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We analyze the flow of energy and entropy emitted by a class of moving mirror trajectories
which provide models for important aspects of the radiation fields produced by black hole evaporation.
The mirror radiation fields provide natural, concrete examples of processes that follow thermal distributions
for long periods, accompanied by transients which are brief and carry little net energy, yet ultimately
represent pure quantum states. A burst of negative energy flux is a generic feature of these fields, but it need
not be prominent.
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I. INTRODUCTION

In the context of quantum field theory, moving mirror
models consider the effect of imposing boundary condi-
tions on a moving surface [1–3]. In recent years the subject
has attracted renewed interest, prompted in part by signifi-
cant experimental developments [4–7] (and see below) and
in part by the continuing debate about the ultimate fate of
an evaporating black hole, including the “firewall” proposal
of Almheiri et al. [8], and the “fuzzball” proposal of Mathur
[9]. Moving mirror models are thought to provide useful
idealizations [10,11] of black hole evaporation [12], though
it remains unclear how far the analogy can be taken. Here
we analyze a class of moving mirror trajectories leading to
radiation fields which have several properties that are
remarkable in themselves, and desirable in a model of
black hole evaporation:

(i) The emitted radiation follows a thermal (Planck)
spectrum for arbitrarily long times. This simulates
the Hawking radiation process which, according to a
semiclassical analysis, is thought to dominate the
evaporation of an isolated black hole over most of its
lifetime.

(ii) The radiation field is limited in space and time.
(iii) Apart from the radiation, the quantum fields ap-

proach their normal ground states (i.e., “vacuum”) at
early and late times. In this sense, there is no
remnant [13–17].

(iv) Despite the thermal appearance of the bulk of the
radiation field, the final state, including the radiation
field, is a pure quantum state.

This last point is especially interesting, for it embodies the
“information loss” paradox and, within this class of
models, resolves it. Here let us note that a similar paradox
occurs in the following scenario, which is increasingly
relevant to practical experiments and quantum technology:
Prepare a quantum system in a highly excited pure state,
and let it cool to the ground state by emitting radiation. The
resulting radiation field must be pure, but one expects it to
appear thermal over a long interval. This bundle of proper-
ties, and the conceptual resemblance of the black hole
problem to the foregoing general quantum problem, sug-
gests that for qualitatively trajectories the moving mirror
idealization of evaporating black hole radiation may
become remarkably appropriate.
Through a sum rule connecting the flows of energy and

entanglement entropy, we show that these properties imply
a period of negative energy flux. The required flux need not
be large, however, if it occurs at near-maximal entropy.
We use units with c ¼ ℏ ¼ kB ¼ 1.

II. MODEL

In moving mirror models we impose Dirichlet boundary
conditions along the worldline of a “mirror” on quantum
fields in 1þ 1 dimension. For concreteness we will focus
on the case of a single massless scalar field, though most of
our results apply to conformal field theories more generally.
For our detailed analysis, we will focus on emissions
accompanying a particularly simple and symmetric
2-parameter family of trajectories. As the analysis will
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make clear, the radiation fields emitted by moving mirrors
following a wide variety of trajectories that share some
broad qualitative features will share the good properties of
this symmetric family.
Our model trajectories are given by

tðxÞ ¼ −x −
sinhð2κxÞ

g
: ð1Þ

where κ and g are free parameters and (t; x) are standard
Minkowski coordinates. Equation (1) is inspired by the
“black mirror” trajectory [18–20]

tðxÞ ¼ −x −
e2κx

κ
: ð2Þ

The black mirror evolves to an asymptotic light-like
trajectory [21,22] of an eternal black hole horizon
[23,24]. It emits an exactly Planckian spectrum of radiation
with temperature T ¼ κ

2π. Our (previously unanalyzed)
trajectories are PT symmetric versions of the black mirror,
in which we also introduce an additional parameter.
Figure 1 displays trajectories defined by Eq. (1) within a

Penrose conformal diagram. Note that for large t the mirror
becomes static, _x → − 1

κt: that is, tðxÞ approaches a vertical
asymptote as x → �∞, largely due to the distortion of non-
null directions near the boundaries of the conformal
diagram. The limiting velocity is zero, as in the asymp-
totically static boundaries in [22,25–27], but here xðtÞ
diverges logarithmically at large �t. Near t ¼ 0, on the
other hand, the mirror bends toward a null trajectory, where
its velocity is maximal. The mirror trajectory simulates the
effect of dynamical geometry in generating radiation fields.

At early and late times, it plays the role of the center of
radial coordinates, but at intermediate times it simulates the
mathematics of the black hole horizon in Hawking’s
calculation.
Consistent with the “no remnant” interpretation, the

static initial and final states represent empty space. More
precisely, we have the velocity

dx
dt

≡ VðxÞ ¼ −
g

gþ 2κ coshð2κxÞ : ð3Þ

It is zero in the limit x → �∞, and has its maximum
absolute value at x ¼ 0, where Vmax ¼ −g=ðgþ 2κÞ. For
g ≫ κ, Vmax → −1. At late times the velocity scales as
inverse time. Small and innocuous modifications of the
trajectory at late (and early) times could bring the mirror
strictly to rest finally (and initially). To do this one can
employ smooth but nonanalytic functions, as are used to
construct smooth partitions of unity [28].

III. RADIATION FIELD

The expectation value of the stress tensor can be
evaluated analytically, in terms of the mirror trajectory
tðxÞ. It is straightforward to evaluate the energy flux FðxÞ at
the mirror, as derived from the stress tensor [1], at right null
infinity.
As can been seen in Fig. 2, when g=κ ≫ 1 we have two

long lived plateaus. These plateaus occur at the flux value

Fthermal ¼
κ2

48π
; ð4Þ

which is the energy flux value associated with thermal
emission in the analog black mirror. To leading order in
κ=g ≪ 1 the normalized flux approaches

FIG. 1. The trajectory, Eq. (1), plotted in a conformal diagram.
Here we use units with κ ¼ 1 and define g ¼ 10n. Red, blue,
green, black are n ¼ 0, 1, 2, 3, respectively.

–1.0 –0.5 0.5 1.0

–2.0

–1.5

–1.0

–0.5

0.5

1.0

F

FIG. 2. Here we plot the energy flux from the symmetric mirror
setting κ ¼ ffiffiffiffiffiffiffiffi

48π
p ¼ 12.279. We show the flux for g ¼ 10n where

red, blue, green, yellow, orange, black are n ¼ 1, 2, 3, 4, 5, 6,
respectively. Note the color scheme differs from Fig. 1 but is
consistent with all other figures. The thermal distribution corre-
sponds to FðxÞ ¼ 1.
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FðxÞ=Fthermal ¼ 1 − 3sech2ð2κxÞ þOðκ=gÞ: ð5Þ

A striking feature and perhaps surprising feature is the burst
of negative energy flux around x ¼ 0. It saturates to twice
the height of the plateau, and finite width as the plateaus
expand. We will demonstrate below, using the connection
between energy flow and geometric entropy, that negative
energy flux is a necessary feature of the radiation fields
associated with remnant-free moving mirror models, fol-
lowing from unitarity.
The total energy flux observed at right null-infinity is

finite. For large g ≫ κ we have

E ¼ κ

24π
ln
g
κ
: ð6Þ

The moving mirror model contains no variable that corre-
sponds directly to the black hole mass, but one can define an
effective mass parameter by imposing the semiclassical
(Hawking) relationship between the radiation flux andmass.
For our trajectories the effective mass, so defined, remains
constant on the long plateaus. Thus they do not reflect the
expected increase of temperature (associated with decrease
of black hole mass). It should be possible to construct
approximately “self-consistent” trajectories which incorpo-
rate that feature, but we will not attempt that here. Here we
only note that we are free to choose g in such a way that the
energy E corresponds to the mass of the black hole which
emits radiation at temperature T. This entails lnðg=κÞ ∼M2,
with M measured in Planck units. Thus g=κ ≫ 1 is appro-
priate in modeling semiclassical black holes.
The central quantities for calculating particle production

are the beta Bogolyubov coefficients, which can be
calculated analytically. The particle spectrum per mode
per mode is

jβωω0 j2 ¼ ωω0e−
πω
κ

π2κ2ω2
p

����Kiω
κ

�
ωp

g

�����
2

; ð7Þ

where KnðzÞ is a modified Bessel function of the second
kind and ωp ≡ ω0 þ ω, the sum of the in and outgoing
mode frequencies. The spectrum, Nω, or particle count per
mode, detected at right null infinity surface Iþ

R is found by
integrating Eq. (7),

Nω ¼
Z

∞

0

jβωω0 j2dω0: ð8Þ

Figure 3 illustrates the results for different g values. For
large g we approach a Planck spectrum, but not uniformly.
There is always a zero at strictly 0 frequency, and the total
number of radiated particles, N ¼ R

Nωdω, can be calcu-
lated numerically and is always finite. The total energy can
be retrieved using the particles as a numerical sum over
quanta,

E ¼
Z

∞

0

Z
∞

0

ω · jβωω0 j2dω dω0: ð9Þ

This global energy calculated via Eq. (7) agrees with the
analytic result Eq. (6), derived earlier by integrating the
local stress tensor, for arbitrary g=κ. (See [29] for a
discussion of problems that have previously arisen in this
regard.)
For large g=κ ≫ 1 to leading order, the integrand

jβωω0 j2 ≡ Nωω0 has the simple form

Nωω0 ¼ ω0

2πκ

coth ðπω=κÞ − 1

ðω0 þ ωÞ2 ≈
1

πκω0
1

e2πω=κ − 1
; ð10Þ

where the last step simplifies the prefactor by considering
the large frequency regime, ω0 ≫ ω. The appearance
of the Planck distribution for large g is consistent with
the constant plateau energy flux of Eq. (4) for g ≫ κ as
seen in Fig. 2 and the flattening plateau for constant
particle emission over time in Fig. 5. It parallels
Hawking’s calculation of radiation from a fixed black hole
background.
For any finite value of r≡ g=κ the total dimensionless

number of particles created, N, is finite, though it increases
without limit as r grows. Numerically, setting r ¼ 1010

7

we
find N ≈ 107 particles. The absence of an “infrared catas-
trophe” in the number of soft quanta reflects the absence of
a physical remnant.

IV. ENTROPIES

Both thermodynamic entropy and entanglement entropy
play an important role in particle creation models [30]. For
our purposes, the most enlightening measure of entangle-
ment (see also harvesting [31]) is the renormalized entan-
glement entropy of the state at future null infinity to the left
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FIG. 3. The spectrum, Nω, Eq. (8), or particle count per mode
detected at right null infinity, of the asymptotically static thermal
mirror is plotted vs frequency ω, in units of κ. The different
colored lines correspond to different g values as in Fig. 2. The
solution shows no infrared divergence in the number of soft
particles.
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(or right) of a given value of null time u. Heuristically, this
represents a flow of entanglement entropy through u. In the
moving mirror model, it has the simple form −6S ¼ η,
where η is the rapidity of the mirror as it crosses u. In our
model we have a simple expression for S expressed as a
function of x, the corresponding position of the mirror:

SðxÞ ¼ 1

12
ln

�
1þ g

κ coshð2κxÞ
�
: ð11Þ

The entropy vanishes for the asymptotic spatial positions,
as it should since the evolution is unitary and entails no
information loss. Figure 4 illustrates this entropy flux.
The energy flux F is related analytically to the entropy S

according to (e.g., [27,32,33])

FðuÞ ¼ 1

2π
ð6S02 þ S00Þ ð12Þ

¼ 1

2π
e−6S

d
du

�
e6S

d
du

S

�
: ð13Þ

From Eq. (13) and the assumption that S becomes constant
for u → �∞ we derive the sum rule,

Z
∞

−∞
due6SðuÞFðuÞ ¼ 0: ð14Þ

Thus, on general principles, the flux FðuÞ will have a
negative region for the radiation field of a remnant-free
pure state. Note that for purposes of fulfilling the sum rule
the negative flux has greatest leverage when it occurs at the
maximal SðuÞ, as we see realized in Figs. 2 and 4. The
flux of statistical mechanical entropy associated with the
thermally distributed flux on the plateau tracks S0 for x > 0
and −S0 for x < 0.
The pure-state nature of the total radiation field, when

that radiation takes place over a finite interval of time, also
follows from general principles. Indeed, since the classical

initial value for the relativistic wave equation on the region
bounded by the mirror trajectory is well-posed, one has a
well-defined mode evolution, which preserves the standard
inner product. This implies, at the quantum level, unitary
time evolution.

V. PARTICLE COUNTS IN TIME

Time evolution can be resolved with the use of wave
packets [12] βϵjn that pick out frequencies near jϵ at retarded
time u ¼ 2πnϵ−1 with width 2πϵ−1. This localization of the
global beta coefficients corresponds to the sensitivity
response of a particle detector at a given time, frequency,
and bandwidth [22,34]. With large g ≫ κ, and good time
resolution (i.e., large ϵ; the particles pile up in the single
j ¼ 0 bin) one observes a flattening plateau, Fig. 5.
Remarkably, the plateau extends through the n ¼ 0 time
bin, with no obvious scar from accompanying the negative
energy flux.

VI. SUMMARY AND DISCUSSION

The moving mirror models discussed here produce
radiation fields that look thermal for long periods of time,
and limited transients, yet represent pure states. This,
together with their geometric character, suggest that they
may provide instructive models for quantum evaporation of
black holes, which plausibly—yet paradoxically—have
those properties.
A striking feature, here simply shown to be generic, of

remnant-free moving mirror models is the occurrence of
negative energy flux. Although states with locally negative
values of energy density are known to occur in several
contexts, including the intensely studied Casimir effect,
their occurrence is somewhat unusual and there seems to be
no general understanding of their properties. In our context,
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FIG. 4. The asymptotically static mirror with finite energy and
finite particle count has entropy flux, Eq. (11), plotted with
different g values in units of κ (same color scheme as Fig. 2).
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FIG. 5. The discrete spectrum, Njn, time evolved. Here the
system is set with units of κ, and g ¼ 1010. The detector is set
with j ¼ 0, n ¼ ð−24; 24Þ, ϵ ¼ 4. Notice the flattened plateau
centered around n ¼ 0.
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the derivation of the sum rule Eq. (14) connects negative
energy flux to the purity of the quantum radiation field,
though it does not provide a mechanistic explanation of the
connection.
Within the specific models analyzed here, the indepen-

dent signatures of the negative energy flux appear to
be subtle. Specifically, as a fraction of the overall process
it is strictly limited in time and energy (for g ≫ κ,
ENEF ¼ −ðκ=24πÞ½ ffiffiffi

6
p

− tanh−1
ffiffiffiffiffiffiffiffi
2=3

p � ≈ −0.017κ), and it
does not appear prominently in the response of quasi-
realistic particle detectors, Fig. 5, unlike many positive
energy flux signatures [35].
In order to satisfy the sum rule Eq. (14) with an

inconspicuous negative energy flux, it is important that
the flux occur where the entanglement entropy S is large. If
this possibility is to be relevant to physical black hole
evaporation, it should therefore act early in the black hole’s
history, or at regular intervals throughout. To our knowl-
edge no existing semiclassical treatment of black hole
evaporation, including ones which attempt to incorporate
backreaction, contains such effects. It is conceivable that
better approximations, either within general relativity itself
or in the larger framework of string theory, could display
them. It is tempting to speculate, in view of the connection
to entropy, that entropic forces come into play, modifying
the space-time geometry. As we have seen, the required
effects may not need to be large.

Independent of their possible connection to black holes,
the unusual features predicted to occur in radiation fields
produced by moving mirror models are interesting in
themselves, especially as they confront the tension between
quantum purity and apparent thermality. The availability of
arrays containing very large numbers of mirrors whose
orientation can be programmed flexibly might offer another
road (in addition to [4–7]) to realizing such models.
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