights of others,

it is your responsibility to ensure that your use thereof complies with such

licenses and/or rights.



This work is part of a collaboration between O’Reilly and Red Hat. See our

statement of editorial independence.

978-1-098-14335-0

[LSI]

https://oreil.ly/editorial-independence


Acknowledgments

We would like to extend our sincere gratitude to Duncan Doyle for his

contributions to this report. He played a key role in supporting the structure

and writing of everything we produced. We also want to thank other

members of the Red Hat team that made this possible: Coco Jaenicke, Eric

Johnson, and Monica Hockelberg.



Chapter 1. The Path to Application
Modernization

Application modernization consists of taking existing legacy applications and

systems and then transforming their platform infrastructure, internal

architecture, and/or features to improve agility, decrease time to market,

create better experiences for end users, and improve application performance

along with scalability. Most of the modernization efforts today are centered

around migrating legacy monolithic applications to cloud native applications,

allowing for easier maintenance and optimized resource utilization.

Cloud native application development is a methodology that aims to design

and build applications and systems that fully use the cloud computing model.

Cloud infrastructure’s dynamic and on-demand scalability nature promotes

an architectural model in which applications consist of a series of discrete,

small, independent, and loosely coupled units called microservices. These

microservices can be individually built, deployed, and operated, enabling

agile development and easier operation of these individual components.

Modern application platforms are often designed to support cloud native

application development.

Modern application platforms that provide a scalable and comprehensive

environment for automated application development and deployment tend to



accelerate the adoption of application modernization. These platforms

provide newer frameworks, tools, and services that promote the development

of applications using cloud native patterns, while facilitating developer

collaboration, technology adoption, increased productivity, and business

agility.

Many legacy applications and systems play a critical role in business

operations, and migrating them can present a big challenge to organizations.

Migrating applications can hinder the ability to add new functionality to

existing or new applications, which can reduce the team’s ability to respond

quickly to market changes. Other concerns during this process include

security, data management, and cost management.

Organizations can benefit from adopting a phased approach when

modernizing legacy monolithic applications into simpler microservices. A

phased approach requires understanding the application modernization goals

of your organization, evaluating and understanding the existing monolithic

legacy applications, and determining the optimal modernization approach for

each existing legacy application. There are a variety of techniques available

for modernizing applications, and not all of them require breaking down your

monolithic application. No matter how you accomplish your modernization

goals, one thing is certain: your applications will need to be able to

communicate in a modern way or they will remain bound by their current

limits of connectivity.



Reasons for Modernizing Applications

Application modernization involves evaluating and transforming any legacy

applications and their underlying platforms, as well as understanding and

adapting the development processes and methodologies used within the

organization. The goals are to enable innovation, increase business agility,

and deliver better security at every level of the stack.

Legacy monolithic applications are often hard to maintain, secure, update,

and scale. Application modernization can provide applications with the

improved elasticity, availability, and scalability required for modern digital

experiences.

Building agility into an organization starts with making application

development processes easier to adapt and change. Agility in the application

can be achieved by modularizing codebases into smaller microservices,

increasing the number of automated tests to improve application quality, and

implementing reliable and repeatable automated build and deployment

pipelines. A consistent, reliable, repeatable, and predictable application

development and delivery process allows organizations to work faster and

more efficiently. Faster time to market and the flexibility to easily adapt to

change are some of the most important benefits of application modernization.

Microservice applications are simpler to scale horizontally, allowing

organizations to dynamically scale when application usage increases and



reduce utilization rather than reduce usage. This could lead to potential

improvements in resource utilization and optimization. Customer experiences

can also benefit as microservices deliver better system performance, better

response times, and fewer disruptions and interruptions on frontend

applications.

The use of cloud computing and cloud resources has been increasingly

growing as more organizations decide to move some or all of their workloads

to the cloud. This leaves organizations with a hybrid IT landscape where

workloads are distributed across private data centers using traditional

deployment models, private clouds, and one or multiple public clouds.

Defining clear, standardized, loosely coupled, manageable, and governed

APIs across these applications is key when building distributed systems and

applications that might span the hybrid cloud.

Time is one of the most important resources a developer needs to take care

of, while developer productivity is an increasingly important metric for a

development team. Cloud native development and containerization have

emerged as the technologies that can accelerate time to market and improve

developer productivity. This is because they allow developer teams to spend

more time on designing, developing, and testing their applications instead of

spending time on getting access to required infrastructure. Automated

provisioning and immediate access to infrastructure are now available.

Making data available close to the workload that requires data is key when



building high-throughput, low-latency applications. In addition, efficient data

distribution across the hybrid clouds can greatly reduce the operational costs

of your IT landscape from inter-cloud data transfer. Therefore, it is crucial to

be able to transfer data between clouds efficiently and reliably.

Using different clouds—be they public and/or private—provides an

organization with operational flexibility. Cloud infrastructure is often used

for bursty workloads, seasonal workloads, or workloads that require a lot of

compute power for a short period of time (e.g., training machine learning

models). The dynamic nature of the cloud, which gives you the flexibility to

spin up, spin down, and compute on demand, is ideal for these kinds of

workloads. Other more stable, predictable workloads can benefit from

potentially lower operational costs when running in a private cloud or data

center. A common pattern in hybrid and multicloud scenarios is that different

workloads run on different public clouds (based on the services available) or

on private clouds for cost, security, and data regulation reasons.

IT development teams and developers are also under pressure to design

applications with security in mind. Application modernization plays a role in

security and compliance for the organization. Application modernization not

only brings changes to the code of the application but also propels adoption

of modern platforms and technologies. Newer technologies and modern

application platforms, such as container orchestration platforms, put some

emphasis on security and compliance. Container orchestration platforms

allow scanning for security vulnerabilities and defects, automating the



application delivery process for eliminating errors during deployment, and

promoting secure designed applications from scratch. Finally, application

modernization promotes the use of newer security and compliance standards

that take into account the security and vulnerability challenges of maintaining

cloud native applications.

Application Modernization Techniques

The path to modernizing applications can differ from application to

application. There is no need to break down every monolithic application into

microservice applications. Organizations could choose to minimally update

legacy applications, leave them untouched, or replace them with new

software.

Application modernization requires an organization to understand the current

state of its legacy applications, their dependencies with other systems, and the

software requirements to run them and maintain them. It is also important to

evaluate the pace at which you can add new functionality and capabilities to

the existing applications. These factors will help determine which

applications to consider first.

The next step is to define the organization’s goals for each specific

application. You may want to improve your team’s agility when delivering

new capabilities or reduce costs from software licenses and reduce vendor



lock-in.

The pace of modernization for applications requires understanding which

applications are critical to the business and deciding on how to offset the old

before adopting the new. There are different modernization techniques to

help organizations decide how to modernize. We will quickly discuss the five

recognized approaches to application modernization:

Retention

For those applications that don’t require change to support the business,

the easiest thing you can do is to retain what you have and postpone

modernizing the application for the foreseeable future.

Retirement

For those applications that are no longer in use or whose functionality can

be easily covered by other applications, the best course of action is to

retire them and repurpose their computing resources.

Rehost

This approach takes an application as is and hosts it on new infrastructure

such as cloud infrastructure or a Kubernetes platform. The goal is for

applications, existing integrations, and dependencies to remain unchanged.

Replatform

This approach requires redeploying an application in a modern runtime

environment such as running in a container on a Kubernetes platform. This



requires a bit of application alteration without changing its architecture.

Refactor

This approach rebuilds your legacy monolithic application as

microservices to support faster release cycles and optimize application

performance. Refactoring involves rebuilding and re-architecting your

application.

It is important to recognize the complexity of each modernization technique.

Each technique has a different level of effort (time and cost), and its impact

will differ on the business and the application itself. Figure 1-1 provides

general guidance for understanding which technique could bring the most

value when thinking of modernizing your application, but more value will

also require more effort.

Figure 1-1. Complexity versus value received for application modernization techniques



For the rest of this book, we will be focusing on application modernization

from the perspective of replatforming and refactoring since we see the most

value there. The complexity can be mitigated with technologies and

techniques that we will discuss further. But first, let’s explore the challenges

that often arise when taking on these approaches.

Challenges of Modernizing a Monolithic
Application

Migrating a monolithic application to a microservices application requires

looking into things like APIs, latency, and parallel processing.

Properly defining APIs for both monolithic and microservice applications is

an important process during migration. Explicit, well-defined APIs can create

clear boundaries between different components of an application and make it

easier when migrating to a microservices architecture. We recommend using

an API-first approach during application modernization to facilitate

communication with monolithic applications and other systems. APIs can be

maintained during application modernization while gradually switching to

microservices and even when testing new functionality in the new

microservices.

When moving from a monolith to a microservices architecture, operations

that need to be called many times in a row, known as chatty APIs, are a



concern. As most communication within a monolith is done in-memory, there

is not much overhead. There are really no penalties when creating a chatty

API because an in-memory method call does not require serialization and

deserialization of request and response parameters, and there is no network

overhead, no security, and no encryption, etc. When moving to a

microservices architecture, these chatty APIs can become problematic

because communication between microservices includes the overhead of all

the things listed earlier.

Another challenge of application modernization is latency. Latency will

increase when remote calls replace in-memory calls. Legacy monolithic

applications use in-memory calls, while loosely coupled microservices use

remote calls. One reason latency increases is the unavailability of services.

Therefore, organizations need to make sure the new microservice applications

and any existing legacy applications are able to handle failures and timeouts

without affecting the user experience.

Parallel processing is another challenge when migrating a monolithic

application to microservice applications. Normally, a monolith’s functionality

and components will be refactored into various smaller microservice

applications. When doing application modernization, you need to be aware

that components and services can have multiple instances running

simultaneously and in parallel. Often, monoliths are designed assuming a

single instance of a given component, requiring messages and requests to be

executed in a certain order. For those monoliths to enable parallel processing,



further architectural considerations are required. On the other hand,

microservice applications introduce multiple service instances processing

messages and requests in parallel. When applications make use of parallel

processing, the order of execution of operations is often not guaranteed. For

this reason, it’s often said that it’s harder to move from one instance of a

service to two than it is to move from two instances to many. Parallel

processing concerns can be offset by using an asynchronous architecture and

communication pattern.

The challenges of modernizing applications are often offset by adopting

newer technologies, like container orchestration platforms, application

framework patterns, and modern messaging architectures. But adopting new

technologies requires application developers to spend extra time learning

those technologies, thus decreasing the time spent on maintaining existing

legacy applications. Organizations can opt for hiring developers with

previous experience on the technologies, but often employees have to be

trained on new technologies before they can be effective when creating new

applications. No matter what level of experience someone has, modernizing

applications will inherently come with new challenges based on the maturity

of the whole company. By following common patterns while modernizing,

these challenges can be somewhat mitigated.

Microservices Architecture and



Communication Patterns

Modernizing applications gives organizations a chance to design the

applications of the future, especially when considering multicloud and

hybrid-cloud deployments, artificial intelligence/machine learning (AI/ML),

and emerging technologies. The introduction of cloud native application

development drives IT developer teams to identify software and hardware

requirements, development processes, and emerging technologies that will

allow the business to respond fast to market changes. Cloud native

application development is an approach for building and updating

applications that are responsive, scalable, and fault-tolerant in a fast manner

while improving quality and reducing risk.

Cloud native application development is a pattern that is used when creating

applications that considers the latency, unavailability, and concurrent nature

of the services being deployed while architecting them. Even if the

application is never deployed to a cloud, these considerations allow it to

function better in a distributed environment. Adopting this pattern and others,

such as circuit-breakers and asynchronous communication, allow applications

to feel responsive in uncertain environments.

As discussed in the last section, one of the challenges when modernizing

monolithic applications to microservices is defining the communication

layers and architectural patterns to use between them. Microservice



applications are independent, loosely coupled, and distributed, requiring

communication patterns and protocols that can support microservice-to-

microservice communication. Loose coupling in software systems is a design

principle focused on minimizing dependencies between components. When

there are fewer dependencies, the components can evolve freely without

impacting other components in the system, thus making development teams

more autonomous. Loose coupling allows organizations to deal with

requirements of scalability, flexibility, and fault tolerance in addition to

improving the resiliency of the systems.

There are various forms of coupling between components in a system:

Temporal

Temporal coupling exists when components in a system are coupled by

time. A simple example of this is calling a RESTful service over HTTP.

As HTTP is a synchronous protocol, the client expects the service it calls

to be available at the moment the call is made. Hence, there is a temporal

coupling between client and service, as they need to be available at the

same time.

Location

Location coupling exists when components in a system directly

communicate with each other on a static address. The component initiating

the interaction requires the other component to be available on the address

it knows, limiting the option of moving that component to another location



(e.g., server, container, cloud).

API

When clients communicate with services, they do so by calling an API or

sending a message to an API. This creates a coupling between the clients

and services and limits the changes that can be made to the API without

impacting the clients.

Data type/format

Components in a software system communicate with each other by

transmitting data. For two components to understand each other, they need

to send the data in the data format and data type that the other component

expects and can process. Changes in the data format or data type on either

side of the communication channel can cause communication failures.

Microservice communication protocols and patterns can heavily impact the

overall architecture of your service landscape. In principle, there are two

communication styles: synchronous and asynchronous. Synchronous

communication means that when a client sends a request to a service, the

client waits for the service’s response before it continues processing. In

asynchronous communication, the client sends a request but does not block

and wait for the response. It will continue processing and either does not

expect a response at all from the given service or receives a response at a

later point in time.



Asynchronous communication can allow for the design of more loosely

coupled architectures. It is recommended to consider different

communication patterns in the target architecture. This might mean that the

microservice needs to support both a synchronous and asynchronous

communication style during the phased migration, or that the monolith needs

to be adapted to support asynchronous communication without impacting the

performance and user experience of the application.



Chapter 2. A Modern Messaging
Infrastructure: 
The Apache Kafka Ecosystem

The needs of modern applications across hybrid-cloud and multicloud

environments require that organizations look at technologies, architectural

patterns, and development approaches that will support the scalability,

efficiency, reliability, and throughput required in today’s world. Increasing

data volumes, the evolution of data ingestion, and the demand for real-time

availability of data changed the way IT operations and development teams

design and implement modern applications.

As we discussed in the previous chapter, microservice architectures became

the preferred method for modernizing legacy monolithic applications.

Communication between microservices and different systems requires

considering traditional and modern messaging technologies.

Apache Kafka has emerged as one of the preferred modern open source

technologies for messaging and streaming data architectures. This technology

is recognized for supporting loose coupling and asynchronous event-driven

communication in distributed systems, providing the capability to deliver

data in near real time across applications and systems. It is a complex tool

with a vast ecosystem to support it. Fortunately, there are ways to automate



Kafka’s deployment and simplify its integration into your modernized

applications.

The Business Value of the Apache Kafka
Ecosystem

Apache Kafka is a distributed streams processing platform that uses the

publish/subscribe method to move data between producers and consumers,

which can be microservices, cloud native, or traditional applications and

other systems. The publish/subscribe messaging pattern is mostly used when

you want to decouple systems in terms of location and availability in

architectures, and when you need an event or a message to trigger one or

multiple actions across disparate applications and systems.

Apache Kafka’s approach to the publish/subscribe method stands out because

of its ability to send and receive messages at a very fast rate, stream vast

amounts of data, horizontally scale as the number of requests increases, and

retain the data even after messages have been consumed. All these

capabilities allow for using Kafka in innovative use cases that couldn’t be

solved using traditional messaging or processing solutions.

Apache Kafka has evolved over the years to include an ever-growing set of

features and components developed, delivered, and maintained by various

open source communities and vendors to support large and complex



enterprise implementations. The ecosystem of services, providers, and

community projects has quickly created solutions that simplify connectivity

to and from data sources, enable new ways to ingest data from various data

sources, ensure data governance and discoverability, and support processing

and analyzing large data volumes in real time. The power of Kafka is often

augmented by the adoption of container and application platforms, cloud

infrastructure, and other managed services built for supporting application

development and delivery.

Apache Kafka and Its Components

The Apache Kafka product ecosystem consists of a real-time streaming

broker, schema registry, connectors, and processing capabilities. The

combination of all these capabilities allows organizations to deliver a

complete streams processing platform that supports data streaming, data

storage, and data processing.

Apache Kafka is a publish/subscribe system, often referred to as pub/sub.

Pub/sub systems are characterized by senders pushing messages to a central

point for classification and subscribers receiving messages of interest from

the central point. These systems require a broker that acts as the central point

where messages are published. Subscribers and publishers communicate

through topics, which organize the messages and replicate them across

brokers.



A typical Apache Kafka implementation contains multiple brokers, which

provide the high availability and fault tolerance characteristics of the

platform. Topics are hosted on the brokers, and each topic is split into one or

more partitions. These topic partitions are distributed across the brokers in

the cluster, effectively allowing consumers to consume and process records

on a topic in parallel, increasing the throughput of the consumer (Figure 2-1).

Figure 2-1. Typical Apache Kafka configuration, including brokers, topics, and partitions

A topic is a collection of messages or events that you want to group together

for processing by a consumer or subscriber. A partition contains a subset of

the messages written to a topic, which can be distributed for you by the

broker. By distributing messages in a topic across multiple partitions, Kafka

enables the parallel consumption and processing of messages. This can

improve the overall performance of the system. Second, partitions are

replicated across multiple brokers to ensure high availability of the data and

to make the system fault-tolerant. Consumers can read from leaders or



replicas of the data to further speed up the consumption of data.

Value of the Apache Kafka product ecosystem

One thing that is important to understand is that Apache Kafka by itself does

not deliver the full value. You require additional components to complete the

product ecosystem. First, you need a practical way to connect multiple data

sources to Kafka for getting information in and out.

Prebuilt connectors allow communication among popular source systems of

both new and existing applications, allowing organizations to move at their

own pace. Legacy applications can be retired safely once newer microservice

applications are deployed, and organizations can still use Kafka as the data

backbone for the larger architecture.

Schema design and registry can help with ensuring data consistency and

governance. The messages and data streamed with Apache Kafka need to use

the right data structure format. Industry-standard data formats or schemas are

available for supporting communication between Kafka topics and

producers/consumers. It is also important to have a place to store existing

schemas, register new schemas, and provide compatibility and validation

checks of the schema format used in a message. Figure 2-2 shows a logic

diagram of the basic components for the Apache Kafka product ecosystem.

The full ecosystem can allow organizations to deliver on multiple benefits

and use cases when using Kafka as the preferred communication technology.



Figure 2-2. Basic components of an Apache Kafka product ecosystem

Connectors

The value of Apache Kafka is maximized when helping organizations take

advantage of all the data across the business. Getting data from multiple

sources to Kafka and delivering to sinks in a timely, reliable, and secure

manner is one of the most important tasks. The open source community has

built Kafka Connect to provide a pluggable way for accessing and extracting

data from and to other applications and Kafka.

Kafka Connect is not the only way to integrate applications to Apache Kafka.

Other projects like Apache Camel and Debezium provide prebuilt connectors

that support integration to a variety of data sources, systems, and

applications. Apache Camel is an open source integration framework that

implements enterprise integration patterns, as well as a rich set of connectors

from and to various systems. Debezium is an open source platform for

Change Data Capture (CDC), allowing you to capture changes in relational

database systems and emitting these changes as events to a streaming



platform like Apache Kafka.

The value of Kafka Connect, Apache Camel connectors, and Debezium is to

facilitate connectivity between systems without requiring in-depth knowledge

of the APIs of source and target systems when connecting to Apache Kafka.

This ensures faster time to market, less time writing code, and less code

maintenance. An enterprise-grade implementation of these open source

projects can provide an easy way to deploy and delete connectors quickly,

support error handling, and guarantee delivery of messages and streaming

data.

Change Data Capture

A vast amount of legacy enterprise applications use relational database

management systems (RDBMs) and/or NoSQL datastores to store their data

and keep state. With the rise of service-oriented architectures and later

microservice architectures, which advocate a datastore per service approach,

a lot of enterprise data is scattered across various datastores throughout the

organization. Unlocking this data and making it available for stream

processing increases the data’s value as it enables organizations to use this

existing data to implement new and innovative use cases.

Adapting and enhancing the legacy applications and/or commercial off-the-

shelf (COTS) applications and systems, unlocking their data, and making it

available as streams of events is often impractical or even infeasible.



Change Data Capture captures the data and events not at the application API

level but at the database level. CDC allows us to directly connect to a

datastore (usually a database), and it can identify and capture the changes to

the data, emitting those changes as events to a downstream system. Debezium

is an example of a CDC solution that emits these captured changes to an

Apache Kafka topic, making these data changes available to downstream

consumers.

The use cases for CDC are vast. The technology can be used to update

caches, search indexes, and derived datastores, or to make the data available

for real-time stream processing and analytics. Making the data available in

Apache Kafka topics as a stream of events allows any Kafka consumer to

access, ingest, and process the data that was previously locked inside a

database.

CDC plays an important role in application modernization, as it allows

developers to tap into and use existing data, making the data available as a

stream of events, without the need to modify the original system that owns

the data. This enables the exploration of new use cases and innovative

solutions while keeping existing systems, applications, and processes intact.

Schema definitions, governance, and control

The Apache Kafka broker focuses on handling and fetching data without

worrying about the structure of the data it is transferring. Because Kafka



enables decoupling, any subscriber and publisher of data requires a base

contract to understand the type of data that is being streamed or transferred

between them. Schemas in Apache Kafka define the structure of the data

format or contract. Contracts define the type of data that is being published to

a topic. These contracts allow data to be serialized and deserialized from

compact binary formats, allow data sharing between publishers and

subscribers, and prevent data conflicts.

Standard formats have been created for schema contracts to allow serializing

and deserializing messages. The most used formats for

serialization/deserialization are Avro, JSON, or Protobuf. Serializing

messages and events to compact (binary) formats reduces the amount of data

that needs to be transferred to and from Apache Kafka, improving the

performance and throughput of the system. Smaller messages also reduce the

amount of storage needed by the brokers to persist and retain the messages on

the topics.

A schema registry can support an Apache Kafka implementation by

providing a place to store existing schemas, register new schemas, and

provide compatibility and validation checks when a new version of a schema

is introduced. This validation guarantees backward compatibility and

prevents breaking message consumers. It can greatly improve the

productivity of multiple development teams by providing a common

repository for easy sharing and discovery. It also provides the necessary tools

to govern and manage schema and data evolution as part of a software



development lifecycle.

Validation of schema happens when a publisher checks the schema format

against the schema registry. If the schema exists in the repository, the

message is safely transferred to an Apache Kafka topic for subscribers to

read. If a schema is unavailable in the repository, there are two options: you

can update an outdated schema, or you can create a new schema in the

registry. Schemas can also be checked for backward and forward

compatibility.

Processing data using Kafka Streams

Another important piece in the Apache Kafka ecosystem is the processing

capability. As mentioned earlier, Apache Kafka does not need to know what

the messages contain when streaming between publishers and subscribers.

Regardless, many Apache Kafka implementations can benefit greatly from

supporting data processing and storage before a particular subscriber

consumes it. Some examples of stream processing use cases are filtering

events and messages, combining events from multiple topics to create new

higher-value data, and rekeying messages to route them to specific topic

partitions.

Kafka Streams is an external component developed to support processing

data streams using minimal code through a domain-specific language (DSL).

Kafka Streams was designed as a simple and lightweight client library that



provides fault tolerance, parallel processing, and scalability.

This stream processing technology offers two ways to define topology: the

DSL and the API. Kafka Streams DSL provides common data transformation

operations (map, filter, join, and aggregate), while the Kafka Streams API

allows developers to define and connect custom processors and to interact

with state stores. Another option for processing that can complement Apache

Kafka is Apache Flink. Apache Flink is a framework and distributed

processing engine for stateful computations over unbounded and bounded

data streams. Flink has been designed to run in all common cluster

environments and to perform computations at in-memory speed and at any

scale.

Replication with MirrorMaker

Any messaging infrastructure requires access to the organization’s data,

regardless of where that data is created and where it needs to be consumed.

The Apache Kafka ecosystem provides various tools and technologies, like

MirrorMaker, to enable data replication across disparate Kafka clusters.

MirrorMaker provides various replication options, including bidirectional

replication and replication of a subset of topics to a target Kafka cluster.

These replication options allow you to optimize your data replication across

the hybrid cloud in terms of both data location and availability, as well as

cloud infrastructure and inter-cloud data transfer costs.

https://oreil.ly/78M5I


When building applications in a hybrid-cloud environment, Apache Kafka

can give you the tools and technology to distribute data across your

environments effectively and efficiently, providing you the flexibility to

deploy your workloads in a way that maximizes your operational goals.

There is significant value in understanding the components offered by

Apache Kafka and its product ecosystem. Kafka enables a variety of use

cases that promote the adoption of modern frameworks and technologies

geared toward supporting modern digital requirements. This is further

improved when paired with container orchestration platforms, since it allows

delivering on more audacious goals, such as automated delivery, automated

operations, faster development, and resource optimization and utilization. But

with a powerful messaging platform comes a large amount of responsibility

and challenges that must be addressed.

Challenges of Using Apache Kafka

Setting up and managing an Apache Kafka cluster is not simple. Although it

often works well out of the box for simple demos, the complexity involved

with running realistic workloads quickly becomes apparent.

The first issue is that your broker, topics, and clients all have to be tuned. The

broker sets how many replicas have to be in sync in order for it to let

producers send more messages. It also controls how often data is actually



flushed to disk, which has a large impact on performance. The topics have to

be tuned to have enough partitions to send data to all of the concurrent

consumers, as well as to set limits on the amount of data and time that

messages are stored. And unlike with traditional brokers, the clients have to

be aware of commits and offsets that take excessive time to sync if done after

every message. The clients can be tuned to increase these intervals and batch

messages to save time on overhead traffic if there is room to handle some

message loss. These are only a few examples of the things that can and

should be tuned when preparing for a production deployment.

Once the broker is configured and tuned to be running how you want, you

still have to set up monitoring to make sure it stays that way. This can be

done with log scraping or extra tools provided by the platforms where

Apache Kafka is deployed. There are even some tools that can be purchased

to help with monitoring. But many companies opt to just integrate Kafka into

the systems they already have for monitoring and alerting. Integration or

setting up a new tool takes time and then has to be watched regularly.

Eventually, if your business succeeds and grows, so too will your Kafka

clusters and the amount of data that they store. Although a standard

installation of Kafka can handle a large amount of traffic, eventually you may

need to add another broker to the cluster. This requires rebalancing the

consumers as well or there will be no benefit to the added hardware. If the

backing storage starts to fill up, it can be increased but requires restarting and

replicating large amounts of data over the brokers. Also, because Kafka is



actively being developed and improved, there will be security fixes and new

updates that should be applied. In order to avoid downtime, you can perform

a rolling upgrade of the brokers, but you have to be aware of what versions

the clients support and wait for all of the data to sync back up before moving

to the next broker. One of the newest updates even changes the required

dependencies for configuration management and could require a complete

rebuild of your cluster.

Finally, in order to secure the traffic to a broker, you need to set up

certificates and handle distributing them to clients. You also have to set up an

access-control list (ACL) for topics based on users that can either be defined

in Kafka or managed externally. Most companies will already have an

identity management tool that then has to be integrated with Kafka in order to

give the correct access to topics. This is time-consuming to configure and

maintain but must be done to protect the valuable data in the brokers.

Apache Kafka Made Easier with
Kubernetes

All of the challenges discussed in the previous section can be accomplished

more easily with the use of a modern application platform. Tuning becomes

simpler because everything can be managed within a single configuration

file. Monitoring is often built into the platform. Scaling and upgrading can be

automated with tools like Kubernetes Operators. Certificates can be stored or



distributed to clients on the platform without manual steps. Users can be

configured with the same DevOps approach used by the infrastructure or

integrated with the identity management tools running on the platform

already. And if the same platform is used for the Apache Kafka brokers and

the applications that you are modernizing, they can benefit from being

colocated.

Choosing the right application platform can help organizations and IT

development teams to stay agile and flexible while modernizing applications

and deploying application services like Kafka. The right application platform

is able to:

Abstract the complexity of accessing and managing infrastructure

Provide developers with freedom and flexibility when choosing their

preferred development tools and technologies

Deliver a consistent developer experience in the data center and in private

and public clouds

Provide the tools needed for automating application’s build, test, and

delivery

Offer a set of messaging and integration technologies that work together

seamlessly

Provide a place for managing existing legacy and new microservice

applications

The right application platform supports IT development teams in reducing the



time it takes to deliver an application and to deploy the tools needed to

support the applications. These tools include application services such as

integration, streaming, messaging, identity management, application

monitoring, and data services. Container orchestration platforms also allow

consolidation of hardware, simpler horizontal scaling, built-in high

availability, and a way to ensure consistency between environments. All of

this leads to time savings that allow development teams and IT organizations

to spend more time on innovation.

Modern cloud orchestration, cloud computing, and cloud services platforms

are designed to facilitate reliable, repeatable, predictable, and consistent

deployment and provisioning of both applications and services. Apart from

cloud platforms, automation tools like Ansible, Terraform, Tekton, and

ArgoCD allow organizations to define the deployment of their cloud

infrastructure, cloud services, and applications in a software-defined manner,

enabling the adoption of methodologies like GitOps. There is a vast array of

plugins available for these tools to deploy and configure cloud provider

infrastructure (e.g., AWS, Azure, GCP), cloud services (e.g., databases,

messaging services, monitoring systems), containers, and applications. A

fully automated system can provision and deploy a complete application and

its infrastructure in a matter of minutes, saving even more time to focus on

the business problems that matter to an organization.

One thing that is very important for an Apache Kafka implementation in

Kubernetes is keeping a map of dependencies between producers, Kafka



brokers, and consumer applications. When updating producer applications,

discrepancies between topics are caused if processes like performance tests,

compatibility tests, etc., are not automated and dependency maps are not in

place. It is important to ensure you are deploying Kafka with automation in

mind, if you want to maintain developer freedom and flexibility and are

looking to keep a healthy pace for delivering applications.

The implementation of Apache Kafka standalone requires skilled IT

professionals dedicated to configuring and maintaining the platform. Kafka’s

implementation on Kubernetes reduces the complexity of managing the

platform thanks to its ability to efficiently optimize resources based on the

streaming requirements (i.e., containers and clusters, based on the streaming

requirements) and its ability to automate operational tasks in the form of

operator and controller components. IT professionals can create and destroy

Kafka environments for development or testing purposes as they see fit, and

autoscaling can support those use cases where software and hardware

requirements are variable.

The Strimzi project provides a way for running on Kubernetes and providing

an automated approach for managing and maintaining complex

implementations. Kafka implementations require a large amount of

knowledge over a wide selection of services for managing the infrastructure

and for keeping track not only of the performance of the platform but also of

things like scalability, fault tolerance, performance, and storage. DevOps can

address a few of these challenges with some of the functionality provided by



Kubernetes, but in some cases, adopting a managed approach can be more

beneficial.

Cloud computing, and in particular managed cloud services, is another way to

ensure IT development teams are focused on innovation and not operational

tasks. Managing and administering container orchestration platforms and

application platforms is a time-consuming task that requires having highly

trained personnel dedicated 24/7 to keeping the lights on. When delegating

these tasks to service providers, the IT developer teams gain the flexibility

required to dedicate more time to innovation and less to management.

Managed application platforms provide self-serve access to development

environments, allowing developers to get started quickly. Self-service access

ensures developers won’t need to wait for IT teams to provide them with a

place to develop, test, and iterate. There is a lot of freedom when developers

get to choose the best and preferred technology, framework, and environment

to design an application. Productivity will increase if developers are allowed

to focus on the application and the business logic of an application.

Managed Apache Kafka can provide and deliver the same benefits during

application development as those covered for cloud computing and even

more. Managed Kafka reduces the complexity of managing and maintaining a

streaming platform since it takes care of configuration, monitoring, and

scaling of the platform. It supports data distribution rebalancing and is tuned

to provide a high-throughput, low-latency platform for optimal performance.



Finally, sizing for storage, retention, throughput, and latency are monitored

for cost efficiency and better scalability.

Providing developers with access to an application platform that provides

fully managed support of an Apache Kafka implementation allows them to

move faster during application development. Developers don’t need to worry

about tying up the integration between Kafka and the platform, and it also

provides them with an infrastructure that scales when necessary and is

flexible enough to maintain its existing legacy applications and new

microservice applications.



Chapter 3. The Impact of Application
Modernization and Apache Kafka 
Adoption on Business Agility

Previously, we discussed how a phased approach to modernization provides

organizations with the flexibility required to modernize their application

landscape at their preferred pace. Apache Kafka is a technology that enables

the execution of such a phased approach. Streaming pipelines can be put in

place to serve as the communication channel between legacy monoliths and

new microservice applications. Kafka allows monolithic applications to

expose data and events in standard formats, making it available for

consumption by other systems. This establishes a common and immutable

data pipeline between applications and services, which can help decrease data

conflicts, reduce complex dependencies, and allow for optimization and

scalability.

When focusing on applications that need to be refactored or replatformed,

there is always some amount of application development that needs to take

place. In this chapter, we will discuss how introducing Apache Kafka to your

architecture can reduce the effort and increase the effect of your

modernization efforts.

Benefits of Using Apache Kafka during



Application Development

The number of use cases supported with the Apache Kafka ecosystem is large

and diverse, making it a preferred messaging solution by many organizations.

Kafka lets organizations view and analyze a business in real time and react

quickly to continuously changing market situations.

Apache Kafka with its product ecosystem has been recognized for supporting

complex architectural patterns, such as real-time streams processing, event-

driven architectures, and AI/ML streaming analytics deployments.

Real-Time Streams Processing

Real-time streams processing refers to the architectural paradigm where data

is ingested and processed in near real time. The paradigm is often used to

support modernization efforts where batch processing is still in use and real-

time support is required.

Batch data processing is a standard method used by many organizations for

collecting and storing high volumes of data over a period of time before

processing. Delivering batch data requires an infrastructure that allows

moving and dumping large amounts of data at once. For many organizations,

batch processing will happen once a day or once a week, depending on the

use case. The method has been very successful for scenarios where time was

not an issue, including, for example, bank reports, billing, order fulfillment,



and so on.

Implementing a real-time streams processing architectural pattern can bring

new technical challenges, including scalability, fault tolerance, and message

delivery guarantees, as well as procedural challenges such as data sequence,

consistency, quality, and correctness. Modern technologies have evolved to

support both new and existing data stream processing requirements. Apache

Kafka is one of the technologies that supports modernization of batch data

processing architectures while providing a way to handle many of the

challenges introduced by moving to a real-time architecture. Its

publish/subscribe mechanism allows for low overhead, high-rate message

delivery, and higher scalability.

Apache Kafka can support the analysis of continuous streams of data,

eliminating the need for aggregating batches of historical data. This could

lead to a cost-saving scenario since any data that is not needed can be deleted

rather than stored in large data warehouses.

The Apache Kafka ecosystem provides various components required to

implement an architecture that promotes real-time streams processing.

Prebuilt connectors provide a standardized way to connect a variety of

data sources to Kafka, effectively unlocking their data by streaming it to

topics and making it available to the vast array of Kafka consumers.

Schema registry offers a service for designing and registering schemas that



improve data quality, and it also enables data governance when sending

data in serialized format.

The Kafka Streams framework provides application libraries that allow

developers to write stream processing applications that consume, analyze,

and process continuous streams of data from multiple sources.

As mentioned earlier, modernizing an existing application or architecture

cannot happen overnight. Streams processing and data platforms allow

organizations to unlock data from disparate sources; make data available in a

standardized, distributed, and high-throughput manner; and enable

organizations to meet their real-time processing requirements. This gives

organizations the flexibility and agility needed to gradually transform their

application architectures from batch-oriented to stream processing–oriented,

unlocking the potential of real-time data processing.

Event-Driven Architecture

Event-driven architecture (EDA) is a software architectural pattern for

application design based on streaming of real-time events or notifications. An

event-driven system focuses on capturing, processing, and persisting events

that travel unidirectionally from source to destination. This paradigm has re-

emerged as an ideal solution for modern use cases that involve big-data

movement, real-time responses, or the need for better integration scalability,

flexibility, and durability.



Event-driven communication is often identified as an alternative approach to

traditional client-server messaging. Traditional messaging architectures are

characterized by offering a centralized approach with intelligent brokers that

make routing and persistence decisions. This broker-centric approach focuses

on low-volume messaging, allowing for slower persistent storage until

delivery, unique support per message, and guaranteed message delivery.

Traditional messaging communication technologies are well-suited for

complex IT infrastructures that require using granular messaging

configurations to send messages from one system to many. They are also

especially useful when sending information that is highly sensitive. Modern

use cases that require a real-time approach, faster processing, larger

scalability, high availability, and improved fault tolerance might benefit from

an event-driven approach rather than traditional messaging patterns.

Before diving into additional benefits of EDA, let’s define what an event is.

An event is any significant change in the state of a system within a business

process. The source of an event can be from internal or external inputs.

Events are often time-sensitive or mission-critical for the business

organization, and they require dedicated attention. Examples of events are

online orders, inventory checks, billing generation, invoice submissions,

changes in temperature, the hiring of a new employee, and so forth. Events

are usually characterized by being immutable, persisted, and always

consumable.



The key piece of an EDA is the event broker. Event brokers are middleware

components that receive published events and deliver them to subscribed

consumers. Publishers are not required to know who will collect and process

the event. Only consumers that care about the event data will ingest it.

Apache Kafka is designed to act as an event broker.

Apache Kafka’s broker configuration allows for loosely coupled,

asynchronous communication. Consumer applications and the event

producers have no system availability dependencies. This means that

producers do not expect an immediate response from the application

consumer, and multiple received events can be logged or queued until the

consumer becomes available to process it. This ability allows organizations to

move large volumes of messaging data at a very high rate, moving closer to

real-time message delivery.

Another benefit of EDA is parallel processing and horizontal scalability. As

explained in the previous chapter, each broker in the Apache Kafka

architecture can contain multiple topics, and each topic can be broken into

multiple partitions. This configuration allows consumers to access topics and

multiple partitions in parallel, which improves scalability. Horizontally

scaling requires you to add more brokers to an existing Kafka cluster. The

cluster will require more nodes to balance out the load and ultimately allow

the cluster to serve more requests.

The capacity to add more brokers and topics makes EDA a highly



composable architecture. Developers can split apart and recombine new

microservices to deliver new functionality, all from the same events.

AI/ML Streaming Analytics

Streaming analytics deployments are based on using a streams processing

framework or other analytics techniques like artificial intelligence and

machine learning to predict behaviors, identify outliers, or offer

recommendations.

Delivering AI-driven applications requires designing and creating ML

algorithms that can support prediction and detection of events. ML

algorithms are trained with historical data and are then deployed to be used

with real-time data. Training the models requires ingesting large amounts of

data, which can be complex and time-consuming. Streaming analytics

architectures can support AI/ML applications to improve their incremental

learning by providing streams of data.

One of the challenges of AI/ML modeling is that it requires a cyclic

approach, which means collecting historical data for model training and

ingesting real-time data for actionable insights. AI/ML modeling requires

high computational power, tons of storage, and a development environment

where data scientists can run and train models alongside developers who can

design intelligent applications.



Apache Kafka supports data ingestion and streaming during AI/ML

modeling, and once models are deployed, the same infrastructure can be used

for prediction and detection of events. Figure 3-1 shows how streams

processing technologies could support AI/ML modeling and inference.

Figure 3-1. AI/ML modeling and inference

Apache Kafka and its components are able to connect to any data source and

stream vast amounts of data in near real time. Kafka allows the storage of

data for consumers to retrieve when necessary. Historical stored data can be

valuable when training AI/ML models.

The Apache Kafka ecosystem is a logical fit with AI/ML modeling and

inference because it provides a simple way for connecting to multiple data

sources without the need for creating complex integrations. The combination

of the Kafka broker and Kafka Streams allows for supporting data

transformation and processing before data is used for model training.



One thing to keep in mind is that choosing an AI/ML platform that can be

highly integrated with a modern application platform will make the complete

process easier for every team. A modern application platform will support

AI/ML operations teams to provide environments for open collaboration

between developers and data scientists when cleaning, ingesting, and using

data. Modern application platforms also support IT operations teams when

delivering AI/ML models as intelligent applications. And finally, having the

data in the brokers closer to the running models will improve performance

during modeling and serving.

How Apache Kafka Can Support
Business Outcomes

Apache Kafka provides support for many modern use cases in today’s

organizations, providing a variety of benefits from the business-level

perspective. When looking at IT scenarios, there are two real-world examples

we would like to highlight to show some of the ways Kafka can benefit an

organization during a modernization effort.

Connecting Distributed Systems for a Better User
Experience

A large bank in the United States was already in the process of modernizing

its applications to keep up with its competition when it started to feel the



growing pains that come with it. The bank had split its processes into

distributed systems that allowed for more flexibility and scalability within a

given line of business, but then the integration between the systems began to

drift apart. The bank had settled on traditional messaging to connect different

applications but struggled to define the contracts with which the applications

would communicate. Each team had its own definition of what a customer

was, and each team used the term “payment” to mean something different.

Communication then required a large amount of transformation between each

team, and no two interactions were the same. On top of all the work required

to communicate between the disparate systems, each team was still storing its

own version of information in a database for only its process. These sources

of truth were often out of sync and slow to share information with each other,

which made the customer experience terrible. A customer would call in to

report suspected fraud and make it through a game of 20 questions with an

automated system, only to be passed to a person that had no record of what

information was captured by the automated system. After the call was done,

if the customer logged in to the website, there was no record of their report or

the action being taken on their behalf. The process broke down even further

as real paperwork got involved and batch processes that required sending or

receiving mail had no feedback into the system until it was done. The

customer experience was terrible, and fixing the problem was taking too

much time, while customers were leaving. These problems could have been

solved using the bank’s traditional messaging broker with more effort, but a

new architecture was eventually proposed that brought in the Apache Kafka



ecosystem to help.

Kafka introduced reliability and fault tolerance to the bank’s messaging

architecture and improved system availability for the applications. Having a

reliable and centralized event broker created a single source of truth from

which every channel could communicate. A unified definition of a customer

and types of payments were created and stored in topics that could be

accessed by any process to get relevant real-time information. This effort

required more application development, but because the bank had already

started to modernize, it was well-prepared to quickly adapt by using a modern

platform. It also helped that the different teams no longer had to interact with

a seemingly infinite number of other processes and only had to consider

adding their data to the agreed-upon stream. This soon led to a system that

stayed synced in real time and even started to incorporate many of the bank’s

batch processes into the event bus.

The customer experience dramatically improved and even led to new

innovations. Because all of the information about a customer was available as

events, the bank was able to invest into AI to help predict what a customer

would need help with and save them time no matter what channel they were

connecting on. When a customer logged in to the website, they could be

asked if they wanted to finish completing a fraud claim. If a customer called

in to make a payment, they could be transferred to the right department

without having to fight a phone menu.



Apache Kafka was a great fit for the bank’s modernization efforts, as it

worked well in the bank’s distributed system, enabled an event-driven

architecture, and gave the bank a real-time streaming platform that was

reliable enough to use as a source of truth. The bank was already using a

container orchestration platform, so deploying the brokers right next to the

bank’s applications was swift and simple. Most of the work was in rewriting

each team’s consumers to be aware of the topics and offsets. This effort was

well worth it as the bank achieved its goal in an amount of time that was

impressive for a bank.

Saving Money by Moving to an Event-Based
Architecture

A commercial services company had recently moved all of its tracking to a

new customer relationship management (CRM) system, and had a large

number of old applications that were hitting the CRM API at a high rate for

similar information, which was costing the company large sums of money.

On top of that, the apps were old enough that they were no longer supported

and needed to be upgraded to a newer runtime. In order to lower the number

of API calls to the CRM, a single consumer was set up to read all of the

customer data and write it into a central database. The company then set up

CDC to take the database events and put them into Apache Kafka topics to be

consumed by all of the other applications. This seemed like an elegant

solution to the company’s problem, but it was not without issues.



First, the Kafka cluster took months to set up. The team responsible for

managing the infrastructure was not familiar with Kafka and struggled to get

it provisioned. Second, all of the applications were deployed manually by the

infrastructure team, and there were hundreds that had to be updated. Third,

the data coming out of the database was huge, and not all of it was needed.

Unfortunately, to save space, the team responsible just started taking out

fields it didn’t think were needed without agreeing upon a schema. This

meant that almost every day the data structure changed: items were removed

for being too large or added back because some other team complained about

needing the data, only for them to be removed again when the team realized

some of the data was duplicated in other fields. Finally, the new applications

were functioning slower than their older counterparts, despite using a

supposedly high-performance messaging broker and a newer runtime.

In order to solve these problems, the first change that was made was to start

using a container management platform for the applications and

infrastructure. This allowed for the database and Kafka brokers to be installed

with Kubernetes Operators, which simplified the configuration into YAML

files that could be version controlled in a GitOps pipeline. This gave

everyone visibility into how the infrastructure was configured and allowed

for controlled changes in a timely manner. Developers that were more

familiar with Kafka were able to make suggestions to the configuration as

code without needing access to the secured environment running the

infrastructure. This, coupled with the fact that the applications were running

closer to the brokers, instantly improved the performance back to reasonable



levels. Further tuning of the commit intervals on the consumers eventually

yielded the large performance improvement that the company was looking

for.

The same GitOps approach used for the infrastructure was adopted for the

applications, allowing them to be deployed and updated en masse. Despite

the new ability to change rapidly, the developers were still not happy having

to constantly update their schemas to get the data from Kafka. They adopted

a schema registry to automatically deserialize the newest format of the data

and eventually started publishing smaller pieces of the database capture to

different topics based on what type of event it was. This still made all of the

necessary data available to everyone without overloading a single topic or

consumer.

In the end, the company saved money by reducing the number of calls to its

CRM system, lowering the amount of extraneous storage it had, and

removing the need to pay for extended support on old software. The company

achieved all of this with minor changes to the actual code base of its

applications by relying on improvements to the infrastructure to aid its

modernization. These improvements were not without their own issues, but

by adopting GitOps practices and some much-needed tuning, the company

was able to save money and increase its performance.



Conclusion

Modernizing applications can look very different based on your goals and

how you decide to implement them. Often those goals can be accomplished

more quickly with the help of modern messaging technologies such as

Apache Kafka. The Kafka ecosystem works well in the cloud or as part of

any distributed system. It comes with an ecosystem of tools to lower the

amount of effort required to integrate with older applications. It scales well to

handle large amounts of data as more and more applications start to use its

topics. Kafka can secure communication and replicate messages to prevent

data loss. Finally, it makes it easier to implement loose coupling in modern

architectures.

Decreasing coupling between services and components in a system allows

them to evolve more freely and easily, enabling faster time to value when

developing complex software systems. The promotion of loose coupling also

promotes the use of well-defined APIs and data types, discoverable

endpoints, and an asynchronous, event-driven communication style. This, in

turn, enables teams to more easily discover available functionality and data to

implement new features, which enables new use cases and brings value to

customers and organizations.

Delivering a better customer experience, improving the user experience

quickly, and providing support across hybrid environments prepare



organizations for responding and reacting to quickly changing market

conditions. In today’s digital world, responding fast to market changes to

impact business outcomes is a must. Application modernization is not easy,

but technologies like Kubernetes and Apache Kafka are designed to support

the challenges faced by organizations when scaling their architectures and

applications for such goals.



About the Authors

Jennifer Vargas is a marketer—with previous experience in consulting and

sales—who enjoys solving business and technical challenges that seem

disconnected at first. Her areas of expertise are AI/ML, IoT, Integration, and

Mobile Solutions.

Richard Stroop is an integration domain specialist for Red Hat, Inc., where

he has worked for ten years herding Apache Camels alongside many other

technologies. He received his master’s degree in computer engineering from

Virginia Tech, where he began his focus on messaging systems. Throughout

his career, he has been fascinated with how disparate systems and people

communicate. He has helped large companies in almost every sector solve

complex integration problems, all while keeping a positive and enthusiastic

attitude. He leads the Integration Community of Practice to promote and

adopt open source integration technologies in all organizations within Red

Hat. He currently lives in the mountains of Virginia, where he enjoys playing

hide-and-seek with his kids and numerous board games with his friends.


	Acknowledgments
	1. The Path to Application Modernization
	Reasons for Modernizing Applications
	Application Modernization Techniques
	Challenges of Modernizing a Monolithic Application
	Microservices Architecture and Communication Patterns

	2. A Modern Messaging Infrastructure: The Apache Kafka Ecosystem
	The Business Value of the Apache Kafka Ecosystem
	Apache Kafka and Its Components

	Challenges of Using Apache Kafka
	Apache Kafka Made Easier with Kubernetes

	3. The Impact of Application Modernization and Apache Kafka Adoption on Business Agility
	Benefits of Using Apache Kafka during Application Development
	Real-Time Streams Processing
	Event-Driven Architecture
	AI/ML Streaming Analytics

	How Apache Kafka Can Support Business Outcomes
	Connecting Distributed Systems for a Better User Experience
	Saving Money by Moving to an Event-Based Architecture


	Conclusion
	About the Authors

