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Preface to the second edition

The intervening years since the publication of the first edition of this book

have witnessed an enormous growth in popularity of molecular simulation. It

is now arguably the preferred computational approach for both the evaluation

of molecular properties and the prediction of macroscopic properties. The

areas of theory, algorithms, and object-orientations covered by the first edi-

tion have greatly expanded. Examples include advances in computational

chemistry, resulting in highly accurate two-body ab initio potentials; new

methods for simulating solid-liquid equilibria; and the widespread use of

object-orientation for simulation. The latter is particularly significant, as it

has permitted the continuous development of sophisticated molecular soft-

ware that can be used to tackle highly complicated situations involving pro-

teins and other large macromolecules.

The emergence of parallel computing is the most important contributor to

the growing success of molecular simulation that was not covered by the first

edition. Initially, this simply involved the use of multiple central processing

units (CPUs) but its impact has been supercharged by the introduction of gra-

phics processing units (GPUs). The combination of object-orientation and

parallel computing provides an important route for the development of

adaptable software for future computationally challenges.

The second edition reflects advances made in key areas of molecular sim-

ulation. Each chapter has been updated, providing details of new algorithms

and theory, while maintaining most of the original content that still remains

both relevant and useful. Readers have often commented that the algorithms

in pseudo-code from the first edition could be easily transformed into work-

ing programs. This feature has been retained and improved by adopting

greater modularization via the use of subalgorithms. Case studies have been

added to provide detailed explanations of some challenging aspects. The

C11 code provided in Chapter 11 has also been updated.

The most significant changes are the addition of two new chapters.

Chapter 4 covers the use of ab initio potentials and two-and three-body inter-

actions. Advances in theory mean that the interactions between both atoms

and molecules can be reliably obtained from first principles with increasingly

less reliance on empirical models. Chapter 12 covers parallel computing

using both multiple CPUs and GPUs. It is written specifically to assist read-

ers who would like to quickly take advantage of parallel computing, perhaps
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by modifying existing serial code. Therefore it is a starting point for further

learning rather than a comprehensive examination of the topic. It may also

be useful for readers who require an improved understanding of some of the

key underlying technical aspects of large scale parallel-enabled molecular

simulation software packages. Using detailed case studies, Chapter 12 shows

how the C11 codes from Chapter 11 can be simply modified to execute in

parallel on both multiple CPUs and GPUs. MPI is used for the multi-CPU

code. CUDA integrates very well with C11 code and facilitates the near-

seamless transition to GPUs. The codes are available at the book’s website

(https://www.elsevier.com/books-and-journals/book-companion/9780323853989)

that is maintained by the publisher.

I thank Ulrich K. Deiters, Karl. P. Travis, and Billy D. Todd for reading

drafts of various chapters and providing both valuable comments and

insights. I also thank Angelica M. Vecchio-Sadus for proofreading. The

molecular simulations were conducted on the Swinburne University super-

computer (OzSTAR), which is located on the traditional lands of the

Wurundjeri people. It is illustrated on the front cover.

Richard J. Sadus

August, 2023
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Preface to the first edition

Molecular simulation is being used increasingly to study a widening range of

both molecular systems and fluid phenomena. Today, the goal of many simu-

lators is to study complicated molecules such as proteins, whereas attention

was formerly confined almost exclusively to simple atoms and molecules.

Similarly, the simulation of phase equilibria is now common, whereas just

over a decade ago, it was a difficult and rare undertaking. The impetus for

the increasing use of molecular simulation can be attributed to many factors

such as improvements in theory, algorithms, and computer hardware. These

new developments have generated enormous growth in the simulation litera-

ture. A simple search on the keywords “Monte Carlo” and “molecular

dynamics” in any journal database is likely to yield thousands of entries for

the past five years alone. An aim of this book is to examine some of the

important aspects of recent progress in molecular simulation.

The other important aims of this book are reflected in the title. The topic

covered by the book is the molecular simulation of fluids which encompasses

both Monte Carlo and molecular dynamics methods. Although the principles

behind these two simulation methods are quite different, they are often com-

plementary rather than competing approaches. The practice of molecular

simulation involves three overlapping aspects. First, the theoretical basis of

molecular simulation is underpinned by the fundamental concepts of statisti-

cal mechanics and particle dynamics. Second, informed by theory, algo-

rithms are developed to calculate the properties of fluids. Third, theory and

algorithms are “brought to life” on a computer via a simulation program.

There are many simulation algorithms in the literature with varying levels

of usage. Some algorithms such as the “leap-frog” algorithm for molecular

dynamics are well known and used widely. There are also algorithms at

intermediate stage of usage, and many other potentially useful algorithms are

relatively “new” and as such, they are not known widely. In this book, we

have opted to present a mixture of new, intermediate, and well-established

algorithms. However, the mix is biased deliberately to favor new algorithms

many of which have not yet been used widely or tested exhaustively. In

many cases, to facilitate implementation, the algorithms are presented in

pseudo code.

Historically, the implementation of simulation algorithms has been

achieved using a structured programming approach typified by programming
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languages such as C and FORTRAN. In a deliberate break with tradition,

there are few references in this book to either FORTRAN or C code. Instead,

attention is focused on the concepts of object-oriented analysis, design, and

programming. The value of object-orientation to molecular simulation

remains largely untried; however, it offers potential benefits particularly for

the development of simulation code involving complicated molecules such

as large polymers and proteins. Simulation code is predominantly developed

and used by physicists, chemists, and chemical engineers and not by com-

puter scientists. However, advances in computer science such as object-

orientation can be of potential benefit to molecular simulation practitioners.

This book is in part, an effort to bridge this gap between practitioners and

advances in computer science. Sample object-oriented simulation code writ-

ten in C11 is included on the accompanying disk.

This book has benefited from the contributions of others. I thank Ross

Daws for his valuable assistance with the object-oriented analysis and

Gianluca Marcelli for reading the manuscript carefully. Thanks are also due

to Peter Cummings, Denis Evans, and Rolf Lustig for access to their work

prior to publication. Most importantly, I thank my wife Angelica for contrib-

uting her good judgment to many aspects of both the appearance and con-

tents of the book.

Richard J. Sadus

January, 1999
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Chapter 1

Introduction

This chapter introduces the concept of molecular simulation and provides a

brief survey of developments in the field. Many of the topics introduced here

are examined in greater detail in subsequent chapters. Various aspects of

molecular simulation have also been reviewed elsewhere (Ciccotti et al.,

1987; Haile, 1992; Allen and Tildesley, 1993; Heyes, 1998; Leach, 2001;

Frenkel and Smit, 2023; Rapaport, 2004; Allen and Quigley, 2013; Allen

and Tildesley, 2017; Raabe, 2017). Battimelli et al. (2020) have reported a

historical narrative for some aspects of the development of molecular simula-

tion in the twentieth century.

1.1 What is molecular simulation?

Molecular simulation is a generic term encompassing both Monte Carlo

(MC) and molecular dynamics (MD) computing methods. The primary moti-

vation for molecular simulation is to provide exact results for statistical

mechanical problems in preference to approximate solutions. The feature

that distinguishes molecular simulation from other computing methods and

approximations is that the molecular coordinates of the system are evolved

in accordance with a rigorous calculation of intermolecular energies or

forces.1 Molecular simulation can be aptly described as a computational sta-

tistical mechanics. It allows us to determine macroscopic properties by eval-

uating exactly a theoretical model of molecular behavior using a computer

program. The keyword in the earlier description is “exactly.” The results of a

molecular simulation are determined solely by the nature of the theoretical

model used. Consequently, comparison of simulation results with experimen-

tal data is an unambiguous test of the accuracy of the model. Discrepancies

between accurate experimental measurements and molecular simulation data

can be attributed unambiguously to the failure of the model to represent

molecular behavior.

The history of molecular simulation largely parallels the history of the

digital computer. However, it is interesting to reflect that some aspects of

1. Some useful complementary methods (Klamt, 2005) that do not involve the evolution of coor-

dinates are not considered here.

1
Molecular Simulation of Fluids. DOI: https://doi.org/10.1016/B978-0-323-85398-9.00002-2

© 2024 Elsevier B.V. All rights reserved.
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what we would now recognize as molecular simulation predate the comput-

ing era, when the term “molecular dynamics” simply referred to the dynam-

ical behavior of molecules. For example, Lord Kelvin (1904) offers the

following description of an experiment to obtain the distribution of velocities

involved in molecular collision.

“For our present problem we require two lotteries to find the influential condi-

tions at each instant, when Q enters P’s cage—Lottery I. for the velocity (v) of

Q at impact: lottery II. for the phase of P’s motion. For lottery I. (after trying

837 small squares of papers with velocities written on them and mixed in a

bowl, and finding the plan unsatisfactory) we took nine stiff cards, numbered

1, 2 . . . 9, of size of ordinary playing-cards with round corners, with one hun-

dred numbers written on each in ten lines of ten numbers. The velocities on

each card are shown on the following table. The number of times each velocity

occurs was chosen to fulfill as nearly as may be the Maxwellian law . . .”

This quaint description includes aspects such as obtaining a Maxwell�
Boltzmann velocity distribution and random sampling that are routinely per-

formed by computer-based MD and MC molecular simulations, respectively.

The first computer-era molecular simulation of a liquid was performed by

Metropolis et al. (1953) on the MANIAC computer at Los Alamos. Metropolis

et al. introduced the Monte Carlo method. During a MC simulation, different

trial configurations are generated randomly. The intermolecular interactions in

the trial configuration are evaluated and probabilities are used to either accept

or reject the change. Later, Alder and Wainwright (1957, 1959) introduced

the molecular dynamics (MD) method (Chapter 6). In a MD simulation, the

equations of motion (Chapter 2) for the system of molecules are solved. The

molecular coordinates and momenta change according to the intermolecular

forces experienced by the individual molecules. As the name implies, MD

enables us to obtain the dynamic properties of the system. Unlike MC simula-

tions, MD is totally deterministic and chance plays no role.2 Another important

distinction between MC and MD methods is that MD uses intermolecular

forces to evolve the system, whereas MC simulation involves primarily the

calculation of changes in intermolecular energy.

The practice of molecular simulation has continued to benefit enormously

from subsequent improvements in the evolution of computer hardware

(Fig. 1.1) and software (Chapters 11 and 12). Today, researchers in many

disciplines use both simulation techniques widely. The popularity of molecu-

lar simulation as a research tool is evident from the many thousands of

entries for the keywords “Monte Carlo” and “molecular dynamics” found in

The Web of Science and Scopus databases for each successive year. The

choice between the two alternatives depends often on the type of property

2. Sometimes it is convenient to combine both approaches resulting in a hybrid-MD algorithm.
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being investigated. For example, a MD strategy is required to obtain time-

dependent dynamic properties of the system, whereas the MC method can be

used in situations where the systems have no intrinsic dynamics. Either MC

or MD can be used for equilibrium properties.

Molecular simulation is increasingly providing valuable insights into fluid

properties. An example of the value of molecular simulation is illustrated by

its role in the correct interpretation of neutron scattering data for water

(Chialvo et al., 1998). Postorino et al. (1993) reported neutron scattering data

for supercritical water, which indicated the absence of hydrogen bonding in

contradiction to molecular simulation studies that predicted hydrogen bonding.

FIGURE 1.1 Computers then and now. The CDC 6600 computer (top, Science Museum,

London) with its “spaghetti wiring” was the workhorse for many computational tasks in the

1960s. In contrast, today’s supercomputers (bottom, OzSTAR Swinburne University of

Technology) are compact racks of thousands of CPUs and GPUs (Chapter 12).

Introduction Chapter | 1 3



Based on their analysis, Postorino et al. (1993) concluded that the models of

water used in the MD studies were inadequate. However, further careful

molecular simulation studies (Chialvo and Cummings, 1994) with revised

models for water continued to show the presence of hydrogen bonding. It

became apparent subsequently (Soper et al., 1997) that the original neutron

scattering data had been analyzed incorrectly. The revised analysis (Soper

et al., 1997) showed the presence of hydrogen bonding as predicted by molec-

ular simulation. Furthermore, there was good qualitative agreement between

the revised analysis and molecular simulation predictions. Molecular simula-

tion can also be used increasingly to resolve conflicts between experimental

data for difficult-to-measure properties such as the critical densities of

thermally unstable high-molecular-weight alkanes (Siepmann et al., 1993).

Molecular simulations can be used to make genuine predictions from first

principles that are either close to or exceed experimental accuracy (Deiters

and Sadus, 2022a,b, 2023).

1.1.1 The MC method

The MC method is a stochastic strategy that relies on probabilities, which

explains the association with the eponymous casino in the principality of

Monaco (Fig. 1.2). To simulate fluids, transitions between different states or

configurations are achieved by (1) generating a trial configuration randomly;

FIGURE 1.2 Casino de Monte-Carlo on December 29, 2013. In the absence of certainty, there

is a nonzero probability (chance) that the white substance in the foreground could be real snow.

4 Molecular Simulation of Fluids



(2) evaluating an “acceptance criterion” by calculating the change in energy

and other properties in the trial configuration; and (3) comparing the accep-

tance criterion to a random number and either accepting or rejecting the trial

configuration. It is important to realize that not all states will make a signifi-

cant contribution to the configurational properties of the system. To deter-

mine accurately the properties of the system in the finite time available for

the simulation, it is important to sample those states that make the most sig-

nificant contributions. This is achieved by generating a Markov chain

(Chapters 6 and 9), which is a sequence of trails in which the outcome of

successive trails depends only on the immediate predecessor. In a Markov

chain, a new state will only be accepted if it is more “favorable” than the

existing state. In the context of a simulation using an ensemble, this usually

means that the new trial state is lower in energy. The MC algorithm is sum-

marized by Algorithm 1.1.

In the MC process, a new configuration is obtained typically by displa-

cing, exchanging, removing, or adding a molecule. Probabilities are also

often involved in determining the nature and extent of the attempted move.

The exact nature of the transition probability depends on the ensemble cho-

sen (Chapter 9), but it always involves evaluating the energy of the new con-

figuration and comparing it with the energy of the existing (old) state.

Notice, that if the attempted change is rejected, then the old state is counted

as the new state. Details of MC simulations are examined in Chapter 6.

ALGORITHM 1.1 General outline of a MC process.

1.1.2 MD

In contrast to the MC method, which relies on transition probabilities, MD

solves (Chapters 7�9) the equations of motion of the molecules to generate
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new configurations. Consequently, MD simulations can be used to obtain

time-dependent properties of the system. A general MD algorithm is pre-

sented in Algorithm 1.2.

ALGORITHM 1.2 General outline of a MD process.

Algorithm 1.2 hides a considerable degree of complexity. There are several

possible algorithms for solving the equations of motions, which are examined

in detail in Chapter 7. The practical implementation of MC and MD methods

have many features in common, which are apparent from the considerations

discussed in Chapters 3�5.

1.2 Progress in molecular simulation

1.2.1 Early work on hard spheres and atoms

The very early work on molecular simulation was confined to either evaluating

the properties of hard spheres (HS) or using the Lennard-Jones (LJ) potential

(Chapter 3). The LJ potential remains the most widely used intermolecular

potential for molecular simulation. Metropolis et al. (1953) showed how the

MC method could be used to calculate the properties of two-dimensional rigid

spheres. Most significantly, they introduced the concepts of importance sam-

pling (Chapter 6) and periodic boundary conditions (Chapter 5). Later, Wood

and Parker (1957) reported MC simulations using the LJ potential. They found

evidence for a solid�fluid phase transition, which was later confirmed by

Hansen and Verlet (1969). Their paper also discusses the minimum image con-

vention (Chapter 5) to account for the truncation of the potential required by

the periodic boundary conditions.

Alder and Wainwright (1957) reported the first MD simulation for HS.

Their data was found to be in good agreement with MC results (Wood and

Jacobson, 1957), thereby demonstrating the equivalence of the two molecular

simulation methods. The first MD simulation of a LJ fluid was reported by

Rahman (1964). Verlet (1967) also performed MD simulations for the LJ

potential using an improved integration scheme (Chapter 7) for the equations
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of motion and introducing the concept of a neighbor list (Chapter 5) to

reduce computation time. Verlet’s algorithm and subsequent modifications

(Chapter 7) are widely used today. The predictor�corrector integration

method (Chapter 7) proposed by Gear (1971) is also used extensively.

1.2.2 Small nonpolar molecules

Small diatomic or polyatomic molecules represent a natural extension of the appli-

cation of molecular simulation. Harp and Berne (1968) applied the MD method

for diatomic molecules. It is common to consider the intermolecular interactions

between two diatomic molecules via a site�site approximation (Singer et al.,

1977), in which the interaction sites correspond to the position of the nuclei of the

real molecules Consequently, diatomic molecules such as nitrogen can be depicted

as two LJ atoms separated by a fixed bond length. This approach was used by

Cheung and Powles (1975) to model the nitrogen molecule.

The MD simulation of polyatomic molecules requires us to consider how

to account for vibrational and rotational degrees of freedom in the integration

of the equations of motion (Chapter 2). In most cases, it is safe to ignore

molecular vibration and treat the molecule as a rigid body. The kinematics

of rigid bodies is well developed (Goldstein et al., 2002); however, the time

evolution of the Euler angles results in an awkward singularity. For small

molecules, this problem is commonly avoided by using the quaternions

approach proposed by Evans and Murad (1977), whereas the method of con-

straint (Ciccotti et al., 1982) is particularly advantageous for larger, more

flexible molecules. In contrast, MC simulations of polyatomic molecules

address the issue of rotation by proposing special moves (Chapter 6).

1.2.3 Polar molecules and ions

In contrast to interactions between nonpolar molecules, interactions between dipo-

lar molecules or ions are long-range. A long-range force is defined as one which

falls off no faster than r2d
, where r is the intermolecular separation and d is the

dimensionality of the system. Typically, ion�ion and dipole�dipole potentials are

proportional to r21 and r23, respectively. Consequently, the effect of either inter-

action extends well past half the length of the simulation box, and special techni-

ques (Chapter 5) are required to incorporate these long-range forces. Rigorous

formulas are available (Chapter 3) to determine the contribution of various nonpo-

lar interactions, but the most commonly used approach is to assign partial charges

to the constituent atoms and evaluate the Coulombic contributions.

For ionic systems, the Coulombic energies and forces are calculated

commonly using either an Ewald sum (Nosé and Klein, 1983) or a reaction

field (Barker and Watts, 1969). A particle�particle and particle�mesh

(PPPM) algorithm (Eastwood et al., 1980) is also effective. Fast multipole

methods (FMM) have also been developed (Greengard and Rokhlin, 1987),
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which are potentially useful in simulations involving thousands of

molecules. Barker (1994) combined elements of Debye�Hückel theory for

electrolytes with the reaction field method used for dipolar simulation

resulting in a relatively simple algorithm for including long-range effects.

Examples of ionic systems studied by molecular simulation include simple

molten salts (Hansen and McDonald, 1975) and electrolyte solutions

(Valleau and Cohen, 1980). Molecular simulations have been reported for

the vapor�liquid phase equilibria of both sodium chloride (Guissani and

Guillot, 1994) and binary mixtures containing sodium chloride (Strauch

and Cummings, 1993).

The Ewald sum (Chapter 5) can also be applied to calculate dipole�di-

pole interactions (Adams and McDonald, 1976; de Leeuw et al., 1980). A

relatively simple reaction field method (Barker and Watts, 1969) or the

method proposed by Ladd (1977, 1978) can also be used.

The most commonly studied dipolar molecule is water. Water has been

investigated by both MC (Barker and Watts, 1969; Ladd, 1977) and MD

(Rahman and Stillinger, 1971) methods. The investigation of the properties

of water by molecular simulation remains currently of topical interest

because of its both technological importance and unique physical properties

(Shvab and Sadus, 2016). Several different models of the water molecule

have been investigated using molecular simulation (de Pablo and Prausnitz,

1989; de Pablo et al., 1990). Chialvo and Cummings (1999) have reported a

detailed review of models for water at supercritical conditions. It is increas-

ingly apparent that the accurate prediction of the properties of water

(Chapter 4) requires interaction potentials that incorporated the effects of

polarization (Shvab and Sadus, 2016).

1.2.4 Chain molecules and polymers

Long-chain molecules, highly branched molecules, and polymers impose

considerable difficulties for molecular simulation when compared with either

atoms or polyatomic molecules. The computational difficulties are particu-

larly acute for MD methods for which the effect of molecular rotation must

be incorporated into the equations of motion. Consequently, early examples

of MD simulations were confined largely to chains of moderate complexity

such as butane (Ryckaert and Bellemans, 1975; Daivis and Evans, 1995) and

smaller alkanes (Ryckaert and Bellemans, 1978). Later, MD simulations

were reported for eicosane (Morriss et al., 1991), branched alkanes (Daivis

et al., 1992), entangled hard chains (Smith et al., 1996) and dendrimers

(Bosko et al., 2004). However, the advent of improved computing architec-

tures (Abraham et al., 2015) (Chapter 12) means that proteins and other large

biomolecules can be handled using MD.

MC simulation has been applied to chain molecules of considerable size and

complexity (Siepmann et al., 1993; Smit et al., 1995). A configurational-bias
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Monte Carlo method (Siepmann and Frenkel, 1992) (Chapter 5) based on the

work of Rosenbluth and Rosenbluth (1955) has been developed to facilitate the

simulation of long chains. The vapor�liquid coexistence of alkanes as large as

octatetracontane (C48) (Siepmann et al., 1993; Smit et al., 1995) and other large

chains (Escobedo and de Pablo, 1996) have been studied. Monte Carlo simula-

tions have been reported for the properties of star polymers (Ohno et al., 1996;

Tobita, 1996), dendrimers (Mansfield and Klushin, 1993) and large cyclic

alkanes (Lee et al., 2005).

1.2.5 Ensembles for molecular simulation

The original MC simulations of Metropolis et al. (1953) sampled a canonical

ensemble for which the number of particles, temperature, and volume are con-

stant. However, there are many physical processes that occur under different

conditions, for example, constant temperature and pressure. Consequently, it is

desirable to conduct simulations in a variety of different ensembles depending

on the nature of the property being investigated.

It is relatively easy to extend the MC method to other ensembles (Chapter 9)

because the importance of sampling technique can be applied in any problem for

which it is possible to construct a Markov chain. McDonald (1972) reported

Monte Carlo calculations for binary mixtures in an isothermal�isobaric (NpT)

ensemble. Valleau and Cohen (1980) conducted Monte Carlo calculations in the

grand canonical (μVT) ensemble. The transformation to other ensembles is

achieved by sampling the variable that is conjugate to the new fixed parameter in

addition to sampling the particle coordinates. For the isothermal�isobaric ensem-

ble, the new variable to be sampled is volume, whereas the number of particles is

sampled for the grand canonical ensemble. Techniques have also been developed

for MC simulations in the microcanonical (Ray, 1991) and canonical (Lustig,

2011) ensembles. The calculation of thermodynamic properties from different

ensembles is examined in Chapter 2.

Generalizing ensembles for MD is complicated by the fact that the equa-

tions of motion lead naturally to the microcanonical (NVE) ensemble.

Consequently, there is no well-defined method for modifying the equations of

motion. Andersen (1980) conducted MD simulations at constant pressure and/

or temperature by introducing additional degrees of freedom. Nosé (1984)

introduced temperature control by adding additional terms to the Hamiltonian

of the system. Later, Hoover (1985) re-structured Nosé’s equations of motion,

interpreting the additional variables as dynamical friction coefficients. MD

algorithms for various ensembles are outlined in Chapter 9.

1.2.6 Phase equilibria

The traditional Monte Carlo and molecular techniques based on the canonical

ensemble and constant pressure ensemble, respectively, do not yield reliable
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chemical potential data required for phase equilibria calculations. This limitation

was partly addressed by test particle (Adams, 1974; Widom, 1963, 1982; Shing

and Gubbins, 1982) and grand canonical ensemble (Adams, 1975; Mezei, 1980;

Yao et al., 1982) methods. Computer simulation was most commonly restricted

to pure substances (Adams, 1976, 1979) with only limited applications to binary

mixtures (Fincham et al., 1986; Panagiotopoulos et al., 1988).

In the last three decades, considerable progress has been made in the appli-

cation of molecular simulation to phase equilibria. The main impetus has been

the formulation of a Gibbs ensemble MC method (Panagiotopoulos,1987;

Panagiotopoulos et al., 1988). In the Gibbs ensemble, the problem of obtaining

reliable chemical potentials and uncertainties caused by interfaces are elimi-

nated by representing the coexisting phases as separate simulation boxes.

Equilibrium between the boxes (phases) is achieved by attempting molecular

displacements with each box, volume changes, and particle interchanges

between the boxes. The Gibbs ensemble has been used successfully to

calculate phase equilibria in pure fluids (Smit et al., 1995), binary mixtures

(Guo et al., 1994), and ternary mixtures (Tsang et al., 1995). The range

of application of the Gibbs ensemble includes simple molecules, ions

(Orkoulas and Panagiotopoulos, 1994), and polymers (de Pablo, 1995).

Comprehensive reviews of the application of the Gibbs ensemble are available

(Panagiotopoulos, 1992; Gubbins and Sandler, 1994).

Kofke (1993a,b) proposed a Gibbs�Duhem integration (GDI) scheme for

the simulation of phase equilibrium that combines elements of thermody-

namic integration with the Gibbs ensemble method. The Gibbs ensemble

is used to locate one point on the phase envelope from which the rest of the

curve can be traced. Accurate phase equilibria calculations have been

reported (Panagiotopoulos et al., 1998) by applying histogram re-weighting

techniques to the grand canonical ensemble.

A MD implementation of the Gibbs ensemble has been reported (Palmer

and Lo, 1994). Möller and Fischer (1990) determined the phase coexistence

of pure fluids using a MD NpT 1 test particle approach. Their approach has

been applied to predict the vapor�liquid phase behavior of both pure fluids

(Kriebel et al., 1995) and binary mixtures (Möller et al., 1992). Successful

calculations of phase equilibria have also been reported using other MD

methods (Schaink and Hoheisel, 1992; Guissani and Guillot, 1993).

The application of molecular simulation has been largely confined to

vapor�liquid equilibria, with solid�liquid equilibria (SLE) proving much

more challenging. The low probability of particle insertion into dense phases

usually defeats Gibbs ensemble MC. GDI has been used very successfully for

SLE but its accuracy depends on the availability of a reliable starting point.

This mean SLE prediction often requires very specialized simulation method

that suffer from limitations from such as the loss of precision when evaluating

the chemical potential, unwanted surface effects, and difficulty in applying the

method to molecules. However, progress in SLE predictions has been made
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with the advent of new algorithms (Deiters and Sadus, 2022a,b). Details of

algorithms for phase equilibria are given in Chapter 10.

1.2.7 Interatomic interactions

Molecular simulation methods are almost invariably implemented assuming

that intermolecular interactions are confined to pairs of molecules. The cal-

culations are usually achieved by using effective pair-wise potential for

which the LJ potential is the most common example. By making this approx-

imation, it is relatively straightforward to design force fields (Chapter 3) that

can be applied to complicated molecular systems (Martin, 2006).

Effective potentials are computationally convenient, but are largely empirical

without a solid theoretical background. In the last decade, advances in computa-

tional quantum chemistry (Chapter 4) have permitted the evaluation of two-

body interactions from principles, resulting in highly accurate ab initio potentials

for the noble gases (Hellmann et al., 2017; Deiters and Sadus, 2019). The

advantage of such ab initio potentials is that they allow us to unambiguously

determine the effect of two-body interactions on macroscopic properties.

1.2.8 Many-body interactions

The effect of three- or higher-body interactions has not been investigated exten-

sively by molecular simulation. There is a very high computational impediment

to implementing many-body interactions for an N-component systems. The sim-

ulation algorithm is of order Nm
, where m $ 2 is the number of molecules con-

tributing to the interaction. In contrast to the two-body case, there are few three-

body ab initio potentials and their accuracy is much less certain.

Simulations of the effect of three-body (m 5 3) interactions have been

reported using the Axilrod�Teller�Mutō (ATM) potential (Axilrod and

Teller, 1943; Mutō, 1943). Barker et al. (1971) demonstrated that the ATM

potential makes a significant contribution (5%�10%) to the overall energy

of liquid argon and Monson et al. (1983) reported that three-body interac-

tions are important for diatomic fluids. Rittger (1990a) included three-body

interactions in a simulation for the chemical potential of liquid xenon.

Following an examination of the thermodynamic data of xenon, Rittger

(1990b) found that three-body dispersion interactions alone were insufficient

to explain xenon’s behavior. The profound effect of ATM interactions on

phase equilibria and other thermophysical properties (Chapter 4) is well

documented (Marcelli and Sadus, 1999; Sadus and Prausnitz, 1996; Wang

and Sadus, 2006; Deiters and Sadus, 2019).

Despite advances in computer technology (Chapter 12), the use of three-

body interaction is far from a routine undertaking, highlighting the need for

careful approximations (Chapter 4) (Marcelli and Sadus, 2000). Calculating
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three-body interactions is particularly beneficial when coupled with two-

body ab initio two-body potentials (Deiters and Sadus, 2022a,b).

1.2.9 Nonequilibrium MD simulation

There are some properties of a fluid that are not in equilibrium. These prop-

erties can be described by nonequilibrium statistical mechanics (Evans and

Morriss, 2008) and are calculated from nonequilibrium molecular dynamics

(NEMD) simulation. Several NEMD techniques (Chapter 8) have been

developed (Evans and Morriss, 1984). Typically, NEMD methods involve

applying a perturbation to the usual equations of motion. The perturbation

can be constant throughout the simulation, it can evolve with time, or alter-

natively, a sinusoidally oscillating perturbation can be used.

Gosling et al. (1973) used NEMD to determine shear viscosity. Evans

and Morriss (1984) and Gillan and Dixon (1983) provided the theoretical

basis for determining heat flow. Diffusion has also been investigated

(Ciccotti et al., 1979). The application of NEMD continues to expand

(Chapter 8). Examples include the study rheology (Morriss, et al., 1991) and

elongational flow (Hunt et al., 2010). Many new and promising NEMD algo-

rithms has been summarized by Todd and Daivis (2017).

1.2.10 Molecular simulation and object orientation

Historically, code for molecular simulation has been developed either prior to

or during the era of structured procedural programming. Structured procedural

programming emphasizes the decomposition of a problem into algorithms that

are represented in languages such as FORTRAN or C as functions and/or sub-

routines. Structured procedural programming has “evolved” into object orien-

tation. Object orientation has many benefits for code design, simplification,

and re-use that can potentially benefit molecular simulation. It is now arguably

the preferred method for code design, which has been exploited in many

sophisticated simulation codes (Phillips et al., 2020; Thompson et al., 2022).

Chapter 11 explores the potential benefits of object orientation.

1.2.11 Parallel computing

Arguably the most important development that has facilitated the growth in

molecular simulation is the advent of parallel computing (Kirk and Hwu, 2010)

(Chapter 12). Initially this simply involved distributing the computational load

over multiple processors. However, the introduction of the graphics processing

unit (GPU) has enabled (Kohnke et al., 2020) an enormous acceleration of MD

code, making simulations with very large number of atoms or molecules compu-

tationally feasible (Hou et al., 2013; Heinecke et al., 2015). Object orientation
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and parallel computing are a powerful combination that will greatly facilitate

future scientific discoveries. This is examined in Chapter 12.
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Nosé, S., Klein, M.L., 1983. Constant pressure molecular dynamics for molecular systems. Mol.

Phys. 50, 1055�1076.

Ohno, K., Shida, K., Kmiura, M., Kawazoe, Y., 1996. Monte Carlo study of the second virial

coefficient of star polymers in a good solvent. Macromolecules 29, 2269�2274.

16 Molecular Simulation of Fluids

http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref64
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref64
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref64
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref65
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref65
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref65
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref66
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref66
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref67
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref67
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref67
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref68
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref68
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref70
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref70
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref71
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref71
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref71
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref72
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref72
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref72
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref73
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref73
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref73
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref74
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref74
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref74
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref74
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref75
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref75
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref75
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref76
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref76
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref76
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref77
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref77
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref77
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref77
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref78
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref78
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref78
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref79
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref79
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref79
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref80
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref80
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref80
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref81
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref81
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref81
https://doi.org/10.11429/subutsukaishi1927.17.10-11-12_629
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref82
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref82
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref82
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref83
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref83
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref83
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref84
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref84
http://refhub.elsevier.com/B978-0-323-85398-9.00002-2/sbref84


Orkoulas, G., Panagiotopoulos, A.Z., 1994. Free energy and phase equilibria for the restricted primi-

tive model of ionic fluids from Monte Carlo simulations. J. Chem. Phys. 101, 1452�1459.

Palmer, B.J., Lo, C., 1994. Molecular dynamics implementation of the Gibbs ensemble calcula-

tion. J. Chem. Phys. 101, 10899�10907.

Panagiotopoulos, A.Z., 1987. Direct determination of phase coexistence properties of fluids by

Monte Carlo simulation in a new ensemble. Mol. Phys. 61, 813�826.

Panagiotopoulos, A.Z., 1992. Direct determination of fluid phase equilibria by simulation in the

Gibbs ensemble: a review. Mol. Sim. 9, 1�23.

Panagiotopoulos, A.Z., Quirke, N., Stapleton, M., Tildesley, D.J., 1988. Phase equilibria by sim-

ulation in the Gibbs ensemble. Alternative derivation, generalization and application to mix-

ture and membrane equilibria. Mol. Phys. 63, 527�546.

Panagiotopoulos, A.Z., Wong, V., Floriano, M.A., 1998. Phase equilibria of lattice polymers

from histogram reweighting Monte Carlo simulations. Macromolecules 31, 912�918.

Phillips, J.C., Hardy, D.J., Maia, J.D.C., Stone, J.E., Ribeiro, J.V., Bernardi, R.C., Buch, R.,

Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M.C.R., Radak, B.K., Skeel, R.D.,

Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., Kalé, L.V.,
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Chapter 2

Ensembles, thermodynamic
averages, and particle dynamics

The principles of statistical thermodynamics are fundamental to both Monte

Carlo (MC) and molecular dynamics (MD) simulation methods. It can be

argued that molecular simulation is computational statistical mechanics.

Molecular simulation allows us to evaluate exactly the properties of mole-

cules as described by statistical mechanics. Statistical mechanics relates mac-

roscopic properties to the properties of individual molecules. In turn, the

properties of individual molecules can be evaluated directly using molecular

simulation methods. In a MC simulation, the evaluation of the properties of

molecules is performed independently of the dynamics of motion. In con-

trast, knowledge of particle dynamics is essential for MD simulation.

Very comprehensive and detailed descriptions of statistical mechanics are

available elsewhere (Fowler and Guggenheim, 1956; Garrod, 1995; Hill,

1986; Hill, 1987; Mayer and Mayer, 1946; Reed and Gubbins, 1973; Reif,

1965; Rushbrooke, 1962; Wannier, 1987). Section 2.1 provides a brief over-

view of the results of statistical mechanics that are used commonly in molec-

ular simulation programs. The concept of an ensemble is reviewed and

various common thermodynamic properties are defined in terms of ensemble

averages. These properties can be determined via molecular simulation by

evaluating the behavior of suitable intermolecular potentials. Maitland et al.

(1981) have provided a detailed description of several intermolecular poten-

tials, and this important aspect is discussed further in Chapters 3 and 4.

Obtaining ensemble averages of pressure and energy is straightforward,

whereas historically averages of other thermodynamic properties were obtained

via fluctuations (Section 2.2). However, a more contemporary approach (Lustig,

1994a; Meier and Kabelac, 2006) is discussed in Section 2.3, which offers con-

siderable advantages, arguably providing the preferred method for the future

determination of thermodynamic properties via simulation.

An overview of the underlying mechanics of particle motion is presented in

Section 2.4. In a sense, this can be regarded as a primer for MD because an

understanding of the mechanics of particle motion is the cornerstone of the

implementation of MD algorithms. The motion of particles can be described in

the framework of Newtonian, Lagrangian, or Hamiltonian mechanics. Here, we
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illustrate the relationship between these mechanical frameworks. Starting from

Newton’s equation, first the Lagrangian equations and then the Hamiltonian

equations are obtained. This section follows closely the work of Goldstein

(1950). Although Newton’s equations are sufficient for simple atomic systems,

Lagrangian or Hamiltonian dynamics is advantageous for more complicated sys-

tems. Lagrangian and Hamiltonian dynamics are discussed comprehensively

elsewhere (Calkin, 1996), and there are several books that describe particle

mechanics in the context of molecular simulation (Haile, 1992; Hoover, 1986;

Hoover, 1991; Rapaport, 2004; Allen and Tildesley, 2017).

2.1 Statistical mechanics, ensembles, and averaging

2.1.1 Ensembles

Molecular simulation permits the rigorous application of the principles of statisti-

cal mechanics to calculate the properties of a chosen system. A typical simulation

program requires the implementation of several algorithms involving the calcula-

tion of energies, forces, molecular orientation, and the like. However, the overall

simulation framework is determined by the choice of an ensemble (Chapter 9).

From the perspective of statistical mechanics, a system’s macroscopic prop-

erties such as pressure or density represent averages over all possible quantum

states. To calculate the properties of a real system, it is convenient to define an

ensemble. An ensemble can be regarded as an imaginary collection of a very

large number of systems in different quantum states with common macroscopic

attributes. For example, each system of the ensemble must have the same tem-

perature (T), pressure (p), and number of particles (N) as the real system it

represents. The ensemble average (Reed and Gubbins, 1973; Hill, 1986) of any

dynamic property (A) can be obtained from the relationship,

Ah i5
X
i

Aiℙi; ð2:1Þ

where Ai is the value of A in a quantum state i; ℙi represents the probability

of observing the ith state, and the angular brackets denote an ensemble aver-

age. The time-averaged properties of the real system are related to the

ensemble average by invoking the following assumption:

At5N 5 Ah i: ð2:2Þ
The above equivalence of the time average and ensemble average is

called the ergodic hypothesis (Haile, 1992).

The form of ℙi is determined by which macroscopic properties are com-

mon for every system of the ensemble. For example, if the volume (V), T,

and N are constant, then it can be shown that,

ℙi 5
e2βEiðN;VÞ

ZNVT
; ð2:3Þ
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where E is the energy, β5 1/kT (k is Boltzmann’s constant), and ZNVT is the

canonical partition function.

ZNVT 5
X
i

e2βEiðN;VÞ ð2:4Þ

Eq. (2.3) represents the canonical ensemble. Other ensembles are possible

depending on the choice of constant macroscopic properties (Hill, 1986).

Some commonly used ensembles are summarized in Table 2.1, where δ is

Dirac’s delta function.

It is apparent that the ensembles summarized in Table 2.1 occur in two broad

categories. The microcanonical, canonical, and isothermal�isobaric ensembles

describe closed systems for which there is no change in the number of particles.

In contrast, the grand canonical ensemble is appropriate for an open system in

which the number of particles can change. In the thermodynamic limit, all of the

ensembles are equivalent, and it is also possible to transform between different

ensembles (Allen and Tildesley, 2017; Raabe, 2017). The choice of ensemble for

a simulation is often a matter of convenience. Many physical processes do not

involve a change in N and occur at either constant T and V, or constant T and p.

In these cases, the natural choices are the canonical and isothermal�isobaric

ensembles, respectively. It is common practice to use the constraints as a short-

hand notation for the ensembles.

Each ensemble is associated with a characteristic thermodynamic function. The

entropy (S) can be obtained directly from the microcanonical partition function.

S5 klnZNVE ð2:5Þ
The Helmholtz function (A) is associated with the canonical ensemble.

A52 kT lnZNVT ð2:6Þ
The isobaric�isothermal ensemble yields the definition for the Gibbs

function (G),

G52 kTlnZNpT ; ð2:7Þ

TABLE 2.1 Summary of common statistical ensembles.

Ensemble Constraints Z ℙi

Microcanonical N, V, E
X
i

δðEi 2 EÞ δðEi 2 EÞ
ZNVE

Canonical N, V, T
X
i

e2βEi ðN;V Þ e2βEi ðN;V Þ

ZNVT

Grand canonical μ, V, T
X
i

eβNiμZNVT e2βðEi2μNi Þ

ZμVT

Isothermal�isobaric N, p, T
X
i

eβpVi ZNVT e2βðEi1pVi Þ

ZNpT
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where p is the appropriate thermodynamic function for the grand canonical

ensemble.

pV 52 kT lnZμVT ð2:8Þ

2.1.2 Simple thermodynamic averages

2.1.2.1 Energy

The total energy (E) (or Hamiltonian) of the ensemble can be obtained from

the kinetic (K) and potential energies (U)

E5 Kh i1 Uh i; ð2:9Þ
where the angled brackets denote ensemble averages.

The kinetic energy can be evaluated from the individual momenta of the par-

ticles. The potential energy is the sum of the interparticle interactions

(Chapter 3). As discussed subsequently, the interparticle interactions are usually

calculated by assuming a particular intermolecular function. Typically, the cal-

culation involves a summation over all distinct pairs of molecules (Chapter 3),

although other many-body interactions (Chapter 4) can be involved.

2.1.2.2 Temperature

The temperature can be obtained (Allen and Tildesley, 2017) from the virial the-

orem. In terms of generalized momenta (pk), the theorem can be expressed as:

pk
@E

@pk

� �
5 kT ð2:10Þ

For N atoms, each with three degrees of freedom, we obtain the relationship.

T 5
2 Kh i
3Nk

ð2:11Þ
Alternatively, we can consider T to be the average of instantaneous tem-

perature (t) contributions.

t5
2K

3Nk
ð2:12Þ

2.1.2.3 Pressure

The pressure can also be obtained (Allen and Tildesley, 2017) from the virial

theorem. In terms of generalized coordinates (qk), the virial theorem can be

expressed as:

qk
@E

@qk

� �
5 kT ð2:13Þ

Starting from Eq. (2.13), it can be shown (Allen and Tildesley, 2017) that,

pV 5NkT 1 Wh i; ð2:14Þ
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where W is the internal virial (defined below). We can define an instanta-

neous pressure function analogous to the instantaneous temperature.

p5 ρkt1
W

V
ð2:15Þ

The internal virial is defined as,

W 5
1

3

X
i

X
j. i

rijUf ij 52
1

3

X
i

X
j. i

wðrijÞ; ð2:16Þ

where w(r) is the intermolecular pair virial function and i and j denote the

atoms or molecules.

wðrÞ5 r
duðrÞ
dr

ð2:17Þ

Eq. (2.17) introduces the intermolecular potential function (u(r)) into the

calculation of the ensemble pressure. The potential pressure can be identified

as ppot 5W=V .

2.1.2.4 Residual chemical potential

The residual chemical potential (μr) is obtained typically from the insertion of

a test particle (Widom, 1963, 1982). A ghost test particle is inserted randomly

into the system and the resulting change in potential energy (Utest) is calcu-

lated. The formula for calculating μr is ensemble-dependent. For the canonical

(Widom, 1963) and grand canonical (Henderson, 1983) ensembles we have:

μr 52 kT ln exp 2βUtestð Þ� � ð2:18Þ
Fluctuations of the kinetic temperature mean that the corresponding for-

mula (Frenkel, 1986) for the microcanonical ensemble requires the instanta-

neous temperature:

μr 52 k th iln t3=2exp 2Utest

kt

� �� �
th i3=2

" #
ð2:19Þ

For the isothermal�isobaric ensemble, allowance must be made for vol-

ume fluctuations (Shing and Chung, 1987).

μr 52 kT ln
Vexpð2βUtestÞ
� �

Vh i

� 	
ð2:20Þ

The total configurational chemical potential can be obtained by adding

the ideal contribution (see below). For atoms, it is,

μid 52 kTln
N

V

2πmkT
h


 �3=2
( )

; ð2:21Þ
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where m and h are the mass of a single atom and Planck’s constant, respec-

tively. The additional degrees of freedom of molecules means that the ideal

contribution to molecular properties should also include contributions from

rotation and vibration. Although well-known statistical relationships exist

(Reed and Gubbins, 1973), it has become common practice to deduce empir-

ical relationships for real molecules (Lemmon et al., 2009).

2.2 Properties from fluctuations

During the course of a simulation, fluctuations will be observed (Lebowitz

et al., 1967) in various properties of the ensemble, for example, energy fluc-

tuations occur in the canonical ensemble. These fluctuations are useful

because they can be related to thermodynamic derivatives such as specific

heat and isothermal compressibility. It is particularly useful to calculate the

root mean square (RMS) deviation of an ensemble property,

σ2ðAÞ5 δA2
� �

5 A2
� �

2 Ah i2; ð2:22Þ
where

δA5A2 Ah i ð2:23Þ
It should be noted that the fluctuations in different ensembles are not the

same. This is exemplified in Table 2.2 for the isochoric heat capacity CVð Þ
of atoms.

TABLE 2.2 Fluctuation formulas for the CV of atoms in different ensembles.a

Ensemble Fluctuation formula

NVE
2

3Nk
2

4 δY2
� �

9k3N2T 2


 �21

5
2

3Nk
2

4 Y2
� �

2 Yh i2� �
9k3N2T 2

 !21

NVT δU2
� �
kT 2

1
3Nk

2
5

U2
� �

2 Uh i2
kT 2

1
3Nk

2

μVT
1

kT 2
δU2
� �

2
δUδNh i2
δN2
� �

0@ 1A1
3Nk

2

5
1

kT 2
U2
� �

2 Uh i2 2 UNh i2 Uh i Nh ih i2
N2
� �

2 Nh i2

0@ 1A1
3Nk

2

aY can be either K or U. The formulas include the contribution for the ideal gas term for atoms that
should be replaced for molecules.
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2.2.1 Thermodynamic properties

The thermodynamic definition of various properties is given in Table 2.3. These

properties involve evaluating thermodynamic derivatives, which comprise fluctua-

tions of quantities such as energy, pressure, volume, and number of particles. The

evaluation of some thermodynamic properties is “natural” in a particular ensemble

because of the different constraints (Table 2.1) that determine which quantities

can fluctuate. For example, CV is easily calculated in the NVT ensemble, whereas

there is a straightforward relationship for Cp in the NpT ensemble. Nonetheless,

all the thermodynamic quantities can be obtained from any ensemble. That is,

none are specifically limited to a particular choice ensemble, which is simply a

matter of preference or convenience rather than any theoretical restriction.

An explanation of fluctuation formulas for different ensembles is given

elsewhere (Adams, 1975; Allen and Tildesley, 2017; Brown, 1958; Lebowitz

et al., 1967; Rowlinson, 1969), and the relationships for the NpT ensemble

(Brown, 1958) are summarized in Table 2.3. In the NpT ensemble, it is

TABLE 2.3 Thermodynamic definitions of various properties and their

evaluation in the NpT ensemble using fluctuation formulas.a

Property Thermodynamic

definition

NpT ensemble

fluctuation formula

Isochoric heat capacity
(CV )

@ðE5U1K Þ
@T


 �
V

Cp 2TVα2
p=βT

Isobaric heat capacity (Cp ) @ðH5U1K1pV Þ
@T


 �
p

δ H5U1K1pV
� �2D E

kT 2

Isothermal compressibility
(βT )

2
1

V

@V

@p


 �
T

δV 2
� �
kTV

Adiabatic compressibility
(βS )

2
1

V

@V

@p


 �
S

βT 2
TVα2

p

Cp

Thermal pressure
coefficient (γV )

@p

@T


 �
V

αp

βT

Thermal expansion
coefficient (αp )

1

V

@V

@T


 �
p

δVδ H5U1K 1 pV
� �� �

kT 2V

Zero frequency speed of
sound (w0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

V 2

NM

@p

@V


 �
S

s
w0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

NMβS

s

Joule�Thomson coefficient
(μJT )

@T

@p


 �
H

γV 2 1=TβT

γ2V 1 NCV

VTβT

aM is the total mass of the system.
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natural to calculate Cp, βT , and αp, which involve δV and δH. Having deter-

mined these key properties, all other thermodynamic properties can be

obtained using the relationships in Eq. (2.24) (Rowlinson, 1969; Münster,

1970), which is the basis of the formulas for CV , w0, and μJT in Table 2.3.

In general, for a given ensemble, only three key properties are required from

molecular simulation to determine all of the remaining thermodynamic prop-

erties. That is, CV , βT and γV for the NVE, NVT, and μVT ensembles and

Cp, βT , and αp for the NpT and NpH ensembles, respectively.

Cp 5CV 1
Vγ2V
Nk

5CV 1
TVα2

p

βT

5CV 1 TVβTγ2V
5CV 1 TVαpγV
5CV βT=βs

� �
β21
S 5β21

T 1VTγ2V=CV

μJT 5
γV 2 1=βTT

γ2V 1
NCV

VTβT

αp 5βTγV

w0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V

NMβS

s

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:24Þ

The definition of both E and enthalpy (H) involves a contribution to the

kinetic energy. This can be explicitly calculated in MD but not in MC. In the

latter case, the contribution is typically incorporated separately as an ideal

term, and the MC calculation involves the evaluation of a residual quantity

only. Therefore it is also often useful (Lagache et al., 2001) to separate the

contribution of a thermodynamic property (X) into its residual (Xr) and ideal

components (Xid) because the value of the latter will depend on the number

of degrees of freedom (f) of the molecule.

X5Xr 1Xid ð2:25Þ
This separation of contributions is evident in the alternative formulas

for CV given for atoms (f5 3) in Table 2.2 with the terms involving U

providing the residual term. The residual term arises from interactions

between particles that can be calculated via an intermolecular potential

(Chapter 3). As such it can also be described as either the potential or

configurational contribution. The residual contribution is sometimes misi-

dentified in the literature as an excess property. In chemical thermody-

namics, the term “excess” should be strictly reserved for the specific case
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of mixture properties: the difference between the property of a mixture of

two or more components and the property of an ideal solution at the same

T and p (Prigogine and Defay, 1954; Hansen and McDonald, 2013;

Prausnitz et al., 1999).

Formulas for the ensemble averages of the thermodynamic properties in

the literature typically include the contributions to K from the three degrees

of freedom of translational motion of an atom that arises from the equiparti-

tion theorem, that is, K5Kid5 3kT/2. The additional degrees of freedom of

molecular systems mean that ideal contributions to thermodynamic properties

account for nontranslational contributions such as vibration and rotation. For

the properties of molecules composed of n-atoms, the contribution to K of

rotation must be included. That is, for linear and nonlinear molecules, adding

the contribution from rotation yields, Kid 5 5kT=2 (two additional degrees of

freedom) and Kid 5 3kT (three additional degrees of freedom), respectively.

Separately identifying only the residual contribution to the thermodynamic

property means that the molecule-specific ideal component can be added as

required to obtain the full value. It reduces the likelihood of unwittingly

either underestimating (by using the in-formula atomic value for a molecule)

or overestimating (by adding the molecular value to the in-formula atomic

value) the contribution of K for molecules.1

For a linear n-atom molecule, application of the equipartition theorem

yields CV ; id 5 5k=21 ð3n2 5Þk, whereas the value for an n-atom nonlinear

molecule is CV ; id 5 3k1 ð3n2 6Þk. The second term in these equations is

the contribution from vibrations. However, in many cases, high temperatures

are usually required to even partially observe these contributions because

vibrational motions are not fully excited at low to moderate temperatures. In

most cases deviations from the constant values can be exclusively attributed

to vibrations. Therefore it is normally sufficient to account for only transla-

tional and rotational contributions. That is, CV ; id 5 5k=2 and CV ; id 5 3k for

linear and nonlinear n-atom molecules, respectively.

Alternatively, the ideal contribution for molecules is sometimes estimated

(Raabe, 2017; Elliott et al., 2023) from either experimental data or theory,

which is particularly useful for obtaining reliable values for large polyatomic

molecules. In contrast, large deviations from the ideal gas formula for small

molecules are usually only observed at high T with the onset of significant

vibrational contributions. However, water is an exception. Fig. 2.1 compares

the calculated (Friedman and Haar, 1954) ideal gas Cp of water (n5 3) to

contributions from the simple equipartition formula, that is,

Cp; id 5CV ; id 1 k5 4k. It is apparent that significant deviations occur for T

. 200 K.

1. An insidious problem in the literature is that formulas originally derived for atoms are applied

unmodified to molecules. To add to the confusion, atoms are sometimes also incorrectly referred

to as molecules and vice versa.
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2.2.2 Transport coefficients

In contrast to MC, MD simulation allows us to determine the time-

dependent properties of fluids such as transport coefficients. Here, we

simply state the results that connect molecular simulation with transport

properties. A theoretical justification can be found elsewhere (Rapaport,

2004; Hansen and McDonald, 2013; Allen and Tildesley, 2017). Hoheisel

(1994) has reviewed the use of MD simulation for the transport properties

of molecular fluids.

2.2.2.1 Diffusion

The coefficient of diffusion (D) can be obtained (Rapaport, 2004) from,

D5 lim
t-N

1

6Nt

XN
j51

rjðtÞ2rjð0Þ
 2* +

; ð2:26Þ

where t denotes time. To evaluate correctly the right-hand side of Eq. (2.26),

account must be taken of the superfluous folding back of particle coordinates

common in the application of periodic boundary conditions. If we assume

that the displacement per time step is small relative to the size of the system,

FIGURE 2.1 Relative difference between the ideal gas formula for the Cp of water and accu-

rate calculations. The increased deviations at T . 200 K reflect the commencement of signifi-

cant vibrational contributions.
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the true atom displacements (r’) can be obtained from the following relation-

ship (Rapaport, 2004),

r;xjðtÞ5 rxjðtÞ1 nint
r;xjðt2ΔtÞ2 rxjðtÞ

Lx


 �
Lx; ð2:27Þ

where nint(x) is the nearest integer to x.

2.2.2.2 Shear viscosity

The shear viscosity (η) is calculated (Rapaport, 2004) from:

η5 lim
t-N

1

6kTVt

X
x, y

X
j

mjrxjðtÞvyjðtÞ2
X
j

mjrxjð0Þvyjð0Þ
" #2* +

ð2:28Þ

The reason for the sum Σx, y over the three pairs of distinct vector com-

ponents xy, yz, and zx in Eq. (2.28) is to improve the accuracy of the calcula-

tion. It is not required by theory and it can be omitted.

2.2.2.3 Thermal conductivity

The thermal conductivity (λ) is given (Rapaport, 2004) by:

λ5 lim
t-N

1

6kT2Vt

X
x

X
j

rxjðtÞejðtÞ2
X
j

rxjð0Þejð0Þ
" #2* +

ð2:29Þ

In Eq. (2.29), Σx is the sum over all vector components and e is the

instantaneous excess energy of atom j defined by,

ej 5
mv2j

2
1

X
i. j

uðrijÞ2 eh i

2
; ð2:30Þ

where eh i is the mean energy.

2.2.3 Molecular simulation and choice of ensemble

In the thermodynamic limit all ensembles are equivalent (Hill, 1986) and

should yield identical outcomes. However, molecular simulations are con-

ducted for a finite number of particles and care should always be taken to

examine the influence of finite size on a given property. In practice, this

means performing simulations with a varying number of particles to gauge

the influence on particle numbers on a given property.

It is sometimes observed that the pressure calculated from a MD NVT

ensemble simulation using the density (ρ5N/V) obtained from an NpT

ensemble does not exactly match the pressure of the NpT MD simulation.

This problem persists irrespective of the number of particles used, and as
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such at least partly reflects some deficiencies in the thermostat or barostat

(Chapters 7�9). It is an issue that is arguably underreported in the literature,

which can be partly attributed to the preference for the NpT ensemble and

relatively few contemporary comparisons (Bosko et al., 2005) between dif-

ferent ensembles.

2.3 Alternative methods for thermodynamic properties

A disadvantage of the fluctuation approach is that the properties require post-

simulation processing to determine the contributions of the fluctuations. This

contrasts with quantities such as E and p that are simply calculated during

the normal course of the simulation. Lustig (1994a,b,c) showed that, in gen-

eral, all thermodynamic state variables could be obtained from derivatives

determined directly from MD simulations in a classical NVEP ensemble. The

nature of MD and MC simulations are discussed in Chapters 6 and 7,

respectively.

It should be noted that the formulas for the NVT, NpT, μVT, and NpH

ensembles detailed below are strictly only valid for MC because the addi-

tional reduction in the degrees of freedom that occur in MD simulations

have not been taken into account. However, from a practical perspective,

using them for MD simulations is usually unlikely to incur any noticeable

loss of accuracy above the statistical uncertainties of the simulation.

2.3.1 MD NVE ensemble

The NVE ensemble is the natural ensemble to conduct MD because the appli-

cation of Newton’s laws results in the conservation of energy. In addition,

momentum (P5 0) is also conserved in MD, which means that strictly

speaking MD simulations are conducted in an NVEP ensemble. Meier and

Kabelac (2006) observed that the MD NVEP ensemble also conserves

another vectorial quantity (G) that is related to the initial position of the cen-

ter of mass, which means that we are dealing with an NVEPG ensemble.

The fundamental equation of state for the system in the (Meier and

Kabelac, 2006) NVEPG ensemble is obtained from the entropy postulate,

S ð N; V ; E ; P ; GÞ 5 k ln Ω ðN;V ; E ; P ;G Þ; ð2:31Þ
where Ω ðN;V ; E ; P ;G Þ is the phase-space volume. The basic phase-space

functions can be expressed via abbreviations that represent the derivatives of

the phase-space volume with respect to the independent thermodynamic state

variables,

Ω mn 5
1

ω
@m1n Ω
@Em @Vn

; ð2:32Þ
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where ω is the phase-space density. The general expression is given (Meier

and Kabelac, 2006) by,

Ω mn 5
N

V

0@ 1An

1

Nn
21ð Þm 2

F2 d
2
F2d

2

0@ 1A
m

ð21Þn 2N21½ �ð Þn K2 m21ð Þ� �

1 11 δ0nð Þ
Xn
i51

n

i


 �
ð21Þn2i 2N21½ �ð Þn2i

N

V

0@ 1An2i

1

Nn2i

3
2

F2 d

Xi
l51

ð21Þm1l 2
F2d

2

0@ 1A
m1l

K2ðm1l21Þ Xkmaxði; lÞ

k51

cilkWilk

 !* +
ð2:33Þ

which involves the ensemble averages of products of powers of the kinetic energy

K5E2U rN
� �

and of volume derivatives of the potential energy @nU=@ Vn. In

Eq. (2.33), the total number of degrees of freedom is F5 fN as used previously for

the conventional fluctuation formulas; xð Þn 5 x ð x1 1Þ ð x1 2Þ . . . ð x1 n2 1Þ
represents the Pochhammer symbol with xð Þ0 5 1 and δij is the Kronecker delta

(Abramowitz and Stegun, 1972); cilk Wilk is a product of certain volume derivatives

of the potential energy Wilk 5 ð2 @iU=@ViÞ ð2 @kU=@VkÞ . . . and of multino-

mial coefficients cilk described in detail elsewhere (Lustig, 1994a). The (F�d)/2

terms accounts for the contribution of the kinetic energy minus the momentum con-

straint in d dimensions. For molecules it should be replaced by a term that reflects

the additional degrees of freedom. The volume derivatives of nth order for the

potential energy are given by,

@nU

@Vn
5

1

3nVn

XN21

i51

XN
j5i11

Xn
k51

ank r
k
ij

@ku

@rkij
; ð2:34Þ

where u is the pair potential energy and ri j denotes the distance between par-

ticles i and j. A recursion relationship (Lustig, 1994a) is used to determine

the a nk coefficients.

The key thermodynamic quantities obtained from this approach are sum-

marized in Table 2.4. The remaining thermodynamic quantities can be

obtained by using the relationships given in Eq. (2.24). It should be noted

that this approach provides us with useful relationships for both T and p.

The Ωnm terms can be evaluated from Eqs. (2.35) to (2.39):

Ω00 5 kT 5
2

F2 d
Kh i ð2:35Þ

Ω10 5 1 ð2:36Þ

Ω01 5
N2 1

V
kT 2

@U

@V

� �
ð2:37Þ
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Ω11 5
N2 1

V
1 12

F2 d

2

� 	
K21 @U

@V


 �� �
ð2:38Þ

Ω20 52 12
F2 d

2

� 	
K21
� � ð2:39Þ

For N atoms, each with 3 degrees of translational freedom, F5 3N and

d5 3.

This approach has been used to evaluate the thermodynamic properties for

a wide variety of cases. Examples include simple potentials (Lustig, 1998;

Mausbach and Sadus, 2011); polarizable water models (Shvab and Sadus,

2013); supercritical fluids (Yigzawe and Sadus, 2013); and binary mixtures

(Shvab and Sadus, 2014; Stiegler and Sadus, 2015). The ease of integrating

this approach into a conventional NVE MD algorithm (Chapter 10) provides a

very compelling argument that it should be the method of choice for determin-

ing thermodynamic quantities from molecular simulation. The only significant

limitation is that it requires the potential to be differentiable at all separations,

which means it cannot be used for discontinuous potentials. For discontinuous

potentials, the traditional fluctuation formulas continue to have a useful role.

The fluctuation formulas are also independent of the simulation method. That

is, the same fluctuation formulas are valid for both MC and MD simulations.

2.3.2 MC NVT ensemble

In the same way that the NVE ensemble is the natural ensemble of MD, the

MC method is most easily implemented (Chapter 9) in the NVT ensemble.

Lustig (2011, 2012) extended the approach for MC simulations in the NVT

ensemble. The extension makes use of the Massieu�Planck system of ther-

modynamics (Münster, 1970), and proceeds from the entropy form of the

TABLE 2.4 Relationships for the key thermodynamic quantities in terms of

phase-space functions for the NVEPG MD ensemble.

Quantity Formula in terms of Ωnm

T Ω 00

k

p Ω 01

CV k 12Ω 00 Ω 20ð Þ21

γV k
Ω 11 2Ω 01 Ω 20

12Ω 00 Ω 20

β21
T V

Ω01 2 Ω11 2Ω01Ω20ð Þ2Ω00Ω11
2

12Ω00Ω20
2Ω02

� 	
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fundamental equation S E;V ;Nð Þ to the Helmholtz energy A=T 1=T ;V ;N
� �

via successive Legendre transformations. The outcome, as illustrated below,

is that any thermodynamic property can be obtained in terms of the partial

derivatives of the Helmholtz function. The relevant statistical mechanics

relationship is,

2βA β;V ;Nð Þ5 lnZ β;V ;Nð Þ; ð2:40Þ
where Z is a partition function that depends on N, T, and V. Eq. (2.40) is

the NVT ensemble analog of Eq. (2.31) and all thermodynamic properties

can be obtained from combinations of partial derivatives of the partition

function:

Zmn 5
1

Z

@m1nZ

@βm@Vn
ð2:41Þ

The key thermodynamic relationships (Lustig, 2011) in terms of Znm are

summarized in Table 2.5.

The values of Znm can be evaluated from the following relationships.

Z01 5
N

V
2β

@U

@V

� �
ð2:42Þ

Z10 52
F

2
β21 2 Uh i ð2:43Þ

Z02 5
N

V


 �2

12
1

N


 �
1 2β

N

V
2

@U

@V

� �
1β 2

@2U

@V2

� �
1β2 @U

@V


 �2
* +

ð2:44Þ

Z20 5
F

2

F

2
1 1


 �
β22 1Fβ21 Uh i1 U2

� � ð2:45Þ

TABLE 2.5 Relationships for the key thermodynamic quantities in terms of

derivatives of the partition function for the MC NVT ensemble.

Quantity Formula in terms of Znm

CV Z20 2Z2
10

NkT 2

γV kZ01 2
Z11 2Z01Z10ð Þ

T

β21
T 2kTV Z02 2Z2

01

� �
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Vlasiuk et al. (2016) observed that these relationships need to be modi-

fied by the special case for which there is a temperature dependence in the

intermolecular potential. The partition function involving a temperature-

dependent potential u q;βð Þ is,

~Z β;V ;Nð Þ~β2F=2

ð
. . .

ð
e2βu q;βð Þdq; ð2:46Þ

where the tilde sign indicates the temperature dependence. There are no

changes to the terms ~Z01 5 Z01 and ~Z02 5 Z02 that are the result of the deriva-

tives of the partition function with respect to the volume. However, ensemble

averages that involve differentiation with respect to β are affected:

~Z10 5
1

~Z

@ ~Z

@β

~Z11 5
1

~Z

@2 ~Z

@β @V

~Z20 5
1

~Z

@2 ~Z

@β2

9>>>>>>>>>>=>>>>>>>>>>;
ð2:47Þ

Applying the relationships in Eq. (2.47) yields:

~Z10 52
F

2
β21 2 U1β

@U

@β

� �
ð2:48Þ

~Z11 52
F

2
β21 N

V
2

N

V
U1β

@U

@β

* +
1

F

2
2 1

0@ 1A @U

@V

* +

2β
@2U

@V @β

* +
1 β

@U

@V
U1β

@U

@β

0@ 1A* + ð2:49Þ

~Z20 5
F

2

F

2
1 1

0@ 1Aβ22 1Fβ21 U1β
@U

@β

* +

1 U1β
@U

@β

0@ 1A2* +
2 2

@U

@β
1β

@2U

@β2

* + ð2:50Þ

This approach has proved useful for the evaluation of the thermodynamic

properties of neon (Vlasiuk et al., 2016) and other noble gases (Vlasiuk and

Sadus, 2017). It is of interest to note that the formula for Cv (Table 2.2) is

equivalent to the determination of this property from the fluctuation approach.

However, this is not the case for the other thermodynamic properties.
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2.3.3 MC NpT ensemble

Ströker et al. (2021) have extended Lustig’s approach to the NpT ensemble.

In common with the NVT case, thermodynamic quantities can be obtained in

terms of partial derivatives of the phase-space functions (Znm).

Zmn 5
1

Z

@m1nZ

@βm@pn
ð2:51Þ

The key thermodynamic quantities as expressed by combinations of Znm
are summarized in Table 2.6.

The Znm contributions can be evaluated from,

Z01 52β Vh i ð2:52Þ

Z10 52
F

2β
2 Hrh i ð2:53Þ

Z02 5β2 V2
� � ð2:54Þ

Z20 5
F2

4β2
1

F

2β2
1

F Hrh i
β

1 H2
r

� �
; ð2:55Þ

where Hr5U 1 pV is the residual enthalpy. Inserting Eqs. (2.52) to (2.55)

for the thermodynamic quantities given in Table 2.6 yields equivalent rela-

tionships to that obtained for the fluctuation approach (Brown, 1958; Hill,

1986). In contrast to both the NVE and NVT ensembles, the evaluation of the

thermodynamic properties in the NpT ensemble do not require knowledge of

the volume derivatives of U.

Following the procedure of Vlasiuk et al. (2016) detailed above for the NVT

ensemble, Ströker et al. (2021) also reported the evaluation of Znm for

TABLE 2.6 Relationships for the key thermodynamic quantities in terms of

derivatives of the partition function for the MC NpT ensemble.

Quantity Formula in terms of Znm

Cp Z20 2Z2
10

kT 2

γV 2
Z01 2β Z11 2Z10Z01ð Þ

T Z02 2Z2
01

� �
β21
T 2

Z01

Z02 2Z 2
01

Ensembles, thermodynamic averages, and particle dynamics Chapter | 2 35



temperature-dependent potentials. In common with the NVT case, ~Z01 5 Z01 and
~Z02 5 Z02, whereas the remaining terms can be evaluated from:

~Z10 52
F

2
β21 2 U1 β

@U

@β
1 pV

� �
ð2:56Þ

~Z11 5
F

2
2 1


 �
Vh i1 β U1β

@U

@β
1 pV


 �
V

� �
ð2:57Þ

~Z20 5
F

2

F

2
1 1

0@ 1Aβ22 1Fβ21 U1β
@U

@β
1 pV

* +

1 U1β
@U

@β
1pV

0@ 1A2* +
2 2

@U

@β
1β

@2U

@β2

* + ð2:58Þ

The convenience of using the NpT ensemble suggests that the approach

will be helpful in the future (Nitzke and Vrabec, 2023; Young et al., 2023).

2.3.4 MC µVT ensemble

Using a procedure (Ströker and Meier, 2021) that is analogous to the NVT and

NpT cases, all thermodynamic properties for μVT ensemble can be obtained from

combinations of partial derivatives of the grand canonical partition function (ψ):

ψnmo 5
1

ψ
@m1n1oψ

@βm@Vn@μo
ð2:59Þ

However, in contrast to the other ensembles there are now derivatives with

respect to all three independent variables, with the special case of ψ000 5 1. The

key thermodynamic relationships (Ströker and Meier, 2021) in terms of ψnmo

are summarized in Table 2.7.

The ψnmo contributions can be evaluated from:

ψ100 5 μ2
f

2kT


 �
Nh i2 Uh i ð2:60Þ

ψ200 5 μ2
f

2kT


 �2

N2
� �

2
f Nh i
2ðkTÞ2 1

f

kT
2 2μ


 �
NUh i1 U2

� � ð2:61Þ

ψ010 5
Nh i
V

2
1

kT

@U

@V

� �
ð2:62Þ

ψ020 5
N2
� �
V2

2
Nh i
V2

2
2

kTV
N
@U

@V

� �
2

1

kT

@2U

@V2

� �
1

1

ðkTÞ2
@U

@V


 �2
* +

ð2:63Þ

36 Molecular Simulation of Fluids



ψ001 5
Nh i
kT

ð2:64Þ

ψ002 5
N2
� �
kTð Þ2 ð2:65Þ

ψ110 5 μ2
f

2kT

0@ 1A N2
� �
V

1
f

2
2

μ
kT

0@ 1A N
@U

@V

* +
2

NUh i
V

2
@U

@V

* +
1

1

kT
U
@U

@V

* + ð2:66Þ

ψ101 5
μ
kT

2
f

2


 �
N2
� �

1 Nh i2 NUh i
kT

ð2:67Þ

ψ011 5
N2
� �
kTV

2
1

ðkTÞ2 N
@U

@V

� �
ð2:68Þ

It should be noted that the generalization to any number of degrees of

freedom in the above equations involves simply f and not F5 fN.

2.3.5 MC NpH ensemble

Ströker and Meier (2022) further extended Lustig’s approach for the NpH

ensemble, for which the thermodynamic properties are obtained from deriva-

tives of phase-space functions (Ωnm).

Ωnm 5
1

ω
@m1nΩ
@Hm@pn

ð2:69Þ

TABLE 2.7 Relationships for the key thermodynamic quantities for the

MC μVT ensemble in terms of derivatives of the partition.

Quantity Formula in terms of ψnmo

CV ψ200 2ψ2
100

kT 2
2

k ψ0012 ψ1012ψ100ψ001

� �
=kT

� �2
ψ002 2ψ2

001

γV kψ010 2 ψ110 2ψ100ψ010

� �
=T

2
ψ011 2ψ010ψ011

� �
kψ001 2 ψ101 2ψ100ψ001

� �
=T

� �
ψ002 2ψ2

001

β21
T

2kTV ψ020 2ψ2
010 2

ψ0112ψ010ψ001

� �2
ψ002 2ψ2

001

 !
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Eq. (2.69) contains the special cases of Ω10 5 1 and Ω00 5Ω=ω, where ω
is the phase-space density. The evaluation of the thermodynamic averages

can be determined in two different ways that depends on whether entropy is

defined in terms of either the phase-space volume or density. The two routes

are completely equivalent. However, the relationships for the phase-space

volume route have the advantage of being slightly algebraically simpler and

these are summarized in Table 2.8. In this case, Cp has a particularly simple

definition and Cv can be easily obtained from the first relationship in

Eq. (2.24).

The Ωnm contributions required in Table 2.8 can be evaluated from:

Ω00 5
2 H2U2 pV
� �

F
ð2:70Þ

Ω20 5 ðF=22 1Þ 1

H2U2 pV

� �
ð2:71Þ

Ω01 52 Vh i ð2:72Þ

Ω02 5 ðF=22 1Þ V2

H2U2 pV

� �
ð2:73Þ

Ω11 5 ð12F=2Þ V

H2U2 pV

� �
ð2:74Þ

In Eqs. (2.70)�(2.74), the quantity H�U�pV can be interpreted as the instanta-

neous kinetic energy. In common with the NpT ensemble (Eqs. 2.52�2.55), the

contributions to the ensembles required in Eqs. (2.70)�(2.74) are relatively simple.

Ströker and Meier (2022) observed a sizeable N-dependency for the Lennard-Jones

potential, requiring an extrapolation procedure to obtain results for N- N.

TABLE 2.8 Relationships for the key thermodynamic quantities for the

MC NpH ensemble in terms of derivatives of the phase-space function

using the phase-volume definition of entropy.

Quantity Formula in terms of Ωnm

Cp k

12Ω00Ω20

γV kðΩ11 2Ω20Ω01Þ
ð12Ω00Ω20ÞðΩ11Ω01 2Ω02Þ2 ðΩ01 2Ω00Ω11ÞðΩ20Ω01 2Ω11Þ

βT Ω11 2
Ω02

Ω01
2 Ω20 2

Ω11

Ω01


 �
Ω01 2Ω00Ω11

12Ω00Ω20

38 Molecular Simulation of Fluids



2.4 Particle dynamics

2.4.1 Motion of unconstrained particles

For a single particle, Newton’s second law of motion is,

F5m€r ð2:75Þ
where F is the total force acting on the particle, m is the mass of the particle,

and €r is the second time derivative of the position vector r. All derivatives

below are with respect to time unless otherwise indicated. In a simulation,

we are normally interested in many particles and Eq. (2.75) can be easily

generalized for a system containing many particles (Goldstein et al., 2002).

It is useful to distinguish between external forces (Fe) acting on the particles

from outside the system (e.g., walls of a container) and internal forces (Fij)

caused by interparticle interaction. In this case, the particles are atoms and

molecules are treated as a constrained set of atoms. Consequently, Newton’s

second law of motion for particle i becomesX
j

Fji 1Fe
i 5mi €ri ð2:76Þ

and summing over all particles, we obtain:X
j. i

X
i

Fji 1
X

Fe
i 5

X
mi €ri ð2:77Þ

The first sum in Eq. (2.77) must vanish as a consequence of Newton’s

second law, which requires that every action has an equal and opposite reac-

tion, that is, each pair Fij 1 Fji is zero. The second summation is simply the

total external force (Fe), consequently:

Fe 5
X
i

mi €ri ð2:78Þ

2.4.2 Motion of constrained particles

2.4.2.1 Holonomic and nonholonomic constraints

The above treatment assumed that the particles are unconstrained in their move-

ment. However, in most realistic systems, constraints are typically in operation.

For example, gas atoms enclosed in a container are constrained by the walls of

the container to move only inside it. A rigid body, defined as a system of parti-

cles in which the interparticle distances are fixed and cannot vary with time, is

another example of a constrained system. Formally, we can distinguish between

holonomic and nonholonomic constraints (Goldstein et al., 2002). Holonomic

systems have constraints that can be expressed as equations connecting the coor-

dinates of the particles of the type:

f ðr1; r2; r3. . .. . .:tÞ5 0 ð2:79Þ
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The constraints of a rigid body are holonomic because they can be formu-

lated as:

ðri2rjÞ2 2 c2ij 5 0 ð2:80Þ
For example, the implication of Eq. (2.80) for a diatomic molecule is that

there is no breakage of the bond between the two atoms.

Other constrains such as the wall of a container, which cannot be

expressed in terms of Eq. (2.79), are referred to as nonholonomic constraints.

Strictly speaking, nonholonomic constraints can only be treated on a case-

by-case basis. Fortunately, nonholonomic constraints often only apply on a

macroscopic level, whereas molecular simulation is primarily concerned with

the atomic or molecular scale. The wall of a container that imposes a nonho-

lonomic constraint on a macroscopic level can be treated as a holonomic

constraint at the atomic or molecular level. In reality, the container wall is

composed of atoms or molecules that exert definite forces and the notion of

constraint is somewhat artificial. Consequently, if a constraint is present it is

typically assumed to be holonomic.

2.4.2.2 Consequences of constraints on particles

The presence of constraints imposes two difficulties for particle mechanics.

First, the coordinates (ri) are not all independent because they are connected

by the equations of the constraint. Therefore the equations of motion are not

all independent. Second, the forces of the constraint, for example, the effect

of the wall on the gas particles, are not known beforehand. Instead, they are

one of the unknowns of the problem being investigated.

For holonomic constraints, the first difficulty is solved by using gener-

alized coordinates. In the absence of constraints, a system of N particles

has 3N independent coordinates or degrees of freedom. If there are k con-

straints expressed in terms of Eq. (2.79), the number of independent coor-

dinates or degrees of freedom is reduced to 3N�k. Consequently, a total

of 3N�k independent variables (q1.. . .. q3N�k) in terms of the old coordi-

nates (r1.. . .. . . rN) are introduced and expressed by equations of the form

(Goldstein et al., 2002):

r1 5 r1ðq1; q2:. . .q3N2k; tÞ
:
:

rN 5 rNðq1; q2:. . .q3N2k; tÞ

9>>>=>>>; ð2:81Þ

To overcome the difficulty that the forces of constraint are unknown

beforehand, we can re-formulate the mechanics in such a way that the forces

of the constraint disappear. The resulting equations are the Lagrange and/or

Hamilton equations of motion.
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2.4.2.3 Lagrange equations of motion

It is useful to introduce the concept of a virtual displacement (Goldstein et al.,

2002). A virtual displacement is an infinitesimal change in coordinates (δr),
which is consistent with the forces and constraints imposed on the system at the

time. Unlike an actual displacement, there is no possibility of any change in the

force of constraint. When the system is at equilibrium, Fi5 0 and the virtual

work (FiUδri) resulting in the virtual displacement also vanishes. Similarly, the

sum of the virtual work over all particles is also zero.X
i

FiUδri 5 0 ð2:82Þ

The force (Fi) has contributions from both the applied force (Fi
a) and the

force of constraint (fi).

Fi 5Fa
i 1 f i ð2:83Þ

Substituting Eq. (2.83) into Eq. (2.82), we obtain:X
i

Fa
i Uδri 1

X
i

f iUδri 5 0 ð2:84Þ

For many systems the virtual work of the forces of constraint is zero. In

these cases, the condition for equilibrium involves only the applied forces.X
i

Fa
i Uδri 5 0 ð2:85Þ

Eq. (2.85) is the principle of virtual work (Goldstein et al., 2002). In

general, Fa
i 6¼ 0 because δri is not completely independent but is connected

by the constraints. Therefore a transformation is required such that the coef-

ficients of δr are zero. Newton’s equations of motion (Eq. (2.75)) for each

particle can be rewritten as

Fi 2 _pi 5 0; ð2:86Þ
where pi 5mi _ri. Consequently, we can formulate the following alternative to

Eq. (2.82) for the equilibrium condition.X
i

ðFi 2 _piÞUδri 5 0 ð2:87Þ

By decomposing force into applied and constraint components, we obtain:X
i

ðFa
i 2 _piÞUδri 1

X
i

f iUδri 5 0 ð2:88Þ

If there is no virtual work from the forces of constraint, then:X
i

ðFa
i 2 _piÞUδri 5 0 ð2:89Þ
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Eq. (2.89) is known as D’Alembert’s principle (Goldstein et al., 2002).

The forces of constraint do not appear in Eq. (2.89) and the coefficients of

δri are zero as required. To make Eq. (2.89) useful, we can transform the vir-

tual displacements to generalized coordinates that are independent of each

other. Using the relationship,

ri 5 riðq1; q2. . .. . .:qn; tÞ ð2:90Þ
and assuming n independent coordinates, it can be shown (Goldstein et al.,

2002; Mach, 1960) that Eq. (2.89) can be transformed to,X
j

d

dt

@K

@ _qj

 !
2

@K

@qj


 �( )
2Qj

" #
δqj 5 0; ð2:91Þ

where Qj are the components of the generalized force defined by,

Qj 5
X
i

FiU
@ri
@qj

; ð2:92Þ

where the superscript a has been omitted from the force term. If the con-

straints are assumed to be holonomic, the qj terms are independent of each

other. Because δqj is independent of δqk, Eq. (2.91) will only be satisfied if

the coefficients vanish, that is,

d

dt

@K

@_qj

 !
2

@K

@qj
5Qj; ð2:93Þ

where there are n such equations.

Eq. (2.93) are the Lagrange equations (Goldstein et al., 2002; Calkin, 1996)

for the general case where the forces are not derivable from a potential.

However, the forces are commonly derivable from a potential function V:

Fi 52riV ð2:94Þ
Consequently, the generalized forces can be obtained from,

Qj 52
X
i

riVU
@ri
@qj

ð2:95Þ

which is identical to the partial derivative of a function �V(r1.. . .. rN) with
respect to qj.

Qj 52
@V

@qj
ð2:96Þ

Substituting Eq. (2.96) into Eq. (2.93), we obtain:

d

dt

@K

@ _qj

 !
2

@ðK2VÞ
@qj

5 0 ð2:97Þ
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V is completely independent of the generalized velocity because it is a

function only of position. Therefore it can be included in the partial deriva-

tive with respect to _q.

d

dt

@ðK2VÞ
@ _qj

 !
2

@ðK2VÞ
@qj

5 0 ð2:98Þ

If we define a new function, the Lagrangian L as,

L5K2V ð2:99Þ
Eq. (2.98) becomes:

d

dt

@L

@ _qj

 !
2

@L

@qj
5 0 ð2:100Þ

Eq. (2.100) is the familiar form of the Lagrange equations (Goldstein et al.,

2002; Calkin, 1996).

The advantage of the Lagrange function is that the need to use vector

forces in Newton’s equations of motion is replaced by the scalar functions of

K and V. Any problem of mechanics can be transferred to the Lagrangian

coordinates by writing K and V in generalized coordinates, hence obtain L

and substitute it into Eq. (2.100). For example, for the motion of a particle in

Cartesian coordinates x, y, and z, we obtain L5mð _x2 1 _y2 1 _z2Þ=22V .

Substituting this into Eq. (2.100), we find that,

Fx 5
@V

@x
5m €x

Fy 5
@V

@y
5m €y

Fz 5
@V

@z
5m€z

9>>>>>>>>>=>>>>>>>>>;
ð2:101Þ

which are Newton’s equations of motion.

2.4.2.4 Hamilton equations of motion

The Lagrangian formulation is a description of mechanics in terms of gener-

alized coordinates and velocity, with time as a parameter. In contrast, the

Hamilton equations of motion use generalized coordinates and generalized

momenta as the independent variables. The generalized momentum (pi) is

defined as (Goldstein et al., 2002; Calkin, 1996):

pi 5
@Lðqj; _qi; tÞ

@ _qi
ð2:102Þ
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The change in independent variables can be achieved by using a Legendre

transformation, which results in the definition of the Hamiltonian (H) function.

Hðp; q; tÞ5
X
i

_qipi 2 Lðq; _qi; tÞ ð2:103Þ

The differential of H as a function of only p, q, and t is:

dH5
X
i

@H

@qi
dqi 1

X
i

@H

@pi
dpi 1

@H

@t
dt ð2:104Þ

In addition, from Eq. (2.100) we can also obtain:

dH5
X
i

_qidpi 1
X
i

pid _qi 2
X
i

@L

@ qi:
d _qi 2

X
i

@L

@ qi
dqi 2

@L

@t
dt ð2:105Þ

The terms in Eq. (2.105) involving d _qi cancel because of the following

definition of generalized momentum,X
i

pid _qi 2
X
i

@L

@ _qi
d _qi 5 0 ð2:106Þ

and from the Lagrange equations we have:

@L

@qi
5 _pi ð2:107Þ

Consequently, Eq. (2.105) becomes:

dH5
X
i

_qidpi 2
X
i

_pidqi 2
@L

@t
dt ð2:108Þ

Comparing Eq. (2.108) with Eq. (2.104) we obtain the following 2n 1 1

relationships (Goldstein et al., 2002):

_qi 5
@H

@pi
ð2:109Þ

_pi 52
@H

@qi
ð2:110Þ

@L

@t
52

@H

@t
ð2:111Þ

Eqs. (2.109)�(2.111) are referred to as Hamilton’s canonical equations of

motion (Goldstein et al., 2002). In general, problems in mechanics can be

solved by determining the Lagrangian using Eq. (2.102) to determine the

momenta and hence formulate the Hamiltonian from Eq. (2.103).

Substituting the Hamiltonian obtained from this procedure into

Eqs. (2.109)�(2.111) yields first-order equations of motion.
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If the Hamiltonian is not explicitly a function of time, it can be shown that the

Hamiltonian is constant with respect to motion. Furthermore, if the potential is

independent of velocity and the equations that define the generalized coordinates

(Eq. (2.77)) are not explicitly time-dependent, the Hamiltonian is the total energy.

H5K1V ð2:112Þ
For the cases when Eq. (2.112) is valid, the equations of motion can be

obtained directly by substituting the right-hand side of Eq. (2.112) into

Eqs. (2.109)�(2.111).

2.4.2.5 Gauss’s principle of least constraint

In 1829, Gauss (Mach, 1960) formulated an alternative to Newtonian dynam-

ics by applying a least squares technique to mechanical properties. He postu-

lated that any mechanical constraint on a system should be satisfied by using

the smallest constraint force. If we have the following constrained equation

of motion:

m€r5F1Fc ð2:113Þ
Gauss’s principle of least constraint states that the constrained forces Fc

should be as small as possible, that is, the following summation should have

a minimum value. X
i

F2
c;i

2mi

ð2:114Þ

Evans et al. (1983) “re-discovered” Gauss’s principle showing how it could

be made useful for numerical calculations. For either holonomic constraints (g

(r,t)5 0) or nonholonomic constraints (g(r,_r,t)5 0), the acceleration is confined

to lie on a constant-g hypersurface by the restriction of the form:

nðr; _r; tÞU€r1wðr; €r; tÞ5 0 ð2:115Þ
In the absence of any constraints, the unconstrained motion of the system

calculated from,

m€ru 5F ð2:116Þ
could leave the constraint hypersurface. This is prevented in Gauss’s formu-

lation by the addition of an acceleration normal to the surface, that is,

€rc 5 €ru 2λ
nðr; _r; tÞ

m
ð2:117Þ

with the Lagrange multiplier, λ, satisfying the restriction given by Eq. (2.118).

λ5
nU€ru 1w

nUðn=mÞ ð2:118Þ
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The added acceleration can also be expressed in terms a constrained

force (Fc).

€rc 5
F1Fc

m
5

F

m
2λ

n

m
ð2:119Þ

2.4.3 The Liouville equation

From the perspective of molecular simulation or statistical mechanics the N

particles form a single mechanical system and the concept of phase space is

used routinely to visualize the changing state of the system. Phase space can

be defined as the Cartesian space of 6N dimensions. The 6N dimensions of

phase space are composed of the 3N generalized configurational coordinates

(qi) and the 3N momenta (pi). A point in phase space describes completely

the dynamical state of the system. The change with time of any point of the

system traces out the trajectory of the system as governed by Hamilton’s

canonical equations.

The change in a property of the system F5F(qi, pi, t), which depends

both on the dynamical state of the system and explicitly on time can be

obtained from (Hirschfelder et al., 1954):
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Eq. (2.122) introduces the use of the Poisson bracket. Any constant of

motion (α) such as the total energy or total linear momentum has the prop-

erty that:

α;H½ �5 0 ð2:123Þ
The state of the entire collection of systems, which do not interact and

differ from each other only in their initial conditions, can be represented by

a set of points. The set of representative points is obtained from a continuous

distribution function (ρ(qi, pi, t)), which is referred to as the density in phase

space. The distribution function must satisfy the following relationship

(Hirschfelder et al., 1954) because there are neither sources nor sinks for

phase points:
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46 Molecular Simulation of Fluids



From Eq. (2.124), using Hamilton’s canonical equations and the definition of

the Poisson bracket, we obtain the Liouville equation (Hirschfelder et al., 1954):

Dρ
Dt

5
@ρ
@t

1 ρ;H½ �5 0 ð2:125Þ

Eq. (2.125) is important for the development of statistical mechanics, in

particular, the definition of statistical ensembles (Section 2.1.1).

2.4.4 The virial theorem

An interesting consequence of the equations of motion is that they can be used

to derive the virial theorem (Hirschfelder et al., 1954). The equations of motion

for a system of particles with position vectors (ri) and applied forces (Fi) are:

_pi 5Fi ð2:126Þ
We also define a quantity:

G5
X
i

piUri ð2:127Þ

The total time derivative of G is:

dG

dt
5
X
i

_riUpi 1
X
i

_piUri ð2:128Þ

The first term of the right-hand side of Eq. (2.128) is simply twice the kinetic

energy (2K), and from Eq. (2.126) the second summation can be evaluated as:X
i

_piUri 5
X
i

_FiUri ð2:129Þ

Consequently, Eq. (2.128) becomes:

d

dt

X
i

_piUri 5 2K1
X
i

_FiUri ð2:130Þ

The time average of Eq. (2.130) over a time interval (τ) is obtained by

integrating both sides with respect to t from 0 to τ, and dividing by τ:

2K 1
X
i

FiUri 5
1

τ
GðτÞ2Gð0Þ½ � ð2:131Þ

As τ-N we obtain (Hirschfelder et al., 1954):

K 52
1

2

X
i

FiUri ð2:132Þ

Eq. (2.132) is the virial theorem, which is used frequently in statistical

mechanics and applications of molecular simulation.
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2.5 Summary

The statistical mechanics definition of the ensemble determines the overall

nature of either a MC or MD simulation. It also determines the strategy required

to determine thermodynamic averages of various properties. Traditionally, ther-

modynamic properties have been evaluated via ensemble fluctuations, requiring

post simulation analysis. However, alternative methods are available that can be

used during the course of the simulation itself. Knowledge of particle dynamics

is used to determine the equations of motion required for MD simulations in

various ensembles. The influence of the choice of ensemble on MC and MD

simulations is examined in Chapter 9.
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Chapter 3

Intermolecular pair potentials
and force fields

It is apparent from Chapter 2 that the calculation of any thermodynamic aver-

age requires us to determine the kinetic and potential energies of the system.

In either a Monte Carlo (MC) or molecular dynamics (MD) simulation, the

potential energy of the system or the force acting between molecules is calcu-

lated commonly from a pairwise additive intermolecular potential. The devel-

opment of intermolecular potentials has a long history (Reed and Gubbins,

1973; Maitland et al., 1981; Stone, 2013; Rowlinson, 2002), which predates

the advent of molecular simulation methods. However, except for the simplest

cases, the accuracy of intermolecular potentials for the prediction of thermo-

physical properties can only be evaluated rigorously by molecular simulation.

The terms “intermolecular potential” and “potential model” are often used

interchangeably in the literature. However, strictly speaking the latter should

be reserved for situations that involve modeling assumptions regarding the

nature of interactions describing a particular system. For example, to determine

the properties of a molecule requires an overall model to describe such contri-

butions as bond angles and geometries. The term “force field” is often used to

describe the collection of contributions used to evaluate the terms required by

the model. It is apparent that the different potential models or force fields can

utilize either the same or different intermolecular potentials. If the contribu-

tions of the intermolecular potentials are the same then different outcomes

reflect the different assumptions of the overall model. The simplest potentials

involve interactions between atoms and are correctly described as interatomic

potentials, although distinction between interatomic and intermolecular poten-

tial is not always made with the latter also applied to the former case.

Most intermolecular potentials are exclusively pairwise additive, whereas

many-body effects are important in many cases. The terms pairwise and two-

body potentials are often used interchangeably in the literature. However,

although both involve only the evaluation of pairs of interactions, a pairwise

potential often implicitly includes multi-body effects, whereas two-body poten-

tials do not. For example, the development of the Lennard-Jones (LJ) potential

was not confined exclusively to two-body interactions and as such it is an

effective multi-body pairwise potential but not a two-body potential. The focus
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of this chapter is on effective pair potentials and special consideration of two-

and other multi-body potentials given in Chapter 4. The historical development

of some empirical intermolecular potentials has been discussed by Fischer and

Wendland (2023).

Relatively few of the large number of available intermolecular pair poten-

tials have been comprehensively evaluated by molecular simulation.

Nonetheless, the use of molecular simulation for increasingly more compli-

cated molecular systems will inevitably require models that are not currently

in widespread use. Therefore, knowledge of possible alternatives is certainly

worthwhile. A nascent possibility is the use of machine learning (Jung, 2022)

to determine intermolecular potentials (Gao et al., 2019; Mueller et al., 2020;

Pant et al., 2020; Moradzadeh and Aluru, 2021; Perepu et al., 2023)

Water is an example of an important molecular system whose properties

are significantly affected by the overall model framework and the contribution

from component intermolecular potential. An overview is provided for the

potential models for water. It provides a convenient case study of the applica-

tion of both modeling principles and the use of intermolecular potentials.

3.1 Calculation of the potential energy

The calculation of the potential energy (or force) arising from intermolecular

interaction is the most time consuming and crucial step in any molecular

simulation. In general, the potential energy (U) of N interacting particles can

be evaluated as,

U5
X
i

u1 rið Þ1
X
i

X
j. i

u2 ri; rj
� �

1
X
i

X
j. i

X
k. j. i

u3 ri; rj; rk
� �

1??

ð3:1Þ
where the first term represents the effect of an external field and the remain-

ing terms represent particle interactions, that is, u2 is the potential between

pairs of particles and u3 is the potential between particle triplets etc. Two-

body interactions undoubtedly make the most significant contribution to par-

ticle interactions, and Eq. (3.1) is typically truncated after the second term.

This approximation means that the simulation algorithm is of order Nm,

where m $ 2 denotes the number of interactions. However, except for prop-

erties involving dilute gases, the properties of real fluids involve the contri-

bution of other multi-body interactions. It is relatively rare that accurate

prediction can be accomplished by accounting only for two-body interac-

tions. In particular, it is well-established that three-body interactions are very

important in many cases (Bobetic and Barker, 1970; Klein and Venables,

1976; Monson et al., 1983; Rittger, 1990a,b,c). The dilemma is that, although

three- or more-body interactions are important for accurate predictions, they

impose a very large increase in computing time compared with two-body
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calculations. Despite the considerable advances in computer hardware,

involving systems of thousands of central and graphics processing units

(Chapter 12), calculations beyond two-body interactions remain, in most cir-

cumstances, both computationally prohibitive and impractical.

The solution to this computational dilemma is to use an effective pairwise

intermolecular potential (ueff), that while involving only the evaluation of

pairs of interactions, incorporates the effect of three- or more-body interac-

tions. This means, that in the absence of an external field, Eq. (3.1) is simply

approximated as:

U �
X
i

X
j. i

ueff ri; rj
� � ð3:2Þ

As explained below, Eq. (3.2) has most commonly been applied uninten-

tionally because the true nature of the pair potential has not been fully recog-

nized. Therefore, the apparent success of effective potentials in predicting

the properties of fluids via molecular simulation has often been a fortuitous

outcome rather than the result of a deliberately implemented strategy.

The development of intermolecular potentials greatly predates the advent

of molecular simulation, typically involving the combination of various con-

tributions to intermolecular interactions (Mie, 1903; Jones, 1924) and making

a comparison with experimental data. Most commonly, the empirical poten-

tials were compared with data for the second virial coefficient, which is a

genuine two-body property. This route for evaluating early pair potentials

has led to the term “pair/pairwise” being incorrectly used as a synonym for

two-body (Rowlinson, 2002). However, it has been known since the 1960s

and confirmed by many subsequent state-of-the-art accurate ab initio calcula-

tions (Chapter 4) that genuine two-body potentials for the noble gases are

much more complicated and do not accurately correspond to the simple

empirical potentials. Typically, the depths of the potential minimum of the

empirical pair potentials are considerably smaller than those obtained from

genuine two-body potentials. Arguably, the formulas used for many of the

empirical pairwise potentials have unintentionally at least partially incorpo-

rated some of the effects of multi-body interactions. Therefore, such poten-

tials are more accurately described as effective pairwise potentials. This

historical accident is quite fortuitous because it means that Eq. (3.2) is often

a good approximation for the properties of real fluids.

The distinction between the terms “pair” and “two-body” might appear

somewhat pedantic but it is an important distinction when molecular simula-

tion results are used to precisely investigate the influence of underlying inter-

actions on the macroscopic properties of fluids. No pair potential can be

fully equivalent to a multi-body potential. One danger in not observing this

distinction is unwittingly (Sadus and Prausnitz, 1996) double counting the

same intermolecular contributions. To avoid any confusion, we will usually

denote pairwise potentials that are not explicitly confined to only two-body
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interactions simply as ueff and the u2 and u3 nomenclature will be reserved

for genuine two- and three-body potentials, respectively.

Although using Eq. (3.2) is the most common approach in molecular simula-

tion, there is a growing literature involving two-body plus three-body interactions.

As discussed in Chapter 4, this has been facilitated by ways of accurately approxi-

mating the contribution of three-body interactions in a computationally efficient

fashion. It would be desirable to have one two-body potential that was valid for

all atoms. However, the evidence from accurate ab initio calculations indicates

that the intermolecular potential must be tailored to each atom. For example, dif-

ferent potentials are required to accurately evaluate the properties of the different

noble gases (Deiters and Sadus, 2019a,b, 2020, 2021). In contrast, a common

interatomic potential (Seng et al, 2020) for the noble gases is inaccurate for many

of their thermodynamic properties (Deiters and Sadus, 2023).

3.1.1 Use of notation

In discussing and comparing the various intermolecular potentials in this

chapter, an effort has been made to standardize the notation for various com-

mon parameters. This inevitably means that the notation will sometimes dif-

fer from that given in the original articles. Symbols are defined when they

first occur and the definition is not necessarily repeated for subsequent

potentials involving the same quantity. For example, irrespective of the

potential, the symbol ε always denotes the depth of the potential well.

3.2 Intermolecular forces

In principle, the development of intermolecular potentials should be informed by

the nature of intermolecular forces. However, in practice the role of theory often

takes second place to empirical considerations. A brief background of the nature

of intermolecular forces is given here, which is discussed in much greater detail

elsewhere (Maitland et al., 1981; Gray and Gubbins, 1984; Stone, 2013).

3.2.1 Types of intermolecular forces

Calculation of the potential energy inevitably involves assumptions concern-

ing the nature of attraction and repulsion between molecules. Intermolecular

interaction is the result of both short- and long-range (LR) effects.

Electrostatic, induction, and dispersion effects are examples of LR interac-

tions. In these cases, the energy of interaction is proportional to some inverse

power of intermolecular separation. Electrostatic interactions result from the static

charge distribution between molecules. The effect can be either attractive or

repulsive, and it is exclusively pairwise additive. Induction effects are always

attractive, resulting from the distortions caused by the molecular fields of neigh-

boring molecules. However, the most important contribution is the attractive
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influence of dispersion arising from instantaneous electric field caused by elec-

tron movement. Neither induction nor dispersion is pairwise additive.

Short-range (SR) interactions are characterized by an exponential decay

in the interaction energy with respect to intermolecular separation. At small

intermolecular separations, there is a significant overlap of the molecular

wave functions causing either intermolecular exchange or repulsion. These

interactions are not pairwise additive (Stone, 2013).

It is possible to calculate the intermolecular interactions from first principles.

However, in practice the first principles or ab initio approach is confined to rela-

tively simple systems. More commonly, the influence of intermolecular interac-

tion is expressed by some type of intermolecular potential. The justification for

the intermolecular potential is often entirely empirical, although, as will be dis-

cussed in Chapter 4, it is possible to determine an ab initio potential during the

course of a simulation (Car and Parrinello, 1985).

3.2.2 Quantum theory of intermolecular potentials

The theoretical background for the development of intermolecular potentials

is discussed in detail elsewhere (Maitland et al., 1981; Gray and Gubbins,

1984; Stone, 2013) and our discussion will be limited only to the most

salient features. There are two distinct methods for developing an intermo-

lecular potential (Pople, 1982). In the spirit of the LJ potential, the total

interaction can be partitioned into LR and SR contributions. The LR part is

typically proportional to inverse powers of the intermolecular distance,

whereas the SR repulsive part is associated with exchange or overlap of the

electronic distributions. The two contributions can be evaluated separately,

and the total potential is obtained by combining the two parts.

ΔUab 5ΔULR
ab 1ΔUSR

ab ð3:3Þ
The alternative approach is to treat the interacting a . . . b complex as a

single large molecule or “supermolecule.” The interaction potential is

obtained by calculating the energy of ab and subtracting the energies of the

separated a and b molecules.

ΔUab 5Uab 2Ua 2Ub ð3:4Þ
Both of the above methods can be considered in terms of the principle of

quantum mechanics. Molecules a and b are associated with the unperturbed

wave functions ψa and ψb, respectively. The interaction Hamiltonian Vab

resulting from Coulombic interaction between the electrons and nuclei of a

and the electrons and nuclei of b can be introduced as a perturbation. If the

wave functions do not overlap, the interaction energy resulting from a first-

order perturbation (Pople, 1982; Stone, 2013) is:

Δ1U
LR
ab 5 ΨaΨb Vabj jΨaΨbh i ð3:5Þ
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Eq. (3.5) is the rigid electronic interaction potential resulting from the

Coulombic interaction of unperturbed electronic distributions of the isolated

a and b molecules. This first-order treatment fails to describe the LR interac-

tion between spherical systems. To account for dispersion interaction, it is

necessary to introduce the interaction potential Vab to second order. In terms

of the Rayleigh�Schrödinger perturbation theory (Pople, 1982; Stone, 2013),

the second-order contribution to the LR potential is,

Δ2U
LR
ab 52

X
i 6¼0

X
j 6¼0

ΨaΨb Vabj jΨi
aΨ

j
b

� � 2
Ui

a 2Ua 1U
j
b 2Ub

; ð3:6Þ

where the superscripts represent the ith excited state. From Eq. (3.6) it can

be shown (Pople, 1982; Stone, 2013) that the dispersion potential for spheri-

cal atoms is,

ΔU
disp
ab 5

C6

r6
1

C8

r8
1??; ð3:7Þ

where C6, C8 . . . are coefficients that depend on relative orientations. These

contributions appear explicitly in many intermolecular potentials.

A third-order perturbation treatment is required to determine the contribu-

tion of three-body interactions. Axilrod and Teller (1943) and Mutō (1943)

formulated an explicit expression for triple-dipole interactions. Third-order

perturbation theory can also be used to obtain the higher multipole moments

that contribute to three-body interactions (Bell and Zucker, 1976). This topic

is discussed in greater detail in Chapter 4.

In the supermolecule method, the interaction between molecules a and b

is not treated as a perturbation. Instead, the wave function ψab for the com-

pound a . . .. b system is calculated for every required relative intermolecular

configuration.

ΔUab 5 Ψab Habj jΨabh i2 Ψa Haj jΨah i2 Ψb Hbj jΨbh i ð3:8Þ
Eq. (3.8) has the advantage that it takes account of repulsive interactions at

short intermolecular separation. The disadvantages of the supermolecule approach

center on the limitations of the wave functions that are used. Most supermolecule

calculations use the Hartree�Fock procedure, which fails to account for disper-

sion interactions. The usefulness of supermolecule Hartree�Fock calculations is

confined to polar systems dominated by electrostatic interactions. To be generally

useful, the supermolecule approach must be used with a post-Hartree�Fock tech-

nique (Chapter 4).

3.3 Potentials with a hard sphere contribution

Potentials with a hard sphere(s) (HS) term have a special place (Mulero,

2008) in the application of molecular simulation because they represent the
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simplest possible potential that nonetheless can at least approximately repre-

sent some of the properties of real fluids. The scope of such potentials can

be systematically expanded via the addition of attractive contributions,

resulting in “hard sphere1 attractive term” (HSA) potentials. A comparison

of some repulsive potentials is given in Fig. 3.1.

3.3.1 The HS potential

The simplest approximation is to treat atoms as impenetrable HS, that is,

uHSðrÞ5 N r#σ
0 r.σ

�
ð3:9Þ

where σ is the HS diameter (Fig. 3.1). In a molecular simulation, special proce-

dures are required (Allen and Tildesley, 2017; Wu and Sadus, 2005) to evaluate

the effect of the HS potential. The properties of Eq. (3.9) are exclusively evalu-

ated via pair interactions and there are no meaningful contributions of multi-

body interactions. Accurate values of the compressibility factors for the HS sys-

tem have been obtained up to very high densities (Wu and Sadus, 2005), and

its thermal conductivity has been investigated (Pieprzyk et al., 2020).

The HS potential remains of considerably utility as the theoretical basis

for the development of HS equations of state (Sadus, 1992). The properties

of the HS potential have been investigated extensively by molecular simula-

tion (Boublı́k and Nezbeda, 1986; Mulero, 2008). Alder and Wainwright

(1957) reported the first MD simulation for HS. Their data were found to be

FIGURE 3.1 Comparison of some repulsive potentials, representing HS (Eq. (3.9)), WCA

(Eq. (3.10)), and GCM (Eq. (3.19)) interactions.
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in good agreement with MC results (Wood and Jacobson, 1957), thereby

demonstrating the equivalence of the two molecular simulation methods. The

transport coefficients of HS fluids (Alder et al., 1970) have been investigated

and molecular simulation studies of mixtures of HS have been reported

(Boublı́k and Nezbeda, 1986). The conventionally accepted view is that the

HS fluid is only capable of a single solid-fluid transition, although there are

some simulation data that suggest the possibility of an additional transition

(Wu and Sadus, 2004). However, the absence of attractive interactions means

that it cannot even predict qualitatively the properties of real fluids.

3.3.2 Non-HS repulsive potentials

The HS potential is a purely repulsive potential. However, the extent of its

repulsion is unrealistically steep compared with the behavior of real fluids

and its reliance on determining particle overlap makes it awkward to imple-

ment in MD compared with continuous potentials.

3.3.2.1 Weeks�Chandler�Anderson potential

The Weeks�Chandler�Anderson (WCA) potential (Weeks et al., 1971) pro-

vides a widely used non-HS alternative for purely repulsive interactions

(Fig. 3.1). The WCA potential modifies the LJ potential (see Section 3.6.1):

uWCA 5
4ε
�


σ
r

�12

2



σ
r

�6	
1 ε; r# 21=6σ

0; r. 21=6σ

8><>: ð3:10Þ

In Eq. (3.10), the LJ potential is made repulsive by simply adding the value

of ε at all separations below the minimum of the potential, which always yields

a finite positive value. Eq. (3.10) provides a more realistic description of repul-

sive interactions that is easier to implement the infinitely steep HS term. It has

been incorporated to study the behavior of molecular fluids such as polymers

(Kröger, 2005) and dendrimers (Bosko et al., 2004, 2006), and it forms part of

many theories (Chandler et al., 1983) of the liquid state. Eq. (3.10) has been

useful for the simulation of chains composed of hard tangent spheres (Gao and

Weiner, 1989). It yields properties that are broadly similar to the HS potential,

for example, only solid�liquid equilibria (SLE) are possible (Ahmed and Sadus,

2009a; Dyre and Pedersen, 2023). It has been observed that SLE behavior do

not necessarily scale inversely with the number of particles (N) and N $ 4000

is recommended (Ahmed and Sadus, 2009a).

Although the WCA potential has been overwhelmingly tied to the 12�6 LJ

potential, it could easily be re-formulated with many other suitable potentials.

Indeed, it is generally accepted that 12-power exponent used in the 12�6 LJ

version of the WCA potential, while a better alternative to the HS potential, is

itself too steep to accurately represent repulsion in real fluids.
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3.3.3 HSA potentials

It is well-known that properties of most real fluids require interactions from

both intermolecular repulsion and attraction. In particular, vapor�liquid

equilibria (VLE) invariably require the cohesion generated by intermolecular

attraction. Comparisons of some HSA potentials are given in Fig. 3.2.

3.3.3.1 The Square well potential

The square well (SW) potential is the simplest HSA intermolecular potential

that is capable of representing the properties of liquids,

uHSAðrÞ5
N r#σ
2 ε σ, r#λσ
0 r.λσ

;

8<: ð3:11Þ

where λ is some multiple of the HS diameter. The SW potential represents a

mathematically idealized model of molecular interactions. The properties of the

SW fluid have been investigated widely (Haile, 1992), and it remains a useful

starting point for the development of fluid state theories (Yuste and Santos, 1994).

By varying λ, Eq. (3.11) can be used as an approximation for continuous poten-

tials, which is useful in some theoretical evaluations (Paricaud, 2006). For exam-

ple λ5 1.5 (Elliott and Hu, 1999) is sometimes used as an approximation of the

LJ potential (Fig. 3.2). The overall size of both the VLE phase envelope and the

critical point are noticeably affected by the choice of λ (Vega et al., 1992a;

Orkoulas and Panagiotopoulos, 1999; Gloor et al., 2004; Patel et al., 2005).

FIGURE 3.2 Comparison of repulsion 1 attraction represented by the DGCM (ε25 0.02ε2,
ζ5 3σ1, the small attractive minimum is at 3.017σ1), Yukawa (z5 1.8), IP (n5 6), SW (λ5 1.5),

and LJ (dashed line) potentials.
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3.3.3.2 Penetrable SW potential

A modification of the SW potential is to allow a small degree of particle

penetration. The penetrable sphere attractive (PSA) potential (Santos et al.,

2008) is

uHSAðrÞ5
εrep r# σ
2 ε σ, r#λσ
0 r.λσ

;

8<: ð3:12Þ

where the infinite repulsion is replaced by a finite value (εrep) and the εrep/ε
ratio can be considered as a measure of penetrability. Simulations of the

phase behavior of the PSA potential have been compared (Fantoni et al.,

2011) with the SW potential. Values of λ5 1.5 and εrep/ε5 1.8 approxi-

mately coincide with the SW potential, whereas there are significant devia-

tions from SW behavior for other choices of parameters.

3.3.3.3 Triangular well potential

There are various possible variations on the HSA concept. For example, it is

possible to envisage a triangular potential (Feinberg and de Rocco, 1964;

Fowler et al., 1965) of the following form:

uHSAðrÞ5
N r#σ
ε

λ2 1
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It has been used to investigate the VLE of both two- (Reyes et al., 2016)

and three-dimensional (Bárcenas et al., 2014) fluids, indicating broadly simi-

lar λ-dependent behavior to that observed for the SW fluid.

3.3.3.4 Yukawa potential

Considerable interest has been demonstrated in simulating the properties of

atoms interacting via the HS Yukawa potential (Rudisill and Cummings,

1989; Smit and Frenkel, 1991; Rosenfeld, 1993, 1996; Kalyuzhnyi and

Cummings, 1996). The Yukawa potential can be written as

uHSAðrÞ5
N r#σ

2
εσ
r
exp

�
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σ
2 1

�	
r.σ ;

8<: ð3:14Þ

where z is an adjustable parameter. Part of the appeal of this potential is that

its behavior approximately reflects (Rudisill and Cummings, 1989) other

more complicated potentials. The inverse power dependence of this potential

means that it can be applied to ionic systems (Rowlinson, 1989). When
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z5 1.8 the results obtained (Duh and Mier-Y-Terán, 1997) are similar to the

LJ (12�6) potential. The phase diagram resulting from the Yukawa potential

has been reported (Rudisill and Cummings, 1989; Smit and Frenkel, 1991;

Galicia-Pimental et al., 2008). Kalyuzhnyi and Cummings (1996) have calcu-

lated the phase diagram for a LJ fluid modeled by the Yukawa potential. In

common with the SW potential, the VLE diagram of the Yukawa potential is

very sensitive to the choice of z (Lomba and Almarza, 1994; Shukla, 2000;

Spear, 2000). Its VLE properties in the vicinity of the sticky sphere limit

have been studied (Schöll-Paschinger et al., 2013). The Yukawa potential

has been used (de Carvalho and Evans, 1997) in conjunction with the

restricted primitive (see subsequent discussion) model to calculate the prop-

erties of a charged HS binary fluid. It has also been coupled (Máte et al.,

2011) with dipolar interactions for the heat capacities. The potential has also

proved useful for studying colloids and proteins (Valdez-Pérez et al., 2012).

3.3.3.5 Inverse power potential

A more realistic HSA potential can be obtained by using the attractive term

from an inverse power (IP) law, that is,

uHSAðrÞ5 N r#σ
2Cnr

2n r.σ ;

�
ð3:15Þ

where n and Cn are constants. When n5 6, Eq. (3.15) is the Sutherland

potential and C6 is the leading dispersion coefficient (Fig. 3.2). No molecular

simulations have been reported using this potential. This lack of interest can

be partially explained by the greater flexibility offered by other HSA poten-

tials via the simple expedient of varying the depth of the attractive well. It

should also be noted that values of C6 obtained by parameterization with

experimental data are unrealistically large (Sherwood and Prausnitz, 1964).

It nonetheless may have a useful future role in identifying the relative contri-

bution of different dispersion coefficients on the properties of fluids.

3.3.3.6 Sticky sphere potential

Baxter (1968) proposed a HAS potential that has become known as the

“sticky sphere” potential. It combines HS repulsion with an infinitely narrow

potential well when λ � σ is allowed to be infinitesimally small, that is,

uHSAðrÞ5

N r,σ

kT loge
12τðλ2σÞ

λ

24 35 σ, r,λ

0 r.λ

;

8>>><>>>: ð3:16Þ

where k is Boltzmann’s constant, T is temperature, and τ is a stickiness

parameter that is related to the temperature. Unlike other HSA potentials,
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Eq. (3.16) is temperature-dependent. As detailed by Stell (1991), Eq. (3.16)

has proved useful in describing mono-dispersed systems and nonionic

micelles (Rao et al., 1991).

3.3.3.7 Kihara hard core potential

The HSA approach can be generalized to any hard core (HC) plus attraction

(HCA) interactions. The Kihara potential (Kihara, 1951; Maitland et al.,

1981) is the best-known example of this approach,

uHCAðrÞ5
N r# d

4ε
�
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8><>: ð3:17Þ

where d is the diameter of an impenetrable HC at which u(r)5N, which is

used to modify the contribution of the LJ potential. The Kihara potential has

the advantage that it can be applied to nonspherical molecule by using a con-

vex core of any shape. It has been studied extensively (Sherwood and

Prausnitz, 1964; Vega et al., 1992b; Tee et al., 1966), and it generally pre-

dicts the second virial coefficient more accurately than the LJ potential. The

potential, which forms the theoretical basis of hard convex body (HCB)

equations of state (Wei and Sadus, 2000), has not been studied widely by

molecular simulation. The hardness of Eq. (3.17) can obviously be softened

by removing the requirement that u(r)5N for r # d.

3.4 Soft sphere potentials

A simple and more realistic alternative to the HS potential is the soft

sphere (SS) potential, which is not infinite at interatomic separations less

than the sphere diameter. SS potentials typically use an IP relationship,

for example,

uSSðrÞ5
C



σ
r

�n

r#σ

0 r.σ

8><>: ð3:18Þ

In Eq. (3.18), C is a constant. In common with HS potentials, the absence

of attractive interactions means that SS potentials cannot be used to model

real liquids. Neither vapor�liquid nor liquid�liquid equilibria are possible

for particles interacting via a SS potential. However, many simulation studies

have been reported using SS potentials to determine the effect of repulsion

in fluids and SLE.

MC simulations have been reported (Hoover et al., 1970, 1971) using

the inverse fourth-, sixth-, ninth-, and twelfth-power SS potential to deter-

mine the thermodynamic properties of fluids and face-centered-cubic solids.
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The fluid�solid melting line of particles interacting via various SS potentials

has been determined (Hoover et al., 1972) by MC simulation and the influ-

ence of interatomic repulsion of the structure of liquids at melting has been

investigated (Hansen and Schiff, 1973). The sixth-power potential has been

used (Laird and Haymet, 1989) to study the crystal�liquid interface of a

body-centered-cubic solid. Substances interacting via a sixth-power potential

undergo a transition between body-centered-cubic and face-centered-cubic

orientations at temperatures slightly above the freezing point (Laird and

Haymet, 1992).

The general thermodynamic properties of such potentials have been

extensively documented (Hamad, 1995). Investigations of the n-dependence

of transport properties (Heyes and Powles, 1998) and radial distribution func-

tions (Heyes et al., 2004) are also available.

3.5 Fully interpenetrable potentials

The defining feature of the HS and HSA potentials is that the particles are

impenetrable below a separation of σ. This requirement is partially relaxed

for the SS potentials (Eq. (3.18)) but repulsion nonetheless rises very steeply

at small interparticle separations. An interesting alternative to this conven-

tional approach is to completely relax this barrier and allow the particles to

be fully interpenetrable at all interparticle separations.

3.5.1 Gaussian core model potential

The Gaussian core model (GCM) potential (Stillinger, 1976) is an example

of a fully interpenetrable potential.

uGCMðrÞ5 εexp 2
r

σ

� �2� 	
ð3:19Þ

It is apparent from Eq. (3.18) that the value of the potential increases in a

controlled fashion for r , σ, attaining a maximum value of ε (Fig. 3.1).

This means that complete interparticle penetration is possible without a very

steep increase in energy. The potential rapidly decays to 0 for r . σ. These
behaviors may appear to be physically unrealistic, but it is nonetheless useful

(Likos, 2001) for phenomena involving intra-particle penetrations, such as

networks of polymers or gels. The GCM potential also reproduces (Ahmed

et al., 2009, 2010; Mausbach and Sadus, 2011) some of the anomalies

(Shvab and Sadus, 2016) exhibited by water, which are attributed to the

extensive network formed by hydrogen bonds. In common with water, the

thermal expansion coefficient of the GCM potential is negative and the iso-

choric heat capacity has a minimum. Only SLE are observed (Prestipino

et al., 2005; Mausbach et al., 2009) for the GCM potential with the unusual

feature of a re-entrant solid phase.
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3.5.2 Double Gaussian core model potential

The GCM potential can be modified (Prestipino, et al., 2014) to include a

Gaussian shape attractive term (Fig. 3.2). The result of this modification is

the double Gaussian core model (DGCM) potential.

uDGCMðrÞ5 ε1exp 2
r

σ1


 �2
" #

2 ε2exp 2
r2ζ
σ2


 �2
" #

ð3:20Þ

The DGCM potential has both maximum (uDGCM(0)5 ε1) and minimum

(uDGCM(ζ)5 2ε2) values, when r5 0 and r5 ζ , where ζ . σ1. There are also

two characteristic distances, satisfying the condition that σ2 $ σ1. A consequence

of adding attractive interactions is the DGCM displays VLE (Speranza et al.,

2014; Losey and Sadus, 2019). Compared to the GCM potential, the DGCM

potential also exhibits more water-like anomalies in its thermodynamic properties.

3.6 Effective pairwise potentials for atoms and simple molecules

The proceeding discussion of HS, HSA, SS, GCM, and DGCM potentials

have involved largely theoretical systems, which do not attempt directly to

describe the behavior of real systems. In contrast, many effective pairwise

potentials have been specifically developed (Maitland et al., 1981; Stone,

2013) to predict the properties of either atoms or small molecules. Much of

this work has predated the advent of molecular simulation, but it is the appli-

cation of molecular simulation that is decisive in evaluating both the

strengths and weaknesses of intermolecular potentials.

Historically, an empirical approach was used with the parameters of the

potential being obtained from experimental data such as second virial coeffi-

cients, viscosities, molecular beam cross sections, and the like. Conclusions

regarding the accuracy of pair potential were made by comparing the properties

predicted by the potential with experiment. In contrast, computer simulation per-

mits the theoretically rigorous evaluation of the accuracy of intermolecular poten-

tials. However, very few potentials have been tested extensively using molecular

simulation. Notable exceptions are the HS, LJ, and exp-6 potentials.

Effective pair potentials for atoms are often incorporated into the molecular

simulation of polyatomic molecules and increasingly, macromolecules. Therefore,

the atomic pair potential is an important starting basis for predicting molecular

properties. In view of this, the evaluation of pair potentials by molecular simula-

tion is likely to be increasingly important for the prediction of molecular fluids.

3.6.1 Repulsion1 dispersion pair potentials

3.6.1.1 Generalized n�m Lennard-Jones/Mie potential

Typically, an adequate representation of the intermolecular forces between

nonpolar molecules can be obtained by combining repulsion and dispersion
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terms to generate a pair potential. Many “repulsion1 dispersion” pair poten-

tials have been developed; however, relatively few different types of poten-

tials are used routinely in molecular simulation.

In contrast to the HSA potentials, a more realistic representation of inter-

molecular interaction is given by continuous intermolecular potentials. Mie

(1903) and later Lennard-Jones (Jones, 1924) proposed empirical potentials

of the type,

ueff ðrÞ5
υ
rn

2
μ
rm

; ð3:21Þ

where ν, μ, n, and m are constants. Fowler and Guggenheim (1939) and

Mayer and Mayer (1940) observed, without any derivation, that Eq. (3.21)

could be generalized as,

ueff ðrÞ5 ε
m

n2m

� � rm

r

� �n
2

n

n2m

� � rm

r

� �mh i
; ð3:22Þ

where m . 3 and rm is the separation corresponding to the minimum energy

corresponding to ueff rð Þ52 ε. The separation (σ) when ueff rð Þ5 0, which is

the HS diameter in the HS potentials, is related to rm via:

σ5 rm
m

n

� � 1
n2m ð3:23Þ

Alternatively, making use of Eq. (3.23) to determine rm from σ trans-

forms Eq. (3.22) to,

ueff ðrÞ5 ε
n

n2m

� � n

m

� � m
n2mð Þ σ

r

� �n
2

σ
r

� �mh i
; ð3:24Þ

which has the advantage of only involving a common single pre-factor term.

This simplification is not obvious from Eq. (3.22).

In the literature, Eqs. (3.22) and (3.24) are interchangeably referred to as

either the generalized Mie (1903) or generalized LJ (Jones, 1924) potential

with the former designation being the most common. Neither Mie nor

Lennard-Jones proposed the generalization of the potentials given by either

Eq. (3.22) or Eq. (3.24) in their original publications. Possibly the earliest

contemporaneous representation of Eq. (3.22) can be found in a 1939 text-

book on statistical mechanics (Fowler and Guggenheim, 1939). Eq. (3.24)

only appears in much later textbooks (Reed and Gubbins, 1973). It appears

that the convenience of using Eq. (3.24) compared with Eq. (3.22) was not

immediately apparent. We will refer to either Eq. (3.22) or Eq. (3.24) as the

LJ/M potential to equally acknowledge both contributors in alphabetical

order.

Changing the n and m exponents significantly alters the nature of the

intermolecular potential as is illustrated in Fig. 3.3. When n5 12 and m5 6,

we obtain the most-widely used version of the LJ/M potential, which is
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simply known as the LJ potential, which is the most common form of the

LJ/M potential.

ueff ðrÞ5 4ε
σ
r

� �12
2

σ
r

� �6� 	
ð3:25Þ

The LJ potential was previously encountered in the context of the WCA

potential (Eq. (3.11)), and it is undoubtedly the most-widely used potential

for molecular simulation. Wood and Parker (1957) investigated the LJ poten-

tial by MC simulations, and the first MD simulation of a LJ fluid was

reported by Rahman (1964). It yields a reasonable overall qualitative repre-

sentation for the properties of argon, and it has been applied to many other

atoms with varying success. Its usefulness for real fluids has been discussed

elsewhere (Wang et al., 2020) and, despite its many limitations, it is likely to

remain in widespread use for the foreseeable future.

In the LJ potential, intermolecular repulsion and dispersion interactions are

represented by different IP dependencies of intermolecular separations. The r26

dependence of the attractive term is consistent with the leading term of the 1/r

expansion of dispersion energy; however, the dispersion coefficient (i.e.,

C65 4εσ6) is typically overestimated by a factor of 2 compared with experimental

values. This can be partly explained partly by the absence of r28 and r210 terms. It

should be noted that there is no theoretical justification for the r212 repulsion term.

The LJ potential is often used as part of a larger potential for molecular sys-

tems. For example, it is used frequently to calculate the interactions between

atoms that constitute a model of a many-atom molecule such as a polymer

FIGURE 3.3 Comparison of the energy curve for the (n5m1 1, m) LJ/M potentials. Results are

shown for m5 4, 5, and 10 and compared with the values obtained for the LJ potential (dashed line).
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(Escobedo and de Pablo, 1996; Johnson and Gubbins, 1992; Johnson et al.,

1994). It is also used commonly as part of a molecular mechanics potential (see

discussion below).

The appeal of the LJ potential is that it combines a realistic description of

the intermolecular interaction separation with computational simplicity. The

application of the LJ potential requires the evaluation of the intermolecular para-

meters. This is commonly done by fitting the predicted second virial coefficient

(B) of the LJ potential to experimental data for real atoms or molecules. This is

a convenient route because the LJ/M has an analytical solution for B, that as dis-

cussed elsewhere (Sadus, 2018, 2019) can be easily evaluated, that is,

B Tð Þ5 2

3
πσ3F yð Þ; ð3:26Þ

where

FðyÞ5 y3=ðn2mÞ Γ
n2 3

n
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 �
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yn 5
n

n2m

� �n n2m

m

� �m ε
kT

� �n2m

; ð3:28Þ

and Γ is the gamma function (Abramowitz and Stegun, 1972). Tables of parame-

ter values for many atoms and small atoms are available in the literature

(Hirschfelder et al., 1954; Maitland et al., 1981; Gray and Gubbins, 1984) and are

almost universally accepted and used. For example, the often-quoted values for

argon are ε/k5 119.8 K and σ5 0.3405 nm. The parameters for the LJ potential

for noble gases have been re-evaluated (Sadus, 2018), which has resulted in better

overall agreement with the experimental B data (Table 3.1). However, the

TABLE 3.1 Comparison of literature values (Maitland et al., 1981) and

re-evaluated (Sadus, 2019) LJ parameters obtained from the experimental

second coefficient data for noble gases. The agreement with experiment

for the entire temperature range is quantified using the root mean

squared deviation (RMSD).

Atom Literature Re-evaluated

T Range

(K)

ε/k
(K)

σ
(nm)

RMSD

(cm3/mol)

ε/k
(K)

σ
(nm)

RMSD

(cm3/mol)

Ne 50�870 47.0 0.272 9.81 34.91 0.278 0.40

Ar 76�1000 119.8 0.341 9.33 120.32 0.342 7.10

Kr 110�870 164.0 0.383 6.48 175.34 0.366 5.81

Xe 165�970 222.2 0.401 20.30 226.51 0.408 8.16
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agreement with experiment remains imperfect, which reflects the fact the LJ

potential is not a two-body potential. Simply inserting an effective pair potential

into the formula for a genuine two-body property such as the second virial coeffi-

cient does not transform the potential to a two-body potential. It is noteworthy

that although the LJ potential is commonly attributed in the literature are being at

least approximately suitable for argon, the deviation for experimental B values

(Table 3.1) is significant.

The LJ potential is unarguably the most popular and widely used variant of

the LJ/M potentials. However, other combinations of the n and m exponents

have been investigated via molecular simulation. In particular, the n-6 LJ/M

potentials have been the focus of several studies (Kiyohara et al., 1996;

Okumura and Yonezawa, 2000; Gordon, 2006; Ahmed and Sadus, 2009b; Orea

et al., 2008; Potoff and Bernard-Brunel, 2009). The purpose of these studies has

been to investigate the effect of varying n on thermodynamic properties. The

extent of both VLE (Kiyohara et al., 1996; Okumura and Yonezawa, 2000) and

SLE (Ahmed and Sadus, 2009b) varies systematically with n. It has been dem-

onstrated (Potoff and Bernard-Brunel, 2009; Potoff and Kamath, 2014; Mick

et al., 2015) that experimental VLE data of both the noble gases and a range of

molecules can be accurately fitted to n-6 LJ/M potentials by using n as an

adjustable parameter. For example the 14�6 and 36�6 LJ/M potentials yield

optimal agreement (Potoff and Bernard-Brunel, 2009) for the VLE properties of

methane and tetrafluoromethane, respectively.

In contrast, studies of n�m LJ/M potentials for m 6¼ 6 are much less com-

mon, which can be at least partly attributed to the fact m5 6 corresponds to

the decay of the leading term of dispersion interactions. Sadus (2018)

mapped the behavior of the second virial coefficients for many combinations

of n and m values. The n-4 LJ/M potentials (Sadus, 2020a) display a high

degree of cohesive behavior and the VLE diagrams in some cases are similar

to that observed for dipolar systems. The (m 1 1, m) LJ/M potential has

also been investigated (Sadus, 2020b) systematically resulting in a range of

m-dependent thermodynamic behavior.

It is apparent that there are many different combinations of the n and m

exponents. Therefore, it is likely that some of the different combinations

may result in potentials that are very closely related resulting in the predic-

tion of broadly similar phenomena. That is, a given combination of n and m

exponents does not necessarily yield a unique LJ/M potential. Mejı́a et al.

(2014) and Ramrattan et al. (2015) proposed that different combinations of

the n and m exponents may yield similar behavior if they share a common

value of α defined by:

α5
n

n2m

� � n

m

� � m
n2m 1

m2 3
2

1

n2 3


 �
ð3:29Þ

Values of α for various n�m potentials are compared in Fig. 3.4, which

highlights cases of constant α5 0.5 and 1.6. It is apparent that when m $ 6
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that there are likely to be several broadly equivalent cases involving other m

values. In contrast, when m5 4, intersection is only possible for m5 5 cases.

It should be noted that the exact equivalence between different LJ/M poten-

tials would generally require the use of nonintegral n and m exponents. This

type of analysis is useful to avoid the unintended duplication of simulations

involving broadly similar LJ/M potentials.

3.6.1.2 Egelstaff potential

Egelstaff (1987, 1994) proposed the following variant of the LJ potential,

ueff ðrÞ5 ε 2
rm

r

� �12
2 2

rm

r

� �9
2

rm

r

� �6� 	
; ð3:30Þ

where rm is the distance at which there is maximum attraction. In Eq. (3.30),

the inclusion of the r29 term means that the C6 dispersion coefficient is

closer to the experimentally determined value.

3.6.1.3 Maitland�Smith potential

There is no theoretical basis to justify the r212 dependence of repulsion in

the LJ, Kihara, or Egelstaff potentials. This fact motivated Maitland and

FIGURE 3.4 Comparison of α as a function of n for various n�m potentials, where m5 4 (x),
5 (Δ) 6 (1), 7, (e), and 10(&). The dotted red lines for α5 0.5 and 1.6 contrast the greater

number of possible combinations for m $ 6 compared with m5 4, which can only intersect

with m5 5 data.
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Smith (1973) to propose the following modification of the LJ potential using

a generalized distance term (x).

ueff ðrÞ5 ε
6

n2 6


 �
x2n 2

n

n2 6

� �
x26

� 	
ð3:31Þ

Eq. (3.31) retains the r26 dependence of dispersion but the value of n,

which governs the distance-dependence of repulsion is obtained from

n5 13:01 γ x2 1ð Þ; ð3:32Þ
where γ is an adjustable parameter. This three-parameter potential more

accurately (Kohler et al., 1976) describes the properties of inert gases than

the LJ potential.

3.6.1.4 Born�Mayer and London potentials

The early work of Born and Mayer (1932) indicated that the repulsion

between atoms should have an exponential dependence on distance because

of the overlap of wave functions. If the Born�Mayer exponential term is

coupled with the London dispersion formula, we obtain

ueff rð Þ5Aexp 2Brð Þ2 C6

r6
; ð3:33Þ

where A and B are empirical constants determined from experimental data.

London (1937) also recognized the theoretical superiority of the exponential

form proposing the following potential

ueff rð Þ5 bexp 2
r

a

� �
2

C6

r6
2

C8

r8
; ð3:34Þ

where a and b are adjustable parameters.

3.6.1.5 Buckingham�Corner potential

A limitation of both the Born�Mayer and London potentials is that they go

to -N at the origin. This deficiency was addressed by Buckingham and

Corner (1947), who proposed the following modification

ueff rð Þ5
b exp
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where rm is the distance at which the energy is a minimum and α is the

steepness of the exponential repulsion. Despite their theoretical superiority,
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the earlier potentials have not been adopted widely in molecular simulation.

Arguably Eq. (3.35) has been superseded by the more practical exp-6 poten-

tial (Rice and Hirschfeler, 1954) discussed below. Some applications of

Eq. (3.34) have been reported (Homer et al., 1991).

A common feature of Eqs. (3.33) to (3.35) is the use of an exponential term

for repulsion. Although these potentials may have not been widely used in

molecular simulations, a general exponential model for repulsion has proved

useful in many different contexts (Sherwood and Mason, 1965; Kooij and

Lerner, 2017; Bacher et al., 2018a,b; Pedersen et al., 2019) and contributed to

the development of improved equations of state (Lafitte et al., 2013).

3.6.1.6 Shaviit�Boys potential

Another interesting variation on the use of an exponential term is the poten-

tial proposed by Shavitt and Boys (1956),

ueff rð Þ5 4ε

r
σ
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1B2

h i3XN
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where A, B, C0, C2, and C4 are adjustable constants. This potential has been

applied (Munn, 1964) to inert gases but no simulation data have been

reported.

3.6.1.7 Modified Buckingham (exp-6) potential

Possibly the most-widely used intermolecular potential containing an exponen-

tial term is the modified Buckingham or exp-6 potential originally proposed by

Rice and Hirschfeler (1954). The exp-6 potential is based on the Born�Mayer

potential. For practical applications, the form of the exp-6 potential is,

ueff rð Þ5
N r#λrm
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6
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rm
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rm

r

�6�
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where λrm is the distance at which Eq. (3.37) goes through a false maximum.

Eq. (3.37) often appears in the literature without an attribution to work of

Rice and Hirschfeler (1954), which is perhaps testimony to its widespread

familiarity. The value of λ can be obtained (Hirschfelder et al., 1954) by

finding the smallest root of the following equation:

λ7exp αð12λÞ½ �2 15 0 ð3:38Þ
The false maximum is an unsatisfactory feature of the exp-6 potential. At

r5 0 the exponential term has a finite value allowing the dispersion term to

dominate at very small intermolecular separation. Consequently, the potential
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passes through a maximum and then tends to 2N as r -0. Therefore, the

condition that u(r)5N when r # λrm must be imposed to use the potential

meaningfully in a simulation. Alternatively, damping functions (see discus-

sion below) for the dispersion term have been proposed, which overcome

this problem.

It is apparent from Eq. (3.37) that α 6¼ 6. A value of α5 7 corresponds to

λ5 1, which would mean an abrupt transition to infinite repulsion at rm.

Therefore, physically meaningful values commence from α . 7. The rela-

tionship between α and λ that values that are obtained from solving

Eq. (3.38) are illustrated in Fig. 3.5.

Fig. 3.5 shows that when α is reasonably large, the issue of infinite repul-

sion at small separations for the exp-6 potential is unlikely to be encountered

for the properties of fluids under normal conditions.

For real fluids, values of α are typically in the range of 12 to 15 (Wu and

Sadus, 2000). For this range of values, the following relationships have been

determined (Wu and Sadus, 2000) between σ, λ, and rm.

σ5 0:713111 0:01966α2 5:06193 1024α2
� �

rm

λ5 1:760442 0:18315α1 0:00514α2

�
ð3:39Þ

The LJ potential is compared in Fig. 3.6 with the exp-6 potentials for dif-

ferent values of α, which indicates a reduction in the steepness of repulsion

when α , 15. This partially explains the improved accuracy of the exp-6

potential for the properties of real fluids.

It has been observed (Galliero and Boned, 2008) that a value of

α5 13.772 approximately corresponds to the LJ and exp-6 having the same

FIGURE 3.5 Values of λ as a function α for the exp-6 potential obtained from solving Eq. (3.38).
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curvature at rm, whereas α5 14.338 yields equal values of energy at rm.

Although such mapping of different potentials is interesting, from the per-

spective of improving the accuracy of predictions, there is nothing to be

gained by effectively limiting the behavior of the exp-6 potential to the infe-

rior LJ potential. Conversely, there would be considerable merit in trans-

forming an accurate but complicated potential to a simpler, but equally

accurate, representation that greatly facilitated computations.

Molecular simulation has been used (de Kuijper et al., 1990; Sellers

et al., 2015) to evaluate the properties of the exp-6 potential and it has been

applied in simulations of the phase behavior of the helium 1 hydrogen

binary mixture (Schouten et al., 1991). Zarragoicoechea and Scalise (1997)

used the exp-6 potential to simulate “gas�gas” phase equilibria of nonpolar

mixtures. The effect of α on VLE has been investigated (Tavares and

Sandler, 1996) using Gibbs ensemble (Panagiotopoulos, 1987) simulation

(Chapter 10). Increasing the value of α reduces substantially the range of

temperatures for which vapor�liquid coexistence is observed. Wu and Sadus

(2000) have demonstrated that the exp-6 potential yields reliable calculation

of high pressure VLE of binary atomic mixtures. It has also been used to

investigate SLE, involving the freezing transition (Khrapak et al., 2011),

high pressure behavior (Saija and Prestipino, 2005), and the possibility of re-

entrant melting (Saija et al., 2010).

The exp-6 potential has been applied successfully to polar fluids

(Peyrovedin and Shariati, 2020). For example, a MD study has been reported

(Koshi and Matsui, 1994) for the high temperature phase separation in the

water 1 nitrogen binary mixture. The supercritical properties of water have

FIGURE 3.6 Comparison of the exp-6 potential with the LJ potential (dashed gray line).

Results are given from right to left for α5 12 (red line), 13 (blue line), and 15 (green line).
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been studied (Bastea and Fried, 2008) with an exp-6 potential augmented by

dipolar interactions. It has also been used (Galliero and Boned, 2008) to pre-

dict transport properties.

3.6.2 General refinement of repulsion and dispersion models

It is evident from the preceding discussion that many successful intermolecu-

lar potentials treat repulsion as having an exponential dependence on inter-

molecular separation. It is well-documented (Stone, 2013) that even the

simple potential of Born and Mayer (1932) provides a very accurate descrip-

tion of repulsion at moderate densities. However, as discussed in detail else-

where (Buckingham et al., 1988; van Vleet et al., 2016), considerable efforts

have been made to both improve the prediction of short-ranged repulsion

and more accurately represent the contribution of dispersion interactions.

A refined model of repulsion is the exchange Coulomb model (Dham

et al., 1989; Stone, 2013), for which the energy of repulsion is represented by

Erep 5 γ 11 arð Þexp a0 1 a1 1
a1

r
1

a2

r2

h i
; ð3:40Þ

where the constants are fitted using accurate ab initio charge densities for the

atoms.

When an exponential repulsion term is coupled to a dispersion term, it is often

found that the dispersion term dominates at small intermolecular separation. This

can result in a unrealistic intermolecular potential as illustrated by the exp-6

potential, which has a false maximum. This problem is overcome by introducing

a damping term for the dispersion term. For example, in the Hartree�Fock disper-

sion (HFD) model (Hepburn et al., 1975; Ahlrichs et al., 1977),
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Eq. (3.41) was obtained by fitting the dispersion interactions for molecu-

lar hydrogen assuming that the same correction could be applied to all of the

dispersion contributions.

Douketis et al. (1982) determined different damping terms for each con-

tribution to dispersion, that is,

udispðrÞ52
X

n5 6;8;10

FnðrÞ
Cn

rn
; ð3:43Þ

74 Molecular Simulation of Fluids



where

Fn rð Þ5 g ρrð Þ fn ρrð Þ: ð3:44Þ
In Eq. (3.43), fn is a damping function to correct for charge overlap in the

R2n term; g is the correction for exchange effects in the dispersion terms;

and ρ is a scaling distance. When ρ5 1, we find (Kreek and Meath, 1969):

g rð Þ5 12 r1:68exp 20:78rð Þ ð3:45Þ

fn rð Þ5 12exp 2
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ð3:46Þ

Various alternative damping functions have been proposed, which

improve the prediction of the potential for various properties (Koide et al.,

1981; Tang and Toennies, 1984; Wheatley and Meath, 1993; Boyes, 1994).

For example, the damping function for argon proposed by Boyes (1994)

improves the prediction of acoustic virial coefficients.

3.6.3 Shifted-force potentials

A common feature of realistic potentials is that the intermolecular potential

only asymptotes to zero at large intermolecular separation. That is zero energy

is not achieved at large separation. It is sometimes expedient computationally

to have a potential, which is exactly zero at distances beyond a cut-off point

rc. This can be achieved by applying the following transformation yielding a

shifted-force us(r) potential (Haile, 1992; Nicolas et al., 1979).

us rð Þ5 uðrÞ2 uðrcÞ2 ðr2 rcÞ


du

dr

�
rc

r# rc

0 r. rc

8<: ð3:47Þ

Eq. (3.47) can be applied to any continuous intermolecular potential. The

advantage of Eq. (3.47) is that long range corrections (LRC) (Chapter 5) are

not required because us(r)5 0 at and after the cut-off distance (rc). The use

of LRC introduces a degree of uncertainty when comparing different simula-

tion data that use different cut-off values. Ahmed and Sadus (2010) com-

pared the SLE properties from the shift-force LJ potential to those obtained

using the full LJ potential. A value of rc5 6.5σ was required to obtain con-

sistent results between the potentials.

3.6.4 SR potentials

An alternative to the shifted-force approach is to develop a continuous poten-

tial that deliberately has a restricted range. This approach has the advantages
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of both avoiding LRC and discontinuities in the force due to the shift-force

approach. Hoover (2006) proposed the following 8�4 potential,

ueff rð Þ5 ε 22
r
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� �2
 �8

2 2 22
r

σ

� �2
 �4
" #

; ð3:48Þ

where the interactions between particles are restricted to a very narrow range of

separations, that is, r#
ffiffiffi
2

p
σ. This simple potential has proved particularly use-

ful (Travis and Sadus, 2023) in examining high pressure phase transitions.

In the same spirit of Eq. (3.49), a generalized SR potential can be devised

(Wang et al., 2020) depending on the choice of n and m exponents and rc,

ueff rð Þ5 γε
σ
r

� �2n
2 1


 �
rc

r

� �2n
21


 �2m

ð3:49Þ

where γ is a term that ensures that the depth of the well is -ε.

rm 5 rc



112m

112mr2mc

�1=2m

γ5 2mr2mc



112m

2mðr2mc 21Þ

�2m11

9>>>>>=>>>>>;
ð3:50Þ

When n5m5 1 and rc5 2.5σ, Eq. (3.49) generates the conventional phase

diagram with VLE, SLE, and triple and critical points. In contrast, n5m5 1

and rc5 1.2σ yields a phase diagram associated with some colloidal systems. A

comparison of the SR potentials with the LJ potential is given in Fig. 3.7. It is

FIGURE 3.7 Comparison of the LJ potential with the short-ranged 8�4 (Eq. (3.48)) and Wang

et al. (Eq. (3.49), n5m5 1, rc5 2.5σ, γ5 0.2915) potentials. The 8�4 and Wang et al. poten-

tials are exactly zero beyond a distance of
ffiffiffi
2

p
σ and 2.5σ, respectively.
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evident that the shape of the potentials is distinct (Chapter 4), which will be

reflected in different macroscopic properties.

3.7 Contributions to molecular interactions

Constructing an accurate pair potential for a molecule is considerably more

complicated than an atomic potential. The nonspherical nature of the electron

clouds of polyatomic molecules introduces many additional problems such

as anisotropic overlap, dispersion, and induction forces etc. These problems

can be tackled using ab initio methods such as Hartree�Fock or density

function theory (Chapter 4). However, a simple alternative is to use a semi-

empirical approach to construct a potential, which includes various molecular

contributions. The first step in formulating a molecular potential is to iden-

tify the various molecular contributions. These contributions are commonly

incorporated into an overall model of the molecule governed by a compre-

hensive force field (Chapter 4).

For a molecule, we can identify contributions to the potential from both

inter- and intramolecular interactions. The intermolecular interactions are the

interactions between the different atoms of the molecule, which occur inde-

pendently of molecular bonds. In addition, a molecule will experience the

effects of intramolecular interactions as a consequence of molecular bonds.

The separation between intra- and intermolecular interactions is based some-

what arbitrarily on the extent of intermolecular distance. It is common to

assume that atoms separated by four or more bonds are distant and interact

only via nonbonding forces. Therefore, bond interactions are restricted to

atoms that are bonded directly together (1,2 interactions), atoms that are

joined via bonds to a common atom (1,3 interactions), and atoms with a

topology involving three intermediary bonds (1,4 interactions). The potential

associated with these interactions are functions of bond lengths, bond angles,

proper torsional angles, and improper torsional angles.

3.7.1 Intermolecular ionic and polar potentials

Unlike atoms, molecules are associated commonly with permanent multipole

moments or charges, which result in electrostatic interactions. The theoretical

basis of electrostatic interactions is well known (Hirschfelder et al., 1954).

The application of Coulomb’s law of electrostatic interaction between

charges q, dipole moments μ, and quadrupole moments Q between molecules

a and b yields,

u q;qð Þ rð Þ5 qaqb

4πεor
ð3:51Þ

u q;μð Þ rð Þ52
qaμbcosθb
4πεor2

ð3:52Þ
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u q;Qð Þ rð Þ5 qaQb 3cos2θb 2 1
� �
16πεor3

ð3:53Þ

u μ;μð Þ rð Þ52
μaμb 2cosθa cosθb 2 sinθa sinθb cos φa 2φb

� �� �
4πεor3

ð3:54Þ

u μ;Qð Þ rð Þ5 3μaQb

16πεor4
cosθa 3cos2θb 2 1

� �
2 2sinθa sinθb cosθb cos φa 2φb

� �� 	
ð3:55Þ

u Q;Qð Þ rð Þ5 3QaQb

64πεor5
12 5cos2θa 2 5cos2θb 2 15cos2θa cos2θb
1 2 sinθa sinθb cos φa2φb

� �
24cosθa cosθb

� �2� 	
ð3:56Þ

where the angles θa, θb, Φa, and Φb are defined in Fig. 3.8. The earlier electro-

static terms represent point�dipoles, point�quadrupoles, and the like. Polar

molecules can also be modeled by placing partial changes on selected sites.

Eqs. (3.51) to (3.56) each include a contribution in the denominator of

4πεo. This term is required when SI units are used for u(J) r(m), q(C), μ
(Cm), and Q(Cm2). The value εo 5 8:854188128 13ð Þ3 10212C2N21m22 is

the vacuum electric permittivity (Tiesinga et al., 2021) and the contribution

of 4π is required to rationalize the units (Kennelly, 1931) for spherical

symmetry.

The previous definitions assume that the interactions are completely

unobstructed as would be the case in a vacuum. For many real molecules,

more realistic values of the electrostatic interactions can be obtained by

including the dimensionless value of relative permittivity (εr) in the denomi-

nator. This contribution can be quite substantial for nonpolar systems, for

example, εr5 78.5 at 298 K for water (Raabe and Sadus, 2011). By defini-

tion, εr5 1 is the lower limit for a vacuum.

It should be noted that because all of the multipolar potentials decay

more slowly than r23 special techniques such as the Ewald sum (Allen and

Tildesley, 2017) are required in the simulation to account for LR interactions

(Chapter 4). However, we can also calculate an average contribution of

FIGURE 3.8 Definition of angles for multipole interaction of two molecules denoted by a and

b. The dotted lines through the centers of a and b indicate the axis of either the dipole or quadru-

pole of the molecules.
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multipolar interactions. The results (Hirschfelder et al., 1954) when using SI

units are:

u q;qð Þ
ave rð Þ5 qaqb

4πεor
ð3:57Þ

u q;μð Þ
ave rð Þ52

q2aμ
2
b

3 4πε0ð Þ2kTr4 ð3:58Þ

u q;Qð Þ
ave rð Þ52

q2aQ
2
b

20 4πε0ð Þ2kTr6 ð3:59Þ

u μ;μð Þ
ave rð Þ52

μ2
aμ

2
b

3 4πε0ð Þ2kTr6 ð3:60Þ

u μ;Qð Þ
ave rð Þ52

μ2
aQ

2
b

4πε0ð Þ2kTr8 ð3:61Þ

u Q;Qð Þ
ave rð Þ52

7Q2
aQ

2
b

40 4πε0ð Þ2kTr10 ð3:62Þ

Historically, many force fields (see discussion below) have been developed

using non-SI units for the charge and other multipolar interactions and as such not

include the 4πεo term. Notice that, except for the Coulomb term (Eq. (3.58)), the

contribution of the average-angled interactions will always be ,0, whereas the

sign of values obtained from Eqs. (3.52) to (3.56) is angle-dependent.

Except for charge�charge interaction (Eq. (3.51)) that remains unaltered, the

average multipolar interactions decay faster than r23. Consequently, LR interac-

tions are not an issue when using these potentials. Furthermore, the need to eval-

uate intermolecular angles and trigonometric functions is eliminated.

In simulations it is often convenient to use reduced units, which in this

case means q� 5 q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πεoσε

p
, μ� 5μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πεoσ3ε

p
, Q� 5Q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πεoσ5ε

p
,

r� 5 r=σ, and T� 5 kT=ε. These definitions allow us to compare Eqs. (3.57) to

(3.62) in Fig. 3.9 for the special case when all the contributions are equal to

one. It is apparent from Fig. 3.9 that charge�charge interactions dominate at

all separations. Charge�dipole interactions are also important but decline

much more rapidly. In contrast, the contribution of charge�quadrupole inter-

actions is noticeably less important. Dipole�dipole interactions are the most

important noncharge interaction. However, at relatively small separations,

dipole�quadrupole interactions takeover. Of course, the relative importance of

these contributions will be affected by the charge, dipole, and quadrupole

moments. In general, we can expect that charge�charge interactions will dom-

inate with dipole�dipole interactions being the most important noncharge con-

tribution. If both charge�charge and noncharge interactions are present, the

effect of the latter will be to subtract from the repulsive nature of the former.
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Simulation studies of quadrupole�quadrupole and quadrupole�dipole

interactions are also available (Smit and Williams, 1990; Dubey and O’Shea,

1994; Jiang and Pitzer, 1995; O’Shea et al., 1997). The critical temperature

of a fluid is directly proportional to the strength of the quadrupole moment

(Stapleton et al., 1989). The effects of charge�quadrupole interactions have

not been studied by molecular simulation.

Sadus (1996a,b) reported simulations of both vapor�liquid and

liquid�liquid equilibria of dipolar fluids using the Keesom potential, which

combines the LJ potential with a potential similar to Eq. (3.59). Comparison

with calculations using the Stockmayer potential indicates that the average

dipole potential was a good approximation for relatively weak dipoles.

However, for strong dipoles large differences in the predicted VLE can be

expected (Gao et al., 1997) using the Keesom and Stockmayer potentials.

MD calculations of the pressure�volume�temperature behavior of polariz-

able dipolar linear molecules and rigid polarizable molecules are available

(Kriebel and Winkelmann, 1996, 1998). The averaged multipolar contribu-

tions have proved useful in coarse graining the properties of a number of

real fluids (Müller and Gelb, 2003; Mognetti et al., 2008).

3.7.2 Intermolecular hydrogen bond potentials

Hydrogen bond interactions are a special class of nonbonded interactions. It

is often found that conventional nonbonded potentials do not account accu-

rately for hydrogen bonding. For example, instead of the traditional 12�6 LJ

FIGURE 3.9 Comparison of the absolute value of the reduced potential energy (log scale) ver-

sus separation for charge�charge (r), charge�dipole (x), charge�quadrupole (e) dipole�di-

pole (&), dipole�quadrupole (Δ), and quadrupole�quadrupole (e) interactions obtained from

Eqs. (3.57) to (3.62) when q� 5μ� 5Q� 5 T� 5 1.

80 Molecular Simulation of Fluids



potential, the effect of hydrogen bonding can be described more accurately

using a 12�10 LJ potential

ueff rð Þ5 A

r12
2

C

r10
; ð3:63Þ

where A and C are empirical constants. The 12�10 potential provides an

improved description of the geometry of hydrogen bonding between the

hydrogen atom and the acceptor atom. Other potentials attempt to account

for deviations from the hydrogen bond geometry. Goodford (1985) proposed

ueff rð Þ5 C

r6
2

D

r4


 �
cos4θ; ð3:64Þ

where C and D are empirical parameters and θ is the angle subtended at the

hydrogen. Vedani (1988) proposed the following potential

ueff rð Þ5
A

r12H2Acc

2
C

r10H2Acc


 �
cos2θDon2H2Acccos

4ωH2Acc2LP; ð3:65Þ

where rH-Acc is the distance between the hydrogen atom (H) and the acceptor

atom (Acc); θdon-H-acc is the inner angle formed by the donor molecule

(Don), hydrogen atom and acceptor molecule configuration; and ωH-Acc-LP is

the angle formed between the hydrogen atom, the acceptor molecule (Acc),

and the lone pair (LP) of electrons on the acceptor molecule.

3.7.3 Intramolecular bond potentials

The bond potential represents the effect of bond stretching. The Morse potential

(Rappé and Casewit, 1997) is an example of an accurate bond potential,

ub bð Þ5De 12exp2αðl2l0Þ½ �� �2 ð3:66Þ
where De is the bond dissociation energy, α is a constant that depends on

both the masses of the atoms and the shape of the potential well, and l0 is

the reference or natural bond separation. It should be noted that the reference

bond length is not necessarily the same as the equilibrium bond separation.

The reference bond length is the separation when all other force terms expe-

rienced by the molecule are zero. In contrast, the equilibrium bond separa-

tion reflects the contribution of other forces on the molecule.

The Morse potential is a physically realistic representation of a bond,

which allows for the breaking of bonds at large interatomic separation.

However, evaluating the exponential term is expensive computationally. It

also requires the evaluation of three potential parameters (De, l0, and α). If
bond dissociation is excluded, a simple alternative can be obtained by

expanding Eq. (3.67) about the equilibrium separation

ub lð Þ5 Kb l2l0ð Þ2
2

12α l2 l0ð Þ1 7

12


 �
α2 l2l0ð Þ2 1?

� 	
; ð3:67Þ
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where Kb5 2Deα
2. Eq. (3.67) eliminates the evaluation of the exponential

term but three parameters must be evaluated per bond stretch. If only the

first term of Eq. (3.67) is used, the bond potential takes the form of Hooke’s

law

ub lð Þ5 Kb l2l0ð Þ2
2

; ð3:68Þ

where Kb is the force constant. The choice between these different levels of

approximation depends on the accuracy of the desired calculation and

computational expediency. Eq. (3.68) is a good approximation for bonding

in ground-state molecules but it is considerably less accurate than the other

alternatives at nonequilibrium separations.

3.7.4 Intramolecular angle-bending potentials

A Hooke’s law approach is also used commonly for both the bond-angle

potential and out-of-plane bending. The bond-angle potential can be evalu-

ated (Dinur and Hagler, 1991) from either

ub θð Þ5 Kθ θ2θ0ð Þ2
2

12α θ2 θ0ð Þ1 7

12


 �
α2 θ2θ0ð Þ2 1?

� 	
ð3:69Þ

or

uθ θð Þ5 Kθ θ2θ0ð Þ2
2

; ð3:70Þ

where Kθ is the bending force constant and θ0 is the reference or normal

bond angle. Eq. (3.69) represents simple, harmonic bending, which is

suitable for open and unstrained chains. In contrast, Eq. (3.69) is a more

accurate alternative if anharmonicity is present.

More sophisticated alternatives for angle bending have been developed.

For example, Rappé et al. (1992) proposed the following angle-bending

potential.

uθ θð Þ5Kθ
2cos2θ0 1 1

4sin2θ0
2

4cosθ0 cosθ
4sin2θ0

1
cos2θ
4sin2θ0


 �
ð3:71Þ

Unlike potentials that assume an idealized geometry, Eq. (3.71) is in prin-

ciple valid for all nonlinear geometries.

3.7.5 Intramolecular out-of-plane bending potentials

Out-of-plane bending occurs typically in planar molecules with trigonal cen-

ters. The energy associated with out-of-plane bending arises from the dis-

placement of the trigonal atom either above or below the molecular plane.
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Out-of-plane bending is usually harmonic, and the potential is given (Dinur

and Hagler, 1991) simply by

uχ χð Þ5 Kχ χ2χ0

� �2
2

; ð3:72Þ

where Kχ is the barrier for out-of-plane bending and χ0 is the reference

angle for out-of-plane bending.

3.7.6 Intramolecular torsional potentials

The torsional potential represents the effect of rotation about a bond and as

such it is a function of the dihedral angles. It can be calculated from a

Fourier series expansion (Dinur and Hagler, 1991)

uτ τð Þ5 1

2

X
j

Vj 11 21ð Þ j11cos jτð Þ� �
; ð3:73Þ

where Vj is the rotational barrier height, τ is the dihedral angle, and j is the

periodicity.

3.7.7 Intramolecular cross-terms

In principle, every motion of a molecule is coupled to other motions.

Consequently, an accurate description of the physics of motion sometimes

requires cross-terms that represent the coupling of different types of motion.

Fortunately, the coupling effect is only really significant for neighboring

motions. The effect of coupling stretch�stretch interactions between bonds 1

and 2 can be represented (Dinur and Hagler, 1991) by

u l1; l2ð Þ5 Kl1;2 l1 2 l1;0
� �

l2 2 l2;0
� �� �

2
ð3:74Þ

Experimental observations indicate that reducing the bond angle between

bonds will induce bond stretching to minimize the strain. The effect of bond-

stretching and bond-angle motion can be obtained from the following potential:

u l1; l2; θð Þ5 Kl1;2 l1 2 l1;0
� �

1 l2 2 l2;0
� �� �

θ2 θ0ð Þ
2

; ð3:75Þ

where the two bonds (denoted 1 and 2) are joined to a common atom and θ
is the angle between these two bonds. An alternative to Eq. (3.76) is the

Urey�Bradley potential, which determines the potential between the non-

bonded atoms (denoted 1 and 3) as a result of bond-stretching and bond-

angle motion. The Urey�Bradley potential is

u r123ð Þ5 Kr123 r1232r123;0

� �2
2

; ð3:76Þ
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where the distances refer to the separation between the nonbonded atoms.

The torsional motion can be coupled to both stretching and bond-bending

motion. The coupling of torsion and stretching terms can be obtained from

u l; τð Þ5 Kl;τ l2 l0ð Þ 11 cos3τð Þ½ �
2

; ð3:77Þ

whereas the interaction between torsional motion and bond bending can be

represented (Dinur and Hagler, 1991) by:

u θ; τð Þ5 Kθ;τ θ2 θ0ð Þ 12 cosτð Þ
2

: ð3:78Þ

In the case of molecules forming two angles at a common center, the

effect of two bend�bend interactions must be considered.

u θ1; θ2ð Þ5 Kθ1;2 θ1 2 θ1;0
� �

θ2 2 θ2;0
� �

2
ð3:79Þ

3.8 Simple atom-based pairwise potentials for molecules

The relative importance of the intermolecular and intramolecular terms

depends on the nature of the molecule. It should be emphasized that the non-

bonded interactions are of primary importance. Often, a good representation

of the energy of the molecule can be obtained by ignoring bond and angle

terms and only considering nonbonded and electrostatic interactions. Some

examples are given below.

3.8.1 Stockmayer potential

The Stockmayer potential is obtained if Eqs. (3.25) and (3.54) are used for the

contributions from repulsion, dispersion, and dipolar interactions, respectively.

ueff r; θ;φð Þ5 4ε
�


σ
r

�12

2



σ
r

�6	
2

μaμb 2cosθa cosθb 2 sinθa sinθb cos φa 2φb

� �� �
4πε0r3

ð3:80Þ

Several simulations have been reported using the Stockmayer potential to

investigate the effect of dipole�dipole interactions on the VLE of pure fluids

(Smit et al., 1989; van Leeuwen and Smit, 1993; van Leeuwen et al., 1993;

Bartke and Hentschke, 2007; Jia and Hentschke, 2011). The work of van

Leeuwen and Smit (1993) indicates that dispersion interactions are necessary

to sustain vapor�liquid phase coexistence in a dipolar fluid. The Stockmayer

potential has also been used to study polar 1 nonpolar binary mixtures (de

Leeuw et al., 1990; Mooij et al., 1992). The excess free energy of mixing

decreases with increasing polarizability and at high dipole strength, the
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dipolar and nonpolar components separate into different phases. The VLE of

binary mixtures interacting via the Stockmayer potential has been investi-

gated (Gao et al., 1997). The effect of dipolar interaction is to increase the

region of two-phase coexistence. A theoretical explanation of the dependence

of the critical point on the dipole strength of the Stockmayer fluid has been

determined (Hentschke et al., 2007). The usefulness of the Stockmayer

potential to molecules is limited because molecules are not spherical.

In the force fields given below, the 4πε0 term does not appear in the elec-

trostatic contributions because the parameterization has been most commonly

reported using non-SI units. Therefore, some care is required when convert-

ing to SI units.

3.8.2 Spurling�Mason potential

Spurling and Mason (1967) studied the virial coefficients and viscosity data

of quadrupolar molecules using a potential, which explicitly incorporated the

effect of quadrupole moments and other molecular factors. Their potential is

ueff rð Þ5 4ε
�


σ
r

�12

2



σ
r

�6	

1
3Q2

r5
12 5 cos2θa 1 cos2θb

� �
2 15cos2θa cos2θb

1 2sinθa sinθb cos φa 2φb

� �� 	
2

9Q2αm

8r8
sin4θa 1 sin4θb 1 4 cos4θa 1 cos4θb

� �� �
1 4ε



σ
r

�6

κ2
3

2

κ2κ2
� �

cos2θa 1 cos2θb
� �

2κ2 sinθa sinθb cos φa2φb

� �
22cosθa cosθb

� �2
" #8<:

9=;
1 4Dε



σ
r

�12

3 cos2θa 1 cos2θb
� �

2 2
� �

;

ð3:81Þ
where αm, κ, and D are the mean polarizability, the anisotropy of the polariz-

ability, and a shape parameter, respectively. The first term in Eq. (3.82) is

the LJ potential. The second and third terms represent the effect of quadru-

pole, and quadrupole-induced dipole interactions, respectively. The potential

also attempts to account for molecular anisotropy (fourth term) and shape

(fifth term). When Eq. (3.82) is applied to the viscosity data of small poly-

atomic molecules, reasonable estimates of the quadrupole moments can be

obtained (Spurling and Mason, 1967).

3.8.3 Restricted primitive model

Molten salts (Hansen and McDonald, 1975) and other ionic (Smith and

Haymet, 1993) fluids have been studied using charge�charge potentials.
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Potentials of the form of Eq. (3.52) have been used in simulations of aqueous

electrolyte solutions. The most commonly used potential for ionic fluids is

the restricted primitive model (RPM), which is composed of a HS potential

in conjunction with Eq. (3.54).

ueff rð Þ5 uHS rð Þ1 qaqb

r
ð3:82Þ

Orkoulas and Panagiotopoulos (1994) have reported MC calculations of

the free energy and phase equilibria of an ionic fluid using the RPM poten-

tial. The dielectric constant of RPM electrolytes on the vapor branch of the

coexistence line has also been reported (Caillol, 1995).

3.8.4 Fumi�Tosi potential

A more realistic intermolecular potential for ions is the Fumi and Tosi

(1964) potential,

ueff rð Þ5Aexp 2Brð Þ2 E

r6
2

D

r8
1

qaqb

r
ð3:83Þ

where A, B, D, and E are parameters obtained from fitting experimental data.

Strauch and Cummings (1993) have used the Huggins�Mayer form of this

potential to calculate successfully vapor�liquid equilibria in water 1 NaCl

and water 1 methanol 1 NaCl mixtures. Guissani and Guillot (1994) used

Eq. (3.50) to determine the critical point of NaCl.

3.9 Extension to molecules

3.9.1 Nonbonded interactions in molecules

The proceeding sections have focused exclusively on atomic systems but the

potentials can be directly applied within a molecular framework. Irrespective

of the complexity of a molecule, the dispersion and repulsion interactions of

the atoms that constitute the molecule are of primary importance. This non-

bonded contribution can be calculated by using any of the potentials discussed

earlier in the chapter. In practice, the most-widely used approach for calculat-

ing nonbonded interactions is to model molecules as a series of interaction

sites. The interaction sites usually coincide with the constituent atoms of the

molecule. Consequently, a simple atomic potential such as the LJ potential is

used to evaluate the various atom�atom interactions. For example (Cheung

and Powles, 1975; Monson et al., 1983), the interactions between molecules

(i and j) each composed of m-atoms can be calculated from

uij rαβ
� �

5
Xm
α51

Xm
β51

4ε
σ
rαβ


 �12

2
σ
rαβ


 �6
" #

; ð3:84Þ
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where rαβ is the separation of atoms α and β on two different molecules. In

Eq. (3.84), the LJ is used as an example only and any other pair atomic

potential can be substituted. The atom�atom model of a diatomic molecule

is illustrated in Fig. 3.10.

3.9.2 Adding nonbonded interactions: the WCA1 finitely
extensible nonlinear elastic potential

In Section 3.9, quite complicated molecular potentials will be examined, but

a simple example of a molecular system is a chain of atoms that require us

to consider both nonbonded interactions and molecular constraints. Possibly

the simplest model for chain or polymer molecules is the freely jointed tan-

gent HS chain. This approach neglects variation of bond length and torsional

angles but it incorporates some essential features such as molecular connec-

tivity and intra- and intermolecular site�site excluded volume interactions.

Molecular simulation of the properties of chains containing up to 200 sites

have been reported (Gao and Weiner, 1989). Data for mixtures of chains are

limited to relatively small chains (Chang and Sandler, 1995).

A somewhat more realistic model for molecular chains can be obtained

by combining the WCA potential for the excluded volume of the HS beads

(nonboded interactions) with the finitely extensible nonlinear elastic (FENE)

potential (Warner, 1972; Grest and Kremer, 1986) that is responsible for

maintaining the molecular topology of the beads via both a maximum intra-

molecular separation (r0) and a “spring constant” (K).

uFENE rð Þ5
Kr20 ln

�
12



r

r0

�2	
2

r, r0

N r$ r0

8>>>><>>>>: ð3:85Þ

FIGURE 3.10 An atom�atom model of a diatomic molecule.
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The WCA 1 FENE potential has proven very useful (Bosko et al., 2004)

in determining the viscoelastic properties of dendrimers of different genera-

tions (Newkome et al., 2001).

3.10 Pairwise force fields from molecular mechanics

In view of the preceding considerations, the energy of a molecular system

resulting from pairwise interactions can be evaluated from

U r; l; θ; τ;χð Þ5
X

nonbonds

unbðrÞ1
X
bonds

ubðlÞ1
X

bending

uθðθÞ1
X

dihedral

uτðτÞ

1
X

out2 of 2 plane

uχðχÞ1
X

uel 1?;
ð3:86Þ

where unb is the nonbonded potential, ub is the bond potential, uθ is the

bond-angle potential, uτ is the torsional potential, uχ is the out-of-plane

bending (improper torsional) potential, and uel is the Coulombic potential.

Eq. (3.86) only includes “diagonal terms,” but it can be extended to include

contributions from “cross terms” such as bond�angle or angle�angle inter-

actions. This approach is referred to generally as molecular mechanics

(Dinur and Hagler, 1991; DeKock et al., 1993). For example, to model an

alkane, we can compose an overall potential, which includes a potential for

nonbonded interactions; a potential for bond-bending, and a potential for

angle torsion (Siepmann et al., 1993).

In effect, Eq. (3.86) attempts to capture the essential physics of the mole-

cule. The result is a composite potential incorporating the contributions of

the various possible intra- and intermolecular interactions. This combination

of various contributions to describe molecular interactions is commonly

referred to as a “force field.” The term of force field is obviously a misno-

mer because Eq. (3.86) evaluates the energy not the force; however the

nomenclature is in widespread use in the literature.

The accuracy of the force field depends critically on obtaining accu-

rate values for the various potential parameters. The bond and angle

parameters can be obtained from X-ray, infrared, nuclear magnetic reso-

nance, and microwave data. The nonbonded parameters can be obtained

from experimental data for second virial coefficients and molecular beam

experiments. The parameters can be calculated using ab initio and semi-

empirical methods (Maple et al., 1994; Dinur and Hagler, 1991). A com-

prehensive review of molecular mechanics has been reported (Rappé and

Casewit, 1997).

The primary motivation for developing force field is to realistically cap-

ture the behavior of large molecules, most notably biomolecules and proteins

(van Gunsteren et al., 2006). The literature on force fields is both large and

continuously expanding (Cisneros et al., 2013; Lopes et al., 2015; Rinker,
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2018), and documenting all possibilities is an impossible undertaking. The

difficulty in providing a comprehensive description is further compounded

that many “new” force fields are arguably incremental improvements on

existing ones via the use of improved parameterization rather than funda-

mentally novel insights into intermolecular behavior.

The complexity of force fields has increased to the point, that some like

the Groningen molecular simulation (GROMOS) approach (Scott et al.,

1999) have become a general software package that offer multiple possible

customizations rather than a conventional standalone force field that can be

realistically implemented independently by the researcher. Many researchers

have become expert users of force field software packages that can be tai-

lored to a diverse range of applications and molecular systems.

The following discussion is focused on a few key force fields that have

provided a framework for many other alternatives. The optimized potential

for liquid simulation (OPLS) model (Jorgensen and Tirado-Rives, 1988) is

one of the simplest force fields. Other examples of force fields are the empir-

ical conformational energy program for peptides (ECEPP/3) (Némethy et al.,

1992); chemistry at Harvard macromolecular mechanics (CHARMM)

(Brooks et al., 1983; Smith and Karplus, 1992); assisted model building with

energy refinement (AMBER) (Weiner et al., 1984); and molecular mechanics

(MM3) (Allinger et al., 1989; Lii and Allinger, 1989a,b) potentials. These

force fields typically contain terms involving bond stretching, bond angle,

torsional motions, and nonbonded and electrostatic interactions.

3.10.1 Optimized force fields

There are several examples of elaborate force fields that have been optimized

for various molecular properties. Historically this has involved the laborious

fitting of experimental data, although more recent approaches such as super-

vised machine learning (Behler, 2016) can be expected to an increasingly

important role (Mueller et al., 2020).

3.10.1.1 OPLS/OPLS-AA force fields

The OPLS force field is of particular interest because it is specifically opti-

mized for liquid properties (Jorgensen and Tirado-Rives, 1988). The OPLS

force field has the following form:
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Aij
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Bij
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qiqj
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The interaction sites of the OPLS force field can be either nuclei or

(CH)n groups. Later, Kaminski et al. (1994) added a torsional term to create

an all-atom (AA) force field (OPLS-AA), which can be parameterized

(Damm et al., 1997) for carbohydrates. Despite its obvious simplicity, the
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OPLS-AA force field often yields results of comparable accuracy (Martin,

2006) to more sophisticated alternative models (see subsequent discussion)

that are more widely used.

3.10.1.2 ECEPP models

The ECEPP/3 force field (Némethy et al., 1992) is an updated version of the

ECEPP force field, which was originally developed by Momany et al. (1975)

and subsequently improved (ECEPP/2) by Némethy et al. (1983). ECEPP/3

retains the same functional form as its predecessors but it uses an improved

set of parameters based on accurate experimental data. The ECEPP/3 force

field has the following form:
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ð3:88Þ
where D is the dielectric constant and r� is the separation corresponding to

the minimum of nonboded pair interaction. Like the OPLS force field,

Eq. (3.88) includes the contribution of LJ interaction between nonbonded

atoms (first term) and electrostatic interactions (fourth term). However, the

ECEPP potential explicitly includes a contribution from hydrogen bonding

(the 12�10 term) and torsional motion (third term).

3.10.1.3 AMBER force field

The energy obtained from the AMBER force field is calculated as:
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In Eq. (3.89), the first three terms represent the bonded interaction of the

molecules. These terms contain force constants for the bonds (Kl) and angles

(Kθ); l0 and θ0 are the experimentally determined normal bond distances and

angles, respectively. A truncated Fourier series represent the torsional poten-

tial with contributions from the torsional barrier (Vn), periodicity (n), the cal-

culated dihedral angle (τ), and phase (γ). The remaining terms are the

contribution of nonbonded interactions to repulsion and dispersion (LJ poten-

tial), hydrogen bonding (the 10�12 term), and electrostatic interactions

between point charges (qi). The ε parameter in the last two terms is the

dielectric constant, and C and D are empirically determined parameters.

Several revisions of the AMBER force field have been made, particularly

to improve the representation of dihedral angles. This involved (Hornak

et al., 2006) making use of an improved quantum-level understanding of

interactions. An improved backbone has been reported (Best and Hummer,

2009). Its ability to deal with an aqueous protein environment has been

improved (Kirschner and Woods, 2001; Joung and Cheatham, 2008).

3.10.1.4 CHARMM force field

The CHARMM force field includes a contribution from out-of-plane bending
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where χ is the out-of-plane angle and kχ is the force constant for out-of-

plane bending. Both the CHARMM and AMBER force fields use the same

representation of nonbonded and electrostatic forces. Unlike the AMBER

force field, the CHARMM force filed does not include a hydrogen-bonding

term. The CHARMM force field has been developed for proteins (MacKerell

et al., 1998), nucleic acids (Foloppe and MacKerell, 2000), lipids (Klauda

et al., 2010), and carbohydrates (Guvench et al., 2011). Its accuracy for these

systems is continuously updated (Best et al., 2012) with additional terms and

new parameters. The variants are often distinguished by the addition of

numerical suffixes, for example, CHARMM27.

3.10.1.5 MM3 force field

The MM3 force field (Allinger et al., 1989) incorporates a more elaborate

description of the various bond and nonbonded potentials. MM3 eliminates the

deficiencies of the earlier MM2 (Allinger, 1977) by using improved theoretical
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models for bond and nonbond interactions and specifically addressing vibra-

tional and spectroscopic data. The MM3 force field is represented by Eq. (3.91).
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In the MM3 force field, the accuracy of the bond-stretching term (the first term)

is improved by incorporating more terms of the Taylor series expansion. The bond-

stretching term is a better approximation of the Morse potential than the simple

Hooke’s law potential used in both the AMBER and CHARMM force fields.

Similarly, the accuracy of the bond-angle bending (second term) and out-of-plane

bending (third term) is improved by using a higher-order expansion. Three different

periodicities are used to represent the effects of torsional motion (fourth term).

A feature of the MM3 force filed is the inclusion of cross-terms arising

from bond stretching/bending (fifth term), bond stretching/torsional motion

(sixth term), and bending/bending (seventh term) motions. The nonbonded

contributions to dispersion and repulsion are modeled by an empirically modi-

fied Buckingham potential (eighth term). In contrast to either the AMBER or

CHARMM force fields, the MM3 force field does not use Coulomb’s law to

determine the electrostatic interactions (ninth term). Instead, each bond in the

molecule is assigned a bond dipole moment (μ) and the total electrostatic

interaction is the sum of all possible dipole�dipole interactions. The dihedral

angle made by the bond dipoles is represented by χ and θ, which are the

angles made by each of the bond dipoles with the r vector.
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In many cases, the MM3 force field can be used to calculate heats of forma-

tion, conformational energies, and rotational barriers to an accuracy that is close

to experimental uncertainty (Allinger et al., 1989). Vibrational frequencies and

thermodynamic properties are also calculated accurately using the MM3 force

field (Lii and Allinger, 1989a,b). Improvements on the MM3 potential include

parameters obtained from ab initio data (Shannon et al., 2019).

A common feature of many realistic force fields is that of atom type. The atom

type is defined by factors such as atomic number, hybridization, and details of the

local environment. For example, to apply a force field to a molecule containing car-

bon atoms, a distinction must be made between sp3, sp2, and sp hybridized carbons,

which generate tetrahedral, trigonal, and linear geometries, respectively. This dis-

tinction is important because the geometry of the atom type affects the values of

the potential parameters. The local environment also affects the force field para-

meters. The MM3 force field distinguishes between carbonyl, cyclopropane, cyclo-

propene, radical, and carbonium ion carbon atoms. The AMBER approach assigns

a different atom type to carbon atoms at the junction between a six- and five-

member ring compared with carbon atoms in an isolated five-member ring.

3.10.1.6 UFF

Complicated rules for assigning atom types means that it is often difficult to

obtain parameters for different categories of molecules. Rappé et al. (1992)

attempted to address this limitation by proposing a universal force field (UFF)

using parameters estimated from general rules based only on the element, its

hybridization, and its connectivity. The functional form of the UFF is
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where the different terms represent bond stretching, angle bending, out-of-

plane bending, torsional motion, nonbonded interaction, and electrostatic

interactions, respectively. The angle-bending term is a general term valid for

all linear and nonlinear geometries. The torsional term includes an improved

description of torsional periodicities and minima. Parameters for the UFF
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have been evaluated for elements (Rappé et al., 1992), organic molecules

(Casewit et al., 1992a), and main group compounds (Casewit et al., 1992b).

In common with other force fields, it requires knowledge of the charge distri-

bution of the interaction sites of the molecule (Rappé and Goddard, 1991).

3.10.1.7 CFF93

Instead of using experimental data directly, an intermolecular potential can

be obtained by applying the principles of quantum mechanics. The advantage

of using quantum mechanics is that there are an unlimited number of observ-

able quantities, which can be fitted to the potential. The parameters can also

be derived for any functional group that can be calculated using quantum

mechanics. For example, a force field has been developed (Maple et al.,

1994) that reproduces the Hartree�Fock energy surface for alkane mole-

cules. The relative energies and the first and second Cartesian energy deriva-

tives obtained from quantum mechanics for alkanes were fitted to an

intermolecular potential. Hwang et al. (1994) extended the approach to

include alkyl functional groups. The CFF93 is given by Eq. (3.93).
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The first three terms in Eq. (3.93) represent the contributions from bond

stretching, bond bending, torsional motion, and out-of-plane bending, respec-

tively. Similar terms have been incorporated in the other force fields dis-

cussed previously. However, unlike other models, the CFF93 emphasizes the

importance of cross interactions. The fourth, fifth, and sixth terms represent

the coupling of different bond stretches, different bending motions, and

stretching and bending, respectively. The coupling of different bond stretch-

ing with torsional motion is represented by the seventh and eighth terms.

The ninth term couples bond bending with torsional motion. The tenth term

represents the effect of coupling different bond bending and torsional

motions. The remaining terms are the LJ and Coulombic potentials of the

nonbonded atoms, respectively. All twelve terms are necessary for the quan-

titative representation of the quantum mechanical data and many of the terms

make an equal contribution to the energy.

3.10.2 Comparison of force fields and future improvements

The already discussed force fields introduce an increasing degree of sophisti-

cation to the description of the physics of molecules. How do the results

obtained for the various force fields compare? The answer to this question is

complicated by the fact that the parameters for the various potentials cannot

be extended to all molecules. The large number of possible permutations

within a force field software package is also a daunting impediment for com-

parative purposes. This makes a definitive comparison between forces fields

an impossible task. Inevitably, the usefulness of a particular force field will

depend on the properties for which it is applied to. Comparisons of several

different types of force fields are available (Roterman et al., 1989 & b;

Hwang et al., 1994; Landis et al., 1995; MacKerell, 2004; Hornak et al.,

2006; Becker et al., 2013; Vanommeslaeghe and MacKerell, 2015; Sun and

Deng, 2017; Rinker, 2018; Bedrov et al., 2019). There is no force field that

is consistently superior for all applications.

Landis et al. (1995) reported a comparison of the parameters required for

CHARMM and MM3 force fields. Their analysis indicated that there was a

considerable difference in the parameter values required by the different

potentials. Rappé et al. (1992) compared the results obtained for UFF

and the MM3 force field for some organic molecules. The comparison indi-

cated that MM3 force field is less prone to error than the UFF. On the other

hand, the UFF can be applied to a large variety of different combinations of

atoms, whereas the large number of parameters required restricts the variety

of molecules supported by force fields such as MM3.

Roterman et al. (1989a,b) compared the AMBER, CHARMM, and

ECEPP force fields for peptides. These force fields gave significantly differ-

ent results for the minimum energy configurations. Hwang et al. (1994) com-

pared the structures predicted by the AMBER, MM3, and CFF93 force fields
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with experimental data. The bond angles for many classes of molecules were

calculated more accurately with the CFF93 than the AMBER model. The

MM3 and AMBER methods can be used to calculate both rotational barriers

and conformational energy differences with a reasonable degree of accuracy.

However, the CFF93 model provides the most accurate predictions. Asensio

et al. (1995) have concluded that the AMBER, CVFF, and CFF91 force

fields predict the observed conformation of methyl α-lactoside with a similar

degree of accuracy.

A common feature of the AMBER, CHARMM, ECEPP and MM3,

OPLS, and UFF models is the assumption that the charge distribution associ-

ated with each atom is independent of the conformation of the molecule.

These models are isotropic and no account is taken of the rearrangement of

valance electron found in molecular bonds. Consequently, site�site interac-

tions are often not transferable to other molecules within the same group.

Anisotropic site�site potentials (Price, 1988; Price and Stone, 1992) have

been reported, which overcome this deficiency. The results obtained from

anisotropic models are generally better than that can be obtained for isotropic

models, particularly if hydrogen bonding is involved.

An alternative to generalized force fields is to develop force fields for

either a specific class of molecules or a particular application. An AA force

field for liquid ethanol has been devised (Müller-Plathe, 1996) and used in

MD simulations. Nath et al. (1998a) reported successful simulations of the

VLE of alkanes modeled via a potential dubbed “NERD.” The NERD poten-

tial combines nonbonded interaction with elements of intramolecular interac-

tion in the spirit of molecular mechanics. The potential yields satisfactory

agreement with experiment without using adjustable parameters (Nath et al.,

1998b). The transferable potentials for phase equilibria (TraPPE) was specif-

ically developed (Martin and Siepmann, 1998) for phase behavior. It has

undergone continual development (Shah et al., 2017) for phase behavior,

providing a very good representation of VLE (Eggimann et al., 2020).

Historically, force fields have been developed without accounting for the

effect of polarization, but the importance of this contribution is being

increasingly recognized (Vanommeslaeghe and MacKerell, 2015; Bedrov

et al., 2019) and incorporated into existing force fields. The statistical

mechanics (Gray and Gubbins, 1984) of polarization is well understood, but

it poses several computational challenges (Li et al., 2008) resulting in the

use of various approximations. Apart from the effectiveness of these approxi-

mations, they are often applied to force fields with known theoretical short-

comings such as the widespread use of the LJ potential for nonbonded

interactions. In principle, accounting for polarization should have an impor-

tant influence on the properties of real fluids

Increasingly ab initio data are being used to inform the development (Sun

and Deng, 2017) of force fields. The use of ab initio data to determine the

entire force field of even a simple system is challenging (Chapter 4). Instead,

96 Molecular Simulation of Fluids



calculations from first principles are primarily used to determine key aspects,

such as the constants involved in bond stretching and bending.

The determination of force field parameters is both very time consuming

and subject to interrelated influences that inhibit efficient changes. For

example, the parameters of some force fields in biomolecular simulations

have been developed assuming a particular model for water and would need

to be re-evaluated for a new water model. In this context the application of

machine learning (Huang and von Lilienfeld, 2021; Keith et al., 2021) has

the potential of greatly facilitating the selection of parameters for new

situations.

3.11 Case study: Models for water

Water is arguably the most-widely studied molecule. However, despite an

enormous scientific effort spanning several decades (Chialvo and Cummings,

1999; Guillot, 2002; Vega et al., 2009), our understanding of its behavior

remains incomplete. There are at least 85 different models for water, many

of which have been evaluated elsewhere (Shvab and Sadus, 2016). For our

purposes, water provides us useful illustration of the development of models

for molecular simulation.

3.11.1 Rigid models

In principle, water is a simple triatomic nonlinear molecule with a H-O-H

bond angle of 104.5�. Although it is well-understood that molecules flex, a

simplifying approximation is to treat the bonds as complexly rigid. These

considerations suggest that the simplest realistic model would involve three

sites, corresponding to the presence of the oxygen and hydrogen atoms

(Fig. 3.11).

The nonlinear geometry gives rise to a dipole moment, which results in a

large dipole moment. The contribution from the dipole moment can be

obtained by situating partial charges of the atoms such that electro-neutrality

FIGURE 3.11 The structure of water, identifying intramolecular terms, constituent atoms, and

an additional site (M) used to evaluate its properties.
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is observed. In addition, nonbonded oxygen�oxygen, oxygen�hydrogen,

and hydrogen�oxygen dispersion interactions can be envisaged between dif-

ferent pairs of water molecules. We would expect that the oxygen�oxygen

interactions would make the dominant contribution, which could be approxi-

mated via the LJ potential. A simple potential corresponding to these consid-

erations is
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where rooij and rij are the distances between the oxygen sites and charged sites

of two molecules, respectively; e5 1.602176634 3 10219 C is the charge

(Tiesinga et al., 2021) such that the charges are conveniently represented as

multiples of e. Notice that in Eq. (3.93), there is no contribution from the

bond angle because in a ridged model it is invariant. The triangular configu-

ration is obtained by specifying the relative positions of the oxygen and

hydrogen atoms according to the bond lengths and bond angle.

Eq. (3.94) is the three-site simple point charge (SPC) potential proposed

by Berendsen et al. (1981). The SPC models give a good description of the

dielectric constant but it does not predict adequately phase equilibria, partic-

ularly at high temperatures (de Pablo et al., 1990). One example of the many

reported improvements is to allow the charges to fluctuate (Martin et al.,

1998). The SPC model also does not correctly predict the energy, self-

diffusion constant, and radial distribution function. However, its accuracy

can be improved (Berendsen et al., 1987) by applying a polarization

correction

ΔUpol 5
μl2μg

� �2
2α

; ð3:95Þ

where μl is the dipole moment of the molecule, μg is the dipole moment of

the isolated molecule, and the α is the isotropic scalar polarizability of water

molecule. Eq. (3.95) does not change Eq. (3.94), but simply results in new

values of the model’s parameters (Table 3.2). This extended version (SPC/E)

of the SPC model reproduces the vaporization enthalpy and more accurately

predicts features such as the critical behavior, pair correlation, and dielectric

constant reasonably well (Guillot, 2002). Deficiencies in its accuracy include

slightly high self-diffusion coefficients and specific heat capacities (Mao and

Zhang, 2012).

The SPC and SPC/E potentials are three-site models with the partial

charges associated with the position of the oxygen and hydrogen atoms. This

is intuitively the most obvious distribution of charges. By definition, a model

is a theoretical abstraction of reality and as such it does not have to conform

to either our intuition or the actual situation. An improved representation of
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TABLE 3.2 Summary of intermolecular bond distance, bond angle, and energy parameters for water models.

Model q1 (e) q2 (e) rOH (Å) rOM (Å) θ (�) φ (�) σ (Å) ε (kJ/mol)

SPCa 0.41 2 0.82 1.0 109.47 3.166 0.65

SPC/Eb 0.4238 2 0.8476 1.0 109.47 3.166 0.65

SPC/Fwc 0.417 2 0.834 1.012 113.24 3.1655 0.6507

TIP4Pd 0.52 2 1.04 0.9572 0.15 104.52 52.26 3.154 0.65

TIP4P/2005e 0.5564 2 1.1280 0.9572 0.1546 104.52 52.26 3.1589 0.7749

TIP5Pf 0.241 2 0.241 0.9572 0.70 104.52 109.47 3.12 0.6694

aBerendsen et al., 1981.
bBerendsen et al., 1987.
cWu et al., 2006.
dJorgensen et al., 1983.
eAbascal and Vega, 2005.
fMahoney and Jorgensen, 2000.



the properties of water can be obtained by introducing other partial charge

sites that are not associated with the constituent atoms. Jorgensen et al.

(1983) introduced a fourth charge site (Fig. 3.11) to generate a transferable

intermolecular potential 4-point (TIP4P) model for water, which was later

re-parametrized (Abascal and Vega, 2005) to yield TIP4P/2005. The TIP4P/

2005 model accurately predicts (Shvab and Sadus, 2016) properties such as

the overall phase diagram, VLE densities, and the surface tension. The addi-

tion of a fifth site (TIP5P) (Mahoney and Jorgensen, 2000) improves the pre-

diction of densities over a wide range of temperatures and more accurately

determines the configurational energy.

A common feature of the various multisite models is that the method for

calculating the energy of interaction remains the same via Eq. (3.93). The

only changes are (a) more sites need to be included and (b) the values of the

potential parameters are different.

3.11.2 Flexible models

A simple improvement to water models can be achieved (Wu et al., 2006) by

allowing the bonds to be flexible. For example, The SPC/Fw model main-

tains the overall three-site SPC geometry, while allowing both the bond

angle and bond distance to change. Therefore, the calculation of the energy

requires the following intramolecular contribution to be added to Eq. (3.93),

uintra rð Þ5
Kb roh12rooh
� �2

1 roh22rooh
� �2h i

2
1

Kθ θ+HOH2θo+HOH

� �2
2

ð3:96Þ

where rooh and θo+HOH are the equilibrium bond length and bond angle in the

gas phase. This simple addition results in significant improvements to the pre-

diction of VLE (Raabe and Sadus, 2007), dielectric behavior (Raabe and

Sadus, 2011) and transport properties (Raabe and Sadus, 2012). A partial

explanation for the improved agreement with experiment is that bond flexibil-

ity mimics the effects of polarization. This is particularly useful as polarization

is computationally expensive (Li et al., 2008; Shvab and Sadus, 2016).

3.11.3 Polarizable models

It is becoming increasingly apparent that progress in predicting the properties

of water requires the explicit inclusion of polarization (Chapter 4). A review

of polarizable models is given elsewhere (Shvab and Sadus, 2016). An atomic

multipole optimized energetics for biomolecular applications (AMOEBA)

model has been proposed (Ren and Ponder, 2003). Evaluating polarization is

computationally expensive and a simplified version (iAOMEBA, where “i”

denotes inexpensive) has also been developed (Wang et al., 2013). Although

initially developed for biomolecular applications, AMOEBA yields results for
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thermodynamic properties (Shvab and Sadus, 2016) that are of superior accu-

racy to those obtained for rigid models. A systematic approach to improving

water models is further examined in Chapter 4.

3.12 Application to mixtures

The proceeding intermolecular potentials and force fields have been developed

exclusively for the properties of pure components. However, it is rare in nature

for substances to be isolated in their pure state and the calculation of the proper-

ties of real materials requires us to account for the properties of the mixtures.

Unlike conventional calculations (Wei and Sadus, 2000), which inevitably

require invoking a theory of mixtures, molecular simulations can be easily

extended from pure systems to mixtures by the addition of different molecular

species. However, a way is required to account for interactions between the con-

tributions of interactions between dissimilar molecules. This is almost invariably

achieved via combining rules for the various intermolecular parameters. Most

commonly, the Lorentz�Berthelot rules (Wei and Sadus, 2000) are used.

σij 5
σi 1σj

2
ð3:97Þ

εij 5
ffiffiffiffiffiffiffi
εiεj

p ð3:98Þ
Eq. (3.97) is exact only for the case of HS, and most real molecules do

not behave as HS as is apparent from the realistic potentials discussed

previously. It has also been known for a long time (Guggenheim, 1952)

that Eq. (3.98) has no theoretical basis. Eqs. (3.97) and (3.98) do not

accurately represent (Delhommelle and Millié, 2001) the properties of the

relatively simple case of the noble gases, let alone molecules of greater

complexity and interest such as proteins and macromolecules. Many alter-

native combining rules have been proposed (Wei and Sadus, 2000;

Hasalm et al., 2008); however, none are sufficiently accurate to avoid the

use of adjustable parameters to fully optimize agreement between theory

and experiment. This means that the predictive usefulness of molecular

simulation is restricted to relatively few mixtures.

An alternative to averaging the potential parameters is to average the con-

tributions of the intermolecular potentials (Stiegler and Sadus, 2015):

uij 5
uα 1 uβ

2
; ð3:99Þ

where the two distinct intermolecular potentials are denoted by uα and uβ.

Using Eq. (3.99), the force (fij) between the two particles is obtained from

f ij 52
rij

2rij

duα

drij
1

duβ

drij


 �
: ð3:100Þ
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For a binary mixture of molecules interacting via the LJ and 10�5 LJ/M

potential, Eq. (3.99) yields:

u α 6¼ βð Þ5 2εij
σij

rij


 �12

1
σij

rij


 �10

2
σij

rij


 �6

2
σij

rij


 �5
" #

ð3:101Þ

Comparison of simulations (Stiegler and Sadus, 2015) using Eq. (3.101)

with results obtained by combining the LJ/M potentials by averaging the expo-

nents indicates good agreement for a range of thermodynamic properties. The

main advantage of Eq. (3.99) is that different intermolecular potentials can be

used for the individual mixture components. In contrast, the traditional combin-

ing rule approach is limited to mixtures with both common potentials and com-

mon intermolecular parameters.

3.13 Summary

Ultimately the development of intermolecular potentials and force fields

should be guided by theory. Although progress is being achieved toward this

goal via, for example, the application of ab initio data, most potentials are

empirically based and should be regarded as effective pair potentials.

Nonetheless, a wide variety of potentials are available, many of which have

not been evaluated fully. The force fields are particularly useful for the prop-

erties of macromolecules and biological systems, capturing many details of

the underlying physics of both inter- and intramolecular interactions. An

ongoing challenge is that potentials are developed for pure systems and the

predictive capability of the simulation of mixtures is restricted by the need

to use combining rules to determine the interactions between dissimilar

molecules. This is likely to benefit from future developments in the applica-

tion of machine learning.
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Máte, Z., Szalai, I., Boda, D., Henderson, D., 2011. Heat capacities of dipolar Yukawa model

polar fluid. Mol. Phys. 109, 203�208.

Mausbach, P., Sadus, R.J., 2011. Thermodynamic properties in the molecular dynamics ensem-

ble applied to the Gaussian core model fluid. J. Chem. Phys. 134, 114515.

Mausbach, P., Ahmed, A., Sadus, R.J., 2009. Solid-liquid phase equilibrial of the Gaussian core

model fluid. J. Chem. Phys. 131, 184507. Erratum: J. Chem. Phys. 132, 019901 (2010).

Mayer, J.E., Mayer, M.G., 1940. Statistical Mechanics. John Wiley & Sons, Ney York, p. 271.

Mejı́a, M., Herdes, C., Müller, E.A., 2014. Force fields for coarse-grained molecular simulations

from a corresponding states correlation. Ind. Eng. Chem. Res. 53, 4131�4141.

Mick, J.R., Barhahi, M.S., Jackman, B., Rushaidat, K., Schwiebert, L., Potoff, J.J., 2015.

Optimized Mie potentials for phase equilibria: application to noble gases and their mixtures

with n-alkanes. J. Chem. Phys. 143, 114504.

Mie, G., 1903. Zur Kinetschen Theorie der einatomigen Körp. Ann. Phys. 316, 657�697.

Mognetti, B.M., Virnau, P., Yelash, L., Paul, W., Binder, K., Müller, M., MacDowell, L.G.,

2008. Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte

Carlo studies of the phase behavior. Phys. Chem. Chem. Phys. 11, 1923�1933.

Momany, F.A., McGuire, R.F., Burgess, A.W., Scheraga, H.A., 1975. Energy parameters in

polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions,

hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring

amino acids. J. Phys. Chem. 79, 2361�2381.

Monson, A.P., Rigby, M., Steele, W.A., 1983. Non-additive energy effects in molecular liquids.

Mol. Phys. 49, 893�898.

Mooij, G.C.A.M., de Leeuw, S.W., Smit, B., Williams, C.P., 1992. Molecular dynamics studies

of polar/nonpolar fluid mixtures. II. Mixtures of Stockmayer and polarizable Lennard-Jones

fluids. J. Chem. Phys. 97, 5113�5120.

Moradzadeh, A., Aluru, N.R., 2021. Understanding simple liquids through statistical and deep

learning. J. Chem. Phys. 154, 204503.

Mueller, T., Hernandez, A., Wang, W., 2020. Machine learning for interatomic potential models.

J. Chem. Phys. 152, 050902.

Mulero, A. (Ed.), 2008. Theory and Simulation of Hard-Sphere Fluids and Related Systems.

Springer, Berlin.

Müller, E.A., Gelb, L.D., 2003. Molecular modeling of fluid-phase equilibria using an isotropic

multipolar potential. Ind. Eng. Chem. Res. 42, 4123�4131.

Müller-Plathe, F., 1996. An all-atom force field for liquid ethanol - properties of ethanol-water

mixtures. Mol. Sim. 18, 133�143.

Munn, R.J., 1964. Interaction potential of the inert gases. I. J. Chem. Phys. 40, 1439�1446.
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Chapter 4

Ab initio, two-body and three-
body intermolecular potentials

In Chapter 3 details of effective pair potentials and force fields that are used

in molecular simulation to evaluate the contribution to energy via Eq. (3.1)

were given. In this chapter, we examine both two- and three-body intermo-

lecular potentials used to calculate energy via Eq. (3.2). These potentials can

be obtained from empirical, theory, and ab initio sources.

It is common to assume that intermolecular interactions are pairwise

additive. Two-body interactions dominate other multi-body interaction and

pairwise potentials alone are often sufficiently accurate. However, from a

theoretical perspective, it is well known that some aspects of intermolecular

interactions cannot be exclusively pairwise additive. Strictly, pairwise addi-

tivity only applies to electrostatic, magnetic, and short-range penetration

interactions. To some extent, many-body effects will be present in induction,

dispersion, resonance, exchange, repulsion, and charge transfer interactions.

In particular, many-body effects are likely to exert a strong influence on

induction energy. For example, Wilson and Madden (1994) have reported

that many-body induction effects have a crucial role in stabilizing the crystal

structures of CdCl2 and MgCl2.

Despite the evidence for deviations from pairwise additivity, molecu-

lar simulations of liquids have been confined almost exclusively to pair-

wise potentials. However, with the increasing sophistication of both

experimental and theoretical techniques, it is likely that many-body inter-

actions will be required for the quantitative description of liquids. This is

particularly the case for large molecules and polar molecules, which are

likely to be influenced substantially by many-body interactions. The

increasing importance of many-body interactions with molecular size and

complexity is illustrated in Fig. 4.1, which shows that the nonadditive dis-

persion coefficient (v) increases progressively with molecular size relative

to the two-body dispersion coefficient (C6). It has been reported (Barker

et al., 1974; Rittger, 1990c) that calculating three-body interactions is

required to obtain satisfactory agreement with experiment for the proper-

ties of xenon. In a dipolar system, the effect of three-body interactions

can be expected to be considerably greater because of additional nonaddi-

tive effects from induction.
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Advances in computational chemistry have witnessed the development of

intermolecular potentials from first principles or ab initio data. Ab initio poten-

tials can be accurate alternatives to empirically derived potentials. As discussed

below, ab initio calculations can be used to determine the interaction between

atoms from first principles. The information obtained from ab initio calculations

can be fitted to obtain an ab initio potential that can be employed in both Monte

Carlo (MC) and molecular dynamics (MD) simulations.

The current state-of-the-art for ab initio potentials is largely confined to

the two-body properties of simple atoms or small polyatomic molecules. Ab

initio potentials for large molecules typically include ab initio data for part

of the molecule’s properties (Sun and Deng, 2017), such as bond-stretching

terms, rather than being fully ab initio potentials. Therefore, it is useful to

make the distinction between fully ab initio potentials and potentials

informed or augmented by ab initio data. Obtaining ab initio potentials for

three-body interactions is more challenging than the two-body case.

Consequently, most three-body potentials are obtained from conventional

theory or empirical considerations. A useful strategy is to augment ab

initio two-body potentials with three-body potentials. The combination facili-

tates the prediction of the properties of real systems.

4.1 Ab initio calculations

The objective of ab initio methods is to calculate molecular properties from the

Schrödinger equation. Typically, the Born�Oppenheimer approximation is used,

FIGURE 4.1 Relative importance of the nonadditive triple-dipole dispersion coefficient with

respect to molecular size. Values are given for helium, argon, krypton, and xenon.

118 Molecular Simulation of Fluids



which assumes that the movement of the nuclei and electron are independent of

each other. The electronic energy is obtained by solving the Schrödinger equation

for the electrons. This results in a wave function, which is used to calculate prop-

erties such as the molecular multipole moments. The electronic energy as a func-

tion of nuclear coordinates generates a potential energy surface, which is the

potential energy term in the Schrödinger equation. The other properties of the

molecule are functions of the potential energy.

Approximations are required to solve the Schrödinger equation. The most

common methods used are systematic corrections to the Hartree�Fock (HF)

or self-consistent field (SCF) models and density functional theory (DFT).

Sandré and Pasturel (1997) have reviewed the use of ab initio calculations in

the context of molecular dynamics. The description of the ab initio approach

given here is limited to the key underlying principles because the topic has

been discussed in detail elsewhere (Scheiner, 1997; Marx and Hutter, 2009).

The current state-of-the-art for ab initio potentials is to determine the

potential energy curve using a supermolecular calculation up to the coupled

cluster (CC) with single, double, and perturbative triple excitation [CCSD

(T)] contributions (Raghavachari et al., 1989; Stone, 2013). In a few cases

(Hellmann et al., 2021) this can be taken to up to the triple and quadruple

level with pentuple excitations [CCSDTQ(P)]. Here, we will mainly focus on

contemporary potentials, which have benefited from the latest advances in

computational chemistry.

4.1.1 Hartree�Fock method

The HF approach commonly involves expanding molecular orbitals in a con-

tracted Gaussian set and evaluating integrals over the contracted Gaussians.

The general form of the integrals is:

ðij\klÞ5
ðð
χið1Þ�χjð1Þ

1

r12
χkð1Þ�χlð1Þdτ1dτ2 ð4:1Þ

To solve Eq. (4.1), we must first determine the basis functions (χI). The

most-widely used basis functions are

χ5RlkðrÞ
X
i

ciNiexpð2αir
2Þ; ð4:2Þ

where Rlk is a solid harmonic, r � (r,θ,ϕ) is the position of the electron rela-

tive to the nucleus, Niexp(-αir
2) is a primitive Gaussian function, Ni is a nor-

malizing factor, and ci is an expansion coefficient, which optimizes the energy

of the isolated atom. Generally, there are approximately N 4/8 two-electron

integrals for a calculation involving N basis functions. It is common to solve

these integrals using software packages such as GAUSSIAN.1

1. https://gaussian.com
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The basic HF method cannot be used to calculate the intermolecular

energy because it does not consider the effect of electron correlation.

However, it can be extended (Friesner, 1991) to include electron correlation

effects. Some examples include perturbation expansion (Møller and Plesset,

1934); optimized multiconfigurational wave function methods (MCSCF)

(Shepard, 1987); valence bond (VB) methods (Goddard and Harding, 1978);

CC, and configuration interaction (CI) methods (Bartlett, 1981). These addi-

tional refinements are at the expense of a considerable increase in computa-

tional cost. If Nb denotes the number of basis sets, the HF electron

correlation algorithms are typically of order Nb
5 to Nb

8. Consequently, appli-

cations of the HF method are confined generally to relatively small mole-

cules. The HF plus dispersion (HFD) method is an alternative to a full ab

initio calculation. The HFD approach combines an ab initio calculation with

an empirical expression for dispersion. The quality of both the HF and post-

HF predictions depends on the basis set. Currently, the best basis sets are

augmented correlation-consistent sets such as aug-cc-pVnZ (n5D, T, Q, 5),

which allow an extrapolation to infinitely large basis sets.

4.1.2 Density functional theory

DFT is an alternative to the HF method. Instead of calculating the wave

functions, DFT evaluates the electron density profile (n(r)). The DFT method

is based on the work of Hohenberg and Kohn (1964), which postulated that

the ground-state properties of a system are functions of charge density. The

total electronic energy is a function of the electron density (ρ),

EðρÞ5EKEðρÞ1ECðρÞ1EHðρÞ1EXCðρÞ; ð4:3Þ
where EKE, EC, EH, and EXC are the contributions from kinetic energy, elec-

tron�nuclear interaction, electron�electron Coulombic energy, and

exchange and correlation, respectively. It is apparent from Eq. (4.3) that the

density determines the ground-state properties of the system.

The general procedure for a density functional calculation is to express

the various contributions to Eq. (4.3) in terms of the density and attempt to

optimize the energy with respect to density in accordance with any con-

straints on the system. Eq. (4.3) can be written as,

EðρÞ5 2
Xð

ψi

 
2
r2

2

!
ψidv1

ð
VnuclearρðrÞdv1

1

2

ðð
dvdv0

ρðrÞρðr0Þ
r2 r0j j

1EXC½ρðrÞ�
; ð4:4Þ

where ψ is the spatial orbital and ρ(r) the charge density at a point r. The

charge density is the sum over occupied molecular orbitals of ψ2.
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ρðrÞ5
XNoccupied

i51

ψiðrÞ
 2 ð4:5Þ

To complete the evaluation of Eq. (4.5), an approximation for the

exchange-correlation term is required. Typically, a local density approxima-

tion is used, which assumes that the charge density varies slowly throughout

a molecule. Therefore, a localized region of a molecule behaves like a uni-

form electron gas and

EXC½ρðrÞ�D
ð
ρðrÞεXC½ρðrÞ�dr; ð4:6Þ

where εXC is the exchange-correlation energy per particle in a uniform elec-

tron gas. The exchange energy of a uniform electron gas can be obtained

from a variety of analytical expressions. For example, Kohn and Vashista

(1983) proposed be following simple relationship:

εXCðρðrÞÞ5 2 0:78558770½ρðrÞ�1=3: ð4:7Þ
Kohn and Sham (1965) showed that E could be found from the solution

of single-particle equations of the form:

2
r2

2
1VnuclearðrÞ1

ð
dv0

ρðrÞ
r-r0j j 1VXCðrÞ

� 	
ψiðrÞ5 εiψiðrÞ; ð4:8Þ

where the exchange-correlation function VXC is obtained from:

VXCðrÞ5
dEXC½ρðrÞ�

dρðrÞ : ð4:9Þ

The most important advantages of the DFT approach compared with

HF-based methods are that electron correlations are included from the start

and that it is considerably less expensive computationally. A DFT calculation

scales typically as Nb
3 compared with Nb

5 to Nb
7 for HF calculations. The

computational cost is not affected greatly by replacing the local density

approximation with more accurate alternatives. However, unlike HF meth-

ods, DFT cannot be improved systematically. The HF methods are also more

accurate than DFT calculations for small molecules.

DFT has been used with mixed success to obtain intermolecular poten-

tials. Good results have been reported for water (Xantheas, 1995). However,

a comparison of DFT results with experiment for hydrogen bonded complex

indicated generally poor agreement (del Berne et al., 1995). Poor results

have also been reported (Pérez-Jordá and Becke, 1995) for the application of

DFT for some inert gases. A weakness of conventional DFT is that current

density functionals do not describe intermolecular interaction energy as

decaying according to r26 at large separations. Further, the errors associated

with numerical quadratures are similar in magnitude to the intermolecular
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interaction energies. Therefore, the prediction of dispersion interaction often

fails; however, some progress in improving this situation has been reported

(Johnson et al., 2009).

It should be noted that the earlier issues are not fundamental limitations

of the DFT method, and they may be overcome in the future. It is an area of

ongoing research interest and several comprehensive reviews of DFT are

available (Parr and Yang, 1990; Trickey, 1990; Friesner, 1991; March, 1992;

Orio et al., 2009; Cohen et al., 2012; Kryanko and Ludeña, 2014; Bretonnet,

2017; Verma and Truhlar, 2020).

4.1.3 The Car�Parrinello method

The accuracy of conventional simulations is limited to the accuracy of the inter-

molecular potential used. Car and Parrinello (1985) have combined molecular

dynamics with some elements of electronic-structure theory. The Car�Parrinello

molecular dynamics (CPMD) method provides an alternative to the conventional

development of intermolecular potentials by determining interactions “on-the-fly.”

The main element of their approach is the formulation of a new Lagrangian

(Chapter 2) function from which the equations of motion are derived for the

nuclear coordinates and electronic orbitals. The Lagrangian function is

L5
P

i

1

2
μ
ð
Ω
d3r _ψi

 2 1X
I

1

2
MI

_R
2

I 1
X

v

1

2
μv _α

2
v

2E fψig; fRIg; fαvg
� � ; ð4:10Þ

where the orbitals ψi are subject to holonomic constraints.ð
Ω
d3rψ

�
i ðr; tÞψjðr; tÞ5 δij ð4:11Þ

In Eq. (4.10), E is the energy; {RI} are nuclear coordinates; {αv} are all the

possible external constraints such as volume Ω; MI are the physical ionic masses;

and μ and μv are arbitrary parameters and the dot indicates a time derivative.

The definition of the Lagrangian function generates a dynamics for the

{ψi}’s, {RI}’s, and {αv}’s through the equations of motion

μ €ψi ðr; tÞ 52
δE

δψ
�
i ðr; tÞ

1
X

k
Λikψkðr; tÞ

MI
€RI 52rRI

E

μv €αv 52
@E

@αv

9>>>>>=>>>>>;
; ð4:12Þ

where Λik are the Lagrange multipliers (Chapter 2) introduced to satisfy the

constraints in Eq. (4.10). The ion dynamics in Eq. (4.10) have a physical
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meaning, whereas the dynamics associated with the {ψi}’s and {αv}’s are

fictitious. From Eq. (4.10), the kinetic energy Ekin is:

Ekin 5
X

i

1

2
μ
ð
Ω
d3r _ψi

 2 1X
I

1

2
MI

_R
2

I 1
X

v

1

2
μv _α

2
I : ð4:13Þ

In principle, these equations can be used for ab initio molecular dynamics

simulation for which the intermolecular potential is not specified in advance.

Variations on the CPMD method have been discussed by Payne et al. (1990,

1992) and Marx and Hutter (2009). Tuckerman and Parrinello (1994a,b) have

developed strategies for integrating the equations of motion in Car�Parrinello

simulations. The technique has also been applied (Tuckerman et al., 1996) to

path integral molecular dynamics. Woo et al. (1997) have reported an interesting

combination of the CPMD method with quantum mechanics and molecular

mechanics principles. CPMD has been applied to a variety of situations includ-

ing material investigation (Sahoo and Nair, 2016), biomolecular chemical reac-

tions (Hofbauer and Frank, 2012), and water (Frank, 2020).

4.2 Two-body atomic potentials

In Chapter 3, we emphasized the distinction between effective pairwise

potentials and two-body potentials. The square well, Lennard-Jones (LJ), and

exp-6 potentials are generic potentials, which can be applied to a wide vari-

ety of fluids with a varying degree of accuracy. In contrast, considerable

effort has been made in developing highly accurate intermolecular potentials

that are specific to the two-body interactions of particular atom or class of

atoms. The state-of-the-art is to obtain two-body interactions form ab initio

data; however, reasonably accurate two-body potentials have been obtained

via the careful study of experimental two-body data such as the second virial

coefficients.

4.2.1 Empirical potentials

The noble gases have been the focus of the work to obtain two-body potentials

from the analysis of experimental data. The resulting potentials have been com-

pared extensively (Klein, 1984; Klein and Venables, 1976; Rowlinson, 2002).

Many of the empirical two-body potentials have the following general form:

u2ðrÞ5
Xn
i51

fiðrÞexpðgðrÞÞ2
Xm
j5o

hðrÞC2j16

k1 r2j16
; ð4:14Þ

where f(r), g(r), and h(r) are some functions of intermolecular separation (r)

and k is a constant, which is often 0. Eq. (4.14) combines an exponential

contribution from repulsion with attractive terms from the dispersion coeffi-

cients (C2j16). The nature of Eq. (4.14) has been informed by the long his-

tory of developing effective pairwise potentials as discussed in Chapter 3.
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Several workers (Bobetic and Barker, 1970; Barker et al., 1971; Maitland

and Smith, 1971) have assessed experimental data to obtain accurate poten-

tials for argon. The potentials of Barker and Pompe (1968) and Bobetic and

Barker (1970) have the following form:

u2ðrÞ5 ε
X5
i50

Aiðx21Þiexp αð12 xÞ½ �2
X2
j50

C2j16

δ1 x2j16

" #
: ð4:15Þ

In Eq. (4.15), ε is the depth of the potential and the minimum separation

(rm), x5 r/rm and the other parameters are obtained by fitting the potential to

experimental data for molecular beam scattering, second virial coefficients,

and long-range interaction coefficients. The contribution from repulsion has

an exponential dependence on intermolecular separation and the contribution

to dispersion of the C6, C8, and C10 coefficients are included. Comparing

Eq. (4.15) to Eq. (4.14) yields:

fiðrÞ5 εAiðx21Þi
gðrÞ5αð12 xÞ

hðrÞ5 ε
k5 δ

9>>=>>;: ð4:16Þ

The only difference between the Barker�Pompe and Bobetic�Barker poten-

tials is that a different set of parameters is used in each case. Later, Barker et al.

(1971) proposed a linear combination of the two potentials, which is known

commonly as the Barker�Fisher�Watts (BFW) potential. The BFW potential

provides an accurate representation of the two-body interactions of argon.

The molecule-specific nature of the intermolecular potential is illustrated

by attempts to use Eq. (4.15) for other noble gases such as krypton and

xenon. Barker et al. (1974) reported that modifications to Eq. (4.15) were

required to obtain an optimal representation for these larger noble gases.

They determined a potential of the form u(r)5 u0(r) 1 u1(r), where u0(r) is

identical to Eq. (4.15) and u1(r) is given by:

u1ðrÞ5 Pðx21Þ4 1Qðx21Þ5� �
exp α0ð12 xÞ½ � x. 1

0 x# 1

�
ð4:17Þ

and α’, P, and Q are additional parameters obtained by fitting data for differ-

ential scattering cross sections.

Parson et al. (1972) developed a potential based largely on molecular

beam data.

u2ðrÞ5
εexp 22βðx2 1Þ½ �2 2εexp 2β0ðx2 1Þ� �

0# x# x1
εb1 1 εðx2 x1Þ b2 1 ðx2 x2Þ½ � b3 1 ðx2 x1Þb4½ � x1 , x# x2

ε C6x
26 1C8x

28 1C10x
210

� �
x2 , x#N

8<: ð4:18Þ

The potential provides a good description of interatomic interactions in

argon.
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The potential of Aziz and Slaman (1986) gives a particularly accurate

description of the thermodynamic properties of argon. The Aziz�Salman

potential is

u2ðrÞ5 εA�expð2α�x1 β�x2Þ2 εFðxÞ
X2
j50

c2j16

x2j16
; ð4:19Þ

where

FðxÞ5 exp 2
�

D
x
21
�2� 	

x,D

1 x$D

8<: ð4:20Þ

x5 r/rm, and the other terms are adjustable parameters. In common with the

Born�Mayer potential (1932) (Eq. (3.33)), the Aziz�Salman potential uses

an exponential distance dependence for repulsion, and it includes all the dis-

persion coefficients. The contribution of the dispersion term is regulated by a

damping term (Eq. (4.20)). It is evident that the Aziz-Salman potential also

conforms to the general form given by Eq. (4.14). An accurate potential has

been proposed for helium (Tang et al., 1995) that uses elements of this

approach.

Although the empirical two-body potentials have arguably been super-

seded (see discussion below) by ab initio potentials, they remain useful for

contemporary molecular simulation applications. For example, the BFW

potential has been applied to vapor�liquid equilibria (VLE) (Marcelli and

Sadus, 1999; Sadus, 2019), solid�liquid equilibria (SLE) (Wang and

Sadus, 2006), and thermodynamic properties (Vlasiuk and Sadus, 2017b).

4.2.2 Ab initio potentials

Early ab initio potentials have been reviewed elsewhere (Klein, 1984;

Rowlinson, 2002). Woon (1993) used fourth-order Møller�Plesset (MP4) ab

initio calculations to determine the intermolecular forces between two argon

atoms. McLean et al. (1988) also reported ab initio calculations for the inter-

action between argon atoms. Woon (1993) fitted ab initio results to the fol-

lowing Morse-type potential

uðrÞ5 εQexp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ1 1Þke

Qε

s
ðr2 reÞ

" #
2 εðQ1 1Þexp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qke

ðQ1 1Þε

s
ðr2 reÞ

" #
;

ð4:21Þ
where ε the depth of the potential well, re is the equilibrium separation, ke is

the force constant, and Q is a weighting constant. Ermakova et al. (1995)

used Eq. (4.21) in a molecular dynamics study of liquid argon. They con-

cluded that the potential predicted many thermodynamic and transport
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properties accurately but many-body interactions were required to improve

the predictions of pressure, internal energy, and enthalpy.

Eggenberger et al. (1994) used ab initio calculations to obtain the follow-

ing potential for the interactions between neon atoms:

uðrÞ5 a1exp½2 a2ðr=a0Þ2�1 a3exp½2 a4ðr=a0Þ2�
1 a5exp½2 a6ðr=a0Þ2�1 a7ðr=a0Þ210 1 a8ðr=a0Þ28 1 a7ðr=a0Þ26 ; ð4:22Þ

where a0 is the Bohr radius and the remaining parameters do not have any phys-

ical meaning. Eggenberger et al. (1994) demonstrated that Eq. (4.22) could be

used to predict many of the properties of neon with reasonable accuracy. It is

interesting to compare the functional similarity of Eq. (4.22) with accurate

empirical potentials such as those proposed by Barker et al. (Eq. (4.15)) and

Aziz and Salman (Eq. (4.19)). All of these potentials have an exponential term

and contributions from r26, r28, and r210 intermolecular separations.

Ab initio potentials are typically determined by fitting the first principles

data to a suitable equation. The general form of many of these relationships is

u2ðrÞ5 γexp f ðrÞð Þ2
X8
n53

g2nðτrÞ
C2n

r2n
; ð4:23Þ

where λ and τ are the most commonly simple constants, although γ could

also be a function of r. Eqs. (4.23) and (4.15) share a high degree of mathe-

matical similarity. This is perhaps not surprising because both the experi-

mental data fitted to Eq. (4.15) and the ab initio data fitted to Eq. (4.23)

represent two-body interactions. Therefore, we would expect the optimal

strategy used to accurately fit the data from either to be broadly similar

(Deiters et al., 1999; Nasrabad et al., 2004).

The g2n(x) contribution in Eq. (4.23) is a damping function for the disper-

sion coefficients. Contemporary two-body potentials almost invariably use

the Tang�Toennies term (Tang and Toennies, 1984) given by:

g2nðxÞ5 12 e2x
X2n
k50

xk

k!
ð4:24Þ

The use of Eq. (4.24) in Eq. (4.23) introduces a nested summation into

the evaluation of the potential energy, which is computationally expensive in

a molecular simulation. This is particularly the case in MD, which also

requires the derivative of the potential to evaluate the force.

Ab initio data and accurate two-body potentials for helium (Hellmann

et al., 2007), neon (Hellmann et al., 2008a), argon (Jäger et al., 2009;

Patkowski and Szalewicz, 2010), krypton (Jäger et al., 2016), and xenon

(Hellmann et al., 2017) are available. The ab initio data for most of these

cases are illustrated in Fig. 4.2. The nature of some of these potentials, which

all use the Tang�Toennies term, are summarized in Table 4.1. The poten-

tials have been applied to the molecular simulation prediction of
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FIGURE 4.2 Comparison of potential energies for neon ( ), argon ( ), krypton ( ), and

xenon ( ) obtained from ab initio calculations (see text for sources). The lines through the data

points are only for guidance.

TABLE 4.1 Comparison of the contribution of different terms to the two-

body ab initio noble gas potentials obtained from Eq. (4.23) and using

Eq. (4.24).

Atom γ τ f(r)

Heliuma A b a1r 1 a2r
2 1 a21r

21 1 a22r
22 1 d1sinðd2r 1 d3Þ

Neonb A b a1r 1 a2r
2 1 a21r

21 1 a22r
22

Argonc A b a1r 1 a2r
2 1 a21r

21 1 a22r
22

Argond a1 b0r 1 cr21 1 dr2 1 er3 b 2α

Kryptone A b a1r 1 a2r
2 1 a21r

21

Xenonf A b a1r 1 a2r
2 1 a21r

21 1 a22r
22

aHellmann et al., 2007.
bHellmann et al., 2008a.
cJäger et al., 2009.
dPatkowski and Szalewicz, 2010.
eJäger et al., 2016.
fHellmann et al., 2017.
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thermodynamic properties (Vlasiuk and Sadus, 2017b) and VLE (Vlasiuk

and Sadus, 2017a; Deiters and Sadus, 2019a).

In addition to the various parameters summarized in Table 4.1, Eq. (4.23)

also requires five values of C2n. This means that the accurate determination

of a two-body potential from ab initio data is a major exercise in parameter

fitting. This is also the case for empirical two-body potentials. It is apparent

from Fig. 4.2 that the ab initio data are not uniformly distributed over

the full range of separations. In particular, there are relatively few data in the

vicinity of the energy minimum and the data points, and there are very large

differences in energy at small separations. There is arguably a danger of

overfitting to such limited data, resulting in a potential that reflects unrecog-

nized errors in the data. This issue is not widely appreciated in the literature.

It is apparent from Fig. 4.2 that the magnitude of the minimum in the potential

well increases with the size of the noble gas atom. The magnitudes (ε/k) for neon
(41.19 K), argon (142.223 K), krypton (200.875 K), and xenon (279.98 K) are

considerably larger than values of 34.91 K, 119.8 K, 164.0 K, and 222.2 K,

respectively, typically assigned to the LJ potential (Maitland et al., 1981). As dis-

cussed in Chapter 3, the discrepancy can be at least partly attributed to the fact

that the LJ potential does not exclusively reflect the influence of two-body interac-

tion. Multi-body effects generally make a positive contribution to interaction

energy resulting in a smaller potential well than two-body interactions alone.

The complexity of ab initio two-body potentials is a serious computa-

tional impediment to their usefulness in molecular simulation, particularly in

comparison with the effective intermolecular potentials examined in

Chapter 3 that can be easily evaluated. This impediment has been addressed

by Deiters and Sadus (2019a), via the introduction of the simplified ab initio

atomic potential (SAAP). The SAAP is given by:

u2ðrÞ5
a0
r

� �
exp a1r1 a6r

2
� �

1 a2exp a3rð Þ1 a4

11 a5r6
: ð4:25Þ

In contrast to other ab initio potential for the noble gas, the SAAP has at

most six parameters and more commonly five parameters because a65 0 for

most cases (Deiters and Sadus, 2019a). Values of the SAAP parameters are

summarized in Table 4.2. The values for helium in Table 4.2 reflect updated

ab initio data (Deiters and Sadus, 2020) that was not available when the

potential was initially parameterized (Deiters and Sadus, 2019a).

Apart from a reduced number of parameter terms, a computational advan-

tage of the SAAP is that the ab initio data can be accurately reproduced without

using the Tang�Toennies term (Eq. (4.24)). The ability of the SAAP and a mul-

tiparameter (Hellmann et al., 2017) potential using Eq. (4.23) to reproduce the

ab initio data of xenon is compared in Fig. 4.3. In general, the SAAP reproduces

the ab initio data to an accuracy of 6 0.5% with a noticeable divergence in

accuracy for r # 0.4 nm corresponding to repulsive behavior.
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TABLE 4.2 Summary of the two-body SAAP parameters (Deiters and Sadus, 2019a, 2020).

He Ne Ar Kr Xe

ε /k (K) 11.06271073 42.36165080 143.4899372 201.0821392 280.1837503

σ (nm) 0.2638439772 0.2759124561 0.3355134529 0.357999364 0.3901195551

a0=εσ 73625.983757 211781.8544 65214.64725 60249.13228 44977.3164

a1σ 29.672069031 210.89769496 29.452343340 29.456080572 29.121814449

a2=ε 211.1831994 220.94225988 219.42488828 224.40996013 229.63636182

a3σ 21.785403435 22.317079421 21.958381959 22.182279261 22.278991444

a4=ε 22.764109154 21.854049559 22.379111084 21.959180470 21.876430370

a5=σ6 1.003480097 0.7454617542 1.051490962 0.874092399 0.8701531593

a6=σ2 0 0 0 0 0



The SAAP has proved useful in the accurate evaluation of both VLE

(Deiters and Sadus, 2019b) and SLE (Deiters and Sadus, 2021, 2022a,b; Singh

et al., 2021) properties. It can also be parameterized (Deiters and Sadus, 2023)

to yield accurate predictions of some properties of molecular hydrogen.

4.3 Three-body atomic potentials

The two-body potentials considered earlier are rarely useful by themselves for the

accurate prediction of the properties of real substances. In principle, to fully con-

sider many-body interactions we must consider all possible n-body interactions.

However, in practice the contribution from interactions other than molecular pairs

and triplets is likely to be extremely small. Further, the contributions from four-

or more-body interactions are of alternating sign and, therefore, there is likely to

be a high degree of cancellation of terms. Consequently, including only two-body

and three-body interactions is probably an excellent approximation for many-body

interactions. It should be noted, however, that including three-body effects greatly

increases the required computational cost. For a three-body calculation involving

N atoms there are N(N � 1)(N � 2)/6 distinct interactions compared with only N

(N � 2)/2 interactions for a pairwise calculation.

Adopting a potential-based approach for many-body interactions requires

the formulation of a suitable intermolecular potential for three-body interac-

tions. In contrast to the large literature on two-body potentials, the subject of

three-body or more-body potentials has received relatively little attention.
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FIGURE 4.3 The relative differences between the energies calculated from the multiparameter

potentials (circles) (Hellmann et al., 2017; Table 4.1) and the SAAP (solid line) and ab initio

data of xenon. No actual discontinuity should be inferred from the apparent break in the line.
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Most work reported in the literature has focused on three-body dispersion

interactions as calculated by Axilrod and Teller (1943) and Mutō (1943).

However, three-body repulsion is also likely to be significant in some cases.

In multipolar fluids, we must also consider the influence of three-body

effects on interactions involving permanent dipoles. Very little work has

been reported, which addresses either three-body repulsion or three-body

effects for polar molecules. The effect of three-body interactions has been

reviewed elsewhere (Elrod and Saykally, 1994; Gray et al., 2011).

4.3.1 Three-body dispersion

Various contributions to three-body dispersion interactions can be envisaged

arising from instantaneous dipole (D), quadrupole (Q), octupole (O), and

hexadecapole (H) moments of a triplet of atoms (see Fig. 4.4).

Different types of interaction are possible depending on the distribution

of multipole moments between the atoms. In principle, the dispersion or

long-range, nonadditive three-body interaction is the sum of these various

combinations of multipole moments (Bell, 1970).

u
32body
disp 5 uDDD 1 uDDQ 1 uDQQ 1 uDDO 1 uDDD4 1 uQQQ 1 uDQO 1 uDDH 1 ::

ð4:26Þ
These terms are all third-order with the exception of the contribution of

the fourth-order triple-dipole term (uDDD4). The main contribution to

FIGURE 4.4 Calculation of the third virial coefficient (C) of krypton using additive ( ); addi-

tive 1 triple-dipole ( ); and additive 1 triple-dipole 1 other third-order multipolar ( ) terms

(Barker et al., 1972b).
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attractive three-body interaction is the third-order triple-dipole term (uDDD).

The other terms collectively (uDDQ 1 uDQQ, 1 uDDO, 1 uDDD4 1 . . .) are
the higher multipole contributions.

4.3.2 The triple-dipole term and the Axilrod�Teller�Mutō
potential

The triple-dipole potential can be evaluated from the formula proposed by

Axilrod and Teller (1943) and Mutō (1943):

uDDDðijkÞ5
vDDDðijkÞ 11 3cosθi cosθj cosθk

� �
rijrikrjk
� �3 ; ð4:27Þ

where vDDD(ijk) is the nonadditive coefficient, and the angles and intermo-

lecular separations refer to the triangular configuration of atoms as illustrated

in Fig. 4.5. We will refer to Eq. (4.27) as the Axilrod�Teller�Mutō (ATM)

potential. A detailed derivation of the ATM potential from third-order pertur-

bation theory has been given by Axilrod (1951). Mutō’s original 1943 paper

in Japanese also provides a derivation that appears to have a sign error in

equation 15. The ATM potential can be conveniently expressed without the

cosine terms:

uDDDðijkÞ5
vDDDðijkÞ rijrjkrik

� �2
1 3 rikUrjk
� �

rikUrij
� �

rijUrjk
� �� �

rijrjkrik
� �5 : ð4:28Þ

FIGURE 4.5 Triplet configuration of atoms I, j, and k in Eq. (4.25).
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The contribution of the ATM potential can be either negative or positive

depending on the orientation adopted by the three atoms. The potential is posi-

tive for an acute triangular arrangement of atoms, whereas it is negative for near

linear geometries. The potential can be expected to make an overall repulsive

contribution in a close-packed solid and in the liquid phase. The r23 terms indi-

cate that the magnitude of the potential is very dependent on intermolecular sep-

aration. The major contribution to the potential will occur for configurations in

which at least one pair of atoms is in close proximity to each other.

The nonadditive coefficient (vDDD(ijk)) can be calculated approximately

from the C6 dispersion coefficient and polarizability data (α) via the follow-

ing relationship:

vDDDðijkÞ �
3C6α
4

: ð4:29Þ

Alternatively, the relationship proposed by Tang (1969) can be used

vDDDðijkÞ �
2SiSjSkðSi 1 Sj 1 SkÞ

ðSi 1 SjÞðSj 1 SkÞðSk 1 SiÞ
; ð4:30Þ

where

Si 5
C6;iαjαk

αi

ð4:31Þ

However, the preferred option is to obtain vDDD directly from experimental

data. This can be achieved by analyzing dipole oscillator strength distributions.

Leonard and Barker (1975) have reported experimental values of the nonaddi-

tive coefficient for the noble gases and mixtures of noble gases. Experimental

values of v have also been reported by Kumar and Meath (1984, 1985). An

analysis using updated theoretical procedures has also been reported (Kumar

and Thakkar, 2010). Values of vDDD for all of the atomic triplets containing a

stable noble gas atom are given in Table 4.3, which compares historical experi-

mental values to contemporary theoretical analysis. It is noteworthy that the con-

temporary theoretical values are in very good agreement with the experimental

values of early decades.

The ATM potential was initially studied by several workers (Bobetic and

Barker, 1970; Barker et al., 1971; Haile, 1978; Hoheisel, 1981; Monson

et al., 1983; Rittger, 1990a,b,c; Attard, 1992; Smit et al., 1992; Miyano,

1994). It appeared that the ATM interactions typically contribute 5% to the

energy of the liquid. This conclusion was also supported by additional

Monte Carlo (MC) results (Sadus and Prausnitz, 1996). Most of the calcula-

tions relied on some type of approximation rather than a rigorous evaluation.

The question that remained unresolved is: What effect does this relatively

small contribution have on the properties of the fluids?

The advent of greater computational capability has enabled the full evalu-

ation of the ATM potential (Anta et al., 1997; Sadus, 1998a,b; Marcelli and
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TABLE 4.3 Comparison of vDDD(ijk) values
a obtained from the historical

analysis of experimental datab and contemporary theory.c

Atom i Atom j Atom k vDDD(ijk) (a.u.)

(experiment)

vDDD(ijk) (a.u.)

(theory)

He He He 1.481

He He Ne 2.296

He He Ar 10.25

He He Kr 14.55

He He Xe 21.89

He Ar Ar 5.95

He Ne Ar 20.33

He Ne Kr 28.80

He Ne Xe 43.27

He Ar Ar 72.24

He Ar Kr 103.3

He Ar Xe 156.4

He Kr Kr 148.2

He Kr Xe 224.9

He Xe Xe 342.4

Ne Ne Ne 12.02 11.92

Ne Ne Ar 40.49 40.41

Ne Ne Kr 57.20 57.48

Ne Ne Xe 85.79 85.11

Ne Ar Ar 142.5 142.7

Ne Ar Kr 203.4 204.8

Ne Ar Xe 307.5 306.6

Ne Kr Kr 291.2 294.6

Ne Kr Xe 441.5 442.6

Ne Xe Xe 671.4 667.9

Ar Ar Ar 517.4 519.0

Ar Ar Kr 744.6 750.2

Ar Ar Xe 1134 1134

(Continued )
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Sadus, 1999; Wang and Sadus, 2006; Vlasiuk and Sadus, 2017a). Molecular

simulation studies of VLE (Marcelli and Sadus, 1999; Vlasiuk and Sadus,

2017a) have reported that three-body interactions can alter significantly the

coexisting density of the liquid phase, whereas the vapor-phase branch is

unaffected. The ATM interactions also significantly influence SLE (Wang

and Sadus, 2006; Deiters and Sadus, 2021). These influences are much larger

than the 5% of total potential energy would intuitively suggest. The clear les-

son is that the contribution to potential energy of three-body interactions per

se is not necessarily a good indicator of the importance of the effect of

three-body interactions on shaping the macroscopic properties of the fluid.

4.3.3 Density-dependent effective three-body potential

Although the ATM potential is an accurate representation of three-body

interactions, the computational expense of calculating the interactions of all

possible triplets remains far from a routine undertaking. As discussed in

Chapter 3, most simulation codes are exclusively confined to the evaluation

of pair interactions. Therefore, it is highly desirable to have a means of

incorporating three-body interactions via pairwise interactions only. By com-

paring the energy obtained from the ATM potential (UATM) to the two-body

contribution (UBFW) of BFW potential of argon, krypton, and xenon,

Marcelli and Sadus (2000) observed the following density (ρ5N/V; N is the

number of atoms; V is the volume)-dependent empirical relationship:

UATM 52
λνDDDρUBFW

εσ6
; ð4:32Þ

TABLE 4.3 (Continued)

Atom i Atom j Atom k vDDD(ijk) (a.u.)

(experiment)

vDDD(ijk) (a.u.)

(theory)

Ar Kr Kr 1074 1087

Ar Kr Xe 1640 1647

Ar Xe Xe 2509 2505

Kr Kr Kr 1554 1577

Kr Kr Xe 2377 2397

Kr Xe Xe 3646 3656

Xe Xe Xe 5605 5595

a1 a.u.5 1.41825 3 10292 J cm9.
bLeonard and Barker, 1975.
cKumar and Thakkar, 2010.
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where ε is the depth of the two-body potential well; σ is the distance at

which the two-body energy is zero; and λ is a constant required to optimally

fit the simulation data. Originally its value was assigned as 2/3 but a later

study (Wang and Sadus, 2006), using a larger number of atoms, indicated

that λ5 0.85 was a better choice.

A theoretical rationale (Ustinov, 2010) for this relationship has been

given, and it appears to be independent (Vlasiuk and Sadus, 2017a,b; Deiters

and Sadus, 2019b) of the choice of the two-body potential. Therefore, in gen-

eral, we have

U3 � UATM 52
λνDDDρ
εσ6

X
i

X
j. i

u2ðri; rjÞ; ð4:33Þ

which can be utilized for any two-body potential for which ε and σ have

been determined. Eq. (4.33) means that the overall intermolecular potential

for the fluid is simply:

u5 u2 12
λνDDDρ
εσ6


 �
: ð4:34Þ

The usefulness of Eq. (4.34), which is denoted as the

Marcelli�Wang�Sadus (MWS) potential, is discussed in greater detail

below as part of the case study.

4.3.4 Multipolar contributions beyond the triple-dipole term

Bell (1970) has derived the other multipolar nonadditive third-order poten-

tials that contribute to Eq. (4.26),

uDDQðijkÞ5
3vDDQðijkÞ
16r3ijðrjkrikÞ4

3

9cosθk 2 25cos3θk 1 6cosðθi 2 θjÞð31 5cos2θkÞ
� � ð4:35Þ

uDQQðijkÞ5
15vDQQðijkÞ
64r5jkðrijrikÞ4

3

3ðcosθi 1 5cos3θiÞ1 20cosðθj 2 θkÞð12 3cos2θiÞ
1 70cos2ðθj 2 θkÞcosθi

� 	 ð4:36Þ

uQQQðijkÞ5
15vQQQðijkÞ
128ðrijrikrjkÞ5

3

2 271 220cosθi cosθj cosθk 1 490cos2θi cos2θj cos2θk
1 175½cos2ðθi 2 θjÞ1 cos2ðθj 2 θkÞ1 cos2ðθk 2 θiÞ�

� 	 ; ð4:37Þ

where Eqs. (4.35)�(4.37) represent the effect of dipole�dipole�quadrupole,

dipole�quadrupole�quadrupole, and quadrupole�quadrupole�quadrupole
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interactions, respectively. The derivation of these formulas uses third-order

perturbation theory (Bell and Zucker, 1976). Formulas for the different

ordering of the multipole moments on the three atoms (i.e., QDD, DQD,

QDQ, and QQD) can be generated from Eq. (4.36) by cyclic permutation of

θi, θj, and θk. It should be noted that Eq. (4.34) disagrees with an earlier deri-

vation for dipole�dipole�quadrupole interactions reported by Ayres and

Tredgold (1956). In addition to these terms, the dipole�dipole�octupole

term has also been evaluated (Doran and Zucker, 1971).

uDDOðijkÞ5
45vDDOðijkÞ

64
3

11 cos2θi
ðrijrikÞ6

1
11 cos2θj
ðrijrjkÞ6

1
11 cos2θk
ðrikrjkÞ6

" #
ð4:38Þ

Bell (1970) proposed that the multipolar nonadditive coefficients could

be related to the triple-dipole nonadditive coefficient via the relationships,

vDDQðijkÞ � γvDDDðijkÞ
vDQQðijkÞ � γ2vDDDðijkÞ
vQQQðijkÞ � γ3vDDDðijkÞ

)
; ð4:39Þ

where γ is the ratio of the dipole polarizability and the quadrupole

polarizability.

γ5
αQQQ

αDDD

ð4:40Þ

The fourth-order triple-dipole term can be evaluated from the relationship

(Johnson and Spurling, 1974),

uDDD4ðijkÞ5 vDDD4ðijkÞ
11 cos2θi
ðrikrjkÞ6

1
11 cos2θj
ðrijrikÞ6

1
11 cos2θk
ðrijrjkÞ6

" #
; ð4:41Þ

where

vDDD4ðijkÞ52
5α2C6

24
ð4:42Þ

A discussion of dipole�dipole contributions to dispersion is available

(Bade, 1957a,b; Bade, 1958).

How significant is the contribution of the higher multipolar terms in com-

parison to the triple-dipole potential? The other, higher multipole terms are

generally believed to be small by comparison. Fig. 4.6 illustrates the contri-

bution of additive and nonadditive terms to the calculated third virial coeffi-

cient for krypton reported by Barker et al. (1972b).

It is apparent from Fig. 4.5 that the triple-dipole term has a significant

effect, whereas the contributions from other third-order multipolar terms are

small. There is also evidence that the higher multipole terms compensate for

each other (Barker et al., 1974). For example, Etters and Danilowicz (1979)

reported that the third-order (uDDQ) and fourth-order (uDDD4) terms for rare
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gases at equilibrium separations are typically 20% of the triple-dipole term.

Furthermore, the sign of the fourth-order triple-dipole term is negative,

which effectively cancels the positive contribution of the third-order uDDQ,

uDQQ, and uQQQ terms. Barker et al. (1972a) calculated the contribution of

the fourth-order triple-dipole term to the crystalline energy of noble gases

and compared their results with the contribution of other higher multipole

moments reported by Doran and Zucker (1971). These data are summarized

in Table 4.4, which shows that the fourth-order triple-dipole contribution

-0.1
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0

0.05

0.1

0.15

0.2

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

U
/

kT/

FIGURE 4.6 Contribution of DDD ( ), DDQ ( ), DQQ ( ), QQQ ( ), and DDD4 ( )

interactions (Marcelli and Sadus, 1999) to the total three-body energy along the liquid saturation

curve of xenon. The sum (DDD1 DDQ1 DQQ1 QQQ1 DDD4) of the contributions is also

illustrated (3 ), which coincides closely with the DDD values.

TABLE 4.4 Contribution of three-body interactions to the crystalline

energy of noble gases.a

U(J/mol)

Atom DDD DDQ DQQ QQQ DDD4

Ne 62.4 15.5 2.7 0.2 24.8

Ar 579.6 173.8 37.0 3.5 2126.7

Kr 1004.0 220.1 34.3 2.4 2281.4

Xe 1597.9 373.6 62.0 4.6 2636.6

aDoran and Zucker, 1971; Barker et al., 1972a.
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cancels to a large extent the contribution of the other higher multipole terms.

For xenon, the magnitude of the fourth-order term is significantly larger than

the combined contributions of the other higher multipole terms. The reported

contributions from octupoles and fourth- and higher-order energy perturba-

tions are small (Meath and Aziz, 1984).

In addition to the theoretical evaluations detailed previously for the crys-

talline energy of the noble gases, the contributions of the multipolar nonaddi-

tive potentials have also been evaluated (Marcelli and Sadus, 1999) via

molecular simulation for the vapor and liquid phases of the noble gases. The

various contributions to the total three-body energy of xenon along the liquid

saturation curve are illustrated in Fig. 4.6. It is apparent that DDD makes the

largest overall contribution followed by DDQ. Both DQQ and QQQ are close

to zero, whereas DDD4 is negative. In contrast, the DQQ contribution in

the crystalline phase (Table 4.4) is considerably much more substantial.

However, irrespective of the nature of the phase (crystalline, vapor, or liq-

uid), the negative value of DDD4 cancels the contributions of DDQ, DQQ,

and QQQ. Therefore, the leading, triple-dipole DDD term alone is a good

approximation for three-body dispersion interaction. This an important con-

clusion because it means that the calculation of three-body interactions can

be limited to the ATM potential.

The substantial negative contribution to the energy of DDD4 interactions

is very important in establishing the primary role of ATM potential.

Commentaries in the simulation literature, which sometimes suggest that the

ATM underpredicts three-body interactions, typically neglect this counter-

vailing contribution. This is perhaps not surprising as comprehensive simula-

tions involving DDD4 are possibly confined to a single study (Marcelli and

Sadus, 1999). Adding either the higher multipolar terms or other contribu-

tions the ATM potential without the counteracting DDD4 term would lead to

the erroneous conclusion that three-body contribution to the energy is

larger than it should be. However, legitimate sources of uncertainty are the

calculations of the nonadditive coefficients. Accurate values of νDDD are

available for the noble gases (Table 4.2), but this is not the case for both

other terms and other atoms.

A molecular dynamics technique has been reported (van der Hoef and

Madden, 1998) that accounts for the contribution of both two- and three-

body dispersion interactions up to the triple-quadrupole (QQQ) term.

4.3.5 Three-body repulsion

The effect of three-body repulsion has not been studied as extensively as

three-body dispersion interactions. Consequently, a rigorous potential for

three-body repulsion potential has not been developed. Sherwood et al.

(1966) investigated the effect of three-body interactions on the virial coeffi-

cients. In particular, they developed models of repulsion between three
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atoms. Their electrostatic distortion model is particularly convenient for

molecular simulation:

urepðijkÞ5 4εσ21

9

cos2θi
ðrijrikÞ9r3jk

1
cos2θj

ðrijrjkÞ9r3ik
1

cos2θk
ðrikrjkÞ9r3ij

" #
; ð4:43Þ

where ε and σ are the parameters for the LJ potential, and the angles and

intermolecular separation refer to Fig. 4.5. The use of the LJ potential means

that Eq. (4.41) should only be considered as an approximation. The sign of

the potential depends on the geometry of the three atoms. If the atoms form

an equilateral or right-angle triangle, the potential is negative, whereas it is

positive for a linear configuration. Thus, the sign of the repulsive potential is

opposite to the ATM potential. Consequently, the effect of repulsion will be

to partially cancel the effect of the triple-dipole term.

Three-body repulsion can also be calculated from the following

relationship:

urepðijkÞ5 v expð2 γijrij 2 γikrik 2 γjkrjkÞ; ð4:44Þ
where the γ constants characterize the interactions between the different

pairs of atoms. Lybrand and Kollman (1985) have used this potential to cal-

culate the overlap of ion�water�water trimers. It should be noted that the

theoretical basis of the three-body repulsion is considerably less well devel-

oped than three-body dispersion. The derivation of both the above repulsion

potentials is less rigorous than the three-body dispersion potentials.

Nonetheless, these potentials can be used to provide a useful approximation

of three-body repulsion.

4.3.6 Three-body dispersion versus three-body repulsion

As outlined previously in the discussion of three-body dispersion interac-

tions, for practical purposes, three-body dispersion interactions can be mod-

eled exclusively using the triple-dipole term. What is the role of three-body

repulsion? The answer to this question is complicated by uncertainties in the

two-body potential and various approximations used in the calculation of

three-body interaction.

Early work (Rosen, 1953; Jansen, 1962) indicated that three-body repul-

sion made a negative contribution. Later, Williams et al. (1967) observed

that three-body overlap was positive and contributed 10% of the

Axilrod�Teller term. Similarly, O’Shea and Meath (1974, 1976) reported

that the effect of charge overlap reduced the impact of the Axilrod�Teller

term by between 15% and 40%. Calculations of the third virial coefficient

(Graben and Present, 1962; Dymond et al., 1965; Barker et al., 1972b) indi-

cate that including the Axilrod�Teller term improved substantially the

agreement of theory with experiment. Sherwood and Prausnitz (1964)
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reported that the virial coefficient of helium was influenced by three-body

repulsion. In general, calculations using a pair potential 1 ATM term alone

have predicted successfully many experimental properties. For example, the

crystal-binding energies of noble gases are predicted satisfactorily when

the pairwise potential is supplemented by the ATM term. Ab initio calcula-

tions for the nonadditive forces for helium (Bulski, 1975; Wells and Wilson,

1985), neon (Bulski and Chałasiński, 1980; Wells and Wilson, 1986) and

argon (Bulski and Chałasiński, 1982; Wells, 1987) indicate that the ATM

term was offset largely by three-body repulsion.

The relative importance of repulsion for noble gases using the ATM

potential and Eq. (4.40) is illustrated in Fig. 4.7. The energies of the intermo-

lecular potentials were calculated for equidistant atoms arranged in either a

linear or a triangular configuration. The vDDD values were taken from

Leonard and Barker (1975) (Table 4.3), and the LJ parameters required for

Eq. (4.42) were taken from Hirschfelder et al. (1954). Fig. 4.8 shows that

repulsion completely dominates the ATM term at small interatomic separa-

tions. For argon, krypton, and xenon, the dominance of repulsion commences

at a similar interatomic separation, whereas for both helium and neon, repul-

sion is important at considerably larger distances. A comparison of Fig. 4.7

(a) with Fig. 4.7 (b) indicates that for a given interatomic separation, repul-

sion is more important in an equilateral configuration compared with a linear

geometry. These results need to be considered with the caveat that Eq. (4.42)

is a relatively crude approximation and as such may require future reassess-

ment using a more accurate model of repulsion.

MC estimates are available (Sadus and Prausnitz, 1996) for the contribution

of three-body repulsion as calculated from Eq. (4.43) and ATM interactions to

the configurational energy of liquid argon for several densities. The results are

compared in Fig. 4.8. The magnitudes of both ATM and repulsive interactions

increase synchronously with increasing density. Three-body repulsion makes a

negative contribution to the energy, which is approximately 45% of the contri-

bution of the ATM term. Therefore, the effect of three-body repulsion is to off-

set substantially the effect of three-body dispersion interactions. However, a

confounding aspect of the analysis given in Fig. 4.9 is the use of the LJ potential

for pairwise interactions instead of a genuine two-body potential. This means

that the relative contribution of ATM interactions may not be accurately repre-

sented. This, in turn, may be counterbalanced by the fact that Eq. (4.43) was

derived specifically for the LJ potential.

Schwerdtfeger and Hermann (2009) have proposed an empirical modifi-

cation of the ATM potential to combine dispersion and repulsion:

u3ðijkÞ5 11 3 cos θi cos θj cos θk
� � νEATM

rijrikrjk
� �3 1 e2α rij1rik1rjkð ÞXn

i50

A2i rijrikrjk
� �2i=3" #

;

ð4:45Þ
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where n is typically equal to 5; the terms in Eq. (4.45) are usually treated as

adjustable parameters that are fitted to data. We would normally expect that

νEATM5 νDDD; however, using fitting procedures for the parameters means

that this is not necessarily the case. For example, although there is good agree-

ment (Smits et al., 2020) for krypton (νEATM5 1506 a.u; νDDD5 1554 a.u.),

the value obtained for xenon (νEATM5 3471 a.u; νDDD5 5605 a.u.) is much

smaller than expected (Smits et al., 2020).

This extended ATM (EATM) potential has the advantage that it provides

a continuous transition between repulsion and dispersion at separations corre-

sponding to atomic overlap. This transition also occurs at considerably

FIGURE 4.7 The ratio of repulsion to triple-dipole interactions as a function of distance for

equidistant noble gas atom triplets arranged in (a) linear and (b) triangular configurations.
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smaller separation than alternative models (Ermakova et al., 1998; Freiman

and Tretyak, 2007). The potential has proved useful for third virial coeffi-

cients (Jäger et al., 2016) and the SLE of the noble gases (Smits et al.,

2020). However, there appears to be no difference (Vlasiuk and Sadus,

2017b) between the ATM and EATM calculations for the isochoric heat

capacities of krypton along the liquid saturation curve.

In summary, the relative importance of three-body repulsion and three-

body dispersion remains unresolved. There is some evidence (Figs. 4.7 and

4.8) that the ATM term could be canceled by three-body repulsion.

However, as will be discussed subsequently, comparison with experimental

properties indicates that three-body repulsion is not required to gain a good

representation of macroscopic properties such as VLE. Our knowledge of

three-body dispersion is superior to three-body repulsion and better theoreti-

cal techniques, and experimental data are required to resolve the issue. These

issues have been discussed extensively by Elrod and Saykally (1994).

4.4 Four- and higher-body atomic interactions

As noted previously, the literature on many-body interactions is confined

almost exclusively to three-body interactions. The work of Johnson and

Spurling (1974) is a rare example of the theoretical investigation of four-

body interaction. Johnson and Spurling (1974) investigated the effect of
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FIGURE 4.8 Comparison of the contributions of ATM (K Sadus, 1998c) and three-body

repulsion (Eq. (4.40)) interactions ( , Sadus and Prausnitz, 1996) to the energy of argon at satu-

rated liquid densities.
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four-body interactions on the fourth virial coefficient using the following

intermolecular potential (Bade, 1958),

uðijklÞ5 vðijklÞ f ðijklÞ1 f ðijklÞ1 f ðikjlÞ½ �; ð4:46Þ
where:

f ðijklÞ5 1

ðrijrjkrklrliÞ3
3

2 11 ðuijUujkÞ2 1 ðuijUuklÞ2 1 ðuijUuliÞ2 1 ðujkUuklÞ2 1 ðuklUuliÞ2
2 3ðuijUujkÞðujkUuklÞðuklUuliÞ2 3ðuijUujkÞðujkUuklÞðuliUuijÞ
2 3ðuijUuklÞðuklUuliÞðuliUuijÞ2 3ðujkUuklUuliÞðuliUujkÞ
1 9ðuijUujkÞðujkUuklÞðuklUuliÞðuliUuijÞ

2664
3775 ð4:47Þ

and where uij is the unit vector in the direction of particle i to particle j.

Johnson and Spurling (1974) demonstrated that four-body interactions made

an important contribution to the fourth virial coefficients at low to moderate

temperatures.

4.5 Potentials for molecules

In common with the development of molecular force fields discussed in

Chapter 3, the starting point for either two- or three-body potentials for

molecules is a suitable model that captures the required molecular features

such as the distribution of the constituent arrangement of atoms, bond

lengths, bond angles, and the like. This modeling procedure is common to

the development of a two- or three-body molecular potential, irrespective of

whether the interatomic potentials are empirical, theoretical, or ab initio. The

discussion given subsequently will focus primarily on two-body ab initio

potentials.

It is likely that many-body interactions play a greater role in molecular

fluids than in atomic fluids because induction interactions, which are not

pairwise additive, are possible in nonspherically symmetric molecules. In

view of the results obtained for atoms, we can reasonably expect three-body

interactions to make the most important contribution to many-body interac-

tions. Similarly, it is likely that the third-order triple-dipole potential will

make the most important contribution to three-body dispersion interaction

between molecules.

4.5.1 Two-body ab initio molecular potentials

The construction of a two-body potential for molecules follows the same

general procedure as for pairwise force fields detailed in Chapter 3: (a) pro-

pose a molecular framework and identify interaction sites (N); (b) apply the

two-body atomic potential to the interaction sites between molecular dimers;
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and (c) add an angle-dependent (θ, Φ, see Figure 3.8) contribution. In gen-

eral, this means:

u2ðr; θn;φmÞ5
XN
i51

XN
j51

uij rijðr; θn;φmÞ
� � ð4:48Þ

4.5.1.1 Diatomic molecules

Apart from molecular hydrogen, which includes quantum considerations

(Deiters and Sadus, 2023), the simplest molecular systems are diatomic

molecules such as N2, F2, Cl2, and the like, which have the same constituent

atoms. These cases only involve quadrupole moments (Harrison, 2005) in

addition to dispersion and repulsion. The contribution of two-body interac-

tions in ab initio potentials for diatomic molecules can often be generalized

by relationships of the type,

uij 5 u
rep
ij 2

XM
i50

f612iðxÞ
C612i

r612i
ij

1 gðxÞ qiqj
rij

; ð4:49Þ

which combines contributions from repulsion (rep), dispersion coeffi-

cients, and charges (q); and f(x) and g(x) are damping functions in terms

of an appropriate distance contribution (x). In Eq. (4.47), the charges are

chosen to represent the effect of the quadrupole moment of the dimer via

the Coulomb potential (Eq. (3.51)). For example, the Leonhard and

Deiters (LD) (2002) proposed a five-site (N5 5) potential for nitrogen,

which conforms to the previously discussed relationship when M5 0, and

the repulsion is obtained from a modified Morse-type potential. The five-

site potential for nitrogen reported by Hellmann (2013) also uses M5 0,

with f(x) obtained from Eq. (4.22), g(x)5 1, and u
rep
ij 5Aije

2αijrij , where

A and α are adjustable parameters. Both the LD and Hellmann potentials

involved CCSD(T) calculations, yielding good agreement with experiment

for a range of thermodynamic properties.

The previously discussed principles can be easily adapted for hetero-

geneous diatomic molecules such as CO, NO, and so forth. In these cases,

the influence of molecular diploes (Zakharov et al., 2005) is reflected in

the choice of charges. The alternative to assigning charges is to specify

values for the dipole and other multiple moments as exemplified

by Eqs. (3.52)�(3.56). However, this alternative (Sadus, 1996) is not

widely used. It is of interest to note that the contribution of repulsion

used in Eq. (4.48) is mathematically simpler than the contribution used

for atoms (Eq. 4.23, Table 4.1).

4.5.1.2 Triatomic molecules

Triatomic molecules are by definition heterogeneous and can be either

linear or nonlinear with carbon dioxide and water being notable examples
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of the former and latter, respectively. Ab initio two-body potentials for

carbon dioxide have been developed via the supermolecular/MP2 method

(Bock et al., 2000; Oakley and Wheatley, 2009) and symmetry-adapted

perturbation theory (SAPT) (Bukowski et al., 1999; Wang et al., 2012).

Good agreement with experiment for second virial coefficient viscosities

and thermal conductivities of carbon dioxide in the dilute gas limit has

been reported (Hellmann, 2014) using a potential based on CCSD(T) level

of theory. Despite involving three atoms, the functional form of the

potential is identical to the diatomic case Eq. (4.49) with the number of

interaction sites increased to seven.

The attempt to determine an accurate ab initio intermolecular potential

for water is a good example of the use of ab initio calculations for a nonlin-

ear triatomic molecules. The intermolecular potential of water is compli-

cated by the significant influence exerted by polarizability, many-body

effects, molecular flexibility, and quantum corrections. Generally, ab initio

two-body potentials for water do not predict accurately thermodynamic

properties for a wide range of conditions. A review of ab initio potentials

for water has been reported by Shvab and Sadus (2016), and our discussion

will be restricted to a few examples that highlight key attributes of the

modeling approach.

The potential reported by Niesar et al. (1990) (NCC) builds on the four-

site model (see Figure 3.11) proposed by Matsuoka, Clementi, and

Yoshimine (MCY) (1976), which is the common backbone of many water

potentials. The NCC potential uses partial charges on the hydrogen atoms

and a compensating negative charge on a site located along the bisector of

the HOH angle.

uðrÞ5 q2
1

r13
1

1

r14
1

1

r23
1

1

r24

0@ 1A1
4q2

r78
2 2q2

1

r81
1

1

r82
1

1

r73
1

1

r74

0@ 1A
1AOO expð2BOOr56Þ1AHH expð2B4

HHr13r14r23r24Þ
1AOH expð2B4

OHr53r54r61r62Þ1A0
OH expð2B0

HH4r53r54r61r62Þ
1APH expð2B4

PHr73r74r81r82Þ1APO expðB2
POr76r85Þ

ð4:50Þ
The NCC potential considers interaction between two water molecules;

the oxygens are labeled 5 and 6; labels 1, 2, 4, and 8 denote the hydrogens

associated with oxygen 5 and 6, respectively. The positions 7 and 8 are for

the negative charge associated with each oxygen and q is the charge on each

hydrogen (Fig. 4.9). The NCC potential predicts correctly the equilibrium

water dimer in the gas phase, and the predicted binding energy is in good

agreement with experiment. It also provides accurate predictions for the sec-

ond virial coefficient, heat capacity, and diffusion coefficient at room tem-

perature. However, the predicted pressure is too low and the predicted

configurational energy is too high by 7%.
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Bukowski et al. (2007) performed first principles calculations for water

and obtained a potential that utilized a five-site monomer model (Mas et al.,

2000) for water plus a polarization contribution. The functional form of the

potential used by Mas et al. (2000) is identical to Eq. (4.49). The quality of

predictions obtained from ab initio potentials for the thermodynamic proper-

ties of water are of moderate accuracy. This is in contrast to empirical poten-

tial that often yield very good agreement with experiment (Chapter 3).

However, the contribution from ab initio terms can be augmented to improve

the overall accuracy (Li et al., 2007, 2008).

4.5.1.3 Polyatomic molecules

Polyatomic molecules represent a challenge to ab initio calculations because of

the increase in both the number of atoms and the complexity of the molecular

geometry. For example, the tetrahedral geometry of methane means that there

are seventeen different angular orientations between the molecular pairs

(Hellmann et al., 2008b). Nonetheless, a potential for methane can be obtained

(Hellmann et al., 2008b) from the ab initio data via Eqs. (4.48) and (4.49) with

M5 1 and N5 9. The same approach has been used successfully for ethylene

oxide (M5 1 N5 19) (Crusius et al., 2014) and propane (M5 1 N5 14)

(Hellmann, 2017b). In common with other ab initio potentials, these potentials

have only been evaluated for the second virial coefficients and/or dilute gas ther-

modynamic properties.

4.5.2 Three-body molecular potentials

The triple-dipole potential for nonspherical molecules depends on both posi-

tion and molecular orientation. Stogryn (1970) generalized the

FIGURE 4.9 Illustration of the dimer geometry showing the interatomic separations common

to many four-site models of water.
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Axilrod�Teller potential for nonspherical molecules. The result is

uDDDðαβγÞ5
vDDD

3αααβαγ
ðTαβÞijðTαγÞklðTβγÞmnðααÞikðαβÞjmðαγÞln
� �

; ð4:51Þ

where αα is the mean polarizability of molecule α, (αα)ij is the component

of the polarizability tensor of molecule α, and (Tαβ)ij is the ij component of

the interaction tensor between molecules α and β. This tensor is defined by,

ðTαβÞij 52
3ðuαβÞiðuαβÞj 2 δij

r3αβ
; ð4:52Þ

where (uαβ)i is the ith component of a unit vector pointing from molecule α
toward β.

Stogryn (1970) examined the relative contribution of three-body interac-

tion for nonspherical molecules compared with the ATM potential for spheri-

cal symmetry. If the centers of three linear molecules are positioned on a

common axis, two different orientations can be envisaged as illustrated in

Fig. 4.10. In Case 1, the axes of the two end molecules are aligned with the

common axis, whereas in Case 2, the molecular axes are perpendicular to it.

In both cases, the middle molecule can rotate in the plane of the

figure making an angle ω with the common axis. For Case 1,

unon2shperical

uspherical
5 11

9

2
κ2

11

2
κ3 1

3

2
κð31 10κ1 11κ2Þcos2ω ð4:53Þ

and for Case 2,

unon2shperical

uspherical
5 11

3

2
κ2 2

5

2
κ3 2

9

2
κsin2ω2 6κ2ð12κÞcos2ω ð4:54Þ

where κ is the anisotropy.

FIGURE 4.10 Two possible orientations of three molecules sharing a common axis.
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The effect of nonsphericity on the three-body interactions of nitrogen

(κ5 0.266) is illustrated in Fig. 4.11. It is apparent from Fig. 4.11 that the

contribution of three-body interactions between nonspherical molecules can

be considerably greater than for either spherical molecules or atoms. The

ATM potential is negative for atoms arranged in a linear configuration,

whereas Fig. 4.11 indicates that three-body potential for nonspherical mole-

cules is positive in some circumstances.

The analysis of three-body interactions in molecules is complicated by

the absence of accurate molecular pair potentials. Instead of isolating the

effect of two-body interactions in a true two-body potential, “effective”

potentials are used commonly in which many-body effects are incorporated

into the pairwise parameters. Monson et al. (1983) used the ATM potential

in conjunction with the LJ potential to determine configurational internal

energy of chlorine. They concluded that the contribution of triple-dipole

interactions was between 8% and 12% of the pairwise term. This compares

with a value of 5% reported typically for atomic fluids. Latajka and

Scheiner (1988) observed that the three-body contribution for liquid hydro-

gen fluoride was 17.2% of pairwise interactions. Ab initio calculations

(Kofranek et al., 1987) for hydrogen cyanide indicate a 12% contribution

from three-body interactions.

FIGURE 4.11 Relative three-body dispersion energy of linear molecules compared with spher-

ically symmetric molecules. Results are shown for κ5 0.266, which is the anisotropy associated

with nitrogen (Stogryn, 1970).
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McDowell (1996) used third-order perturbation theory to derive a triple-

dipole potential for linear Σ-state molecules. The result is:

uDDDðabcÞ5
vDDDðabcÞ 11 3cosθAcosθB cosθCð Þ

rabrbcracð Þ3 3

Re

12ΓðaÞWðθa;φa; θA; θBÞ2ΓðbÞWðθb;φb; θA; θBÞ
2ΓðcÞWðθc;φc; θA; θBÞ
1Γða; bÞWðθa;φa; θb;φb; θA; θBÞ1Γða; cÞWðθa;φa; θc;φb; θA; θBÞ
1Γðb; cÞWðθb;φb; θc;φc; θA; θBÞ
2Γða; b; cÞWðθa;φa; θb;φb; θc;φc; θA; θBÞ

266664
377775
ð4:55Þ

The first term on the right-hand side of Eq. (4.55) is the ATM potential for

three linear molecules a, b, c forming internal angles θA, θB, and θC. This is for-
mally identical to the situation depicted in Fig. 4.5 for atoms. The Re[. . .] term
indicates the real part of [. . ..], the W terms are angular coefficients, and θa and
φa are spherical polar angles describing the orientation of molecule a. The Γ’s
are coefficients that depend on the oscillator strengths/excitation energies of the

allowed dipolar transitions in the constituent molecules.

In addition to the third-order triple term, for nonpolar linear molecules there

is also a second-order nonadditive induction contribution to the long-range energy

(McDowell, 1996; McDowell et al., 1996). Linear molecules can have a quadru-

pole moment that can induce dipole moments in neighboring molecules resulting

in a second-order nonadditive induction energy in molecular trimers that varies

as r28. McDowell (1996) investigated the effect of this second-order nonadditive

correction for trimers of hydrogen molecules. Unlike the ATM potential, which

typically makes a negative contribution, the second-order nonadditive term makes

a positive contribution to the energy of interaction. Furthermore, for most orienta-

tions, the second-order nonadditive induction energy is comparable in magnitude

or larger than the triple-dipole dispersion energy.

The effect of many-body interactions has been investigated extensively

for water (Elrod and Saykally, 1994). The influence on the structure and

properties of water of three-body interactions is considerably greater than is

observed in atomic systems. Hartree�Fock calculations (Kistenmacher et al.,

1974) show that three-body interactions contribute 10% of pairwise interac-

tions for cyclic water trimers and tetramers. The main contribution to many-

body interactions can be attributed to orbital deformation as modeled by

classical polarization (Clementi and Corongiu, 1983). Kim et al. (1986)

reported MC simulations using an intermolecular potential containing up to

four-body interactions for the minimum energy structures of (H2O)n clusters.

They concluded that three- and four-body terms made an important contribu-

tion when n . 5. Ab initio calculations of the cyclic water tetramer (Koehler

et al., 1987) indicate that three-body interactions contribute 18% of pair

interactions to the stabilization of the structure.
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An ab initio potential for carbon dioxide has been proposed (Hellmann,

2017a), which involves using the ATM potential coupled with contributions

from induction and exchange effects. Although the ATM potential is strictly

only valid for atomic interactions, it can be applied to molecules by using it

as a site�site potential for the constituent atoms of a molecules. The

site�site approach has proved useful in incorporating three-body interactions

into a model for water (Li et al., 2007, 2008).

4.5.3 Ab initio potentials for combinations of molecules

In Chapter 3, it was observed that both intermolecular pair potentials and force

fields have been almost exclusively developed for pure component and that

combining rules (Sadus, 1992; Hasalm et al., 2008) need to be used to apply the

potentials to systems containing molecules of dissimilar components, that is, a

mixture. Some efforts (Klein, 1984) have been made to obtain mixed two-body

potentials from experimental data. However, the limitation of this approach is

that experimental data invariably contain both like and dissimilar interactions,

which are difficult to separate from each other. In contrast, it is possible to

determine the interactions between nonidentical atoms and molecules from first

principles and use the data to obtain an ab initio potential for the dissimilar

interactions. This would be particularly useful in molecular simulation of mix-

tures by enabling completely a prior prediction without the need for combining

rules or unlike adjustable parameters. Despite this, the development of ab initio

potentials has been overwhelmingly focused on pure component properties.

Combined potentials for dissimilar noble gas atoms have been reported

(Haley and Cybulski, 2003; Cacheiro et al., 2004; Jäger and Bich, 2017). Ab

initio data for dissimilar molecules are relatively scarce and largely confined

to either CH4, CO2, or H2O as one of the components. Examples include H2S

+ H2O (Hellmann, 2023), SO2 + H2O (Hellmann, 2023), CO2 1 H2O

(Hellmann, 2019), CO2 1 CH4 (Hellmann et al., 2016), CO2 1 H2S

(Hellmann et al., 2016), CH4 1 H2S (Hellmann et al., 2016), and CH4 1 N2

(Hellmann et al., 2014). Obtaining the intermolecular potential for the mixed

pair follows the same procedure that is used for identical pairs via a simple

modification to Eq. (4.48).

u2ðr; θn;φmÞ5
XNα

i51

XNβ

j51

uij rijðr; θn;φmÞ
� � ð4:56Þ

Nα and Nβ are the number of interaction sites on molecule α and β,
respectively, with the pair interaction energy obtained from Eq. (4.49).

Performing this analysis means that any parameters required by Eq. (4.49)

reflect the mixed interaction. The combined potential allows the direct evalu-

ation of the mixed virial coefficient.

As noted previously, the number of ab initio three-body potentials is lim-

ited to a few examples and no three-body mixture potential has been
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reported. It this case, there is usually no alternative to combining rules. In a

binary mixture, it has been observed (Sadus, 1996) that the nonadditive coef-

ficient required for the ATM potential can be obtained by taking a geometric

average of the like interactions.

vααβ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vαααvαααvβββ3

p

vββα 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vβββvβββvααα3

p
)

ð4:57Þ

4.6 Case study: Augmenting ab initio potentials for fluid
properties

Although some three-body ab initio potentials have been developed for a limited

set of circumstances, the current state-of-the-art is limited to two-body potentials.

As documented above, advances in computational chemistry have been utilized to

determine high accurate two-body interaction, which undoubtedly genuinely

reflect the contribution of pair interaction. However, the scope of useful applica-

tion of these two-body potentials is largely limited to the properties of dilute

gases. It is appropriate to utilize two-body potentials more broadly because two-

body interactions dominate the interactions of nonpolar molecules. This can be

achieved by augmenting the two-body ab initio potentials (u2
ab) with contribution

that are not available from first principles,

u5 uab2 1
XN
i

unon2ab
i ; ð4:58Þ

where unon-ab represents any contributions that involves neither two-body

interactions nor contributions from ab initio data.

4.6.1 Systematic improvement of water potentials

The large number of empirical potentials for water was discussed in

Chapter 3. Although some of the empirical potentials for water (Shvab and

Sadus, 2016) have resulted in considerable improvement in accuracy, this

has not been achieved via a systematic approach. It is often the case that the

high degree of parameterization required to achieve optimal results at a given

state point means reduced accuracy at other conditions. In the spirit of

Eq. (4.58), Li et al. (2007) identified contributions from three-body interac-

tions (u3) and polarization (up).

u5 uab2 1 u3 1 upol ð4:59Þ
In Eq. (4.59), u2

ab was obtained from the four-site MCY potential (similar

to Eq. (4.50)), which alone cannot be used to accurately represent the proper-

ties of real water. This deficiency is rectified by the other nonadditive (na)

terms, and the new potential is designated as MCYna. The contribution of
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three-body interactions was modeled via the ATM potential, interacting via

only oxygen triplets.

The contribution from polarization (Gray and Gubbins, 1984) interactions

was obtained from,

upol 52
1

2

XN
i51

μind
i UEo

i ; ð4:60Þ

where E0 is the electrostatic field of surrounding charges and μind is the

induced dipole at site i given by:

μind
i 5αβUEi 5αβU Eo

i 1
XN

j51;j 6¼i

Tijμind
j

" #
: ð4:61Þ

In Eq. (4.61), αβ is the polarizability and Tij element of the dipole tensor

given by:

Tij 5
1

4πεor5ij
3rijr

0
ij 2 r2ij

h i
: ð4:62Þ

For the MCYna potential, a value of β5 0.557503 is used to reproduce

the dipole moment of liquid water.

The MCYna potential yields a good representation of the dielectric con-

stant of both pure water (Shvab and Sadus, 2013) and its mixtures (Shvab

and Sadus, 2014); and thermodynamic properties (Yigzawe and Sadus,

2013a,b) such as heat capacities (Cv, Cp), compressibilities (βT, βS), thermal

pressure coefficients (γV), expansion coefficient (αp), the speed of sound

(w0), and the Joule�Thomson coefficient (μJT) over a wide range of tem-

peratures and pressures. A partial comparison with experiment and empirical

intermolecular potentials discussed in Chapter 3 is given in Table 4.5. The

comparison indicates that the MCYna gives superior agreement with experi-

ment than the other potentials. This can be attributed to the addition of non-

additive effects, most notably polarization. Perhaps more importantly, it

highlights the effectiveness of the augmentation process, which has expanded

the scope of the MCY potential form dilute gas to liquid phase properties.

4.6.2 Efficient three-body calculations

The MWS potential (Eq. 4.34) is a straightforward example of augmentation

of a two-body potential. It was originally developed (Marcelli and Sadus,

2000) in conjunction with the empirical BFW potential, yielding calculations

that were in very good agreement with the ATM potential. Subsequently

(Vlasiuk et al., 2016; Vlasiuk and Sadus, 2017a,b), it has been proved useful

when used in conjunction with ab initio potentials.
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TABLE 4.5 Comparison of experiment data with predictions from

different intermolecular potentials.a

Property Expt MCYna SPC/E TIP4P TIP4P/2005

CV (J/molK) 74.44 74.4 79.3 82.1 81.8

Cp (J/molK) 75.312 74.6 80.4 89.0 82.6

βT (GPa21) 0.458 0.448 0.476 0.590 0.497

βS (GPa21) 0.425 0.446 0.470 0.544 0.492

γV (MPa/K) 0.436 0.383 0.731 0.746 0.618

αp (10
24/K) 2.00 2.63 3.48 4.4 3.08

μJT (K/MPa) 20.222 20.230 20.201 20.187 20.194

w0 (m/s) 1496.7 1498.4 1460.1 1357.4 1427.2

aShvab and Sadus, 2016.
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FIGURE 4.12 Comparison of experimental vapor pressures of argon (solid line) with predic-

tions of the SAAP ( ) and the three-body augmented SAAP (x) (Deiters and Sadus, 2019b).
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The SAAP provides a computationally efficient way of calculating two-

body interactions in a molecular simulation. However, in common with other

two-body potentials its usefulness is largely restricted to the dilute properties

of gases. This is illustrated in Fig. 4.12, which compares the vapor pressures

of argon predicted by the SAAP alone and the MWS three-body augmenta-

tion of the SAAP (Deiters and Sadus, 2019b). It is apparent from this com-

parison that the SAAP considerably underestimates the vapor pressures over

the entire pressure range. The three-body augmentation results in much

closer agreement with experiment. Although the agreement with experiment

remains imperfect, the calculation is a genuine prediction that has expanded

the usefulness of the SAAP. A similar conclusion can be reached for other

thermodynamic properties (Deiters and Sadus, 2020, 2021).

4.7 Summary

Historically, intermolecular potentials have been empirically determined,

whereas the advent of recent advances in computational chemistry means

that potentials can be determined from first principles or ab initio data. This

has resulted in some highly accurate two-body potentials for both atomic sys-

tems and some small molecules. Although two-body potentials accurately

represent the properties of dilute gases, the prediction of the properties of

liquids require the contributions from multi-body interactions. However, the

combination of two-body plus three-body interactions is often sufficient to

obtain accurate results for the thermodynamic properties of real molecules.

The computational expense of three-body calculation can often be

avoided by a simple density-dependent representation of the ATM that can

be added to the two-body potential. This straightforward augmentation

means that the use of accurate ab initio two-body potentials is not confined

to the properties of dilute gases. That is, they can be usefully employed to

determine the properties of real substances in the dense fluid region.
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Woo, T.K., Margl, P.M., Blöchl, P.E., Ziegler, T., 1997. A combined Car-Parrinello QM/MM

implementation for ab initio molecular dynamics simulations of extended systems: applica-

tion to transition metal catalysis. J. Phys. Chem. B 101, 7877�7880.

Woon, D.E., 1993. Accurate modeling of intermolecular forces: a systematic Møller-Plesset

study of the argon dimer using correlation consistent basis sets. Chem. Phys. Lett. 204,

29�35.

Xantheas, S.S., 1995. Ab initio studies of cyclic water clusters (H2O)n, n5 1-6. III. Comparison

of density functional with MP2 results. J. Chem. Phys. 102, 4505�4517.

Yigzawe, T.M., Sadus, R.J., 2013a. Thermodynamic properties of liquid water from a polarizable

intermolecular potential. J. Chem. Phys. 138, 044503.

Yigzawe, T.M., Sadus, R.J., 2013b. Intermolecular interactions and the thermodynamic proper-

ties of supercritical fluids. J. Chem. Phys. 138, 194502.

Zakharov, I.I., Anufrienko, V.F., Zakharova, O.I., Yashnik, S.A., Ismaguilov, Z.R., 2005. Ab

Initio calculation of nitogen oxide dimer structure and its anion-radical. J. Struct. Chem. 46,

213�219.

Ab initio, two-body and three-body intermolecular potentials Chapter | 4 163

http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref153
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref153
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref153
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref154
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref154
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref154
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref155
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref155
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref156
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref156
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref156
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref157
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref157
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref157
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref158
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref158
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref159
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref159
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref160
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref160
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref161
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref161
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref162
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref162
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref163
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref163
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref163
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref164
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref164
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref164
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref165
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref165
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref165
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref165
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref166
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref166
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref166
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref167
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref167
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref167
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref167
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref168
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref168
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref168
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref168
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref169
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref169
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref169
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref169
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref170
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref171
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref171
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref172
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref172
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref173
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref173
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref173
http://refhub.elsevier.com/B978-0-323-85398-9.00009-5/sbref173


This page intentionally left blank



Chapter 5

Calculating molecular
interactions

Calculating the interaction between molecules is at the heart of either a

Monte Carlo (MC) or a molecular dynamics (MD) simulation program. In a

MC simulation, the configurational energy resulting from the interaction of

each molecule with all other molecules is evaluated. This information is

used to either accept or reject the current configuration. In contrast, a MD

simulation determines the individual forces experienced by each molecule.

The force experienced by the molecule is used to determine new molecular

coordinates in accordance with the equations of motion. In either case, evalu-

ating the effect of molecular interaction is the most computational timecon-

suming step and as such, it governs the order of the overall algorithm.

In principle, for a system of N molecules, the order of the algorithm scales as

Nm
, where m is the number of interactions that are included. Typically, only inter-

actions between pairs of molecules are considered (Chapter 3) resulting in an

algorithm of order N2. If only the distinguishable interactions are considered, N

(N�1)/2 calculations are required for each configuration. This is a large computa-

tional cost because simulations involve routinely several hundred molecules.

However, in practice, the use of computation-saving strategies (detailed below)

can sometimes result in an order N algorithm. In many circumstances there is no

need to re-evaluate all pair interactions to generate new configurations.

The requirement to evaluate forces means that MD algorithms for pairwise

interactions have an intrisinc N2 dependence. In a MC algorithm not involving

either polar or Coulombic interaction, the N2 calculation is typically performed

only once at the start of the simulation to obtain the initial energy of the system.

Subsequent MC moves involve updating the energy via an order N calculation.

However, these MC moves are typically repeated for N cycles, which means the

overall order remains N2. Many of the computation-saving procedures that are

applied to MD algorithms may also potentially benefit MC simulations, particu-

larly if either nonpolar or Coulombic interactions are involved.

Molecular forces can be characterized (Chapters 3 and 4) as either short-

range or long-range, and different techniques are required to simulate both

types of properties. A long-range force is defined as one that falls off no fas-

ter than r2d
, where d is the dimensionality of the system. Typically, ion�ion
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and dipole�dipole potentials are proportional to r21 and r23, respectively.

Dispersion and repulsion are examples of short-range forces.

Many computation-saving devices can be employed to calculate short-range

interactions such as periodic boundary conditions and neighbor lists. However,

calculating long-range interaction requires special methods such as the Ewald

sum, reaction field, and particle�mesh methods, because the effect of long-range

interaction extends well past half the length of the simulation box.

The purpose of this chapter is to provide an overview of algorithms for molec-

ular interactions. Calculating molecular interactions is an example of the many-

body problem that is common to many branches of science. Considerable progress

has been achieved in developing algorithms for many-body interactions particu-

larly for long-range interactions. Various tree and fast multipole (FMM) algo-

rithms are available, which reduce the computational cost of pairwise interactions

to either O(N ln N) or O(N). Some of these algorithms are not used widely in

molecular simulation programs because several thousand molecules are required

to make the FMM algorithms competitive computationally with conventional sim-

ulation strategies. This is in contrast to their wider use for other applications, such

as cosmology, that also tackle N-body calculations. Nonetheless, on going

improvements to FMM algorithms, particularly parallel implementations, are

likely to lower this efficiency threshold. These developments, when coupled with

an increasing desire to study large number of molecules, is likely to result in a

greater use of such algorithms for molecular simulation. This is particularly the

case for implementations using graphics processing units (Chapter 12).

5.1 Calculation of short-range interactions

5.1.1 Naive energy and force calculations

Let us consider a simple short-range potential, such as the Lennard-Jones

(LJ) potential, which was discussed extensively in Chapter 3.

uðrÞ5 4ε
σ
r

� �12
2

σ
r

� �6� 	
ð5:1Þ

If intermolecular interaction is restricted to pairs of molecules, the total poten-

tial energy (U) is obtained by summing up the contribution of all of the individual

pairs.

U5
XN21

i. j

XN
j51

uðrijÞ ð5:2Þ

The summation in Eq. (5.2) is confined only to distinct pairs, which is

usually the most computationally efficient option. Instead, if all pairs were

evaluated, the resulting summation would have to be halved to yield the

same value as Eq. (5.2).
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The force can be obtained by differentiating the potential with respect to

intermolecular separation. To calculate the force fi on each atom i, we must

account for the contribution from all other atoms,

f i 52
XN
j 6¼i

1

rij

@uðrijÞ
@rij


 �
rij 52

XN
j6¼i

wij

r2ij
rij; ð5:3Þ

where wij is the virial introduced in Eq. (2.17) and rij is required in the

denominator because force is directed along the interatomic vector

(rij 5 ri 2 rj). A computationally convenient feature of Eq. (5.3) is that, if

u(rij) is an even function of rij, then it is only necessary to determine r2ij and

not the absolute magnitude of rij.

It is apparent that the calculation of either energy or force requires a pair

of nested loops. The outer loop in the force calculation is required to obtain

values of fi for all i5 1 to N molecules. The general procedure is summa-

rized by Algorithm 5.1.

ALGORITHM 5.1 Calculation of either intermolecular forces or energy.
loop i � 1 ... N - 1

loop j � i + 1 ... N
Evaluate rij.
Evaluate u(rij) or fi.
Accumulate energy or force.

end j loop
end i loop

The pseudo code in Algorithm 5.1 follows directly from the problem descrip-

tion and illustrates the nesting of loops required for the evaluation of either forces

or energy. Care is taken to avoid identical molecules, and a total of N(N�1)/2

iterations will be performed. However, this algorithm is normally used with a

very important modification. Simulations are performed typically with a few hun-

dred molecules arranged commonly on a cubic lattice. The small sample size

means that a large fraction of the molecules can be expected at the surface of the

lattice rather than in the bulk. This is undesirable because the forces experienced

by the surface molecules are different from the bulk. Periodic boundary conditions

are incorporated into Algorithm 5.1 to avoid this problem.

5.1.2 Periodic boundary conditions and minimum image convention

Periodic boundary conditions can be applied by constructing an infinite lat-

tice that replicates the cubic simulation box throughout space. Molecules in

any box on this lattice have a mirror image counterpart in all the other boxes.

Changes in one box are matched exactly in the other boxes. If a molecule
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leaves a box, then its counterpart in a neighboring box enters through the

opposite face. Consequently, the central box is devoid of any boundaries,

and surface effects are eliminated.

The use of a periodic boundary condition solves the problem of surface mole-

cules, but it poses another potential difficulty for the simulation. The heart of a

simulation program is the calculation of either molecular forces or energies. If

there are N molecules in the simulation, then to calculate the pairwise force or

energy experienced by each other molecule involves a summation of N�1 terms.

In principle, we are also faced with the impossible task of including the interac-

tions of the infinite array of periodic images. In the case of a short-ranged inter-

molecular potential, this problem is avoided by invoking the minimum image

convention. To calculate the intermolecular interaction of any molecule, we posi-

tion it at the center of a box with dimensions identical to the simulation box. The

central molecule interacts with all molecules whose centers fall with this region,

that is, the closest periodic images of the other N�1 molecules.

If the origin of the coordinate system is taken as the center of the simula-

tion box of length L, then the algorithms for applying the minimum image

convention and periodic boundaries are very simple. All the coordinates lie

within the range of 1/2 L and -1/2L. Consequently, when the molecule leaves

the box, we can focus attention on its mirror image by either adding or sub-

tracting L to its coordinates. This can be easily coded in FORTRAN using

the intrinsic anint(x) to determine the nearest integer of x. For example, to

add the correct number of box lengths to the molecular coordinates rij or the

pair separation vector, we write:

rxij(i) = rxij(i) - boxl  *  anint( rxij(i) / boxl )

The original C/C11 programming language did not have a nearest integer

function as part of its standard maths library, which meant that a user-

defined function was required. An example of such a function (nearestInt) is

given in Chapter 11. The corresponding C/C11 statement is:

rxij[i] = rxij[i] - boxl * nearestInt(rx[ij], boxl);

Alternatively, this can now be achieved using the C/C++ round() function,

i.e., rxij[i] = rxij[i] - boxl * (int) round(rx[ij] / boxl); The

above statements are usually evaluated in a loop, for example, during the

evaluation of energies.

Although using a cubic box is overwhelmingly the most common choice

for implementing a molecular simulation, other geometries are possible

(Allen and Tildesley, 2017) that require the application of different periodic

boundary conditions. Examples include the rhombic dodecahedron (Wang

and Krumhansl, 1972) and the truncated octahedron (Adams, 1979). Reasons

for using different geometries include avoiding simulation-induced artefacts
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in specific cases (Reed and Flurchick, 1996; White et al., 2008) or more

closely reproducing the behavior that is being investigated. The shape of the

simulation box may affect the properties of some protein systems

(Wassenaar and Mark, 2006), and helical periodic boundary conditions

(Kessler and Bour, 2014) may more closely match the conditions of some

biopolymers. The efficient study of elongational flow also requires special

boundary conditions (Hunt and Todd, 2003; Todd and Daivis, 1998).

The general procedure for calculating the energy or force using periodic

boundary conditions is given in Algorithm 5.2.

ALGORITHM 5.2 Calculation of either intermolecular forces or energy
using periodic boundary conditions.

loop i �1 ... N - 1
loop j � i + 1 ... N

Evaluate rij.
Convert rij to its  periodic image (rij').
if (ri' < cutOffDistance) 

Evaluate u(rij') or fi.
Accumulate energy or force.

end if
end j loop

end i loop

Algorithm 5.2 differs from Algorithm 5.1 in two important respects. First, the

accumulated energy and forces are calculated for the periodic separation distances.

Second, only molecules separated by a distance less than the cut-off distance con-

tribute to the calculated energy or forces. The cut-off distance is a consequence of

the periodic boundary conditions. It can be any distance up to half the length of

the simulation box. A higher cut-off is not permitted because it would violate the

minimum image convention. Consequently, Algorithm 5.2 evaluates the properties

of a truncated intermolecular potential rather than the full potential. The full con-

tributions of the intermolecular potential can be obtained by using long-range cor-

rection terms.

5.1.3 Long-range corrections to periodic boundary calculations

The contribution to a property X of the fluid from the missing long-range

part of the potential can be obtained by adding a long-range correction.

Xfull 5Xc 1Xlrc ð5:4Þ
The long-range corrections are calculated by assuming that the pair-

distribution function is unity beyond the cut-off distance rc. Using this sim-

plification, the long-range corrections for energy (U), the virial term (W),
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and the chemical potential (μ) are obtained (Allen and Tildesley, 2017)

from,

Ulrc 5 2πNρ
ðN
rc

r2uðrÞdr ð5:5Þ

Wlrc 52
2πNρ
3

ðN
rc

r2wðrÞdr ð5:6Þ

μlrc 5 4πρ
ðN
rc

r2uðrÞdr; ð5:7Þ

where:

wðrÞ5 r
duðrÞ
dr

ð5:8Þ

If these formulas are applied to the LJ potential, we obtain:

Ulrc 5
8επNρσ3

9

σ
r
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2 3
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16επρσ3
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r
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2 3

σ
r

� �3� 	
ð5:11Þ

Most short-range potentials decay rapidly with increasing intermolecular

separations. For example, the LJ potential asymptotes rapidly to zero for distances

greater than 2.5 σ. Therefore, rc$ 2.5 σ is an appropriate choice for the LJ poten-

tial in many situations. The cut-off value of 2.5 σ should be considered as the

absolute lower limit for the LJ potential and, in many circumstances, it is prudent

to use a larger value. This is particularly the case for the investigation of phase

coexistence, which requires much larger cut-off values to obtain consistently

reproducible results (Baidakov et al., 2000; Ahmed and Sadus, 2010). Cut-off-

induced discrepancies have also been observed for the pressure (Huang et al.,

2010) in various ensembles. The widespread ongoing use of a cut-off value of

2.5 σ is arguably an outdated legacy of early simulation studies, which were

severely restricted by meager computational resources. This should no longer be a

significant limitation for most contemporary simulations.

5.1.4 Neighbor list

The implementation of periodic boundary conditions reduces the computation

cost significantly because calculations involving intermolecular separation
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greater than the cut-off distance are not included. Verlet (1967) proposed that

keeping a periodically updated list of the neighbors of each molecule could

reduce computation time further. Instead of searching repeatedly for neighboring

molecules, the neighbors of each molecule are found from the list and the inter-

actions are calculated. This avoids searching for molecules that do not contribute

to the short-range interaction because they are beyond the cut-off separation.

Algorithm 5.3 illustrates the neighbor list method.

Starting with an empty list (Algorithm 5.3, Part 1), each molecule is selected

in turn (Algorithm 5.3, Part 1.1), and a search is made for neighbors (Algorithm

5.3, Part 2), which involves evaluating the intermolecular separation (Algorithm

5.3, Part 2.1). If a neighbor is found, it is entered on the list (Algorithm 5.3,

Part 2.2). The creation of a neighbor list involves two arrays. The array list con-

tains the neighbors of molecule i. The array listEntry stores the position of the

last neighbor of molecule i in list. For each molecule, the listEntry value allows

us to index the neighboring molecules. The variable d is used to encompass

molecules slightly outside the cut-off distance. This provides a buffer for those

molecules that are likely to come within the cut-off distance in the next few

MC cycles or MD time steps, thereby reducing the update frequency of the

neighbor list.

ALGORITHM 5.3 Creation of a Verlet neighbor list.

Part 1 topOfList � 0 //start with empty list
Part 1.1 loop i �1 ... N – 1 //select molecule i

listEntryi � 0
Part 2 loop j � i + 1 ... N //look for neighbors of i 
Part 2.1 Evaluate rxij, ryij and rzij.

Evaluate periodic images ( rxij', ryij' and rzij')
r2 � rxij'2 + ryij'2 + rzij'2

Part 2.2 if (r2 < (rCut2 + d))                        //neighbor found
topOfList � topOfList + 1
listEntryi � topOfList //position of j on list
listtopOfList � j //enter j on list

end if
end j loop

end i loop

The use of the neighbor list in conjunction with energy/force evaluation

is illustrated in Algorithm 5.4. At the start of the simulation, the neighbor

list is created. The neighbor listed is subsequently updated periodically

(Algorithm 5.4, Part 1) during the course of the simulation (update ’true).

In the force/energy evaluation (Algorithm 5.4, Part 2), the inner loop

(Algorithm 5.4, Part 2.1) over molecules of type j is replaced by a loop

over the neighbors of I found in the array list, where the value of listEntryi is

the position of the last neighbor of i in the list. After all the neighbors of i
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are considered, the value of last is updated in preparation for the next i

molecule.

The use of neighbor lists reduces the computing substantially, particularly

for systems with 500 or more molecules (Allen and Tildesley, 2017). An

update interval of 10�20 steps is usually sufficient; the optimal number

depends on the size of the cut-off distance. Alternatively, the algorithm can

be extended to update the neighbor list automatically (Fincham and Ralston,

1981) when the sum of the magnitudes of the two largest displacements

exceeds the buffer distance (d). Algorithm 5.5 illustrates this latter approach.

ALGORITHM 5.4 Calculation of energies/forces using a neighbor list.

Part 1 If (update)
Create neighbor list (Algorithm 5.3). 
update � false

end if
last � 0

Part 2 loop i � 1 ... N - 1
if (listEntryi > 0)

Part 2.1 loop m � last + 1 ...  listEntryi

j � listm
Evaluate rxij, ryij and rzij.
Evaluate periodic images ( rxij', ryij' and rzij').
r2 � rxij'2 + ryij'2 + rzij'2

if (r 2 < rCut 2)
Evaluate u(rij) or fi.
Accumulate energy or force.

end if
end m loop
last �listEntryi

end if
end i loop

Before each force/energy evaluation (Algorithm 5.5, Part 1), the highest

newMax and second highest displacements oldMax in all directions are evalu-

ated (Algorithm 5.5, Part 1.1) and compared with d (Algorithm 5.5, Part 1.2).

At the commencement of the force/energy evaluation (Algorithm 5.5, Part 2)

if update is true, the current coordinates are stored (Algorithm 5.5, Part 2.1),

a new list is created (Algorithm 5.5, Part 2.2), and the forces/energies

(Algorithm 5.5, Part 2.3) are calculated. Otherwise, the forces/energies are

evaluated from the existing list (Algorithm 5.5, Part 2.4). The advantage of

this method is that it avoids the overhead of re-evaluating the neighbor list

too often.

The importance of the neighbor list is reflected by the continuing

efforts made to improve its capabilities (Awile et al., 2012; Gonnet, 2013;
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Sutmann and Stegailov, 2006). The common feature of all neighbor list

implementations is the need to periodically update the list. This is a

source of imprecision that can be expected to increase during the course

of the simulation. Therefore when practical, it is particularly useful to

compare the results obtained from a neighbor list implementation with a

brute-force calculation.

ALGORITHM 5.5 Use of an automatically updated neighbor list.

Part 1 Check if displacement has been exceeded:
newMax � 0
oldMax � 0

Part 1.1 loop i � 1 ... N
xDisp � |rxi - rxOldi|
yDisp � |ryi - ryOldi|
zDisp � |rzi - rzOldi|
if (xDisp > newMax)

oldMax � newMax
newMax � xDisp

end if
if (yDisp > newMax)

oldMax � newMax
newMax � yDisp

end if
if (zDisp > newMax)

oldMax � newMax
newMax � zDisp

end if
end i loop

Part 1.2 if (newMax + oldMax > d)
update � true

else
update �false

end if
Part 2 Calculate forces/energies:

if (update)
Part 2.1 Save current configuration:

loop i �1 ... N
rxOldi �rxi

ryOldi �ryi

rzOldi �rzi

end i loop
Part 2.2 Create new neighbor list (Algorithm 5.3). 
Part 2.3 Evaluate forces/energies (Algorithm 5.4).

else
Part 2.4 Evaluate forces/energies (Algorithm 5.4) from the existing list.

end if
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5.1.5 Linked cells

For simulations involving a large number of molecules (N$ 1000), the logi-

cal testing of every pair in the system required by the neighbor list becomes

increasingly inefficient computationally. Quentrec and Brot (1973) proposed

an alternative bookkeeping method that is particularly advantageous for large

systems. The method involves creating a linked list of cells. The simulation

box is divided into a lattice of M 3 M 3 M cells. The value of M is chosen

such that the length of the cells (L/M) is greater than the cut-off distance of

the forces.

A two-dimensional cell has eight neighbors, whereas a three-

dimensional cell has twenty-six neighbors. However, if Newton’s third

law is used to evaluate forces in a MD simulation, only half the neighbors

need to be considered. At the start of the simulation, the identities of the

cells and their neighbors must be specified. The indexing required in three

dimensions is illustrated by Algorithm 5.6. Algorithm 5.6 uses a three-

dimensional array to locate the various cells in the simulation box. This

involves a triple loop (Algorithm 5.6., Part 1). An index is assigned to

each cell in the inner loop (Algorithm 5.6, Part 2). When locating nearest

neighbors, care must be taken to account for indices that are outside the

scope of the array (Algorithm 5.6, Parts 2.1�2.4). In these cases, a value

of -1 can be assigned to map, which indicates that there are no neighbors.

Fig. 5.1 illustrates the allocation of cell identities to the different cells for

the two-dimensional case. According to Algorithm 5.6, the cell numbered

5 is located at cell2,2 and the numbers 6, 9, 8, and 7, which correspond to

map13, map14, map15, and map16, respectively, identify their four nearest

neighbors.

7 8 9

4 5 6

1 2 3

FIGURE 5.1 Illustration of cell numbering for a two-dimensional simulation cell with M5 3.
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ALGORITHM 5.6 Three-dimensional map of cells and nearest neighbors.

Part 1 Triple loop for 3-D cases:
loop z �1 ... M

loop y �1 ... M
loop x � 1 ... M

Part 2 Assign an index to each cell:
cell(x)(y)(z) �1 + mod(x - 1 + M, M)

+ mod(y - 1 + M, M) � M
+ mod(z - 1 + M, M) � M2

Part 2.1 Identify half the nearest neighbors of each cell: 
index � 13 � (cell(x)(y)(z) - 1)
mapindex + 1 � cell(x+1)(y)(z)

mapindex + 2 � cell(x+1)(y+1)(z)

mapindex + 3 � cell(x)(y+1)(z)

Part 2.2 if (x = 1)
mapindex + 4 � -1

else
mapindex + 4 � cell(x-1)(y+1)(z)

end if
Part 2.3 if (x = 1 or z = 1)

mapindex + 5 � -1
mapindex + 6 � -1
mapindex + 7 � -1
mapindex + 8 � -1

else
mapindex + 5 � cell(x+1)(y)(z-1)

mapindex + 6 � cell(x+1)(y+1)(z-1)

mapindex + 7 � cell(x)(y+1)(z-1)

mapindex + 8 � cell(x-1)(y+1)(z-1)

end if
mapindex + 9 � cell(x+1)(y)(z+1)

mapindex + 10 � cell(x+1)(y+1)(z+1)

mapindex + 11 � cell(x)(y+1)(z+1)

Part 2.4 if (x = 1)
mapindex + 12 � -1

else
mapindex + 12 � cell(x-1)(y+1)(z+1)

end if
mapindex + 13 � cell(x)(y)(z+1)

end x loop
end y loop

end z loop
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The procedure for creating a linked-cell list is illustrated by Algorithm

5.7. At the outset of the simulation (Algorithm 5.7, Part 1) the length and

number of cells are determined. At each time step of the simulation, sorting

all the molecules into their appropriate cells creates a linked list of cells. The

process involves initializing headi to zero (Algorithm 5.7, Part 2), allocating

particles to cells Algorithm 5.7, Part 3.1), and identifying “head” particles

(Algorithm 5.7, Part 3.1).

ALGORITHM 5.7 Creation of a linked-cell list.

Part 1 Determine length and number of cells:
lCell �int(lBox/rCutOff)
nCell � lCell3

Part 2 Initialise head array to zero:
loop i � 1 .... nCell

headi � 0
end i loop

Part 3 Allocate particles to cells and identify ‘head’ particles:
loop i � 1 ..... nParticles

Part 3.1 cell � 1 + int( (rxi + lBox/2) � lCell)
+ int( (ryi + lBox/2) � lCell) � lCell
+ int( (rzi + lBox/2) � lCell) � lCell � lCell

listi �headcell

Part 3.2 headcell � i
end i loop

Algorithm 5.8 gives an example of using a linked-cell list in a force

evaluation. At the outset (Algorithm 5.8, Part 1) the parameters are ini-

tialized as in a conventional simulation. The length and number of cells

are determined (Algorithm 5.8, Part 2), followed by the creation of a cell

map (Algorithm 5.8, Part 3) and a linked-cell list (Algorithm 5.8, Part 4).

The evaluation of forces (Algorithm 5.8, Part 5) involves loops over all

cells (Algorithm 5.8, Part 5.1), over all molecules in the cell (Algorithm

5.8, Part 5.2), and over neighboring cells (Algorithm 5.8, Part 5.3).

Comparing the execution times of simulations, the linked-cell procedure

with the neighbor list indicates that the former may be advantageous in

some circumstances (Morales, 1996).
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ALGORITHM 5.8 Force calculation using a linked-cell list.

Part 1 Initialise parameters as in conventional simulation.

Part 2 Determine length and number of cells:
lCell int(lBox/rCutOff)
nCell lCell3

Part 3 Create cell map (Algorithm 5.6).

Part 4 Create linked-cell list (Algorithm 5.7).

Part 5 Evaluate forces:
Part 5.1 loop cell 1 ... nCell //loop over all cells

i headcell
Part 5.2 loop while (i > 0) // loop over all molecules in the cell

j listi
loop while (j > 0)

Evaluate forces.
j listj

end j loop
jCell0 13 (cell - 1)

Part 5.3 loop neighbor 1 ... 13 //loop over neighboring cells
jCell map
if (jCell > 0)

j headjCell
else

j 0
end if
loop while (j > 0)

Evaluate forces.
j listj

end j loop
i listi

end neighbor loop
end i loop

end cell loop

jCell0 + neighbor

The basic approach illustrated in Algorithms 5.6�5.8 has been modified to

improve its efficiency (Everaers and Kremer, 1994; Fanourgakis et al., 2007;

Fomin, 2011; Wang et al., 2007; Welling and Germano, 2011). Watanabe et al.

(2011) have provided details of a parallel implementation and it has been com-

bined (Fomin, 2011; Luo et al., 2015) with a look-up table (see Section 5.1.6).

The refinements sometime result in a many-fold improvement (Heinz and

Hünenberger, 2004; Yao et al., 2004) in computational speed. Traditionally, the
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linked-cell list has been implemented for a cubic simulation box, but there are

examples of its use in other geometries (Cui et al., 2009). The approach has been

modified (Matin et al., 2003) to deal with the special case of elongational flow,

which requires nonconventional boundary conditions.

5.1.6 Look-up table

A look-up table is a computation-saving alternative to the direct evaluation of

either the intermolecular potential or force. At the start of the simulation, the

potential u(s) and force ( f5 2 2rij (du/ds)) are calculated at intervals of δs, where
s5 rij

2. Typically, δs5 0.01rm
2, where rm is the separation that corresponds to

the minimum of the potential. The values of the calculated potentials and/or forces

are stored in look-up tables as is illustrated by Algorithm 5.9.

ALGORITHM 5.9 Creation of look-up tables.

�s �0.01 × rPotMin
max �int(rCutOff/�s)
loop i �1... max

s � i � �s
rij ��s
Evaluate potential (potTablei).
Evaluate force (forceTablei).

end i loop

During the simulation, values of s5 rij
2 are calculated for each pair of

molecules, and the potential and/or force is interpolated for the table. The

most widely used interpolation formula is the Newton�Gregory forward dif-

ference method (Booth, 1972),

uðsÞ5 uk 1 ξðuk11 2 ukÞ1
1

2
ξðξ2 1Þðuk12 2 2uk11 1 ukÞ; ð5:12Þ

where:

ξ5
s2 sk

δk
ð5:13Þ

Algorithm 5.10 illustrates the use of a look-up table in conjunction with a

neighbor list. A look-up table is particularly useful for complicated intermolecular

potentials. It has been used (Barker et al., 1971) for the Barker�Fisher�Watts

(BFW) potential, which contains 11 adjustable parameters and an exponential

term. It is also likely to be particularly useful in the implementation of the molec-

ular mechanics force fields described in Chapter 3. In this context, several

tables could be used to store values of the different contributions from both inter-

and intramolecular interactions. Improvements to the basic algorithm have been

proposed (Andrea et al., 1983), which reduce the storage requirements of the
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tables. The use of look-up tables in conjunction with an Ewald sum has been

described (Danese et al., 1998).

ALGORITHM 5.10 Calculation of energies using a neighbor list and a look-
up table.

if (update)
Create neighbor list.
update � false

end if
last � 0
loop i � 1 ... N - 1

if (listEntryi > 0)
loop m � last + 1 ...  listEntryi

j � listm
Evaluate rxij, ryij and rzij.
Evaluate periodic images (rxij', ryij' and rzij').

s � rxij'2 + ryij'2 + rzij'2

if (s < rCut2)
k �int(s/�s) // Look-up table index
� � s/�s - k
pot � potTablek + � � (potTablek+1 –potTablek)

+ 0.5 � (�2 - �) �
(potTabkek+2 - 2 � potTablek+1 + potTablek)

Accumulate energy.
end if

end m loop
last �listEntryi

end if
end i loop

The linked-cell method is used frequently as part of the particle�particle

particle�mesh (PPPM) algorithm (see subsequent discussion) and improvements

are being made continually. Fincham (1994) has reported a small-cell version

of the linked-cell method that can be used to improve the efficiency of calculating

the real space contribution of the Ewald sum (see subsequent discussion).

Milchev et al. (1993) have applied the linked-cell algorithm in a MC simulation

of the properties of polymers. Grest et al. (1989) reported MD code using a vec-

torized linked-cell algorithm. Pinches et al. (1996) have implemented a parallel

version of the linked-cell algorithm.

5.1.7 Comparison of computational efficiency

The computation time t of the brute-force evaluation of all distinct pairs is,

t5α
NðN2 1Þ

2
; ð5:14Þ
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where α is a constant. In contrast, when a Verlet list is used, the calculation

of energy is proportional to the number of molecules, and the N2 term only

arises when the list is updated. Consequently,

t5 γN1λ
NðN2 1Þ

2
; ð5:15Þ

where γ and λ are constants associated with the energy/force evaluation and

with the frequency of updating the Verlet list, respectively. It is evident that

if λ is small, the Verlet list can reduce the computational complexity of the

algorithm. Typically, algorithms, which use a Verlet, list scale as N3/2. In

contrast, the two main processes involved in the linked-cell method, namely,

energy evaluation and creation of the cell list, both have a linear dependence

on the number of molecules,

t5κN1 τN ð5:16Þ
where κ and τ are constants associated with energy/force evaluation and cell

list creation, respectively.

It is apparent that using either the Verlet list or the linked-cell list can poten-

tially have considerable computational advantages. However, it should be noted

that the benefits of the list methods for a system with few molecules (N5 1000)

may be outweighed by the computational overhead of creating and maintaining

a list. It is also clear that automatic updates of the Verlet list are essential to

maximize computational efficiency. The list methods are likely to be more ben-

eficial for MD simulations rather than MC. For example, Frenkel and Smit

(2002) have compared the computation times for MC simulations using various

methods. They concluded that the simple brute-force algorithm was superior to

the list methods for simulating the properties of a LJ fluid of 200�500 mole-

cules. However, the cell method is vastly superior when a large number of

molecules are involved, particularly at low densities. For 10,000 particles,

Frenkel and Smit (2023) reported an 18-fold improvement using the cell method

compared with a brute-force evaluation of all distinct pairs.

5.2 Calculation of long-range interactions

The use of periodic boundary conditions is a standard feature of the molecular

simulation of bulk properties using short-range intermolecular potentials. It avoids

inaccuracies caused by surface effects and it also provides the additional benefit

that computation time is reduced significantly by using cut-off corrections instead

of calculating the interactions of all periodic images. However, long-range interac-

tions such as Coulombic or dipolar interactions typically exert an influence that is

much greater than half the length of the simulation box. The decay of the

Coulombic [Eq. (3.51)], Stockmayer [Eq. (3.80)], and LJ [Eq. (3.25)] potentials as

a function of intermolecular separation are compared in Fig. 5.2. It is apparent

from Fig. 5.2 that the Coulombic and, to a much lesser extent, the Stockmayer
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potentials, are nonzero for quite large intermolecular separations. The obvious

solution is to use a very large simulation box; however, this approach is prohibi-

tive computationally. Instead, various computational procedures have been devised

and some of the alternatives are discussed below. It should be noted that calcula-

tions of electrostatic interactions are prone to a greater degree of uncertainty and

error (Coelho and Cheary, 1997; Bogusz et al., 1998; Resat and McCammon,

1998) than simulations involving nonpolar molecules.

5.2.1 The Ewald sum

The Ewald sum has arguably become the default method for the evaluation

of electrostatic interactions. It deals specifically with the interactions

between charges, which makes it particularly suitable for ionic interactions.

However, it can also be applied more generally to nonpolar systems

because nonpolar interactions between molecules (Chapter 3) are routinely

modeled by assigning partial charges to the constituent atoms. The Ewald

sum is considered to be the most rigorous method available, as it has been

described in considerable detail elsewhere (Allen and Tildesley, 2017;

Rapaport, 2004; Tuckerman, 2010). Many efforts have been made to both

make improvements and apply it to an increasing variety of situations

(Wells and Chaffee, 2015; Tornberg, 2016; Lindbo and Tornberg, 2012;

Villarreal and Montich, 2005; Skeel, 2016).

FIGURE 5.2 Comparison of the decay of (A) Coulombic (qaqb/εσ5 1), (B) Stockmayer (μaμb/

εσ35 1, θa5 90 degrees, θb5 90 degrees and φa5φb), and (C) LJ (u/ε) reduced potentials (non-

SI versions) as a function of reduced intermolecular separation.
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First, consider a central simulation box of length L. Using the non-SI ver-

sion of Eq. (3.51), the energy from electrostatic interactions between N mole-

cules confined in the central box can be obtained from:

U5
1

2

XN
i51

XN
j51

qiqj

rij
ð5:17Þ

Six periodic images of the central box can be constructed at a distance L

from the central box with coordinates (rbox) specified by (0, 0, L), (0, 0, �L),

(0, L, 0), (0, �L, 0), (L, 0, 0), and (�L, 0, 0). Eq. (5.17) must be modified to

include the contribution of Coulombic interactions between charges in the

central box and all images of all particles in the six surrounding boxes.

U5
1

2

X6
nbox51

XN
i51

XN
j51

qiqj

rij 1 rbox
  ð5:18Þ

We can construct a further five periodic images for each of these new boxes

and they in turn, also have periodic images. A sphere of simulation boxes is

constructed by continual repetition of this process. In general, the energy of

interaction of an ion and all of its periodic images can be obtained from,

U5
1

2

XN
n50

XN
i51

XN
j51

qiqj

rij 1 n
  ; ð5:19Þ

where the summation over n is taken over all lattice points, n5 (nxL, nyL,

nzL) with nx, ny, nz integers. The prime indicates the omission of i5 j for

n5 0. Eq. (5.19) is the Ewald sum (Ewald, 1921).

In practice, Eq. (5.19) is not evaluated directly because it converges very

slowly. Instead, Eq. (5.19) is converted (de Leeuw et al., 1980; Heyes, 1981)

into two series each of which converges more rapidly. The assumption is made

that each charge is surrounded by a neutralizing charge distribution of equal

magnitude but of opposite sign. Typically, a Gaussian charge distribution is used.

ρiðrÞ5
qiκ3

π3
2

expð2 κ2r2Þ ð5:20Þ

The summation over point charges becomes a summation of the interac-

tion between charges plus the neutralizing distributions. The new summation

is often referred to as the “real space” summation. The real space energy is,

Ureal2s 5
1

2

XN
i51

XN
j51

XN
n50

qiqjerfc κ rij 1 n
 � �

rij 1 n
  ; ð5:21Þ

where erfc is the complementary error function (Abramowitz and Stegun, 1972).

erfcðxÞ5 2ffiffiffi
π

p
ðN
x

expð2 t2Þdt ð5:22Þ
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Most programming languages implement the error function as part of

their mathematical library, which means that it is not a programming impedi-

ment. The value of κ is chosen such that only terms corresponding to n5 0

(interactions involving charges in the central box only) make a contribution.

Typically, κ5 5/L (Woodcock and Singer, 1971).

A second charge distribution is required, which counteracts exactly the

neutralizing distribution. The summation is performed in “reciprocal space,”

Urecip2s 5
1

2

X
k 6¼0

XN
i51

XN
j51

4πqiqj
k2L3

exp
k2

4κ2


 �
cosðkUrijÞ; ð5:23Þ

where k5 2πn/L2 are the reciprocal vectors. Typically, 100�200 k vectors

are used (Woodcock and Singer, 1971). Evaluating a triple summation is

expensive computationally. Instead, complex algebra (Heyes, 1981;

Anastasiou and Fincham, 1982) is used to replace the sum involving i and j

with a single summation. The result is:

Urecip2s 5
1

2

X
k 6¼0

4π
k2L3

exp
k2

4κ2


 �XN
i51

qiexpðikUriÞ



2

ð5:24Þ

The summation of Gaussian functions in real space also includes the interac-

tion of each Gaussian with itself. The effect of this interaction on the energy is:

UGauss 52
κffiffiffi
π

p
XN
k51

q2i ð5:25Þ

The medium surrounding the sphere of simulation boxes must also be con-

sidered in the calculation because the sphere can interact with its surroundings.

No correction is required if the surrounding medium is a good conductor charac-

terized by infinite relative permittivity (ε05N). However, if the surrounding

medium is a vacuum (ε05 1), the following correction applies.

Ucorr 5
2π
3L3

XN
i51

qiri



2

ð5:26Þ

Consequently, the final expression for Coulombic interaction is:

U5Ureal2s 1Urecip2s 1UGauss 1Ucorr ð5:27Þ
The Ewald sum can be applied to dipole�dipole interactions (Adams and

McDonald, 1976; de Leeuw et al., 1980). The contributions to Eq. (5.27) for

dipole�dipole interactions are,

Ureal2s 5
1

2

XN
i51

XN
j51

XN
nj j50

ðµiUµjÞBðrij 1 nÞ2 ðµiUrijÞCðrij 1 nÞ ð5:28Þ
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Urecip2s 5
1

2

XN
i51

XN
j51

X
k6¼0

4πðµiUkÞðµjUkÞ
κ2L3

exp
k2

4κ2


 �
cosðkUrijÞ ð5:29Þ

UGauss 52
2κ
3
ffiffiffi
π

p
XN
i51

µ2
i ð5:30Þ

Ucorr 5
2π
3L3

XN
i51

XN
j51

µiUµj ð5:31Þ

where the summations over i and j are for dipoles in the central box and:

BðrÞ5 erfcðκrÞ
r3

1
2κffiffiffi
π

p
r2
expð2κ2r2Þ ð5:32Þ

CðrÞ5 3erfcðκrÞ
r5

1
2κffiffiffi
π

p
r2

2κ2 1
3

r2


 �
expð2κ2r2Þ ð5:33Þ

The triple summation in Eq. (5.29) can be avoided by using complex

algebra resulting in:

Urecip2s 5
1

2

X
k 6¼0

4π
k2L3

exp
k2

4κ2


 �XN
i51

ðµjUkÞ expðikUriÞ



2

ð5:34Þ

The implementation of the Ewald sum for ions is illustrated by

Algorithms 5.11 and 5.12 (Smith, 1992). Before calculating the reciprocal

space sum (Algorithm 5.11), the forces of the molecules (Algorithm 5.11,

Part 1) and exponential k vector terms (Algorithm 5.11, Part 2) are initial-

ized. A feature of the practical implementation of algorithms to calculate the

reciprocal space contribution is inner loops (Algorithm 5.11, Parts 3.1 and

3.2) with variable terms (mmin and nmin). This exploits the inversion symmetry

of the reciprocal lattice, halving the required computation time.

The implementation of the real space terms is straightforward

(Algorithm 5.12). The Gaussian (Algorithm 5.12, Part 1) and correction

terms (Algorithm 5.12, Part 2) are determined prior to the evaluation of

the real space contribution. The calculation of the real space contribution

(Algorithm 5.12, Part 3) involves a relatively minor change to the normal

force evaluation algorithms. An improvement in computational efficiency

can be obtained by incorporating a neighbor list (Algorithm 5.4). Smith

(1992) has discussed an improved replicated data algorithm for the Ewald

sum that exploits parallel computers. Sperb (1998) has reported an alter-

native to the Ewald sum based on redefining particle identities. Details

are also available (Lekner, 1998) of the calculation of Coulombic interac-

tions in an orthorhombic unit cell.
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ALGORITHM 5.11 Calculation of the reciprocal space contribution in the
Ewald sum.

Part 1 Initialise forces on molecules:
loop j �1 ... N 

fxj �0
fyj �0
fzj �0

end j loop

Part 2 Initialise exponential k vector terms:
loop k � -kMax ... kMax

loop j �1... N
exkj � exp(i2�k/L)
eykj � exp(i2�k/L)
ezkj � exp(i2�k/L)

end j loop
end k loop

Part 3 Calculate reciprocal space terms:
mMin �0
nMin �1
loop l � 0 ... k

rl �2�l/L
Part 3.1 loop m � mMin ... kMax

rm �2�m/L
loop j � 1 ... N

exyj �exlj � eymj

end j loop
Part 3.2 loop n � nMin ... kMax

rn �2�n/L
k2 � l2 + m2 + n2

if k2 � kmax
2

rk
2 � rl

2 + rm
2 + rn

2

Ak � exp(rk
2/4	2)/rk

2

loop j �1 ... N
exyzj �Cj � exyj � eznj

end j loop
QSum � 0
loop j �1 ... N

QSum �QSum + exyzj

end j loop
E � Ak
QSum
2/L3

loop j �1 ... N
fxj � fxj + real(2i � Ak �QSum � exyzj � rl)/L3

fyj � fyj + real(2i � Ak �QSum � exyzj � rm)/L3

fzj � fzj + real(2i � Ak � QSum � exyzj � rn)/L3

end j loop
end if

end n loop
nMin � -kMax

end m loop
mMin � -kMax

end l loop



ALGORITHM 5.12 Calculation of the real space contribution in the Ewald
sum.

Part 1 Calculate Gaussian term using eq. (5.25).

Part 2 Calculate correction term:
if (�0 = �)

Obtain Ecorr form eq. (5.26).
else

Ecorr �0
end if

Part 3 Calculate Real Space Term:
loop i �1 to N - 1

loop j � j + 1 to N
Evaluate rxij, ryij and rzij.
Evaluate periodic images (rxij', ryij' and rzij').
r2� rxij'2 + ryij'2 t rz ij'2

if (r2< rCut2)
r ��r 2

E �E + Ecorr + EGauss+ CiCjerfc(	r)/r
 � CiCj[erfc(	r)/r + exp(-(	r)2)]/r 2

fxi � fxi - rxij

fyi � fyi - ryij

fzi � fzi - rzij

fxj � fxj + rxij

fyj � fyj + ryij

fzj � fzj + rzij

end if
end j loop

end i loop

5.2.2 The Wolf approximation of the Ewald sum

The calculation of the reciprocal part of the contribution to energy is the

most computational expense aspect of the Ewald sum. An alternative, pro-

posed by Wolf (Wolf, 1992; Wolf et al., 1999) is to truncate the calculation

beyond a certain distance (Rc). For ionic systems, this means, the calculation

of energy becomes (Avendaño and Gil-Villegas, 2006),

UðRcÞ �
1

2

XN
i51

X
j6¼i

ðrij ,RcÞ

qiqj



erfcðαrijÞ

rij
2

erfcðαRcÞ
Rc

�

2



erfcðαRcÞ

2Rc

1
αffiffiffi
π

p
�XN

i51

q2i

; ð5:35Þ

Where α is a tuning parameter that is used to restrict the contribution of the real

part of the potential to the first cell of the Ewald system. In contrast to the Ewald
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sum, using Eq. (5.35) means a relatively straightforward adaptation of Algorithm

5.2. The key advantage of the Wolf method is that it is computationally much

less expensive (Sadeghifar et al., 2012) than the Ewald sum. The disadvantage of

the Wolf method is that the values of both α and Rc are not known beforehand.

Instead, they are typically obtained by matching the results of Ewald sum calcula-

tions. Modifications have been proposed (Ma and Garofalini, 2005; Waibel et al.,

2019), and it has been applied successfully to a broad range of situations

(Gdoutos et al., 2010; Mendoza et al., 2008).

5.2.3 The reaction field method

The reaction field method is a relatively simple procedure for accounting for

dipole interactions. Every molecule is at the center of an imaginary sphere

the size of which is determined by the cut-off radius rc. The sphere is

inside a homogeneous medium with a characteristic dielectric constant εs.
The energy resulting from interaction of the central molecule with all other

molecules within the sphere are calculated fully.

UðshortÞi 5
X
j;r# rc

uðrijÞ ð5:36Þ

This corresponds to the short-range contribution of dipolar interaction.

The long-range contribution to the energy results from interaction with the

medium beyond the sphere. The contribution to energy caused by the sur-

rounding medium is,

UðlongÞi 52
μiðεs 2 1Þ
2εs 1 1

1

r3c


 � X
j;rij # rc

µj ð5:37Þ

where μi is the dipole moment of the central molecule and μj is the dipole

moment of neighboring molecules within the sphere. Consequently, the total

energy experienced by each molecule is evaluated from:

Ui 5UðshortÞi 1UðlongÞi ð5:38Þ
It should be noted that a discontinuity in energy is generated when mole-

cules enter or leave the sphere. Therefore, it is usual practice to taper the

interactions at the sphere’s surface (Adams et al., 1979) by applying a

weighting factor f(rij) that approaches zero continuously at rij5 rc. Several

different tapering functions have been proposed (Adams et al., 1979; Andrea

et al., 1983). In many cases, a simple linear function is appropriate,

f ðrijÞ5
1 rij , rt

rc 2 rij

rc 2 rt
rt # rij # rc

0 rc , rij

;

8>><>>: ð5:39Þ

where rt5 0.95rc.
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The advantage of the reaction field method is that it can be incorporated

easily into a conventional MD or MC simulation with a minimal increase in

computation time. The necessary changes are illustrated in Algorithm 5.13,

which represents a relatively small modification to Algorithm 5.2. The main

disadvantages of the method are the potential discontinuity in energy arising

from molecules entering and leaving the sphere, and the need to know the

external dielectric constant in advance. The external dielectric constant can

be estimated from the following relationship (Allen and Tildesley, 2017),

1

ε2 1
5

3kT

4πρμ2gðεsÞ
2

1

2εs 1 1
; ð5:40Þ

where ε is the relative permittivity and g(εs) is related to the fluctuation of

the total dipole moment of the central box.

gðεsÞ5

PN
i51

µi

 2
* +

2
PN
i51

µi

 � �2

Nμ2
ð5:41Þ

Alternatively, the reaction field algorithm itself can be used to calculate

the dielectric constant (Essex, 1998).

ALGORITHM 5.13 Calculation of dipole interactions using the reaction
field method.

Eshort � 0
ELong � 0
loop i �1 to N - 1

loop j � i + 1 to N
Evaluate rxij, ryij and rzij.
Evaluate periodic images (rxij', ryij' and rzij').
r2 � rxij'2 + ryij'2 + rzij'2

if (r < cutOffDistance)
Calculate u(rij) to determine Ei.
Determine weighting factor f.
EShort � EShort + f � Ei

ELong, � ELong + f � �i � �j

end if
end j loop

end i loop
E �Eshort + ELong � (�s - 1)/(rc

3(2�s+ 1))

The reaction field method has been applied widely to dipolar fluids (Alder

and Pollock, 1981; de Leeuw et al., 1986). However, it cannot be used for ionic

fluids without modification because the assumption that the average charge den-

sity is zero beyond the cut-off radius excludes the interactions of the central par-

ticle with ions. Barker (1994) proposed a method that can be used for fluids
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containing both ions and dipoles. According to Barker (1994), the energy result-

ing from interaction between dipoles (identified by i and j) and ions (identified

by α and β) can be calculated as:

U5
X
i

vi 1
X0
i, j

vij 1
X
α

wα 1
X0
α, β

wαβ 1
X0
iα

xiα ð5:42Þ

Eq. (5.42) includes contribution from self-dipole, self-ion, unlike-dipole,

unlike-ion, and ion�diploe interactions. The primed summations are per-

formed over all pairs with separation less than rc. The terms v, w, and x are

defined by the equations,

vi 52
d1

2r3c
μ2
i ð5:43Þ

vij 52
d1

r3c
μiμj ð5:44Þ

wα 52
d0

2r3c
q2α ð5:45Þ

wαβ 52
d0

rc
qαqβ 2

d1

r3c
qiqjr

2
αβ ð5:46Þ

xij 52
d1

r3c
qαriαμj; ð5:47Þ

where:

d0 5
εsð11κrcÞ2 1

εsð11 κrcÞ
; ð5:48Þ

d1 5
εsð21 2κrc 1 ðκrcÞ2Þ2 2ð11κrcÞ
εsð21 2κrc 1 ðκrcÞ2Þ1 11κrc

; ð5:49Þ

κ2 5
4πe2

εskT

X
i

niz
2
i ; ð5:50Þ

e is the charge of an electron, n is the bulk concentration, and z is the sign of

the charge.

The simplicity of the reaction field method has made it a popular choice for

molecular simulations involving dipoles, although application (Baumketner, 2009;

Lee, 2020) to ions is also possible via modified schemes as noted previously.

Improvements to the basic method are being made continually. Garzon et al.

(1994) applied the reaction field to the simulation of vapor�liquid equilibria of

dipolar fluids. They concluded that the reaction field dielectric constant does not

affect either the coexistence properties or the structure of the coexisting phases.
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Ruocco and Sampoli (1994) have extended the reaction field method to include

polarization effects. The extended procedure provides a convenient method for

incorporating both long-range dipolar forces and many-body polarization effects

for large numbers of molecules. It has been applied successfully (Ruocco and

Sampoli, 1995) to determine the induced dipole of a polarizable model for water.

The reaction field has also been applied (Hloucha and Deiters, 1997) to a polariz-

able model for acetonitrile. Alper and Levy (1993) have proposed a generalized

reaction field method for the simulation of liquid water. It is based on a solution

of the Poisson equation for the reaction field acting on charges in a spherical cav-

ity that is surrounded by a dielectric continuum. Smith and van Gunsteren (1995)

and Omelyan (1997) have also investigated water via a reaction field method.

Zhou et al. (1996) have reported a procedure that eliminates the need for calculat-

ing the self-interaction energy. Millot et al. (1996) have compared calculations of

the static dielectric constant of polarizable Stockmayer fluids using both lattice

summation and reaction field methods. Houssa et al. (1998) reported results of

equal quality using either the Ewald sum or the reaction field for simulations

involving the Gay�Berne potential. Omelyan (1996) has proposed modifications

to the reaction field.

Tironi et al. (1995) have reported a generalized reaction field method that can

be incorporated very easily into a traditional MD simulations. Two regions are

defined, which are separated by a spherical boundary at a given radius R from the

origin. The inner region is characterized by a dielectric permittivity of ε1 and N

point charges qi at positions ri. The outer region surrounding the sphere represents

a continuum characterized by a dielectric permittivity of ε2 and constant ionic

strength. The potential energy for the total system is given by:

U5
1

2

XN
i51

qi

4πε0ε1
φðriÞ ð5:51Þ

In the limit as r - 0, the electrostatic potential is,

φ1ð0Þ5
1

4πε0ε1

X
i

qi
1

ri
1

11B0

R

� 	
ð5:52Þ

and the electric field is,

2rrφ1ðrÞ

r50

5
21

4πε0ε1

X
i

qi
ri

r3i
1

ð11B1Þri
R3

� 	
; ð5:53Þ

where:

B0 5
ε1 2 2ε2ð11κRÞ

ε2ð11κRÞ ð5:54Þ

B1 5
ðε1 2 4ε2Þð11κRÞ2 2ε2ðκRÞ2
ðε1 1 2ε2Þð11κRÞ1 ε2ðκRÞ2

ð5:55Þ
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In Eqs. (5.54) and (5.55), κ is the inverse Debye screening length, which

can be obtained related to the ionic strength (I), Faraday’s constant (F), tem-

perature (T), the ideal gas constant (R), and the permittivity (ε0):

κ2 5
2IF2

ε0ε2RT
ð5:56Þ

According to Eq. (5.53), the Coulomb force acting on a charge qi is:

FðrijÞ5
qiqj

4πε0ε1

�
1

r3ij
1

11B1

R3
c

	
rij

5
qiqj

4πε0ε1

�
1

r3ij
2

1

R3
c

2ðε2 2 ε1Þð11κRcÞ1 ε2ðκRcÞ2
ðε1 1 2ε2Þð11κRcÞ1 ε2ðκRcÞ2

	
rij

ð5:57Þ

Eq. (5.57) can be used directly in a conventional MD algorithm. The energy

can be calculated from Eq. (5.52), or alternatively, it can be obtained by integrat-

ing Eq. (5.57). Comparison of the results of the generalized reaction field method

(Tironi et al., 1995) with results obtained from the Ewald sum indicate that the

values obtained for energy, temperature, and volume are similar but that the root

mean fluctuations are greater for the reaction field approach. The main advantages

of the method are that it is very simple to implement, and there is no significant

increase in computational cost compared with nonionic simulations. Furthermore,

the method avoids the singularity at the dielectric boundary, which is common to

other reaction filed methods. Tironi et al. (1997) reported a space�time-correlated

reaction field method that does not use the traditional static response of the dielec-

tric continuum.

Many examples of the application of the reaction field have involved small

polyatomic dipolar molecules, most notably water. However, the technique can

also be applied to systems containing large biomolecules. For example, a reaction

field method has been used (Sakurai et al., 1997) to investigate intermolecular

interaction at the lipid�water interface. A multicavity reaction field method for

flexible molecules has also been reported (Karelson et al., 1993).

The reliability of the method is sometimes affected by the nature of the appli-

cation. Good agreement with the Ewald sum has been reported (Stenhammar

et al., 2009) for the solvation of polar liquids, whereas inferior outcomes have

been obtained (English, 2005) for water models. It has been applied successfully

(Nozawa et al., 2015) to liquid crystal systems. A generalized reaction field

method has been developed (Wallace and Shen, 2012) for constant pH MD and it

has been useful for biomolecules (Ni and Baumketner, 2011) and proteins

(Gargallo et al., 2003). Improvements to account for charges and polarizability

have been reported (Nymand and Linse, 2000; Sidler et al., 2018).

5.2.4 Particle-particle and particle-mesh methods

In common with the Ewald sum and reaction field methods, the PPPM algorithm

(Eastwood et al., 1980) handles short-range and long-range interactions separately.
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The short-range interactions are obtained by a conventional particle�particle (PP)

calculation as illustrated by Algorithm 5.1. Long-range interactions are handled

by a particle�mesh (PM) technique. In principle, the particle�mesh method can

be used to calculate both short- and long-range interactions. However, in practice,

the particle�mesh method alone is generally inaccurate. In contrast, the combina-

tion of particle�particle and particle�mesh methods optimizes computational

speed and accuracy. The PPPM calculation (Algorithm 5.14) is of order Ng log

Ng (Ng is the number of grid points) compared with an order of N2 for the PP

algorithm.

The PM force calculations involve three steps. First, the charge density

of the fluid is modeled by assigning charges to a finely spaced mesh in the

simulation box. Second, the potential at each mesh point is calculated solv-

ing Poisson’s equation for the electrostatic potential caused by the charge

distribution on the mesh. In three dimensions, Poisson’s equation is,

@2φ
@x2

1
@2φ
@y2

1
@2φ
@z2

52 4πρðx; y; zÞ; ð5:58Þ

where φ and ρ are the electrostatic potential and source distribution, respectively.

This equation is usually solved by using a fast Fourier transformation. Third,

numerical differentiation is used to calculate the field at each mesh point. The

force on a particle is calculated from the mesh field by interpolation.

The PM is constructed by dividing the simulation box of length L into an

integral number of cells of width H. The mesh or grid point that stores the

charge density, potential, and electric fields is at the center of each cell. If

the origin is taken at mesh point 0, the position of the mesh point p is

xp5 pH. When periodic boundary conditions are used, the number of cells is

equal to the number of grid points Ng.

ALGORITHM 5.14 Calculation of intermolecular forces for a single time
step using the PPPM method.

Part 1 Initialisation:
Initialise accumulators, positions, momenta, etc.

Part 2 Calculate long-range particle-mesh interactions:
Assign charge to mesh.
Solve for potential.
Update momenta.

Part 3 Short-range force calculation:
Create linked-cell.
Calculate short-ranged forces.
Update momenta.

Part 4 Time integration calculation:
Update particle positions, momenta, and energy accumulators.
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After the PM contribution is evaluated, the contribution from short-range inter-

actions is added. The steps required for the PPPM method are summarized by

Algorithm 5.15. The principles behind the PPPM calculations can be most easily

illustrated by first considering the simple case of a one-dimensional system.

In one dimension, the charge density ρ at any mesh point p for a system

of N particles can be calculated from the density at the origin by,

ρp 5
CN

H

XNp

i51

Wðxi 2 xpÞ1 ρ0; ð5:59Þ

where W is a charge assignment function.

WðxÞ5 1 xj j#H=2
0 xj j.H=2

�
ð5:60Þ

In practice, charges can be assigned efficiently by using Algorithm 5.15.

ALGORITHM 5.15 Assignment of charges to the particle�mesh in one-
dimension.

Part 1 Calculate average number of particles per cell:
Nc � �0H/(N � |C|) //assuming charge neutrality

Part 2 Initialise charge density accumulators:
loop p �1 ... Ng

�p � -Nc

end p loop

Part 3 Accumulate charge density:
loop j � 1 ... Np

p � nint(xj) // locate nearest mesh point
�p � (� + 1)/Nc // increment charge density

end j loop

The field equations in one dimension are,

φp21 2 2φp 1φp11 52
ρpH

2

ε0
ð5:61Þ

φp21 2φp11 5 2EpH; ð5:62Þ
where φ and E are the potential and electric field, respectively. These equa-

tions can be expressed conveniently in reduced form,

φ
�
p21 2 2φ

�
p 1φ

�
p11 5 ρ

�
p ð5:63Þ

φ
�
p21 2φ

�
p11 5E

�
p; ð5:64Þ
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where

φ
�
p 52

qðΔTÞ2
2meH2

φp; ð5:65Þ

E
�
p 52

qðΔTÞ2
2meH

Ep; ð5:66Þ

ρ
�
p 52

qðΔTÞ2
2meε0

ρp; ð5:67Þ

me is the mass of an electron, and ΔT is the simulation time step. We must

solve Ng equations of type (5.63) subject to the requirements of charge neu-

trality and the choice of a reference potential. It can be shown (Hockney and

Eastwood, 1988) that the first solution can be obtained from:

φ1 5
1

Ng

XNg

p51

pρp ð5:68Þ

Substituting the left-hand side of Eq. (5.68) into the first equation of type

(5.62) yields φ2. If both φ1 and φ2 are known, φ3 can be determined from the sec-

ond equation of type (5.63). This process can be repeated to find φ for all Ng

equations of type (5.63). This is a special example of the Thomas tridiagonal

algorithm (Hockney and Eastwood, 1988) that is valid when the tridiagonal coef-

ficients are 1, -2, and 1, respectively. The Thomas tridiagonal algorithm can be

generalized for arbitrary coefficients. Other algorithms for the solution of the field

equations including mesh-relaxation techniques, matrix methods, and rapid elliptic

solvers are discussed extensively elsewhere (Hockney and Eastwood, 1988).

Algorithm 5.16 illustrates how the field equations are solved in one dimension.

ALGORITHM 5.16 Solution of the field equations in one dimension using
the Thomas tridiagonal algorithm.

Part 1 Determine potential and electric field at mesh point 1:
�*

1 � 0
loop p �1 ... Ng

�*
1 � �*

1 + p�*
p

end p loop
�*

1 � �*
1 /Ng

E*
1� �*

1

Part 2 Determine potential at mesh point 2:
�*

2 � �*
1 + 2 �*

1

Part 3 Determine remaining potentials and electric fields:
loop p �3 ... Ng

�*
p � �*

1 + 2 �*
p-1 - �*

p-2

Ep-1* ��*
p - �*

p-2

end p loop
Ep � �*

p
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The force on any molecule can be obtained by using the interpolation

formula:

fi 5Nq
XNg21

p50

Wðxi 2 xpÞEp ð5:69Þ

In Eq. (5.56), periodic boundary conditions are handled by treating mesh

point Ng as mesh point 0. In terms of reduced properties, Eq. (5.69) becomes

(Algorithm 5.17),

f
�
i 5

XNg21

p50

Wðx�
i 2 pÞE�

p ð5:70Þ

where x� 5 x/H.

ALGORITHM 5.17 Force interpolation in one dimension of the
particle�mesh.

E*
0� E*

p

f*i� 0
loop p �0 ... Ng - 1

if (|xi* - p| � H/2)
W � 1

else
W � 0

end if
f*i � f*i + W � E*

p

end p loop

Eastwood et al. (1980) have reported a three-dimensional PPPM program.

In three dimensions, the volume L3 of the cubic simulation box is covered by

N3 mesh points separated by a distance H5 L/N. Each mesh point is associ-

ated with a cubic cell of side H and an integer label p5 (p1, p2, p3), where pi
has values from 0 to N�1. The position of mesh point p is given by

xp5 (p1H, p2H, p3H). Points x5 (x1, x2, x3) falling within the cell belonging

to mesh point p satisfy the inequality that,

piH# xi , ðpi 1 1ÞH ð5:71Þ
where i5 1, 2, 3. Any labels pi

0 that are outside the range of 0 to N�1 are

transformed by the periodic boundary condition,

p5 p
0
i 1mN ð5:72Þ

where m is an integer.
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In three dimensions, the mesh field charge density [cf. the one-

dimensional case Eq. (5.59)] is given by,

ρðpÞ5
X
s

qs

H3

X
i

Wðxi 2 xpÞ; ð5:73Þ

where the summation is over all species s and all particles i of each species.

The interpolation function W is given by the triangular shaped cloud (TSC)

charge function (Eastwood and Hockney, 1974),

qWðx; y; zÞ5 qTp1ðxÞTp2ðxÞTp3ðxÞ; ð5:74Þ
where:

TsðtÞ5
ð12tÞ2=2 s52 1

0:51 t2 t2 s5 0

t2=2 s5 1

0 otherwise

:

8>><>>: ð5:75Þ

In contrast to the simple one-dimensional case, the calculation of the

mesh potential in three dimensions is quite complicated and requires the use

of a Fourier transformation. The mesh potential is defined by the sum over

all mesh points p0 in the simulation box,

φðpÞ5 H3

ε0

X
p0

Gðp2 p0Þρðp0Þ; ð5:76Þ

where G is the mesh defined by Green’s function and ε0 is the permittivity

of free space. A discrete Fourier transformation (DFT) is used to evaluate

this summation. If the following triple DFT pair A *Ab is defined,
AðpÞ5 1

L3

X
l

ÂðIÞexp i
2π
N

IUp

 �

ð5:77Þ

ÂðIÞ5 1

H3

X
p

AðpÞexp 2i
2π
N

IUp

 �

ð5:78Þ

Eq. (5.76) is transformed to:

φ̂5
Ĝ

ε0

 !
ρ̂ ð5:79Þ

For a given value of ðĜ=ε0Þ, the solution to Eq. (5.79) is obtained by

transforming ρ*ρ̂, multiplying by ðĜ=ε0Þ to obtain φ̂, which is transformed

to yield φ.
The mesh force on a particle at any position is calculated from:

Fm 5 qs
X
p

Wðxi 2 xpÞEðpÞ ð5:80Þ
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The mesh-defined field values E(p)5 (E1(p), E2(p), E3(p)) are obtained

by differencing the potential values. The i-component of E is given by,

EiðpÞ52 γ
φðp1 eiÞ2φðp2 eiÞ

2H
1 ð12 γÞφðp1 2eiÞ2φðp2 2eiÞ

4H

� �
;

ð5:81Þ
where ei is a unit vector in the i direction and the value of γ is chosen to

minimize errors in the interparticle force.

Some improvements to the original PPPM method have been described

elsewhere (Beckers et al., 1998). It has been adapted for parallel implementa-

tion for use on both conventional central processing units (Brieu and Evrad,

2000) and graphics processing units (Brown et al., 2012; Zhang and Bridson,

2014). Optimizations have been reported for periodic (Ballenegger et al.,

2008) and nonperiodic (Yao and Capecelatro, 2021) systems. Dipolar sys-

tems have been further investigated (Cerdà et al., 2011), and it has been

applied (Sirk et al., 2013) in nonequilibrium MD (Chapter 8).

5.2.5 Tree-based methods

The traditional particle�particle, particle�mesh, or a combination of these

methods benefit commonly from potential truncation and neighbor list strate-

gies. The philosophy behind these computational strategies is to identify and

distinguish between neighboring molecules that make large contributions to

molecular interactions, and distant molecules that make only small contribu-

tions. This distinction between near and far interactions can be handled effi-

ciently by ordering the molecules in a hierarchical tree structure. Tree-based

algorithms are used commonly in computer science sorting and searching

applications. The use of tree-based algorithms to many-body problems has

been discussed by Pfalzner and Gibbon (1996). They offer the possibility of

large gains in computational efficiency, particularly for the calculation of

long-range interactions. For example, the fast multipole method is of order N

compared with N2 for a traditional particle�particle calculation. In this sec-

tion, the Barnes�Hut (Barnes and Hut, 1986) and fast multipole (Greengard

and Rokhlin, 1987) algorithms are discussed. Both of these algorithms use a

hierarchical tree to distinguish between near and far interactions to improve

the efficiency of calculating long-range interactions.

5.2.5.1 The Barnes�Hut algorithm

The Barnes�Hut algorithm utilizes a hierarchical tree. The basic philosophy

is to organize particles into a nested hierarchy of cells and compute the mul-

tipole moments of each cell up to a fixed order. The acceleration is obtained
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by allowing each particle to interact with various elements of the hierarchy

governed by a prescribed accuracy criterion. The force from nearby particles

is calculated by direct summation, whereas the influence of remote particles

is included by evaluating the multipole expansion of the cells that satisfy the

accuracy criterion at the location of each particle.

In computer science, a tree is a well-known and often used data structure.

The so-called binary tree is often employed to assist in the positioning and

retrieval of data in sorting applications. Binary trees can be applied directly

to store particle positions (Benz, 1988; Jernigham and Porter, 1989). The

advantage of the binary tree is that it usually closely reflects the structure of

the system. However, the octagonal tree structure proposed by Barnes and

Hut (1986) is conceptually simpler and easier to construct.

Barnes and Hut (1986) constructed their octagonal tree data structure by

successively placing particles initially into an empty cubic box. The empty

box is the “root” cell, and it is large enough to contain all the particles. As

particles are added to the root cell, it is further subdivided into smaller cells

such that every particle is contained within its own cell. For example, after

the addition of a second particle into the root cell, the cell is divided into

child cells having exactly half the length and width of their parent. In three

dimensions, this corresponds to splitting the cell into eight pieces. If follow-

ing this division, the two particles are found in the same child cell, the child

cell is subdivided recursively until the particles are in different boxes. The

next particle is then added to the root cell and the process is repeated. When

all the particles have been added, the space within the root cell has been par-

titioned into a number of cubic cells of different sizes each containing a

maximum of one particle.

In practice (Hernquist, 1988), the Barnes�Hut algorithm is usually imple-

mented starting from a fully populated root cell rather than a completely

empty box. The root cell is first divided into eight child cells. The number of

particles in each child cell is examined successively. If the cell is empty, it is

ignored. If there is only one particle in the cell, it is stored as a “leaf” node

of the tree structure. If there is more than one particle in a cell, the cell is

stored as a “twig” node, and the cell is further subdivided. The process of

subdivision continues until every cell contains a maximum of one particle.

The result of this subdivision and the interconnection between levels in the

simple two-dimensional case is illustrated in Fig. 5.3.

The preceding description has introduced the components of the tree

analogy, namely “root,” “twig,” and “leaf” that we will now examine more

formally. The “root” is the initial simulation cell containing every particle.

The tree grows from the “root” cell by successive division. Each division

generates a further level in the tree with a number of nodes associated with a

cubic volume of space containing a given number of particles. It should be

noted that empty cells are not stored. If the division generates a cell with

only one particle, a “leaf” is created, otherwise if there are two or more
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particles, a “twig” or “branch” is created. During the tree-building procedure,

the total mass, center of mass coordinates, and quadrupole moments of each

cell are computed recursively.

It is apparent from the above description that some bookkeeping is neces-

sary to keep track of the relationship between the root, twigs, and leaves.

The root cell is also the biggest “twig.” For the root, we must store an identi-

fier as a twig plus the number of nonempty child cells. Every other twig

requires the storage of a twig identifier; the number of nonempty child cells;

and a pointer to its parent cell. Each leaf requires a leaf identifier; a pointer

to the parent cell; and a particle label. The particle label associated with

each leaf is the link to the physical quantities of the particle required for

force evaluation.

How is the force evaluated? The force on a particle is obtained by walking

through the tree starting from the root cell. At each step, the ratio of the size of

the current cell (s) to its distance from the particle (d) is compared with a prede-

fined accuracy parameter (θ� 1). If s/d# θ, the influence of all particles in the

cell is calculated as a single particle�cell interaction. Otherwise, the cell is subdi-

vided by continuing the descent through the tree until either the accuracy criterion

is satisfied or an elementary cell is reached.

The advantage of this algorithm is that the force evaluation can be per-

formed in O(N ln N) time compared with O(N2) for a brute-force parti-

cle�particle evaluation. Hernquist (1990) has reported that the tree traversals

FIGURE 5.3 Division of space for a two-dimensional particle distribution.
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can be vectorized fully by using a level-by-level approach rather than tra-

versing the tree node by node. This results in a two- to threefold increase in

speed compared with the original Barnes�Hut algorithm.

The Barnes�Hut algorithm is most often implemented in the context of

astronomical calculations (Belleman et al., 2008; Rein and Liu, 2012) that,

in common with molecular simulation, involve the evaluation of N-body

interactions. Considerable efforts have been made to develop parallel ver-

sions on both conventional multiprocessors (Munier et al., 2020; Winkel

et al., 2012) and hybrid systems (Iwasawa et al., 2020; Polyakov et al.,

2013) involving graphics processing units. Although it is typically used for

force evaluation, it can also be applied (Gan and Xu, 2014; Stransky, 2016)

in MC simulations (Chapter 6).

5.2.5.2 The fast multipole method

The fast multipole method (FMM), developed originally by Greengard and

Rokhlin (Greengard, 1987; Greengard and Rokhlin, 1987; Carrier et al., 1988),

also uses the hierarchical tree concept. The FMM algorithm involves multipole

expansions for boxes on the lowest level of the tree. These expansions are com-

bined and shifted as they are passed up and down the tree. Particles are assigned

to cells at the finest level of the tree. In contrast to the Barnes�Hut algorithm,

some cells may be empty, whereas some cells may have several particles. The

multipole expansion of the particle configuration on the finest level is formed

about the center of the box. Each “child” box communicates this information to

its “parent” box on the next level. Aggregate information about distant particles

comes back down the low-level boxes.

The original exposition of the FMM algorithm by Greengard and Rokhlin

(1987) concentrated primarily on one and two dimensions. Schmidt and Lee

(1991) have discussed the implementation in three dimension. In common

with the Barnes�Hut algorithm, the FFM subdivides the simulation box

(Fig. 5.4). The simulation box of length d is subdivided into a box of length

d/2r, where r is an integer representing the level of refinement. This division

r = 0 r = 1 r = 2

FIGURE 5.4 Two-dimensional example of the division of the simulation box in the fast multi-

pole method algorithm.
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is equivalent to forming 8r equal-sized subvolumes. This is done for every

single box to a maximum level of refinement R irrespective of the number of

particles that they contain. The maximum level of refinement R is approxi-

mately equal to the number of particles (N), that is, R5 log8N. At the maxi-

mum level of refinement, there is on average one particle per box. The

interrelationship between the center of mass multiples at different levels of

refinement is illustrated for the two-dimensional case in Fig. 5.5.

The work of Schmidt and Lee (1991) provides a very clear description of

the FMM algorithm in three dimensions, and the following discussion is

based largely on their interpretation. The implementation of the FMM uses

three transformations of the potential. The transformations begin with a mul-

tipole expansion of the potential,

uðrÞ5 4π
X
l;m

MlmYlmðθ;φÞ
ð2l1 1Þrl11

ð5:82Þ

or a local expansion,

uðrÞ5 4π
X
l;m

Llmr
lYlmðθ;φÞ; ð5:83Þ

FIGURE 5.5 Two-dimensional representation of the interrelationship between the center of

mass multipoles at different levels in the FMM algorithm.
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where Ylm is a modified spherical harmonic that does not include the

normalization factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 1Þ=4π

p
; spherical coordinates (r, θ, r) are used

relative to an origin; and Mlm and Llm are the multipole and local expan-

sion coefficients, respectively. The multipole moments are defined by

Jackson (1983):

Mlm 5
X
i

qis
l
iY

�
lmðθi;φiÞ ð5:84Þ

A feature of the FMM is the need to make transformations between dif-

ferent coordinate systems. If the properties of the different coordinate sys-

tems are distinguished by the use of primes, it can be shown (Greengard,

1987) that:

M
0
l0m0 5

X
l;m

TMM
l0m0 ;lmMlm ð5:85Þ

L
0
l0m0 5

X
l;m

TLM
l0m0;lmMlm ð5:86Þ

L
0
l0m0 5

X
l;m

TLL
l0m0 ;lmLlm ð5:87Þ

In Eqs. (5.85) to (5.87), the Ts are transformation matrices of the follow-

ing form:

TMM
l0m0 ;lm 5 4π

ð2rtÞl
021Y

�
l02l;m02mðθt;φtÞal021;m02malmð2l0 1 1Þ
ð2l1 1Þ½2ðl0 2 lÞ1 1�al0m0

; ð5:88Þ

TLM
l0m0 ;lm 5 4π

ð21Þl1mY
�
l01l;m02mðθt;φtÞalmal0m0

rl
01l11
t ð2l1 1Þð2l0 1 1Þal01l;m02m

; ð5:89Þ

TLL
l0m0 ;lm 5 4π

rl2l0
t Yl2l0 ;m2m0 ðθt;φtÞal0m0al2l0 ;m2m0

almð2l0 1 1Þ½2ðl2 l0Þ1 1� ; ð5:90Þ

where the subscript t denotes a translation property between the different

coordinate systems and:

alm 5 ð21Þl1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 1

4nðl1mÞ!ðl2mÞ!

s
ð5:91Þ

We will first consider an implementation of the three-dimensional FMM

algorithm for an open system. The issues raised by periodic boundary condi-

tions will be addressed separately. The system that we are interested consists

of N charges confined to a cube of sides d centered at the origin. The initiali-

zation phase of the FMM algorithm involves dividing the cube into
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successively smaller cubic subvolumes. We define a maximum refinement

level (R) such that N is approximately equal to 8R. The maximum multipole

expansion (L) is chosen in accordance with the predetermined relative preci-

sion (ε), that is, 22L # ε. Each level of refinement r contains an increasing

number of subvolumes. At r5 0 we have the original cube, whereas at r5 1,

2, 3 . . ., there are 8, 16, 32, . . . subvolumes. The refinement levels are the

“parent” boxes, which contain “child” boxes. Each box has 26 touching

boxes, which have a common face, edge, or corner. The algorithm proceeds

in four distinct stages.

Stage 1. First, starting from refinement level R, the 8R truncated multi-

pole expansions about the center of each box are calculated for particles con-

tained in each box in level R.

Stage 2. For refinement levels R�1 to 0, the truncated multipole moment

expansions for all charges in all boxes about their centers are formed by

using Eq. (5.84) to transform the multipole expansions of the eight child

boxes to the center of their parent.

Stage 3. For each level of refinement, the multipole expansions are con-

verted to local expansions about the center of all the boxes. The multipole

expansions that contribute to the local expansions are those that do not touch

the one box. This calculation can be performed efficiently by combining

local-to-local and multipole-to-local transformations. At refinement levels 0

and 1, the local expansion is zero because the boxes are too close to allow a

valid multipole-to-local transformation. For the remaining levels, the local

expansion of the parent box is transformed to the center of the current box.

To this local expansion is added the transformation of the multipole poten-

tials for all boxes of the current level, which satisfy the conditions that (1)

the box does not touch the current box and (2) the charges in the box do not

contribute to the local potential. This results in a local potential in each box

from interactions between all particles in all boxes at the same level, which

do not touch the current box.

Stage 4. The final potential and forces of all particles in the boxes at the

finest level of refinement are calculated. This involves (1) evaluating the

potential and force from the local expansion at each particle location for

each box in level R and (2) evaluating the remaining interactions of each

particle with the other particles in the current box plus the particles i touch-

ing boxes.

Schmidt and Lee (1991) showed how the previously discussed algo-

rithm could be modified to include periodic boundary conditions. The

FMM algorithm requires the local expansion of the potential from all

periodic images except the 26 nearest neighbors of the original simulation

cell. To accommodate periodic boundary conditions, the values of

rt
2(l11)Yl,m(θt, φt) in Eq. (5.89) are replaced by sums over values corre-

sponding to all the images of the simulation cell except its 26 surrounding
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cells. The sum over all the cells except the simulation cell can be calcu-

lated using an Ewald sum.X
n;o;p6¼0;0;0

r2ð11lÞ
nop Ylmðθnop;φnopÞ

5
X0
n;o;p

Ylmðθ;φÞ
ð2l1 1Þ!

2αðαrnopÞ0
π3=2

expð2α2r2nopÞ

1
43 2lffiffiffi
π

p
rl11

Il 1 ð2πiÞlrl22exp
2π2r2nop

α2

0@ 1A

2666664

3777775; ð5:92Þ

where rnop, θnop, and φnop terms are the spherical coordinates of the vec-

tor rnop 5 dðnx̂1 oŷ1 pẑÞ, α is the Ewald convergence parameter, and Il is

given by the recursion relation,

Il 5
2l1 1

2
Il21 1

1

2
expð2α2r2ÞðαrÞ2l11 ð5:93Þ

with:

I0 5

ffiffiffi
π

p
4

erfcðαrÞ1 αr
2
expð2α2r2Þ ð5:94Þ

The prime on the sum indicates omission of the n5 o5 p5 0 term. This

enables the contribution of the 26 surrounding cells to be subtracted.

The incorporation of periodic boundary conditions requires minor modifi-

cations to the conventional algorithm. During the initialization phase, the

image mutipole-to-local transformations are created. Stage 3 is modified by

adding the nonzero local expansions for levels r5 0 and r5 1, and full mul-

tipole transformations are now required for each local expansion.

How does the efficiency of the FMM algorithm compare with parti-

cle�particle algorithms? The answer to this question depends on the number

of particles in the simulation, the maximum level of refinement, and the

number of mutipoles. Schmidt and Lee (1991) analyzed several different sce-

narios. Typically, the FMM algorithm is advantageous for simulations

involving tens of thousands of molecules.

It should be noted that the FMM algorithm is an active area of research

and improvements in efficiency are being made continually. White and

Head-Gordon (1994) have proposed changes to the transformations that

improves the efficiency of the algorithm. White et al. (1994) have developed

a continuous FMM (CFMM), which uses continuous functions to calculate

charge interactions between particles. The CFMM approach is more efficient

than direct calculations for less than 10,000 or more particles. Kutteh et al.

(1995) have reported a generalized FMM algorithm for Hartree�Fock and

density functional computations. Efficiency gains have also been reported by
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McKenney et al. (1996). Petersen et al. (1994) have proposed a very FMM

(VFMM). In three dimensions, the VFMM algorithm is two to three times

faster than FMM without any loss of accuracy. Niedermeier and Tavan

(1996) have applied the principles of FMM to the simulation of electrostatic

interaction in proteins. A large-scale simulation of macromolecules have

been reported (Figueirido et al., 1997), which combines the FMM approach

with multiple time step integrators. Wang and LeSar (1996) obtained the

multipole expansions in terms of solid harmonics instead of spherical meth-

ods. They concluded that using solid harmonics greatly increases the compu-

tational efficiency of the FMM algorithm.

The FMM approach is increasingly being applied to a wide variety of

large-scale systems (Andoh et al., 2013; Kurzak and Petititt, 2006), including

the use of polarizable force fields (Coles and Masella, 2015) and application

to dipolar systems (Shamshirgar et al., 2019). Its usefulness is further

enhanced by parallel implementations (Board et al., 1992; Ibeid et al., 2016),

which also include the use of graphics processing units (Kohnke et al., 2020;

Wilson et al., 2021; Yokota et al., 2013). Parallel versions of the FMM algo-

rithm specifically for MD have been reported (Andoh et al., 2013, 2021),

which could facilitate long-time simulations.

The effect of these improvements to the FMM algorithm is that the number

of particles for which FMM codes are more efficient than direct particle�parti-

cle evaluation is being progressively lowered. Simple particle�particle algo-

rithms assisted by time-saving devices such as a neighbor list are adequate for

atoms or simple polyatomic molecules involving relatively few particles

(N� 1000). However, the rigorous evaluation of the properties of real macromo-

lecules (Cisneros, et al., 2014) by molecular simulation requires thousands of

interaction sites per molecules. Alternative computational strategies are required

to deal with this increased level of complexity. It is in this context that hierar-

chical tree algorithms such as FMM or Barnes�Hut are likely to play an

increasingly important role in molecular simulation.

5.2.6 Comparison of computational efficiency

There are no definitive studies comparing the computational efficiency and

accuracy of the reaction field, Ewald sum, PPPM, and hierarchical tree meth-

ods. The reaction field method is undoubtedly the simplest to implement

and, when used in conjunction with computation-saving devices such as a

neighbor list, it is an O(N) algorithm. The main limitations of the reaction

field method are that the dielectric constant of the medium must be known,

and there is some evidence to suggest that accuracy is compromised when

highly charged species are involved. The Ewald sum is possibly the most

widely used method for the simulation of charged species. Luty et al. (1994,

1995) have reported comparisons of the Ewald sum with PPPM calculations.

They concluded that the PPPM algorithm was considerably more efficient
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than the Ewald sum, particularly if a large number of charges are involved.

This can be partly attributed to the use of a discrete Fourier transform in the

PPPM method, whereas the Ewald method sums the Fourier series of the

long-range function analytically. Either the PPPM or FMM algorithms can

also be used to calculate efficiently the Coulombic interactions in large bio-

molecules (Shimada et al., 1993, 1994). For nonperiodic systems, the PPPM

method may introduce an artificial periodicity into the system. Techniques

are available (Luty and van Gunsteren, 1996) to overcome this possible limi-

tation. Pollock and Glosli (1996) have reported a comparison of the PPPM,

FMM, and Ewald techniques. They concluded that the PPPM technique was

more efficient computationally than either the FMM or Ewald algorithms.

The O(N) scaling of the FMM algorithms means that it is potentially the

most efficient method but, because of computational overheads, it is cur-

rently viable only for large systems. However, improvements to FMM are

resulting in substantial efficiency gains for increasingly smaller systems,

which are further magnified by parallel implementations.

5.3 Summary

Evaluating either the energy or force experienced by a molecule from inter-

molecular interactions is at the heart of a molecular simulation. Periodic

boundary conditions coupled with long-range corrections are used commonly

to evaluate short-range interactions experienced by nonpolar molecules and

atoms. Computational procedures such as neighbor lists and linked-cell lists

have been developed to reduce the computational overhead. They are partic-

ularly advantageous in MD simulation. Special techniques such as Ewald

sum, reaction field, particle�mesh, or tree-based methods are required to cal-

culate the long-range interactions experienced by ions of polar molecules.

Tree-based methods such as the FMM are used less commonly in molecular

simulations because a large number of molecules is required to make them

competitive with traditional approaches. However, the computational limita-

tion is being eroded continually. The process is being further accelerated by

parallel implementations on both traditional multicore and hybrid computing

architectures (Chapter 12).
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Chapter 6

Monte Carlo simulation

The Monte Carlo (MC) method is a stochastic strategy that relies on probabili-

ties. To simulate fluids, transitions between different states or configurations

are achieved by (1) generating a random trial configuration; (2) evaluating an

“acceptance criterion” by calculating the change in energy and other properties

in the trial configuration; and (3) comparing the acceptance criterion to a ran-

dom number and either accepting or rejecting the trial configuration.

It is important to realize that not all states will make a significant contri-

bution to the configurational properties of the system. To accurately deter-

mine the properties of the system in the finite time available for the

simulation, it is important to sample those states that make the most signifi-

cant contributions. This is achieved by generating a Markov chain, which is

a sequence of trials in which the outcome of successive trials depends only

on the immediate predecessor. In a Markov chain, a new state will only be

accepted if it is more “favorable” than the existing state. In the context of a

simulation using an ensemble, this usually means that the new trial state is

lower in energy.

A MC simulation samples from a 3N-dimensional space represented by

the positions of particles. Unlike molecular dynamics (MD) methods

(Chapter 7), particle momenta are not involved. It is not necessary to know

particle momenta to calculate thermodynamic properties because the

momenta contribute exclusively to the ideal gas term. Deviations from ideal

gas behavior are caused by interactions between particles, which can be cal-

culated from a potential energy function (Chapters 3 and 4). The potential

energy depends only on the positions of atoms and not on their momenta. In

effect, a MC simulation calculates the residual thermodynamic properties

(Chapter 2) that result in deviations from ideal gas behavior. The appropriate

ideal gas term can be simply added at the conclusion of the simulation to

obtain the total thermodynamic property.

The general underlying principles of the MC method that underpin its use

in molecular simulation have been examined by Hammersley and

Handscomb (1964), Sobol� (1994), Sabelfeld (1991), and Moony (1997).

Gilks et al. (1996) have detailed the importance of the Markov chain in MC

processes. A very broad range of MC methods have been documented by

Kroese and Rubinstein (2011) and Kroese et al. (2011). Binder (1995a),
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Binder and Heermann (1997), Newman and Barkema (1999), and Landau

and Binder (2000) have discussed MC in the context of the statistical physics

relevant to molecular simulation. Binder (1997) has reviewed the application

of the MC methods to problems in statistical physics in general. Many

molecular simulation applications of MC have been detailed by Ferguson

et al. (1999), and MC algorithms for polymers have been addressed by

Binder (1995b). Descriptions of MC algorithms also form part of other texts

(Allen and Tildesley, 2017; Berendsen, 2007; Hansen and McDonald, 2013;

Heermann, 1990; Frenkel and Smit, 2023; Tuckerman, 2010).

In this chapter, the theoretical basis of MC simulations is discussed with

emphasis on contemporary techniques. Algorithms for phase equilibria are

detailed separately in Chapter 10. It should be noted that the application of

MC algorithms is ensemble dependent. Sampling in the various ensembles is

discussed in detail in Chapter 9.

6.1 Basic concepts

6.1.1 Background

The average of any thermodynamic property AðrNÞ� �
can be obtained by

evaluating the following multidimensional integral over the 3 N degrees of

freedom on the N particles in the system,

AðrNÞ� �
5

ð
AðrNÞρðrNÞdrN ; ð6:1Þ

where ρðrNÞ is the probability of obtaining configuration rN, which depends

on the potential energy (U) of the configuration,

ρðrNÞ5 exp 2βUðrNÞ� �ð
exp 2βUðrNÞ½ �drN

ð6:2Þ

and β5 1/kT, where T denotes temperature and k is Boltzmann’s constant. These

integrals cannot be evaluated analytically, and conventional methods of integra-

tion are also not feasible. For example, to apply either Simpson’s rule or the tra-

pezium rule to evaluate a 3N-dimensional integral would require m3N function

evaluations, where m is the number of points required to determine the integral

in each dimension. The MC solution is to generate a large number of trial config-

urations rN and replace the integrations by summations over a finite number of

configurations. If the configurations are chosen randomly, Eq. (6.1) becomes:

AðrNÞ� �
5

PNtrial

i51

AiðrNÞexp 2βUiðrNÞ
� �

PNtrial

i51

exp 2βUiðrNÞ½ �
ð6:3Þ
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In practice, this simple approach is not feasible because random sampling

yields many configurations, which have a very small Boltzmann factor. Such

configurations make very little contribution to the average. Therefore, a pro-

hibitively large number of configurations are required to obtain the correct

answer.

6.1.2 Metropolis sampling and Markov chains

The limitations of random sampling can be avoided by generating configura-

tions that make a large contribution to the right-hand side of Eq. (6.3). This

is the philosophy behind Metropolis sampling (Metropolis et al., 1953).

Metropolis sampling biases the generation of configurations toward those

that make the most significant contribution to the integral. It generates states

with a probability of exp[-βU(rN)] and counts each of them equally. In con-

trast, simple MC integration generates states with equal probability assigning

them a weight of exp[-βU(rN)].
Metropolis sampling generates a Markov chain, which satisfies the con-

ditions, that (1) the outcome of each trial depends only on the proceeding

trail and (2) each trail belongs to a finite set of possible outcomes. The for-

mer condition highlights the distinction between MC and MD simulation

(Chapter 7) methods. In a MD simulation, all the states are connected in

time. Metropolis et al. (1953) showed that a transition probability matrix

that ensures Eq. (6.2) is obeyed,

πmn 5Cmn

ρn
ρm

$ 1; m 6¼ n

πmn 5Cmn

ρn
ρm

0@ 1A ρn
ρm

, 1; m 6¼ n

9>>>>=>>>>;; ð6:4Þ

where ρm and ρn are the probability densities for states m and n given by

Eq. (6.2) and Cmn is the conditional probability of choosing n as the trial

state. The calculation of the integral in the denominator of Eq. (6.2) is not

required because Eq. (6.4) only involves the ratio of the probability densities.

Furthermore, X
n

πmn 5 1 ð6:5Þ

ρmπmn 5 ρnπnm ð6:6Þ
The Metropolis scheme is implemented by attempting a trial displace-

ment and calculating the change in energy ΔU5Un 2Um. If ΔU , 0, then

(ρn=ρm). 1, and the move is accepted. Otherwise, if ΔU. 0, (ρn=ρm) ,1

and the move is accepted with a probability of (ρn=ρm)5 exp(-βΔU). A ran-

dom number R is generated and the move is accepted if exp(-βΔU) $ R.
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Typically, this procedure is summarized by defining the probability of accep-

tance as:

p5min 1; expð2βΔUÞ½ � ð6:7Þ
It should be noted that Eq. (6.7) only represents the acceptance criteria

resulting from molecular displacement. A different criterion is required as a

result of either a volume change or a change in a number of particles. The cri-

teria for accepting different types of moves are discussed in Chapter 9 in the

context of MC algorithms for different ensembles. Efficiency issues relating to

the Metropolis algorithm are discussed elsewhere (Stedman et al., 1998).

ALGORITHM 6.1 Basic MC procedure for accepting changes in atomic
displacements.

Part 1 loop cycle  1 ... maxCycle
Part 2  Attempt trial displacements:

loop atom  1 ... maxAtom
Part 2.1   Generate a trial displacement: 

rxTrial pbc(rxatom + (2 � rand() - 1) � dMax) 
ryTrial pbc(ryatom + (2 � rand() - 1) � dMax) 
rzTrial pbc(rzatom + (2 � rand() - 1) � dMax) 

Part 2.2   Calculate change in energy: 
     Calculate energy of the atom (UTrial) at trial position.

�U UTrial - Uatom

Part 2.3   Apply Metropolis acceptance criterion: 
if (�U < 0 or exp(-� � �U) � rand()) 

rxatom rxTrial  //accept move 
ryatom ryTrial
rzatom rzTrial 

      Uatom UTrial
U  U + �U

      numAccept  numAccept + 1 
end if

end atom loop
Part 2.4  Update periodically the maximum displacement: 

if (mod(cycle, updateCycle) = 0) 
acceptRatio numAccept/(cycle � atomMax) 
if (acceptRatio > 0.5) 

dMax 1.05 � dMax
else

dMax  0.95 � dMax
     end if

end if
   end cycle loop 

�

�

�
�
�

�
�
�
�

�
�

�

�

�

�

Application of the Metropolis method is illustrated by Algorithm 6.1. Typically,

a MC simulation is performed in cycles (Algorithm 6.1, Part 1). During each cycle,

a displacement is attempted for every atom (Algorithm 6.1, Part 2). The atom to be
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displaced can be chosen randomly or alternatively, each atom can be considered

in turn as illustrated in Algorithm 6.1. It is also possible to displace every atom

and apply the acceptance criterion to the combined move. New trial coordinates

(Algorithm 6.1, Part 2.1) are obtained randomly up to a maximum value of

dMax. This involves generating random numbers on the interval from 0 to 1 and

applying periodic boundary conditions (pbc). The change in energy resulting

from the trial displacement (Algorithm 6.1, Part 2.2) is simply the energy expe-

rienced by the atom at the trial position (Utrial) minus the energy of the atom at

its existing position (Uatom). This change in energy is evaluated and the

Metropolis acceptance (Algorithm 6.1, Part 2.3) rule is applied. If the move is

accepted, the atom’s coordinates, the atom’s energy, and the total energy (U) are

updated. The maximum allowed displacement (dMax) affects the acceptance

rate. Experience indicates that an acceptance rate of approximately 50% is often

desirable for a MC simulation. A small value of dMax will generally improve

the acceptance rate but the phase space of the liquid may be sampled too slowly.

Conversely, increasing the value of dMax will reduce the acceptance rate. It is

common to adjust the value of dMax during the course of the simulation to main-

tain a 50% acceptance rate. In Algorithm 6.1 (Part 2.4), the value of dMax is

adjusted at intervals specified by updateCycle. If acceptRatio . 0.5, the value of

dMax is increased, whereas it is decreased if acceptRatio , 0.5.

It should be noted that there is no theoretical basis for using an accep-

tance rate of 50% and in some cases it may be actually detrimental to effi-

cient sampling. Mountain and Thirumalai (1994) proposed an algorithm for

determining the efficiency of MC simulations. They reported that an accep-

tance ratio of 20% was twice as efficient in generating a satisfactory sample

as compared with the traditional acceptance rate of 50%. Therefore, it may

be advantageous to first establish the optimal acceptance rate from short

exploratory MC simulations.

6.2 Application to molecules

As illustrated by Algorithm 6.2 and discussed previously, application of the

MC method to atoms is straightforward. However, the treatment of poly-

atomic molecules requires us to consider bond rotation in addition to transla-

tional motion.

6.2.1 Rigid molecules

The usual approach adopted for the MC simulation of rigid molecules is to

combine translation and rotation of one molecule. The translational move is

obtained by displacing randomly the center of mass of a molecule along

each of its axes. The rotational move involves attempting a random change

of the Euler angles ϕ, θ, and ψ that define molecular orientation (Chapter 6).
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For a rigid molecule of arbitrary geometry, trial changes to the Euler angles

can be obtained from:

φtrial 5φ1 ð2R1 2 1ÞΔφmax ð6:8Þ
cosθtrial 5 cosθ1 ð2R2 2 1ÞΔðcosθÞmax ð6:9Þ

ψtrial 5ψ1 ð2R3 2 1ÞΔψmax ð6:10Þ
Δφmax, ðcosθÞmax, and Δψmax are the maximum allowed changes in the Euler

angles and R1, R2, and R3 are random numbers between 0 and 1. Notice that

in Eq. (6.9), a random change is made to cosθ rather than θ. Sampling in cosθ
is used to achieve a uniform distribution of points. Following the attempted

translation�rotational move, the energy experienced by the molecule in its

trial position is calculated and the combined move is accepted with a probabil-

ity given by Eq. (6.7). It should be noted that in the case of a linear rigid mol-

ecule, only Eq. (6.9) is required because the other Euler angles are unaffected.

There are alternatives to the above procedure. For example, Barker and

Watts (1969) proposed a method for rotating the whole molecule.

Furthermore, the use of Euler angles can be avoided by using the quaternion

approach (Chapter 7). If quaternions are used, a new orientation is generated

by rotating the quaternion vector to a new random orientation (Veseley,

1982). The application of these techniques is described elsewhere (Allen and

Tildesley, 2017; Leach, 2001; Tildesley, 1993).

6.2.2 Small flexible molecules

The technique used for rigid molecules can be extended with minor modifica-

tion (Tildesley, 1993) to flexible molecules of moderate size such as n-butane.

A trial configuration is generated by (1) displacing the head atom; (2) chang-

ing the molecular orientation by making random changes to the Euler angles;

and (3) changing the conformation by making a random change to the tor-

sional angle χ in the range 0 to 2π. The trial configuration is accepted with a

probability given by Eq. (6.7), where the change in energy now includes con-

tributions from both intermolecular and intramolecular potentials.

6.2.3 Polymers

There is considerable interest in the application of MC algorithms (Binder

1995a,b) to determine the properties of large molecules such as polymers. In

principle, the approach used for small flexible molecules could be extended to

polymers. However, the practice of changing randomly the torsional angle is

likely to lead to a high rejection rate. Even a relatively small change in the tor-

sional angle in the middle of a large flexible molecule is likely to result in a

large translational displacement of the terminal atoms. Consequently, there is a

high probability of molecular overlap resulting in the rejection of the move.
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Another limitation of the small flexible molecule approach is that determining

Euler angles or using quaternion ions for each atom of a large molecule

requires considerable computational effort. Instead, specific MC algorithms

have been developed to model molecular chains. Some commonly used algo-

rithms are described subsequently. Comprehensive reviews of alternative algo-

rithms are available elsewhere (Binder, 1995a,b).

6.2.3.1 The reptation or slithering snake algorithm

Wall and Mandel (1975) proposed an algorithm that propagates a chain in the

fashion of a slithering snake. The motion is alternatively described as “repta-

tion” (de Gennes, 1971). The reptation algorithm was originally devised for a

lattice polymer but it can be used also for an off-lattice polymer. A freely

jointed linear polymer consists of p1 1 monomers, and p links. The reptation

algorithm propagates the polymer via a four-stage process:

Stage 1: One end of the chain is chosen randomly to be the head of the

chain, for example, atom 1.

Stage 2: The tail link and the corresponding tail atom p1 1 is removed.

The tail link is attached to the head of the chain at a randomly

chosen orientation.

Stage 3: The change in energy is calculated as ΔU5U1(trial)�Up11(old),

which is the energy difference for swapping the tail atom to a new

head position.

Stage 4: The move is accepted by applying Eq. (6.7).

The effect of this algorithm is to generate a slithering motion as illus-

trated by Fig. 6.1. The random choice of the head and tail atoms is important

to avoid the chain being locked with the head unable to move because of

potential overlap with neighboring molecules. This algorithm has been

applied to polymers on a three-dimensional lattice (Wall et al., 1977) and to

continuum fluids (Bishop et al., 1980; Brender and Lax, 1983).

FIGURE 6.1 Illustration of a trial move using the reptation algorithm.
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The application of the reptation algorithm is restricted generally to open

linear chains characterized by free end units. Various modifications and

improvements to the basic reptation algorithm have been proposed. Murat and

Witten (1990) generalized the reptation algorithm by allowing the removal of

an arbitrary monomer and replacing it randomly elsewhere in the chain. The

two neighbors of the removed monomer are connected by a new bond. If the

new bond is longer than the maximum bond length, the move is rejected. If

the removal is allowed, an attempt is made to reconnect the removed mono-

mer elsewhere. A collective reptation method has been reported (Pakula,

1987; Pakula and Geyler, 1987; Geyler et al., 1990; Reiter et al., 1990), which

involves a conventional reptation of a kink-jump algorithm (see subsequent

discussion) to one chain followed by specific rearrangements of other chains.

The rearrangements of other chains potentially remove excluded volume vio-

lations caused by the first move chain.

Variations on the general reputation algorithm have proved particularly

useful in the MC investigation of the properties of polymers (Foo and

Pandey, 2000; Kreer et al., 2001; Terranova et al., 2007), particularly when

lattice dynamics (Hua and Ke, 2005) is involved. Improvements include

adaptations (Santos et al., 2001; Uhlherr et al., 2002) for parallel execution.

The general principles have been applied to specific polymer mixtures

(Gharibi et al., 2006), polydispersity (Rorrer and Dorgan, 2014), and melts

(Lin et al., 2007; Kampmann et al., 2015; Karantrantos et al., 2019).

6.2.3.2 The kink-jump algorithm

The kink-jump algorithm was used initially (Verdier and Stockmayer, 1962)

for lattice polymers. In this context, it effectively involves “flipping” a ran-

domly chosen monomer from its position rn to a trial position r’n5 rn11 1
rn-1 1 rn. At small intermolecular separations, strong intermolecular repul-

sion between monomer units results in an excluded, or empty volume. To

account for the effect of excluded volume, a local “crankshaft” motion (Lax

and Brender, 1977) must be added.

Baumgärtner and Binder (1979) formulated a kink-jump algorithm to

study freely jointed linear off-lattice chains with excluded volume interac-

tions. If the chain has p links and p1 1 monomers, the kink-jump algorithm

proceeds in the following fashion:

Stage 1: A monomer i is chosen randomly.

Stage 2: If i is either the head (i5 1) or tail (i5 p1 1) of the chain, a trial

state is obtained by choosing a random orientation for the first or

pth link, respectively. Otherwise, i is rotated in a circle around the

vector joining i�1 to i1 1 by choosing an angle Δφ uniformly in

the range �Δφmax to Δφmax.

Stage 3: The trial configuration is accepted according to Eq. (6.7).
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The move is illustrated in Fig. 6.2. The kink-jump algorithm has been

particularly useful (Stampe and Sokolov, 2001) in describing Rouse behavior

(Doi and Edwards, 1995) of polymer solutions.

It should be noted that the various configurations changing MC moves

are not mutually exclusive and it is common to combine different moves in a

single simulation. Mańka et al. (2013) combined reputation and kink-jump

moves to study polymer chains on a cubic lattice. A similar combined

approach has been used for polymer membranes (Pandey and Seyfarth, 2003)

and other properties (Bentrem et al., 2002a,b; Maycock and Bhattacharya,

2006). A comparison of the kink-jump algorithm and configuration bias MC

methods has been reported (Tsonchev et al., 2004).

6.2.3.3 The pivot algorithm

The pivot algorithm (Lal, 1969) is used in conjunction with a self avoiding

walk (SAW) (Binder and Heermann, 1997) to generate new configurations

on a lattice. A pivot point is chosen randomly at some point on the SAW. A

new chain is obtained by rotating part of the chain around the pivot point. If

the position of the rotated chain overlaps with the unmoved part of the chain,

the move is rejected. Otherwise, acceptance of the move is governed by

Eq. (6.7). Although there is a high probability of rejection, relatively few

successful moves are required to obtain a radically different configuration.

For a chain of p links, Madras and Sokal (1988) have demonstrated that the

pivot algorithm is p times more efficient than standard SAW algorithms. The

pivot algorithm can also be used for off-lattice simulations (Freire and Horta,

1976). It is an efficient means of studying single polymer chains but it is

unlikely to be useful for polymer melts because of the very high probability

of overlap with other chains. Other SAW-based algorithms have been

reviewed (Sokal, 1995). The pivot algorithm can be applied to ring polymers

(Zifferer and Preusser, 2001; Kindt, 2002), star polymers (von Ferber et al.,

2009), and dendrimers (Gergidis et al., 2009). Very long SAW simulations

with the pivot algorithm have been attempted (Clisby, 2018).

6.3 Advanced techniques

Many improvements to the basic MC techniques have been proposed.

Allen and Tildesley (2017) have discussed “smarter MC” sampling, and

FIGURE 6.2 Illustration of a trial move using the kink-jump algorithm for off-lattice chains.
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Binder (1995a,b) has detailed the application of MC techniques to polymers.

In this section, we will focus on a few important methods. One of the most

significant advances has been the application of the Gibbs ensemble grand

canonical MC method (Panagiotopoulos, 1987) to predict phase equilibria.

The histogram reweighting technique (Ferrenberg and Swendsen, 1989) is

another important MC for phase equilibria. The Gibbs ensemble and other

techniques for phase equilibria are discussed separately in Chapter 10.

6.3.1 Configurational bias MC

An important application of the MC method is the simulation of a grand

canonical ensemble (Chapter 9). The simulation of a grand canonical ensem-

ble requires both particle transfer and insertion moves. The transfer or inser-

tion of either atoms or small molecules is relatively straightforward and it

can be handled via a conventional Widom (1963) method. However, it is dif-

ficult to move large molecules such as polymers because of the very high

probability of steric overlap. This problem has been addressed by configu-

rational bias MC (CBMC) methods (Siepmann, 1990; Frenkel et al., 1991;

Siepmann and Frenkel, 1992; de Pablo et al., 1992a,b; Laso et al., 1992,

Mooij and Frenkel, 1996). CBMC combines elements of sampling proposed

by Rosenbluth and Rosenbluth (1955) with segment-by-segment insertion.

The general approach has been reviewed (Frenkel, 1995; Frenkel and Smit,

2023). It has proved (de Pablo et al., 1999: Panagiotopoulos, 2000; Singh

et al., 2009) particularly advantageous in the simulation of phase equilibria

(Chapter 10). The use of a continuous fractional MC method (Shi and

Maginn, 2008) is also advantageous (Rahbari et al., 2021; Mayr et al., 2023).

6.3.1.1 Lattice chains

Let us consider the conventional insertion of a three-unit molecule beginning

at point s on a two-dimensional lattice illustrated by Fig. 6.3. From point s

there are four possible lattice sites, however only sites a and b are free.

Therefore, the probability of a successful insertion is only 50%. If site b is

chosen, further growth of the molecule is inhibited, whereas if site c was

chosen, there would be three further sites to grow the molecule. On average,

only one trial in twelve will successfully grow a molecule from site s.

CBMC (Siepmann, 1990; Siepmann and Frenkel, 1992) tackles this prob-

lem in a different fashion. Starting from s, the vacant sites (a and b) are

identified and one of these vacant sites is selected randomly. Unlike the con-

ventional MC procedure, the occupied sites are not considered in the selec-

tion process. A Rosenbluth weight is calculated for the move,

Wi 5
navail

n
Wi21 ð6:11Þ
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where Wi-1 is the weight for the previous step (W05 1) and navail is the

number of available sites where n is the total number of neighboring sites

excluding the site occupied by the previous unit. For the present example,

W15 2/45 1/2. If site b is chosen, the attempt is abandoned because there

is no site available for the third unit. If site a is chosen, the adjacent sites

are examined and the only vacant site is filled with the third unit. The

Rosenbluth weight for this step is 1=33 1=25 1=6. The overall statistical

weight for the move is obtained by multiplying the number of successful

trials by the Rosenbluth weight, that is, 1=23 1=65 1=12. This is the

same result as conventional sampling. However, in the conventional

scheme only one trial in twelve is successful whereas the proportion of

successful trials for the method is one in two.

The algorithm can be extended to account for the interactions between

the growing chain and its lattice neighbors. If UΓ(i) denotes the energy of

segment i when occupying a particular site Γ, that site is chosen with a prob-

ability of,

pΓðiÞ5
exp 2βUΓðiÞ½ �

Zi
ð6:12Þ

where Zi is defined as,

Zi 5
Xb
Γ51

exp 2UΓðiÞ½ � ð6:13Þ

that is, the sum of the Boltzmann factors for the b possible orientations of

the chain segment. The sum of Boltzmann factors plays the role of navail in

Eq. (6.11). Therefore the Rosenbluth weight for an entire chain of length l

can be obtained from,

Wl 5 exp 2βUtotalðlÞ½ �L
l

i52

Zi

b
ð6:14Þ

FIGURE 6.3 Insertion possibilities for a three-unit molecule on a two-dimensional lattice from

a starting point s. Closed and open circles represent occupied and vacant sites, respectively.
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where Utotal(l) is the total energy of the chain, which is equal to the sum of

the individual segment energies, UΓ(i). The residual chemical potential is

related to the average Rosenbluth weight.

μr 5 kT ln Wlh i ð6:15Þ
There are many examples for which the properties of both polymers

(Abreu and Escobedo, 2005; Cootes et al., 2000) and proteins (Zou and

Saven, 2003) can be obtained using lattice-based CBMC.

6.3.1.2 Flexible chains

de Pablo et al. (1992a, 1993) and Siepmann and Frenkel (1992) demonstrated

that the algorithm could be generalized for a fully flexible chain. de Pablo

et al. (1992a) introduced the term “continuum configurational bias (CCB)”

to describe the application of method to flexible chains. When each segment

of a flexible chain is grown, a subset k random directions is chosen. The

energy UΓ(i) for each of these orientations is calculated and an orientation is

chosen with a probability of,

pΓðiÞ5
exp 2βUΓðiÞ½ �Pk

Γ51

exp 2βUΓðiÞ½ �
ð6:16Þ

and the Rosenbluth factor is accumulated from:

Wi 5Wi21

1

k

Xk
Γ51

exp 2βUΓðiÞ½ � ð6:17Þ

The trial conformation is accepted if the following criterion is satisfied,

R#
Wl;trial

Wl;old
ð6:18Þ

where R is a random number between 0 and 1.

The general procedure for implementing a CBMC simulation is outlined

in Algorithm 6.2. It involves three distinct stages. The first stage (Algorithm

6.2, Part 1) generates a trial configuration and determines the Rosenbluth

weight. This involves selecting a chain randomly (Algorithm 6.2, Part 1.1);

selecting a starting position randomly (Algorithm 6.2, Part 1.2); growing the

chain and calculating the Rosenbluth weight (wTrial) for the trial chain

(Algorithm 6.2, Part 1.3). The starting point can occur anywhere on the

chain. If the value of start equals 1, the whole chain is regrown, whereas any

other value means that the chain is only regrown partially. The number of

attempted insertions k is specified and the chain is grown using Algorithm 6.3.

The second stage (Algorithm 6.2, Part 2) calculates the Rosenbluth weight for

the old configuration (wOld) by using Algorithm 6.3 to retrace the chain.

226 Molecular Simulation of Fluids



To retrace the old chain, Algorithm 6.3 is used with k set to unity. In stage 3

(Algorithm 6.3, Part 3) the old and trial Rosenbluth weights are used to either

accept or reject the trial configuration (Algorithm 6.3, Part 3.1) in accordance

with criterion (6.15).

ALGORITHM 6.2 CBMC algorithm for a chain.

Part 1 New trial configuration:
trialConfiguration � true

Part 1.1 Select a chain randomly:
chain � int(rand() � numberOfChains) + 1

Part 1.2 Select starting position:
start �Int(rand() � Lengthchain)
k � number of attempted insertions

Part 1.3 Grow chain from start using Algorithm 6.3
and determine wTrial.

Part 2 Old configuration:
trialConfiguration � false
k � 1

Part 2.1 Retrace chain from start using Algorithm 6.3
and determine wOld.

Part 3 Acceptance of trial:
Part 3.1 test � wTrial/wOld

if (test > rand())
Accept move.

end if

Algorithm 6.3 is responsible for fully or partially regrowing

(trialConfiguration5 true) a chain or retracing part or all of an existing chain

(trialConfiguration5 false). At the outset (Algorithm 6.3, Part 1), the coordinates

of that part of the chain, which are not involved in the regrowth, are stored.

The chain is either regrown or retraced by considering each atom in turn

(Algorithm 6.3, Part 2). If the first atom of the chain is encountered it is trea-

ted specially (Algorithm 6.3, Part 2.1). For the remaining atoms, k trial posi-

tions are located (Algorithm 6.3, Part 2.2). The location of the trial positions

depends on the nature of the chain (Algorithm 6.3, Part 2.3). If the chain is

fully flexible, the trial positions can be located randomly, whereas bond and

angular constraints must be imposed for semiflexible or rigid molecules. The

external energy or energy from nonbonded interactions is calculated and the

Rosenbluth weight is calculated. After the k orientations are found, the

Rosenbluth weight is updated and one of the orientations is selected

(Algorithm 6.3, Part 2.4). The selection is made with the probability given

by Eq. (6.16). The algorithm has been discussed in detail by Frenkel and

Smit (2023).
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ALGORITHM 6.3 Growing/retracing either a fully flexible or semi-flexible
chain.

Part 1 Store positions that are not regrown or retraced:
loop atom � 1 .... start - 1

rxStoreatom � rxatom

ryStoreatom � ryatom

rzStoreatom � rzatom

end atom loop

Part 2 Grow/retrace chain:
W � 1 //initial Boltzmann weight
loop atom � start ... chainLength

Part 2.1 if (atom = 1)
if(trialConfiguration) //generate random positions

rxTrial1 � rand() � boxLength
ryTrial1 � rand() � boxLength
rzTrial1 � rand() � boxLength

else
rxTrial1 � rand() � rxStore1

ryTrial1 � rand() � ryStore1

rzTrial1 � rand() � rzStore1

end if
Calculate change in energy:
Calculate energy of the atom (UTrial) at trial position. 
�U1 � UTrial - U1

W � k � exp(-� � �U1) //Rosenbluth factor
else //consider other atoms

sumW � 0
Part 2.2 loop attempt � 1 ... k

if (trialConfiguartion = false and attempt = 1)
rxTrial � rxatom

ryTrial � ryatom

rzTrial � rzatom

else
Part 2.3 Generate a trial position (rxTrial, ryTrial, rzTrial) in

accordance with the chain’s constraint.
end if
Calculate change in energy:
Calculate energy (UTrial) at trial position. 
�Uatom � UTrial - Uatom

WTrialattempt � exp(-� � �Uatom)
sumW � sumW + WTrialattempt

end loop
W �W � sumW //update Rosenbluth factor
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Part 2.4 if (trialConfiguration)
Select one of the trial attempts (position):
selectW � rand() � sumW
cummulativeW � Wtrial1
position � 1
loop while (cummulativeW < selectW )

position � position + 1
cummulativeW � cummulativeW + WTrialposition

end while loop
rxStoreatom � rxTrialposition

ryStoreatom � ryTrialposition

rzStoreatom � rzTrialposition

else
rxStoreatom � rxatom

ryStoreatom � ryatom

rzStoreatom � rzatom

end if
end if

end atom loop

The computation time and efficiency of Algorithm 6.3 depends largely

on the value of k. If k5 1, the algorithm is equivalent to Widom particle

insertion, which is inefficient for chain molecules. For chains, k. 1 is

required to obtain improvements in efficiency. However, if k is too large, too

much time is used in calculating Rosenbluth weights for trial positions that

are very close to each other. The effect of the value k has been investigated

by Frenkel et al. (1991). For small chains, an excessive value of k leads to

poor computational performance, whereas larger k values are required to

sample long chains. Typically, a value of k5 4 is often a good compromise

between efficient sampling and excessive computation (Frenkel, 1995).

An important application of methods is the simulation of phase equilibria

involving either polymers or chain molecules. The method has been com-

bined (Laso et al., 1992; Mooij et al., 1992) with the Gibbs ensemble

(Chapter 10) to predict the phase equilibria of chain molecules. In particular,

good results have been obtained (Siepmann et al., 1993a,b; Smit et al., 1995,

1998) for the vapor�liquid equilibria of alkanes from pentane to octatetra-

contane and branched alkanes (Cui et al., 1997). A hybrid Gibbs ensemble/

MD method has been used (de Pablo, 1995) to improve the efficiency of par-

ticle interchange. Vapor�liquid coexistence of square-well chains consisting

of up to one hundred segments has been reported (Escobedo and de Pablo,

1996).

The method is clearly superior to the simple Widom test particle

approach. However, it has some limitations. In common with the Widom

method, it relies on finding vacancies in the fluid, therefore, insertion pro-

blems will still arise for very long chains. A reasonably large system size

(. 200 chains) is also required to avoid finite size effects.
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Improving methods is an active area of research. Shelley and Patey (1994,

1995) developed a configurational bias method for the insertion and deletion of

ions and water molecules in grand canonical MC simulations. Escobedo and de

Pablo (1995a) proposed an extended continuum configurational bias (ECCB)

method, which is particularly useful for very large molecular chains. Suen et al.

(1997) used the ECCB method to examine the collapse of a polymer chain in

an athermal solvent. Configurational bias sampling has also been used in an

expanded ensemble (Escobedo and de Pablo, 1995b). The expanded ensemble

formalism has been used successfully (Escobedo and de Pablo, 1997) to simu-

late both pure athermal mesogenic chains and mixtures.

Deem and Bader (1996) have described a configurational bias method

that can be applied to either linear or cyclic peptides. Haas and Hilfer (1996)

have reported continuum MC calculations for stiff chain molecules at

surfaces. Methods of optimization have also been addressed (Mooij and

Frenkel, 1996). Sadanobu and Goddard (1997) combined continuum configu-

rational bias sampling with a Boltzmann factor-biased enrichment method.

The resulting algorithm requires the simulation of dramatically fewer chains

to obtain an accurate value of free energy. Vendruscolo (1997) has proposed

modifications to the configurational bias method involving the regrowth of

the internal segments of polymer chains. The computational efficiency of

CBMC is improved considerably via parallel implementations (Vlugt, 1999;

Cezar et al., 2020; Glaser et al., 2015).

6.3.2 Cluster moves

Systems of strongly interacting particles such as ions in a medium of low

dielectric constant or surfactants exhibit significant clustering. One consequence

of clustering is that independent particle moves may be inhibited. In such cases,

it may be preferable to attempt to move clusters of atoms rather than individual

atoms. Swendsen and Wang (1987) proposed a cluster algorithm to facilitate

MC sampling of near-critical systems. Later, Wu et al. (1992) modified the pro-

cedure for self-assembling systems. The key feature of the Swedsen-Wang

algorithm is the creation of virtual bonds between neighboring particles. Wu

et al. (1992) proposed that the probability of bond formation is only a function

of distance. Once clusters have formed, they are moved as a whole.

The probability of accepting a cluster move depends on the probabilities

of bond formation at the old and new cluster positions. Instead of applying

Eq. (6.7), cluster moves are accepted with a probability given by,

p5min 1; expð2βΔUÞL
kl

12 pf ðk; lÞ
12 prðk; lÞ

� 	
ð6:19Þ

where k denotes a particle on the cluster, l denotes a particle outside the clus-

ter, pr is the probability of the reverse move, and pf is the probability of the
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forward move. Wu et al. (1992) have used the simplifying assumption that

p(i,j)5 1 for rij less than a specified cluster distance rc, and p(i,j)5 0 beyond

that distance. Orkoulas and Panagiotopoulos (1993, 1994) have demon-

strated the usefulness of cluster moves in the simulation of vapor�liquid

coexistence of ionic fluids. Cluster moves have been examined in detail by

Frenkel (1995) and Frenkel and Smit (2023). The general algorithm for

implementing a cluster move is:

1. Identify clusters;

2. Choose a cluster at random;

3. Change the position of the cluster by applying the same random displace-

ment to all atoms of the cluster;

4. Calculate the energy and probability factor experienced by all atoms of

the cluster in the new position; and

5. Apply Eq. (6.19).

A possible implementation of this procedure is given by Algorithm 6.4.

Before the clusters are identified (Algorithm 6.4, Part 1.1), every atom is avail-

able takenatom’false for cluster formation. The clusters are identified by choos-

ing a “seed” atom clusterSeed (Algorithm 6.4, Part 1.2) and finding all atoms

within the separation distance from clusterSeed (Algorithm 6.4, Parts 1.3 and 1.4).

These atoms are now not available takenatom’false for any other cluster.

The coordinates are assigned to a two-dimensional array rxcluster, cAtomIndex’rxatom.

This process is continued until all atoms are assigned to a cluster

totalTaken5maxAtoms. Algorithm 6.4 also allows for the possibility that some

atoms may be outside any cluster (Algorithm 6.4, Part 1.5). The MC procedure

(Algorithm 6.4, Part 2) is broadly similar to Algorithm 6.1. For each cycle, a

cluster is selected randomly (Algorithm 6.4, Part 2.1). All the atoms

(numOfAtomscluster) of the chosen cluster are displaced randomly by the same

amount (Algorithm 6.4, Part 2.2). For each atom of the cluster, the change in

energy experienced at the trial position is calculated (Algorithm 6.4, Part 2.3).

The probability factor is also determined. The change in energy (ΔUcluster) for

the move is simply the sum of the change in energy experienced by atoms of

the cluster at their trial positions. The combined probability factor (prob) is the

product of one minus the probability factor for all the atoms in the cluster. If

prob becomes equal to zero, the move is rejected immediately because this sig-

nifies that an atom of the trial cluster has become part of another cluster and

microscopic reversibility has been violated. If microscopic reversibility is not

violated, the decision to accept the move depends on the change in energy of

the move (Algorithm 6.4, Part 2.4). The maximum allowed displacement is

updated periodically (Algorithm 6.4, Part 2.5) to obtain the desired acceptance

rate. It should be noted that cluster moves should be combined with single parti-

cle moves, to allow for a change in both the configuration of the cluster and the

number of particles in the cluster.
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ALGORITHM 6.4 MC procedure for accepting cluster moves.

Part 1 Identify Clusters:
Part 1.1 loop atom � 1 ... maxAtom

takenatom� false
end atom loop
totalTaken � 0
clusterSeed � 0
cluster � 0

Part 1.2 loop while (totalTaken < maxAtom)
cAtomIndex � 0
cluster � cluster + 1
clusterSeed � clusterSeed + 1
loop atom � 2 .. maxAtom

Part 1.3 if (atom � clusterSeed and takenatom = false)
Calculate the separation between atom
and clusterSeed.

Part 1.4 If (separation < rCluster) //member of cluster found
cAtomIndex � cAtomIndex + 1
rxctuster, cAtomIndex � rxatom

rycluster, cAtomIndex � ryatom

rzcluster, cAtomIndex � rzatom

takenatom � true
totalTaken � totalTaken + 1

end if
end if

end atom loop
Part 1.5 if (takenclusterSeed = false) //take care of lone atoms

cAtomIndex � cAtomIndex + 1
rxctuster, cAtomIndex � rxclusterSeed

rycluster, cAtomIndex � ryatomSeed

rzcluster, cAtomIndex � rzatomSeed

takenclusterSeed � true
totalTaken � totalTaken + 1

end if
numOfAtomscluster � cAtomIndex

end while loop
totalCluster � cluster

Part 2  MC Simulation:
loop cycle �1 ... maxCycle

Part 2.1 Select cluster at random:
cluster �[1, totalCluster]

Part 2.2 Attempt trial displacements of a cluster:
loop cAtomIndex � 1 ... numOfAtomscluster

rxTrialcluster,cAtomIndex

� pbc(rxcluster, cAtomIndex + (2 � rand() - 1) � dMax)
ryTrialcluster,cAtomIndex

� pbc(rycluster,cAtomIndex + (2 � rand() - 1) � dMax)
rzTrialcluster,cAtomIndex

� pbc(rzcluster,cAtomIndex + (2 � rand() - 1) � dMax)
end cAtomIndex loop
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Part 2.3 Calculate Energy/Probability factors of trial position:
prob � 1
cAtomIndex � 1
�UCluster � 0
loop

Calculate �UcAtomIndex from interaction with outside atoms.
Calculate probcAtomIndex

�UCluster � �UCluster + �UcAtomIndex

prob �prob*(1 - probcAtomIndex)
cAtomIndex � cAtomIndex + 1

while (cAtomIndex � numOfAtomscluster and prob = 1)
Part 2.4 Apply acceptance criterion:

If (prob = 1)
if (�UCluster < 0 or exp(-� � UCluster) � rand())

loop cAtomIndex � 1 ... numOfAtomscluster

rxcluster,cAtomIndex � rxTrialcluster, cAtomIndex

rycluster,cAtomIndex � ryTrialcluster,cAtomIndex

rzcluster,cAtomIndex � rzTrialcluster,cAtomIndex

Ucluster,cAtomIndex � Ucluster,cAtomIndex + �UcAtomIndex

end cAtomIndex loop
U � U+ �UCluster
numAccept � numAccept + 1

end if
Part 2.5 Update the maximum displacement periodically:

if (mod(cycle, updateCycle) = 0)
acceptRatio � numAccept/cycle � atomMax)
if (acceptRatio > 0.5)

dMax � 1.05 � dMax
else

dMax � 0.95 � dMax
end if

end if
end cycle loop

6.4 Path integral Monte Carlo

The above MC methods are appropriate for classical molecular interactions. In

contrast, path integral MC (PIMC) methods allow the investigation of systems

involving quantum interactions (Feynman and Hibbs, 2010). Instead of discrete

particle trajectories, a particle is treated as a ring polymer consisting of P beads.

Assuming a sufficiently large value of P (Chandler and Wolynes, 1981), the

canonical (NVT) partition function (Chapter 2) of a three-dimensional system of

N rings of P beads is given by,

ZP 5
mP

2πβ_2


 �3NP=2ð
L
N

i51

dr1i . . .dr
P
i e

2β Φðr1i ...rPN Þ
r1
i
5rP11

i

 ð6:20Þ
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where m is the mass of a single particle, h is Planck’s constant divided by

2π, and rki is the radius vector of bead k of ring i. The propagator potential is

defined as,

Φðr11; . . .; rPNÞ5
mP

2β2_2
XP
k51

XN
i51

rki 2rk21
i

� �2
1

1

P

XP
k51

XN
j. i

u rki 2 rkj

 � �
ð6:21Þ

and r1i 5 rP11
i to satisfy the ring condition. In Eq. (6.21), the first term is the

quantum kinetic contribution that describes the harmonic bead�bead interac-

tion within the ring. The second term of Eq. (6.21) accounts for the potential

energy contribution from the interaction of beads with the same index.

A property of interest can be obtained (Barker, 1979) by taking the deriv-

ative of the partition function with respect to a corresponding variable. For

example, the isochoric heat capacity (CV) can be obtained from,

CV 5β2 UTD
2

� �
2 UTDh i2 1 3NP

2β2
2
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where UTD is the energy calculated using the thermodynamic method.
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The so-called thermodynamic or primitive estimators (Barker, 1979) are

associated with increasing standard error with P because the kinetic energy

exhibits large fluctuations. This has been partly addressed by Herman et al.

(1982), who formulated a path integral version of the virial theorem. Both

virial and virial centroid estimator expressions are available for energy and

pressure. Glaesemann and Fried (2002a,b) have also introduced the double

virial and double centroid virial estimators for specific heat capacity at con-

stant volume, which is more efficient than primitive or virial estimators.

These estimators, which require either the calculation of the second-order

derivatives of the potential function or the evaluation of the Hessian matrix

at each accepted step, are very computationally expensive. As such, they are

only computationally feasible using powerful parallel computing platforms.

A PIMC simulation can be simply implemented by conducting a con-

ventional MC Markov chain process with Metropolis importance sam-

pling (Algorithm 6.1). There are alternative ways of generating the trial

displacements. Thirumalai et al. (1984) proposed first moving a ring as a whole,

and then displacing all beads of the same chain by a small amount. Singer and

Smith (1988) implemented a trial displacement of one bead at a time. Both

these methods are relatively slow and result in low acceptance rates. A more

computationally efficient approach is to use a staging algorithm (Ceperley and

Pollock, 1984), where a ring is divided into segments and an attempt is made to
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displace a moderate number of beads in one move. This approach increases the

sampling efficiency. The staging variables are sampled randomly from their

Gaussian distribution. A ring is moved as a whole after internal displacement is

completed. The Li-Broughton (1987) correction is commonly applied to reduce

error caused by the discreet values of P.

Thirumalai et al. (1984) applied PIMC to the properties of neon, showing

the importance of quantum efforts at both 35 K and 40 K. Singer and Smith

(1988) have reported a PIMC study of LJ systems in liquid phase, including

several state points of neon and helium. Vlasiuk et al. (2016) have deter-

mined the heat capacity of neon using PIMC and Eq. (6.22). Although con-

siderable uncertainty was observed, the errors were not as large as reported

by Sesé (1995). A hybrid PIMC method has been proposed (Miura, 2007) to

more easily handle rotation.

6.5 Summary

The MC strategy provides a relatively simple mechanism for determining the

nondynamical properties of fluids without requiring specific details of the under-

lying physics. The basis of the procedure involves generating a Markov chain

with an appropriate stochastic sampling scheme. The change in the energy of

intermolecular interaction at different trail states is used to determine whether or

not the trial configurations are accepted. MC algorithms can be applied rela-

tively to a wide variety of situations. Atomic systems represent the simplest

case with the acceptance criterion depending on the change in energy of a trial

displacement. In contrast, for molecules, additional acceptance criteria and MC

move a required account for changes in molecular configuration. Nonetheless,

the MC approach can be used to determine efficiently the properties of large

molecules such as polymers and proteins.
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Chapter 7

Integrators for molecular
dynamics

A common feature of all molecular dynamics (MD) algorithms is that the

positions of molecules are evolved with time by integrating the equations of

motion. Mathematically, the equations of motion represent a set of initial

value differential equations, which involve the evaluation of forces. In prin-

ciple, using any standard finite-difference algorithm can solve these equa-

tions. However, calculating the forces is the most time-consuming step in

MD and any algorithm that requires more than one force evaluation per time

step is unlikely to be viable computationally. This often excludes many com-

mon finite-difference algorithms such as the conventional Runge�Kutta

(RK) method, which would require multiple force evaluations. The other

important requirement is that the integration algorithm must be well behaved

for the force encountered in MD. As a rule of thumb, this latter requirement

means that the order of the algorithm defined as the highest order of the time

step for the equation for the solution of the coordinates should be at least

two. A consequence of these requirements is that the algorithms available for

MD form a small subset of the finite-difference algorithms in the literature

(Dahlquist and Björk, 1974). Some finite-difference algorithms have been

both developed and specifically tuned for applications to MD.

Finite-difference algorithms used in molecular simulation can be classi-

fied as either predictor or predictor�corrector methods. In the predictor

methods, the molecular coordinates are updated from quantities that are

either calculated in the current step or that are known from previous steps.

The Verlet (1967) algorithm and its subsequent modifications are widely

used examples of predictor algorithms. In contrast, predictor�corrector algo-

rithms involve predicting new molecular coordinates; using the predicted

coordinates to calculate the value of some function; and subsequently using

this value to correct the initial prediction. The Gear (1966, 1971) algorithm

is a widely used predictor�corrector algorithm for MD. It should be noted

that these algorithms are most easily applied to atoms, and special modifica-

tions are required for molecular systems.

In this chapter, the motivation for integrator algorithms is discussed

briefly and some of the most commonly used integration schemes are
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considered in detail. The problem imposed by molecular systems is also

addressed. The merits of various integration schemes have been discussed

elsewhere (Berendsen and van Gunsteren, 1986; Hockney and Eastwood,

1988; Heermann, 1990; Gould and Tobochnik, 1996; Gubbins and Quirke,

1996; Frenkel and Smit, 2023; Rapaport, 2004; Allen and Tildesley, 2017).

7.1 Integrating the equations of motion

At the outset, it is instructive to formulate the problem posed specifically by

MD. The force experienced by a particle during displacement is given by

Newton’s second law of motion,

Fi 5miai ð7:1Þ
where F is the force acting on the particle, and m and a are the particle’s

mass and acceleration, respectively. It is more convenient to express acceler-

ation as the second derivative of displacement r with respect to time t

because we are interested in the evolution of the particle with time.

d2ri

dt2
5

Fi

mi

ð7:2Þ

The dynamic behavior of the whole system can be obtained by solving

Eq. (7.2) for each and every particle. Integrating Eq. (7.2) with respect to

time for a small time interval during which the force is constant yields:

dri

dt
5

Fi

mi


 �
t1 c1 ð7:3Þ

At time t5 0, the first term vanishes and the velocity is given by the con-

stant c1, which represents the initial velocity vi. In general, at time t, we obtain:

dri

dt
5 ait1 vi ð7:4Þ

If we integrate Eq. (7.4) with respect to t, we obtain,

ri 5 rit1
ait

2

2
1 c2 ð7:5Þ

where the constant c2 is the particle’s current position. Eq. (7.5) enables us

to calculate the particle’s displacement simply from the initial velocity and

acceleration.

7.2 Gear predictor�corrector methods

In this section, the concept of a finite-difference approach to integrating the

equations of motion is introduced and the Gear algorithm is derived

(Gear, 1971). There are many possible predictor�corrector algorithms
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(Dahlquist and Björk, 1974) but only the Gear algorithm appears routinely in

MD. We note that the Gear algorithm is used much less commonly than

alternatives, such as the Verlet algorithm (discussed below) and it has been

almost completely omitted from some revised texts (Allen and Tildesley,

2017). Nonetheless, it has proved to be a consistently reliable many contem-

porary applications including thermodynamic properties (Losey and Sadus,

2019), solid�liquid equilibria (Ahmed and Sadus, 2010), and nonequilibrium

behavior (Ahmed et al., 2010). The Gear approach has proved to be particu-

larly stable for the MD of polarizable molecules (Kolafa, 2005) and improve-

ments have been reported (Janek and Kolafa, 2020). When compared (Haile,

1992) with the Verlet method, the Gear algorithm shows superior conserva-

tion of energy for small time steps. In view of such considerations, it has

useful ongoing role in MD.

7.2.1 The basic Gear algorithm

Equation (7.5) shows how the particle coordinates change with time.

However, any changes in particle displacement will also affect the strength

of interparticle forces, velocities, and accelerations. Consequently, a general

method is required to evolve all of the dynamic properties of the system. In

general, the evolution of particle coordinates or any time-dependent property

can be estimated from a Taylor series expansion. The Taylor series expan-

sion for the coordinate vector is:

rðt1ΔtÞ5 rðtÞ1 dr

dt
Δt1

1

2!

d2r

dt2
Δt2 1

1

3!

d3r

dt3
Δt3 1

1

4!

d4r

dt4
Δt4 1?� ð7:6Þ

Equation (7.6) represents the “finite-difference” approach that is com-

monly used to solve ordinary differential equations such as Eq. (7.2).

Naively, the particle velocities and accelerations could be updated by simply

using other appropriate expansions similar to Eq. (7.6).

vðt1ΔtÞ5 vðtÞ1Δt
d2r

dt2
1

1

2!
Δt2

d3r

dt3
1?

aðt1ΔtÞ5 aðtÞ1Δt
d3r

dt3
1?

9>>>>=>>>>; ð7:7Þ

However, this simple approach does not yield the correct trajectories because

of truncation errors. Instead, the values “predicted” by Eqs. (7.6) and (7.7) must

be “corrected” to yield the actual trajectory. The correction step involves actu-

ally calculating the accelerations ac from the new coordinates and determining

the difference Δa between these values and the predicted ap values.

Δaðt1ΔtÞ5 acðt1ΔtÞ2 apðt1ΔtÞ ð7:8Þ
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The predicted value of r can be corrected by,

rcðt1ΔtÞ5 rpðt1ΔtÞ1 kdΔaðt1ΔtÞ ð7:9Þ
where rp is the value of r originally predicted by Eq. (7.6). In Eq. (7.9), kd is a

constant that depends on the nature of the time derivative denoted by d. For

example, k0, k1, and k2 are the constants associated with position (d5 0), veloc-

ity (d5 1), and acceleration (d5 2), respectively. Suitable values of kd have

been determined by Gear (1966, 1971) and they are summarized in Table 7.1.

It should be noted that the accuracy of the values obtained from the Taylor

series will depend partly on the extent of truncation. When Eq. (7.6) is trun-

cated after the second term, it is identical to Eq. (7.5). Typically, the position

vectors, velocities, and accelerations are truncated after the fourth, third, and

second time derivative, respectively. The number of equations of type (7.7)

depends on where Eq. (7.6) is truncated. For the Gear predictor�corrector

algorithm, Eq. (7.6) cannot be truncated below the third term because the algo-

rithm depends on the evaluation of accelerations in the corrector step.

The values of kd (Table 7.1) are dependent on the number of properties

that are being evolved using the predictor�corrector method. The minimum

is three corresponding to the set of position vectors r, velocities v, and accel-

erations a. However, in the estimation of these properties, we can make use

of the higher derivatives of the Taylor series (Eq. 7.6) to improve the accu-

racy of the predictions. Values for these higher derivatives can also be

evolved using a predictor�corrector equation. The improved accuracy of

these derivatives in turn impacts positively on the accuracy of the other

quantities. Consequently, we can identify three-, four-, five- and six-value

Gear algorithms depending on the number of predictor�corrector equations.

An expanded table of coefficients for various improved Gear schemes is

available (Janek and Kolafa, 2020).

The general scheme of either the Gear predictor�corrector or other pre-

dictor�corrector methods is given by Algorithm 7.1. Basically, it is a simple

TABLE 7.1 Gear corrector coefficients kd for a second-order equation

using time-scaled variables.

No. Eqs. d

r v5dr/dt a5d2r/dt2 d3r/dt3 d4r/dt4 d5r/dt5

3 0 1 1

4 1/6 5/6 1 1/3

5 19/120 3/4 1 1/2 1/12

6 3/20 251/360 1 11/18 1/6 1/60
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three-stage process. Initially, the coordinates and other time derivatives are

predicted from a Taylor series expansion. The new coordinates are used to

determine the true accelerations. This is the most computationally expensive

part of the simulation cycle because it involves force re-evaluation.

Subsequently, the new accelerations are used to correct the predicted posi-

tions and other time derivatives of position.

ALGORITHM 7.1 General predictor�corrector procedure for solving
equations of motion.

Predictor-Corrector:
loop

Use a Taylor series expansion to predict the positions, velocities,
     accelerations, etc.

Use the new coordinates to evaluate the true accelerations.
Use the new accelerations to correct the initial predictions.
t � t + �t

while(t < tmax)

It is evident from Eq. (7.6) that the various derivatives of r are multi-

plied by various constants involving time. It is common to take advan-

tage of this by defining successive scaled time derivatives r0, r15Δt

(dr0/dt), r25
1/2(Δt)2(d2r0/dt

2), r35 1/6(Δt)3(d3r0/dt
3). The advantage of

using time-scaled coordinates is that the predictor step of the Gear algo-

rithm can be expressed in terms of a Pascal triangle matrix, which is

easy to apply. For example, the predictor step for a four-value Gear algo-

rithm is:

rp0 ðt1ΔtÞ
r
p
1 ðt1ΔtÞ
r
p
2 ðt1ΔtÞ
r
p
3 ðt1ΔtÞ

0BBB@
1CCCA5

1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

0BBB@
1CCCA

r0ðtÞ
r1ðtÞ
r2ðtÞ
r3ðtÞ

0BBB@
1CCCA ð7:10Þ

The corresponding corrector step is simply:

rc0ðt1ΔtÞ
rc1ðt1ΔtÞ
rc2ðt1ΔtÞ
rc3ðt1ΔtÞ

0BBB@
1CCCA5

r
p
0ðt1ΔtÞ
r
p
1ðt1ΔtÞ
r
p
2ðt1ΔtÞ
r
p
3ðt1ΔtÞ

0BBB@
1CCCA1

k0

k1

k2

k3

0BBB@
1CCCAΔaðt1ΔtÞ ð7:11Þ

The use of time-scaled coordinates is very common and the corrector

coefficients are almost invariably quoted assuming that time-scaled variables

are used.
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ALGORITHM 7.1 Example of the implementation of Gear’s four-value
(third-order) predictor�corrector algorithm using scaled time derivatives.

Overall Algorithm

Part 1 Predictor step.
Part 2 Determine forces (fxi,, fyi, ,fzi).
Part 3 Corrector step.

Sub Algorithms

Part 1 Predictor step:
loop i � 1 ...  nAtom

Part 1.1 Predict new position vectors:
rxi � rxi + vxi + axi + (d3rxi/dt3) + (d4rxi/dt4)
ryi � ryi + vyi + ayi + (d3ryi/dt3)+ (d4ryi/dt4)
rzi � rzi + vzi + azi + (d3rzi/dt3)+ (d4rzi/dt4)

Part 2.2 Predict new (scaled time) velocities:
vxi � vxi + axi + 2(d3rxi/dt3) + 3(d4rxi/dt4)
vyi � vyi + ayi + 2(d3ryi/dt3) + 3(d4ryi/dt4)
vzi � vzi + azi + 2(d3rzi/dt3) + 3(d4rzi/dt4)

Part 2.3 Predict new (scaled time) accelerations:
axi � axi + (d3rxi/dt3) + 3(d4rxi/dt4)
ayi � ayi + (d3ryi/dt3)+ 3(d4ryi/dt4)
azi � azi + (d3rzi/dt3)+ 3(d4rzi/dt4)

Part 2.4 Predict new third (scaled time) derivatives:
(d3rxi/dt3)� (d3rxi/dt3) + (d4rxi/dt4)
(d3ryi/dt3)� (d3ryi/dt3) + (d4ryi/dt4)
(d3rzi/dt3)� (d3rzi/dt3) + (d4rzi/dt4)

end i loop

Part 3 Corrector step:
loop i � 1 ...  nAtom

Part 3.1 Determine new accelerations:
axNew � fxi/mi

ayNew � fyi/mi

azNew � fzi/mi

Part 3.2 Determine corrections:
deltax � axNew - axi

deltay � ayNew - ayi

deltaz � azNew - azi

Part 3.3 Correct position vectors:
rxi � rxi + k0 � deltax
ryi � ryi + k0 � deltay
rzi � rzi + k0 � deltaz
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Part 3.4 Correct velocities:
vxi � vxi + k1 � deltax
vyi � vyi + k1 � deltay
vzi � vzi + k1 � deltaz

Part 3.5 Correct accelerations:
axi � axNew
ayi � ayNew
azi � azNew

Part 3.6 Correct third time derivatives:
(d3rxi/dt3)� (d3rxi/dt3) + k3 � deltax
(d3ryi/dt3)� (d3ryi/dt3) + k3 � deltay
(d3rzi/dt3)� (d3rzi/dt3) + k3 � deltaz

end i loop

Algorithm 7.2 demonstrates the use of a four-value Gear method. The

implementation is relatively straightforward. New positions, velocities, accel-

erations, and third time derivatives are predicted (Algorithm 7.2, Parts

1.1�1.4). The forces on the atoms at their predicted positions are evaluated

(Algorithm 7.2, Part 2) as detailed in Chapter 5. This is the most time-

consuming part of the algorithm. In the corrector step (Algorithm 7.2, Part

3), the forces are used to update the accelerations (Algorithm 7.2, Part 3.1)

and to determine corrections. The corrections are subsequently applied

(Algorithm 7.2, Parts 3.2�3.6) to update the positions, velocities, and the

like. In Algorithm 7.2, the Gear constants are represented by the variables

k0, k1, and k3.

7.2.1.1 Cautionary note on nomenclature

There is some confusion in the literature in the description of the different

Gear algorithms. The order of the algorithm should refer to the order of the

highest derivative. This means that a fourth-order Gear algorithm involves at

most a fourth-order derivative but it has five coefficients or values (see

Table 7.1). Therefore, fourth-order and five-value are interchangeable

descriptions for the same Gear algorithm. However, a four-value (third-

order) Gear algorithm is sometimes mistakenly referred to as fourth order,

which would incorrectly imply the use of five values. The “value” descrip-

tion used here avoids this ambiguity.

7.2.2 Other representations of the Gear algorithm

The algorithm described earlier represents the most commonly used repre-

sentation of the Gear predictor�corrector algorithm, namely, the Nordsieck
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or N-representation (Berendsen and van Gunsteren, 1986). Other representa-

tions are also possible depending on what information is kept. In the four-

value N-representation, three derivatives of r are kept, which can be used to

define the column vector rn. Using dot notation for the time derivatives, we

have (Berendsen and van Gunsteren, 1986),

rn 5 rn;Δt_rn;
Δt2 €rn
2

;
Δt3 r

...
n

6

� 	T
? ð7:12Þ

where the elements of this vector are also vectors of length 3 N. The N-repre-

sentation only uses values from step n. An alternative is to keep only the

coordinates from previous steps. For example:

rn 5 rn; rn21; rn22½ �T ð7:13Þ
Equation (7.13) represents a three-value, three-step coordinate or C-repre-

sentation of the Gear algorithm. It is also sometimes convenient to use coor-

dinates and velocities of one step with forces from a previous step.

rn 5 rn;Δt_rn;
Δt2t€rn

2
;
Δt2 €rn21

2
;
Δt2 €rn22

2

� 	T
: ð7:14Þ

Equation (7.14) is a five-value, three-step method in the force or F-repre-

sentation. Berendsen and van Gunsteren (1986) have discussed the different

representations in greater detail and they have reported values of the correc-

tor coefficients for several cases. Janek and Kolafa (2020) have also pro-

posed alternative Gear algorithms.

7.3 Verlet predictor methods

Verlet (1967) demonstrated that a simple predictor method developed by

Störmer could be used successfully in MD. Many subsequent modifica-

tions and improvements have been proposed, and the “Verlet family” of

algorithms collectively are the most widely used integration algorithms

for MD.

The Verlet algorithm belongs to the symplectic class of integrators that

preserves a canonical structure. There is evidence that symplectic algorithms

are likely to be the preferred choice for the long-time integration of

Hamiltonian dynamic systems (Leimkuhler and Skeel, 1994). Isbister et al.

(1997) have discussed symplectic algorithms for nonequilibrium MD. The

development and improvement of such integrators is an increasingly active

area of research (Greer, 1994; Okunbor and Skeel, 1994; Janežič and

Merzel, 1995; Jay, 1996; Okabe et al., 1996; Skeel et al., 1997). In this sec-

tion, we trace the development of the cornerstone Verlet algorithms and we

show how they are implemented.
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7.3.1 Original Verlet algorithm

In common with the corrector�predictor algorithm, the starting point for the

Verlet (1967) algorithm is a Taylor series expansion. We start by considering

the following Taylor series expansions about r(t).

rðt1ΔtÞ5 rðtÞ1 dr

dt
Δt1

1

2!

d2r

dt2
Δt2 1?� ð7:15Þ

rðt2ΔtÞ5 rðtÞ2 dr

dt
Δt1

1

2!

d2r

dt2
Δt2 1?� ð7:16Þ

When Eq. (7.15) and Eq. (7.16) are added, we obtain:

rðt1ΔtÞ5 2rðtÞ2 rðt2ΔtÞ1 d2r

dt2
Δt2 ð7:17Þ

Equation (7.17) is known as Verlet’s algorithm. It enables us to

advance the position of the molecules without calculating their velocities.

However, the velocities are required to determine kinetic energy. They are

obtained from:

vðtÞ5 rðt1ΔtÞ2 rðt2ΔtÞ
2Δt

ð7:18Þ

The implementation of the Verlet algorithm is illustrated by

Algorithm 7.3. Before the Verlet algorithm can be implemented, the forces

must be calculated (Algorithm 7.3, Part 1). The forces are used subsequently

(Algorithm 7.3, Part 2.1) to calculate the accelerations (ax) required in

Eq. (7.17). The first step in the Verlet procedure (Algorithm 7.3, Part 2.1) is

to calculate the accelerations, which are used subsequently to advance the

atomic coordinates (Algorithm 7.3, Part 2.2). Unlike the Gear algorithm,

Eq. (7.17) requires both the current (rxi) and previous values of position

(rxOldi) to be stored in order to advance the coordinates (rxNew). The veloci-

ties must also be calculated during the execution (Algorithm 7.3, Part 2.3) of

the Verlet algorithm because this is the only time that both the updated posi-

tions (rxNew) and the previous positions (rxOld) required by Eq. (7.18) are

available. Strictly, the velocity calculations in the Verlet procedure are

optional because they do not contribute to the advancement of the atomic

coordinates. However, the calculation should be included because the indi-

vidual velocities and velocity sums are required to determine the total linear

momentum, and kinetic energy, respectively. After the new positions and

velocities are calculated, the values of the current and previous positions are

updated (Algorithm 7.3, Parts 2.4 and 2.5).

Integrators for molecular dynamics Chapter | 7 251



ALGORITHM 7.3 Original Verlet method for integrating equations of motion.

Overall Algorithm

Part 1 Determine forces (fxi,, fyi, ,fzi).
Part 2 Apply Verlet algorithm.

Sub Algorithms

Part 2 Apply Verlet algorithm:
�v2 � 0, �vx � 0, �vy � 0, �vz � 0 (optional)
loop i � 1 ... nAtom

Part 2.1 Calculate current accelerations:
ax � fxi/mi

ay � fyi/mi

az � fzi/mi

Part 2.2 Calculate new positions:
rxNew �pbc(2 � rxi - rxOldi + �t2 � ax)
ryNew �pbc(2 � ryi - ryOldi + �t2 � ay)
rzNew �pbc(2 � rzi - rzOldi + �t2 � az)

Part 2.3 Calculate new velocities (optional):
vx � (rxNew - rxOldi)/2�t
vy � (ryNew - ryOldi)/2�t
vz � (rzNew - rzOldi)/2�t
�v2��v2+  vx2 + vy2 + vz2

�vx ��vx + vx
�vy ��vy + vy
�vz ��vz + vz

Part 2.4 Update old coordinates:
rxOldi � rxi

ryOldi � ryi

rzOldi � ryi

Part 2.5 Update current coordinates:
rxi � rxNew
ryi � ryNew
rzi � rzNew

end i loop

The Verlet method is compact, easy to implement, time reversible, and it

conserves energy even for long time steps. A minor disadvantage is that the

algorithm is not self-starting. At t5 0, an estimate is required for the position

at t5 2Δt. Any reasonable estimate can be used without affecting the integ-

rity of the algorithm. The main disadvantages of the Verlet algorithm are that

it does not handle velocities well and its numerical precision is not optimal

(Dahlquist and Björk, 1974). It should be noted that the velocities calculated

by Eq. (7.18) are the current velocities rather than the velocities corresponding

to the new time step. Consequently, the calculated velocities lag the calculated

positions by one time interval. These deficiencies have been addressed by vari-

ous modifications described below.
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7.3.2 Leap-frog Verlet algorithm

Hockney (1970) proposed the following “leap-frog” scheme, which makes

use of the velocity at half-time intervals.

rðt1ΔtÞ5 rðtÞ1Δtv t1
Δt

2


 �
ð7:19Þ

v t1
Δt

2


 �
5 v t2

Δt

2


 �
1ΔtaðtÞ ð7:20Þ

vðtÞ5 v t1 Δt
2

� �
1 v t2 Δt

2

� �
2

ð7:21Þ
Unlike the original Verlet method, the next position is determined by

both the current position and the velocity at the next half-time interval

(Eq. 7.19). The velocity at the next half-time interval is determined by the

current acceleration and the velocity at the previous half-time interval

(Eq. 7.20). The current velocity is the average velocity of the velocities at

the next and previous half-time intervals.

The implementation of the leap-frog scheme is illustrated by Algorithm 7.4.

The algorithm follows the same general procedure as the Verlet algorithm but

the calculation of velocities is now an integral part of the algorithm. The calcu-

lated accelerations (Algorithm 7.4, Part 2.1) are used to determine the half-time

velocities (Algorithm 7.4, Part 2.2). In turn, the half-time velocities are used to

update the atomic positions (Algorithm 7.4, Part 2.3) and the current velocities

(Algorithm 7.4, Part 2.4). In the leap-frog algorithm, the values that must be

stored at each time step are the current position (rxi) and the previous half-time

velocity (vxHalfOldi). These values are updated following each change in coor-

dinates (Algorithm 7.4, Parts 2.4 and 2.5).

ALGORITHM 7.4 Leap-frog Verlet method for integrating equations of motion.

Overall Algorithm

Part 1 Calculate forces (fxi,, fyi, ,fzi) at time t.
Part 2 Apply Verlet Leap-Frog algorithm at time t + �t.

Sub Algorithms

Part 2 Apply Verlet Leap-Frog algorithm at time t + �t:
�v2� 0, �vx � 0, �vy � 0, �vz � 0
loop i � 1 ... nAtom

Part 2.1 Calculate accelerations:
ax � fxi/mi

ay � fyi/mi

az � fzi/mi

Part 2.2 Calculate new half-time velocities:
vxHalf �vxHalfOldi + �t � ax
vyHalf �vyHalfOldi + �t � ay
vzHalf �vzHalfOldi + �t � az
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Part 2.3 Calculate new positions:
rxNew � pbc(rxi + �t � vxHalf)
ryNew � pbc(ryi + �t � vyHalf)
rzNew � pbc(ryi + �t � vzHalf)

Part 2.4 Calculate current velocities:
vx � (vxHalf - vxHalfOldi)/2
vy � (vyHalf - vyHalfOldi)/2
vz � (vzHalf - vyHalfOldi)/2
�v2 ��v2 +  vx2 + vy2 + vz2

�vx ��vx + vx
�vy ��vy + vy
�vz ��vz + vz

Part 2.5 Update old half-time velocities:
vxHalfOldi �vxHalf
vyHalfOldi �vyHalf
vzHalfOldi �vzHalf

Part 2.6 Update current coordinates:
rxi � rxNew
ryi � ryNew
rzi � rzNew

end i loop

The main advantage of the leaf-frog algorithm is that numerical impreci-

sion is reduced because it uses differences between smaller quantities.

However, the calculation of velocities relies on velocity averaging at differ-

ent time intervals and the algorithm is not self-starting because initially, we

need to know the velocity at t5 2Δt/2. This latter difficultly can be over-

come by using reverse Euler estimates of velocities.

v 2
Δt

2


 �
5 vð0Þ2 að0ÞΔt

2
ð7:22Þ

In common with the original Verlet algorithm, the calculation of veloci-

ties lags one time interval behind the calculation of positions.

7.3.3 Velocity-Verlet algorithm

Swope et al. (1982) proposed the following velocity-Verlet procedure that

improves the calculation of the velocities.

rðt1ΔtÞ5 rðtÞ1ΔtvðtÞ1 Δt2aðtÞ
2

ð7:23Þ

v t1
Δt

2


 �
5 vðtÞ1 ΔtaðtÞ

2
ð7:24Þ

v t1Δtð Þ5 v t1
Δt

2


 �
1

Δtaðt1ΔtÞ
2

ð7:25Þ

The velocity-Verlet algorithm is effectively a three-value predictor�correc-

tor procedure as illustrated by Algorithm 7.5. First, the new positions (rxNewi)
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(Algorithm 7.5, Part 1.1) and half-time velocities (rxHalfi) (Algorithm 7.5, Part

1.2) are calculated in accordance with Eqs. (7.23) and (7.24), respectively. The

forces experienced by the atoms in their new positions are calculated

(Algorithm 7.5, Part 2). Notice that in contrast to either the Verlet or leap-frog

algorithms, the calculation of forces occurs at the midway point and not at the

start of the algorithm. The remaining part of the calculation involves complet-

ing the velocity calculation (Algorithm 7.5, Part 3). The newly calculated

forces are used to calculate the accelerations at t5 t 1 Δt (Algorithm 7.5,

Part 3.1), which then enables the completion of the velocity calculation

(Algorithm 7.5, Part 3.2) via Eq. (7.25). The current velocities (Algorithm 7.5,

Part 3.3), accelerations (Algorithm 7.5, Part 3.3), and positions (Algorithm 7.5,

Part 3.4) are updated at the completion of the algorithm.

ALGORITHM 7.5 Velocity-Verlet method for integrating equations of motion.

Overall Algorithm

Part 1 Calculate positions at time t + �t and half-time velocities.
Part 2 Calculate forces (fxi,, fyi, ,fzi) at the new positions.
Part 3 Complete velocity calculation.

Sub Algorithms

Part 1 Calculate positions at time t + �t and half-time velocities:
loop i � 1 .. nAtom

Part 1.1 Calculate new positions:
rxNewi � pbc(rxi + �t � vxi + �t2� axi/2)
ryNewi � pbc(ryi + �t � vyi + �t2 � ayi/2)
rzNewi � pbc(rzi + �t � vzi + �t2 � azi/2)

Part 1.2 Calculate new half-time velocities:
vxHalfi � vxi + �t � axi/2
vyHalfi � vyi + �t � ayi/2
vzHalfi � vzi + �t � azi/2

end i loop

Part 3 Complete velocity calculation:
�v2 � 0, �vx � 0, �vy � 0, �vz � 0
loop i � 1 .. nAtom

Part 3.1 Calculate updated accelerations:
axNew � fxi/mi

ayNew � fyi/mi

azNew � fzi/mi

Part 3.2 Complete the calculation of velocities:
vxNew � vxHalfi + �t � axNew
vyNew � vyHalfi + �t � ayNew
vzNew � vzHalfi + �t � azNew
�v2��v2+ vxNew2 + vyNew2 + vzNew 2

�vx ��vx + vxNew
�vy ��vy + vyNew
�vz ��vz + vzNew
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Part 3.3 Update current velocities:
vxi�vxNew
vyi �vyNew
vzi �vzNew

Part 3.4 Update current accelerations:
axi � axNew
ayi � ayNew
azi � azNew

Part 3.5 Update current positions:
rxi � rxNew
ryi � ryNew
rzi � rzNew

end i loop

Unlike either the Verlet or the leap-frog algorithms, which require the

force calculation to be performed upfront, the force calculation occurs mid-

way through the velocity-Verlet procedure. The velocity-Verlet algorithm

has the advantage that the calculation of the velocities is synchronized with

the evolution of position. Equation (7.23) requires the storage of both posi-

tions and velocities, whereas the acceleration can be calculated from the

stored values of force as required. However, because the accelerations are

calculated at step 3 (axNew) as part of the evaluation of Eq. (7.25), it is also

advantageous to store them (axi). Some adaptations to the velocity-Verlet

approach have been proposed, but as noted by Lippert et al. (2007), care is

required to avoid unintended side effects that may degrade the numerical

accuracy.

7.3.4 Beeman modification

The procedure proposed by Beeman (Beeman, 1976; Sangster and Dixon,

1976) is possibly the most accurate of the Verlet family of algorithms for the

calculation of velocities.

rðt1ΔtÞ5 rðtÞ1ΔtvðtÞ1 2

3
Δt2aðtÞ2 1

6
Δt2aðt2ΔtÞ ð7:26Þ

vðt1ΔtÞ5 vðtÞ1 1

3
Δtaðt1ΔtÞ1 5

6
ΔtaðtÞ2 1

6
Δtaðt2ΔtÞ ð7:27Þ

Equation (7.27) ensures that the calculation of velocities is synchronized

with the calculation of positions (Eq. 7.26).

The implementation of this strategy is illustrated by Algorithm 7.6. The

advancement of positions via Eq. (7.26) does not involve a recalculation of

forces. Instead, in the first step (Algorithm 7.6, Part 1), the positions are

advanced using the current positions (rxi), current velocities (vxi), current

accelerations (axi), and previous accelerations (axOldi). However, after the
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new positions have been calculated, the forces must be recalculated

(Algorithm 7.6, Part 2) to update the velocities (Algorithm 7.6, Part 3.1)

because Eq. (7.27) requires new values of the accelerations (axNew).

Following the calculation of the new accelerations (Algorithm 7.6, Part 3.1)

and velocities (Algorithm 7.6, Part 3.2), the stored values must be updated

(Algorithm 7.6, Parts 3.3 and 3.4). The algorithm requires the storage of cur-

rent values of position (rxi), velocity (vxi), and acceleration (axi) in addition to

accelerations (axOldi) from a previous time step.

In common with other modifications of the Verlet algorithm, the

Beeman�Verlet algorithm is not self-starting. It also requires the storage of

the old value of acceleration a(t2Δt). However, this increase in

complexity is small and the algorithm is likely to yield both improved calcu-

lation of velocities and better energy conservation. In some cases, a shift in

pressure has been reported (Litniewski, 2003) using the Beeman algorithm.

ALGORITHM 7.6 Beeman�Verlet method for integrating equations of motion.

Overall Algorithm

Part 1 Calculate new positions.
Part 2 Calculate forces (fxi,, fyi, ,fzi) at the new positions.
Part 3 Calculate new accelerations and velocities.

Sub Algorithms

Part 1 Calculate new positions:
loop i � 1 .. nAtom

rxi � pbc(rxi + �t � vxi + 2 � �t2� axi/3 - �t2� axOldi/6)
ryi � pbc(ryi + �t � vyi + 2 � �t2� ayi/3 - �t2� ayOldi/6)
rzi � pbc(rzi + �t � vzi + 2 � �t2� azi/3 - �t2� azOldi/6)

end i loop

Part 3 Calculate new accelerations and velocities:
�v2 � 0, �vx � 0, �vy � 0, �vz � 0
loop i � 1 .. nAtom

Part 3.1 Calculate new accelerations:
axNew � fxi/mi

ayNew � fyi/mi

azNew � fzi/mi

Part 3.2 Calculate new velocities:
vxNew �vxi + �t � axNew/3 + 5 � �t � axi/6 - �t � axOldi/6
vyNew �vyi + �t � ayNew/3 + 5 � �t � ayi/6 - �t � ayOldi/6
vzNew �vxi + �t � azNew/3 + 5 � �t � azi/6 - �t � azOldi/6
�v2��v2+ vxNew2 + vyNew2 + vzNew2

�vx ��vx + vxNew
�vy ��vy + vyNew
�vz ��vz + vzNew

Part 3.3 Update velocities:
vxi �vxNew
vyi �vyNew
vzi �vzNew
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Part 3.4 Update accelerations:
axOldi � axi

ayOldi � ayi

azOldi � azi

axi � axNew 
ayi � ayNew
azi � azNew

end i loop

7.4 Runge�Kutta integration

The Verlet algorithms have been specifically adapted and refined for use in

MD. However, as noted in the introduction, the problem can be generalized as

the study of a pair of N-coupled first-order systems of differential equations.

y0 5 f ðx; y; zÞ
z0 5 gðx; y; zÞ

�
ð7:28Þ

Equation (7.28) is solved in parallel. The fourth-order Runge�Kutta (RK4)

solution (Abramowitz and Stegun, 1972) involves the following evaluations,

yn11 5 yn 1
k1

6
1

k2

3
1

k3

3
1

k4

6

zn11 5 zn 1
l1

6
1

l2

3
1

l3

3
1

l4

6

9>>>>=>>>>; ð7:29Þ

where:

k1 5 hf ðxn; yn; znÞ
l1 5 hgðxn; yn; znÞ

k2 5 hf xn 1
h

2
; yn 1

k1

2
; zn 1

l1

2

0@ 1A
l2 5 hg xn 1

h

2
; yn 1

k1

2
; zn 1

l1

2

0@ 1A
k3 5 hf xn 1

h

2
; yn 1

k2

2
; zn 1

l2

2

0@ 1A
l3 5 hg xn 1

h

2
; yn 1

k2

2
; zn 1

l2

2

0@ 1A
k4 5 hf xn 1 h; yn 1 k3; zn 1 l3ð Þ
l4 5 hg xn 1 h; yn 1 k3; zn 1 l3ð Þ

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð7:30Þ

In the context of MD, y5 r, z5 v, x5 t and h5Δt. Algorithm 7.7 illus-

trates a possible MD implementation of the RK4 algorithm.
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ALGORITHM 7.7 RK4 integration of the equations of motion.

Overall Algorithm

Part 1 Store existing positions and velocities.
Part 2 Determine k1 and l1 terms and update positions and velocities.
Part 3 Calculate forces (fxi,, fyi, ,fzi) at the new positions.
Part 4 Determine k2 and l2 terms and update positions and velocities.
Part 5 Calculate forces (fxi,, fyi, ,fzi) at the new positions.
Part 6 Determine k3 and l3 terms and update positions and velocities.
Part 7 Calculate forces (fxi,, fyi, ,fzi) at the new positions.
Part 8 Determine k4 terms.
Part 9 Determine the final positions and velocities.
Part 10 Update forces (fxi,, fyi, ,fzi) at the final positions.

Sub Algorithms

Part 1 Store existing positions and velocities:
loop i � 1 .. nAtom

rxOldi � rxi

ryOldi � ryi

rzOldi � rzi

vxOldi� vxi

vyOldi � vyi

vzOld  � vzi

end i loop

Part 2 Determine k1 and l1 terms and update positions and velocities:
loop i � 1 .. nAtom

k1xi � vxi

k1yi � vyi

k1zi � vzi

rxi � rxOldi + ∆t � k1xi /2
ryi � ryOldi + ∆t � k1yi /2
rzi � rzOldi + ∆t � k1zi /2
l1xi � fxi/mi

l1yi � fyi/mi

l1zi � fzi/mi

vxi � vxOldi + ∆t � l1xi /2
vyi � vyOldi + ∆t � l1yi /2
vzi � vzOldi + ∆t � l1zi /2

end i loop

Part 4 Determine k2 and l2 terms and update positions and velocities:
loop i � 1 .. nAtom

k2xi � vxi

k2yi � vyi

k2zi � vzi

rxi � rxOldi + ∆t � k2xi /2
ryi � ryOldi + ∆t � k2yi /2
rzi � rzOldi + ∆t � k2zi /2
l2xi � fxi/mi

l2yi � fyi/mi

l2zi � fzi/mi
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k3zi � vzi

rxi � rxOldi + ∆t � k3xi

ryi � ryOldi + ∆t � k3yi

rzi � rzOldi + ∆t � k3zi

l3xi � fxi/mi

l3yi � fyi/mi

l3zi � fzi/mi

vxi � vxOldi + ∆t � l3xi

vyi � vyOldi + ∆t � l3yi

vzi � vzOldi + ∆t � l3zi

end i loop

Part 8 Determine k4 terms:
loop i � 1 .. nAtom

k4xi � vxi

k4yi � vyi

k4zi � vzi

l4xi � fxi/mi

l4yi � fyi/mi

l4zi � fzi/mi

end i loop

Part 9 Determine the final positions and velocities:
loop i � 1 .. nAtom

rxi � rxOldi + ∆t � (k1xi /6 + k1xi/ 3 + k2xi /3 + k3xi /3 + k3xi /6)
ryi � ryOldi + ∆t � (k1xi /6 + k1xi/ 3 + k2xi /3 + k3xi /3 + k3xi /6)
rzi � rzOldi + ∆t � (k1xi /6 + k1xi/ 3 + k2xi /3 + k3xi /3 + k3xi /6)
vxi �vxOldi + ∆t � (l1xi /6 + l1xi/3 + l2xi /3 + l3xi /3 + l3xi /6)
vyi �vyOldi + ∆t � (l1xi /6 + l1xi/3 + l2xi /3 + l3xi /3 + l3xi /6)
vzi �vzOldi + ∆t � (l1xi /6 + l1xi/3 + l2xi /3 + l3xi /3 + l3xi /6)

end i loop

vxi � vxOldi + ∆t � l2xi /2
vyi � vyOldi + ∆t � l2yi /2
vzi � vzOldi + ∆t � l2zi /2

end i loop

Part 6 Determine k3 and l3 terms and update positions and velocities:
loop i � 1 .. nAtom

k3xi � vxi

k3yi � vyi

The algorithm starts (Algorithm 7.7, Part 1) by storing the initial posi-

tions and velocities because these will be needed repeatedly. Values of k1
and l1 are determined and new coordinates are determined (Algorithm 7.7,

Part 2). The new coordinates are used to determine the forces

(Algorithm 7.7, Part 3). This is repeated for the k2, l2 (Algorithm 7.7, Parts 4

and 5) and k3, l3 (Algorithm 7.7, Parts 6 and 7) pairs. The k4 and l4 terms are

subsequently evaluated (Algorithm 7.7, Part 8), which allows the final coor-

dinates and velocities to be determined (Algorithm 7.7, Part 9) via
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Eq. (7.29). Although not explicitly shown, it is also advisable to apply peri-

odic boundary conditions after Part 9. The final update to the coordinates

means that the forces have to be re-evaluated (Algorithm 7.7, Part 10).

The advantages of the RK4 algorithm are that it is self-starting and highly

accurate. However, the major disadvantage is that it requires four force eva-

luations compared with only one force evaluation of alternative algorithms.

The sequential order-dependency of the force evaluations also limits opportu-

nities for computational gains from parallel implementation strategies.

Therefore, RK4 is used in relatively limited circumstances (Janežič and Orel,

1993; Trembiay and Carrington, 2004; Tupper, 2005), which require a high

degree of accuracy. One such example is the transient-time correlation func-

tion (Todd, 1997). It is also not symplectic, but modifications have been

reported (Yoshida, 1990) to address this issue. A simper alternative is the

second-order Runge�Kutta (RK2) algorithm (Abramowitz and Stegun,

1972) but this lacks the accuracy of RK4 while still requiring multiple force

devaluations. The RK4 algorithm can play a valuable supporting role for

non-self-starting algorithms by providing the first few simulation data.

7.5 Comparison of integrators

The various integrator algorithms have been compared extensively (Berendsen

and van Gunsteren, 1986; Allen and Tildesley, 2017). Kolafa (1996) has exam-

ined the suitability of several different integrators for polarizable fluids. The

main criteria for evaluating an algorithm are: speed, ease of implementation, and

accuracy. Another issue for some applications is whether the integrator is sym-

plectic, which would exclude the Gear and RK4 algorithms. For example, it has

been reported (Ratanapisit et al., 2001) that symplectic algorithms may be more

accurate than non-symplectic algorithms for some transport properties. However,

in most circumstances, this is not an important decision-making consideration.

It should be noted that speed of execution of the above integrator algo-

rithms is very similar. The Gear algorithms are slower than the

Verlet algorithms but the difference in speed is not significant. This is

because the speed of the integration is dominated overwhelming by the eval-

uation of forces. Therefore, because all of the above integrators require one

force evaluation, the execution times for the algorithms are broadly equiva-

lent. Some of the algorithms require more storage of variables than others.

However, all of the memory requirements are modest and they can be han-

dled very easily by modern computers.

The Verlet algorithms are considerably easier to implement than the Gear

algorithms and this is certainly an advantage. However, the crucial factor is accu-

racy. The trajectory predicted by the Verlet algorithms are likely to be equivalent.

However, either the velocity-Verlet or Beeman algorithms calculate the velocity

more accurately. If the time step Δt is small and the duration of the simulation

is relatively short, either a four- or five-value Gear algorithm is more accurate
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than the Verlet algorithms. However, the accuracy of the Gear algorithms dete-

riorates rapidly with both increasing step size and duration of the simulation. The

root mean square fluctuation in energy for the Verlet algorithm is almost a linear

function of Δt2. Consequently, for medium to large values of Δt, the

Verlet algorithms are considerably more accurate than the Gear algorithms.

7.6 Integrators for molecules

The previously discussed integrators can be applied directly to determine the

equations of motion for atoms interacting via an appropriate intermolecular

potential. For example, many MD studies of atomic systems have been

reported (Haile, 1992; Rapaport, 2004) using the square-well, Lennard-Jones,

and other potentials (Chapters 3 and 4). However, the goal of molecular sim-

ulation is to model real molecules as closely as possible. Unlike atoms that

can be treated as spherical particles, the simulation of molecules is compli-

cated by features such as rotation, intramolecular bonds, and the like. In par-

ticular, molecular bonds constrain the motion of the atoms that comprise the

molecule. Therefore, methods to integrate the equations of motion of mole-

cules must take account of the constraints imposed by bonds.

7.6.1 Small molecules

The treatment of dimers, trimers, tetramers, and the like introduces the com-

plication of molecular bonds and intramolecular orientations. From the per-

spective of mechanics (Chapter 2), it is possible to treat these small

polyatoms as rigid bodies by assuming that the bond lengths and bond angles

are fixed. This is a reasonable approximation if the amplitude of molecular

vibration is small compared with molecular size.

Goldstein et al. (2008) formulated the kinematics of rigid bodies

(Chapter 2). The motion of a rigid body has two independent contributions

arising from the translational motion of the center of mass and rotation about

the center of mass. The translational motion is determined by the total force

acting on the body, whereas rotation depends on the applied torque.

Translation of a polyatomic molecule can be treated in the same way as trans-

lation of an atom but the dynamics of rotation must be treated separately.

To treat rotation, three Euler angles are defined, which represent the

sequence of rotations of the Cartesian axes about the origin. The φ angle is the

extent of clockwise rotation about the z-axis, which is followed by a rotation of

θ about the new x-axis, and a final rotation ψ about the new z-axis. However,

the solution of either the Lagrangian or Hamiltonian equations (Chapter 2) using

Euler angles to represent the orientations suffers from the limitation that each of

these equations possesses singularities at θ5 0 or π. The problem can be

avoided by redefining the laboratory coordinate frame (Barojas et al., 1973).

Alternatively, Evans (1977) proposed a set of four parameters or quaternions to

replace the Euler angles in the equations of motion.
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The quaternion parameters are defined in terms of Euler angles.

q0 5 cos
θ
2

0@ 1Acos
ðφ1ψÞ

2

0@ 1A
q1 5 sin

θ
2

0@ 1Acos
ðφ2ψÞ

2

0@ 1A
q2 5 sin

θ
2

0@ 1Asin
ðφ2ψÞ

2

0@ 1A
q3 5 cos

θ
2

0@ 1Asin
ðφ1ψÞ

2

0@ 1A

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

ð7:31Þ

The quaternions are not independent but satisfy the relationship:

q20 1 q21 1 q22 1 q23 5 1 ð7:32Þ
The rotation matrix A is defined by,

Vprincipal 5AUVlaboratory ð7:33Þ
and is given by:

A5

q20 1 q21 2 q22 2 q23 2 q1q2 1 q0q3ð Þ 2 q1q3 2 q0q2ð Þ
2 q1q2 2 q0q3ð Þ q20 2 q21 1 q22 2 q23 2 q2q3 1 q0q1ð Þ
2 q1q3 1 q0q2ð Þ 2 q2q3 2 q0q1ð Þ q20 2 q21 2 q22 1 q23

0B@
1CA ð7:34Þ

The principal angular velocity, ωp, is related to the quaternions by the

matrix:

_q0
_q1
_q2
_q3

0BBB@
1CCCA 5

1

2

q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

0BBB@
1CCCA

0

ωpx

ωpy

ωpz

0BBB@
1CCCA ð7:35Þ

The quarternion method and other alternatives have been discussed in

detail elsewhere (Rapaport, 2004; Allen and Tildesley, 2017). One possible

alternative is rotation-shake (Kol et al., 1997).

7.6.2 Large molecules

In general, molecules can be considered as chains of atoms linked by bonds

of various strength, length, and type. In principle, the quaternions approach

could be applied to a large multi-atom molecules. For example, Refson and
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Pawley (1987a, b) have applied the technique to butane. However, finding

the required coordinates for large flexible molecules is difficult and would

invariably result in very awkward equations of motion.

Molecules are constrained by various intra-atomic separations and bond

angles. The concept of constraint introduced in the formulation of

Lagrangian and Hamiltonian mechanics (Chapter 2) can be applied usefully

to model the dynamics of large molecules. Consider the simple case of a tri-

atomic molecule as illustrated in Fig. 7.1.

Ignoring any angular constraints, the triatomic molecule is subject to at

least two bonding constraints,

r2ij 2 d2ij 5 0

r2jk 2 d2jk 5 0

)
ð7:36Þ

where, in this case, the d values are the equilibrium bond separations.

If either condition in Eq. (7.36) is not satisfied, a bond is broken and the tri-

atomic molecule is fragmented.

In general, if σ(r) represents the constraint, a molecule composed of N

atoms can have M constraints (de Leeuw et al., 1990; Tildesley, 1993).

σ1ðrÞ5 0

:

:

σMðrÞ5 0

9>>>=>>>; ð7:37Þ

The 3 N Euler�Lagrange equations (see Chapter 2) for the molecule are:

d

dt

@L

@_ri


 �
2

@L

@ri
5 gi ð7:38Þ

In Eq. (7.38), L is the Lagrangian for the system of N atoms and gi is the

constraint force on atom i,

gi 5
XM
α51

λα
@σα

@ri


 �
ð7:39Þ

where λα are the undetermined multipliers associated with the constraints.

i rij
rjk

j

k

FIGURE 7.1 Representation of a triatomic molecule.
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Equation (7.38) can be used (de Leeuw et al., 1990) to derive 6 N

Hamiltonian equations of motions,

_ri 5
pi
mi

2
1

mi

XM
α51

γα
@σα

@ri


 �
ð7:40Þ

_pi 52
@u

@ri
1
XM
α51

XN
j51

γα
@2σα

@ri@rj


 �
_rj ð7:41Þ

where _γα 5λα. Furthermore, these first-order equations can be transformed

to 3N second-order differential equations of the form,

€r5 ai 2
1

mi

X
α

λα
@σα

@ri


 �
ð7:42Þ

where ai is the acceleration of atom i. The time derivative of the constraining

forces is obtained by differentiating Eq. (7.37).

dσα

dt
5
X
i

_ri
@σα

@ri


 �
5 0 ð7:43Þ

d2σα

dt2
5
X
i

€ri
@σα

@ri


 �
1
X
i

X
j

_ri
@2σα

@ri@rj


 �
_rj 5 0 ð7:44Þ

An equation for the multipliers can be obtained by multiplying Eq. (7.42)

by (@σα/@ri), summing over i and substituting Eqs. (7.43) and (7.44).

2
X
i

X
j

_ri
@2σα

@ri@rj


 �
_rj 5

X
i

ai
@σα

@ri


 �
2
X
i

1

mi

X
β

λβ
@σα

@ri


 �
@σβ

@ri


 �
ð7:45Þ

In matrix notation, we have

Λ5 ðMÞ-1ðF1TÞ ð7:46Þ
where M is a M 3 M matrix with the elements:

ðMÞαβ 5
X
i

1

mi

@σα

@ri


 �
@σβ

@ri


 �
ð7:47Þ

Λ, F, and T are vectors of length α.

Λð Þα 5λα ð7:48Þ

ðFÞα 5
X
i

ai
@σα

@ri


 �
ð7:49Þ

ðTÞα 5
X
i

X
j

_ri
@2σα

@ri@rj


 �
_rj ð7:50Þ
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Equation. (7.42) can now be solved exactly because Eq. (7.48) provides

the required values of the undetermined multipliers. However, in practice, an

exact solution leads to considerable inaccuracy because the error in the

numerical solution of the differential equation means that the constraints are

only satisfied to the accuracy of the algorithm. Consequently, the error asso-

ciated with the exact solution increases progressively with time.

7.6.2.1 The shake algorithm

The shake1 algorithm (Ryckaert et al., 1977) is possibly the most widely

used method for calculating the equations of motion for molecules that are

subject to constraints.

Shake was developed specifically to be used in conjunction with the

Verlet (1967) integrator, which for unconstrained atoms is:

r0iðt1ΔtÞ5 2riðtÞ2 riðt2ΔtÞ1 Δt2

mi

f i ð7:51Þ

However, because the atoms are subject to constraints such as bond

separations, the true positions are:

riðt1ΔtÞ5 2riðtÞ2 riðt2ΔtÞ1 Δt2

mi

ðf i 2 giÞ ð7:52Þ

Obtaining the constraining force from Eq. (7.39):

riðt1ΔtÞ5 r0iðt1ΔtÞ2Δt2

mi

XM
α51

λα
@σαðrðtÞÞ

@ri


 �
ð7:53Þ

The atomic coordinates at time t1 Δt must obey the constraint equations

given by (37).

σ1 rðt1ΔtÞð Þ5 0

:

:

σM rðt1ΔtÞð Þ5 0

9>>>=>>>; ð7:54Þ

Equation (7.54) represents a set of α nonlinear equations for the multi-

pliers λα that can be solved using the shake algorithm (Ryckaert et al., 1977;

Ciccotti and Ryckaert, 1986).

The first step in the shake algorithm is to obtain the unconstrained atomic

positions r�i(t 1 Δt) as represented by Eq. (7.51). These coordinates are

adjusted iteratively until the constraint equations are satisfied to within a

1. We note that the shake algorithm is most commonly denoted as “SHAKE.” This can be attrib-

uted to its origin as a FORTRAN implementation (Ryckaert et al., 1977), which only used

uppercase letters. However, as the name does not represent an acronym, the use of italics is

more appropriate.
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specified tolerance. Each iteration cycles through all of the independent con-

straints. Typically, a given constraint (ω) will only involve a subset of all the

atoms (Nω). At the Ith iterative loop, the atomic coordinates are ri
old. The

forces of constraint act on these atoms at this iteration to yield new

positions.

rnew1 5 rold1 2λI
ϖ

@σωðrðtÞÞ
@r1

0@ 1A
:

:

rnewNω
5 roldNω

2λI
ϖ

@σωðrðtÞÞ
@rNω

0@ 1A

9>>>>>>>>>>=>>>>>>>>>>;
ð7:55Þ

The Lagrange multiplier is evaluated from:

λI
ω 5

σωðroldÞ

Δt2
PNω

i51

1
mi

@σωðroldÞ
@ri

� �
@σωðrðtÞÞ

@ri

� � ð7:56Þ

The multiplier evaluated from Eq. (7.56) for the ωth constraint and Ith

iteration is used in Eq. (7.55) to obtain a new guess for the atomic positions.

After tens of iterations, all the constraints are satisfied to a high degree of

accuracy and the constrained atomic positions r(t1 Δt) are known.

A shake algorithm for a chain molecule consisting of nAtom units with

bond constraints is illustrated by Algorithm 7.8. Prior to the implementa-

tion of the shake algorithm (Algorithm 7.8, Part 2), values of the atomic

coordinates and the forces acting on each atom must be evaluated

(Algorithm 7.8, Part 1). The shake algorithm applies the constraints sub-

ject to a predetermined tolerance limit. At the outset, new atomic coordi-

nates are evaluated for each atom of each molecule using the

Verlet algorithm (Algorithm 7.8, Part 2.1). During the Verlet procedure,

two bookkeeping arrays are initialized to keep track of whether the atoms

are being moved. The array moving indicates whether the atom is being

moved whereas moved indicates whether or not the atom was moved previ-

ously. The use of these arrays is optional, however, they enable us to mini-

mize unnecessary computation by repeatedly correcting the position of the

same atom. The iterative procedure (Algorithm 7.8, Part 2.2) for evaluat-

ing the constraints follows the Verlet step. The squared bond length

bondSq is used to constrain the new positions. The constraint is applied

between each atom and its neighbor found at position atom 1 1. The number

of bonds (nBonds) is equal to the number of atoms (nAtoms) for cyclic mol-

ecule whereas for a noncyclic molecule, nBonds5nAtoms - 1. The square of

the distances between neighboring molecule separationSq in their new
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positions is evaluated (Algorithm 7.8, Part 2.2.1). If separationSq exceeds

the tolerance value, the old neighbor separations rxOldSepartaion,

ryOldSeparation, and rzOldSeparation are calculated. A check is made to deter-

mine whether or not the vector product rNewOld of the old and new config-

urations is less than the tolerated separation. If so, an error has been

encountered and the shake procedure is terminated. Otherwise, λ is evalu-

ated and the atomic coordinates are adjusted accordingly. A correction is

also made to the virial. The iteration terminates when either all the con-

straints are satisfied, an error is encountered, or a predefined iteration

count is exceeded. At the end of the shake procedure (Algorithm 7.8, Part

2.3), the kinetic energy is calculated, and the new and old atomic coordi-

nates are updated.

ALGORITHM 7.8 Shake method for incorporating bond-length constraints.

Overall Algorithm

Part 1 Calculate the positions and forces of all atoms.
Specify bond constraints.
tolerance �10-6

virialCorrection � 0
kineticEnergy �0

Part 2 Apply shake for all molecules:
loop i �1 ... nMolecule

Part 2.1  Update atomic positions for each molecule.
Part 2.2       Iterative application of constraints.
Part 2.3 Evaluate kinetic energy and update atomic coordinates.

end i loop
if (error = false and done = true)

viralCorrection � virialCorrection/(3�t2)
kineticEnergy �kineticEnergy/2

end if

Sub Algorithms

Part 2.1 Update atomic positions for each molecule (Verlet method):
loop atom � 1 ... nAtom

rxOldatom � rxi,atom

ryOldatom � ryi,atom

rzOldatom � rzi,atom

rxNewatom � pbc(2 � rxi,atom - rxOldi,atom + �t2 � fxi,atom/massatom)
ryNewatom � pbc(2 � ryi,atom - ryOldi,atom + �t2 � fyi,atom/massatom)
rzNewatom � pbc(2 � rzi,atom - rzOldi,atom + �t2� fzi,atom/massatom)
movingatom � false
movedatom � true

end atom loop
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Part 2.2.1 Evaluate separation between neighboring atoms:
if (movedatom or movedneighbor )

rxNewSeparation � pbc(rxNewatom - rxNewneighbor)
ryNewSeparation � pbc(ryNewatom - ryNewneighbor)
rzNewSeparation � pbc(rzNewatom - rzNewneighbor)

end if
separationSq � rxNewSeparation2

+ ryNewSeparation2 + rzNewSeparation2

if (�bondSqatom - separationSq � > 2 × tolerance × bondSqatom)
rxOldSeparation � pbc(rxOldatom - rxOldneighbor)
ryOldSeparation � pbc(ryOldatom - ryOldneighbor)
rzOldSeparation � pbc(rzOldatom - rzOldneighbor)
rNewOld � rxOldSeparation � rxNewSeparation

+ ryOldSeparation � ryNewSeparation
+ rzOldSeparation � rzNewSeparation 

if (rNewOld � tolerance � bondSqatom)
� � bondSqatom - separationSq �/

(2 � rNewOld � (1/massatom +  1/massneighbor))
virialCorrection � virialCorrection + � � bondSqatom

rxNewatom � pbc (rxNewatom + � � rxOldSeparation/massatom)
ryNewatom � pbc (ryNewatom + � � ryOldSeparation/massatom)
rzNewatom � pbc (rzNewatom + � � rzOldSeparation/massatom)
rxNewneighbor � pbc

(rxNew + � � rxOldSeparation/massneighbor)
ryNewneighbor � pbc

(ryNew + � � ryOldSeparation/massneighbor)
rzNewneighbor � pbc

(rzNewneighbor + � � rzOldSeparation/massneighbor)
movingatom � true
movingneighbor � true

Part 2.2 Iterative application of constraints:
count � 1
done � false
error � false
loop while (done = false and count < maxCount)

done � true
atom � 1
loop while (atom < nBonds and error = false)

neighbor � atom + 1
if (neighbor > nAtom)

neighbor � 1
end if
Part 2.2.1 Evaluate separation between neighboring atoms. 

end while loop
if(error = false)

loop atom �1 ... nAtom
movedatom � movingatom

movingatom � false
end atom loop
count � count + 1

end if
end while loop

�

neighbor

neighbor
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done �false
atom �atom + 1

end if
else

error � true
end if

Part 2.3 Evaluate kinetic energy and update atomic coordinates:
if (error = false and done = true) 

loop atom � 1, nAtom
vx � (rxNewatom - rxOldi,atom)/2�t
vy � (ryNewatom - ryOldi,atom)/2�t
vz � (rzNeqatom - rzOldi,atom)/2�t
kineticEnergy � kineticEnergy + massatom � (vx2 + vy2 + vz2)
rxi,atom � rxNewatom

ryi,atom � ryNewatom

rzi,atom � rzNewatom

rxOldi,atom � rxatom

ryOldi,atom � ryatom

rzOldi,atom � rzatom

end atom loop
end if

The shake algorithm can also be implemented (van Gunsteren and

Berendsen, 1977) using the predictor�corrector integrator. Brown (1997) has

clarified some aspects of the force of constraint used in the original predic-

tor�corrector implementation of the shake algorithm and he reported an

improved version. To describe the predictor�corrector implementation of the

shake algorithm, we will use the following notation.

shake r1; r2; r3ð Þ ð7:57Þ
This means that the positions r2 resulting from the nonconstraint step

are reset to constrained positions r3. The direction of the

displacement vectors (r2 � r1) is determined by the reference positions

r1.

The first step of the algorithm is initiated by predicting new positions,

accelerations, and velocities via,

xpðt1ΔtÞ5BxðtÞ ð7:58Þ
where x is a vector containing the positions, accelerations, and velocities,

and B is the predictor matrix in the F-representation. At this stage, the fol-

lowing summation is calculated for later use.

Y 5
Xk21

i50

i 6¼ 1

ðB1i 2B11B0iÞriðtÞ ð7:59Þ
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In the absence of any forces, the positions are obtained by applying the fol-

lowing correction to the positions r(t 1 Δt) predicted from Eq. (7.58),

r2 5 rpðt1ΔtÞ2 k0
Δt2 €rpðt1ΔtÞ

2
ð7:60Þ

where k0 is the corrector coefficient associated with position.

The shake procedure is applied to positions r2 using positions r(t) as a

reference.

shake r tð Þ; r2; r3ð Þ ð7:61Þ
The positions are corrected for the effect of the unconstrained or free

forces.

rfreeðt1ΔtÞ5 r3 1 k0
Δt2f free;pðt1ΔtÞ

2m
ð7:62Þ

The shake procedure is now applied to the above positions using the

rp(t 1 Δt) positions as a reference.

shakeðrpðt1ΔtÞ; rfree;pðt1ΔtÞ; rtotalðt1ΔtÞÞ ð7:63Þ
This results in the final positions rtotal(t1 Δt).

The force of constraint is calculated from:

fconstraint 5
2ðrtotalðt1ΔtÞ2 rfreeðt1ΔtÞÞ

k0Δt2
ð7:64Þ

Consequently, the total force can be calculated.

f total 5 ffree 1 fconstraint ð7:65Þ
Finally, the accelerations and velocity can be obtained from,

aðt1ΔtÞ5 apðt1ΔtÞ1 k2

2

f total

m
2 €rpðt1ΔtÞ


 �
ð7:66Þ

and:

vðt1ΔtÞ5 B11rðt1ΔtÞ1 Y

Δt
1

Δt

2

f total

m
2 €rpðt1ΔtÞ


 �
ð7:67Þ

7.6.2.2 The rattle algorithm

The Verlet-based implementation of the shake algorithm suffers from the

same limitations that characterize the Verlet algorithm. The atomic velocities

are not used in the integration of the equations of motion. Instead, approximate

values are calculated following the integration step. It is difficult to start the

algorithm with previously chosen values of coordinates and velocities, and it

is also difficult to alter the time step and continue the calculation. The
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algorithm also suffers from loss of precision because it involves adding quanti-

ties that vary greatly in magnitude.

For atomic systems, the limitations of the original Verlet algorithm are

addressed by the velocity-Verlet algorithm described in Section 7.3.3.

However, as discussed by Andersen (1983), the shake algorithm cannot be

expressed in terms of the velocity-Verlet method. Instead, it is possible to

generalize the shake algorithm to include the calculation of velocities

(Andersen, 1983). The resulting rattle2 algorithm that is called calculates the

positions and velocities at a future time step from the positions and velocities

of the present time step without information from earlier time steps.

The key equations for the rattle algorithm (Andersen, 1983) are:

_riðt1ΔtÞ5 _riðtÞ1 h_riðtÞ1
Δt2

2mi

f iðtÞ2 2
X
j

λRRijðtÞrijðtÞ
" #

ð7:68Þ

_rðt1ΔtÞ5 _rðtÞ1 Δt

2mi

f iðiÞ

2
Δt

2mi

2
X
j

λRRijðtÞrijðtÞf iðt1ΔtÞ1 2
X
j

λRVijðt1ΔtÞrijðt1ΔtÞf i
#" ð7:69Þ

In Eqs. (7.68) and (7.69), there are two separate Lagrange multipliers for

the forces associated with the constraint. The λRRij(t) values are chosen such

that the constraint Eq. (7.37) is satisfied at time t 1 Δt. In contrast, the

λRVij(t 1 Δt) values are chosen to satisfy the time derivative of the con-

straint equations at time t1 Δt.

_riðtÞ2 _rjðtÞ
� �

riðtÞ2 rjðtÞ
� �

5 0 ð7:70Þ
The Lagrange multipliers can be obtained by using the same iterative

method as in the shake algorithm.

An example of the rattle algorithm is given by Algorithm 7.9. Before the

rattle algorithm can be applied the positions, forces, and bond constraints

must be known (Algorithm 7.9, Part 1). The rattle algorithm follows closely

the shake algorithm, but unlike shake, there are two distinct parts. In the first

part of rattle (Algorithm 7.9, Part 2), the positions are advanced and the

velocities are advanced half way with applied constraints. The atomic posi-

tions are updated (Algorithm 7.9, Part 2.1) using the velocity-Verlet algo-

rithm. The bond constraints are subsequently applied iteratively

(Algorithm 7.9, Part 2.2). In common with the shake algorithm this involves

evaluating the separation between bonded atoms (Algorithm 7.9, part 2.2.1)

2. It is often denoted in the literature as “RATTLE” but like shake it is not an acronym. This too

is a historical legacy of previous FORTRAN programming style that is no longer necessary in

modern implementations of the language.
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and testing whether the atomic displacements satisfy the bond constraints. In

the second part of rattle (Algorithm 7.9, Part 3), the velocity move is com-

pleted and the kinetic energy and the constraint contributions to the virial are

calculated. This involves using the Verlet algorithm (Algorithm 7.9, Part 3.1)

to update the atomic positions of each molecule and the iterative application

of velocity constrains (Algorithm 7.9, Part 3.2). Applying the velocity con-

straints requires the calculation of the difference in both velocity and separa-

tion (Algorithm 7.9, part 3.2.1) between bonded atoms. The kinetic energy

(Algorithm 7.9, Part 3.3) is evaluated at the end of rattle. An alternative to

the rattle algorithm that incorporates the shake algorithm directly into the

velocity-Verlet algorithm has been also reported (Palmer, 1993).

The utility of both the shake and rattle algorithms was witnessed an

ongoing process of continuing improvements and adaptations. Versions spe-

cifically tailored to ridged water models have been reported (Miyamoto and

Kollman, 1992) and angular constraints have been considered (Gonnet et al.,

2009). Other improvements include improved efficiencies for small mole-

cules (Kräutler et al., 2001); geometric generalizations (McLachlan et al.,

2014); accounting for semi-rigid molecules (Forester and Smith, 1998;

Gonnet, 2007), and molecules such as the alkanes (Bailey and Lowe, 2009);

and dealing with internal constraints (Lee et al., 2005). Different ways of

benefiting for parallelization have been investigated (Weinbach and Elber,

2005; Oh and Klein, 2006; Elber et al., 2011; Ruymgaart and Elber, 2012).

7.6.2.3 Application of Gauss’s principle of least constraint

An alternative to the shake and rattle algorithms is to correct the trajectories

resulting from an exact solution of Eq. (7.42). Edberg et al. (1986) observed

that Gauss’s principle of least constraint (Chapter 2) provides an exact prescrip-

tion for deriving equations of motion involving holonomic constraint. The start-

ing point for their procedure is to differentiate the bonding constraint (Eq. 7.37)

with respect to time. For the simple case of a diatomic molecule, we find:

r12U€r12 1 ð_r12Þ2 5 0 ð7:71Þ
The above equation defines a plane in either €r1 or €r2 space on which the

constrained acceleration vectors must terminate. Applying Gauss’s principle

of least constraint, the equations of motion become:

_qi 5 pi

_p 5
f1

m
2λr12

_p 5
f2

m
2λr12

9>>>>>=>>>>>;
ð7:72Þ
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ALGORITHM 7.9 Rattle method for incorporating bond-length constraints.

Overall Algorithm

Part 1 Calculate the positions and forces of all atoms.
Specify bond constraints.
tolerance �10-6

virialCorrection � 0
kineticEnergy �0

Part 2 Advance position and advance velocities half way:
loop i �1 ... nMolecule

Part 2.1 Update atomic positions for each molecule using
the velocity-Verlet algorithm.

Part 2.2 Iterative application of constraints.
end i loop

Part 3 Complete the advancement of velocities:
if (error = false and done = true)

loop i �1 ... nMolecule
Part 3.1 Update atomic positions for each molecule.
Part 3.2 Iterative application of velocity constraints.
Part 3.3 Evaluate kinetic energy and update velocities.

end i loop
if (done = true)

viralCorrection � virialCorrection/(3�t2)
kineticEnergy �kineticEnergy/2

end if
end if

Sub Algorithms

Part 2.1 Update atomic positions for each molecule using
the velocity-Verlet algorithm:

loop atom � ... nAtom
rxOldatom � rxi,atom

ryOldatom � ryi,atom

rzOldatom � rzi,atom

rxNewatom � pbc (rxOldi,atom + �t � vxi,atom + �t3 � fxi,atom/(2 � massatom))
ryNewatom � pbc (ryOldi,atom + �t � vyi,atom+ �t3 � fyi,atom/(2 � massatom))
rzNewatom � pbc (rzOldi,atom + �t � vzi,atom + �t3� fzi,atom/(2 � massatom))
vxatom � vxi,atom + �t � fxi,atom/(2 � massatom)
vyatom � vyi,atom + �t � fyi,atom/(2 � massatom)
vzatom � vzi,atom + �t � fzi,atom/(2 � massatom)
movingatom � false
movedtatom � true

end atom loop

Part 2.2 Iterative application of constraints:
count � 1
done � false
error � false
while loop (done = false and count < maxCount)

done � true
atom � 1
while (atom < nBonds and error = false)

neighbor � atom + 1
if (neighbor > nAtom)
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neighbor � 1
end if

        Part 2.2.1 Evaluate separation between bonded molecules.
end while loop
if(error = false)

loop atom �1 ... nAtom
movedatom � movingatom

movingatom � false
end atom loop
count �count + 1

end if
end while loop
if (error = false and done = true)

loop atom � 1, nAtom
rxi,atom � rxNewatom

ryi,atom � ryNewatom

rzi,atom � rzNewatom

vxi,atom � vxatom

vyi,atom � vyatom

vzi,atom � vzatom

end atom loop
end if

Part 2.2.1 Evaluate separation between bonded molecules:
if (movedatom or movedneighbor)

rxNewSeparation � pbc(rxNewatom - rxNewneighbor)
ryNewSeparation � pbc(ryNewatom - ryNewneighbor)
rzNewSeparation � pbc(rzNewatom - rzNewneighbor)

end if
separationSq �rxNewSeparation2 + ryNewSeparation2

+ rzNewSeparation2

if (�bondSqatom - separationSq� > 2 × tolerance × bondSqatom)
rxOldSeparation �pbc(rxOldatom - rxOldneighbor)
ryOldSeparation �pbc(ryOldatom - ryOldneighbor)
rzOldSeparation �pbc(rzOldatom - rzOldneighbor)
rNewOld � rxOldSeparation � rxNewSeparation 

+ ryOldSeparation � ryNewSeparation
+ rzOldSeparation � rzNewSeparation

if (rNewOld � tolerance � BondSqatom)
� �� �bondSqatom - separationSq /

(2 � rNewOld � (1/massatom + 1/massneighbor ))
rxNewatom � pbc (rxNewatom + � � rxOldSeparation/massatom)
ryNewatom � pbc (ryNewatom + � � ryOldSeparation/massatom)
rzNewatom � pbc (rzNewatom + � � rzOldSeparation/massatom)
rxNewneighbor � pbc

(rxNewneighbor - � � rxOldSeparation/massneighbor)
ryNewneighbor � pbc

(ryNewneighbor - � � ryOldSeparation/massneighbor)
rzNewneighbor � pbc

(rzNewneighbor - � � ryOldSeparation/massneighbor)
vxatom � vxatom + � � rxOldSeparation/massatom

vyatom � vyatom + � � ryOldSeparation/massatom

vzatom � vzatom + � � rzOldSeparation/massatom
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vxneighbor � vxneighbor - � � rzOldSeparation/(�t � massneighbor)
vyneighbor � vyneighbor - � � ryOldSeparation/(�t � massneighbor)
vzneighbor � vzneighbor - � � rzOldSeparation/(�t � massneighbor)
movingatom � true
movingneighbor � true
done �false
atom �atom + 1

end if
else

error � true
end if

Part 3.1 Update atomic positions for each molecule (Verlet method):
loop atom � 1 ... nAtom

rxatom � rxi,atom

ryatom � ryi,atom

rzatom � rzi,atom

vxatom � vxi,atom + �t � fxi,atom /(2 � massatom)
vyatom � vyi,atom + �t � fyi,atom /(2 � massatom)
vzatom � vzi,atom + �t � fzi,atom /(2 � massatom)
movingatom � false
movedtatom � true

end atom loop

Part 3.2 Iterative application of velocity constraints:
count � 1
done � false
error � false
loop while (done = false and count < maxCount)

done � true
atom � 1
loop while (atom < nBonds and error = false)

neighbor � atom + 1
if (neighbor > nAtom)

neighbor � 1
end if
Part 3.2.1 Evaluate velocity difference/separation btw 

          bonded atoms.
atom �atom + 1

end while loop
if (error = false)

loop atom �1 ... nAtom
movedatom �movingatom

movingatom �false
end atom loop
count �count + 1

end if
end while loop
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Part 3.2.1 Evaluate velocity difference/separation between bonded 
atoms:
if (movedatom or movedneighbor)

vxDiff � vxatom - vxneighbor

vyDiff � vyatom - vyneighbor

vyDiff � vzatom - vzneighbor

rxSeparation � pbc(rxatom - rxneighbor)
rySeparation � pbc(ryatom - ryneighbor)
rzSeparation � pbc(rzatom - rzneighbor)
sepVel � rxSeparation � vxDiff + rySeparation � vyDiff 

+ rzSeparation � vzDiff
� � -sepVel/(bondSqatom � (1/massatom + 1/massneighbor ))
if (��� >  tolerance)

virialCorrection � virialCorrection + � � bondSqatom

vxatom � vxatom + � � rxSeparation/massatom

vyatom � vyatom + � � rySeparation/massatom

vzatom � vzatom + � � rzSeparation/massatom

vxneighbor � vxneighbor + � � rxSeparation/massneighbor

vyneighbor � vyneighbor + � � rySeparation/massneighbor

vzneighbor � vzneighbor + � � rzSeparation/massneighbor

movingatom � true
movingneighbor � true
done �false

else
error � true

end if
end if

Part 3.3 Evaluate kinetic energy and update velocities:
if (done = true)

loop atom � 1, nAtom
vxi,atom � vxatom

vyi,atom � vyatom

vzi,atom � vzatom

kineticEnergy �kineticEnergy +  massatom � (vx2 + vy 2 + vz2)
end atom loop

end if

If the molecule has more than two atoms, the site equations of motion are

the same as Eq. (7.72) except that each site is subject to coupled constraint

forces. It is apparent that a set of multipliers λij must also be calculated to

solve these equations.

Edberg et al. (1986) proposed the use of penalty functions to keep the solu-

tion on track. If Eq. (7.42) is solved exactly, at some stage the predicted posi-

tions and velocities will be a significant distance from the constraint surface.

When this occurs, the trajectory can be relaxed back on the constraint surface

by minimizing the following penalty functions.

Φα 5 σαðrÞð Þ2 ð7:73Þ

Ψα 5 _σαðr; _rÞð Þ2 ð7:74Þ
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Overall values of Φ and Ψ are obtained for each molecule by summing

the contributions from the individual constraints. When Φ and Ψ reach a pre-

determined value, a nonlinear minimization is performed to find the 6 N

values of ri and _ri at the minimum. Edberg et al. (1986) found that a simula-

tion involving sixty-four butane molecules modeled as united atoms required

a mean minimization period of eighty-six integration steps.

7.6.2.4 Matrix inversion method

de Leeuw et al. (1990) proposed a method of correcting trajectories using

matrix inversion. Solving Eq. (7.42) exactly normally results in a set of coor-

dinates r0, which have drifted from the true constrained values. If the con-

straints were satisfied at a particular time step, the drift in coordinates

caused by subsequently solving Eq. (7.42) can be represented by,

σαðroÞ5 0ðΔtkÞ ð7:75Þ
where k is the order of the differential solver. The true coordinates can be

obtained by applying the following correction.

ri 5 ri0 1Δtk
XM
α51

εα
@σαðrÞ
@ri


 �
ð7:76Þ

The correction parameters are obtained by substituting these coordinates

into the constraint equations (Eq. 7.37). The constraints can be obtained to 0

(Δt2k) by using a Taylor expansion of σ(r) and @σα/@ri about r0.

σαðrÞ5σαðr0Þ1Δtk
XM
β51

XN
i51

εβ
@σαðr0Þ
@ri


 �
@σβðr0Þ
@ri


 �
ð7:77Þ

A set of M equations is obtained for the correction coefficients because

the higher order terms in Eq. (7.77) are negligible and they can be neglected,

ε52Δt2kðM0Þ21σ ð7:78Þ
where:

ðM0Þαβ 5
XN
i51

@σαðr0Þ
@ri


 �
@σβðr0Þ
@ri


 �
ð7:79Þ

ðσÞα 5σαðr0Þ ð7:80Þ
ðεÞα 5 εα ð7:81Þ

The εα values are those used in Eq. (7.76) to convert the atomic positions

to 0(Δt2k). The following approximation is necessary to use Eq. (7.76):
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@σαðrÞ
@ri


 �
5

@σαðr0Þ
@ri


 �
ð7:82Þ

7.6.2.5 Other methods

Yoneya et al. (1994) proposed a self-correcting noniterative constraint proce-

dure. The starting point for their method is a Taylor expansion of the con-

straint condition.

σnðt1ΔtÞ1OðΔt3Þ5σnðtÞ1Δt _σnðtÞ1
Δt2 €σnðtÞ

2
ð7:83Þ

If the Verlet algorithm is applied to the constraint conditions, we obtain:

σnðt1ΔtÞ5 2rnðtÞ2rnðt2ΔtÞð Þ2 2 d2n 1 2Δt2 2rnðtÞ2 rnðt2ΔtÞð Þ€rnðtÞ
1OðΔt4Þ5 0

ð7:84Þ
In deriving the above equation, terms nonlinear in λ were neglected. A

set of M linear equations for λ(t) is obtained by substituting the expression

for €r obtained from the equations of motion, into Eq. (7.84).

Slusher and Cummings (1996) proposed a velocity-Verlet implementation

of the algorithm of Yoneya et al. (1994).

σðt1ΔtÞ5 r2nðtÞ2 d2n 1 2ΔtrnðtÞ_rnðt2ΔtÞ1Δt2r2nðt2 hÞ
1Δt2 rnðtÞ1Δt_rnðt2ΔtÞð Þ 2€rnðtÞ1 €rnðt2ΔtÞð Þ
1OðΔt4Þ

5 0

ð7:85Þ

Substituting the constrained equations of motion for in the above equa-

tion yields a rank M matrix. Equation (7.85) can be used immediately after

the position update and force evaluation by the velocity-Verlet algorithm.

Consequently, the same force constraints are used in both the velocity and

position updates.

Another alternative to the shake algorithm is the successive overrelaxa-

tion (SOR) method (Barth et al., 1995). The SOR method has been imple-

mented using the CHARMM potential (Chapter 3) and a twofold

improvement in execution speed over the shake algorithm has been reported

(Barth et al., 1995).

7.7 Summary

MD simulation requires a suitable algorithm to integrate the equations of

motion. The choice of integrators is constrained by the necessity of limiting

the costly evaluation of forces to once per time step. For atoms, there are a

variety of widely used integrator algorithms. The origin of many integrator

algorithms used in MD can be traced to either the Gear predictor�corrector
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or Verlet predictor algorithms. These algorithms only require one force eval-

uation per time step. A general fourth-order Runge�Kutta integrator is use-

ful for accurate evaluations but is computationally expensive because it

requires multiple force evaluations per time step. Solving the equations of

motion for molecules is considerably more challenging than the atomic case

because of the restrictions imposed by bonding constrains. The shake and

rattle algorithms are possibly the most commonly used algorithms for mole-

cules. The application of MD in the context of ensembles is discussed in

Chapter 9. In Chapter 11, MD code using the Gear algorithm is provided.
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Chapter 8

Nonequilibrium molecular
dynamics

In addition to equilibrium properties, molecular dynamics (MD) can be applied

to nonequilibrium systems. Nonequilibrium molecular dynamics (NEMD)

algorithms fall into two broad categories, namely, inhomogeneous and homoge-

neous methods. The distinction between the two categories is based on the

nature of the boundary conditions required. Inhomogeneous methods involve

nonperiodic boundary conditions whereas homogeneous methods employ

some sort of periodic boundaries.

Ashurst and Hoover (1973) employed an inhomogeneous NEMD

approach to simulate steady flow. They used a pair of nonperiodic bound-

ary layers consisting of a small number of particles with the same spatial

correlations as the fluid in the central cell. Shear flow was induced by

moving the boundary layers in opposite directions along parallel planes.

A secondary role of the boundary layers was to act as thermostats to

extract the heat generated by the viscous flow. Several variants of this

general approach have been developed (Tenenbaum et al., 1982; Trozzi

and Ciccotti, 1984).

Although inhomogeneous methods are useful in some important applica-

tions (Wold and Hafskjold, 1999; Todd and Daivis, 2017), we will focus

exclusively on homogeneous methods. In general, homogeneous methods are

preferred because replacing physical walls by periodic boundaries means that

all atoms experience the same environment. In contrast, the properties of

inhomogeneous systems are perturbed artificially by wall�fluid interactions.

A disadvantage of homogeneous methods is that the equations of motions of

the molecules must be altered artificially.

The earliest application of homogeneous NEMD techniques also involved

shear flow. Lees and Edwards (1972) used a moving periodic boundary,

whereas Gosling et al. (1973) induced shear flow by applying a sinusoidal

transverse force field to the particles. A limitation of these early methods

was that the strong fields used resulted in substantial heating, which required

the introduction of a thermostat. This problem can be circumvented by using

a subtraction of trajectories strategy (Ciccotti et al., 1979).
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The use of a thermostat can be avoided by making only small perturba-

tions but the nature of the perturbation must be defined for the particular

problem being studied. This problem has been addressed by the use of the

dolls tensor (Hoover et al., 1980) and the sllod1 tensor (Ladd, 1984; Evans

and Morriss, 1984a).

If large perturbations are used, further devices must be used to prevent

the system overheating. One approach is to employ Nosé�Hoover dynamics

(Hoover, 1985). Evans et al. (1983) performed NEMD by employing

Gauss’s principle of least constraint (Chapter 2). The general approach is to

use a driving force to maintain a thermodynamic flux while using constraint

forces to extract the heat.

This chapter provides a brief overview of NEMD with emphasis on

synthetic NEMD and its applications. The main use for NEMD is the cal-

culation of transport properties (Sadus, 2006). Cummings and Evans

(1992) have reviewed the use of NEMD for transport properties. Evans

and Morriss (2008) have discussed the statistical mechanical basis of non-

equilibrium liquids. The theoretical basis and historical development of

NEMD have been discussed elsewhere (Evans and Morriss, 1984b; Evans,

1986a,b; Ciccotti, 1991; Hoover 1991; Rapaport, 2004; Allen and

Tildesley, 2017). A notable advance has been the development of NEMD

algorithms for elongational flow (Todd and Daivis, 1998; Hunt and Todd,

2003; Hunt et al., 2010). The practical implementation of many new and

promising NEMD algorithms has been very extensively detailed by Todd

and Daivis (2017).

Transport properties can be also be calculated from equilibrium molecu-

lar dynamics (EMD) trajectories using either Einstein or Green�Kubo rela-

tionships. An example of the EMD to the calculation of shear viscosity is

given by Schoen and Hoheisel (1985). An EMD algorithm (Heffelfinger and

van Swol, 1994) has been used to investigate diffusion involving Lennard-

Jones (LJ) fluids (Heffelfinger and Ford, 1998) and polymers (Ford and

Heffelfinger, 1998).

8.1 An example NEMD algorithm

In Chapter 1, a general EMD algorithm was outlined (Algorithm 1.1). Before

considering the theoretical aspects of NEMD, it is useful to consider the

overall structure of an NEMD algorithm. This is illustrated in Algorithm 8.1

for the special case of the Gear predictor�corrector integrator at a constant

strain rate ( _γ). The general procedure used in Algorithm 8.1 can be applied

to other integrators.

1. In the literature dolls and sllod are commonly denoted as “DOLLS” and “SLLOD,” respec-

tively. The use of capital letters is misleading as neither of the terms corresponds to any mean-

ingful acronym. Indeed, sllod is simply the word dolls spelt backward.
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In common with an EMD algorithm, NEMD Algorithm 8.1 begins

with an initial configuration (Part 1) that is evolved over time (Part 2),

resulting in the accumulation of time-averaged quantities (Part 2.3). At

each time step, the total strain (γ) is determined by the applied strain rate

( _γ). This is reset periodically following the traversal of the length (L) of

the simulation box. In common with EMD, the heart of the algorithm is

solving the equations of motion (Part 2.2). In the NEMD case, the

Newtonian equations of motion are modified in the integrator step. The

Gear predictor (Part 2.2.1) is invoked to provide new predictions of

the positions and momenta. No NEMD-specific modifications are intro-

duced into predictor part of the simulation. Following the predictor step,

the coordinates in the x direction are adjusted to account for bottom/top

movements out of the box (Eqs. (8.12) and (8.13)) and periodic boundary

conditions are applied in all directions to account for left/right crossings

(see Fig. 8.1). The use of different boundary conditions is an important

departure from EMD simulations.

The position coordinates are used to determine the forces according to

Newton’s law (Part 2.2.3). The intermolecular contributions to the pressure

tensor are calculated as part of the force evaluations. The integrator step con-

cludes with the corrector step (Part 2.2.4), which both makes use of the

newly calculated forces and applies the appropriate NEMD modifications,

for example, sllod. That is, the NEMD-specific modifications are applied in

the integrator step and not in the force evaluations, which are evaluated con-

ventionally. This means that much of the code developed for EMD can be

reused in NEMD. The kinetic contributions to the pressure tensor are

FIGURE 8.1 Illustration of the sliding brick boundary conditions for shear viscosity simula-

tions. The central cell is replicated infinitely in the x, y, and z directions. The boxes above the

central cell move to the right whereas the boxes below move to the left. The velocities of this

movement are determined by the strain rate _γ.
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calculated as either part of the corrector step (not shown here) or immedi-

ately afterwards.

ALGORITHM 8.1 General outline of a NEMD process at constant strain
rate ( _γ) using the Gear predictor�corrector integrator.

Part 1 Create an initial configuration ( = 0, specify a value of ).
Part 2 Simulation for a duration tMax:

loop
Part 2.1  �  + � �t //strain at each time step

 �  - integer value of  //reset to 0 after traversal of  one L
Part 2.2 Solve modified equation of motions:
Part 2.2.1 Gear predictor.
Part 2.2.2 loop i � 1 ...  nAtom

rxi� rxi - 



� nearestInt(yi/L) � L
pbc(rxi)
pbc(ryi)
pbc(rzi)

end i loop
Part 2.2.3 Calculate forces according to Newton’s law.

Determine intermolecular contributions to pressure
tensor as part of the force evaluation.

Part 2.2.4 Gear corrector.
Determine kinetic contribution to the pressure in the
corrector and add intermolecular contributions

Part 2.3 Calculate quantities to be time-averaged.
while (time � tMax)

.

.

8.2 Synthetic NEMD algorithms

The general approach (Evans and Morriss, 2008) adopted by widely used

NEMD methods is to introduce an applied field (Fe) into the equations of

motion of the system. The effect of Fe is to drive the conjugate thermody-

namic flux (J). Examples of fluxes are the momentum flux in planar Couette

flow or the heat current associated with thermal conductivity. The nature of

Fe is subject to two requirements: it must be consistent with the periodic

boundary condition; and any transport property (L) must be calculated from

the relationship:

L5 lim
Fe-0

lim
t-N

J

Fe

ð8:1Þ

Using an applied field generates a synthetic NEMD algorithm because

the perturbation does not exist in nature. Linear response theory (Evans,

1986a,b) provides the formal proof that an algorithm satisfies these two crite-

ria. Knowledge of the Green�Kubo (Green, 1951; Kubo, 1957) relationship
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leads directly (Evans, 1986a,b) to a corresponding NEMD algorithm. The

theoretical basis of many NEMD algorithms is underpinned by linear and

nonlinear response theory (Evans and Morriss, 1984b, 2008; Morriss and

Evans, 1985).

A Naiver�Stokes transport coefficient (L) is related to the flux (J) by the

simple relationship,

J5 LX ð8:2Þ
where X is a gradient in the density of the quantity that is conserved. In turn,

L is related to equilibrium fluctuations by Green�Kubo relations. In general,

a synthetic NEMD algorithm can be generated by using the following proce-

dure (Evans and Morriss, 2008). A Green�Kubo relationship is identified for

the transport coefficient (Lij).

Lij 5

ðN
0

Jjð0ÞJið0Þ
� �

dt ð8:3Þ

The form of Eq. (8.3) identifies the flux (J). Next, a fictitious field (Fe) is

invented and it is coupled to the system such that the adiabatic energy deriv-

ative ( _H
ad

0 ) can be related directly to the dissipative flux (Jj):

_H
ad

0 52 JjFe ð8:4Þ
A check is made to ensure that the adiabatic incompressibility of phase

space (Evans and Morriss, 2008) is satisfied and that the equations of motion

are both homogeneous and consistent with periodic boundary conditions. A

thermostat is applied and Fe is coupled to the system either isothermally or

isoenergetically. The steady-state average (, JiðtÞ. ) is subsequently calcu-

lated as a function of the external field (Fe) and applying Eq. (8.1), the trans-

port coefficient is obtained from:

Li 5 lim
Fe-0

lim
t-N

JiðtÞ
� �
Fe

ð8:5Þ

The application of this procedure to the calculation of various transport

coefficients is examined subsequently.

8.2.1 Shear viscosity

The Green�Kubo relationship for shear viscosity (η) is,

η5
V

kT

ðN
0

Pxyð0ÞPxyðtÞ
� �

dt ð8:6Þ
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where Pxy is the xy component of the pressure tensor (P) (Evans, 1979a).

PV 5
XN
i51

p2i
mi

2
1

2

XN
i;j

rijFij ð8:7Þ

The procedure for calculating the pressure tensor is outlined in

Algorithm 8.2, which is quite general in nature and can be used for either

EMD or NEMD simulations. It is apparent from Eq. (8.7) that this involves

contributions from both intermolecular and kinetic interactions. The intermo-

lecular contributions to the pressure tensor are calculated as part of the over-

all evaluation of forces. In the context of predictor�corrector algorithms,

this is performed immediately after the predictor step. The components are

initialized (Part 1) prior to the commencement of the double loop (Part 2)

that evaluates the forces between all distinct pairs of atoms. This double

loop is common to all molecular simulation algorithms. Part 2.1 involves the

evaluation of the x, y, and z components, which enables the calculation of

the forces.

Different periodic boundaries are required for EMD and NEMD (see

Algorithm 8.1, Part 2.2.2) simulations, but otherwise the force calculation

for both cases is identical. These forces are used (Part 2.2.2) to evaluate

the intermolecular contributions of the pressure tensor. This part of the

algorithm concludes (Part 2.3) with the accumulation of the forces, which

will be required in the corrector step (Part 3). The corrector step is

required before the calculation of the kinetic contribution to the pressure

tensors (Part 4) because it requires the updated values of velocities

(Part 4). The intermolecular contributions are added to the kinetic contri-

bution rather than being subtracted as indicated by Eq. (8.7) because the

evaluation of the pair forces (Part 2.1) involved a negative sign. The ten-

sor components are divided by the volume (Part 5) to obtain the dimen-

sions of pressure, which can then be evaluated. It should be noted that for

most commonly used intermolecular potentials, the evaluation of forces

will yield pxy5 pyx. When a strain rate is applied, all the off-diagonal ele-

ments of the pressure tensor will be nonzero.

Algorithm 8.2 is completely general. To use it for properties under

shear requires both suitable periodic boundary conditions (e.g.,

Lees�Edwards) and appropriate modifications in the corrector step (e.g.,

sllod). When using Algorithm 8.2, the normal pressure, p, can be obtained

as one-third of the trace of the pressure tensor (P), that is, p5 1/3Tr(P)5
(pxx 1 pyy 1 pzz)/3.
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ALGORITHM 8.2 Evaluation of the tensor components to pressure.

Part 1 Initialize pressure tensor components in all dimensions:
pxx = pyy = pzz = pxy = pxz … = 0
Initialize forces for all atoms: fxi = fyi, = fzi = 0.

Part 2 Evaluate forces on all distinct pairs of atoms:
loop i � 1 ...  nAtom

loop j � i + 1 ...  nAtom - 1
Part 2.1 Determine pair separations (rijxi, rijyi and rijyi).

Apply periodic boundary conditions.         
Determine forces between pairs (fijxi,, fijyi, ,fijzi).

Part 2.2 Calculate pressure tensor components:
pxx � pxx + rijxi � fijxi

pxy � pxy + rijxi � fijyi

pxz � pxz + rijxi � fijzi

pyx � pyx + rijyi � fijxi

pyy � pyy + rijyi � fijyi

pyz � pyz + rijyi � fijzi

pzx � pzx + rijzi � fijxi

pzy � pzy + rijzi � fijyi

pzz � pzz + rijzi � fijzi

end j loop
Part 2.3

fxi � fxi + fijxi

fyi � fyi + fijyi

fzi � fzi + fijzi

end i loop
Part 3 Obtained corrected velocities.
Part 4 Add kinetic contributions from corrected velocities:

loop i � 1 ...  nAtom
pxx � pxx + mi � vxi � vxi

pxy � pxy + mi � vxi � vyi

pxz � pxz + mi � vxi � vzi

pyx � pyx + mi � vyi � vxi

pyy � pyy + mi � vyi � vyi

pyz � pyz + mi � vyi � vzi

pzx � pzx + mi � vzi � vxi

pzy � pzy + mi � vzi � vyi

pzz � pzz + mi � vzi � vzi

end i loop
Part 5 Divide by volume to determine the pressure:

pxx � pxx/V
pxy � pxy/V
pxz � pxz/V
pyx � pyx/V
pyy � pyy/V
pyz � pyz/V
pzx � pzx/V
pzy � pzy/V
pzz � pzz/V

Accumulate total forces and energies etc:
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Viscosity has been studied widely by molecular simulation (Ashurst and

Hoover, 1973; Gosling et al., 1973; Ciccotti et al., 1979; Hoover et al., 1980;

Singer et al., 1980; Ladd, 1984; Evans and Morriss, 1984b). For shear viscosity,

the most efficient NEMD algorithms are the dolls tensor method (Hoover et al.,

1980) and the sllod algorithm (Ladd, 1984; Evans and Morriss, 1984b). It has

been shown (Evans and Morriss, 2008) that the sllod algorithm is exact for arbi-

trarily large strain rates and it can be applied to nonlinear, non-Newtonian sys-

tems. Consequently, we will focus exclusively on the sllod algorithm.

The isokinetic sllod equations of motion are,

_ri 5
pi
mi

1 riUruð Þ ð8:8Þ

_pi 5Fi 2 piUru
� �

2αpi ð8:9Þ
where u5 (ux, 0, 0) and ux5 _γy is the velocity field corresponding to planar

Couette flow with a strain rate denoted as2 _γ. In Eq. (8.9), α is a Gaussian

thermostating constant is given by:

α5

PN
i51 FiUpi 2 _γpxipyiPN

i51 p
2
i

ð8:10Þ

Other non-Gaussian thermostats, such as the Nosé�Hoover thermostat

(Chapter 9) can also be used with sllod. In contrast to EMD, which involves

discontinuing the thermostat after the equilibration stage, NEMD requires a

thermostat for the entire length of the simulation.

The calculation of α occurs following the determination of the forces and is

quite straightforward as illustrated in Algorithm 8.3 (Parts 1 and 2). However, a

common complication is that the accumulation of numerical error results in drift

from the desired temperature. It has been reported (Baranyai and Evans, 1990)

that this issue can be addressed by incorporating a proportional feedback term.

For the Gaussian thermostat, this involves (Part 3) determining the proportional

deviation (T-dev) between the kinetic temperature and the desired temperature. The

value of α is then adjusted by w 3 T-dev, where w is obtained by trial and error

and is typically in the range of 0 to 10. Initially, w5 0 should be used to test that

the thermostat is working correctly.

8.2.1.1 Cautionary note on modifications to sllod

Tuckerman et al. (1997) proposed a generalized sllod algorithm (gsllod).

Some theoretical aspects of the procedure have been debated from the outset

(Evans et al., 1998; Tuckerman et al., 1998). Subsequently, different variants

have been proposed (Edwards et al., 2006) that are commonly identified by

other single letter prefixes to sllod. However, there are very detailed scien-

tific arguments (Daivis and Todd, 2006; Todd and Daivis, 2017) to support

both the validity and the primacy of the original approach. Therefore, we

2. This should not be confused with the strain, which is commonly denoted as γ.
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will focus exclusively on the original sllod algorithm, which is implemented

in widely used software packages.3

ALGORITHM 8.3 Calculation of the α thermostatic constant.

�-den � �-num  � 0
loop i � 1 ...  nAtom

Part 1 Determine denominator and numerator parts of �:
�-den � mi � mi � (vxi � vxi + vyi � vyi + vzi � vzi)
�-num � mi � (fxi� vxi + fyi � vyi + fzi � vzi - � vxi � vyi)

end i loop
Part 2 � � �-num/�-den
Part 3 Account for numerical drift:

T-dev � (�-den/mi – 3(nAtom – 1) � k � T)
/( 3(nAtom – 1) � k � T)

� � � + w � T-dev

.

Eqs (8.8)�(8.10) must be used in conjunction with suitable periodic

boundary conditions such as the Lees�Edwards sliding brick boundary con-

ditions (Lees and Edwards, 1972) as illustrated by Fig. 8.1.

In the Lees�Edwards periodic boundary conditions, the movement of

particles outside the central simulation box is imaged in three distinct ways.

If the particle passes through either face parallel to the y-axis, the new posi-

tion vector is obtained from,

rnewi 5 ðriÞmod L ð8:11Þ
where L is the length of the simulation box. If the particle moves out of the

bottom of the simulation box, its position and velocity are calculated from,

rnewi 5 ðri 1 iγLtÞmod L

vnewi 5 vi 1 iγL

o
ð8:12Þ

where γ is the strain. If it moves out of the top of the box:

rnewi 5 ðri 2 iγLtÞmod L

vnewi 5 vi 2 iγL

o
ð8:13Þ

After the simulation reaches a steady state for a given _γ, the pressure ten-

sor given by Eq. (8.7) is computed and averaged. The strain rate-dependent

shear viscosity is obtained from Newton’s law of viscosity.

η52
Pyx

� �
1 Pxy

� �
2 _γ

ð8:14Þ
The application of the sllod algorithm is handled as a modification of Newton’s

law in the integrator part of the MD algorithm. No modifications are required to

3. For example, the sllod algorithm is used in LAMMPS (https://www.lammps.org). This should

be verified at the time of use because of changes made during periodical software updates.
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the predictor step. However, an alternative predictor version to that introduced pre-

viously (Algorithm 7.2) is given in Algorithm 8.4. In this version, the correspond-

ing corrector step (Algorithm 8.5) of the Gear method is applied independently to

both the positions and velocities, solving two first-order differential equations.4 In

common with Algorithm 8.4, the solution illustrated by Algorithm 8.5 involves

scaled time derivatives. The prediction of new positions (Part 1.1) involves three

derivatives, which are in turn predicted in each time step (Parts 1.1�1.4). The sec-

ond part (Part 2) of the algorithm involves applying the predictor method to deter-

mine new velocities, which involves other derivatives (Parts 2.2�2.4).

The corrector step (Algorithm 8.5) incorporates the effect of a streaming

velocity (ux) in the x direction and a constant strain rate (_γ5 @ux=@y). The correc-
tion to the positions (Δrx, Δry, Δrz) using Eq. (8.8) are given at the beginning of

Part 1 and are used subsequently to update both positions and its derivatives

(Parts 1.1�1.4). The involvement of the _γ term is confined to the x direction

(Δrx). The velocity corrections (Δvx, Δvy, Δvz) using Eq. (8.8) are given at the

start of Part 2. In common with the positions, the _γ term is only applied in the x

direction. However, the α term is applied in all directions, which corresponds to

the application of a thermostat. The subsequent parts of the algorithm (Parts

2.1�2.4) involve applying the corrections to both the velocity and its derivatives.

It is only after the velocities have been corrected that both the momenta and

kinetic energies (not shown in Algorithm 8.5) are calculated.

ALGORITHM 8.4 A four-value Gear predictor applied independently to
both positions and velocities using scaled time derivatives.

loop i � 1 ...  nAtom
Part 1 Predict new position vectors using Gear method:
Part 1.1 Predict Positions:

rxi � rxi + (drxi/dt) + (d2rxi/dt2) + (d3rxi/dt3) + (d4rxi/dt4)
ryi � ryi + (dryi/dt) + (d2ryi/dt2) + (d3ryi/dt3) + (d4ryi/dt4)
rzi � rzi + (drzi/dt) + (d2rzi/dt2) + (d3rzi/dt3) + (d4rzi/dt4)

Part 1.2 First (scaled time) derivatives of position:
(drxi/dt) � (drxi/dt) + (d2rxi/dt2) + 2(d3rxi/dt3) + 3(d4rxi/dt4)
(dryi/dt) � (dryi/dt) + (d2ryi/dt2) + 2(d3ryi/dt3) + 3(d4rxi/dt4)

(drzi/dt) � (drzi/dt)  v (d2rzi/dt2) + 2(d3rzi/dt3) + 3(d4rzi/dt4)
Part 1.3 Second (scaled time) derivatives of position:

(d2rxi/dt2) � (d2rxi/dt2) + (d3rxi/dt3) + 3(d4rxi/dt4)
(d2ryi/dt2) � (d2ryi/dt2) + (d3ryi/dt3) + 3(d4ryi/dt4)
(d2rzi/dt2) � (d2rzi/dt2) + (d3rzi/dt3) + 3(d4rzi/dt4)

Part 1.4 Third (scaled time) derivatives of position:
(d3rxi/dt3)� (d3rxi/dt3) + (d4rxi/dt4)
(d3ryi/dt3)� (d3ryi/dt3) + (d4ryi/dt4)
(d3rzi/dt3)� (d3rzi/dt3) + (d4rzi/dt4)

4. The Gear corrector coefficients for the first-order differential equations are k05 3/8, k15 1,

k25 3/4, and k35 1/6.
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Part 2 Predict new velocities using Gear algorithm:
Part 2.1 Predict velocities:

vxi � vxi + (dvxi/dt) + (d2vxi/dt2) + (d3vxi/dt3) + (d4vxi/dt4)
vyi � vyi + (dvyi/dt) + (d2vyi/dt2) + (d3vyi/dt3) + (d4vyi/dt4)
vzi � vzi + (dvzi/dt) + (d2vzi/dt2) + (d3vzi/dt3) + (d4vzi/dt4)

Part 2.2 First (scaled time) derivatives of velocity:
(dvxi/dt) � (dvxi/dt) + (d2vxi/dt2) + 2(d3vxi/dt3) + 3(d4vxi/dt4)
(dvyi/dt) � (dvyi/dt) + (d2vyi/dt2) + 2(d3vyi/dt3) + 3(d4vxi/dt4)
(dvzi/dt) � (dvzi/dt)  + (d2vzi/dt2) + 2(d3vzi/dt3) + 3(d4vzi/dt4)

Part 2.3 Second (scaled time) derivatives of velocity:
(d2vxi/dt2) � (d2vxi/dt2)+ (d3vxi/dt3) + 3(d4vxi/dt4)
(d2vyi/dt2) � (d2vyi/dt2)+ (d3vyi/dt3) + 3(d4vyi/dt4)
(d2vzi/dt2) � (d2vzi/dt2)+ (d3vzi/dt3) + 3(d4vzi/dt4)

Part 2.4 Third time (scaled time) derivatives of velocity:
(d3vxi/dt3)� (d3vxi/dt3) + (d4vxi/dt4)
(d3vyi/dt3)� (d3vyi/dt3) + (d4vyi/dt4)
(d3vzi/dt3)� (d3vzi/dt3) + (d4vzi/dt4)

end i loop

ALGORITHM 8.5 A four-value Gear corrector applied independently to
both positions and velocities implementing sllod under constant strain
rate, using scaled time derivatives.

loop i � 1 ...  nAtom
Part 1 Determine corrections to positions and its derivatives:

�rx � (vxi + � ryi) � �t - (drxi/dt)

�ry � vyi � �t - (dryi/dt)
�rz � vzi � �t - (drzi/dt)

Part 1.1 Correct Positions:
rxi � rxi + k0 � �rx
ryi � ryi + k0 � �ry
rzi � rzi + k0 � �rz 

Part 1.2 Correct first (scaled time) derivatives of position:
(drxi/dt) � (drxi/dt) + �rx
(dryi/dt) � (dryi/dt) + �ry
(drzi/dt) � (drzi/dt) + �rz

Part 1.3 Second (scaled time) derivatives of position:
(d2rxi/dt2) � (d2rxi/dt2) + k2 � �rx
(d2ryi/dt2) � (d2ryi/dt2) + k2 � �ry
(d2rzi/dt2) � (d2rzi/dt2) + k2 � �rz

.
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Part 1.4 Third (scaled time) derivatives of position:
(d3rxi/dt3)� (d3rxi/dt3) + k3 � �rx
(d3ryi/dt3)� (d3ryi/dt3) + k3 � �rx
(d3rzi/dt3)� (d3rzi/dt3) + k3 � �rx

Part 2 Determine corrections to velocity and its derivatives:
�vx � (fxi /mi - � vyi - � � vxi) � �t - (dvxi/dt)

�vy � (fyi /mi - � � vxi) � �t - (dvyi/dt)
�vz � (fzi /mi - � � vxi) � �t - (dvzi/dt)

Part 2.1 Correct  velocities:
vxi � vxi + k0 � �vx
vyi � vyi + k0 � �vy
rzi � vzi + k0 � �vz 

Part 2.2 Correct first (scaled time) derivatives of velocity:
(dvxi/dt) � (dvxi/dt) + �vx
(dvyi/dt) � (dvyi/dt) + �vy
(dvzi/dt) � (dvzi/dt) + �vz

Part 2.3 Second (scaled time) derivatives of velocity:
(d2vxi/dt2) � (d2vxi/dt2) + k2 � �vx
(d2vyi/dt2) � (d2vyi/dt2) + k2 � �vy

    (d2vzi/dt2) � (d2vzi/dt2) + k2 � �vz
Part 2.4 Third (scaled time) derivatives of velocity:

(d3vxi/dt3)� (d3vxi/dt3) + k3 � �vx
(d3vyi/dt3)� (d3vyi/dt3) + k3 � �vx
(d3vzi/dt3)� (d3vzi/dt3) + k3 � �vx

end i loop

.

Hansen and Evans (1994) have discussed how shear flow can be simu-

lated efficiently on a distributed memory parallel processor. Bhupathiraju

et al. (1996) applied the sllod algorithm with a deforming cell method

instead of the Lees�Edwards periodic boundary conditions. They concluded

that the modification improved the accuracy of calculated viscosities for low

shear rates. The modified algorithm was also more efficient computationally

than the conventional Lees�Edwards approach.

Shear viscosity has been widely examined by NEMD techniques. Examples

of systems studied include methane (Simmons and Cummings, 1986; Evans,

1979b; Cummings and Evans, 1992), carbon dioxide (Wang and Cummings,

1989a,b), water (Cummings and Varner, 1988; Balasubramanian et al., 1996), liq-

uid metals (Cummings and Morriss, 1987, 1988; Cummings and Evans, 1992),

and alkanes (Edberg et al., 1987; Morriss et al., 1991; Berker et al., 1992). These

studies have used various intermolecular potentials, and comparison with experi-

mental shear viscosity data has proved useful in identifying the relative accuracy

of the different intermolecular potentials. Lee and Cummings (1994) investigated

shear viscosity using both two-body and three-body intermolecular potentials.

They concluded that three-body interactions make a contribution of only 3%. This

relatively small contribution was confirmed by subsequent studies (Marcelli et al.,

2001a,b). It is much less than the influence on nontransport properties such as
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either phase equilibria (Marcelli and Sadus, 1999) or thermodynamic properties

(Raabe et al., 2005; Vlasiuk and Sadus, 2017).

NEMD simulations have demonstrated (Marcelli et al., 2001a; Ge et al., 2001)

that the pressure (p) and energy (U) of simple fluids under planer shear flow are

only linear functions of _γ2=3 in the vicinity of the triple point. More generally,

U5U0 1 a _γα

p5 p0 1 b _γα

�
ð8:15Þ

where the 0 subscript denotes an equilibrium property; a and b are density

and temperature-dependent constants. Ge et al. (2003) determined the follow-

ing relationship for α in terms of the reduced temperature (T �) and reduced

density (ρ�).

α5 3:671 0:69T� 2 3:35ρ� ð8:16Þ
The constants in Eq. (8.16) are either universally the same for a one com-

ponent fluid or dependent only on the intermolecular potential. The signifi-

cance of Eqs. (8.15) and (8.16) is that the properties of normal

nonequilibrium fluids as a function of strain rate could be predicted for any

arbitrary state point. However, this does not appear to be the case (Ahmed

et al., 2010) for the special case of intrapenetrable fluids such as the

Gaussian core model fluid (Chapter 3).

The LJ potential has been the most widely studied intermolecular poten-

tial for shear viscosity. Ahmed and Sadus (2010) made use of extensive

NEMD sllod simulations to determine an empirical equation of state for the

LJ potential.

p5 ρT1
X8
i51

AiðTÞρi11 1 e2δρ2
X8
i51

BiðTÞρ2i11

1 ρ
X3
i50

X3
j

fij _γiXi1mT12j ð8:17Þ

In Eq. (8.17), all quantities are in nondimensional reduced form and the

first three terms on the right-hand side refer to LJ equilibrium properties

(Nicolas et al., 1979). The contribution at nonzero strain rate is given be the

third term, which involves parameters ( fij) fitted to the simulation data with

X5 ρT21=4. This can serve as an accurate reference equation of state for LJ

at different values of _γ, which greatly reduces the need to repeat NEMD

simulations for new cases.

The utility of NEMD is evident by the concept of electropumping of

fluids (de Luca et al., 2013) in nanopores, which involves the application of

an external electric field that induces enhanced flow rates. In particular, it

has been reported (Ostler et al., 2020) that electropumping could be many
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times more efficient than conventional Poiseuille flows in nanochannels such

as carbon nanotubes (CNT).

8.2.2 Self-diffusion

The Green�Kubo relationship for the self-diffusion coefficient is:

Ds 5
1

3

ðN
0

við0ÞUviðtÞ
� �

dt ð8:18Þ

Evans et al. (1983) developed the “color conductivity” algorithm to cal-

culate the self-diffusion coefficient. The system is described by the following

Hamiltonian,

H5H0 2
XN
i51

cixiFðtÞ ð8:19Þ

where H0 is the unperturbed Hamiltonian, F is a fictitious color field in the x

direction, and ci5 (2 1)i is the “color charge” on molecule i. The equations

of motion derived from this Hamiltonian are:

ri 5
pi
mi

ð8:20Þ

_pxi 5Fxi 2Fci
_pyi 5Fyi 2λspyi
_pzi 5Fzi 2λspzi

9=; ð8:21Þ

In Eq. (8.21), λs is a thermostating constraint parameter. The applied

color field F is obtained from:

F5
1

N

XN
i51

ciFxi ð8:22Þ

This drives the color current (Jx).

Jx 5
XN
i51

ci
pix

mi

ð8:23Þ

The constraint parameter can be calculated from:

λs 5

PN
i51 piyFiy 1 pizFiz

� �PN
i51 p2iy 1 p2iz

� � ð8:24Þ

The work W generated by the field (F) is given by:

W 5F
XN
i51

cipxi ð8:25Þ
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The self-diffusion coefficient is calculated from:

Ds 52
kTðN2 1ÞJx

N2 Wh i ð8:26Þ

Examples of the calculation of the self-diffusion coefficient have been

reported for carbon dioxide (Wang and Cummings, 1989b) and mercury

(Raabe et al., 2005).

8.2.3 Thermal conductivity

The Green�Kubo relationship for the thermal conductivity coefficient (λ) is,

λ5
V

3kT2

ðN
0

JQð0ÞUJQðtÞ
� �

dt ð8:27Þ

where JQ is the heat current. A Hamiltonian-based algorithm for thermal conduc-

tivity cannot be devised because the equations of motion obtained from the

Hamiltonian are discontinuous when used with periodic boundary conditions.

Evans (1982, 1986a,b) introduced a fictitious vector field (F) as the driving force

for the heat flux (JQ). The equations of motion for atomic systems are,

_ri 5
pi
mi

ð8:28Þ

_pi 5Fi 1 ðEi 2EÞFðtÞ
2

1

2

XN
j51

FijðrijUFðtÞÞ1
1

2N

XN
j51

XN
k51

FjkðrjkUFðtÞÞ2αpi
ð8:29Þ

where Fij is the force exerted by particle j on particle i, Ei is the instanta-

neous energy of i, and E is the instantaneous average energy per particle. In

Eq. (8.29), α is the thermostating multiplier.

α5

P
i Fi 1 ðEi 2EÞFðtÞ2 1

2

PN
j51

FijðrijUFðtÞÞ1 1
2N

PN
j51

PN
k51

FjkðrjkUFðtÞÞ
" #

UpiP
i p

2
i

ð8:30Þ
The heat current (JQ) is derived from,

JQV 5
XN
i51

Ei

pi
mi

2
1

2

XN
i51

XN
j51

rijðpiUFijÞ ð8:31Þ

and the thermal conductivity is calculated using:

λ5
JQ
� �
TF

ð8:32Þ
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Evans (1986a,b) has demonstrated that this algorithm can be used to pre-

dict the thermal conductivity of argon at the triple point more precisely than

experimental measurements. Gillan and Dixon (1983) have derived a similar

algorithm from a different perspective.

Molecular simulations of thermal conductivity are reported less fre-

quently than for other transport phenomena. The NEMD studies of carbon

dioxide (Wang and Cummings, 1989b; Cummings and Evans, 1992) and

butane (Daivis and Evans, 1994, 1995) are relatively rare examples. An

investigation has been reported (Searles et al., 1998) of thermal conductivity

near the critical point.

8.2.3.1 Cautionary note on the triple point

Studies of transport properties are often conducted near the triple point to provide

examples of behavior in a dense liquid phase. In particular, the LJ triple point is a

very common choice. There are varying estimates in the literature (Ahmed and

Sadus, 2010) of the LJ triple point. Currently, the most precise value (Schultz and

Kofke, 2018) of the reduced triple point is T � 5 0.69455, p� 5 0.001267,

ρ�
l 5 0:84535, and ρ�

s 5 0:960765. This is for the full potential, and its value will

be significantly affected by cut-off values, truncations, and potential shifts.

Therefore, care is required when performing simulations in the vicinity of the tri-

ple point to ensure that the nominated state points are genuinely in the single-

phase region. The same considerations also apply to other choices of intermolecu-

lar potential (Deiters and Sadus, 2022).

8.3 Application of NEMD algorithms to molecules

Early work on NEMD algorithms focused on either atomic systems or small

molecules. For small polyatomic molecules, the sllod algorithm can be

adapted (Edberg et al., 1987) in terms of a quaternionic framework. More

generally, however, the synthetic NEMD algorithms for atomic systems can

be used with the constraint dynamics techniques and realistic intermolecular

potentials to predict the transport properties of multiatom molecules.

Daivis and Evans (1994, 1995) have investigated the thermal conductivity of

butane using different models. Comparison with experiment indicates (Daivis and

Evans, 1995) deficiencies in both the Ryckaert and Bellemans (1978) and aniso-

tropic united-atom (Toxvaerd, 1990) models of butane. Allen and Rowley (1997)

compared the viscosity of alkanes predicted by the Ryckaert�Bellemans, united-

atom, and all-atom intermolecular potentials. The comparison indicated that results

obtained using the all-atom model were generally superior to the results obtained

with the other intermolecular potentials.

NEMD techniques have also been used to examine the rheology of both

linear and branched alkanes (Berker et al., 1992; Morriss et al. 1991; Daivis

et al., 1992). Mundy et al. (1995) investigated the shear viscosity of decane
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using sllod algorithms in both the isothermal�isobaric and canonical ensem-

bles. Good agreement between simulation and experimental data for the

shear viscosity of alkanes has been reported (Mundy et al., 1996). Lahtela

et al. (1998) reported NEMD simulations for branched alkanes, which indi-

cate that viscosity is dominated by the size of the branch. Tang et al. (1998)

has developed a theory for the dynamics of flexible chains. NEMD has also

proved useful in providing insights for the behavior of macromolecules. For

example, it has been used to determine the generation-dependence of both

the structural properties (Bosko et al., 2004a) and shear-thing behavior

(Bosko et al., 2004b) of dendrimers. The shape of the dendrimer and its

shear viscosity are directly related (Bosko et al. 2006).

8.4 Application of NEMD algorithms to mixtures

The use of NEMD algorithms has been historically focused on pure component

properties, but the prediction of the transport properties of fluid mixtures is

becoming increasingly more important. Murad (1986) used the sllod algorithm to

evaluate different mixture rules for the viscosity of binary LJ mixtures. Wang and

Cummings (1996) performed NEMD sllod calculations for the shear viscosity for

mixtures containing carbon dioxide and ethane. Both carbon dioxide and ethane

were modeled as two-center LJ molecules yielding good agreement with experi-

mental data. Wheeler and Rowley (1998) reported simulations for the water 1
methanol1 acetone ternary mixture in addition to results for binary mixtures con-

taining these components. Sarman and Evans (1992a,b) used NEMD to evaluate

heat flow and mass diffusion in binary LJ mixtures. The thermal conductivity of

mixtures of polyatomic fluids has also been studied by NEMD (Ravi and Murad,

1992). EMD has arguably been used more widely than NEMD for the calculation

of the self-diffusion coefficient of mixtures (Jacucci and McDonald, 1975; Schoen

and Hoheisel, 1984a,b; Jolly and Bearman, 1980; Vogelsang and Hoheisel, 1988;

Heyes and Preston 1991a,b; Gardner et al., 1991). The shear viscosity of mixtures

of dendrimers has also been studied (Bosko et al., 2005) in different ensembles.

A very important example (Losey et al., 2019) of the use of NEMD algo-

rithms for mixtures is their usefulness for investigating transport phenomena

in either pores or CNTs. This involves mixture properties in two ways: inter-

actions between a pure confined fluid and the CNT; and interaction between

both the CNT and a confined mixture and between the individual compo-

nents of the confined fluid.

8.5 Comparison with EMD

As noted earlier, transport properties can also be calculated from EMD tra-

jectories using either Einstein or Green�Kubo relationships. The Einstein

relationships for diffusion, shear viscosity, and thermal conductivity are
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given by Eq. (2.48), Eq. (2.49), and Eq. (2.52), respectively. When Fe5 0,

the NEMD algorithms discussed earlier revert to their equilibrium form.

The main advantage of using EMD is that all the transport properties can be

obtained from a single run. However, the disadvantages are that the equilibrium

calculations are expensive computationally, they sometimes yield poor signal to

noise ratios; and the results may depend strongly on the size of the simulated sys-

tem. Consequently, NEMD is the preferred method for obtaining transport phe-

nomena. Nonetheless, it is of interest to compare results obtained from NEMD

with EMD calculations. A comparison between the two simulation approaches

has been given by Cummings and Evans (1992). Hoheisel (1994) has reviewed

the calculation of transport properties of EMD.

Holian and Evans (1983) reported a direct comparison of NEMD and

EMD for shear viscosity calculated from the Green�Kubo relationship. They

concluded that the NEMD results were size independent for a system of 100

or more particles, whereas EMD results were strongly size-dependent.

Schoen and Hoheisel (1985) reported good agreement between EMD

Green�Kubo and NEMD results. The EMD calculations were not signifi-

cantly size-dependent beyond a system size of 500 particles. Chialvo and

Debenedetti (1991) and Chialvo et al. (1989) used EMD with the Einstein

formula to calculate the shear viscosity of linear molecules and LJ mole-

cules, respectively. These results indicate that the Einstein formula gives low

noise prediction. For linear molecules, there is a discrepancy between EMD

results and the NEMD calculations of Wang and Cummings (1989a). For LJ

molecules, the EMD results were strongly system dependent.

Cummings and Evans (1992) reported that EMD calculations for the self-

diffusion coefficient using either the Einstein or Green�Kubo relationships

yield similar results to NEMD calculations. Furthermore, the EMD method

requires fewer time steps than the NEMD algorithm to obtain the same

degree of accuracy.

A direct comparison between different EMD and NEMD techniques is

not available for thermal conductivity. Levesque and Verlet (1987) observed

a strong size dependence for the thermal conductivity calculated by the

Green�Kubo EMD method in systems containing up to 4000 LJ molecules.

8.6 Summary

NEMD algorithms have been successful in extending the application of MD

to phenomena in which thermodynamic equilibrium does not occur. The

most widely used NEMD algorithms are synthetic and their development

parallels the extension of MD to different thermodynamic ensembles

(Chapter 9). The application of NEMD to mixtures is continually increasing

and providing theoretical insights into the behavior of real systems. It can be

anticipated that NEMD algorithms will play an increasing role in the investi-

gation of the rheological properties of large molecules.
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Chapter 9

Molecular simulation of
ensembles

Previous chapters have described most of the fundamental aspects of molecu-

lar simulation methods. However, molecular simulations are almost invari-

ably conducted in the context of an ensemble. The choice of the ensemble

determines the overall simulation algorithm. Monte Carlo (MC) and molecu-

lar dynamics (MD) algorithms for a specified ensemble are very different,

reflecting fundamental differences in the two simulation methods. In this

chapter, MC and MD simulation algorithms for commonly used ensembles

are outlined. This topic has also been discussed by Allen and Tildesley

(2017), Heermann (1990), Rapaport (2004), Frenkel and Smit (2023), and

Heyes (1998).

The original MC method (Metropolis et al., 1953) sampled the canoni-

cal (NVT) ensemble. Metropolis et al. (1953) introduced the concept of

importance sampling to construct a Markov chain. The MC method can be

extended relatively easily to other ensembles because importance sampling

can be used for any Markov chain process. In general, the MC method can

be extended to other ensembles by sampling the variable that is conjugate

to the new fixed parameter. For example, McDonald (1972) reported MC

simulations in the isobaric�isothermal (NpT) ensemble by sampling vol-

ume (the conjugate of pressure) in addition to molecular coordinates. In the

grand canonical ensemble, the chemical potential is fixed and the total

number of molecules N is the conjugate variable that is sampled (Valleau

and Cohen, 1980). In the past, it has not been possible to perform MC

simulations in the microcanonical ensemble. However, The MC method

has been extended specifically (Ray, 1991; Lustig, 1998) for the microca-

nonical ensemble.

Newton’s equations of motion lead naturally to the microcanonical

(NVE) ensemble because the total energy is conserved. Therefore, in con-

trast to MC simulations, the microcanonical ensemble is the natural

choice for MD. Extending MD to other ensembles requires some artificial

tampering with the equations of motion. A canonical (NVT) ensemble can

be obtained by either using velocity scaling or explicitly adapting the
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equations of motion (Nosé, 1984; Hoover, 1985). Andersen (1980) formu-

lated an isobaric�isoenthalpic (NpH) and isobaric�isothermal (NpT) MD

algorithms by introducing additional degrees of freedom that are coupled

to the particle coordinates. This work has been extended rigorously

(Nosé, 1984; Hoover, 1985). Considerable progress has been achieved in

the development of MD algorithms for the grand canonical ensemble

(Çagin and Pettitt, 1991a & b; Lo and Palmer, 1995; Beutler and van

Gunsteren, 1994). The calculation of thermodynamic properties for differ-

ent ensembles is discussed in Chapter 2. MC and MD simulation algo-

rithms for different ensembles in a single phase are discussed here,

whereas techniques for multiphase equilibria are examined in Chapter 10.

9.1 Monte Carlo

All MC simulations use probabilities in conjunction with importance sampling

to generate a Markov chain of events. The theoretical basis of the MC method,

Markov chains, and importance sampling has been discussed extensively else-

where (Allen and Tildesley, 2017; Sobol’, 1994; Frenkel and Smit, 2023). From

a practical point of view, these concepts can be best understood in the context

of determining ensemble averages. Indeed, the concept of importance sampling

was first introduced (Metropolis et al., 1953) in the context of simulation of the

canonical ensemble, which will be the starting point for our discussion. In a later

section, we will show how simulations in the canonical ensemble can be

extended to other ensembles.

9.1.1 Canonical (NVT) ensemble

From the definition of the canonical (NVT) ensemble (Chapter 2), the canoni-

cal average of any function of particle coordinates Ah i can be obtained from,

Ah i5
Ð
AðrNÞexp 2βUðrNÞ� �

drNÐ
exp 2βUðrNÞð ÞdrN ð9:1Þ

where β5 1/kT and U is the total potential energy. In principle, by generat-

ing a large number of configurations (M) of particles, Ah i can be estimated

by replacing the integrals with finite sums.

Ah i5

PM
i51

AðiÞexp½2βUðiÞ�
PM
i51

exp½2βUðiÞ�
ð9:2Þ

However, in practice, this simple approach is very inefficient because

many of the configurations sampled are unlikely to make a substantial
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contribution to Ah i. To sample phase-space efficiently, a mechanism is

required to ensure that the finite configurations sampled are genuinely repre-

sentative of the system. This is the concept of importance sampling, which

ensures that regions of configuration space that make the largest contribution

to the integrals of Eq. (9.1) are also the regions that are sampled most fre-

quently. However, importance sampling also introduces a bias to the sam-

pling. This bias can be removed from the ensemble averages by weighting

each configuration appropriately. If W(i) is the probability of choosing a con-

figuration i, Eq. (9.2) is replaced by:

Ah i5

PM
i51

AðiÞexp 2βUðiÞð Þ
WðiÞPM

i51

exp 2βUðiÞð Þ
WðiÞ

ð9:3Þ

The Boltzmann distribution can be used as the weighting factor.

WðiÞ5 exp 2βUðiÞð Þ ð9:4Þ
By substituting Eq. (9.4) into Eq. (9.3), we obtain:

Ah i5 1

N

XM
i51

AðiÞ ð9:5Þ

Eq. (9.5) indicates that the canonical ensemble is obtained as an

unweighted average over configurations in the sample. Therefore, as will be

illustrated subsequently, the trick of transforming the MC method to other

ensembles is to choose an appropriate weighing factor such that Eq. (9.5) is

obtained.

The procedure for a MC simulation in the canonical ensemble is to dis-

place a particle (i) randomly and determine the change in potential energy

ΔU5Utrial � Ui. If ΔU , 0, the move is accepted because it lowers the

energy of the system, and the particle is placed in its new position. If ΔU .
0, the move is allowed with a probability of exp(-βΔU). To decide the fate

of the particle, a random number R is generated between 0 and 1. If R .
exp(-βΔU), the particle remains to its original position otherwise the move

is accepted. It is important to note that irrespective of the outcome of the

move, that is, whether a different configuration has been generated or the

original configuration has been retained, a new configuration is created for

the purpose of the ensemble average. This process generates a so-called

Markov chain in which the probability of obtaining any configuration is

determined solely by the previous configuration. This procedure is illustrated

in Algorithm 9.1.

In common with all MC simulations, Algorithm 9.1 involves an initializa-

tion phase during which ensemble and simulation parameters are specified
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(Algorithm 9.1, Part 1) and an initial configuration is generated. Typically,

the initial state is created by positioning particles on a face-centered cubic

lattice common to many solids. If we assume pairwise interaction, the initial

potential energy (Utotal) is evaluated by calculating the contribution of all dis-

tinct pair interactions using a suitable intermolecular potential. This is the

only time that a double-loop is require in a typical NVT MC simulation.

Initial values for other ensemble properties such as the virial and pressure

are also evaluated.

The heart of a MC simulation is the generation of a Markov chain

(Algorithm 9.2, Part 2). The Markov chain is generated typically for sev-

eral thousand cycles (NCycles) with each cycle consisting of many MC

moves. Each new link or configuration in the Markov chain is created by

generating trial positions for all the atoms in turn. Each atom i is selected

randomly, typically using a random number generator (rand()) that returns

numbers on the interval from 0 to 1 (Algorithm 9.1, Part 2.1). Selecting

the atoms randomly is best practice for MC, although simply cycling

through all the full range is also commonly used. The coordinates of the

chosen atom are displaced randomly within a predetermined maximum

range of -rMax to rMax, adjusted for periodic boundary conditions(pbc(),

Algorithm 5.2)

The contribution to the total potential energy (Utriali) of atom i in the trial

position is evaluated (Algorithm 9.1, Part 2.2). The evaluation of Utriali

involves using an intermolecular potential to calculate the energy of interac-

tion between atom i and the remaining N - 1 atoms. Consequently, a MC algo-

rithm for pairwise interaction is of order N (Algorithm 1.1). The change in

potential energy (ΔU) is the difference in energy between atom i at its trial

and original positions (Algorithm 9.1, Part 2.3). The next part of the algo-

rithm (Algorithm 9.1, Part 2.4) is to determine whether or not the trial move

is accepted. If the trial move is accepted, the position of atom i and the

energy of the ensemble are updated. Otherwise, no change is made and

the next atom is considered. Both changed and unchanged states contribute

to the Markov chain.

During the equilibration period, the maximum displacements (rMax) used

for the trail moves are continually adjusted (Part 2.5.1) to achieve a desired

acceptance rate (acceptR), which involves continually updating the value of

the progressive acceptance ratio (acceptRatio).

It should also be noted that the system is allowed to come to equilibrium

(NEquilibration) before contributions to the ensemble average are accumulated

(Part 2.5.2). The equilibration period is important for obtaining reliable

ensemble averages because the initial state generally does not reflect accu-

rately the configuration at equilibrium. Therefore, the equilibration period is

used to “melt” the solid lattice to create a fluid state.
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Algorithm 9.1 is the basis of MC simulations of a wide range of appli-

cations (Dubbeldam et al., 2013), including thermodynamic properties

(Vlasiuk et al., 2016).

ALGORITHM 9.1 MC simulation in the canonical (NVT) ensemble.

Overall Algorithm

Part 1 Initialization
Assign values for N, V, T, NCycles, DispCounter = 0, acceptR = 0.5
Assign initial coordinates rxi, ryi, rzi for the N atoms.
Evaluate and store Utotal, Ui, ptotal, pi etc.

Part 2 Generate a Markov Chain
loop n �1... NCycles

k �1
loop while (k <= NAtom)

2.1 Generate a trial displacement.
2.2 Calculate energy of atom i at the trial position
2.3 Calculate change in the potential energy:

�U � Utriali - Ui

2.4 Displacement acceptance criterion.
k � k + 1

end while loop
2.5 if (n <= NEquilibration)
2.5.1 Adjust maximum displacement.

else
2.5.2 Accumulate averages.    //post equilibration period

end if
end n loop

Details of Some Key Sub-Parts

Part 2.1 Generate a trial displacement:
Select i randomly, assuming indexes starting from 1:
i � nearest integer value of rand() � NAtom
rxTrial �pbc(rxi + rMax � (2 � rand() - 1))
ryTrial �pbc(ryi + rMax � (2 � rand() - 1))
rzTrial  �pbc(rzi + rMax � (2 � rand() - 1))

Part 2.4 Displacement acceptance criterion: 
if (�U < 0) //accept new positions

rx i � rxTrial
ry i � ryTrial
rxi � rzTrial
Ei � Etriali
Utotal � Utotal + �U //update energy, pressure etc
DispCounter � DispCounter + 1

else

(Utriali).
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BF � exp(-��U) //Boltzmann factor

if (BF > rand()) //accept new positions
rx i � rxTrial
ry i � ryTrial
rzi � rzTrial
Ui � Utriali
Utotal � Utotal + �U //update energy, pressure etc
DispCounter � DispCounter + 1

end if

end if

end if 

end if 

Part 2.5.1 Adjust maximum displacement:
acceptRatio = DispCounter/n
if (acceptRatio < acceptR)

rMax � 0.95 � rMax
else

rMax � 1.05 � rMax

As discussed subsequently, other MC ensemble simulations can be

performed by modifying the acceptance criterion used in Algorithm 9.1.

In general, it is useful to define the following “pseudo-Boltzmann

factor,”

WðiÞ5 exp 2βYð Þ ð9:6Þ
Where the nature of Y depends on the characteristics of the ensemble. For

the canonical ensemble, Y is simply U; however, additional terms are

required to calculate Y for other ensembles.

9.1.2 Isobaric�Isothermal (NpT) ensemble

At conditions of constant temperature and pressure, the equivalent of

Eq. (9.2) (McDonald, 1972) is:

Ah i5
ÐN
0

expð2βpVÞdVÐ
V
AðrN ;VÞexp½2 βUðrNÞ�drNÐN

0
expð2βpVÞdVÐ

V
exp½2βUðrNÞ�drN ð9:7Þ

In a MC simulation, the particles are confined to a cube of fluctuating

length (L). Consequently, we can make use of scaled coordinates (αi5 ri/L)

such that the integrals over particle coordinates in Eq. (9.7) become integrals

over the unit cube (Ω).

Ah i5
ÐN
0

VNexpð2 βpVÞdVÐΩAð½Lα�N ;VÞexp 2βUð½Lα�N ; LÞ� �
dαNÐN

0
VNexpð2βpVÞdVÐΩexp 2βEð½Lα�N ;LÞ� �

dαN
ð9:8Þ
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By analogy with Eq. (9.4), we can define a pseudo-Boltzmann weighting

factor by using (9.6) with:

Y 5 pV 1U ½Lα�N ;L� �
2NkTlnV ð9:9Þ

The algorithm for performing the NpT simulation is therefore a relatively

simple modification on the NVT algorithm. In addition to attempted particle

displacements, which are accepted or rejected depending of the value of ΔU,

attempted volume fluctuations are required to maintain constant pressure.

The value of ΔY will determine whether or not an attempted volume change

is accepted. In principle, attempting a volume change is more expensive

computationally than particle displacement because it requires the re-

evaluation of N(N � 1) interactions compared with N � 1 calculations for

particle displacement. However, this computational overhead can be often

avoided by using a “scalable” intermolecular potential.

Formally, the nth derivative of U with respect to volume V can be calcu-

lated from (Lustig, 1994).

@nU

@Vn
5

1

2ð3VÞn
Xn
k51

X
i

X
i 6¼j

ankr
k
ij

@kuðrijÞ
@rkij

 !
ð9:10Þ

In Eq. (9.10), u is the intermolecular potential and the coefficients ank are

Sterling numbers of the second kind (Abramowitz and Stegun, 1970), which

can be calculated from the following recursive algorithm.

an11;k 5 an;k21 1 kank
an0 � 0

ann 5 1

)
ð9:11Þ

When n 5 1 we obtain:

@U

@V
5

1

6V

X
i

X
i 6¼j

rij
@uðrijÞ
@rij


 �
ð9:12Þ

The usefulness of these equations for determining thermodynamic properties

is detailed in Chapter 2.

It is evident from the earlier equation that a volume fluctuation can be

very expensive computationally because it affects all particles. The change

in volume also means that long-range corrections must also be re-evaluated.

However, for many simple intermolecular potentials, the need to re-calculate

all the pairwise interactions can be avoided by using scaling. For example, if

a Lennard-Jones (LJ)-type intermolecular potential is used, the energy of the

trial state can be calculated from:

U5 4ε
X
i

X
j. i

σij

Lαij


 �12

2 4ε
X
i

X
j. i

σij

Lαij


 �6

ð9:13Þ
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Equation (9.13) indicates that there are two distinct contributions to the

energy with a different power dependence. To make use of scaling, the 12th

and 6th dependence must be stored separately. Therefore, we define the

potential energy as:

U5Uð12Þ1Uð6Þ ð9:14Þ
Consequently, the effect of changing the length of the box on the poten-

tial energy can be calculated from:

Utrial 5Uð12Þ Ltrial

L


 �12

1Uð6Þ Ltrial

L


 �6

ð9:15Þ

The same procedure can be applied to obtain the virial.

The scaling procedure can only be applied if there is only one characteristic

length in the potential function. Consequently, its usefulness is limited to rela-

tively simple intermolecular potentials. It is not appropriate for any molecular

models, which involve intramolecular bond lengths in addition to site�site inter-

actions. For these cases, the computationally expensive N(N � 1) pair calcula-

tion may be unavoidable.

A possible implementation of the NpT MC procedure is illustrated by

Algorithm 9.2. The initialization phase (Algorithm 9.2, Part 1) of

Algorithm 9.2 is similar to the initialization phase of Algorithm 9.1 except

that the “scalability” of the intermolecular potential is identified. Whether

or not the potential is scalable will influence how the volume fluctuation is

handled (Algorithm 9.2, Parts 2.3 and 2.5). As discussed previously, a

scalable potential avoids the recalculation of the total energy and as such is

very computationally advantageous.

Each configuration in the Markov chain for a NpT ensemble is the result of

two different possible trial moves involving atomic displacement

(Algorithm 9.2, Part 2.1) and volume change (Algorithm 9.2, Part 2.2), respec-

tively. The displacement stage (Algorithm 9.2, Part 2.1) of the Markov process

proceeds identically to the NVT ensemble (Algorithm 9.1, Parts 2.1 to 2.4). It

involves the generation of trial coordinates, calculation of the energy experi-

enced at the trial position and determining the overall change in the energy of

the ensemble. At this stage, the volume is unaffected, and the acceptance crite-

rion reduces to the NVT ensemble criterion (Algorithm 9.1, Part 2.4).

The next stage (Algorithm 9.2, Part 2.2) of the Markov process is to

attempt a volume fluctuation. The trial volume is obtained by resizing ran-

domly the length of the simulation box by a predefined amount with the range

of -LMax to LMax. If the potential is scalable (Algorithm 9.2, Part 2.3), the

energy of the ensemble is scaled by the new volume otherwise the trial energy

is calculated by considering all pair interactions at the trial coordinates. The

change in energy and volume of the ensemble (Algorithm 9.2, Part 2.4) are

used to determine ΔY. The acceptance of the volume fluctuation

(Algorithm 9.2, Part 2.5) is determined by the value of ΔY. If the trail volume
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move is accepted, the assignment of the updated coordinates depends on

whether or not the potential was scalable as illustrated in Part 2.5. In common

with the displacement step, the acceptance of volume changes is continually

monitored during the equilibration phase to achieve a specified acceptance

value (acceptV). The nature of the adjustments (Algorithm 9.2, Part 2.5.1) fol-

lows the same procedure as for the displacement step.

ALGORITHM 9.2 MC simulation in the NpT ensemble.

Overall Algorithm

Part 1 Initialization
Assign values for N, p, T, NCycles, DispCounter = 0, acceptR = 0.5,

          VolCounter = 0,  acceptV = 0.5 etc.
Assign initial coordinates rxi, ryi, rzi for the N atoms.
Evaluate and store Utotal, Ui, ptotal, pi etc.
if (intermolecular potential is scalable)

scalable � true
else

scalable � false
end if

Part 2 Generate a Markov Chain
loop n �1... NCycles

k �1
loop while (k <= NAtom)

2.1 Implement Parts 2.1-2.4 of Algorithm 9.1 (NVT Ensemble)
k � k +1

end while loop
2.2 Generate a trial move by attempting a volume change:

Ltrial� L + LMax � (2 � rand() - 1)
Vtrial � Ltrial3

2.3 Evaluate Utrial:
if (scalable)

Scale Utotal to obtain UtrialTotal.
else

loop i � 1 .. NAtom //scale coordinates
rxTriali � rxi � (L/Ltrial)
ryTriali � ryi � (L/Ltrial)
rzTriali � rzi � (L/Ltrial)

end i loop
Perform N(N-1) calculations for UtrialTotal, Utriali.

end if
2.4 Calculate change in energy and acceptance term.

�U � UtrialTotal - Utotal
�Y �p � (Vtrial - V) + �E + N � k � T � ln(V/Vtrial)

2.5 Volume change acceptance criterion.
if (n <= NEquilibration)

2.5.1 Adjust maximum volume change.
Adjust maximum displacement change (see Algorithm 9.1).

else
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Accumulate averages.
end if

end n loop

Details of Some Key Sub-Parts

Part 2.5 Volume change acceptance criterion:
if (�Y < 0) //accept new configuration

if (scalable)
loop i � 1 .. NAtom //scale coordinates

rx i � rxi � (L/Ltrial)
ry i � ryi � ( L/Ltrial)
rzi � rzi � (L/Ltrial)
Scale Ui

end i loop
else

loop i � 1 .. NAtom //update coordinates
rx i � rxTriali
ry i � ryTriali
rzi � rzTriali
Ui � Utriali

end i loop
end if
L �Ltrial //update properties
V �Vtrial
Utotal �UtrialTotal
VolCounter � VolCounter + 1

else
PBF � exp(-��Y) //pseudo-Boltzmann factor
if (PBF > rand()) //accept new configuration

if (scalable)
loop i � 1 .. NAtom //scale coordinates

rx i � rxi � (L/Ltrial)
ry i � ryi � (L/Ltrial)
rzi � rzi � (L/Ltrial)
Scale Ei

end i loop
else

loop i � 1 .. NAtom //update coordinates
rx i � rxTriali
ry i � ryTriali
rzi � rzTriali
Scale Ui

end i loop
end if

L �Ltrial //update properties
V �Vtrial
Utotal �Utotal + �U
VolCounter � VolCounter + 1

end if
end if

end if

Part 2.5.1 Adjust maximum volume change:
acceptVRatio = VolCounter/n
if (acceptVRatio < acceptV)

LMax � 0.95 � LMax
else

LMax � 1.05 � LMax
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It should be noted that there are different possible combinations of trial

moves. In Algorithm 9.2, a displacement is attempted for each atom followed

by a single attempt to change the volume. However, both attempted displace-

ments and volume changes could be combined in the same trial move but

this would complicate the algorithm. It is also possible to choose randomly

between particle displacement and volume change. The choice should be

biased heavily toward particle displacement to ensure that equilibrium is

achieved rapidly. In practice, one attempted volume change per cycle is often

sufficient to bring the system to equilibrium. The efficiency of volume

changes is discussed in greater detail by Brennan and Madden (1998). Some

useful improvements to the basic algorithm have also been discussed

(Okumura and Okamoto, 2004a &b; McGrath et al., 2005). The approach

can also be adapted for MC simulations in the isobaric�isenthalpic (NpH)

ensemble (Ströker and Meier, 2022).

9.1.3 Grand canonical (µVT) ensemble

MC simulation in the grand canonical ensemble has been discussed by sev-

eral workers (Adams, 1974; Valleau and Cohen, 1980; Nicholson and

Parsonage, 1982). The distinctive feature of the grand canonical ensemble is

that number of particles fluctuates while maintaining a constant chemical

potential (μ), volume, and temperature. The average of any property of the

grand canonical ensemble can be obtained from

Ah i5

PN
N50

Λ23N

N! expðβNμÞ Ð AðrNÞexp 2βUðrNÞ� �
drN

ZμVT
ð9:16Þ

where ZμVT is the canonical partition function and Λ is the de Broglie ther-

mal wavelength. Using scaled coordinates and making use of the relationship

βμideal5 log (N/V) 1 3 log Λ, Eq. (9.16) can be rewritten (Adams, 1974;

Hansen and McDonald, 2013) as,

Ah i5

PN
N50

expðβNμ�
2 lnN!ÞÐΩAexp 2βUð ÞdαN

ZμVT
ð9:17Þ

where μ
�
involves the contribution of the residual1 chemical potential (μr).

μ
�
5μr 1 kT ln Nh i ð9:18Þ

1. As noted in Chapter 2, a residual quantity is sometimes mistakenly referred to as an excess

property, whereas in chemical thermodynamics, the latter term should be applied only to mixture

properties.
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The pseudo-Boltzmann factor for this ensemble is given by Eq. (9.6)

with:

Y 52Nμr 1 kT lnN!1U rN
� � ð9:19Þ

The grand canonical ensemble involves the possible removal and/or addi-

tion of particles. If there is no change in the number particles, it is apparent

from Eq. (9.19) that ΔY5ΔU and Eq. (9.8) is simply the Boltzmann aver-

age used in the canonical NVT ensemble. Therefore, an algorithm for the

grand canonical ensemble can be devised consisting of three attempted

moves: particle displacement (identical to the canonical ensemble); particle

insertion; and particle removal.

Algorithm 9.3 illustrates one possible procedure for conducting a grand

canonical MC simulation. Following initialization (Algorithm 9.3, Part 1), a

Markov chain is created (Algorithm 9.3, Part 2) by implementing molecular dis-

placement (Algorithm 9.3, Part 2.1), particle creation (Algorithm 9.3, Part 2.2),

or particle destruction (Algorithm 9.3, Part 2.3). The type of move implemented

is chosen with equal probability. A particle displacement corresponds to a con-

ventional MC NVT ensemble move. In Algorithm 9.3, when a displacement

move is chosen, an attempt is made to displace all the particles. Alternatively,

only one particle could be displaced per move and the number of cycles could

be increased considerably. The particle insertion move (Algorithm 9.3, Part 2.2)

involves selecting coordinates randomly and determining the energy that the

atom would experience in the trial location. This evaluation of energy involves

calculating the particle’s interaction with the N particles. The interaction energy

is used to calculate ΔY, which is used in evaluating the acceptance criterion

(Algorithm 9.3, Part 2.2.1). The particle removal move (Algorithm 9.3, Part 2.3)

proceeds in a similar fashion except that an existing particle must be selected

randomly. The algorithm proceeds directly to the evaluation of ΔY and the

application of the acceptance criterion (Algorithm 9.3, Part 2.3.1) because the

energy of the selected particle is known.

In an object-oriented language such as C11 (Chapter 11), particle addi-

tion and removal can be achieved by creating and deleting an object, respec-

tively. Alternately, if arrays are used, the addition of a particle can be

handled by simply increasing the size of the array by 1 and assigning

the coordinates of the added particle to rxm11, rym11, and rzm11, where m is

the last index of the original array. Particle deletion can be accomplished by

assigning the array index of the deleted particle to the mth particle and then

changing the last array index to m � 1.

The importance of particle creation and destruction in the μVT ensemble

has been the impetus to development of novel approaches (Orkoulas, 2007;

Shi and Maginn, 2007), which are particularly important when large macro-

molecules are involved. (Hu et al., 2005; Turesson et al., 2008). As discussed

in Chapter 2, new approaches (Stutzman et al., 2018; Ströker et al., 2021)
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for determining thermodynamic properties in the μVT ensemble have been

developed. It should be noted that the μVT approach generally fails at high

densities because insertion attempts are overwhelmingly rejected, which

means it is inappropriate for solids. Suitable algorithms for solid�liquid

equilibrium are discussed in Chapter 10.

ALGORITHM 9.3 MC simulation in the µVT ensemble.

Overall Algorithm

Part 1 Initialization
Assign values for �, N, V, T, NCycles, DispCounter = 0,
acceptR = 0.5,etc.
Assign initial coordinates rxi, ryi, rzi for the N atoms.
Evaluate and store Utotal, Ei, ptotal, pi etc.

Part 2 Generate a Markov Chain
loop n �1... NCycles

choice � rand()
if (0 < choice � 1/3)

k �1
loop while ( k <= NAtom)

2.1 Implement Parts 2.1-2.4 of Algorithm 9.1 (NVT Ensemble)
k � k+ 1

end while loop
else if (1/3 > choice � 2/3)

2.2 Attempt to insert an atom:
Randomly select a position (rxTrial, ryTrail, rxTrial).
Evaluate Ui.
�Y � -�* + kTln(N + 1) + Ui

2.2.1 Insertion acceptance criterion.
else

2.3 Attempt to remove an atom:
Select randomly an atom (i)  to be removed.
�Y � �* - kTln(N ) + Ui

2.3.1 Removal acceptance criterion.
end if

2.4 if (n <= NEquilibration)
2.4.1 Adjust maximum displacement change (see Algorithm 9.1).

else
Accumulate averages.

end if
end n loop

Details of Some Key Sub-Parts

Part 2.2 Insertion acceptance criterion:
if (�Y < 0)

Accept new atom.
Utotal �Utotal + Ui
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else
PBF � exp(-��Y)
if (PBF > rand())

Accept new atom.
Utotal �Utotal + Ui

end if
end if

Part 2.3.1 Removal acceptance criterion:
if (�Y < 0)

Remove selected atom.
Utotal �Utotal - Ui

else
PBF � exp(-��Y)
if (PBF > rand())

Remove selected atom.
Utotal �Utotal - Ui

end if
end if

9.1.4 Microcanonical (NVE) ensemble

The microcanonical ensemble conserves the number of particles, volume,

and total energy (E). As discussed in the preceding sections, the basis of MC

simulations is the algorithm of Metropolis et al. (1953), which generates the

canonical (NVT) ensemble. This algorithm can be incorporated into simula-

tions for the isothermal�isobaric and grand canonical ensembles but it can-

not be used to generate a microcanonical ensemble. However, theoretical

advances (Creutz, 1983; Ray, 1991; Lustig, 1998) have made MC simula-

tions possible.

Creutz (1983) reported the first MC simulations in the microcanonical

ensemble. This particular solution to the problem was confined to lattice-

based systems and involves the use of an energy “demon” in conjunction

with a random walk through possible configurations that satisfy the con-

straint of constant total energy. Later, Ray (1991) reported a general solution

to the problem based on the statistical mechanical formulation of Pearson

et al. (1985). Ray’s procedure involves Metropolis-type moves and uses the

acceptance criterion PE 5minð1;WEðr0Þ=WEðrÞÞ, where the probability den-

sity (WE) plays the same role as the “pseudo-Boltzmann factor” in the other

ensembles.

WEðrÞ5C E2UðrNÞ� �3N=2 21Θ E2UðrNÞ� � ð9:20Þ
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In Eq. (9.20), C is a constant and Θ(x)5 1 for x . 0 and Θ(x)5 0 for

x # 0. The corresponding partition function for the ensemble is:

ZNVE 5CðNÞ
ð

E2UðrNÞ� �3N=2Θ E2UðrNÞ� �
drN ð9:21Þ

The relationships S5 klnðZNVEÞ and T21 5 @S=@E enable us to determine

the temperature.

T 5
2 E2UðrNÞ� �

3Nk
5

2 Kh i
3Nk

ð9:22Þ

In Eq. (9.22), we have identified the kinetic energy (K) as simply

E2UðrNÞ. Strictly, the constraints imposed (Lustig, 1998; Hüneneberger,

2005) by the MD simulation should be subtracted from the 3 N contribution

in Eq. (9.22). However, in practice this has a negligible effect because of

large values of N typically used in modern simulations. The pressure is

obtained by differentiating the entropy with respect to volume.

p5
NkT

V
2

@U

@V

� �
ð9:23Þ

If the entropy is differentiated with respect to energy, the specific heat at

constant volume (CV) can be calculated (Chapter 2).

Nk

CV

5 12 12
2

3N


 �
Kh i K21
� � ð9:24Þ

Application of MC simulations for the microcanonical ensemble has been

discussed by Lustig (1998).

Equation (9.22) is significant because it enables the calculation of tem-

perature from a MC simulation. The temperature depends on the momenta of

the atoms and it can be calculated easily in a MD simulation. In contrast, in

a MC simulation, the temperature is a fixed variable, which cannot be

obtained from the simulation because the momenta of the atoms cannot be

calculated in MC procedure. Equation (9.22) overcomes this problem by cal-

culating temperature from the configurational properties of the ensemble

without requiring any dynamical information. Butler et al. (1998) have

shown that the temperature can be also calculated from the following

formula,

1

kT
5

r2
qU

rqU
 2

* +
ð9:25Þ

whererqis the gradient operator with respect to the particle positions (q).

Equation (9.25) implies that the temperature can be calculated by evaluating

Molecular simulation of ensembles Chapter | 9 323



the first and second derivatives of the intermolecular potential during the

course of the simulation. For a pairwise potential the scalar separation

between particle i and j in terms of the x, y, and z components is given by

rij 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ij 1 y2ij 1 z2ij

q
and the derivatives that are required to evaluate the con-

tributions to Eq. (9.25) can be obtained from:

@U

@ri
52

@U

@rj
5

rij

rij

@U

@rij

@2U

@r2i
5

@2U

@r2j
5

@2U

@x2i
1

@2U

@y2i
1

@2U

@z2i

@2U

@x2i
5



1

rij
2

x2ij

r3ij

�
@U

@rij
1

x2ij

r2ij

@2U

@r2ij

9>>>>>>>>>>=>>>>>>>>>>;
ð9:26Þ

Using Eq. (9.25) provides an additional check on the accuracy of the sim-

ulation, as the configurational temperature must equal the fixed value of tem-

perature specified at the outset of the MC simulation.

Algorithm 9.4 illustrates an implementation of a MC simulation in the

microcanonical ensemble. The procedure is similar to Algorithm 9.1 except

that the acceptance or rejection of a move depends on the ratio of kinetic

energies rather than the change in potential energy. The initial kinetic energy

is determined in the initialization phase (Algorithm 9.4, Part 1). In common

with the canonical ensemble, a trial move is attempted (Algorithm 9.4, Part

2.1) and the energy experienced by the atom is determined. The change in

energy is used to calculate the new kinetic energy. The acceptance of a

move (Algorithm 9.4, Part 2.2) depends on the ratio of the new and old

kinetic energies (W). The value of W plays the analogous role to ΔU in the

canonical ensemble. The allowed values of Θ mean that the only moves that

can be accepted are those for which the energy of interaction is lower than

the total energy. Configurations with W . 1 can be accepted immediately

because they have a lower potential energy than the current configuration. It

is also important to update the maximum displacement periodically

(Algorithm 9.4, Part 2.3) to avoid a low acceptance rate. An alternative

implementation of Algorithm 9.4 is to attempt random displacements for

every atom and apply the acceptance criterion for the combined move. This

alternative is described in Chapter 6 and an implementation in C11 is given

in Chapter 11.

It should be noted that a similar procedure can also be used to generate

an NpH ensemble. For the NpH ensemble, the appropriate probability density

is (Ray, 1991):

WEðrÞ5C H2pV2UðrNÞ� �3N=2 21Θ H2 pV 2UðrNÞ� � ð9:27Þ
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Algorithm 9.4 can be modified easily to use Eq. (9.27) instead of

Eq. (9.20), however in this case volume fluctuations are also required period-

ically to maintain constant pressure.

ALGORITHM 9.4 MC simulation in the NVE ensemble.

Overall Algorithm

Part 1 Initialization
Assign values for N, V, Efixed, NCycles, DispCounter = 0,
acceptR = 0. 5etc.
Assign initial coordinates rxi, ryi, rzi for the N atoms.
Evaluate and store Utotal, Ui, ptotal, pi etc.
F � 3N/2 - 1
Kold � Efixed – Utotal

Part 2 Generate a Markov Chain
loop n �1... NCycles

k �1
loop while (k <=  NAtom)

2.1 Implement Parts 2.1-2.3 of Algorithm 9.1 (NVT Ensemble).
Knew �Efixed - (Utotal + �U) //kinetic energy

2.2 NVE acceptance criterion.
k � k +1

end while loop
2.3 if (n <= NEquilibration)
2.3.1 Adjust maximum displacement change (see Algorithm 9.1).

else
Accumulate averages.

end if
end n loop

Details of Some Key Sub-Parts

Part 2.2 NVE acceptance criterion:
if(Knew > 0)

W � (Knew/Kold)F

if (W > 1 or W > rand())
rx i � rxTrial //accept new positions
ry i � ryTrial
rzi � rzTrial
Ui �Utriali
Utotal � Utotal + �U //update energy
Kold � Knew

end if
end if

Some examples of the use of the NVE approach include investigations of the

high temperature behavior of square well fluids (Sastre et al., 2015 & 2018) and

lattice gas systems (Shida et al., 2003). An alternative NVE implementation that

makes use of Eq. (9.25) has been proposed (Palma and Riveros, 2021).
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As discussed in Chapter 2, properties obtained from different ensembles

should yield the same values in the thermodynamic limit. Comparisons of

properties obtained for common state points using different ensembles are rela-

tively scarce in the literature. Assembling a comparison from different sources

is also subject to confounding factors such as the differences in the number of

particles, cut-off values, and other differences in the simulation settings.

Table 9.1 compares MC simulations in the NVE, NVT (Lustig, 2011), NpT

(Ströker et al., 2021), and NpH (Ströker and Meier, 2022) ensembles for vari-

ous thermodynamic properties at close to a common state point for the LJ

potential (Chapter 3). The difficulty in obtaining E and H to exactly generate

common values of p, V, and T for a finite number of particles means that iden-

tical results cannot be realistically expected. Nonetheless, reasonably close

agreement for the thermodynamic quantities obtained using different ensem-

bles is apparent from the data in Table 9.1. This conclusion is supported by

other work (Nitzke and Vrabec, 2023), which also indicates that the microca-

nonical ensemble yields results with the best overall statistical quality. In con-

trast, the choice of NVT and NpT ensembles in nonequilibrium MD

simulations (Chapter 8) has a noticeable effect (Bosko et al., 2005) on the

observation of shear thickening at high strain rates.

9.2 Molecular dynamics

9.2.1 Microcanonical (NVE) ensemble

The microcanonical ensemble is the default ensemble for MD because

Newton’s equations of motion conserve energy. The MD algorithm for the

TABLE 9.1 Comparison of MC simulations for the isobaric heat capacity

(Cp), Joule�Thomson coefficient (μJT), and zero frequency speed of sound

(w0) for the Lennard-Jones potential in the NVE, NVT, NpT, and NpH

ensembles (Lustig, 2011; Ströker et al., 2021; Ströker and Meier, 2022).

The values in brackets are the reported uncertainties in the final digit.

Ensemble/

Reduced Property

NVE NVT NpT NpH

kT=ε 1.015 1.015 1.0 1.05781(7)

pσ3=ε 1.071(5) 1.070(6) 1.0 1.0

ρσ3 0.8 0.8 0.79878(48) 0.780391(13)

Cp=k 4.8(1) 4.8(2) 4.79(7) 4.820(21)

kμJT=σ
3 2 0.16(1) 2 0.15(1) 2 0.1573(43) 2 0.1493(14)

w0=
ffiffiffiffiffiffiffiffiffi
ε=m

p
5.563(3) 5.557(4) 5.5159(24) 5.3479(46)
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NVE ensemble also conserves linear momentum (Chapter 2). As was dis-

cussed in Chapter 2, the motion of particles does not affect the energy of the

ensemble, which remains constant. In principle, a microcanonical (NVE)

ensemble is generated automatically by solving Newton’s equations of

motion. The general procedure for obtaining a microcanonical ensemble is

illustrated by Algorithm 9.5.

The initialization phase (Algorithm 9.5, Part 1.1) of Algorithm 9.5 involves

assigning initial velocities to the atoms. The velocities can take any initial

values because they will be corrected quickly in the integrator phase

(Algorithm 9.5, Part 2.1.2) of the main body of the simulation. Consequently,

initial velocities can be either assigned randomly or set to zero. Similarly, with

the exception of acceleration, any other time derivatives required by the inte-

grator algorithm can be assigned to zero. The initial forces (Algorithm 9.5,

Part 1.2) on the atoms must be calculated accurately by considering all N(N �
1) interactions. During the initial force evaluations, the initial accelerations are

determined accurately from the relationship ai5 fi/mi. The total potential

energy is also calculated during the force evaluation. The main body

(Algorithm 9.5, Part 2) of the algorithm is a loop, which executes repeatedly

the key simulation strategies. The heart of any MD program is the calculation

of the force (Algorithm 9.5, Part 2.1.1) experienced by each atom as the result

of interaction with all other atoms. This invariably involves using an appropri-

ate intermolecular potential to evaluate particle interactions. Examples of inter-

molecular potentials are discussed in Chapters 3 and 4. The newly calculated

forces are used in conjunction with a finite-difference algorithm (Chapter 7) to

evaluate Newton’s equations of motion, and thereby determine new atomic

coordinates, velocities, accelerations, and any other time derivatives

(Algorithm 9.5, Part 2.1.2). Each pass through the loop represents the advance-

ment of time t by an amount Δt. Consequently, after M cycles, the total dura-

tion or elapsed time of the simulation is equal to MΔt. Contributions to

ensemble averages are only accumulated after a period of equilibration

(tEquilibration) (Algorithm 9.5, Part 2.2).

It is apparent from Algorithm 9.5 that the key feature of a MD algorithm

is the evaluation of force, which via a suitable integrator algorithm

(Chapter 7) determines new molecular coordinates and other dynamical prop-

erties in accordance with Newton’s laws of motion. Unlike MC simulations,

chance plays no part in MD. Although the potential energy is determined

during the force evaluations, it plays no part in determining molecular displa-

cements. The need to re-evaluate all forces at each time step means that MD

algorithms are intrinsically order N2 compared with order N for MC algo-

rithms.2 Considerable attention has been directed toward computation-saving

strategies (Chapter 5).

2. However, the displacement step for each MC cycle is typically repeated N times, which means

that both MC and MD are overall of order N2 for a given cycle/time step.
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ALGORITHM 9.5 General MD NVE ensemble strategy.

Part 1 Initialization
1.1 Assign number of particles, energy, volume, etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi).
Assign any other (�nr/�tn)i values (n > 2).

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.2 If (t > tEquilibration)

Accumulate averages.
end if

t � t + �t
while (t � tMax)

In the microcanonical ensemble, the number of particles, volume, and energy

are constant. Keeping the number of particles and volume constant is straightfor-

ward. They are specified during the initialization phase and they cannot change

because the algorithm does not involve volume fluctuations, particle removal, or

particle addition. Control of the total energy is achieved via the contribution

from kinetic energy. At the start of the simulation, the desired energy per parti-

cle is specified (ED), however the actual energy (EA) depends on the actual

kinetic energy (KA) and the calculated potential energy (U).

EA 5KA 1U ð9:28Þ
The desired kinetic energy (KD) is obtained from the calculated potential

energy.

KD 5ED 2U ð9:29Þ
The desired energy can be achieved by scaling the initial velocities (vi) of

each molecule with respect to the desired and actual kinetic energies.

vnewix 5 vix

ffiffiffiffiffiffi
KD

KA

s
vnewiy 5 viy

ffiffiffiffiffiffi
KD

KA

s
vnewiz 5 viz

ffiffiffiffiffiffi
KD

KA

s

9>>>>>>>>>>=>>>>>>>>>>;
ð9:30Þ
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At the start of MD simulation, the linear momentum is usually set to

zero. In principle, it is only necessary to scale the velocities once at the

beginning of the simulation and thereafter, the energy conservation proper-

ties of the canonical ensemble should ensure that the energy remains con-

stant. However, in practice a drift in energy is observed caused partly by

inaccuracies in the calculation of forces. Therefore, to keep the calculations

on track, the velocities are scaled periodically during the equilibration

period. This scaling must not be continued after the equilibration period

because it would introduce an artificial discontinuity in energy.3 This strat-

egy is illustrated by Algorithm 9.6.

ALGORITHM 9.6 MD in the NVE ensemble using periodic scaling of
velocities.

Part 1 Initialization
1.1 Assign number of particles, energy, volume, etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Scale vi consistent with the energy of the ensemble.
Assign any other (�nr/�tn)i values (n > 2).

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.2 If (t > tEquilibration)

Accumulate averages.
else if (mod(m,  scalingInterval) = 0)

Scale velocities. 
end if
t � t + �t
m � m + 1

while (t � tMax)

Algorithm 9.6 follows closely Algorithm 9.5 with the exception that the

velocities are scaled in Parts 1.1 and 2.2. The choice of scalingInterval is arbi-

trary and depends on the behavior of the integrator. Typically, a scaling

interval of 10�100 time steps is usually sufficient. An implementation of

Algorithm 9.6 is described in Chapter 11. MC and MD implementations of

3. As noted in Chapter 8, this does not necessarily apply to NEMD algorithms because the modi-

fication of the Newton’s law introduces additional heating that requires the application of a ther-

mostat for the full length of the simulation.

Molecular simulation of ensembles Chapter | 9 329



the NVE ensemble have been directly compared of a restricted range of

applications (Schierz et al., 2015).

9.2.2 Canonical (NVT) ensemble

Microcanonical ensemble simulations are not used routinely because we gen-

erally have a much better idea of temperature than energy. If the number of

particles, volume, and temperature are constant, a canonical ensemble is gen-

erated. There are a few different options for generating a canonical ensem-

ble. The simplest methods to obtain constant temperature involve either

velocity scaling or heat-bath coupling. Alternatively, the thermostats of

Andersen (1980), Nosé (1984), and Hoover (1985) or a general constraint

(Hoover et al., 1982; Evans, 1983) approach can be used. These latter alter-

natives involve modifying the equations of motion. The implementation and

merits of the various strategies are discussed subsequently. A general review

of thermostats used in MD is available elsewhere (Hüneneberger, 2005).

9.2.2.1 Simple velocity scaling

In principle, the simplest method to maintain a constant temperature is to re-

scale periodically the particle velocities. The kinetic energy per particle for

the ensemble can be calculated from,

Kh i5 1

2N

X
i

miviUvi

* +
ð9:31Þ

or from the kinetic theory of gases.

Kh i5 3kT

2
ð9:32Þ

Equating Eqs. (9.31) and (9.32), we obtain the following relationship for

temperature.

T 5
1

3Nk

X
i

miviUvi

* +
ð9:33Þ

Equation (9.33) enables4 us to determine the actual temperature (TA) for

the ensemble at any time. Consequently, the velocities can be scaled with

respect to the actual and desired temperatures (TD).

4. For MD, Eq. (9.33) should be modified to account for the reduction in the number of degree

of freedom due to the conservation of linear momentum. That is, 3 N should be replaced with

3 N � 3.
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s
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s

9>>>>>>>>>>=>>>>>>>>>>;
ð9:34Þ

ALGORITHM 9.7 Molecular dynamics in the NVT ensemble using simple
velocity scaling.

Part 1 Initialization
1.1 Assign number of particles, temperature, volume, etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Scale vi consistent with the temperature of the ensemble.
Assign any other (�nr/�tn)i values (n > 2).

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.2 if (t > tEquilibration)

Accumulate averages.
else if (mod(m,  scalingInterval) = 0)

Scale velocities according to temperature. 
end if
t � t + �t
m � m + 1

while (t � tMax)

The algorithm for the canonical ensemble (Algorithm 9.7) is similar to

the velocity-scaled microcanonical ensemble (Algorithm 9.6) except

that the velocities are scaled via temperature (Algorithm 9.7, Part 2.2)

rather than energy. In the velocity-scaled microcanonical ensemble algo-

rithm, velocity scaling after the initialization phase is optional. However,

for the canonical algorithm, periodic re-scaling in the loop is essential.

Velocity scaling is less effective in achieving a set-point temperature than

energy scaling to obtain a set-point energy because kinetic energy is not

a constant of motion. Energy is exchanged between the potential and
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kinetic energy contributions during equilibration causing a drift away

from the desired temperature. Re-scaling during this period is required to

compensate for this drift.

Velocity scaling is appealing because it is simple to implement in

diverse range of different situations (Zhou et al., 2010; Kouza and

Hansmann, 2011), although other approaches have arguably a stronger

theoretical basis (Kutteh, 1999a & b; Page et al., 2012). A relatively sim-

ple modification has been proposed (Morishita, 2003a) to improve its use-

fulness in the velocity-Verlet algorithm (Chapter 7). It has used to

optimize for replica exchange MD (REMD) (Kouza and Hansmann, 2011;

Yu et al., 2015) and applied to NEMD (Chapter 8) simulations (Kuang

and Gezelter, 2010 & 2012).

9.2.2.2 Heat-bath coupling

An alternative to simple velocity scaling is to couple the system to an exter-

nal heat-bath corresponding to the desired temperature. The bath acts as

either a heat source or heat sink by providing or removing heat to the sys-

tem. The rate of change of the actual temperature is related to the desired

temperature (the bath temperature) by,

dTA

dt
5

TD 2 TA

τ
ð9:35Þ

where τ is a constant, which determines how tightly the bath and the system

are coupled together. From Eq. (9.35), the change in temperature between

successive time intervals is

ΔT 5
ΔtðTD 2 TAÞ

τ
ð9:36Þ

and the following velocity scaling applies.

vnewix 5 vix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Δt

τ
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�s
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Δt
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TD
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2 1

�s

vnewiz 5 viz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

Δt

τ



TD

TA
2 1

�s

9>>>>>>>>>>=>>>>>>>>>>;
ð9:37Þ
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When τ5Δt, Eq. (9.37) is identical to the simple velocity scaling

method. This form of scaling is implemented in the same way as illus-

trated in Algorithm 9.7. Typically, Δt/τ 5 0.0025 gives satisfactory

results.

The advantage of Algorithm 9.7 is that it is an intuitively simple

extension of the velocity-scaling microcanonical ensemble. However, it

should be noted that strictly speaking, temperature is not fixed exactly but

instead fluctuates around the desired value. It is legitimate to use a scaling

procedure during the equilibration period to bring the system to the desired

temperature but until this is achieved the system may not have a genuinely

canonical distribution. Issues regarding heat baths have been studied

extensively (Baldovin et al., 2009; Cano and Stuart, 2001; Morishita, 2000

& 2003b).

9.2.2.3 Andersen thermostat

Andersen (1980) proposed an alternative to velocity scaling, which combines

MD with stochastic processes and guarantees a canonical distribution. At

constant temperature, the energy of a system of N particles must fluctuate.

This fluctuation can be introduced by changing the kinetic energy via peri-

odic stochastic collisions. At the outset of the simulation, the temperature (T)

and the frequency (ν) of stochastic collisions are specified. At any time inter-

val (Δt), the probability that a particular particle is involved in a stochastic

collision is νΔt. A suitable value of ν is,

ν5
νc
N2=3

ð9:38Þ

where νc is the collision frequency.

During the simulation, random numbers can be used to determine which

particles undergo stochastic collision at any small time interval. The simula-

tion proceeds as follows. Initial values of positions and momenta are chosen

and the equations of motion are integrated in the normal way until the time

is reached for the first stochastic collision. The momentum of the particle

chosen for the stochastic collision is chosen randomly from a Boltzmann dis-

tribution at temperature, T. The collision does not effect any of the other par-

ticles and the Hamiltonian equations for the entire particles are integrated

until the next stochastic collision occurs. The process is then repeated. This

strategy is summarized by Algorithm 9.8.
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ALGORITHM 9.8 MD in the NVT ensemble using the Andersen
thermostat.

Part 1 Initialization
1.1 Assign number of particles, temperature, volume, � etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2).

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.2 Andersen thermostat:
2.2.1 if (rand() < ��t)

i �nearest integer � [1,N] //select molecule randomly
vi � random value from a Boltzmann distribution

end if
2.3 If (t > tEquilibration)

Accumulate averages. 
end if
t � t + �t

while (t � tMax)

In Algorithm 9.8, the initialization phase (Algorithm 9.8, Part 1) pro-

ceeds as normal except that no velocity scaling occurs. In Part 2, after the

application of the integrator algorithm (Algorithm 9.8, Part 2.1.2), the

Andersen thermostat (Algorithm 9.8, Part 2.2.1) is applied periodically.

The molecule that undergoes the collision is selected randomly after it has

been determined that a collision has occurred (Algorithm 9.8, Part 2.2).

Depending on ν, this may not generate a sufficient number of collisions

during the course of the simulation. If the collision rate is too low, the sys-

tem will not sample from a canonical distribution of energies. An alterna-

tive would be to check for collisions from i equals 1 to N times. If a

collision is found, then the collision is with the ith molecule. This proce-

dure is likely to result in a far greater number of collisions because N is

typically 500 or more. However, it should be noted that if the collision rate

is too high, temperature control dominates and the desired fluctuations in

kinetic energy are suppressed.

The use of random numbers makes the Andersen thermostat a hybrid of

MC and MD. There is evidence to suggest that the use of stochastic
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processes may compromise the integrity of the calculation of dynamical

quantities and that the frequency of stochastic collisions must be chosen

carefully (Tanaka et al., 1983). A detailed theoretical discussion of the

Andersen thermostat is available (Weinan and Dong, 2008).

9.2.2.4 Nosé thermostat

Nosé (1984) showed that the canonical (NVT) ensemble could be obtained

rigorously by an unaided MD strategy. In Nosé’s approach, the thermal res-

ervoir is an integral part of the system and it is manifested as an additional

degree of freedom (s). The potential energy of the reservoir (res) is,

Ures 5 gkTDln s ð9:39Þ
where g is the number of degrees of freedom of the physical system. The res-

ervoir also has kinetic energy, which can be obtained from,

Kres 5
Q

2

ds

dt


 �2

5
Q

2
p2s ð9:40Þ

where Q is a parameter which couples the reservoir to the real system and

which affects temperature fluctuations. It has the dimensions of energy 3
time2 but it can be considered usefully as the imaginary mass of the extra

degree of freedom. Typically, Q is proportional to gkTD with the proportion-

ality constant determined by trial simulations to observe whether or not the

desired temperature is maintained satisfactorily. If Q is too large, there is no

energy flow between the reservoir and the system, whereas if Q is too small,

energy oscillations occur inhibiting equilibration.

Each state that can be generated for the extended system corresponds to a

unique state in the real system. The velocities of the atoms in the real system

are given by:

v5 s
dr

dt
5

p

ms
ð9:41Þ

Consequently, the kinetic energy of the real system is:

Kreal 5
p2

2ms2
ð9:42Þ

Therefore, the Hamiltonian for the extended system is:

H5
X
i

p2i
2mis2

1UðqÞ1 p2s
2Q

1 gkTDln s ð9:43Þ

The key feature of Nosé’s approach (Hoover, 1991) is the use of an

extended Hamiltonian (Chapter 2). Any change in the Hamiltonian will be

Molecular simulation of ensembles Chapter | 9 335



reflected by changes in the equations of motion. The equations of motion

obtained from Eq. (9.43) are:

_q5
p

ms2
ð9:44Þ

_p5FðqÞ ð9:45Þ

_s5
ps
Q

ð9:46Þ

_ps 5
X
i

p2i
mis3

2
gkTD

s
ð9:47Þ

9.2.2.5 Nosé�Hoover equations

The equations for the Nosé thermostat contain the inconvenient s variable.

Hoover (1985) demonstrated that Nosé’s equations of motion could be refor-

mulated to remove the s variable. These equations, hereafter referred to as

the Nosé�Hoover equations, are:

_q5
p

m
ð9:48Þ

_p5FðqÞ2 ζp ð9:49Þ

ζ
:
5

P
i

p2i
mi

2 gkTD

Q
ð9:50Þ

In the Nosé�Hoover equations, ζ is a “friction” coefficient that

evolves with time according to Eq. (9.50). The value of ζ is determined

by using Eq. (9.50) as a feedback equation. The overall algorithm for gen-

erating a NVT ensemble using the Nosé�Hoover equation is a straightfor-

ward adaptation of Algorithm 9.5. The only difference is that the ζ
parameter must be re-evaluated at each time step. The integration of the

equations of motion can be most simply handled by predictor�corrector

(see discussion below) or Runge�Kutta (Chapter 7) algorithms. The

appearance of a velocity in the acceleration (Eq. (9.49)) poses problems

for the velocity-Verlet algorithm but this can be overcome (Frenkel and

Smit, 2002). The predictor�corrector calculation strategy is illustrated by

Algorithm 9.9.

In the initialization phase (Algorithm 9.9, Part 1), values are assigned to

the m-derivatives of position with respect to time required by the

predictor�corrector strategy and ζ is initially assigned to zero. During

the simulation process (Algorithm 9.9, Part 2), the equations of motion are

solved using a predictor�corrector calculation (Algorithm 9.9, Part 2.1). The

336 Molecular Simulation of Fluids



force on each atom is calculated (Algorithm 9.9, Part 2.1.1) and it is used to

predict (Algorithm 9.9, Part 2.1.2) new positions and all of the time deriva-

tives except acceleration. The acceleration (Algorithm 9.9, Part 2.1.3) is pre-

dicted using the latest predicted velocity. The newly predicted positions and

all time derivatives are subsequently refined in the corrector step

(Algorithm 9.9, Part 2.1.4). To update the ζ term (Algorithm 9.9, Part 2.1.5),

it is necessary to determine the sum of the squared velocities. This calcula-

tion is performed conveniently during the corrector step of the integration.

ALGORITHM 9.9 MD in the NVT ensemble using the Nosé�Hoover
equations of motion and a predictor�corrector strategy.

Part 1 Initialization
1.1 Assign number of particles, temperature, volume, � etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2 ... m).
g �3N //3-D unconstrained system
� �0

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion using a PC method: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Predict new positions and (�nr/�tn)i (n � 2).
2.1.3 ai �fi/mi - �vi

2.1.4 Correct new positions and (�nr/�tn)i (n = 1 ... m).
2.1.5 � �� + �t(�vi

2/mi - gkTD)/Q
2.2 If (t > tEquilibration)

Accumulate averages. 
end if
t � t + �t

while (t � tMax)

It has been observed that the Nosé�Hoover equations are not genu-

inely ergodic for either small or stiff systems. To correct this, a modifica-

tion has been proposed (Martyna et al., 1992) that replaces the single

thermostat with a chain of variables. The Nosé�Hoover equations using

M thermostats are:

_q5
p

m
ð9:51Þ

_p5FðqÞ2 ζ1p ð9:52Þ
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P
i
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mi

2 gkTD

Q1

2 ζ1ζ2 ð9:53Þ

ζ j 5
Qj21ζ2j21 2 kTD

Qj

2 ζ jζ j11 ð9:54Þ

ζM 5
QM21ζ2M21 2 kTD

QM

ð9:55Þ

It is apparent that the definition of ζ is recursive. This natural recursion

can be exploited to simplify the coding in languages such as C11, particu-

larly if M is a large number. Reversible MD algorithms for Nosé�Hoover

chains have also been developed (Jang and Voth, 1997).

9.2.2.6 Constraint methods

In general, constant temperature can be achieved by introducing a tempera-

ture constraint into the equations of motion. A constant kinetic temperature

dynamics is generated by the following modified equations of motion

(Hoover et al., 1982; Evans, 1983).

_r5
p

m
ð9:56Þ

_p5 f2 ζðr;pÞp ð9:57Þ

In Eq. (9.57), ζ(r,p) acts as a “friction coefficient,” which varies to con-

strain the instantaneous temperature to a constant value. The ζ term plays a

similar role to the corresponding term in the Nosé�Hoover thermostat

(Eqs. (9.48) and (9.50)). However, by applying Gauss’s principle of least

constraint (Chapter 2), it can be shown (Hoover, 1983; Evans and Morriss,

1984) that:

ζ5
P

i piUf iP
i pi
 2 ð9:58Þ

Equations (9.56) and (9.57) can be most easily solved using a Gear pre-

dictor�corrector algorithm but a variant of the leap-frog scheme can also be

used (Brown and Clarke, 1984). The use of a Gaussian constraint is likely to

lead to a drift in T with time caused by rounding errors. This can be miti-

gated by factors such as the choice of integrator (Chapter 7) or using a linear

proportional feedback mechanism (Travis et al., 1995).
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9.2.3 Isobaric�isoenthalpic (NpH) ensemble

The isobaric�isoenthalpic ensemble is not used commonly in molecular

simulations. However, NpH ensemble algorithms are worthy of consideration

because they introduce techniques for obtaining constant pressure, and they

can be extended easily to generate the more useful NpT ensemble. The NpH

ensemble is particularly useful for calculation of the Joule�Thomson coeffi-

cient (Kioupis and Maginn, 2002; Travis, 2023). Obtaining thermodynamic

properties from the NpH ensemble is discussed in Chapter 2.

9.2.3.1 Andersen’s algorithm

The general approach used by Andersen (1980) is to introduce additional

degrees of freedom to the physical system. Specifically, the volume is con-

sidered as a dynamical variable that is coupled to particle coordinates.

Newton’s equations of motion are solved for the “extended system” involv-

ing both particle coordinates and volume.

Using scaled coordinates xi5 ri/V
1/3, Andersen (1980) proposed the fol-

lowing Lagrangian at constant pressure, which introduces a new variable, Q.

L5
Q2=3

2

XN
i51

mi _xU_x2
XN
j. i

vðQ1=3xijÞ1
M _Q

2

2
2αQ ð9:59Þ

The variable Q can be interpreted as the volume, and the first two terms

represent the conventional Lagrangian expressed in terms of new variables.

The third term is the kinetic energy of Q, and the fourth term is the potential

energy associated with Q. The terms α and m are constants. A physical inter-

pretation of the Lagrangian can be gained by considering the system to be a

container of variable volume controlled by a piston. In this context, the vol-

ume Q of the system is determined by the coordinates of the piston, αQ is a

potential derived from an external pressure α acting on the piston, and m is

the mass of the piston. The Hamiltonian for this system is,

H5
1

2Q2=3

XN
i51

πiUπi

mi

1
XN
j. i

vðQ1=3xijÞ1
Π2

2M
1αQ ð9:60Þ

where π and Π are the momenta conjugate to x and Q, respectively. We

define the following relationships between the scaled and unscaled

coordinates.

V 5Q

r5Q1=3x

p5
π

Q1=3

9>>=>>; ð9:61Þ
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Using Eq. (9.59) in conjunction with Eq. (9.61), we obtain the following

equations of motion.

_r5
p

m
1

r

3

dlnV

dt
ð9:62Þ

_p5FðrijÞ2
p

3

dlnV

dt
ð9:63Þ

Md2V

dt2
52α1

2

3V

XN
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piUpi
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2
1

3V

XN
j. i

rij
@uðrijÞ
@rij

ð9:64Þ

By recognizing that α is the desired pressure (pD), and that the actual

pressure (pA) is obtained from,

pA 5
2

3V

XN
i51

piUpi
2mi

2
1

3V

XN
j. i

rij
@uðrijÞ
@rij

ð9:65Þ

Equation (9.65) can be expressed simply as:

d2V

dt2
5

pA 2 pD

M
ð9:66Þ

The change in volume with time in Eqs. (9.62) and (9.63) is determined

by using Eq. (9.64) as a “feedback” equation. In turn, the volume is adjusted

depending on the value of dV/dt.

It can be shown (Andersen, 1980) that this approach generates an isobar-

ic�isoenthalpic (NpH) ensemble. The enthalpy of the system is the energy

(E) associated with the scaled system minus the time average kinetic energy

associated with the motion of Q. Parrinello and Rahman (1980, 1981 &

1982) generalized Andersen’s approach to allow for changes in the shape of

the simulation box, which is particularly useful for solid-state calculations.

Alternative approaches (Kioupis and Maginn, 2002; Travis, 2023) are also

possible.

An implementation of the isobaric�isoenthalpic ensemble is illus-

trated by Algorithm 9.10. In the initialization phase (Algorithm 9.10, Part

1), the volume derivatives can be set to zero. Their values will be cor-

rected rapidly in the simulation phase (Algorithm 9.10, Part 2). The actual

pressure of the ensemble (pA) is calculated conveniently during the force

evaluation. The integrator (Algorithm 9.10, Part 2.1.3) subsequently

updates the coordinates, velocities, accelerations, and other time deriva-

tives. The first time through the simulation loop, we are effectively apply-

ing Newton’s equations of motion because the volume derivatives in
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Eqs. (9.62) to (9.64) are zero. However, updating the volume derivatives

(Algorithm 9.10, Part 2.1.4) results subsequently in the application of

Andersen’s equations.

ALGORITHM 9.10 MD in the NpH ensemble using Andersen’s method.

Part 1 Initialization
1.1 Assign M, N, V, v, TD, pD, etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2).
dlnV/dt � 0
dV/dt � 0
d2V/dt2 � 0
Vold � V

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Calculate pA.
2.1.3 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.1.4 dV2/dt2 � dV2/dt2 + �t � (pD - pA)/M

dV/dt � dV/dt + �t � (dV2/dt2)
V � V +  �t � (dV/dt)
dlnV/dt � (ln(V) - ln(Vold))/ �t
Vold � V 

2.2 If (t > tEquilibration)
Accumulate averages.

end if
t � t + �t

while (t � tMax)

9.2.3.2 Constraint methods

Gauss’s principle of least constraint (Chapter 2) can be used to obtain modi-

fied equations of motion that are appropriate at constant pressure and

enthalpy (Evans and Morriss, 1984),

_r5
p

m
1χðr;pÞr ð9:67Þ

_p5 f2χðr;pÞp ð9:68Þ

_V 5 3Vχðr;pÞ ð9:69Þ
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where χ is a Lagrange multiplier, which represents the rate of dilation of the

system.

χ52
2
P

i
piUf i
mi

2
P

i

P
j. i

ðrijUpijÞ
mirij

dwðrijÞ
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� �
2
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P
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� �
1 9pV

ð9:70Þ

Long-range corrections (Chapter 5) must be included in the calculation of

both the virial and pressure terms in Eq. (9.70).

9.2.4 Isothermal�isobaric (NpT) ensemble

There are three distinct methods for simulating an NpT ensemble by MD,

which involve extending the approach used for NVT ensemble MD. The

first is the hybrid MC and MD approach used by Andersen (1980). The

Andersen thermostat can be modified to include constant pressure result-

ing in an isobaric�isoenthalpic (NpH) ensemble, which can be trans-

formed to an NpT ensemble via a stochastic process. Alternatively, either

Hoover’s equations for the NVT ensemble can be modified to incorporate

a pressure constraint or the general constraint procedure can be extended.

The development of MD NpT algorithms remains an active area of inter-

est (Braga and Travis, 2005; Bussi et al., 2009; Huang et al., 2011; Kim

et al., 2019).

9.2.4.1 Hybrid MD/MC

To modify Andersen’s algorithm for the NpH ensemble to generate an algo-

rithm for the NpT ensemble, the energy and enthalpy of the system must be

allowed to fluctuate. Fluctuations can be achieved by the introduction of sto-

chastic collisions that affect the momentum of one particle at a time. The

stochastic collisions are instantaneous events and they occur at a particular

value of Q. The effect of each stochastic collision is to replace the momen-

tum of the affected particle by a new value chosen at random from a distri-

bution given by:

exp 2
πiUπi

2miQ2=3kT


 �
ð9:71Þ

The implementation of the NpT ensemble algorithm proceeds in a similar

fashion to the NpH ensemble except that allowance is made for stochastic

collisions that result in a constant temperature. The procedure is illustrated

by Algorithm 9.11.
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ALGORITHM 9.11 MD in the NpT ensemble using Andersen’s method.

Part 1 Initialization
1.1 Assign M, N, V, v, TD, pD, etc.

Assign coordinates (ri) at time (t) = 0.
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2).
dlnV/dt � 0
dV/dt � 0
d2V/dt2 � 0
Vold � V

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion: 
2.1.1 Calculate fi on each atom from all other j atoms.
2.1.2 Calculate PA.
2.1.3 Apply integrator to update ri,  ai, vi, (�nr/�tn)i.
2.1.4 Change momenta via stochastic collision:

loop i �1 ... N
if (rand() < ��t)

pi �random value from Boltzmann distribution
end if

end i loop
2.1.5 dV2/dt2 � dV2/dt2 + �t � (pD - pA)/M

dV/dt � dV/dt + �t � (dV2/dt2)
V � V +  �t � (dV/dt)
dlnV/dt � (ln(V) - ln(Vold))/ �t
Vold � V 

2.2 If (t > tEquilibration)
Accumulate averages.

end if
t � t + �t

while (t � tMax)

Algorithm 9.11 is similar to Algorithm 9.10 except for the presence of

stochastic collisions (Algorithm 9.11, Part 2.1.4). After the integrator has

updated the coordinates, velocities, accelerations, and the like, N random

numbers are generated. If rand() , νΔt, a collision is deemed to have taken

place and the momentum of the atom (pi) is assigned a random value from a

Boltzmann distribution. In the absence of any stochastic collisions

Algorithm 9.11 generates a NpH ensemble.

9.2.4.2 Extension of the Nosé�Hoover equations

The equations of motion for the NpT ensemble can be obtained as a straight-

forward extension of the Nosé�Hoover equations for the NVT ensemble. In
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terms of reduced coordinate (x � q/V1/d; d is the number of dimensions),

Hoover (1985) defined,

_x5
p

mV1=d
ð9:72Þ

_p5F2 ð_ε1 ζÞp ð9:73Þ

ζ
:
5

P
i

p2i
mi

2 gkTD

Q
ð9:74Þ

_ε5
_V

dV
ð9:75Þ

€ε5
pA 2 pD

τ2kTD
ð9:76Þ

where pA and pD are the actual and desired pressure, respectively, and τ is

the relaxation time. Equations (9.72�9.75) make use of an additional dilation

rate _ε, which is determined by using Eq. (9.76) as a feedback equation in a

similar way to the calculation of ζ in the NVT ensemble. The definition and

role of Eq. (9.76) is similar to Eq. (9.66) for Andersen’s NpH ensemble

algorithm.

The overall NpT ensemble algorithm proceeds in a similar way to the

NVT ensemble for the Nosé�Hoover equations except that both _ε and ζ
must be calculated for each time step via the feedback equations. The simu-

lation strategy is illustrated by Algorithm 9.12. To update _εand ζ, both the

sum of the squared velocities and the actual pressure must be calculated. The

actual pressure, calculated from the virial relationship (Eq. (9.65)), can

be obtained conveniently during the force evaluation (Part 2.1.1) and the

squared velocities can be calculated during the corrector step

(Algorithm 9.12, Part 2.1.4). The values of _ε and ζ are updated after the cor-

rector step (Algorithm 9.12, Part 2.1.5). It should be noted that because the

actual pressure is calculated before the application of either the corrector or

the predictor, its value at Part 2.1.5 effectively lags the simulations by one

step. However, the imprecision this introduces is likely to be very small. If

the intermolecular potential is scalable, an accurate value could be obtained

after the corrector step via a simple scaling procedure. If the intermolecular

potential is not scalable, an accurate value can only be obtained by perform-

ing a computationally expensive N(N � 1) re-evaluation.

The Nosé�Hoover approach is a topic of active interest, which have

proved particularly useful (Hoover, 2007) in NEMD (Chapter 8) simulations.

Issues addressed include reversibility (Jiang and Voth, 1997; Tchouar et al.,

2007), temperature�energy�space sampling (Fukuda and Moritsugu, 2020),

relationship to a fluctuating heat-bath (Fukuda and Moritsugu, 2016), multi-

ple thermostat systems (Morishita, 2010; Fukuda, 2016), the removal of time
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scaling (Fukuda and Moritsugu, 2017), muticanonical ensembles (Jang et al.,

2002), and dissipative particle dynamics (Allen and Schmid, 2007).

Traditionally, MD thermostats have controlled the kinetic temperature.

However, the concept of the configurational temperature embodied in

Eq. (9.25) provides an alternative. Braga and Travis (2005) have utilized

Eq. (9.25) to develop a configurational Nosé�Hoover thermostat, which has

proved (Travis and Braga, 2006) particularly useful for NEMD. The basic

concept has also been extended (Travis and Braga, 2008; Beckedahl et al.,

2016) to other situations.

ALGORITHM 9.12 MD in the NpT ensemble using the Nosé�Hoover
equations of motion and a corrector�predictor strategy.

Part 1 Initialization
1.1 Assign Q, N, TD, pD, � etc.

Assign coordinates (ri) at time (t) = 0. 
Scale coordinates (x = q/V1/d).
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2).
g �3N
� �0
�Dot � 0

1.2 Initial force calculations:
Calculate forces (fi) on from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

2.1 Integrate equations of motion using a PC method: 
2.1.1 Calculate fi on each atom from all other j atoms.

Calculate pA.
2.1.2 Predict new positions and (�nr/�tn)i (n � 2).
2.1.3 ai �fi/mi - (�Dot + �)vi

2.1.4 Correct new positions and (�nr/�tn)i (n = 1 ... m).
2.1.5 � �� + �t(�vi

2/mi - gkTD)/Q
�Dot � �Dot + �t(PA - PD)/(�2kTD)

2.2 If (t > tEquilibration)
Accumulate averages. 

end if
t � t + �t

while (t � tMax)

9.2.4.3 Constraint methods

To obtain an NpT ensemble, the following modifications are made to the

constrained NVT ensemble equations of motion (Evans and Morriss, 1984).

_r5
p

m
1χðr;pÞr ð9:77Þ
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_p5 f2χðr;pÞp-ζðr;pÞp ð9:78Þ
_V 5 3Vχðr;pÞ ð9:79Þ

These equations introduce Lagrange multipliers for both the “rate of dila-

tion” of the system (χ) and “friction” (ζ).

χ52

P
i

P
j. i

ðrijUpijÞ
mirij

dwðrijÞ
drij

� �
P

i

P
j. i rij

dwðrijÞ
drij

� �
1 9pV

ð9:80Þ

where w is the instantaneous virial and:

ζ5
P

i piUf iP
i pi
 2 2χ ð9:81Þ

The formulation of alternative NpT ensembles is an active area of

research. Melchionna et al. (1993) have reported that the trajectories of iso-

baric ensembles may have an unphysical dependence on the choice of basis

lattice vectors. To compensate, modifications to the Nosé�Hoover equations

have been proposed (Martyna et al., 1994).

9.2.5 Grand canonical (µVT) ensemble

In the grand canonical ensemble, the chemical potential is constant and the

number of particles changes. In contrast to the MC method, which handles

particle variations by straightforward addition or removal, it is considerably

more difficult to apply MD to the grand canonical ensemble. The problem

has been addressed by several workers (Lupkowski and van Swol, 1991;

Çagin and Pettitt, 1991a & b; Ji et al., 1992; Lo and Palmer, 1995;

Papadopoulou et al., 1993; Lynch and Pettitt, 1997; Kuznetsova and

Kvamme, 1999; Boinepalli and Attard, 2003; Samways et al., 2020). A fea-

ture of many MD implementations of the grand canonical ensemble is the

use of a stochastic process for particle fluctuation.

9.2.5.1 Lupkowski�van Swol method

The method proposed by Lupkowski and van Swol (1991) is a simple combi-

nation of MD and MC methods. In their approach, a conventional MD NVT

ensemble simulation is interrupted periodically by an attempt to either create

or destroy a particle. A particle is created with a probability of,

P1 5min 1; exp
μ2ΔUtrial

kT
1 ln

V

Λ3NðN1 1Þ


 �
 �� 	
ð9:82Þ
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whereas a particle is removed with a probability of:

P2 5min 1; exp 2
μ1ΔUtrial

kT
1 ln

NΛ3N

V


 �
 �� 	
ð9:83Þ

The particle creation and removal steps are conducted according to the

MC grand canonical algorithm (Algorithm 9.3). The velocity of the newly

created particle is obtained from a Maxwell�Boltzmann distribution. The

algorithm is relatively simple to implement. However, the particle creation

and removal procedure may affect the velocity autocorrelation functions

required for the calculation of transport properties.

9.2.5.2 Çagin�Pettitt method

Çagin and Pettitt (1991a & b) used the concept of “fractional particles” to for-

mulate a MD method for the grand canonical ensemble. The number of particles

in a system is considered to be a function of time. During the simulation, the

system has fractional particles at position rf, which are in the process of either

becoming full particles or vanishing. The Nosé�Hoover thermostat for an NVT

ensemble exploits parameters that couple the system to a heat-bath. To couple

the system to a chemical potential reservoir, Çagin and Pettitt introduced a real

continuous variable (c), whose integer part represents the number of particles in

the system (N). The kinetic and potential energies of the system are subse-

quently scaled by c � N. Either an adiabatic constant chemical ensemble or the

grand canonical ensemble can be formulated by keeping the chemical potential

constant. The Lagranian for the grand canonical ensemble is:

L5
1

2

XN
a51

ms2 _x2a 1
c2N

2
mf s

2 _x2f 1
W _c2

2
1

Q_s2

2

2
XN21

a51

XN
b. a

uðrabÞ2 ðc2NÞ
XN
a51

uðrfaÞ1μc2 gkTlns

ð9:84Þ

In common with the work of Andersen (1980), Nosé (1984), and Hoover

(1985) for the NVT and NpT ensembles, Eq. (9.84) is the Lagrangian for the

extended system. The variable x represents the coordinates of the extended

system, s is the parameter that couples the system to a heat-bath, and Q is

the mass associated with s. Equation (9.84) introduces the new variable W,

which can be interpreted as the mass associated with the new dynamical var-

iable c. The equations of motion for this Lagrangian are:

ms2 €xai 52
XN
b51

@uðrabÞ
@rab


 �
xabi

rab
2 ðc2NÞ @uðraf Þ

@raf


 �
xafi

raf
2 2ms_s €xai ð9:85Þ
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ðc2NÞms2 €xfi 52 ðc2NÞ
XN
a51



@uðrfaÞ
@rfa

�
xfai

rfa
2ms2 _c _xfi

2 2ðc2NÞms_s _xfi
ð9:86Þ

W €c5μ1
ms2 _x2f
2

2
XN
a51

uðrfaÞ ð9:87Þ

Q€ss5
X
a

1

2
ms2 _x2a 1

1

2
ðc2NÞms2 _x2f 2 gkT ð9:88Þ

The method has been applied successfully to determine the density

dependence of the chemical potential of a three-site water model (Ji et al.,

1992). A limitation of (Eqs. 9.85�9.88) is that they do not reproduce cor-

rectly the behavior of the ideal gas. The algorithm can be modified

(Weerasinghe and Pettitt, 1994) to include the corrected ideal gas behavior.

However, Lo and Palmer (1995) observed that the modified algorithm may

compromise the accuracy of the predicted densitytemperature�chemical

potential behavior for the LJ fluid.

9.2.5.3 Lo�Palmer method

The method of Lo and Palmer (1995) is of particular interest because it can

be used to reproduce correctly the density�temperature�chemical potential

behavior of the LJ fluid; it can be extended to the Gibbs ensemble

(Chapter 10), and in the limit, the properties of the ideal gas are described

properly. Following the general approach of Nosé (1984), Lo and Palmer

(1995) proposed an extended Hamiltonian for the grand canonical ensemble

of the form:

H5
XN
i51

p2i
2mis2

1UðqNÞ1 p2f

2mf s2
1Uf ðqN ;qf ; cÞ1

p2s
2Q

1 gkT lns1
p2v
2W

1 ckT ln ðN1 1Þ!½ �

1 ð12 cÞkT ln


VN!

Λ3
f

�
2 ðN1 cÞμ

ð9:89Þ

The earlier Hamiltonian distinguishes between the properties of ordinary

particles and “fractional” particles denoted by the subscript f. Therefore,

there is a contribution to kinetic energy and potential energy from both ordi-

nary and fractional particles. The variable c is the coupling coordinate that

couples the fractional particle to the rest of the system. It plays a similar role

to the corresponding parameter in the Çagin�Pettitt algorithm and it can
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have any value between 0 and 1. The constant W is the mass associated with

the variable c and Λf is the de Brogile wavelength of the fractional particle.

The remaining terms have the same meaning as in the Nosé�Hamiltonian

(Eq. (9.43)). When c5 1, the fractional particle is completely coupled to the

rest of the system, whereas a value of c5 0 indicates that the fractional parti-

cle is totally decoupled from the system. When c5 1, Eq. (9.89) is formally

identical to Nosé’s Hamiltonian except for the addition of the -Nμ term. In

terms of real variables, the equation of motion resulting from this

Hamiltonian are:

_p5F1Ff 2
_sp

s
ð9:90Þ

_pf 5Ff 2
_spf
s

ð9:91Þ
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_s2

s
1

s

Q

XN
i51

p2i
mi

1
p2f

mf

2 gkT

 !
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 !
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" #
ð9:93Þ

Equations (9.92) and (9.93) are feedback equations that enable the calcu-

lation of c and s and their time derivatives at each time step. A possible

implementation is illustrated by Algorithm 9.13.

The algorithm starts with a normal initialization phase (Algorithm 9.13, Part 1).

The first phase of the simulation process (Algorithm 9.13, Part 2) is to create an

equilibrated NVT ensemble (Algorithm 9.13, Part 2.1). This can be achieved by

applying any NVT ensemble algorithm; however, the Nosé�Hoover algorithm is

the most obvious choice because in the absence of a constant chemical potential,

the Lo�Palmer equations reduce to the Nosé�Hoover algorithm.

After the NVT ensemble is generated, it is transformed to a μVT ensemble

via a stochastic process (Algorithm 9.13, Part 2.2). A random choice is made to

either create (Algorithm 9.13, Part 2.2.1) or remove a particle (Algorithm 9.13,

Part 2.2.2). Creating a new particle is quite straightforward. In contrast, remov-

ing a particle requires reordering of indices. Alternatively, the deleted particle

can be simply tagged as being deleted and ignored in subsequent force evalua-

tions. If a particle is created (Algorithm 9.13, Part 2.2.1), c is set to zero, the

coordinates of the fractional particle are selected randomly, and a

Maxwell�Boltzmann distribution is used to obtain the initial velocity and _c. If a
particle is deleted (Algorithm 9.13, Part 2.2.2), the deleted particle is chosen ran-

domly, c is set to 1, and _c is obtained from a Maxwell�Boltzmann distribution.

The equations of motion are solved repeatedly (Algorithm 9.13, Part 2.3) until c

is either 0 or 1. If c equals 1 (Algorithm 9.13, Part 2.4), the fractional coordi-

nates and velocities are reassigned as ordinary particles.
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ALGORITHM 9.13 MD in a μVT ensemble using the Lo�Palmer algorithm.
Part 1 Initialization

1.1 Assign values of Q, W, N, V, T, etc.
Assign coordinates (ri) at time (t) = 0. 
Scale coordinates (x = q/V1/d).
Assign molecules an initial velocity (vi). 
Assign any other (�nr/�tn)i values (n > 2).
g �3N
s �0
sDot � 0

1.2 Initial force calculations:
Calculate forces (fi) on each atom from all other j atoms.
Calculate acceleration (ai) for each atom.

Part 2 Simulation Process
loop

if (t � tNVTEquilibration)
2.1 Create an equilibrated NVT-ensemble:

Nosé-Hoover algorithm (e.g., Algorithm 9.9).
else

2.2 Transform NVT-ensemble to a �VT-ensemble:
if (rand() < 0.5)

2.2.1 Particle addition:
c � 0
Create new particle i.
Assign coordinates for new particle i, randomly.
Assign particle i a velocity from a 
Maxwell-Boltzmann distribution.
Assign cDot a value from a Maxwell-Boltzmann distribution.

else
2.2.2 Particle removal:

i � �[ 1, N] //select a particle randomly
Delete all reference to particle i.
c �1
Assign cDot from a Maxwell-Boltzmann distribution.

end if
loop

2.3 Integrate equation of motion (eqs (9.91)-(9.94)).
Evaluate c2Dot and s2Dot from eqs (9.93) and (9.94).
sDot � sDot + �t � s2Dot
cDot � cDot + �t � c2Dot
s � s + �t � sDot
c � c + �t � cDot

2.4 if (c = 1)
Make fractional particle a real particle.

end if
if (t > tEquilibration)

Accumulate averages.
end if
t � t + �t

while (0 > c < 1)
end if

while (t � tmax)
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9.2.5.4 Beuter�van Gunsteren method

Beutler and van Gunsteren (1994) developed a grand canonical MD algo-

rithm by weakly coupling the system to a bath of constant chemical poten-

tial. Their chemical potential weak coupling (CPWC) algorithm is based on

the concepts behind the thermostat of Berendsen et al. (1984). The CPWC

algorithm relies on an estimate of the instantaneous chemical potential to

drive the system to the correct number of particles. A mean Boltzmann fac-

tor (MBF) can be obtained by performing Widom test particle insertions.

MBFðNÞ5 exp 2
Utest

kT


 �� �
N

ð9:94Þ

The MBF is related to the residual chemical potential via the

relationship:

μr 52 kT lnðMBFðNÞÞ ð9:95Þ
The correct number of particles is estimated using,

Nðt1ΔtÞ5NðtÞ1 round αN MBFðNÞ2MBFðNðtÞÞð Þ½ � ð9:96Þ
where αN is a coupling constant and round yields the nearest integer of the

term in square brackets. Application of the CPWC algorithm has three dis-

tinct stages.

Stage 1. Sampling. The value of MBF(N(t)) is determined by performing

nw Widom particle insertions for each of the n1 MD time steps. At the end of

this sampling period, Eq. (9.96) is used to determine the change in the num-

ber of particles.

Stage 2. Growing/shrinking. A total of n2 time steps are involved in this

stage. If particles are added, a MC estimate is used to determine the energeti-

cally most favorable starting points for new particles. The particles are given

an initial velocity of zero and the size of their interactions are scaled pro-

gressively from zero to their full values. If particles are removed, the parti-

cles with the highest potential energy are chosen to be scaled down to zero

interaction in n2 time steps.

Stage 3. Relaxation. The sub-ensemble created following the growing/

shrinking phase is simulated for n3 MD time steps.

9.2.5.5 Parallel algorithm

Vega et al. (1994) reported an algorithm which exploits parallelism. The dis-

tinguishing feature of the parallel grand canonical MD (PGCMD) algorithm

is that several different NVT ensembles are generated with different number

of particles. At each time step, a decision is made to change to an ensemble

with either greater or fewer number of particles. The change in ensemble,

which effectively corresponds to either a particle addition or removal, is

accepted with the following probability
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ð9:97Þ

P2 5min 1;
Nexp 2 μ

kT
2 ln V

Λ3
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exp 2Utest

kT
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N21

24 35 ð9:98Þ

where P1 represents the probability of moving between an ensemble containing N

particles to an ensemble containing N 1 1 particles whereas P2 is the probability

of moving from an ensemble containing N particles to an ensemble containing

N �1 particles. The implementation of this method is illustrated by Algorithm 9.14.

ALGORITHM 9.14 Parallel grand canonical molecular dynamics (PGCMD)
algorithm.

Part 1 Initialization
1.1 Assign values of N, V, T.

Assign values required for NVT ensemble algorithm.
Assign maximum fluctuation in N (fluctuation).

1.2 Generate several ensembles:
loop i � (N - fluctuation) .... (N + fluctuation)

Assign coordinates (ri) at time (t) = 0 for ensemblei.
Assign molecules initial velocities for ensemblei.

1.2.1 Calculate forces (fi) in ensemblei.
Calculate acceleration (ai) for each atom.

1.2.2 Calculate <exp(-Utest/kT)>i

end i loop
i �N

Part 2 Simulation Process
loop

2.1 Solve NVT-ensemble equation of motions for ensemblei.
2.2 Attempt change in ensemble:

if (rand() � 0.5)
2.2.1 Attempt to move to an ensemble with more particles:

Apply eq. (9.96).
if (attempt is successful)

i � i + 1
end if

else
2.2.2 Attempt to move to an ensemble with fewer particles:

Apply eq. (9.97).
If (attempt is successful)

i � i - 1
end if

end if
2.3 if (t > tEquilibration)

Accumulate averages.
end if
t � t + �t

while (t � tmax)
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The initialization phase (Part 1) of Algorithm 9.14 is considerably more

complicated than the initialization phase of a normal MD simulation. It

involves creating several different ensembles (Algorithm 9.14, Part 1.2) at

the same temperature and volume but with a different number of particles.

For each ensemble, initial coordinates and forces (Algorithm 9.14, Part

1.2.1) must be calculated in addition to the Widom test particle term

(Algorithm 9.14, Part 1.2.2). In Part 2, a particular NVT ensemble is selected

and the particle coordinates are evolved (Algorithm 9.14, Part 2.1) until a

successful attempt is made to change the ensemble (Algorithm 9.14, Part

2.2). The attempt to change to an ensemble with more or fewer particles is

made with equal probability. Equation (9.97) is used to determine the suc-

cess of a move to an ensemble with more particles (Algorithm 9.14, Part

2.2.1), otherwise Eq. (9.98) is used (Algorithm 9.14, Part 2.2.2). The new

NVT ensemble is in turn evolved until a new ensemble is selected.

Consequently, at any time step, only one ensemble is evolving and the other

ensembles remain dormant. Ensemble averages are accumulated from the

current ensemble in the usual way (Algorithm 9.14, Part 2.3). Any NVT

ensemble algorithm can be used to evolve the ensemble.

It is apparent that implementing the PGCMD algorithm in conventional

procedural languages is awkward, requiring a considerable amount of book-

keeping to keep track of the properties of the various ensembles. In contrast,

we note that implementation of PGCMD in an object-oriented language is

simply involves using different objects of type ensemble (Chapter 11).

9.3 Summary

The choice of ensemble governs the nature of the simulation algorithm. The

natural choice for MC simulations is the canonical ensemble but it is rela-

tively simple to construct MC algorithms for other ensembles. In contrast,

the equations of motion lead naturally to a microcanonical ensemble and

MD simulation in other ensembles involves altering the equations of

motions. The MD implementation of the grand canonical ensemble invari-

ably involves the introduction of stochastic elements. An implementation of

both MC and MD simulation in the microcanonical ensemble is given in

Chapter 11.

References

Abramowitz, A., Stegun, I.A., 1970. Handbook of Mathematical Functions. Dover, New York.

Adams, D.J., 1974. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol.

Phys. 28, 1241�1252.

Allen, M.P., Schmid, F., 2007. A thermostat for molecular dynamics of complex fluids. Mol.

Sim. 33, 21�26.

Allen, M.P., Tildesley, D.J., 2017. Computer Simulation of Liquids, second ed. Oxford

University Press, Oxford.

Molecular simulation of ensembles Chapter | 9 353

http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref1
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref2
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref2
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref2
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref3
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref3
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref3
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref4
http://refhub.elsevier.com/B978-0-323-85398-9.00003-4/sbref4


Andersen, H.C., 1980. Molecular dynamics at constant pressure and/or temperature. J. Chem.

Phys. 72, 2384�2393.

Baldovin, F., Chavanis, P.-H., Orlandini, E., 2009. Microcanonical quasistationarity of long-

range interacting systems in contact with a heat bath. Phys. Rev. E 79, 011102.

Beckedahl, D., Obaga, E.O., Uken, D.A., Sergi, A., Ferrario, M., 2016. On the configurational
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Chapter 10

Molecular simulation of phase
equilibria

Molecular simulation is performed most commonly for a single isolated system

characterized by certain physical properties that define the nature of the ensemble

(Chapter 2). In effect, these simulations represent the properties of the fluid for a

single isolated phase. However, the techniques of molecular simulation can be

extended to multiple phases, providing a powerful tool for the investigation of the

phase coexistence of both pure fluids and fluid mixtures. Historically, the applica-

tion of molecular simulation to phase equilibria has lagged applications to other

areas. This can be attributed partly to the difficulty in obtaining free energy or

chemical potential data required for phase coexistence. Phase transitions for elastic

disks were first reported by Alder and Wainwright (1962), and Hoover and Ree

(1967) located a melting transition via molecular simulation. Hansen and Verlet

(1969) reported simulations of vapor�liquid equilibria (VLE) for a Lennard-Jones

(LJ) fluid (Chapter 3). Later, Adams (1976, 1979) reported extensive Monte Carlo

(MC) (Chapter 6) calculations for the vapor line of a LJ fluid. The advent of the

Gibbs ensemble (Panagiotopoulos, 1987) has been the impetus for a massive

increase in the number, range, and scope of phase equilibria simulations.

Conceptually, the most straightforward method for simulating coexisting

phases is to divide the simulation box into distinct regions. For example, VLE

can be simulated in a box containing three distinct regions that correspond the liq-

uid phase, vapor phase, and an interfacial region, respectively. The simulation is

initiated by introducing a slab of previously equilibrated liquid into the center of

the simulation box with a vacuum on either side. If the density of the liquid is

close to coexisting density, the liquid will evaporate into the vacuum to form a

stable two-phase system. This approach is particularly useful for interfacial studies

(Rowlinson and Widom, 1982). A disadvantage of this approach is that the den-

sity must be known in advance. However, Chapela et al. (1987) have reported a

variation of the traditional approach, which overcomes this difficulty.

The two-phase method is conceptually appealing because it corresponds

directly with experimental observation. However, the disadvantages of the method

are numerous. The simulations are slow because a large number of molecules are

required and the equilibration of the interfacial region is a slow process. It is diffi-

cult to simulate stable phase equilibria between phases of similar densities.
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Furthermore, the confinement of the fluid between parallel walls can potentially

influence both the density and pressure of the coexisting phases resulting in a sim-

ulation of the properties of confined fluids rather than a bulk fluid.

The limitations of the traditional two-phase method are overcome by

using the Gibbs ensemble (Panagiotopoulos, 1987, 1992a). The Gibbs

ensemble method is characterized by two homogeneous phases that are in

thermodynamic equilibrium but not in physical contact. Unlike the two-

phase method, there is no interface thus resulting in much shorter run times.

The Gibbs ensemble was formulated originally as a MC method, however,

a few molecular dynamics (MD) (Chapter 9) implementations of the Gibbs

ensemble have been proposed (Palmer and Lo, 1994; Vega et al., 1994;

Kotelyanskii and Hentschke, 1995; Baranyai and Cummings, 1996).

Indirect methods provide an alternative to direct methods of simulating

phase equilibria. Indirect methods work by calculating the chemical potential

for a series of state points. Phase coexistence can be determined by finding

points in the state space where two phases have the same chemical potential,

pressure, and temperature. Conventional molecular simulations do not pro-

vide information on thermal properties such as free energies but instead yield

mechanical properties such as the energy and pressure. Consequently, special

techniques are required such as test particle methods, umbrella sampling,

grand canonical and semigrand ensembles, and thermodynamic integration.

Comprehensive reviews of these methods are available elsewhere (Gubbins

et al., 1983; Gubbins, 1989, 1994; Frenkel, 1986). Generally, indirect meth-

ods are less efficient computationally than direct methods.

It should be noted that progress in the simulation of phase equilibria is being

made continually (Kofke, 1993a; de Pablo et al., 1999; Bruce and Wilding,

2003; Panagiotopoulos, 2000). For example, efficient histogram reweighting

algorithms have been reported (Kiyohara et al., 1997, 1998), which can in turn

be used in conjunction with transition-matrix MC (Shen and Errington, 2005;

Singh, 2018). The focus has been mainly on VLE, however, improved algo-

rithms for solid�liquid equilibria (SLE) have also been reported (Ge et al.,

2003; Singh et al., 2021; Deiters and Sadus, 2022a,b). We will largely restrict

our attention to advances made post-1985. Comprehensive reviews of earlier

work are available elsewhere (Rowlinson and Widom, 1982; Gubbins et al.,

1983; Frenkel, 1986; Gubbins, 1989, 1994; Frenkel and Smit, 2023).

10.1 Calculating the chemical potential

The criteria for phase equilibria requires the equivalence of temperature

(thermal equilibrium), pressure (mechanical equilibrium), and chemical

potential (material equilibrium) for every particle in the coexisting phases.

Consequently, the chemical potential is a very important quantity, particu-

larly for indirect methods that rely on an accurate determination of the chem-

ical potential. In other methods such as the Gibbs ensemble, which does not
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rely on knowledge of the chemical potential, calculating the chemical poten-

tial can serve as independent verification that equilibrium has been attained.

The most common approach for calculating the chemical potential is the

Widom test particle method (Widom, 1963). The method involves inserting a

“ghost” particle (i) randomly into the ensemble and calculating the energy of its

interaction (Ui,test) with the particles of the ensemble. For a canonical ensemble,

the residual chemical potential (i.e., the chemical potential minus the contribution

from the ideal gas) is obtained subsequently from the following ensemble average:

μir 52 kTln expð2βUitestÞ
� �

N
ð10:1Þ

It should be stressed that because the test particle is a “ghost,” it does not affect

the properties of the N real molecules of the ensemble. Eq. (10.1) can be applied

to every type of molecule and it is completely independent of any assumption con-

cerning pairwise additivity or the nature of intermolecular forces. Eq. (10.1) can be

incorporated easily into a conventional molecular simulation. In principle, it can

be used to calculate the chemical potential at any density, however, in practice

some difficulties are encountered at high density. At high density, attractive config-

urations make the dominant contribution to Eq. (10.1) but they are sampled less

frequently as the density is increased because of the exp(�βUitest) term.

Strictly, Eq. (10.1) is only valid for the canonical ensemble. In the NpT

ensemble, density variations mean that Eq. (10.1) should be replaced with:

μir 52 kT ln
Vexpð2βUitestÞ
� �

Vh i

� 	
ð10:2Þ

Generally, either Eqs. (10.1) or (10.2) yield similar results. However,

there are significant differences near the critical region.

For the Gibbs ensemble, the correct theoretical value of the chemical

potential can be calculated from (Smit and Frenkel, 1989):

μir 52 kT ln
V

N1 1
expð2βUitestÞ

� �
ð10:3Þ

In practice, the values obtained from Eq. (10.3) only vary significantly

from the results of Eq. (10.1) in the region of the critical point.

As noted earlier, the simple test particle method fails at high densities. Several

strategies have been proposed to improve the calculation of the chemical potential.

One possibility is to use umbrella sampling (Torrie and Valleau, 1974). The prin-

ciple behind umbrella sampling is to assign a weight (w) to the configurational

energy (U). The weighting function is chosen to sample regions of E that are

important to the chemical potential. For example, in a MC simulation, configura-

tions are chosen with a probability of w(Utest)exp(�βU) instead of exp(�βU).
Consequently, the ensemble average in Eq. (10.1) is obtained from:

expðβUitestÞ
� �

5
expð2βUitestÞ=w
� �

1=w
� � ð10:4Þ
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This procedure works well for LJ fluids (Torrie and Valleau, 1977) at high liq-

uid densities. However, the limitations of the procedure are that appropriate

weights can only be obtained by trial and error and, unlike the test particle method,

it requires considerable modification to the conventional MC simulation algorithm.

An alternative to “ghost” particle insertions is to use real molecules to evalu-

ate the chemical potential. When real molecules are used as test particles, the

equation for the chemical potential becomes (Shing and Gubbins, 1982).

μir 5 kTln expð2βUitestÞ
� �

N11
ð10:5Þ

This equation can be rewritten (Shing and Gubbins, 1982) as,

μir 5 kTln

ðN
2N

gðUitestÞexpð2βUitestÞdUitest ð10:6Þ

where g(Uitest)dUitest is the probability that Uitest for a real test molecule lies

in the range Uitest to Uitest 1 dUitest. For a given Uitest, the distribution func-

tions f and g are related by:

gðUitestÞ5 expðβμirÞ expð2βUitestÞf ðUitestÞ ð10:7Þ
The averages in Eqs. (10.5) and (10.6) are dominated by repulsive config-

urations that are likely to be positive even at moderate densities. Therefore,

it should be noted that special sampling techniques are required (Shing and

Gubbins, 1982; Kumar, 1992) to take advantage of these equations.

The calculation of the chemical potential is an area of continuing research

interest. Rowley et al. (1994, 1995) proposed an osmotic MD method for calculat-

ing the chemical potential. Their method involves establishing an osmotic equilib-

rium across a semipermeable membrane. The chemical potential is calculated

using the mechanical properties of the fluid on either side of the membrane.

Swope and Andersen (1995) reported calculations of the chemical potential in a

“bicanonical ensemble.” The bicanonical ensemble is characterized by a tempera-

ture and a volume in which all systems have either N or N�1 particles. The chem-

ical potential is related to the fraction of the systems that have N particles. Sokhan

(1997) developed a coupled test particle approach for determining the chemical

potential at high liquid densities. Soto-Campos et al. (1998) have discussed the cal-

culation of chemical potentials using a small system grand ensemble method.

10.2 Gibbs ensemble Monte Carlo

In principle, because the grand canonical ensemble allows chemical potential to

be specified, it can be used to determine phase coexistence. However, the grand

canonical ensemble is not a practical method for calculating phase coexistence

because a large number of simulations are required to determine the phase enve-

lope, and the computational cost increases dramatically for two or more
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components. The chemical potential can also be calculated by using Widom’s test

particle approach in conjunction with a NVT ensemble simulation. The most con-

venient and widely used method for calculating phase coexistence is to use the

Gibbs ensemble (Panagiotopoulos, 1987; Panagiotopoulos et al., 1988).

Panagiotopoulos (1987) proposed that phase coexistence could be simulated

by following the evolution in phase space of a system composed of two distinct

regions. Equilibrium between the different region or phases is achieved by per-

forming three distinct MC moves as illustrated by Fig. 10.1. Molecular displace-

ments are attempted to obtain internal equilibrium resulting in equivalence of

temperatures. Mechanical equilibrium requires that the pressure in the two

regions are identical and this is obtained by allowing fluctuations in volume.

Attempts are made to exchange particles between the regions to obtain material

equilibrium. The acceptance of the three moves are governed by the normal

acceptance criterion for MC moves involving the “pseudo-Boltzmann term” (min

[1, exp(�βΔY)]) discussed in Chapter 6. In the case of molecular displacement,

ΔYdisp 5ΔUα 1ΔUβ ð10:8Þ

(A) Attempt molecular displacement

Box 2: N2, V2, T  

(B) Attempt volume fluctuation

(C) Attempt molecular transfer 

Box 1: N1, V1, T

Box 1: N1, V1 + ∆V, T  

Box 1: N1 + 1, V1, T  

Box 2: N2, V2 - ∆V, T  

Box 2: N2 - 1, V2, T  

FIGURE 10.1 Illustration of MC moves used in the Gibbs ensemble.
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where the subscripts α and β denote the two different regions or simulation

boxes. For volume changes, we have:

ΔYvolume 5ΔUα 1ΔUβ

2NαkTln
Vα 1ΔVα

Vα
2NβkT ln

Vβ 1ΔVβ

Vβ
1 pðΔVα 1ΔVβÞ

ð10:9Þ
In the Gibbs ensemble, the total number of particles is conserved.

Consequently, a successful particle transfer from box β to box α implies a

particle destruction in box β. For particle transfers, we obtain:

ΔYtrans 5ΔUα 1ΔUβ 1 kT ln
VβðNα 1 1Þ

VαNβ
ð10:10Þ

A general scheme for a Gibbs ensemble MC (GEMC) calculation is illus-

trated by Algorithm 10.1. A feature of Algorithm 10.1 is that the sequence

of moves is determined randomly instead of being predetermined. It is possi-

ble to use a predetermined sequence, however, when the probability of parti-

cle transfer exceeds 3%, erroneous results may be obtained (Smit, 1992).

In the particle displacement step (Algorithm 10.1, Part 2.1), new particle coordi-

nates are chosen randomly, whereas in the volume change step (Algorithm 10.1,

Part 2.2), the length of the simulation box is either decreased or increased by a ran-

dom amount. Typically, at least a 50% acceptance rate is desirable to achieve equi-

librium efficiently, however, this is only a guide and it does not have any

theoretical justification. The acceptance rate can be adjusted by altering the values

of the maximum possible displacement and maximum change in box length. For

many intermolecular potentials (Chapters 3 and 4), the effect of a change in volume

can be calculated simply by scaling the molecular coordinates (see Chapter 8).

The particle transfer step (Algorithm 10.1, Part 2.3) involves selecting ran-

domly a molecule in one box and attempting to insert it randomly in the other

box. It is difficult to prescribe exactly a desirable acceptance rate for particle

transfer. In the case of mixtures, it is important that each particle is selected with

equal probability to satisfy the requirements of thermodynamic reversibility.

Typically, an acceptance rate of a few percent is usually sufficient for material

equilibrium. During the particle transfer test, the chemical potential can be easily

calculated using Widom’s test particle approach. Identical, or at least very similar

chemical potentials in the boxes, indicate that the acceptance rate is satisfactory

and that material equilibrium has been achieved.

Eqs. (10.8)�(10.10) can be used to generate either a NVT Gibbs ensemble

or an NpT ensemble depending on the treatment of volume fluctuations in

Eq. (10.9). For the NVT Gibbs ensemble, the total volume of the two boxes is

conserved, that is, ΔVα5�ΔVβ, whereas for the NpT ensemble, the volume

fluctuation of the two boxes are independent of each other. An alternative

implementation of the Gibbs ensemble, which allows heat exchange between

the phases, is discussed elsewhere (Kristóf and Liszi, 1998).
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ALGORITHM 10.1 Gibbs ensemble MC.

Part 1 Initialization:
Specify the number of cycles (nCycles), number of particles in
the boxes (nBox1, nBox2), number of volume (nVol), transfer
attempts (nTrans), and the total number of moves 
(nTotal = nBox1 + nBox2 + nVol + nTrans).

Part 2 Generate Markov chain:
loop i �1 ... nCycles

loop j �1 ... nTotal
if (rand() � nBox1/nTotal) //Decide which move to perform

Part 2.1 Displace particle in box 1.
else if(rand() � (nBox1 + nBox2)/nTotal)

Displace particle in box 2.
else if(rand() � (nBox1 + nBox2 + nVol)/nTotal)

Part 2.2 Change volume.
else if(rand() �

(nBox1 + nBox2 + nVol + 0.5nTrans)/nTotal)
Part 2.3 Transfer particle from box 1 to box 2.

else
Transfer particle from box 2 to box 1.

end if
end j loop

end i loop

GEMC is arguably the most commonly used algorithm for fluid phase equilib-

ria (Panagiotopoulos, 1992a; Panagiotopoulos, 2000; Silva Fernandes and Fartaria,

2015). It has been used widely to predict VLE in both conventional one-

component fluids and binary mixtures and extended to cover quantum systems

(Kowalczyk et al., 2013; Fantoni and Moroni, 2014). It has been used in conjunc-

tion with many empirical intermolecular potentials (Chapters 3 and 4) including

the LJ (Panagiotopoulos, 1987; Plačkov and Sadus, 1997; Potoff and

Panagiotopoulos, 1998), square-well (Vega et al., 1992), Stockmayer (Smit et al.,

1989), restrictive primitive (Panagiotopoulos, 1992b), Yukawa (Rudisill and

Cummings, 1989), Gay�Berne (de Miguel et al., 1990), Keesom (Sadus, 1996a),

Mie (Mick et al., 2015; Sadus, 2020a,b), and double-Gaussian core model (Losey

and Sadus, 2019) potentials. The VLE behavior of various water models

(Chapter 4) have been evaluated (Raabe and Sadus, 2007) and it has been used

(Vogt et al., 2001; Vlasiuk et al., 2016; Vlasiuk and Sadus, 2017; Deiters and

Sadus, 2019) to evaluate the pure component VLE behavior displayed by ab initio

potentials. GEMC has also been applied (Sadus, 1998a; Marcelli and Sadus,

1999; Wang and Sadus, 2006a; Sadus, 2020c; Raabe and Sadus, 2003) to study

the relative effect of two- and three-body interaction on the VLE of pure fluids.

Contrary to some earlier indications (Valleau, 2003), there is evidence (Dinpajooh

et al., 2015) that GEMC can be used to accurately determine VLE critical points

using relatively small system sizes.
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Examples of GEMC binary VLE simulations include mixtures modeled via

the LJ (van Leeuwen et al., 1991), hard-sphere/soft-sphere (Amar, 1989), Keesom

(Sadus, 1996b), and Mie (Potoff and Kamath, 2014; Mick et al., 2015) potentials.

The VLE of hydrocarbon mixtures (de Pablo and Prausnitz, 1989), polydisperse

fluids (Stapleton et al., 1990), and the effect of three-body interactions in mixtures

(Marcelli and Sadus, 2001) have also been determined using GEMC. In general,

the results are remarkably insensitive to the number of molecules used with the

possible exception of near-critical equilibria (Valleau, 1998). The method has

been applied to the calculation of Henry’s constant (Sadus, 1997) at vapor�liquid

and liquid�liquid phase boundaries. The Gibbs ensemble can also be used in con-

junction with a “reaction ensemble” to simulate phase-dependent chemical reac-

tions (Johnson et al., 1994; Smith and Triska, 1994).

Binary mixtures also provide the first opportunity to study liquid�liquid

equilibria (LLE). GEMC can also be used for LLE, although greater difficulties

are encountered in the particle exchange step, which now involve the insertion

of atoms or molecules between phases of similar densities. Nonetheless, success-

ful GEMC for LLE in binary mixtures have been reported for several different

cases (Sadus, 1996b, 1998b; Bergermann et al., 2021a,b).

As discussed previously, GEMC can be easily applied to one, two, three, or

more components. However, applications of the GEMC have been overwhelmingly

restricted to either pure components or binary mixtures. This situation, which is

common to other phase behavior algorithms, reflects the relative interest in such

systems rather than any theoretical impediment. Indeed, the ease of extending

GEMC to multicomponent mixtures would make it arguably the method of choice

for systems containing three or more components. A few examples of GEMC simu-

lations for ternary mixtures have been reported (Tsang et al., 1995; Sadus, 1999).

The main limitation of the MC Gibbs ensemble method is that it is diffi-

cult to apply successfully for highly nonspherical, multisegment, or strongly

interacting molecules because the particle transfer step has a very low proba-

bility of acceptance for these molecules. In this context, the use of the Gibbs

ensemble algorithm with configurational bias methods is advantageous (see

Chapter 6). Gromov et al. (1998) have reported calculations of polymer-

supercritical solvent mixtures using an “expanded” Gibbs ensemble in con-

junction with a multiple-time-step hybrid MC technique, which alleviates

this difficulty. This issue has been addressed using a continuous fractional

component (CFC) MC move (Shi and Maginn, 2008), which involves assign-

ing the strength of particle interaction on a scale of 0 (ideal gas) to 1 (nor-

mal). The CFC MC approach results in increased efficiency (Rahbari et al.,

2021) of particle exchanges between phases. Another possible solution to

this problem is the formulation of a MD equivalent of the Gibbs ensemble

(Palmer and Lo, 1994; Hentschke et al., 1996). The MD adaption (discussed

below) also makes use of fractional particles to facilitate particle exchanges.

The difficulty of particle transfer means that GEMC is not a practical

algorithm for SLE, although an attempt (Sweatman and Quirke, 2004) has
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been made to address this issue. Eike et al. (2005) have discussed the chal-

lenges posed by SLE for simulation algorithms in general.

10.3 MD Gibbs ensemble

The Gibbs ensemble was developed initially as a MC technique for calculating

phase equilibria. The main limitation of the MC implementation of the Gibbs

ensemble is that it does not handle large molecules efficiently. It is difficult to

design MC moves for molecules with large or complicated molecular structures

that sample configuration space efficiently, and successful particle exchanges

become increasingly rare. To overcome these difficulties, some MD Gibbs ensem-

ble methods have been developed (Palmer and Lo, 1994; Kotelyanskii and

Hentschke, 1995; Baranyai and Cummings, 1996) as detailed below. Very little

use has been made of these MD adaptations. These methods have also be supple-

mented by MD simulations (Kuznetsova and Kvamme, 2005; Eslami and Müller-

Plathe, 2007) of the grand canonical ensemble.

10.3.1 Lo�Palmer method

A MD implementation of the Gibbs ensemble has been proposed based on

the following Hamiltonian (Palmer and Lo, 1994).

H5
XNα
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1 uαðqNα Þ1
XNβ
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2mj
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1 cαkT ln VβðNα 1 1Þ!Nβ!
� �

1 cβkT ln VαðNβ 1 1Þ!Nα!
� �

ð10:11Þ

Eq. (10.11) is an extension of Eq. (9.89) (Lo and Palmer, 1995) for two differ-

ent phases denoted by α and β of volume Vα and Vβ, respectively. It is written in

terms of real variables. The total volume of the system is conserved (Vtotal5Vα
1 Vβ). The subscripts i and j refer to the ordinary particles in boxes α and β,
respectively, whereas the label f denotes a fractional particle that exists simulta-

neously in both boxes. We can distinguish between the coordinates q and

momenta p of the ordinary particles (qαi, pαi, etc.) and fractional particles (qαf,

pαf, etc.). The terms cα and cβ are coupling parameters for the two boxes, which

satisfy the relationship cα 1 cβ5 1. Consequently, when cα5 1, the fractional

particle is coupled completely to box α, whereas when cβ5 1, the fractional parti-

cle is coupled completely to box β. The temperatures of the two boxes are con-

trolled separately using two Nosé thermostats with the velocity scaling parameters

s1 and s2. The variables ps1, ps2, pVα, and pcα are the momenta conjugate to s1,

s2, Vα, and cα, respectively. The constants Q1, Q2, W, and X are the masses
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associated with the velocity scaling variables s1 and s2, the volume Vα, and the

coupling parameter cα, respectively. The constants g1 and g2 denote the total num-

ber of degrees of freedom of each box, and the u terms are the potential energy

functions of the two boxes.

The equations of motion derived from this Hamiltonian are:
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The equations of motion for the remaining coordinates and s2 can be

obtained by manipulating the indices of Eqs. (10.12) to (10.15).

An implementation of the Lo�Palmer method for a multiphase system is illus-

trated by Algorithm 10.2. The first step in the simulation process (Algorithm 10.2,

Part 2) involves generating an equilibrated NVT ensemble for each phase

(Algorithm 10.2, Part 2.1). The phases are initially characterized by an identical

temperature but different number of particles, volumes, and pressure. The NVT

ensembles can be generated by any suitable algorithm; however, it is convenient to

use the Nosé�Hoover algorithm (Algorithm 10.2, Part 2.1.1) because, when there

are no particle fluctuations, the Lo�Palmer algorithm reduces to the Nosé�Hoover

algorithm. After the NVT ensemble equilibration period (Algorithm 10.2, Part 2.2),

a particle is chosen randomly from one of the phases α (Algorithm 10.2, Part

2.2.1). The chosen particle represents the fractional particle fα for phase α, cα5 1,

and _cα is obtained from a Boltzmann distribution. A particle is inserted into another

phase β (Algorithm 10.2, Parts 2.2.2 and 2.2.3) with momenta obtained from a

Boltzmann distribution. The inserted particle fβ represents the fractional particle in

phase β with cβ5 0. Solutions to the equations of motion [Eqs. (10.12) to (10.15)]

are obtained until cα equals 0 or 1 (Algorithm 10.2, Part 2.2.4). A value of cα5 1

indicates that the fractional particle has become coupled to phase α. Consequently,
it is transformed (Algorithm 10.2, 2.2.5) into a normal particle of phase α. If
cα5 0, the fractional particle has become coupled to phase β and it is transformed

to a normal particle of phase β. The other fractional particle fβ is removed and the
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entire procedure is repeated until the simulation is completed. Averages are accu-

mulated following an equilibration period (Algorithm 10.2, Part 2.2.6).

ALGORITHM 10.2 Gibbs ensemble MD using the Lo�Palmer algorithm.

Part 1 Initialisation:
Assign values of W, Q, X, N1, N2,  V1, V2,  T, etc.

Part 1.1 Initialise all  phases:
loop i � 1 ... nPhases

Assign coordinates (ri) at time (t) = 0.
Assign molecules initial velocities.
Scale coordinates.
gi �3N
si �0
siDot � 0

end loop

Part 2 Simulation Process:
Part 2.1 Create equilibrated NVT-ensembles for nPhases:

loop
loop i � 1 ... nPhases

Part 2.1.1 Implement Nosé-Hoover algorithm for ensemblei

(e.g. Algorithm 9.9).
end loop
t � t + �t

while (t � tNVTEquilibration)
Part 2.2 Implement Lo-Palmer Algorithm:

loop
� � � integer[1, nPhases] // Choose a phase randomly

Part 2.2.1 Choose a fractional particle randomly for the phase:
f� � � integer[1, N�]
c� � 1
c�Dot � Boltzmann distribution

Part 2.2.2 Choose the insertion phase randomly:
loop

� � � integer[1, nPhases]
while (� � �)

Part 2.2.3 Insert a fractional particle (f�) into phase �.
pf� �Boltzmann distribution
c�� 0

Part 2.2.4 loop
Evaluate eqs. (10.12) to (10.15).
t � t + �t

while ( c� < 1)
Part 2.2.5 if (c� = 1)

Re-assign f� as a normal particle of phase �.
else

Re-assign f� as a normal particle of phase �.
end if
Remove f�.

Part 2.2.6 if (t > tEquilibration)
Accumulate averages.

end if
while (t � tMax)
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10.3.2 Kotelyanskii�Hentschke method

Kotelyanskii and Hentschke (Kotelyanskii and Hentschke, 1995, 1996;

Hentschke et al., 1996) have also used a fractional particle approach to

derive a MD version of the Gibbs ensemble. To simulate a variable num-

ber of molecules in the simulation boxes, they introduced an additional

degree of freedom ξi for each molecule. The value of ξi can vary between

0 and 1. When ξi5 1, molecule i is in box 1 whereas when ξi5 0, the

molecule is in box 2. At intermediate values of ξi, the molecule is in a

transition state and it is felt by both boxes. Consequently, the potential

energy of the system is a function of both ξi and the intermolecular

coordinates,

Uðrij; ξi;V1;V2Þ5
X
i, j

uðrij;V1Þξiξj 1 uðrij;V2Þð12 ξiÞð12 ξjÞ
� �

1
X
i

gðξiÞ

5U1 1U2 1
X
i

gðξiÞ

ð10:16Þ

where Vi and Ui are the volumes and energies, respectively, of the boxes

indicated by the subscript. In Eq. (10.16), g(ξi) is a potential function, which

accounts for the presence of transition state molecules. The value of g must

equal zero at either ξi5 0 or ξi5 1 but it is greater than zero at intermediate

values of ξi, which correspond to any transition molecule. Kotelyanskii and

Hentschke (1995) proposed the following g function,

gðξiÞ5 w tanhðvξiÞ1 tanh vð12 ξiÞ
� �

2 1
� �

0# ξi # 1

N otherwise

�
ð10:17Þ

where w and v represent a height barrier and steepness parameter, respec-

tively between the states corresponding to the real particles. The effect of

the w and v parameters is to make the transition state unfavorable

energetically.

The conditions for phase coexistence require that the temperature, pres-

sure, and chemical potential of the coexisting phases are identical. For a one-

component system, this is achieved by ensuring that every change of volume

in one of the boxes is accompanied by an opposite but equal change in vol-

ume in the other box. Therefore the total volume of the system remains con-

stant, whereas the volumes of the individual boxes are variable. The MD

equation of motion for a one-component system becomes:

p5m_r ð10:18Þ

_p52
@U

@r
5 ηp ð10:19Þ
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Together, Eqs. (10.22) to (10.24) determine the evolution of particle

coordinates, particle transfers, and volume fluctuations. The variables pi and

pξ are the momenta conjugate to the normal Cartesian coordinates, and the

transfer coordinate, respectively. Eqs. (10.18) and (10.19) represent the evo-

lution of a system that is coupled to an external heat-bath of temperature T.

In the case of only one simulation box they correspond to a NVT simulation

controlled with the Nosé�Hoover thermostat (Chapter 9). The transfer of

molecules between the boxes is controlled by Eqs. (10.21) and (10.22).

Eqs. (10.23) and (10.24) are the equations of motion of the box of volume

V1, where pV1
is a momentum variable conjugate to V1 and Qp is a parameter

governing volume relaxation. The volume changes are controlled by the dif-

ference between the instantaneous values of the “external” pressures pe1 and

pe2 in the two boxes.

The method can be extended easily to multicomponent fluids. For exam-

ple, to simulate two-phase coexistence in a two-component system,

Eqs. (10.23) and (10.24) are replaced by,

_pVk
5Qp

_Vk ð10:25Þ

_pVk
5 pek 2 p ð10:26Þ

where p is the predetermined value of pressure and k5 1,2.

10.3.3 Baranyai�Cummings method

Baranyai and Cummings (1996) have proposed a MD implementation of the

Gibbs ensemble in which the conditions for mechanical and thermal equilib-

rium are obtained from the equations of motion via a Hoover-type determin-

istic feedback approach, whereas a MC move is used to determine the

equivalence of the chemical potentials.
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The system is considered to be constrained by the following conditions:

V 5V1 1V2 ð10:27Þ
N5N1 1N2 ð10:28Þ

The equations of motion are derived to satisfy the above constraint while

guiding the system to mechanical and thermal equilibrium. The starting

points are the equations of motion in the Hoover-type form,

_q5
p

m
1 ε q2R0ð Þ ð10:29Þ

_p5F2 εp2αp ð10:30Þ
where R0 is the center of mass of the system, ε is a strain rate factor that

couples the system to a barostat, and α is the feedback multiplier that cou-

ples the system to a heat-bath. These equations are supplemented by the

Nosé�Hoover thermostat (Chapter 9),
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QT
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2 1
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ð10:31Þ

where QT is a constant and T0 is the reservoir temperature.

The change in volume can be obtained using ε.

_V 5 3Vε ð10:32Þ
To obtain equations for dε/dt while maintaining the restriction of constant

volume, Eq. (10.27) is differentiated twice with respect to time.
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5 0 ð10:33Þ

To relate dε/dt to the pressure of the two phases, we have,
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where QV is a constant. If Eqs. (10.34) and (10.35) are substituted into

Eq. (10.33), it becomes apparent that the relative volume changes are deter-

mined by the difference in the instantaneous pressures.

V1 _ε1 2V2 _ε2 5
2 p1 2 p2ð Þ

QV

ð10:36Þ
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Eqs. (10.29)�(10.35) govern the dynamics of both phases and bring the

system to mechanical and thermal equilibrium. To obtain the equivalence

in the chemical potentials, the MD run is halted after n time steps and a

particle interchange is attempted in the same way as the MC Gibbs ensem-

ble. The only difference is that we must also choose a random velocity

from a Maxwell�Boltzmann distribution corresponding to the fixed inter-

nal temperature.

10.4 NpT1 test particle

VLE can be studied using the NpT 1 test particle method (Möller and

Fischer, 1990; Lotfi et al., 1992). The basic approach is to determine the

phase coexistence properties at a given temperature from the intersection of

the vapor and liquid branches in the chemical potential versus pressure dia-

gram. The chemical potential is written in terms of a Taylor series expan-

sion in pressure. The coefficients of the Taylor series are determined by

MD simulations in the liquid and vapor phases. The technique has been

developed further (Boda et al., 1995a,b; Kronome et al., 2000), and it can

also be used in conjunction with the NVT (Szalai et al., 1995; Okumura and

Yonezawa, 2001) and grand canonical ensembles (Boda et al., 1996, 1997).

It has been applied to determine (Okumura and Yonezawa, 2000) the pure

VLE behavior of different intermolecular potentials. Studies involving

binary mixtures have also been reported (Vrabec et al., 1995; Vrabec and

Gross, 2008).

10.5 Gibbs�Duhem integration

Kofke (1993a,b) proposed a Gibbs�Duhem simulation method, which com-

bines elements of the Gibbs ensemble with integration of the Clapeyron

equation. It is commonly referred to as Gibbs�Duhem integration (GDI).

For a one-component system, the Gibbs�Duhem equation is

dðβμÞ5 hdβ1βvdp ð10:37Þ
where μ is the chemical potential, h is the molar enthalpy, v is the molar vol-

ume, p is the pressure, and β5 1/kT. The Clapeyron equation is obtained by

writing Eq. (10.37) for two coexisting phases (I and II)

dp

dβ


 �
s

52
Δh

βΔv
ð10:38Þ

where Δh5 hI � hII and Δv5 vI � vII are the differences in the molar

enthalpies and molar volumes, respectively, of the coexisting phases.
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The subscript s indicates that the derivative is taken along the saturation line.

Alternatively:

dlnp

dβ


 �
s

52
Δh

βpΔv
5 f ðβ; pÞ ð10:39Þ

Eqs. (10.38) and (10.39) represent first-order differential equations that

regulate the change in pressure required to maintain two-phase coexistence.

If the pressure at a given coexistence point is known, either Eqs. (10.38) or

(10.39) can be integrated numerically to obtain the entire coexistence curve.

In practice, it is advantageous to use Eq. (10.39) rather than Eq. (10.38)

because the right-hand side of Eq. (10.38) varies only slowly.

Many different strategies are available for solving differential equa-

tions (Chapter 7). A simple and convenient method is the Adams predic-

tor�corrector algorithm

P: yi11 5 yi 1
Δβ 55fi 2 59fi21 1 37fi22 2 9fi23ð Þ

24

C: yi11 5 yi 1
Δβ 9fi11 1 19fi 1 5fi21 1 fi22ð Þ

24

9>>>>=>>>>; ð10:40Þ

where y represents ln p, f is f(β, P), Δβ is the difference in β between the cur-

rent simulation and the initial condition, and P and C denote the predictor and

corrector parts of the algorithm, respectively. The Adams algorithm is chosen

because it can be used to solve accurately (Kofke, 1993b) the Clapeyron equa-

tion. However, the algorithm is not self-starting requiring four previous values of

f. The initial estimate can be obtained from the trapezoid predictor�corrector.

P: y1 5 y0 1Δβf0

C: y1 5 y0 1
Δβ f1 1 f0ð Þ

2

9>=>; ð10:41Þ

The second point can be determined from the midpoint predictor�corrector.

P: y2 5 y0 1 2Δβf1

C: y2 5 y0 1
Δβ f2 1 4f1 1 f0ð Þ

3

9>=>; ð10:42Þ

The third point can be obtained by combining the midpoint predictor

with the Adams corrector.

P: y3 5 y1 1 2Δβf2

C: y3 5 y2 1
Δβ 9f3 1 19f2 2 5f1 1 f0ð Þ

24

9>=>; ð10:43Þ
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In the above equations, it should be stressed that the values of f refer to

results of previous simulations at different values of β.
The starting point for the simulation is a known coexistence point.

This can be obtained by performing a conventional GEMC simulation.

These data are used to calculate f0, and thereby obtain an estimate of the

pressure at the new temperature. For example, applying the trapezoid pre-

dictor we obtain:

p5 poexpðf0ΔβÞ ð10:44Þ
An NpT ensemble simulation is conducted in both phases for a short

period using the earlier estimate of pressure. At the end of this period, the

average energy and volume of the phases are calculated and used to update

the pressure using the corrector formula. Using the trapezoid-corrector

yields,

p5 poexp
Δβ f0 1 f1ð Þ

2


 �
ð10:45Þ

where f1 is the estimate of f obtained from the simulation in progress. The

simulation is continued using the new pressure and the process is repeated

after another sampling interval. It should be noted that either MC or MD

simulations can be used. A MD implementation of GDI has been reported by

Lı́sal and Vacek (1996a,b, 1997).

Algorithm 10.3 illustrates a possible implementation of GDI for a one-

component fluid at several different temperatures. The first stage

(Algorithm 10.3, Part 1) involves a GEMC simulation to obtain the coex-

istence properties for an initial value of β. These GEMC data are used

(Algorithm 10.3, Part 2) to estimate the pressure at a new value of β,
which differs from the initial value by an amount Δβ. This new value of

β is used for the first GDI simulation (Algorithm 10.3, Part 3). Several

GDI simulations are performed until the desired βEnd value is reached. At

the start of each new simulation (Algorithm 10.3, Part 3), the average

values of the properties required to calculate f are initialized to zero.

Each simulation is conducted for nCycles (typically several thousand

cycles are required). During each cycle, a phase is selected randomly

(Algorithm 10.3, Part 3.1) and a random choice is made to attempt either

a molecular displacement or volume change (Algorithm 10.3, Part 3.2).

The decision to accept the move is made according to the standard MC

acceptance criteria as illustrated in Algorithm 9.2 for a NpT ensemble.

Following the MC move, if the update frequency has been reached (update

is assigned typically a value of 10), the pressure is re-evaluated using an

appropriate predictor�corrector method (Algorithm 10.3, Part 3.3). This

involves evaluating f from the running averages of enthalpy and volume
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differences. If the update interval has not been reached, the running

averages are updated (Algorithm 10.3, Part 3.4). During each simulation

cycle, a check is performed to determine whether the equilibration period

(nEquilibration) has been reached. When the system has been equilibrated,

the running averages are re-initialized to zero (Algorithm 10.3, Part 3.5)

and contributions to the ensemble averages are accumulated (Algorithm

10.3, Part 3.6). At the end of the simulation (Algorithm 10.3, Part 3.7),

the properties of the ensemble and f are stored and β is changed by a fur-

ther amount of Δβ.
The main advantage of GDI is that it avoids the difficult particle insertion

step required by GEMC. Consequently, unlike the GEMC method, it can be

used to predict equilibria involving a solid phase (Lı́sal and Vacek, 1997;

Poison and Frenkel, 1998). It may also be useful in predicting the phase

behavior of polymers and other large molecules for which it is difficult to

obtain successful particle insertions. However, GDI relies heavily on having

an accurately determined starting point that must be obtained by other simu-

lation techniques such as GEMC. If the starting point is inaccurate, the rest

of coexistence curve predicted by GDI will also be obtained inaccurately

(Kofke, 1993b).

Mehta and Kofke (1994) extended the GDI method to binary mixtures.

The Gibbs�Duhem equation for binary mixtures (Denbigh, 1961) is,

x1dlnf1 5 hrdβ1 Zdlnp2 x2dlnf2 ð10:46Þ

where xi is the mole fraction of component i with fugacity fi, hr is the

residual molar enthalpy (i.e., the enthalpy excluding the ideal gas contri-

bution), and Z5 pv/RT is the compressibility factor. It can be shown

(Mehta and Kofke, 1994) that the Clapeyron relationship arising from

Eq. (10.46) is,

@p

@f2


 �
β;s

5
1

xv1Z
l 2 xl1Z

v

xv1

φl
2

2
xl1
φv
2

 !
ð10:47Þ

where the superscripts l and v refer to the liquid and vapor phases, respectively,

and φ25 f2/(px2) is the fugacity coefficient of component 2. Eq. (10.47) pre-

scribes simulation in an osmotic ensemble in which the independent variables

are temperature, pressure, and the fugacity of component 2.
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ALGORITHM 10.3 MC implementation of GDI for an one-component
fluid at several different temperatures.

Part 1 GEMC for initial coexistence point (Algorithm 10.1).

Part 2 Initialisation for GDI:
fo� - �Enthalpy/(pressure � �Volume)
Calculate p from trapezoidal-predictor.
� � � + �� //value for first Gibbs-Duhem simulation
simulation �1
offset � 0

Part 3 GDI/Markov Chain:
loop //simulation for several temperatures

accum�Enthalpy � 0 //initialise accumulators
accum�Volume � 0
loop n � 1 ... nCycles //Markov process

Part 3.1 Select a phase:
if(rand() � 0.5)

phase �1
else

phase �2
end if

Part 3.2 Select MC move:
if(rand() � 0.5)

Random displacement (Algorithm 9.2, Part 2.1).
else

Random volume fluctuation (Algorithm 9.2, Part 2.2).
end if

Part 3.3 Update pressure:
if(mod(nCycles,update) = 0)

if (simulation = 1)
Update pressure using trapezoidal-PC.

else if (simulation = 2)
Update pressure using midpoint-PC.

else if (simulation = 3)
Update pressure using midpoint-P/Adams-C.

else
Update pressure using Adams-PC.

end if
Part 3.4 else //update accumulators

accum�Enthalpy � accum�Enthalpy + �Enthalpy
accum�Volume � accum�Volume + �Volume
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average�Enthalpy � accum�Enthalpy/(n - offset)
average�Volume � accum�Volume/(n - offset)

end if
Part 3.5 if (n = nEquilibration)    //re-initialise accumulators

accum�Enthalpy � 0
accum�Volume � 0
offset  � nEquilibration

end if
Part 3.6 if (n � nEquilibration)

Accumulate averages.
end if

end n loop
Part 3.7 Store pressure, enthalpy, etc. data for completed simulation.

fsimulation � - �Enthalpy/(pressure � �Volume)
�� �+ ��
simulation � simulation + 1

while (� does not equal  �End)

It is also possible to obtain a Clapeyron relationship for the semi-grand

ensemble. The following fugacity fraction (ξ2) for component 2 is defined.

ξ2 5
f2

f1 1 f2
ð10:48Þ

Substituting Eq. (10.48) into Eq. (10.46) yields:

dln f1 1 f2ð Þ5 hrdβ1 Zdlnp2
x2 2 ξ2

ξ2 12 ξ2
� � dξ2 ð10:49Þ

Mehta and Kofke (1994) showed that Eq. (10.49) leads to the following

Clapeyron relationship:

@lnp

@ξ2


 �
β;s

5
xl2 2 xv2

ξ2 12 ξ2
� �

Zl 2 Zvð Þ ð10:50Þ

Eq. (10.50) prescribes a simulation in a semi-grand ensemble (Briano and

Glandt, 1984; Kofke and Glandt, 1988), which has the temperature, pressure,

fugacity fraction, and the total number of molecules as the independent variables.

Mehta and Kofke (1994) have reported details of the MC implementation

of GDI in both the osmotic and semi-grand ensembles. The method has been

used to calculate three-phase coexistence lines (Agrawal et al., 1994). Lı́sal

and Vacek (1997) reported a MD version of GDI for the semi-grand ensem-

ble. For mixtures, some of the advantage of GDI over the Gibbs ensemble

method is lost. Attempted particle deletions and insertions are required for

the osmotic ensemble, whereas the implementation of the algorithm for the

semigrand ensemble requires attempts to change particle identity.

The semigrand ensemble implementation has the advantage over the

Gibbs ensemble that it avoids particle interchange attempts. In principle, the
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MC acceptance criteria for particle displacement and volume change are

identical to the criteria used in the Gibbs ensemble. In practice, it is useful to

couple the volume moves in both phases to prevent unilateral condensation

or vaporization of either phase. The acceptance criterion for volume changes

must be modified (Mehta and Kofke, 1994) to account for the effects of vol-

ume coupling. The acceptance criterion for changing the identity of particles

is relatively simple. If the identity of particle of component 2 is changed to

component 1, the change in identity is accepted with a probability of:

min 1; exp 2βΔU2 ln
ξ2

12 ξ2


 �� �� 	
ð10:51Þ

If the identity of particle of component 1 is changed to component 2, the

change in identity is accepted with a probability of:

min 1; exp 2βΔU1 ln
ξ2

12 ξ2


 �� �� 	
ð10:52Þ

Swapping particle identities is likely to be most effective when the parti-

cles are of similar size and shape. In contrast, the acceptance rate for

attempts to change the identities of very dissimilar molecules is likely to be

similar to the Gibbs ensemble deletion/insertion move. In particular, swap-

ping the identity of a small molecule for a large molecular is likely to fail

because of particle overlap with neighboring molecules.

Escobedo and de Pablo (1997) have reformulated the GDI method. In the

reformulated approach, phase coexistence of a one-component system is gov-

erned by,

dðβμÞ
dβ


 �
s

5
ρIIhII 2 ρIhI

ρII 2 ρI
ð10:53Þ

where μ is the chemical potential and the superscripts I and II distinguish

between the different coexisting phases. For a two-component system,

dβμ5
12 xIi
� �

hII 2 12 xIIi
� �

hI

xIIi 2 xIi
� � dβ1

12 xIi
� �

vII 2 12 xIIi
� �

vI

xIIi 2 xIi
� � βdp ð10:54Þ

where i5 1, 2. Eq. (10.54) allows the generation of either isothermal

(dβ5 0) or isobaric (dp5 0) diagrams. The simulations can be performed

osmotically with T, p, N1, and μ2 being held constant. Alternatively, a grand

canonical-type simulation can be conducted at constant μ1, μ2, V, and T. The

μ1μ2VT method is potentially useful for simulations of polymers because vol-

ume moves are avoided (for simulations involving large molecules, volume

moves have a low probability of acceptance) and the simulations can be per-

formed using an expanded grand canonical approach.

An improvement to GDI (van ‘t Hof et al., 2006a), particularly for mix-

tures, is to combine it with histogram reweighting (discussed below). This
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provides greater computational efficiency without sacrificing accuracy. The

issue of obtaining a reliable VLE starting point has also been addressed

(van ‘t Hof et al., 2006b), which may be particularly useful for determining

the properties of mixtures of chain molecules.

If a suitable starting point can be determined, a significant benefit of GDI is

the ability to determine SLE, which is practically impossible to achieve using

GEMC. The SLE starting point is often obtained from the evaluation of free ener-

gies but a combined equilibrium/nonequilibrium method (Ge et al., 2003, dis-

cussed below) provides a useful alternative in many cases. The SLE behavior of

pure fluids represents the simplest case. GDI has been used to determine (Fartaria

et al., 2002) the SLE and triple points on (n�6) LJ fluids (Ahmed and Sadus,

2009a), C60 (Fartaria et al., 2001, 2002), and the noble gases (Deiters and Sadus,

2021; Singh et al., 2021) using ab initio potentials (Chapter 4).

Application of GDI for the SLE of mixtures has been confined largely to

binary systems. The SLE of different LJ atoms (Hitchcock and Hall, 1999; Lamm

and Hall, 2001, 2002) and both LJ diatomic (Galbraith and Hall, 2007) and chain

(Poison and Frenkel, 1998) molecules have been studied. SLE diagrams for binary

metallic alloys have also been reported (Nam et al., 2007). The GDI method has

also been extended (Attwood and Hall, 2008) to ternary systems, which allowed

the determination of SLE of mixtures of three different LJ components.

10.6 Thermodynamic scaling

10.6.1 Temperature and density MC

Valleau (1991) developed a thermodynamic-scaling MC method, which can

be used to calculate phase coexistence. The difference in the residual

Helmholtz function (ΔAr) at two different densities, characterized by box

lengths L1 and L2 is given by,

ΔAr 52 kTln
Q�ðN;L2;TÞ
Q�ðN;L1;TÞ

� �
ð10:55Þ

where Q� is the reduced configurational integral. The ratio of the reduced

configurational integrals can be obtained from,

Q�ðN;L2;TÞ
Q�ðN;L1;TÞ

5
exp 2βUðrN ;L2Þ
� �

=πðrNÞ� �
π

exp 2βUðrN ;L1Þð Þ=πðrNÞ� �
π

ð10:56Þ

where ,. . .. π indicates an average over the sampling distribution π(rN).
Consequently, the average of any thermodynamic property X at each density

ρk of the canonical ensemble can be obtained from:

Xh iρk 5
XðrN ;LkÞexp 2βUðrN ;LkÞ

� �
=πðrNÞ� �

π

exp 2βUðrN ;LkÞð Þ=πðrNÞ� �
π

ð10:57Þ
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This “density-scaling” procedure has been used successfully to calculate

the properties of hard spheres and electrolytes described by the restricted

primitive model (Valleau, 1991) and subcritical LJ fluids (Valleau, 1993). A

“temperature-scaling” version of Eq. (10.57) has been used (Graham and

Valleau, 1990) to determine the phase coexistence of electrolytes. The gen-

eral principles been applied to obtain thermodynamic properties in the NVT

(Valleau, 2005a) and NpT (Valleau, 2005b) ensembles.

Thermodynamic scaling can provide significantly more accurate results than

the Gibbs ensemble. The disadvantages of the method are that some of the ther-

modynamic states sampled are not of any interest and additional composition vari-

ables are required to apply the method to the phase behavior of multicomponent

mixtures. The thermodynamic-scaling MC algorithm has also been used to

predict the phase diagram of a two-dimensional Coulomb gas (Orkoulas and

Panagiotopoulos, 1996) and a square-well fluid (Brilliantov and Valleau, 1998a,b).

10.6.2 Thermodynamic-scaling Gibbs ensemble MC

Kiyohara et al. (1996) proposed a procedure for combining the thermodynamic-

scaling procedure with the Gibbs ensemble. In the NVT Gibbs ensemble, the aver-

age of any thermodynamic property X of the system interacting with the

Hamiltonian n at an inverse temperature βi5 1/kTi can be calculated from,

Xh iβi ;n 5
XðrN ; nÞ ΨðrN ;βi;nÞ

πðrN Þ

D E
πðrN Þ

ΨðrN ;βi ;nÞ
πðrN Þ

D E
πðrN Þ

ð10:58Þ

where:

ψðrN ;βi; nÞ5
VNI

I VNII

II

NI !NII !
exp 2βiU

I
nðrNI Þ2 βiU

II
n ðrNII Þ� � ð10:59Þ

In Eq. (10.59), UI
nðrNI Þ and UII

n ðrNII Þ are the potential energies in regions I

and II, respectively.

The Gibbs ensemble generates a Markov chain by using particle displace-

ments, volume changes, or particle interchanges to obtain a trial configuration

(rNtrial) from the existing configuration (rNi). The trial configuration is accepted

with a probability:

pi-trial 5min 1;
πðrNtrialÞ
πðrNi Þ


 �
ð10:60Þ

To use thermodynamic scaling in conjunction with the Gibbs ensemble, con-

figurations relevant to several Hamiltonians at different temperatures must be

sampled in a single simulation. Therefore it is important that the distribution

π(rN) samples configurations relevant to all thermodynamic states with equal
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frequency. A convenient distribution is a weighted linear combination of the

Boltzmann factors of all the thermodynamic states of interest,

πðrNÞ5
X
i

X
n

Wβi;nψðrN ;βi; nÞ ð10:61Þ

where Wβi ;n is the sampling weight for the thermodynamic state character-

ized by inverse temperature βi, and Hamiltonian n. A possible distribution of

weights between two thermodynamic states (βi,n) and (βj,m) can be obtained

(Kiyohara et al., 1996) from:

Wβi;n

Wβj;m
5

ΨðrN ;βi ;nÞ
πðrN Þ

D E
πðrN Þ

ΨðrN ;βj ;mÞ
πðrN Þ

D E
πðrN Þ

ð10:62Þ

However, the proper weights are obtained from an iterative process

because the estimate of the ratio of weights becomes more accurate as the

weights used in the distribution (rN) are improved.

The formulation of thermodynamic scaling for the NpT Gibbs ensemble

is almost identical. The only modification required is that Eq. (10.59) is

replaced with,

ψðrN ;βi; nÞ5
VNI

I VNII

II

NIα!NIIβ!
exp 2βiU

I
nðrNI Þ2βiU

II
n ðrNII Þ2βipVI 2βipVII

� �
ð10:63Þ

where p is the imposed value of pressure and NIα is the number of molecules

of species α in region I.

Kiyohara et al. (1996) used thermodynamic-scaling GEMC to calculate

VLE for a (n�6) LJ fluid where n5 10, 11, and 12. The different values of n

for the potential correspond to different Hamiltonians for the fluid. The

thermodynamic-scaling Gibbs ensemble method was found to be more efficient

than the conventional Gibbs ensemble for the calculation of the properties the

related potentials at many different thermodynamic states. This method has

also been applied successfully to phase equilibria involving the exp-6 potential

(Errington and Panagiotopoulos, 1998a). Valleau (2003) has addressed some

issues concerning the effectiveness of thermodynamic-scaling GEMC.

10.7 Pseudo-ensemble methods

A general feature of the simulation of phase equilibria is the insertion and

deletion or particles associated with either the NpT ensemble or the grand

canonical ensemble. The particle insertion is the most difficult MC move

to implement successfully, particularly at high density or if the insertion

involves a large molecule such as a polymer. A low success rate for particle

insertions or deletions slows dramatically the attainment of thermodynamic
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equilibrium. To overcome this problem, Mehta and Kofke (1995) proposed a

procedure in which particle insertion and deletions are replaced by volume

fluctuations. The acceptance criterion for the volume changes (ΔV) that are

designed to mimic particle insertion or deletion attempts is given by,

min 1; exp ΔN βμGC 2βμðρÞ1 ZðρÞ� �
1Nln

V 1ΔV

V
2βΔU


 �� 	
ð10:64Þ

where:

ΔN52ΔV
N

V 1ΔV
ð10:65Þ

In Eq. (10.64), μGC is the predetermined grand canonical chemical potential

and ΔU is the change in potential energy resulting from the change in volume.

Eq. (10.64) requires the calculation of the chemical potential μ(ρ) and the com-

pressibility factor Z(ρ) at the instantaneous density of the system ρ. The chemical

potential can be calculated from ghost particle insertions, and the compressibility

can be obtained from the virial theorem. As an alternative to these traditional

calculations, Mehta and Kofke (1995) accumulated instantaneous values of

the chemical potential and pressure into density histograms. Subsequently, μ(ρ)
and Z(ρ) required in Eq. (10.64) were obtained from empirical correlations fitted

to the histogram data. Incorporating Eq. (10.64) into a grand canonical ensemble

effectively results in a pseudo-grand canonical simulation.

Phase coexistence between different phases can be simulated directly by

replacing the particle/insertion move of the Gibbs ensemble algorithm with a

pseudo-exchange move. Camp and Allen (1996) showed that the attempted

pseudo-exchange of ΔN particles from phase II to phase I is accepted with a

probability of,

min 1; exp

ΔN ZI 1 ZII 2β μI 2μII
� �� �

1NI ln
VI 1ΔVI

VI

1NII ln
VII 1ΔVII

VII
2β ΔUI 1ΔUII

� �
0BBBB@

1CCCCA
266664

377775 ð10:66Þ

where the compressibility factors and chemical potentials are evaluated for

the density corresponding to the volume change, and the volume increments

are related to ΔN by:

ΔVI 52
VIΔN

NI 1ΔN

ΔVII 51
VIIΔN

NII 1ΔN

9>>>=>>>; ð10:67Þ

If the μ(ρ) and Z(ρ) functions are known accurately, the limiting distribu-

tion probed by the pseudo-grand canonical ensemble is that of the NpT
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ensemble (Camp and Allen, 1996). Escobedo and de Pablo (1997) used this

observation to formulate an alternative criterion for the volume move,

min 1; exp 2βpeqΔV 1Nln
V 1ΔV

V
2βΔU


 �� 	
ð10:68Þ

where peq is an initial estimate of the equilibrium pressure, which is refined pro-

gressively during the simulation. During the simulation, peq can be refined using:

peq 5 pðρÞ1 ρ½μGC 2μðρÞ� ð10:69Þ
In the context of a pseudo-Gibbs ensemble simulation, Eq. (10.68)

becomes (Escobedo and de Pablo, 1997):

min 1; exp

2βpeq ΔVI 1ΔVII
� �

1NI ln
VI 1ΔVI

VI

1NII ln
VII 1ΔVII

VII
2 β ΔUI 1ΔUII

� �
0BBBB@

1CCCCA
266664

377775 ð10:70Þ

Escobedo and de Pablo (1997) have also applied this technique to an

expanded grand canonical ensemble. It has been argued (Escobedo, 1998)

that pseudo-ensembles provide connections between histogram reweighting,

Gibbs ensemble, Gibbs�Duhem, and thermodynamic integration algorithms.

10.8 Histogram reweighting algorithms

If, in a MC simulation, σ represents a configuration, the Hamiltonian (H) can

be obtained from,

2βHðσÞ5KlðσÞ ð10:71Þ
where K is a dimensionless coupling constant associated with the operator l(σ). A
MC simulation of N steps at an inverse temperature of β0 produces a histogram H

(S, β0, N) for values S of the operator l(σ). The normalized distribution function,

PKðSÞ5
HðS;β0;NÞexp ðK2K0ÞSð ÞP
fSg HðS; β0;NÞexp ðK2K0ÞSð Þ ð10:72Þ

can be used to calculate the expectation value of any function of S in the

neighborhood of β0.

f ðSÞ� �
K
5
X
fsg

f ðSÞPKðSÞ ð10:73Þ

The theory of histograms was developed by Salsburg et al. (1959) and later

implemented in a simulation by McDonald and Singer (1967). Valleau and Card

(1972) introduced multistage sampling (MSS) to broaden the range of tempera-

tures. MSS has been used (Bhanot et al., 1987a,b,c,d) to produce graphs of
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thermodynamic quantities over a wide range of parameters. Several workers

(Falcioni et al., 1982; Marinari, 1984; Ferrenberg and Swendsen, 1989) applied

histograms to phase transitions. Ferrenberg and Swendsen (1988) introduced a

multihistogram method that combined the advantages of multistage sampling with

an improved method (Bennett, 1976) for estimating free energy differences.

Histogram methods, which are continually being made more efficient

(Lidmar, 2012), have been employed very successfully for phase equilibria

(Kiyohara et al., 1997, 1998; Conrad and de Pablo, 1998; Panagiotopoulos

et al., 1998; Kamath and Potoff, 2006). The approach has been used for iden-

tifying the VLE of alkynes (Barhaghi et al., 2017) and the determination of

the critical properties of binary mixtures (Lenart and Panagiotopoulos,

2006). The investigation of the SLE in protein solutions (Chang et al., 2004)

has been facilitated by the histogram reweighting approach.

10.8.1 Grand canonical MC

In a MC simulation for a grand canonical ensemble, Kiyohara et al. (1997)

showed that the average of any thermodynamic property X can be obtained from,

Xh iμVT 5
P

N

P
EN

XðN;UNÞfμVT ðN;UNÞP
N

P
EN

fμVT ðN;UNÞ
ð10:74Þ

where
P

N denotes the summation of N from 0 to infinity and
P

EN
is a sum-

mation over all energy levels for each N. In Eq. (10.74), fμVT(N,UN) is a two-

dimensional histogram, which is related to the components of the grand

canonical partition function by,

fμVT ðN;UNÞUC5 exp βðNμ2UNÞ½ �ΩðN;V ;UNÞ ð10:75Þ
where C is a simulation-specific simulation constant and Ω (N, V, UN) is the num-

ber of microstates for number of particles N, volume V, and energy EN. The grand

canonical partition function for different states (μ’, V, T’) can be calculated from,

Zμ0VT 0 5
X
N

X
UN

WfμVT ðN;UNÞC ð10:76Þ

where use is made of the following reweighting term:

W 5 exp N β0μ0 2βμð Þ2 β0 2βð ÞUNð Þ ð10:77Þ
Therefore the average of any thermodynamic property X at a different

temperature (T’) and chemical potential (μ’) can be calculated from:

Xh iμ0VT 0 5

P
N

P
UN

XðN;UNÞWfμVT ðN;UNÞP
N

P
UN

WfμVT ðN;UNÞ
ð10:78Þ

It is evident from Eqs. (10.74)�(10.78) that if the components of the

grand canonical partition function (fμVT (N,UN)) are known at one particular
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state (μ, V, T), the grand canonical partition function at any other state (μ’,
V, T’) can be obtained by reweighting each component using W.

The histogram reweighting technique can be applied (Kiyohara et al.,

1997) to subcritical vapor�liquid coexistence by finding the chemical poten-

tial that gives the same pressure for both phases. In terms of the grand

canonical partition function (ZμVT), the pressure for a given thermodynamic

state (μ, V, T) is calculated from:

pμVT 5
ln ZμVT

V
ð10:79Þ

If a histogram is made for the state (μ, V, T) from Eqs. (10.77) and

(10.79), the pressure at (μ’, V, T’) is given by:

pμ0VT 0 5
1

V
ln
X
N

X
EN

WfμVT ðN;UNÞC ð10:80Þ

The value of C is determined by calculating the pressure at (μ, V, T)
from the virial theorem, that is,

p5
Nh iμVTkT

V
1

dU

dV

� �
μVT

ð10:81Þ

and equating this value with the right-hand side of Eq. (10.80).

The grand canonical MC reweighting procedure has been applied to

both polar fluids (Kiyohara et al., 1997, 1998; Errington et al., 1998;

Errington and Panagiotopoulos, 1998b) and lattice polymers

(Panagiotopoulos et al., 1998). The main advantage of the technique is

that the coexistence properties can be obtained very accurately. In partic-

ular, vapor�liquid coexistence in the vicinity of the critical point can be

obtained much more accurately than could be otherwise calculated using

the Gibbs ensemble.

10.8.2 Isothermal�isobaric MC

Conrad and de Pablo (1998) have applied histogram reweighting techniques

for the NpT ensemble. They compared results obtained from the NpT and

grand canonical histogram reweighting. Both approaches yielded results of

similar accuracy.

10.8.3 GEMC

Boulougouris et al. (2010) have combined histogram reweighting with

GEMC. The combination of the two methods improves the accuracy of pre-

dications both close to and away from the pure fluid critical point.
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10.9 Finite-size scaling

Generally, conventional molecular simulations that typically involve only a

few hundred particles are not accurate in the region of the critical point.

Near the critical point, the correlation length becomes very large and often

exceeds the size of the simulation. The result is that the discontinuities and

singularities that characterize critical phenomena in the thermodynamic lim-

ited are shifted. Such finite-size effects can affect adversely the accuracy of

the estimated critical point.

Finite-size-scaling (FSS) methods have been developed (Wilding,

1995, 1997) to overcome these problems. FSS methods are typically con-

ducted in the context of grand canonical MC simulations, although appli-

cation to the canonical and isothermal�isobaric ensembles is possible

(Wilding and Binder, 1996). The finite-size behavior in the Gibbs ensem-

ble has been studied (Bruce, 1997). The advantage of FSS methods is that

they allow the critical point to be estimated with a high degree of accu-

racy (Kim et al., 2003; Binder, 2010). For example, the critical tempera-

ture and density of a three-dimensional LJ fluid has been calculated

(Wilding, 1995; Caillol, 1998; Rżysko and Borówko, 2011) to a high

degree of accuracy. FSS has been used to investigate accurately the criti-

cal exponent of both square-well (de Miguel, 1997) and dipolar square-

well fluids (Martı́n-Betancourt et al., 2009). In contrast to earlier studies,

the FSS results indicate that the square-well fluid does not exhibit mean-

field behavior. The method is often used in conjunction with algorithms

such as histogram reweighting (Shi and Johnson, 2001) and applied to

real fluids (Bianco and Franzese, 2014).

Applications of FSS to mixtures have also been reported. Systems studied

include electrolytes (Hynninen et al., 2005), mixtures of colloids and poly-

mers (Chou et al., 2006), rods and spheres (Jungblut et al., 2008), nonaddi-

tive hard spheres (Góźdź, 2003), different LJ atoms (Pérez-Pellitero et al.,

2006), and polydisperse (Kristóf and Liszi, 2001) fluids. The application to

binary mixtures means that LLE can be studied (Jagannathan and Yethiraj,

2005; Das, 2015; Góźdź, 2017; Ricci and Debenedetti, 2017).

10.10 Empirically based simulation algorithms

The previous examples of molecular simulation algorithms typically have

well-articulated theoretical foundations. In contrast, a much less-studied

route is to determine an algorithm by actually observing the effect of a phase

change on either measurable or calculated thermodynamic proprieties.

The synthetic method (Sadus, 2012) is an example of the former whereas the

combined equilibrium/nonequilibrium MD approach (Ge et al., 2003) is an

example of the latter.
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10.10.1 Synthetic method

There is a wide variety of ways for experimentally observing phase equilib-

ria. However, these experimental methods are totally disconnected from the

simulation algorithms used for phase equilibria. The disconnect between

experiment and simulation is understandable because it is generally impossi-

ble to directly translate actual laboratory practice into a usable algorithm. An

exception is the “synthetic” experimental method pioneered by Lentz (1969)

and Lentz and Franck (1969) for high-pressure phase equilibria. The method,

which was specifically designed for mixtures, involves an autoclave of vari-

able volume with known amounts of two components that are initially

immiscible. For any given constant volume, the temperature is increased

gradually while monitoring the increase in pressure until the meniscus sepa-

rating the two phases disappears resulting in a single phase. The point of

transition is a coexistence point on the three-dimensional pTx surface, where

x represents the composition.

Of course, it is not possible to observe a meniscus in a molecular simula-

tion, but the transition is also apparent as a “knick point” of the pT curve.

An experimental example of such a knick point for the methane 1 methanol

mixture (Francesconi, 1978) for one isochore is illustrated in Fig. 10.2. The

volume of the autoclave can be adjusted and by repeating the procedure at

different constant volumes. The locus of the resulting different knick points

36
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FIGURE 10.2 An experimentally determined (Francesconi, 1978) iscochore (x) for methane1

methanol (x25 0.4511, V5 81.94 cm3/mol) showing the location of a knick point (K) at

T5 442.15 K and p5 30.35 MPa. For a given composition, an isopleth is the locus of knick

points obtained from different isochores. The line through the points is only for guidance.
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for a given composition is an isopleth. The high temperature of the isopleths

is the critical curve for the mixture. It is apparent that the conditions experi-

enced in the autoclave could be represented via an NVT ensemble, resulting

in Algorithm 10.4.

ALGORITHM 10.4 Synthetic algorithm for fluid phase equlibria.

Part 1 Initialization:
Specify a fixed composition (x2 = N2/N) involving N1 and N2

Particles of components 1 and 2 respectively such that 
N = N1 + N2. Initialize other settings etc.

Part 2 Locate knick points at different isochores:
loop

Part 2.1 Look for knick point:
T = Tiintial
knickPoint = false
knickPointRef = false
notFound = true
first = true
i = 1
loop

Part 2.1.1 Perform NVT MC/MD simulation (Algorithm 9.1/9.7).
Determine if knick point is crossed.
if (knickPoint and first)

Tlower = T - �T
Tupper = T
notFound = false
first = false

end if
Part 2.1.2 Refine knick point location:

If (knickPoint)
T = Tlower
loop

Perform NVT MC/MD simulation (Algorithm 9.1/9.7).
Determine if knick point is crossed.
If (knickPointRef)

Tkpi = T
pkpi = p
i = i + 1 

end if 
T = T + �T/factor

while (knickPointRef = false or T <= Tupper)
end if

while (notFound and  T <= Tmax)
V = V + �V

while (V ≤ Vmax) 

Algorithm 10.4 commences (Part 1) in the usual way with the initialization

of simulation settings. As it is normally applied to mixtures, care is required to

specify the number of each component such that the sum does not exceed N.
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The example is for a binary mixture but there is no theoretical limitation on

the number of components. The main part of the algorithm (Part 2) is a loop

that sweeps over a range of different V to determine knick points at different

isochores. This involves performing NVT simulations (Part 2.1.1) for a range

of T. This can be implemented in either MC (Algorithm 9.1) or MD

(Algorithm 9.7). Alternatively an NVE implementation in either MC

(Algorithm 9.4) or MD (Algorithm 9.5) can be used. In each case, this will

involve a mixture implementation of the simulation algorithms. Following the

NVT simulation, a check is made to determine whether the knick point has

been located. In the original implementation (Sadus, 2012), this involved a

visual inspection by producing a figure equivalent to Fig. 10.2. A more sophis-

ticated alternative would be to calculate @p=@T , which should change abruptly

either side of the knick point. This could be facilitated by the relationships for

@p=@T detailed in Chapter 2. It is unlikely that the initial determination would

be sufficiently precise, which means repeating (Part 2.1.2) the process over a

narrow range of T, over a desired increment size (factor).

Although intended for mixtures, the algorithm can be applied to pure sys-

tems (Sadus, 2012). The main disadvantages of the algorithm are (1) it

requires many NVT simulations to locate a coexistence point; (2) the location

of the knick point is hard to automate; and (3) the coexistence densities are

not determined. Statistical uncertainties in the simulation may also mean that

the knick point is not as clear as the experimental case (Fig. 10.2). The

advantages are (1) implementation in either MC/MD using either NVT/NVE;

(2) discrimination of very small differences in composition (Sadus, 2012) is

possible; and (3) direct estimation of the critical locus as the high tempera-

ture envelope of the isopleths.

10.10.2 Combined NEMD/EMD method for SLE

As noted previously, a limitation of most simulation algorithms is that they

are difficult to apply to SLE, which is usually addressed using specialized

free energy techniques. GDI is very useful for SLE but it requires a

suitable starting point that is commonly obtained from free energy calcula-

tions. In the course of an nonequilibrium MD (NEMD) investigation

(Chapter 8) of the properties of LJ fluids at different strain rates ( _γ) and con-

stant isochores, Ge et al. (2003) observed that the onset of SLE was associ-

ated with an abrupt discontinuity in the pressure between _γ5 0 (equilibrium

cases) and _γ. 0 (nonequilibrium case). This is illustrated in Fig. 10.3.

In Fig. 10.3, the isochores corresponding to a single liquid phase (black

line) are almost linear irrespective of the value of _γ, whereas isochores (red
lines) involving a solid�liquid transition display a sudden drop in pressure at

zero strain rate. This feature can be used to combine equilibrium MD (EMD)

and NEMD simulations to determine SLE as outlined in Algorithm 10.5
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ALGORITHM 10.5 Combined EMD/NEMD algorithm for SLE.

Part 1 Determine the freezing density (�f) and pressure (pf) for a given Tf:
discontinuity = false
loop

Part 1.1 NVT MD simulation 

NEMD NVT simulation (Algorithm 8.1) 

NEMD NVT simulation (Algorithm 8.1) 
Part 1.2 Check for discontinuity in p:

if (discontinuity = true)
�f = �
pf = p
discontinuity = true

end if 
increment �.

while (� <= �Max and discontinuity = false)

Part 2 Repeat Part 1 as necessary to refine accuracy of �f and pf.

Part 3 Determine p-� curves:
Specify initial and final � values (�Max).
loop

NVT simulation (Algorithm 9.9) to determine p.
increment �.

while (� <= �Max)

Part 4 Determining melting density (�m) using �f and pf

and data from Part 3.

FIGURE 10.3 Reduced pressure versus reduced strain rate at different reduced isochores (as

labeled) for a LJ fluid when T� 5 1.0 (Ge et al., 2003). The abrupt changes indicate the presence

of a solid phase.



The first part of Algorithm 10.5 (Part 1) is to determine a serious of isochores

by performing NVT EMD and NVT NEMD simulations in parallel (Part 1.1).

The number of nonzero values of _γ is arbitrary and one well-chosen value could

be sufficient. The discontinuity in p (Part 1.2), which signifies the values of the

freezing pressure (pf) and density (ρf), can either be obtained graphically by repro-

ducing a plot such as Fig. 10.3 or it could be detected by monitoring for an

abrupt change in @p=@ _γ. In either case, this is likely to be very easy to detect, as

it is apparent from Fig. 10.3 that isochores exclusively in the liquid phase will

have only a slight gradient. Depending on the initial spacing between the iso-

chores, the procedure may need to be repeated (Part 2) to obtain sufficiently pre-

cise values of pf and ρf. The goal is to locate the first time this transition occurs.

Part 3 involves determining the freezing and melting lines using conventional

NVT simulations. It should be noted that this stage could be performed using

either MC or MD simulations. However, it is convenient to use MD as an EMD

algorithm can be always obtained by running an NEMD algorithm with _γ5 0.

By definition, freezing and melting pressures are identical, which means that the

melting density (ρm) can be obtained by extending a constant pf tie line from the

freezing curve to the melting curve data obtained in Part 3. Strictly, Part 3 only

needs to generate the melting curve, which could be obtained by restricting the

simulations to only high densities.

The main advantage of Algorithm 10.5 is that it can be used in all situa-

tions and it utilizes existing EMD and NEMD techniques. A disadvantage is

that it requires several simulations per state point and coding NEMD is

largely unfamiliar to researchers interested in phase equilibria, which by def-

inition is an equilibrium property. Nonetheless, it can be used to obtain the

entire SLE behavior and as such is particularly useful for difficult situations

(Wang and Sadus, 2006b; Mausbach et al., 2009). Alternatively, it can pro-

vide a highly reliable starting point for extensive simulations using GDI

(Ahmed and Sadus, 2009a,b; Ahmed and Sadus, 2010).

10.11 Accurate determination of SLE

As detailed earlier, VLE properties can be accurately determined via a vari-

ety of simulation algorithms. SLE properties can also be evaluated; however,

the accuracy of previously discussed approaches is very limited. Deiters and

Sadus (2022a,b) have addressed the issue of accuracy via the entropy corre-

lation method (ECM). For a fixed displacement (α) in a MC simulation, the

residual entropy (Sr) for dense phases is an inverse function value of a dis-

placement parameter (λα), i.e.,

SrC2Nk
c1

λα
11 c3e

2c2=λα

� �
1 c0


 �
ð10:82Þ

where N is the number of particles; c0, c1, c2, and c3 are coefficients

that depend on the intermolecular potential; and c0 also depends on α.
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The change in the residual molar entropy (ΔSrm) along an isothermal com-

pression from the molar density ρ0 to ρ1 depends of the enthalpy (H), com-

pressibility factor (Z), and the universal gas constant (R) via Eq. (10.83),

ΔSrm 5 Srmðρ1Þ2 Srmðρ0Þ5
Hr

mðρ1Þ2Hr
mðρ0Þ

T
2R

ðρ1
ρ0

Z2 1

ρ
dρ1Zðρ1Þ2 Zðρ0Þ

 !
ð10:83Þ

which can be transformed to obtain:

ΔSrm 5 Srmðρ1Þ2 Srmðρ0Þ52Rc1
11 c3e

2c2=λαðρ1Þ

λαðρ1Þ
2

11 c3e
2c2=λαðρ1Þ

λαðρ0Þ


 �
ð10:84Þ

The residual molar chemical potential (Δμr) at a given T is obtained

from the residual molar enthalpy (Hr;f
m and Hr;s

m ) of the fluid (f) and solid (s)

phases and the corresponding molar volumes (Vf and Vs).

Δμr 5Hr;f
m 2Hr;s

m 1RT c1
11 c3e

2c2=λf
α

λf
α

2
11 c3e

2c2=λs
α

λs
α

 !
2 ln

Vf

Vs


 �
2 1

" #
ð10:85Þ

Using these thermodynamic relationships, the ECM is a six-step process

as illustrated in Algorithm 10.6.

ALGORITHM 10.6 ECM algorithm for SLE.

Part 1 Starting form either a gas or liquid state, perform NpT MC
simulations (Algorithm 9.2) for a given T and a series of p .

Part 2 Interpolate the compression factors obtained in Part 1 using a
quadratic polynomial to facilitate integration in Part 3.

Part 3 Evaluate Eq. (10.83).

Part 4     Starting from an fcc lattice, tentatively determine the values of Hr,
V and λ� form a series of NpT MC simulations and the 

same values of p.

Part 5 Use Eq. (10.89) to obtain ��r from the simulation results for

the liquid and solid phases. A 2nd or 3rd order polynomial can

be used to fit the differences a function of p. The equilibrium

p is the nearest root of this polynomial.

Part 6 Using the p obtained in Part 5, the values of V for the liquid

and solid phases are obtained via interpolation.
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It is apparent from the description given in Algorithm 10.6 that the ECM

process requires repeated NpT MC simulations and a considerable amount of

postsimulation analysis. The reward for this effort is that SLE properties can

be evaluated form low to very high pressures with an unprecedented degree of

accuracy. For example, the triple point T of argon can be determined (Deiters

and Sadus, 2022a) to an accuracy of within approximately 0.1 K of its experi-

mental value using a combination of SAAP 1 ATM 1 FH-1-2 potentials

(Chapter 4). This is a considerable improvement in accuracy of the previous

discrepancy of 7 K reported by an alternative method (Pahl et al., 2008). This

exceptional agreement with experiment data (Crawford, 1977) continues from

the triple point to vary high values of p as is illustrated in Fig. 10.4.

10.12 Summary

MC algorithms are used overwhelmingly to simulate the phase behavior of

fluids. The GEMC algorithm is the standard algorithm for phase equilibria

simulation. However, more accurate MC techniques based on histogram

rescaling are being developed and improved continually. The options for

MD simulations are more limited. A promising route, which is arguably

underutilized, is provided by the MD implementation of the Gibbs ensemble.

Simulations regarding SLE are considerably more challenging than VLE.

FIGURE 10.4 Comparison of ECM molecular simulation (red circles) with experimental data

(Crawford, 1977) (solid lines) for the SLE properties of argon obtained for the SAAP1 ATM1

FH-1-2 potential (Chapter 4) (Deiters and Sadus, 2022b).
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The GDI method is very useful for SLE but requires initial starting point that

can be difficult to obtain. Perhaps somewhat unexpectedly a combined

EMD/NEMD has proved useful for SLE. It can be used both independently

of other algorithms or provide reliable initial values for GDI simulations.

However, SLE properties can be obtained with an unprecedented level of

accuracy using the ECM simulations.
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Pérez-Pellitero, J., Ungerer, P., Orkoulas, G., Mackie, A.D., 2006. Critical point estimation of

the Lennard-Jones pure fluid and binary mixtures. J. Chem. Phys. 125, 054515.
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Chapter 11

Molecular simulation and
object-orientation

In common with most scientific or engineering programming applications,

molecular simulation algorithms have been traditionally coded in procedural

languages such as FORTRAN or C that emphasize the decomposition of a

problem into various functions. Confronted with a problem to solve, a proce-

dural language programmer typically performs a functional analysis, decom-

posing the problem into several composite algorithms that are implemented

as either subroutines or functions. This algorithm-centered approach is a nat-

ural choice for problem solving for many scientific applications, and it usu-

ally works well. When used properly, modern procedural languages allow

the programmer to write modularized code that can be easily reused, chan-

ged, and minimize errors. However, software developers are moving increas-

ingly away from the procedural approach in favor of object-orientation

(OO). In contrast to the procedural approach involving a set of functions

sharing a global state, OO uses a set of interacting individual objects with

their own private states. When used properly, OO offers enhanced flexibility

in code design, error minimization, and software that can be more easily

adapted to meet new situations and challenges (Amorsy et al., 2013).

At the outset, it should be emphasized that functional design and OO are

complementary approaches. It is possible to include elements of OO in a pro-

cedural language. For example, two features of OO are information hiding

and encapsulation. Information hiding in a procedural language such as C

can be achieved via the use of library interfaces, and structures can be

employed to encapsulate related variables together. Similarly, the structured

programming strategies that are essential in good procedural code are also

necessary to write good code for the methods contained in objects. In a

sense, OO is an evolution from the procedural approach rather than a revolu-

tionary step. Khan et al. (1995) have provided a detailed comparison of the

similarities and differences between structural programming and OO.

The OO approach offers significant benefits for the development of

molecular simulation codes, particularly for simulations involving compli-

cated molecules. Historically, the priority for molecular simulation codes has

been overwhelming computational efficiency. There is an ever increasing
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interest in studying complicated molecules such as proteins and massive poly-

mers. Apart from the computational difficulties involved in modeling compli-

cated molecules, the structured programming approach alone is not ideally

suited to meet the challenge of increasing molecular complexity. Converting a

procedure-based program developed for simulating atoms to work for protein

molecules is a daunting task. It may involve the development of new algorithms

which, in part, are likely to be motivated by the limitation imposed by the struc-

tured programming approach rather than the molecule itself. It can be argued

that the features of structured programming have partly dictated the nature of

some molecular simulation algorithms. In contrast, OO has features, which can

make the task much less daunting by promoting code reuse. Nelson et al. (1996)

have discussed a parallel implementation of molecular dynamics (MD) using

OO. Baekdal et al. (1996) have discussed the use of OO in protein dynamics.

The OO approach forms the basis of commonly used open source molecular

simulation software packages (Abraham et al., 2015; Phillips et al., 2020;

Thompson et al., 2022) that are in widespread use.

Relatively few molecular simulators have formal training in software

engineering and learn their craft “on the job.” In the process of developing

code using an OO programming language, aspects of the object-oriented

approach are often not fully appreciated. In particular, coding often takes

precedence over object-oriented modeling, which is contrary to good soft-

ware development practice. The aim of this chapter is to attempt to bridge

this gap by explaining and applying object-oriented concepts for both MD

and Monte Carlo (MC) simulations via detailed case studies.

The outcomes of the object-oriented approach are implemented using C11.

The choice1 of C11 has the advantage that the code can be easily modified for

parallel execution on graphical processor units (Chapter 12). The widely used

and highly optimized C11 simulation codes are available (Abraham et al.,

2015; Phillips et al., 2020; Thompson et al., 2022). Interestingly, there is evi-

dence (Pereira et al., 2021) that it is energy efficient, which is an increasingly

important consideration. Details of programming in C11 can be found in well-

known texts (Deitel and Deitel, 2002; Stroustrup, 2013). A good description of

the use of OO and C11 has been given by Parsons (1997). Haney (1994) has

discussed some aspects of the computational speed of C11 code.

Code availability

The C11 source code for the MD, MC, and combined MC and MD

programs are available for download from the book’s website at:

https://www.elsevier.com/books-and-journals/book-companion/9780323853989.

A software user’s guide is given in the Appendix.

1. OO principles are entirely independent of the programming language and can be applied in

other OOP languages such as python or Java. Too much time and effort is often devoted to

championing a preferred language.
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11.1 Fundamental concepts of OO

The strategy of OO involves OO analysis (OOA), OO design (OOD), and

OO programming (OOP). The first step in OOP is to analyze the problem

and identify the composite classes. In the design stage, the relationships

between the classes are identified. Finally, the design is implemented in a

programming language that supports object-oriented concepts. In reality,

there is often a seamless boundary between these processes, and we will not

dwell on the distinction.

In practice, OO is built on the principles of abstraction, encapsulation,

inheritance, aggregation, and polymorphism. Abstraction and encapsulation

are essential to an object-oriented program whereas other features may or

may not be present. It quickly becomes evident that OO has a vocabulary,

which is largely foreign to structural programming approaches. Therefore

our starting point is to explain the key concepts of OO. At the outset, it

should be noted that OO is not confined to programming. As explained sub-

sequently, developing object-oriented code is the end process of the object-

oriented approach. Indeed, many object-oriented practitioners do not com-

plete the object-oriented processes by actually creating a program! OO pro-

vides a new perspective on problem solving in which algorithmic

development is deferred until the final stages of the process. This is possibly

the biggest difference from the structural programming approach in which

the choice of algorithm is made at the outset and as such, dictates the nature

of the code.

11.1.1 Classes and objects

OO is an attempt to represent real-world objects in software. Some objects

are concrete things whereas others are more abstract. However, the most

important aspect of OO is that objects can be composed of both data (vari-

ables) and processes (methods), whereas in procedural programming, data

and processes are always treated separately. The concept of a class and that

of an object are closely linked. The first step in the object-oriented approach

is to identify classes from which objects can be created. In the jargon of OO,

an object is instantiated from a particular class. An obvious example of a

class in the context of MD is an atom. The Atom class contains the attributes

or properties of the atom such as the mass, position, velocity, energy, and

the like. Argon is a concrete example of the class Atom. Therefore, we can

create an object to represent argon from the class Atom. Krypton, xenon, and

the like are other examples of atoms, and objects representing these atoms

can be created from the Atom class. Indeed, we can create different objects

to represent all the elements of the periodic table from the same Atom class.

It is convenient and very useful to make use of a diagrammatic notation

to represent both classes and interactions between classes. Here, we will
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mainly use the broad features of the unified modeling language (UML) as

described by Eriksson et al. (2003). The UML approach is an attempt to

unify various object notations and it has many similarities with the object

modeling technique (OMT) (Rumbaugh et al., 1991). It is possibly the most

widely used form of object representation.

Fig. 11.1 is an UML diagram for the Atom class. The class is represented

by a rectangle with three distinct divisions separated by solid lines. The

name of the class is given as a heading in the top division. As discussed sub-

sequently, the class can have both private and public information. The pri-

vate properties are listed subsequently the class heading, whereas the bottom

division is reserved for public information.

11.1.2 Abstraction and encapsulation

In general terms, abstraction is the attempt to define all the essential features

of an object and group or encapsulate them with the object itself. In the ear-

lier example, the class Atom was associated with various attributes, namely,

position, mass, velocity, etc. Linking data with processes is an example of

encapsulation and it allows the implementation of information hiding.

Everything the object needs is encapsulated within the object and therefore

hidden from all other objects. The definition of member variables inside

structures in C is also an example of information hiding. However, unlike

structures, encapsulation within classes is not limited to variables. Functions

(or methods in object-oriented terminology) can also be encapsulated in a

class. The encapsulated methods determine the behavior of the class and any

object instantiated from it. Objects have a private part of hidden internal

detail and a public interface, which defines the possible behavior of the

object. An UML diagram for the Atom class with some possible attributes

(mass, position, and velocity) and behavior (getMass, getVelocity, getPosition,

setMass, setVelocity and setPosition) is illustrated by Fig. 11.2.

11.1.3 Methods and message passing

In general terms, an OO program works by passing messages between

various objects using methods. Method is the OO terminology for

...

...

Atom

FIGURE 11.1 UML diagram representation of an Atom class. The middle and lower divisions

are for private and public properties, respectively.
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functions/subroutines in procedural programming languages such as C and

FORTRAN. As noted earlier, methods are encapsulated within the object.

Methods can be divided into two broad types responsible for setting and get-

ting values of attributes, respectively. Figure 11.2 illustrates some potential

‘set’ and ‘get’ methods for the attributes of the Atom class. The way ‘set’

and ‘get’ methods work in practice depends in part on how the objects are

interrelated. This in turn depends on the inheritance, aggregation, and associ-

ation characteristics of the objects.

11.1.4 Inheritance

A feature of OO is that one class can inherit properties from other classes.

Inheritance is a powerful device for extending the functionality of a class

and sharing common behaviors and properties between objects. However, it

is important to note that inheritance only makes sense if a class is ‘a kind of’

another class. For example, polymers, proteins, and surfactants are different

kinds of molecules. Therefore if we have a class Molecule, which represents

the properties of molecules, we can have classes Polymer, Protein, and

Surfactant that can legitimately inherit the properties and behavior of the

Molecule class. An UML diagram representing inheritance between classes is

illustrated in Fig. 11.3.

In UML, notation inheritance between classes is represented by arrows

linking the classes. The head of the arrow points to the superclass (in this

case the Molecule class) from which properties are inherited. The Polymer,

Protein, and Surfactant classes are said to be derived from the Molecule

superclass. Alternatively, they can be viewed as child classes obtained

-mass
-position
-velocity
getMass
getPosition
getVelocity
setMass
setPosition
setVelocity

Atom

FIGURE 11.2 UML diagram for an Atom class showing private attributes (mass, velocity,
and position) and public methods (getMass, getVelocity, getPosition, setMass, setVelocity,
and setPosition).
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from a parent class. It should be noted that inheritance is a one-way pro-

cess from parent class to the child classes. The parent class cannot inherit

from a child class.

11.1.5 Aggregation

Some objects are ‘part of’ another object rather than being a ‘kind of’ a particu-

lar object. This important distinction allows us to create objects that are aggrega-

tions of other objects. In molecular simulation, there are many opportunities to

exploit aggregations and/or associations (defined subsequently). Perhaps the

most important candidate for aggregation is the Molecule class. By definition, an

atom is part of a molecule. The UML diagram illustrating the aggregation rela-

tionship between Molecule and Atom is illustrated in Fig. 11.4. Notice that the dia-

mond is attached to aggregated class (the Molecule class in this case). In general,

a molecule is composed of two or more atoms, and therefore the cardinality of

the relationship between Molecule and Atom is one to many represented in the

UML diagram by the notation 1 . . . N.
Of course, atoms are themselves composed of subatomic particles such as

neutrons, electrons, and protons. Therefore if it is desired, the Atom class itself

can be represented as an aggregation of objects representing subatomic proper-

ties as illustrated by Fig. 11.5.

It is quite common to combine aggregation and inheritance in an object-

oriented analysis. Using the preceding examples, a complete description of poly-

mers, surfactants, or polymers spanning the molecular level to the subatomic

level can be obtained by the addition (Figs. 11.3 to 11.5), resulting in Fig. 11.6.

Polymer, Protein, and Surfactant inherit from Molecule, giving them access to all the

properties and behavior of Molecule including Atom, Neutron, Proton, and Electron.

Molecule

Polymer Protien Surfactant

FIGURE 11.3 UML diagram illustrating the notation for inheritance from the superclass

(Molecule) to the derived classes (Polymer, Protein, and Surfactant).
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Molecule

Atom

1..N

FIGURE 11.4 UML diagram representing the aggregation relationship between Molecule and

Atom. The diagram indicates that one Molecule is composed of many Atoms.

Molecule

Atom

Proton Neutron Electron

1..N

1..N
1..N

1..N

FIGURE 11.5 UML diagram illustrating different levels of aggregation. Molecule is an aggre-

gation of Atoms, which in turn is an aggregation of different subatomic particles.
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11.1.6 Association

Aggregation is a form of association. However, more generally, an object

may require another object without it being a ‘part of’ the object. This type

of association is identified by the ‘has a,’ ‘uses a,’ ‘needs a,’ or any other

similar dependency relationship. For example, in a molecular simulation,

atomic interactions are typically described by an intermolecular potential.

Therefore we can identify that the Atom class needs an intermolecular poten-

tial. In UML notation this is illustrated by a line between the class diagrams

(Fig. 11.7).

It is important to note that the attributes and methods of an associated

object could be also encapsulated directly into the object with which it

is associated. For example, the attributes and methods of the

Intermolecular_Potential class could become additional attributes and methods

1..N

1..N
1..N

1..N

FIGURE 11.6 UML diagram illustrating the combined use of inheritance and aggregation.
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of the Atom class without having to create the Intermolecular_Potential

class! Therefore the decision to create an association should be considered

carefully.

11.1.7 Polymorphism

An advantage of OOP programming languages is that the same symbol

can have different meanings depending on the context that it is used.

Polymorphism is used to describe the ability to have many different

forms. For example, in C the “�” operator is used to denote both multipli-

cation and a pointer. There is no conflict between its different behaviors

because the intended behavior is clear from the context that it is used.

When multiplication is intended, “�” is used as a binary operator, whereas

1..N

1..N1..N1..N

FIGURE 11.7 UML diagram showing the association (has a) between Atom and

Intermolecular_Potential in addition to aggregation and inheritance relationships.
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it is used as a unary operator to denote pointer behavior. Languages such

as C11 which support OOP allow us to define polymorphic behavior as

required.

11.2 Case study: application of OO to the microcanonical
MD simulation of Lennard-Jones atoms

In this section we illustrate the use of OO to the MD (Chapter 8) simulation

of the microcanonical ensemble for Lennard-Jones (LJ) atoms. The three dis-

tinct stages of the processes—analysis, design, and programming—are illus-

trated separately. However, it should be noted that in reality the distinction is

blurred. The design stage often results in a re-evaluation of the analysis.

Similarly, the programming component can result in a re-think of the analy-

sis and design. Commonly, the best software solution typically requires sev-

eral iterations of the analysis, design, and programming stages.

It should be noted that the analysis provided here is exemplary only and

intended to illustrate the key processes involved. It is likely that the same

outcome can be obtained by adopting different strategies. Alternative out-

comes are also valid; there are many ways to solve a problem and many dif-

ferent software solutions!

11.2.1 OOA and OOD

The starting basis for any object-oriented analysis is to provide a description of

the problem to be solved. This problem description is used to identify potential

classes, which will form the backbone of the object-oriented description. There

are many ways to identify classes. Normally we can use our understanding of

the problem to identify candidate classes. However, an effective and widely

used technique is to identify major nouns. An example problem description is

given subsequently; the nouns have been underlined as potential classes.

Molecular dynamics simulation can be performed in a microcanonical (NVE) ensemble,

in which the number of atoms, volume, and energy are held constant. The simulation

proceeds for many time steps (Δt) until a predetermined duration (ttotal) is reached. At

the outset (t5 0) of the simulation, the atoms are placed on a face-centered cubic lattice

and given initial values of velocity and accelerations. The nature of the atoms and initial

values of density, energy, and/or temperature are specified. Temperature scaling of the

velocities ensures that the ensemble has a constant energy. The force and energy inter-

acting on each atom is calculated assuming pairwise interaction and an intermolecular

potential such as the Lennard-Jones potential. Using the initial values of forces, veloci-

ties, and acceleration, Newton’s equations of motion are applied to determine the next

position at time t5 t 1 Δt . In practice, this requires an integrator algorithm such as

the Gear predictor method. If the Gear predictor method is used additional time deriva-

tives with respect to position are calculated for each atom. The result of applying
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Newton’s equations of motion is to update the positions, velocities, acceleration, and

force. The density and energy of the ensemble are stored at each time steps. Prior to

equilibrium (teq), temperature scaling of the velocities is applied periodically to maintain

the ensemble at constant energy. After the equilibrium period, ensemble averages of

energy, temperature, and density are accumulated and statistics regarding these proper-

ties are kept. The statistical data for the ensemble is given at the end.

The potential candidates for classes arising from the problem description

are listed in Table 11.1. In Table 11.1 some obviously related or identical

potential classes (e.g., statistics/statistical data/averages) have been grouped

together. The next step is to decide which of the potential classes from this

noun-based analysis form useful classes. Of course, nouns can also be potential

attributes. How do we distinguish between class and attributes? This part of the

analysis benefits greatly from insights we have regarding the problem.

TABLE 11.1 Distinction between classes and attributes.

Potential class Does the potential class have

attributes/classes itself?

Class or

attribute

acceleration No, but vector components Attribute

atom Yes, type, position, etc. Class

NVE ensemble Yes, atoms, temperature, etc. Class

density No Attribute

energy Yes, but not useful in MD Attribute

fcc lattice Yes, positions Class

force Yes Class

Gear Predictor-Corrector
Newton’s equations

Yes, force, acceleration, etc. Class

integrator Yes Class

intermolecular potential
Lennard-Jones potential

Yes, potential parameters but these are
also part of atom

Attribute

molecular dynamics Yes, all of the above Class

statistical data, statistics Yes, many! Class

simulation Yes, for example, molecular dynamics Class

temperature No Attribute

time, step, time derivative No Attribute

velocity No, but vector components Attribute

volume No Attribute
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However, as a rule of thumb useful classes are usually composed of other attri-

butes and/or other classes. Therefore, for each potential class we ask the ques-

tion: does this class contain attributes or other classes? If the answer is ‘yes’

then it may be a useful class otherwise it is an attribute. Of course, classes are

also likely to contain methods but this aspect is excluded from our criterion

because simple ‘set’ and ‘get’ methods can be devised for trivial classes, which

are not useful for the problem analysis. The results of this analysis are summa-

rized in Table 11.1. The assignment of velocity, acceleration, and energy as

attributes rather than classes was the result of our insight into the problem as

will become apparent later. However, because these properties each have vector

components they could also be designated legitimately as classes.

In general, apart from making the distinction between classes and attri-

butes, elimination of potential classes can be made by other criteria

(Rumbaugh et al., 1991) such as redundancy, vagueness, irrelevancy, and

operations. Redundant classes are classes that have an identical meaning but

are expressed differently, for example, statistics, statistical data, and averages.

We may also decide that some potential classes are defined too vaguely to

have any practical meaning whereas others are irrelevant. Some nouns may

also represent dynamic processes that are better viewed as operations rather

than classes. Furthermore, some potential classes may arise as an artefact of

the implementation rather than as part of the description of the problem. For

example, it may be helpful to define classes to handle such items as data

input, output, and array allocation, which arise from the implementation but

they are clearly not part of the problem description.

The major classes are identified in Fig. 11.8 using short-hand UML nota-

tion. The short-hand notation is used because at this early stage we are not

interested in either the attributes or methods. The next step is to identify the

relationships or associations between the various classes. This is achieved by

identifying either dependency (needs-a, has-a, requires-a, etc.) or inheritance

(is-a kind of) relationship between the classes. Molecular_Dynamics is a type

of Simulation. Molecular_Dynamics is performed in the context of the

NVE_Ensemble. Consequently, there is a well-defined association between

Atom

NVE_Ensemble

Gear_Predictor-Corrector

Molecular_Dynamics

Force

Simulation Integrator FCC_Lattice

FIGURE 11.8 Short-hand UML notation for the preliminary major classes identified from

object-oriented analysis.
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these two classes. A NVE_Ensemble is composed of many Atoms indicating an

aggregation relationship between these two classes. In turn each Atom has a

Force. In Molecular_Dynamics the position, velocity, and acceleration of the

Atoms is updated by a differential equation Integrator algorithm. Therefore

Molecular_Dynamics requires an Integrator. The Gear_Predictor-Corrector is an

example of an Integrator. The usefulness of the FCC_Lattice class is question-

able because it has no independent existence of the atoms. Instead, the crea-

tion of a lattice is a candidate method of the ensemble. Therefore we

eliminate it at this stage. These relationships are summarized in the UML

diagram given in Fig. 11.9.

At this stage the UML diagram (Fig. 11.9) should be examined to iden-

tify any weakness in the design. One potential problem in the design is the

relationship between Atom and Force. Although each atom has-a force, the

calculation of force is not independent of each atom but rather it is the result

of all pairwise interaction between the atoms. Therefore, it is preferable to

make Force a property of the NVE_Ensemble rather than the Atom class as illus-

trated in Fig. 11.10. In Fig. 11.10 an association has been maintained

between force and atoms. To work effectively, Force needs Atoms. However,

as represented in Fig. 11.10 there is only one Force object, compared with N

Force objects implied by Fig. 11.9. The weakness in the original design

(Fig. 11.9) would have become very apparent in the programming phase

because of the large overhead imposed by instantiating objects of type Force

and Gear_Predictor-Corrector for each object of type Atom.

Simulation

Molecular_Dynamics

NVE_Ensemble

Atom

Force

Gear_Predictor-Corrector

Integrator

FIGURE 11.9 Preliminary UML diagram for MD in the microcanonical ensemble.
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By examining Fig. 11.10 and considering the problem description, further

refinements to the analysis are suggested. We know that the microcanonical

ensemble is only one possible ensemble. This suggests that the creation of a

generic Ensemble class may be useful. Conversely, the Atom and Force classes are

generic, whereas the problem description deals specifically with atoms interacting

via the Lennard-Jones potential. These insights suggest the use of LJ_Atom and

LJ_Force classes. The revised UML diagram incorporating these additional classes

is illustrated in Fig. 11.12. In Fig. 11.11, the Ensemble, Force, and Atom classes are

denoted as abstract classes. In effect, abstract classes serve as placeholders for

other classes. The benefit of using abstract classes is that they facilitate expansion

of the analysis at a later date (see Chapter 11.5). The NVE_Ensemble is an exam-

ple of an Ensemble class so it inherits from Ensemble. Similarly, LJ_Atom and

LJ_Force inherit from the Atom and Force classes, respectively.

Reflecting on the association between classes in Fig. 11.11 suggests the

possibility of a further refinement. In Fig. 11.11, there is no direct interaction

between the Atom and Integrator classes. To operate effectively, Integrator needs

to access Atom because part of its role is to update the properties of Atom.

The additional association between Integrator and Atom is illustrated in

Fig. 11.12. An alternative and equally valid mechanism is to define an asso-

ciation between the Integrator and Molecular_Dynamics classes. However, this

would be less direct involving Molecular_Dynamics to provide Atom to Integrator.

The process of identifying associations between classes, determining their

attributes, and behavior can be facilitated by maintaining and updating a data

dictionary. The dictionary describes the classes, detailing associations, attri-

butes, and operations. A preliminary dictionary summarizing the details to

date is illustrated in Table 11.2.

Simulation

Molecular_Dynamics

NVE_Ensemble

Atom Force Gear_Predictor-Corrector

Integrator

FIGURE 11.10 First revision of the UML diagram for the MD simulation in the microcanoni-

cal ensemble. Atom and force are now both created from NVE_Ensemble.
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Atom
{abstract}

NVE_Ensemble Gear_Predictor-Corrector

Molecular_Dynamics

Force
{abstract}

Ensemble
{abstract}

LJ_AtomLJ_Force

Integrator
{abstract}

Simulation

FIGURE 11.11 Second revision of UML diagram showing the use of abstract classes.

Atom
{abstract}

NVE_Ensemble Gear_Predictor-Corrector

Molecular_Dynamics

Force
{abstract}

Ensemble
{abstract}

LJ_AtomLJ_Force

Integrator
{abstract}

Simulation

FIGURE 11.12 Third revision of UML diagram showing the added association between the

Integrator and Atom classes.



11.2.2 Detailed class description

Determining the attributes (both variables and methods) is very much an

iterative process. Some attributes are fairly obvious, many attributes are

apparent from the OOA but the remainder will require further analysis of

the problem. Often, ‘missing’ attributes will only become apparent at the

programming phase. Here we will present the ‘final’ result, which has

undergone the process of iterative refinement. The process of determining

attributes and methods is similar to the process that is undertaken in con-

ventional structural programming in identifying functions and appropriate

variables for functions. The main difference is that the methods and attri-

butes both belong to a class. To create a working object or class, two dis-

tinct methods are usually required. The ‘set’ methods perform calculations

and are responsible for assigning values to class attributes. They corre-

spond to either functions or subroutines in structural programming lan-

guage. The ‘get’ methods are used to retrieve the values of the class’s

attributes determined by the ‘set’ methods. They involve typically one line

of code containing an appropriate ‘return’ statement. Later, the attributes

and workings of specific classes must be identified. In C11 , the class

description can be mapped very closely into header files and we will

TABLE 11.2 Preliminary data dictionary describing classes.

Class Description

Atom Abstract class serving as a placeholder for the LJ_Atom class.
Created by NVE_Ensemble.

NVE_Ensemble An example of an ensemble used to generate all the Atoms
in the Ensemble and the Force class. Created by Ensemble.

Ensemble Abstract class created by Molecular_Dynamics. Generates
NVE_Ensemble.

Force Abstract class serving as a placeholder for LJ_Force class.
Force needs Atom. Created by NVE_Ensemble.

Gear_Predictor-
Corrector

Contains information related to the Gear PC method.
Updates positions, velocities, and acceleration. Created by
Molecular_Dynamics.

LJ_Atom Contains details of the Lennard-Jones atom. Created by
Atom.

LJ_Force Performs the force calculation. Created by Force.

Molecular_Dynamics Creates the Ensemble and the Integrator classes and drives
the simulation. It requires Atom.

Simulation Creates the Molecular_Dynamics and handles I/O.
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therefore provide the header files side by side with the UML diagrams. The

use of header files2 is advantageous because it separates the programming

interface from the working program. In some small number of cases, the

source code contains additional methods not given in the UML diagrams,

which post-design coding decision, for example, different implementations

of a particular method.

The C11 20 standard released in 2021 provides the ability to express

modularity using the module keyword. This can now be used as an alternative

to header files. Details of the latest changes to C11 have been summarized

by Stroustrup (2023).

11.2.2.1 Simulation

The Simulation class is the driver class for the whole program. It has one

method readSimParameters() responsible for determining the choice of simula-

tion. After the Molecular_Dynamics object is created the run() method of that

class is called.

Simulation Class md_Ver2.0\simMD.h 

// File:  simMD.h
// -----------------
// This file contains the definition of
// the Simulation class, which defines
// all methods and data for MD or MC.

#ifndef _sim_h_
#define _sim_h_

-MolecularDynamics *md

readSimParameters()

Simulation

#include "md.h"

class Simulation{
private:

MolecularDynamics *md;
public:

void readSimParameters();
};
#endif

11.2.2.2 Molecular_Dynamics

The Molecular_Dynamics class controls the simulation process via the runNVE()

method, which is called by the run() method. It contains a reference to the

Ensemble and Integrator classes.

2. The naming of the header file is arbitrary but it is sensible to adhere to the convention of

source-file-name.h. Some C11 programmers prefer to use the .hpp extension for differentiation

with C header files. However, we prefer .h because .hpp can be easily mistaken for .cpp increas-

ing the likelihood of the wrong file being inadvertently deleted or overwritten.
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Simulation Class md_Ver2.0\md.h

//  File:  md.h
// -----------------
// This file contains the definition of
// the MolecularDynamics class, which
// defines all methods and data for a
// Molecular Dynamics simulation.

#ifndef _md_h_
#define _md_h_

#include "integrtMD.h"
#include "ensembleMD.h"

class MolecularDynamics
{

private:
Ensemble *ensemble;
Integrator *integrator;
int theEnsemble,derivatives;

protected:
int nSize, nEquil, nStep;
double tStep;

public:
MolecularDynamics();
int getnSize();
int getnEquil();
int getnStep();
double gettStep();
void runNVE();
void readInNVE(int );
void run();

};

#endif

-Ensemble *ensemble
-Integrator *integrator 
-theEnsemble

Molecular_Dynamics

-derivatives

MolecularDynamics()
readinNVE()
run()
runNVE()

11.2.2.3 Ensemble

The Ensemble class contains most of the required variables and methods of

the simulation. It has references to the Force object, an array of Atoms and the

simulation parameters. Ensemble also has abstract methods that are defined in

the derived class NVE_Ensemble.
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Simulation Class md_Ver2.0\ensembleMD.h 

// File:  ensembleMD.h
// -----------------
// This file contains the definition of the
// abstract class Ensemble that defines all
// methods and data common to different
// ensemble types (eg derived classes), as
// well as foreshadowing methods of those
// derived classes through the use of abstract
// methods.

#ifndef _ensembleMD_h
#define _ensembleMD_h

#include "atomMD.h"
#include "forceMD.h"

// Class: EnsembleMD
// ---------------
// The EnsembleMD class contains the physical
// attributes of the abstract ensemble, from
// which instantiable ensemble classes are
// derived, such as the NVE ensemble.

class EnsembleMD
{
protected:
Atom  **atoms;      //array of atoms 
Force *theForce;    //the force
int numComp;        //no. of components
int numAtom;        //no. of atoms
int *comp;          //no. comp. each type
double temperature; //temperature
double density;     //density
double boxVol; //box volume
double boxLen;      //box length
double *molFract;   //mole fractions
double kineticE;    //kinetic energy
double potEnergy;   //potential energy

public:
Ensemble(Atom **, int, int,
double, double, double *, int *); 

virtual ~Ensemble();
Atom **getAtoms();   //return atom array 
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void setVolume();      //set box volume
void setLength();      //set box length
void setComp();        //set atom type
void initAcceleration(); //initial accel.
int getNumAtom();     //get total atoms
int *getComp();       //get no.components
int getNumComp();     //get total comp.
double getTemp();     //get temperature
double getVolume();   //get box volume 
double getLength();   //get box length
double getPotEnergy();//get pot energy
double getVirial(); //get virial
getKineticE(); //get kinetic energy 

// Abstract Methods
// ----------------
// The following methods are defined in 
// the NVEensembleMD class(nve.h &nve.cpp).

virtual void initialVelocity()=0;
//assign the initial atom velocities

virtual void initialCoord()=0;
//place atoms on lattice

virtual void scaleVelocity()=0;
//scale velocities to temperature

virtual void setForce()=0;
//instigate force calculations

virtual void setKineticE()=0;
//set ensemble Kinetic Energy

virtual void setKineticE(double) = 0;
//set the Kinetic Energy;

virtual double getEnergyLRC()=0;
//get energy long range correction

virtual double getVirialLRC() = 0;
//get virial long range correction

virtual void lrc()=0;
//trigger the long range corrections

};

#endif

11.2.2.4 NVE_Ensemble

The NVE_Ensemble class contains attributes and methods that are specific to

the microcanonical ensemble and other methods that are required for the

simulation. The constant energy is maintained via velocity scaling.
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Simulation Class md_Ver2.0\nveMD.h

// File:  nveMD.h
// -----------------
// This file contains the definition of the
// NVEensembleMD class, which defines all
// methods and data for the microcanonical
// ensemble.

#ifndef _nveMD_h
#define _nveMD_h

#include "ensembleMD.h"

class NVEensemble : public EnsembleMD
{
private:
double energyLRC; //long range E.corr.
double virialLRC;   //long range vir. corr

public:
NVEensemble(AtomMD **, int, int, double,

double, double *, int *);
void readInNVE();
//read in ensemble data
virtual void initialVelocity();
//assign the initial atom velocities
virtual void initialCoord();
//place atoms on lattice
virtual void scaleVelocity(double);
//scale velocities to temperature
virtual void setForce();
//instigate force calculations
virtual void setKineticE();
//set ensemble Kinetic Energy
virtual void setKineticE(double);
//set the ensmble kinetic energy
virtual double getEnergyLRC();
//get energy long range correction
virtual double getVirialLRC();
//get virial long range correction
virtual void lrc();
//trigger the long range corrections

};
#endif

11.2.2.5 Atom

The class Atom is an abstract container class for all data and methods common

to all atom types such as position and mass. Atom contains a two-dimensional

array, highTimeDerivs, which stores values of ð@nr=@tnÞ where n . 2 required by

the Gear predictor�corrector algorithm. The velocity (n5 1) and acceleration

(n5 2) are given separately.
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Simulation Class

// File:  atomMD.h
// -------------
// This file contains the definition of
// abstract class Atom, which defines all
// methods and data common to different
// atom types (eg derived classes), as well as
// foreshadowing methods of those derived
// classes through the use of abstract
// methods.

#ifndef _atomMD_h_
#define _atomMD_h_

class AtomMD
{
protected:
int type;                //type of atom
double mass;             //mass of the atom
double **rCutOff;        //cut off distance
double *position;        //position
double *velocity;        //velocity
double *acceleration;    //acceleration
double **highTimeDerivs; //high. time der.
double *force;           //force

public:
Atom(int, double, int, int);
Atom();
void setType(int);
//assign type to atom
void setrCutOff(double **);
//assign cut off point for atom
void setMass(double);
//assign mass to atom
void setAcceleration(double *); 
//assign acceleration to the atom
void setPosition(double *);
//assign position of atom
void setVelocity(double *);
//assign velocity to atom
void setHighTimeDerivs(double **);
//set derivatives of time

md_Ver2.0\atomMD.h

426 Molecular Simulation of Fluids



void setForce(double *);
void setForce(double,double,double);
void setForce(int, double *);
//set the force of the atom
double **getrCutOff();
//return cut off point for atom
double *getAcceleration();
//get acceleration of atom
double *getPosition();
//get position of atom
double *getVelocity();
//get velocity of atom
double **getHighTimeDerivs(); 
//get derivatives of time
double *getForce(); 
double *getForce(int);
//get the force of the atom
double getMass();
//get mass of atom
int getType();
//get type of atom

// Abstract Virtual Methods
// ------------------------
// LJatom derived class methods
// ------------------------------

virtual void setSigma(double **)=0;
//set sigma for atom pairs
virtual void setEpsilon(double **)=0;
//set epsilon for atom pairs
virtual double **getEpsilon()=0;
//get epsilon for atom pairs
virtual double **getSigma()=0;
//get sigma for atom pairs

};

#endif

11.2.2.6 LJ_Atom

The LJatom class inherits from Atom and defines those attributes and meth-

ods that are specific to atoms interacting via the LJ potential. In particular, it

contains the ε and σ parameters.
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Simulation Class md_Ver2.0\ljatomMD.h

// File:  ljatomMD.h
// -----------------
// This file contains the definition of the
// LJatomMD class, which defines all methods a
// and data for an LJatomMD  interacting via
// the Lennard-Jones 12-6 intermolecular
// potential.

#ifndef _ljatomMD_h
#define _ljatomMD_h

#include "atomMD.h"

class LJatom : public Atom
{
private:
double **epsilon;             //LJ epsilon 
double **sigma;               //LJ sigma

public:
LJatom(int , double , double **,

double **, double **, int, int);
LJatom();
virtual void setSigma(double **);
//set sigma for atom pairs
virtual void setEpsilon(double **);
//set epsilon for atom pairs
virtual double **getEpsilon();
//get epsilon for atom pairs
virtual double **getSigma();
// get sigma for atom pairs

};

#endif

11.2.2.7 Force

Force is an abstract class that maintains a reference to the array of atoms. It

is a container class for the methods in its derived classes that are responsible

for performing the setForce calculations and the long-range corrections.
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Simulation Class md_Ver2.0\forceMD.h

// File: forceMD.h
//----------------
// This file contains the definition of
// abstract class ForceMD, which defines all
// methods and data common to different
// force types (eg derived classes), as well
// as foreshadowing methods of those derived
// classes through the use of abstract
// methods.

#ifndef _forceMD_h
#define _forceMD_h

#include "atomMD.h"

class Force
{
protected:
Atom **atoms;   //reference to atom array

public:
Force(Atom **);
virtual ~Force();

// Abstract Methods for subclasses
// -------------------------------
// for LJforce:
virtual void setForce(int, double, 

double *, double *)=0;
//set force calculations
virtual void lrc(int, int *, double, 

double *, double)=0;
//long range corrections 

};

#endif

-Atom **atoms

Force()
lrc() {abstract}
setForce() {abstract}

Force
{abstract}

11.2.2.8 LJ_Force

LJ_Force is the subclass of Force that is responsible for performing the long-

range corrections and force calculations using the LJ potential.

Molecular simulation and object-orientation Chapter | 11 429



Simulation Class md_Ver2.0\ljforceMD.h

// File:  ljforceMD.h
// -------------
// This file contains the definition of the
// Ljforce class, which defines all methods
// and data for a ForceMD object which 
// interacts according to the Lennard-Jones
// intermolecular potential.

#ifndef _ljforceMD_h_
#define _ljforceMD_h_

#include "forceMD.h"

class LJforce : public Force
{
private:
double **epsilon, **sigma, **rCut;
//reference to epsilon, sigma and rCut

public:
LJforce (Atom **);

virtual void setForce(int, double,
double *, double *);

//set force calculations
virtual void lrc(int, int *, double,

double *, double *);
//long range corrections

};

#endif

LJ_Force

LJForce()
Irc() 
setForce()

-epsilon 
-rCutOff 
-sigma

11.2.2.9 Integrator

The Integrator class is a container class for all derived integrator methods.

Apart from its constructor, it only contains abstract methods that will be

implemented in its subclasses.
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Simulation Class md_Ver2.0\integrtMD.h

// File:  integrtMD.h
// -----------------
// This file contains the definition of the
// abstract class IntegratorMD, which defines
// all methods and data common to integrator
// methods.

#ifndef _integrtMD_h_
#define _integrtMD_h_

#include "atomMD.h"

class Integrator
{
protected:
Atom **atoms;

public:
Integrator(Atom **);
~Integrator();
virtual void gearPredict(int,

double, double, double)=0;
//Gear's predictor
virtual void gearCorrect(int, double,

double)=0;
//Gear's Corrector

};

#endif

gearCorrect() {abstract} 
gearPredict() {abstract}

Integrator 
{abstract}

-Atom **atoms
Integrator()

11.2.2.10 Gear_Predictor�corrector

The Gear_PC class implements the methods of the Gear predictor�corrector

integrator algorithm (Algorithm 7.2). It inherits a reference to the array of

atoms from its base class, which allows calculations to be performed with lit-

tle overhead from parameter passing.
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Simulation Class md_Ver2.0\gpcMD.h

// File:  gpcMD.h
// -----------------
// This file contains the definition of the
// GearPCMD class, which defines all methods 
// data for the Gear predictor-corrector
// implementation of the integrator method.

#ifndef _gpcMD_h_
#define _gpcMD_h_

#include "integrtMD.h"

class GearPC : public Integrator
{
public:
GearPC(Atom **);
virtual void gearPredict(int, double,

double);
//Gear's predictor
virtual void gearCorrect(int, double,

double);
//Gear’s Corrector

};

#endif

Gear_PC

GearPC()
GearCorrect()
GearPredict()

The Gear predictor method relies on a number of constants, which could

have been also included in the gpcMD.h file. However, in this case, a separate

gpcConstants.h file is used, as illustrated below.

md_ver2.0/gpcConstantsMD.h

// File:  gpcConstantsMD.h
// -----------------
// This file contains the constants required for 
// the Gear-Predictor method.

#ifndef _gpcConstantsMD_h_
#define _gpcConstantsMD_h_

const double G0 = 0.1875;
const double G1 = 0.6972222222;
const double G3 = 0.6111111111;
const double G4 = 0.1666666667;
const double G5 = 0.0166666667;

#endif

11.2.2.11 Auxiliary methods

In common with many applications, there are a subset of methods and utili-

ties that are not specific to a particular but are required by several classes. In
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effect, these methods supplement the methods in the standard libraries that

are provided with the compiler. The header file for these functions is

auxfunc.h.

md_Ver2.0\auxfunc.h

// File: auxfunc.h
// -----------------
// Library interface for general purpose methods
// that are not specific to any class.

#ifndef _auxfunc_h
#define _auxfunc_h

double **getMemory(int num);
//Allocates memory for a one dimensional array
double **getMemory(int xNum, int yNum);
//Allocates memory for a two dimensional array 
double nearestInt(double vector, double boxL);
//Finds the nearest integer
double random(int *idum);
//Finds a random number on the interval  0 to 1
void freeMemory(double **);
void freeMem(double **, int);
//Methods to free memory

#endif

11.2.3 Object-oriented programming in C11

After defining the class diagrams and prototyping the methods and variables

required for the various classes, we enter the programming phase. The vari-

ables and methods for each class are written in a source file with the same

name as the header file. This aspect of the object-oriented process involves

using the principles of structural programming to design robust and well-

structured methods. The design of methods is the algorithm phase of OO.

Notice that it comes naturally as the last step in the object-oriented process,

whereas the structural programming approach is algorithm-centered from the

outset.

11.2.3.1 Code for the main() function

The previous object-oriented analysis has not addressed the role of the main()

function. All C or C11 programs must contain the main() function. Where is

the main() function in our analysis? The answer to this question is that it is

effectively outside of the analysis. In the context of any object-oriented anal-

ysis, main() has a minimal role involving typically only the instantiation of

one object. Thereafter, the program proceeds in accordance with the
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instructions in the various classes, which control the creation of objects and

message passing between objects via method calls. In view of the object-

oriented analysis summarized by Fig. 11.18, the role of main() is clearly to

instantiate an object of type Simulation as illustrated in the code subsequently.

An object of type 

Simulation is created. 

Call to 

readSimParameters() 

invokes the simulation 

process.

// File mainMD.cpp
// -----------
// This file contains the main() function 
// responsible for starting the simulation
/  process.

#include "simMD.h"

int main(int argc, char **arv)
{

Simulation sim;
sim.readSimParameters();
return 0;

}

md_Ver2.0\mainMD,cpp
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11.2.3.2 Code for the simulation class

md_Ver2.0\simMD.cpp

The simulation class is 

responsible for reading 

in the simulation 

parameters. 

In the main() an object 

of type Simulation is 

instantiated and the  

readSimparameters() 

method is called.  

The simulation settings 

are read from the 

“simMD.dat” file. 

If the MD option is 

chosen a reference 

(md) to an object of 

MolecularDynamics is 

created.

The run() method of 

MolecularDynamics is 

called which starts the 

simulation process.  

The  Simulation class 

can be expanded later 

to include MC.

// File:  simMD.cpp
// -----------------
// This file contains the implementation of
// the Simulation class, which defines all
// methods and data for a molecular
// simulation, using either MD or MC.

#include "simMD.h"
#include <fstream>
#include <iostream>

using namespace std;

// Method:  readSimParameters
// Usage:   readSimParameters();
// ---------------------
// Reads in parameters for NVE ensemble

void Simulation::readSimParameters()
{

int simulation;
//open the sim.dat file

ifstream in;
in.open("simMD.dat");

if(in.fail())
{
cout << "Cannot open simMD.dat!\n";
return;

}

in >> simulation;
in.close();

switch(simulation)
{
case 1: //Molecular Dynamics
md = new MolecularDynamics();
md->run();
break;

case 2:  //Monte Carlo
cout << "Not Yet Implemented" << endl;
break;

default:
cout << "Invalid! Aborting!" << endl;
break;

}
return;

}
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11.2.3.3 Code for the Molecular_Dynamics class

md_Ver2.0\md.cpp

The constructor is 

called  when a 

MolecularDynamics 

object (md) is created 

in the Simulation 

object (sim).

The number of 

derivatives depends on 

the order of the Gear 

// File:  md.cpp
// Class: MolecularDynamics
// ------------------------
// This file contains the implementation
// details for the Molecular dynamics class
// to perform an MD simulation

#include "md.h"
#include "nveMD.h"
#include "gpcMD.h"
#include "ljatomMD.h"
#include "auxfunc.h"
#include <math.h>
#include <fstream>
#include <iostream>

using namespace std;

// Constructor
// -----------
// Accesses parameter file md.dat, which
// identifies the choice of intermolecular
// potential, ensemble, and integrator method,
// & constructs the MolecularDynamics object.

MolecularDynamics::MolecularDynamics()
{
int integratorM, InterPotential;
ifstream in;

in.open("md.dat");

if(in.fail())
{
cout << "Unable to open md.dat 

for MD parameters" << endl;
return;

}

in >> nStep;
in >> nEquil;
in >> nSize;
in >> tStep;
in >> integratorM;

if(integrator ==1)                 //Gear PC
in >> derivatives;
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PC (5 in this case).

The appropriate read-

in method is called.

Integrator points to an 

object of type GearPC.

The run method is 

invoked by md->run() 

from the sim object. 

Different 

ensembles/integrator 

combinations will 

require different run() 

methods. This method 

controls the execution 

of the simulation.

Simulation settings.

in >> theEnsemble >> InterPotential;
in.close();

switch(theEnsemble)
{

case 1:                     //NVE ensemble
readInNVE(potential);
break;

//other ensembles here
}

switch(integratorM)
{

case 1:
integrator = new

GearPC(ensemble->getAtoms());
break;

}

}

// Method: run
// Usage:  run();
// --------------
// Runs the appropriate simulation run method
// determined by the choice of ensemble.

void MolecularDynamics::run()
{

switch(theEnsemble)
{

case 1: // NVE ensemble
runNVE();
break;

//other ensembles can be inserted here
}

}

void MolecularDynamics::runNVE()
{

ofstream out;
out.open("md_nve.out", ios::out);

if(out.fail()) {
cout << "could not open output file!" 
<< endl;
return;

}

int i, j = 0, n, nTotal; 
int nStep = getnStep();
int nEquil = getnEquil();
int nSize = getnSize();
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Initialising averages.

Determine size of 

simulation blocks.

Properties to be 

averaged are 

accumulated in blocks 

of size n.

Initialization of the 

properties of ensemble 

prior to the simulation.

int num       = ensemble->getNumAtom();
double length = ensemble->getLength();
double volume = ensemble->getVolume();
double tStep = gettStep();
double potE, kinE, totE, temp, lrc, lrcw;
double avPotEnergy = 0.0;
double avKinEnergy = 0.0;
double avTotEnergy = 0.0;
double avVirial = 0.0;
double avTemperature = 0.0;
double erKinEnergy = 0.0;
double erPotEnergy = 0.0;
double erTotEnergy = 0.0;
double erTotEnergy = 0.0;
double erVirial = 0.0;
double erTemperature = 0.0;
double pressure, erPress;
double *accumPotE, *accumKinE;
double *accumTotE, *accumVir, *accumTemp;

nTotal = nStep - nEquil;
n = nTotal/nSize;
accumPotE = new double [n];
accumKinE = new double [n];
accumTotE = new double [n];
accumTemp = new double [n]; 
accumVir = new double [n];
accumTemp = new double [n];

for (i = 0; i < n; i++)
{
accumPotE[i] = 0.0;
accumKinE[i] = 0.0;
accumTotE[i] = 0.0;
accumTemp[i] = 0.0;
accumVir[i]  = 0.0;
accumTemp[i] = 0.0;

}

ensemble->lrc();
//long range corrections
lrc = ensemble->getEnergyLRC();
lrcW = ensemble->getVirialLRC();
ensemble->setForce();
//set initial force
ensemble->initAcceleration();
//initial acceleration
ensemble->initialVelocity();
//initial velocity
ensemble->setKineticE();
//determine kinetic energy
ensemble->scaleVelocity();
//scale velocities to coincide with energy
ensemble->setKineticE();
//Re-determine KE with scaled velocities
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Start of simulation 

using Gear PC.

Velocity scaling at 

every 10 time steps to 

keep energy constant.

Accumulation of 

averages after 

equilibration period.

Calculation of 

ensemble averages and 

standard deviations.

cout << "Results will be directed to the 
file \"md_nve.out\"" << endl;

for(i = 0; i < nStep; i++)
{
integrator->gearPredict(num, length,

tStep);
ensemble->setForce();
ensemble->setKineticE();
kinE = integrator->

gearCorrect(num, length, tStep);
ensemble->setKineticE(kinE);

if(((i % 10) == 0) && i < nEquil)
ensemble->scaleVelocity(tStep);

if(i >= nEquil)
{

potE = ensemble->getPotEnergy() + lrc;
kinE = ensemble->getKineticE();
virial = ensemble->getVirial() + lrcW; 
totE = potE + kinE;
temp = 2.0*kinE/(3.0*num -3);
avPotEnergy += potE;
avKinEnergy += kinE;
avTotEnergy += totE;
avVirial    += virial;
avTemperature += temp;

if((i !=nEquil) && ((i % nSize)==0))
{

accumPotE[j] /= nSize;
accumKinE[j] /= nSize;
accumTotE[j] /= nSize;
accumVir[j]  /= nSize;
accumTemp[j] /= nSize;
j++;
}
accumPotE[j] += potE; 
accumKinE[j] += kinE;
accumTotE[j] += totE;
accumVir[j]  += virial;
accumTemp[j] += temp;

}
}

avPotEnergy   /= nTotal;
avKinEnergy   /= nTotal;
avTotEnergy   /= nTotal;
avVirial /= nTotal;
avTemperature /= nTotal;
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Printing out ensemble 

averages at the end of 

the simulation.

The readInNVE() 

method is called by the 

constructor of the 

MolecularDynamics 

object.

Some of the input 

values depend on the 

potential.  In this case 

only the LJ has been 

implemented.

References to the 

Atom class.

Check for successful 

file opening.

for(i = 0; i < n; i++)
{
erPotEnergy +=

pow((accumPotE[i] - avPotEnergy),2);
erKinEnergy +=

pow((accumKinE[i] - avKinEnergy),2);
erTotEnergy +=

pow((accumTotE[i] - avTotEnergy),2);
erVirial    +=

pow((accumVir[i] - avVirial),2);
erTemperature +=

pow((accumTemp[i] - avTemperature),2);
}

pressure = avVirial/volume + 
num*ensemble->getTemp()/volume;

erPress  = erVirial/volume;

out <<"Average Potential Energy/N:\t"
<< avPotEnergy/num <<"  +/-
"<<sqrt(erPotEnergy)/(nTotal*num)<<endl;

out <<"Average Kinetic Energy/N:\t " 
<< avKinEnergy/num <<" +/-
"<<sqrt(erKinEnergy)/(nTotal*num)<<endl;

out <<"Average Total Energy/N:\t\t"
<< avTotEnergy/num <<"  +/-
"<<sqrt(erTotEnergy)/(nTotal*num)<<endl;

out <<"Average Pressure:\t\t " << pressure
<<"  +/- "<<sqrt(erPress)/nTotal<<endl;

out <<"Temperature:\t\t\t " << avTemperature
<<"  +/-
"<<sqrt(erTemperature)/nTotal<<endl;

out.close();
}

// Method: readInNVE
// Usage:  readInNVE();
// __________________
// ReadIn reads-in the NVE ensemble settings
// from the NVEfile.dat data file.

void MolecularDynamics::readInNVE
(int interPotential)

{
int i, j, dimensions = 3;
int, numComp, numAtom, *comp;
double numType, *molFract;
double temperature, density, *mass;

AtomMD *newAtom, **atoms;

//open the NVEfile.dat file

ifstream in;
in.open("NVEfileMD.dat");
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Check that there is at 

least one component!

Check that there are at 

least four atoms to 

build lattice.

The following code 

continues to read-in 

data and performs 

various bookkeeping 

tasks.

This can be expanded 

for other potentials.

if(in.fail())
{

cout << "Cannot open NVEFile.dat!\n";
return;

}

in >> numComp;
if(numComp <= 0)
{

cout << "Number of components must
be > 0!\n";

return;
}

comp = new int[numComp];

in >> numAtom;
if(numAtom < 4)
{

cout << "At least 4 atoms are
required!\n";
return;

}

if(!(molFract = new double [numComp]))
{

cout << "Cannot allocate memory
to molFract" << endl;
return;

}

for(i = 0; i < numComp; i++)
in >> molFract[i];

mass = new double[numComp];

for(i = 0; i < numComp; i++)
in >> mass[i];

in >> temperature;
in >> density;
in.close();

// construct array of atoms
if(potential == 1) // Lennard-Jones
{

in.open("paramLJ.dat");
if(in.fail())
{
cout<<"Cannot open paramLJ.dat!\n";
return;

}

// assign memory to arrays
if(!(atoms = new Atom * [numAtom]))
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{
cout<<"Cannot allocate memory to

atoms!\n";
return;

}

epsilon = getMemory(numComp);
sigma = getMemory(numComp);
rCut = getMemory(numComp);

for (i = 0; i < numComp; i++)
{
for (j = 0; j < numComp; j++)
{

in>>epsilon[i][j]>> sigma[i][j]
>> rCut[i][j];

//adjust for indistinguishable pairs
if (j!=i)
{
epsilon[j][i] = epsilon[i][j];
sigma[j][i] = sigma[i][j];
rCut[j][i] = rCut[i][j];

}
}

}

// close input file
in.close();

int *atnum = new int[numComp + 1];
atnum[0] = 0;
//calculate the number of atoms of each
//type from the molFract

for(i = 0; i < numComp; i++)
{
numType = numAtom * molFract[i];
int rem = (int) numType;

if ((numType - rem) >= .5)
atnum[i+1] = (int) numType + 1;

else
atnum[i+1] = (int) numType;

}
int sum = 0;
for (i = 0; i <= numComp; i++)

sum += atnum[i];

while (atnum[numComp] < numAtom)
atnum[numComp]++;

for(i = 0; i < numComp; i++)
atnum[i+1] += atnum[i];
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This section of code 

creates objects of type 

Ljatom, which is 

accessible via the 

atoms array.  The 

properties of ljatom are 

passed to the 

constructor

A pointer to the NVE 

ensemble.  The 

properties of the 

ensemble are passed to 

the constructor.

Get size of block 

averages.

Get number of 

equilibration steps.

//loop through the number of components
for (i = 0; i < numComp; i++)
{
//loop through the number of atoms
//of that type
for(int j=atnum[i];j<atnum[i+1];j++)
{

//create atom(s) and assign mass,
//type, sigma, epsilon, and rCut
//(derivatives-2) because
//acceleration and velocity are
//stored separately
newAtom =

new Ljatom(i, mass[i], epsilon,
sigma, rCut, dimensions,
(derivatives-2));

//store reference to atom in array
atoms[j] = newAtom;

}
}

} // end of LJ atom array creation

ensemble = 
new NVEensemble(atoms, numComp, 

numAtom, temperature,
density, molFract, comp);

return;
}

// Method: getnSize()
// Usage:  n = getnSize();
// ----------------------
// Gets the size of the blocks to be averaged.

int MolecularDynamics::getnSize()
{

return nSize;
}

// Method: getnEquil()
// Usage:  n = getnequil();
// ----------------------
// Gets the equilibration period.

int MolecularDynamics::getnEquil()
{

return nEquil;
}
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Get the total number of 

steps in the simulation.

Get the time step.

// Method: getnStep()
// Usage: n = getnStep();
// ----------------------
// Gets the total number of simulation steps.

int MolecularDynamics::getnStep()
{

return nStep;
}

// Method: gettStep()
// Usage:  n = gettStep();
// ----------------------
// Gets the size of the time step.

int MolecularDynamics::gettStep()
{

return tStep;
}

11.2.3.4 Code for the ensemble class

md_Ver2.0\ensembleMD.cpp

The  ensemble 

constructor is called 

during from the read-in 

function during the 

construction of the md 

object.  The properties 

of the Ensemble are 

initialised by the 

constructor.

// File: ensembleMD.cpp
// ____________________
// File containing functions to implement the
// Abstract EnsembleMD class.

#include "ensembleMD.h"
#include <math.h>

// Method: EnsembleMD
// Usage:  EnsembleMD;
// -------------------
// Constructor for the EnsembleMD class

EnsembleMD::EnsembleMD(Atom **theAtoms,
int nComp, int nAtoms, double temp, 
double dens, double *mol, int *cmp)

{
atoms = theAtoms;
numComp = nComp;
numAtom = nAtoms;
temperature = temp;
density = dens;
molFract = mol;
comp = cmp;
potEnergy = 0.0;

}

// Destructor for EnsembleMD class
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Calculate volume of 

simulation box

Length of simulation 

box.

Number of 

components of each 

atom.

EnsembleMD::~EnsembleMD(){}

// setMethods
// ----------
// These methods assign values to the volume,
// length, and component number for the
// ensemble.  They do not take any parameters,
// and are called during the construction
// phase of the ensemble

// Method: setVolume
// Usage:  setVolume();
// -----------------_
// Determines the volume of the simulation
// box.

void EnsembleMD::setVolume()
{

boxVol = numAtom/density;
}

// Method: setLength
// Usage:  setLength();
// -------------------
// Determines the length of the simulation
// box.

void EnsembleMD::setLength()
{

boxLen = pow(boxVol, 1.0/3.0);
}

// Method: setComp
// Usage:  setComp();
// -----------------
// Determines the number of atoms of each
// type.

void EnsembleMD::setComp()
{

int i, sum = 0;

for(i =0; i < numComp - 1; i++)
{

comp[i] = (int)(molFract[i] * numAtom);
sum += comp[i];

}
comp[numComp - 1] = numAtom - sum;

}

// getMethods
// ----------
// These methods return the number of atoms,
// an array describing the number of each
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Get the number of 

atoms in the ensemble.

Get the temperature.

Get the number of 

components.

Get the number of 

each component.

Get the volume.

// atom of each type, the number of
// components, the temperature of the
// ensemble, the volume of the ensemble box,
// the length of the ensemble box, the
// potential energy and the kinetic energy. 

// Method: getNumAtom
// Usage:  n = getNumAtom();
// ------------------------
// Gets the total number of molecules.

int EnsembleMD::getNumAtom()
{

return numAtom;
}

// Method: getTemp
// Usage:  getTemp();
// ------------------
// Gets the temperature of the ensemble.

double EnsembleMD::getTemp()
{

return temperature;
}

// Method: getNumComp
// Usage:  n = getNumComp();
// -------------------------
// Gets the number of components.

int EnsembleMD::getNumComp()
{

return numComp;
}

// Method: getComp
// Usage:  p = getComp();
// ----------------------
// Gets the number of each individual comp.

int * EnsembleMD::getComp()
{

return comp;
}

// Method: getVolume
// Usage:  getVolume();
// --------------------
// Gets the volume of the simulation box.

double EnsembleMD::getVolume()
{

return boxVol;
}
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Get the box length.

Get the potential 

energy.

Get the virail

Get the kinetic energy.

Get the array of Atom 

objects.

Get atoms

// Method: getLength
// Usage:  getLength();
// --------------------
// Gets the length of the simulation box.

double EnsembleMD::getLength()
{

return boxLen;
}

// Method: getPotEnergy
// Usage: getPotEnergy();
// ----------------------
// Gets potential energy following force cal.
double EnsembleMD::getPotEnergy()
{

return potEnergy;
}

// Method: getVirial
// Usage: getVirial();
// -------------------
// Gets virial following force calculation.

double Ensemble::getVirial()
{

return virial;
}

// Method: getKineticE
// Usage   n = getKineticE();
// --------------------------
// Gets the kinetic energy.

double EnsembleMD::getKineticE()
{

return kineticE;
}

// Method: getVirial
// Usage: getVirial();
// -------------------
// Gets virial following force calculation.

double Ensemble::getVirial()
{

return virial;
}

// Method: getAtoms
// Usage:  n = getAtoms();
// -----------------------
// Return array of atoms
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Set the initial 

accelation.

AtomMD **EnsembleMD::getAtoms()
{

return atoms;
}

// Method:  initAcceleration
// Usage:   initAcceleration();
// ----------------------------
// Performs initialisation on the
// accelerations of all the atoms
// in the ensemble prior to starting the
// simulation. It requires the force values to
// have been initialised.

void EnsembleMD::initAcceleration()
{

double *accel, *force, mass;
accel = new double [3];

for(int i = 0; i < numAtom; i++)
{
force = atoms[i]->getForce();
mass = atoms[i]->getMass();
for (int j = 0; j < 3; j++)
atoms[i]->setAcceleration(&accel[0]);

}
}
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11.2.3.5 Code for NVE_Ensemble class

md_Ver2.0\nveMD.cpp

Create NVEensemble.

Set the kinetic energy.

The sum of all 

components of 

velocity.

// File: nveMD.cpp
// ---------------
// File containing methods to implement the
// NVEensembleMD class.

#include "nveMD.h"
#include "auxfunc.h"
#include "ljforceMD.h"
#include <iostream>
#include <math.h>

using namespace std;

// Method: NVEensembleMD
// Usage:  NVEensembleMD;
// ----------------------
// Instantiate the NVEensembleMD class

NVEensemble::NVEensemble(Atom **atoms,
int numComp, int numAtom, double temperature,
double density, double *molFract, int *comp)

: Ensemble(atoms, numComp, numAtom, 
temperature, density, molFract, comp)
{

setVolume();
setLength();
setComp();
initialCoord();
theForce = new LJforceMD(atoms);

}

// Method: setKineticE
// Usage:  setKineticE();
// ----------------------
// Determines the kinetic energy.

void NVEensembleMD::setKineticE()
{

int i;
double sum = 0.0, *velocity;
for(i = 0; i < numAtom; i++)
{
velocity = atoms[i]->getVelocity();
sum += atoms[i]->getMass() *

(velocity[0] * velocity[0] +
velocity[1] * velocity[1] +
velocity[2] * velocity[2]);

}
kineticE = sum/2;

}
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Scale the velocities.

The array indexes, 0, 

1,2 signify the x,y and 

z components of 

velocity, respectively.

Set the initial 

velocities.

// Method: scaleVelocity
// Usage:  scaleVelocity();
// ----------------------------
// Scales the velocities during the
// equilibration phase of the simulation. The
// scaling ensures that the simulation
// is performed at the specified energy.

void NVEensemble::scaleVelocity()
{

int i;
double tScale, mass, kinE, temp, 
sumVSq = 0.0, *velocity;

kinE = getKineticE();
temp = 2*kinE/(3*numAtom - 3);

tScale = sqrt(getTemp()/temp); 

// scale velocities to reproduce the desired
// temperature (temp) and acumulate sum
// for momentum adjustment

for(i = 0; i < numAtom; i++)
{
velocity = atoms[i]->getVelocity();

velocity[0] *= tScale;
velocity[1] *= tScale;
velocity[2] *= tScale;

atoms[i]->setVelocity(velocity);
}

}

// Method: initialVelocity
// Usage:  initialVelocity();
// --------------------------
// Invokes a random number generator to assign
// initial velocities to molecules at the
// start of a molecular dynamics simulation.

void NVEensemble::initialVelocity()
{
int seed; //seed for random number generator
int i;
double vX, vY, vZ, vSq, rValue;
double sumX = 0.0, sumY = 0.0;
double sumZ = 0.0;
double *velocity;

// assign random velocities to molecules in
// the range of 1 to - 1

seed = -29;
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Get the long range 

corrections to the 

potential energy.

for(i = 0; i < numAtom; i++)
{
vX = random(&seed);
vY = random(&seed);
vZ = random(&seed);

vSq = vX * vX + vY * vY + vZ * vZ;

rValue = sqrt(vSq);

vX /= rValue;
vY /= rValue;
vZ /= rValue;

sumX += vX;
sumY += vY;
sumZ += vZ;

velocity = new double[3];
//create new array with 3 elements
velocity[0] = vX;
velocity[1] = vY;
velocity[2] = vZ;
atoms[i]->setVelocity(velocity);
//adjust velocity of atom i

}

//adjust velocities so that the total linear
//momentum is zero
for(i = 0; i < numAtom; i++)

for(i = 0; i < numAtom; i++)
{
velocity = atoms[i]->getVelocity();
velocity[0] -= sumX/numAtom;
velocity[1] -= sumY/numAtom;
velocity[2] -= sumZ/numAtom;
atoms[i]->setVelocity(velocity);

}
}

// Method: getEnergyLRC
// Usage:  n = getEnergyLRC();
// ---------------------------
// Gets the long range energy correction.

double NVEensembleMD::getEnergyLRC()
{

return energyLRC;
}
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Get virial LRC

Set the initial 

coordinates by placing 

the atoms on a face-

centred cubic lattice.

Assign x,y and z 

coordinates for the 

four atoms in the unit 

cell.

// Method: getVirialLRC
// Usage: n = getVirialLRC();
// --------------------------
// Gets the long range virial correction.

double NVEensemble::getVirialLRC()
{

return virialLRC;
}

void NVEensemble::initialCoord()
{

int i, j, x, y, z, offset;
double cells, dcells, cellL, halfCellL,
*tempPos, *position;
double (*holdPos)[3] = new double

[numAtom][3];
tempPos= new double [numAtom];
position = new double [numAtom];

//Determine the number of unit cells in 
//each coordinate direction

dcells = pow(0.25*numAtom, 1.0/3);
cells =  (int) nearestInt(dcells, 1.0);

//check if numAtom is an non-fcc number
//and increase the number of cells 
while((4 * cells * cells * cells) < numAtom)

cells = cells + 1;

//Determine length of the unit cell
cellL = boxLen/ (double) cells;
halfCellL = cellL/2;

//Construct the unit cell
//point to atoms position
position[0] = 0.0;
position[1] = 0.0;
position[2]= 0.0;
atoms[0]->setPosition(position);

position[0] = halfCellL;
position[1] = halfCellL;
position[2]= 0.0;
atoms[1]->setPosition(position);

position[0] = 0.0;
position[1] = halfCellL;
position[2]= halfCellL;
atoms[2]->setPosition(position);

position[0] = halfCellL;
position[1] = 0.0;
position[2]= halfCellL;
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Assign the remaining 

positions on the lattice.

atoms[3]->setPosition(position);

for(i = 4; i < numAtom; i++)
{
position = atoms[i]->getPosition();
position[0] = 0.0;
position[1] = 0.0;
position[2] = 0.0;
atoms[i]->setPosition(position);

} //init all other atoms to 0

//Build the lattice from the unit cell by
//repeatly translating the four vectors of
//the unit cell through a distance cellL in
//the x, y and z directions
offset = 0;
for (z = 1; z <= cells; z++)
for (y = 1; y <= cells; y++)
for (x = 1; x <= cells; x++)
{
for (i = 0; i < 4; i++)
{

j = i + offset;
if(j < numAtom)
{
position =

atoms[i]->getPosition();
holdPos[j][0] = position[0] 

+ cellL * (x-1);
holdPos[j][1] = position[1] 

+ cellL * (y-1);
holdPos[j][2] = position[2] 

+ cellL * (z-1);
}

}

offset = offset + 4;
}

//Shift centre of box to the origin.
for (i = 0; i < numAtom; i++)
{
tempPos = atoms[i]->getPosition();
tempPos[0] = holdPos[i][0] - halfCellL;
tempPos[1] = holdPos[i][1] - halfCellL;
tempPos[2] = holdPos[i][2] - halfCellL;
atoms[i]->setPosition(tempPos);

}

}

// Method: setforce
// Usage:  setForce();
// ------------------
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Set the force.

Get the long range 

corrections.

// Set the force calculations using Ljforce

void NVEensemble::setForce()
{

theForce->setForce(numAtom, boxLen,
&potEnergy, &virial);

}

// Method: lrc
// Usage:  lrc();
// --------------
// Calculations for long range corrections

void NVEensemble::lrc()
{

theForce->lrc(numComp, comp, boxVol,
&energyLRC, &virialLRC);

}

11.2.3.6 Code for the Atom class

md_Ver2.0\atomMD.cpp

This constructor is 

used to build the atom 

class using the 

parameters described 

in the parameter list.

// File: atomMD.cpp
// --------------
//  File containing the methods to implement
// the atom class.

#include "atomMD.h"
#include "auxfunc.h"
#include <iostream>
#include <fstream>
#include <math.h>

// Constructor:Atom
// Usage: Atom atom;
// -------------------
// Builds the Atom class

Atom::Atom(int theType, double theMass, int 
dimensions, int derivatives)
{

int i;
mass = theMass;
type = theType;

//allocate memory for the arrays
position = new double[dimensions];
velocity = new double[dimensions];
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This initialization of 

acceleration is a

safeguard only because 

acceleration will be re-

assigned in the 

initialisation phase of 

the simulation.

i = 0,1,2 represent the 

3rd,4th and 5th time 

derivatives

This constructor is 

used to create an array 

reference for the 

objects created by the 

first constructor.

The purpose and 

behavior of the 

remaining methods for 

this class are explained 

in detail in the 

comments.

Set the cut-off.

Set the masses.

acceleration = new double[dimensions];
force = new double[dimensions];
highTimeDerivs = 

getMemory(derivatives, dimensions);

//initialise values for acceleration 
//and higher time derivatives
for(i = 0; i < dimensions; i++)

acceleration[i] = 0.0;

for(i = 0; i < 3; i++)
for(int j = 0; j < dimensions; j++)
highTimeDerivs[i][j] = 0.0;

}

//2nd constructor for array reference
//construction
AtomMD::AtomMD(){}

// Method:  setType
// Usage:   setType(atomType);
// ---------------------------
// Used to identify the atom as belonging to
// a certain type of component within the
// ensemble.

void Atom::setType(int t)
{
type = t;

}

// Method: setrCutOff
// Usage:  setrCutOff(atomic_rCutOffValue);
// ----------------------------------------
// Used to assign the values for the rCutOffs
// for the various atom types that make up the
// ensemble

void Atom::setrCutOff(double **newrCut)
{
rCutOff = newrCut;

}

// Method:  setMass
// Usage:   setMass(double atomicMass);
// ------------------------------------
// Assign the mass of the atom

void Atom::setMass(double newMass)
{
mass = newMass;

}
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Set the acceleration.

Set the positions.

Set the velocities.

// Method:  setAcceleration
// Usage:   setAcceleration(acceleration);
// --------------------------------------
// Sets the pointer within the atom object to
// point to a new 1D array of doubles,
// representing the acceleration of the atom
// in its various dimensions.  Assuming a 3D 
// simulation, the required array would have
// three elements, where:
// atomicAcceleration[0] is the x component
// atomicAcceleration[1] is the y component
// atomicAcceleration[2] is the z component
// Note:  this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it.

void Atom::setAcceleration(double *newAccel)
{
for(int i = 0; i < 3; i++)

acceleration[i] = newAccel[i];
}

// Method:  setPosition
// Usage:   setPosition(position);
// -------------------------------
// Sets the pointer within the atom object to
// point to a new 1D array of doubles,
// representing the position of the atom in
// its various dimensions.  Assuming a 3D
// simulation, the required array would have 
// three elements, where:
// atomicPosition[0] = x component of position 
// atomicPosition[1] = y component of position 
// atomicPosition[2] = z component of position
// Note:  this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it.

void Atom::setPosition(double *newPos)
{
for(int i = 0; i < 3; i++)

position[i] = newPos[i];
}

// Method: setVelocity
// Usage:   setVelocity(velocity);
// -------------------------------
// Sets the pointer within the atom object to
// point to a new 1D array of doubles,
// representing the velocity of the atom in
// its various dimensions.  Assuming a 3D
// simulation, the required array would have 
// three elements, where:
// atomicVelocity[0] = x component of velocity 
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Set higher derivatives 

of distance w.r.t. time.

Set the force.

// atomicVelocity[1] = y component of velocity 
// atomicVelocity[2] = z component of velocity 
// Note:  this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it. 

void Atom::setVelocity(double *newV)
{
for(int i = 0; i < 3; i++)

velocity[i] = newV[i];
}

// Method:  setHighTimeDerivs
// Usage:   setHighTimeDerivs(timeDerivative); 
// -------------------------------------------
// Sets the pointer within the atom object to
// point to a new 2D array of doubles,
// representing the derivatives of time after
// acceleration and velocity fro that atom,
// in its various dimensions.  Assuming a 3D
// simulation, the required array would be 2D
// where: the first dimension represents the
// derivative of time, and the second
// dimension represents the dimension in
// space.
// For example, timeDerivative[a][b] refers to
// the derivative of time for:
// - derivative a, where a is 0 for the third
// derivative of time, 1 is the fourth
// derivative of time, and 2 is the fifth, and
// - dimension b, where b is 0 for the x
// component, 1 for the y component, and 2 for 
// the z component
// Note: this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it.

void Atom::setHighTimeDerivs(double
**newHighTimeDerivs)

{
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++) 

highTimeDerivs[i][j] = 
newHighTimeDerivs[i][j];

}

// Method:  setForce
// Usage:   setForce(atomicForce);
// -------------------------------
// Sets the pointer within the atom object to
// point to a new 1D array of doubles,
// representing the force acting on the atom
// in its various dimensions.  Assuming a 3D
// simulation, the required array would have
// three elements, where:
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Get the type of atom.

Get atomic masses.

// atomicForce[0] = x component of force 
// atomicForce[1] = y component of force 
// atomicForce[2] = z component of force
// Note:  this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it.

void Atom::setForce(double *newForce)
{

for(int i = 0; i < 3; i++)
force[i] = newForce[i];

}

// Alternate version as required

void Atom::setForce(double fX, double fY,
double fZ)

{
force[0] = fX;
force[1] = fY;
force[2] = fZ;

}

// Access (Get) Methods
// Usage:  n = getXxxx();
// -----------------------
// These methods return the _value_ stored for
// the mass or type of the atom.

// Method: getType
// Usage:  p = getType();
// ----------------------
// Gets the type associated with each atom.

int Atom::getType()
{
return type;

}

//  Method: getMass
//  Usage: n = getMass();
// ---------------------
//  Get values of the atomic masses.

double Atom::getMass()
{
return mass;

}
/

/ Access (Get) Methods
// Usage:  n = getXxxxx();
// ------------------------
// These methods return a reference to the
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Get cut-off values.

Get accelerations.

Get positions.

Get velocities.

Get higher derivatives 

of distance w.r.t. time.

// arrays which hold the values for rCutOff,
// acceleration, position, velocity, time
// step, and force, as described above their
// respective set method.

// Method: getrCutOff
// Usage: n = getrCutOff();
// ---------------------
// Returns the cut off distances for atom
// pairs

double **Atom::getrCutOff()
{
return rCutOff;

}

// Method: getAcceleration
// Usage: n = getAcceleration();
// -----------------------------
// return acceleration of atom

double *Atom::getAcceleration()
{
return acceleration;

}

// Method: getPosition
// Usage:  n = getPosition();
// --------------------------
// Return position of atom

double *Atom::getPosition()
{
return position;

}

// Method: getVelocity
// Usage:  n = getVelosity();
// -------------------------
// Return the velocity of the atom

double *Atom::getVelocity()
{
return velocity;

}

// Method: getHighTimeDerivs
// Usage:  n = getHighTimeDerivs();
// --------------------------------
// Return the derivatives of time

double **Atom::getHighTimeDerivs()
{
return highTimeDerivs;

}
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Get forces. // Method: getForce
// Usage:  n = getForce();
// -----------------------
// Returns reference to the force array in the
// atom object

double *AtomM::getForce()
{
return force;
}

11.2.3.7 Code for LJ_Atom class

md_Ver2.0\ljatomMD.cpp

This constructor is 

used to build the 

LJatom object.

This constructor is 

used to reference the 

objects built by the first 

constructor.

Set  methods

// File: ljatom.cpp
// ----------------
// File containing the functions to implement
// the LJatomMD class.

#include "ljatomMD.h"

// Constructor: LJatom
// Usage: LJatom atom;
// ---------------------
// Builds the LJatomMD class

LJatom::LJatom
(int theType, double theMass, double **ep,
double **sig, double **rC, int dimensions,
int derivatives)
:Atom(theType, theMass, dimensions,

derivatives)
{
epsilon = ep;
sigma = sig;
rCutOff = rC;

}

// Second constructor
LJatom::LJatom(){}

// Methods:  setSigma and setEpsilon
// Usage:    setSigma(sigma); 
//           setEpsilon(epsilon);
// -----------------------------------------
// These methods accept a reference to a 2D
// array of doubles, representing the sigma
// and epsilon values for the interactions
// between each atomic pair type.
// Each dimension will be exactly the number
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Set LJ epsilon value.

Set LJ sigma value.

Get methods

Get LJ epsilon.

Get LJ sigma.

// of atom types in the ensemble, where
// sigma[0][0] is the sigma value for
// interactions between an atom of type 0 and
// an atom of type 0, sigma[0][1] is the sigma
// value for interactions between an atom of
// type 0 and an atom of type 1, etc and 
// likewise for epsilon. 

// Method: setEpsilon
// Usage:  setEpsilon(epsilon);
// ----------------------------
// Assign values of LJ epsilon parameter

void LJatom::setEpsilon(double **newEpsilon)
{

epsilon = newEpsilon;
}

// Method: setSigma
// Usage:  setSigma(sigma);
// ------------------------
// Set the LJ parameter Sigma

void LJatom::setSigma(double **newSigma)
{

sigma = newSigma;
}

// Methods:  getEpsilon and getSigma
// Usage:    n = getEpsilon(); n = getSigma();
// -------------------------------------------
// These methods return references to the
// arrays which store the values for sigma and
// epsilon for that atom.

// Method: getEpsilon
// Usage:  n = getEpsilon();
// -------------------------
// Get values of the Lennard-Jones epsilons.

double **Ljatom::getEpsilon()
{

return epsilon;
}

// Method: getSigma
// Usage:  n = getSigma();
// -----------------------
// Get values of the Lennard-Jones sigmas.

double **LJatom::getSigma()
{

return sigma;
}
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11.2.3.8 Code for the Force class

md_Ver2.0\forceMD.cpp

The code for the 

abstract Force class is

very simple because 

the abstract methods 

are defined in the class 

(in this case LJforce) 

which inherits from it.

// File: forceMD.cpp
// -----------------
// File containing functions to implement 
// the abstract ForceMD class.

#include "forceMD.h"

// Constructor
//  Method:  ForceMD
//  Usage:   n = ForceMD(atoms);
// --------------------------
//  Used to construct the force component of
//  any derived force classes

Force::Force(Atom **theAtoms)
{
atoms = theAtoms;

}

// destructor
ForceMD::~ForceMD(){}
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11.2.3.9 Code for the LJ_Force class

The setForce method 

is the heart of the MD 

simulation and it 

determines largely the 

overall speed of the 

calculation.

// File: ljforceMD.cpp
// -----------------
// File containing functions to implement the
// LJforceMD class.

#include "ljforceMD.h"
#include “auxfuncMD.h”
#include <iostream>
#include <fstream>

using namespace std;

// constructor
LJforce::LJforce(Atom **theAtoms)

:ForceMD(theAtoms)
{

epsilon = atoms[0]->getEpsilon();
sigma   = atoms[0]->getSigma();
rCut    = atoms[0]->getrCutOff();

}

// Method: setForce
// Usage: setForce();
// -------------------
// The ljForce function calculates the force
// experienced by all num atoms due to 
// pairwise interatomic interaction.
// The forces are calculated using the
// Lennard-Jones (6-12) potential. The 
// potential is truncated at a distance
// rCut and long range corrections must be 
// applied outside the method to obtain the
// full contributions to the energy.

void LJforce::setForce(int num, double length,
double *potEnergy, double *virial)

{
int i, j, kindi, kindj;
double rXi, rYi, rZi;
// position vectors for atom i
double rXj, rYj, rZj;
// position vectors for atom j
double rXij, rYij, rZij;
// pair seperation vectors
double rijSq;
// interatomic seperation squared
double fXi, fYi, fZi;
// force vectors for atom i
double fij, fXij, fYij, fZij;
// force between atoms i and j

md_Ver2.0\ljforceMD.cpp
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These method calls are 

simple and should be 

quick.  The speed may 

be enhanced by 

explicit inlining.

Pair separation.

double rCutSq, sigmaSq;
// squared cut and sigma values
double sigma2, sigma6, sigma12; 
// multiples of LJ sigma
double pot; // Potential between 2 atoms
double *tempPos; // postion vectors
double *tempPosj; // postion vector
double potECal, virialCal; 
double *fX = new double [num];
double *fY = new double [num];
double *fZ = new double [num];

// Zero the force  arrays.
for(i = 0; i < num; i++)
{

fX[i] = 0.0;
fY[i] = 0.0;
fZ[i] = 0.0;

}

potECal = 0.0;
virialCal = 0.0;

//Calculate forces experienced by atoms due
//interatomic pair interactions.

for(i = 0; i < num; i++)
{

//Select molecue i
kindi = atoms[i]->getType();
tempPos = atoms[i]->getPosition();

rXi   = tempPos[0];
rYi   = tempPos[1];
rZi   = tempPos[2];

fXi = fX[i];
fYi = fY[i];
fZi = fZ[i];

for(j = i + 1; j < num; j++)
{

kindj = atoms[j]->getType();
tempPosj = atoms[j]->getPosition();

rXj   = tempPosj[0];
rYj   = tempPosj[1];
rZj   = tempPosj[2];

//Calculate pair seperation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;
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Minimum image 

convention.

It may be 

advantageous to inline 

the nearestInt method.

Only calculate forces 

below the cut-off 

distance.

Energy is calculated 

during the force 

evaluation at very little 

addition computational 

cost.

Application of

Newton’s third law 

saves computing time.

//Apply periodic boundary
rXij -= length * nearestInt(rXij,

length);
rYij -= length * nearestInt(rYij,

length);
rZij -= length * nearestInt(rZij,

length);

rijSq = rXij * rXij + rYij * rYij 
+ rZij * rZij;

rCutSq = rCut[kindi][kindj] * 
rCut[kindi][kindj];

//Calculate forces for seprations
//below the cutoff

if (rijSq <= rCutSq)
{

//Determine i-j interactions
sigmaSq = sigma[kindi][kindj] 

* sigma[kindi][kindj];
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
potECal   += 4*epsilon[kindi][kindj]

*pot;
virialCal += 24*epsilon[kindi][kindj]

*(pot + sigma12)/3;

//Calculate forces between atoms
fij  = 24*epsilon[kindi][kindj] *

(pot + sigma12)/rijSq;
fXij = fij * rXij;
fYij = fij * rYij;
fZij = fij * rZij;
fXi += fXij;
fYi += fYij;
fZi += fZij;

//Apply Newton's third law
fX[j] -= fXij;
fY[j] -= fYij;
fZ[j] -= fZij;

}
}

fX[i]  = fXi;
fY[i]  = fYi;
fZ[i]  = fZi;

}
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Currently the long 

range correction is 

specific to the 

Lennard-Jones (12-6) 

potential.

// Store forces

for(i = 0; i < num; i++)
atoms[i]->setForce(fX[i], fY[i], fZ[i]);

*potEnergy = potECal;
*virial    = virialCal;

delete [] fX;
delete [] fY;
delete [] fZ;

}

// Method: lrc
// Usage:  n = lrc(num, nComp, volume,
//              energyLRC);
// -----------------------------------
// ljLRC calculates the long range correction
// terms to both the energy and virial for an
// ensemble interacting via the Lennard-Jones
// (12-6) potential.

void LJforce::lrc(int num, int *nComp,
double boxV, double *energyLRC,
double *virialLRC)

{
int i, j;
const double PI = 3.141592654;
double sigmaSq, sig3, rCutSq, rCut3, 
sig3R, sig9R, den;

*energyLRC = 0.0;
*virialLRC = 0.0;

for(i = 0; i < num; i++)
for(j = 0; j < num; j++)
{

sigmaSq   = sigma[i][j] * sigma[i][j];
rCutSq    = rCut[i][j] * rCut[i][j];
sig3      = sigma[i][j] * sigmaSq;
rCut3     = rCut[i][j] * rCutSq;
sig3R     = sig3/rCut3;
sig9R     = sig3R * sig3R * sig3R;
den       = nComp[i] * nComp[j] 

* sig3/boxV;
*energyLRC += (8/9.0) * den * PI *

epsilon[i][j]
* (sig9R - 3 * sig3R);

*virialLRC += (16/9.0) * den * PI * 
epsilon[i][j]

* (2 * sig9R - 3 * sig3R);
}

}
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11.2.3.10 Code for the Integrator class

md_Ver2.0\integrtMD.cpp

The Integrator class is 

a container class for all 

derived integrator 

methods

//  File:  integrtMD.cpp
//  Class: Integrator

#include "integrtMD.h"

// Constructor
// -----------
IntegratorMD::Integrator(Atom **theAtoms)
{
atoms = theAtoms;
}

// Destructor
// ----------
Integrator::~Integrator(){}

11.2.3.11 Code for the Gear_Predictor�corrector class

md_Ver2.0\gpcMD.cpp

5-value Gear predictor.

// File: gpc.cpp
// Class: GearPC

#include "gpcMD.h"
#include "gpcConstantsMD.h"
#include "auxfunc.h"
#include <iostream>

using namespace std;

// Constructor
// ------------

GearPC::GearPC(Atom **theAtoms)
:Integrator(theAtoms)

{
//construct superclass
}

// Method: gearPredict
// Usage: gearPredict(num, length);
// --------------------------------
// The Method gearPredict uses Gear's 5-value
// algorithm to predict new coordinates,
// accelerations, velocities, third and fourth
// time derivatives of position.
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Predict positions.

highTimeDerivs[a][b]:

a is the 3rd, 4th and 5th

and b denotes the x, y 

and z components,.

Apply PBC

Predict velocities.

Predict accelerations.

Predict 3rd derivatives.

Predict 4th derivatives.

Store new values.

void GearPC::gearPredict(int num, double
length, double delT)

{
int i, j;
double *position, *velocity, *acceleration,

**highTimeDerivs;
double c1, c2, c3, c4, c5;

c1 = delT;
c2 = c1*delT/2;
c3 = c2*delT/3;
c4 = c3*delT/4;
c5 = c4*delT/5;

for(i = 0; i < num; i++)
{

position = atoms[i]->getPosition();
velocity = atoms[i]->getVelocity();
acceleration = 

atoms[i]->getAcceleration();
highTimeDerivs = 

atoms[i]->getHighTimeDerivs();

for(j = 0; j < 3; j++)
{
//components in the x, y and z directions
position[j] += c1*velocity[j] 

+ c2*acceleration[j]
+ c3*highTimeDerivs[0][j]
+ c4*highTimeDerivs[1][j]
+ c5*highTimeDerivs[2][j];

position[j] -= length * 
nearestInt(position[j], length);

velocity[j] += c1*acceleration[j]
+  c2*highTimeDerivs[0][j] 
+  c3*highTimeDerivs[1][j] 
+  c4*highTimeDerivs[2][j];

acceleration[j]
+= c1*highTimeDerivs[0][j]
+  c2*highTimeDerivs[1][j] 
+  c3*highTimeDerivs[2][j];

highTimeDerivs[0][j]
+= c1*highTimeDerivs[1][j] 
+  c2*highTimeDerivs[2][j];

highTimeDerivs[1][j]
+= c1*highTimeDerivs[2][j]; 

}

atoms[i]->setAcceleration(acceleration);
atoms[i]->setVelocity(velocity);
atoms[i]->setHighTimeDerivs(highTimeDerivs);
atoms[i]->setPosition(position);
}

}
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Gear corrector method.

Make use of the ‘time’ 

relationships

Correction terms 

involving Gear’s 

constants

Retrive values 

predicted in the first 

part of Gear’s 

algorithm.

// Method: gearCorrect
// Usage:  gearCorrect
//         (num, type, length, time, mass);
// ----------------------------------------
// gearCorrect corrects the values of
// position, acceleration, velocity, third 
// and forth time derivatives predicted
// by the 5-value Gear method.
// It is called following calls to
// gearPredict and getForce.

double GearPC::gearCorrect(int num, double
length, double delT)

{

int i, j;
double aNew;      // new accelerations
double adjust;    // corrections to apply
double mass, sumVSq;
double c1, c2, c3, c4, c5;
double cr, cv, cb, cc, cd;
double *force, *acceleration, *position;
double *velocity, **highTimeDerivs;

c1 = delT;
c2 = c1*delT/2;
c3 = c2*delT/3;
c4 = c3*delT/4;
c5 = c4*delT/5;

// Terms involving Gear's constants
cr = G0*c2;
cv = G1*c2/c1;
cb = G3*c2/c3;
cc = G4*c2/c4;
cd = G5*c2/c5;

sumVSq = 0.0;

for(i = 0; i < num; i++)
{

mass = atoms[i]->getMass();
force = atoms[i]->getForce();
acceleration = 

atoms[i]->getAcceleration();
position = atoms[i]->getPosition();
velocity = atoms[i]->getVelocity();
highTimeDerivs = 

atoms[i]->getHighTimeDerivs();
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Make the corrrections

Calculate adjustments.

Correct positions

Apply PBC

Correct velocity

Update acceleration

Correct 3rd derivative

Correct 4th derivatrive

Correct 5th derivative

Store corrections for 

future use

Calculate kinetic 

energy.

Apply corrections to 

positions.

Return kinetic energy

//determine corrections
for(j = 0; j < 3; j++)
{
aNew = force[j]/mass;
adjust = aNew - acceleration[j];
position[j] += cr*adjust;
position[j] -= length * 

nearestInt(position[j], length);
velocity[j] += cv*adjust;
acceleration[j] = aNew;
highTimeDerivs[0][j] += cb*adjust;
highTimeDerivs[1][j] += cc*adjust;
highTimeDerivs[2][j] += cd*adjust;

}

atoms[i]->setAcceleration(acceleration);
atoms[i]->setHighTimeDerivs(highTimeDerivs);
atoms[i]->setPosition(position);

// It is computationally convient to
// calculatre the kinetic energy too:

sumVSq += mass*(velocity[0]*velocity[0] 
+ velocity[1]*velocity[1] 
+ velocity[2]*velocity[2]);

atoms[i]->setVelocity(velocity);
}

return sumVSq/2;
}
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11.2.3.12 Code for auxiliary methods

md_Ver2.0\auxfunc.cpp

There are many 

instances where it is 

convenient to use 2-D

arrays.  The 

getMemory method 

allows us to allocate 

memory to 2-D arrays 

dynamically rather 

than pre-determining 

the array size. 

A general method to 

assign memory to 2-D

arrays with different 

row (xNum) and 

column (yNum) 

dimensions.  In this 

case it is used 

specifically for the 

higher derivatives.

#include "auxfunc.h"
#include <math.h>
#include <iostream>

using namespace std;

// Method: getMemory
// Usage: p = getMemory(num);
// --------------------------
// Assigns memory to 2D arrays.

double **getMemory(int num)
{

int i;
double **mat;

mat = new double *[num];

for(i = 0; i < num; i++)
mat[i] = new double [num];

return mat;
}

// Method: getMemory
// Usage: p = getMemory(xNum, yNum);
// ---------------------------------
// Assigns memory to 2D arrays.

double **getMemory(int row, int col)
{

int i;
double **mat;

mat = new double *[row];

for(i = 0; i < row; i++)
mat[i] = new double [col];

return mat;
}
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Methods to deallocate 

2D array memory

The nearestInt method 

is useful in applying 

the minimum image 

convention to vectors.

Alternatively, the round()

function could be used

as noted in Chapter 5.

// Method: freeMemory
// Usage: freeMemory(array);
// ---------------------------------
// Free memory of 2-dimensional arrays;

void freeMemory(double **array)
{
free(*array);
free(array);

}
// Method: freeMemory
// Usage: freeMemory(array);
// ---------------------------------
// Free memory of 2-dimensional arrays;

void freeMem(double **array, int row)
{

int i;

for(i = 0; i < row; i++)
delete[] array[i];

delete array;

}

// Method: nearestInt
// Usage: n = nearestInt(vector, boxL);
// ------------------------------------
// Return the next nearest integer
// resulting from the divison of vector
// by boxL.

int nearestInt(double vector, double
boxL)
{

int nInt;
double div;

div = vector/boxL;

if(vector >= 0)
nInt = (int)(div + 0.5);

else
nInt = -(int)(0.5 - div);

return nInt;
}
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The random number 

generator is used to 

generate random 

numbers for initial 

velocities etc.  It is 

also useful in MC

applications.

// Method: random
// Usage: n = random(idum);
// ------------------------
// Random initally takes any negative
// number (idum) and returns a random 
// on the interval 0 to 1. The
// algorithm is adapted from
// Press et al.,Numerical Receipies in C:
// The Art of Scientific Computing,
// Cambridge University Press, 
// Cambridge, 1988.

double random(int *idum)
{

// constants for random number generator

const long int M1 = 259200;
const int IA1 = 7141;
const long int IC1 = 54773;
const long int M2 = 134456;
const int IA2 = 8121;
const int IC2 = 28411;
const long int M3 = 243000;
const int IA3 = 4561;
const long int IC3 = 51349;

int j;
static int iff = 0;
static long int ix1, ix2, ix3;
double RM1, RM2, temp;
static double r[97];

RM1 = 1.0/M1;
RM2 = 1.0/M2;

if(*idum < 0 || iff == 0){
// initialise on first call
iff = 1;
ix1 = (IC1 - (*idum)) % M1;
// seeding routines
ix1 = (IA1 *ix1 + IC1) % M1;
ix2 = ix1 % M2;
ix1 = (IA1 * ix1 + IC1) % M1;
ix3 = ix1 % M3;

for (j = 0; j < 97; j++) {
ix1 = (IA1 * ix1 + IC1) % M1;
ix2 = (IA2 * ix2 + IC2) % M2;
r[j] = (ix1 + ix2 * RM2) * RM1;
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}
*idum = 1;

}

// generate next number for 
each sequence

ix1 = (IA1 * ix1 + IC1) % M1;
ix2 = (IA2 * ix2 + IC2) % M2;
ix3 = (IA3 * ix3 + IC3) % M3;

// randomly sample r vector

j = 0 + ((96 * ix3) / M3);
if (j > 96 || j < 0)

cout <<"Error in generator\n";

temp = r[j];
// replace r[j] with next value
// in the sequence

r[j] = (ix1 + ix2 * RM2) * RM1;

return temp;
}

11.3 Case study: application of object orientation to the
microcanonical MC simulation of Lennard-Jones atoms

The next example is the application of object-oriented analysis, design, and

programming to the MC simulation of Lennard-Jones atoms in the NVE

ensemble. The analysis, design, and programming issues involved in a MC

simulation have many similarities with MD. OO enables us to exploit these

similarities to reuse existing code/design with either no modifications or rela-

tively minor modifications. Consequently, our approach would be to exploit

these similarities rather than starting entirely from scratch.

11.3.1 OOA and OOD

In common with the treatment of MD, our starting basis is a description of

the problem underlining the nouns as potential classes.

Monte Carlo simulation can be performed in a NVE ensemble in which the number of
atoms, volume, and energy are held constant. The nature of the atoms and initial values of
density and energy are specified. At the outset of the simulation, the atoms are placed ran-
domly on a face-centered cubic lattice and the energy of interaction between pairs of atoms
in the ensemble is calculated using the Lennard-Jones potential. The simulation proceeds
by generating a Markov chain for a predetermined number of cycles (Mcycle). Each cycle
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consists of an attempt to displace all the atoms randomly. The change in energy for the trial
move is obtained by calculating the energy of the displaced atom via pair interaction with
the atoms. The change in energy is used in conjunction with Ray’s modified Metropolis cri-
teria to either accept or reject the move. If the move is accepted, the energy of the ensem-
ble and the position of the atom are updated. Both successful and unsuccessful moves
contribute to the Markov chain. After the equilibrium period, ensemble averages of energy
and density are accumulated and statistics regarding these properties are kept. The statisti-
cal data is given at the end.

The candidate classes identified from the earlier problem description are

listed in Table 11.3. Comparison with Table 11.1 indicates a high degree of

overlap as well as some differences. Some of the potential classes can be

easily eliminated because they are too vague and our experience with the

MD case can be used to eliminate fcc lattice immediately. One important

distinction between the MD and MC approaches is the treatment of energy.

In the MD case, energy was treated as an attribute, whereas in Table 11.3 it

is designated as a class. This distinction arises because of the different role

TABLE 11.3 Distinction between classes and attributes for the MC

simulation.

Potential class Does the potential class have

attributes/classes itself?

Class or

attribute

atom Yes, type, mass, position, etc. Class

cycle No Attribute

density No Attribute

energy Yes Class

equilibrium period No Attribute

fcc lattice Yes, positions. But a method

Intermolecular potential
Lennard-Jones potential

Yes, potential parameters but these are
also part of atom

Attribute

Markov chain No Vague

Metropolis criteria No Vague

Monte Carlo Yes, all of the above Class

NVE ensemble ensemble Yes, atoms, temperature, etc. Class

position No, but vector components Attribute

simulation Yes, for example, MC Class

statistical data, statistics Yes, many! Class

temperature No Attribute

volume No Attribute
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of energy in the two simulation techniques. In MD, the simulation is driven

by the calculation of forces and the energy is calculated as a by-product of

the force evaluation. In contrast, a MC simulation depends critically on the

calculation of energy and forces are not determined Fig. 11.13.

The major classes identified from Table 11.3 are illustrated in UML nota-

tion in Fig. 11.13. Comparison with Fig. 11.8 indicates that fewer classes

have been identified. The Simulation, NVE_Ensemble, and Atom classes are com-

mon to both problems, whereas the Monte_Carlo and Energy classes can be

identified as MC analogues of the Molecular_Dynamics and Force classes,

respectively, in the MD case study. Consequently, the associations between

the classes can be identified by analogy with the MD case. Monte_Carlo is a

type of Simulation, which can be performed in an NVE_Ensemble. The

NVE_Ensemble is composed of Atoms, and it has an Energy arising from atomic

interactions. These associations are illustrated by the UML diagram in

Fig. 11.14. Comparison of Fig. 11.14 with Fig. 11.10 highlights the similarity

in the associations between classes for the MD and MC techniques. The

Simulation

Atom

NVE_Ensemble

Energy

Monte_Carlo

FIGURE 11.14 Preliminary UML diagram for Monte Carlo simulations in the NVE ensemble.

Simulation

AtomNVE_Ensemble

EnergyMonte_Carlo

FIGURE 11.13 Short-hand UML notation for the preliminary major classes identified from the

OOA of the MC description.
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UML diagram for the MD case is slightly more complicated because of the

additional requirement to have an integrator.

In the MD case, it was argued that there was benefit in having an abstract

Ensemble class. The same arguments are clearly valid in this case. Similarly,

the Atom and Energy classes can be implemented as abstract classes serving

placeholders for potential specific classes. In the current case, we are specifi-

cally dealing with Lennard-Jones atoms. These refinements are illustrated in

Fig. 11.15. Comparison with Fig. 11.11 shows clearly the similarities and

differences between the two simulation techniques.

In the MD simulation, the Molecular_Dynamics class controlled the process

of the simulation. In Fig. 11.15, the Monte_Carlo class performs a similar func-

tion. However, there is a fundamental difference in the way that this control

function is performed. In a MD simulation every molecular displacement cor-

responds to a valid move because it occurs as a consequence of Newton’s

Simulation

Atom
{abstract}

NVE_Ensemble

Energy
{abstract}

Monte_Carlo

Ensemble
{abstract}

LJ_Atom LJ_Energy

FIGURE 11.15 Further revision of UML diagram for MC simulations showing the use of

abstract classes.
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equations of motion. Therefore, the Molecular_Dynamics class does not need to

interact directly with the Atom class to modify atomic coordinates. In contrast,

in a MC simulation a decision must be made to either accept or reject a move

depending on the outcome of using the acceptance criterion. To implement

this decision-making role effectively, the Monte_Carlo class must be able to

access atomic coordinates directly. This can be achieved by associating the

Monte_Carlo class with the Atom class as illustrated by Fig. 11.16.

A brief description of these classes is summarized in the preliminary data

dictionary (Table 11.4). The role of such a dictionary is to have a point of

reference during the software design. In the case of a complicated design, it

can be expected that the dictionary will evolve considerably before the soft-

ware is finally coded.

Simulation

Atom
{abstract}

NVE_Ensemble

Energy
{abstract}

Monte_Carlo

Ensemble
{abstract}

LJ_Atom LJ_Energy

FIGURE 11.16 Final UML diagram for MC simulations showing the addition of a direct asso-

ciation between the Monte_Carlo and Atom classes.
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11.3.2 Detailed class description

As noted previously in the development of the class description for MD sim-

ulation, determining the attributes (both variables and methods) of class is

very much an iterative process. However, as will become apparent subse-

quently, the class descriptions for our MC simulation are very similar to the

descriptions for corresponding classes in MD. In most cases, determining

MC classes simply involves either the deletion or removal of a few attributes

or methods. Indeed, strictly speaking it is not necessary to remove redundant

molecular dynamic variables and methods because the encapsulation feature

of classes means that these variables will remain dormant unless specifically

called upon in the program. However, for the benefit of clarity, redundant

MD attributes and methods have been removed in the design presented sub-

sequently. The similarity of the MD and MC classes means that a high per-

centage of the code developed for the MD program can be reused in the MC

program. The reuse of code is an important advantage of OO compared with

structural programming.

11.3.2.1 Simulation

The Simulation class is the driver class for the whole program. It has one

method readSimParameters() responsible for determining the choice of simula-

tion. After the MonteCarlo object is created the run() method of that class is

TABLE 11.4 Preliminary data dictionary describing classes in a NVE

ensemble MC simulation.

Class Description

Atom Abstract class serving as a placeholder for the LJ_Atom classes.
Created by NVE_Ensemble.

NVE_Ensemble An example of an ensemble used to generate all the Atoms in the
Ensemble and the Energy classes. Created by Ensemble.

Ensemble Abstract class created by Monte_Carlo. Generates
NVE_Ensemble.

Energy Abstract class serving as a placeholder for LJ_Atom class. Created
by NVE_Ensemble.

LJ_Atom Contains details of the Lennard-Jones atom. Created by Atom.

LJ_Energy Performs the energy calculation. Created by Energy.

Monte_Carlo Creates the Ensemble and drives the simulation.

Simulation Creates the Monte_Carlo class and handles input, output, and
statistical data.
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called. The class is very similar to its implementation in MD. The major

change is that a reference is made to the Monte_Carlo class rather than the

Molecular_Dynamics class.

UML Diagram mc_Ver2.0\simMC.h 

// File:  simMC.h
// -----------------
// This file contains the definition of
// the Simulation class, which defines
// all methods and data for a MC or MD
// simulation, using either.

#ifndef _simMC_h_
#define _simMC_h_

#include "mc.h"

class Simulation
{

private:
MonteCarlo *mc;

public:
void readSimParameters();

};

#endif

Simulation

-MonteCarlo *mc
readSimParameters()

11.3.2.2 Monte_Carlo

The Monte_Carlo class controls the simulation process via the runNVE()

method, which is called by the run() method. It contains a reference to the

Ensemble and Atom classes. There is a high degree of similarity between the

Monte_Carlo and Molecular_Dynamics classes. The main change has been the

removal of MD attributes and apart from the reference to the Atom class and

the addition of the MonteCarlo() constructor, no new attributes or methods

have been added.
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UML Diagram mc_Ver2.0\mc.h 

//  File:  mc.h
// -----------------
// This file contains the definition of
// the MonteCarlo class, which
// defines all methods and data for a
// MonteCarlo simulation.

#ifndef _mc_h_
#define _mc_h_

#include "ensembleMC.h"
#include "ljatomMC.h"

class MonteCarlo
{
private:

Atom **atom;
Ensemble *ensemble;
int theEnsemble;

protected:
int nSize, nEquil, nStep;

public:
MonteCarlo();
int getnSize();
int getnEquil();
int getnStep();
double gettStep();
void readInNVE(int );
void runNVE();
void run();

};

#endif

Monte_Carlo

-Ensemble*ensemble
-Atom **atom
-theEnsemble
-nSize
-nEquil
-nStep

MonteCarlo()
getnSize()
getnEquil()
getnStep()
readlnNVE()
runNVE()
run()

11.3.2.3 Ensemble

The Ensemble class contains most of the required variables and methods of

the simulation. It has references to the Atom object, an array of Atoms, and the

simulation parameters. Ensemble also has abstract methods that are defined in

the derived class NVE_Ensemble. The Force and Energy classes share many

common methods and variables.
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UML Diagram mc_Ver2.0\ensembleMC.h 

// File:  ensembleMC.h
// -----------------
// This file contains the definition of the
// abstract class Ensemble that defines all
// methods and data common to different
// ensemble types (eg derived classes), as
// well as foreshadowing methods of those
// derived classes through the use of abstract
// methods.

#ifndef _ensemble_h
#define _ensemble_h

#include "atomMC.h"
#include "energyMC.h"

// Class: Ensemble
// ---------------
// The EnsembleMC class contains the physical
// attributes of the abstract ensemble, from
// which instantiable ensemble classes are
// derived, such as the NVE ensemble.

class Ensemble
{
protected:

Atom **atoms;      //array of atoms 
Energy *theEnergy;  //the energy
int numComp;        //no. of components
int numAtom;        //no. of atoms
int *comp;          //no. comp. each type
double totEfixed;   //total energy
double density;     //density
double boxVol;      //box volume
double boxLen;      //box length
double *molFract;   //mole fractions
double kineticE;    //kinetic energy
double potEnergy;   //potential energy
double trialPotE;   //trial potential E.

public:
EnsembleMC(Atom **, int, int,
double, double, double *, int *); 
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virtual ~Ensemble();
void setVolume();     //set box volume
void setLength();     //set box length
void setComp();       //set atom type
void setKineticE(double);//set Kinetic E.
int getNumAtom();     //get total no.atoms
int *getComp();       //get no.components
int getNumComp();     //get total no.comp.
double getVolume();   //get box volume 
double getLength();   //get box length
double getPotEnergy();//get pot.energy 
double getTotalEfixed();//get total energy
double getKineticE(); //get kinetic E.

// Abstract Methods
// ----------------
// The following methods are defined in 
// the NVEensemble class (nve.h,nve.cpp).

virtual void initialCoord()=0;
//place atoms on lattice

virtual void setEnergy()=0;
//Orfer N*N energy calculations

virtual void reSetEnergy(double)=0;
//re-set the energy after move is accepted

virtual void lrc()=0;
//trigger the long range corrections

virtual double getTrialPotE(int,Atom **)=0;
//get potential energy of trial

virtual double getEnergyLRC()=0;
//get energy long range correction

};

#endif

11.3.2.4 NVE_Ensemble

The NVE_ensemble class contains attributes and methods that are specific to

the microcanonical ensemble and other methods that are required for the

simulation.
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UML Diagram mc_Ver2.0\nveMC.h

// File:  nveMC.h
// -----------------
// This file contains the definition of the
// NVEensembleMC class, which defines all
// methods and data for the microcanonical
// ensemble.

#ifndef _nveMC_h
#define _nveMC_h

#include "ensembleMC.h"

class NVEensemble : public Ensemble
{
private:
double energyLRC;      //long range E.corr.

Public:
NVEensemble(Atom **, int, int, double,

double, double *, int *);
void readInNVE();
//read in ensemble data
virtual void initialCoord();
//place atoms on lattice
virtual void setEnergy();
//instigate energy calculations
virtual void reSetEnergy(double);
//re-set energy after successful move
virtual void lrc();
//trigger the long range corrections
virtual double getEnergyLRC();
//get energy long range correction
virtual double getTrialPotE(int, Atom **);
//get trial potential energy

};
#endif

11.3.2.5 Atom

The class Atom is an abstract container class for all data and methods com-

mon to all atom types such as position and mass. The Atom class for the MC

simulation is somewhat simpler than the corresponding class for MD because

the time derivatives of position are not required. The new additions are vari-

ables and methods relating to the trial position.
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UML Diagram

// File:  atomMC.h
// -------------
// This file contains the definition of
// abstract class AtomMC, which defines all
// methods and data common to different
// atom types (eg derived classes), as well as
// foreshadowing methods of those derived
// classes through the use of abstract
// methods.

#ifndef _atomMC_h_
#define _atomMC_h_

class Atom
{
protected:
int type;                //type of atom
double mass;             //mass of the atom
double **rCutOff;        //cut off distance
double *position;        //position
double *trialPosition;   //trial position

public:
Atom(int, double, int);
Atom();
void setType(int);
//assign type to atom
void setrCutOff(double **);
//assign cut off point for atom
void setMass(double);
//assign mass to atom
void setPosition(double *);
//assign position of atom
void reSetPosition()
//re-assign position of atom
void setTrialPosition(double *);
//assign atom trial position of atom

int getType();
//get type of atom
double getMass();
//get mass of atom
double **getrCutOff();
//return cut off point for atom

mc_Ver2.0\atomMC.h
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double *getPosition();
//get position of atom
double *getTrialPosition();
//get trial position of atom

// Abstract Virtual Methods
// ------------------------
// LJatomMD derived class methods
// ----------------------------

virtual void setSigma(double **)=0;
//set sigma for atom pairs
virtual void setEpsilon(double **)=0;
//set epsilon for atom pairs
virtual double **getEpsilon()=0;
//get epsilon for atom pairs
virtual double **getSigma()=0;
//get sigma for atom pairs

};

#endif

11.3.2.6 LJ_Atom

The LJ_Atom class inherits from Atom and defines those attributes and meth-

ods that are specific to atoms interacting via the Lennard-Jones potential. In

particular, it contains the ε and σ parameters. The LJatom class used in MC

simulations is almost identical to that used for MD. The only difference

between the two classes is a subtle difference in the second constructor.
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UML Diagram mc_Ver2.0\ljatomMC.h

// File:  ljatomMC.h
// -----------------
// This file contains the definition of the
// Ljatom class, which defines all methods and
// data for an LJatomMC object interacting via 
// the Lennard-Jones 12-6 intermolecular
// potential.

#ifndef _ljatomMC_h
#define _ljatomMC_h

#include "atomMC.h"

class LJatom : public Atom {
private:
double **epsilon; //LJ epsilon 
double **sigma;               //LJ sigma

public:
LJatom(int , double , double **,
double **, double **, int);

LJatom();
virtual void setSigma(double **);
//set sigma for atom pairs
virtual void setEpsilon(double **);
//set epsilon for atom pairs
virtual double **getEpsilon();
//get epsilon for atom pairs
virtual double **getSigma();
// get sigma for atom pairs

};

#endif

11.3.2.7 Energy

Energy is an abstract class that maintains a reference to the array of atoms. It

is a container class for the methods in its derived classes that are responsible

for performing the setEnergy calculations and long-range corrections. The

Energy class performs the analogous role to the Force class in MD.
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UML Diagram mc_Ver2.0\energyMC.h

// File:  energyMC.h
//-----------------
// This file contains the definition of
// abstract class Energy, which defines all
// methods and data common to different
// force types (eg derived classes), as well
// as foreshadowing methods of those derived
// classes through the use of abstract
// methods.

#ifndef _energyMC_h
#define _energyMC_h

#include "atomMC.h"

class Energy
{
protected:
Atom **atoms;   //reference to atom array

public:
Energy(Atom **);
virtual ~Energy();

// Abstract Methods for subclasses
// -------------------------------

// For LJEnergy:
virtual void setEnergy(int, double, 

double *)=0;
//set energy calculations
virtual void lrc(int, int *, double, 

double *)=0;
//long range corrections
virtual double getTrialPotE

(int, double, int, Atom **)=0;
//get trial potential energy 

};

#endif

11.3.2.8 LJ_Energy

LJ_Energy is the subclass of Energy that is responsible for performing the

long-range corrections and energy calculations using the Lennard-Jones

potential. It plays the analogous role to LJforce in a MD simulation.
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UML Diagram mc_Ver2.0\ljenergyMC.h

// File:  ljenergyMC.h
// -------------
// This file contains the definition of the
// Ljenergy class, which defines all methods
// and data for an EnergyMC object which
// interacts according to the Lennard-Jones
// intermolecular potential.

#ifndef _ljenergyMC_h_
#define _ljenergyMC_h_

#include "energyMC.h"

class Ljenergy : public Energy
{
private:

double **epsilon, **sigma, **rCut;
//reference to epsilon, sigma and rCut

public:
Energy(Atom **);
virtual void setEnergy(int, double,

double *);
//set energy calculations
virtual void lrc(int, int *, double ,

double *); 
//long range corrections
virtual double getTrialPotE(int, double,

int, Atom **);
//get trial potential energy

};

#endif

LJ_Energy

-sigma
-epsilon
-rCut
LJenergy()
Irc()
setEnergy()
getTrialPotE()

11.3.2.9 Auxiliary methods

The auxiliary methods required for the MC simulation are identical to the

auxiliary methods used in MD.

11.3.3 OOP in C11

After defining the class diagrams and prototyping the methods and variables

required for the various classes, we enter the programming phase. The vari-

ables and methods for each class are written in a source file with the same

name as the header file. The code for many of the methods is identical to the

MD program. This illustrates the reusability feature of the object-oriented

approach.

11.3.3.1 Code for the main() function

As discussed previously, the main() exists effectively outside of the analysis.

It has a minimal role involving the instantiation of an object of type
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Simulation and the execution of one simple method. Thereafter, the program

proceeds in accordance with the instructions in the various classes, which

control the creation of objects and message passing between objects via

method calls. The code for main() presented subsequently is identical to the

code for main() in the MD simulation.

mc_Ver2.0\mainMC.cpp

An object of type 

Simulation is 

instantiated. 

Call to 

readSimParameters() 

invokes the simulation 

process.

// File mainMC.cpp
// -----------
// This file contains the main() function 
// responsible for starting the simulation
/  process.

#include "simMC.h"

main()
{

Simulation sim;
sim.readSimParameters();
return 0;

}

11.3.3.2 Code for the simulation class

The code for the Simulation class is identical to the corresponding class for

MD except that an object of type Monte_Carlo is created rather than an object

of type Molecular_Dynamics.
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The simulation class is 

responsible for reading 

in the simulation 

parameters. 

In the main() an object 

of type Simulation is 

instantiated and the  

readSimparameters() 

method is called.  

The simulation settings 

are read from the 

“sim.dat” file. 

If the MC option is 

chosen a reference 

(mc) to an object of 

MonteCarlo is created.  

The run() method of 

MonteCarlo is called 

which starts the 

simulation process.  

// File:  simMC.cpp
// -----------------
// This file contains the implementation of
// the Simulation class, which defines all
// methods and data for a molecular
// simulation, using either molecular 
// dynamics or Monte Carlo etc.

#include "simMC.h"
#include <fstream>
#include <iostream>
using namespace std;

// Method:  readSimParameters
// Usage:   readSimParameters();
// ---------------------
// Reads in parameters for NVE ensemble

void Simulation::readSimParameters()
{

int simulation;
//open the simMC.dat file
ifstream in;
in.open("simMC.dat");
if(in.fail()){

cout << "Cannot open simMC.dat!\n";
return;

}

in >> simulation;
in.close();
switch(simulation)
{

case 2: //Monte Carlo
mc = new MonteCarlo();
mc->run();
break;

default:
cout << "Invalid! Aborting!" << endl;
break;

}
return;

}

mc_Ver2.0\simMC.cpp

11.3.3.3 Code for the Monte_Carlo class

There is considerable similarity between the Monte_Carlo and

Molecular_Dynamics classes. The code for the getnSize(), getnEquil(), and getnStep

() methods are identical and only minor changes are required in the readInNVE

() method. The most significant changes are confined to the runNVE() method,

which is an implementation of Algorithm 9.4.
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mc_Ver2.0\mc.cpp

The constructor is 

called  when a 

Monte_Carlo object 

(mc) is created in the 

Simulation object 

(sim).

Read-in the simulation 

settings.

The appropriate read-

in method is called 

#include "mc.h"
#include "nveMC.h"
#include "auxfunc.h"
#include <fstream>
#include <iostream>
#include <math.h>
using namespace std;

// File:  mc.cpp
// Class: MonteCarlo
// ------------------------
// This file contains the implementation
// details for the MonteCarlo class

// Constructor
// -----------
// Accesses parameter file mc.dat, which
// identifies the choice of intermolecular
// potential, and ensemble, and it
// constructs the MonteCarlo object.

MonteCarlo::MonteCarlo()
{

int potential;
ifstream in;

in.open("mc.dat");

if(in.fail())
{
cout << "Unable to open mc.dat

for MC parameters" << endl;
return;

}
in >> nStep;
in >> nEquil;
in >> nSize;
in >> theEnsemble;
in >> potential;
in.close();
switch(theEnsemble)
{
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depending on the 

choice of ensemble..

The run method is 

invoked by mc->run() 

from the sim object. 

Different ensembles 

will require different 

run() methods.This 

method controls the 

execution of the 

simulation.

The runNVE() method 

controls the execution 

of the simulation

Simulation settings.

Initialising averages

case 1:          //NVE ensemble
readInNVE(potential);
break;
//other ensembles here

}
}

// Method:  run
// Usage:   run();
// ---------------
// Runs the appropriate simulation run method
// determined by the choice of ensemble.

void MonteCarlo::run()
{

switch(theEnsemble)
{
case 1: // NVE ensemble
runNVE();
break;
//run methods for other ensembles can be 
//inserted here
}

}

void MonteCarlo::runNVE()
{

ofstream out;
out.open("mc_nve.out", ios::out);

if(out.fail()) {
cout << "could not open output file!" 

<< endl;
return;

}
int i, index, j = 0, k, n, nTotal, 

seed = -50, counter = 0, accept = 0;
int nStep  = getnStep();
int nEquil = getnEquil();
int nSize  = getnSize();
int num = ensemble->getNumAtom();
double length = ensemble->getLength();
double avPotEnergy = 0.0;
double avKinEnergy = 0.0;
double avTotEnergy = 0.0;
double avTemperature = 0.0;
double erKinEnergy = 0.0;
double erPotEnergy = 0.0;
double erTotEnergy = 0.0;
double erTemperature = 0.0;
double *accumPotE, *accumKinE;
double *accumTotE, *accumTemp;
double *trial, *position, f;
double eOld, eNew, eTrial, eDelta,

trialPotE, potE, kinE, totE, temp;
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Determine maximum 

displacement

Determine size of 

simulation blocks.

Properties to be 

averaged are 

accumulated in blocks 

of size n.

Initialisation of the 

properties of ensemble 

prior to the simulation.

Check for a valid 

initial configuration

Start of Markov chain

Each cycle in num trial 

displacements long.

Randomly select atom.

double rMax, eFixed, kNew, kOld, wFactor;
double tally = 0.0, lrc;
double const MAX = 0.1;
rMax = MAX*length; 
nTotal = nStep - nEquil;
n = nTotal/nSize;
f = 3.0*num/2.0 - 1.0;
accumPotE = new double [n];
accumKinE = new double [n];
accumTotE = new double [n];
accumTemp = new double [n];
position = new double [3];
trial = new double [3];

for (i = 0; i < n; i++)
{

accumPotE[i] = 0.0;
accumKinE[i] = 0.0;
accumTotE[i] = 0.0;
accumTemp[i] = 0.0;

}

atom = ensemble->getAtoms();
ensemble->lrc();
//perform long range corrections
lrc = ensemble->getEnergyLRC();
ensemble->setEnergy();
//set initial energy
potE = ensemble->getPotEnergy();
eFixed = ensemble->gettotEfixed();
kNew   = eFixed - (potE + lrc); 
//determine inital kinetic energy

if(kNew > 0)
ensemble->setKineticE(kNew);

else
{

cout << "Initial configutaion has
negative kinetic energy. Aborting."
<< endl;

exit(0);
}

cout << "Results will be directed to 
the file \"mc_nve.out\"" << endl;

for(i = 0; i < nStep; i++)
{

for (k = 0; k < num; ++k)
{
++counter;
potE = ensemble->getPotEnergy();
kOld = ensemble->getKineticE();

//Select atom randomly
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Determine a trial 

position for each atom 

of the ensemble.

Set trial position.

Minimum image 

convention.

Determine the energy 

of the ensemble at the 

trial positions

Check for valid kinetic 

energy.

Apply Ray’s modified 

Metropolis acceptance 

criterion.

Re-set atomic 

coordinates and 

ensemble energy.

The maximum 

displacement is 

adjusted to obtain the 

desired acceptance 

rate.

index = (int) num*random(&seed);
position  = atom[index]->getPosition();
atom[index]

->setTrialPosition(position);

// determine energy at current position
eOld = ensemble

->getTrialPotE(index,atom);

// find trial position
trial[0] =  position[0] 

+ rMax*(2.0*random(&seed)-1.0);
trial[1] =  position[1] 

+ rMax*(2.0*random(&seed)-1.0);
trial[2] =  position[2] 

+ rMax*(2.0*random(&seed)-1.0);

// apply periodic boundary conditions
trial[0] -= length 

* nearestInt(trial[0],length);
trial[1] -= length 

* nearestInt(trial[1],length);
trial[2] -= length 

* nearestInt(trial[2],length);
atom[index]->setTrialPosition(trial);

// calculate energy at trial position
eNew = ensemble

->getTrialPotE(index,atom);
eDelta = eNew - eOld;

trialPotE = potE + eDelta;
kNew = eFixed - (trialPotE +lrc);

if (kNew > 0)
{

wFactor = pow(kNew/kOld, f);
if (wFactor > 1 || wFactor > 

random(&seed))  //accept move
{
atom[index]->reSetPosition();
ensemble->setKineticE(kNew);
ensemble->reSetEnergy(trialPotE);
accept++;

}
}

}

tally = accept/(double) counter;
if (i < nEquil)
{
if (tally < 0.5)

rMax *=0.95;
else

rMax *= 1.05;
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Accumulation of 

averages after 

equilibration period.

Accumulation of block 

statistics.

Analysis of block 

averages and statistical 

uncertainties

}

if(i >= nEquil)
{
potE = ensemble->getPotEnergy() + lrc;
kinE = ensemble->getKineticE();
totE = potE + kinE;
temp = 2.0*kinE/(3.0*num);
avPotEnergy += potE;
avKinEnergy += kinE;
avTotEnergy += totE;
avTemperature += temp;

if((i != nEquil) && 
((i % nSize) == 0))

{
accumPotE[j] /= nSize;
accumKinE[j] /= nSize;
accumTotE[j] /= nSize;
accumTemp[j] /= nSize;
j++;

}

accumPotE[j] += potE;
accumKinE[j] += kinE;
accumTotE[j] += totE;
accumTemp[j] += temp;

}
}

avPotEnergy /= nTotal;
avKinEnergy /= nTotal;
avTotEnergy /= nTotal;
avTemperature /= nTotal;

for(i = 0; i < n; i++)
{
erPotEnergy += pow((accumPotE[i]

- avPotEnergy),2);
erKinEnergy += pow((accumKinE[i] 

- avKinEnergy),2);
erTotEnergy += pow((accumTotE[i] 

- avTotEnergy),2);
erTemperature += pow((accumTemp[i]

- avTemperature),2);
}

out <<"Average Potential Energy/N:\t"
<< avPotEnergy/num <<" +/"<<
sqrt(erPotEnergy)/(num*nTotal)<<endl;
out <<"Average Kinetic Energy/N:\t " 
<< avKinEnergy/num <<" +/"<<
sqrt(erKinEnergy)/(num*nTotal)<<endl;

out <<"Average Total Energy/N:\t\t" << 
avTotEnergy/num <<"  +/-
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The readInNVE() 

method is called by the 

constructor of the 

Monte_Carlo object.

References to the 

Atom class.

Some of the input 

values depend on the 

potential.  In this case 

only the LJ has been 

implemented.

Check for successful 

file opening.

Check that there is at 

least one component!

Check that there are at 

least four atoms to 

build lattice.

The following code 

performs continues to 

read-in data and 

performs various 

bookkeeping tasks.

"<<sqrt(erTotEnergy)/(num*nTotal)<<endl;
out <<"Average Temperature:\t\t " 
<< avTemperature <<"  +/-
"<<sqrt(erTemperature)/nTotal<<endl;

out <<"Acceptance Rate:\t\t "<<100*tally 
<<" %"<<endl;

out.close();
}

void MonteCarlo::readInNVE(int interPotential)
{

int i, j;
double numType, *molFract, **epsilon,
**sigma, **rCut,  potE, density;

int dimensions = 3, numComp, numAtom, *comp;
Atom *newAtom, **atoms;

// open the NVEfileMC.dat file
ifstream in;
in.open("NVEfileMC.dat");

if(in.fail()){
cout << "Cannot open

NVEFileMC.dat!\n";
return;

}

in >> numComp;

if(numComp <= 0){
cout << "Number of components 
must be > 0!\n";
return;

}

comp = new int[numComp];
in >> numAtom;

if(numAtom < 4){
cout << "At least 4 atoms 
are required!\n";
return;

}

if(!(molFract = new double [numComp]))
{
cout << "Cannot allocate memory
to molFract" << endl;

return;
}
for(i = 0; i < numComp; i++)

in >> molFract[i];

double *mass = new double[numComp];
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This can be expanded 

for other potentials.

In a mixture the i-j and 

j-i potential parameters 

are the same

for(i = 0; i < numComp; i++)
in >> mass[i];

in >> potE;
in >> density;

// Convert potE per particle to the 
// total ensemble value
potE *= numAtom;

in.close();

// construct array of atoms
if(interPotential == 1) // Lennard-Jones
{

in.open("paramLJ.dat");
if(in.fail()){

cout << "Cannot open paramLJ.dat!\n";
return;

}

// assign memory to arrays
if(!(atoms = new Atom * [numAtom]))
{
cout << "Cannot allocate memory

to atoms!\n";
return;

}

epsilon = getMemory(numComp);
sigma = getMemory(numComp);
rCut = getMemory(numComp);

for (i = 0; i < numComp; i++)
{

for (j = 0; j < numComp; j++)
{
in >> epsilon[i][j] >> 

sigma[i][j] >> rCut[i][j];

//adjust for indistinguishable
// pairs
if (j!=i)
{
epsilon[j][i] = epsilon[i][j];
sigma[j][i] = sigma[i][j];
rCut[j][i] = rCut[i][j];

}
}

}

// close input file
in.close();

int *atnum = new int[numComp + 1];
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Create objects of type 

Ljatom which is 

accessible via the 

atoms array.  The 

properties of Ljatom 

are passed to the 

constructor

A pointer to the NVE
ensemble.  The 

properties of the 

ensemble are passed to 

the constructor.

Get block size.

atnum[0] = 0;

// calculate the numebr of atoms
// of each type from the molFract
for(i = 0; i < numComp; i++)
{
numType = numAtom * molFract[i];
int rem = (int) numType;

if ((numType - rem) >= .5)
atnum[i+1] = (int) numType + 1;

else
atnum[i+1] = (int) numType;

}

int sum = 0;
for (i = 0; i <= numComp; i++)
sum += atnum[i];

while (atnum[numComp] < numAtom)
atnum[numComp]++;

for(i = 0; i < numComp; i++)
atnum[i+1] += atnum[i];

// loop through the components
for (i = 0; i < numComp; i++)
{
//loop through the atoms of that type
for (int j = atnum[i]; j < 

atnum[i+1]; j++)
{
//create atom(s) and assign
// properties,
newAtom = 
new LJatom(i, mass[i], 
epsilon, sigma, rCut, dimensions);

//store reference to atom in array
atoms[j] = newAtom;

}
}

} // end of LJ atom array creation

ensemble = 
new NVEensemble
(atoms, numComp, numAtom, potE,

density, molFract, comp);

return;
}

// Method: getnSize()
// Usage:  n = getnSize();
// -----------------------
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Get equilibration 

period.

Get number of 

simulation cycles.

// Gets the size of the blocks to be averaged.

int MonteCarlo::getnSize()
{

return nSize;
}

// Method: getnEquil()
// Usage:  n = getnequil();
// ------------------------
// Gets the equilibration period.

int MonteCarlo::getnEquil()
{

return nEquil;
}

// Method: getnStep()
// Usage:  n = getnStep();
// -----------------------
// Gets the total number of simulation steps.

int Montecarlo::getnStep()
{

return nStep;
}

11.3.3.4 Code for the Ensemble class

The code for the Ensemble class is similar to the corresponding class for MD.

The code for the setVolume(), setLength(), setComp(), getNumAtom(), getComp(),

getVolume(), getAtoms(), and getKineticE() methods that were developed for MD

can be reused for MC simulations without any modification. New code is

required only for the setKineticE()andgetTotalEfixed() methods. In addition, a

slight modification is required in the constructor method to initialize

totalEfixed and trialPotE and remove the temperature variable.
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mc_ver2.0\ensembleMC.cpp

The  ensemble 

constructor is called 

from the read-in 

function during the 

construction of the mc 

object.  The properties 

of the Ensemble are 

initialized by the 

constructor.

// File: ensembleMC.cpp
// --------------------
// File containing functions to implement the
// Abstract EnsembleMC class.

#include "ensembleMC.h"
#include <math.h>

// Method: EnsembleMC
// Usage: EnsembleMC;
// -------------------
// Constructor for the EnsembleMC class

Ensemble::Ensemble(AtomMC **theAtoms, 
int nComp, int nAtoms, double totE, 
double dens, double *mol, int *cmp)

{
atoms = theAtoms;
numComp = nComp;
numAtom = nAtoms;
totEfixed = totE;
density = dens;
molFract = mol;
comp = cmp;
potEnergy = 0.0;
trialPotE = 0.0;

}

// Destructor for EnsembleMC class
EnsembleMC::~EnsembleMC(){}

// setMethods
// ----------
// These methods assign values to the volume,
// length, and component number for the
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Volume of the 

ensemble.

Length of simulation 

box.

Number of 

components of each 

atom.

Set the kinetic energy.

// ensemble.  They do not take any parameters,
// and are called during the construction
// phase of the ensemble

// Method: setVolume
// Usage:  setVolume();
// --------------------
// Determines the volume of the simulation
// box.

void EnsembleMC::setVolume()
{

boxVol = numAtom/density;
}

// Method: setLength
// Usage:  setLength();
// --------------------
// Determines the length of the simulation
// box.

void EnsembleMC::setLength()
{

boxLen = pow(boxVol, 1.0/3.0);
}

// Method: setComp
// Usage:  setComp();
// ------------------
// Determines the number of atoms of each 
// type.

void EnsembleMC::setComp()
{

int i, sum = 0;

for(i =0; i < numComp - 1; i++)
{

comp[i] = (int)(molFract[i] * numAtom);
sum += comp[i];

}
comp[numComp - 1] = numAtom - sum;

}

// Method: setKineticE
// Usage:  setKineticE(kNew);
// --------------------------
// Sets the kinetic energy of the ensemble.

double EnsembleMC::setKinetic(double kNew)
{

kineticE = knew;
}
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Get the number of 

atoms in the ensemble.

Get the number of 

components.

Get the number of 

each component.

Get the volume.

Get the box length.

// getMethods
// ----------
// These methods return the number of atoms,
// an array describing the number of each
// atom of each type, the number of
// components, the temperature of the
// ensemble, the volume of the ensemble box,
// the length of the ensemble box, the
// potential energy, the total energy, and the
// kinetic energy of the ensemble.

// Method: getNumAtom
// Usage:  n = getNumAtom();
// -------------------------
// Gets the total number of molecules in the
// ensemble.

int Ensemble::getNumAtom()
{

return numAtom;
}
// Method: getNumComp
// Usage:  n = getNumComp();
// -------------------------
// Gets the number of components.

Int EnsembleMC::getNumComp()
{

return numComp;
}

// Method: getComp
// Usage:  p = getComp();
// ----------------------
// Gets the number of each individual comp.

int * Ensemble::getComp()
{

return comp;
}

// Method: getVolume
// Usage:  getVolume();
// --------------------
// Gets the volume of the simulation box.

double Ensemble::getVolume()
{

return boxVol;
}

// Method: getLength
// Usage:  getLength();
// --------------------
// Gets the length of the simulation box.
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Get the potential 

energy.

Get the total energy

Get the kinetic energy.

Get the array of Atom 

objects.

double EnsembleMC::getLength()
{

return boxLen;
}

// Method: getPotEnergy
// Usage:  getPotEnergy();
// -----------------------
// Gets potential energy following force cal.

double EnsembleMC::getPotEnergy()
{

return potEnergy;
}

// Method: gettotEfixed
// Usage:  n = gettotEfixed();
// ---------------------------
// Gets virial following force calculation.

double EnsembleMC::gettotEfixed()
{

return totEfixed;
}

// Method: getKineticE
// Usage n = getKineticE();
// ------------------------
// Gets the kinetic energy.

double EnsembleMC::getKineticE()
{

return kineticE;
}

// Method: getAtoms
// Usage:  n = getAtoms();
// -----------------------
// Return array of atoms

AtomMC **EnsembleMC::getAtoms()
{

return atoms;
}

11.3.3.5 Code for NVE_Ensemble class

The code for the NVE_Ensemble class reuses the code for the initialCoord() and

getEnergyLRC() methods in the corresponding class in MD simulation. The

code force the setEngergy() method analogous to the setForce() method and

only minor changes are required to the NVEensemble() and lrc() methods. The

only entirely new code required is for getTrialPotE() method.
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mc_Ver2.0\nveMC.cpp

Create NVEensemble

Set the initial 

coordinates by placing 

the atoms on a face-

centred cubic lattice.

// File: nveMC.cpp
// --------------------
// File containing functions to implement the
// NVEensembleMC class.

#include <math.h>
#include <string.h>
#include "nveMC.h"
#include "auxfunc.h"
#include "ljenergyMC.h"

// Method: NVEensemble
// Usage: NVEensemble;
// ----------------------
// Instantiate the NVEensembleMC class

NVEensemble::NVEensemble(Atom **atoms, int 
numComp, int numAtom, double totEfixed, double 
density, double *molFract, int *comp)
: Ensemble(atoms, numComp, numAtom, totEfixed, 
density, molFract, comp)
{

setVolume();
setLength();
setComp();
initialCoord();
theEnergy = new LJenergy(atoms);

}

// Method: initialCoord
// Usage:  initialCoord();
// -----------------------
// Places atoms upon a lattice to get initial
// coordinates

void NVEensembleMC::initialCoord()
{

int i, j, x, y, z, offset;
double cells, dcells, cellL, halfCellL,

*tempPos, *position;
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Assign x, y and z 

coordinates for the 

four atoms in the unit 

cell.

Assign the remaining 

positions on the lattice.

double (*holdPos) [3] = 
new double [numAtom][3];

tempPos= new double [numAtom];
position = new double [numAtom];

//Determine the number of unit cells in each
//coordinate direction

dcells = pow(0.25 * (double)
numAtom, 1.0/3.0);

cells =  (int) nearestInt(dcells, 1.0);

//check if numAtom is an non-fcc number of
//atoms and increase the number of cells if
//necessary

while((4 * cells * cells * cells) < numAtom)
cells = cells + 1;

//Determine length of the unit cell
cellL = boxLen/ (double) cells;
halfCellL = 0.5 * cellL;

//Construct the unit cell
//point to atoms position
position[0] = 0.0;
position[1] = 0.0;
position[2]= 0.0;
position = atoms[0]->setPosition(position);
position[0] = halfCellL;
position[1] = halfCellL;
position[2]= 0.0;
position = atoms[1]->setPosition(position);
position[0] = 0.0;
position[1] = halfCellL;
position[2]= halfCellL;
position = atoms[2]->setPosition(position);
position[0] = halfCellL;
position[1] = 0.0;
position[2]= halfCellL;
position = atoms[3]->setPosition(position);

for(i = 4; i < numAtom; i++)
{

position[0] = 0.0;
position[1] = 0.0;
position[2] = 0.0;
atoms[i]->setPosition(position);

} //init all other atoms to 0

// Build the lattice from the unit cell by
// repeatedly translating the four vectors
// of the unit cell through a distance cellL 
// in the x, y and z directions
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Set the potential 

energy at the start of 

the simulation. 

Re-set the energy after 

an accepted move.

offset = 0; 
for (z = 1; z <= cells; z++)
for (y = 1; y <= cells; y++)
for (x = 1; x <= cells; x++){
for (i = 0; i < 4; i++){
j = i + offset;
if(j < numAtom){

position = 
atoms[i]->getPosition();

holdPos[j][0] = position[0] 
+ cellL * (x-1);

holdPos[j][1] = position[1] 
+ cellL * (y-1);

holdPos[j][2] = position[2] 
+ cellL * (z-1);

}
}
offset = offset + 4;

}

// Shift centre of box to the origin.
for (i = 0; i < numAtom; i++)
{

tempPos = atoms[i]->getPosition();
tempPos[0]= holdPos[i][0}- halfCellL;
tempPos[1]= holdPos[i][1]- halfCellL;
tempPos[2]= holdPos[i][2]- halfCellL;
atoms[i]->setPosition(temPos)

}
}

// Method: setEnergy
// Usage:  setEnergy();
// --------------------
// Set the energy calculations using
// LJenergy. This is an N*N calculation to
// set the energy at the start of the
// simulation.

void NVEensemble::setEnergy()
{

theEnergy->setEnergy(numAtom, boxLen,
&potEnergy);

}

// Method: reSetEnergy
// Usage:  reSetEnergy(energy);
// ----------------------------
// Re-sets the energy of the ensemble
// following an accepted move

void NVEensembleMC::reSetEnergy(double eng)
{
potEnergy = eng;
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Determines the energy 

of the trial 

configuration.

Determine l.r.c to 

energy

Get energy long range 

correction

}

// Method: getTrialPotE
// Usage: n = getTrialPotE(atoms)
// ---------------------------------
// Performs N*N calculations to update energy
// after all atoms are moved.

double NVEensemble::getTrialPotE
(int index,  Atom **a)

{
return theEnergy->getTrialPotE

(numAtom, boxLen, index, a);
}

// Method: lrc
// Usage: lrc();
// ------------
// initiate the force calculations for long
// range corrections

void NVEensemble::lrc()
{

theEnergy->lrc(numComp, comp, boxVol,
&energyLRC);

}

// Method: getEnergyLRC
// Usage: n = getEnergyLRC();
// --------------------------
// Gets the long range energy correction.

double NVEensemble::getEnergyLRC()
{

return energyLRC;
}

11.3.3.6 Code for the Atom class

The Atom class reuses the unaltered code for setType(), setCutOff(), setMass(),

setPosition(), getType(), getMass() and getrCutOff(), and getPosition() methods of

the corresponding class in the MD program. Very little coding is required for

the new setTrialPosition(), reSetPosition(), and getTrialPosition() methods.
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This constructor is 

used to build the atom 

class using the 

parameters described 

in the parameter list

Set the atom type.

Set the cut-off 

distance.

// File: atomMC.cpp
// --------------
// File containing the method bodies 
// to implement the atom class.

#include "atomMC.h"

// Constructor:Atom
// Usage: Atom atom;
// -------------------
// Builds the Atom class

Atom::Atom(int theType, double theMass, 
int dimensions)

{
int i;
mass = theMass;
type = theType;

// allocate memory for the arrays
position = new double[dimensions];
trialPosition = new double[dimensions];

}

// 2nd constructor for array reference
// construction

Atom::AtomMC(){}

// Method: setType
// Usage:  setType(atomType);
// --------------------------
// Used to identify the atom as belonging to
// a certain type of component within the
// ensemble.

void Atom::setType(int t)
{

type = t;
}

// Method: setrCutOff
// Usage:  setrCutOff(atomic_rCutOffValue);
// ----------------------------------------
// Used to assign the values for the rCutOffs
// for the various atom types that make up the
// ensemble

void Atom::setrCutOff(double **newrCut)
{

rCutOff = newrCut;

mc_Ver2.0\atomMC.cpp
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Set the atomic masses

Set the position.

Set the trial position.

Re-set the position 

when move is 

accepted.

}

// Method:  setMass
// Usage:   setMass(double atomicMass);
// -----------------------------------
// Assign the mass of the atom

void Atom::setMass(double newMass)
{

mass = newMass;
}

// Method:  setPosition
// Usage:   setPosition(position);
// -------------------------------
// Sets the pointer within the atom object to
// point to a new 1D array of doubles,
// representing the position of the atom in
// its various dimensions.  Assuming a 3D
// simulation, the required array would have 
// three elements, where:
// atomicPosition[0] = x component of position
// atomicPosition[1] = y component of position 
// atomicPosition[2] = z component of position
// Note:  this method requires an _array_ to
// be passed to it which has already had
// memory allocated to it.  It does not
// take on the values in the array, but the
// address of the array itself.

void Atom::setPosition(double *newPos)
{

position = newPos;
}

// Method: setTrialPosition
// Usage:  setTrialPosition(newPos);
// ---------------------------------
// Assigns trial positions

void Atom::setTrialPosition(double *newPos)
{

trialPosition[0] = newPos[0];
trialPosition[1] = newPos[1];
trialPosition[2] = newPos[2];

}

// Method: reSetPosition()
// Usage:  reSetPosition();
// ------------------------
// Re-sets the positions if a move
// is accepted.

void Atom::reSetPosition()
{
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Get the type of atom.

Get the atomic mass.

Get the cut-off value.

Get the position.

Get the trial position.

position[0] = trialPosition[0];
position[1] = trialPosition[1];
position[2] = trialPosition[2];

}

// Method: getType
// Usage:  p = getType();
// ----------------------
// Gets the type associated with each atom.

int Atom::getType()
{

return type;
}

// Method: getMass
// Usage:  n = getMass();
// ----------------------
// Get values of the atomic masses.

double Atom::getMass()
{

return mass;
}

// Access (Get) Methods
// Usage:  n = getXxxxx();
// -----------------------
// These methods return a reference to the
// arrays which hold the values for rCutOff,
// acceleration, position, velocity, time
// step, and force.

// Method: getrCutOff
// Usage:  n = getrCutOff();
// -------------------------
// Returns the cut-off distances for atoms.

double **Atom::getrCutOff()
{

return rCutOff;
}

// Method: getPosition
// Usage:  n = getPosition();
// --------------------------
// Return position of atom

double *Atom::getPosition()
{

return position;
}

// Method: getTrialPosition
// Usage: n = getTrialPosition();
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// ------------------------------
// Return the trial position

double *Atom::getTrialPosition()
{
return trialPosition;

}

11.3.3.7 Code for the LJ_Atom class

The code for the LJ_Atom class (mc_Ver2.0\ljatomMC.cpp) is identical to the cor-

responding code for the MD program, and it is therefore not listed here. This

is not surprising because the LJatom class deals with the simulation para-

meters of the Lennard-Jones potential, which are totally independent of the

nature of the simulation.

11.3.3.8 Code for the Energy class

The Energy class plays the analogous role to the Force class in the MD simu-

lation. The code for the class is a trivial adaptation of the Force class.

mc_Ver2.0\energyMC.cpp

// File: energyMC.cpp
// ----------------
// File containing functions to implement 
// the abstract EnergyMC class.

#include "energyMC.h"

// constructor
// Method: Energy
// Usage:  n = Energy(atoms);
// --------------------------
// Used to construct the force component of
// any derived energy classes.

Energy::Energy(Atom **theAtoms)
{
atoms = theAtoms;

}

// destructor
EnergyMC::~EnergyMC(){}

11.3.3.9 Code for the LJ_Energy class

The constructor for the LJ_Energy class is identical to the constructor of the

LJ_Force class, and the setEnergy() method is analogous to the setForce()

method with the exception that the force calculations have been omitted. The

getTrialPotE() method reuses almost all of the code of the setEnergy() method.

The lrc() method reuses the code for the corresponding method in the

LJ_Force class.
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Determine the 

potential energy of the 

ensemble at the start of 

the simulation.

// File: ljenergyMC.cpp 
// --------------------
// File containing methods to implement 
// the Ljenergy class.

#include "ljenergyMC.h"
#include “auxfunc.h”

// constructor
LJenergy::LJenergy(AtomMC **theAtoms)
:Energy(theAtoms)
{

epsilon = atoms[0]->getEpsilon();
sigma   = atoms[0]->getSigma();
rCut    = atoms[0]->getrCutOff();

}

// Method: setEnergy
// Usage:  setEnergy();
// --------------------
// The ljenergy method calculates the energy
// experienced by all num atoms due to pair
// interatomic interaction. The energy is
// calculated using the Lennard-Jones (6-12)
// potential. The potential is truncated at a
// distance rCut and long range corrections
// must be applied outside the method to
// obtain the full contributions to energy.

void Ljenergy::setEnergy(int num, 
double length, double *potEnergy)

{
int i, j, kindi, kindj;
double rXi, rYi, rZi;  //position vect. of i
double rXj, rYj, rZj;  //position vect. of j
double rXij, rYij, rZij;  //separation vect.
double rijSq;          //separation squared
double rCutSq, sigmaSq;//squared rCut etc
double sigma2, sigma6; //sigma multiples 
double sigma12;

mc_Ver2.0\ljenergyMC.cpp
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Outer energy loop.

Inner energy loop.

Determine pair 

separations.

Periodic boundary 

calculation.

Separation must be 

less than the cut-off 

distance for calculation 

to proceed.

double pot , eps;
double *tempPos, *tempPosj;

*potEnergy = 0.0;

// perform full N^2 calculation at the
// beginning of the simulation.

// Calculate energy experienced by atoms due
// interatomic pair interactions.

for(i = 0; i < num - 1; i++)
{
// Select molecule i
kindi = atoms[i]->getType();
tempPos = atoms[i]->getPosition();

rXi   = tempPos[0];
rYi   = tempPos[1];
rZi   = tempPos[2];

for(j = i + 1; j < num; j++)
{

kindj = atoms[j]->getType();
tempPosj = atoms[j]->getPosition();

rXj   = tempPosj[0];
rYj   = tempPosj[1];
rZj   = tempPosj[2];

// Calculate pair separation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;

// Apply periodic boundary
rXij -= length * 

nearestInt(rXij, length);
rYij -= length * 

nearestInt(rYij, length);
rZij -= length * 

nearestInt(rZij, length);
rijSq = rXij*rXij + 

rYij*rYij + rZij*rZij;

// Calculate energy for separations
// below the cutoff
rCutSq = rCut[kindi][kindj] *

rCut[kindi][kindj];

if (rijSq < rCutSq){
// Determine potential between i and j
sigmaSq = sigma[kindi][kindj] *

sigma[kindi][kindj];
sigma2  = sigmaSq/rijSq;
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Calculate the energy of 

a trial ensemble 

obtained by displacing 

one atom a tim.

Properties of trial 

atom.

sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
eps = epsilon[kindi][kindj];
*potEnergy   += eps * pot;

}
}

}

*potEnergy *= 4.0;
}

// Method: getTrialPotE
// Usage:  getTrialPotE();
// -----------------------
// The ljenergy method calculates the energy
// experienced by a given atom (index) due to 
// pair interatomic interaction. The energy is
// calculated using the  Lennard-Jones (6-12)
// potential. The potential is truncated at a
// distance rCut and long range corrections
// must be applied outside the method to
// obtain the full contributions to energy.

void LJenergy::getTrialPotE(int num,
double length, int index, Atom **atom)

{
int i, j, kindi, kindj;
double rXi, rYi, rZi;  //position vect. of i
double rXj, rYj, rZj; // position vect. of j
double rXij, rYij, rZij;  //separation vect.
double rijSq;           //separation squared
double rCutSq, sigmaSq; //squared rCut etc
double sigma2, sigma6;  //sigma multiples 
double sigma12;
double pot, potE, eps;
double *tempPos, *tempPosj;

potE = 0.0;

// Calculate energy experienced by the
// sellected atom (index)
// with all other distinct pairs

// Properties of index atom.
kindi = atom[index]->getType();
tempPos = atom[index]->getTrialPosition();

rXi   = tempPos[0];
rYi   = tempPos[1];
rZi   = tempPos[2];
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Energy loop.

Avoid self-interaction 

with the trial atom.

Determine pair 

separations.

Periodic boundary 

calculation.

Separation must be 

less than the cut-off 

distance for calculation 

to proceed.

// Loop over all the other atoms
for(j = 0; j < num; j++)
{

//Exclude self-interaction
if(j = != index)
{
kindj = atom[j]->getType();
tempPosj = atom[j]->getTrialPosition();

rXj   = tempPosj[0];
rYj   = tempPosj[1];
rZj   = tempPosj[2];

// Calculate pair separation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;

// Apply periodic boundary
rXij -= length * 

nearestInt(rXij, length);
rYij -= length * 

nearestInt(rYij, length);
rZij -= length * 

nearestInt(rZij, length);

rijSq = rXij*rXij 
+ rYij*rYij + rZij*rZij;

// Calculate energy for separations
// below the cutoff

rCutSq = rCut[kindi][kindj] *
rCut[kindi][kindj];

if (rijSq < rCutSq){
// Determine potential between i and j
sigmaSq = sigma[kindi][kindj] *

sigma[kindi][kindj];
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
eps = epsilon[kindi][kindj];
potE  += eps * pot;

}
}

}
return 4*potE;

}
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Determine long range 

corrections.

// Method: lrc
// Usage:  n = lrc(num, nComp, 
//                  volume, energyLRC);
// ------------------------------------
// ljLRC calculates the long range correction
// term to the energy for an ensemble
// interacting via the Lennard-Jones (12-6)
// potential.

void Ljenergy::lrc(int num, int *nComp, double
boxV, double *energyLRC)

{
int i, j;
const double PI = 3.141592654;
double eps, sigmaSq, sig3, rCutSq, rCut3,

sig3R, sig9R, den;

*energyLRC = 0.0;

for(i = 0; i < num; i++)
for(j = 0; j < num; j++)
{
eps       = epsilon[i][j];
sigmaSq   = sigma[i][j] * sigma[i][j];
rCutSq    = rCut[i][j] * rCut[i][j];
sig3      = sigma[i][j] * sigmaSq;
rCut3     = rCut[i][j] * rCutSq;
sig3R     = sig3/rCut3;
sig9R     = sig3R * sig3R * sig3R;
den       = nComp[i] * nComp[j] *

sig3/boxV;
*energyLRC += (8.0/9.0) * den * 

PI * eps* (sig9R - 3*sig3R);
}

}

11.3.3.10 Code for the auxiliary methods

The code for the auxiliary methods (mc_ver2.0\auxfunc.cpp) is identical to

that used for the MD program and therefore it is not listed here.

11.4 Case study: combined MD and MC program for
Lennard-Jones atoms in the microcanonical ensemble

11.4.1 OOA

It is evident that the UML diagrams for the MD (Fig. 11.12) and MC simula-

tion (Fig. 11.16) have many features in common. This commonality is also

reflected in the high degree of code reuse between the two different simula-

tion programs. The MD and MC UML diagrams can be combined easily to

produce a combined analysis for simulation in general. The combined analy-

sis is illustrated in Fig. 11.17.
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11.4.2 OOP in C11

The design presented in Fig. 11.17 did not require any new analysis to be

performed. Similarly, the implementation of the design can be achieved

almost without the addition of any new code! Two different approaches can

be taken. The code for the classes of the combined simulation program can

be obtained simply by merging the code for the MC and MD programs. For

example, to obtain the Atom class, we can combine the attributes and methods

of the Atom classes from the MC and MD programs. Alternately, we can

obtain a combined MC/MD program by simply compiling the files contain-

ing MC and MD classes together. This latter approach is adopted here.

Therefore, the only changes required to the code is a trivial modification to

the simulation class and the main(). The code for main() presented subse-

quently is identical to the corresponding code for either simulation techni-

ques with the exception that the header file for the combined simulation

class (simMCMD.h) must be used.

Atom
{abstract}

NVE_Ensemble

Gear_Predictor-Corrector

Molecular_Dynamics

Force
{abstract}

Ensemble
{abstract}

LJ_AtomLJ_Force

Integrator
{abstract}

Simulation

Monte_Carlo

Energy
{abstract}

LJ_Energy

FIGURE 11.17 UML diagram unifying the MD and MC techniques.
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An object of type 

Simulation is 

instantiated. 

Call to 

readSimParameters() 

invokes the simulation 

process.

// File mainMCMD.cpp
// -----------
// This file contains the main() function 
// responsible for starting the simulation
/  process.

#include "simMC.h"

main()
{

Simulation sim;
sim.readSimParameters();
return 0;

}

mcmd_Ver2.0\mainMCMD.cpp

The description of the simulation class must contain a reference to both

the Monte_Carlo and Molecular_Dynamics object. Only one of these objects will

be instantiated depending on the choice made by the user.

UML Diagram

// File:  simMCMD.h
// -----------------
// This file contains the definition of
// the Simulation class, which defines
// all methods and data for a
// Molecular Simulation, using either
// molecular dynamics or Monte Carlo.

#ifndef _simMCMD_h_
#define _simMCMD_h_

#include "mc.h"
#include “md.h”

class Simulation
{

private:
MonteCarlo *mc;
MolecularDynamics *md;

public:
void readSimParameters();

};

#endif

Simulation
-MonteCarlo *mc
-MolecularDvnamics *md
readSimParameters()

mcmd_Ver2.0\simMCMD.h
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The simulation class is 

responsible for reading 

in the simulation 

parameters. 

In the main() an object 

of type Simulation is 

instantiated and the  

readSimparameters() 

method is called.  

The simulation settings 

are read from the 

“sim.dat” file. 

The object created 

depends on whether 

the MC or MD option 

is chosen.  The 

corresponding run() 

method is called which 

starts the simulation 

process.  

// File:  simMCMD.cpp
// -----------------
// This file contains the implementation of
// the Simulation class, which defines all
// methods and data for a molecular
// simulation, using either molecular 
// dynamics or Monte Carlo etc.

#include "simMCMD.h"
#include <fstream>
#include <iostream>
using namespace std; 

// Method:  readSimParameters
// Usage:   readSimParameters();
// ---------------------
// Reads in parameters for NVE ensemble

void Simulation::readSimParameters()
{
int simulation;
//open the sim.dat file

ifstream in;
in.open("simMCMD.dat");

if(in.fail()){
cout << "Cannot open sim.dat!\n";
return;

}

in >> simulation;
in.close();

switch(simulation)
{

case 1:  //Molecular dynamics
md = new MolecularDynamics();
md->run();
break;

case 2: //Monte Carlo
mc = new MonteCarlo();
mc->run();
break;

default:
cout << "Invalid! Aborting!" << endl;
break;

}

}
return;

mcmd_Ver2.0\simMCMD.cpp
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Apart from these trivial changes, no other changes are required to the

remaining code (mcmd_Ver2.0). This clearly illustrates the advantage of the

object-oriented approach in promoting maximum code reuse with minimal

effort. To achieve the same effect using a procedural programming approach

would almost invariably require additional code development and algorithm

changes.

11.5 Case study: extensions

An advantage of OO is that the design and code can be extended to other

situations relatively easily. For the benefit of simplicity we illustrate exten-

sions to other situations using the MC analysis as the basic building block.

Extension of the MD simulation is exactly analogous.

Simulation

Atom
{abstract}

NVE_Ensemble

Energy
{abstract}

Monte_Carlo

Ensemble
{abstract}

LJ_Atom LJ_Energy

NVT_Ensemble NPT_Ensemble

FIGURE 11.18 UML diagram showing the extension of the MC object-oriented analysis for

new ensembles.
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11.5.1 Other ensembles

Our analysis has been limited to the microcanonical ensemble; however the

analysis can be extended easily to any desired ensemble as illustrated by

Fig. 11.18.

The additional coding implications of Fig. 11.18 are minimal. For each

new ensemble we create a new Ensemble class along the same lines as the

microcanonical ensemble. Different read-in methods (readInNVE(), readInNVE(),

and readInNPT()) will be required in the Ensemble class because each ensemble

is characterized by different properties. Similarly, because the simulation

algorithm is specific to the type of ensemble, specific run methods (runNVE(),

runNVE(), and runNPT()) are required in the Monte_Carlo class.

11.5.2 Other ensembles and other potentials

The analysis can be extended simply to include any desired potential as

shown in Fig. 11.19.

The incorporation of additional potentials such as the exp-6 (Exp6) or

hard-sphere intermolecular potential (HS) involves the creation of new

Simulation

Atom
{abstract}

NVE_Ensemble

Energy
{abstract}

Monte_Carlo

Ensemble
{abstract}

LJ_Atom LJ_Energy

NVT_Ensemble NPT_Ensemble

Exp6_AtomHS_Atom HS_Energy Exp6_Energy

FIGURE 11.19 UML diagram showing the addition of various intermolecular potentials.
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classes that inherit from the Atom class. The potential classes contain the

characteristic potential parameters. The read-in method must also be altered

to account for the different potential. However, more significantly, the choice

of potential changes the nature of the energy calculation. The creation of

potential specific energy classes such as HS_Energy and Exp6_Energy involves

new methods to account for the potential specific interactions.

11.5.3 Other ensembles, other potentials, and molecules

Our analysis has been confined to atomic systems. A strength of the OO is

that the analysis can be extended readily to molecules. By definition, a mole-

cule is composed of two or more atoms. Consequently, we can devise a

Molecule class, which is an aggregation of Atom classes. This is illustrated in

Fig. 11.20.

FIGURE 11.20 UML diagram showing the extension of the object-oriented analysis to

molecules.
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In Fig. 11.20 the Molecule class acts as a container for Atoms that com-

pose the molecule and as such it contains information regarding the molecule

such as number of atoms, bond separation, etc.

11.6 Summary

OO has a valuable role in the development of simulation software, particu-

larly for complicated molecules and processes. It requires a shift of focus

from algorithm-centered to object-centered design. The benefit of an object-

oriented approach is that it permits a high degree of software reuse. The

reuse of code is illustrated by the high degree of commonality between the

MD and MC programs. OO allows us to manage future increases in com-

plexity much more effectively than can be achieved using procedural pro-

gramming. However, to derive full benefit of OO approach it is important

that the analysis and design aspects are carefully considered before coding

commences. Of course, redesign after coding is natural part of iterative

improvement during the software life cycle but a well-thought out initial

OOA and OOD should greatly help minimize the effort that is subsequently

required. The extent of reuse will be tested in Chapter 12 when the codes are

modified for parallel execution.
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Chapter 12

GPU and CPU parallel molecular
simulation with CUDA and MPI

The previous chapters have implicitly assumed that molecular simulations are exe-

cuted in serial on a single processor. In practice, many useful molecular simula-

tion codes leverage the power of advances in parallel computation (Sanders and

Kandrot, 2011) to provide results that have immensely expanded both the value

and the scientific reach (Abraham et al., 2015; Kirk and Hwu, 2010; Couturier,

2014; Heinecke et al., 2015) of molecular simulation methods. The general

approach for parallel computing (Heermann and Burkitt, 1991; Mattson et al.,

2005) is to distribute the numerically intensive aspects over multiple processors or

cores, which are executed simultaneously. This inevitably requires the use of addi-

tional instructions in the software to take advantage of the parallel hardware archi-

tecture. The use of message passing (MP) directives, such as in OpenMP1

(Chandra et al., 2001; Quinn, 2004; Mattson et al., 2019), is a simple way to

achieve this, whereas the use of a message passing interface (MPI)2 (Pacheco,

1997; Karniadakis and Kerby, 2003) provides much greater control and customi-

zation, and as such it is arguably the most commonly used approach for multipro-

cessor systems.

Hardware architectures (Owens et al., 2008; Hwu, 2011; Sanders and

Kandrot, 2011; Barlas, 2015) have been developed by combining a central pro-

cessing unit (CPU) with a graphics processing unit (GPU). Although originally

used in gaming and to enhance image rendering (Scarpino, 2012), the use of

GPUs provides an enormous speed-up for numerical computing (Heinecke et al.,

2015). Similar to conventional parallel CPU programming, directives in the soft-

ware are required to take advantage of the GPU architecture. The most widely

used GPUs are provided by Nvidia,3 which uses the compute unified device

architecture (CUDA) language (Ansorge, 2022; Farber, 2011; Ploskas and

Samaras, 2016; Storti and Yurtoglu, 2016) to instruct the GPUs. We will focus

on CUDA, but OpenCL (Gaster et al., 2012; Munshi et al., 2012) also provides

an alternative means of GPU instruction.

1. Details of OpenMP are maintained at https://www.openmp.org

2. Details of Open-MPI are maintained at https://www.open-mpi.org

3. Details of CUDA are maintained by Nvidia at https://developer.nvidia.com/cuda-toolkit
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This chapter aims to illustrate how the principles of parallel computation

can be applied to molecular dynamics (MD) and Monte Carlo (MC) molecular

simulation code. To achieve this goal, case studies are provided using the

serial MC and MD simulation C11 code outlined in Chapter 11. This

approach aims to maximize the clarity of explanation of the parallel imple-

mentation by making the simplest possible CUDA and MPI changes to the

serial code. The emphasis on simplicity means that no attempt has been made

to optimize the computational efficiency of the code. Details of much more

sophisticated approaches can be obtained elsewhere (Pacheco, 1997; Pacheco,

2011; Couturier, 2014; Heinecke et al., 2015). The parallel implementation

inevitably means that some explanations of CUDA and MPI directives are

required. Again, this has been kept to a minimum and it is not a substitute for

detailed sources of information that are available elsewhere (Ansorge, 2022;

Barlas, 2015; Karniadakis and Kerby, 2003; Quinn, 2004).

Code availability

The CUDA andMPI source code for programs developed in the case studies are

available for download form thebook’swebsite,which ismaintainedby thepublisher:

https://www.elsevier.com/books-and-journals/book-companion/9780323853989.

A software user’s guide is given in theAppendix.

12.1 Basic GPU implementations with CUDA

Traditional computing involves executing code exclusively on either one CPU

or distributing the computational load on several CPUs. In contrast, GPU pro-

gramming involves coordinating the calculations between a host CPU and a

GPU, which is commonly referred to as the device. Modern high-performance

computers (Couturier, 2014; Hou et al., 2013) involve both multiple CPUs and

GPUs. However, for the benefit of simplicity, our discussion will be limited to

a prototype system comprising one CPU and one GPU. Hereafter, the terms

“host” and “device” will be used almost exclusively. The host and the device

have their own separate areas of memory, and a lot of GPU programming

involves the allocation/deallocation of memory and copying the stored mem-

ory of variables between the host and the device as required.

The CUDA language possess many functions, keywords, and other syntax

to handle interactions between the host and the device, which are being contin-

ually expanded and modified. In the case studies detailed below, we will

restrict our attention to only a small subset of the available options that are

necessary to implement the serial codes on the GPUs. These are summarized

in Table 12.1. Ansorge (2022) and Storti and Yurtoglu (2016) have provided

comprehensive descriptions of CUDA for scientific applications. Depending

on how much time has elapsed since publication, it is likely that alternative

functions will be available but, assuming backward compatibility is main-

tained, the implementations given here should still work.
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12.1.1 Defining a Kernel

The first step in creating a GPU program is to determine the computational

intensive parts and create the so-called kernel functions that are called from the

host but executed of the device. The syntax of a kernel function is the same as

a C/C11 function but with the addition of the __global__ specifier, that is,

__global__
void nameOfKernel(parameter list …)
{

// body of kernel
}

The other distinguishing feature of the kernel is that void is the only pos-

sible return type. The code within the kernel is largely indistinguishable

from C/C11 code expect for a few additional CUDA statements required by

TABLE 12.1 Summary of key CUDA functions or syntax used in the case

studies.

CUDA code Description

__global__ Specifier used for kernel functions

__device__ Specifier used for functions that are accessed in a
kernel

__shared__ Specifier to indicate shared memory

__syncthreads() Function to synchronize threads on the device

cudaMalloc() Function to allocate memory on the device

cudaMemcpy() Function to copy memory to or from the device

cudaMemcpyHostToDevice Keyword used in cudaMemcpy() to indicate
memory is copied from host to device

cudaMemcpyDeviceToHost Keyword used in cudaMemcpy() to indicate
memory is copied from device to host

cudaFree() Function to free memory on the device

,,, x, y... Syntax used when kernel is launched, providing
details of the number of blocks (x) and the size of
the blocks (y)

threadIndex.x Keyword for the index of threads in a block

blockIndex.x Keyword for the index of the block

blockDim.x Keyword for the number of threads in the block

gridDim.x Keyword for the number of threads in a grid
composed of all the blocks
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the device. Other functions can be accessed within the kernel but they must

have the __device__ specifier, that is,

__device__
return type nameOfDeviceFunction
{

// body of device function
}

where type is the data type of the variable being retuned, that is, int, float,
double, etc. Unlike the kernel itself, the device function can have any possi-

ble return type.

12.1.2 Allocating and copying memory

Memory for pointer variables is allocated on both the host and the device,

which is handled via various memory functions. Memory on the host is allo-

cated in the normal way using malloc():

pointer = (type *) malloc (sizeof(type));

The cudaMalloc() function is used to allocate memory on the device, that is,

cudaMalloc((void **) &pointer_dev, sizeof(type));

Notice that, in this example, the _dev suffix has been appended to the

name of the device variable. This is a handy convention to distinguish

between host (no suffix) and device variables.

The cudaMemcpy() function handles the copying of pointers to and from

the device. This is necessary to allow the device access to pointers allocated

on the host. To copy a pointer to the device, we make use of the keyword

cudaMemcpyHostToDevice, that is,

cudaMemcpy(pointer_dev, pointer, sizeof(type), cudaMemcpyHostToDevice);

After the kernel is invoked, any pointer on the device can be copied to

the host by using the reverse of this function, that is,

cudaMemcpy(pointer, pointer_dev, sizeof(type), cudaMemcpyDeviceToHost);

This is necessary for the host to access any pointers modified by the

device. It is also advisable to free memory when no longer required. This is

done on the host side via:

free(pointer);
cudaFree(pointer_dev);
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12.1.3 Launching the kernel

It is common GPU parlance to use the word “launch” for the invocation of a

kernel. The kernel is launched (or invoked) by the statement:

nameOfKernel <<< numOfBlocks, blockSize >>> (parmeter list …);

The kernel is launched in the same way as any other void function except

for the terms contained within the ,,, ... bracket, which is responsible

for the parallel execution of the code. The variable blockSize is the number of

threads per block. GPUs execute kernels using blocks of threads that are in

multiples of 32, and the programmer has discretion to choose a

suitable value depending on the size (N) of the computation. In a molecular

simulation, N will be the number of particles. To distribute the calculation

among parallel threads, numOfBlocks is determined via the relationship,

numOfBlocks =  (N + blockSize – 1)/blockSize

where the use of �1 and integer division ensures the correct number of

blocks to obtain at least N threads.

Collectively, the blocks of parallel threads constitute a grid. In one dimen-

sion, CUDA makes use of keywords, threadIndex.x (the index of the threads

within the block), blockIndex.x (the index of the block), blockDim.x (the number

of threads in each block), and gridDim.x (the number of threads in the grid com-

posed of all blocks) to appropriately distribute the calculation within the kernel.

In all cases the indices commence from 0. We will examine this in more detail

when developing the appropriate simulation kernels. There are similar keywords

for the y and z dimensions, but we will not make use of these here.

12.1.4 Reduction

When GPUs are used, the properties evaluated in a molecular simulation, such as

energy and pressure, are evaluated in a GPU application across multiple threads

in different blocks. These partial results need to be summed in a process known

as reduction. In contrast to MPI (see Section 12.5), there is no CUDA function

that performs this operation. Instead, a suitable user-specified code is required.

There are many considerations that are required to optimize this process, involv-

ing factors such as interleaved or sequential addressing. Here, we will adapt a

simple approach reported by Harris,4 which is suitable for molecular simulation.

The general approach is to perform the reduction process for all the threads in

each block during the execution of the kernel and sum the contributions on the

host. The reduction process is common to both MD and MC simulations.

4. Harris, M., https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf (last accessed

in January 2023).
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The CUDA code for the reduction operation is given in Listing 12.1.

LISTING 12.1 CUDA code for the reduction operation.

1. Code to be executed on the device within the kernel 

// Shared memory is required to sum the energy (and any other of property) from 
// the diiferent threads.

__shared__ double kernelECache[numThreadsInBlock];
// Add similar statements for other properties here

// Insert code for force/energy calculations here

int cacheIndex = threadIdx.x; 
//Set the kernel cache values after force/energy calculation
kernelECache[cacheIndex] = potE;
// Set other cache values here as required for other properties

// Synchronize thread in this block
__syncthreads();

// Perform reductions, assuming numThreadsInBox is a power of 2.
int k = blockDim.x/2; 
while(k != 0)
{
if(cacheIndex < k)
{
kernelECache[cacheIndex] += kernelECache[cacheIndex + k];
// Add other cache values here as required for other properties

}

__syncthreads();

k /= 2;
}

if(cacheIndex == 0)
{
potEnergy[blockIdx.x] = kernelECache[0];
// Add other array entries here as required for other properties

}

2. Code to be executed on the host following the completion of the kernel

// Sum the partial contributions of the CPU side 
potE = 0;
//Initialize other sums here as required for other properties

for(int k = 0; k < numBlocks; k++)
{
potE += potEnergy[k];   
// Accumulate other properties here as required

}  
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In Listing 12.1, codes are provided that must be separately executed on

the device and the host. The device code forms part of the kernel that evalu-

ated either the force (MD) or the energy (MC and MD). To perform the

required reduction, a shared memory is required, which explains the follow-

ing array definition:

__shared__ double kernelECache[numThreadsInBlock];

Prior to the reduction operation, the threads in the block are

synchronized:

__syncthreads();

The code assumes that numThreadsInBox is a power of 2, which allows the

initial value of k of the while loop to be determined by

int k = blockDim.x/2;

The while loop continues to sum the required properties until the 0 index

is encountered, with k being halved for each new iteration. When cacheIndex

equals 0, the complete sum of the property of the block is stored. It is only

after the execution of the kernel is completed that the complete value to the

property is obtained by adding together the individual block contributions on

the host.

12.1.5 General GPU algorithm

As will be illustrated in the case studies discussed subsequently, some

general steps are required both before and after the launch of the kernel.

These steps, which are not restricted to molecular simulation, are given in

Algorithm 12.1.

ALGORITHM 12.1 General procedure for GPU implementation via a kernel.

Part 1.           Identify the computationally intensive code to be executed on

the GPU using a kernel (nameOfKernel(parameters)). 

Part 2.           Specify the number of threads (blockSize) and use this with 

the size of the calculation (N) to determine numOfBlocks: 

numOfBlocks   (N + blockSize – 1)/blockSize 

Part 3.           Devise a way to distribute the calculation amongst the  

threads using code inside of the kernel, e.g.,
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Part 3.1    tID threadIdx.x + blockIdx.x * blockDim.x  
step blockDim.x * gridDim.x 

Part 3.2 loop i tID ... N
.
.
i i + step

end i loop
Part 3.3 Perform any necessary reductions (Listing 12.1).

Part 4.           Allocate array/pointer memory required by the host and

device with malloc() and cudaMalloc().

Part 5.        Copy arrays/pointers from the host to the device

with cudaMemcpy(….. cudaMemcpyHostToDevice ). 

Part 6.           Launch the kernel:
nameOfKernel <<<numBlocks, blockSize>>> (parameters)

Part 7.           Copy required arrays/pointers from the device to the host

with cudaMemcpy(….cudaMemcpyDeviceToHost).

Part 8.           Perform any required post-kernel calculations on the host.

Part 9.           Free array/pointer memory on the device and host 

with cudaFree() and free().  

12.1.6 Compiling molecular simulation codes using CUDA

The details for compiling the CUDA codes are summarized in the software user’s

guide given in the appendix. However, there is an important issue that affects the

accuracy of molecular simulations, which warrants particular attention. GPUs and

CUDA were not specifically designed for numerical computation but primarily to

incorporate the requirements of both graphics and gaming applications. To opti-

mize these latter applications, the floating-point multiply-add (FMAD) instruction

is widely used and, at the time of writing, the default setting for the CUDA com-

piler (nvcc) is to replace as much as possible of the floating-point computations

with FMAD instructions. The effect of the FMAD instructions is to reduce the

precision of the calculations. As maintaining precision is very important for the

accuracy of molecular simulations, the code should be compiled without FMAD

instructions, which is achieved by using the --fmad5 false compiler directive.

12.2 Case study: CUDA implementation of MD code
(/mdCU_Ver2.0)

The starting basis for the GPU code development is the serial MD code as detailed

in Chapter 11 (found in the directory /md_Ver2.0). The advantage of using this code

534 Molecular Simulation of Fluids



is that it has been previously tested, and it is known to work correctly in serial. This

is important because the results obtained from the parallel code must exactly match

the serial case. Even small deviations are a sign that errors have been made and

should never be dismissed as unimportant. Retrofitting parallel concepts to serial

code also has the learning advantage of focusing on the key elements of CUDA,

providing lessons that can be easily applied to other situations. The goal of this case

study is to transform the serial MD code to work on GPUs as simply as possible.

This almost invariably means that optimal performance cannot be realistically

expected because parallel execution was not incorporated into its initial design.

The most straightforward way (Heermann and Burkett, 1991) to introduce par-

allelization in a molecular simulation is via force/energy decomposition, which

involves assigning the force/energy calculation among different threads or CPUs.

This is the approach that is used here. An alternative approach is spatial or domain

decomposition (Fincham, 1987), which splits the computational load into different

regions. The merits of different approaches is discussed elsewhere (Li et al., 2006,

2008). It should also be noted that our case studies involve simple pairwise interac-

tions using the Lennard-Jones (LJ) potential (Chapter 3) and as such they do not

address the complexities involved in electrostatic interactions. Issues involved in

parallel implementation for induction and three-body interactions are detailed else-

where (Li et al., 2006, 2008). Considerable progress has been reported in using

GPUs in large-scale simulations involving fast multiple methods (Chapter 5)

(Kohnke et al., 2020) and biological systems (Phillips et al., 2020).

Our implementation of the MD program in CUDA code (found in the direc-

tory /mdCU_Ver2.0) maintains all but one of the existing .cpp and .h files: ljforceMD.

cpp becomes ljforceMD.cu. There is only one additional .cu file (cudaSimKernels.cu)

plus a corresponding header file (cudaSimKernels.h). The compiler requires the.cu

suffix for the two source files. The only changes to the class definitions are con-

fined to atom. The key changes to the files are summarized in Table 12.2.

12.2.1 Key variable additions

In the atom class (atomMD.h), the following public variables have been added:

int *kind;          // atom type
double *r;         // position vector
double *f;         // force array
double *rCutii   // cut-off distance
double *epsii;   // LJ parameter
double *sigii;    // LJ parameter

The addition of these new public variables is entirely for the pragmatic reason

of avoiding the need to pass objects to kernels. The �r and �f pointers are the key

changes, whereas the other variables are included to maintain the generality of the

code to handle mixtures and as such are not required for pure systems. Apart

from these simple additions, no other changes are required in the class definitions.

Values for these additional variables are initialized in the md.cpp file. The

required additional code is given in Listing 12.2.
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TABLE 12.2 Summary of key changes and additions to the MD files.

Existing file New file Description of changes and/or

additions

atomMD.h New public variables added to the
atom class

md.cpp New code to initialize additional
variables in the atom class

gearPC.cpp Minor code changes to reflect the use
of the variables added to the atom class

cudaSimKernels.h Definition of the kernel setLJForceKernel

cudaSimKernels.cu Code to implement the kernel
setLJForceKernel

ljforceMD.cpp ljforceMD.cu The .cpp suffix is replaced with .cu.
Instead of performing the calculations,
the kernel setLJForceKernel is
launched, which requires the addition
of memory management code

LISTING 12.2 Additional code required in md.cpp to initialize the new
variables in the atom class.

atom = ensemble->getAtoms(); 

for(i = 0; i < num; i++)
{

position = atom[i]->getPosition();
atom[0]->r[3*i]     = position[0];
atom[0]->r[3*i + 1] = position[1];
atom[0]->r[3*i + 2] = position[2];

l = atom[0]->kind[i] = atom[i]->getType();

eps = atom[0]->getEpsilon();
sig = atom[0]->getSigma();
cut = atom[0]->getrCutOff();

atom[0]->epsii[i]  = eps[l][l];
atom[0]->sigii[i]  = sig[l][l];
atom[0]->rCutii[i] = cut[l][l];

}
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As it is apparent from the above initializations, the atom[0] array becomes the

master array for the GPU implementation containing the properties of the ensem-

ble. Small changes are required in gpcMD.cpp to reflect the use of the atom[0] array.

12.2.2 The force kernel

The most time-consuming operation in the MD code is the evaluation of the

forces (Algorithm 12.1, Part 1), which are evaluated in the ljforceMD.cpp

file. The heart of this code becomes the kernel setLJForceKernel, which is

defined in cudaSimKernels.h as:

__global__
void setLJForceKernel(int num, int *type, double length, double *rCut,

double *sigma, double *epsilon, double *r, double *force, 
double *potEnergy, double *virial);

The complete implementation is found in the cudaSimKernels.cu file, and

here we focus on the key CUDA features of the code. A partial listing, with

the salient features, is given in Listing 12.3.

In the force code, the calculations of potE and virE are spread among the

various threads in the different blocks and their values need to be reduced.

This requires a few memory operations and a purpose-built reduction code,

such as given in Listing 12.1. First, the shared memory is needed to sum

potE and virE of the different threads. This requirement explains the following

array declarations:

__shared__ double kernelECache[numThreadsInBlock];
__shared__ double kernelVCache[numThreadsInBlock];

When the kernel is launched, multiple blocks of multiple threads are exe-

cuted in parallel. This means that we must account for the thread identity

(tID), which is conveniently determined by

int tID = threadIdx.x + blockIdx.x * blockDim.x;

That is, the identity of the thread is determined by calculating the offset

(block index multiplied by block size) to the beginning of its block. This is a

standard code for GPU applications and not specific to our molecular simula-

tions (Algorithm 12.1, Part 3.1)

In a serial MD code, the forces are evaluated using a step size of one. In

contrast, the key to obtain parallelism is to use a very large step size

(Algorithm 12.1, Part 3.1) determined by

int step = blockDim.x * gridDim.x;

This is a very simple but effective way to divide force calculation among

the threads, which is in contrast to other more sophisticated approaches (Li

et al., 2006, 2008) used in MPI applications.
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LISTING 12.3 Key code details for the kernel setLJForceKernel.

// Shared memory is required to sum the energy and virial of
// the diiferent threads.  
__shared__ double kernelECache[numThreadsInBlock];
__shared__ double kernelVCache[numThreadsInBlock];

// Distribute calculations among the threads
int tID = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;
int step = blockDim.x * gridDim.x;

potE = 0.0;
virE = 0.0;

// Calculate forces experienced by ALL distinct pairs of atoms 
// without using Newton's third law short cut (fij = -fji).

for(i = tID; i < num; i += step)
{
// Type of atom i
kindi = type[i];

rXi  = r[3*i];
rYi  = r[3*i + 1];
rZi  = r[3*i + 2];
fXi  = force[3*i];
fYi  = force[3*i + 1];
fZi  = force[3*i + 2];

for(j = 0; j < num; j++)
{

// Exclude self-self interaction
if(j != i)
{
//  Type of atom j
kindj = type[j];

// Select position vectors
rXj   = r[3*j];
rYj   = r[3*j + 1];
rZj   = r[3*j + 2];

// Calculate pair separation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;

// Apply periodic boundary conditions
div = rXij/length;
if(rXij  >= 0)

nInt = (int)(div + 0.5);
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else
nInt = -(int)(0.5 - div);

// Add similar code for rYij, and rZij here
// Account for dissimilar atoms in a binary mixture for rCutSq (code not shown)

if (rijSq <= rCutSq)
{
// Account for dissimilar atoms of binary mixture here (code not shown)

// Determine potential between i and j
sigmaSq = sig * sig;
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
potE   += 4*eps * pot;
virE   += 24*eps * (pot + sigma12)/3;

// Calculate forces between atoms
fij  =  24 * eps * (pot + sigma12)/rijSq;
fXij = fij * rXij;
fYij = fij * rYij;
fZij = fij * rZij;
fXi += fXij;
fYi += fYij;
fZi += fZij;

} // end of rijSq check

} // end  of i != j check

} // end of j loop 

force[3*i]     = fXi;
force[3*i + 1] = fYi;
force[3*i + 2] = fZi;

} // end of i loop

// Values of energy terms are halved because ALL pairs, including
// Indistinguishable pairs (ij and ji), were included in the calculations
potE /= 2.0;
virE /= 2.0;

// Implement reduction (listing 12.1) here before returning to the host
kernelECache[cacheIndex] = potE;
kernelVCache[cacheIndex] = virE;

The code for step is common to most GPU applications, and CUDA auto-

matically determines both blockDim.x and gridDim.x for us.
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In most respects, the above code is a minor variation of the standard force

evaluation such as that coded in ljforceLJ.cpp. The calculations in the outer force

loop (Algorithm 12.1, Part 3.2) are commenced from tID and incremented by step.

When num is small, the value of step can be relatively large, which means few

executions in a given block. Although this is not optimal, MD simulations with

only a few hundred atoms still benefit from a very large speed-up. It should be

noted that MD code with millions of atoms (Heinecke et al., 2015) can be very

efficiently executed on GPU-enabled code, which means the relative system size

computational impediment of serial code is not an issue for GPU applications.

An important difference with the serial code is that the force loop calculates

all interaction pairs, that is, it does not use Newton’s third law shortcut. The rea-

son that Newton’s third law shortcut cannot be safely used is that the assignment

of the jth contribution on any given thread is in a race with the assignment of the

jth contribution on other threads.5 The parallel code without the shortcut will eval-

uate twice as many interactions than the serial code. This means that the values of

potE and virE are halved after the force evaluation to reflect the fact that indistin-

guishable pairs were included. The large speed-up of the GPU implementation

more than compensates for the additional force evaluations. The shortcut can be

successfully implemented (Pacheco, 2011), but this requires great care and the

gains are at least partially offset by other computational impediments.

Other relatively minor differences in the above code compared with the serial

version stem from the introduction and use of the additional public variables in the

atom class as detailed previously. A host function cannot be called from within a

kernel, which means that rather than handling the periodic boundary conditions

(PBC) using the nearestInt() function, the code for the PBC is explicitly given in the

kernel. The alternative6 would be to write the nearestInt() function specifically for

the device using the __device__ specifier. After the force evaluation, a reduction is

performed as given in Listing 12.1. The kernelECache[] and kernelVCache[] arrays are

subsequently summed on the host to obtain the total energy and virial, respectively.

12.2.3 Launching the force kernel

The creation of the kernel setLJForceKernel means that the role of the ljforceMD

method is to launch the kernel (Algorithm 12.1, Part 6) and handle the memory

requirements (Algorithm 12.1, Parts 4, 5, and 7) for the interaction between the

host and the device. The ljforceMD.cpp file is redesigned as ljforceMD.cu because it

now contains the kernel. A partial listing ljforceMD.cu is summarized in Listing 12.4.

5. This also applies to OpenMP and MPI code. Some publicly distributed parallel codes do not

appear take this into account, which means that care is required when choosing codes for

research applications. This is an insidious problem that could be easily masked by the the calcu-

lated statistical uncertainties. As a precaution, parallel code should be initially tested by compari-

son with results from the equivalent serial code.

6. This complication can be avoided by simply using the round() function (Chapter 5) in the

PBC statements.
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LISTING 12.4 Key code details for ljforceMD.cu.

int blockSize = numThreadsInBlock;
int numBlocks = (num + blockSize - 1)/blockSize;

// Initialize forces
for(int i = 0; i < num; i++)
{

atoms[0]->f[3*i]      = 0;
atoms[0]->f[3*i + 1]  = 0;
atoms[0]->f[3*i + 2]  = 0;

}

// Allocate memory on the host
energy = (double *) malloc(numBlocks*sizeof(double));
vir  = (double *) malloc(numBlocks*sizeof(double));

// Allocate memory on the device
cudaMalloc((void **) &r_dev, 3*num*sizeof(double));

// Add similar cudaMalloc() statements for force_dev, energy_dev, vir_dev, kind_dev, 
// sigma_dev, epsilon_dev and rCut_dev here

// Copy arrays to the deivice
cudaMemcpy(r_dev,  atoms[0]->r, 3*num*sizeof(double), cudaMemcpyHostToDevice);

// Add similar cudaMemcpy() statements for force_dev, force_dev, kind_dev, 
// sigma_dev, epsilon_dev and rCut_dev here 

// Launch the kernel on the device
setLJForceKernel <<<numBlocks, blockSize>>> (num, kind_dev, length, 

rCut_dev, sigma_dev, epsilon_dev, r_dev, force_dev,
energy_dev, vir_dev); 

// Copy the 'energy' 'virial' and 'force' arrays back from the device to the host
cudaMemcpy(energy, energy_dev, numBlocks*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(vir, vir_dev, numBlocks*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(atoms[0]->f, force_dev, 3*num*sizeof(double), cudaMemcpyDeviceToHost);

// Determine potE and virE
potE = 0;
virE = 0;
for(int k = 0; k < numBlocks; k++)
{

potE +=  energy[k]; 
virE +=  vir[k];

}  

*potEnergy = potE;
*virial    = virE;

// Free memory on the device
cudaFree(energy_dev);

// Add similar cudFree() statements for r_dev, force_dev, kind_dev,sigma_dev
// epsilon_dev and rCut_dev here

// Free memory on the host
free(energy);
free(vir);
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At the outset, the calculations are distributed among the threads as out-

lined above by determining blockSize and numBlocks. These values are calcu-

lated using numThreadsInBlock (Algorithm 12.1, Part 2), which is a symbolic

constant defined in cudaSimKernels.h. The force array is reinitialized prior to

the execution of the kernel.

Memory for pointer variables that are passed to the kernel is allocated on

both the host and the device using suitable malloc() and cudaMalloc() state-
ments, respectively (Algorithm 12.1, Part 4). Memory for the arrays is copied

to the device using cudaMemcpy() statements (Algorithm 12.1, Part 5), which

involve the cudaMemcpyHostToDevice keyword.

Having established the appropriate memory requirements, the kernel

setLJForceKernel is launched with numBlocks and blockSize specified between

,, , and .. . (Algorithm 12.1, Part 6). The remaining parameters are

passed to the kernel in the conventional way for a normal function.

After the execution of the kernel is completed, cudaMemcpy() statements

using the cudaMemcpyDeviceToHost keyword are required to copy values

from the device to the host (Algorithm 12.1, Part 7). This is restricted to

values of �f, energy, and vir arrays, as these are the only quantities that are

required for further computations on the host (Algorithm 12.2, Part 8). The

remainder of the code involves adding the contributions of the energy and vir

arrays to obtain potE and virE and using free() and cudaFree() statements to

release memory on the host and the device, respectively (Algorithm 12.1,

Part 9).

12.2.4 Changes to the MD integrator

The integrator code, in this case gearPC.cpp, is also a candidate for transforma-

tion into one or more kernels. However, as there is a trade-off among memory

management, communication, and kernel execution time, this would not have

much (if any) additional computational advantage compared with the speed-up

of the force calculation. Therefore the modifications to gearPC.cpp have been

restricted to the changes required to evaluate the positions, velocities, accelera-

tion, and higher derivatives involving the new public variables introduced in

the atom class. Nonetheless, it would be a useful exercise to apply the above

concepts to the gearPC.cpp code and compare the different outcomes.

12.3 Case study: CUDA implementation of MC code
(/mcCU_Ver2.0)

The transformation of the serial MC code of Chapter 11 (found in the directory

/mc_Ver2.0) for use on GPUs can be achieved in a similar way to the transfor-

mation of the MD code in the MC case study. Indeed, much of the CUDA

code required for MC is identical to MD, and as such, the discussion of these

common aspects will not be repeated here, except to point out the similarities.
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A summary of the key changes to the serial MC code is given in Table 12.3. In

common with the MD case, the details closely follow Algorithm 12.1.

In common with the transformed MD code, the .cpp files are retained,

with the ljenergyMC.cpp file redesignated as ljenergyMC.cu. The additional files

are cudaSimKernels.cpp and cudaSimKernels.cu.

12.3.1 Energy kernels

The serial MC code involves two types of energy calculations. At the begin-

ning of the simulation, the energy is determined (setEnergy()) for all indistin-

guishable pair of atoms. Thereafter, the change in energy (getTrialPotE()) is

calculated in response to attempted atom displacements, which involves only

N2 1 calculations. This means that two key kernels for the calculation of

energy can be identified (Algorithm 12.1, Part 1). Namely, one for calculat-

ing the total energy of all pairs (setLJEnergyKernel) and another for calculating

the energy of a simple atom with all other atoms (energyLJKernel). The proto-

type statements for these kernels are found in cudaSimKernels.h, and the code

is given in cudaSimKernels.cu. The prototype statements are:

TABLE 12.3 Summary of key changes and additions to the MC files.

Existing file New file Description of changes and/or

additions

atomMC.h New public variables added to the atom
class

mc.cpp New code to initialize additional variables
in the atom class

cudaSimKernels.h Definition of the kernels
setLJEnergyKernel and energyLJKernel

cudaSimKernels.cu Code to implement the kernels
setLJEnergyKernel and energyLJKernel

ljenergyMC.cpp ljenergyMC.cu The .cpp suffix is replaced with .cu.
Instead of performing the calculations, the
kernels setLJEnergyKernel
energyLJKernel are launched from the
setEnergy() and getTrialPotE() methods,
respectively. This requires the addition of
memory management code
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_global__
void setLJEnergyKernel(int num, int *type,  double length, double *rCut,

double *sigma, double *epsilon, double *r,  double *energy); 
__global__
void energyLJKernel(int num, int index, int *type, double length, double *rCut,

double *sigma, double *epsilon, double *ri, double *r, double *potEnergy);

Although the setLJEnergyKernel has a relatively minor role in either NVE

or NVT MC simulations, it has nonetheless been implemented in our CUDA

code for both the benefit of completeness and its utility in future NpT code

for which it would have an important role. For the benefit of brevity, we will

focus on the details of the kernel energyLJKernel, which also reflect most of

the aspects of the kernel setLJEnergyKernel. However, before proceeding fur-

ther, it is important to note that, unlike the equivalent serial code, the

setLJEnergyKernel code is not restricted to indistinguishable pairs. This change

ensures that no i�j pairs are missed in the process of parallelization.

Therefore the value of any property calculated in the all-pair energy calcula-

tion must be halved.

A partial listing of the code for the kernel energyLJKernel is given in

Listing 12.5. Comparing Listing 12.5 with Listing 12.1, it is apparent that

CUDA implementation of the MC code to determine the energy is identical

to the steps required for the force evaluation. Apart from the fact that only

N2 1 interactions are evaluated, the difference between the two listings are

largely confined to the existing differences in the serial code that are

required to evaluate forces instead of energies. The mechanism (Algorithm

12.1, Part 3.1) to distribute the calculation between threads using tID and a

loop (Algorithm 12.1, Part 3.2) increment size of step instead of 1 are the

same in both cases.

LISTING 12.5 Key code details for the kernel energyLJKernel.

__shared__double kernelECache[numThreadsInBlock];
int tID = threadIdx.x + blockIdx.x *  blockDim.x;
int cacheIndex = threadIdx.x;
int step = blockDim.x * gridDim.x;

// Calculate energy experienced by the selected atom (index)
// with all other distinct pairs
kindi = type[index];
potE = 0.0;
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// Loop over all the other atoms
for(int j = tID; j < num; j += step) 
{ 
// Exclude self-interaction
if(j != index)
{
rXij = ri[0] - r[3*j];
rYij = ri[1] - r[3*j + 1];
rZij = ri[2] - r[3*j + 2];

// Apply periodic boundary conditions
div = rXij/length;
if(rXij  >= 0)
nInt = (int)(div + 0.5);

else
nInt = -(int)(0.5 - div);

rXij -= length *  (double) nInt;
// Add similar code for rYij, and rZij here
// Add code here to account for dissimilar atoms in the binary mixture

// Calculate forces for separations below the cutoff
if (rijSq <= rCutSq)
{
// Add code here to account for dissimilar atoms in the binary mixture
sigmaSq = sig * sig;
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
potE    += eps*pot;

}  // end rijSq if

}  // end j != index if 

} // end for loop
// Implement reduction (listing 12.1) here before returning to the host 
kernelECache[cacheIndex] = 4*potE;

12.3.2 Launching the energy kernels

The use of energy kernels means that that role of the getTrialPotE() and

setEnergy() methods is largely confined to preparing launching the kernels

(Algorithm 12.1, Part 6). As the details of the two kernels have a high degree

of commonality, we will only detail the steps for getTrialPotE().
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LISTING 12.6 Key code details of getTrialPotE.cu.

// Distribution among threads
int blockSize = numThreadsInBlock;
int numBlocks = (num + blockSize - 1)/blockSize;

// Assign properties of the index atom
position  = atom[index]->getTrialPosition();
ri[0]     = position[0];
ri[1]     = position[1];
ri[2]     = position[2];

// Allocate memory on host
ri = (double *) malloc(3*sizeof(double));       
energy = (double *) malloc(numBlocks*sizeof(double));

// Allocate memory on device
cudaMalloc((void **) &ri_dev,      3*sizeof(double));
// Similar cudaMalloc statements for r_dev, energy_dev, kind_dev, 
// sigma_dev, epsilon_dev  and rCut_dev

// Copy memory to device
cudaMemcpy(ri_dev,  ri,  3*sizeof(double),  cudaMemcpyHostToDevice);
// Similar cudaMemcpy statements for r_dev, kind_dev, sigma_dev, 
// epsilon_dev and rCut_dev

// Launch kernel
energyLJKernel <<<numBlocks, blockSize>>> (num, index, kind_dev, length, rCut_dev, 

sigma_dev, epsilon_dev, ri_dev, r_dev, energy_dev); 

// Copy memory to host
cudaMemcpy(energy, energy_dev, numBlocks*sizeof(double), cudaMemcpyDeviceToHost);

// Sum partial results from reduction in device
for(int k = 0; k < numBlocks; k++)

potE +=  energy[k];

// Free memory on device
cudaFree(energy_dev);
// Additional cudaFree() statements for ri_dev, r_dev, kind_dev, 
// sigma_dev, epsilon_dev, rCut_dev

// Free memory on host
free(energy);
free(ri);

It is evident that Listing 12.6 for MC largely mirrors Listing 12.3 for MD.

12.4 Parallel programming with MPI

MPI provides the functions to allow computations to be distributed over mul-

tiple CPUs or cores. There are a large number of MPI functions, which are

examined in detail elsewhere (Karniadakis and Kirby, 2003; Quinn, 2004).
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We will only focus on a very small subset of these functions that represent

the bare minimum to execute the serial MD and MC codes in parallel. These

are summarized in Table 12.4. As the aim is to illustrate parallel concepts as

simply as possible, it is almost inevitable that the computational efficiency

of the resulting code will not be optimal.

12.4.1 General MPI procedure

Our implementation of MPI for both the MD and MC simulations will follow

the general procedure in Algorithm 12.2, the details of which also apply to

other situations.

TABLE 12.4 Summary of key MPI functions or syntax used in the case

studies.

MPI function or syntax Description

MPI_Init (&argc, &argv) Initialize the MPI process to setup the use of
the MPI library

MPI_Finalize() Called after MPI functions are no longer
needed, used to free memory etc. It is
typically the last statement in main

MPI_Datatype The data type, e.g., MPI_DOUBLE,
MPI_INT, for double, int, respectively

MPI_Op The type of operation, e.g., MPI_SUM,
MPI_PROD, for addition and
multiplication, respectively

MPI_Comm The type of communication, e.g.,
MPI_COMM_WORLD for all the processor
running at the start of execution

Int MPI_Comm_size(MPI_Comm,
int� size)

Determine the number of processors that
can send message, i.e., the size parameter
is the number of processors used in the
communicator

Int MPI_Comm_rank(MPI_Comm,
int� rank)

Determine the rank of the process via the
rank parameter

Int MPI_Allreduce(void � input, void�

result, int, size, MPI_Datatype,
MPI_Op, MPI_Comm)

Combine all the contents (size) of each
processor (input) according to MPI_Op and
assign it to the second parameter (result).
All processors have the combined value
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ALGORITHM 12.2 General procedure for implementing MPI.
Part 1. Place MPI_Init() before MPI calls and MPI_Finalize()   

after MPI is finished.

Part 2.       Identify computationally intensive code that would benefit

from parallel execution (nameOfParallelFunction()).

Part 3. Devise a way to distribute the nameOfParallelFunction() 
calculation among the processors, e.g.,

Part 3.1   MPI_Comm_size (MPI_COMM_WORLD, &totalNodes) 
MPI_Comm_rank (MPI_COMM_WORLD, &myNode) 
step totalNodes
start myNode

Part 3.2   loop i start ...  N
.
.
i i + step 

end i loop
Part 3.3    MPI_Allreduce()

12.5 Case study: MPI implementation of MD code
(/mdMPI_Ver2.0)

The aim of this case study is to use MPI to enable execution of the serial

MD code (/md_Ver2.0) on multiple CPUs or cores (/mdMPI_Ver2.0). A

summary of the required changes to the serial MD files is given in

Table 12.5.

TABLE 12.5 Summary of changes required for implementing MPI for MD.

Existing MD file Description of changes

atomMD.h New public variables added to the atomMD class

md.cpp New code to initialize additional variables in the atomMD class

gearMD.cpp Minor code changes to reflect the use of the variables added to atomMD

mainMD.cpp Include the mpi.h library and add calls to MPI_Init () and
MPI_Finalize()

ljForceMD.cpp Include the mpi.h library, distribute the force calculation among
the CPUs or cores, and add calls to MPI_Comm_size(),
MPI_Comm_rank(), and MPI_Allreduce()
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It is apparent from Table 12.5 that relatively few changes are required to

implement MPI on the existing serial code.

12.5.1 Key variable additions

In the atom class (atomMD.h), the following public variables have been

added:

double *r;         // position vector
double *f;         // force array

In common with the CUDA implementation, the need for these additional

values is entirely for pragmatic reason to avoid multiple arrays for the x, y,

and z components. Unlike the CUDA code, additional variables to handle the

LJ potential mixture parameters are not required.

The atom[0] array becomes the master array for handling the position

vectors (�r) and forces (�f). The vectors are initialized in md.cpp via the fol-

lowing code, whereas the initialization of the forces occurs later in

setForce().

// Initialize ‘master’ root node position array
atom = ensemble->getAtoms();

for(i = 0; i < num; i++)
{

position = atom[i]->getPosition();
k = 3*i;
atom[0]->r[k]     = position[0];
atom[0]->r[k + 1] = position[1];
atom[0]->r[k + 2] = position[2];

}

12.5.2 Changes to mainMD.cpp

The new mainMD() function is given in full in Listing 12.7. The changes to

main() are the additions of the MPI_Init() and MPI_Finalize() functions

(Algorithm 12.2, Part 1) and the inclusion of the mpi.h library. MPI_Init() must

be called only once, and this must occur before any other MPI functions are

called. Although it uses pointers (argc and argv) from the main function, it can

be called elsewhere in the program. The MPI_Finalize() function is commonly

included at the end of main(), but it could be included anywhere after the

MPI functions are no longer used.
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LISTING 12.7 Code details of main.cpp.

#include "simMD.h"
#include <mpi.h>

int main(int argc, char **argv)
{

// Initialise MPI
MPI_Init(&argc,&argv);

Simulation sim;
sim.readSimParameters();

/ / End MPI
MPI_Finalize();
return 0;

}

12.5.3 Changes to ljForceMD.cpp

The implementation of MPI to the setForce() method (Algorithm 12.2, Part

2) in ljForceMD.cpp is detailed in Listing 12.8. At the start of the method,

some new additional variables (potECalR, virialCalR and �f) are defined,

which will be required later for the reduction part of the method. The MPI

implementation (Algorithm 12.2, Part 3) also requires the definition of

myNode, totalNodes, lastNode, start, end, and step. The variable myNode identi-

fies the rank (or index) of the CPU or core. The initial setup involves

using the MPI_Comm_size() and MPI_Comm_rank() functions (Algorithm

12.2, Part 3.1) to determine totalNodes and myNode, respectively

LISTING 12.8 Key code details of the setForce() method in ljForceMD.cpp.

// Receiving variables for MPI_Allreduce()
double potECalR, virialCalR;          
double *f = new double [3*num];       

// Zero the force  arrays.
for(i = 0; i < num; i++)
{

k = 3*i;
f[k] = f[k + 1] = f[k + 2] = 0;

}
// Additional variables  for MPI
int myNode, totalNodes;
int start, end, step;

// Set-up MPI    
MPI_Comm_size (MPI_COMM_WORLD, &totalNodes);
MPI_Comm_rank (MPI_COMM_WORLD, &myNode);
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step = totalNodes;
start = myNode;
end = num;

// Calculate forces experienced by atoms due
// interatomic pair interactions.
for(i = start; i < end; i += step)
{

k = 3*i;
// Select molecule i
kindi = atoms[i]->getType();

rXi   = atoms[0]->r[k];
rYi   = atoms[0]->r[k + 1];
rZi   = atoms[0]->r[k + 2];

fXi = f[k];
fYi = f[k + 1];
fZi = f[k + 2];

for(j = 0; j < num; j++)
{

if(j != i) // Exclude self interaction
{

kindj = atoms[j]->getType();

l = 3*j;
rXj   = atoms[0]->r[l];
rYj   = atoms[0]->r[l + 1];
rZj   = atoms[0]->r[l + 2];

// Calculate pair separation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;

// Apply periodic boundary coinditions
rXij -= length * nearestInt(rXij, length);
rYij -= length * nearestInt(rYij, length);
rZij -= length * nearestInt(rZij, length);

rijSq = rXij * rXij + rYij * rYij + rZij * rZij;

// Calculate forces for separationsbelow the cutoff
rCutSq = rCut[kindi][kindj] * rCut[kindi][kindj];
if (rijSq <= rCutSq)
{

// Determine potential between i and j

sigmaSq = sigma[kindi][kindj] * sigma[kindi][kindj];
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6;
potECal   += 4*epsilon[kindi][kindj] *pot;
virialCal += 24*epsilon[kindi][kindj] *(pot + sigma12)/3;
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// Calculate forces between atoms
fij  = 24*epsilon[kindi][kindj] * (pot + sigma12)/rijSq;
fXij = fij * rXij;
fYij = fij * rYij;
fZij = fij * rZij;
fXi += fXij;
fYi += fYij;
fZi += fZij;

} // end rijSq if

}  // end j != i if 

}  // end j for loop 

f[k]      = fXi;
f[k + 1]  = fYi;
f[k + 2]  = fZi;

}  // end i for loop 

// MPI Reductions    
MPI_Allreduce(&potECal, &potECalR, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce(&virialCal, &virialCalR, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce(f, atoms[0]->f, 3*num, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

delete [] f;

*potEnergy =  potECalR/2;
*virial     = virialCalR/2;

The outer i force loop of the serial code starts with the 0 index and incre-

ments this to the number of atoms (num) in increments of 1. The simplest way

to distribute the force calculation (Algorithm 12.2, Part 3.2) is to increase the

increment used (step) to be equal to the total number of CPUs or cores

(totalNodes). This is similar to the way the force calculation was handled with

GPUs, and more elaborate MPI force decompositions are also possible (Li

et al., 2006, 2008). The starting point (start) for the loop corresponds to the

rank (myNode) and continues until end, which is the number of atoms (num). If

only one CPU is available, the range of the for loop is between 0 and num in

increments of 1, which is the case of a conventional serial execution.

An alternative to the above implementation is to distribute the atoms between

the processors. This is done using the following code prior to the for loop.

int lastNode = totalNodes - 1;    // Node count starts at 0
int numCal = num/totalNodes;   // Distribute calculation evenly between nodes
start = myNode*numCal;           // Different starting point for each node

if (myNode == lastNode)           // Different end point for each node
end = num;

else
end   = (myNode + 1)* numCal;

step = 1;
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In this case, the increment of the for loop is 1. The number of calculations

(numCal) is divided equally between the processors, and both the start and end

points of the for loop depend on the rank of the processor. This approach

requires some additional bookkeeping via the if-else statement, but the differ-

ence in computational efficiency between the two approaches is negligible.

The inner j for loop increments over all the atoms. This means that the

calculations are not confined to indistinguishable i-j combinations, that is,

both i-j and j-i contributions are countered. Consequently, Newton’s third law

shortcut is not implemented and the properties evaluated in the force evalua-

tions are halved. This is done to avoid inaccuracies because of the racing

condition as discussed previously for the GPU implementation. A specialized

algorithm is required to implement Newton’s third law in MPI and is

detailed elsewhere (Pacheco, 2011).

At the end of the force evaluations (Algorithm 12.2, Part 3.3), the par-

tially evaluated properties are combined using the All_Reduce() MPI function.

In contrast, the CUDA implementation required a user-defined function

(Listing 12.1) to perform the reduction operation.

12.5.4 Changes to the MD integrator

In common with the CUDA case, the integrator code (gearPC.cpp) is also a

candidate for MPI execution because of the loop over all atoms. However,

the computational benefit (if any) is likely to be relatively small compared to

using MPI for the force evaluations. Therefore the modifications to gearPC.

cpp have been restricted to the changes required to accommodate the use of

the new variables introduced in the atom class.

12.6 Case study: MPI implementation of MC code
(/mcMPI_Ver2.0)

This case study uses MPI to enable execution of the serial MC code

(/mc_Ver2.0) on multiple CPUs or cores (/mcMPI_Ver2.0). The required changes

to the serial MC files are summarized in Table 12.6. It is apparent from

Table 12.6 that the changes are confined to only two files and that unlike the

other case studies, the changes can be accomplished without any changes to

the membership of any classes.

12.6.1 Changes to mainMC.cpp

The changes required to main.cpp exactly mirror Listing 12.7. Namely, the

addition of calls (Algorithm 12.2, Part 1) to both MPI_Init() and MPI_Finalize(),
and the inclusion of the mpi.h library.
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12.6.2 Changes to ljEnergyMC.cpp

The changes to the ljEnergyMC.cpp file involve changes to the setEnergy() and

getTrialPotE() methods (Algorithm 12.2, Part 2). The former is called only

once at the start of the simulation to determine the initial energy, whereas

the latter is called repeatedly when individual attempted particle displace-

ments are involved. MPI have been implemented for both methods. As the

required MPI changes are similar, we will focus on getTrialPotE(). It should be

noted that, as the setEnergy() method involves a double loop, it must be

implemented for all pairs, including indistinguishable pairs. The calculated

properties are then halved at the end of the energy evaluation. This is neces-

sary to avoid inaccuracies due to the racing condition as described previously

in the other case studies.

A partial listing of getTrialPotE() is given in Listing 12.9. In common

with MPI MD case study, additional variables required for the MPI imple-

mentation are defined and the MPI setup commences (Algorithm 12.2, Part

3.1) by determining the total number of processors (totalNodes) available

and the rank of the current processor (myNode) using the MPI_Comm_Size()
and MPI_Comm_Rank() functions. The properties of the index atom are

determined in the same way as given in the serial MC code. Thereafter, the

energy of interaction of the index atom is obtained by calculating the inter-

actions of all the other atoms.

In the MPI MD case study, the calculation was simply allocated

between the processors by using a step size that was equal to totalNodes.

This procedure could be applied in the current case, but instead we have

illustrated the alternative that was discussed, but not used, in the MPI MD

case study.

TABLE 12.6 Summary of changes required to implement MPI for MC.

Existing MC File Description of changes

mainMC.cpp Include the mpi.h library and add calls to MPI_Init() and
MPI_Finalize()

ljEnergyMC.cpp Include the mpi.h library, distribute the energy calculation for the
setEnergy() and getTrialPotE() methods among the CPUs or
cores, and add calls to MPI_Comm_size(), MPI_Comm_rank(),
and MPI_Allreduce()
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LISTING 12.9 Key code details of the getTrialPotE() method in ljEnergyMC.
cpp.

// Additonal variables for MPI implentation
int myNode, totalNodes, lastNode;
int start, end, numCal;
double potECalR, virialCalR;   //Receiving variables for MPI_Allreduce

// Set-up MPI
MPI_Comm_size(MPI_COMM_WORLD, &totalNodes);
MPI_Comm_rank(MPI_COMM_WORLD, &myNode);

lastNode = totalNodes - 1;     // Node count starts at 0
numCal = num/totalNodes;    // Distribute calculation evenly between nodes
start = myNode*numCal;       // Different starting point for each node

if(myNode == lastNode)         // Different end point for each node
end = num;

else
end   = (myNode + 1)* numCal;

// Calculate energy experienced by the selected atom (index)
// with all other distinct pairs

// Properties of index atom.
kindi = atom[index]->getType();
tempPos = atom[index]->getTrialPosition();
rXi   = tempPos[0];
rYi   = tempPos[1];
rZi   = tempPos[2];

potE = 0.0;

// Loop over all the other atoms 
for(j = start; j < end; j++)
{

// Exclude self-interaction
if(j != index)
{

kindj = atom[j]->getType();
tempPosj = atom[j]->getPosition();
rXj   = tempPosj[0];
rYj   = tempPosj[1];
rZj   = tempPosj[2];

// Calculate pair separation
rXij = rXi - rXj;
rYij = rYi - rYj;
rZij = rZi - rZj;

// Apply periodic boundary conditions
rXij -= length * nearestInt(rXij, length);
rYij -= length * nearestInt(rYij, length);
rZij -= length * nearestInt(rZij, length);
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// Determine potential between i and j
sigmaSq = sigma[kindi][kindj] * sigma[kindi][kindj];
sigma2  = sigmaSq/rijSq;
sigma6  = sigma2 * sigma2 * sigma2;
sigma12 = sigma6 * sigma6;
pot     = sigma12 - sigma6; 
eps     = epsilon[kindi][kindj];
potE    += eps * pot;

} // end rijSq if

}  // end j != index if

} // end j for

// MPI reduction
MPI_Allreduce(&potE, &potECalR, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

return 4*potECalR;

rijSq = rXij * rXij + rYij * rYij + rZij * rZij;

// Calculate forces for separations below the cutoff
rCutSq = rCut[kindi][kindj] * rCut[kindi][kindj];

if (rijSq <= rCutSq)
{

At the end of the energy evaluation (Algorithm 12.2, Part 3.3), MPI_Allreduce()
is called to determine potECalR. In contrast, an additional reduction for the forces

was required in the MPI MD case study. The absence of this contribution explains

why no additional force variables were required in the atom class. The MPI imple-

mentation also does not require the additional position vector in the atom class

because the positions are updated outside the energy evaluation.

12.7 Case study: relative performance of MD and MC MPI
and GPU codes

It is of interest to determine the performance of the parallel codes compared

to the serial implementations. To achieve this, we have tested the code

against a common benchmark condition for the LJ dense supercritical fluid

(T� 5 1.5, ρ� 5 0.6, E� 521.6088 using rcut5 3.4 σ) for a large range of N.

A relatively small run length was used for the benchmark comparisons (8000

overall, with 6000 for equilibration) because of the very long execution times

of the serial code for large values of N. Much larger run lengths are used for

actual production runs (Chapter 8).

12.7.1 Performance of MD and MC GPU codes

The speed-up is defined as an execution time of the serial code divided by the

execution time of the GPU code. The speed-up obtained for the MD GPU code
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is illustrated in Fig. 12.1. For N ,500, there is no advantage in using the GPU

code compared with serial execution. However, thereafter, the speed-up

increases rapidly with N, as the larger values of N take full advantage of the

simultaneous launch of multiple threads on the GPU. The MD GPU code pro-

vides outstanding performance, nearly reaching a 200-fold speed-up compared

with the serial code. This would allow simulations with much larger values of

N, making million atom simulations feasible. It should be noted that these

impressive gains were made without any attempts to optimize the efficiency of

the code, and further improvements are possible. Nonetheless, the performance

is broadly consistent with earlier results (Hou et al., 2013; Rapaport, 2022).

In contrast, the performance of the MC GPU code is very much less

impressive as illustrated in Fig. 12.2, which show the speed-up versus N. It

is apparent that the GPU MC code is only beneficial when N . 10,000, and

the speed-up quickly starts to tail-off. This is a disappointing result, particu-

larly in contrast to the enormous computational advantage of GPUs for MD.

A partial explanation for the performance difference between the MD and

MC GPU codes is that for each MC cycle, N (N 2 1) interactions are calcu-

lated by launching the x threads 2 N times, that is, N energy calculations for

an atom in its current location plus N energy calculations of the trial dis-

placed location. The equivalent of a MC cycle is the MD time step. In con-

trast, for each MD time step, the N (N 2 1) interactions are calculated by

launching the x threads only once. There is scope to improve the perfor-

mance of the MC code by taking advantage of algorithms such as a neighbor

list (Chapter 6).

FIGURE 12.1 Speed-up of GPU MD code (32 threads) compared to serial code versus N for

the LJ fluid (see text for details). The line through the points is only for guidance.
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12.7.2 Performance of the MD MPI code

Fig. 12.3 illustrates the speed-up of MD MPI code distributed over 32 pro-

cessors. In this instance, the maximum theoretical speed-up is 16 because the

MPI code performs on average twice as many force evaluations than the

serial code because Newton’s shortcut is not implemented in the MPI code.

FIGURE 12.2 Speed-up of GPU MC code (32 threads) compared to serial code versus N for

the LJ fluid (see text for details). The line through the points is only for guidance.

FIGURE 12.3 Speed-up of MC MPI code (32 CPUs) compared to serial code versus N for the

LJ fluid (see text for details). The line through the points is only for guidance.
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It is apparent from the comparison given in Fig. 12.3 that the MPI

implantation is computationally advantageous when N . 250. The speed-up

increases steadily with N before reaching a plateau value of 8 for N .
10,000. This is half of the maximum theoretical value, which indicates that

there is ample scope to attempt to optimize the code further. However, any

gains in efficiency would be dwarfed by much greater speed of the GPU

code illustrated in Fig. 12.1.

12.8 Summary

The serial MC and MD codes developed in Chapter 11 can be easily trans-

formed to execute in parallel using either MPI of GPUs. This transformation

was achieved by using only a small subset of the available MPI or CUDA func-

tions. When using parallel computation, care must be taken to avoid the racing

condition, which is the source of potential inaccuracies. Compared with serial

calculations, indicated GPU execution provides a much greater speed-up than is

possible with MPI. In contrast, MC simulations do not share the enormous bene-

fits of MD code executed using GPUs. However, these observations come with

some important caveats, such as no attempt was made to optimize the codes;

the LJ potential is a simple potential that does not include electrostatic interac-

tions; and the calculations were confined to pairwise interactions.
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Appendix 1

Software user’s guide

The following is a brief description of the how to use the software that was

detailed in Chapters 11 and 12. The software can be downloaded from the book’s

(https://www.elsevier.com/books-and-journals/book-companion/9780323853989),

where any future updates will also be posted as required. The code can be either

used or modified for any noncommercial research application. It should be noted

that the programs were developed specifically for this book to illustrate the appli-

cation of object-orientation to molecular simulation. We believe that they are free

from significant error. In particular, the serial and parallel codes yield exactly the

same results. However, the codes have not had the benefit of extensive testing

and their application to mixtures has not been investigated. Therefore the onus is

on the user to verify the correctness of the code if it is used in a research

application.

A.1 C11 code for the molecular dynamics simulation of

Lennard-Jones Atoms in the Microcanonical

Ensemble (\md_Ver2.0)

The molecular dynamics code is located in the “md_Ver2.0” directory. The

names of both the source files (�.cpp) and header files (�.h) follow closely

the names of the class that they represent. Files relevant to molecular dynam-

ics are identified by the “MD” suffix. The source files are: atomMD.cpp,

auxfuncMD.cpp, ensembleMD.cpp, forceMD.cpp, gpcMD.cpp, integrtMD.cpp, ljatomMD.

cpp, ljforceMD.cpp, mainMD.cpp. md.cpp, nveMD.cpp and simMD.cpp. The header files

are atomMD.h, auxfuncMD.h, ensembleMD.h, forceMD.h, gpcMD.h, integrtMD.h,

ljatomMD.h, ljforceMD.h, md.h, nveMD.h and simMD.h. Notice that each source file

(expect mainMD.cpp) has a corresponding header file. Both the source and

header files must be compiled together.

In addition to the source files and header files, there are four data files:

md.dat, NVEfileMD.dat, paramLJ.dat and sim.dat. The structure and meaning of

the data files are explained in Table A.1. All input data are in reduced units

relative to the intermolecular potential parameters.
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The data in Table A.1 are for a simulation of a one-component system.

However, the program can be executed for a multicomponent mixture with-

out any modification of the source code. To use the program for a multicom-

ponent mixture, changes are required only in the NVEfileMD.dat and paramLJ.

dat files. In NVEfileMD.dat, the number of components is specified and

the mole fractions and masses of each component must be given. In the

paramLJ.dat file, an additional line of data is required for each component. By

default, the program will calculate the properties of a three-dimensional

fluid, however, calculations for the two-dimensional case can be achieved by

simple modification of the source code. The Gear 5-value method is the

default integrator. If another Gear integrator is desired, this can be achieved

by simply specifying the value in NVEfileMD.dat and changing the constants in

the gearCorrect() method.

The output is written to nve_md.out. This file simply contains the average

energies and temperature of the ensemble in reduced units. The source code

can be modified easily to collect statistics for other thermodynamic proper-

ties of the ensemble such as heat capacity, pressure, etc.

TABLE A.1 organization of data files for molecular dynamics simulation.

Name of file Contents Meaning

sim.dat 1 Simulation choice

md.dat 8000 Total Number of time steps

6000 Number of equilibration time steps

10 Size of blocks to average

0.002 Time step

1 Integrator method (15Gear)

5 Number of Gear values

1 Ensemble ( 15NVE ensemble)

1 Potential (15 Lennard-Jones)

NVEfileMD.dat 1 Number of components

256 Number of atoms

1.0 Mole fraction for each type of atom

1.0 Mass of each type of atom

1.5 Temperature

0.6 Density

paramLJ.dat 1.0 1.0 3.4 Epsilon, sigma and rcut
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A.2 C11 code for the Monte Carlo simulation of
Lennard-Jones

Atoms in the Microcanonical Ensemble (\mc_Ver2.0)

The Monte Carlo code is located in the “mc_Ver2.0” directory. The names

of both the source files (�.cpp) and header files (�.h) follow closely the names

of the class that they represent. Files relevant to Monte Carlo simulation are

identified by the “MC” suffix. The source files are: atomMC.cpp, auxfuncMC.

cpp, energyMC.cpp, ensembleMC.cpp, ljatomMC.cpp, ljenergyMC.cpp, mainMC.cpp.

mc.cpp nveMC.cpp and simMC.cpp. The header files are atomMC.h, auxfuncMC.h,

energyMC.h, ensembleMC.h, ljatomMC.h, ljenergyMC.h, mc.h, nveMC.h and simMC.

h. Notice that each source file (except mainMC.cpp) has a corresponding

header file. Both the source and header files must be compiled together.

In addition to the source files and header files, there are four data files:

mc.dat, NVEfileMC.dat, paramLJ.dat and sim.dat. The structure and meaning of

the data files are explained in Table A.2. All input data are in reduced units

relative to the intermolecular potential parameters.

The data in Table A.2 are for a simulation of a one-component system.

However, the program can be executed for a multicomponent mixture without

any modification of the source code. To use the program for a multicomponent

mixture, changes are required only in the NVEfileMC.dat and paramLJ.dat files. In

TABLE A.2 Organization of data files for Monte Carlo simulation.

Name of file Contents Meaning

sim.dat 2 Simulation choice

mc.dat 8000 Total number of cycles

2000 Number of equilibration cycles

10 Size of blocks to average

1 Ensemble ( 15NVE ensemble)

1 Potential (15 Lennard-Jones)

NVEfileMC.dat 1 Number of components

256 Number of atoms

1.0 Mole fraction for each type of atom

1.0 Mass of each type of atom

-1.6088 Total energy of the ensemble

0.6 Density of the ensemble

paramLJ.dat 1.0 1.0 3.4 Epsilon, sigma and rcut
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NVEfileMC.dat, the number of components is specified and the mole fractions and

masses of each component must be given. In the paramLJ.dat file, an additional

line of data is required for each component. By default, the program will calculate

the properties of a three-dimensional fluid, however, calculations for the two-

dimensional case can be achieved by simple modification of the source code.

The output is written to nve_mc.out. This file simply contains the average

energies and temperature of the ensemble in reduced units. The source code

can be modified easily to collect statistics for other thermodynamic proper-

ties of the ensemble such as heat capacity, pressure, etc.

A.3 C11 code for the combined Monte Carlo and molecular

Dynamics Simulation Program for Lennard-Jones Atoms in the

Microcanonical Ensemble (\mcmd_Ver2.0)

The “mcmd_Ver2.0” directory contains the source and header files for both

the Monte Carlo and molecular dynamics programs outlined above. The only

difference is that that simMD.cpp and simMD.h, or simMC.cpp and simMC.h files

are replaced by the files simMCMD.cpp and simMCMD.h, respectively. The data

files used are identical to those required for the molecular dynamics and

Monte Carlo programs, with the exception that there is a single simMCMD.dat

file that replaces either simMC.dat or simMD.dat. This is a name change only

and the organisation of the file is unaltered.

A.4 CUDA code for the molecular dynamics simulation of

Lennard-Jones Atoms in the Microcanonical

Ensemble (\mdCU_Ver2.0)

The MD files for the CUDA implementation are located in the “mdCU_Ver2.0”

directory. Details of the .cpp files and associated.h files are mostly identical

to the descriptions given in A.1. The exceptions are the presence of the

cudaSimKernels,cu, ljForce.cu, cudaSimKernels.h files. In the cudaSimKernels.h, the

constant numThreadInBock is used to specify the number of threads used. The

organization of the data files is identical to that given in Table A.1.

A.5 CUDA code for the Monte Carlo simulation of

Lennard-Jones Atoms in the Microcanonical

Ensemble (\mdCU_Ver2.0)

The MC files for CUDA are located in the “mcCU_Ver2.0” directory and

are mostly identical to the files used in A.2. The organization of the data

files is identical to that given in Table A.2. The additional CUDA files are:

cudaSimKernels,cu, ljenergyMC.cu, cudaSimKernels.h files. In the cudaSimKernels.h,

the constant numThreadInBock is used to specify the number of threads used.
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A.6 MPI code for the molecular dynamics simulation of

Lennard-Jones Atoms in the Microcanonical

Ensemble (\mdMPI_Ver2.0)

The MPI MD files are located in the directory “mdMPI_Ver2.0.” The file

structure and the use of the input files are identical to those given in A.1.

A.7 MPI code for the molecular dynamics simulation of

Lennard-Jones Atoms in the Microcanonical

Ensemble (\mcMPI_Ver2.0)

The MPI MC files are located in the directory “mcMPI_Ver2.0.” The file

structure and the use of the input files are identical to those given in A.2.

A.8 Compilation

A.8.1 Serial compilation

To generate executable code, all the source files and header files in the

respective directories must be compiled together. For example, on a UNIX

system, programs for a Monte Carlo (mcprogram.exe), molecular dynamics

(mdprogram.exe) and combined (mcmdprogram.exe) simulation can be obtained

using the g11 compiler as follows:

g11 -o mcprogram.exe mc.cpp �MC.cpp
g11 -o mdprogram.exe md.cpp �MD.cpp
g11 -o mcmdprogram.exe �.cpp

Note that, the corresponding header files must be present in the same

directory. It is good practice to keep the Monte Carlo and molecular dynam-

ics code in separate directories. However, if they become mixed, the com-

mon files can be easily identified by the “MC” and “MD” suffixes.

A.8.2 MPI compilation

The compilation of the MPI files using the g11 compiler requires the addi-

tion of the -lmpi compiler option, that is,

g11 -o mcprogram.exe mc.cpp �MC.cpp -lmpi
g11 -o mdprogram.exe md.cpp �MD.cpp -lmpi

The code, can be executed on, for example, 4 processes by using the

command

mipirun �np 4./mdprogram.exe
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A.8.2.1 CUDA compilation

The �.cpp and �.cu files are compiled together using the CUDA (nvcc) com-

piler. Examples of simple valid compilation statements are:

nvcc --fmad5false -o mcprogram.exe mc.cpp �MC.cpp �.cu
nvcc --fmad5false -o mdprogram.exe md.cpp �MD.cpp �.cu

For the CUDA compilation it is highly advisable to disable the use of

FMAD, which is the default option for the nvcc compiler. This is discussed

in Chapter 12.
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Appendix 2

List of algorithms

Algorithms described in the text using pseudo code are summarized below.

Some additional algorithms are also discussed in the text without using

pseudo code.

No. Algorithm description Page

General algorithms

5.1 Calculation of either intermolecular forces or energy 167
5.2 Calculation of either intermolecular forces or energy using periodic

boundary conditions
169

5.3 Creation of a Verlet neighbor list 171
5.4 Calculation of energies/forces using a neighbor list 172
5.5 Use of an automatically updated neighbor list 173
5.6 Three-dimensional map of cells and nearest neighbors 175
5.7 Creation of a linked-cell list 176
5.9 Creation of look-up tables 178
5.10 Calculation of energies using a neighbor list and a look-up table 179
5.12 Calculation of the real space contribution in the Ewald sum 186
5.15 Assignment of charges to the particle mesh in one-dimension 193
5.16 Solution of the field equation in one-dimension using the Thomas

tridiagonal algorithm
194

Monte Carlo

1.1 General outline of a Monte Carlo process 5
5.13 Calculation of the reciprocal space contribution in the Ewald sum 188
6.1 Basic Monte Carlo procedure for accepting changes in atomic

displacements
218

6.2 Configurational bias algorithm for a chain 227
6.3 Growing/retracing either a fully flexible or semi-flexible chain 228
6.4 Monte Carlo procedure for accepting cluster moves 232
9.1 Monte Carlo simulation in the canonical (NVT) ensemble 313
9.2 Monte Carlo simulation in the NpT ensemble 317
9.3 Monte Carlo simulation in the μVT ensemble 321
9.4 Monte Carlo simulation in the NVE ensemble 325
10.1 Monte Carlo Gibbs ensemble 365

(Continued )
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(Continued)

No. Algorithm description Page

10.3 Monte Carlo implementation of Gibbs-Duhem integration for a one-
component fluid at several different temperatures

377

10.6 ECM algorithm for SLE 393

Molecular dynamics

1.2 General outline of a molecular dynamics process 6
5.8 Force calculation using a linked-cell list 177
5.14 Calculation of intermolecular forces for a single time step using the PPPM

method
192

5.17 Force interpolation in one-dimension of the particle mesh 195
7.1 General predictor-corrector procedure for solving equations of motion 247
7.2 Example of the implementation of Gear’s four-value (3rd order) predictor-

corrector algorithm using scaled time derivatives
248

7.3 Original Verlet method for integrating equations of motion 252
7.4 Leap frog Verlet method for integrating equations of motion 253
7.5 Velocity-Verlet method for integrating equations of motion 255
7.6 Beeman-Verlet method for integrating equations of motion 257
7.7 RK4 integration of the equations of motion 259
7.8 Shake method for incorporating bond-length constraints 268
7.9 Rattle method for incorporating bond-lengthconstraints 274
8.4 A four-value Gear predictor applied independently to both positions and

velocities using scaled time derivatives
294

9.5 General molecular dynamics NVE ensemble strategy 328
9.6 Molecular dynamics in the NVE ensemble using periodic scaling of

velocities
329

9.7 Molecular dynamics in the NVT ensemble using simple velocity
scaling

331

9.8 Molecular dynamics in the NVT ensemble using the Andersen thermostat 334
9.9 Molecular dynamics in the NVT ensemble using the Nosé-Hoover

equations of motion and a predictor-corrector strategy
337

9.10 Molecular dynamics in the NpH ensemble using Andersen’s method 341
9.11 Molecular dynamics in the NpT ensemble using Andersen’s method 343
9.12 Molecular dynamics in the NpT ensemble using the Nosé-Hoover

equations of motion and a predictor-corrector strategy
345

9.13 Molecular dynamics in a μVT ensemble using the Lo-Palmer algorithm 350
9.14 Parallel grand canonical molecular dynamics (PGCMD) algorithm 352
10.2 Gibbs ensemble molecular dynamics using the Lo-Palmer algorithm 369

Nonequilibrium molecular dynamics

8.1 General outline of a NEMD process at constant strain rate ( _γ) using the
Gear predictor-corrector integrator

288

8.2 Evaluation of the tensor components to pressure 291
8.3 Calculation of the α thermostatic constant 293
8.5 A four-value Gear corrector applied independently to both positions and

velocities implementing sllod under constant strain rate, using scaled time
derivatives

295

(Continued )
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No. Algorithm description Page

Combined algorithms

10.4 Synthetic algorithm for fluid phase equlibria 389
10.5 Combined EMD/NEMD algorithm for SLE 391

Parallel algorithms

12.1 General procedure for GPU implementation via a kernel 533
12.2 General procedure for implementing MPI 548
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Appendix 3

Notation

In each chapter, all symbols and abbreviations are defined in the text when

they are encountered for the first time. The most commonly used notation is

summarized below; vectors are distinguished from scalar quantities by the

use of bold typeface. Extensive use has been made of pseudo code to

describe algorithms and we have endeavored to make the pseudo code non-

language specific. The major pseudo code conventions are summarized; We

have also made some use of UML notation that is also explained here.

Acronyms and abbreviations

μVT grand canonical ensemble

a.u. atomic units

AMBER assisted model building with energy refinement

AMOEBA atomic optimized multipole optimized energetics for biomolecular application

ATM Axilrod-Teller-Mutō

BFW Barker-Fisher-Watts

CBMC configurational bias Monte Carlo

CCSD(T) coupled cluster single and double excitations

CFC continuous fractional component

CHARMM chemistry at Harvard macromolecular mechanics

CPMD Car-Parrinello molecular dynamics

CPU central processing unit

CPWC chemical potential weak coupling

CUDA compute unified device architecture

DCMG double Gaussian core model

DFT density functional theory

ECEPP empirical conformational energy program for peptides

EMD equilibrium molecular dynamics

ECM entropy correlation method

erfc complementary error function

exp-6 exponential-6

FENE finitely extensible nonlinear elastic

FMAD floating-point multiply-add
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FMM fast multipole method

FSS finite size scaling

GCM Gaussian core model

GDI Gibbs-Duhem integration

GEMC Gibbs ensemble Monte Carlo

GPU graphics processing unit

HF Hartree-Fock

HFD Hartree-Fock dispersion

HS hard sphere

HSA hard sphere plus attractive

LD Leonhard-Deiters

LJ Lennard-Jones

LJ/M Lennard-Jones/Mie

LR long-range

LRC long-range correction

MBF mean Boltzmann factor

MC Monte Carlo

MCY Matsuoka-Clement-Yoshimine

MCYna MCY nonadditive

MD molecular dynamics

MM molecular mechanics

MSS multistage sampling

MWS Marcelli-Wang-Sadus

NCC Niesar-Corongiu-Clementi

NEMD nonequilibrium molecular dynamics

NpH isobaric constant-enthalpy ensemble

NpT isobaric isothermal ensemble

NVE microcanonical ensemble

NVEPG microcanonical ensemble, with constant P and G

OMT object modeling technique

OO object-orientation

OOA object-oriented analysis

OOD object-oriented design

OOP object-oriented programming

OPLS optimized potential for liquid simulation

PC predictor-corrector; personal computer

PGCMD parallel grand canonical molecular dynamics

rattle method for handling bond constraints (Algorithm 7.9)

PPPM particle-particle and particle-mesh

RMSD root mean squared deviation

RK Runge-Kutta

RPM restricted primitive model

SAAP simplified ab initio atomic potential

SCF self consistent field

shake method for handling bond constraints (Algorithm 7.8)

sllod method for handling equations of motion in NEMD

SLE solid-liquid equilibria

SPC simple point charge
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SPC/E SPC/extended

SR short-range

SS soft sphere

TIPxP transferable intermolecular potential x point

UFF universal force field

UML unified modeling language

VLE vapor-liquid equilibria

WCA Weeks-Chandler-Anderson

Latin alphabet

a acceleration vector

A Helmholtz function; dynamic property; empirical constant

B empirical constant in intermolecular potentials

b empirical constant in intermolecular potentials

C heat capacity; dispersion coefficient; potential constant

d diameter of an impenetrable hard core; dimensions

D diffusion coefficient; damping parameters; bond dissociation energy; dipole

E total energy (Hamiltonian)

F force vector

F total number of degrees of freedom

f force; damping function; degrees of freedom

G Gibbs function; general variable

G quantity for the initial position of the center of mass

H Hamiltonian; enthalpy; hexadecapole

h Planck’s constant

k Boltzmann’s constant

K kinetic energy; force constant

k reciprocal vector in Ewald sum

l bond separation

L Lagrangian; box length

m mass

N number of particles

O octupole

P linear momentum; pressure tensor

Pi probability of observing the ith state

p probability; instantaneous pressure

q charge; position

Q generalized force; quadrupole

R maximum level of refinement

r position vector

r separation; refinement

S entropy

t instantaneous temperature

T temperature

U potential energy (internal energy)

V volume; potential function; rotational barrier

v velocity vector
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w instantaneous virial

W internal virial

X general property

z adjustable parameter

Z partition function

Greek alphabet

α thermal expansion coefficient; constant of motion; repulsive steepness parameter;

molecule identifier; atom constant; polarizability; adjustable parameter

β inverse temperature (1/kT); isothermal compressibility molecular identifier

δ instantaneous change; Dirac’s delta

Γ oscillator coefficient; gamma function

γ ratio of polarizabilities; atomic interaction constant; thermal pressure

coefficient; general parameter

ε intermolecular potential energy parameter; relative permittivity

η viscosity

θ bond angle

λ thermal conductivity coefficient; multiple of hard sphere diameter;

Lagrange multiplier

μ chemical potential; dipole moment

ρ density; distribution function; source distribution

σ intermolecular potential distance parameter; root mean square deviation

τ dihedral angle

ν three-body non-additive coefficient

ϕ electrostatic potential

χ out-of-plane bond angle

ψ wave function; grand canonical partition function

Ω phase-space volume

ω phase-space density

Subscripts and superscripts

0 reference property

a applied

a,b,i,j molecule identifiers

ave average

b bond

c constraint; correction

corr correction

disp dispersion

e external

ens ensemble

m minimum position

pot potential

r residual

rep repulsive

r residual property

test test property
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Pseudo code conventions

Code Explanation

if (logical test)
statement 1

else(optional test)
statement 2

end if

If some logical test is satisfied, statement 1 is executed
otherwise, another (optional) test is performed. If the second test
is satisfied, statement 2 is executed.

’ The arrow signifies assignment, e.g., a ’ 5 means a is assigned
the value of 5.

5 The equals sign is used to signify equivalence in logical tests
(compare with assignment above).

// Start of a comment.
loop i ’ 1. . . N
statement 1

end loop

Execute statement 1 N times, that is, until i is equal to N. The
value of i is incremented by 1 each time through the loop. In
nested loops, the end of a particular loop is specified by
incorporating the loop index into the end loop statement.

loop
statement 1

while (logical test)

The code represented by statement 1 is executed until a
termination condition is reached. The termination condition is
determined at the end of the loop.

loop while (logical test)
statement 1

end loop

The code represented by statement 1 is executed until a
termination condition is reached. The termination condition is
determined at the start of the loop.

erfc(x) The complementary error function of x.
exp(x) The exponential of x.
int(x) The integer component of x.
mod (x,y) The remainder obtained when x is divided by y.
ln(x) The natural logarithm of x.
nint(x) The nearest integer to x.
pbc(distance) Apply periodic boundary conditions and adjust the distance

accordingly.
rand() Generate a random number on the interval of 0 to 1.
real(x) The real component of x.

UML conventions

UML notation Explanation

Name

private

public

UML diagram for a class. The name of the class is given at the top
followed by private and public attributes and/or methods.

(Continued )
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(Continued)

UML notation Explanation

Name
Short-hand notation for a class, containing only the name of the
class.

This arrow is used to signify association (needs-a, requires-a, uses-a
relationship). The arrow signifies the direction of the relationship

This arrow is used to signify aggregation (part-of relationship). The
diamond is placed on the container class and the arrow points to
the parts. For example, an atom is part of a molecule.

This arrow symbol is used to denote inheritance (is-a relationship)
between classes. The parent class is positioned at the head of the
arrow and the child class is placed at the bottom. The child class
inherits properties from the parent class.
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Index

Note: Page numbers followed by “b,” “f,” and “t” refer to boxes, figures, and tables,

respectively.

A
Abstract methods, 481�483

Abstraction, 408, 409f

Acceleration, 46, 336�337

Acceptance criterion, 4�5, 378�379. See also

Monte Carlo (MC)

Adams predictor�corrector algorithm, 374.

See also Integrators

Aggregation, 410�412

UML diagram

illustrating combined use of inheritance

and aggregation, 412f

illustrating different levels of

aggregation, 411f

representing aggregation relationship

between Molecule and Atom, 411f

Alkanes, 273, 296�297

All-atom (AA) potential, 89�90

α thermostatic constant, calculation of, 293b

Ab initio

approach, 55

calculations, 118�123

Car�Parrinello method, 122�123

density functional theory, 120�122

Hartree�Fock method, 119�120

data, 96�97, 126�128

methods, 77

NCC, 146

potentials, 118, 125�130

for carbon dioxide, 151

case study, 152�155

for combinations of molecules,

145�147

comparison of contribution of different

terms to two body ab initio noble gas

potentials, 127t

efficient three-body calculations,

153�155

for fluid properties, 152�155

relative differences between energies

calculated from multiparameter

potentials, 130f

systematic improvement of water

potentials, 152�153

two-body SAAP parameters, 129t

SAAP, 128

two-body potentials, 128, 146

for carbon dioxide, 145�146

AMBER. See Assisted model building with

energy refinement (AMBER)

AMOEBA. See Atomic multipole optimized

energetics for biomolecular

applications (AMOEBA)

Andersen thermostat, 333�335

MD in NVT ensemble using, 334b

Andersen’s algorithm, 339�341

MD in NpH ensemble using Andersen’s

method, 341b

MD in NpT ensemble using, 343b

for NpH ensemble, 342

Angle-bending potential, 82

Angular constraints, 264

Argon, 141, 407

Assisted model building with energy

refinement (AMBER), 89�91

Association, 412�413, 413f

ATM. See Axilrod�Teller�Mutō (ATM)

Atom�atom model of diatomic molecule, 87f

Atomic displacements, basic MC procedure

for accepting changes in, 218b

Atomic multipole optimized energetics for

biomolecular applications (AMOEBA),

100�101

Atoms, 408

class, 407, 476�477

code for, 454�459, 508�511

effective pairwise potentials for, 64�77

in microcanonical ensemble, 563
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Atoms (Continued)

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

484�485

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

425�426

Attributes, 420�421

distinction between classes and, 415t

distinction between classes and attributes

for MC simulation, 475t

Automatically updated neighbor list, 173b

Auxiliary methods

code for, 471�473, 517

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

489

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

432�433

Axilrod�Teller�Mutō (ATM), 11, 132�133

comparison of contributions of, 143f

potential, 132�135, 150

for nonspherical molecules, 147�148

Aziz�Salman potential, 125

B
Baranyai�Cummings method, 371�373

Barker�Fisher�Watts potential (BFW

potential), 124, 178�179

Barker�Pompe potentials, 124

Barnes�Hut algorithm, 197�200

division of space for two-dimensional

particle distribution, 199f

Beeman modification, 256�258

Beeman�Verlet method for integrating

equations of motion, 257b

Beeman�Verlet algorithm, 257�258

Beuter�van Gunsteren method, 351

BFW potential. See Barker�Fisher�Watts

potential (BFW potential)

Bicanonical ensemble, 362

Binary mixtures, 366

of molecules, 102

Binary tree, 198

blockDim.x (number of threads in block), 531,

539

blockIndex.x (index of block), 531

blockSize, 542

Bobetic�Barker potentials, 124

Boltzmann distribution, 311

Boltzmann factors, 225�226, 413f

Bond potential, 81

Bond separations, 266

Bond-length constraints, Shake method for

incorporating, 268b

Born�Mayer potentials, 70�71, 125

Born�Oppenheimer approximation, 118�119

Buckingham�Corner potential, 70�71

Butane n-butane

C
C (procedural language), 12, 405, 408�409

C11(object-oriented language), 320,

413�414

code for combined Monte Carlo and

molecular dynamics simulation

program for Lennard-Jones atoms in

microcanonical ensemble, 564

for molecular dynamics simulation,

561�562

organization of data files for molecular

dynamics simulation, 562t

for Monte Carlo simulation of Lennard-

Jones, 563�564

organization of data files for Monte

Carlo simulation, 563t

object-oriented programming in, 433�473,

489�521

Çagin�Pettitt method, 347�348

Canonical (NVT) ensemble, 310�314,

330�338

Andersen thermostat, 333�335

constraint methods, 338

heat-bath coupling, 332�333

MC simulation in canonical ensemble, 313b

molecular dynamics in NVT ensemble using

simple velocity scaling, 331b

Nosé thermostat, 335�336

Nosé�Hoover equations, 336�338

simple velocity scaling, 330�332

Canonical ensemble, 21, 309�310, 361

Carbon dioxide, 296�297

Carbon nanotubes (CNT), 297�298

Car�Parrinello molecular dynamics (CPMD),

122�123

CBMC. See Configurational bias MC

(CBMC)

CC. See Coupled cluster (CC)

CCB. See Continuum configurational bias

(CCB)

CFF93, 94�95

CFMM. See Continuous FMM (CFMM)

Chain molecules, 8�9
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Charge�charge interaction, 79

Charge�dipole interactions, 79

CHARMM. See Chemistry at Harvard

macromolecular mechanics

(CHARMM)

Chemical potential, 309, 346, 360�362

Chemical potential weak coupling (CPWC),

351

Chemistry at Harvard macromolecular

mechanics (CHARMM), 89, 91, 279

CI. See Configuration interaction (CI)

Clapeyron equation, 373�374, 378

Classes, 407�408

distinction between attributes, 415t

for MC simulation and, 475t

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

479�489

Atom, 484�485

auxiliary methods, 489

Energy, 487

Ensemble, 481�482

LJ_Atom, 486

LJ_Energy, 488

Monte_Carlo, 480

NVE_Ensemble, 483

Simulation, 479�480

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

420�433

Atom, 425�426

auxiliary methods, 432�433

ensemble, 422�423

Force, 428

Gear_Predictor_corrector, 431�432

Integrator, 430

LJ_Atom, 427

LJ_Force, 429

Molecular_Dynamics, 421

NVE_Ensemble, 424

Simulation, 421

UML diagram representation of Atom class,

408f

Cluster moves, 230�233

MC procedure for accepting, 232b

CNT. See Carbon nanotubes (CNT)

Coefficient of diffusion, 28�29

“Color conductivity” algorithm, 298

Combined MD and MC program for Lennard-

Jones atoms in microcanonical

ensemble, 517�521

OOA, 517

OOP in C11, 518�521

Combined NEMD/EMD method for SLE,

390�392

combined EMD/NEMD algorithm for SLE,

391b

reduced pressure vs. reduced strain rate at

different reduced isochores, 391f

Combined potentials, 151

Compilation, 565�566

MPI compilation, 565�566

serial compilation, 565

Computation time, 179�180

Computation-saving devices, 166, 205�206

Computational efficiency, comparison of,

179�180, 205�206

Compute unified device architecture (CUDA),

527

basic GPU implementations with, 528�534

code for

molecular dynamics simulation of

Lennard-Jones atoms in

microcanonical ensemble, 564

Monte Carlo simulation of Lennard-Jones

atoms in microcanonical ensemble,

564

reduction operation, 532b

compilation, 566

compiling molecular simulation codes

using, 534

functions or syntax, 529t

implementation of MC code, 542�546

energy kernels, 543�545

key changes and additions to MC files,

543t

implementation of MD code, 534�542,

536b

changes to MD integrator, 542

force kernel, 537�540, 538b

key changes and additions, 536t

key variable additions, 535�537

Configuration interaction (CI), 120

Configurational bias MC (CBMC), 224�230,

251

algorithm for chain, 227b

flexible chains, 226�230

lattice chains, 224�226

Configurational temperature, 345

Constrained particle motion, 39�46

consequences of constraints on particles,

40

Gauss’s principle of least constraint, 45�46

Hamilton equations of motion, 43�45
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Constrained particle motion (Continued)

holonomic and nonholonomic constraints,

39�40

Lagrange equations of motion, 41�43

Constraints, 264

equations, 266

methods, 338, 341�342, 345�346

of rigid body, 40

Continuous FMM (CFMM), 204�205

Continuum configurational bias (CCB), 226

Coordinate system, 168

Coulomb model, 74

Coulomb’s law of electrostatic interaction, 74,

77�78, 180�181, 183

Coupled cluster (CC), 119

Coupled test particle approach, 362

Coupling stretch�stretch interactions, 83

CPMD. See Car�Parrinello molecular

dynamics (CPMD)

CPWC. See Chemical potential weak coupling

(CPWC)

CUDA. See Compute unified device

architecture (CUDA)

cudaMalloc() function, 530

cudaMemcpy() function, 530

CVFF potential and CVFF91 potential, 95�96

D
D’Alembert’s principle, 42

Debye�Hückel theory, 7�8

Dendrimers, 58

Density functional calculation, 120�121

Density functional theory (DFT), 77,

119�122

Density MC, 380�381

Density-dependent effective three-body

potential, 135�136

“Density-scaling” procedure, 381

Device, 528

DFT. See Density functional theory (DFT);

Discrete Fourier transformation (DFT)

DGCM potential. See Double Gaussian core

model potential (DGCM potential)

Diatomic molecules, 7, 145

atom�atom model of, 87f

Diffusion, 28�29

Dipolar interactions, 180�181

Dipole interactions using reaction field

method, calculation of, 188b

Dipole�dipole interactions, 79, 137, 183�184

Dipole�quadrupole interactions, 79

Discrete Fourier transformation (DFT), 196

Dispersion

effects, 54�55

general refinement of dispersion models,

74�75

interactions, 66

Dissipative flux, 289

dolls tensor method, 285�286, 292

Domain decomposition, 535

Double Gaussian core model potential

(DGCM potential), 64

E
EATM potential. See Extended ATM potential

(EATM potential)

ECCB. See Extended continuum

configurational bias (ECCB)

ECEPP/3. See Empirical conformational

energy program for peptides

(ECEPP/3)

ECM. See Entropy correlation method (ECM)

Effective pairwise potentials for atoms and

simple molecules, 64�77

general refinement of repulsion and

dispersion models, 74�75

repulsion1 dispersion pair potentials,

64�74

shifted-force potentials, 75

SR potentials, 75�77

Efficient three-body calculations, 153�155

Egelstaff potential, 69

Electrostatic distortion model, 139�140

Electrostatic effects, 54�55

EMD. See Equilibrium molecular dynamics

(EMD)

Empirical conformational energy program for

peptides (ECEPP/3), 89�90

Empirically based simulation algorithms,

387�392

combined NEMD/EMD method for SLE,

390�392

synthetic method, 388�390

Encapsulation, 408, 409f

Energy, 22, 191, 331�332

calculation of energies using neighbor list

and lookup table, 179b

calculation of energies/forces using

neighbor list, 172b

classes, 481�483

code for, 512

kernels, 543�545

launching, 545�546

of molecular system, 88
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OO application to microcanonical MC

simulation of Lennard-Jones atoms,

487

energyLJKernel, 544�545

key code details, 544b

Ensemble averages of pressure and energy, 19

Ensemble class, 422�424

code for, 444�448, 491�499

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

481�482

Ensembles, 19�24, 522�524

alternative methods for thermodynamic

properties, 30�38

MC NpH ensemble, 37�38

MC NpT ensemble, 35�36

MC NVT ensemble, 32�34

MC μVT ensemble, 36�37

MD NVE ensemble, 30�32

molecular simulation and choice of, 29�30

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

422�423

particle dynamics, 39�47

properties from fluctuations, 24�30

statistical mechanics, ensembles, and

averaging, 20�24

simple thermodynamic averages, 22�24

Enthalpy of system, 340

Entropy, 21, 323

Entropy correlation method (ECM), 392�393

algorithm for SLE, 393b

Equations of motion, 122�123, 335�336,

340, 347�348, 368. See also

Integrators

for atomic systems, 299

Beeman�Verlet method for integrating,

257b

general predictor�corrector procedure for

solving, 247b

integrating, 244

leap-frog Verlet method for integrating,

253b

original Verlet method for integrating, 252b

RK4 integration of, 259b

velocity-Verlet method for integrating,

255b

Equilibration period, 312

Equilibrium molecular dynamics (EMD), 286,

301�302, 390�392

Euler angles, 262

Ewald sum, 8, 78�79, 166, 179, 181�186

calculation

real space contribution in, 186b

reciprocal space contribution in, 185b

Wolf approximation of, 186�187

exp-6 potentials, 71�74, 123, 522�523

comparison of exp-6 potential with LJ

potential, 73f

values of λ as function α for exp-6

potential, 72f

Exp6_Energy, 522�523

Exponential repulsion, 74

Extended ATM potential (EATM potential),

142�143

Extended continuum configurational bias

(ECCB), 230

F
Fast multipole methods (FMM), 7�8,

200�205

algorithms, 166

two-dimensional example of division of

simulation box, 200f

two-dimensional representation of

interrelationship, 201f

FCC_Lattice class, 416�417

FENE. See Finitely extensible nonlinear

elastic (FENE)

Field equations

in one dimension, 193�194

solution of field equations in one dimension

using Thomas tridiagonal algorithm,

194b

Finite-difference algorithms, 243, 327

Finitely extensible nonlinear elastic (FENE),

87�88

Finite�size�scaling (FSS), 387

Flexible chains, 226�230

CBMC algorithm for chain, 227b

growing/retracing either fully flexible or

semi-flexible chain, 228b

Floating-point multiply-add instruction

(FMAD instruction), 534

Fluctuations

formulas for CV of atoms in different

ensembles, 24t

molecular simulation and choice of

ensemble, 29�30

properties from, 24�30

thermodynamic definitions of properties

and evaluation in NpT ensemble,

25t

thermodynamic properties, 25�27
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Fluctuations (Continued)

relative difference between the calculated

ideal contribution, 28f

transport coefficients, 28�29

Fluid phase equilibria, synthetic algorithm for,

389b

Fluid�solid melting line Solid-liquid

equilibria (SLE)

FMAD instruction. See Floating-point

multiply-add instruction (FMAD

instruction)

FMM. See Fast multipole methods (FMM)

Forces and force fields, 41, 51, 88, 96, 167

All atom (AA) potentiaql, 89�90

AMBER, 90�91

AMOEBA, 100�101

application to mixtures, 101�102

calculation of potential energy, 52�54

calculations, 166�167

forces using neighbor list, 172b

using linked-cell list, 177b

case study, 97�101

CFF93, 94�95

CFMM, 204�205

CHARMM, 91�92, 95�96

classes, 481�483

code for, 462

of constraint, 41

contributions to molecular interactions,

77�84

CVFF, 95�96

CVFF, 95�96

ECEPP/3, 95�96

effective pairwise potentials for atoms and

simple molecules, 64�77

extension to molecules, 86�88

fully interpenetrable potentials, 63�64

intermolecular forces, 54�56

interpolation in one dimension of

particle�mesh, 195b

kernel, 537�540, 538b

launching, 540�542

MM3, 91�93

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

428

OPLS/OPLS-AA, 89�90

pairwise force fields from molecular

mechanics, 88�97

optimized force fields, 89�95

potentials with hard sphere contribution,

56�62

simple atom-based pairwise potentials for

molecules, 84�86

soft sphere potentials, 62�63

UFF, 93�94

FORTRAN (procedural language), 12, 168,

405, 408�409

Four-body atomic interactions, 143�144

Fourth-order Møller�Plesset calculation

(MP4), 125�126

Fourth-order Runge�Kutta calculation (RK4),

258

Fourth-order triple-dipole term, 131�132, 137

Fractional particles, 347�349

Friction coefficient, 338

FSS. See Finite�size�scaling (FSS)

Fully flexible chain, growing/retracing either,

228b

Fully interpenetrable potentials, 63�64

DGCM potential, 64

GCM potentials, 63

Fumi�Tosi potential, 86

G
Gauss’s principle of least constraint, 45�46,

273�278, 338, 341�342

GAUSSIAN (software packages), 119

Gaussian charge distribution, 182

Gaussian core model fluid, 297

Gaussian core model potential (GCM

potential), 63�64

GCM potential. See Gaussian core model

potential (GCM potential)

GDI. See Gibbs�Duhem integration (GDI)

Gear predictor�corrector algorithm,

249�250, 338

Gear predictor�corrector integrator, NEMD

process at constant strain rate using,

288b

Gear predictor�corrector methods, 244�247,

249�250, 279�280, 338, 432,

567�569

basic Gear algorithm, 245�249

cautionary note on nomenclature, 249

Gear corrector coefficients kd for second-

order equation using time-scaled

variables, 246t

Gear’s four-value predictor�corrector

algorithm using scaled time

derivatives, 248b

general predictor�corrector procedure

for solving equations of motion, 247b

Four-value Gear-predictor, 294b, 295b
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NEMD process at constant strain rate using,

288b

Gear’s 5 value method, 562

representations of Gear algorithm, 249�250

Gear_Predictor_corrector class, 416�417

code for, 467�470

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

431�432

Gear’s four-value predictor�corrector

algorithm using scaled time

derivatives, 248b

GEMC. See Gibbs ensemble MC (GEMC)

Generalized momentum, 43�44

Generalized n�m Lennard-Jones/Mie

potential, 64�69

comparison of energy curve, 66f

comparison of literature values and re-

evaluated, 67t

generalized sllod algorithm (gsllod), 292�293

Get’ methods, 420�421

getAtoms() method, 500�504

getComp() method, 500�504

getEnergyLRC() method, 504�508

getKineticE() method, 500�504

getMass() method, 508�512

getnEquil() method, 491�500

getnSize() method, 491�500

getnStep () method, 491�500

getNumAtom() method, 500�504

getPosition() method, 508�512

getrCutOff() method, 508�512

getTotalEfixed() method, 500�504

getTrialPosition() method, 508�512

getTrialPotE() method, 504�508, 512�517,

545�546, 546b, 554, 555b

getType() method, 508�512

getVolume() method, 500�504

Gibbs ensemble, 10, 73, 360�361, 364, 381

grand canonical MC method, 223�224

MD using Lo�Palmer algorithm, 369b

method, 360

Monte Carlo simulation, 362�367, 365b

MC moves used in Gibbs ensemble, 363f

Gibbs ensemble MC (GEMC), 364�365, 376,

386

binary VLE simulations, 366

simulation, 375�376

Gibbs�Duhem equation, 373�374

for binary mixtures, 376�378

Gibbs�Duhem integration (GDI), 10,

373�380

MC implementation of GDI for one-

component fluid at several different

temperatures, 377b

Gibbs�Duhem simulation method, 373�374

GPU. See Graphics processing unit (GPU)

Grand canonical (μVT) ensemble, 319�322,

346�353

Beuter�van Gunsteren method, 351

Çagin�Pettitt method, 347�348

Lo�Palmer method, 348�350

Lupkowski�van Swol method, 346�347

MC simulation in μVT ensemble, 321b

parallel algorithm, 351�353

Grand canonical ensemble, 320

Grand canonical MC, 385�386

reweighting procedure, 386

Grand canonical partition function, 36

Graphics processing unit (GPU), 12�13, 527

basic GPU implementations with CUDA,

528�534

allocating and copying memory, 530

compiling molecular simulation codes

using CUDA, 534

general GPU algorithm, 533�534

kernel, 529�530

launching kernel, 531

reduction, 531�533

Green_Kubo EMD method, 302

Green�Kubo relationship, 288�289

for self-diffusion coefficient, 298

for shear viscosity, 289�290

for thermal conductivity coefficient, 299

gridDim. x (number of threads in grid

composed of all blocks), 531, 539

GROMOS approach. See Groningen

molecular simulation approach

(GROMOS approach)

Groningen molecular simulation approach

(GROMOS approach), 89

Growing/shrinking, 351

gsllod. See generalized sllod algorithm

(gsllod)

H
Hamiltonian, 44

dynamic systems, 19�20, 250

equations of motion, 19�20, 43�45, 47,

262, 333�334

Hamiltonian-based algorithm for thermal

conductivity, 299

Hard convex body (HCB), 62

Hard core (HC), 62
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Hard sphere1 attractive (HSA), 56�57

approach, 62

potentials, 59�63

comparison of repulsion1 attraction

represented by DGCM, 59f

inverse power potential, 61

Kihara hard core potential, 62

penetrable SW potential, 60

sticky sphere potential, 61�62

SW potential, 59

triangular well potential, 60

Yukawa potential, 60�61

Hard spheres (HS), 6, 56�57

contribution

comparison of some repulsive potentials,

57f

HS potential, 57�58

HSA potentials, 59�62

non-HS repulsive potentials, 58

potentials with, 56�62

early work on hard spheres and atoms, 6�7

intermolecular potential, 522�523

potentials, 58, 62�63

Hartree�Fock, 56, 77, 150

dispersion models (HFD models), 119�120

energy surface, 94�95

HC. See Hard core (HC)

HCB. See Hard convex body (HCB)

Header files, 561, 563

Heat current, 299�300

Heat-bath coupling, 332�333

Helmholtz function, 21, 32�33

Higher-body atomic interactions, 143�144

Histogram, 386

methods, 385

reweighting

algorithms, 384�386

GEMC, 386

grand canonical MC, 385�386

isothermal�isobaric MC, 386

technique, 223�224, 386�387

Holonomic constraints, 39�40

Homogeneous methods, 285

Hooke’s law approach, 81�82

Host, 528

function, 540

HS. See Hard spheres (HS)

HS_Energy, 522�523

HSA. See Hard sphere1 attractive (HSA)

Hybrid MD/MC, 342�343

MD in NpT ensemble using Andersen’s

method, 343b

Hybrid PIMC method, 235

Hydrogen Molecular hydrogen

Hydrogen bond interactions, 80�81

I
Importance sampling concept, 310�311

Induction effects, 54�55

Inheritance, 409�410

UML diagram

combined use of inheritance and

aggregation, 412f

notation for inheritance, 410f

initialCoord() method, 504�508

Integrators

code for, 467

comparison of, 261�262

for molecular dynamics

Addams predictor�corrector algorithm,

374

Beeman-Verlet alforithm, 257�258

comparison of integrators, 261�262

Gear predictor�corrector methods,

244�250

integrating equations of motion, 244

integrators for molecules, 262�279

large molecules, 263�279

Runge�Kutta integration, 258�261

small molecules, 262�263

Verlet algorithm, 244�245, 250�254,

257�258, 261�262, 271�272, 279

velocity-Verlet algorithm, 254�256,

255b, 272�273, 279

Verlet predictor methods, 250�258

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

430

Intermolecular forces, 54�56. See also

Intermolecular pair potentials

calculation

energy using periodic boundary

conditions, 169b

single time step using PPPM method,

192b

hydrogen bond potentials, 80�81

quantum theory of intermolecular

potentials, 55�56

types of, 54�55

Intermolecular interactions, 54, 77, 117, 166

Intermolecular ionic and polar potentials,

77�80

Intermolecular pair potentials, 52. See also

Forces and force fields
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application to mixtures, 101�102

calculation of potential energy, 52�54

use of notation, 54

case study, 97�101

contributions to molecular interactions,

77�84

effective pairwise potentials for atoms and

simple molecules, 64�77

extension to molecules, 86�88

fully interpenetrable potentials, 63�64

intermolecular forces, 54�56

inverse power potential, 61

pairwise force fields from molecular

mechanics, 88�97

optimized force fields, 89�95

potentials with hard sphere contribution,

56�62

simple atom-based pairwise potentials for

molecules, 84�86

soft sphere potentials, 62�63

Intermolecular potentials

ab initio, 125�130

angle-bending potentials, 82

ATM, 132�133

Aziz�Slaman, 125

Barker�Pompe, 124

Barker�Fisher-Watts, 124, 178�179

bond potentials, 81�82

Buckingham�Corner, 70�71

cross-terms, 83�84

Egelstaff, 69

exp-6, 71�74, 123, 522�523

DGCM, 64

FumiTosi, 86

Goodford, 80�81

GCM, 63�64

HSA, 59�63

Huggins�Mayer, 86

intraparticle, penetrations, 63, 297

Keesom, 80

Kihara, 62

Leonhard and Deiters (LD), 145

Lennard�Jones, 6, 38, 418, 474�475,

486�489, 512, 535

London, 70�71

MCY, 146

MCYna, 153

Mie, 64�69

out-of-plane bending potentials, 82�83

RPM, 85�86

SAAP, 128, 130, 155

Shavitt�Boys, 71

sticky sphere, 61�62

SPC, 98�100

SPC/E, 98�100

square-well, 365

shift-force, 75

Spurling�Mason, 85

Stockmayer, 84�85

Sutherland, 61

Tang�Toennies, 126

TIP4P, 98�100

TIP4P/2005, 98�100

TIP5P, 98�100

WCA, 58

WCA1 FENE, 87�88

Yukawa, 60�61

Intermolecular_Potential class, 412�413

Internal virial, 23

Inverse Debye screening length, 191

Ionic fluids, 85�86

Ionic systems, 7�8

Ions, 7�8, 230

Isobaric�isoenthalpic (NpH) ensemble,

339�342

Andersen’s algorithm, 339�341

constraint methods, 341�342

MD algorithms, 309�310

Isobaric�isoenthalpic ensemble, 340�341

Isobaric�isoenthalpic MD algorithms,

309�310

Isobaric�isothermal (NpT) ensemble, 21�22,

309, 314�319

MC simulation in NpT ensemble, 317b

MD algorithms, 309�310

Isochoric heat capacity, 234

Isokinetic sllod equations of motion, 292

Isothermal�isobaric (NpT) ensemble,

342�346

constraint methods, 345�346

extension of Nosé�Hoover equations,

343�345

MC, 386

hybrid MD/MC, 342�343

K
Keesom potential, 80

Kernel, 529�530

launching, 531

Kihara hard core potential, 62

Kinetic energy, 22, 323, 328, 339�340

Kink-jump algorithm, 222�223, 223f

Kotelyanskii�Hentschke method, 370�371

Krypton, 124, 141
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L
Lagrangian, 19�20, 43

dynamics, 19�20

equations of motion, 41�43

for grand canonical ensemble, 347

Large molecules, 263�279

Rattle method for incorporating bond-length

constraints, 274b

Shake method for incorporating bond-length

constraints, 268b

triatomic molecule, 264f

Lattice chains, 224�226

insertion possibilities for three-unit

molecule on two-dimensional lattice,

225f

Leap-frog Verlet algorithm, 253�254, 256.

See also Integrators

for integrating equations of motion, 253b

Least constraint, Gauss’s principle of, 45�46,

273�278

Lees�Edwards periodic boundary conditions,

293

Lennard-Jones potential, 6, 38, 418, 474�475,

486�489, 512, 535

application of object orientation to

microcanonical MC simulation of,

474�517

application of OO to microcanonical MD

simulation of, 414�473

in microcanonical ensemble, 561

C11 code for combined Monte Carlo

and molecular dynamics simulation

program for, 564

combined MD and MC program for,

517�521

CUDA code for molecular dynamics

simulation of, 564

CUDA code for Monte Carlo simulation

of, 564

MPI code for molecular dynamics

simulation of, 565

generalized n�m, 64�69

Linear response theory, 288�289

Linked cells, 174�180

cell numbering for two-dimensional

simulation cell, 174f

creation of linked-cell list, 176b

force calculation using linked-cell list, 177b

three-dimensional map of cells and nearest

neighbors, 175b

Liouville equation, 46�47

Liquid metals, 296�297

Liquid�liquid equilibria (LLE), 62, 366

LJ fluids

LJ potentials. See Lennard-Jones potentials

(LJ potentials)

LJ/M potential, 65�66

LJ_Atom

code for, 460�461, 512

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

486

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

427

LJ_Energy class

code for, 512�516

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

488

LJ_Force class

code for, 463�466

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

429

LLE. See Liquid�liquid equilibria (LLE)

London potentials, 70�71

Long-range (LR)

corrections to periodic boundary

calculations, 169�170

effects, 54

force, 7, 165�166

interactions, 180�181, 191�192

assignment of charges to particle�mesh

in one dimension, 193b

calculation of, 180�206

calculation of intermolecular forces for

single time step using PPPM method,

192b

comparison of computational efficiency,

205�206

Ewald sum, 181�186

force interpolation in one dimension of

particle�mesh, 195b

particle-particle and particle-mesh

methods, 191�197

reaction field method, 187�191

solution of field equations in one

dimension using Thomas tridiagonal

algorithm, 194b

tree-based methods, 197�205

Wolf approximation of Ewald sum,

186�187

Look-up table, 178�179
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calculation of energies using neighbor list

and, 179b

creation of, 178b

Lo�Palmer method, 348�350, 367�369

Gibbs ensemble MD using Lo�Palmer

algorithm, 369b

MD in μVT ensemble using Lo�Palmer

algorithm, 350b

LP. See Lone pair (LP)

lrc() methods, 504�508, 512�517

Lupkowski�van Swol method, 346�347

Lustig’s approach, 35, 37�38

M
Machine learning, 52, 97

Macromolecules, 101

Maitland�Smith potential, 69�70

malloc(), 530

MANIAC computer, 2

Marcelli�Wang�Sadus potential (MWS

potential), 136

Markov chains, 215, 217�219, 218b,

309�311

Massieu�Planck system of thermodynamics,

32�33

Matsuoka, Clementi, and Yoshimine (MCY),

146

Maxwell�Boltzmann distribution, 347,

349�351

of velocities, 1�2

MBF. See Mean Boltzmann factor (MBF)

MC. See Monte Carlo (MC)

MCSCF. See Multiconfigurational wave

function methods (MCSCF)

MCY. See Matsuoka, Clementi, and

Yoshimine (MCY)

MCYna potential, 153

MD. See Molecular dynamics (MD)

Mean Boltzmann factor (MBF), 351

Mechanical equilibrium, 363�364

Memory, allocating and copying, 530

Mesh potential, 196

Message passing interface (MPI), 527

code for molecular dynamics simulation of

Lennard-Jones atoms in

microcanonical ensemble, 565

compilation, 565�566

CUDA compilation, 566

implementation of MC code, 553�556

implementation of MD code, 548�553,

548t

changes to ljForceMD. cpp, 550�553

changes to mainMD. cpp, 549�550

changes to MD integrator, 553

key variable additions, 549

parallel programming with, 546�548

Methane, 296�297

Metropolis sampling, 217�219

basic MC procedure for accepting changes

in atomic displacements, 218b

Metropolis-type moves, 322�323

Microcanonical (NVE) ensemble, 322�330

comparison of MC simulations, 326t

general MD NVE ensemble strategy, 328b

MC simulation in NVE ensemble, 325b

MD in NVE ensemble using periodic

scaling of velocities, 329b

Microcanonical ensemble, 21, 309�310, 328

atoms in, 563

C11 code for combined Monte Carlo and

molecular dynamics simulation

Program for Lennard-Jones atoms in,

564

combined MD and MC program for

Lennard-Jones atoms in, 517�521

CUDA code for molecular dynamics

simulation of Lennard-Jones atoms in,

564

CUDA code for Monte Carlo simulation of

Lennard-Jones atoms in, 564

Lennard-Jones atoms in, 561

MPI code for molecular dynamics

simulation of Lennard-Jones atoms in,

565

preliminary UML diagram for MD in, 417f

Microcanonical MC simulation of Lennard-

Jones atoms, application of object

orientation to, 474�517

Microcanonical MD simulation of Lennard-

Jones atoms, application of OO to,

414�473

Mie potential, generalized n�m, 64�69

Minimum image convention, 167�169

Mixtures, application of NEMD algorithms to,

301

MM. See Molecular mechanics (MM)

MM2 potential and MM3 potential, 91�92

MM3 force field, 91�93

Modified Buckingham potential, 71�74

Molecular displacements, 363�364

Molecular dynamics (MD), 1�3, 5�6, 285,

326�353, 360, 405�406, 528

in μVT ensemble using Lo�Palmer

algorithm, 350b
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Molecular dynamics (MD) (Continued)

algorithms, 243, 309, 567�569

canonical (NVT) ensemble, 330�338

code, 561

CUDA implementation of MD code,

534�542

equation of motion, 370�371

general outline of, 6b

Gibbs ensemble, 367�373

Baranyai�Cummings method, 371�373

Kotelyanskii�Hentschke method,

370�371

Lo�Palmer method, 367�369

grand canonical (μVT) ensemble, 346�353

isobaric�isoenthalpic (NpH) ensemble,

339�342

isothermal�isobaric (NpT) ensemble,

342�346

microcanonical (NVE) ensemble, 326�330

molecular simulation method, 19

in NpH ensemble using Andersen’s method,

341b

in NpT ensemble using

Andersen’s method, 343b

Nosé�Hoover equations of motion and

corrector�predictor strategy, 345b

in NVE ensemble, 30�32

relationships for key thermodynamic

quantities in terms of phase-space

functions for, 32t

using periodic scaling of velocities, 329b

in NVT ensemble using

Andersen thermostat, 334b

Nosé�Hoover equations of motion and

predictor�corrector strategy, 337b

using simple velocity scaling, 331b

preliminary UML diagram for MD in

microcanonical ensemble, 417f

relative performance of MD and MC MPI

and GPU codes, 556�559

performance of MD and MC GPU codes,

556�557

performance of MD MPI code, 558�559

simulation, 28, 51, 329, 414, 477�478

C11 code for, 561�562

CUDA code for Lennard-Jones atoms in

microcanonical ensemble, 564

MPI code for Lennard-Jones atoms in

microcanonical ensemble, 565

organization of data files for, 562t

of polyatomic molecules, 7

thermostats, 345

Molecular force fields, 144, 165�166

Molecular hydrogen, 145

Molecular interactions, 166

calculation

of long-range interactions, 180�206

of short-range interactions, 166�180

contributions to, 77�84

intermolecular hydrogen bond potentials,

80�81

intermolecular ionic and polar potentials,

77�80

intramolecular angle-bending potentials,

82

intramolecular bond potentials, 81�82

intramolecular cross-terms, 83�84

intramolecular out-of-plane bending

potentials, 82�83

intramolecular torsional potentials, 83

Molecular mechanics (MM), 89

pairwise force fields from, 88�97

Molecular simulation, 1�6, 19�20, 46, 54,

73, 139�140, 359, 410, 527

application of OO to

microcanonical MC simulation of

Lennard-Jones atoms, 474�517

microcanonical MD simulation of

Lennard-Jones atoms, 414�473

and choice of ensemble, 29�30

combined MD and MC program for

Lennard-Jones atoms in

microcanonical ensemble, 517�521

of ensembles

molecular dynamics, 326�353

Monte Carlo, 310�326

extensions, 521�524

fundamental concepts of OO, 407�414

MC method, 4�5

MD, 5�6

methods, 11, 57�58

of phase equilibria

accurate determination of SLE, 392�394

calculating chemical potential, 360�362

empirically based simulation algorithms,

387�392

finite-size scaling, 387

Gibbs ensemble Monte Carlo, 362�367

Gibbs�Duhem integration, 373�380

histogram reweighting algorithms,

384�386

MD Gibbs ensemble, 367�373

NpT1 test particle, 373

pseudo-ensemble methods, 382�384
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thermodynamic scaling, 380�382

progress in, 6�13

chain molecules and polymers, 8�9

early work on hard spheres and atoms,

6�7

ensembles for molecular simulation, 9

interatomic interactions, 11

many-body interactions, 11�12

molecular simulation and object

orientation, 12

nonequilibrium MD simulation, 12

parallel computing, 12�13

phase equilibria, 9�11

polar molecules and ions, 7�8

small nonpolar molecules, 7

studies of VLE, 133�135

of thermal conductivity, 300

Molecular_Dynamics, 416�417

class, 477�480

code for, 436�443

object, 421, 519�520

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

421

Molecules, 77�78, 263�264, 273, 523�524

Ab initio potentials for combinations of,

145�147

application, 219�223

of NEMD algorithms to, 300�301

class, 409�410

extension to, 86�88

adding nonbonded interactions, 87�88

nonbonded interactions in molecules,

86�87

integrators for, 262�279

large molecules, 263�279

small molecules, 262�263

potentials for, 144�152

simple atom-based pairwise potentials for,

84�86

Molten salts, 85�86

Monte Carlo (MC), 1�3, 133, 310�326, 528

μVT ensemble, 36�37

relationships for key thermodynamic

quantities in terms of derivatives of

partition, 37t

acceptance criteria, 378�379

algorithm, 165, 309, 567�569

C11 code for combined Monte Carlo and

molecular dynamics simulation

program for Lennard-Jones atoms in

microcanonical ensemble, 564

C11 code for Monte Carlo simulation of

Lennard-Jones, 563�564

canonical (NVT) ensemble, 310�314

code, 563

CUDA code for Monte Carlo simulation of

Lennard-Jones atoms in

microcanonical ensemble, 564

files for CUDA, 564

general outline of, 5b

Gibbs ensemble method, 366

grand canonical (μVT) ensemble, 319�322

grand canonical algorithm, 347

implementation of GDI for one-component

fluid at several different temperatures,

377b

isobaric�isothermal (NpT) ensemble,

314�319

method, 4�5, 215

Casino de Monte-Carlo, 4f

microcanonical (NVE) ensemble, 322�326

molecular simulation method, 19, 51

NpH ensemble, 37�38

relationships for key thermodynamic

quantities for, 38t

NpT ensemble, 35�36

relationships for key thermodynamic

quantities in terms of derivatives of

partition function for, 35t

NVT ensemble, 32�34

relationships for key thermodynamic

quantities in terms of derivatives of

partition function for, 33t

procedure for accepting cluster moves,

232b

simulations, 2, 8�9, 62�63, 312, 319�320,

327�328, 385, 406, 474�475

in μVT ensemble, 321b

advanced techniques, 223�233

application to molecules, 219�223

background, 216�217

basic concepts, 216�219

in canonical ensemble, 313b

cluster moves, 230�233

comparison of, 326t

configurational bias MC, 224�230

Metropolis sampling and Markov chains,

217�219

in NpT ensemble, 317b

in NVE ensemble, 325b

organization of data files for, 563t

path integral Monte Carlo, 233�235

polymers, 220�223
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Monte Carlo (MC) (Continued)

rigid molecules, 219�220

small flexible molecules, 220

Monte_Carlo, 476�477

class, 477�480

code for, 491�499

object, 519�520

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

480

MonteCarlo() constructor, 480�481

Morse potential, 81�82, 125�126

MP4. See Fourth-order Møller�Plesset

calculation (MP4)

MPI. See Message passing interface (MPI)

MPI_Allreduce(), 556

MPI_Comm_rank() function, 550�552

MPI_Comm_size() function, 550�552

MPI_Finalize() function, 549�550

MPI_Init() function, 549�550

Multi-body effects, 128

Multiconfigurational wave function methods

(MCSCF), 120

Multiparameter potentials, relative

differences between energies

calculated from, 130f

Multiphase system, 368�369

Multiple-time-step hybrid MC technique, 366

Multipolar contributions beyond triple-dipole

term, 136�139

contribution of three-body interactions to

crystalline energy of noble gases, 138t

Multipolar nonadditive coefficients, 137

Multipolar nonadditive third-order potentials,

136�137

Multipole moments, 201�202

MWS potential. See Marcelli�Wang�Sadus

potential (MWS potential)

N
n-butane, 220

N-coupled first-order systems of differential

equations, 258

Naive energy, 166�167

Naiver�Stokes transport coefficient, 289

NCC potential, 146

nearestInt() function, 540

Neighbor list, 170�173

automatically updated neighbor list, 173b

calculation of energies/forces using

neighbor list, 172b, 179b

creation of Verlet neighbor list, 171b

NEMD. See Nonequilibrium molecular

dynamics (NEMD)

NERD potential, 96

Newton’s equations of motion, 19�20, 41, 43,

287, 309�310, 326�327, 339�341

Newton’s law of viscosity, 293

Newton’s second law of motion, 39, 244

Newton’s third law, 174�176, 540

Newton�Gregory forward difference method,

178

Nitrogen, 7

n�m LJ/M potentials, 68

Noble gases, 123�124

Non-Gaussian thermostats, 292

Non-HS repulsive potentials, 58

WCA potentials, 58

Nonadditive coefficient, 133

Nonbonded interactions, 87�88

atom�atom model of diatomic molecule,

87f

in molecules, 86�87

Nonequilibrium molecular dynamics (NEMD),

12, 285, 302, 390, 567�569

application

to mixtures, 301

to molecules, 300�301

comparison with EMD, 301�302

example NEMD algorithm, 286�288

at constant strain rate using Gear

predictor�corrector integrator, 288b

illustration of sliding brick boundary

conditions for shear viscosity

simulations, 287f

simulations, 12, 297

synthetic NEMD algorithms, 288�300

Nonholonomic constraints, 39�40

Nosé thermostat, 335�336

Nosé’s equations of motion, 9

Nosé�Hoover algorithm, 349

Nosé�Hoover equations, 336�338

extension of, 343�345

MD in NpT ensemble using

Nosé�Hoover equations of motion and

corrector�predictor strategy, 345b

MD in NVT ensemble using Nosé�Hoover

equations of motion and

predictor�corrector strategy, 337b

Nosé�Hoover thermostat, 347

NpH ensemble algorithms, 324�325, 339

NpT1 test particle, 373

NpT ensemble, 316, 345�346

algorithm, 344
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MC simulation in, 317b

simulation, 375

thermodynamic definitions of properties

and evaluation in, 25t

NpT MC procedure, 316

NVE ensemble, 30, 474�475

preliminary data dictionary describing

classes in NVE ensemble MC

simulation, 479t

preliminary UML diagram for Monte Carlo

simulations in, 476f

NVE_Ensemble class, 416�418, 476�477,

483

code for, 449�453, 504�507

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

424

NVEPG ensemble, 30

NVT ensemble, 349�351

NVT Gibbs ensemble, 364�365

O
Object modeling technique (OMT),

407�408

Object-orientation (OO), 405

application of OO to microcanonical MC

simulation of Lennard-Jones atoms,

474�517

detailed class description, 479�489

OOA and OOD, 474�478

OOP in C11, 489�517

application of OO to microcanonical MD

simulation of Lennard-Jones atoms,

414�473

detailed class description, 420�433

object-oriented programming in C11,

433�473

OOA and OOD, 414�419

combined MD and MC program for

Lennard-Jones atoms in

microcanonical ensemble, 517�521

extensions, 521�524

fundamental concepts of, 407�414

abstraction and encapsulation, 408

aggregation, 410�411

association, 412�413

classes and objects, 407�408, 408f

inheritance, 409�410

methods and message passing, 408�409

polymorphism, 413�414

molecular simulation and, 12

Object-orientation analysis (OOA), 407, 517

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

474�478

distinction between classes and attributes

for MC simulation, 475t

preliminary data dictionary describing

classes in NVE ensemble MC

simulation, 479t

preliminary UML diagram for Monte

Carlo simulations in NVE ensemble,

476f

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

414�419

distinction between classes and attributes,

415t

preliminary data dictionary describing

classes, 420t

preliminary UML diagram for MD in

microcanonical ensemble, 417f

short-hand UML notation, 416f

Object-orientation design (OOD), 407

OO application to microcanonical MC

simulation of Lennard-Jones atoms,

474�478

distinction between classes and attributes

for MC simulation, 475t

preliminary data dictionary describing

classes in NVE ensemble MC

simulation, 477f

OO application to microcanonical MD

simulation of Lennard-Jones atoms,

414�419

distinction between classes and attributes,

415t

preliminary data dictionary describing

classes, 420t

preliminary UML diagram for MD in

microcanonical ensemble, 417f

short-hand UML notation, 416f

Object-oriented analysis, 414

Object-oriented approach, 406

Object-oriented language, 320

Object-oriented programming (OOP), 407

in C11, 433�473, 489�521

code for Atom class, 454�459, 508�511

code for auxiliary methods, 471�473,

517

code for Energy class, 512

code for ensemble class, 444�448,

491�499

code for Force class, 462
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Object-oriented programming (OOP)

(Continued)

code for Gear_Predictor_corrector class,

467�470

code for Integrator class, 467

code for LJ_Atom class, 460�461, 512

code for LJ_Energy class, 512�516

code for LJ_Force class, 463�466

code for main() function, 433�434,

489�490

code for Molecular_Dynamics class,

436�443

code for Monte_Carlo class, 491�499

code for NVE_Ensemble class, 449�453,

504�507

code for simulation class, 435, 490

languages, 413�414

Objects, 407�408, 408f

OMT. See Object modeling technique

(OMT)

One-component system, 370�371, 373�374,

379

OO. See Object-orientation (OO)

OOA. See Object-orientation analysis

(OOA)

OOD. See Object-orientation design (OOD)

OOP. See Object-oriented programming

(OOP)

OpenCL, 527

OpenMP, 527

OPLS. See Optimized potential for liquid

simulation (OPLS)

Optimized force fields, 89�95

AMBER force field, 90�91

CFF93, 94�95

CHARMM force field, 91

comparison of force fields and future

improvements, 95�97

ECEPP models, 90

MM3 force field, 91�93

OPLS/OPLS-AA force fields, 89�90

UFF, 93�94

Optimized potential for liquid simulation

(OPLS), 89

force field, 90

OPLS/OPLS-AA force fields, 89�90

Ordinary differential equations, 245

Organization of data files for molecular

dynamics simulation, 562t

Original Verlet algorithm, 251�252

for integrating equations of motion, 252b

Out-of-plane bending, 82�83

P
Pairwise force fields from molecular

mechanics, 88�97. See also

Intermolecular pair potentials; Forces

and force fields

Parallel algorithms, 351�353, 567�569

PGCMD algorithm, 352b

Parallel computation principles, 528

Parallel computing, 12�13, 234, 527

Parallel grand canonical MD algorithm

(PGCMD algorithm), 351�353, 352b

Parallel programming with MPI, 546�548

general MPI procedure, 547�548, 548b

key MPI functions or syntax, 547t

Particle�mesh (PM), 191�192, 197

assignment of charges to particle�mesh in

one dimension, 193b

force interpolation in one dimension of,

195b

methods, 166

Particle�particle and particle�mesh algorithm

(PPPM algorithm), 7�8, 179,

191�197, 205�206

calculation of intermolecular forces for

single time step using, 192b

Particle�particle calculation (PP calculation),

191�192, 197

Particles

consequences of constraints on, 40

dynamics, 39�47

Liouville equation, 46�47

motion of constrained particles, 39�46

motion of unconstrained particles, 39

virial theorem, 47

Partition function, 32�34, 234

Path integral Monte Carlo (PIMC), 230,

233�235

PBC. See Periodic boundary conditions (PBC)

Penetrable sphere attractive potential (PSA

potential), 60

Penetrable SW potential, 60

Periodic boundary conditions (PBC),

167�169, 180�181, 540

Periodic scaling of velocities, MD in NVE

ensemble using, 329b

PGCMD algorithm. See Parallel grand

canonical MD algorithm (PGCMD

algorithm)

Phase equilibria, 9�11, 383

Phase-space functions, 35, 37�38, 46

PIMC. See Path integral MC (PIMC)

Pivot algorithm, 223
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PM. See Particle�mesh (PM)

Poisson’s equation, 189�190, 192

Polar molecules, 7�8

Polarizable models, 100�101

Polymers, 8�9, 58, 66�67, 220�224, 286,

383

kink-jump algorithm, 222�223

pivot algorithm, 223

reptation or slithering snake algorithm,

221�222

Polymorphism, 413�414

Position coordinates, 287�288

Post-Hartree�Fock technique procedure, 56

Potentials, 523�524

energy, 22, 339�340

calculation of, 52�54

for total system, 190

ensembles and, 522�523

model, 51

for molecules, 144�152

Ab initio potentials for combinations of

molecules, 145�147

three-body molecular potentials, 145

two-body ab initio molecular potentials,

144�147

potential-based approach, 130�131

pressure, 23

PP calculation. See Particle�particle

calculation (PP calculation)

PPPM algorithm. See Particle�particle and

particle�mesh algorithm (PPPM

algorithm)

Predicted value, 246

Predictor�corrector methods, 6�7, 243,

246�247, 336. See also Integrators;

Adams predictor-corrector algorithm;

Gear predictor-corerctor methods;

Runge-Kutta integration

procedure for solving equations of motion,

247b

MD in NVT ensemble using, 337b

MD in NpT ensemble using, 345b

Preliminary UML diagram

for MD in microcanonical ensemble, 417f

for Monte Carlo simulations in NVE

ensemble, 476f

Pressure, 22�23

evaluation of tensor components to, 291b

tensor, 289�290

Primitive estimators, 234

Principal angular velocity, 263

Private variables, 409f

Propagator potential, 233�234

Proteins, 101, 405�406

PSA potential. See Penetrable sphere

attractive potential (PSA potential)

Pseudo code, 167, 571

Pseudo-Boltzmann factor, 315, 320, 322�323

Pseudo-ensemble methods, 382�384

Public variables, 535

Q
Quadrupole�dipole interactions, 80

Quadrupole�quadrupole interactions, 80

Quantum mechanics principle, 55�56

Quantum theory of intermolecular potentials,

55�56

Quaternions, 220, 263�264

R
Random numbers, 333�335

Random sampling, 217

Rapid elliptic solvers, 194�195

Rattle algorithm, 271�273

Ray’s modified Metropolis criteria, 474�475

Rayleigh�Schrödinger perturbation theory, 56

Reaction ensemble, 366

Reaction field, 166

calculation of dipole interactions using,

188b

method, 187�191

readSimParameters() method, 479�480

Real space

calculation of real space contribution in

Ewald sum, 186b

energy, 182�183

summation, 182�183

Reciprocal space, 183, 185b

Reduction in CUDA, 531�533

REMD. See Replica exchange MD (REMD)

Replica exchange MD (REMD), 332

Reptation algorithm, 221�222

trial move illustration using, 221f

Repulsion1 dispersion pair potentials, 64�74

Born�Mayer and London potentials, 70

Buckingham�Corner potential, 70�71

Egelstaff potential, 69

generalized n�m Lennard-Jones/Mie

potential, 64�69

Maitland�Smith potential, 69�70

Modified Buckingham potential, 71�74

Shaviit�Boys potential, 71

Repulsion models, general refinement of,

74�75
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reSetPosition() method, 508�512

Residual chemical potential, 23�24

Residual molar chemical potential, 393.

See also Chemical potential

Residual molar enthalpy, 393

Restricted primitive model (RPM), 85�86

Reverse Euler estimates of velocities, 254

Rigid body, 39�40

Rigid electronic interaction potential, 56

Rigid models, 97�100

structure of water, 97f

Rigid molecules, 219�220

RK. See Runge�Kutta (RK)

RK2 algorithm. See Second-order

Runge�Kutta algorithm (RK2

algorithm)

RK4 integration of equations of motion, 259b

RK4. See Fourth-order Runge�Kutta

calculation (RK4)

RMS. See Root mean square (RMS)

Root mean square (RMS), 24

Rosenbluth weight, 224�225

RPM. See Restricted primitive model

(RPM)

run() method, 421�422, 479�481

Runge�Kutta (RK), 243

algorithms, 336

integration, 258�261

RK4 integration of equations of motion,

259b

method, 243

runNPT() method, 522

runNVE() method, 421�422, 480�481,

491�500, 522

S
SAAP. See Simplified ab initio atomic

potential (SAAP)

SAPT. See Symmetry-adapted perturbation

theory (SAPT)

SAW. See Self avoiding walk (SAW)

Scaled coordinates, 339

Scaled time derivatives, Gear’s four-value

predictor�corrector algorithm using,

248b

scalingInterval, 329�330

SCF models. See Self-consistent field models

(SCF models)

Schrödinger equation, 118�119

Second-order equation using time-scaled

variables, gear corrector coefficients kd
for, 246t

Second-order Runge�Kutta algorithm (RK2

algorithm), 261

Self avoiding walk (SAW), 223

Self-consistent field models (SCF models),

119

Self-diffusion, 298�299

coefficient, 299

Semi-flexible chain, growing/retracing, 228b

Semigrand ensembles, 360, 378�379

Serial compilation, 565

Set’ methods, 420�421

setComp() method, 500�504

setCutOff() method, 508�512

setEnergy()method, 512�517, 545�546, 554

setForce()method, 504�508, 550�552, 550b

setKineticE() method, 500�504

setLength()method, 500�504

setLJEnergyKernel, 544

setLJForceKernel, 540�542

setMass() method, 508�512

setPosition() method, 508�512

setTrialPosition() method, 508�512

setType() method, 508�512

setVolume() method, 500�504

Shake

algorithm, 266�271

method for incorporating bond-length

constraints, 268b

Shaviit�Boys potential, 71

Shear flow, 285

Shear viscosity, 29, 289�298

cautionary note on modifications to sllod,

292�298

Shifted-force approach, 75�76

Short-hand UML notation, 416�417

Short-range (SR)

interactions, 55, 166, 191�192

calculation of, 166�180

calculation of either intermolecular

forces or energy, 167b

comparison of computational efficiency,

179�180

linked cells, 174�178

long-range corrections to periodic

boundary calculations, 169�170

look-up table, 178�179

Naive energy and force calculations,

166�167

neighbor list, 170�173

periodic boundary conditions and

minimum image convention, 167�169

potentials, 75�77, 76f, 166
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Simple atom-based pairwise potentials for

molecules, 84�86

Fumi�Tosi potential, 86

restricted primitive model, 85�86

Spurling�Mason potential, 85

Stockmayer potential, 84�85

Simple molecules, effective pairwise

potentials for, 64�77

Simple point charge (SPC), 98

potentials, 98�100

SPC/E potentials, 98�100

SPC/Fw model, 100

Simple thermodynamic averages, 22�24

energy, 22

pressure, 22�23

residual chemical potential, 23�24

temperature, 22

Simple velocity scaling, 330�332

molecular dynamics in NVT ensemble

using, 331b

Simplified ab initio atomic potential (SAAP),

128, 130, 155

Simulation, 80, 178, 333�334, 476�477

class, 421

code for, 435, 490

OO application to

microcanonical MC simulation of

Lennard-Jones atoms, 479�480

microcanonical MD simulation of

Lennard-Jones atoms, 421

process, 336�337, 421�422

strategy, 344

techniques, 376

SLE. See Solid�liquid equilibria (SLE)

Slithering snake algorithm, 221�222

sllod

algorithm, 292, 300

modifications to, 292�298

calculation of α thermostatic constant,

293b

four-value gear corrector, 295b

four-value gear predictor, 294b

tensor, 285�286

Small flexible molecule approach, 220�221

“Smarter MC” sampling, 223�224

Soft sphere potential (SS potential), 62�63

Software user’s guide

C11 code for

combined Monte Carlo and molecular

Dynamics simulation program for

Lennard-Jones atoms in

microcanonical ensemble, 564

molecular dynamics simulation, 561�562

Monte Carlo simulation of Lennard-

Jones, 563�564

compilation, 565�566

CUDA code for

molecular dynamics simulation of

Lennard-Jones atoms in

microcanonical ensemble, 564

Monte Carlo simulation of Lennard-Jones

atoms in microcanonical ensemble,

564

MPI code for

molecular dynamics simulation of

Lennard-Jones atoms in

microcanonical ensemble, 565

Solid�liquid equilibria (SLE), 10�11, 58,

62�63, 125, 360

accurate determination of, 392�394

comparison of ECM molecular

simulation with experimental data,

394f

ECM algorithm for SLE, 393b

combined NEMD/EMD method for,

390�392

ECM algorithm for, 393b

SOR. See Successive overrelaxation (SOR)

Spatial decomposition, 535

SPC. See Simple point charge (SPC)

Spring constant, 87�88

Spurling�Mason potential, 85

Square well potential (SW potential), 59, 123

SS potential. See Soft sphere potential (SS

potential)

Statistical mechanics, 20�24, 46

of polarization, 96

Statistical thermodynamics principles, 19

Sticky sphere potential, 61�62

Stockmayer potential, 80, 84�85

Strain rate-dependent shear viscosity, 293

Structural programming approach, 433

Successive overrelaxation (SOR), 279

Summation, 182�183

of Gaussian functions, 183

Supermolecule method, 55�56

Supervised machine learning, 89

Sutherland potential, 61

SW potential. See Square well potential (SW

potential)

Symmetry-adapted perturbation theory

(SAPT), 145�146

Synthetic experimental method, 388

Synthetic method, 387�390
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Synthetic method (Continued)

synthetic algorithm for fluid phase

equilibria, 389b

Synthetic NEMD algorithms, 288�300

evaluation of tensor components to

pressure, 291b

self-diffusion, 298�299

shear viscosity, 289�298

thermal conductivity, 299�300

T
Tang�Toennies term, 126

Taylor expansion of constraint condition,

279

Taylor series expansions, 251

for coordinate vector, 245

Temperature, 22, 323�324, 380�381

dependent potential, 34

scaling, 331�332

Tensor components to pressure, evaluation of,

291b

Test particle methods, 360

Thermal conductivity, 29, 299�300

of butane, 300

triple point, 300

Thermodynamic averages

alternative methods for thermodynamic

properties, 30�38

MC NpH ensemble, 37�38

MC NpT ensemble, 35�36

MC NVT ensemble, 32�34

MC μVT ensemble, 36�37

MD NVE ensemble, 30�32

particle dynamics, 39�47

properties from fluctuations, 24�30

statistical mechanics, ensembles, and

averaging, 20�24

simple thermodynamic averages, 22�24

Thermodynamic properties of argon, 125

Thermodynamic relationships, 393�394

Thermodynamic scaling, 380�382

MC method, 380�381

temperature and density MC, 380�381

thermodynamic-scaling Gibbs ensemble

MC, 381�382

Thermostat, 285�286

Third-order perturbation theory, 56, 150

Third-order triple term, 150

Third-order triple-dipole term, 131�132

Thomas tridiagonal algorithm, 194�195

solution of field equations in one dimension

using, 194b

threadIndex.x (index of threads within block),

531

Three-dimensional map of cells and nearest

neighbors, 175b

3 N Euler�Lagrange equations, 264

Three�body interactions, 11, 130�143, 149.

See also Axilrod�Teller�Mutō

(ATM)

case study, 152�155

efficient three-body calculations,

153�155

systematic improvement of water

potentials, 152�153

density-dependent effective three-body

potential, 135�136

multipolar contributions beyond triple-

dipole term, 136�139

three-body ab initio potentials, 152

three-body dispersion, 131�132

triplet configuration of atoms, 132f

three-body dispersion vs. three-body

repulsion, 140�143

comparison of contributions of ATM,

143f

illustration of dimer geometry, 147f

ratio of repulsion to triple-dipole

interactions, 142f

three-body molecular potentials, 145, 149f

three-body repulsion, 139�140

triple-dipole term and ATM potential,

132�135

Time-scaled coordinates, 247�249

Time-scaled variables, gear corrector

coefficients kd for second-order

equation using, 246t

TIP4P. See Transferable intermolecular

potential 4-point (TIP4P)

Total configurational chemical potential,

23�24

Total energy, 22

Total external force, 39

Total potential energy, 312, 327

Transferable intermolecular potential 4-point

(TIP4P), 98�100

Transferable potentials for phase equilibria

(TraPPE), 96

Transition probability matrix, 217

Transport coefficients, 28�29

diffusion, 28�29

shear viscosity, 29

thermal conductivity, 29

Transport properties
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calculation, 286

of fluid mixtures, 301

Trapezoid-corrector yields, 375

TraPPE. See Transferable potentials for phase

equilibria (TraPPE)

Tree algorithms, 205

Tree-based methods, 197�205

Barnes�Hut algorithm, 197�200

FMM, 200�205

Triangular shaped cloud (TSC), 196

Triangular well potential, 60

Triatomic molecules, 145�147, 264

Triple-dipole potential, 132�133

for nonspherical molecules, 147�148

Triple-dipole term, 132�135

multipolar contributions beyond, 136�139

TSC. See Triangular shaped cloud (TSC)

Two-body ab initio molecular potentials,

144�147

diatomic molecules, 145

polyatomic molecules, 147

triatomic molecules, 145�147

Two-body potentials, 130. See also

Intermolecular pair potentials

Two-body SAAP parameters, 129t

Two-dimensional cell, 174�176

Two-dimensional fluids, 60

Two-dimensional particle distribution,

division of space for, 199f

Two-phase method, 359�360

Two�body atomic potentials, 123�130.

See also Intermolecular pair potentials

Ab initio potentials, 125�130

case study, 152�155

empirical potentials, 123�125

U
UFF. See Universal force field (UFF)

Umbrella sampling, 360

UML. See Unified modeling language (UML)

Unconstrained particles motion, 39

Unified modeling language (UML), 407�410

diagram

aggregation relationship between

Molecule and Atom, 411f

association between Atom and

Intermolecular_Potential, 413f

combined use of inheritance and

aggregation, 412f

different levels of aggregation, 411f

notation for inheritance, 410f

notation, 571

Universal force field (UFF), 93�94

Urey�Bradley potential, 83�84

V
Vapor�liquid equilibria (VLE), 59, 62, 68,

125, 359, 373

of hydrocarbon mixtures, 366

Velocity scaling, 332

Velocity-scaled microcanonical ensemble

algorithm, 331�332

Velocity-Verlet algorithm, 254�256, 279, 332

for integrating equations of motion, 255b

Verlet algorithm, 6�7, 244�245, 250�251,

258, 261�262, 271�272, 279.

See also Integrators

Verlet list, 179�180

Verlet neighbor list, creation of, 171b

Verlet predictor methods, 250�258

Beeman modification, 256�258

leap-frog Verlet algorithm, 253�254

original Verlet algorithm, 251�252

velocity-Verlet algorithm, 254�256

Verlet-based implementation of shake

algorithm, 271�272

Very FMM (VFMM), 204�205

VFMM. See Very FMM (VFMM)

Virial theorem, 22, 47, 386

Virtual displacement, 41

Viscosity, 292

VLE. See Vapor�liquid equilibria (VLE)

W
Water, 8, 52, 296�297

models for, 97�101

flexible models, 100

polarizable models, 100�101

rigid models, 97�100

systematic improvement of water potentials,

152�153

WCA. See Weeks�Chandler�Anderson

potential (WCA)

Weeks�Chandler�Anderson potential

(WCA), 58

WCA1 finitely extensible nonlinear elastic

potential, 87�88

Widom test particle method, 361

Wolf approximation of Ewald sum, 186�187

X
Xenon, 124, 141

Y
Yukawa potential, 60�61
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