
modo 302
Script ing & Commands

Copyright ©2001-2008 Luxology, LLC. All Rights Reserved. Patents Pending.

......................................Scripting and Commands 15
..Command System 16

..Command History Viewport 16
..Command Entry 16

...Undo List 17
...History 18

...Command List 19
...Scripts 20
..Results 21
...Filtering 22

...Event Log Viewport 23
...Command Classes 24

..UI 24
...Side Effect 24

..Undoable 24
..Model 24

..Sub-Commands and Class Inheritance 25
..Quiet 26

...Undo Special, Containers and Other Flags 26

...Command Arguments 28
...Required versus Optional Arguments 28

...Argument Datatypes 28
..Choices/TextValueHints 29
..ToggleValue Arguments 29

...Command Usage Marker Guide 30

..Command Blocks 31

..Executing Commands 32
..Explicitly Naming Arguments 32
...Implicitly Named Arguments 32

......................................Wrapping arguments: Quotes and Curly Braces 32
..Arguments Out of Order 33

..Values with Units: Using Square Braces 33

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 1 of 263

..Return Codes 33

..Special Prefixes 35
...Suppressing Dialogs: ! 35

..Suppressing All Dialogs: !! 35
...Showing Dialogs: + 36

..Showing All Dialogs: ++ 36
...Showing Argument Dialogs: ? 36

...Querying Commands 38
..................................Using the Command Historyʼs Results Tab 38

..Performing a Query 39
...Argument Datatypes 39

...integer 39
...float 39

...boolean 39
..percent 39
...distance 40

...angle 40
..axis 40

...uvcoords 40
...time 40
...color 40
...light 40

...memory 41
...pixel 41
...string 41

...Datatype Examples 41
...Complex Datatypes 42

...Querying and the User Interface 43
...Toggle/Tool Buttons 43

..Simple Buttons 43
..Checkmarks 44

...Popups and Submenus 44
..Text and Numeric Edit Fields 45

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 2 of 263

...Refiring 46

...Command Aliases 48
...Creating and Deleting Aliases 48

..Default Arguments 49
...Replacing Commands with Aliases 50

...ScriptQuery Interfaces 51
..The query Command 51

...query Attributes 51
...query Values 52

...query Selections 52
..Attribute Names 52

..More about Selectors 52
...Using Multiple Selectors 53

..Executing Scripts 55
...The @ Syntax 55

...Paths to Scripts 55
..Installing Custom Scripts 56

...Passing Arguments to Scripts 56
..script.implicit 56

...script.run 57

...Executing Commands with Queries Operators 58
...Support 58

...Math Operators 59
...Adding and Subtracting Values 59

...Scaling Values 59

...Step Operators 59
..Stepping Values 59

...Coarse and Fine Steps 59

..Minimum and Maximum 60
..Boolean Arguments 60

..List Arguments 60

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 3 of 263

...Query Operators Table 61

..Startup Commands 62
.......................................<StartupCommands> and <Command> 62

..Scripts as Startup Commands 62
..Rendering with Startup Commands 63

...User Values 64
...user.value 64

..Creating Values: user.defNew 64
..User Value Life 64

...Config 65
...Temporary 65
..Momentary 65

..................................Changing and Querying Values: user.value 65
..Editing Definitions: user.def 65

..Human-Readable Labels: username 66
...Fixed Ranges: min and max 66

...Choices: list 66
..Creating an ArgumentType Config Entry 67

..Procedural Usernames: listname 68
...list Considerations 68

..Responding to Value Changes: action 68
..Creating User Values from within scripts 69

...Dialogs 71
...Information Dialogs 71

..Creating a Yes/No Dialog: dialog.setup 71
...Setting the Title: dialog.title 71

...Setting the Message: dialog.msg 72
...........................Using Message Tables: dialog.msg and dialog.msgArg 72

..Providing Help: dialog.helpURL 72
...Dialog Result Codes Table 73

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 4 of 263

...Display the Dialog: dialog.open 73
..Get the Result: dialog.result 73

...Yes/No Dialog Perl Script Example 73

...File Dialogs 75
...Open File Dialog Setup 75

..Setting the Filetype: dialog.fileType 75
..Setting a Default Path: dialog.result 76

......................................Multi-Select File Requester Perl Script Example 76
..Save Dialog: dialog.fileSaveFormat 77

...Custom File Types: dialog.fileTypeCustom 78

..Message Tables 80
..Message Table Config Format 80

...Dictionaries 80
..Tables 81

...Substitutions 81
..Special Characters 81

..Using Message Tables 81

...Languages 83
..Macros 83

...File Macros 83
...Macro Header 83

..Macro Comments 83
...Example Macro: MyMaterial.lxm 84

...Executing a File Macro 84
..Macro Arguments 84

..Example Macro: Wrapping material.name 84
...Executing a Macro with Arguments 84

...Config Macros 85
..Config Macro Format 85

..Executing Config Macros 86
...Imported versus User Config Macros 86

...Perl Scripts 87

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 5 of 263

...Perl Header 87
...modo Extensions to Perl 87

...lx() 87
...lxq() 88
..lxqt() 88

..lxeval() 88
...lxok() and lxres() 88

...lxtrace() 89
..lxout() 89

...lxooption() and lxsetOption() 89
...Arguments 90

...Perl Scripts and Progress Bars 90
...lxmonInit() 90

..lxmonStep() 90
..Progress Bar Example 90

..External Modules 91
..Environment Variables 91

...Modifying @INC 92
...Perl Scripts and User Values: RandomSel.pl 93

..The Script 93
...Perl Header 95

..Using lxout() for Debugging 95
...Querying the User Value 95

...Checking the Selection Mode 96
...Querying the Foreground Layer List 97

...Scanning the Foreground Layers 97
..Scanning the Layerʼs Elements 98

..Selecting an Element 98
..Finishing Up 98

...Running the Script 99
.............................Defining RandomSel.coverage with user.defNew 99

...Creating a Form: user.value 100
Run the Script on RandomSel.coverage Changes: user.def action100

.........................Limiting the Control Range: user.def min and max 101
.......................Creating RandomSel.coverage Presets: user.value 101

..Improving the Script 101

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 6 of 263

..Testing Perl Scripts Outside modo 102

..Lua Scripts 103
..modo Extensions to Lua 103

...Lua Header 103
..Passing Arguments to Lua Scripts 103

...Lua Example: SelectHalf.lua 104
..Lua Example: Progress Bars 105

...Python Scripts 106
..Python Header 106
...The lx Module 106

...lx.out 106
..lx.eval 107

...lx.eval1 and lx.evalN 107
..lx.command 108

...lx.test 108
...lxo.option() and lx.setOption() 108

...lx.arg and lxargs 108
..ScriptQuery Interfaces 109

..lx.Service 109
..s.name 109
..s.select 109
..s.query 110

..s.query1 and s.queryN 110
...Error Handling with Exceptions 110

..Monitors 111
...lx.Monitor 111

...m.init 111
...m.step 111

...Monitor Example 111
.............................Executing Python Scripts from Other Python Scripts 112

..External Modules 112

...Transform Channels 113
...Channels 113

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 7 of 263

..Transform Items 113
...Creating Transform Items 114

...Bouncing Ball Example 115

...Network Rendering 118
..Setting up Built-In Network Rendering 118

......................................Rendering on Hardware with Legacy Graphics 119
...Network Rendering and Firewalls 119

...Other Networking Issues 119

..Entering Slave Mode On Startup 120
....................Fire-and-Forget Rendering via Startup Commands 120

..Advanced Render Control 121

...Headless Mode 122
..License and Config File 122

...Running in Headless Mode 122
...Exiting Headless Mode 123

..Changing the Prompt 123
...Formatting 123

...Executing Commands 124
.............................Redirecting Commands into Headless Mode 125

......................................Piping Commands into Headless Mode 125
..Event Log 126

..Other Command Line Switches 126
...Headless mode: -console and -prompt 126

..Executing an Initial Command: -cmd 127
..Specifying an Alternate User Config: -config 127

..Changing the License Path: -license 128
..Running in slave mode: -slave 128

..Loading an Initial Scene 128

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 8 of 263

...Appendix 130
..Appendix A: 131

commandservice ScriptQuery Interface
..commands 131

...command.??? 131
...categories 137

...category.??? 137
...currentExecDepth 138

..Appendix A.1: 139
Command Flags

...General Flags 139
..Command Class Flags 141

..Appendix A.2: 142
Command Argument Flags

..Appendix B: 145
platformservice ScriptQuery Interface

...Attributes 145
...Licensing 145

..Application Information 146
..Headless Operation 147

..Operating System Information 147
...Paths 148

..path.??? 149
...importpaths 149

..Appendix B.1: 151
Paths

..Appendix D: 154
hostservice ScriptQuery Interface

...Attributes 154
..classes 154

...class.servers 154
..servers 155

...server.??? 155

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 9 of 263

..defaultPath 157

..Appendix D: 158
layerservice ScriptQuery Interface

...Attributes 158
..Special Selectors 158

...Using Selectors 159
...Layer-Specific Selections 159

...“Selecting” Layers, Vertex Maps, etc. 160
...Selecting Points, Polygons and Edges 160

..Model Attributes 160
...models and model.N 161

...model.??? 161
...Material Attributes 163

...material and material_groups 163
...material and material_groups 163

...materials and material.N 164
..material.??? 165

...Layer Attributes 169
..layer 169

.................................layer_groups, layer_elements and layer_lists 170
...layers and layer.N 171

...layer.??? 172
...Children Attributes 175

..kid and kid_groups 175
...kids and kid.N 176

..kid.??? 176
...Part Attributes 177

...part and part_groups 178
..parts and part.N 178

...part.??? 179
..Texture Attributes 180

...texture and texture_groups 180
..textures and texture.N 180

..texture.??? 181
..Clip Attributes 186

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 10 of 263

..clip and clip_groups 186
..clips and clip.N 187

...clip.??? 188
..Vertex Map Attributes 189

...vmap and vmap_groups 189
...vmaps and vmap.N 190

..vmap.??? 191
..Vertex Attributes 192

...vert and vert_groups 192
...verts and verts.N 193

...vert.??? 194
...Polygon Attributes 198

..poly and poly_groups 198
...poly and polys.N 199

..poly.??? 199
..Edge Attributes 204

...edge and edge_groups 204
...edges and edges.N 205

...edge.??? 206
...UV Attributes 209

...uv and uv_groups 209
...uvs and uvs.N 210

...uv.??? 211
..selection 214

..Appendix E: 215
sceneservice ScriptQuery Interface

..Scene Attributes 215
...item Attributes 217

...types, isType and selection 225
.................................light, camera, clip, locator, txtLayer, etc. Attributes 227

...channel Attributes 227

..Appendix F: 230
view3dservice ScriptQuery Interface

..View Attributes 230

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 11 of 263

..views and view.N 230
..view.??? 231

...Mouse Attributes 235
..mouse.??? 235

...Element Attributes 236
...element 236

..element_types 237
...element.over 237

..Appendix G: 239
scriptsysservice ScriptQuery Interface

..User Value Attributes 239

..Appendix H: 240
messageservice ScriptQuery Interface

..msgfind and msgsub 240
..msgcompose 241

..Appendix I: 242
LXO File Format Extensions

..Conventions 242
..LXO and LXP 243

...LXO Chunk Hierarchy 243
...LXP Chunk Hierarchy 247

..LXOB Header 247
..LXPR Header 247

...Chunk Headers 247
...Sub-Chunk Headers 247

...VRSN Chunk 248
..CHNM Chunk 248

..ITEM Chunk 248
..Optional: XREF Sub-Chunk 249

...Optional: LAYR and UNIQ Sub-Chunks 249
..LAYR Sub-Chunk 249
..UNIQ Sub-Chunk 250

..PAKG: Package Sub-Chunk 250

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 12 of 263

....Variable: LINK, CHNL, CHNV, CHNS, GRAD and ITAG Sub-Chunks 250
..LINK: Item Link 250

...CHNL: Scalar Channel Value 251
...CHNV: Vector Channel Value 251
...CHNS: String Channel Value 252

..GRAD: Gradient Channel Value 252
..CHAN: Channel Value sub-chunk 252

..ITAG: Item Tag 253
..LAYR Chunk 253
..ENVL Chunk 254

...TANI: Incoming Tangent Sub-Chunk 254
..TANO: Outgoing Tangent Sub-Chunk 254

..Weight and Spline Types 255
...KEY: Key Value Sub-Chunk 255

...ACTN Chunk 255
..Optional: PRNT Sub-Chunk 256

...ITEM Sub-Chunk 256
...CHAN Sub-Chunk 256
...CHNN Sub-Chunk 256
...GRAD Sub-Chunk 257
...CHNS Sub-Chunk 257

..PNTS, POLY and PTAGS Chunks 257
...VMAP Chunk 257
..VMAD Chunk 258
..VMED Chunk 258

..AUTH, (c) and AUTH Chunks 259
...AUTH Chunk 259

...(c) Chunk 259
..ANNO Chunk 259

...Appendix J: 260
Common Server Tags

...Querying Server Tags 260
...Loaders 261

...Savers 261

..Appendix K: 263

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 13 of 263

Official modo Build Numbers
...Support 263

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 14 of 263

Scripting and Commands
Scripting allows repetitive or tedious tasks to be automated, as well as allowing complex
procedural actions to be performed. modo supports four scripting mechanisms out of the
box: a simpler macro system, and full support for the perl, lua and python scripting
languages.

Scripts make heavy use of the commands, which are ubiquitous in modo. Every operation
in the application is the result of a command execution. The result is that most anything
that can be done with the mouse and the keyboard can also be automated through a script.
Furthermore, many commands have arguments that can also be queried for their current
state. The Command History viewport allows you to track command executions as you
interact with the application.

More complex internal states can be read with the query command. This provides a front
end to the ScriptQuery system, a simple yet powerful mechanism for accessing the
internal state of the program.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 15 of 263

Command System
Any time you interact with modo, you are executing a command. Anything from
clicking in a viewport to creating a primitive to saving your work is done through
commands. Using commands is also how scripts affect modo, including providing user
interface and changing the models themselves.

Command History Viewport
The Command History viewport tracks command executions, making it an essential
scripting tool. This viewport also contains the undo stack, a complete command list, a
simple scripting interface and the results of any queries performed from the Command
entry at the bottom of the viewport.

Commands have a standard naming convention, generally in the form of “noun.verb”, or
”object.action”. The first part of the command is the system or type of selection the
action can acts on, while the second part after the period is the action that will be
performed. Some common examples are item.name, script.run, tool.attr and
poly.subdivide.

We’ll quickly go through the parts of the Command History, as you’ll be using it quite a
bit as you write scripts.

Command Entry
In the default layout, the command history is very short, showing only a single line. This
is the Command entry, an edit field where commands can be executed directly. Try this
out by typing cmds.saveList into the edit field and press return. This opens a file dialog
asking where to save the command list, and then writes a complete list of all commands
sorted alphabetically to the file. The executed command will then show up in the history
and undo list. Open that file up in your favorite text editor to see a complete list of all
commands available in modo.

Clicking on any command or script in the lists will insert it into the Command entry,
ready for editing and execution.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 16 of 263

The Command entry at the bottom of the Command
History. When collapsed, this is all that is visible

of the viewport.

To expose the rest of the Command History, simply drag the viewport divider above it
upward to see the tree and tabs.

Undo List
The first tab of the Command History shows the Undo List. This shows all executed
commands as they are performed, taking into account the effects of undos and redos. You
can use this to see what commands are being triggered by your actions. Double-clicking
a command will execute it.

The Undo List tab.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 17 of 263

History
The History tab shows a running history of all commands. This ignores the effects of
undos, and lists all commands that have been executed. While the Undo List is a
snapshot of the minimum number of steps that got the application to its current state, the
History is a complete list of all the steps, including mistakes that were undone. As with
the Undo List, double-clicking a command will execute it.

The History tab. The Tool Adjustment and Apply Tool
commands are collapsed in the Undo List due to
refiring, but are shown in their entirety here.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 18 of 263

Command List
The third tab is the Command List. This contains a complete list of every command in
modo, sorted into categories. If you need help on a particular command, you can get
information on it’s usage here. You can also execute commands by double-clicking them.

The Command List tab showing the attributes of the
item.channel command.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 19 of 263

Scripts
Scripts is a somewhat primitive tab whose main purpose is to show and edit config
macros (macros that are stored in config files, as opposed to as separate files on disk).
Only macros stored in the user config are editable; those stored in imported configs will
be shown with a lock icon.

Although the other scripting languages are shown here, they cannot be directly
manipulated from this tab. Double-clicking on a script or a command within will execute
it.

The Scripts tab showing the included config macros.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 20 of 263

Results
The final tab is Results, which shows the results of any command executed from this
viewport, either through the command entry or by double-clicking on a command in the
various lists. Commands are logged for success, failure and queries. This is a good place
to tinker with commands without having to write a full script.

The Results tab showing queries, aborts, failures and
successful executions.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 21 of 263

Filtering
Clicking the F button opens a simple filtering tool. This performs a simple substring
search on command names, usernames, descriptions, and values. Filtering is enabled
only when the F button is lit.

The Command List filtering command names on the
keyword “preset”.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 22 of 263

Event Log Viewport
The Event Log viewport is used for various status messages and error reporting. Since
the results of lxout() functions are also present here, it can be a valuable script debugging
tool.

The Event Log viewport showing an aborted command, a
command failure, and the output of a perl script.

The Event Log isn’t in the default modo layout, nor is it in the menu bar, as it is more of a
debugging tool for advanced users. Since it is commonly used for scripts, you’ll want to
open an Event Log viewport in a separate window or as a tab in an existing viewport,
perhaps next to the Command History. Refer to the user manual for information on how
to create a new viewport and change it to the Event Log.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 23 of 263

Command Classes
There are four main classes of commands: UI, Side Effect, Model and Undoable. There
are also two less-used classes, Undo Special and Quiet, and the ability to associate
common commands in Containers.

UI
UI commands are those that affect the user interface but do not affect or rely on any other
state in the application. viewport.turntable is a good example of this, as spinning the
model around doesn’t rely on any specific model state, nor does it change the model in
any way. A UI command has short yellow slash marks next to it in the Command
History. These commands will shuffle through the undo list as you performs undos so
that they can never move into the redo section.

Side Effect
Side Effect commands are similar to UI commands in that they do not change the model.
However, they do rely on the model for their state. An example is the macro.record
command, which starts and stops macro recording. The commands executed between
two calls to macro.record commands are captured as a macro, but the command
doesn’t actually affect the model itself. Side effect commands are shown with a short
blue dash in the Command History.

Undoable
Undoable commands are the most common command type in modo. The
poly.subdivide command is an example of an undoable command that directly
affects the model. Undoable commands can be undone and redone. In the Command
History, such commands have a circular green arrow if they can be undone, and a grayed
out arrow looping the other way if they can be redone and are beyond the undo insertion
point (the “Drag to undo/redo” line in the Undo List of the Command History).

Model
Non-undoable commands that affect the model are very rare. Executing a non-undoable
command clears the undo stack. Non-undoable commands are sometimes referred to as
model commands, while undoable commands are sometimes called undoable model
commands.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 24 of 263

Various commands of different classes in the Command
History’s undo list.

Sub-Commands and Class Inheritance
Commands are often executed from within other commands. These are referred to as
sub-commands. If the class of a sub-command is more restrictive than its parent’s class,
the parent’s class may also change. For example, a UI command executing an undoable
command would itself be listed as undoable in the history. Similarly, an undoable
command executing a non-undoable command would become non-undoable. In fact, if a
non-undoable sub-command is executed, any parents would become non-undoable as
well. An undoable or non-undoable command executing a UI command would not be
changed, since a UI command doesn’t have any extra state that needs to be preserved.
Commands can also explicitly change their class during execution depending on their
arguments, although this is rare.

This table shows the inheritance of the different command classes during sub-command
execution. You can see that the class of a parent UI command is overridden by the class
of any sub-command, while non-undoable model sub-commands always override the
parent’s original class.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 25 of 263

Original Parent Class Sub-Command Class Final Parent Class
UI UI UI
UI Side Effect Side Effect
UI Undoable Undoable
UI Model Model
Side Effect UI Side Effect
Side Effect Side Effect Side Effect
Side Effect Undoable Undoable
Side Effect Model Model
Undoable UI Undoable
Undoable Side Effect Undoable
Undoable Undoable Undoable
Undoable Model Model
Model UI Model
Model Side Effect Model
Model Undoable Model
Model Model Model

Quiet
Quiet commands are special user interface commands that perform more complex
operations. The quiet command itself doesn’t appear in the history, but the commands
that it executes will.

Undo Special, Containers and Other Flags
The remaining command classes are not used in scripting, but are listed for completeness:

Undo Special commands are commands like app.undo and app.redo, which directly
affect the undo stack. In general, such commands are not used in scripts. They do not
appear in the undo list, but do appear in the history.

Finally, multiple commands that effectively perform the same basic operation on different
selections can be grouped into Containers. Each command within a container operates
in a specific context, and only one will be executed when the container is fired. The
delete command is a container that executes different deletion commands depending on
the current selection. All containers have a single optional ToggleValue type argument,
allowing the bevel and extrude containers to create tool-style toggle buttons in the UI.
Simpler containers, such as delete, do not make use of this argument.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 26 of 263

There are also a some special flags used by the command system and various clients.
These are used to tag internal commands, selection commands, select-through
commands, post-mode commands and commands that require at least one argument to be
set, even if all arguments are optional. These are fairly esoteric and are more relevant
when writing commands than when using them.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 27 of 263

Command Arguments
Many commands have arguments that specify their behavior. For example,
cmds.saveList is defined like so:

cmds.saveList <filename:string> <verbose:integer>

This format is our standard for describing command syntax. The first part is the
command name, “cmds.saveList”, followed by two arguments. These arguments are in
the form of “name:datatype”. The enclosing less than (<)and greater than (>) signs mark
them as optional arguments; as such, they do not require a value for the command to
execute. The arguments are named “filename” and “verbose”. The “filename” argument
is a string, in this case the name of the file to save the command list to. The “verbose”
argument is an integer; giving it a value of 1 will save more detailed information about
each command.

Required versus Optional Arguments
Normally, a command’s arguments are required to have a value before executing. These
are called required arguments. If any required arguments not set, a dialog will open
asking for values. By contrast, optional arguments do not need to be given values.
These are marked in the format string within a set of <…> symbols. For example, the
item.channel command has two required arguments and one optional argument. Only
the required arguments need to have a value.

item.channel name:string ?value:* <mode:{set|shift|scale}>

Argument Datatypes
Argument are listed with the argument name, followed immediately by a colon and the
argument’s datatype, as mentioned above. In some cases, the datatype is dynamic and is
determined by the current program state or another argument. An asterisk marks an
argument with a variable datatype. Here, the item.channel command uses a required
“name” argument to figure out the datatype for the “value” argument. Common
argument datatypes are described in detail later on.

As well as having a variable datatype, the “value” argument is preceded by a question
mark. This marks the argument as queriable, allowing a script to retrieve its current
value. Command queries will be described in detail later on.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 28 of 263

Choices/TextValueHints
The optional “mode” argument doesn’t list a datatype, but instead shows a list of
mutually exclusive choices. The internal datatype for these kinds of arguments is an
integer. Either the named choice or the integer can be entered, but be aware that the
choices may not be enumerated as you see them here. Furthermore, the ordering of the
options may change between versions. In general it is best to use one of the named
choices, which in this case are “set”, “shift” and “scale”. These choices are also
commonly referred to as TextValueHints or simply “text hints”

It is possible for the argument’s choices to themselves be dynamic, usually based on the
value of another argument. In that case, the choices are shown as {…}.

In some commands an argument may be read only, as with the select.count command:

select.count <type:string> #count:integer

The number sign (#) preceding the “count” argument’s name marks it as read only. It can
be queried in the same way as arguments preceded by a question mark, but it cannot be
set to a new value.

ToggleValue Arguments
Lastly, there are a few commands that have a ToggleValue argument. Only one argument
of a command may be defined this way. The argument has one “off” state and numerous
possible “on” states. tool.set is one such command that is used often in modo:

tool.set preset:string
 ?mode:{off|on|clear|remove|add}!{off}
 <task:{actor|center|axis|falloff|snap|show|constraint}>

The first argument is the name of a tool preset, the second is what to do with the preset,
and the optional third argument sets task the preset affects.

The mode argument is what we’re interested in; notice that at the end of the list of
possible states, there’s an exclamation point and the word {off}. The exclamation point
marks this as a ToggleValue argument, and the word after that is the “off” state, in this
case the word “off”. The curly braces ensure that any spaces or quotes are correctly
wrapped.

The primary reason for this mechanism is by toggle-style buttons (not to be confused
with boolean checkmarks). For example, every tool button on the interface is actually a
call to the tool.set command with a different value specified for the “preset” argument.

For example, this activates the Cube tool:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 29 of 263

tool.set “prim.cube” “on”

When used in a form, the forms system detects the ToggleValue argument and queries it
automatically. For tool.set, the command query returns “on” if the tool is currently in
the tool pipe and “off” if it is not, translating this into the tool button itself being drawn as
on or off. The forms system is described more completely in the section on Querying
Commands.

Examples of ToggleValue commands as buttons. The
Cube button is “on”.

Command Usage Marker Guide
This table shows the possible argument modifiers.

Markers Description Example
(nothing) Required name:datatype

<…> Optional <name:datatype>
? Queriable ?name:datatype
Read-Only #name:datatype
* Variable Datatype name:*
{a|b|c} Choices (TextValueHints) name:{a|b|c}
{…} Dynamic Choices name:{…}
!{off} ToggleValue off state name:datatype!{off}

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 30 of 263

Command Blocks
Command blocks allow multiple commands to be treated as a single event in the history.
This is useful when a single click might execute multiple undoable commands, but they
should all be undone as a single entity. While not usable in scripts, command blocks are
important in how they affect the command history. Scripts are automatically
encapsulated when executed, and so do not need to use command blocks directly.

In the Command History, a command block is shown in the same way as nested sub-
commands, with the text “Command Block” in the second column.

Command History with a Tool Adjustment command block
expanded to show its sub-commands.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 31 of 263

Executing Commands
Commands are executed by entering their name and any necessary arguments. The kinds
of values that arguments can accept depend on the argument’s datatype. Common
datatypes are described later on, but right now we’ll deal with how to pass arguments to
commands and execute them.

The cmds.saveList command was executed by entering its internal name (as opposed to
the user names or button names shown in the user interface) without any arguments:

cmds.saveList

If the command has executed successfully, it will appear in the Command History’s undo
list and history list. If the command was executed from the viewport by double-clicking
a command or typing it in the Command edit field, the Command History’s Results tab
will show the results of the execution, including any queries or errors.

Explicitly Naming Arguments
We could have provided the filename argument and skipped the file dialog entirely:

cmds.saveList filename:”d:\cmdlist.txt”

We could also specify the verbose argument but still pick the file from a file dialog:

cmds.saveList verbose:1

Implicitly Named Arguments
Note that in these examples the argument name is included with its value. The name is
optional if the arguments are in order and none are skipped. For example, you could
execute this command with the filename argument set just by doing this:

cmds.saveList “d:\cmdlist.txt”

Wrapping arguments: Quotes and Curly Braces
Also note that quotes are only necessary if there are spaces or colons in the value, as
spaces are used to separate arguments and colons are used to separate the argument name
from its value. Curly braces can be used instead of quotes in cases where quotes are part

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 32 of 263

of the value. Curly braces can also be nested, making them extremely useful when
wrapping arguments in macros for substitutions.

cmds.saveList {d:\cmdlist.txt}

Arguments Out of Order
Using named arguments allows them to be provided out of order:

cmds.saveList verbose:1 filename:{d:\cmdlist.txt}

Values with Units: Using Square Braces
Square brackets can be used to provide values with units. In general, you’ll want to stick
with raw values in meters, degrees. The square brace syntax is best when you need to
specifically operate in the current unit system, and as such it is rare to use it in scripts

For example, the item.channel command switches its “value” argument’s datatype
based on the “channel” argument. In the following example, the “pos.X” channel is a
distance datatype:

item.channel pos.X 0.1

As the basic units for the distance datatype is meters, this sets the “pos.X” channel to 0.1
meters. Also notice that because “pos.X’ does not have any colons or spaces in it, we
were able to leave out the quotes.

To provide more human-readable values, square braces can be used to specify units. This
works exactly like entering values into edit fields, including mathematical operations and
unit system support. Now you can directly set the value to 10 cm:

item.channel pos.X [10 cm]

Square braces also act like quotes and curly braces, allowing spaces and colons within.

Return Codes
Once a command has executed, a success or failure code is returned. Commands can fail
to execute for a number of reasons, including that the command is disabled, the wrong
number of arguments were passed, an unknown argument name was used, clicking

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 33 of 263

“Cancel” to aborting a dialog, a required argument was not set, and so on. All of these
will usually open a dialog to report the error. If the command was executed from a
Command History viewport, the error will also show up in the Results tab. All command
failures are reported in the Event Log viewport.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 34 of 263

Special Prefixes
Commands are executed with certain default properties that determine how that interact
with the user. By default, error, informational and file dialogs will open if there are
syntax errors in the command string, errors from command execution, or if the command
needs user attention. Also, dialogs requesting argument values will not appear if all of
the remaining arguments are option.

Often it is desirable to suppress these dialogs from scripts and macros, and other times it
is useful to force them to open. On the flip side, macros automatically suppresses all sub-
commands dialogs, but there may be times where you’ll want to see those dialogs.

To facilitate this, modo supports special prefixes that can be added to the beginning of the
command name. These allow error dialogs to be suppressed or to force the the arguments
dialog to open.

These prefixes can be used in the Command entry, from within scripts, from the Form
Editor and Input Editor, and anywhere else commands are executed.

Suppressing Dialogs: !

Error dialogs can be suppressed by prefixing the command name with an exclamation
point.

scene.saveAs c:\test.lxo
!scene.saveAs c:\test.lxo

Here the first scene.saveAs command saves the current mesh to c:\test.lxo. If we tried
to execute that same command a second time, we would be presented with a dialog
asking us if we want to overwrite the file. Since we don’t want to see that dialog, we can
prefix the command with an exclamation point. Now no dialogs will appear when
scene.saveAs is used.

Suppressing All Dialogs: !!

The single exclamation point syntax only suppresses that specific command’s error
dialogs. If a command executes sub-commands, they may still show dialogs. This could
occur for scripts using dialog.open, for example.

To suppress sub-command dialogs, use two exclamation points. This will keep any
dialogs from any sub-commands from appearing.

!!@C:\MyScript.pl

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 35 of 263

Showing Dialogs: +

Although the default behavior is to show dialogs when executing commands, sub-
commands may have been suppressed using the exclamation point syntax or by the parent
command itself. To get around this issue, we can prefix the command name with a plus
sign.

The plus sign acts as the inverse of the exclamation point, forcing the command to open
any dialogs that might otherwise be suppressed. For example, macros always suppress
commands executed within them, so this can be used to make them appear.

This simple macro creates a dialog using an argument and displays it. Notice the plus
before the dialog.open command

1) #LXMacro#
2) #
3) # InfoDialog.lxm
4) # Opens an info dialog. The first argument passed in will
5) # be displayed in the title, and the second argument will
6) # fill in the message body.
7) #
8)
9) # Setup
10) dialog.setup info
11) dialog.title {%1}
12) dialog.msg {%2}
13)
14) # Open the dialog
15) +dialog.open

See the Macros section for details on how to write macros.

Showing All Dialogs: ++

As with the exclamation point syntax, the single plus affects only the single command it
prefixes, with sub-commands performing their default behavior. To force all sub-
command dialogs to open, two plusses can be used.

Showing Argument Dialogs: ?

Many commands have optional arguments. If these arguments are not set, the command
uses its defaults and carries on as normal, and only if a required argument is missing does
a dialog open you can fill in the values.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 36 of 263

There are cases where you want to see the argument dialog even if all of the required
arguments are set. The viewport.3Dview command consists only of optional arguments,
but you might want to assign it to a key and open it’s arguments dialog. In other cases,
you may have set all the arguments to some defaults, but also want the dialog to open so
you can change them.

The question mark syntax will force an argument dialog to open before a command is
executed. You can then fill in optional arguments or change required arguments and
execute the command as normal.

This example will open the arguments dialog for viewport.3Dview, making it easier to
tweak multiple 3D viewport properties.

?viewport.3Dview

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 37 of 263

Querying Commands
Arguments marked with a question mark can be queried. For example, the
material.name command’s name argument can be queried for its value, returning the
name of the selected materials, if any. If multiple items are selected, multiple names are
returned. The values returned by the query are also those that can be changed by
executing the command.

Using the Command History’s Results Tab
The Results tab of the Command History shows the results of any command executed or
queried from that viewport, including failures and the actual queried values. In this case,
one name will show up under the material.name command result for each material that
is selected. If no items were selected, the command is disabled and (none) is shown in
the results list.

Command History's Results tab, showing a disabled
command, a failed command, a successful execution and

a query.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 38 of 263

Performing a Query
To query a command, simply insert a ? in place of the value. Queries always return raw
values without units, and any square brackets around the question mark are ignored.
What kind of value is returned is determined by the argument’s datatype.

material.name ?
material.name name:?

Argument Datatypes
Numerous datatypes are supported by the various commands in modo. These datatypes
define what kinds of values an argument can take, and include integers, distances, colors,
character strings and so on.

integer
Integers are simple non-fractional numbers, positive and negative. These are commonly
used for on/off switches and choices.

float
Floats are double-precision floating-point numbers, which for scripting means they have
can be fractional, like 3.1415. Due to rounding and general imprecision, these are
generally accurate to about seven significant figures when converting to and from strings.

boolean
Booleans have only two states, on and off. This is represented as an integer value of 1 or
0. There isn’t a unit mode, but text hints are provided for on, off, yes, no, true and false.

percent
Percents are floats with a percent sign attached. The raw value is 1/100th of the value
with units value: 0.1 is equal to 10%. There is also a global preference to allow you to
always work with percentages as floats without units, in which case there is no difference
between the two modes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 39 of 263

distance
Distances are floats with distance units attached, such as meters and feet. When used in
“raw” mode (ie: without square braces), they represent meters.

angle
Angles are floats with angular units. When used with commands, these are always in
degrees. Raw mode omits the degree symbol.

axis
Axis is used to represent X, Y and Z axes. Similar to booleans, this is represented as an
integer value of 1, 2 or 3. Also, there is no unit mode, but text hints are available for x, y
and z.

uvcoords
UV Coordinates are single floats representing part of a UV coordinate. There are no
modes that support units.

time
Times are used to represent durations, and in raw mode are floats representing seconds.
When using units, the time unit system preference is used, but this can be overridden
based on the formatting of the string. If a colon (:) is present, timecode is assumed and
more colons are searched for, such as 01:00:05:16. If a plus (+) is found, film footage
plus frames is assumed in the form of 12+8. If there is an ‘s’, such as 2.3s, then the time
is interpreted as seconds. An ‘f’ can be used to interpret as frames, like 10f. Except for
seconds, these interpretations are based on the current frame rate and time unit system;
seconds are completely independent of the system settings and are preferred for scripting.

color
Colors in raw mode are three floats. When used with units, they can be three floats, three
integers, three percents or three HTML-style hexadecimal numbers, depending on the
current color system. Integer values are clipped to 0 the range of 255.

light
Light Intensity describes the amount of illumination thrown off by a light. The raw
units are in terms of radiance, or W/srm2 (Watts per steradian per square meter). Unit

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 40 of 263

mode can use either this radiance representation or photometric luminance units of cd/m2
(candela per square meter).

memory
Memory is used to describe storage capacity in memory or on disk. The raw mode is an
integer representing the number of bytes. The unit mode will display kilobytes,
megabytes and gigabytes. The standard conversion is used, with 1024 bytes to a
kilobyte, 1024 kilobytes to a megabyte and 1024 megabytes to a gigabyte.

pixel
Pixels are simple integers used to represent positions and sizes in screen coordinates.
The unit mode has the word pixels added after the integer.

string
Strings are simple character strings. There is no special mode with units.

Datatype Examples
The table below lists the names of the various datatypes and example values for the raw
modes and when using units.

Datatype Description Raw Examples Unit Examples
angle Angle 90, 23.4, 180 90 °, 23.4 °, 180 °
axis 3D Axis 0, 1, 2 x, y, z
boolean Boolean 0, 1 on, off, yes, no, true, false
color Color [1.0, 0.5, 1.0] [1.0, 0.5, 1.0], #FF77FF, [255,

128, 255], [100.0%, 50.0%,
100.0%]

distance Distance 1.0, -3.4, 100.2 1.0 m, 1’ 24”, 6 km
float Decimal Number 1.0, 3.6, -28.2, 0.04 (no units)
integer Integer Number 1, 18, -6, 0, 1048 (no units)
light Light Intensity 3.0, 0.5 3.0 W/srm2, 89.5 cd/m2
memory Memory 65536, 1073741824 64 KB, 1 GB, 128.42 MB
percent Percentage 0.152, 1.0, -0.3 15.2%, 100%, -30%
pixel Pixel 128, 20, 8000 128 pixels, 20 pixels
string String Everyone loves modo! (no units)
time Time 4.0, 0.333, 12.0 5 s, 20 f, 01:00:10:13, 120+12
uvcoord UV Coordinate 0.4, 0.7, 0,2 0.1, 0.9, 0.004

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 41 of 263

Complex Datatypes
There is also a special class of complex datatypes. These start with an ampersand (&),
such as &item or &attribute. Each has its own specific format, often an index, name or
path to a specific element. For example, &item types use the item reference, which is
described as a hexadecimal number such as 0x10000001. The &attribute type describes
the path to a form or control, such as formHash/controlIndex or 75478769354:sheet/1.
These datatypes are often used by the various selection commands.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 42 of 263

Querying and the User Interface
The user interface makes heavy use of command queries through the forms system. The
forms system is managed through the Forms Editor and the Forms Viewport. The Forms
Editor is a hierarchical tree of forms, which are groups containing sub-forms and actual
controls. The Forms Viewport uses these forms to display toolbars and properties sheets.
Menus, pies and popovers are also created using the forms system.

Toggle/Tool Buttons
Every control in a form is a command. Commands without queries are simple buttons,
such as the Cube tool:

tool.set prim.cube on

Because the Cube tool uses the ToggleValue command tool.set, a tool button is created.
Similarly, the commands for Vertex, Polygon, Edge, Item and Material selections are also
ToggleValue commands. The select.fromType command takes a list of selection types,
which it tests to see if the first type in the list is the current one, and toggles that one on
and off when the button is clicked.

select.fromType “vertex;polygon;edge;item;ptag” 1
select.fromType “polygon;vertex;edge;item;ptag” 1
select.fromType “edge;vertex;polygon;item;ptag” 1
select.fromType “item;vertex;polygon;edge;ptag” 1
select.fromType “ptag;vertex;polygon;edge;item” 1

When put into menus, those same commands are interpreted as checkmark menu items.

Simple Buttons
Simpler buttons are created using normal commands, such the New command in the File
menu:

scene.new

Any command without a question mark query will create a button, even if that button
needs to open dialog to ask you for values for its arguments. By convention, the label of
a menu item that would open a modal dialog usually ends in ellipsis. For instance, Set
Material… in the Materials menu is defined with the following command:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 43 of 263

poly.setMaterial

Checkmarks
A command queried with the question mark syntax will create different controls
depending on the datatype of the argument being queried. The control may be modified
by hints provided by the command. For example, integer datatypes normally create
integer edit fields, but are often set to create checkmark controls or popups. This creates
the Grid Visibility toggle in the GL portion of the Preferences window:

pref.value opengl.gridVisbility ?

The command pref.value opengl.gridVsibility ? creates
a checkbox in a Forms Viewport

In a menu, this would create a checkmark item. When the control is toggled the question
mark is replaced with the new value and the command is executed. You can see this by
looking in the Command History as you click on buttons in the interface.

Popups and Submenus
Integer arguments that are a list of choices create popups. In menus, each choice
becomes a submenu item, but it is also possible to inline the choices by assigning the
“Inline” style to the control in the Form Editor. The scene.recent command is used to
creates the “Open Recent” submenu in the File menu:

scene.recent ?

The command scene.recent ? creates the Open Recent
submenu in the File menu.

Similarly, the select.symmetryAxis command is queried to create a popup in the main
toolbar.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 44 of 263

select.symmetryAxis ?

The Symmetry popup is created with the command query
select.symmetryAxis ?

In both cases, when an item is selected from the menu, that item replaces the question
mark and the command is executed.

Text and Numeric Edit Fields
Basic text and numeric controls such as string, integer, distance, percent, and so on,
create edit fields. The numeric datatypes often also have minisliders attached for the
numeric controls, such as this command defining a control for the X position of a cube:

tool.attr prim.cube cenX ?

This creates a distance control with a minislider when the Cube tool is active; due to the
fact that the prim.cube argument requires that the Cube tool be active, controls will only
be created if the Cube tool is indeed active. Otherwise, there would be no context for the
control, and thus it will be skipped over entirely with no control being created. For other
commands where the datatype is known but there is no context for the command, the
control will simply be disabled.

As mentioned above, the value of a numeric control replaces the question mark argument
in the command string. This is done using the square bracket syntax described above in
the Command Arguments section, allowing specific units to be applied with the values
to make them more readable.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 45 of 263

Various Cube tool controls created by querying the
tool.attr command

Refiring
Undoable commands that create numeric edit fields with minisliders take advantage of a
feature known as refiring. This means that while the minislider is being dragged, and
until the mouse button is released, only a single command execution will show up in the
undo stack. This is done by executing the command for the first time, but performing an
undo on each subsequent change before executing the command again. This makes the
undo stack more useful for scripting reference and macro recording. The history,
meanwhile, is a more literal recording of every command fired, including the actual undo
and redo operations, while the undo stack keeps track of the affects of undoing and
redoing, but not the undo and redo commands themselves.

For example, let’s look at Color controls. These are created in a similar manner. For
example, there is the Color property in the Material Editor:

item.channel color ?

Here, the color channel of the selected material is queried for a value. Color controls also
support refiring, and changing any component by dragging or through the color picker
causes the command to be executed with the new color triple in place of the question
mark.

A color control from the Material Editor, created
with item.channel color ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 46 of 263

You can see that all these command queries look essentially the same, with the control
being created based purely on the datatype of the argument and any hints the command
itself has provided.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 47 of 263

Command Aliases
Aliasing is a powerful feature that allows commands to be given alternate names with
preset arguments, or even replace existing commands with other commands. This allows
scripts or plug-in commands to entirely replace a built-in command.

Creating and Deleting Aliases
The cmds.aliasCreate command creates a new alias, while cmds.aliasDelete
eliminates an existing alias selected from the Command List in the Command History
viewport.

cmds.aliasCreate alias:string <args:string>
cmds.aliasDelete <force:integer>

To give an existing command an alternate name, simply select the command you want to
be the alias source in the Command List, and use cmds.aliasCreate by entering it in the
Command entry field with the name of the new alias.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 48 of 263

The command cmds.saveList selected from the Command
History's command list.

For example, if we selected cmds.saveList from the Command List and wanted to alias
it as saveCmdList, we could do:

cmds.aliasCreate saveCmdList

Now executing the alias saveCmdList will execute cmds.saveList.

Default Arguments
If we so desire, we can assign default values to the arguments for save.cmdList in our
alias:

cmds.aliasCreate saveCmdList “verbose:1”

Now executing saveCmdList will work just like cmds.saveList, but the verbose
argument is on by default. You can still turn it off by giving it an explicit value when you
execute the command alias. Any or all of the arguments can be set this way, and yet you

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 49 of 263

can still be overridden them manually. This allows aliases to act as a kind of simplified
macro.

Replacing Commands with Aliases
A more powerful, but trickier capability is to replace one command with another one
entirely. This is useful if a new command is created that provides new features on top of
the existing functionality, or you can simply preset values for the arguments of the
existing command. The new command must be completely compatible with the existing
command, or else the application can behave erratically, so care must be taken to ensure
that all works as expected.

To alias one command over another, simply use cmds.aliasCreate on an existing
command. For example, the generic item.name command could be replaced with
item.nameUnique, which ensure that the new item name is unique by adding numbers to
the end. Select the item.nameUnique command in the Command list and then execute
the following command to alias item.nameUnique as item.name:

cmds.aliasCreate item.name

From this point forward, executing item.name will actually execute item.nameUnique.
This works everywhere, even when called internally by the application.

As previously mentioned, this functionality can cause serious problems if used
incorrectly, and care should be taken to ensure that the new alias is completely
compatible with the original command.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 50 of 263

ScriptQuery Interfaces
Command queries provide a fair bit of information about the system state, but they can’t
practically provide information about the individual polygons in a mesh or the weights in
a vertex map. For this lower level information, modo provides a series of ScriptQuery
interfaces.

ScriptQuery interfaces are a command system feature, and are independent of any
scripting language, You can try them out using the Command entry and Results tab of the
Command History. These same principles apply when using a ScriptQuery from within a
script.

 The query Command
The query command provides generic access to these interfaces from any scripting
language. The query command is defined like so:

query service:string
 attribute:string
 #value:*
 <select:string>

The service argument is the name of the service you want to query. Examples are
layersservice and commandservice. A full list of script services is available in appendices
at the end of this document.

The ScriptQuery interfaces each have two parts, attributes, which are the properties being
queried, and selectors, which determines what is being queried.

query Attributes
The attribute argument determines the specific information to be obtained from the
service. Some attributes require a selection, which is described below. An empty string
in the form of “”, {} or [] provides a list of all possible attributes., For example,
executing this query from the Command History viewport will list all of the available
command service attributes:

query commandservice “” ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 51 of 263

query Values
The read-only value argument provides the specific attribute information, and should be
set as a question mark to query the value.

 query Selections
The select argument is only necessary for certain attributes where a context is needed.
This should not be confused with selections that change the state of the application, such
as executing select.layer to change the currently active layer; instead, this selector is used
to let the ScriptQuery interface know which element you want to obtain information
about. In this example, the command.username attribute needs to know which command
to get the username of, so we “select” a command for the query:

query commandservice command.username ? pref.value

In some cases it is necessary to query one attribute before you can query another. For
example, before using any of layerserivice’s vert.??? attributes, you must first “select” a
layer by querying one of the lauer.??? attributes. This ensures that the layer has been
“selected” so that the the vert.??? attributes have something to operate one.

Attribute Names
Attribute names have two parts, the type of selection affected and the specific property of
that selection. command.username gets the username of a command; layer.name in
layerservice operates on a layer selection, and so on. The query command remembers the
last selection, which means that another query can be performed on the same element
without reselecting it:

query commandservice command.argcount ?

Some attributes require selections, but others do not. For example, the “commands”
attribute returns a full list of all commands, and ignores any selection. If a selection is
required but none was provided, or the previous selection doesn’t match the attribute, or
the attribute couldn’t deal with the new selection for some reason, an error is reported.

More about Selectors
Selectors can be a bit confusing, so we’ll clarify it a bit further. Lets say you just started
modo up, which means that all selectors are unset. The following command performs a
query, but since the fourth argument is not set, it does not change the current selector.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 52 of 263

Since the commands attribute does not require a selector, this works fine, returning a
complete list of commands.

query commandservice commands ?

Next we want to get the username of a command. The command.username attribute
requires a command name as a selector so it knows what to operate on. Simply entering
the following will result in an error because you did not specify a selector.

query commandservice command.username ?

To tell need to tell it which command we want to get the username of, we need pass a
command name from the previous commands query as the selector argument.

query commandservice command.username ? tool.set

This now returns the username of the tool.set command, which is what we wanted. If we
want another attribute, such command.help, you can do so in the same manner.

query commandservice command.help ? tool.set

However, since you previously selected tool.set in the command.username query, you can
leave out the selector this time.

query commandservice command.help ?

Thus, you only need to specify the selector if you want to change it to something else.

To summarize, the query command does two things:

• Specifies an attribute and returns the queried value.

• Optionally changes the selector that the attribute operates on.

Using Multiple Selectors
The important bit is that some attributes require multiple selectors. For example, to query
a specific server’s tags from the hostservice ScriptQuery interface, you must specifyboth
a server selector a tag selector. However, you can only pass a single selector in at a time.

You can effectively pass multiple selectors by querying a higher-level attribute first, then
querying the lower-level attribute you are interested in. For example, we can use the

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 53 of 263

server.name attribute of the hostservice ScriptQuery interface to “select” the loader/
$LXOB server.

query hostservice server.name ? loader/$LXOB

We don’t actually care about the results of the query; we just wanted to select loader/
$LXOB. We can ask for hostservice for a tag with the server.infoTag attribute and the
name of the tag we’re interested in as the selector.

query hostservice server.infoTag ? loader.classList

We now have a list of file types that we can split apart and pass to the dialog.fileType
command.

The appendices include information on each ScriptQuery interface and detail the
selections required for each attribute, if any. Multiple selections are common in the more
complex interfaces, such as layerservice.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 54 of 263

Executing Scripts
Before you learn how to create scripts, you will need to know how to execute them. A
number of example scripts are included with modo for you to try.

The @ Syntax
Executing a script is done most easily through the @ syntax, followed by the script hash
(or other unique identifier, such as a filename, depending on the interpreter used) and any
arguments. For example, both of these execute the Unit Sphere config-based macro.
Since there is a space in the name, quotes or curly braces need to be used.:

@”Unit Sphere”
@{Unit Sphere}

Scripts on disk can also be executed with this syntax:

@d:\MyScript.lxm

If you omit the script and simply enter @, a file dialog will open to select a script to run.

Paths to Scripts
Scripts on disk can be referenced by absolute path or relative path. Absolutes paths
contain drive identifiers, such as the example above.

Relative paths contain only the filename of the script, and possibly a path to that
filename, but without the root-level anchoring of a drive identifier. When one of these is
encountered, the relative path is appended to modo install directory, and the script system
tries to load it from there.

Next, the script system will scan all the <import> paths found in the config. These paths
are used to load other config resource files, such as the standard resources in the modo
resrc directory. The installer also creates User Configs and User Scripts directories where
you can put your own configs and scripts.

You can have as many <import> paths as you like by adding them to your user config or
any other imported config. The format is quite simple: just put the absolute path to the
directory to be imported in the import tag.

<import>C:\MyScripts</import>

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 55 of 263

Now the next time you run modo, C:\MyScripts will be used to load config files and will
be scanned for whenever you execute a script with a relative path.

Installing Custom Scripts
The first instinct seems to be to put new scripts in the modo installation directory. This is
not advised, as you should assume that anything in that directory can change at any
moment and without warning.

Instead, you should use the User Configs and User Scripts directories described above.
You can find the path to these by entering the following in the Command Entry.

query platformservice path.path ? user

See Appendix B for more information on platformservice, including the default locations
of these on Windows and OS X.

Generally, you’ll put your scripts into the User Scripts directory, and your related
configuration files (such as custom forms for your script) into the User Configs directory,
although the distinction is only for convenience and you can safely put either type of file
in either directory.

Scripts can then be executed with the @ syntax as normal. Since the user directories are
in the script search path, they will automatically be found.

@MyScript.pl

You can create sub-directories within the user directories as well. Just be sure that when
executing the script you also add the sub-directory to the path.

Passing Arguments to Scripts
A script that takes arguments may provide them after the script name, similar to
command arguments. Argument parsing is specific to the scripting language, and
different syntaxes may apply to different languages.

@MyScript arg1 “arg 2” arg3

script.implicit
Scripts may also be run using the script.implicit command. In fact, it is actually called
when the @ syntax is used. Notice that the arguments for the script are actually a single

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 56 of 263

argument to the script.implicit command, and so they must be wrapped in curly braces or
quotes.

script.implicit MyScript {arg1 “arg 2” arg3}

script.run
A similar command is script.run. This is a strict version of script.implicit that
also requires the name of the script service used to interpret the script. To run a macro
from disk, this syntax might be used:

script.run {macro.textscriptinterpreter:d:\MyMacro.lxm}

Note that since a colon is used as part of the argument value, the entire argument must be
wrapped in curly braces, quotes or square braces so that the script service is not
interpreted as an argument name.

In general, script.implicit or the more common @ syntax is used, and the script
interpreter to use is automatically resolved from the script itself. The script.run
command is only used in rare cases where the interpreter must be directly specified.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 57 of 263

Executing Commands with
Queries Operators

In the previous sections, we covered executing commands by passing arguments to them,
and how you can query commands to get their values. With a script, you could read the
queried value, modify it, and execute the command with the new value.

Often, all you want to do is increment the value, or set it to it’s minimum or maximum
value. It seems kind of silly to create an entire script every time you want to do such a
common operation. Query operators, or modified queries, allow you to easily execute
a command by adjusting the queried value of one of it’s arguments through some simple
operators.

Support
As with normal queries, this feature works only on queriable arguments.

Query operators can be used anywhere that normal command executions are supported,
including forms, scripts and input remapping.

The operators only function on arguments matching any of the following criteria:

• Arguments with numeric datatypes, including integers, floats, distances, angles, lights,
time, uvcoords, percent, memory, pixel and axis. The math and step operators always
apply. If the argument’s range is capped, the ?min and/or ?max operators may also be
supported.

• Arguments that define their control type as a popup. This includes arguments that
provide TextValueHints. These implicitly support ?min and ?max operators.

• Arguments with the boolean datatype. Applying the math or step operators simply
toggles the boolean’s state, while ?min sets it to 0 and ?max sets it to 1.

Addition and subtraction wuery operators can be used on both raw values and with units.
To use with units, include the operator before the square braces. This is most useful for
dealing with angles in degrees instead of their raw mode, radians.

tool.attr prim.cube segmentsX ?+[45.0]
tool.attr prim.cube segmentsX value:?-[45.0]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 58 of 263

Math Operators
Query operators support adding, subtracting, multiplying and dividing values.

Adding and Subtracting Values
Basic math can be performed on arguments with numeric datatypes. This is done with
the ?+ and ?- operators, followed by a number. A command such as this could be used to
increase the number of segments on the X axis of the Cube primitive tool by 2:

tool.attr prim.cube segmentsX ?+2

Scaling Values
Numeric values can be scaled using ?* and ?/ followed by a number. This works
similarly to adding and subtracting values. This command would double the size of the
Cube primitive tool on the Y axis:

tool.attr prim.cube sizeY ?*2

Step Operators
Numeric argument values can also be incremented or decremented in steps. These steps
are the same as when clicking and dragging on a minislider, and scale based on the size
of the value.

Stepping Values
Stepping is done with ?+ and ?-, but without adding a number to the end. Here we’ll
move the Cube primitive tool’s center into the Z axis using the standard step.

tool.attr prim.cube cenZ ?-

Stepping can also be used on boolean values, which, simply toggles the value on or off.

Coarse and Fine Steps
Holding down the ctrl or shift keys while dragging a minislider control will perform finer
or coarser adjustments. This is also supported as a query operator.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 59 of 263

Fine steps are done with ?<+ and ?<-, while coarse steps are done with ?>+ and ?>-.
This again moves the Cube primitive tool’s center into the Z axis, but now using a fine
step.

tool.attr prim.cube cenZ ?<-

Minimum and Maximum
Many command arguments are limited to a specific range. For example, the number of
segments for a primitive tool can’t go negative, and there are a fixed number of possible
options for arguments providing TextValueHints or which directly define popups. ?min
and ?max are used to jump to an argument’s minimum or maximum value,.

tool.attr prim.cube segmentsX ?min

Boolean Arguments
Booleans arguments a specially handled. Booleans are often represented as simple
checkmark buttons in the interface. Using any of the ?+, ?-, ?<+, ?<-, ?>+ or ?>- will
simply toggle from true to false and back again. This makes it easy to toggle boolean
arguments on and off.

List Arguments
There are many cases where a command’s argument is represented as a list of choices.
The argument datatype is usually an integer or string, and querying with ? will return the
appropriate value. In the UI, these arguments often appear as popups or mutually
exclusive buttons.

The query operators can be used to step forward and backward through a list. When used
in this way, the list argument is treated as an integer. ?+, ?-, and the coarse and fine
variants can be used to change to the next or previous option in the list. When the
beginning of the list is hit with one of the ?- variants, it will loop back to the end of the
list. Similarly, the ?+ variants will cause it to loop back to the beginning. If you would
prefer to stop at the end or beginning of a list, you can use ?+1 or ?-1, as the ?+n and ?-n
operators do not loop.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 60 of 263

Query Operators Table
This table lists all of the query operators for easy reference. In this example, the
argument is of the distance datatype with a minimum value of 0.0 m and a maximum
value of 100.0 m. The Modified Value column shows the results of the Example column
applied to a base value of 40 m.

Description Operator Raw Example Units Example Modified Value

Query ? ? (not applicable) (not applicable)
Add ?+n ?+5.0 ?+[16’4.84”] 45.0 m
Subtract ?-n ?-2.0 ?-[6’6.72”] 38.0 m
Multiply ?*n ?*2.0 (not applicable) 80.0 m
Divide ?/n ?/4.0 (not applicable) 10.0 m
Step Up ?+ ?+ (not applicable) 40.5 m
Step Down ?- ?- (not applicable) 39.5 m
Fine Step Up ?+< ?+< (not applicable) 40.1 m
Fine Step Down ?-< ?-< (not applicable) 39.9 m
Coarse Step Up ?+> ?+> (not applicable) 45.0 m
Coarse Step Down ?-> ?-> (not applicable) 35.5 m
Minimum ?min ?min (not applicable) 0.0 m
Maximum ?max ?max (not applicable) 100.0m

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 61 of 263

Startup Commands
On startup, modo can run any commands you like, including scripts, which can perform
any operation you like. The list of startup commands is stored in the config, although
none are defined by default.

<StartupCommands> and <Command>
The <StartupCommands> tag contains any number of <Command> tags, which in turn
represent the commands themselves. These commands will be executed in the order they
are listed. Startup commands are executed at the very end of the startup process, just
before the input loop starts.

This example creates a simple hello on startup through the dialog.??? series of
commands.

<atom type=”StartupCommands”>
 <list type=”Command”>dialog.setup info</list>
 <list type=”Command”>dialog.msg “Hello!”</list>
 <list type=”Command”>dialog.open</list>
</atom>

Scripts as Startup Commands
Any command can be executed as a startup command, including scripts. Startup
commands are intentionally executed before license checking occurs. This allows you to
perform stand-alone operations before the user begins running. If you want your script to
run autonomously, you’ll want to be sure to prefix commands with one or two
exclamation point to suppress any dialogs they might open.

<atom type=”StartupCommands”>
 <list type=”Command”>@MyScript.pl</list>
</atom>

If run without a license, modo will open the license dialog will open after the startup
commands finish executing. You can issue app.quit as a startup command to quit before
the license dialog appears.

<atom type=”StartupCommands”>
 <list type=”Command”>@MyScript.pl</list>
 <list type=”Command”>app.quit</list>
</atom>

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 62 of 263

Rendering with Startup Commands
See the section on Network Rendering for information about using startup commands for
fire-and-forget rendering.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 63 of 263

User Values
Sometimes scripts need to present an interface, as well as store a persistent state. In
modo, this is accomplished with user.value and its associated commands.

user.value
The user.value command allows these user values to be queried and modified. These
values can be stored in the config file, so they will persist between sessions, or they can
exist only temporarily until modo exits, or momentarily, meaning until the script exits.

user.value name:string ?value:*

The name argument is the name of the previously defined user value, where value is the
value of its queriable, dynamic datatype. Since the value argument is required, a dialog
will open if the it isn’t set. This allows for simple user interfaces for asking for single
values. Since the argument is queriable, it can also be inserted into forms in the main UI.

Creating Values: user.defNew
The user.defNew command is used to define new user values. The new value’s name
cannot already be defined, and is case sensitive. The type is optional, and will default to
the string datatype if none is entered. The datatype is provided as a string, such as float,
distance, integer or string.

user.defNew name:string <type:string>
 <life:{config|temporary|momentary}

This example defines a new user value named RandomSel.coverage using the percent
datatype for a script that randomly selects a certain percentage of polygons in the current
layer:

user.defNew RandomSel.coverage percent

User Value Life
The life argument of user.defNew determines how the user value is stored. There are
three life spans available, config, temporary and momentary.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 64 of 263

Config
The default life span is config. This means that the user value will be saved in the config
file, and will persist between sessions. If you were to quit and restart modo, this user
value would still exist. This is good for user values that you want to use in forms.

Temporary
The temporary life span creates a user value that will exist only until you quit modo. No
state is saved in the config, so the next time you run modo the user value will not exist.
This is good for user values that only need to exist between runs of a script, but not
across work sessions.

Momentary
The final class is momentary. These user values will exist only until the command that
spawned them returns. This is useful in scripts when you want to present the user with a
dialog for choosing a value, but do not want them to last once the script has finished
executing. Due to their volatility, these must be created from within scripts to be of any
use.

Changing and Querying Values: user.value
It is then set it to 50% coverage through user.value, either using raw values or with
square braces for values with units.

user.value RandomSel.coverage 0.5
user.value RandomSel.coverage [50 %]

Inside the selection script you can read that value back out using the question mark
syntax, which in this case will return 0.5:

user.value RandomSel.coverage ?

Editing Definitions: user.def
This isn’t quite optimal. If you were to put this value into a forms view, you would see
that the name is displayed as the rather unfriendly “RandomSel.coverage”. It would also
let you enter negtive numbers, which doesn’t make sense for selections. Similarly,
there’s no point in setting the value above 100%. This is where user.def comes in.

user.def name:string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 65 of 263

 attr:{username|type|list|argtype|min|max|action}
 ?value:string

Human-Readable Labels: username
The user.def command allows extra properties of a user value to be read and set. First
we’ll change the username:

user.def RandomSel.coverage username “Coverage”

Fixed Ranges: min and max
Then the minimum and maximum number coverage:

user.def RandomSel.coverage min 0.0
user.def RandomSel.coverage max 1.0

Or if you prefer, as percentages:

user.def RandomSel.coverage min [0.0 %]
user.def RandomSel.coverage max [100 %]

Now the nice label “Coverage” will appear in a form and it cannot be given a value
below 0% or above 100%.

There are a few other options here that haven’t used in these examples. type can be used
to change the datatype of the value, or to simply read the current datatype back out..

Choices: list
The list feature is useful for creating a list of choices for an integer-type value. Each
option in the list is separated by a semicolon, with the first option mapping to 0, the
second to 1, and so on. This example lets you pick from “top”, “bot”, “left” and “right”,
which would be read from a script as 0, 1, 2 and 3 respectively. Note that it is still
possible to set out-of-range values by specifying an integer directly instead of using one
of these keywords, so the script must be able to handle those cases.

uesr.defNew AlignWithEdige integer
user.def AlignWithEdge list top;bot;left;right

If this value was opened in a dialog by omitting the value argument:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 66 of 263

user.value AlignWithEdge

Then a popup is created. However, the popup shows these lowercase, internal names; its
not really the kind of thing you want to have to deal with in a user interface. The argtype
option allows an ArgumentType entry from the config to be used to provide human-
readable names for the options:

user.def AlignWithEdge argtype “AlignWithEdge-mode”

Creating an ArgumentType Config Entry
The AlignWithEdgeTypes-mode entry would exist in a CommandHelp block in a config
file, and might look this:

 <atom type="CommandHelp">
 <hash type="ArgumentType" key="AlignWithEdge-mode@en_US">
 <atom type="UserName">Align With Edge</atom>
 <hash type="Option" key="top">
 <atom type="UserName">Top</atom>
 <atom type="Desc">Top edge</atom>
 </hash>
 <hash type="Option" key="bot">
 <atom type="UserName">Bottom</atom>
 <atom type="Desc">Bottom edge</atom>
 </hash>
 <hash type="Option" key="left">
 <atom type="UserName">Left</atom>
 <atom type="Desc">Left edge</atom>
 </hash>
 <hash type="Option" key="right">
 <atom type="UserName">Right</atom>
 <atom type="Desc">Right edge</atom>
 </hash>
 </hash>
 </atom>

The @en_US at the end of the name is the language type, in this case US English, which
is also the default fallback for all languages. The Option entries identify each option by
the internal name given by the list property of the user value, and provides a username
and description for each. A username for the entire argument type is also available.

Note that all of the key values are case sensitive.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 67 of 263

Now when the command dialog is opened, nice human-readable names like “Bottom”
and “Left” are shown, instead of the more imposing “bot” and incorrectly capitalized
“left”.

Procedural Usernames: listname
It is generally preferable to use the argtype property to set the usernames for the list
property, but this is only useful for static lists. Dynamically-generated lists can set
usernames via the listnames property. Like lists, it takes a semicolon-delimited list of
strings. Two semicolons can be used to insert a single semicolon into the name. Any
characters are allowed in the name string.

user.def AlignWithEdge listnames “Top;Bottom;Left;Right”

list Considerations
Lists are meant to for internal strings that are not displayed to the user directly. The user
strings are provided through the argtype property and ArgumentType config entries
described above, or the listname property, and can contain any characters. The argtype
property has the added advantage of supporting translation into other languages without
modifying the script itself.

The internal strings, however, have specific limits on the kinds of characters that are
allowed. Some characters are used for special behaviors, while others are removed for
simplified parsing and management.

The following characters are reserved and cannot be used anywhere in the string:

• +
• &
• %
• @
• =
• [space]

Attempting to use these will fail or result in unpredictable behavior.

Furthermore, the name cannot start with a number, as it is possible to select entries in the
list by index instead of by name, and a leading number would confuse it.

Responding to Value Changes: action
The most interesting of all the user.def options is action. Whenever the value is
changed through the user.value command, the action associated with it will be triggered.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 68 of 263

This action can be any command or script. For example, we could have our random
selection script run every time the minislider is tweaked in a form view:

user.def RandomSel.coverage action “@RandomSel”

This is a very powerful feature. One of the functions of the commands and forms
systems is refiring, and is detailed in the section Querying and the User Interface
earlier in this document. In the case of the RandomSel script, this means that you can
drag the minislider and watch the selection interactively update; the script feels just like
its part of the application.

Creating User Values from within scripts
User values used in forms are stored in configs. You can have a script create these user
value directly rather than shipping them in a config with your script.

1) @perl
2)
3) # See if the user value exists
4) if(!lxq(“query scriptsysservice userValue.isDefined ?

MyValue”)) {
5) # Value doesn’t exist; create it with calls to user.defNew
6) # and user.def, and give it an initial value with
7) # user.value
8) lx(“user.defNew MyValue integer”);
9) lx(“user.def MyValue min 0”);
10) lx(“user.def MyValue max 10”);
11) }
12)
13) # See if a value has been set yet
14) if(!lxq(“query scriptsysservice userValue.isSet ?

MyValue”)) {
15) lx(“user.value MyValue 5”);
16) }

An important detail of this example is that it checks to see if the value is set before
calling user.value. This is because user.defNew and user.def are side effect commands --
they are not undoable, but user.value is so it can support refiring. This means that if the
user undoes the script, the value will be restored to its default, while the definition would
remain, and future executions of the script would have the uninitialized value instead of
the default you intended.

If you simply need the user value to exist, you can just create it directly with user.defNew.
To avoid the error dialog that would normally appear, you can use the ! or !! syntax to
suppress it. This has limitations, however: the datatype of the existing value might not

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 69 of 263

match the value you want; you won’t want to just replace the existing user value; and
changing the properties with user.def might cause the value to be reset.

1) @perl
2)
3) # Just create the user value, ignoring any errors (like if it
4) # already exists. This might cause unexpected behavior if the
5) # value exists, but is of a different datatype than what you
6) # expect.
7) lx(“!user.defNew MyValue integer”);

You can also use scriptsysservice to tell if the use value has been set yet and what it’s
lifespan is. The scriptsysservice is explained in more detail in Appendix G.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 70 of 263

Dialogs
Scripts can present various dialogs to request user input, including information, warning,
confirmation, yes/no/all/cancel, file open, file save and directory dialogs. These are all
handled through the dialog.??? series of commands.

Information Dialogs
The first step to creating a dialog is to call dialog.setup to determine the dialog type.

dialog.setup style:{info|warning|error|okCancel|yesNo|
 yesNoCancel|yesNoAll|yesNoToAll|saveOK|
 fileOpen|fileOpenMulti|fileSave|dir}

Info, Warning and Error dialogs display notification dialogs with a single “OK” button.
OK/Cancel and Yes/No dialogs have two buttons are used for simple confirmations. Yes/
No/Cancel, Yes/No/Yes To All/No To All, and Yes/No/No To All/Cancel dialogs provide
similar capability for loops. Save/Don’t Save/Cancel is used for save confirmation
dialogs, such as when a file already exists or if it hasn’t been saved before being closed.

There are also options to create Open Single File, Open Multiple File, Save File and
Directory dialogs, which will be explained latter.

Creating a Yes/No Dialog: dialog.setup
A Yes/No dialog has two buttons labeled Yes and No. To create a one, we might use this
command:

dialog.setup yesNo

The dialog.title command lets you set the string that appears in the dialog’s title bar.
This can simply be a static string, or it can be obtained from a message table stored in a
config. Message table lookups use the format @table@msg@ for a dictionary lookup, or
@table@@id@ for an integer ID lookup. Using message tables allows the config files to
be translated for different languages without editing the script itself.

Setting the Title: dialog.title

dialog.title “Confirm Operation”

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 71 of 263

Setting the Message: dialog.msg
To set the body of the dialog, we use dialog.msg. Again, the message can be either a
static string or a message table lookup.

dialog.msg “Perform the operation?”

Using Message Tables: dialog.msg and dialog.msgArg
Message table strings may have arguments in the form of %1, %2, etc. These can be set
with dialog.msgArg, which takes the argument number, the datatype and the value to set
it to.

dialog.msg “@table@msg@”
dialog.msgArg 1 string “test”

Providing Help: dialog.helpURL
A help URL can also be included. This normal points to a help file on the local system,
but can be any valid URL. When set, a ? button will appear in the dialog, and clicking it
will go to that URL.

dialog.helpURL “http://www.google.com”

A default value can be set for the dialog in case the dialog is suppressed. For files and
directories, this will be displayed as the path in the dialog. The dialog.result
command is used to both set the default value and to read out a new value. This does not
need to be called for Info, Warning or Cancel dialogs, as they have only one button and
thus always return ok.

Text hints are used when setting or reading dialog.result’s value. This can be one of
cancel, no, ok, yesToAll, or noToAll. The hint yes can be used as a synonym for ok when
setting the default value, but ok will always be returned, as both resulve to the same
integer. Be careful when working with Yes/No and OK/Cancel dialogs, as while yes and
ok are both the same value, no and cancel are not.

dialog.result ok

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 72 of 263

Dialog Result Codes Table
Here’s a table of the possible dialog result codes from the informational dialogs.

Type Name/Buttons Result Code
cancel no ok yesToAll noToAll

info Info (OK only) (none) (none) OK (none) (none)

warning Warning (OK only) (none) (none) OK (none) (none)

error Error (OK only) (none) (none) OK (none) (none)

okCancel OK/Cancel Cancel (none) OK (none) (none)

yesNo Yes/No (none) No Yes (none) (none)

saveOK Save/Don’t Save/
Cancel

Cancel Don’t Save Save (none) (none)

yesNoCancel Yes/No/Cancel Cancel No Yes (none) (none)

yesNoAll Yes/No/Yes To All/
No To All

(none) No Yes Yes To All No To All

yesNoToAll Yes/No/No To All/
Cancel

Cancel No Yes (none) No To All

Display the Dialog: dialog.open
Now that all the dialog information is set, it can be presented with a call to dialog.open.

dialog.open

Get the Result: dialog.result
Once the dialog has been dismissed, dialog.result can be queried to see which button
was pressed.

dialog.result ?

Yes/No Dialog Perl Script Example
This simple perl script demonstrates opening a Yes/No dialog and testing which button
was pressed.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 73 of 263

1) #! perl
2)
3) # Setup the dialog
4) lx(“dialog.setup yesNo”);
5) lx(“dialog.title \”Confirm Operation\””);
6) lx(“dialog.msg \”Perform the operation?\””);
7) lx(“dialog.result ok”);
8)
9) # Open the dialog and see what button was pressed
10) lx(“dialog.open”);
11) my $result = lxq(“dialog.result ?”);
12) if($result eq “no”) {
13) # User hit cancel
14) }

Note that the dailog.open command fails with an abort code if the user hits a “no” or
“cancel” style button. In Perl and Lua you can simply ignore the error code, but in
Python this will throw an exception, which you will need to catch and optionally ignore,
This behavior allows the command to be more generally tested for success or failure
without using dialog.result.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 74 of 263

File Dialogs
Creating a file or directory dialog is very similar. The fileOpen type opens a dialog
asking for a single file, while fileOpenMulti allows for multiple selection within the file
dialog. The fileSave type is similar to fileOpen, but warns if the file already exists. The
dir type opens a dialog for selecting a directory.

In all cases, the dialog.result command can be used to set the initial path for the dialog.
After the dialog is dismissed, dialog.result can be queried for the final path chosen. In
the case of fileOpenMulti, this will be an array of paths.

Open File Dialog Setup
The basic setup for a file dialog is just like that of an information dialog.

dialog.setup fileOpen
dialog.title “Select a file to open...”

Setting the Filetype: dialog.fileType
Open dialogs use a file type to filter the load dialog. A file type is the class of data to be
loaded or saved, such as an image or an object. Save dialogs use the file type to provide
a list of accepted file formats, plus a default file format. A file format is a specific format
within that file type, such as a Targa or JPEG image, or an LXO or LWO object.

The file type is set with dialog.fileType, where the argument is one of the known file
types, such as text, script, config, macro, image, and so on. Also, the name of any
specific loader plug-in can also be used, such as $LWO. A list of loaders can be obtained
with the hostservice ScriptQuery interface. Furthermore, there is a special $temp file
type, which can be filled in with dialog.fileTypeCustom. If no filetype is set, all files
will be shown.

dialog.fileType text

The file type of a specific loader can be found by querying its loader.classList tag from
the hostservice ScriptQuery interface. You must first “select” the loader before you can
query it with server.infoTag. This example queries the LWO2 loader for its class.

query hostservice server.name ? loader/$LWO2
query hostservice server.infoTag ? loader.classList

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 75 of 263

Note that the class list is a space-delimited list of classes. Only one class should be
passed to dialog.fileType, so you’ll need to extract the first one. In perl, this can be done
using split().

1) # “Select” the loader we want to query the tags of
2) lxq(“query hostservice server.name ? loader/\$LWO2”);
3)
4) # Query the loader.classList tag
5) my $classList = lxq(“query hostservice server.infoTag ?

loader.classList”);
6)
7) # Split the list at spaces
8) my @classes = split(' ', $classList);
9)
10) # Setup the dialog with the first file type in the list
11) lx(“dialog.setup fileOpen”);
12) lx(“dialog.fileType @classes[0]”);
13) lx(“dialog.open”);

Setting a Default Path: dialog.result
The path the user has choses is returned by dialog.result, but this can also be used to
set a default open or save path. This can be a full path with filename, or just a directory.

dialog.result “c:\MyPath\MyFile.txt”
dialog.result “c:\MyPath\”

Finally, the dialog is opened as normal with dialog.open and the chosen path is read out
by querying dialog.result. The latter will fail if the user canceled the dialog. For
more information on handling command execution failures, see the specific scripting
systems for how to handled for command failure.

dialog.open
dialog.result ?

Multi-Select File Requester Perl Script Example
This perl script demonstrates the use of a multi-select file requester.

1) #! perl
2)
3) # Setup the dialog
4) lx(“dialog.setup fileOpenMulti”);
5) lx(“dialog.title \”Select Text Files\””);
6) lx(“dialog.fileType text”);

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 76 of 263

7) lx(“dialog.result \”c:\\InitialPath\””);
8)
9) # Open the dialog and get the list of files the user selected
10) if(!lx(“dialog.open”)) {
11) # User canceled the dialog
12) }
13)
14) my @files = lxq(“dialog.result ?”);
15) foreach my $f (@files) {
16) # Process each filename
17) }

Save Dialog: dialog.fileSaveFormat
A save dialog is identical to an open dialog, but adds dialog.fileSaveFormat to select
a specific default file format within the file type (as set by dialog.fileType) to save as.
This format will be selected by default when the dialog opens, and the one chosen by the
user can be read by querying dialog.fileSaveFormat.

The file format can be set either by its default extension, which is the default behavior, or
by the file format’s internal name. The list of available formats can be found using the
hostservice ScriptQuery interface described in Appendix C. Which method is used is
determined by the second argument. Either way, both the extension and format can be
read out by querying dialog.fileSaveFormat.

In this example, a save dialog is set up to use the image file type, and a default path is
chosen.

dialog.setup fileSave
dailog.result “c:\InitialPath\”
dialog.fileType image

A list of file types for a particular format can be obtained by querying the hostservice
server.infoTag attribute with the saver.outClass selector, similar to how loader filetypes
are queried.

query hostservice server.name ? saver/$Targa
query hostservice server.infoTag ? saver.outClass

See the appendices for more information on the hostservice ScriptQuery interface, and
the dialog.fileType section above for examples on processing the class list for a load
dialog.

Back to the example, the Targa image file format is then choses as the default save
format. This can be done either by the extension:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 77 of 263

dialog.fileSaveFormat tga extension

Or it can be done by the format’s name:

dialog.fileSaveFormat $Targa format

Next the file dialog is opened. This will fail if the user hit canceled, at which point a
script could abort the operation.

dialog.open

Finally, the path the user entered and the format and extension the user chose are ead.

dialog.result ?
dialog.fileSaveFormat ? format
dialog.fileSaveFormat ? extension

Custom File Types: dialog.fileTypeCustom
It is also possible to define a custom file type, called $temp, with any file formats you
like through the dialog.fileTypeCustom command. Initially, this file type contains no
formats, and is reset by dialog.setup. You can call dialog.fileTypeCustom multiple
times to add any number of formats to the type. The first format added is automatically
selected as the default file format.

The command takes four arguments. The first is a name for the format, such as “arga or
lwo. This is an internal name for use by the script, and can be read out after the dialog is
dismissed by querying dialog.fileSaveFormat. The second argument is the username
for the format, which will be displayed in the dialog and may contain spaces, mixed case,
and so on.

The final two arguments are the load pattern and the save extension. The pattern is a
semicolon-delimited list of file extensions that the particular file format supports. These
are used to filter the load dialog. Each extension must include a leading asterisk and
period for the filtering to work properly, such as *.jpg;*.jpeg.

The save extension is a single extension that will automatically be appended to the end of
the filename selected in a save dialog. The period should not be entered, just the
extension like lwo, tga or txt. You only need to specify the load pattern or save format,
depending on what kind of dialog you are opening.

Here is a simple perl script example that lets the user decide if it should save some
information as either an XML file or an ASCII text file. The script adds two file formats,

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 78 of 263

xml and text, as a custom file type, and after the dialog closes it retrieves the file name,
format and extension of the format the user chose.

1) #! perl
2)
3) # Setup the save dialog
4) lx(“dialog.setup fileSave”);
5) lx(“dialog.title \”Save Data\””);
6) lx(“dialog.result \”c:\\InitialPath\””);
7)
8) # Add two file formats, xml and text
9) lx(“dialog.fileTypeCustom xml \”XML\” \”*.xml\” xml”);
10) lx(“dialog.fileTypeCustom text \”ASCII Text” \”*.txt;*.text\”

txt”);
11)
12) # Open the dialog
13) if(!lx(“dialog.open”)) {
14) # User canceled the dialog; abort
15) }
16)
17) # Get the filename from the dialog
18) my $filename = lxq(“dialog.result ?”);
19)
20) # Get the file format, which will be xml or text
21) # (the first argument passed to dialog.fileTypeCustom)
22) my $format = lxq(“dialog.fileSaveFormat ? format”);
23)
24) # Get the format’s extension, which will be xml or txt
25) # (the last argument passed to dialog.fileTypeCustom)
26) my $ext = lxq(“dialog.fileSaveFormat ? extension”);

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 79 of 263

Message Tables
Scripts need to be able to communicate with the user in a variety of languages. This
makes hard-coding strings in your application unwise, as you then need to manually edit
your code whenever you want to add a new localized string.

To avoid this issue, modo uses message tables. These are stored in config files; you can
find many examples in the modo resrc directory (all the files starting with “msg” contain
message tables).

Message Table Config Format
To use message tables in your script, you first need to create a message table config.
Here is a simple example:

<?xml version="1.0"?>
<configuration>
 <atom type="Messages">

 <hash type="Dictionary" key="myMessages">
 <hash type="E" key="HelloUser">1</hash>
 <hash type="E" key="Goodbye">2</hash>
 </hash>

 <hash type="Table" key="myMessages.en_US">
 <hash type="T" key="1">Hello %1!</hash>
 <hash type="T" key="2">Bye!</hash>
 </hash>

 </atom>
</configuration>

Dictionaries
Message tables consist of two parts, an optional Dictionary and the Table itself, all
enclosed inside a Message atom. The dictionary creates a mapping between internal
strings that you use directly in your script, and table IDs used for message lookup.
Although a dictionary isn’t required, it is much easier to deal with messages in your code
when they are associated with a name instead of a number.

In the example above, you can see that the dictionary includes multiple “E”-type hashes.
The key of those hashes is the internal name, while the value is the numeric ID that it
maps to in the table.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 80 of 263

Tables
The tables translates message IDs into localized, human-readable strings. Although you
will have only one dictionary that maps your internal strings to IDs, you may have as
many tables as you want, with one for each language. There is no requirement that all of
these tables be in the same file, either. This allows anyone to create localized strings for
your script by simply drop the new config into their User Resources directory.

The dictionary and table must have the same name, which in the example here is
myMessages. Note though that the Table’s key also includes the suffix .en_US. This is
the language that the table represents, in this case US english. The lists of language
codes are standardized using the ISO-639 language string followed by an optional
ISO-3166 country code, which allows en_UK to spell “color” as “colour”, for example.
If the localization requested cannot be found, the system will default to en_US when
performing lookups.

The table itself contains a number of “T”-type hashes, with the ID of the message as the
key. The value contains the actual string to present to the user.

Substitutions
Messages also support substitution strings, or arguments. These take the form of %1,
%2, etc.. They can be in any order within the message. These are replaced at runtime
with strings representing whatever information you feel appropriate.

Special Characters
Messages are standard text strings, but should be restricted to normal characters. Some
special XML-friendly character codes are also defined. Note that other XML character
codes will not work.

XML Code Character Description
< < Less Than
> > Greater Than

& & Ampersand
' ‘ Apostrophe

Using Message Tables
Once you have created a message table, you can drop it into your User Resource
directory so that modo can recognize it. You can use these tables in many places that you
can type in values that would be stored in the config, such as the names of forms or
controls. To do so, you use the format @table@dict@ or @table@@id@.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 81 of 263

To use the messages within your script, you can use the messageservice ScriptQuery
interface. For example to obtain the value of the message with ID 2 in our test table, you
can enter the following query:

query messageservice msgfind ? @myMessages@@2@

This automatically finds the message that best matches the language code, which in our
case returns the string “Bye!”.

We can get messages by name as well:

query messageservice msgfind ? @myMessages@@HelloUser@

This returns the string “Hello %1!”. That’s neat, but really we want to replace that %1
with something more useful. For that we use msgdub:

query messageservice msgsub ? “Bob”

This now returns the string “Hello Bob!”. The %1 in the message we last found with
msgfind was replaced with the string “Bob” by msgsub. You can keep calling msgsub for
each argument in the message, each time getting back a more and more complete
message until there are no more substitutions left to make.

If you just want to do this all in one call, you can use msgcompose:

query messageservice msgcompose ? {@myMessages@@HelloUser@ {Bob}}

msgcompose takes a table/dict or table/id pair followed by an argument list. Each
argument is wrapped in curly braces, thus allowing quotes and other curly braces to easily
be embedded in the string.

You can use these functions to provide human-readable, localized strings to your users
instead of making them deal with whatever spoken language you happen to have coded
you script in.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 82 of 263

 Languages
modo supports not only simple macro recording, but also more advanced, scripting
through the perl, lua and python scripting languages. All of these make heavy use of
commands to interface with modo.

Macros
Macros are the simplest kind of script. They are simple linear lists of commands that are
executed in order. If any command fails for any reason, the entire macro is aborted.
Macros can take arguments, but they cannot perform any branching or loops.

One of the easiest ways to create a macro is to use the Macro Recorder. Simply turn it
on and start using the application, and all the actions will be recorded in a script up to the
maximum number of undos available. The macro can be replayed, saved to disk or stored
in the config. Saved macros server as an excellent starting point for creating new scripts.

File Macros
Macros can exist either as their own discrete files or as part of a configuration file. File
macros are simple ASCII text files, usually with the extension .lxm, although this is not
strictly required.

Macro Header
In order for the interpreter to identify the file as a macro, it must begin with this line:

#LXMacro#

Macro Comments
The number sign (#) character can also be used to insert comments into the script. It
must be at the beginning of a line, without any leading white space. Blank lines are
automatically skipped. Any other line is considered a command and will be executed by
the macro interpreter.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 83 of 263

Example Macro: MyMaterial.lxm
This simple macro changes the name of the selected material to MyMaterial.

1) #LXMacro#
2)
3) # Set the name of the selected material to MyMaterial
4) material.name MyMaterial
5)
6) # Switch to “item” selection mode.
7) select.typeFrom “item”

Executing a File Macro
If this script was saved in C:\MyMaterial.lxm, it could be executed with:

@d:\MyMaterial.lxm

Upon execution, the selected material would be renamed to MyMaterial, and the selection
mode would be switched to material.

Macro Arguments
Macros support arguments, which are used as simple substitutions. These are in the form
of a percent sign followed by a number, starting from 1, such as %1, %2, %3, etc. %1
will be replaced with the first argument, %2 the second, and so on. Anything else
following a % is ignored. %% will be replaced with a single %.

Example Macro: Wrapping material.name
We can make our material script into a simple wrapper for material.name using a %1:

1) #LXMacro#
2)
3) # Set the name of the selected material to %1
4) material.name %1
5)
6) # Switch to “item” selection mode.
7) select.typeFrom “item”

Executing a Macro with Arguments
If this script was saved in C:\RenameMaterial.lxm, it could be executed with:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 84 of 263

@d:\RenameMaterial.lxm “New Name”

Upon execution, %1 is replaced with “New Name”, including the quotes. This causes
material.name command is fired as such:

material.name “New Name”

Note that the %1 can be anywhere outside a comment and it will be replaced; it need not
be in the argument portion of a command string.

Config Macros
Config macros are similar to file macros, but these are stored in the config file. Both
macros are executed the same way and support the same features.

Config Macro Format
This is the macro to create a unit sphere, which can be found in resource:macros.cfg:

<atom type="Macros">
 <hash type="Macro" key="Unit Sphere (Thu Jan 15 10:03:09 2004)">
 <atom type="UserName">Unit Sphere</atom>
 <list type="Command">tool.set "prim.sphere"
"on" "0"</list>
 <list type="Command">tool.reset "prim.sphere"</list>
 <list type="Command">tool.apply</list>
 <list type="Command">tool.set "prim.sphere"
"off" "3246712"</list>
 </hash>
</atom>

Configs are XML files, which requires all the quotes in the commands to be replaced
with " There is an outermost Macro block can contain any number of Macro
hashes, each having a unique key. Here, the key Unit Sphere (Thu Jan 15 10:03:09 2004)
was derived from the script’s username and the current data and time, but anything can be
used as long as its unique. These Macro hashes define each macro.

A Macro hash block contains a UserName atom, which is used to display a human-
readable name in the Scripts tab of the Command History.

The remainder of the block contains Command list entries. Each of these contains a
single command to execute. As mentioned before, the quotes have been replaced with
" for XML compliance.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 85 of 263

As with file macros, config macros can support argument substitution through the use of
%1, %2, etc.

Executing Config Macros
Config macros are executed with the @ syntax, just like file macros. Since they exist in
config files, they can’t be referenced by filename. Instead, a config macro is executed by
using either it’s username or it’s hash. Here there are spaces in both the name and the
hash, so we need to wrap them in quotes or curly braces.

@”Unit Sphere”
@”Unit Sphere (Thu Jan 15 10:03:09 2004)”

Imported versus User Config Macros
There are two kinds of configs: User and Imported. An Imported config is one that
ships with modo, or is otherwise loaded from a config referenced by an <import>
directive in another config. User macros exist in your own user config.

Where a config macro is loaded from determines if it can be edited (renamed and deleted)
or not. Since changes are only saved to your user config, only macros stored in the user
config can be edited from the Command History’s Scripts tab. Imported macros will
have locks on their icons in the Scripts tab.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 86 of 263

Perl Scripts
modo’s scripting language of choice is Perl. Perl is commonly found on Unix variants, is
available for every platform, and is a standard for automating tasks and writing quick
utilities. Due to this ubiquitous presence, there is a wealth of example Perl code, tutorials
and documentation available online and in print. In modo, Perl is used for operations that
are more complex than can be accomplished with simple macros, allowing for branching,
loops and other control features.

As with macros, Perl uses commands to interactive with modo, but unlike macros, Perl
can be used to query those commands for their values and usefully interpret the results.
Because it can query commands, Perl can make excellent use of the ScriptQuery system
provided by the query command to obtain lower-level information from the various
subsystems, including extracting specific mesh information that is not otherwise
accessible.

The official Perl documentation can be found at http://www.perl.org/ .

Perl Header
All perl scripts must have the word perl in the first line so that it can be recognized as a
perl script by the system.

1) # perl

modo Extensions to Perl
Eight new functions have been added to Perl in modo for this support, lx, lxq, lxqt, lxeval,
lxok, lxres, lxout, lxtrace. Errors are reported to the Event Log viewport, so it’s useful to
have one open while developing Perl scripts.

lx()

The lx function is used to execute commands using the standard command syntax. This
returns 1 if the command executed and nothing if it failed for any reason. lxres can be
used to get more specific information about why a command failed. Also be sure to
check the Event Log viewport.

5) my $ok = lx(“tool.set prim.cube on”);
6) if(!$ok) {
7) # handle errors here
8) }

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 87 of 263

http://www.perl.org
http://www.perl.org

lxq()

The lxq function queries a command using the standard question mark syntax, returning
an array of values. foreach can be used to easily walk the array. If you are only
interested in the first value, you can use a scalar value and Perl will automatically handle
it. If there was an error querying the command, nothing is returned.

5) # Get an array of names, one for each selected material
6) my @selMaterialNames = lxq(“material.name ?”);
7) foreach my $matName (@selMaterialNames) {
8) # Process the material name
9) }
10)
11) # Get the maximum number of undos as a single value
12) my $maxUndos = lxq(“pref.value application.maxUndo ?”

lxqt()
The lxqt function queries ToggleValue commands like tool.set, returning a simple true
or false value. lxq can be used to get the current actual value of a ToggleValue command,
which can be of any datatype and can be one of a number of possible values, depending
on the command. lxqt can be used to more easily see if the commands is “on” or not.
This example checks to see if the Cube tool is currently active or not.

5) my @isActive = lxqt(“tool.set prim.cube on”);

lxeval()
The lxeval is a hyrid of lx and lxq. If the command string contains a question mark, the
command will be queried and returned; otherwise, the command is executed, and success
or failure is returned.

5) # Execute
6) lxeval(“user.defNew MyValue”);
7) lxeval(“user.value MyValue {Test Value}”);
8)
9) # Query
10) my $value = lxeval(“user.value MyValue ?”);

lxok() and lxres()

The results of lx, lxq, lxqt and lxeval can be tested with lxok and lxres. lxok returns 1 if
the last call was successful, and 0 if not. lxres returns the LxResult code, which provides

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 88 of 263

more specific details about the commands execution. A list of result codes and their
meanings can be found in the error codes message table, resource:msglxresult.cfg

5) my $isOK = lxok;
6) my $result = lxres;

lxtrace()

The lxtrace function toggles tracing on and off. When tracing is enabled, all commands
executed by lx and queried by lxq are output to the Scripting sub-system of the Event Log
viewport. This can also be used to see if tracing is on or not by not passing in an
argument.

5) my $tracing = lxtrace;
6) lxtrace(1); # Turn on tracing

lxout()
The lxout function can be used to output debugging information to the Scripting sub-
system of the Event Log viewport, and can be any string.

5) lxout(“My Debug Output”);

lxooption() and lxsetOption()

The lxoption and lxsetOption functions allow the script to set properties that determine
how the other lx functions operate. Each option is defined by a tag string and an
associated value, and the options can be changed at any time.

Currently there is only one tag defined, queryAnglesAs, which determines if angles
queried through lxq() are returned in radians or degrees. This defaults to degrees to
maintain backwards compatibility with previous versions of modo. While this behavior
is helpful for new scripters, it is generally more useful to work in radians. The value can
be set to either radians or degrees, and once set all future queries on angles through lxq()
will return The following shows how to change this option and query its current state.

1) lxsetOption(“queryAnglesAs”, “radians”);
2) lxout(lxoption(“queryAnglesAs”)) ;

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 89 of 263

Arguments
Like macros, Perl scripts support arguments. These are provided in the same way that
command line arguments are provided to an external Perl script, through the @_ variable.

Perl Scripts and Progress Bars
Progress bars, or monitors, are also supported in Perl through the lxmonInit and
lxmonStep functions.

lxmonInit()
To initialize the progress bar, call lxmonInit with the total number of steps in the bar.
lxmonInit should be called only once per script.

5) lxmonInit(20);

lxmonStep()

To step the progress bar, use lxmonStep. By default, this increments the bar one step, but
you can also increase the bar by an arbitrary number steps.

6) lmonStep; # Increment by one
7) lxmonStep(2); # Step the progress bar by two

The return value of lxmonStep is used by the script to determine if the hit the “abort”
button in the progress dialog. If lxmonStep returns false, the script should abort. The
following is a common test for a user abort.

8) if(!lxmonStep) {
9) # Do clean-up here
10) die("User Abort");
11) }

Progress Bar Example
This simple script demonstrates progress bars. It busy loops so the progress bar will
open. If the script executes fast enough, the progress bar will not appear.

1) #! perl
2) my ($i, $j);

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 90 of 263

3)
4) lxmonInit(20);
5)
6) for($i=0; $i < 20; $i++) {
7) for($j=0; $j < 1000000; $j++) {
8) ;
9) }
10)
11) if(!lxmonStep) {
12) die("User Abort");
13) }
14) }

External Modules
There are a large number of publicly-available Perl modules out there. These modules
are accessible from within modo, with a little setup.

The easiest way to get a bunch of the standard perl modules is to download a standard
Perl distribution and install it on your computer. On Mac OS X this is done for you, but
on Windows you’ll need to find one yourself.

You can find a list of Perl distributions at http://www.perl.org/get.html .

Once you have one installed, you can get the path to the modules by going into an MS-
DOS Prompt or Terminal and typing the following:

perl -v

The above will output something like this:

@INC:
C:/Perl/lib
C:/Perl/site/lib
.

The strings between the @INC and the period are the paths to the installed Perl modules.
Next you’ll need to configure your system so modo’s Perl plug-in can find them.

Environment Variables
The best way to use external modules is to define the environment variable
LX_PERLPATH and set it to the paths of your external Perl modules. Multiple paths are
supported by using a semicolon as a delimiter.

On Windows, this can be setup through the Environment Variables dialog of the System
control panel’s Advanced tab. From there you can add a new User environment variable

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 91 of 263

http://www.perl.org
http://www.perl.org

for LX_PERLPATH. Using the example paths above, the environment variable’s value
would be this.

C:/Perl/lib;C:/Perl/site/lib

Notice the semicolon separating the two paths.

Once this path is set, restart modo and you’ll be able to to use the use keyword from a
Perl script to import the modules and call their functions.

Modifying @INC
An alternate method is to use add your paths to the @INC in a BEGIN block at the start
of your script. Multiple calls to push can be used to add multiple paths.

5) BEGIN {
6) push(@INC, "C:\PathToModules");
7) }

The main disadvantage to modifying @INC is that the module path will be hard-coded
into the script, likely requiring the script to be modified before it can be run on a machine
with a different configuration. As such, the environment variable method should be used
whenever possible.

After adding the module path, the use keyword can be used to load the modules as
normal.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 92 of 263

Need OS X instructions

Perl Scripts and User Values: RandomSel.pl
This example shows how to use perl scripts to read the state of the model and execute
commands, as well as using user values to create a simple user interface. The script
RandomSel.pl allows you to randomly select points, polygons and edges in a model.
What percentage of the model is selected is governed by a user value with the name
RandomSel.Coverage.

The script uses the select.typeFrom command to determine what the current selection
type is. It then checks the value of RandomSel.Coverage using the user.value
command. The query command is then used to walk the list of selected points, polygons
or edges via the layerservice ScriptQuery interface, and then changes the selection using
the select.element. command.

The Script
Here is the entire random selection script. The leading line numbers are for clarity only.

1) #perl
2) # Randomly select elements of the current selection type.
3)
4) #use strict
5) #use warnings
6) #lxout("RandomSel.pl - Started");
7)
8) # Query user.value for the value of RandomSel.coverage, which
9) # we'll use to decide how likely an element is be selected.
10) # We only care about the first value, so we store it as a
11) # scalar instead of a list.
12) my $chance = lxq("user.value RandomSel.coverage ?");
13)
14) my $chancePercent = $chance * 100.0;
15) #lxout("- RandomSel.pl - ${chancePercent} percent chance of

selection (chance: ${chance})");
16)
17) # Figure out the current selection type. We test against the
18) # vertex, polygon and edge types to see which one was most
19) # recently active by using select.typeFrom. We also test
20) # the item type in case materials are the active selection,
21) # which we fail.
22)
23) # Used to with select.element to select polygons,
24) # edges or vertices.
25) my $selType;
26)
27) # Used to query layerservice for the list of polygons, edges
28) # or vertices.
29) my $attrType;
30)
31) if(lxq("select.typeFrom typelist:

\"vertex;polygon;edge;item;ptag\" ?")) {
32) $selType = "vertex";
33) $attrType = "vert";

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 93 of 263

34) # lxout("- RandomSel.pl - Vertex Selection Mode");
35)
36) } elsif(lxq("select.typeFrom typelist:

\"polygon;vertex;edge;item\" ?")) {
37) $selType = "polygon";
38) $attrType = "poly";
39) # lxout("- RandomSel.pl - Polygon Selection Mode");
40)
41) } elsif(lxq("select.typeFrom typelist:

\"edge;vertex;polygon;item\" ?")) {
42) $selType = "edge";
43) $attrType = "edge";
44) # lxout("- RandomSel.pl - Edge Selection Mode");
45)
46) } else {
47) # This only fails if none of the three supported selection
48) # modes have yet been used since the program started, or
49) # if "item" or “ptag” (ie: materials) is the current
50) # selection mode.
51) die("Must be in vertex, edge or polygon selection mode.");
52) }
53)
54) # Get a list of the foreground layers by querying the
55) # layerservice "layers" attribute.
56) my @fgLayers = lxq("query layerservice layers ? \"fg\"");
57)
58) # Loop through the foreground layers
59) my $count = 0;
60) foreach my $layer (@fgLayers) {
61) # Loop through all the elements in the layer of the
62) # current selection type, using the "polys", "verts"
63) # or "edges" attributes.
64) my @elems = lxq("query layerservice ${attrType}s ? \"all

\"");
65)
66) # lxout("- RandomSel.pl - $#elems ${selType}s total in

layer ${layer}.");
67)
68) foreach my $e (@elems) {
69) # Pick a random number; if that is less
70) # than $chance, we select the element.
71) if(rand(1.0) < $chance) {
72) # We're going to select it; get
73) # the index of the element
74) my $index = lxq("query layerservice $

{attrType}.index ? \"$e\"");
75)
76) # Add this element to the selection
77) lx("select.element layer:$layer type:$selType

mode:add index:$index");
78)
79) $count++;
80) }
81) }
82) }
83)
84) #lxout("- RandomSel.pl - $count ${selType}s selected.");
85)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 94 of 263

86) # And we're done.

Now a line by line breakdown of the script:

Perl Header
All Perl scripts must start with #perl, although often a path is included as well, such as
#/user/bin/perl. RandomSel.pl also turns on the Perl’s strict and warnings flags.

1. #perl
2. # Randomly select elements of the current selection type.
3.
4. #use strict
5. #use warnings

Using lxout() for Debugging
Throughout the script there are commented-out calls to lxout, which were originally used
for debugging purposes. Removing the leading number sign (#) will cause these lines to
show up in the Event Log, such as this one stating that the script has started executing.

7) #lxout("RandomSel.pl - Started");

Querying the User Value
Line 12 marks the first call to the lxq function. In this case, the user.value command is
being queried for the value of RandomSel.coverage, the creation of which will be
discussed later. The value is stored in $chance. RandomSel.coverage is defined as a
percent with a minimum of 0% and a maximum of 100%, so $chance will be between 0.0
and 1.0. There is also another commented-out call to lxout to report the chance of
selection by using the 0% to 100% value of $chance stored in $chancePercent.

14) my $chance = lxq("user.value RandomSel.coverage ?");
15)
16) my $chancePercent = $chance * 100.0;
17) #lxout("- RandomSel.pl - ${chancePercent} percent chance of

selection (chance: ${chance})");

Next, the script defines two new variables. The $selType variable is the mode argument
for the select.element command, which will be used later to select vertices, polygons
or edges. The $attrType variable is used when querying the layerservice ScriptQuery
interface.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 95 of 263

23) # Used to with select.element to select polygons, edges or
vertices.

24) my $selType;
25)
26) # Used to query layerservice for the list of polygons, edges
27) # or vertices.
28) my $attrType;

Checking the Selection Mode
The next section checks to see what the current selection mode is via the
select.typeFrom command. The command takes a list of selection types to test
against. If the first type in the list has been more recently selected than any of the others,
the query will be true. These if() and elsif() tests check the vertex, polygon and edge
selections, respectively, to see which is the current selection.

31) if(lxq("select.typeFrom typelist:
\"vertex;polygon;edge;item;ptag\" ?")) {

32) $selType = "vertex";
33) $attrType = "vert";
34) # lxout("- RandomSel.pl - Vertex Selection Mode");
35)
36) } elsif(lxq("select.typeFrom typelist:

\"polygon;vertex;edge;item\" ?")) {
37) $selType = "polygon";
38) $attrType = "poly";
39) # lxout("- RandomSel.pl - Polygon Selection Mode");
40)
41) } elsif(lxq("select.typeFrom typelist:

\"edge;vertex;polygon;item\" ?")) {
42) $selType = "edge";
43) $attrType = "edge";
44) # lxout("- RandomSel.pl - Edge Selection Mode");

Notice that they also test the item and material (or ptag, short for Polygon Tag) selection.
Together with vertices, polygons and edges, these define the five geometry selection
types that you can directly select. Since the script does not support items or materials, it
checks for them and uses the Perl function die to exit.

46) } else {
47) # This only fails if none of the three supported selection
48) # modes have yet been used since the program started, or
49) # if "item" or “ptag” (ie: materials) is the current
50) # selection mode.
51) die("Must be in vertex, edge or polygon selection mode.");
52) }

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 96 of 263

Querying the Foreground Layer List
Now that the current selection mode is known, the script needs to get a list of foreground
layers to operate on. It could operate on only the main or primary layer, but instead it
chooses to operate on the entire foreground layer selection.

To get the list of foreground layers, the query command is used with the layerservice
ScriptQuery interface. All the possible layerservice attributes are described in the
Appendices at the end of this document. Here, the layers attribute is used to with the fg
selector to get the foreground layer list, storing it in the @fgLayers list variable.

54) # Get a list of the foreground layers by querying the
55) # layerservice "layers" attribute.
56) my @fgLayers = lxq("query layerservice layers ? \"fg\"");

The $count variable is used for debugging, and keeps track of the number of elements
that have been selected.

59) # Loop through the foreground layers
60) my $count = 0;

Scanning the Foreground Layers
Line 60 marks the beginning of the main loop. The outer loop runs through the list of
foreground layers using Perl’s foreach operator.

60) foreach my $layer (@fgLayers) {
61) # Loop through all the elements in the layer of the
62) # current selection type, using the "polys", "verts"
63) # or "edges" attributes.

A list of all elements is obtained with another call to layerservice through the query
command. This time, the attribute is stored the one in $attrType from lines 31 through
45. For polygons, $attrType contains the string poly, but the attribute that gets a list of
polygons is called polys, and so an ‘s’ is added to the end. The selector all is used to get a
list of all elements.

64) my @elems = lxq("query layerservice ${attrType}s ? \"all
\"");

65)
66) # lxout("- RandomSel.pl - $#elems ${selType}s total in

layer ${layer}.");

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 97 of 263

Scanning the Layer’s Elements
The inner loop scans the layer’s element list. The current element index is stored in the
variable $e.

68) foreach my $e (@elems) {

Next, the script picks a random number using Perl’s rand() function, comparing it against
$chance to decide if this polygon should be selected.

If the test is successful, the select.element command is called to perform the
selection. The command takes an index into the layer’s element list of that type. To
ensure the indices match, the queries layerservice yet again, this time for the $
{attrType}.index attribute. For polygons, this will resolve to poly.index. The selector in
this case is the index of the element in the list returned by the ${attrType}s query made
earlier.

71) if(rand(1.0) < $chance) {
72) # We're going to select it; get
73) # the index of the element
74) my $index = lxq("query layerservice $

{attrType}.index ? \"$e\"");

Selecting an Element
Finally, the script executes select.element using the lx function. The select.element
command takes the layer number, which was stored in $layer at line 60 when the outer
loop was started. It also takes an element type, which was determined at lines 31 through
45. The mode argument is set to add to add these elements to the current selection.
Finally, the index argument is set to the contents of $index to select that specific element.

76) # Add this element to the selection
77) lx("select.element layer:$layer type:$selType

mode:add index:$index");

Finishing Up
The counter is incremented before the loop closes, for debugging purposes, and a final
commented-out call to lxout is made:

79) $count++;
80) }
81) }
82) }
83)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 98 of 263

84) #lxout("- RandomSel.pl - $count ${selType}s selected.");
85)
86) # And we're done.

Running the Script
That’s it; the script is done. Try running modo, creating a unit sphere, and executing the
script with a line similar to this:

@d:\randomsel.pl

where d:\randomsel.pl is the path to the script. Don’t forget to use curly braces around
the path to the script if there is a space in it. When you run it, you’ll see that the script
does nothing. This is because it relies on a user value, RandomSel.coverage, which
hasn’t been defined yet.

Defining RandomSel.coverage with user.defNew
To define RandomSel.coverage, you’ll use the user.defNew command. Open a
Command History viewport and enter the following command into the edit field:

user.defNew RandomSel.coverage percent

The first argument is the name of the variable to create, in this case RandomSel.coverage.
Note that these names are case sensitive. The second argument is the datatype of the
variable. In this instance, you want a value in the range of 0% to 100%, and thus entered
percent.

The default value of a percentage is 0%, so running the script still wouldn’t appear to do
anything. You can assign a value to RandomSel.coverage using the user.value
command, the same command that the script uses to get the state of RandomSel.coverage:

user.value RandomSel.coverage 0.4

If you would prefer to use units, you can enter the value using the square bracket syntax:

user.value RandomSel.coverage [40%]

Now you can run the script with @d:\randomsel.pl as described above. If all goes well,
you’ll see that about forty percent of the elements in the current selection type are
randomly selected.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 99 of 263

Creating a Form: user.value
While this is interesting, RandomSel.coverage seems a bit unnecessary. The script could
just take an argument, or you could edit the script whenever you want to change the
coverage. But what if you could put a control on the interface that let you adjust the
coverage, automatically executing the script every time it changed? This is where real
power of the user.value comes into play.

First, you’ll need to create a new form for the user.value command. The Form Editor
is beyond the scope of this document, but here are some quick steps to help you along:

1. Open the Form Editor from the Editors menu

2. Right click on the (new sheet) entry at the bottom of the list, and select Add Form
from the menu. Name the form Random Selection.

3. Click in the X column of the new form to export it. This allows the form to be
selected for display in a Forms Viewport.

4. Click the right-facing triangle to show the controls in the form. Currently there are
none, just the (new control) entry.

5. Right click (new control) and select Add Command from the menu. Enter
user.value RandomSel.coverage ? as the command

6. Use the Label edit field in the properties viewport to the right of the tree to change
the label to Coverage.

7. Create a new Forms Viewport, or find an existing one.

8. Right click in the Forms Viewport’s header to see the list of exported forms, and
select Random Selection.

You should now have a Forms Viewport showing a single percent control labeled
Coverage. If you change the value of this control, nothing happens, but the next time you
run the script, you’ll see that the new percentage of elements are selected.

Run the Script on RandomSel.coverage Changes: user.def action
What you really want is for the script to run automatically whenever the value changes.
This can be done by assigning an action to RandomSel.coverage using user.def:

user.def RandomSel.coverage action {@d:\randomsel.pl}

Now whenever the value of RandomSel.coverage changes, the script will automatically
run. Go ahead and give it a try. As you drag the Coverage minislider, you’ll notice that
the refiring feature discussed earlier in this document is taking effect, with the previous
change being reverted before the new one is applied as long as you are dragging the

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 100 of 263

minislider. The script is undoable because it calls the undoable command
select.element.

Limiting the Control Range: user.def min and max
But there’s still a problem; it is very easy to go over 100% or under 0%. To fix this, we’ll
use uesr.def’s min and max attributes:

user.def RandomSel.coverage min 0.0
user.def RandomSel.coverage max 1.0

Now RandomSel.coverage can never go outside the range of 0% to 100%.

Creating RandomSel.coverage Presets: user.value
You can also add a button to your form that will execute the script directly by using the
same command you used to execute it from the Command History:

@{d:\randomsel.pl}

Also, you can make buttons that set a specific coverage through user.value, such as this
example that sets the value to 50%:

user.value RandomSel.coverage 0.5

Improving the Script
There is quite a bit more that you can do with this script yourself. For example, the
current random selection isn’t really selecting an exact coverage amount, but rather
deciding, on an element by element basis, if the element should be selected by chance,
resulting in more or less the coverage amount chosen, but not exactly. You can modify
the script to ensure that the exact coverage is selected.

The script does not support item selections. You can use the layerservice ScriptQuery
interface to add this support as well.

Another enhancement might be to add a deselect toggle via another user value, causing
the script to deselect elements instead of selecting them, or an option to limit the selection
to only selected or deselected elements, rather than all elements matching the current
selection type. The script could be changed to clear the current selection before randomly
selecting; currently, the new selection is added to the existing one. There are surely many
more variations that you can experiment with.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 101 of 263

Testing Perl Scripts Outside modo
If you have Perl installed on your computer, you can test scripts outside of modo for
syntax errors.

On Mac OS X and Linux, Perl is included with the operating system. Windows users will
have to download a Perl distribution such as ActivePerl before they can test scripts
outside of modo.

To test a script for compile errors, open a Terminal in Mac OS X or an MS-DOS Prompt
in Windows. Then enter the following line:

perl -c MyScript.pl

The perl interpreter will now compile your script looking for syntax errors, but will not
try to run it (the script won’t run outside of modo if you call any of the lx…() functions
anyway). This might be easier for basic syntax checking than using the Event Log, which
only shows the first error it encounters..

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 102 of 263

Lua Scripts
As an alternate to Perl, modo also supports Lua. Lua is a configuration language
commonly used in game development. A web search will turn up numerous references
and examples of lua scripting. Lua scripts are executed in the same way as Perl scripts
within modo, and provide the same level of functionality.

For the official Lua documentation, visit http://www.lua.org .

modo Extensions to Lua
Lua supports the same functions as Perl for manipulating and querying the application
state, including lx, lxq, lxqt, lxeval, lxout, lxtrace, lxok, lxres, lxoption, lxsetOption,
lxmonInit and lxmonStep. These functions operate in the same manner as their Perl
counterparts. The most important difference is the lxq function, which returns a table of
numbers or strings, or nil, where appropriate. For detailed information on these
functions, see the Perl reference above.

Lua Header
Similar to Perl scripts, all Lua scripts must start with the line “-- lua” so the interpreter
can recognize it.

-- lua

Passing Arguments to Lua Scripts
Arguments passed to a Lua script are handled in the same way as they are in a stand-
alone Lua script. The global arg table contains all of the arguments, as well as the name
of the script at index 0, which is standard Lua practice.

This simple example outputs all of the arguments to the Event Log. Remember that there
will always be at least one argument at index 0 representing the name of the script being
run.

1) -- lua
2)
3) for k,v in pairs(arg) do
4) lxout(“Arg “..k..” “..v)
5) end
6)
7) -- Done

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 103 of 263

http://www.lua.org
http://www.lua.org

Lua Example: SelectHalf.lua
This script selects all vertices in the negative X space of the primary layer. It uses a
lxmonInit and lxmonStep to present a progress bar for long operations. These functions
all operate identically to their perl counterparts.

1) -- lua
2)
3) -- SelectHalf.lua
4) -- Written by Joe Angell and Dion Burgoyne, Luxology LLC
5) -- Copyright (c) 2001-2008 Luxology, LLC. All Rights Reserved.
6) Patents pending.
7)
8) -- -------------------------------
9) -- TestVertex():
10) -- Called by foreach() to test and select vertices
11) function TestVertex(index, value)
12) local pos
13) -- Get the position of the vertex
14) pos = lxq(string.format("query layerservice vert.pos ?

%i", value))
15) if pos[1] < 0 then
16) -- X position is less than 0.0001; select it
17) lx(string.format("select.element layer:\"%i\"
18) type:vertexmode:add index:%i", layers[1],

value))
19) end
20) end
21)
22) -- -------------------------------
23) -- Main Body
24) -- -------------------------------
25)
26) -- "Select" the primary layer for querying via layer.name
27) layers = lxq("query layerservice layers ? main")
28)
29) -- Get a list of all the vertices in the layer
30) verts = lxq("query layerservice verts ? all")
31) if verts == nil then
32) error "No geometry"
33) end
34)
35) -- Initialize the monitor
36) checkverts = table.getn(verts)
37)
38) lxmonInit(checkverts)
39)
40) -- Loop through all the vertices
41) table.foreach(verts, TestVertex)
42)
43) -- Done

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 104 of 263

Lua Example: Progress Bars
This simple Lua script demonstrates progress bars via a busy loop.

1) -- lua
2)
3) for i=0,20 do
4) for j=0,10000 do
5) k = 1
6) end
7)
8) if lxmonStep() == 0 then
9) error "User Break"
10) end
11) end

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 105 of 263

Python Scripts
Python scripts are yet another scripting option for modo. Python is a powerful object-
oriented scripting language that, like Perl, is available on every platform and has
extensive community support.

The official Python documentation can be found at http://www.python.org/ .

Python Header
Like Perl and Lua, all Python scripts start with a simple header so the interpreter can
recognize them.

python

The lx Module
The modo extensions to Python are encapsulated in the lx module. In older versions of
modo, you first needed to import the lx module like so, but both this and sys are now
imported implicitly.

import lx

The Python implementation in modo is a bit different than that of Lua or Perl. As python
is an object oriented language, and so all of the functions are encapsulated in the lx
object. Error handling is performed with exceptions instead of result codes. These are
explained in detail later on.

lx.out
Text can be output to the Event Log with lx.out. Any arguments passed will be
concatenated before being written out. An empty argument list outputs a blank line.

1) # python
2)
3) import sys # for access to sys.version
4) import lx # for lx.out
5)
6) # Print an blank line
7) lx.out()
8)
9) # Print a label followed by the Python version string
10) lx.out(“Python Version: “, sys.version)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 106 of 263

http://www.python.org
http://www.python.org

lx.eval
Perl and lua support lx to execute commands, lxq to query commands, and lxeval to
execute or query commands depending on if a ? is present in the argument string. In
Python, lx and lxq are omitted in favor of lx.eval.

lx.eval operates similarly to its Perl and Lua counterparts: simply pass in a command
string with arguments to execute or query a command.

5) # Execute
6) lx.eval(“layout.togglePalettes”)
7)
8) # Query
9) q = lx.eval(“layout.togglePalettes ?”)

Unlike Lua and Perl, all error reporting is done through exceptions. When executing a
command, lx.eval will always return None. When querying a command, this returns
either an array of elements or a single value, depending on the number of elements in the
query.

To see if the result of lx.eval is an array of values or a single value, you can call the
Python type() function on the variable.

5) q1 = lx.eval1(“material.name ?”)
6)
7) if type(q1) == tuple:
8) # Array of values
9) else:
10) # Single Value

lx.eval1 and lx.evalN
There are many cases where a query may return one or many elements. Since lx.eval’s
return value depends on the number of elements, you would need to handle both cases.
To avoid this issue, you can use lx.eval1 and lx.evalN.

lx.eval1 always returns None or one element directly, even if the query returned a list of
elements. lx.evalN will always return None or an array, even if there is only one element.

5) # Query and get a single value
6) q1 = lx.eval1(“material.name ?”)
7)
8) # Query and get an array of values

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 107 of 263

9) qN = lx.evalN(“material.name ?”)

Executing a command with lx.eval1 or lx.evalN operates identically to lxeval.

lx.command
Rather than execute a command with a string, you can pass the command name and each
of it’s arguments directly through lx.command. This is often simpler than having to
construct a string from scratch.

lx.command requires the use of name/value pairs by taking advantage of Python’s ability
to specify arguments and their values by name.

1) lx.command(“viewport.3Dview”, shade=”wire”)

lx.test
Python allows for easy testing of ToggleValue commands with lx.test. This is used in a
similar manner to lxqt in Perl and Lua, returning true if the ToggleValue is on and false if
it is off.

1) isActive = lx.test(“tool.set prim.cube on”)

lxo.option() and lx.setOption()

The lxoption and lxsetOption methods allow the script to set properties that determine
how the other lx methods operate. This operates exactly as in perl, with the primary
difference being that queryAnglesAs defaults to radians for backwards compatibility
with previous versions of modo.

1) lx.setOption(“queryAnglesAs”, “radians”)
2) lx.out(lxoption(“queryAnglesAs”))

lx.arg and lxargs
Argument parsing is available through the lx.arg and lx.args methods. lx.arg returns the
raw argument string that was passed into the script. lx.args parses the argument string
and returns an array of arguments for easier processing.

1) argsAsString = lx.arg()

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 108 of 263

2) argsAsTuple = lx.args()

ScriptQuery Interfaces
Accessing ScriptQuery interfaces in Python can be accomplished using the query
command as normal. However, Python also provides a lower level system through the lx
module’s lx.Service method, and the associated service object.

lx.Service
The first step in using a ScriptQuery interface is obtaining a Service object with
lx.service. This takes the service’s name string as it’s only argument.

1) s = lx.Service(“layerservice”)

The Service object has five methods, name, select, query, query1 and queryN. You can
have as many service objects as like, each with their own selections. This is in contrast to
the query command, which shares its selection among all clients, and thus has but a
single selection.

s.name
The name method returns the name of the Service. This is the same string that was
passed into lx.Service.

1) s = lx.Service(“layerservice”)
2) lx.out(“Service Name: “, s.name())

s.select
The select method takes the place of the query command’s select argument, and is used
to pass selectors to the ScriptQuery interface. This take two arguments, the attribute class
name string and the selector string. If the attribute doesn’t require a selector, it can be
omitted. Both arguments can be omitted to clear the selection.

The attribute class name is the part of the attribute before the period. For example, the
class of the layer.name attribute is layer. The Service object will also accept the full
attribute name and extract the class itself.

This example sets the selectors for the “layer” class attributes to the foreground layers.

1) s = lx.Service(“layerservice”)
2) s.select(“layer”, “fg”)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 109 of 263

s.query
The query method queries the Service object for the value of a previously selected
attribute. This returns either a single value or an array of values depending on the
number of values in the query.

1) s = lx.Service(“layerservice”)
2) s.select(“layers”, “fg”)
3) name = s.query(“layer.name”)

s.query1 and s.queryN
The query1 method can be used to always get the first element of a query, while queryN
will always return an array of queries. This allows for consistent handling of attributes
that may return variable numbers of elements.

Error Handling with Exceptions
Python error handling is done entirely through exceptions. If one of the lx methods fails
because of an unknown command or service, a NameError exception is thrown. If a
command fails to execute, a RuntimeError exception is throw. These can be handled with
standard Python try and except keywords. The LxResult code of the command failure can
be read with sys.exc_info().

1) # python
2)
3) import lx
4) import sys
5)
6) # Set up our try block
7) try:
8) # First execution: user.defNew creates a new user value
9) lx.command(“user.defNew”, name=”MyValue”)
10)
11) # Second execution: user.defNew fails because a value
12) # with that name already exists
13) lx.command(“user.defNew”, name=”MyValue”)
14)
15) # Handle exceptions
16) except RuntimeError:
17) lx.out(“Command failed with “, sys.exc_info()[0])

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 110 of 263

Monitors
Progress bars in Python are handled through the Monitor object. This provides the same
progress bar functionality as in Perl and Lua.

lx.Monitor
A Monitor object is obtained through a call to lx.monitor. The optional argument is the
total number of steps in the progress bar.

1) m = lx.Monitor(42)

The Monitor object has two methods, init and step. Although you can create as many
monitors as you like, the internal mechanism for progress bars will cause only the first
one to do anything. However, this will change in the future to allow multiple monitors to
be used simultaneously.

m.init
The init method sets the total number of steps in the monitor and resets the current
position to 0.

1) m.init(100)

m.step
The step method increments the current monitor position by 1 if the argument is omitted;
otherwise, it increments by that number of steps.

1) m.step(2)

Monitor Example
Here we have a simple example of a monitor in python. The loop is simply to allow
enough time to pass for the monitor to appear.

1) # python
2)
3) import lx
4)
5) # Create the monitor. We could pass the total number of steps
6) # here, too
7) m = lx.Monitor()
8)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 111 of 263

9) # Set the total number of steps
10) m.init(1000)
11)
12) # Do a loop
13) for(i in range(0,1000):
14) # Step the monitor. We could omit the argument to step
15) # by 1 rather than explicitly specifying it.
16) monitor.step(1)
17)
18) # Busy loop so the monitor will be displayed
19) for i in range(0, 10000):
20) a=6

Executing Python Scripts from Other Python Scripts
modo supports running one Python script from another Python script by simply using the
standard @ syntax with lx.eval(). Since Python normally has a single main interpreter,
modo makes use of the Python API’s sub-interpreter mechanism. This allows an almost
completely independent state to exist for each executing script. Care should be taken
when using functions in low-level modules, such as os.close(), which may affect both the
currently running script and the script(s) that executed it. However, for general day-to-
day scripting, this is unlikely to be an issue. More information on sub-interpreters can be
found at the official Python web site.

External Modules
Python support in modo includes the ability to load external Python modules. modo
ships only with the interpreter and the few standard built-ins that come with it. The
easiest way to get all of the standard modules is to download and install a Python
distribution on your system. A list of available distributions can be found at http://
www.python.org/. Once installed, Python in modo will automatically have access to all of
these modules. Mac OS X itself includes Python, so there is no need to do anything
special there -- all of the modules will just work -- so you really only need to worry about
this for Windows.

You may include extra modules with your scripts by placing them in any imported
resource directory. These are specified using the <import> tag in a config, as described
elsewhere in this document. All of these paths are added to the Python sys.path module
search path, thus ensuring that your specific modules will be found. The path to the
script itself is also added to sys.path.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 112 of 263

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Transform Channels
modo takes a somewhat unique approach to item transforms. Rather than include the
transforms as part of the item itself, the item is linked to secondary transform-specific
items.

Channels
Every item in modo has channels, and these are the primary manner in which items are
manipulated. Some of the channels are hidden from the user, or represent complex
datatypes such as mesh stacks and item links. In general, scripts deal only with numeric
and string channels. For a list of common datatypes, see the Argument Datatypes part of
the command system documentation presented earlier in this guide.

As described previously, an items channels can be walked through the sceneservice
ScriptQuery interface, and can be read or set using the item.channel command.
Transform channels, however, are a little different.

Transform Items
Locator item types (which includes Mesh, Camera, Light and so on) do not directly have
their own position, rotation and scale channels. Instead, they have links to transform
items that handle these properties. This allows multiple items to share the same
transform items, and to save memory by not creating the transform items and associated
channels when they aren’t required.

This unique system complicates how the position, rotation and scale of an item are read.
You can’t directly ask the item for its channels; you must use the item for its transform
item, and then query that items channels. The sceneservice ScriptQuery interface
provides a series of item.xfrm??? attributes to simplify getting the IDs of the transform
items.

Attribute Transform
item.xfrmItems (all)
item.xfrmPos Position
item.xfrmRot Rotation
item.xfrmScl Scale
item.xfrmPiv Pivot

item.xfrmPivC Pivot Compensation

These each require an item ID as a selector, which can be obtained via the item.id
attribute of sceneservice. The item.xfrmItems attribute returns a list of all transform

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 113 of 263

items currently used by the selector item. For example, a mesh item might return the
following:

scale=scale021
rotation=rotation022
translation-translation023

The format is the type of transform, an equal sign, and the ID of the item responsible for
that transform.

You can also directly request a transform item by using one of the other item.xfrm???
attributes. These simply return the item ID string or an empty string if there is no linked
transform item.

As you can see from the table above, there are currently five types of transform items.
The position, rotation and scale transforms should be obvious. Pivot defines a “pivot
point”, which defines the position at which the rotation transform is centered. Pivot
compensation is the inverse of the pivot transform; when you move the pivot of an item
that has been scaled or rotated, a compensation transform is calculated to ensure that the
item remains in the same wold position.

Creating Transform Items
If the transform you want to manipulate does not yet have a matching item, you need to
create it first. This example shows how to check for the pivot transform item, and if it is
not found, create it through the transform.add command.

1) my $pivotID = lxq("query sceneservice item.xfrmPiv ? $id");
2) lxout("pivot = $pivotID");
3) if($pivotID eq ""){
4) # Pivot item does not exist; create it
5) lx("transform.add type:piv");
6) $pivotID = lxq("query sceneservice item.xfrmPiv ? $id");
7) }

Once you have the item ID, you can query it as normal through the item.channel
command or through the sceneservice interface. Since item.channel works on the current
item selection, you need to select the transform item first with select.item, or you can pass
it as the item argument. This example sets the X position of the pivot item to 1.3 meters.

8) lx(“item.channel pos.X 1.3 {$pivot}”);

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 114 of 263

Bouncing Ball Example
This example perl script by Arnie Cachelin creates a simple bouncing ball style animation
by creating keyframes on the position transform item of the currently selected item.

1) #perl -- Bouncer.pl
2) # Arnie Cachelin, Luxology LLC, Copyright 2007-2008
3) # A Simple Dynamics Script -- Physics 101 equations of
4) # motion in one dimension
5)
6) # This version specializes in the trajectory of a dropped or
7) # launched object which bounces.
8) # To use this, select the object which is already at the time
9) # and place at its motion should start.
10)
11)
12) # User Input animation parameters
13) my $v0 = 0; # initial speed (m/s)
14) my $time = 11.0; # length of simulation (in seconds)
15) my $ymin = 0.0; # ground/wall position, where bounces
16) # would occur (m)
17) my $elastic = 0.8; # elasticity: percent energy kept
18) # per bounce
19) my $fstep = 0.2; # number of frames between keys
20)
21)
22) # physical constants
23) my $g = 9.8; # gravity on earth = 9.8 m/s^2 DOWN
24) my $a = -$g; # accleration (m/s^2) negative, since UP
25) # is positive
26)
27) #lxtrace 1; # Use this for debugging
28)
29) # get selected locator-type item
30) my $item = lxq ("query sceneservice selection ? locator");
31)
32) # get its position transform item
33) my $xfrm = lxq ("query sceneservice item.xfrmPos ? $item");
34) if ($xfrm eq "") {
35) # Position transform item does not exist; create it
36) lx ("transform.add type:pos");
37) $xfrm = lxq ("query sceneservice item.xfrmPiv ? $id");
38) }
39)
40) # set item in sceneservice for subsequent channel queries
41) my $xnm = lxq ("query sceneservice item.name ? $xfrm");
42)
43) my $chan = 5; # pos.Y. For safety, this should be
44) # looked up.
45) my $tf = lxq ("time.range scene out:?");
46) $ti = lxq ("select.time ?"); # starting time: Now!
47) my $time = $tf - $ti; # final time
48) my $val = lxq ("query sceneservice channel.value ? $chan");

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 115 of 263

49) my $fps = lxq ("time.fps ?");
50) my $dt = $fstep / $fps; # add keys every other frame
51) my $nf = $time * $fps / $fstep; # number of frames
52)
53) my $y0 = $val - $ymin; # initial position
54)
55) #lxout ("Time = $time ($nf frames at $fps fps) from $ti s to

$tf s by $dt s"); # Use this for debugging
56)
57)
58) # calculation section, where plenty of other important things
59) # are derived from the inputs
60)
61) # maximum height reached, (where vtop==0)
62) my $ytop = ((0.5 * $v0 * $v0)/$g) + $y0;
63)
64) # time to reach ytop from y0
65) my $ttop = ($v0)/$g;
66)
67) # time to hit ground from ytop
68) my $tbounce = sqrt (($ttop * $ttop) + 2 * $y0 / $g);
69)
70) # speed at bounce, deduced from energy conservation
71) my $vbounce = sqrt (($v0*$v0) + 2*$g*$y0);
72)
73) #lxout ("Top at: $ttop s ($ytop m) Bounces $tbounce s later");
74)
75)
76) # add initial key at current time
77) lx ("channel.key mode:add channel:{$xfrm:$chan}");
78) lx ("select.channel mode:set channel:{$xfrm:$chan}");
79) lx ("channel.interpolation linear");
80) lx ("channel.value mode:set value:{$val}");
81)
82) my $tscene = $ti;
83) my $tt;
84) my $y;
85)
86) # time of next bounce relative to t0
87) my $tb = $ttop + $tbounce;
88) #lxout ("Bounce at = $tb s Top: $ttop s ($ytop m) ");
89)
90) $t = 0;
91) for(my $i = 0; $i < $nf; $i++) {
92) $t += $dt;
93)
94) # initial position
95) $val = $y0;
96)
97) # plus initial constant velocity contribution
98) $val += $v0 * $t;
99)
100) # plus acceleration contribution
101) $val += 0.5 * $a * $t * $t;

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 116 of 263

102) if ($t>$tb) {
103) # add key directly at bounce point!
104) $tt = $tscene + $tb;
105) lx ("select.time $tt");
106) lx ("channel.key mode:add");
107) lx ("channel.value mode:set value:{$ymin}");
108) #lx ("key.break slope");
109) #lx ("key.slopeType linearIn in");
110) #lx ("key.slopeType linearOut out");
111) # reset motion params
112) $y0 = $ymin; # start at bounce point
113) $v0 = $vbounce; # new initial velocity
114) $tscene += $tb; # reset time so t=0 at bounce
115) $t = $t - $tb; # next key t a bit after bounce
116)
117) # attenuate t,v
118) $tbounce = sqrt ($elastic) * $tbounce;
119) $vbounce = sqrt ($elastic) * $vbounce;
120)
121) # time up and time down
122) $tb = 2 * $tbounce;
123)
124) # recompute key after bounce
125) $val = $y0;
126)
127) # plus initial constant velocity contribution
128) $val += $v0 * $t;
129)
130) # plus acceleration contribution
131) $val += 0.5 * $a * $t * $t;
132) }
133)
134) # use absolute time not per-bounce time
135) $tt = $tscene + $t;
136)
137) # convert relative y back to absolute
138) $y = $val + $ymin;
139)
140) # set time, add and set key
141) lx ("select.time $tt");
142) lx ("channel.key mode:add");
143) lx ("channel.value mode:set value:{$val}");
144)}

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 117 of 263

Network Rendering
Starting with 301, modo includes built-in network rendering to facilitate rendering single
frames across multiple machines. It is also possible to control modo through the use of
startup commands and scripts, thus allowing render controllers to use modo as a slave.

Setting up Built-In Network Rendering
modo’s built-in rendering is fairly easy and straight-forward to set up. One machine is
designated as the master and the rest as slaves.

First, you have to chose a location that can be found by all of the machines on your
network. This path is the Network Shared Location, and is set in the Rendering part of
the preferences on each machine. You also need to turn on Use Network Render Nodes
on the master.

A single license of modo allows for one maser node and up to 50 slaves. If you run modo
on a machine that does not have a license, you will be asked if want a get a license or run
in slave mode. Select the latter and the machine becomes a slave, and will wait for
rendering tasks from the master. A machine with a license can enter a slave mode as well
by selecting Enter Slave Mode from the Render menu.

While in slave mode, modo will show a Render Slave dialog. The Set Shared Network
button can be used just like the Network Shared Location preference, and slave mode can
be quit by clicking the Exit Slave Mode button.

On the Master machine, you can see a list of known machines via the LAN Viewport,
which is accessible from the Render menu. This shows all machines and their current
status.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 118 of 263

Rendering on Hardware with Legacy Graphics
It is not uncommon for slave machines to have relatively primitive graphics hardware.
modo requires a minimum level of OpenGL support to run, and will crash on startup with
such hardware. A work-around is to create a new config file for the slave machines that
does not have any OpenGL viewports.

First, make a backup copy of your modo configuration file on a machine that can support
OpenGL, and run modo. From the Layout menu, select Clear to remove all viewports.
You can now add some non-OpenGL viewports like an Event Log or a LAN Viewport,
although you won’t be able to interact with these while in slave mode. Quit modo to save
this configuration. You can copy this file to each of the slave machines and run modo on
them without issue. Finally, you can restore your original config on the OpenGL-capable
machine.

Network Rendering and Firewalls
modo uses Bonjour to find slaves. Bonjour is Apple’s implementation of an open
networking standard known as Zero Config, or multicast DNS. It allows programs to
publish the existence of services and the IP, port and machine name of the service. It
does not provide any actual communication -- it simply allows for service discovery, like
a phone book for programs. Individual applications then need to know how to connect to
those services themselves. Because of this, it only affects network security insomuch as
it removes “security through obscurity.” It also does not cross routers or subnets without
some involved configuration, meaning that your LAN will not be exposed over the
internet. If you need to cross routers and subnets, you should be able to find the
information you need via Google.

Bonjour uses UDP port 5353. If you have slaves that are not visible in the LAN
viewport, it is likely that this port is being blocked by your firewall, and opening this port
should allow machines to be found.

As mentioned above, Bonjour is only used to identify services, not to communicate.
modo uses TCP port 59265 to send render commands to specific slaves. If you can see
machines in the LAN viewport but the slaves seem to never get any render requests,
make sure that this port is open in your firewall.

Other Networking Issues
There have been reports of problems with Windows machines when their Computer
Description (as set in the System Properties Control Panel) is set to anything.
Sometimes, this causes modo to fail to properly identify the local machine, which results
in a “License In Use” error. Simply clearing the Computer Description so it is empty will
fix this.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 119 of 263

On OS X, modo may report a similar problem when the Computer Name (as set in the
Sharing part of the System Preferences) is empty. Assigning a computer name will fix
this problem.

There have also been reports of routers with improperly configured DNS settings. This
can cause modo to improperly resolve machines on the LAN as machines on the internet,
thus resulting in a similar “License In Use” problem, or else causing slaves to not be
found. Disconnecting the router from the network appears to fix the problem. Refer to
your router’s documentation and your ISP for information on resolving DNS issues.

If you have other issues, you can ask at the Luxology forums at http://
forums.luxology.com/discussion/ .

Entering Slave Mode On Startup
You can run modo with the -slave command line argument to force it into slave mode.
You can programatically set the Network Shared Location through the use of startup
commands, or just by ensuring the appropriate preference is already in the config. This
example shows the startup command method.

<atom type="StartupCommands">
 <list type="Command">!pref.value render.netPath {path}</list>
</atom>

It is important to note that you must use the -slave switch to turn on slave mode on
startup. You cannot use the render.slave command, as networking is not initialized until
after startup commands have executed, and as such will fail.

Fire-and-Forget Rendering via Startup
Commands

The startup command mechanism described previously can be used to launch modo,
render a frame or an entire animation, and then quit. This can be used by external
applications to render single frames or entire animations. Startup commands are
intentionally processed before license checking, thus allowing you to control modo in a
non-interactive state.

The most basic example opens a scene, renders an animation, and tells modo to quit.

<atom type="StartupCommands">
 <list type="Command">!scene.open {c:\test.lxo} normal</list>
 <list type="Command">!render.animation {*}</list>
 <list type="Command">app.quit</list>
</atom>

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 120 of 263

http://forums.luxology.com/discussion/
http://forums.luxology.com/discussion/
http://forums.luxology.com/discussion/
http://forums.luxology.com/discussion/

The first thing this does is load up the scene at c:\test.lxo. The leading exclamation point
suppresses any dialogs that may open.

The render.animation command actually renders the animation using the frame range set
in the render item. This also uses a leading exclamation point to suppress dialogs. The
asterisk passed as the second argument is a special case that causes the command to use
the output items to decide what file formats to use, what paths to save to and what kinds
of outputs to save.

The final command causes modo to quit. If you omit this on an unlicensed slave, the
slave will open the “license not found” dialog after rendering is complete.

You can use the first and last channels of the render item to set the frame range you want
rendered. As of modo 302, there is only one render item in the scene, with an item type
of polyRender. The select.itemType command selects all items of a particular type, so we
can use it to select the single render item, and then use item.channel to change the first
and last frame. This example limits the rendering to only frame 60.

 <list type="Command">select.itemType polyRender</list>
 <list type="Command">item.channel first 60</list>
 <list type="Command">item.channel last 60</list>

Advanced Render Control
Startup commands can also be used to execute scripts, since they are just like any other
command. This script could start up its own event loop, listening for communications
from another application on the local machine or the network, loading up scenes,
changing scene settings and rendering frames.

Scripts can do fairly powerful things. For example, they can change the render outputs,
file formats, output paths, show or hide objects, enable or disable materials, and so on.
This allows for some very fine control by the render controller.

The only thing you won’t be able to do is easily abort a render in progress or get feedback
while a frame is rendering. Your only options for aborting a render is to kill the modo
process.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 121 of 263

Headless Mode
modo 302 introduces “headless” operation, allowing modo to command line program
with no graphical user interface.

Various command line switches are also used in this document. Many of these switches
also work with the full GUI mode as well. You should be comfortable with the MS-DOS
prompt in Windows and the Terminal in OS X to use headless mode. The MS-DOS
prompt and Terminal will henceforth be referred to as the command line or console.

License and Config File
The headless mode still requires a normal modo license to operate, and will fail with a
license not found error if none is present.

Console mode uses its own config file. For modo 302 on Windows, this is
modo_cl302.cfg, while on OS X this would be com.luxology.modo_cl302.

Running in Headless Mode
On Windows, headless modo is a separate executable, modo_cl.exe. It is run just like any
other command line program through the MS-DOS prompt.

modo_cl.exe

On OS X, you simply run modo from the Terminal with the -console switch. You need to
dig into the modo.app bundle to find the actual executable to run it.

modo.app/Contents/MacOS/modo -console

After modo finishes stating up, you’ll be greeted with the following lines, which include
a start message containing the build number, followed by a line showing the registered
name associated with the license modo is using:

@start modo [xxxxx] Luxology LLC
John Smith

modo is now ready to start accepting commands. You can type any normal, non-UI
scripting command and it will execute normally, with its results returned through stdout.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 122 of 263

Exiting Headless Mode
You can quit headless mode just like you can in GUI mode, by executing the app.quit
command. You may also be able to use ctrl-C to immediately terminate modo, but using
app.quit ensures a proper shutdown.

app.quit
@exit
ok

Changing the Prompt
By default, modo shows an empty line when it is read for you to enter commands. If you
are parsing modo’s output through a script, you may want the prompt to be more easily
identifiable.

You can use the -prompt switch to set the prompt to any character sequence you’d like.
The following replaces the prompt with a > and a space.

On Windows:

modo_cl.exe -prompt:”> ”

On OS X:

modo.app/Contents/MacOS/modo -console -prompt:”> “

After modo finishes starting up, you’ll see this:

@start modo [xxxxx] Luxology LLC
John Smith
>

For clarity, the remainder of this guide will assume you are using this prompt.

Formatting
Headless mode conveys information to the user by prefixing certain lines with special
characters.

• Lines prefixed with your prompt string, as defined by the -prompt switch, are waiting
for you to enter new commands to execute.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 123 of 263

• Lines starting with an “at” symbol, @, are headless system messages. These are
generally messages such as @start, which is sent when modo starts up, and @end,
which is sent when modo is about to quit.

@start modo [xxxxx] Luxology LLC

• Lines prefixed with a colon and a space, : , are the results of command queries.

> query platformservice "" ?
: licensedto
: iseval
: expiresin
: serialnumber
: numlicenses
: appname
: appversion
: appbuild
: isheadless
: ostype
: osname
: osversion
: paths
: path.path
: importpaths
ok

• All other characters identify information directly from the system. These usually
include the results of commands, such as ok or a specific error code in the form of error
12345678: Error Message. The number can be used to numerically identify the error.
The error message is a localized string and should not be parsed directly by scripts, but
may be presented to the user by them. Note that this also may be other debug or
informational output from the command as well.

Executing Commands
Commands are executed just like they are from the full GUI mode of modo. You can
think of the headless prompt as being like the Command Entry at the bottom of the
Command History viewport. This includes executing commands and scripts and
querying. Results of command executions go right to stdout and appear in the console.

When you see the prompt, you can enter a new command to execute. Note that by
default this prompt is a blank line, so you may want to change it using the -prompt switch
described above so that it can be more easily identified.

The command syntax is exactly the same as it is from within modo and scripts. The
formatting described above is about the only real difference.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 124 of 263

Obviously, no commands requiring a GUI will work, including dialogs. Most commands
that open dialogs also include command line arguments that can be used in lieu of the
dialogs, so no functionality is lost by running in headless mode.

> select.item Camera
ok

> item.channel focalLen ?
: 0.05
ok

> item.channel focalLen 0.1
ok

> item.channel focalLen ?
: 0.1
ok

Redirecting Commands into Headless Mode
You can pass a list of commands from a file directly into modo on startup via redirection.
Redirection is a standard feature of the console. Each line of a file is processed as a
separate separate command, and each is executed in turn, similar a macro. Once all lines
are processed, modo will quit.

On Windows:

modo_cl.exe < commands.txt

On OS X:

modo.app/Contents/MacOS/modo -console -prompt:”> “

Piping Commands into Headless Mode
The real power of the headless mode comes from piping commands into it. This allows
scripts and external programs to have direct control over modo.

Perl has a standard syntax for opening a one-way pipe. Once the connection has been
established, perl’s print() function can be used to send commands to modo. When you
are finished you can call app.quit to close modo.

1) open (MODOCMD, "| modo_cl");
2) print MODOCMD "scene.open $myscene\n";

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 125 of 263

3) print MODOCMD "render.animation\n";

Two way pipes can be opened from other programs and scripts. This allows for full two
way communication with modo, allowing commands to be sent and received. Programs
can also capture stdin and stdout and processing input and output that way. See the
documentation for your scripting language or platform API for more information on using
stdin, stdout, pipes and controlling command line programs.

Event Log
The event log is still stored while modo is running, but it is not output to the console.
log.masterSave and log.subSave can also be used to save the log to a file. These work in
the same way that the Save popup in the Event Log viewport does, and will save the same
information.

log.masterSave “c:\masterLog.txt”

Other Command Line Switches
There are a few other command line switches used in modo. These can be used from
both the headless and GUI modes, unless otherwise specified.

Headless mode: -console and -prompt
The -console switch is used to enter headless mode on OS X. Note that running modo
from the command line without this switch will launch the it in the full GUI mode. This
switch does not exist on the Windows version, with the separate application modo_cl.exe
being used instead.

The -prompt switch is described above, and allows you to change the prompt modo uses
to request input from the user in headless mode. This does nothing in GUI mode.

On Windows:

modo_cl.exe -prompt:”> ”

On OS X:

modo.app/Contents/MacOS/modo -console -prompt:”> “

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 126 of 263

Executing an Initial Command: -cmd
It is possible to tell modo to run an intiial command at startup through the -cmd switch.
This can be thought of as a single startup command, and is executed after all config-based
startup commands.

This feature is most useful for render controllers, allowing them to launch modo and tell
it to execute a specific script on startup while also passing arguments to that script. For
example, this would pass two arguments with the values path and range to the
@myrender.pl script on startup. The curly braces allow us to pass the two script
arguments as a single string to for scripting system, which is then broken down into the
separate path and range arguments before being sent to myrender.pl.

Note hat the redirection method described above might be better than using the -cmd
switch, as redirection allows multiple commands to be passed and automatically quits
modo when finished.

On Windows:

modo_cl.exe -cmd:”@myrender.pl {path range}”

On OS X:

modo.app/Contents/MacOS/modo -console -cmd:”@myrender.pl {path
range}”

Specifying an Alternate User Config: -config
The -config switch tells modo to use a different path for the default configuration file.
This can be used by render nodes to load a specific config, or used in conjunction with -
license to run modo off of a memory stick without requiring anything to be written to the
local machine.

The configuration file passed will be used in place of the default. This means that not
only will initial settings be loaded from this config, but settings will also be saved to this
file on quit.

On Windows:

modo_cl.exe -config:“c:\myuserconfig.cfg”

On OS X:

modo.app/Contents/MacOS/modo “~/myuserconfig.cfg”

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 127 of 263

Changing the License Path: -license
The -license switch allows you to tell modo to search for the license file in a specific
path. When combined with the -config switch, this can be used to run modo off of a
memory stick without needing to write anything to the system drive.

On Windows:

modo_cl.exe -config:“c:\Licenses”

On OS X:

modo.app/Contents/MacOS/modo “~/Licenses”

Running in slave mode: -slave
The -slave switch forces modo to start up in slave mode. This is the only way to force
modo to open in slave mode at startup, as the render.slave command cannot be executed
as a startup command or through the -cmd switch. Furthermore, slave mode can only be
run from the GUI version of modo, and will not work from the headless mode.

On Windows:

modo.exe -slave

On OS X:

modo.app/Contents/MacOS/modo -slave

Loading an Initial Scene
Any scene can be loaded at startup by entering its path at the end of the argument list.
There is no special argument name for this feature.

On Windows:

modo_cl.exe “c:\MyScene.lxo”

On OS X:

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 128 of 263

modo.app/Contents/MacOS/modo “~/MyScene.lxo”

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 129 of 263

Appendix
This section provides information about the ScriptQuery interfaces supported by modo.
Each group of attributes for each service is listed separately, and then each attribute itself
in this form:

Attribute:

Description:

Datatype:

Example:

Result:

commands

Get a list of all available commands

string

query commandservice commands ?

[list of all commands]

• Attribute is the name of the attribute as provided to the query command.

• Description briefly describes the attribute and how it is used.

• Datatype is the datatype of the attribute. Queries always return lists, although the list
may be empty or there may be only a single element. A list of common datatypes is
described in the Datatype section earlier in this guide.

• Example is a simple example of how the attribute might be queried, include a selection,
if required.

• Result shows the results of the example. Italics are used to represent the actual values
returned by the call, while normal text in square braces provides information about the
more complex values.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 130 of 263

Appendix A:
commandservice ScriptQuery Interface

Commands are executed and queried directly through the command syntax description
previously in this guide, but this doesn’t provide any information about the available
commands, their possible arguments, and so on. The commandservice ScriptQuery can
be used to obtain detailed information about commands.

Querying the commandservice ScriptQuery interface reveals three root attributes and two
attribute groups:

• commands
• command.???
• categories
• category.???
• currentExecDepth

commands
commands requires no selection. It simply returns a full list of all available commands.
Specific categories of commands can be obtained using the “categories” and “category”
attributes.

Attribute:

Description:

Datatype:

Example:

Result:

commands

Get a list of all available commands

string

query commandservice commands ?

[list of all commands]

command.???

command.??? attributes are used to obtain information about specific commands. These
all require that a specific command be selected by providing its internal name as the
fourth argument to query. As these are queries against prototype commands (as opposed

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 131 of 263

to instanced commands with their arguments set), these cannot provide dynamic states
that would be otherwise modified by the argument values or environment.

Attribute:

Description:

Datatype:

Example:

Result:

command.username

Get a command’s human-readable name.

string

query commandservice command.username ? poly.setMaterial

Set Material

Attribute:

Description:

Datatype:

Example:

Result:

command.desc

Get a command’s description, which provides a string describing how
to use the command.

string

query commandservice command.desc ? poly.setMaterial

Assign a new or existing material to the selected polygons.

Attribute:

Description:

Datatype:

Example:

Result:

command.usage

Get a usage string, similar to that saved by cmds.saveList.

string

query commandservice command.usage ? poly.setMaterial

poly.setMaterial name:string <color:percent3> <diffuse:percent>
<specular:percent> <smoothing:integer> <default:integer>

Attribute:

Description:

Datatype:

Example:

Result:

command.example

An example of how the command and its arguments are used.

string

query commandservice command.example ? select.typeFrom

select.typeFrom "vertex;edge;polygon;item" 1

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 132 of 263

Attribute:

Description:

Datatype:

Example:

Result:

command.tooltip

The default tooltip shown when the user hovers the mouse pointer
over a button on the interface.

string

query commandservice command.tooltip ? app.load

Open file

Attribute:

Description:

Datatype:

Example:

Result:

command.help

The URL to the specific help for this file, if available, relative to the
help directory.

string

query commandservice command.help ? poly.boolean

pages/Boolean.html

Attribute:

Description:

Datatype:

Example:

Result:

command.icon

Get the name of the default icon for the command. Often this will
simply be the name of the command. This name is used to look up the
icon in the config, which references a rectangular region within an
image.

string

query commandservice command.icon ? poly.boolean

poly.boolean

Attribute:

Description:

Datatype:

Example:

Result:

command.flags

Get the command’s default flags. See Appendix A.1 for a list of flags.
note that the flags may change at execution time depending on the
values of the arguments.

integer

query commandservice command.flags ? poly.boolean

6291456 [in hexadecimal, this is: 0x00600000]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 133 of 263

Attribute:

Description:

Datatype:

Example:

Result:

command.toggleArg

Index of the toggle argument, if available. See the section on
Command Arguments earlier in this guide for more information on
ToggleValue commands. Indices start from 0.

integer

query commandservice command.toggleArg ? tool.set

1

Attribute:

Description:

Datatype:

Example:

Result:

command.argNames

Internal names of all of the command’s arguments. These can be used
to set the value of an argument by name, with the syntax name:value.
See the section on Command Arguments earlier in this guide for more
information on using named arguments.

string

query commandservice command.argNames ? tool.set

preset
mode
task

Attribute:

Description:

Datatype:

Example:

Result:

command.argUsernames

Human-readable names of all of the command’s arguments. These are
presented in the command arguments dialog instead of the internal
names.

string

query commandservice command.argUsernames ? tool.set

Tool Preset
Tool Set Mode
Tool Task Value

Attribute:

Description:

Datatype:

command.argDescs

Descriptions of all of the command’s arguments.

string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 134 of 263

Example:

Result:

query commandservice command.argDescs ? tool.set

Name of the material.
Assign the material to the polygon.

Attribute:

Description:

Datatype:

Example:

Result:

command.argExamples

Examples of all of the command’s arguments.

string

query commandservice command.argExamples ? material.new

[empty string; no example for argument 0]
[empty string; no example for argument 1]

Attribute:

Description:

Datatype:

Example:

Result:

command.argTypes

Simple type of all the arguments. This is 0 for generic objects, 1 for
integers, 2 for floats an 3 for strings.

integer

query commandservice command.argTypes ? poly.setMaterial

3
0
2
2
1

Attribute:

Description:

Datatype:

Example:

Result:

command.argTypeNames

Datatypes of all of the command’s arguments.

string

query commandservice command.argTypeNames ? poly.setMaterial

string
percent3
percent
percent
integer
integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 135 of 263

Attribute:

Description:

Datatype:

Example:

Result:

command.argflags

Flags defining the argument. See Appendix A.2 below for more
information.

integer

query commandservice command.argFlags ? poly.setMaterial

0 [in hexadecimal, this is: 0x00000000]
1 [in hexadecimal, this is: 0x00000001]
1 [in hexadecimal, this is: 0x00000001]
1 [in hexadecimal, this is: 0x00000001]
1 [in hexadecimal, this is: 0x00000001]

Attribute:

Description:

Datatype:

Example:

Result:

command.isAlias

Returns 1 if the command is an alias. See the section above on
Command Aliases for more information.

integer

query commandservice command.isAlias ? material.name

0

Attribute:

Description:

Datatype:

Example:

Result:

command.isContainer

Returns 1 if the command is an alias. See the section above on Undo
Special, Containers and Other Flags for more information.

integer

query commandservice command.isContainer ? extrude

1

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 136 of 263

categories
categories requires no selection. It simply returns a full list of all root-level command
categories. Specific categories and commands within can be obtained using the
category.??? attributes.

There are three special command categories: Containers contains all command
containers, Uncategorized contains commands not in any other categories, and All
contains every command.

Attribute:

Description:

Datatype:

Example:

Result:

categories

Get a list of all root-level command categories.

string

query commandservice commands ?

[list of all root-level command categories]

category.???

category.??? attributes are used to get a list of categories or commands within a category.
Categories may contain sub-categories as well as commands. All of the category.???
attributes take the category name as the query selector argument.

Attribute:

Description:

Datatype:

Example:

Result:

category.categories

Get a list of sub-categories within a category.

string

query commandservice category.categories ? “Command System”

[list of all categories inside the Command System category]

Attribute:

Description:

Datatype:

Example:

Result:

category.commands

Get a list of commands within a category.

string

query commandservice category.commands ? Macros

[list of all commands inside the Macros category]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 137 of 263

currentExecDepth
This attribute returns the current execution depth of a command. This can be used to tell
if a command is being executed as a root-level command or a sub-command. If no
commands are currently executing, this will be –1, while root-level command executions
will return 0, and sub-command executions will be 1 or higher.

Note that the value only changes when ommands execute, not when they are queried;
thus, using the query example below will return –1 when executed as a root-level
command. Similarly, querying this attribute from within a script will return the execution
depth of the script, not the depth of the query command, as it is not executing.

bm

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 138 of 263

Appendix A.1:
Command Flags

Commands are defined with various flags that determine their behavior. The name of the
flag as described in the plug-in SDK, its hexadecimal value, and a brief description of the
flag are listed for each. Multiple flags may be combined with a logical OR unless
otherwise noted. More details on the usage of these flags can be found in the SDK.

The flags associated with a command can be obtained by querying the command.flags
attribute of the commandservice ScriptQuery interface.

General Flags

Name:

Value:

Description:

LXfCMD_SELECT

0x00000080

Selection command. Selection command names often start with
select.

Name:

Value:

Description:

LXfCMD_THROUGH

0x00004000

A selection command that operates in “select through” mode.

Name:

Value:

Description:

LXfCMD_SELECTIONLESS

0x00008000

The command does not require an explicit selection to be used. This
is commonly applied to commands that may operate on the view, such
as viewport.fit, where the automatic selection of elements under the
mouse when assigned to a key or region would be undesirable.

Name:

Value:

Description:

LXfCMD_NOKEY

0x00000100

The command cannot be assigned to a key.

Name:

Value:

LXfCMD_NOBUTTON

0x00000200

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 139 of 263

Description: The command cannot be assigned to a mouse button.

Name:

Value:

Description:

LXfCMD_HIDDEN

0x00000300

Command cannot be assigned to a key or a button; shortcut for
LXfCMD_NOKEY | LXfCMD_NOBUTTON

Name:

Value:

Description:

LXfCMD_QUIET

0x00000400

The command itself will not appear in the Command History or Undo
List when executed, but it’s children will. Quiet commands are neither
undoable nor model; they simply act as a high-level wrapper for
executing other lower-level commands.

Name:

Value:

Description:

LXfCMD_POSTCMD

0x00000800

Special command supporting the command reflux mechanism. For
example, tool.doApply is a reflux command used by the tool system.
See the command and tool SDKs for more information.

Name:

Value:

Description:

LXfCMD_MUSTSETARG

0x00001000

If the command contains only optional arguments and this flag is
present, then at least one of the arguments must have a value before
the command can execute. Without this flag, a command with only
optional arguments can be executed when no arguments are set. This
is usually used by monolithic commands with a large number of
optional arguments, such as viewport.3dview.

Name:

Value:

Description:

LXfCMD_REPEAT

0x00100000

When the command is mapped to a key and that key is held down, the
key repeat will cause the command to fire over and over again until
the key is released.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 140 of 263

Name:

Value:

Description:

LXfCMD_EXTRA1

0x00002000

When undone, an extra undo will also be performed. This is used only
by special commands.

Name:

Value:

Description:

LXfCMD_EXTRA2

0x00004000

Similar to LXfCMD_EXTRA1, This performs an extra undo when the
next command block is undo. This is ignored when applied to
commands.

Name:

Value:

Description:

LXfCMD_INTERNAL

0x00020000

An internal command that is not meant for general use, such as
debug.crash. Internal commands are hidden from the command list.

Command Class Flags
The following are the command class flags. If none of the following are set, this is a Side
Effect command. See Command Classes section earlier in this guide for more
information on the different classes.

Name:

Value:

Description:

LXfCMD_UI

0x01000000

User interface command; affects the UI, but not the model or undo
state, and does not depend on the model state.

Name:

Value:

Description:

LXfCMD_MODEL

0x02000000

Model command. These are not undoable unless the LXfCMD_UNDO
flag is also present.

Name: LXfCMD_UNDO

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 141 of 263

Value:

Description:

0x06000000

An undoable model command. This includes the LXfCMD_MODEL
flag.

Name:

Value:

Description:

LXfCMD_UNDOSPECIAL

0x08000000

Special command that directly affects the undo stack by performing
undos or redos.

Appendix A.2:
Command Argument Flags

Commands arguments are defined with various flags that determine their behavior. The
name of the flag as described in the plug-in SDK, its hexadecimal value, and a brief
description of the flag are listed for each. Multiple flags may be combined unless
otherwise noted. More details on these flags can be found in the SDK.

Name:

Value:

Description:

LXfCMDARG_OPTIONAL

0x00000001

Optional argument. Optional arguments do not need to be set for the
command to execute. If this flag is not present, the argument is
required. If a required argument is not set, a dialog will open asking
the user for a value before it is executed. See the Required versus
Optional Arguments section in this guide for more information.

Name:

Value:

Description:

LXfCMDARG_QUERY

0x00000002

Query argument. The argument can be queried with the question mark
syntax. See the Querying Commands section in this guide for more
information on performing queries.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 142 of 263

Name:

Value:

Description:

LXfCMDARG_READONLY

0x00000004

Read-only argument. The argument’s value can be queried, but it
cannot be directly changed.

Name:

Value:

Description:

LXfCMDARG_VARIABLE

0x00000008

Variable datatype argument. The actual datatype of the argument
depends on the values of the command’s other
LXfCMDARG_REQFORVARIABLE arguments.

Name:

Value:

Description:

LXfCMDARG_DYNAMICHINTS

0x00000010

Argument using dynamic TextValueHints. The TextValueHints
available depends on the values of the command’s other
LXfCMDARG_REQFORVARIABLE arguments.

Name:

Value:

Description:

LXfCMDARG_REQFORVARIABLE

0x00000020

Required for variable arguments. These arguments are evaluated first,
allowing their values to be used to determine the datatypes and other
dynamic argument properties from LXfCMDARG_VARIABLE and
LXfCMDARG_DYNAMICHINTS arguments.

Name:

Value:

Description:

LXfCMDARG_HIDDEN

0x00000040

Hidden argument. The argument’s control will be hidden from the
command’s argument dialog. The value can still be set and read as
normal.

Name:

Value:

LXfCMDARG_DYNAMIC_DEFAULTS

0x00000080

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 143 of 263

Description: The argument’s default values are always used in the command’s
argument dialog. This overrides the default behavior where the dialog
caches previously entered values for the next time it is opened.

Name:

Value:

Description:

LXfCMDARG_DIALOG_ALWAYS_SETS

0x00000100

The dialog will always set the value of the argument, even if the user
hasn’t modified it. This overrides the default behavior where the
dialog leaves unset any optional arguments that were not modified by
the user, which is not desirable when the argument’s default value was
dynamically computed from the values the user may have entered.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 144 of 263

Appendix B:
platformservice ScriptQuery Interface

The platformservice interface provides information about the system that modo is
running on. This includes the user the application is licensed to, the application version,
and operating system it is running on.

Attributes
Querying the platformservice ScriptQuery interface reveals ten root attributes and one
attribute group:

• licensedto
• exipiresin
• serialnum
• numlicenses
• appname
• appversion
• appbuild
• isheadless
• ostype
• osname
• osversion
• paths
• path.???
• importpaths

Licensing
Basic licensing information can be read with these attributes, including the name of the
licensed owner of the application and how long before the license key expires.

Attribute:

Description:

Datatype:

Example:

licensedto

Get the name of the licensed owner of modo. Returns the string
(unregistered), localized to the current language, if the application is
not licensed.

string

query platformservice licensedto ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 145 of 263

Result: John Doe

Attribute:

Description:

Datatype:

Example:

Result:

expiresin

Get the number of days before the license key expires. If this is a
permanent key, this returns -1.

string

query platformservice expiresin ?

-1

Attribute:

Description:

Datatype:

Example:

Result:

serialnum

Get the serial number of a licensed application. This is only valid
when licensedto does not return (unregistered).

string

query platformservice serialnum ?

[serial number of the license]

Attribute:

Description:

Datatype:

Example:

Result:

numlicenses

Get the number of machines that this license supports. This is only
valid when licensedto does not return (unregistered).

integer

query platformservice numlicenses ?

1

Application Information
Basic application information can be read with these attributes, including the name of the
application and the version and build numbers.

Attribute:

Description:

appname

Get the name of the application. For modo, this will be the string
modo.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 146 of 263

Datatype:

Example:

Result:

string

query platformservice appname ?

modo

Attribute:

Description:

Datatype:

Example:

Result:

appversion

Get the version number of the application.

integer

query platformservice appversion ?

302

Attribute:

Description:

Datatype:

Example:

Result:

appbuild

Get the build number of the application.

integer

query platformservice appbuild ?

16500

Headless Operation
The nexus infrastructure supports running in a headless mode without a user interface.

Attribute:

Description:

Datatype:

Example:

Result:

isheadless

Returns true if the application is running without a user interface.

integer

query platformservice isheadless ?

0

Operating System Information
Basic application information can be read with these attributes, including the name of the
application and the version and build numbers.

Attribute: ostype

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 147 of 263

Description:

Datatype:

Example:

Result:

Get the operating system type. This will be MacOSX, Win32 or Linux.

string

query platformservice ostype ?

MacOSX

Attribute:

Description:

Datatype:

Example:

Result:

osname

Get a more human-readable operating system name.

string

query platformservice osname ?

Mac OS X 10.4.6

Attribute:

Description:

Datatype:

Example:

Result:

osversion

Get a version string from the operating system. The format is
dependent on the OS. For example, Windows will commonly include
the service pack as well.

string

query platformservice osversion ?

10.4.6

Paths
This attribute returns a list of file system paths used by modo.

Attribute:

Description:

Datatype:

Example:

paths

Get a list of paths names used by modo.

string

query platformservice paths ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 148 of 263

Result: current
cwd
temp
program
exename
system
prefs
resource
module
commonprefs
help
user
content

path.???

path.??? attributes are used to obtain information about a path. The internal name of the
path is used as the selector argument to the query command. Currently only one attribute
is defined, which resolves the internal name into a file system path.

Attribute:

Description:

Datatype:

Example:

Result:

path.path

Get a file system path.

string

query platformservice path.path ? temp

/Users/jangell/Library/Application Support/Luxology/AutoSave

importpaths
The importpaths attribute is used to get a list of all imported resource paths. These paths
are used for the default location for scripts and icons, and are scanned on startup for
auxiliary config files.

Attribute:

Description:

Datatype:

Example:

Result:

importpaths

Get the imported resource paths.

string

query platformservice importpaths ? temp

[list of all imported paths]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 149 of 263

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 150 of 263

Appendix B.1:
Paths

modo has a number of pre-defined paths that it references via internal names. These
paths are available to scripts.

Name:

Description:

Windows:

Mac OS X:

current

Current directory. This returns an empty string or a period depending
on the operating system.

Name:

Description:

Windows:

Mac OS X:

cwd

Current working directory. This returns an absolute path to the current
directory, although this may be an empty string.

Name:

Description:

Windows:

Mac OS X:

temp

Temp directory. This is where modo saves temporary files such as
auto-saves.

C:\Documents and Settings\jangell\Local Settings\Temp

/Users/jangell/Library/Application Support/Luxology/AutoSave

Windows:

Description:

Result:

Mac OS X:

program

Program directory. This is the directory that the modo application
exists in.

C:\Program Files\Luxology\modo

/Applications

Name:

Description:

exename

Executable filename. This is path to the application itself.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 151 of 263

Windows:

Mac OS X:

C:\Program Files\Luxology\modo\modo.exe

/Applications/modo.app

Name:

Description:

Windows:

Mac OS X:

system

System Path. This points to the OS system directory.

C:\WINNT

/Users/jangell/Library

Name:

Description:

XP/2000:

Vista

OS X:

prefs

Preferences directory. This is where your user config is saved. In
modo 301, the user config is named modo201.cfg on Windows, and
com.luxology.modo301 on Mac OS X. The same basic pattern is used
in later version sof modo.

C:\Documents and Settings\jangell\Application Data\Luxology

C:\Users\jangell\AppData\Roaming\Luxology

/Users/jangell/Library/Preferences

Name:

Description:

Windows:

Mac OS X:

resource

Resource directory, containing various standard configuration files for
modo. You should not edit files in this directory; use the user resource
directory instead. Note that on Mac OS X, this directory is in the
application bundle.

C:\Program Files\Luxology\modo\resrc

/Applications/modo.app/Contents/Resources

Name:

Description:

Windows:

Mac OS X:

module

Plug-in directory containing the standard modo plug-ins. You should
not add files to this directory; use a user plug-in directory instead.
Note that on Mac OS X, this directory is in the application bundle.

C:\Program Files\Luxology\modo\extra

/Applications/modo.app/Contents/Extras

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 152 of 263

Name:

Description:

XP/2000:

Vista

OS X:

commonprefs

Common preferences directory for shared configs.

C:\Documents and Settings\jangell\Application Data\Luxology

C:\Users\jangell\AppData\Roaming\Luxology

/Library/Application Support/Luxology

Name:

Description:

XP/2000:

Vista

OS X:

help

Help directory. This is where all the help files are that modo uses.

C:\Documents and Settings\jangell\Application Data\Luxology

C:\Users\jangell\AppData\Roaming\Luxology\Documentation

/Library/Application Support/Luxology/Documentation

Name:

Description:

XP/2000:

Vista

OS X:

user

User directory. This contains the User Scripts and User Resources
directories, where you can add your own scripts and config files.

C:\Documents and Settings\jangell\Application Data\Luxology

C:\Users\jangell\AppData\Roaming\Luxology

/Users/jangell/Library/Application Support/Luxology

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 153 of 263

Appendix D:
hostservice ScriptQuery Interface

The hostservice interface provides access to the list of available plug-ins, known as
servers. This includes both built-in servers that are part of modo itself and any externally
loaded modules. The most useful application of this to scripts is to allow access to the
list of loaders and savers.

Servers with names starting with dollar signs, such as loader/$LXOB and saver/$Targa,
are built-in servers. All other servers, such as loader/freeimage and saver/PNG, are plug-
in servers.

Attributes
Querying the hostservice ScriptQuery interface reveals the following attributes:

• classes
• class.???
• servers
• server.???
• defaultPath

classes
classes requires no selection. It returns a full list of all available server classes. Lists of
servers within those classes can be obtained with the. server.??? series of attributes.

Attribute:

Description:

Datatype:

Example:

Result:

classes

Get a list of all available server classes.

string

query hostservice classes ?

[list of all classes by name]

class.servers
The only attribute in the class.??? group, class.servers returns a list of all servers within a
specific class. The selector must be one of the strings returned by classes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 154 of 263

Attribute:

Description:

Datatype:

Example:

Result:

class.servers

Get a list of servers for the class provided as the selector.

string

query hostservice class.servers ? loader

[list of all servers of the loader class]

servers
servers requires no selection. It returns a full list of all available servers, which can then
be used with the server.??? attributes.

Attribute:

Description:

Datatype:

Example:

Result:

servers

Get a list of all available servers in all classes.

string

query hostservice servers ?

[list of all servers by name]

server.???

The server.??? series of attributes provide information about specific servers. Each
requires a selector returned by servers or class.servers unless otherwise noted.

Attribute:

Description:

Datatype:

Example:

Result:

server.name

Get the internal name of a server.

string

query hostservice server.name ? loader/$LWO2

$LWO2

Attribute:

Description:

server.userName

Get the human-readable name of a server.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 155 of 263

Datatype:

Example:

Result:

string

query hostservice server.userName ? loader/$LWO2

Lightwave Object (LWO2)

Attribute:

Description:

Datatype:

Example:

Result:

server.class

Get the class of a server. This class can be used as a selector for the
class.servers attribute.

string

query hostservice server.class ? loader/$LWO2

loader

Attribute:

Description:

Datatype:

Example:

Result:

server.module

Get the path to the file that the server exists in. If this is a built-in
server, an empty list is returned.

string

query hostservice server.userName ? loader/mayaAscii

C:\Program Files\Luxology\modo\fmtmayama.lx

Attribute:

Description:

Datatype:

Example:

Result:

server.infoTag

Get the value of tag. Tags can be any simple static information the
server wants to provide to the application. Some of these are
particularly useful to scripts, such as loader.dosPattern and
saver.dosPattern, which define the file extensions of loaders and
savers.

The selector is the tag to be retrieved; note that tags are case sensitive.
Before using this attribute, a specific server must have previously been
“selected” with server.name or one of the other server.??? attributes.

string

query hostservice server.name ? loader/$LWO2
query hostservice server.infoTag ? loader.dosPattern

*.lwo

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 156 of 263

defaultPath
defaultPath returns the external server search path. It requires no selection. This is also
available through platformservice interface by passing hosts as the selector to the
path.path attribute.

Attribute:

Description:

Datatype:

Example:

Result:

defaultPath

Get the default search path for plug-ins.

string

query hostservice defaultPath ?

C:\Program Files\Luxology\modo

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 157 of 263

Appendix D:
layerservice ScriptQuery Interface

Commands are executed and queried directly through the command syntax description
previously in this guide, but this doesn’t provide any detailed information about meshes
and their related elements. The layerservice ScriptQuery can be used to obtain this
detailed mesh information.

Attributes
Querying the layerservice ScriptQuery interface reveals the root attributes and groups in
twelve categories:

• layers Modeling layer attributes.
• kids Alternate method of listing child layers.
• parts Part groups.
• materials Materials.
• textures Textures.
• clips Clips (images).
• vmaps Vertex Maps.
• verts Vertices in a layer.
• polys Polygons in a layer
• edges Edges in a layer
• models Loaded objects.
• selection Current selection.

Special Selectors
This interface hosts a series of global lists of layers, models, materials, parts, textures,
clips and vertex maps. There are also local lists specific to the layer selection for
accessing vertices, edges and polygons.

The root-level attributes ending in an ‘s’ all return valid selectors for the more specific
property attributes, similar to how the return values from the commandservice commands
and categories attributes are the selectors for the more specific property attributes.
However, the layerservice ‘s’ attributes require the use of selectors returned by the
various attributes ending in _groups to filter the query to specific groups of elements.

The ‘s’ attributes are layers, kids, materials, parts, textures, clips, vmaps, verts, polys,
edges and models.

The _groups attributes are layer_groups, kid_groups, material_groups, part_groups,
texture_groups, clip_groups, vmap_groups, vert_groups, poly_groups and edge_groups.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 158 of 263

Using Selectors
In the case of layers, the _groups attribute returns the keywords main, fg, bg, and all.
Getting a list of foreground layers is done in the following example.

query layerservice layers ? fg

Each of the values returned by this query can be passed into the a more specific property
attribute, such as layer.subdivLevel. In the following example we assume that the query
returned “0”, and we provided that as the selector to layer.subdivLevel:

query layerservice layer.subdivLevel ? 0

Alternatively, all of the different ‘s’ attributes support the list walking keywords returned
by the layers_element attributes, first, last, next and prev, which are fairly self-
explanatory. This example returns the first vertex map:

query layerservice vmaps ? first

The result of this query can then be passed to the property attributes. The next vertex
map can then be obtained with:

query layerservice vmaps ? next

And so on.

Layer-Specific Selections
In the case of vertices, edges and polygons, a layer selection is required before any of
their attributes can be used. This can be done by using any of the layer attributes that
takes a selection. The layer.index attribute, for example, actually gets the index of a
specific layer, but it also changes the selection in the service. In this example we switch
the layer selection to the primary layer, discarding the returned value:

query layerservice layer.index ? main

After that, the various vertex, polygon and edge attributes can be used to get information
specifically related to that layer, such as this query to get the number of selected vertices
in the layer:

 query layerservice vert.N ? selected

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 159 of 263

The above example also demonstrates the different grouping keywords used by the local
lists. A complete list of keywords can be obtained by querying vert_groups, edge_groups
and poly_groups, and includes selected, unselected, and all.

“Selecting” Layers, Vertex Maps, etc.

As mentioned above, it is important to note that all attributes work only on the current
layer chosen for querying. This is especially true of the vert.???, poly.??? and edge.???
element attributes. This is termed as selection, but is not the same as how you select
elements with the mouse through the interface; rather this is to provide layerservice with
a context to query another attribute. This kind of selection is performed by simply
querying one of the attributes of the element you want to select. For example, to “select”
a layer, simply query any layer.??? attribute, such as layer.index.

query layerservice layer.index ? main

After this, the various vert.???, poly.???, etc. attributes can be used. The return value
from the query above can be ignored; our only purpose is to tell layerservice which layer
we plan to query the properties of. Once “selected”, it remains until a new call to one of
the layer.??? attributes.

Similarly, attributes such as vert.vmapValue and poly.vmapValue require a vertex map
selection, as mentioned in the attribute’s description

Selecting Points, Polygons and Edges
The select.element command can be used to select vertices, polygons and edges (this
is selecting like how you would select a polygon in a model viewport, not the query
selecting described in the previous section). Once selected, elements can be manipulated
using other commands. In all cases, the selectors returned by the verts, polys and edges
attributes can be used to select those individual elements. verts and polys bother return
element indices, while edges returns a vertex pair separated by commas and wrapped in
parentheses, such as “(21, 18)”.

Model Attributes
The model series of attributes provide information about the models, which are defined
as a collection of layers stored in a file. The model attribute itself will return the list of
available model.??? attributes.

Attribute:

Description:

model

Get a list of model attributes. No selection is needed.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 160 of 263

Datatype:

Example:

Result:

string

query layerservice model ?

[list of model.??? attribute names]

models and model.N
The models attribute returns a list of all possible specific selectors for use with the
various model.??? attributes, while model.N returns the number of models in that
grouping.

Attribute:

Description:

Datatype:

Example:

Result:

models

Get a list of selectors for the “model.???” attributes.

string

query layerservice models ?

0
1

Attribute:

Description:

Datatype:

Example:

Result:

model.N

Get the number of models in memory.

string

query layerservice model.n ?

2

model.???

The model.??? attributes query specific properties of an individual model. For each, the
selector must be a specific selection from a models query, or an index between 0 and
model.N, or one of the models_groups selectors.

Attribute:

Description:

Datatype:

model.index

Index of a model in the global model list. Note that the indices start
from 1.

integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 161 of 263

Example:

Result:

query layerservice model.index ? 0

1

Attribute:

Description:

Datatype:

Example:

Result:

model.layer

Return the index of the current layer of the model. Layer indices start
from 1.

integer

query layerservice model.layer ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

model.curIndex

Return the currently selected model’s index. Indices start from 1.

integer

query layerservice model.curIndex ?

1

Attribute:

Description:

Datatype:

Example:

Result:

model.curName

Get the name of the current model, or an empty list if it has not yet
been saved.

string

query layerservice model.curName ?

Filename.lxo

Attribute:

Description:

Datatype:

Example:

Result:

model.name

Get the filename of the model, or an empty list if it has not yet been
saved. This is the filename only, without the path to the file.

string

query layerservice model.name ? 0

Filename.lxo

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 162 of 263

Attribute:

Description:

Datatype:

Example:

Result:

model.file

Get the filename of the model, or an empty list if it has not yet been
saved. This includes the full path to the file as well as the filename.

string

query layerservice model.file ? 0

C:\path\Filename.lwo

Material Attributes
The material attributes provide information about, well, materials.

material and material_groups
The material attribute is use to get the list of available material.??? attributes. The
material_groups attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

material

Get a list of material attributes. No selection is needed.

string

query layerservice material ?

[list the material.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

material_groups

Get a list of group keywords for use as the selection for the other
attributes. No selection is needed.

string

query layerservice material_groups ?

all

material and material_groups
The material attribute is use to get the list of available material.??? attributes. The
material_groups attribute is used to provide group filters for the other attributes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 163 of 263

Attribute:

Description:

Datatype:

Example:

Result:

material

Get a list of material attributes. No selection is needed.

string

query layerservice material ?

[list the material.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

material_groups

Get a list of group keywords to pass as the selection for the other
attributes. No selection is needed. There is currently only one
keyword, All, which returns all materials.

string

query layerservice material_groups ?

all

materials and material.N
The materials attribute returns a list of possible, specific selectors for the various
material.??? attributes, while material.N returns the number of materials in that
grouping. Both attributes require a keyword from the material_group attribute as a
selector.

Attribute:

Description:

Datatype:

Example:

Result:

materials

Get a list of selectors for the material.??? attributes. These are in the
form of absolute indices into the global materials list. Material indices
start from 0.

integer

query layerservice materials ?

0

Attribute:

Description:

Datatype:

material.n

Get the number of materials.

integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 164 of 263

Example:

Result:

query layerservice material.n ? all

1

material.???

The material.??? attributes query specific properties of an individual material. For each,
the selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a materials query, or simply an index between 0 and material.N.

Attribute:

Description:

Datatype:

Example:

Result:

material.name

Name of a material in the material list. The selection must be one of
the keywords returned by layer_element, or a previous layer_element
selection must exist.

string

query layerservice material.name ? first

Default

Attribute:

Description:

Datatype:

Example:

Result:

material.index

Index of a material in the material list.

integer

query layerservice material.index ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

material.layer

Index of a material in the layer list. Indices start from 0.

integer

query layerservice material.index ? first

0

Attribute: material.opacity

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 165 of 263

Description:

Datatype:

Example:

Result:

Get the material’s opacity.

percent

query layerservice material.opacity ? 0

1.0

Attribute:

Description:

Datatype:

Example:

Result:

material.color

Get the material’s color. Returns three floats representing the red,
green and blue components of the color.

float

query layerservice material.color ? 0

0.8
0.8
0.8

Attribute:

Description:

Datatype:

Example:

Result:

material.luminous

Get the material’s luminosity.

percent

query layerservice material.luminous ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.diffuse

Get the material’s diffusion.

percent

query layerservice material.diffuse ? 0

1.0

Attribute:

Description:

Datatype:

material.specular

Get the material’s specular.

percent

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 166 of 263

Example:

Result:

query layerservice material.specular ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.gloss

Get the material’s glossiness.

percent

query layerservice material.gloss ? 0

0.3

Attribute:

Description:

Datatype:

Example:

Result:

material.reflect

Get the material’s reflection amount.

percent

query layerservice material.reflect ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.transp

Get the material’s transparency.

percent

query layerservice material.transp ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.transl

Get the material’s translucency.

percent

query layerservice material.transl ? 0

0.0

Attribute: material.refIndex

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 167 of 263

Description:

Datatype:

Example:

Result:

Get the material’s refraction index.

float

query layerservice material.diffuse ? 0

1.0

Attribute:

Description:

Datatype:

Example:

Result:

material.bump

Get the material’s bump amount.

percent

query layerservice material.bump ? 0

1.0

Attribute:

Description:

Datatype:

Example:

Result:

material.colHigh

Get the material’s color highlights value.

percent

query layerservice material.colHigh ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.colFilt

Get the material’s color filter value.

percent

query layerservice material.colrilt ? 0

0.0

Attribute:

Description:

Datatype:

Example:

Result:

material.difSharp

Get the material’s diffuse sharpness amount.

percent

query layerservice material.difsharp ? 0

0.0

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 168 of 263

Attribute:

Description:

Datatype:

Example:

Result:

material.id

Get the item reference ID of the material.

string

query layerservice material.id ? 0

textureLayer_01253459C65C

Attribute:

Description:

Datatype:

Example:

Result:

material.textures

Get a list of item reference IDs for the textures associated with the
material.

string

query layerservice material.textures ? first

textureLayer_8F767159B978
textureLayer_82B83B59C65B
textureLayer_01253459C65C
texturelayer_14059A598979

Layer Attributes
The layer attributes provide information about the individual layers that make up a
mesh.

layer
The layer attribute simply returns a list of layer-specific attributes.

Attribute:

Description:

Datatype:

Example:

Result:

layer

Get a list of layer attributes. No selection needed.

string

query layerservice layer ?

[list the layer.??? attribute names]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 169 of 263

layer_groups, layer_elements and layer_lists
These return keywords that are used to query groups and elements, and to get access to
specific lists of properties. Certain attributes take these keywords as their selections.

Attribute:

Description:

Datatype:

Example:

Result:

layer_groups

Get a list of layer group keywords, used to querying subsets of layers:

• All: All layers.
• Fg: Foreground layers; currently active.
• Foregruond: Synonym for “fg”
• Bg: Background layers; currently inactive, for reference.
• Background: synonym for “bg”
• Main: Main; new geometry creation will go here.

string

query layerservice layer_groups ?

all
fg
bg
primary
main

Attribute:

Description:

Datatype:

Example:

Result:

layer_elements

Get a list of keywords for walking lists:

• First: Go to the head of the list.
• Last: Go to the tail element in the list.
• Prev: Go to the prev element in the list.
• Next: Go to the next element in the list.

string

query layerservice layer_elements ?

first
last
prev
next

Attribute: layer_lists

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 170 of 263

Description:

Datatype:

Example:

Result:

Get a list of layer group keywords, used to querying subsets of layers:

Kids: A list of child layers parented to this one.
Part: A list of parts used in these layers.
Material: A list of materials used in these layers.
Texture: A list of textures used in these layers.
Clip: A list of clips (images) used in these layers.
VMap: A list of vertex maps used in these layers.
Poly: A list of polygons in these layers.
Vert: A list of vertices in these layers.
Edge: A list of edges in these layers.

string

query layerservice layer_lists ?

kids
part
material
texture
clip
vmap
poly
vert
edge
model
uv

layers and layer.N
The layers attribute returns a list of all possible specific selectors for the various
layer.??? attributes, while layer.N returns the number of layers in that grouping. Both
attributes require a keyword from the layer_group attribute as the selector.

Attribute:

Description:

Datatype:

Example:

Result:

layers

Get a list of layer possible selections to pass into the more specific
“layer.???” attributes.

integer

query layerservice layers ? fg

[list of foreground layers]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 171 of 263

Attribute:

Description:

Datatype:

Example:

Result:

layer.N

Get the number of layers.

integer

query layerservice layer.N ? fg

1

layer.???

The layer.??? attributes query specific properties of an individual layer. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a layers query, or simply an index between 1 and layer.N.

Attribute:

Description:

Datatype:

Example:

Result:

layer.name

Get the layer’s name.

string

query layerservice layer.name ? 1

Mesh

Attribute:

Description:

Datatype:

Example:

Result:

layer.index

Get the absolute index of the layer. Indicies start a 1.

integer

query layerservice layer.index ? mesh020

0

Attribute:

Description:

Datatype:

Example:

Result:

layer.subdivLevel

Get the subdivision level of the layer.

integer

query layerservice layer.subdivLevel ? mesh020

2

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 172 of 263

Attribute:

Description:

Datatype:

Example:

Result:

layer.curveAngle

Get the curve angle setting of a layer.

angle

query layerservice layer.curveAngle ? mesh020

6.0

Attribute:

Description:

Datatype:

Example:

Result:

layer.parent

Get the parent index of the layer.

integer

query layerservice layer.parent ? mesh020

-1

Attribute:

Description:

Datatype:

Example:

Result:

layer.childCount

Get the number of layers parented to this one. The selector must be a
layer_elements keyword or a specific selection from a layers query.

integer

query layerservice layer.childCount ? mesh020

0

Attribute:

Description:

Datatype:

Example:

Result:

layer.children

Get the item IDs of the children of this layer. Returns an empty list if
there are no children.

integer

query layerservice layer.children ? mesh020

Attribute:

Description:

layer.pivot

Get the pivot point of the layers. Three numbers are returned,
representing the X, Y and Z axes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 173 of 263

Datatype:

Example:

Result:

distance

query layerservice layer.pivot ? mesh020

0.0
0.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

layer.bounds

Get the bounding box enclosing the layers. Six numbers are returned;
which should be two pairs of X, Y and Z coordinates marking the
opposite corners of the volume.

distance

query layerservice layer.bounds ? mesh020

-0.5
-0.5
-0.5
0.5
0.5
0.5

Attribute:

Description:

Datatype:

Example:

Result:

layer.visible

Get the layer visibility, returning fg, bg, main or none.

string

query layerservice layer.visible ? mesh020

fg

Attribute:

Description:

Datatype:

Example:

Result:

layer.model

Get the filename of the model the layer belongs to. This includes the
full path to the file.

string

query layerservice layer.model ? mesh020

c:\Path\Filename.lwo

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 174 of 263

Attribute:

Description:

Datatype:

Example:

Result:

layer.id

Get the item reference ID of the layer.

string

query layerservice layer.id ? mesh020

mesh_375A8C59897A

Children Attributes
The children attributes allow the child/parent relationship of layers to be walked. In
case you’re wondering, they’re called kid attributes because childs and childrens sounded
a bit too weird.

kid and kid_groups
The kid series of attributes are a subset of the layer attributes, and are used to list the
children of the a layer. The kid.??? and layer.??? attributes use the same layer selectors.

The kid attribute itself is use to get the list of available kid.??? attributes. The kid_groups
attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

kid

Get a list of kid attributes. No selection is needed.

string

query layerservice kid ?

[list the kid.??? attribute names]

Attribute:

Description:

Datatype:

kid_groups

Get a list of kid keywords to pass as the selection for the other
attributes. No selection is needed.

All: Children of all layers.
Fg: Children of the foreground layers.
Bg: Children of the background layers.
Main: Children of the primary layer.

string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 175 of 263

Example:

Result:

query layerservice kid_groups ?

all
fg
bg
main

kids and kid.N
The kids attribute returns a list of possible, specific selectors for the various kid.???
attributes, while kid.N returns the number of materials in that grouping. Both attributes
require a keyword from the kid_group attribute as a selector.

Attribute:

Description:

Datatype:

Example:

Result:

kids

Get a list of selectors for the “kid.???” attributes. These are in the
form of absolute indices into the global layer list, and representing the
children of the layer selection.

string

query layerservice kids ? main

1

Attribute:

Description:

Datatype:

Example:

Result:

kid.N

Get the number of children of the layer selection.

string

query layerservice kid.n ? main

1

kid.???

The kid.??? attributes query specific properties of an individual child of a layer. For
each, the selector must be a layer_elements keyword (first, last, prev or next), or a
specific selection from a kids or layers query, or simply an index between 0 and kid.N.

Attribute: kid.name

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 176 of 263

Description:

Datatype:

Example:

Result:

Name of a child of the layer selection. The selection must be one of
the keywords returned by layer_element, or a previous layer_element
selection must exist.

string

query layerservice kid.name ? first

Mesh

Attribute:

Description:

Datatype:

Example:

Result:

kid.index

Index of a child layer in the global layer list. Indices start from 1.

string

query layerservice kid.index ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

kid.parent

Index of a parent of this specific child layer in the global layer list.
Returns 0 if the kid has no parent.

string

query layerservice kid.parent ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

kid.layer

Get the layer index of the child. Indices start from 1.

index

query layerservice kid.layer ? first

1

Part Attributes
The part attributes provide access to the lists of polygons associated with part names.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 177 of 263

part and part_groups
The part attribute is use to get the list of available part.??? attributes. The part_groups
attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

part

Get a list of part attributes.

string

query layerservice part ?

[list the part.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

part_groups

Get a list of group keywords to pass as the selection for the other
attributes. No selection is needed. There is currently only one
keyword, All, which returns all parts.

string

query layerservice part_groups ?

all

parts and part.N
The parts attribute returns a list of possible, specific selectors for the various part.???
attributes, while part.N returns the number of parts in that grouping. Both attributes
require a keyword from the part_group attribute as a selector.

Attribute:

Description:

Datatype:

Example:

Result:

parts

Get a list of selectors for the “part.???” attributes. These are provided
as absolute indices in the global part list.

integer

query layerservice parts ? all

0
1

Attribute: part.N

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 178 of 263

Description:

Datatype:

Example:

Result:

Get the number of parts.

integer

query layerservice part.n ? all

2

part.???

The part.??? attributes query specific properties of an individual part. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a parts query, or simply an index between 0 and part.N.

Attribute:

Description:

Datatype:

Example:

Result:

part.name

Name of a part in the part list.

string

query layerservice part.name ? first

Bolt
Nut

Attribute:

Description:

Datatype:

Example:

Result:

part.index

Index of a part in the part list. Indices start from 0.

integer

query layerservice part.index ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

part.layer

Get the index of the layer the part is in. Indices start from 1.

integer

query layerservice part.layer ? first

1

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 179 of 263

Texture Attributes
The texture attributes are used to obtain the properties of attributes.

texture and texture_groups
The texture attribute is use to get the list of available texture.??? attributes. The
texture_groups attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

texture

Get a list of texture attributes.

string

query layerservice texture ?

[list the texture.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

texture_groups

Get a list of group keywords to pass as the selection for the other
attributes. No selection is needed. There is currently only one
keyword, All, which returns all textures.

string

query layerservice texture_groups ?

all

textures and texture.N
The textures attribute returns a list of possible, specific selectors for the various
texture.??? attributes, while texture.N returns the number of parts in that grouping. Both
attributes require a keyword from the texture_group attribute as a selector.

Attribute:

Description:

Datatype:

Example:

textures

Get a list of selectors for the texture.??? attributes, which are absolute
indices into the texture list.

string

query layerservice texture ? all

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 180 of 263

Result: 0
1

Attribute:

Description:

Datatype:

Example:

Result:

texture.N

Total number of textures.

string

query layerservice texture.n ? all

2

texture.???

The texture.??? attributes query specific properties of an individual texture. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a textures query, or simply an index between 0 and texture.N.

Attribute:

Description:

Datatype:

Example:

Result:

texture.name

Name of a texture in the texture list.

string

query layerservice texture.name ? first

Bolt
Nut

Attribute:

Description:

Datatype:

Example:

Result:

texture.index

Index of a texture in the texture list. Indiices start from 0.

integer

query layerservice texture.index ? first

0

Attribute:

Description:

Datatype:

texture.layer

Get the layer index of the texture in the material.

integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 181 of 263

Example:

Result:

query layerservice texture.material ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.id

Get the item reference ID of the texture.

integer

query layerservice texture.id ? first

textureLayer_8F767159B978

Attribute:

Description:

Datatype:

Example:

Result:

texture.type

Get the type name of a texture.

string

query layerservice texture.type ? first

advancedMaterial

Attribute:

Description:

Datatype:

Example:

Result:

texture.channel

Get the channel name in the material that the texture is applied to.

string

query layerservice texture.channel ? first

color

Attribute:

Description:

Datatype:

Example:

Result:

texture.opacity

Get the texture opacity.

percent

query layerservice texture.opacity ? first

0.0

Attribute: texture.enable

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 182 of 263

Description:

Datatype:

Example:

Result:

Get the texture enable state.

integer

query layerservice texture.enable ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

texture.dispAxis

Get the texture axis. 0 is X, 1 is Y and 2 is Z.

integer

query layerservice texture.dispAxis ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.invert

Get the texture inversion state.

integer

query layerservice texture.invert ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.blendMode

Get the texture blending mode.

string

query layerservice texture.blendMode ? first

normal

Attribute:

Description:

Datatype:

Example:

texture.position

Get the texture position. Returns three distances representing the X,
Y and Z position.

distance

query layerservice texture.position ? first

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 183 of 263

Result: 3.126
1.25
1.0

Attribute:

Description:

Datatype:

Example:

Result:

texture.rotation

Get the texture rotation. Returns three angles representing the X, Y
and Z rotation.

integer

query layerservice texture.rotation ? first

0.0
90.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

texture.scale

Get the texture scale. Returns three floats representing the X, Y and Z
rotation.

float

query layerservice texture.rotation ? first

1.0
1.0
1.0

Attribute:

Description:

Datatype:

Example:

Result:

texture.projType

Get the texture projection type.

string

query layerservice texture.projType ? first

planar

Attribute:

Description:

Datatype:

texture.projAxis

Get the texture projection axis.

integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 184 of 263

Example:

Result:

query layerservice texture.projAxis ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.coordSys

Get the texture coordinate system, such as particle, object and world.

string

query layerservice texture.coordSys ? first

object

Attribute:

Description:

Datatype:

Example:

Result:

texture.fallType

Get the texture falloff type, such as cube, sphere, linearX, linearY, and
linearZ.

string

query layerservice texture.falloffType ? first

cube

Attribute:

Description:

Datatype:

Example:

Result:

texture.falloff

Get the texture falloff amount. Returns three distances representing
the X, Y and Z falloff.

distance

query layerservice texture.falloff ? first

1.0
100.0
1.0

Attribute:

Description:

Datatype:

texture.uvMap

Get the index of the UV map associated with the texture.

distance

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 185 of 263

Example:

Result:

query layerservice texture.uvMap ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.uvName

Get the name of the UV map associated with the texture.

string

query layerservice texture.uvName ? first

My UV Map

Attribute:

Description:

Datatype:

Example:

Result:

texture.clip

Get the index of the clip applied to the texture.

integer

query layerservice texture.image ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

texture.clipName

Get the name of the clip applied to the texture.

string

query layerservice texture.image ? first

c:\path\creatureface.tga

Clip Attributes
The clip attributes give access to the clip list.

clip and clip_groups
The clip attribute is use to get the list of available clip.??? attributes. The clip_groups
attribute is used to provide group filters for the other attributes.

Attribute: clip

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 186 of 263

Description:

Datatype:

Example:

Result:

Get a list of clip attributes.

string

query layerservice clip ?

[list the clip.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

clip_groups

Get a list of group keywords to pass as the selection for the other
attributes. No selection is needed. There is currently only one
keyword, All, which returns all clips.

string

query layerservice clip_groups ?

all

clips and clip.N
The clips attribute returns a list of possible, specific selectors for the various clip.???
attributes, while clip.N returns the number of parts in that grouping. Both attributes
require a keyword from the clip_group attribute as a selector.

Attribute:

Description:

Datatype:

Example:

Result:

clips

Get a list of selectors for the clip.??? attributes. These are provided as
absolute indices into the clip list.

string

query layerservice clips ? all

0
1

Attribute:

Description:

Datatype:

clip.N

Total number of clips. The selection must be one of the keywords
returned by clip_groups, or a previous clip_groups selection must
exist.

integer

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 187 of 263

Example:

Result:

query layerservice clip.n ? all

2

clip.???

The clip.??? attributes query specific properties of an individual clip (image). For each,
the selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a clips query, or simply an index between 0 and clip.N.

Attribute:

Description:

Datatype:

Example:

Result:

clip.name

Name of a clip in the clip list. This is often the filename to the image
without the path.

string

query layerservice clip.name ? first

creatureface.tga

Attribute:

Description:

Datatype:

Example:

Result:

clip.file

Filename of a clip in the clip list, including the full path to the file.

string

query layerservice clip.file ? first

c:\path\creatureface.tga

Attribute:

Description:

Datatype:

Example:

Result:

clip.index

Index of a clip in the clip list.

integer

query layerservice clip.index ? first

0

Attribute:

Description:

Datatype:

clip.layer

Get the layer index of the clip. Layer indices start from 1.

index

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 188 of 263

Example:

Result:

query layerservice clip.layer ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

clip.id

Get the item reference ID of the clip.

string

query layerservice clip.id ? first

videoClip_CB383659CFDD

Attribute:

Description:

Datatype:

Example:

Result:

clip.info

Get some information about the clip. This includes the pixel type,
(such as RGB), the width, height, bits per pixel, and pixel aspect ratio.

string

query layerservice clip.info ? first

RGB w:188 h:120 bpp:8 pa:1

Vertex Map Attributes
The Vertex Map attributes can be used to get the information about vertex maps, or
vmaps.

vmap and vmap_groups
The vmap attribute is use to get the list of available vmap.??? attributes. The
vmap_groups attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

vmap

Get a list of vertex map attributes.

string

query layerservice vmap ? first

[list the vmap.??? attribute names]

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 189 of 263

Attribute:

Description:

Datatype:

Example:

Result:

vmap_groups

Get a list of group keywords to pass as the selection for the other
attributes.

• All: All vertex maps.
• Selected: Selected vertex maps.
• Weight: All weight maps.
• Texture: All texture maps.
• Subweight: All subdivision surface weight maps.
• Morph: All morph maps.
• AbsMorph: All absolute morph maps.
• RGB: All RGB color maps.
• RGBA: All RGBA color maps.

string

query layerservice vmap_groups ?

all
selected
weight
texture
subweight
morph
absmorph
rgb
rgba

vmaps and vmap.N
The vmaps attribute returns a list of possible, specific selectors for the various vmap.???
attributes, while vmap.N returns the number of parts in that grouping. Both attributes
require a keyword from the vmap_group attribute as a selector.

Attribute:

Description:

Datatype:

Example:

vmaps

Get a list of selectors for the “vmap.???” attributes. These are in the
form of absolute indices into the global vertex map list.

integer

query layerservice vmaps ? all

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 190 of 263

Result: 0
1

Attribute:

Description:

Datatype:

Example:

Result:

vmaps.N

Total number of vertex maps. The selection must be one of the
keywords returned by vmap_groups, or a previous vmap_groups
selection must exist.

integer

query layerservice vmap.n ?

1

vmap.???

The vmap.??? attributes query specific properties of an individual vertex map. For each,
the selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a vmaps query, or simply an index between 0 and vmap.N.

Attribute:

Description:

Datatype:

Example:

Result:

vmap.name

Name of a vertex map in the vertex map list.

string

query layerservice vmap.name ? first

Subdivision

Attribute:

Description:

Datatype:

Example:

Result:

vmap.index

Index of a vertex map in the vertex map list. Indices start from 0.

integer

query layerservice vmap.index ? first

0

Attribute:

Description:

vmap.layer

Index of the vertex map in the layer list. Layer indices start from 1.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 191 of 263

Datatype:

Example:

Result:

integer

query layerservice vmap.layer ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

vmap.type

Get the type of a vertex map in the vertex map list.

string

query layerservice vmap.type ? first

subweight

Attribute:

Description:

Datatype:

Example:

Result:

vmap.dim

Get the dimensions of a vertex map in the vertex map list.

integer

query layerservice vmap.dim ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

vmap.selected

Returns true if the vertex map is selected

integer

query layerservice vmap.selected ? first

1

Vertex Attributes
The vertex attributes provide detailed information about individual vertices in a mesh.

vert and vert_groups
The vert attribute is use to get the list of available vert.??? attributes. The vert_groups
attribute is used to provide group filters for the other attributes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 192 of 263

Attribute:

Description:

Datatype:

Example:

Result:

vert

Get a list of vertex attributes.

string

query layerservice vert ?

[list the vert.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

vert_groups

Get a list of group keywords to pass as the selection for the other
attributes.

• Selected: Selected vertices.
• Unselected: Unselected vertices.
• All: All vertices.
• Visible: All vertices that are not hidden.

string

query layerservice vert_groups ?

all
selected
unselected
visible

verts and verts.N
The verts attribute returns a list of possible, specific selectors for the various vert.???
attributes, while vert.N returns the number of parts in that grouping. Both attributes
require a keyword from the vert_group attribute as a selector.

Before using any of the remaining vertex attributes, you must first select a layer with a
layer.??? attribute. The following example selects the first layer, but first can be
replaced with a specific index or any of the layer_element keywords as described in the
layer.index documentation above.

query layerservice layer.index ? first

Attribute: verts

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 193 of 263

Description:

Datatype:

Example:

Result:

Get a list of selectors for the vert.??? attributes, provided in the form
of absolute vertex indices.

integer

query layerservice verts ? all

0
1
2
3

Attribute:

Description:

Datatype:

Example:

Result:

vert.N

Get the number of vertices in the grouping.

integer

query layerservice vert.N ? selected

4

vert.???

The vert.??? attributes query specific properties of an individual vertex. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a verts query, or simply an index between 0 and vert.N.

Attribute:

Description:

Datatype:

Example:

Result:

vert.name

Get the “name” of a vertex. This name is in the form of layer
index:vertex index. For example, the tenth vertex in the third layer has
the name 3:10.

integer

query layerservice vert.name ? first

0:0

Attribute:

Description:

Datatype:

vert.index

Get the absolute index of a vertex. Indices start from 0.

string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 194 of 263

Example:

Result:

query layerservice vert.index ? first

0:0

Attribute:

Description:

Datatype:

Example:

Result:

vert.layer

Get the index of the layer the vertex is in. Layer indices start from 1.

integer

query layerservice vert.layer ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

vert.pos

Get the position of the vertex. The query returns three numbers
representing the X, Y and Z coordinates of the vertex.

distance

query layerservice vert.pos ? first

5.0
-0.28
-6.48

Attribute:

Description:

Datatype:

Example:

Result:

vert.normal

Get the normal of the vertex. The query returns three numbers
representing the vertex normal as an average of the normals of the
polygons it belongs to.

distance

query layerservice vert.normal ? first

1.0
0.0
0.0

Attribute:

Description:

vert.numPolys

Get the number of polygons sharing this vertex.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 195 of 263

Datatype:

Example:

Result:

integer

integer layerservice vert.numPolys ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

vert.polyList

Get a list of the absolute indices of the polygons sharing this vertex.
The queried values can be used as selections for the poly.???
attributes.

integer

query layerservice vert.polyList ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

vert.numVerts

Get the number of vertices connected to this vertex by edges. This is
also called the valence.

integer

query layerservice vert.numVerts ? first

2

Attribute:

Description:

Datatype:

Example:

Result:

vert.vertList

Get a list of the absolute indices of the vertices connected to this
vertex by edges. The queried values can be used as selections for the
vert.??? attributes.

integer

query layerservice vert.vertList ? first

1
3

Attribute:

Description:

vert.selected

Returns true if the vertex is selected.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 196 of 263

Datatype:

Example:

Result:

integer

query layerservice vert.selected ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

vert.hidden

Returns true if the vertex is hidden.

integer

query layerservice vert.hidden ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

vert.selSets

Returns a list of selection sets the vertex belongs to. Returns an empty
list if the vertex does not belong to any selection sets.

string

query layerservice vert.selSets ? first

Attribute:

Description:

Datatype:

Example:

Result:

vert.vmapValue

Returns the value of the vertex map last queried for this vertex. Note
that a vertex map must have previously been “selected” using one of
the vmap.??? attributes.

float

query layerservice vert.vmapValue ? first

0.5

Attribute:

Description:

Datatype:

vert.symmetric

Return the name of the vertex opposite this one. This is the vertex that
would also be affected by tools when symmetry is active.

string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 197 of 263

Example:

Result:

query layerservice vert.symmetic ? first

0:3

Polygon Attributes
The polygon attributes provide information about individual polygons.

poly and poly_groups
The poly attribute is use to get the list of available poly.??? attributes. The poly_groups
attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

poly

Get a list of polygon attributes.

string

query layerservice poly ?

[list the poly.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

poly_groups

Get a list of group keywords to pass as the selection for the other
attributes.

• Selected: Selected polygons.
• Unselected: Unselected polygons.
• All: All polygons.
• Visible: All polygons that are not hidden.

string

query layerservice poly_groups ?

selected
unselected
all
visible

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 198 of 263

poly and polys.N
The polys attribute returns a list of possible, specific selectors for the various poly.???
attributes, while poly.N returns the number of parts in that grouping. Both attributes
require a keyword from the poly_group attribute as a selector.

Before using any of the remaining polygon attributes, you must first select a layer with a
layer.??? attribute. The following example selects the first layer, but first can be
replaced with a specific index or any of the layer_element keywords as described in the
layer.index documentation above.

query layerservice layer.index ? first

Attribute:

Description:

Datatype:

Example:

Result:

polys

Get a list of selectors for the poly.??? attributes, provided in the form
of absolute polygon indices.

integer

query layerservice polys ? all

0
1
2
3

Attribute:

Description:

Datatype:

Example:

Result:

poly.N

Get the number of polygons in the grouping.

integer

query layerservice poly.N ? selected

3

poly.???

The poly.??? attributes query specific properties of an individual polygon. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a polys query, or simply an index between 0 and poly.N.

Attribute: poly.name

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 199 of 263

Description:

Datatype:

Example:

Result:

Get the “name” of a polygon. This name is in the form of layer
index:polygon index. For example, the second polygon in the first
layer has the name 1:2.

string

query layerservice poly.name ? first

0:0

Attribute:

Description:

Datatype:

Example:

Result:

poly.index

Get the absolute index of a polygon. Indices start from 0.

integer

query layerservice poly.index ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

poly.layer

Get the index of the layer that the polygon is in. Layer indices start
from 1.

integer

query layerservice poly.layer ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

poly.normal

Get the normal of the polygon. The query returns three numbers
representing the normal direction

distance

query layerservice poly.normal ? first

1.0
0.0
0.0

Attribute: poly.numVerts

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 200 of 263

Description:

Datatype:

Example:

Result:

Get the number of vertices in this polygon.

integer

query layerservice poly.numVerts ? first

4

Attribute:

Description:

Datatype:

Example:

Result:

poly.vertList

Get a list of the absolute indices of the vertices sharing this polygon.
The queried values can be used as selections for the vert.???
attributes.

integer

query layerservice poly.vertList ? first

1
3

Attribute:

Description:

Datatype:

Example:

Result:

poly.type

Get the type of a polygon. Current types includes face, curve, patch
and subdiv.

string

query layerservice poly.type ? first

face

Attribute:

Description:

Datatype:

Example:

Result:

poly.selected

Returns true if the polygon is selected.

integer

query layerservice poly.selected ? first

1

Attribute:

Description:

poly.hidden

Returns true if the polygon is hidden.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 201 of 263

Datatype:

Example:

Result:

integer

query layerservice poly.hidden ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

poly.selSets

Returns the a list of selection sets the polygon is in. If the polygon is
not in any selection sets, this returns an empty list.

string

query layerservice poly.hidden ? first

[list of selection sets]

Attribute:

Description:

Datatype:

Example:

Result:

poly.vmapValue

Returns the value of the vertex map last queried for this polygon as a
list of the values corresponding to the vertices returned by
poly.vertList.

Note that a vertex map must have been previously “selected” using
one of the vmap.??? attributes.

Further note that for multi-dimensional vertex maps such as RGB or
UV, this will return the three or two values for the first vertex, then the
value for the second vertex, and so on.

float

query layerservice poly.vmapValue ? first

0.0
1.0
1.0

Attribute:

Description:

Datatype:

poly.discos

Returns a list of vertex indices for those vertices whose entry in a
previously selected vmap are discontinuous. The query will fail if no
vertex map has been previously “selected” through a query.

float

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 202 of 263

Example:

Result:

query layerservice poly.discos ? first

[list of discontinuous vertex indices]

Attribute:

Description:

Datatype:

Example:

Result:

poly.pos

Returns the average of the polygon’s point positions as three distances
representing X, Y and Z coordinates.

distance

query layerservice poly.pos ? first

0.5
0.5
0.5

Attribute:

Description:

Datatype:

Example:

Result:

poly.tags

Returns a list of tags attached to the polygon.

string

query layerservice poly.tags ? first

[list of polygon tags]

Attribute:

Description:

Datatype:

Example:

Result:

poly.tagTypes

Return a list of the types of tags from the poly.tags query.

integer

query layerservice poly.tagTypes ? first

[list of polygon tags types]

Attribute:

Description:

Datatype:

Example:

Result:

poly.part

Returns the part group assigned to the polygon, if any.

string

query layerservice poly.part ? first

My Part Group

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 203 of 263

Attribute:

Description:

Datatype:

Example:

Result:

poly.material

Returns the name of the material assigned to the polygon.

string

query layerservice poly.material ? first

Default

Attribute:

Description:

Datatype:

Example:

Result:

poly.symmetric

Return the name of the polygon opposite this one. This is the polygon
that would also be affected by tools when symmetry is active.

string

query layerservice poly.symmetic ? first

0:2

Edge Attributes
The edge attributes provide information about edges. Edges are defined by pairs of
vertices.

edge and edge_groups
The edge attribute is use to get the list of available edge.??? attributes. The edge_groups
attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

Result:

edge

Get a list of edge attributes.

string

query layerservice edge ?

[list the edge.??? attribute names]

Attribute: edge_groups

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 204 of 263

Description:

Datatype:

Example:

Result:

Get a list of group keywords to pass as the selection for the other
attributes.

• Selected: Selected edges.
• Unselected: Unselected edges.
• All: All edges.
• Visible: All edges that are not hidden.

string

query layerservice edge_groups ?

selected
unselected
all
visible

edges and edges.N
The edges attribute returns a list of possible, specific selectors for the various edge.???
attributes, while edge.N returns the number of parts in that grouping. Both attributes
require a keyword from the edge_group attribute as a selector.

Before using any of the remaining edge attributes, you must first select a layer with a
layer.??? attribute. The following example selects the first layer, but first can be
replaced with a specific index or any of the layer_element keywords as described in the
layer.index documentation above.

query layerservice layer.index ? first

Attribute:

Description:

Datatype:

Example:

Result:

edges

Get a list of selectors for the edge.??? attributes, provided in the form
of absolute edge indices.

integer

query layerservice edges ? all

0
1
2
3

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 205 of 263

Attribute:

Description:

Datatype:

Example:

Result:

edge.N

Get the number of edges in the grouping.

integer

query layerservice edges ? selected

4

edge.???

The edge.??? attributes query specific properties of an individual edge. For each, the
selector must be a layer_elements keyword (first, last, prev or next), or a specific
selection from a edges query, or simply an index between 0 and edge.N.

Attribute:

Description:

Datatype:

Example:

Result:

edge.name

Get the name of an edge. This name is in the form of layer index:edge
index. For example, the fifth edge in the third layer has the name 3:5.

string

query layerservice edge.name ? first

0:0

Attribute:

Description:

Datatype:

Example:

Result:

edge.index

Get the absolute index of a edge.

integer

query layerservice edge.index ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

edge.layer

Get the index of a layer that the edge is in. Layer indices start from 1.

integer

query layerservice edge.layer ? first

1

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 206 of 263

Attribute:

Description:

Datatype:

Example:

Result:

edge.length

Get the length of the edge.

distance

query layerservice edge.length ? first

1.0

Attribute:

Description:

Datatype:

Example:

Result:

edge.vertList

Get a list of the absolute indices of the two vertices that define this
edge. The queried values can be used as selections for the vert.???
attributes.

integer

query layerservice edge.vertList ? first

3
0

Attribute:

Description:

Datatype:

Example:

Result:

edge.numPolys

Get the number of polygons sharing this edge.

integer

query layerservice edge.numPolys ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

edge.polyList

Get a list of the absolute indices of the polygons sharing this edge.
The queried values can be used as selections for the poly.???
attributes.

integer

query layerservice edge.polylist ? first

0

Attribute: edge.selected

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 207 of 263

Description:

Datatype:

Example:

Result:

Returns true if the edge is selected.

integer

query layerservice edge.selected ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

edge.hidden

Returns true if the edge is hidden.

integer

query layerservice edge.hidden ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

edge.selSets

Returns the a list of selection sets the edge is in.

string

query layerservice edge.hidden ? first

[list of selection sets]

Attribute:

Description:

Datatype:

Example:

Result:

edge.pos

Returns the average of the edge’s vertex positions as a list of three
coordinates representing X, Y and Z.

distance

query layerservice edge.pos ? first

1.2
1.8
6.4

Attribute:

Description:

edge.vector

Returns the edge as the X, Y and Z offset from the start vertex to the
end vertex.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 208 of 263

Datatype:

Example:

Result:

integer

query layerservice edge.vector ? first

0.0
0.0
1.0

Attribute:

Description:

Datatype:

Example:

Result:

edge.creaseWeight

Returns the subdivision surface weighting of the edge.

integer

query layerservice edge.vector ? first

0.0

Attribute:

Description:

Datatype:

Example:

Result:

edge.symmetric

Return the name of the edge opposite this one. This is the edge that
would also be affected by tools when symmetry is active.

string

query layerservice edge.symmetic ? first

0:2

UV Attributes
The uv attributes provide information about the UVs associated with vertices.

uv and uv_groups
The uv attribute is use to get the list of available uv.??? attributes. The uv_groups
attribute is used to provide group filters for the other attributes.

Attribute:

Description:

Datatype:

Example:

uv

Get a list of uv attributes.

string

query layerservice uv ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 209 of 263

Result: [list the uv.??? attribute names]

Attribute:

Description:

Datatype:

Example:

Result:

uv_groups

Get a list of group keywords to pass as the selection for the other
attributes.

• Selected: Selected uvs.
• Unselected: Unselected uvs.
• All: All uvs.
• Visible: All uvs that are not hidden.

string

query layerservice uv_groups ?

selected
unselected
all
visible

uvs and uvs.N
The uvs attribute returns a list of possible, specific selectors for the various uv.???
attributes, while uv.N returns the number of parts in that grouping. Both attributes require
a keyword from the uv_group attribute as a selector.

Before using any of the remaining uv attributes, you must first select a layer with a
layer.??? attribute. The following example selects the first layer, but first can be
replaced with a specific index or any of the layer_element keywords as described in the
layer.index documentation above.

query layerservice layer.index ? first

The uvs themselves are represented as a pair of comma-separated values in parentheses,
such as (5,12) or (-1,6). The first number is the polygon index, while the second is the
vertex index. Both of these are absolute indices into the polygon and vertex lists, and can
be used as selectors for those attributes. If the polygon is -1, then this is a continuous uv;
otherwise, it is discontinuous.

Attribute:

Description:

uvs

Get a list of selectors for the uv.??? attributes, in the format described
above.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 210 of 263

Datatype:

Example:

Result:

string

query layerservice edges ? all

(-1,0)
(-1,1)
(-1,2)
(-1,3)

Attribute:

Description:

Datatype:

Example:

Result:

uv.N

Get the number of uvs in the grouping.

integer

query layerservice uvs ? selected

4

uv.???

The uv.??? attributes query specific properties of an individual uv. For each, the selector
must be a layer_elements keyword (first, last, prev or next), or a specific selection from a
uvs query, or simply an index between 0 and uv.N.

Attribute:

Description:

Datatype:

Example:

Result:

uv.name

Get the name of an edge. This name is in the form of (layer
index,polygon index,vertex index). Layer indices start from 1, while
vertex indices start from 0. A polygon index of -1 designates
continous uvs.

string

query layerservice uv.name ? first

(1,-1,0)

Attribute:

Description:

Datatype:

Example:

uv.index

Get the a uv selector. This returns a uv in the same format as the uvs
attribute.

string

query layerservice uv.index ? first

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 211 of 263

Result: (-1,0)

Attribute:

Description:

Datatype:

Example:

Result:

uv.layer

Get the layer index that the uv is in.

integer

query layerservice uv.index ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

uv.vert

Get the vertex index that the uv is associated with. This is suitable as
a selector for the vertex attributes.

integer

query layerservice uv.vert ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

uv.poly

Get the polygon index that the uv is associated with. This is suitable
as a selector for the polygon attributes. -1 denotes a continuous uv
that does not have an associated polygon.

integer

query layerservice uv.poly ? first

-1

Attribute:

Description:

Datatype:

Example:

uv.vmap

Get the index of the vertex associated with the uv. If no vmap was
explicitly selected with one of the vmap attributes, the vmap selected
by the user in the application will be used as the default. The returned
value can be used as a selector for the vmap attributes.

integer

query layerservice uv.poly ? first

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 212 of 263

Result: 1

Attribute:

Description:

Datatype:

Example:

Result:

uv.disc

Returns true if the uv is discontinuous, and false if it is continuous.

boolean

query layerservice uv.disco ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

uv.pos

Returns the u and v coordinates as two floats.

float

query layerservice uv.pos ? first

0.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

uv.selected

Returns true if the uv is selected, and false if not.

boolean

query layerservice uv.selected ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

uv.hidden

Returns true if the uv is hidden.

boolean

query layerservice uv.hidden ? first

0

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 213 of 263

selection
The selection attribute returns a list of elements in the order they were selected. The
selector can be vert, poly or edge. These can be passed to the appropriate element
attributes to get more specific details.

Attribute:

Description:

Datatype:

Example:

Result:

selection

Get a list of vertices, polygons or edges in the order selected. The
selector must be vert, poly or edge.

integer

query layerservice selection ? vert

1
0
3
2

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 214 of 263

Appendix E:
sceneservice ScriptQuery Interface

The sceneservice interface is used to get information about items in the scene. This
includes information about cameras, lights, meshes, and the scene itself.

Querying the sceneservice ScriptQuery interface reveals three root attributes and six
attribute groups:

• scene.???
• types
• isType
• selection
• channel.???
• item.???

There are also a number of dynamic attributes following the item.??? attributes. These
operate identically to the item.??? attributes, but are related to specific item types. Which
of these attributes appear is dependent on what items are in the scene.

Scene Attributes
The scene attributes are used to get information about the scenes themselves, including
the number of scenes currently in memory, the filename and file format of the scenes, and
if the scenes have been changed in memory since they were last saved.

Except for scene.N, each of these attributes requires a selector. This can be one of first,
next, prev or last, or current for the current scene, or it can be the index of the scene from
0 through scene.N.

Attribute:

Description:

Datatype:

Example:

Result:

scene.N

Get the number of scenes.

integer

query sceneservice scene.N ?

5

Attribute:

Description:

scene.name

Get the name of the scene, as displayed in the user interface. Scenes
that have not yet been saved will have the name Untitled.

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 215 of 263

Datatype:

Example:

Result:

string

query sceneservice scene.name ? current

Untitled*

Attribute:

Description:

Datatype:

Example:

Result:

scene.file

Get the filename of the scene. If the scene hasn’t been saved yet, this
returns an empty string.

string

query sceneservice scene.file ? current

C:\MyScene.lxo

Attribute:

Description:

Datatype:

Example:

Result:

scene.format

Get the file format of the scene.

string

query sceneservice scene.format ? current

$LXOB

Attribute:

Description:

Datatype:

Example:

Result:

scene.changed

Returns true if the scene has been modified since it was last saved.

string

query sceneservice scene.changed ? current

1

Attribute:

Description:

Datatype:

Example:

Result:

scene.index

Get the index of a scene.

string

query sceneservice scene.index last current

4

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 216 of 263

item Attributes
Scenes are composed of items of various types, such as lights, cameras and meshes. The
item attributes can be used to list the items and read properties common to all item types.

Before using any of the item attributes, a scene must be “select” by querying one of it’s
attributes. This is similar to how a layer must be “selected” in layerservice before
querying any of it’s properties.

query sceneservice scene.name ? 0

All item attributes except for item.N require a selector, which is one of the keywords first,
last, prev or next, or the index of the item in the scene between 0 and item.N. This can
also be an item ID string, such as that returned by item.id.

Note that item IDs may change between application versions. For example, older
versions of modo used mesh_1717475EBD7C as the item ID, while newer versions use
the simpler mesh20. This item ID is dynamic, and may very between sessions and from
scene to scene.

Attribute:

Description:

Datatype:

Example:

Result:

item.N

Get the number of items in the scene.

integer

query sceneservice item.N ?

9

Attribute:

Description:

Datatype:

Example:

Result:

item.name

Get the name of an item as it would appear in the user interface.

string

query sceneservice item.name ? first

My Mesh

Attribute:

Description:

Datatype:

item.type

Get the item’s type. This will be is one of types returned by the types
attribute.

string

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 217 of 263

Example:

Result:

query sceneservice item.type ? first

mesh

Attribute:

Description:

Datatype:

Example:

Result:

item.typeLabel

Get the item’s type in a human-readable form.

string

query sceneservice item.typeLabel ? first

Mesh

Attribute:

Description:

Datatype:

Example:

Result:

item.id

Get the item reference ID of an item.

string

query sceneservice item.id ? first

mesh_1717475EBD7C

Attribute:

Description:

Datatype:

Example:

Result:

item.parent

Get the item reference ID of the parent item. This returns an empty
list if the item has no parents.

string

query sceneservice item.id ? first

mesh_98327FB4356

Attribute:

Description:

Datatype:

Example:

Result:

item.numChildren

Get the number of children of an item.

integer

query sceneservice item.numChildren ? first

2

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 218 of 263

Attribute:

Description:

Datatype:

Example:

Result:

item.children

Get the item reference IDs of the children of an item.

string

query sceneservice item.children ? first

light_258F475EC3C5
light_EFF1B45EBD78

Attribute:

Description:

Datatype:

Example:

Result:

item.tagTypes

Get a list of tag types associated with an item. Tag types are strings of
exactly four characters.

string

query sceneservice item.tagTypes ? first

TEST
TST2

Attribute:

Description:

Datatype:

Example:

Result:

item.tags

Get the values of all tags associated with an item. Tags can also be set
and read using the item.tag command. Tag values are strings of
arbitrary length.

string

query sceneservice item.tags ? first

My Tag Value for TEST
TST2’s Tag Value

Attribute:

Description:

Datatype:

item.source

Get the item reference ID of an instance’s source item. If the item is
not an instance, this returns an empty list.

string

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 219 of 263

Example:

Result:

query sceneservice item.source ? 4

mesh_2428BF3CEF3

Attribute:

Description:

Datatype:

Example:

Result:

item.isSelected

Returns true if an item is selected, and false if not.

boolean

query sceneservice item.isSelected ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

item.rotOrder

Returns the index of the rotation order of the item.

integer

query sceneservice item.rotOrder ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

item.pos

Return the local position of an item relative to its parent as three
floats, representing positions on the X, Y and Z axes.

float

query sceneservice item.pos ? first

0.0
0.0
0.0

Attribute:

Description:

item.rot

Return the local rotation of an item relative to its parent as three floats,
representing angles around the X, Y and Z axes.

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 220 of 263

Datatype:

Example:

Result:

float

query sceneservice item.rot ? first

0.0
0.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

item.scale

Return the local scale of an item relative to its parent as three floats,
representing scalars around the X, Y and Z axes.

float

query sceneservice item.rot ? first

0.0
0.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

item.matrix

Get the item’s transformation matrix as nine floats. Each group of
three floats is a column in the matrix. This represents the rotation after
transforms.

float

query sceneservice item.matrix ? first

1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.0

Attribute: item.matrixInvrs

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 221 of 263

Description:

Datatype:

Example:

Result:

Get the item’s inverse transformation matrix as nine floats. Each
group of three floats is a column in the matrix. This represents the
rotation after transforms.

float

query sceneservice item.matrixInvrs ? first

1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.0

Attribute:

Description:

Datatype:

Example:

Result:

item.pivPos

Get the item’s pivot point position as three floats, representing
positions on the X, Y and Z axes.

float

query sceneservice item.pivPos ? first

0.0
0.0
0.0

Attribute:

Description:

Datatype:

Example:

Result:

item.pivRot

Get the item’s pivot point rotation as three floats, representing angles
on the X, Y and Z axes.

float

query sceneservice item.pivRot ? first

0.0
0.0
0.0

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 222 of 263

Attribute:

Description:

Datatype:

Example:

Result:

item.worldMatrix

Get the item’s world transformation matrix as a series of nine floats

float

query sceneservice item.worldMatrix ? first

1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.0

Attribute:

Description:

Datatype:

Example:

Result:

item.worldMatrixInvrs

Get the item’s world inverse transformation matrix as a series of nine
floats

float

query sceneservice item.worldMatrixInvrs ? first

1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.0

Attribute: item.xfrmitems

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 223 of 263

Description:

Datatype:

Example:

Result:

Gets a list of transform items associated with the selector. The item
must be a a locator. The format of the returned list is “type=itemid”.
The type string includes transforms such as scale, rotation, and
translation. The itemid string is the ID of the associated item that
controls is responsible for that transform, whose channels can then be
queried as normal. Transforms that aren’t linked are not listed.

string

query sceneservice item.xfrmItems ? mesh020

scale=scale021
rotation=rotation022
translation-translation023

Attribute:

Description:

Datatype:

Example:

Result:

item.xfrmPos

Get the translation item associated with the selector, if any. Returns an
empty string if there no such linking exists.

string

query sceneservice item.xfrmPos ? mesh020

translation023

Attribute:

Description:

Datatype:

Example:

Result:

item.xfrmRot

Get the rotation item associated with the selector, if any. Returns an
empty string if there no such linking exists.

string

query sceneservice item.xfrmRot ? mesh020

rotation22

Attribute:

Description:

Datatype:

item.xfrmScl

Get the scale item associated with the selector, if any. Returns an
empty string if there no such linking exists.

string

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 224 of 263

Example:

Result:

query sceneservice item.xfrmScl ? mesh020

scale021

Attribute:

Description:

Datatype:

Example:

Result:

item.xfrmPiv

Get the pivot point item associated with the selector, if any. Returns
an empty string if there no such linking exists.

string

query sceneservice item.xfrmPiv ? mesh020

Attribute:

Description:

Datatype:

Example:

Result:

item.xfrmPivC

Get the pivot compensation item associated with the selector, if any.
Returns an empty string if there no such linking exists.

string

query sceneservice item.xfrmPivC ? mesh020

types, isType and selection
Items can be one of a number of different types. The types attribute returns a list of item
types based on the items that are actually in the scene.

Attribute:

Description:

Datatype:

Example:

types

Get a list of available item types

string

query sceneservice types ?

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 225 of 263

Result: locator
mesh
light
camera
render
environment
textureLayer

isType can be used to test if an item is of a particular type. The selector is one of the
return values from types. Before calling isType, the item must first be “selected” with
one of the item.??? attributes.

query sceneservice item.name ? first

Note that items are often of multiple types. For example, a spotLight is also a light and a
locator.

Attribute:

Description:

Datatype:

Example:

Result:

isType

Test if the last queried item matches a given type. The selector must
be one of the values returned by types.

boolean

query sceneservice isType ? mesh

1

The selection attribute returns the current item selection. The selector can be all to get a
list of all selected items, or it can be filtered by using one of the values returned by types.

Attribute:

Description:

Datatype:

Example:

Result:

selection

Get a list of selected items. The selector can be all for a list of all
selected items, or one of the values returned by types to get a list of
only those types of items.

string

query sceneservice selection ? all

mesh_1717475EB669

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 226 of 263

light, camera, clip, locator, txtLayer, etc. Attributes
There are also attributes for specific item types, allowing only items of that type to be
walked. This is a dynamic list that encompasses all possible item types.

Also note that one item may actually inherit from multiple item types. For example, a
mesh item is based on the locator item type, and thus would show up in the item, mesh
and locator lists.

These attributes all operate exactly the same as the above item.??? attributes, so you can
refer to that documentation for these more specific types.

channel Attributes
Items are defined by their channels. Channels are an item’s the basic properties that
define all of their behaviors, appearance and other functionality. The channel attributes
can be used to read values from the various item channels.

Before calling any channel attribute, an item must first be “selected”. This is similar to
selecting a layer before getting a list of it’s polygons in layerservice. Getting an item’s
name is enough to to select it for future queries.

query sceneservice item.name ? first

All channel.??? attributes except channel.N require a selector in the form of an index
between 0 and channel.N, or one of the first, last, next or prev keywords.

Attribute:

Description:

Datatype:

Example:

Result:

channel.N

Get the number of channels in an item. No selection is required.

integer

query sceneservice channel.N ?

26

Attribute:

Description:

Datatype:

Example:

Result:

channel.name

Get the internal name of a channel.

string

query sceneservice channel.name ? first

pos.X

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 227 of 263

Attribute:

Description:

Datatype:

Example:

Result:

channel.label

Get the human-readable name of the channel, if available. Otherwise,
the internal name is returned.

integer

query sceneservice channel.label ? first

Position X

Attribute:

Description:

Datatype:

Example:

Result:

channel.value

Get the value of a channel. Since channels can have many different
kinds of values, they are normalized into unitless strings. The values
of some channels cannot be read.

string

query sceneservice channel.value ? first

0.58

Attribute:

Description:

Datatype:

Example:

Result:

channel.type

Get the datatype of a channel. This can be used to convert the string
returned by channel.value to a numeric type, if applicable.

string

query sceneservice channel.type ? first

float

Attribute:

Description:

Datatype:

Example:

Result:

channel.vecMode

Get the vector mode of a channel. This determines if the channel is
defined as integer, float, gradient, storage, eval or none. The vector
mode is not the same as the datatype, but provides rather a higher level
abstraction of the datatype.

integer

query sceneservice channel.vecMode ? first

2

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 228 of 263

Scripting and Commands modo 302 Luxology, LLC

Version 2.0 R1 Page 229 of 263

Appendix F:
view3dservice ScriptQuery Interface

The modo interface is made up of a series of viewports, the most important of which are
arguably the 3D and UV views. The view3dservice can be used to get information about
them.

Querying the view3dservice ScriptQuery interface reveals two root attributes and three
attribute groups:

• views
• view.???
• mouse.???
• element.???
• element_types

View Attributes
The view attributes provide methods for walking the list of 3D and UV viewports and
obtaining information about their properties.

Attribute:

Description:

Datatype:

Example:

Result:

view

Get a list of all view attributes.

string

query view3dservice view ?

[list of all view attributes]

views and view.N
views requires no selection. It returns a list of all open 3D and UV viewports, which can
be used as selectors to the view.??? attributes. view.N returns the number of 3D and UV
viewports.

Attribute:

Description:

Datatype:

Example:

views

Get a list of 3D and UV viewports.

integer

query view3dservice views ?

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 230 of 263

Result: 0
1

Attribute:

Description:

Datatype:

Example:

Result:

view.N

Get the number of 3D and UV viewports.

integer

query view3dservice view.N ?

2

view.???

view.??? attributes are used to obtain information about specific UV or 3D viewport.
These all require that a specific command be selected by providing its index (as returned
by the views attribute) as the fourth argument to query.

Attribute:

Description:

Datatype:

Example:

Result:

view.type

Get a viewport’s type. Common types are MO3D for 3D model
viewports, and UV2D for UV edit viewports.

string

query view3dservice view.type ? first

MO3D

Attribute:

Description:

Datatype:

Example:

Result:

view.index

Get the index of a viewport, which can be used as a selector for the
other view.??? attributes.

string

query view3dservice view.index ? first

0

Attribute: view.frame

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 231 of 263

Description:

Datatype:

Example:

Result:

Get the index of the frame that the viewport is in. This actually
returns two values: the frame index and the viewport index within the
frame.

string

query view3dservice view.frame ? first

1
0

Attribute:

Description:

Datatype:

Example:

Result:

view.rect

Get the bounding rectangle of the frame, relative to the top-left corner
of the frame. This returns four integers representing the top left
corner, the width and the height.

float

query view3dservice view.rect ? first

4
391
452
380

Attribute:

Description:

Datatype:

Example:

Result:

view.axis

Get a vector representing the eye direction in the view.

float

query view3dservice view.axis ? first

0.6071
-0.363
-0.7069

Attribute:

Description:

Datatype:

Example:

view.center

Get the coordinates of the center of the view.

distance

query view3dservice view.center ? first

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 232 of 263

Result: -0.04
0.985
0

Attribute:

Description:

Datatype:

Example:

Result:

view.scale

Get the approximate size a single pixel in the view, represented as a
percentage of the basic modeling unit (ie: a meter).

percent

query view3dservice view.scale ? first

0.001074

Attribute:

Description:

Datatype:

Example:

Result:

view.angles

Get the heading, pitch and bank of the view orientation. This is
similar to view.axis, but returns angles instead of a vector.

percent

query view3dservice view.scale ? first

40.6561
21.2862
-4.9237

Attribute:

Description:

Datatype:

Example:

Result:

view.shade

Get the index of the shading style of the viewport.

integer

query view3dservice view.shade ? first

3

Attribute:

Description:

Datatype:

Example:

view.wire

Returns true if the wireframe overlay is being drawn.

boolean

query view3dservice view.wire ? first

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 233 of 263

Result: 1

Attribute:

Description:

Datatype:

Example:

Result:

view.vcolor

Returns the vertex coloring mode for the view.

integer

query view3dservice view.shade ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

view.smooth

Returns true if the the view is being draw with smoothing on.

boolean

query view3dservice view.smooth ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

view.bgmode

Returns the background drawing mode for the view.

integer

query view3dservice view.bgmode ? first

0

Attribute:

Description:

Datatype:

Example:

Result:

view.verts

Returns true if vertices are being draw in the view.

boolean

query view3dservice view.verts ? first

1

Attribute:

Description:

view.cage

Returns true if subdivision surface cages are being draw in the view.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 234 of 263

Datatype:

Example:

Result:

boolean

query view3dservice view.cage ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

view.guide

Returns true if guides are being draw in the view.

boolean

query view3dservice view.guide ? first

1

Attribute:

Description:

Datatype:

Example:

Result:

view.image

Returns the name of the background image. This will be an empty list
if there is no background image in use.

string

query view3dservice view.image ? first

Mouse Attributes
The mouse attributes provide some basic information about where the mouse is relative
to a viewport.

Attribute:

Description:

Datatype:

Example:

Result:

mouse

Get a list of all mouse attributes.

string

query view3dservice mouse ?

[list of all mouse attributes]

mouse.???

All of the mouse.??? attributes are selectionless; they have simply return information
about where the mouse is.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 235 of 263

Attribute:

Description:

Datatype:

Example:

Result:

mouse.view

Get the index of the viewport the mouse is in. If the viewport is not a
3D or UV view, this will be equal to that returned by view.n.

integer

query view3dservice mouse.view ?

0

Attribute:

Description:

Datatype:

Example:

Result:

mouse.pos

Get the 3D position of the mouse in the viewport as three floats. This
returns an empty list if the mouse is not over a 3D or UV view.

float

query view3dservice mouse.pos ?

-4.7
-6.16
0.0

Attribute:

Description:

Datatype:

Example:

Result:

mouse.pixel

Get the 2D pixel coordinate of the mouse relative to the top-left corner
of the viewport as two integers.

integer

query view3dservice mouse.pixel ?

281
492

Element Attributes
The element attributes provide information about the element under the mouse in a UV or
3D viewport.

element
This simply returns a list of element attributes.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 236 of 263

Attribute:

Description:

Datatype:

Example:

Result:

element

Get a list of element attributes.

string

query view3dservice element ?

[list of all element attributes]

element_types
This returns a list of the types of elements that a viewport may contain.

Attribute:

Description:

Datatype:

Example:

Result:

element_types

Get a list of element types.

string

query view3dservice element_types ?

VERT
EDGE
POLY
MATR

element.over
The only element.??? attribute, this returns the element the mouse is over in a form
suitable for passing to the appropriate query functions. The selector must be one of the
values returned by element_types.

Attribute:

Description:

Datatype:

Example:

Result:

element.over

Get the element under the mouse in a form suitable for passing to the
appropriate attributes. The selector must be one of the element_types
return values. This returns an empty list if no element of that type is
under the mouse.

string

query view3dservice element.over ? POLY

0,0

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 237 of 263

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 238 of 263

Appendix G:
scriptsysservice ScriptQuery Interface

The scriptsysservice provides some information about user values that are not available
by simply querying user.value and user.def. Querying the scriptsysservice ScriptQuery
interface reveals one attribute group:

• userValue.???

User Value Attributes
The userValue attributes return a few key pieces of information about a given user value.
The user value being queried is used as the selector for all of thes eattributes.

Attribute:

Description:

Datatype:

Example:

Result:

userValue.isDefined

Test to see if a value is defined.

boolean

query scriptsysservice userValue.isDefined ? MyValue

0

Attribute:

Description:

Datatype:

Example:

Result:

userValue.isSet

Test to see if a user value has been assigned a value.

boolean

query scriptsysservice userValue.isSet ? MyValue

0

Attribute:

Description:

Datatype:

Example:

Result:

userValue.lifespan

Returns the lifespan of a user value. This can be momentary,
temporary or config.

boolean

query scriptsysservice userValue.lifeSpan ? MyValue

config

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 239 of 263

Appendix H:
messageservice ScriptQuery Interface

The messageservice provides access to message tables. These tables are simply config
files in a specific format. The service supports three attributes:

• msgfind
• msgsub
• msgcompose

msgfind and msgsub
msgfind looks up a message given it’s table name and either a dictionary name or ID.
The format is @table@@id@ or @table@dict@.

Attribute:

Description:

Datatype:

Example:

Result:

msgfind

Look up a message from a message table. The selector must be in the
form of @table@@id@ or @table@dict@.

string

query messageservice msgfind ? @common@@2031@

Buy modo now!

Various messages may contain substitution keys, or arguments. These are represented by
%1, %2, etc. within the message itself. msgsub replaces each successively numbered
substitution key with the string provided, and returns the newly composed message. This
attribute may be called repeatedly until all of the substition keys have been replaced.
Note that you must have already selected a message with msgfind before querying this
attribute.

Attribute:

Description:

Datatype:

Example:

Result:

msgsub

Substitute a %1, %2, etc. argument with a string. msgfind must have
been queried to select a message before this attribute is used. Each
successive call replaces the next argument in the message.

string

query messageservice msgsub ? “my string”

Here we replaced the first argument with my string.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 240 of 263

msgcompose
msgcompose is a combination of msgfind and msgdub. The first part of the selector is
similar to msgfind, containing @table@@id@ or @table@dict@. Following that is a list
of arguments wrapped in curly braces, one for each %1, %2, etc. to replace.

Attribute:

Description:

Datatype:

Example:

Result:

msgcompose

Look up a message from a message table and replace the arguments
within.

string

query messageservice msgfind ? {@common@@20020@ {An
example argument}}

Info: An example argument

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 241 of 263

Appendix I:
LXO File Format Extensions

The LXO format is modo’s native file format. At it’s core, it is an extended Lightwave
LWO2 format, which itself is an IFF chuck format. This appendix focuses on the
differences between LWO2 and LXO., and assumes familiarity with LWO2 Please refer
to NewTek’s documentation regarding LWO2 for basic information on reading basic IFF
data and common chucks.

This is preliminary documentation and is subject to change. Be aware that there are
likely to be large-scale changes to this format in the future as modo gets more
capabilities, and entirely new file formats may be created that supplant this.

IFFAnalizer (http://www.lightwavers.com/files/IFFAnalizer.zip) is an invaluable tool for
analyzing IFF files, and could prove helpful in deconstructing existing LXO files as well
as validating LXO files you create yourself. This is a Windows application, but it can
also be run through CrossOver, Parallels, VMWare or one of the other virtual machines or
WINE platforms on Intel-based OS X systems.

Conventions
This document uses some shorthand to describe the datatypes used in the LXO. For
convenience, these are the same conventions used in the LWO2 documentation from
NewTek. All binary datatypes are stored in Motorola byte order, also known as big
endian or network order, with the most significant byte first.

Shorthand C Datatype Description
I1 char 1-byte integer
I2 short 2 byte integer
I4 long 4-byte integer
U1 unsigned char 1-byte unsigned integer
U2 unsigned short 2 byte unsigned integer
U4 unsigned long 4-byte unsigned integer
F4 float IEEE 4-byte floating point number
S0 char * NUL-terminated ASCII string (ie: string of ASCII

characters ending in a zero byte). If the string
with NUL is an odd number of characters, an extra
NUL is added to pad the string to an even number
of bytes.

VX short or int Variable length index, used to represent an index
into a list. If the index is less than 0xFF00
(65,280), then this is a U2. Otherwise, the value
should be read as a U4 and the high byte should
be discarded.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 242 of 263

http://www.lightwavers.com/files/IFFAnalizer.zip
http://www.lightwavers.com/files/IFFAnalizer.zip

ID4 long 4-byte identifier encapsulated in a long. This is
usually a string of ASCII values, which can be
generated with some bit-shifting and bitwise
or’ing like so: (‘T’ << 24 | ‘E’ << 16 | ‘S’ << 8 |
‘T’).

LXO and LXP
The primary file format used by modo is the LXO, which contains scene and mesh data,
render settings, animation, references to images and other LXO files, and so on. LXO is
the format you will most commonly encounter.

A related format is the LXP, which is a modo preset. It contains a subset of the LXO
chunks, often containing material properties.

LXO Chunk Hierarchy
This provides an overview of how the chunks are laid out in the LXO file. Entries
marked with a triangle are chunks or sub-chunks, while those marked with a dot are
specific fields within that chunk. Some sub-chunks are optional, while some may appear
zero or more times in the same part of the file. Fields with dynamic sizes are marked
with ??; more information on these can be found in the layer’s description.

‣ FORM????LXOB
‣ VRSN Version chunk

• U4 major
• U4 minor
• S0 application

• S0 channel name
‣ CHNM Channel names chunk

• U4 count
• array

• S0 channel name
‣ ITEM (zero or more) Item chunk

• S0 type
• S0 name
• U4 reference ID
‣ XREF (optional) External reference item chunk

• U4 index
• S0 filename
• S0 item identifier

‣ LAYR (optional) Optional layer info sub-chunk
• U4 index
• U4 flags

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 243 of 263

• U1[4] RGBA color
‣ UNIQ (optional) Optional unique identifier sub-chunk

• S0 identifier
‣ LINK (zero or more) Item linking sub-chunk

• S0 type name
• U4 reference ID
• U4 index

‣ PAKG (zero or more) Packages sub-chunk
• S0 name
• U4 data size
• U1[??] data array

‣ CHNL (zero or more) Scalar channel value sub-chunk
• S0 channel name
• U2 type
• ?? value

‣ CHNV (zero or more) Vector channel value sub-chunk
• S0 base name
• U2 type
• U2 dimension
• array

• S0 ext
• ?? value

‣ CHNS (zero or more) String channel value sub-chunk
• S0 channel name
• S0 string

‣ GRAD (zero or more) Gradient channel value sub-chunk
• S0 channel name
• VX envelope index
• U4 flags

‣ CHAN (zero or more) Generalized channel value sub-chunk
• VX channel index
• U2 datatype
• ?? value

‣ ITAG (zero or more) Item tag sub-chunk
• U4 type
• S0 tag

‣ LAYR (zero or more) Layer chunk
• U2 index
• U2 flags
• FP[3] pivot
• S0 name
• U2 parent
• FP subdivision level

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 244 of 263

• FP curve angle
• FP[3] scalepivot
• U4[6] unused
• U4 ref
• U2 spline patch level
• U2[3] for future expansion

‣ ENVL (zero or more) Envelope chunk
‣ TANI In-coming tangent sub-chunk

• U2 slope type
• U2 weight type
• FP slope
• FP weight
• FP value

‣ TANO Out-going tangent sub-chunk
• U4 breaks
• U2 slope type
• U2 weight type
• FP slope
• FP weight
• FP value
• U2 active

‣ KEY Keyframe value and time sub-chunk
• FP time
• FP value

‣ ACTN (zero or more) Action chunk
• S0 name
• S0 tpe
• U4 reference ID
‣ PRNT (optional) Parent sub-chunk

• U4 parent ID
‣ ITEM (zero or more) Item sub-chunk

• U4 item ID
‣ CHAN (zero or more) Channel value sub-chunk

• VX name index
• U2 type
• VX envelope
• ?? value

‣ CHNN (zero or more) Named channel value sub-chunk
• S0 name
• U2 type
• VX envelope
• ?? value

‣ GRAD (zero or more) Gradient envelope sub-chunk

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 245 of 263

• VX name
• VX envelope
• U4 flags
• S0 name

‣ CHNS (zero or more) String channel value sub-chunk
• S0 name
• VX name index
• S0 string

‣ PNTS Vertex list chunk (see LWO2)
‣ PTAG Polygon tag list (see LWO2)
‣ POLY Polygon list (see LWO2)
‣ VMAP (zero or more) Vertex map chunk

• ID4 type
• U2 dimension
• S0 name
• array

• VX index
• FP[??] value

‣ VMAD (zero or more) Discontinuous vertex map chunk
• ID4 type
• U2 dimension
• S0 name
• array

• VX vertex index
• VX polygon index
• FP[??] value

‣ VMED (zero or more) Vertex map edge discontinuity chunk
• ID4 type
• U2 dimension
• S0 name
• array

• VX vertex A
• VX vertex b
• FP[??] value

‣ AUTH (zero or one) Author chunk
• S0 author

‣ (c) Copyright information chunk
• S0 copyright

‣ ANNO (zero or one) Annotation chunk
• S0 annotation

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 246 of 263

LXP Chunk Hierarchy
The LXP contains a subset of the LXO’s chunks, and commonly represents a material
preset. It often contains ITEM and ENVL chunks, and has its own header. Other chunks
may also be present.

‣ FORM????LXPR
‣ VRSN Version chunk; See LXO
‣ DESC Description chunk
‣ THUM Thumbnail image chunk
‣ ITEM (zero or more) Item chunk; see LXO
‣ ENVL (zero or more) Envelope chunk; see LXO

LXOB Header
The FORM header for LXO files is LXOB. The first few bytes of the file are thus like
so, where the question marks are a long representing the size of the file:

FORM????LXOB

LXPR Header
The FORM header for LXP files is LXPR. It is handled identically to the LXO header.

FORM????LXPR

Chunk Headers
Each chunk starts with four bytes representing the type of the chunk, followed by two or
four bytes representing the size of the chunk.

Datatype Description
U4 Chunk type, usually four ASCII characters
U4 Length of the chunk in bytes

Sub-Chunk Headers
Sub-chunks are children of other chunks. They usually contain much less data, and thus
have a two byte length instead of the normal four bytes.

Datatype Description
U4 Sub-chunk type, usually four ASCII characters
U2 Length of the sub-chunk in bytes

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 247 of 263

VRSN Chunk
This chunk is present at the head of the file. It contains the major and minor version
numbers of the file format, and the name of the application that saved the file. If you
write an application that saves an LXO, you should save your application’s name here. In
modo 202, the major version is 1 and the minor version is 1.

Datatype Description
U4 Major version number
U4 Minor version number
S0 Name of the application that saved the file

CHNM Chunk
Channel names are repeated throughout the file. Rather than scatter them throughout and
unnecessarily increase the file size, they are consolidated into this chunk. ITEM and
ACTN chunks can then index into the array of channel names to get the appropriate
string. The first string in the he table is usually “unknown”.

Datatype Description
U4 The number of elements in the following array

Following the above is an array of channel names.

Datatype Description
S0 The name of the channel at this index

ITEM Chunk
The LXO file contains one ITEM chunk per item in the scene, which in turn contain
various sub-chunks representing the item’s attributes.

The ITEM chunk contains three fixed fields representing the type name, the user name
for the item, and a reference ID.

Datatype Description
S0 Name of the item’s type, such as camera or mesh.
S0 User name of the item. This may be an empty string if the the user has

not assigned a name to it.
U4 Item reference ID, unique within the file. This is used to reference the

item from other items.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 248 of 263

Optional: XREF Sub-Chunk
The XREF sub-chunk identifies an external reference item, and is only present if this
item is indeed a reference itself.

Datatype Description
U4 Index for the sub-scene in the REFS chunk
S0 Filename containing the source scene being referenced
S0 Item identifier in the source scene

Optional: LAYR and UNIQ Sub-Chunks
The ITEM chunk may be contain either a LAYR sub-chunk or a UNIQ sub-chunk, but
never both. It is also possible for neither sub-chunk to be present.

LAYR Sub-Chunk
The LAYR sub-chunk contains layer-specific features for the item. This consists of a
layer index, flag bits, and a wireframe/element color.

Datatype Description
U4 Index of the layer in the Layer List
U4 Flags describing layer-specific properties

U1[4] Four-element array representing the RGBA element (wireframe) color in
the UI

The first four bits of the flags represent the item’s visibility, and may be set as follows.

Note that it is possible for both the Visible and Hidden to be set, in which case the layer’s
visibility is in a mixed state and the true visibility is determined by the layer’s children.

Also note that an item may be neither a foreground nor a background item. In that case,
it is not currently selected and thus not visible in GL. This is different from the Hidden/
Visible state; an item can still be the foreground or background object and also be hidden.

Mask Name Description
0 Visible True if the layer is visible in GL
1 Hidden True if the layer is hidden in GL
2 Foreground Set if this layer is the foreground layer
3 Background Set if this layer is a background layer

The remaining bits are flags, and may be individually set.

Bit Name Description
4 Bounding Box Set if this layer is displayed as a bounding box only

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 249 of 263

8 Linear Subdiv UVs Set to use linear interpolation of UVs on subdivision
surfaces

UNIQ Sub-Chunk
This sub-chunk contains a unique string identifier for the item.

Datatype Description
S0 String containing a unique item identifier.

PAKG: Package Sub-Chunk
The PAKG sub-chunk identifies extra packages of channels associated with this item.
Each package defines any extra data it wants to load or save as part of the item, which
makes much of this chunk opaque to a general IFF reader.

Note that this sub-chunk must come before any channel value sub-chunks. Zero or more
of these may be present in an ITEM chunk.

Datatype Description
S0 Package name that is used to add the package and load and save its state
U4 Package data size in bytes. Note that zero is a valid size

U1[Variable] The package’s data stored as raw bytes

Variable: LINK, CHNL, CHNV, CHNS, GRAD and ITAG Sub-Chunks
The variable section contains zero or more of the CHNL, CHNV, CHNS, GRAD and
ITAG sub-chunks. This section must come after the above optional section.

LINK: Item Link
The LINK sub-chunk relates one item to another item. Parenting is one kind of linking.
LINK sub-chunks contain a graph type name, unique ID to the target item, and the index
of the link. Zero or more of these may be present in an ITEM chunk.

Datatype Description
S0 The name of the graph that this link belongs to, such as parent.
U4 The ID of the item in the scene.
U4 The index of the link

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 250 of 263

CHNL: Scalar Channel Value
The CHNL sub-chunk contains the name, type and value of an individual channel. These
are commonly found in preset files and older LXO files without CHNM tables, while
newer LXOs contain only CHAN chunks and matching CHNM tables.

Datatype Description
S0 The name of the channel
U2 The datatype of the channel, which can be one of a series of flags.

[Variable] The value of the channel. The datatype is dependent on the previous
field.

The datatype may be one of the following.

Mask Shorthand Type Description
1 I4 Signed integer
2 F4 Floating point number
3 S0 NUL-terminated string. This is used for raw strings and

for text hints discrete choices.
4 U2, [data] Custom data. The U2 is the length of the data in bytes,

followed by that may bytes of data. The exact format of
the data is dependent on the datatype.

CHNV: Vector Channel Value
The CHNV chuck represents the values of a channel vector. This is a combination of
three channel values, usually RGB or XYZ. The chuck has the base name, datatype,
array dimensions, and an array of values. Zero or more of these may be present in an
ITEM chunk.

These are commonly found in preset files and older LXO files without CHNM tables,
while newer LXOs contain only CHAN chunks and matching CHNM tables

Datatype Description
S0 The base name of the channel. This is the channel name minus the

vector component.
U2 The datatype of the channel, which can be one of a series of flags, as

described in CHNL above.
U2 The number of elements in the vector. 3 for XYZ or RGB, four for

RGBA, etc.

Following the above is an array of name/value pairs for the elements of the vector. The
number of pairs is equal to the last U2 in the above description.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 251 of 263

Datatype Description
S0 The name of the vector component. This is often something like X, Y, Z,

R, G, B, A, etc. Appending this to the base name will yield the full
channel name.

[Variable] The actual value using the datatype defined above. See CHNV for a
description of the possible datatypes.

CHNS: String Channel Value
The CHNS sub-chunk represents a string channel containing the channel name and the
string value. Zero or more of these may be present in an ITEM chunk.

These are commonly found in preset files and older LXO files without CHNM tables,
while newer LXOs contain only CHAN chunks and matching CHNM tables

Datatype Description
S0 Channel name
S0 String value assigned to the channel

GRAD: Gradient Channel Value
The GRAD sub-chunk contains the values of a gradient channel, which consists of the
channel name and the index of an envelope in the ENVL chunk. Zero or more of these
may be present in an ITEM chunk.

Datatype Description
S0 Channel name
VX Index of the envelope in the ENVL chunk.
U4 Envelope interpolation flags

Envelope interpolation flags determine how the path between keyframes is resolved.

Flag Description
0 Curve
1 Linear
2 Stepped

CHAN: Channel Value sub-chunk
The CHAN sub-chunk is a newer, more generalized mechanism used to represent a
channel value. The channel name is looked up by index in the CHNM chunk. The
value’s type is determined by the U2 type field. Zero or more of these may be present in
an ITEM chunk.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 252 of 263

Datatype Description
VX Channel index in the CHNM chunk’s array of channel names
U2 Datatype of the value. See below.

[variable] Value of the channel

The channel datatype can be one of the following.

Type Description
1 Integer
2 Float
3 String representing an integer text hint
17 Integer with an envelope
18 Float with an envelope
19 String representing an integer text hint with an envelope

ITAG: Item Tag
Items can be tagged with arbitrary strings, which are stored in ITAG sub-chunks. Zero or
more of these may be present in an ITEM chunk.

Datatype Description
ID4 Tag type, such as CMNT, DESC or CUE .
S0 Tag value. This may be an empty string for some tags.

LAYR Chunk
The LAYR chunk is used with mesh items that have a corresponding LAYR sub-chunk in
their ITEM chunk. This is a combination of LWO2 data and newer LXO data.

Datatype Description
U2 Legacy index for LWO2 compatibility.
U2 Flags; see below.

FP[3] Rotation pivot point location, which defines the center of rotation
S0 Layer name. May be empty if the layer has not been named.
U2 Legacy parent index for LWO2 compatibility. Use the LINK check

described previously instead.
FP Refinement level used when freezing subdivision meshes into polygons

for rendering. The display refinement level is a per-system user setting
and is not stored in the LXO.

FP Refinement level used when freezing curves, represented as the
maximum angle between adjacent linear segments.

FP[3] Scale pivot point location, which defines the center of scaling
U4[6] Currently unused

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 253 of 263

U4 Item reference for the mesh layer
U2 Refinement level used when freezing spline patch surfaces.

U2[3] Refinement level; for future expansion

ENVL Chunk
The ENVL chunk describes an envelope applied to an item. In modo, envelopes define
the keys of gradients. Note that this is not the same as the LWO2 envelope chunk. The
envelope contains three sub-chunks representing the spline: TANI, TANO and KEY.

The spline type used in modo is a variation on the bezier spline. The specific
implementation is not currently documented, but it should be close enough to standard
bezier curves for you to use that at the moment.

TANI: Incoming Tangent Sub-Chunk
The TANI chunk contains information about the incoming tangent of the spline.

Datatype Description
U2 Slope type
U2 Weight type
F4 Weight
F4 Slope
F4 Value

TANO: Outgoing Tangent Sub-Chunk
TANO similarly contains the outgoing tangent. This is used only for broken keys.

Datatype Description
U4 Breaks; describes which values are discontinuous
U2 Slope type
U2 Weight type
F4 Weight
F4 Slope
F4 Value
U2 Active; describes which of the broken values is used as the value of the

incoming key.

The broken type can be either value, slope or weight.

Value Description

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 254 of 263

0 Value
1 Slope
2 Weight

Weight and Spline Types
In TANI and TANO, the spline type can be manual, auto, linear in or out, or flat.

Value Description
0 Manual
1 Automatic
2 Linear In
3 Linear Out
4 Flat

The weight type can be either be manual or automatic.

Value Description
0 Manual
1 Automatic

KEY: Key Value Sub-Chunk
Finally we have the key value itself, which includes a key and an input value for the
gradient.

Datatype Description
F4 Input value for the gradient
F4 Value for the key

ACTN Chunk
The ACTN chunk contains information about actions. An action is a collection of
channel values. There may be zero or more action chunks in the file.

Datatype Description
S0 Name
S0 Type of action. Common types include edit, setup and anim.
U4 Reference identifier
U4 Flags, for future use. Currently must be 0.

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 255 of 263

Optional: PRNT Sub-Chunk
Actions can be layered in a parenting hierarchy. The optionalPRNT sub-chunk identifies
its parent layer, if any.

Datatype Description
U4 Parent action’s reference identifier

ITEM Sub-Chunk
Each action contains a zero or more ITEM sub-chunks, each representing an item that has
channels in this action. Immediately following each of these sub-chunks may be zero or
more CHAN, CHNN, GRAD or CHNS sub-chunks, each representing a channel of the
previously listed ITEM sub-chunk. Note that all of these are sub-chunks of the ACTN
chunk, not of the ITEM sub-chunk.

The ITEM sub-chunk itself contains the item’s reference identifier.

Datatype Description
U4 Item reference identifier

CHAN Sub-Chunk
The CHAN sub-chunk contains information about a single channel’s values for the
preceding ITEM sub-chunk.

Datatype Description
VX Index of the channel’s name in the CHNM chunk’s array
U2 Datatype of the channel. See the ITEM chunk’s CHAN sub-chunk.
VX Index of the envelope in the ENVL chunk’s array, if applicable

[variable] Value of the channel. The datatype is determined by the type field

CHNN Sub-Chunk
The CHNN sub-chunk contains information about a single channel’s values for the
preceding ITEM sub-chunk. This is identical to the CHAN sub-chunk, but the channel is
explicitly named instead of using a lookup into the CHNM chunk’s array.

Datatype Description
S0 Name of the channel
U2 Type of the channel, as described in the CHAN sub-chunk above
VX Index of the envelope in the ENVL chunk’s array, if applicable

[variable] Value of the channel. The datatype is determined by the type field

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 256 of 263

GRAD Sub-Chunk
The GRAD sub-chunk contains information about a single gradient channel’s values for
the preceding ITEM sub-chunk.

Datatype Description
VX Index of the channel’s name in the CHNM chunk’s array
VX Index of the envelope in the ENVL chunk’s array, if applicable
U4 Flags
S0 Optional channel name. Used if the name index above is 0

CHNS Sub-Chunk
The CHNs sub-chunk contains information about a single string channel’s values for the
preceding ITEM sub-chunk.

Datatype Description
S0 Name of the channel. If empty, use the following field.
VX Index of the channel in the CHNM chunk’s array, if applicable
S0 The channel’s value

PNTS, POLY and PTAGS Chunks
The chunks for vertices, polygons and polygon tags are the same as those in the LWO2
format. Please refer to the LWO2 file format specification from NewTek for more
information.

The LXO format has a few additional polygon types. Below are all of the types currently
supported by modo 302.

Datatype Description
FACE Polygon
CURV Curve
BEZR Bezier curve
SUBD Subdivision surface
SPCH Spline patch, as generated by the patching tools
TEXT Text, as generated by the Text tool

VMAP Chunk
The VMAP chunk holds information about vertex maps, including the type, dimensions,
name and an array of vertex values.

Datatype Description

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 257 of 263

ID4 Type of vertex map, such as COLR or MORF.
U2 Dimensions of the vertex map.
S0 Name of the vertex map, as assigned by the user.

The remainder of the chunk consists of an array of vertex/value pairs.

Datatype Description
VX Index of the vertex in the PNTS chunk.

F4[n] Array of values associated with the vertex. n is equal to the dimensions
above.

VMAD Chunk
The VMAD chunk holds information about discontinuous vertex maps, which are often
used for UVs. This includes the type, dimensions, name and an array of vertex values.

Datatype Description
ID4 Type of vertex map, such as COLR or MORF.
U2 Dimensions of the vertex map.
S0 Name of the vertex map, as assigned by the user.

The remainder of the chunk consists of an array of values containing the vertex index,
polygon index and value.

Datatype Description
VX Index of the vertex in the PNTS chunk.
VX Index of the polygon sharing this vertex in the POLS chunk.

F4[n] Array of values associated with the vertex. n is equal to the dimensions
above.

VMED Chunk
The VMED chunk provides Vertex Map Edge Discontinuity maps. These are formatted
much like the VMAP and VMAD chucks.

Datatype Description
ID4 Type of vertex map, such as SUBD
U2 Dimensions of the vertex map.
S0 Name of the vertex map, as assigned by the user.

The remainder of the chunk consists of an array of values containing the vertex index,
polygon index and value.

Datatype Description
VX The “A” vertex defining the edge

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 258 of 263

VX The “B” vertex defining the edge
F4[n] Array of values associated with the edge. n is equal to the dimensions

above.

AUTH, (c) and AUTH Chunks
The AUTH, (c) and ANNO chunks provide user information about the file. There is only
one of each of these chunks per file, if any.

AUTH Chunk
The AUTH chunk contains the name of the author of the file. This could be the person’s
true name, a company name, their machine username, etc. While present, this data is
often not preserved through load and save.

Datatype Description
S0 Author’s name

(c) Chunk
This chunk contains copyright information for the file, which is the date and copyright
holder minus the © symbol itself. Note that the chunk name is always four characters,
here ending in a space. While present, this data is often not preserved through load and
save.

Datatype Description
S0 Date and copyright holder, minus the © symobl

ANNO Chunk
This chunk contains textual file annotation s as a string.

Datatype Description
S0 Annotation string

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 259 of 263

Appendix J:
Common Server Tags

The modo architecture is based around servers. These adhere to the COM binary
standard and may be internal to the application or plug-ins using the SDK.

Servers can provide basic information to modo without requiring the server to be
completely loaded into memory. These are simple static arrays known as tags, or
sometimes infotags. Servers can have any tags they like, but modo itself only uses a
specific set of tags for each class of server.

All of the server tags can be found in the appropriate portion of the SDK. Since most
scripters don’t have the SDK or would likely have trouble wading through it, a number of
common tags are listed here.

Note that all tags are case sensitive.

Querying Server Tags
Tags can be queried through the hostservice ScriptQuery interface. We’ll start by getting
a list of all classes:

query hostservice classes ?

To get a list of servers in a particular class, we can use the class.servers attribute.

query hostservice class.servers ? loader

We can then use the various server.??? attributes to query the class. Most of these take
the server name as the selector, but server.infoTag requires a previous call to one of the
other tags before it can be called with the specific tag being queried. For example, we
can call server.name to “select” the loader/freeimage server.

query hostservice server.name ? loader/freeimage

This “selects” loader/freeimage and returns its name. We don’t care about the name; we
just wanted the selection so we can call server.infoTag on it. Remember that tags are
case-sensitive.

query hostservice server.infoTag ? loader.classList

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 260 of 263

Loaders
Loaders have three supported tags. The example for each is based on the results of the
loader/freeimage class.

Tag:

Description:

Example:

loader.classList

Space-delimited list of other server classes that this server can support.
One of the entires in the list is commonly passed to dialog.fileType to
open load dialogs from within scripts.

image

Tag:

Description:

Example:

loader.dosPattern

Semicolon-delimited list of file extensions, as they might appear in a
load file requester. These include a leading asterisk, a period and an
externsion.

.bmp;.jpg;*.jpeg;*.png;*.ico;*.iff;*.jng*.jif;*.lbm;*.mng

Tag:

Description:

Example:

loader.macPattern

This is an obsolete tag from the Mac OS 9 days, when file types were
part of the file. Mac OS X uses file extensions, and thus
loader.dosPattern can be used here as well.

(none)

Savers
Savers also have three supported tags. The example for each is based on the results of the
saver/PNG class.

Tag:

Description:

Example:

saver.outClass

Space-delimited list of other server classes that this server knows how to
save.

image

Tag:

Description:

Example:

saver.dosType

The default extension that should be appended to the end of files saved
with this server. This does not include any periods or asterisks.

png

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 261 of 263

Tag:

Description:

Example:

saver.macType

This is an obsolete tag from Mac OS 9, when file types were encoded as
part of the file. Mac OS X uses file extensions, so saver.dosType may be
used here as well.

(none)

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 262 of 263

Appendix K:
Official modo Build Numbers

The following are the official build numbers and config filenames associated with the
different versions of modo. Some build numbers are not currently available.

Version Build Windows Config OS X Config
101 9576 modo.cfg com.luxology.modo
102 13910 modo.cfg com.luxology.modo
103 modo.cfg com.luxology.modo
201 16794 modo201.cfg com.luxology.modo201

202A 17729 modo201.cfg com.luxology.modo201
202B 18133 modo201.cfg com.luxology.modo201
203 20437 modo201.cfg com.luxology.modo201
301 22699 modo301.cfg com.luxology.modo301
301a 22855 modo301.cfg com.luxology.modo301
302 modo302.cfg com.luxology.modo302

Support
The Luxology forums are a great place to go if you have any questions about the scripting
system. Luxology developers often check the forums and respond to questions asked
there. The URL for the scripting forums is:

 http://forums.luxology.com/discussion/forum.aspx?id=8

In case this URL should change, you can check the main forums link at:

 http://forums.luxology.com/

Scripting and Commands modo 302 Luxology, LLC

Version 3.0 Page 263 of 263

http://forums.luxology.com/discussion/forum.aspx?id=8
http://forums.luxology.com/discussion/forum.aspx?id=8
http://forums.luxology.com/discussion/
http://forums.luxology.com/discussion/

