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Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent cir-
cuit modeling, parameter identification, and state estimation in lithium-ion battery 
power applications. It explores the requirements of high-power lithium-ion batteries 
for new energy vehicles and systematically describes the key technologies in core 
state estimation based on battery equivalent modeling and parameter identification 
methods of lithium-ion batteries, providing a technical reference for the design and 
application of power lithium-ion battery management systems.

• Reviews Li-ion battery characteristics and applications
• Covers battery equivalent modeling, including electrical circuit modeling 

and parameter identification theory
• Discusses battery state estimation methods, including state of charge esti-

mation, state of energy prediction, state of power evaluation, state of health 
estimation, and cycle life estimation

• Introduces equivalent modeling and state estimation algorithms that can 
be applied to new energy measurement and control in large-scale energy 
storage

• Includes a large number of examples and case studies

This book has been developed as a reference for researchers and advanced students 
in energy and electrical engineering.
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Preface
The development of new energy technology is a strategic measure to alleviate the 
world energy crisis and achieve the goal of carbon neutrality. Focusing on new 
energy technology based on the lithium-ion battery, this book examines concepts 
such as equivalent circuit modeling, parameter identification, and state estimation 
in lithium-ion battery power applications. This book systematically describes the 
key technologies in state estimation based on equivalent modeling and parameter 
identification methods of lithium-ion batteries. It mainly includes an overview of the 
lithium-ion batteries, equivalent modeling, parameter identification, state of charge 
estimation, state of health estimation, state of power estimation, state of energy esti-
mation, and cycle life estimation. It also provides practical references for the design 
and application of lithium-ion battery management systems (BMSs), which are based 
on the technical requirements of lithium-ion battery applications compiled from the 
perspective of equivalent circuit modeling and state estimation of lithium-ion batter-
ies. This book has distinctive features and employs the use of a variety of methods 
and techniques for state estimation and has rich examples that can serve as a guide 
and reference material. This book can be used as a textbook for control science and 
engineering, automation, electrical engineering, and other related majors in colleges 
and universities, as well as a resource in the field of new energy measurement and 
control. These measurement and control techniques can be used as a technical refer-
ence for researchers.

In recent years, power battery technology has rapidly developed and gradually 
matured, and lithium-ion batteries have become the main body of power batter-
ies. During the energy storage and supply process of the lithium-ion battery pack, 
the BMS monitors its working status and manages the available energy. Due to the 
high safety requirements and complex working conditions of the lithium-ion battery 
packs, equivalent circuit modeling and state of charge estimation in applications have 
become the research hot spots.

Summarizing the battery pack application theory, experience, and design methods 
formed by the development of the high-power lithium-ion BMS for many years, the 
authors from the perspective of battery management combined the technical require-
ments of high-power lithium-ion batteries for new energy vehicles, the application of 
lithium-ion batteries, and battery power management as a starting point for the com-
pilation of this book. Summarizing the understanding and experience of lithium-ion 
battery equivalent modeling and state estimation, we hope that this book can provide 
some technical references for the design, modeling, and application of lithium-ion 
BMSs. It also proposes some contributions to the global development of new energy 
technology and application business.

This book is written and compiled by the new energy measurement and control 
research team at the Southwest University of Science and Technology. The research 
team focuses on the field of new energy detection and control, with rich experience 
in teaching and research, with a fine tradition of close integration of production, 
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education, and research. This book is compiled based on the research results regard-
ing related materials and divided into six chapters. Professor Shunli Wang con-
structed the overall framework and carried out the unified supplements, revisions, 
and finalization. The research team participated in the content compilation of this 
book.

Chapter 1 provides an overview of lithium-ion batteries to give readers a com-
prehensive understanding and lays the foundation for subsequent equivalent circuit 
modeling and state estimation analyses of lithium-ion batteries, led by Chunmei Liu, 
Xiao Yang, Pu Ren, Shunli Wang, Yi Chai, Yujie Wang, Yunlong Shang, Zonghai 
Chen, and Paul Takyi-Aninakwa. Chapter 2 describes the battery equivalent circuit 
modeling and parameter identification methods, most of which are mainly written 
by Chunmei Yu, Haotian Shi, Xiao Yang, Shunli Wang, Yongcun Fan, Yuhong Jin, 
Xin Xiong, Weijia Xiao, Jie Cao, and Wenhua Xu. Chapter 3 presents the meth-
ods and analysis of battery state of charge estimation, completed by Peng Yu, Dan 
Deng, Daniel-Ioan Stroe, Jinsong Qiu, Yanxin Xie, Qingyun Ma, Shunli Wang, Jialu 
Qiao, and Xiao Yang. Chapter 4 mainly elaborates on the estimation of battery health 
status, completed by Pu Ren, Mingfang He, Shunli Wang, Yangtao Wang, Carlos 
Fernandez, Ji Wu, Lei Chen, Peng Yu, XIao Yang and Siyu Jin. Chapter 5 explains 
battery power state estimation, led by Lili Xia, Bowen Li, Yuyang Liu, Liying 
Xiong, Wen Cao, Jinhao Meng, Li Zhang, Shunli Wang, Xiao Yang and Jiawei Peng. 
Chapter 6 describes the estimation of battery energy state and cycle life, completed 
by Weihao Shi, Siyu Jin, Shunli Wang, Junhan Huang, Josep M. Guerrero, Kailong 
Liu, Wu Tang, Xiao Yang, Long Zhou, and Ran Xiong.

Professor Zonghai Chen of the University of Science and Technology of China 
reviewed the entire book. Professor Wu Tang of the University of Electronic Science 
and Technology of China provided a wealth of reference materials for this book. 
Professor Yi Chai of Chongqing University provided a lot of constructive comments 
on the publication of this book. We are grateful to them for their hard work and dedi-
cation to the success of this book. This book passed inspection from the Mianyang 
Product Quality Supervision and Inspection Institute (National Electrical Safety and 
Quality Supervision and Inspection Center), Deyang Product Quality Supervision 
and Inspection Institute, Mianyang Weibo Electronics Co. Ltd., Shenzhen Yakeyuan 
Technology Co. Ltd., Dongguan Bell Experimental Equipment Co. Ltd., and 
Shenzhen Xinwei New Energy Technology Co. Ltd. Thanks a lot for their scientific 
help and technical support.

Lithium-ion battery condition monitoring involves a wide range of areas and is 
limited by the knowledge level of the authors. Inevitably, there are improprieties in 
the organization and compilation of this book, and the readers are therefore welcome 
to criticize and correct constructively through the website https://www.researchgate.
net/lab/DTlab-Shunli-Wang. We hope that this book serves as a platform for knowl-
edge exchange and establishment of contact with readers, promoting the progress of 
key technologies for monitoring the battery states of lithium-ion batteries ultimately.

Editor
May 2022

https://www.researchgate.net
https://www.researchgate.net
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2 Multidimensional Lithium-Ion Battery Status Monitoring

Introduction: As an indispensable renewable energy source, lithium-ion batteries 
have the outstanding advantages of being lightweight, environmentally friendly, 
and portable. They are used in various fields of society, such as automobiles, 
mobile phones, aerospace, and other high-tech industries [1]. Therefore, more 
attention needs to be paid to the consumption and pollution caused by lithium-
ion batteries. According to the current technological situation, the technologies 
applied for lithium-ion batteries are not enough, and there are still many prob-
lems waiting to be solved [2,3]. Accidents resulting from out of control such as 
battery leakage, battery explosion, and battery fire still occur from time to time. 
Therefore, the efficient application and maintenance technology of lithium-ion 
batteries have become a research hot spot. The improvement in the reliability, 
safety, and service life of lithium-ion batteries has also become an urgent problem 
to be solved.

1.1  OVERVIEW OF LITHIUM-ION BATTERIES

1.1.1  State of the art

The battery industry develops rapidly, promoting the progress of human lives. 
On the other hand, it has also caused environmental pollution and energy crises. 
In various fields, the massive consumption of crude oil has caused serious air 
pollution and damage to the earth and atmosphere. It has also brought about an 
energy crisis, which has triggered a series of economic and political problems 
[4]. The resource crisis affects the rapid development of science and technology 
and even seriously affected human survival [5]. Severe weather conditions caused 
by air pollution have affected most cities seriously [6]. According to a survey, 
there are hundreds of large cities, but only less than one percent of these cities 
have air quality that meets the required safety standard. The pollution caused 
by the consumption of oil and other resources destroys the environment and has 
terrible consequences, which have negatively affected the lives of humans and 
plants. More terrible problems such as rising global temperatures and melting gla-
ciers are threatening humanity [7]. The scarcity of resources and environmental 
pollution have gradually gained world attention. In the environment, new energy 
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technology has been continuously developed with the attention and strong support 
of various countries. China has already raised resources to combat these environ-
mental issues to the height that it is a national strategy.

During the working process of the lithium-ion batteries, the battery manage-
ment system (BMS) is used to monitor the working status and related parameters 
of the battery. Under abnormal conditions, the BMS can alarm and cut off the 
power supply in time to avoid damage and accidents. It makes the battery safer 
and more reliable during the application, which extends the service life of the bat-
teries [8–11]. In recent years, BMS technology has been regarded as an important 
development direction and research objective by universities, scientific research 
institutions, and companies.

The battery state of charge (SOC) estimation has always been a very important 
task of the BMS. The SOC is also called the remaining capacity, which is the ratio of 
the remaining dischargeable capacity after the battery has been used for some time 
or left unused for a long time compared to its fully charged state. The SOC value of 
the battery can reflect the endurance and the remaining use time [12–16]. During the 
working process, the BMS reflects the state of the battery, and the SOC of the battery 
is one of the most important state parameters. The state estimation of the battery is 
an important technology, but it is difficult to carry out the effective equivalent circuit 
modeling and accurate SOC estimation of lithium-ion batteries [17,18]. It is impos-
sible to directly measure the SOC value of the battery because it is a dynamic param-
eter. To obtain the SOC value of the battery, it is necessary to measure its voltage, 
current, temperature, internal resistance, and other parameters and estimate the bat-
tery SOC value through a relational expression. Due to the interference from external 
conditions such as temperature in the process, it is difficult to accurately estimate the 
SOC. Therefore, research on different methods and technologies to estimate the SOC 
accurately is necessary [19,20].

Accurate SOC estimation of lithium-ion batteries has great theoretical 
value and practical significance for its development. Specifically, it can make 
the lithium-ion battery pack safer from usage and improve the performance of  
batteries[7,21]. If the SOC can be estimated accurately, the BMS can detect and 
display the status of the battery better, and the data can guide users to maintain 
the batteries. It highly reduces the maintenance cost and time, prolongs the bat-
tery life, thereby maintaining high performance and improving the user experi-
ence in the process.

Among all kinds of power batteries, lithium-ion batteries are widely used 
in various fields because of their outstanding advantages over other batteries. 
Advanced technology is a prerequisite for people to study lithium-ion batteries, and 
advances in science and technology have also enabled people to develop rapidly 
in the research of lithium-ion batteries and have achieved good results [22,23]. As 
research progresses, the various characteristics of lithium-ion batteries are gradu-
ally being understood. Lithium-ion batteries have outstanding advantages, such 
as high voltage, lightweight, and high energy density [24]. Nowadays, research-
ers have developed a variety of lithium-ion batteries suitable for different applica-
tion scenarios for high specific energy and fast charging conditions, which have 
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expanded the application field of lithium-ion batteries and accounted for its rapid 
development in modern society. The earliest use of lithium-ion batteries enabled 
pacemakers to be implanted or operated on the human body for a long time without 
recharging. With the rapid development and wide application of digital products, 
lithium-ion batteries are used in various digital products and power storage sys-
tems. Nowadays, countries all over the world are actively investing in the research 
and development of lithium-ion batteries.

For lithium-ion battery research, Japan’s Sony Corporation is one of the pioneer 
companies to research and develop lithium-ion batteries compared to other coun-
tries and regions. In 2010, the Japanese government decided to increase investment 
in lithium-ion battery research and development. The government increased invest-
ment in electric vehicle research, by directly organizing relevant professional mem-
bers to implement special national plans to research, develop, advance, and apply 
lithium-ion battery technology to a new generation of electric vehicles. Currently, 
the lithium-ion battery produced in Japan has reached an international leading 
level. Therefore, Japan attaches great importance to the development of new energy 
sources. The resource crisis is a huge predicament that cannot be ignored [25]. As 
the first country to study electric vehicles, Japan has been in the leading position 
in electric vehicles.

The research and production of lithium-ion batteries have rapidly grown with the 
development of society. As far as the current situation is concerned, the research 
and production of lithium-ion batteries are still growing, and their position in the 
global ranking continues to expand. In an environment-friendly world, new energy 
and environmental protection issues are important research topics, and lithium-ion 
batteries are relatively environmentally friendly in use. At present, lithium-ion bat-
teries have gradually replaced those that have a greater impact on environmental 
pollution. It has also become an indispensable energy storage component in social 
development [26]. The development forecast of the battery industry points out that 
the frequency of use of lithium-ion batteries will increase in the future, the appli-
cation fields will expand, and the market share will continue to increase. At this 
stage, the number of manufacturers producing lithium-ion batteries is gradually 
increasing, including companies of Wanxiang Group and AVIC lithium-ion batter-
ies, and they serve as a broad platform and space for lithium-ion battery research 
and production. The lithium-ion battery system itself is a complex system integrat-
ing chemical, electrical, and mechanical characteristics [27–29]. Consequently, the 
requirements of various characteristics must be considered in the design.

In particular, the safety and life attenuation characteristics contained in the 
chemical characteristics of battery cells cannot be evaluated intuitively, and it is 
not easy to predict in a short time [30]. Therefore, when designing the battery 
system, it is necessary to adopt battery technology, group technology, BMS tech-
nology and also take into account the safety, reliability, and durability of the bat-
tery. Lithium-ion batteries generally come in cylindrical and rectangular shapes 
[31–34]. The interior of the cylindrical battery adopts a spiral winding structure, 
which is made of extremely fine and highly permeable positive and negative elec-
trode material, mainly including polyethylene, polypropylene, polyethylene, and 
polypropylene composite materials. The rectangular lithium-ion battery is formed 
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by lamination, with a diaphragm placed on the positive electrode, then a diaphragm 
on the negative electrode, and so on. The positive electrode includes a lithium-ion 
collector composed of lithium-containing materials, such as one or more mixed 
materials of lithium cobalt oxide, lithium manganate, nickel-cobalt lithium manga-
nate, and a current collector composed of the aluminum film. The current collect-
ing electrode is composed of a layered carbon ion collecting electrode and a copper 
ion collecting electrode. The battery is filled with organic electrolyte solution and 
equipped with a safety valve and positive temperature coefficient (PTC) resistor 
element, which has the advantages of small thermal resistance, high heat exchange 
efficiency, non-combustion, safety, and reliability [35–37]. It can effectively pre-
vent the battery from being damaged in an abnormal state or output short circuit.

Under the influence of abnormal factors such as short circuits, high heat, and 
overcharge, it is easy to generate high-pressure gas in the battery, and it causes the 
deformation of the battery shell and even the risk of explosion. To use it safely, a 
safety valve must be installed in the battery to discharge the generated gas in case of 
abnormality to avoid explosion. When the internal pressure of the battery container 
rises to an abnormal state, the safety valve can quickly open and discharge the gas, 
playing the role of safety protection under abnormal conditions [38]. Since the PTC 
element is in the low resistance state under normal temperature, the danger of bat-
tery overheating can be prevented by adjusting the current in case of abnormality. 
For example, when an abnormally large current generated by a short circuit or over-
charge causes the battery to overheat, the PTC element switches to a very high resis-
tance state to reduce the current in the circuit. Therefore, the PTC element is usually 
used to prevent the battery overcurrent and the resulting overheating and protect the 
battery [39,40]. The voltage of a single lithium-ion battery is generally 2.80~4.20 V, 
and its capacity is generally 1.5 Ah, while the single capacity of a lithium-ion battery 
is generally in the range of 2–200 Ah. For new energy vehicles, a voltage of hundreds 
of volts is required to meet the requirements of endurance mileage, and a single bat-
tery cannot provide high voltage and energy. Therefore, the single lithium-ion battery 
is often processed in series and parallel to form a battery pack to meet the require-
ments of voltage and electricity.

1.1.2  Lithium-ion Battery CompoSition

Lithium-ion batteries are mainly composed of four parts: positive and negative elec-
trodes, diaphragm, and electrolyte. The cathode material determines the capacity and 
voltage of the batteries, which provides lithium ions for the batteries and determines 
the capacity and voltage [41,42]. Commonly used materials of positive electrodes 
are lithium manganese oxide, and conductive fluid collection using 10–20-micron 
thickness of electrolytic aluminum foil [43]. The anode material is mainly graphite, 
or carbon with a graphitic structure, and the conductive collector uses electrolytic 
copper foil with a thickness of 7–15 microns. The anode material at the anode acts as 
a current through an external circuit while allowing reversible absorption or emission 
of lithium ions released from the cathode. The main function of the anode is to store 
lithium ions and realize the insertion and intercalation reaction to lithium ions during 
the charge–discharge process.
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The diaphragm is a special composite mold that prevents electrons from free 
shuttle between the positive and negative electrodes, while the lithium ions in the 
electrolyte can pass freely [5]. The electrolytes are mainly materials with high ionic 
conductivity, which can make it easy for lithium ions to move back and forth, it is 
generally composed of lithium salt and organic solvent, and it has the function of 
conducting ions.

The diaphragm is essentially an insulator, free electrons cannot pass through it, 
so it does not conduct electricity. In the battery, the element exists in the form of 
ions that can easily pass through the separator, and electrons leave the element on 
a new carrier, positive or negative electrode material. When it is in contact with the 
separator, the separator cannot absorb the free electrons on the electrode, thereby 
preventing the passage of electrons [44]. The common materials of the separator 
are single-layer PP film, PE film, and PP/PE/PP three-layer composite film. The 
electrolyte realizes the conduction of lithium ions between the positive and negative 
electrodes of the batteries. The cathode and anode determine the basic performance 
of the battery, while the electrolyte and diaphragm determine the safety of the bat-
tery [45,46]. Currently, LiPF6 is the most widely used electrolyte. There are lithium 
ions, metal ions, oxygen ions, and carbon layers in the batteries. The composition 
of the lithium-ion battery is made up of some compounds. The reaction is done by 
the movement of ions inside the cell. The cell’s diaphragm acts as a barrier, separat-
ing the battery’s poles [47–49]. The internal structure of the battery is objective, as 
shown in Figure 1.1.

FIGURE 1.1 Schematic diagram of the lithium-ion battery structure.
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In summary, the reason why lithium-ion batteries are used more than other 
batteries is that lithium-ion batteries have many advantages compared with other 
batteries [50]. (1) The energy density of lithium-ion batteries is very high; that 
is, in the unit cubature, the heat released is very high. (2) Lithium-ion battery is 
more environmentally friendly and meets the requirements of green social devel-
opment. (3) Long service life. Under normal conditions, lithium-ion batteries can 
handle hundreds of times repeated charge–discharge processes, so they can be 
used for a long time. (4) No memory effect. Ordinary batteries lose their capaci-
ties in the process of working, resulting in less and less capacity, but lithium 
batteries do not have this problem. Also, there are many other advantages of 
lithium-ion batteries, such as good safety performance, low self-discharge, fast 
charging, and a wide range of operating temperatures accounting for its wide 
application.

1.1.3  Battery Working prinCipLe

The internal chemical reaction of the lithium-ion battery is a basic redox reaction, 
which is also the working principle of a lithium-ion battery in the actual application 
process. It converts electric energy into heat energy through a chemical reaction. 
It can be observed from the chemical reaction equation that the charge–discharge 
process of lithium-ion batteries is the intercalation and deintercalation process of 
lithium ions. When a lithium-ion battery is charged, the lithium atoms in the posi-
tive electrode oxidize to lose electrons, thus becoming lithium ions [51]. A large 
number of lithium ions produced by the oxidation reaction to the positive electrode 
pass through the electrolyte solution to the carbon layer of the negative electrode 
of the batteries. The capacity of the battery is related to the number of lithium ions 
produced by the reaction to the positive electrode on the one hand, and the number 
of lithium ions exchanged with the negative electrode by the electrolyte on the other 
hand [52–55].

During the discharging process, an oxidation reaction occurs in the negative elec-
trode, and the lithium ions embedded in the carbon layer of the negative electrode 
come out and move back to the positive electrode. The more lithium ions return to the 
positive electrode, the higher the discharge capacity is. Similarly, during charging, 
lithium ions are generated in the positive electrode of the battery, and the generated 
lithium ions move to the negative electrode through the electrolyte [56]. The lithium 
ions are embedded in the negative electrode and the micropores of the carbon layer. 
The more lithium ions embedded in the carbon layer, the higher the charging capac-
ity. The internal chemical reaction process in the lithium-ion battery is shown in 
Figure 1.2.

Most of the cathode materials of lithium-ion batteries are lithium compounds, 
such as lithium cobalt oxide, lithium manganate, lithium iron phosphate, and ter-
nary materials. Because of this, they are called lithium-ion batteries [57,58]. The 
anode materials of lithium-ion batteries were originally made of alloys and metal 
lithium, but eventually became graphite for its better performance. The electrolyte is 
an organic solution that dissolves lithium salts. In general, the internal electrochemi-
cal reaction process of a lithium-ion battery is the exchange of lithium ions between 
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the positive and negative poles. The positive and negative reactions and the overall 
reaction equations are described as follows.

The positive electrode reaction is shown in Equation (1.1).

 x xx y x x y= + +−
+ −LiM O Li M O Li e(1 )  (1.1)

The negative electrode reaction is shown in Equation (1.2).

 n x x x n+ + =+ −C Li e Li C  (1.2)

The total reaction of the battery is shown in Equation (1.3).

 nx y x x y x n+ = +−LiM O C Li M O Li C(1 )  (1.3)

In Equation (1.3), M can be C0, Mn, Fe, or Ni, which represent lithium cobalt 
oxide, lithium manganate, lithium iron phosphate, and lithium nickel oxide bat-
teries, respectively. In the process of charging and discharging lithium-ion bat-
teries, there is no metal lithium, only lithium ions. When the battery is charged, 
lithium ions are generated on the positive electrode of the battery, and the result-
ing lithium ions travel through the electrolyte to the negative electrode. The 
carbon as the negative electrode is layered and has many micropores [44]. The 
lithium ions that reach the negative electrode are embedded in the pores of the 
carbon layer. The more lithium ions embedded in the carbon layer, the higher 
the charging capacity. Similarly, when a battery is discharged, the lithium ions 
embedded in the carbon layer of the negative electrode break out and move back 
to the positive electrode [44]. The more lithium ions re-polarize, the higher the 
discharge capacity.

The battery capacity refers to the discharge capacity. In the charge–discharge 
process of lithium-ion batteries, it is in a state of motion from positive electrode to 
negative electrode to positive electrode. The charging – discharging process of a 

FIGURE 1.2 The working principle of lithium-ion batteries.
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lithium-ion battery is the process of intercalation and deintercalation of lithium ions 
inside the battery [59]. That is, they can be reversibly inserted or extracted from the 
host material. In the two stages of charge–discharge, intercalation and intercalation 
are carried out back and forth between the positive and negative electrodes: During 
charging, lithium ions are first intercalated from the positive electrode, reach the 
negative electrode through the electrolyte, and insert lithium ions in the negative 
electrode.

The negative electrode of the battery is rich in lithium and lithium-rich is a posi-
tive electrode material made with a small amount of lithium doped, which is com-
bined with positive electrode active materials, such as LiMn2O4. The lithium-rich 
condition can cause the unit cell to shrink and change from the cubature of charging–
discharging and improve the structural stability of the material cycle performance. 
The process of discharging and charging is opposite to each other. The cathode mate-
rial of a lithium-ion battery is composed of a lithium-intercalation compound. If 
there is an external electric field, the +Li  in the cathode material can be extracted and 
inserted into the crystal lattice under the action of the electric field. Taking LiCoO2 
as an example, its positive electrode is shown in Equation (1.4).

 x xx→ + ++
−

−LiCoO Li Li CoO e2 1 2  (1.4)

The negative electrode is shown in Equation (1.5).

 x x x+ + →−e Li 6C Li C*
6 (1.5)

The general equation of battery reaction is shown in Equation (1.6).

 x x+ ⇔ +−LiCoO 6C Li CoO Li C2 1 2 6 (1.6)

The lithium-ion battery has three important components: diaphragm, positive 
and negative electrodes. Its operation mainly depends on the back-and-forth 
movement of ions between the positive and negative electrodes. The working 
principle of the  lithium-ion battery mainly depends on the lithium-ion concentra-
tion difference between ions at both ends. During charging, +Li  is de-embedded 
from the positive electrode and embedded into the negative electrode through the 
corresponding electrolyte. After this series of chemical reactions, the positive 
electrode is in the low lithium state and the negative electrode is in the multi-
lithium state. Also, its compensation charge is supplied to the negative electrode 
from the external circuit. During discharge, +Li  is removed from the negative 
electrode and embedded into the positive electrode again through the action of 
the electrolyte.

1.1.4  DeveLopment proSpeCtS

As a high-performance secondary battery, lithium-ion batteries are widely used in 
daily life and account for a large proportion of the market. At present, lithium-ion 
batteries are mainly used in various portable electronic products, such as mobile 
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phones and notebook computers [60,61]. With the progress of battery material per-
formance and design technology, the application scope of lithium-ion batteries has 
been expanding, and the main application fields are as follows.

 1. Application in electronic products
Lithium-ion batteries are widely used in portable electronic products 
because of their high volume-specific energy, small volume, and light-
weight. With the popularity of mobile phones, digital cameras, video cam-
eras, laptops, and handheld game consoles, the lithium-ion battery market 
has maintained rapid growth and occupied most of the market share. With 
the shortage of oil resources, the aggravation of environmental pollution, 
and the improvement of human environmental awareness, the development 
of green energy has been promoted, and the global electric bicycle industry 
has become a boom [62,63].

 2. Application on transport vehicles
 1. Electric bicycle

As the main mode of urban transportation development in the future, 
public transportation has been recognized by all walks of life. In addi-
tion, based on the analysis of the objective factors, electric bicycles have 
more advantages and practicability. Especially in recent years, with the 
shortage of oil resources and the intensification of environmental pol-
lution to promote the development of green energy, the development of 
the electric bicycle industry has ushered in a boom [64,65].

 2. Electric vehicle
The continuous development of electric vehicles can reduce greenhouse 
gas emissions, which is in line with the scientific outlook on develop-
ment and becomes a strategic opportunity for the automotive industry. 
Compared with developed countries, lithium-ion batteries have the 
same technical advantages of resources and market. Therefore, the key 
technologies of electric vehicles are the focus of key research. Rapidly 
promoting the industrialization of electric vehicles is not only a stra-
tegic choice for China’s national conditions but also an important way 
to ensure energy security [66,67]. In the 2008 Beijing Olympic Games, 
50 pure electric buses miraculously created zero anchors and zero fault 
records, which showed the charm and style of Green Olympics effec-
tively. The 2010 Shanghai World Expo used more than 1000 new energy 
vehicles for the first time, including fuel cell vehicles, hybrid electric 
vehicles, supercapacitor vehicles, and pure electric vehicles. During the 
Expo, it is expected to save about 10000 tons of traditional fuels, 118 
tons of harmful gas emissions are reduced and 28400 tons of greenhouse 
gas emissions are reduced. In addition, electric vehicle charging stations 
and other related facilities have been completed and put into use, and the 
development of the electric vehicle industry is becoming more mature.

 3. Application in aerospace
In 2004, lithium-ion batteries have been used in Mars landers and rovers, 
and they are used in future exploration missions. In addition, NASA’s space 
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exploration agency and other space agencies also consider the application of 
lithium-ion batteries in space missions [68–70]. At present, the main func-
tion of lithium-ion batteries in the aviation field is to provide support for the 
launch, flight correction, and ground operation, improving the efficiency of 
the battery and supporting night operation.

 4. Application in the energy storage device
The power storage plant stores the power (valley power) generated by the 
power plant during the low peak period, and the electricity price is cheap 
at this time. The stored electric energy is sold at the peak of power con-
sumption. At this time, the electricity price of the storage farm has cer-
tain advantages over the gradient electricity price (peak electricity) of the 
power plant. It is a difficult problem to adopt peak valley power regula-
tion. Usually, to ensure peak power consumption, more power plants need 
to be built, but this method increases the investment cost. In low peak 
power consumption, the power plants need to operate, as usual, resulting 
in a waste of energy. Therefore, some enterprises have put forward the 
idea of investing in the construction of power storage plants, changed 
the procurement of large and medium-sized energy storage equipment, 
charged low fees during the peak period, stored electric energy during 
the low peak period, and peak valley electricity price, forming a win-
win situation [71,72]. As green energy, lithium-ion batteries have a high 
energy density, good cycle performance, and high charge retention per-
formance. It is recognized as an ideal choice for high-capacity and high-
power batteries.

With the rapid development of the above fields, digital entertainment 
products, such as cameras, multimedia playback equipment, and elec-
tronic book equipment, have placed higher requirements on secondary 
batteries. The main indicators of lithium-ion batteries include energy 
density, power density, circularity, temperature characteristics, and price. 
Currently, research is being developed in the following five directions.

 1. High-energy-density battery: It is mainly used in wireless communica-
tion office products and digital entertainment products.

 2. High-power battery: It is mainly used in power tools, transportation, 
and other high-power devices.

 3. Long-life energy storage battery: It is mainly used in backup power sup-
ply, solar power stations, wind power stations, and other decentralized 
and independent power supply systems of energy storage batteries.

 4. Micro-sized lithium-ion batteries: It is used for wireless sensors, micro-
unmanned aircraft, implantable medical devices, micro-robots, inte-
grated chips, etc.

 5. High-energy-density and high-power-density lithium-ion batteries: It 
has a wide range of applications, such as electric vehicles and multime-
dia information processing systems.

As a relatively mature and advanced battery at present, lithium-ion bat-
teries have been favored by the market because of their lightweight and 
large power storage. Especially in the development of mobile phones, 
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smart wearable devices, and new energy vehicles, lithium-ion batteries are 
in short supply. The entire industry is in a hot state, and the assessment 
of many listed companies in the capital market is constantly increasing. 
The upstream industry of lithium-ion batteries mainly includes lithium raw 
materials, cathode materials, anode materials, electrolytes, separators, and 
production equipment [73]. The downstream applications of lithium-ion 
batteries mainly include power batteries, 3 C batteries, and energy storage 
batteries. Although the current energy storage battery market has not fully 
opened, its scale has a good development prospect.

Therefore, the lithium-ion battery industry seeks to show a good high-
speed development trend in the future, mainly because the demand for 
 lithium-ion batteries in the main application markets is still increasing. This 
is because the demand for lithium-ion batteries is currently very high in 
major markets. Unless the fuel cell can be widely used by breaking through 
the limitations of high assembly process and high cost, the status and market 
share of lithium-ion batteries will not be greatly affected. As the demand for 
lithium-ion batteries continues to increase, most technological companies 
see opportunities to carry out lithium-ion battery projects one after another. 
With the influx of major companies into the industry, the competitiveness 
of the market has become increasingly fierce. However, whether in nature 
or the market, the law of survival of the fittest has always been followed 
as well as the trend of social development. Ternary lithium-ion batteries 
have high energy density and low prices, making them the first choice of 
manufacturers. In addition, the Energy-saving and New Energy Automobile 
Industry Development Plan puts forward the requirement that the energy 
density of battery modules must be greater than 150 Wh/kg, but lithium iron 
phosphate batteries cannot compete with it.

However, ternary lithium-ion batteries also have some drawbacks. They 
decompose at 200°C, and the electrolyte burns rapidly. The cooling of the 
battery has become a key research direction because if the temperature gets 
too high and the environment is airtight, there is a greater risk of sponta-
neous combustion and explosion in the ‘stove city’. In addition, if there is 
improper recycling or indecent disposal, the cathode material in the lithium-
ion battery causes heavy metal pollution, which becomes an environmental 
problem that must be solved in the development process. However, as far as 
the Chinese market is concerned, the battery is still mainstream. Both the 
disposable lithium-ion battery and the ternary lithium-ion battery contain a 
variety of metals and organic solvents such as electrolytes, which are quite 
corrosive and chemically toxic. When the battery explodes and burns, it also 
produces toxic chemical gases, which are harmful to the environment. It is 
believed that due to the fierce competition in the lithium-ion battery industry, 
some relatively strong companies survive the competition. Some emerging 
small companies may be on the verge of bankruptcy or may undergo mergers 
and acquisitions. Therefore, this is not only a test but also an opportunity for 
some lithium-ion battery companies. As an important part of the new energy 
field, the lithium-ion battery industry develops rapidly and has become 
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the focus of new investment in the manufacturing field. Lithium-ion bat-
tery companies have increased the construction of new factories in hopes of 
increasing production capacity and winning with the help of the scale effect.

With the expansion of the new energy vehicle market, the demand for 
power lithium-ion batteries increases significantly. At the same time, the 
rapid development of mobile phones, electric vehicles, power tools, digital 
cameras, and other industries continues to increase the demand for lithium-
ion batteries. In addition, due to the technological innovation of lithium-ion 
battery manufacturers, the demand for lithium-ion batteries continues to 
grow, and the lithium-ion battery industry has a good development pros-
pect. According to the forecast of the Foresight Industry Research Institute, 
the potential scale of China’s new annual cascade utilization will reach 
33.6 GWh in 2025, and the market size of China’s lithium-ion battery 
industry will exceed ¥260 billion in 2026. The national grid’s demand for 
peak- shaving and valley-filling economy has led to the explosive growth 
of distributed energy storage devices [74]. The acceleration of the deploy-
ment of electric vehicle energy storage and charging stations has boosted 
the demand for cascading utilization. In the future, the growth of consumer 
electronics demands for lithium-ion batteries is stabilized at a relatively low 
level, and the increase in installed capacity of the energy storage field is 
small. Therefore, the demand for high-power batteries is the main driving 
force for the high growth rate of the lithium-ion battery industry.

1.2  THE TYPES AND CHARACTERISTICS 
OF LITHIUM-ION BATTERIES

There are many types of lithium-ion batteries. According to the state of the elec-
trolyte used in the battery, it can be divided into liquid lithium-ion battery, polymer 
lithium-ion battery, and all-solid lithium-ion batteries. According to the temperature 
variation, the battery types can be divided into high-temperature lithium-ion batter-
ies and room-temperature lithium-ion batteries [75]. According to the classification 
of cathode materials, lithium-ion batteries can be divided into lithium iron phosphate 
batteries [76–78], lithium cobalt acid batteries, lithium-manganese acid batteries, 
lithium nickel acid batteries, and ternary material batteries.

1.2.1 Lithium Iron PhoSphate Battery

Lithium iron phosphate batteries refer to lithium-ion batteries that use lithium iron 
phosphate compound as cathode material and have the following advantages and 
characteristics.

 1. High safety performance
The P–O bond in the lithium iron phosphate crystal is stable and difficult 
to decompose [79–81]. Even in the case of high temperature or overcharge, 
the structure does not collapse and generate heat or form strong oxidizing 
substances. Therefore, it has good safety. Even if the battery is damaged 
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internally or externally, the battery does not burn or explode, which is the 
best safety. It has been reported that a small number of samples of lithium 
iron phosphate batteries burn in practical operation or short-circuit experi-
ments, but no explosion occurred. However, in the overcharge experiment, 
when the battery is charged at a high voltage that is several times beyond 
its discharge voltage, the explosion still occurs. Nevertheless, its overcharge 
safety has been greatly improved compared with other batteries.

 2. High life expectancy
The cycle life of the lead–acid battery is about 300 times, the highest is only 
500 times, the cycle life of a lithium iron phosphate battery is more than 
2000 times. The life span of lead–acid batteries of the same quality is at 
most 1–1.5 years. Under the same conditions, the theoretical life of lithium 
iron phosphate batteries can reach 7–8 years, and in theory, the performance 
ratio is 4 times of lead–acid batteries [82–84].

 3. Good high-temperature performance
The electric thermal peak of lithium iron phosphate can reach 350°C–500°C, 
while the thermal peak of lithium manganese acid and lithium cobalt acid 
is only about 200°C. Lithium iron phosphate battery operating tempera-
ture range is wide (−20°C to +75°C) and has high-temperature resistance  
characteristics, which expands the battery’s applicable range. When the 
external temperature is 65°C, the internal temperature is described as 
high as 95°C, and the temperature can reach 160°C at the end of battery  
discharge. The structure of the battery is safe and intact [85,86].

 4. Large capacity
It has a larger capacity than ordinary batteries, ranging from 5 to 1000 Ah.

 5. High-efficiency output
Standard discharge of 2~5 C, continuous high current discharge of 10 C, 
instantaneous pulse discharge of 20 C for 10 seconds.

 6. No memory effect
If the battery is constantly being charged, its capacity quickly falls below 
its rated capacity, a phenomenon known as the memory effect. For example, 
nickel-metal hydride and nickel-cadmium batteries have memory, while 
lithium iron phosphate batteries do not have this phenomenon [87]. No mat-
ter what state the battery is in, it can be used at any time without first dis-
charging and then charging.

 7. Small size and lightweight
The cubature of a lithium iron phosphate battery with the same capacity is 
2/3 of that of a lead–acid battery, and its weight is 1/3 of that of lead–acid 
batteries.

 8. Environmental protection and pollution-free
Lithium iron phosphate as lithium-ion battery material is a matter of recent 
years. Its safety performance and cycle life are incomparable to other mate-
rials, which are also the most important technical indicators of power batter-
ies. The large-capacity lithium-ion battery made of lithium iron phosphate 
material can easily increase the cruising range and meet the frequent charg-
ing and discharging needs of new energy vehicles. It has the advantages of 
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being non-toxic, pollution-free, good safety performance, wide source of 
raw materials, low price, long life, etc. It is an ideal cathode material for the 
new generation of lithium-ion batteries. This project belongs to the develop-
ment of functional energy materials in high and new technology projects. 
It is a key field supported by the national high and new technology industry 
development plan.

1.2.2  Lithium CoBaLtate Battery

Lithium cobaltate battery has a stable structure, high capacity ratio, and outstand-
ing comprehensive performance, but its safety is poor and the cost is very high. It is 
mainly used in small and medium-sized electric cells and is widely used in notebook 
computers, mobile phones, and other small electronic devices with a nominal voltage 
of 3.7 V [88,89].

 1. Characteristics of lithium cobaltate
 1. Excellent electrochemical performance.
 A. Capacity attenuation per cycle is less than 0.05% on average.
 B. The specific capacity of the first discharge is >135 mWh/g.
 C. 3.6 V initial discharge platform ratio >85%.
 2. Excellent machining performance.
 3. The high vibration density is helpful to improve the cubature-specific 

capacity of the battery.
 4. Stable product performance and good consistency.
 2. The use of lithium cobaltate

It mainly used in the manufacture of battery cathodes for portable elec-
tronic devices such as mobile phones and notebook computers.

 3. Technical standard for lithium cobaltate
 1. Name: lithium cobaltate; molecular equation: LiCoO2; molecular 

weight: 97.88.
 2. Main application: lithium-ion battery.
 3. Appearance requirements: grayish-black powder, no agglomeration.

The performance of lithium cobalt oxide batteries is stable, and the technol-
ogy currently used in mobile phones is the most mature. However, due to 
the high cost of lithium cobalt oxide, there are fewer applications of lithium 
cobalt oxide batteries.

1.2.3  Lithium-manganeSe Battery

Lithium manganate battery refers to the battery that uses lithium-manganese oxide 
material as the positive electrode. It uses the special treatment of manganese diox-
ide as the active substance of the positive electrode the high potential, high specific 
energy of lithium metal as the active substance of the negative electrode, and the 
organic electrolyte with good conductivity is used as the electrolyte [90]. The bat-
tery structure is divided into fully sealed and semi-sealed, and the nominal voltage 
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of the lithium manganate battery is 2.50–4.20 V. Manganese acid lithium has the 
advantages of low cost, safety, and good low temperature performance, but it is not 
so stable, easy to decompose to produce gas, so much for mixed with other materials 
used, to reduce the cost of batteries, but the attenuation of cycle life quickly, prone 
to bulge, high-temperature performance is a poorer, relatively short life, it is mainly 
used for large and medium-sized batteries.

1.3  BASIC PARAMETERS

1.3.1  voLtage

 1. Electromotive force
The electromotive force is one of the ways to calculate the battery’s theoreti-
cal output energy. If other conditions remain the same, the higher the elec-
tromotive force, the greater the output energy [91]. The electromotive force 
of a battery is the difference between the potentials of the two electrodes, 
and its mathematical expression is shown in Equation (1.7).

 E φ φ= −+ − (1.7)

In Equation (1.7), E  is the battery electromotive force, φ+ is the positive 
 balance potential, and φ− is the negative balance potential.

 2. Open-circuit voltage
Open-circuit voltage refers to the potential difference between the two poles 
of the battery in an open-circuit state with no current flows. The open-cir-
cuit voltage of the battery depends on the activity of the battery’s positive 
and negative electrodes, electrolyte and temperature conditions, etc. [92].  
It has nothing to do with the battery geometry and size. In general, the 
open-circuit voltage of the battery is less than its electromotive force.

 3. Rated voltage
The rated voltage is also called the nominal voltage, which refers to the 
standard voltage at which the battery works under specified conditions. In 
general, the nominal voltage is the central voltage of the platform voltage, 
around which the voltage changes very slowly during charge–discharge. 
The chemical system of a battery can be distinguished by its rated voltage.

 4. Working voltage
Working voltage refers to the voltage displayed by the battery during the 
discharging process after it is connected to a load. It is also known as the 
load voltage or the discharge voltage, and its mathematical expression is 
shown in Equation (1.8). After the battery is connected to the load, due to 
the existence of ohmic resistance and polarization internal resistance, the 
operating voltage of the battery is lower than the open-circuit voltage and 
the electromotive force.

 V E IR E I R Ri f( )= − = − +Ω  (1.8)



17Battery Characteristics and Parameters

In Equation (1.8), I is the battery working current, RΩ is the ohmic resis-
tance, and Rf  is the polarized internal resistance.

 5. End-of-discharge voltage
For all lithium-ion batteries, the end-of-discharge voltage is an important 
indicator that must be strictly regulated. The discharge termination voltage 
is also called the discharge cutoff voltage, which refers to the lowest oper-
ating voltage limited to at which the battery discharges when the voltage 
drops to the point where it is no longer suitable for discharge. According to 
different types of batteries and discharge conditions, the requirements for 
the capacity and life of the battery are also changed, as well as the speci-
fied discharge end voltage. When discharging at a low temperature or high 
current, the final voltage is regulated lower. When discharging with a small 
current for a long time or intermittently, the final voltage is regulated higher.

 6. End-of-charge voltage
The end-of-charge voltage refers to the voltage at which the battery reaches 
full charge during the specified constant current charging period. If it con-
tinues to charge after reaching the end-of-charge voltage, it is overcharged, 
which generally affects battery performance and life.

 7. The average voltage
The average voltage refers to the value obtained by dividing the number of 
watt-hours by the number of ampere-hours during the specified charge–dis-
charge process. In the case of constant current, it is the average voltage over 
a certain period.

1.3.2  CapaCity

Battery capacity: The total amount of electricity that the battery can release under 
certain discharge conditions is called battery capacity, which is represented by the 
symbol C. The unit is usually expressed in Ah or mAh. Battery capacity is an impor-
tant unit to measure the quality of a battery, which is related to the use time of 
the battery. Typically, the laboratory uses the constant current or constant voltage 
method to discharge lithium-ion batteries [93]. The storage capacity of the lithium-
ion battery can be calculated by measuring the energy released by the battery during 
the whole discharge process or the product of the discharge current and time.

 1. Theoretical capacity
The theoretical capacity is the amount of electricity that can be provided 
assuming that all active materials participate in the electrochemical reac-
tion of the batteries. The theoretical capacity can be accurately calculated 
according to the amount of electrode active material in the battery reaction 
equation and the electrochemical equivalent of the active material calcu-
lated according to Faraday’s law. The calculation processing equation is 
shown in Equation (1.9).

 Q
zmF

M
=  (1.9)
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Faraday law states that when current passes through the electrolyte solution, 
the amount of chemically reacted substance on the electrode is proportional 
to the amount of electricity passed. In Equation (1.9), Q is the amount of 
electricity passed in the electrode reaction (Ah), z is the electronic measure-
ment coefficient in the electrode reaction equation, m is the mass of the reac-
tive material (g), M  is the molar mass of the active substance (g/mol), and F  
is the Faraday constant of about 965000 C/mol or 26.8 Ah/mol. It can also 
be understood that the active material with mass m can release electricity Q 
after a complete reaction. The electric quantity Q is the theoretical capacity 
(C0) of the electrode active material, so it can also be written in the form of 
Equation (1.10).

 C z
m

M K
m= =26.8

1
0  (1.10)

In Equation (1.10), K  is the electrochemical equivalent of the active mate-
rial, and =K M z/26.8  (g/Ah) is the mass of active material required to 
obtain 1 Ah of electricity. Equation (1.10) is the calculation equation for the 
theoretical capacity of the electrode active material.

 2. The rated capacity
The rated capacity (Cg) is the minimum capacity that the battery should 
discharge under certain discharge conditions (temperature, discharge rate, 
termination voltage, etc.) according to the standards stipulated by the state 
or relevant departments, from the fully charged state to the stop voltage.

 3. The actual capacity
The actual capacity (C) refers to the total amount of electricity released by 
the battery under actual application working conditions. It is equal to the 
integral of the discharge current and the discharge time, which is in the 
lower right part of the capacity C  and is expressed in Arabic numerals, such 
as C5 = 50 Ah, which means that the discharge rate is completed in 5 hours. 
And the obtained capacity is 50 Ah. The actual capacity calculation method 
is described as follows.

When discharging with constant current, the calculation process is 
shown in Equation (1.11).

 C It=  (1.11)

When discharging with variable current, the calculation process is shown 
in Equation (1.12).

 C I t dt
T

∫= ( )
0

 (1.12)

In Equation (1.12), I is the discharge current as a function of the discharge 
time point t. T  is the total discharge time. Due to the existence of internal 
resistance and other various reasons, the active material cannot be fully uti-
lized; that is, the utilization rate of the active material is always less than 1. 
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Therefore, the actual capacity and the rated capacity of the chemical power 
supply are always lower than the theoretical capacity [94]. The actual capac-
ity of the battery is closely related to the discharge current. In the process 
of high current discharge, the electrode polarization and internal resistance 
increase, but the discharge voltage drops rapidly, which is related to the 
energy efficiency of the battery, so the actual discharge capacity is always 
lower. Correspondingly, under low current discharge conditions, the dis-
charge voltage drops slowly, and the actual capacity of the battery is often 
higher than the rated capacity.

 4. The remaining capacity
The remaining capacity refers to the remaining usable capacity of the 
battery after being discharged at a certain discharge rate. The remaining 
capacity estimation is affected by factors such as the discharge rate and 
discharge time of the battery, the degree of battery aging, and the applica-
tion environment. Therefore, there are certain difficulties in the accurate 
estimation.

1.3.3  internaL reSiStanCe

Inside a lithium-ion battery, lithium ions move from one electrode to another through 
the electrolyte, and the factors that hinder the movement of ions in the process consti-
tute the internal resistance. Due to the internal resistance of the battery, the terminal 
voltage of the battery is lower than the electromotive force and open-circuit voltage 
during discharge, and the terminal voltage of the battery is higher than the electro-
motive force and open-circuit voltage during charging. The essence of electric cur-
rent is the directional movement of electric charges, and the motion of the electrons 
is opposed by the material itself and the magnetic field. Internal resistance is one 
of the important parameters of lithium-ion batteries that are not always static. The 
magnitude of the internal resistance directly affects the battery operating voltage, 
operating current, and battery capacity [95,96]. In the process of battery charge–
discharge, changes in temperature, charge–discharge rate, charge–discharge time, 
electrolyte concentration, and active material quality cause changes in the internal 
resistance of the battery.

The internal resistance of the battery includes the ohmic resistance R0 and the 
polarization of internal resistance Rp. The ohmic resistance comes from the resis-
tance of the electrolyte, diaphragm, and the contact resistance of various parts. 
During the internal oxidation–reduction reaction of the battery, an electric field is 
generated. Under the action of the electric field, the dielectric generates polarization 
charges due to the polarization effect. The polarization resistance is the resistance 
of the polarization charge to the current. During the charge–discharge process of 
lithium-ion batteries, the internal resistance generated by the polarization reaction is 
mainly electrochemical and concentration polarization [97]. The nature of the active 
material, the structure of the electrode, the manufacturing process of the battery, and 
the operating conditions of the battery lead to the difference in the polarization inter-
nal resistance. The main influencing factor of the polarization internal resistance is 
the operating conditions of the batteries. The total internal resistance R of the battery 
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is equal to the ohmic resistance R0 plus the polarization internal resistance Rp. The 
calculation equation is shown in Equation (1.13).

 R R Rp= +0  (1.13)

In Equation (1.13), different types of lithium-ion batteries show different internal 
resistance characteristics. Even the same type of lithium-ion battery, due to the dif-
ference in internal material composition, operating environment, and aging degree, 
also shows different internal resistances. The internal resistance is an important indi-
cator to measure the battery performance. Therefore, the research on the change 
characteristics of the internal resistance of the battery is of great significance for 
equivalent modeling and SOC estimation. During the battery cycle discharge experi-
ment, the partial voltage change curve is shown in Figure 1.3.

In Figure 1.3, when the battery is connected to or disconnected from the external 
circuit, the terminal voltage of the battery drops or rises rapidly for dUR and dUR1. It 
is due to the ohmic resistance of the lithium-ion battery itself, causing the voltage to 
change drastically at the beginning or end of discharge, which is called the internal 
resistance effect. In the first stage, the terminal voltage drops rapidly and then slowly 
decreases, or when the discharge ends, the voltage slowly rises (dU1 and dU2 in the 
figure), which is caused by the polarization effect of the lithium-ion batteries. When 
the battery is put aside for a while, the internal balance of the battery is reached, and 
the polarization effect disappears. The polarization effect produces polarized inter-
nal resistance and internal structure. The working conditions affect the polarization 
internal resistance of the batteries. However, the discharge current and the operating 
temperature have a particularly obvious effect on the polarization internal resistance 
of the batteries. It is due to its effect on the movement of lithium ions inside the bat-
tery during operation.

The internal resistance is most sensitive to temperature, and the internal resis-
tance value can vary greatly at different temperature conditions. An important rea-
son for the degradation of the battery performance at low temperatures is that the 
internal resistance increases drastically at low temperatures. Under normal circum-
stances, lithium-ion batteries are used as power sources. From the external analysis, 

FIGURE 1.3 The voltage change curve of the cyclic discharge-shelving experiment.
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the internal resistance is usually as small as possible. Especially in the case of high-
power applications, small internal resistance is a necessary condition.

1.3.4  poLarization CharaCteriStiCS

The polarization effect of the battery refers to the effect that the electrode of the 
lithium-ion battery deviates from the original equilibrium point when the battery 
is charged and discharged. It can be represented by resistance and capacitance. 
Generally, the polarization of lithium-ion batteries can be divided into three types: 
ohm polarization, electrochemical polarization, and concentration polarization [98]. 
The response speed of each polarization is also different. There are many factors 
affecting the degree of polarization, but in general, the higher the charge–discharge 
current density, the greater the polarization. Its relationship with SOC is the polariza-
tion characteristic of the lithium-ion battery pack. The polarization characteristics of 
the battery can be obtained through the hybrid pulse power characterization (HPPC) 
test, as shown in Figure 1.4.

In Figure 1.4, it can be observed that Rp has a relatively large value at SOC [(0%, 
20%), (80%, 100%)] and a relatively small value at  SOC 20%, 80% . However, Rp 
and SOC have a nonlinear relationship, and there is no obvious correlation in the 
whole process. The polarization capacitance Cp has a relatively large value in the 

 SOC 0%, 20%  range and is relatively small and stable in other SOC value ranges. 
Generally, Cp and SOC have a positive correlation.

1.3.5  energy anD poWer DenSity

 1. Energy density
The energy density of a battery refers to the amount of energy stored in 
a given space unit or material mass unit. The battery energy density is 
generally divided into two dimensions: weight energy density (Wh/kg) 
and cubature energy density (Wh/L), also known as mass-specific energy 
or cubature ratio energy. Specific energy is an important indicator for 

FIGURE 1.4 Relationship between Rp and Cp corresponding to SOC variation.
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evaluating whether high-power batteries can meet the application require-
ments of new energy vehicles [99,100]. It is also an important indicator for 
comparing the performance of different types of batteries.

In the application process of new energy vehicles, the installation of 
battery packs requires corresponding components such as battery boxes, 
connecting wires, and current and voltage protection devices. The actual 
specific energy of the battery pack is less than the rated specific energy of 
the batteries. The smaller the gap between the actual specific energy and 
the rated specific energy, the higher the design level and integration degree 
of the battery pack. Therefore, the specific energy serves as an important 
parameter used to evaluate the performance of the battery pack for new 
energy vehicles.

 2. Power density
The power output per unit mass or cubature of the battery is called power 
density, also known as specific power, and the unit is W/kg or W/L. The 
specific power is the magnitude of the working current that the battery can 
withstand. Higher specific power means that the battery can withstand high 
current discharge [101]. Specific power is an important indicator for evalu-
ating whether batteries and battery packs meet the rapid acceleration and 
climbing capabilities of new energy vehicles.

1.4  CORE BATTERY STATE FACTORS

1.4.1  State of Charge

The SOC is the percentage of available capacity and rated capacity of the lithium-
ion battery, which describes the remaining power of the battery and is an important 
parameter in the use of lithium-ion batteries [102–106]. The parameter is related to 
the historical charge–discharge capacity and charge–discharge current of the batter-
ies. The SOC value is a relative quantity, which is generally expressed as a percent-
age, and the value range of SOC is 0%–100%. When =SOC 0, the battery is fully 
discharged, and when =SOC 1, the battery is fully charged. The SOC of the battery 
cannot be measured directly, but can only be estimated by the battery terminal volt-
age, charge–discharge current, and internal resistance. The battery’s SOC is affected 
by the basic characteristic parameters of the power battery, including aging degree, 
terminal voltage, working current, temperature, capacity, internal pressure, internal 
resistance, and the number of charge–discharge cycles.

The nonlinear characteristics of power batteries make it very difficult to measure 
the SOC value of the battery pack. At present, the simpler method for the research on 
the power of the battery pack is to equate the battery pack with a cell [107]. The rela-
tionship between the SOC and these parameters is obtained by measuring the cur-
rent, voltage, internal resistance, and other external parameters of the battery pack. 
In the application process, to ensure the safety and service life of the battery pack, 
the SOC estimation of the cells with poor energy is often used to define the overall 
SOC estimation of the battery pack. Common SOC estimation methods include the 
open-circuit voltage method, ampere-hour accumulation method, electrochemical 
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test method, battery model method, neural network method, impedance frequency 
advance method, and Kalman filter method.

1.4.2  State of heaLth

The state of health (SOH) characterizes the ability of current lithium-ion batteries to 
store electrical energy relative to new lithium-ion batteries [108–111]. It is the state 
of the battery from the beginning to the end of its life as a percentage, which is used 
to quantitatively describe the performance state of the lithium-ion batteries. China 
automotive industry standard ‘QC/T743-2006’ stipulates the end-of-life conditions 
for lithium-ion batteries: The available capacity decays to 80% of the standard capac-
ity. That is, the SOH of the lithium-ion battery is reduced from 100% to 80%, which 
is the battery’s life span. Presently, the definition of SOH is mainly embodied in sev-
eral aspects such as capacity, power, internal resistance, number of cycles, and peak 
power. The SOH, which is generally recognized in the industry, is defined in terms 
of capacity. The expression is shown in Equation (1.14).

 
Q

Q
a

r

= ×SOH 100% (1.14)

In Equation (1.14), Qr is the rated capacity of the battery when it leaves the fac-
tory, and Qa is the available capacity of the battery after it is put into application. If 
Qmax is obtained directly through complete discharge, although it is more accurate, 
the method takes a long time and cannot be estimated in real time. The calcula-
tion method of the current time point capacity can be directly derived, as shown in 
Equation (1.15).
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In Equation (1.15), the SOC estimation of the battery has no direct internal connec-
tion with the health state. The above equation only establishes the numerical relation-
ship between SOC and the current capacity of the battery at the time point. Since the 
SOC does not mutate into the experiment, the capacity obtained by the equation does 
not mutate in theory. However, it depends on the accuracy of the denominator, which 
requires a higher estimation accuracy of SOC value.

 1. Forgetting factor dual particle filtering algorithm construction
The particle filtering algorithm is a kind of random tracking prediction 
algorithm, which approximates the probability density function of system 
variables through a series of random samples and is suitable for nonlinear 
and non-Gaussian distributions [112,113]. The traditional particle filter-
ing algorithm is commonly used to realize SOC estimation, but its accu-
racy immensely depends on the accuracy of parameter identification. In 
the research, the forgetting factor algorithm is introduced to improve the 
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accuracy of parameter identification and then improve the estimation accu-
racy. The state-space equation of the system is shown in Equation (1.16).
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In Equation (1.16), xk is the state vector, and the first element is the SOC of 
the batteries. wk is the process noise, vk is the expression of the observation 
noise, uk is the input variable, which is the terminal current IL, and yk is the 
output variable, namely the terminal voltage UL. The matrices of Ak , Bk, Ck ,  
and Dk  are defined, as shown in Equation (1.17).
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In Equation (1.17), Rk is the internal resistance of the battery at time point k. 
The extended particle filtering algorithm mainly includes six steps: par-

ticle initialization, particle state update, weight normalization, resampling, 
state estimation, capacity, and SOH prediction. To reduce the influence 
of experimental measurement errors, this research introduces the particle 
voltage junction, current, and voltage measurement noises, respectively.  
The flowchart of the extended particle filtering algorithm is shown in 
Figure 1.5.

 1. Particle initialization: The N particle is selected in each sampling inter-
val to form the n-dimensional particle set i

i

N{ } =
SOC0 1

. To ensure accu-
racy, the number of particles sampled in the research is 1000. The initial 
value of N  particles is set as 0.9 to test the convergence of the algorithm, 
as shown in Equation (1.18).

 Li

i

N i

i

N{ } { }=
= =

SOC0 1 0 1
 (1.18)

 2. Particle state update: The samples are randomly sampled to produce a 
new set of n-dimensional particles k

i

i

N{ } =
SOC

1
. According to the charac-

teristic that the weight satisfies the Gaussian distribution, the recursive 
relation between weights can be utilized, the weights of all the particles 



25Battery Characteristics and Parameters

k
iω  are obtained, R is the observed noise covariance, US is the analog 

voltage, UN  is the voltage noise, and tr is the zero-state response dura-
tion, as shown in Equation (1.19).
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 3. Normalization of weight: After the weights are updated, they need to 
be normalized again to ensure that the sum of the ownership values is 
1, which satisfies the Gaussian distribution and provides an important 
prerequisite for subsequent resampling, as shown in Equation (1.20).

FIGURE 1.5 Flowchart of FFDPF algorithm.
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 4. Resampling: In the filtration process, after several iterations, the weight 
of many particles becomes too small to be considered, and only a few 
particles have a large weight, the phenomenon known as particle deg-
radation. To suppress this phenomenon, it is necessary to resample the 
particles. A new n-dimensional particle set i Nk

i{ }= …SOC , 1,2, ,0;
*

 
is formed by copying the larger weight particles and discarding the 
smaller weight particles, each particle weights N1/  in the particle set. 
Before resampling, the effective particle number Neff  is calculated to 
determine whether it reaches the set threshold of Ns (generally set as 
2/3 of the selected particle). If not, resampling should be performed, as 
shown in Equation (1.21).
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 5. State estimation: The weight of N  particles is obtained after sampling. 
Since the state estimation object is SOC and the value range is (0, 1), 
which is the same as the weight obtained after normalization, the aver-
age value of the weight after resampling can be directly calculated to 
obtain the SOC at time point k, as shown in Equation (1.22).
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 6. Prediction of capacity and SOH: Based on the battery capacity estima-
tion method of Equation (1.21), the variation of battery capacity of the 
process can be calculated directly after the SOC is obtained. ik  is the 
terminal current that the measured noise is added. The SOH calculation 
method in Equation (1.22) is incorporated into the algorithm, as shown 
in Equation (1.23).
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The following is the online parameter identification process, which can obtain 
the change process of the five parameters, including ohmic resistance R0,  
polarization resistance R1 and R2, and polarization capacitance C1 and C2 dur-
ing the whole experiment. The transfer function is shown in Equation (1.24).
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The transfer function in Equation (1.25) only establishes the mathematical 
relationship between the parameters. Also, the Laplace z-transformation in 
the equation is utilized to obtain the standard differential equation by sub-
stitution of s and z, that is, the bilinear substitution. T  is the sampling time, 
and the result is shown in Equation (1.26).
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In Equation (1.26), k1, k2, k3, k4, and k5 are the conversion coefficients, which 
have a direct mathematical relationship to the parameters to be identified 
and T , and these coefficients are taken advantage of to obtain R0, R1, R2, C1, 
and C2, as shown in Equation (1.27).
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In Equation (1.27), to obtain model parameters R0, R1, R2, C1, and C2, the 
sampling period T  is known, and k1, k2, k3, k4, and k5 should be calculated 
first. To facilitate further parameter identification, Equation (1.27) is con-
ducted parameter decoupling, and the general form of the model state dif-
ference equation is obtained, as shown in Equation (1.28).

 

V k k V j k V j k I j k I j k I j

j n

= − − − − + + − + −

= …

( ) ( 1) ( 2) ( ) ( 1) ( 2),

3,4, ,

1 2 3 4 5

 (1.28)



28 Multidimensional Lithium-Ion Battery Status Monitoring

In Equation (1.28), j is the serial number of test data V  and I, and n is a natu-
ral number. However, in practical application, there are certain functional 
relationships between the open-circuit voltage UOC and SOC, the battery 
operating temperature Tem, and the life S , and the time domain integration is 
carried out. The result is shown in Equation (1.29).
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The above equation is simplified to facilitate the identification of model 
parameters. Since the sampling time is 0.1 seconds, the variation in SOC 
and battery life S  during the sampling period is almost negligible. The con-
stant discharge test of the battery is carried out in an incubator; hence, the 
temperature of the battery changes slowly with no variation, as shown in 
Equation (1.30).
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Therefore, through the above simplification, it can be considered that the 
open-circuit voltage UOC of the battery in the process of discharge remains 
unchanged and is equal to the terminal voltage at the time point before the 
battery begins to discharge. The value can be obtained from Equation (1.30). 
In the actual iteration process, there exists a ‘data saturation phenomenon’, 
which may lead to large changes in errors, resulting in abnormal variations 
in battery parameters, and the accuracy of the model can be affected. A 
forgetting factor is introduced on the basis of recursive least squares (RLS) 
method, and the forgetting factor recursive least squares (FFRLS) method 
is established for parameter identification, which can reduce the phenom-
enon of ‘data saturation’, as shown in Equation (1.31).
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In Equation (1.31), i is the number of iterations, e i( ) is the estimation error 
of V i( ), iθ̂( ) is an expression of the column matrix of the calculated values 
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of coefficients k k~1 2 during the ith iteration, x i( ) is the input value column 
matrix of the experimental matrix, P i( )− 1  is the covariance matrix, and K i( ) 
is the gain matrix. It can be observed from Equation (1.31) that the first itera-
tion started with the input of the third group of test data, and the θ̂ and P  in 
the first iteration should be set according to actual needs. e i( ), K i( ), and P i( ) 
are obtained by calculation, respectively, and then, the iθ̂( ) is obtained. In 
the above equation, the smaller the z is, the faster the iteration convergence 
speed is, and the greater the influence of new sampling data on the identifi-
cation parameters is, but the variation of iteration error also increases. z is 
generally within the range of (0.95, 1), which is 0.998 in the research. Then, 
the first iteration is completed. The fourth group of experimental data can be 
introduced into xT  to start the second iteration. By replacing a set of data, e i( ) 
goes to zero. At this point, the iteration is complete, and then, the iθ̂( ) is the 
values from k1 to k5.

 2. Experimental results
 1. Estimation of SOC and SOH under constant current condition
  The experimental results are conducted with the SOC and SOH estima-

tion under the constant current condition. The constant current condi-
tion is that under 1 C (40.00 A) constant current condition, the battery 
is discharged from 4.20 V at full voltage to 2.75 V at cutoff voltage. The 
current and voltage are shown in Figure 1.6.

   From Figure 1.6, although the battery current is theoretically con-
stant, the actual value cannot be kept constant but fluctuates sharply 
within a small range. The experimental data were imported into the 
algorithm to obtain the state estimation results of the lithium-ion bat-
tery under constant current conditions, as shown in Figure 1.7.

   In Figure 1.7, the error of the forgetting factor dual-particle fil-
ter (FFDPF) algorithm for SOC estimation is less than that of other 
algorithms. The nonlinear error in the extended Kalman filter (EKF) 
algorithm leads to the accumulation of estimation error, resulting in the 
divergence of estimation results. The estimation result of the unscented 

FIGURE 1.6 Variation of current and voltage under constant current conditions. (a) Variation 
of current. (b) Variation of voltage.
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Kalman filter (UKF) algorithm also diverges in the later period. 
Compared with the particle filter (PF) algorithm, the FFDPF algorithm 
also tends to converge in the later stage, but the amplitude of error wavi-
ness of the algorithm is smaller. Due to the higher battery current under 
constant current conditions, the internal reaction of the battery is more 
intense, which makes the capacity increase slightly larger, as shown in 
Figure 1.8.

   In Figure 1.8, the maximum estimation error of SOH is within 0.87%. 
The estimated battery capacity can effectively predict the SOH with an 
accuracy of 99.7%, which lays the foundation for the safety management 
of the BMS.

 2. SOC and SOH estimation in dynamic stress test (DST) condition
  Under DST conditions, the battery is charged and discharged in a con-

stant current cycle with a charging current of 0.5 C and a discharging 
current of 1 C until the battery voltage reaches 2.50 V cutoff voltage. 
The variations of current and voltage are shown in Figure 1.9.

   In Figure 1.9, the current, voltage, and time are imported into the 
forgetting factor dual particle filtering algorithm together to obtain 
the SOC value in the whole experiment process. By comparing the 

FIGURE 1.8 Battery state of health estimation results under constant current discharge con-
ditions. (a) Result of capacity estimation. (b) Result of SOH estimation.

FIGURE 1.7 Battery SOC estimation results under constant current discharge conditions. 
(a) Result of SOC estimation. (b) Comparison of estimation errors.
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estimated results with the EKF, UKF, and PF algorithms, the errors are 
obtained, as shown in Figure 1.10.

   In Figure1.10a, the FFDPF algorithm has better convergence of SOC 
estimation results compared with other algorithms. When the battery is 
close to full discharge, the error of EKF estimation results rapidly accu-
mulates, resulting in a divergence phenomenon. The SOH estimation 
results under DST conditions are shown in Figure 1.11.

FIGURE 1.9 Variations of current and voltage under DST conditions. (a) The variation of 
current. (b) The variation of voltage.

FIGURE 1.10 Battery SOC estimation results under DST conditions. (a) Result of SOC 
estimation. (b) Comparison of estimation errors.

FIGURE 1.11 Battery SOH estimation results under DST conditions. (a) Result of capacity 
estimation. (b) Result of SOH estimation.
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   The capacity estimation result is described in Figure 1.11. During 
the whole implementation process, the battery capacity does not change 
significantly, which is determined by the stability of the capacity of the 
lithium-ion battery itself. The capacity of the new battery is 40.3432 
Ah. At this time, the battery is still in a relatively active state. During 
the experiment, the capacity increases slightly, which is the expression 
of the activation of active substances inside the batteries. In experimen-
tal test, the capacity and SOH of the battery change significantly only 
after hundreds of full charge–discharge cycles.

   In addition, SOH is also evaluated from the perspective of other per-
formance parameters of the batteries. This is because the performance 
of some battery parameters changes after a period of the charging and 
discharging cycles. By looking for the relationship between the changed 
performance parameters and the initial value, the state of the battery 
after the performance decline can be obtained, which is used to char-
acterize the health status of the batteries. SOH is defined from the per-
spective of battery internal resistance, as shown in Equation (1.32).

 
R R

R RN

= −
−

SOH EOL

EOL

 (1.32)

  In Equation (1.32), REOL is the internal resistance of the battery at the 
end of its life, RN is the resistance of the battery when it leaves the fac-
tory, and R is the internal resistance of the battery in its current state. 
This estimation method does not need to consider the change in battery 
capacity. As long as the internal resistance of the battery is obtained, 
the change of SOH can be estimated according to the change of internal 
resistance. The internal resistance of the battery changes with the ser-
vice life of the batteries. The longer the service life of the battery is, the 
greater the internal resistance of the battery is. SOH is defined from the 
perspective of battery cycle times, as shown in Equation (1.33).
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  In Equation (1.33), Nr is the number of cycles remaining and Nt  is the 
total number of cycles. It can be observed from Equation (1.33) that 
the total number of cycles of the battery is certain. With the use of the 
battery, the number of cycles of the battery increases, the number of 
remaining cycles of the battery is less, and the SOH value of the bat-
tery is smaller. Therefore, the number of cycles of the battery can also 
reflect the SOH of the batteries. Considering that in the actual use of the 
vehicle, users generally do not charge–discharge completely, it is dif-
ficult to obtain the effective number of cycles. Thus, using the number 
of cycles to estimate the SOH does not have much practical meaning. 
At present, the definition of lithium-ion battery SOH is mainly based on 
the above three battery performance parameters.
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1.4.3  State of poWer

The state of power (SOP) is the power output capability of the battery when discharg-
ing, and SOP is often used as its constant index [114–117]. The SOP of the battery 
refers to the maximum power that can be continuously discharged for t time based 
on the current state without violating the preset use restrictions of the batteries. 
Therefore, SOP is one of the measurement standards for the power performance of 
electric vehicles. The SOP can evaluate the charge–discharge power capabilities of 
the power battery in different health states and states of charge. In addition, it can opti-
mize the matching relationship between the power battery and the vehicle dynamics, 
as well as the regenerative braking energy recovery performance of electric vehicles.

For vehicle battery pack power supply design, when a conservative battery power 
design is adopted to meet the power requirements, it is easy to cause or reduce exces-
sive battery cost and weight, which affects the performance of the vehicles. However, 
when the design of battery power is relatively small, it may cause overdischarge dam-
age to the battery during usage. The SOP of the power battery changes with the dis-
charge temperature, SOC, and SOH. Especially, the SOP drops significantly under 
low temperature, low SOC, and low SOH conditions. Besides, if constant peak power 
is used as a limiting condition, it may cause harm [118]. Therefore, it is essential to 
estimate the peak power in real time with high accuracy.

1.4.4  State of energy

The state of energy (SOE) is a direct reflection of the remaining available energy of 
the battery, and it is also the key to energy optimization and management. At present, 
there are few real-time estimation types of research on SOE in the application market, 
and battery energy is managed only by estimating the SOC value [119,120]. However, 
SOC describes the remaining percentage of active materials in batteries and cannot 
provide more accurate energy information, which is essentially different from SOE. 
With more application scenarios of lithium-ion batteries, the battery application con-
ditions are extremely complex, and the efficiency and adaptability of management 
need to be improved. For more detailed battery management, it is necessary to know 
the remaining battery capacity and power loss of the batteries. Therefore, the pro-
posal and estimation of SOE have practical engineering significance.

There is a positive correlation and nonlinear functional relationship between SOE 
and SOC values. The positive correlation between SOE and SOC comes from the 
fact that SOE is the product of open circuit voltage (OCV) and residual capacity, 
while SOC is the percentage of residual capacity to the rated capacity. The nonlinear 
relationship between SOE and SOC is due to the decreasing trend of OCV with the 
development of the battery discharge process. Also, the heat generated by the internal 
resistance and electrochemical reaction consumes the energy stored in the battery. 
During the use of the lithium-ion battery, the discharge current changes dynamically 
with the load, the battery temperature changes significantly, and the performance of 
the lithium-ion battery also changes. Therefore, under the same SOC, when the bat-
tery temperature and discharge rate change, the discharge efficiency of the battery 
changes and affects the SOE value of the battery. In the actual operating conditions, 
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the discharge current and temperature changes caused by the load result in a great 
interference to the accurate SOE estimation of the batteries.

SOC is usually used to characterize the battery SOE, but SOE is not the same as 
the SOC value [121]. The main differences include: (1) SOC describes the percent-
age of active materials in the battery, and the factors that affect battery SOE are 
except SOC value that it also contains different application conditions of the bat-
teries. SOC provides the percentage of the battery’s capacity, which cannot provide 
more accurate energy information. (2) There is a positive correlation and nonlinear 
functional relationship between SOE and SOC values. The SOC decreases linearly 
with discharge current, but SOE is the product of OCV and capacity that as the bat-
tery’s discharge process progresses, the OCV shows a decreasing trend. The battery’s 
heat caused by the internal resistance and electrochemical reaction also consumes 
the battery’s energy. The relationship between SOE and current is not linear, result-
ing in a difference between SOC and SOE. (3) Discharge current and temperature 
variation cause changes in battery discharge efficiency, which in turn affects the per-
formance of lithium-ion batteries. Therefore, under the same SOC, when the battery 
temperature and discharge rate change, the SOE is not at a constant value. The SOE 
directly reflects the energy that the battery can release, which is a key parameter for 
the management and optimization of the power battery pack. The definition of SOE 
is shown in Equation (1.34).

 ( )( )− ∗SOE( )= / 100%t E E t Ec d c  (1.34)

In Equation (1.34), tSOE( ) is the remaining energy of the battery at time point t , 
is Ec the total energy of the battery, and E td ( ) is the accumulated energy released 
by the battery at time point t. Normally, the SOE reaches the maximum when the 
battery is fully charged, and the SOE is zero when the battery is discharged to 
the cutoff voltage.

1.4.5  remaining uSefuL Life

 1. Cycle life
Cycle life is an important parameter to evaluate the technical economy of 
lithium-ion batteries. The battery undergoes a complete charge–discharge 
process, which is called a cycle [122–126]. Under a certain discharge sys-
tem, the number of cycles that the battery can withstand before the capacity 
of a lithium-ion battery drops to a certain value (usually 80% of the rated 
capacity) is called the cycle life or service period of the lithium-ion batter-
ies. The cycle life is affected by the depth of discharge (DOD), so the cycle 
life should also be indicated at the same time as the DOD. As the number of 
charge–discharge cycles increases, the capacity degradation of lithium-ion 
batteries is an inevitable process. It is because some irreversible electro-
chemical processes occur inside the battery during the charge–discharge 
cycle, causing the battery’s discharge capacity to decay. These irreversible 
factors are mainly as follows.
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 1. During the charge–discharge cycle, the active surface area of the elec-
trode decreases continuously, which increases the working current den-
sity and polarization.

 2. The active materials on the electrode fall off or transfer.
 3. During the working process of the battery, some electrode materials 

corrode.
 4. Dendrites are formed on the electrodes during the cycle, causing micro-

short circuits inside the battery.
 5. Aging and loss of diaphragm.
 6. The irreversible crystal form of the active material changes during the 

charge–discharge cycle, thus reducing the activity.
 7. Temperature is undoubtedly one of the key factors affecting the life 

of lithium-ion batteries. Too high or too low temperature leads to a 
decrease in active lithium-ion content, thus reducing the life of lithium-
ion batteries.

 2. Storage life
The capacity of the battery changes after long-term storage, which is called 
storage performance. Although the battery does not release electric energy 
during storage, there is always a self-discharge phenomenon inside the bat-
tery. Even in dry storage, moisture, air, carbon dioxide, and other substances 
lead to the spontaneous oxidation–reduction reaction of the positive and 
negative electrodes, which consumes active substances of the battery result-
ing in a decrease in battery capacity. In addition, if stored in a wet area, 
this situation will be more serious. The magnitude of the self-discharge 
is expressed by the time that the battery capacity decreases to a specified 
capacity, that is, storage life or shelf life.

1.4.6  temperature performanCe

The battery temperature is the battery surface heating phenomenon of the battery that 
is due to chemical, electrochemical changes, electronic migration, material transfer, 
and other reasons in the internal structure, which is a normal phenomenon. If the 
heat generated by the battery cannot be completely dissipated to the environment, it 
causes the continuous accumulation of heat inside the batteries. Once the accumu-
lation of heat causes the high-temperature point inside the battery, it is possible to 
cause the heat out of control of the batteries. Lithium-ion batteries have an optimum 
operating temperature range and need to avoid thermal runaway, thus requiring ther-
mal management [127–129].

The temperature characteristics of the battery indicate the performance of the 
power battery due to the temperature changes. The operating temperature of conven-
tional lithium-ion batteries ranges from –20°C to +60°C, and low-temperature lith-
ium-ion batteries made of special materials can be discharged in the −40°C alpine 
environment. However, the nominal voltage and maximum capacity of the battery 
will vary with temperature, such as the voltage is 4.20 V, put it in the –40°C environ-
ment, and the voltage quickly drops below 3.40 V. Due to the material characteristics 
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of the lithium-ion battery, charging in a low-temperature environment can cause seri-
ous damage to the batteries.

The battery temperature conversion is the process of converting the parameters 
of the power battery capacity and the electrolyte-specific gravity at different tem-
peratures into the values at the standard temperature. The temperature coefficient of 
the cell is the ratio of the capacity available to the power cell relative to the available 
capacity at the standard temperature. The temperature factor, a battery characteristic, 
is very important because the battery temperature is a major factor affecting the bat-
tery power output. Due to the different temperatures of the working environment and 
different voltage, current, and power, the operating state of the battery at the extreme 
temperature needs to be budgeted in the circuit design.

Therefore, when using lithium-ion batteries as energy supply equipment, the tem-
perature should be considered. To obtain the most effective and efficient charging 
method, a satisfactory temperature should be selected, because once the temperature 
is too high, the battery releases a lot of heat. If the heat rises suddenly, it damages the 
battery easily, and under severe conditions, it catches fire. In addition to affecting the 
normal operation of the battery, the temperature also affects the key parameters in 
the battery, such as internal resistance. The lower the ambient temperature of a lith-
ium-ion battery, the greater the internal resistance of the battery. Due to the increase 
in the internal resistance of the battery, the power consumption of the battery is very 
fast, which leads to the rapid capacity consumption of the battery. The relationship 
between the heat generation of lithium-ion battery and the current flowing through 
the battery and internal resistance is shown in Equation (1.35).

 Q I R= 2
in  (1.35)

In Equation (1.35), Q is the heat generation rate of lithium-ion batteries. I is the 
current flowing through the lithium-ion battery. Rin is the internal resistance of  
the lithium-ion batteries. Under normal room-temperature operating conditions, the 
capacity changes in direct proportion to the increase in temperature.

1.5  CONCLUSION

This chapter mainly starts with the working mechanism of the lithium-ion battery 
and discusses the basic concept, development status, and development trends of 
lithium-ion batteries. The research on lithium-ion batteries has broad prospects for 
development and is widely used in all walks of life. The industrial chain formed by 
the lithium-ion battery industry occupies a large share in the world market, which 
plays an important role in promoting the emerging intelligent industry. Also, as one 
of the new energy sources, it adjusts the energy supply structure of the mainstream 
market. It can be observed that the accurate measurement of the voltage, capacity, 
internal resistance, energy, and power density affects the accurate estimation of the 
relevant state of the lithium-ion batteries, thus affecting the application of lithium-ion 
batteries in practice. The SOC, SOH, SOP, SOE, and service life are described from 
different aspects, which makes the research of lithium-ion batteries more standard-
ized and comprehensive. Lithium-ion batteries serve as an essential energy source in 
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today’s world due to technological advancement and usage in every aspect of human 
lives. Therefore, it is of great practical significance to study the reliability, safety, 
and service life of the lithium-ion battery. Lithium-ion battery systems are complex 
systems that combine chemical, electrical, and mechanical properties, so they must 
be designed with a wide range of characteristics in mind. Based on an understanding 
of the basic principles of lithium-ion batteries, this chapter analyzes the basic param-
eters of lithium-ion batteries, such as terminal voltage, electromotive force, capacity, 
internal resistance, and the core elements of battery state, such as SOC, DOD, cycle 
life, and self-discharge rate. The lithium-ion battery industry is an important direc-
tion of global high-tech development now. Because the lithium-ion battery has good 
electrochemical stability, large energy density, long battery life, and maintenance-
free characteristics, it is widely used in electric vehicles and a variety of energy stor-
age equipment. With the electric vehicles, lithium-ion batteries are gradually moving 
toward the market, so the usage and consumption of lithium resources in the world 
have increased significantly, resulting in the huge and broad development prospects 
of the industrial chain.
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Introduction: This chapter introduces the modeling knowledge, common working 
conditions, and parameter identification methods of lithium-ion batteries. Battery 
modeling serves as the basis for the research of lithium-ion batteries [130–133]. The 
selection of model type and the accuracy of the model are very important for the 
research of lithium-ion batteries. The accurate estimation of lithium-ion battery state 
of charge (SOC) depends on the equivalent model to a great extent, especially its 
characterization of battery dynamic characteristics. Therefore, understanding the 
establishment of the lithium-ion battery model lays the foundation for the next chap-
ter of lithium-ion battery SOC estimation and subsequent multistate monitoring of 
the batteries. After the model is established, it is necessary to select the appropriate 
identification method to obtain the lithium-ion battery parameters. Then, the system 
model parameters are identified and optimized according to the simulation results, 
which are used to observe whether the model fitting effect is consistent with the real-
time working conditions.

2.1  OVERVIEW OF BATTERY EQUIVALENT CIRCUIT MODELING

The equivalent circuit models, parameter identification [134,135], and state-space 
equation play a very important role in the SOC estimation process, which involves 
multidisciplinary integration. The establishment of the battery model mainly includes 
the following steps.

 1. Selecting the appropriate model: The technical route of battery modeling is 
determined according to the performance characteristics, application, and 
model accuracy. The appropriate model is selected from the appropriate model, 
including the model structure with unknown parameters obtained according to 
the mechanism. The electrochemical model is established that is based on the 
internal electrochemical reaction of the battery, or a black-box model.

 2. Designing experimental schemes and identifying model parameters: The 
identification of battery model parameters should be based on the actual 
measurement data. The identification of model parameters aims to minimize 
the error between the fitted curve and the measured curve. The commonly 
used identification methods of model parameters include the recursive least-
squares method, genetic algorithm, neural network method, Kalman filter-
ing (KF) algorithm, etc.
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 3. Verification of model accuracy: There are mainly four ways of verification. 
(a) Using prior knowledge verification to judge whether the model is practi-
cal or not according to the existing knowledge of the system. (b) After a 
model is identified by one set of data, the applicability is verified by another 
set of data that are not involved in the identification. (c) Analyzing the actual 
response and impulsion response by comparison. (d) The autocorrelation  
function of the excitation signal is used for verification.

Three types of commonly used models of lithium-ion batteries are electrochemical 
models based on chemical reactions within the battery, neural network models that 
simulate the work of the human brain, and equivalent circuit models built using elec-
tronic components. Electrochemical models, including the pseudo-two-dimension 
(P2D) model and single-particle model (SPM), are rarely used in engineering appli-
cations because of their complex structure and high computational cost. The neural 
network model has a large estimation error in the case of insufficient sample data 
[136,137]. The convergence and stability of the algorithm are temporal, which cannot 
guarantee the timeliness of the model, so it is currently in the simulation experiment 
stage. The equivalent circuit model is currently the most widely used battery model, 
and its estimation accuracy and robustness are better than the other two types of 
models. Since the battery is a highly nonlinear system, it is difficult to accurately 
estimate the SOC and SOH of the battery due to factors such as temperature, working 
conditions, and aging. In order to improve the estimation accuracy of SOC and SOH, 
the influence of environmental factors should be fully considered in battery model-
ing. The key points of the model establishment are described as follows.

 1. The logic structure of the circuit model is shown in Figure 2.1.
 2. Principle description

The battery simulation model is to verify the accuracy of parameters set 
in the model, so the input is current, and the output is terminal voltage. In 
the actual battery management system, the current and terminal voltage are 
both inputs.

 3. Modeling steps
(a) Selecting the appropriate equivalent circuit model. (b) Determining 
the input, output, and state variables. (c) Writing the state-space equation.  
(d) Simulation software modeling. (e) Parameter identification by 

FIGURE 2.1 Logic structure diagram of the circuit model.
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experimental data. (f) Modifying model parameters based on variables, 
such as temperature and SOC. (g) Simulate the circuit and verify its char-
acterization effect.

 4. Model selection
Different battery equivalent models have a great influence on the accuracy 
of the battery simulation. In theory, the more complex the structure, the 
higher the computational complexity, and the hardware requirements are 
increased accordingly. In the equivalent model, the accuracy of the circuit 
containing the RC loop is high. Generally, the accuracy is higher when the 
RC order is higher within a certain range.

 5. Parameter identification
According to the experimental results of the hybrid pulse power character-
ization (HPPC) test, curve fitting is performed by combining with the least-
square method to identify relevant parameters.

2.2  MODELING TYPES AND CONCEPTS

The techniques of battery modeling are classified into mechanism modeling [138,139], 
experimental modeling [140,141], and hybrid modeling methods [142]. Based on sci-
entific equations such as physical equations and concepts of chemical reactions, the 
mathematical expression of the modeling framework is constructed. The experimen-
tal object is regarded as a black box. The model is constructed by experimenting with 
the variant law on the dynamic characteristic parameters of the target object. The 
battery is a nonlinear electrochemical energy storage system, and its internal interac-
tions and reactions are difficult to be explained by precise equations. Experimental 
data models, such as neural networks, involve a great deal of feedback and learning, 
so hybrid modeling is more prevalent. The electrical characteristic model is usually 
divided into three parts: the black-box model, electrochemical model, and an equiva-
lent circuit model. The relationship of the modeling process is described in Figure 2.2.

It is necessary to select the correct battery model to get a suitable scheme for 
obtaining the battery state conveniently and accurately; it is necessary to select the 
correct battery model to get a suitable scheme. The commonly used equivalent circuit 
models are given below.

FIGURE 2.2 Connection process of the modeling concept.
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 1. When the equivalent model of internal resistance is used, the ideal voltage 
source is implemented to reflect the open-circuit voltage. The internal resis-
tance represented by R0 and the open-circuit voltage represented by UOC

OCU  are both related to the SOC levels. The position of the load-discharge is 
measured only by the positive and the negative of the current pulse.

 2. The resistor–capacitor equivalent model is achieved by using circuit resis-
tance and capacitance, which can accurately explain the surface effect. 
There are three resistors and two capacitors in the model, where Ca is the 
battery capacity and Cb  is the small capacitance generated from the surface 
effect of the lithium-ion batteries.

 3. The Thevenin equivalent model can also be accomplished by the combina-
tion of the internal resistance model and the analog circuit of the resistance 
capacity model, considering the polarization effects.

 4. The battery test manual proposes an equivalent model of the PNGV. The 
PNGV model adds a capacitor Cb to the Thevenin model, which is used to 
represent the change of the open circuit voltage caused by the accumulation 
of the load current.

Among the four standard models, the internal resistance model does not consider 
the transient characteristics of the battery in the electrochemical response stage, and 
its conversion process cannot be defined in terms of convenience and efficiency in 
calculation. The resistance–capacitance equivalent model can better simulate the 
dynamical properties of the battery and increase the definition of the surface impact, 
temperature, and cell polarization effects that are ignored. Because considering the 
current accumulation effect, the PNGV model has high accuracy, but the introduc-
tion of the series-connected capacitor Cb makes the system vulnerable to cumulative 
errors in long-term simulation. The error in the polarization effect can be resolved 
by the Thevenin model [143]. It is very appropriate for the battery charging and dis-
charging study of transient energy. The Thevenin model is a simple structure com-
pared to the PNGV model, the GNL model, and other models that are a nonlinear 
lower-order model and requires fewer parameters, so it can fulfill engineering appli-
cation requirements in terms of precision.

2.3  EQUIVALENT CIRCUIT MODELING

According to different modeling principles, battery models are divided into the mech-
anism and empirical modeling types. The mechanism model is based on the electro-
chemical theory and uses mathematical methods to describe the reaction process 
inside the batteries. This model can describe the basic law of battery decay. Based on 
the mechanism of capacity decay, the electrochemical dynamics and charge transfer 
processes occurring in the battery are considered. The empirical model is a kind of 
model that analyzes a lot of actual experimental data and predicts the behavior of the 
battery without considering the physical and chemical reaction process in the batter-
ies. Polynomial, exponential, power function, logarithm, and trigonometric functions 
are usually used to express the empirical model.
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At present, the most commonly used empirical model is the equivalent circuit 
model, which is a model based on circuit components such as the power supply, 
inductance, capacitance, and resistance without considering the chemical composi-
tion inside the battery and its corresponding reactions. The equivalent circuit model 
contains many kinds of model structures. The simple and practical model structure 
shortens the development cycle and reduces the development cost, but the model 
accuracy is often lower. Meanwhile, the complex model improves the battery char-
acterization accuracy, but the difficulty of identifying model parameters increases 
accordingly. Therefore, in practical applications, several factors should be weighed, 
and the actual accuracy and calculation complexity requirements should be consid-
ered comprehensively to establish a suitable battery model. Then, an appropriate 
battery model should be selected to describe the cycle of the charge–discharge. The 
following is an analysis of several commonly used equivalent circuit models.

2.3.1  rint moDeL

The Rint model is also called the internal resistance model. In the Rint model, the 
battery is equivalent to the series connection between the ideal voltage source OCU  
and the resistance 0R . It is a relatively rough battery model, which consists of only 
a constant voltage source and a resistor in series [144]. However, the polarization 
characteristics are not considered in this model, so the accuracy of the model is low, 
and can only approximately represent the ohmic resistance of lithium-ion batteries, 
as shown in Figure 2.3.

In Figure 2.3, the Rint model regards the lithium-ion battery pack as an ideal power 
source. UOC is a constant value that represents the open-circuit voltage of the battery, 
R0 is the ohmic resistance of the battery, and UL  is the terminal voltage between 
the positive and negative ends of the batteries. In the application process, the battery 
operating characteristics are characterized by equating the battery as a series connec-
tion of a voltage source and a resistor. Due to the existence of the internal resistance, 
during the charge–discharge process, some of the energy converted into electricity is 
consumed by the internal resistance in the form of heat generation. Then, the charge–
discharge efficiency is analyzed and carried out to establish the mathematical expres-
sion of the working characteristics [145]. To simplify the calculation, UOC  and R0 
are set as constant values in the model, ignoring the characteristic that the internal 
resistance of the battery varies with electrolyte concentration and SOC value, which 
is inconsistent with the actual parameters of the batteries. The Rint model has low 

FIGURE 2.3 Internal resistance equivalent structure diagram.
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accuracy and is unsuitable for the actual SOC estimation of lithium-ion batteries. The 
state-space description of the Rint model is expressed by Equation (2.1).

 = − ( )*OC 0U U I t RL  (2.1)

From the analysis of the state space shown in Equation (2.1), the actual output voltage 
of the battery pack is quite different from the equivalent simulation process of the 
internal resistance model of the lithium-ion battery pack. Also, the transient char-
acteristics of the electrochemical reaction process are not considered in the model, 
which cannot accurately characterize the changes in the working process.

2.3.2  rC moDeL

The RC model has two capacitors and three resistors where the high capacity Cb dem-
onstrates its energy storage potential. The Cs capacitance defines the surface potential 
and diffusion effect. Rt is the battery terminal resistance, Rs is the surface resistance, 
and Re is the end resistance. The RC model structure is shown in Figure 2.4.

When the model is used in an operating environment to simulate the battery 
behavior at a specific SOC value, the parameters of the model can be considered 
constants. However, when the influence of these parameters varies along with the 
temperature changes and needs to be considered, a large SOC working range must be 
simulated, which makes the process of arranging and processing model parameter-
ization complicated. The battery terminal voltage is shown in Equation (2.2).
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FIGURE 2.4 Schematic diagram of the RC model.
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2.3.3  thevenin moDeL

Based on the internal resistance model, the Thevenin model is constructed by considering 
the internal polarization effect during the charge–discharge process of the lithium-ion 
battery pack. Thevenin model considers that the characteristics of batteries are similar 
to those of capacitors [146,147]. In this model, the ideal voltage source OCU  describes the 
open-circuit voltage of batteries, the resistance 0R  is the internal resistance of batteries, 
and the capacitor Cp and resistor Rp are in the parallel connection type to describe the 
overpotential of batteries. Compared with the Rint model, it has the advantage of adding 
an RC circuit, which can fully reflect the battery voltage lag phenomenon during the 
charge–discharge process. The model enhances the nonlinear characterization effect of 
the model by characterizing the obstruction of polarization effect to current. It realizes 
the effective characterization of electrochemical polarization and concentration differ-
ence polarization effect of the battery through the parallel loop of Rp and Cp. Since the 
Thevenin model is a first-order model, there are some errors in the dynamic output volt-
age curve of the model compared with the actual battery output in practical applications. 
The structure of the Thevenin model is shown in Figure 2.5.

In Figure 2.5, OCU  is the open-circuit voltage, 0R  is the ohmic resistance, Rp is the 
polarization resistance, and Cp is the polarization capacitance. The parallel circuit of 
Rp and Cp describes the polarization process. UL is the closed-circuit voltage after 
the battery is connected to the external circuit. The model takes into account the 
polarization process of the battery, and the first-order model constructed is relatively 
simple to calculate. Firstly, the state-space equation should be obtained according 
to the basic operating characteristics of the capacitor components. The relationship 
between the current flowing through the battery polarization capacitor Cp and its two 
closed-circuit voltages is shown in Equation (2.3).

 =( )
( )

I t C
dU t

dt
Cp p

Cp  (2.3)

In Equation (2.3), based on the analysis of the equivalent circuit composition, 
through the application of the knowledge of circuit science and Kirchhoff’s voltage 
law (KVL), the voltage relationship in the equivalent circuit of Figure 2.5 can be 
obtained, as shown in Equation (2.4).

 + + = −* ( ) *
( )

( )0 0 OCR I t R
U t

R
U t U UCp

Cp

P
Cp L (2.4)

FIGURE 2.5 Thevenin equivalent model structure diagram.
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In Equation (2.4), taking ( )U tCp  as the state variable, the above two expressions are 
combined to describe the comprehensive working state. The voltage ( )U tCp  at both 
ends of the equivalent circuit and the capacitor is set as the state variable, according 
to which the calculation process is analyzed to obtain the state-space expression of 
the equivalent model, as shown in Equation (2.5).

 + +
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In Equation (2.5), OCU  is the open-circuit voltage, 0R  is the ohmic resistance, Rp is 
the polarization resistance, Cp is the polarization capacitance, and UL is the closed-
circuit voltage after being connected to the external circuit. The parameters in the 
equivalent model are fixed values and cannot be modified and adjusted. After the 
internal resistance is equivalently processed, the equivalent model takes into account 
the influence of the polarization effect. The RC parallel circuit of the capacitive 
device Cp is added with the dynamic characteristics, so that the equivalent circuit 
model can have better dynamic simulation characteristics of the battery.

2.3.4  pngv moDeL

The PNGV model is the standard battery model in the PNGV Battery Test Manual, 
which contains two resistors and two capacitors, one less than the RC circuit model. 
The characteristic of this model is that it takes into account the error caused by 
the current accumulation during the charge–discharge process of the battery OCV 
characteristics. Compared with the Thevenin model, the PNGV model adds a large 
capacitance Cb to describe the OCV change [148]. Because it has the characteristics 
of battery polarization and ohmic resistance, the circuit model is more accurate. The 
model structure is shown in Figure 2.6.

The PNGV model is a typical nonlinear lumped parameter circuit, which can 
be used to predict the terminal voltage variation of the battery under the condition 
of hybrid power pulse characterization pulse load. In Figure 2.6, OCU  is the ideal 
voltage source, 0R  is the ohmic resistance, Rp is the polarization resistance, and Cp 

FIGURE 2.6 Lithium-ion battery PNGV equivalent model.
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is the polarization capacitance. The parallel circuit of Rp and Cp is used to reflect 
the production of the battery polarization process to greatly reduce the differences 
in the working process and the impact on the working environment. Cb is the self-
discharge capacitance, which is used to describe the influence of the current accumu-
lation effect on battery open-circuit voltage. Both OCU  and Cb indicate the differences 
in the open-circuit voltage, such as voltage, temperature, and capacity, between the 
cells, and the differences increase with the aging of the battery. The model does not 
consider the effect of self-discharge and temperature. By analyzing the illustrated 
equivalent circuit model, the state-space equation of each parameter can be obtained, 
as shown in Equation (2.6).

 ∫= − 



 − −( )OC 0U U C i t dt R I R IL b L p p (2.6)

In Equation (2.6), the parameter identification of the PNGV model is combined with 
the HPPC test. In the HPPC experiment for the parameter identification, four dif-
ferent sample times of a, b, c, and d  are selected for the mathematical state-space 
description. After the matrix description is performed, the relationship between dif-
ferent sample times can be obtained, as shown in Equation (2.7).
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In Equation (2.7), OCU  is the open-circuit voltage, 0R  is the ohmic resistance, Rp is 
the polarization resistance, Cp is the polarization capacitance, IL is the current, I p is 
the current through polarization internal resistance, and UL is external load closed-
circuit voltage. The subscript parameters a, b, c, and d , respectively, represent four 
different sample times, which are used to characterize the state values of the param-
eters at different times.

2.3.5  gnL equivaLent moDeL

The general nonlinear (GNL) model is an improvement and extension of the PNGV 
model. In the GNL model, the constant voltage source OCU  is used as the open-circuit 
voltage of the battery, capC  is a large energy storage capacitor to describe the capacity 
of the battery, two parallel RC networks are used to describe the change of battery 
terminal voltage caused by the polarization effect, Re is the ohmic resistance of the 
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battery, and  Rs is the self-discharge resistance of the batteries. The equivalent circuit 
structure of the GNL model is shown in Figure 2.7.

With the introduction of the RC series network and a second-order RC parallel 
network in the GNL model, it is more accurate than the Thevenin model and PNGV 
model; in addition, the model can simulate the ohmic polarization, electrochemical 
polarization, concentration polarization, and self-discharge phenomena of the batter-
ies. GNL model takes into account the relationship between the battery parameters, 
the temperature, and the SOC value [149]. The model performs fitting experiments 
on model parameters at specific SOC points, which discretizes the model parameters 
into functions corresponding to SOC. It fuses battery experimental data at different 
temperatures to establish the functional relationship between temperature and model 
parameters. Also, the complexity of the GNL model is getting higher and higher. It 
is used for PC calculations, which is still a big challenge for embedded processors.

By analyzing the GNL model, the voltage–current relationship in the circuit can 
be obtained, as shown in Equation (2.8).
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In Equation (2.8), in contrast to the Thevenin and PNGV models, the GNL series 
model adds an RC series network and a second-order RC parallel network, which 
increases the model accuracy. The ohmic polarization, electrochemical polariza-
tion, and concentration can all be simulated using this model. In the GNL model, 
the relation between battery parameters of temperature and SOC is taken into 
consideration.

FIGURE 2.7 Lithium-ion battery GNL equivalent model.
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2.3.6  SeConD-orDer equivaLent moDeL

The second-order RC model is formed by adding an RC branch to the Thevenin 
model, so it is called the improved Thevenin model. Compared with the Thevenin 
model, these two RC circuits can fully reflect the battery impedance caused by two 
different polarization effects: electrochemical polarization and concentration dif-
ference polarization. Through the exploration of the above improvement ideas, the 
second-order model is obtained, as shown in Figure 2.8.

In Figure 2.8, OCU  is the open-circuit voltage, 0R  is the ohmic resistance, 1R  is the 
polarization resistance, 1C  is the polarization capacitance, 2R  is the surface effect 
resistance, 2C  is the surface effect capacitance of the lithium-ion battery pack, ( )I t  is 
the load current, and UL  is the closed-circuit voltage when the battery pack is con-
nected to a load. By analyzing the circuit structure of the above equivalent model, 
the knowledge of circuit analysis is applied to obtain its state and observation. 
According to Kirchhoff’s circuit law, the circuit dynamic model of the second-order 
model is shown in Equation (2.9).
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In Equation (2.9), by taking the parameters SOC, 1U , and 2U  into a parameter matrix 
 SOC  1 2U U

T
 as state variables, the state space of the lithium-ion battery 

pack is obtained. The calculation process is shown in Equation (2.10).
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For the equivalent circuit model, the closed-circuit voltage UL of the lithium-
ion battery pack is used as the output of the nonlinear SOC estimation model.  
Furthermore, the output current IL is used as the input of the nonlinear system, and 
the observation equation (*)H  to obtain the parameter UL is shown in Equation (2.11).

 (SOC) (SOC)1 2 1 2 0( ) ( )= = − − −U H f U U f U U I t RL  (2.11)
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2.3.7  CompounD equivaLent moDeL

The equivalent circuit modeling process is based on experimental data and uses 
the method of establishing an electrical model to simulate the working process  
of the battery. Regardless of internal chemical reactions, it has strong applicability. The 
equivalent model is often used to simulate the dynamic characteristics of the battery. 
However, a simple model cannot reflect the dynamic changes of the battery because 
it may lead to inaccurate estimation results [150]. Complex models need to determine 
too many parameters, and the amount of calculation is highly increased, which may 
cause the problem of parameter divergence. The battery pack is constructed by cascad-
ing multiple battery cells to achieve high-power applications and provide the required 
energy. A model construction method based on circuit equivalence is usually selected 
to construct a battery pack composite equivalent circuit model to construct a high-
fidelity equivalent circuit model with the greatest extent and meet the requirements of 
the most complex working conditions. This book uses lithium-ion battery packs as an 
example, which briefly explains the construction of the compound equivalent model.

It is designed to combine the advantages of different equivalent circuit models to 
achieve an accurate description of the working state of the lithium-ion battery packs, 
comprehensive characterization accuracy, and computational complexity. The com-
posite equivalent circuit of the lithium-ion battery pack is proposed and constructed 
with circuit equivalent. The proposed S-ECM model realizes the accurate mathemat-
ical expression of the operating conditions and the working process by simulating 
different effects inside the cascaded lithium-ion battery packs. Also, the model adds 
parallel resistance based on the first-order RC equivalent circuit to characterize the 
self-discharge effect. Based on the PNGV equivalent, this model introduces a resis-
tance parallel circuit with a series of reverse diodes to characterize the difference in 
internal resistance during charge–discharge. Based on the Thevenin equivalent, this 
model adds a series of power supplies and resistors at both ends of the electromotive 
force to characterize the influence of the equilibrium state and accurately describe 
the working process of the lithium-ion battery pack. Based on fully considering the 
working characteristics of the lithium-ion battery pack, the framework of its equiva-
lent model is realized. Through the experimental analysis of working characteristics 
and the identification of the state parameters, the effective mathematical state-space 
description of the model is carried out.

FIGURE 2.8 Second-order equivalent circuit model of lithium-ion battery.
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The equivalent mechanism of each part of the lithium-ion battery pack S-ECM 
model is described as follows. (1) The electromotive force in the model comes from 
a constant voltage source OCU , and a large resistance Rs is added in parallel at both 
ends to characterize the self-discharge effect. Then, through series connection, the 
internal resistance 0R  is the ohmic effect. (2) Using the first-order RC parallel circuit 
to characterize the polarization effect, the resistance Rd  and Rc parallel circuits with 
reverse diodes are improved in series to characterize the difference in charge–dis-
charge internal resistance, which further improves the accuracy of its working state 
description. (3) Considering the consistency difference between the monomers in the 
group equivalence process, it carries out an equivalent description of the influence of 
the equilibrium state on the description of the working state.

The phenomenon leads to the composition of the output voltage UL to change 
and shorten the operating voltage range. Therefore, a time-varying voltage source 

δU  connected in reverse series with the open-circuit voltage source OCU  is used 
for characterization. This phenomenon causes the additional accumulation of the 
ohmic resistance 0R  to increase, which gradually increases the heating phenome-
non. Consequently, the time-varying resistance parameter δR  is used to describe the 
effect. The existing SOC estimation methods have not yet fully considered the influ-
ence of the above factors. If the comprehensive influence of these parameters can 
be considered in the SOC estimation process, it provides an effective solution to the 
existing problems of lithium-ion battery packs. The S-ECM equivalent model of the 
lithium-ion battery pack is shown in Figure 2.9.

In the equivalent model shown in Figure 2.9, the meaning of each parameter is 
described as follows. OCU  is the open-circuit voltage of the battery pack, which is a 
value changing with the SOC value. Rs is a large resistance used to characterize the 
self-discharge effect of the lithium-ion battery packs. 0R  is the ohmic resistance, which 
is used to characterize the voltage drop between the positive and negative electrodes 
of the lithium-ion battery pack caused by the ohmic effect during charge–discharge.

By using a first-order RC parallel circuit, the relaxation effect during the charac-
terization process is simulated and characterized, and then, the transient response of 

FIGURE 2.9 Improved S-ECM model diagram of the lithium-ion battery pack.
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the battery pack is expressed. Rp is the polarization resistance, and Cp is the polar-
ization capacitance of the lithium-ion battery pack. The parallel circuit of Rp and 
Cp reflects the generation and elimination process of the polarization effect of the 
lithium-ion battery pack. Rd  is the difference in internal resistance exhibited by the 
lithium-ion battery pack during the discharge period. Rc and Rd  are the difference 
in the internal resistance of the lithium-ion battery pack during the charge and dis-
charge processes, respectively. δU  and δR  are used to characterize the influence of the 
balance state between the internally interconnected monomers. ( )U tL  is the closed-
circuit voltage at both ends of the positive and negative poles during the charge and 
discharge processes after the lithium-ion battery pack is connected to the external 
circuit. ( )I t  is the value of the current.

2.3.8  voLtage matChing equivaLent CirCuit moDeL

Considering the needs of engineering application, the dynamic characteristics of the 
lithium-ion battery should be characterized by an uncomplicated equivalent model, 
so the Thevenin model is selected. The Thevenin model is obtained by connecting 
the Rint model in series with a resistor–capacitor (RC) loop [151]. The basic idea 
is to use an RC parallel circuit to characterize the polarization effect of the battery 
during use, which is to some extent making up for the shortcomings of the Rint 
model that cannot characterize the dynamic characteristics of lithium-ion batteries. It 
visualizes the complex and abstract dynamic response problem of batteries through 
a circuit model and is easy to be implemented in engineering, so it is one of the most 
commonly used models. The Thevenin equivalent circuit model can only simulate 
the charging process or discharging process of lithium-ion batteries. The voltage 
matching model is improved by adding two diodes with different directions to the 
Thevenin model. The diode has unidirectional conductivity, which can, respectively, 
characterize the discharge and charge states of the lithium-ion battery and match the 
corresponding identification parameters to improve the simulation accuracy of the 
model, as shown in Figure 2.10.

FIGURE 2.10 Voltage matching equivalent circuit equivalent model.
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As shown in Figure 2.10, two diodes 0D  and 1D  are added into the voltage match-
ing equivalent circuit model, which is used to distinguish the open-circuit voltage and 
ohm resistance in the charge–discharge stage. When the current > 0i , it is the dis-
charging process of the battery, and when the current <  0i , it is the charging process 
of the battery. Like the Thevenin model, the open-circuit voltage of the voltage match-
ing equivalent circuit model is OCU , but it is divided into two stages: discharge open-
circuit voltage OC1U  and discharge open-circuit voltage OC2U . Similarly, the ohmic 
resistance of the voltage matching equivalent circuit model is 0R , which is divided into 
two stages: discharging resistance 1R  and charging resistance 2R . When > 0i , it means 
that the battery is being discharged. When < 0i , it means that the battery is charg-
ing. According to Kirchhoff’s law, the equivalent circuit expressions for the charge– 
discharge phases of the battery can be obtained, as shown in Equation (2.12).
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In Equation (2.12), the open-circuit voltage can be characterized by the state varible 
SOC, and a nonlinear function relationship can be obtained. Combined with the 
definition of SOC, the calculation expression of SOC can be obtained, as shown in 
Equation (2.13).
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In Equation (2.13), SOC 0t  is the initial power of the battery, SOCt is the power of the bat-
tery at the time point k, 0Q  is the rated capacity, η is the Coulomb efficiency coefficient, 
and ( )i t  is the charge–discharge current. The state-space variable [ ]= SOC , ,x Uk k P k

T
, 

the input variable [ ]=U ik k , and the output variable [ ]= ,y Uk L k  are selected. A discrete 
state-space equation can be obtained, as shown in Equation (2.14).
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In Equation (2.14), ∆t is the sampling time interval, τ = R CP P, wk is the state error, 
and vk is the measurement error, which is the zero-mean white noise of the covariance 
matrices Q and R, respectively. The first sub-equation is the state equation for the SOC 
estimation, and the second sub-equation is the systematic observation equation.

2.3.9  improveD SeConD-orDer rC equivaLent moDeL

Compared with other equivalent circuit models, the second-order RC model reflects 
the changing law of the batteries more accurately. It has two RC loop circuits, 
which can fully represent the battery impedance caused by two different polariza-
tion effects: electrochemical polarization and concentration difference polarization. 
However, the widely used second-order RC equivalent circuit model does not con-
sider the self-discharge effect of lithium-ion batteries. When the lithium-ion battery 
is not connected to a load, the power storage capacity also decreases over time, which 
leads to the change in the open-circuit voltage. The equivalent circuit model does 
not consider the self-discharge effect on the corresponding error when selecting the 
open-circuit voltage. Thereby, the parameter identification accuracy of the lithium-
ion battery equivalent circuit model is reduced, which affects the accuracy of the 
SOC estimation. Therefore, an improved second-order equivalent circuit model is 
established that considers the self-discharge effect, as shown in Figure 2.11.

In Figure 2.11, OCU  is the open-circuit voltage of the lithium-ion battery pack, 0R  
is the ohmic resistance, Ra is a self-discharge resistance used to represent the self-dis-
charge process, 1Rp  is the polarization resistance of the battery, 1Cp  is the polarization 
capacitance, 2Rp  is the surface effect resistance of the battery, 2Cp  is the surface effect 
capacitance of the lithium-ion battery, ( )I t  is the line current, and UL is the closed-circuit 
voltage when the battery pack is connected to a load. By analyzing the circuit structure 
of the above equivalent model, the knowledge of circuit analysis is applied to obtain its 
state and observation. According to Kirchhoff’s circuit law, the electrical characteristics 
of the second-order equivalent circuit model are shown in Equation (2.15).
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FIGURE 2.11 Improved second-order equivalent circuit model.
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The state-space variables are initialed as = 



SOC , , ,1, 2,x U U Uk k p k p k a

T

, 

the input variable is ik , and the output variable is obtained as shown in = ,y Uk L k . The 

state-space expression equation of the equivalent model can be obtained, as shown 
in Equation (2.16).
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In Equation (2.16), ∆t is the sampling interval, τ =1 1 1R Cp p , τ =2 2 2R Cp p , wk is system 
noise, and vk is the measurement error. The measurement method of Ra is described 
as follows: The fully charged lithium-ion battery is placed in a constant tempera-
ture environment for 30 days, and the voltage change is monitored for identification.  
It can be observed from the KVL equation that the voltage–current relationship in 
the resting state is shown in Equation (2.17).
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In Equation (2.17), after measuring Cb, the self-discharge resistance Ra can be calcu-
lated by Equation (2.18).
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A simulation model is built in Simulink, which can be used to calculate the accuracy 
of parameter identification, as shown in Figures 2.12 and 2.13. 
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Figure 2.13 shows the parameter identification accuracy verification when the sec-
ond-order RC equivalent circuit model does not consider the self-discharge effect, 
and there is always a large error in the discharge process The simulation results of 
the model after considering the effect of self-discharge are obtained as shown in 
Figure 2.14.

In Figure 2.14, after considering the self-discharge resistance, the result of param-
eter identification accuracy verification is obtained. It can be observed that after add-
ing the self-discharge process, the model can simulate the actual voltage output well 
and achieve high accuracy.

2.4  INTRODUCTION OF COMMON WORKING CONDITIONS

2.4.1  hyBriD puLSe poWer CharaCterization teSt

The HPPC test is a battery performance test method proposed in the ‘Freedom CAR 
Battery Test Manual for Power-Assist Hybrid Electric Vehicles manual’, which is 
used to reflect the power battery pulse charge–discharge performance of a feature 

FIGURE 2.12 Improved second-order equivalent circuit model simulation.

FIGURE 2.13 Second-order RC equivalent model simulation results.
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[152]. After the HPPC experimental test, the model parameters are identified. HPPC 
tests are performed by using dedicated battery testing equipment, which is used to 
test the internal resistance of the battery. The HPPC experiment process is described 
as follows: In the cyclic test, the lithium-ion battery is subjected to a power pulse 
test at every SOC point with equal interval, and SOC levels are selected from 0 to 1.  
The process of the pulse test is to discharge the lithium-ion battery at a 1 C rate for 
10 seconds and then charge it at a 0.75 C rate for 10 seconds after resting for 40 sec-
onds. The battery needs to be placed between adjacent pulse tests for a long time to 
restore electrochemical and thermal equilibrium. The whole experiment is mainly 
composed of a single repeated charge and discharge pulse test [153].

All the parameters of the Thevenin circuit model are obtained through the 
HPPC experiment. The disadvantage of this experiment is that it takes a long time, 
usually about 12 hours, and most of the time is consumed in the repeated shelv-
ing stage, which causes great losses to the experimental equipment and operators. 
Therefore, two test channels are used to solve the time-consuming problems. In 
the same batch, two lithium-ion batteries with similar capacities are selected to 
conduct the HPPC test and also to ensure the consistency of other influence quan-
tities except for the experimental quantity. Each channel only cycles the power 
pulse test five times. The first channel is conducted with the pulse test when SOC 
is equal to 1, 0.8, 0.6, 0.4, and 0.2, and the second channel is conducted with the 
pulse test when SOC is equal to 0.9, 0.7, 0.5, 0.3, and 0.1. With this improved 
scheme, the experimental time is reduced to about 7 hours. When the difference 
between the two groups of batteries is small, the experimental results are consis-
tent with the original HPPC experimental results. Therefore, the improved experi-
mental procedure is accurate and feasible.

2.4.2  Beijing BuS DynamiC StreSS teSt

The Beijing bus dynamic stress test (BBDST) working condition is obtained through 
the actual data collection of the Beijing buses. The rated parameters of the lithium-
ion battery pack on the vehicle are 380 V and 360 Ah. The electric bus is used for 

FIGURE 2.14 Improved second-order RC equivalent model simulation results.
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BBDST operating condition testing. The working condition steps mainly include 
starting, acceleration, sliding, braking, constant speed, rapid acceleration, and brak-
ing. The counting of the running time and power for specific each step is summa-
rized, as shown in Table 2.1.

In Table 2.1, P  (kW) is the output power of the battery under the real bus starting, 
accelerating, and taxing conditions. As can be seen from the table, the time required 
to the complete BBDST condition was 300 seconds. Considering that the battery 
parameters of different test objects are different, the test steps need to be changed 
according to certain conversion rules. The transformation process is carried out as 
follows: The test conditions are applied to battery cells or battery modules, as shown 
in Equation (2.19).

 λ= =P
V Q

V Q
P Pc

c c

b b
b b b (2.19)

In Equation (2.19), Pb, Vb, and Qb are the power, voltage, and capacity of the reference 
battery, respectively. Pc, Vc, and Qc are the power, voltage, and capacity respectively 
of the tested cell or module. b is the battery equivalent coefficient. It is necessary 
to increase the battery test power to test the battery overload capacity, as shown in 
Equation (2.20).

TABLE 2.1
BBDST Working Conditions

Step

P(kW) t(seconds)
Status 

DescriptionAir Conditioner On Air Conditioner Off Complete Steps Total

1 45 37.5 21 21 Start

2 80 72.5 12 33 Accelerate

3 12 4.5 16 49 Slide

4 −15 -15 6 55 Brake

5 45 37.5 21 76 Accelerate

6 12 4.5 16 92 Slide

7 −15 -15 6 98 Brake

8 80 72.5 9 107 Accelerate

9 100 92.5 6 113 Rapid acceleration

10 45 37.5 21 134 Constant speed

11 12 4.5 16 150 Slide

12 −15 −15 6 156 Brake

13 80 72.5 9 165 Accelerate

14 100 92.5 6 171 Rapid acceleration

15 45 37.5 21 192 Constant speed

16 12 4.5 16 208 Slide

17 −35 −35 9 217 Brake

18 −15 −15 12 229 Brake

19 12 4.5 71 300 Stop
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 α′ =P Pc c (2.20)

In Equation (2.20), α  is the overload stress coefficient. The test conditions are applied 
to two different vehicles. The above working condition is derived from vehicle a, 
the power at time point t is Pa, and the application object of the working condition is 
vehicle b. The rated voltage and capacity of the power battery pack of vehicle a are Va 
and Qa, respectively, and the mass of the tested vehicle is ma. Also, the rated voltage 
and capacity of the battery pack of vehicle b are Vb and Qb, and the mass of the test 
vehicle is mb. Then, the working condition is applied when the vehicle is b and the 
power is calculated, as shown in Equation (2.21).

 λ= =P
V Q

V Q

m

m
P Pb

a a

b b

b

a
a v b (2.21)

In Equation (2.21), λv is the vehicle equivalent coefficient.

2.4.3  DynamiC StreSS teSt

In practical application, the real-time current of lithium-ion batteries is complex 
and changeable. In different working conditions, there are often sudden switching 
and stopping of current, so it is necessary to strictly require the model dynamic 
simulation performance of the battery. The self-defined dynamic stress test (DST) 
working condition experimental data are used to simulate the model to further 
verify the SOC estimation of the lithium-ion batteries under more complex work-
ing conditions [154]. The experimental procedures of the DST are described as 
follows.

 1. The battery is charged to a maximum terminal voltage of 4.20 V with a 
constant current of 1 C. And then, it is charged with a constant voltage until 
the charging current rate drops to 0.05 C.

 2. After charging is completed, the battery is set aside to stabilize the battery 
voltage. Since the selected lithium-ion battery has a small capacity, the resi-
dence time is selected as 30 minutes.

 3. The constant current discharge is carried out at a rate of 0.5 C for 4 minutes 
and then let the battery rest for 30 seconds after stopping the discharge.

 4. The lithium-ion battery is charged with a constant current rate of 0.5 C for 2 
minutes. After stopping the charging, the battery rests for 30 seconds.

 5. The constant current discharge is performed at a rate of 1 C for 4 minutes.

Steps (4) and (5) are repeated until the battery discharge is over.

2.5  OFFLINE PARAMETER IDENTIFICATION

In the process of data analysis and processing, the effective data segment is 
extracted firstly from the original experimental data [155]. Then, the extracted 
data segment is analyzed and effective processing methods are adopted to obtain 
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the relationship between the internal parameters of the equivalent circuit model 
and the SOC value.

2.5.1  point CaLCuLation

The equivalent circuit model is only a rough description of the characteristics of 
 lithium-ion batteries. It is necessary to identify the parameters of the equivalent 
model based on the experimental data, which is used to describe the working charac-
teristics of batteries accurately and establish a state-space model. The experimental 
process is shown in Figure 2.15.

First, all the voltage data are extracted from the original data, and the differ-
ences in the terminal voltage of the lithium-ion battery are depicted during the HPPC 
experimental test, as shown in Figure 2.16.

From the analysis of the graph obtained from the experimental results, it can 
be observed that the voltage changes significantly after 1 hour of constant current 
discharge. After the discharge was completed, the battery voltage gradually stabi-
lizes after prolonged storage, indicating that internal chemical reactions and thermal 
effects had reached equilibrium. The battery voltage at the time is its open-circuit 
voltage. Therefore, the relationship curve between the open-circuit voltage and SOC 
is obtained. A comparison of the two curves has shown to have the same fitting. 
Useful data segments are extracted from the data of the overall process, and then, 
parameter identification is carried out. For the Thevenin model, the parameters that 
need to be identified are ohmic resistance 0R , polarization internal resistance Rp, and 
polarization capacitance Cp. These parameters can be identified according to the 
power pulse test phase of the HPPC test experiment. Consequently, the data of the 

FIGURE 2.15 Data processing and model validation.

FIGURE 2.16 HPPC test experiment voltage response curve.
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pulse test in each cycle are extracted first. The impulse response curve of the lithium-
ion battery is obtained when the SOC is 0.9, as shown in Figure 2.17.

In Figure 2.17, the transient and steady-state characteristics of lithium-ion bat-
teries are also reflected. When the pulse discharge starts, the battery voltage drops 
instantaneously, and then, the voltage slowly drops with time during the discharge. 
When the discharge ends, the battery voltage rebounds immediately. During the 
resting period, the voltage gradually rises and stabilizes. Meanwhile, the voltage 
response during charge–discharge is the opposite. There are two methods for param-
eter identification using pulse test data: One is the calculation method by taking 
points, and the other is the curve fitting method. First, extract all the voltage data 
from the original data, and depict the changes in the terminal voltage of the lithium-
ion battery during the HPPC test experiment, as shown in Figure 2.18.

All the current data are extracted from the original data to describe the cur-
rent changes in the lithium-ion battery during the HPPC test process, as shown in 
Figure 2.19.

FIGURE 2.17 Pulse test chart when SOC = 0.9.

FIGURE 2.18 HPPC test experiment voltage response curve.
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The relevant data are extracted from the experimental results of the overall pro-
cess, and then, parameter identification is carried out. For the Thevenin model, the 
parameters that need to be identified are ohmic resistance 0R , polarization internal 
resistance Rp, and polarization capacitance Cp. These parameters are identified from 
the power pulse test phase of the HPPC test experiment, so the data segment of the 
pulse test in each cycle must be extracted first. When the SOC is 0.7, the impulse 
response curve of the lithium-ion battery is shown in Figure 2.20.

In Figure 2.20, the identification process of the point-taking calculation method 
is described as follows. First, five points A, B, C , D, and E  are obtained. From the 
Thevenin equivalent model, the rapid change of voltage at the beginning of discharge 
and charging is due to the instantaneous response caused by the current flowing 
through 0R . The RC circuits can be used in the Thevenin model to explain the gradual 
drop of voltage during discharge. The value of the ohmic resistance parameter is 
obtained from the sections AB and CD. Also, the value of the internal polarization 
resistance and the polarization capacitance of the RC circuit is obtained from the sec-
tions of BC  and DE. From this, the calculation equation of the parameter is obtained, 
in which the calculation expression of 0R  is shown in Equation (2.22).

FIGURE 2.19 HPPC test experiment response curve.

FIGURE 2.20 Pulse test chart when SOC = 0.7.
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In Equation (2.22), ∆UAB is the voltage difference of the AB section, ∆UCD is the 
voltage difference of the CD section, and the discharge current is characterized by I. 
The voltage response of the DE segment is analyzed corresponding to the zero-input 
response in the Thevenin model, and the mathematical relationship is obtained by the 
KVL of the equivalent circuit model, as shown in Equation (2.23).
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In Equation (2.23), UA is the voltage at point A, which is the open-circuit voltage at 
the current stage. Taking point D as the zero-time points, the time from point D to 
E  is −t tE D, and UD and UE represent the voltage of points D and E . The calculation 
equation of the time constant is constructed for τ , as shown in Equation (2.24).
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After the time constant is obtained, only one parameter Rp or Cp needs to be calcu-
lated, and the other can be derived from Equation (2.25).

 τ = R Cp p (2.25)

The voltage response of the BC  section corresponds to the zero-state response of the 
Thevenin model. According to the KVL relationship in the model, the set is shown 
in Equation (2.26).
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In Equation (2.26), UC is the voltage at point C . Taking point B as the zero-time point, 
the time from point B to point C  is −t tB C . Solving it to obtain the calculation equa-
tion of polarization internal resistance Rp is shown in Equation (2.27).
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In Equation (2.27), using the point calculation method to identify the parameters 
of each SOC point stage, the ohmic resistance, polarization internal resistance, and 
polarization capacitance data from SOC from 0.1 to 1 are shown in Table 2.2.

The identified parameters are obtained and drawn in the coordinate system. 
Taking SOC as the independent variable and the parameters as the dependent vari-
able, a scatter plot of the relationship between 0R , Rp, Cp, and SOC is obtained, and 
the fitting curve is obtained by the least-square polynomial fitting method, as shown 
in Figure 2.21.

The results of parameter identification are verified by HPPC working conditions, 
and the accuracy of the model is determined by the error between the simulated volt-
age and the actual voltage. The verification results are shown in Figure 2.22.

In Figure 2.22a, 2U  is the output terminal voltage of the model and 1U  is the 
voltage at the actual terminal of the battery. It can be observed that the voltage at 
the output terminal of the model is in good agreement with the actual value, which 
illustrates the rationality of the Thevenin equivalent circuit model and also proves 
the feasibility and reliability of the parameter identification method. The error curve 
is shown in Figure 2.22b.

TABLE 2.2
Parameter Fitting Result

τ R0(Ω) Rp(Ω) Cp(F)

0.36737624 0.004326 0.000527964 6958.360967

0.312561072 0.004835 0.000140234 2228.850513

0.319941747 0.007286 0.000935037 3421.703185

0.369667569 0.005796 0.000265601 1391.814065

0.401429972 0.006542 0.00090463 4437.505023

0.333883416 0.005912 0.000255268 1307.972699

0.348955741 0.005943 0.000235589 1481.206277

0.375727008 0.005905 0.000224778 1671.547113

0.378136003 0.005637 0.000176885 2137.753394

0.332731927 0.006058 0.000279054 1192.355491

FIGURE 2.21 Thevenin model parameter identification results. (a) Ohm internal resistance 
R0. (b) Polarized internal resistance Rp. (c) Polarization capacitance Cp.
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2.5.2  Curve fitting

Curve fitting is a method in which model parameters are obtained by fitting the 
entire pulse discharge curve through a formal function with parameters. Its adoption 
rate of data is much higher than that of taking the point equation method [156]. For 
curve fitting, only a fitting function expression needs to be given, which contains the 
parameters to be obtained. The curve fitting is mainly for the relatively complicated 
calculation parameters, such as Rp and Cp in the Thevenin model, while the ohmic 
resistance 0R  does not require curve fitting and can be obtained directly according 
to Equation (2.22). The fitting curve segment selected here is the BC  segment. The 
zero-state response curve and the circuit expression are obtained from the KVL rela-
tionship of the Thevenin model, as shown in Equation (2.28).

 = − − −
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In Equation (2.28), the parameter relationship is subtracted, and a parameterized 
expression form is obtained, as shown in Equation (2.29).
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In Equation (2.29), y is the ordinate variable that is the terminal voltage UL, x is the 
abscissa variable at the time point t, and a, b, and c are coefficients of the parameters, 
corresponding to −OC 0U IR , IRp, and τ . According to the known conditions of open-
circuit voltage, current and ohmic resistance, the range of parameters is set to make 
the fitting curve better express the real voltage change. The voltage simulation curve 
when the SOC value is 0.9 is shown in Figure 2.23.

By using the curve fitting method to identify the parameters of each SOC point 
stage, the ohmic resistance, polarization internal resistance, and polarization capaci-
tance data for the SOC variation from 0.1 to 1 are shown in Table 2.3.

FIGURE 2.22 Parameter identification result graph. (a) Voltage output comparison. (b) 
Voltage error.
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The identified parameters are obtained and drawn in the coordinate system. 
Taking SOC as the independent variable and the parameters as the dependent vari-
able, a scatter plot of the relationship between 0R , Rp, Cp, and SOC is obtained. The 
fitting curve is obtained by the least-square polynomial fitting method, as shown in 
Figure 2.24.

Figure 2.24a–c shows the changing trend of 0R , Rp, and Cp with SOC, respec-
tively. It can be observed from the figure that the internal parameters of the Thevenin 
model fluctuate within a certain range with SOC changes. Therefore, in the case of 
low accuracy requirements for the model, to minimize the amount of calculation, 
these parameters are replaced by their corresponding values or by the look-up table 
method. To get more accurate simulation data, the polynomial fitting equation of the 
curve is obtained. The parameter fitting polynomial functions corresponding to the 
graph are shown in Equations (2.30)–(2.32).

FIGURE 2.23 Curve fitting method to identify parameters.

TABLE 2.3
Parameter Identification Result

SOC a b c 0R (Ω) Rp(Ω) Cp(Ω)

1.0 4.103 0.02552 7.505 0.001878994 0.000587646 12771.29261

0.9 3.979 0.02757 7.409 0.001885902 0.000634851 11670.45149

0.8 3.870 0.02963 7.797 0.001904323 0.000682287 11427.74949

0.7 3.771 0.03102 7.902 0.001878994 0.000714294 11062.67263

0.6 3.653 0.02848 7.534 0.002060906 0.000655806 11488.15959

0.5 3.573 0.02223 7.422 0.002047090 0.000511888 14499.27598

0.4 3.532 0.02135 7.650 0.002063209 0.000491624 15560.67330

0.3 3.501 0.02248 7.978 0.002056301 0.000517644 15412.12611

0.2 3.444 0.02491 8.126 0.002083933 0.000573600 14166.67463

0.1 3.364 0.03091 7.889 0.002141500 0.000711761 11083.77701
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As can be observed from Figure 2.24 and Equations (2.30)–(2.32), the parameters 
within the Thevenin model fluctuate within a certain range when the SOC changes. 
Therefore, when the accuracy of the model is not required, the average value of each 
parameter can be used as the final result, and the table look-up method is also used 
to obtain the result. If more accurate simulation data are needed, polynomial fitting 
equations for the curves need to be obtained. The parameter fitting polynomials cor-
responding to the figure are shown in Table 2.4.

FIGURE 2.24 Thevenin model parameter identification result. (a) Ohm internal resistance 
R0. (b) Polarized internal resistance Rp. (c) Polarization capacitance Cp.

TABLE 2.4
Parameter Identification Result

R0 : y = 0.00245 − 0.00479 * u + 0.0215 * u2 − 0.04248 * u3 + 0.03672 * u4 − 0.01151 * u5

Cp: y = 8336.79306 + 17063.97174 * u + 167066.86614 * u2 − 703922.67073 * u3 + 863340.03368 * 
u4 − 339190.57413 * u5

Rp: y = 0.000686263 + 0.00173 * u − 0.02048 * u2 + 0.05921 * u3 − 0.0646 * u4 + 0.02404 * u5

UOC: y = 3.42621 − 0.54017 * u + 13.07197 * u2 − 55.87842 * u3 + 105.54386 * u4 − 90.28558 * 
u5 + 28.84722 * u6
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2.5.3  equivaLent CirCuit moDeL parameter vaLiDation

After obtaining the mathematical description of each parameter of the model, it is 
necessary to verify the accuracy of the model parameters. The identified parameters 
and current values of the HPPC test are input into the Thevenin equivalent circuit 
model. The output voltage response data from the model are compared with the 
actual voltage data to verify the model and improve the model based on the verified 
results [157]. The inputs of the Thevenin model are I, 0R , Rp, Cp, and OCU  from top 
to bottom. They have a functional relationship with SOC as an independent variable 
and change along with the SOC and current variation. The inputs are the terminal 
voltage and the load current. The Ampere-hour integration module obtains the real-
time changes of the SOC. Then, it is connected to the input and end of the parameter 
function, to obtain the model parameters corresponding to the constant changes of 
the current input. Therefore, the control quantity of the model is the input current 
value, and the response is the terminal voltage of the model. Based on this model, the 
working condition of the lithium-ion battery is analyzed. The internal structure of 
the Thevenin model is shown in Figure 2.25.

In Figure 2.25, the circuit diagram of the Thevenin model is designed, where each 
circuit element is a time-varying controllable parameter. The input current I acts on 
a controllable current source as a load, and the output voltage U  is obtained through 
a voltmeter. As shown on the right side of Figure 2.25, the effectiveness and accu-
racy of model parameter identification are analyzed and compared with the actual 
terminal voltage data of the lithium-ion battery under the same input current. If the 
deviation is large, the parameter identification is not accurate enough, or the model 
itself has defects.

As shown in Figure 2.26a, the real U  is the model output voltage, and the model 
U  is the actual output voltage of the battery. It can be observed that the model output 
voltage is in good agreement with the actual value, indicating the rationality of the 
Thevenin equivalent circuit model and the feasibility and reliability of the parameter 
identification method.

FIGURE 2.25 Model verification Simulink simulation.
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It can be observed from the error curve in Figure 2.26b that there is no diver-
gence of the model in the overall process, and a large error occurs in the power 
pulse test phase. The reason is that the sudden change of the input current is 
caused by the internal chemical reaction of the battery, leading to rapid changes in 
terminal voltage. Also, the Thevenin model does not perfectly show the response 
effect of lithium-ion batteries, but its error fluctuates within an acceptable and 
reasonable range. Even in the final stage when the SOC value is very low, the 
model cannot be very accurate in the case of a good reaction at the present point, 
the maximum error does not exceed 0.11 V, and the maximum voltage of the 
 lithium-ion battery is 4.40 V. Consequently, the model can reach an accuracy of 
more than 96%.

2.5.4  moDeL parameter iDentifiCation

The improved PNGV equivalent circuit model is used for parameter identification. 
According to the ‘U.S. Freedom CAR Battery Experiment Manual’, standard HPPC 
current pulse tests are carried out on lithium-ion batteries. The SOC is 0.1, 0.2, …, 
0.9, 1.0, and the charge–discharge rates are set to 1 C. The step content of a single 
cycle is the 10 seconds constant current discharge pulse, the 40 seconds shelving, 
and the 10 seconds constant current charging pulse. The interval of each pulse cycle 
period is 1 hour. In the HPPC experiment, the current pulse curve and the corre-
sponding voltage change curve are obtained. The voltage output waveform of the 
HPPC experiment terminal is shown in Figures 2.27 and 2.28. 

From the HPPC test battery voltage response curve, features are extracted and 
calculated to obtain the model parameters for ten SOC points. The features are 
described as follows.

 1. The vertical change of the voltage at the time point 1t  of the discharge start 
and the time point 2t  of the discharge, in which the voltage transient is 
stopped by the existence of the ohmic resistance of the battery.

 2. The battery terminal voltage drops slowly during ~1 2t t , which is the pro-
cess of charging the polarized capacitor by the discharge current, which is 
the zero-state response of the double RC series circuit.

FIGURE 2.26 Terminal voltage output curve comparison. (a) Output comparison. (b) 
Output error.
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 3. The battery terminal voltage slowly rises during ~2 3t t , which is the process 
of discharging the polarized capacitor to the polarized resistor, which is the 
zero-input response of the double RC series circuit.

 4. The battery terminal voltage 1U  before the discharge pulse is slightly higher 
than the terminal voltage 5U  at the end of the discharge to reach a steady 
state, which is the voltage difference caused by the integration of the dis-
charge current on the energy storage capacitor.

It can be observed from the above characteristics that the values of 0R  and Cb in the 
improved PNGV model are obtained from the characteristics (1) and (4). Meanwhile, 
the values of polarization resistance and capacitance in the dual RC circuit can be 
obtained by the characteristics of (2) and (3) in the battery terminal electrical curve 
identification process.

 1. Open-circuit voltage
The open-circuit voltage OCU  is the stable voltage at the positive and neg-
ative ends of the battery when the battery is left resting for a long time. 
Experiments show that the terminal voltage after the battery is left resting 

FIGURE 2.27 Schematic voltage curve diagram of HPPC test.

FIGURE 2.28 Schematic current and voltage curve in HPPC test. (a) Current curve. (b) 
Voltage curve.
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for 1 hour is equal to the open-circuit voltage of the batteries. The battery 
is discharged at a constant current rate of 1 C for 6 minutes after measuring 
the open-circuit voltage of the battery at SOC = 1 to reduce the SOC by 0.1 
to obtain the open-circuit voltage of the lithium-ion battery corresponding 
to different SOC states. After resting for 1 hour, when the battery voltage 
reaches a steady-state condition, the open-circuit voltage of the battery is 
measured again, and cycle the test until the SOC is reduced to 0.

 2. Ohmic resistance
It can be observed from mathematical and mechanism analysis that the sud-
den change in the terminal voltage at the start and stop time points of dis-
charge is caused by the ohmic resistance. The value of the ohmic resistance 
is calculated by Ohm’s law, as shown in Equation (2.33).

 
( )( )= − + −

2
0

1 2 4 3R
U U U U
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 (2.33)

 3. Double RC circuit
The improved PNGV model is a typical dual RC circuit model. The HPPC 
experiment is performed on lithium-ion batteries. When the battery is in the 
pulse discharge phase, the current direction of the improved PNGV model 
is described as follows: As expressed by Ib in the figure, the current direc-
tion is supposed to be positive at this time. For the reference direction of 
voltage and current, the KVL and KCL equations are obtained, as shown in 
Equations (2.34)–(2.36).
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In Equations (2.34)–(2.36), US is the terminal voltage of the parallel cir-
cuit composed of RS  and CS, and UL  is the terminal voltage of the parallel 
circuit composed of RL and CL. During the battery discharge, the polar-
ized capacitors CS and CL are in a charged state, and the voltage of the Rc 
parallel circuit rises exponentially. After the battery enters a rest from the 
discharged state, the capacitors CS and CL are discharged to their respective 
parallel resistors, and the voltage drops exponentially. The values of R and 
C  in the model are related to the SOC estimation of the batteries. Using 
Simulink software to curve-fit the data obtained from the HPPC experi-
ment and then use the undetermined parameter method to find the values 
of RS , RL, CS, and CL in the improved PNGV model, the specific method is 
described as follows:
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First, the battery terminal voltages are obtained at different SOC values 
and at the same stage as ~4 5U U  from the HPPC experimental data. This 
research selects the case where the SOC value is 0.4, and the terminal volt-
age curve is shown in Figure 2.29.

In Figure 2.29, the terminal voltage change at this stage is the process 
of discharging the polarized capacitor to the polarized resistor, which is the 
zero-input response of the double RC circuit. At this level, the value of Ib 
in the circuit is 0, and the output equation of battery voltage is obtained, as 
shown in Equation (2.37).

 = − −τ τ
− −

OCU U IR e IR eL s

t

L

t

s L  (2.37)

The coefficients of the equation shown in Equation (2.37) are replaced by 
Equation (2.38).

 = − −− −U f ae beL
ct dt  (2.38)

Second, using f , a, b, c, and d  as undetermined parameters, using experi-
mental data and Equation (2.38) as the target equation for single-exponential 
and double-exponential curve fitting, the results are obtained accordingly, 
as shown in Figure 2.30.

Finally, the results of double-exponential curve fitting are obtained. 
Comparing Equations (2.37) and (2.38), the mathematical relationship func-
tions are obtained, as shown in Equation (2.39).
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FIGURE 2.29 Terminal voltage variation of when polarization effect disappears.
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2.5.5  DouBLe-exponentiaL fitting reSuLtS

Double-exponential fitting is conducted, according to which the fitting results are 
shown in Table 2.5.

Analyzing the parameter identification results, the time constant τ s  of the par-
allel circuit composed of RS  and CS is small, which is used to simulate the rapid 
voltage change process of the battery when the current changes suddenly. The time 
constant of the parallel circuit is composed of RL and CL is larger than τ S , which 
is used to simulate the process of slow voltage stabilization. The establishment of 
the improved PNGV model and the SOC estimation of lithium-ion batteries need to 
obtain the characteristic curves of RS , RL, CS, CL, 0R , and OCU  for the various SOC 
levels. OCU  varies significantly from different SOC values. A seventh-order polyno-
mial is used as the fitting function of the OCU  value for different SOC levels to obtain 
the characteristic curve of OCU  with SOC. The OCU -SOC fitting polynomial is shown 
in Equation (2.40).

 ( ) = + + + + + + +1
7

2
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3
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4
4
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6
2

7 8f x B x B x B x B x B x B x B x B  (2.40)

FIGURE 2.30 Terminal voltage fitting of polarization reaction disappearance process. (a) 
Double-exponential fitting curve. (b) Double-exponential fitting error.

TABLE 2.5
Double-Exponential Fitting Results

SOC 0R (mΩ) sR (mΩ) sR (kF) LR (mΩ) LC (kF) OCU (V)

0.9 2.2867 0.9734 3.879633291 0.22620 108.7544032 3.984

0.8 2.2967 0.5754 2.187991245 0.88600 21.0023850 3.880

0.7 2.4033 0.8038 3.640885484 0.74980 106.7805431 3.786

0.6 2.3833 0.7968 5.548276217 0.19364 147.0450532 3.682

0.5 2.4467 0.7704 5.106321790 0.39240 60.5181662 3.632

0.4 2.4300 0.8178 4.814145114 0.71880 37.8972369 3.599

0.3 2.4467 1.1822 5.598150640 0.37340 175.2678794 3.551

0.2 2.6667 0.8738 3.075588934 0.41000 60.3121758 3.462

0.1 2.9933 1.6028 2.015858355 0.49600 40.9283197 3.417
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In Equation (2.40), the independent variable x is the SOC value; the dependent vari-
able is the parameter curve to be fitted; 1B  ~ 8B  are the polynomial undetermined 
coefficients. Using simulation to establish the polynomial curve fitting on the experi-
mental data, the results are obtained, as shown in Table 2.6.

In addition, the characteristic curves of RS , RL, CS, CL, and 0R  can be obtained by 
polynomial fitting to the data identified. When using the least-squares method to fit 
the data onto a polynomial, if the parameter change law is not obvious, the higher the 
polynomial order (sixth-order and above), the more likely it is to produce oscillations. 
Therefore, this chapter compares the data in Table 2.6. When performing polynomial 
fitting, it is found that the fitting effect of fourth-order polynomial and fifth-order 
polynomial is similar, so the fourth-order polynomial is selected for fitting, and the 
fitting polynomial is described as shown in Equation (2.41).

 = + + + +( ) 1
4

2
3

3
2

4 5f x P x P x P x P x P  (2.41)

The meaning of each parameter in Equation (2.41) is similar to that in Equation 
(2.40), and the fitting results are shown in Table 2.7.

2.5.6  experimentaL verifiCation

The improved simulation system model is established in the simulation software for 
parameter verification. The specific structure is shown in Figure 2.31.

In Figure 2.31, the parameter values of the improved PNGV model under differ-
ent SOC states obtained by the above identification are verified. First, import the 
charge–discharge current values and the battery terminal voltage value obtained 

TABLE 2.6
Open-Circuit Voltage Fitting Results

Parameter B1 B2 B3 B4

UOC(V) −23.60229 141.34077 −314.9228 345.34531

Parameter B5 B6 B7 B8

UOC(V) −200.1546 60.21383 −7.88447 3.77173

TABLE 2.7
Polynomial Fitting Results

Parameter P1 P2 P3 P4 P5

R0(Ω) 0.02176 −0.0529 0.04554 −0.01654 0.004568

RS(Ω) 0.03249 −0.0669 0.04916 −0.0158 0.002803

CS(F) 1771000 −3139000 1604000 −180400 26910

RL(Ω) −0.06047 0.1192 −0.07955 0.02085 −0.0013

CL(F) 6417000 −4156000 −6328000 5408000 −14110
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in the HPPC experiment into the current and voltage modules, respectively. Then, 
respectively fit the 0R  that is obtained by the Simulink software and curve fitting, six 
polynomial functions of SOC, (SOC)RS , (SOC)CS , (SOC)RL , (SOC)CL , and OCV-
SOC are input to the model parameter update subsystem for simulation. The obtained 
simulation and measured terminal voltage are compared. The estimation curve and 
the error curve of the two battery models are obtained, as shown in Figure 2.32.

In Figure 2.32, the error curve of the simulated and real voltage is described under 
the periodic current discharge.

 1. When the current pulse applies, the battery terminal voltage suddenly 
changes, causing the error between the experimental and simulated values 
to increase to 0.1–0.2 V. After several HPPC experimental results’ analysis 
under different discharge rates, it is believed that at the time point when 
the current pulse applies, the large error of the battery terminal voltage is 
caused by environmental factors and measurement deviations.

FIGURE 2.31 Improved PNGV simulation system model.

FIGURE 2.32 Parameter identification verification results. (a) Simulated and real voltage 
curve. (b) Error of simulated and real voltage.
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 2. When the battery charges within the range of SOC value varying from 0% 
to 10%, the error between the experimental value and the simulated value 
of the terminal voltage is slightly larger than that of the SOC value changes 
into varying from 10% to 100%, mainly because when the SOC value is less 
than 10%, the internal electrochemical reaction is changed drastically, and 
the parameter values in the battery model are changed highly.

 3. Except for the above individual time points, when the SOC value of the bat-
tery changes from 10% to 100%, the simulated value of the terminal voltage 
is consistent with the experimental value, and the average error is less than 
0.035 V, which accounts for 0.9% of the nominal voltage.

2.6  ONLINE PARAMETER IDENTIFICATION

Battery parameters can be obtained by the online and offline identification meth-
ods. Most offline parameter identification methods are based on the obtained 
experimental data. These data can only reflect the changes in battery parameters 
under certain conditions, but the operating conditions of lithium-ion batteries vary 
greatly in different operating conditions and working environments. In addition, 
it is impossible to do this work for all batteries, and when the identified battery 
parameters are applied to the same type of battery, the simulation accuracy is low 
[158]. Therefore, the model cannot rely on offline parameter identification under 
these conditions. In addition, the aging of the battery is an important reason that 
affects the battery parameters. In the use of batteries, the parameters of batter-
ies change slowly with the aging process, and the parameters need to be refitted. 
The results of offline parameter identification are relatively fixed. In many cases, 
it cannot meet actual engineering requirements. Therefore, the equivalent model 
based on the offline method does not have high adaptability and cannot accurately 
estimate SOC and SOH values. The online identification method uses the input and 
output data onto the battery system obtained in real time and in the past period to 
approximate the real value of the system parameters by a dynamic programming 
method.

2.6.1  reCurSive LeaSt-Square methoD

At present, recursive least-square (RLS), dual-extended Kalman filter (DEKF), and 
genetic algorithm (GA) are widely used in parameter identification, which is a recur-
sive online identification method. It is not necessary to store and calculate all the 
previous input and output data repeatedly in the computer, so they can greatly reduce 
the amount of data storage and calculation. It is especially suitable for online real-
time identification calculation. The least-square identification is a process in which 
the model parameters are constantly corrected by the error between the model output 
and the actual output under a given structural framework, and the optimal model is 
finally obtained. To realize real-time control, the least-square method must be opti-
mized into the recursive least-square (RLS) method, which is mainly used for online 
identification [159,160].
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However, in practical applications, only one online parameter identification is not 
good, and the main reasons are obtained as follows. (1) The internal resistance of 
the battery is a slow variable. When identifying such parameters, there is the so-
called data saturation phenomenon, and the data correction ability is slowly lost.  
(2) The phenomenon of asynchronous sampling of voltage and current makes the 
data samples have a time delay. When the sampling step is relatively small, the cal-
culated voltage and current no longer maintain the due change relationship. Some 
online identification methods adjust the internal resistance value at the time delay, 
resulting in large fluctuations in the identification results. (3) When the model has 
colored noise, some online estimation is not optimal.

Using the online parameter identification method to identify the battery model 
parameters can better observe the changes in the model parameters. In addition, the 
online parameter identification method can also reduce manual calculations, saving 
time and avoiding calculation errors. At present, the commonly used online parame-
ter identification methods mainly include the recursive least-square, multi-innovation 
least-square, and extended Kalman filtering (EKF) algorithm. The chapter takes the 
Thevenin equivalent circuit model as an example to briefly introduce these three 
methods. The Thevenin model is shown in Figure 2.33.

In Figure 2.33, OCU  is the open-circuit voltage, UO is the terminal voltage, 0R  is 
the ohmic resistance, and UR is the ohmic voltage, which is the transient voltage drop 
effect of the battery during charge–discharge. The RC parallel loop is composed of a 
polarization resistance 1R  and a polarization capacitor 1C  to characterize the polariza-
tion effect of the lithium-ion battery, where 1U  is the polarization voltage. According 
to Kirchhoff’s law, the Thevenin equivalent circuit model is analyzed, and the volt-
age and current expressions of the equivalent circuit are shown in Equation (2.42).
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Among them, the open-circuit voltage OCU  is characterized by the state variable 
SOC, and the nonlinear function relationship can be obtained. The least-square (LS) 
method is a classic data processing method, in which the approximation principle is 
used to minimize the sum of the distance squares between the estimated and actual 

FIGURE 2.33 Thevenin equivalent circuit diagram.
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data to find the best function match of the data. The model parameters are identified, 
as shown in Equation (2.43).

 = + + + + +1 1 2 2 �y a x a x a x b en n  (2.43)

In Equation (2.43), there are N  groups of input and output data, as shown in Equation 
(2.44).
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The identification model can be changed, as shown in Equation (2.45).

 θ ξ= +Y X  (2.45)

The criterion function is obtained, as shown in Equation (2.46).
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To make J the smallest, the mathematical treatment is conducted, as shown in 
Equation (2.47).
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In Equation (2.47), θ  is the identification result. Recursive least-square (RLS) is a 
derivation of the LS algorithm to solve the disadvantage that the RLS algorithm 
cannot be updated in time-varying systems. RLS is a recursive estimation algorithm. 
The estimation result at the time point + 1t  is modified by the estimation result at 
time point t and the ‘innovation’ superimposed, which is calculated according to the 
input and output at time point + 1t . The recursive least-square identification algo-
rithm can reduce the amounts of calculations and the storage of data in the computer.  
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Also, it can identify the characteristics of the system in real time. Based on the 
LS method, the calculation equations can be obtained, as shown in Equations 
(2.48)–(2.51).
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The parameter PN  is initialed, as shown in Equation (2.52).
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According to Equation (2.52), +1PN  can be obtained, as shown in Equation (2.53).
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The deduced RLS method identification equation is shown in Equation (2.54).
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When applying the RLS method of the battery equivalent model, according to the 
equivalent circuit model in Figure 2.33, the frequency domain expression of the cir-
cuit differential equation can be obtained, as shown in Equation (2.55).
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In practical application, the input and output data of batteries are obtained by dis-
crete sampling, so it is necessary to change S-domain to Z-domain for calculation. 
Substituting ( ) ( )= − +− −2 1 11 1s z T z  into Equation (2.55), discretizing Equation 
(2.55) to obtain Equation (2.56).
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In Equation (2.56), = −( ) ( ) ( )OCE s U s U sO . According to the principle of the RLS 
algorithm, the parameters can be calculated, as shown in Equation (2.57).
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Combining Equations (2.56) and (2.57) can get the parameters that need to be identi-
fied, as shown in Equation (2.58).

 θ θ θ= − − + + −( ) ( 1) ( ) ( 1)1 2 3E k E k I k I k  (2.58)

The RLS method can be used to estimate the values of θ1, θ2, and θ3, and then, 
according to Equation (2.57), the various parameters can be calculated, as shown in 
Equation (2.59).
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The results of parameter identification are substituted for the Thevenin equivalent cir-
cuit simulation model to verify the accuracy of parameter identification under work-
ing conditions. The voltage and current data under cyclic charge–discharge conditions 
are imported into the battery equivalent model, and the online parameter identifica-
tion results and model are verified. The model output voltage is compared with the 
actual terminal voltage value as well as the error analysis, as shown in Figure 2.34.

Figure 2.34a shows the comparison result between the actual output voltage curve 
and the model output voltage curve under the HPPC experimental condition. In Figure 
2.34a, 1UL  is the real battery terminal voltage value and 2UL  is the voltage simulation 
value output by the constructed model. Figure 2.34b shows the error curve of the 
two. It can be observed from the figure that, under the experimental condition of 
HPPC, the output voltage of the equivalent model has a good tracking effect on the 
actual value, and the average estimation deviation is about 0.03 V. It indicates that 
the Thevenin equivalent circuit model can well characterize the characteristics of the 
battery for practical application. The large initial error is due to the initial value error 
of the parameters in the online parameter identification, and the error decreases after 
the parameters converge.

2.6.2  BiaS CompenSation methoD

As a complex nonlinear electrochemical system, the model parameters of lith-
ium-ion battery generally show time-varying characteristics; that is, during the 
process of battery charge–discharge reaction, the model parameters of the bat-
tery, open-circuit voltage OCU , ohmic resistance 0R , polarization internal resistance 
Rp, and polarization capacitance Cp, all change. Because of the noise signal in 
the battery measurement data, the traditional least-square method cannot identify 
the battery model parameters with high accuracy. The accuracy of battery model 
parameters directly affects the estimation accuracy of battery SOC and SOH. The 
bias compensation recursive least-square (BCRLS) algorithm introduces noise 
variance estimation, which can compensate the parameters identified by the gen-
eral least-square method and realize the accurate identification of battery model 
parameters. The identification process of the bias compensation recursive least-
square algorithm is introduced in detail below.

FIGURE 2.34 Parameter identification result graph. (a) Voltage output comparison. (b) 
Voltage traction error.
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The recursive process of the BCRLS algorithm consists of eight steps. The 
first is parameter initialization. The second step is the calculation of model pre-
diction output and estimation error. The third and fourth steps are to calculate 
the Kalman gain matrix and parameter estimation. The fifth and sixth steps are 
to calculate the error criterion function and estimate the noise variance. Finally, 
seventh and eight steps are to update the covariance matrix and calculate the 
parameters after offset compensation. The specific iteration equation is shown 
in Equation (2.60).
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In Equation (2.60), δ  is generally a large positive number and 0I  is the identity matrix. 
The overall process and operation principles of BCRLS are shown in Figure 2.35.

FIGURE 2.35 BCRLS schematic diagram.
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2.6.3  forgetting faCtor—rLS methoD

The battery has time-varying characteristics in use, and the battery model param-
eters are constantly changing under different SOC, current, temperature, and aging 
conditions. When using the battery model for online estimation, if the model param-
eters can be adaptively adjusted and corrected according to the battery state, the 
estimation accuracy is improved. Therefore, the recursive least-square method with 
the forgetting factor can be used to identify the battery model parameters [161,162]. 
According to the least-square theory, the model expression needs to be discretized 
first. For the second-order RC equivalent circuit model, the expression of battery ter-
minal voltage is obtained through the Laplace transformation, as shown in Equation 
(2.61).
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In Equation (2.61), the mathematical relationship can be expressed with the opti-
mation treatment, and the transfer function is obtained accordingly, as shown in 
Equation (2.62).
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By using the bilinear transformation equation, as shown in Equation (2.63).
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In Equation (2.63), T  is the sampling period. Then, Equation (2.65) is discretized into 
Equation (2.62), as shown in Equation (2.64).
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In Equation (2.64), α1, α2, α3, α4, and α5 are corresponding constant coefficients, and 
then, the discretization equation can be obtained, as shown in Equation (2.65).

 
α α α α α

= −

= − + − + + − + −

( ) ( ) ( )

( 1) ( 2) ( ) ( 1) ( 2)

OCV

1 2 3 4 5

y k U s U s

y k y k I k I k I k

t

 (2.65)

In Equation (2.65), ( )I k  and ( )y k  are the input and output of the system, respectively, 
as shown in Equation (2.66).
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( ) ( 1), ( 2), ( ), ( 1), ( 2)

( ) , , , ,1 2 3 4 5

k y k y k I k I k I k

k
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And then, Equation (2.65) can be expressed, as shown in Equation (2.67).

 ϕ θ=( ) ( ) ( )y k k kT  (2.67)

In the recursive least-square identification method, θ( )k  is taken as the coefficient 
to be identified, which is then used to deduce the parameters of the battery model 
accordingly. The recursive least-square method has the attitude of infinite memory, 
that is, with the increase of recursion times k, old data accumulate continuously, 
which makes it difficult for new data to play the role of correction, which affects the 
effect of parameter estimation, especially in time-varying systems. Because of the 
imbalance between the old and new data, the newly estimated parameters cannot 
accurately reflect the characteristics of the current system. To avoid the above situa-
tion, a forgetting factor of λ is introduced in the RLS algorithm. The function of the 
forgetting factor is to give a smaller weight to the data with a longer running time 
in the recognition process, while the latest observation data occupy a larger weight. 
The genetic factor is introduced to weaken the influence of the old data and enhance 
the feedback effect of the new data. The steps of the least-square algorithm with the 
forgetting factor are described as follows.

 1. Initializing parameters can be realized, such as θ̂( )k  and covariance matrix 
( )P k .

 2. The calculation of θ +ˆ( 1)k  is conducted at the next time point, as shown in 
Equation (2.68).

 θ θ ϕ θ+ = + + + − +





ˆ( 1) ˆ( ) ( 1) ( 1) ( 1) ˆ( )k k K k y k k kT  (2.68)

 3. Calculating the posterior error, as shown in Equation (2.69).

 ϕ θ+ = + − +( 1) ( 1) ( 1) ˆ( )e k y k k kT  (2.69)

 4. Calculating a gain matrix, as shown in Equation (2.70).

 ϕ λ ϕ ϕ+ = + + + + + 
−

( 1) ( 1) ( 1) ( 1) ( ) ( ) 1
1

K k P k k k P k kT  (2.70)

 5. Calculating covariance matrix, as shown in Equation (2.71).

 
λ

ϕ+ = − + + ( 1)
1

1 ( 1)* ( 1) ( )P k K k k P kT  (2.71)

 6. Circulating steps (2), (3), (4), and (5).
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2.6.4  ffrLS-BaSeD SeConD-orDer rC moDeL parameter iDentifiCation

To overcome the phenomenon of data saturation, the forgetting factor λ λ< <(0 1) is 
introduced into the traditional RLS algorithm to weaken the influence of old data and 
enhance the feedback effect of new data. The basic principle of the forgetting factor 
recursive least-square (FFRLS) method is to minimize the error sum of squares. The 
improved objective function is shown in Equation (2.72).

 ∑ λ [ ]= −

= +

( ) 2

1

J e kN k

k n

N

 (2.72)

Then, the recursive equation of the FFRLS method is modified, as shown in Equation 
(2.73).
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k k K k y k k k
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P k I K k k P k
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 (2.73)

In Equation (2.73), the closer λ is to 1, the better the simulation result. Generally, the 
value is greater than 0.9. The smaller the value of λ, the smaller the tracking effect 
of the algorithm, but it causes fluctuations in the algorithm. When λ = 1, it is the 
standard least-square recursive algorithm. The equivalent circuit model and the bat-
tery charge–discharge experiment are inseparable. Through the charge–discharge 
characteristic experiment and the HPPC experiment, the performance parameters of 
the lithium-ion battery during operation are studied. Considering the accuracy of the 
equivalent circuit model and the difficulty of identifying and estimating parameters 
such as SOC, resistance, and capacitance, the second-order RC equivalent circuit 
model is finally selected as the lithium-ion battery equivalent circuit model. This 
model consists of a static ohmic resistance Ri and two RC circuits. The dynamic 
response is composed in series, as shown in Figure 2.36.

According to Kirchhoff’s voltage law, the KVL equation of the circuit can be 
obtained, as shown in Equation (2.74).

 = + + +1 2U U U U Ub i  (2.74)

In Equation (2.74), Ub is the open-circuit voltage of the battery, Ri is the ohmic resis-
tance, and both 1R  and 2R  represent the polarization internal resistance of the batter-
ies. The least-square parameter identification method with the forgetting factor is 
applied to the identification of the equivalent model parameters of the lithium-ion 
battery, and the parameters in the second-order RC equivalent circuit model are iden-
tified. The battery model converts into a mathematical form of least square, as shown 
in Equation (2.75).
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R C s
R I Ub i  (2.75)

Considering the time constant τ =1 1 1R C , τ =2 2 2R C , then (2.75) can be rewritten, as 
shown in Equation (2.76).

1 2
2

1 2 1 2
2

1 2 2 1 1 2

1 2 1 2
2

1 2

U s U s U R I R R R I

R R R I U U U

b b b i s i s

i s s

τ τ τ τ τ τ τ τ τ τ

τ τ τ τ

[ ]
( )

( ) ( )

( )

+ + + = + + + +

+ + + + + + +  (2.76)

Supposing τ τ= 1 2a , τ τ= +1 2b , = + +1 2c R R Ri, τ τ τ τ( )= + + +1 2 2 1 1 2d R R Ri , (2.76) 
can be simplified, as shown in Equation (2.77).

 + + = + + + + +2 2 2aU s bU s U aR I dI cI aU bU Ub b b i s s s s  (2.77)

Substituting [ ]= − −( ) ( 1)s x k x k T  and [ ]= − −( ) 2 ( 1)2 2s x k x k T  into equation 
(2.77) for discretization, where T  is the sampling time, as shown in Equation (2.78).
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 (2.78)

FIGURE 2.36 Second-order RC equivalent circuit model.
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And then, the calculation relationship can be obtained, as shown in Equation (2.79).

 

U k U k k U k U k k U k U k

k I k k I k k I k

b b b[ ] [ ]− = − − − + − − −

+ + − + −

( ) ( ) ( 1) ( 1) ( 2) ( 2)

( ) ( 1) ( 2)

1 2

3 4 5  (2.79)

In Equation (2.79), the parameters are described as shown in Equation (2.80).
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Equation (2.80) is substituted into the recursive least-square method, taking 

1 2 3 4 5θ =  k k k k k
T
 as the direct identification parameter and then deriving 

the circuit model parameters Ri, 1R , 1C , 2R , and 2C  from the identification results of 
these parameters, and deriving as follows. Setting = + +0

2k T bT a, the parameter 
values can be obtained, as shown in Equations (2.81)–(2.86).

 =
+ + 1

0

2

1 2

k
T

k k
 (2.81)

 = 0 2a k k  (2.82)

 
( )= − + 20 1 2b

k k k

T
 (2.83)

 
( )= + +0 3 4 5

2c
k k k k

T
 (2.84)

 
( )= − + 20 4 5d

k k k

T
 (2.85)

 = 5

2

R
k

k
i  (2.86)

In Equations (2.81)–(2.86), initialing τ τ τ τ= = +, 1 2 1 2a b , and τ τ− + = 02 b a , the 
parameters values of 1t  and 2t  can be obtained, as shown in Equation (2.87).

 τ τ= + − = − −4
2

,
4

2
1

2

2

2b b a b b a
 (2.87)

In Equation (2.87), from = + +1 2c R R Ri and τ τ τ τ( )= + + +1 2 2 1 1 2d R R Ri , combin-
ing equations from Equations (2.81) to (2.86), the values of other parameters can be 
obtained, as shown in equations from Equations (2.88) to (2.91).
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 = − −2 1R c R Ri (2.89)
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R
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From Equations (2.88) to (2.91), the values of the various parameters are calculated 
for the equivalent circuit model.

2.6.5  muLti-innovation LeaSt-Square methoD

Multi-innovation least-square (MILS) identification algorithm extends the scalar innova-
tion to vector innovation and a data vector to an information matrix based on the tradi-
tional RLS identification algorithm. It identifies system parameters by online iteration. 
According to Kirchhoff’s law, the Thevenin equivalent circuit model is analyzed, and the 
voltage and current expressions of the equivalent circuit are shown in Equation (2.92).

 

= − −

= −









( ) ( ) ( )

( ) ( ) ( )

OC 0U k U U k I k R

dU k

dk

I k

C

U k

C R

L P L

P L

P

P

P P

 (2.92)

In Equation (2.93), the state-space equation of the system obtained from the S-ECM 
model is a continuous-time model, which does not apply to online parameter identi-
fication, so Equation (2.92) can be discretized according to the procedures shown in 
Figure 2.37.

In combination with Figure 2.37, the differential equation of the discretized sys-
tem can be obtained, as shown in Equation (2.93).
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In Equation (2.93), T  is the sampling period and k is the discrete-time constant. The 
matrices of coefficients and parameters to be identified can be obtained by the differ-
ence equation, as shown in Equation (2.94).
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90 Multidimensional Lithium-Ion Battery Status Monitoring

In Equation (2.94), θ  and η  are the matrices of coefficients and parameters to be iden-
tified in the discrete system model, respectively. Then, the autoregressive exogenous 
(ARX) model for online parameter identification of lithium-ion batteries is achieved, 
as shown in Equation (2.95).

 

ϕ θ
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θ
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= − −
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y k k
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 (2.95)

In Equation (2.95), ϕ( )k , ( )y k , and ( )I k  are the data vector, the output vector, and 
input vector of the discrete system model, respectively. The coefficient matrix θ  of 
the discrete system model is identified by MILS. According to (2.95), all the param-
eters to be identified in the S-ECM model are acquired by recursion. The MILS algo-
rithm can solve the data saturation problem existing in the traditional RLS algorithm. 
The whole problem of its algorithm is described as follows. if we assume the ARX 
model, as shown in Equation (2.96).

 ( ) ( )= +− −( ) ( ) ( )1 1A z y k B z u k e k  (2.96)

FIGURE 2.37 Discretization process of the state-space equation.
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In Equation (2.96), ( )y k  is the output sequence of the system, ( )u k  is the input 
sequence of the system, ( )e k  is the Gaussian white noise with zero-means, ( )−1A z  

and ( )−1B z  are delay operators polynomials of order na and order nb, respectively, as 
shown in Equation (2.97).
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And then, the discrete transfer function of the system is shown in Equation (2.98).
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Then, the discrete transfer function is transformed into a difference equation, as 
shown in Equation (2.99).
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Taking θ  as the coefficient matrix of the model, the expression is obtained, as shown 
in Equation (2.100).

 θ [ ]= − − −, , , , , , ,1 2 0 1… …a a a b b bn na b  (2.100)

Then, the scalar innovation of the system is described, as shown in Equation (2.101).

 ϕ θ= − −( ) ( ) ( ) ˆ( 1)v k y k k kT  (2.101)

In Equation (2.101), ϕ ( )kT  is the data vector of the current time point, and θ −ˆ( 1)k  is the  
estimated value of the coefficient matrix at the previous time point. After expanding 
the scalar innovation, the resulting matrix innovation is expressed by Equation (2.102).
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In Equation (2.102), np is the length of innovation. Then, the model applicable is 
obtained to MILS, as represented in Equation (2.103).

 β θ( ) ( ) ( )= − +, , ( 1) ,Y n k n k k V n kp
T

p p  (2.103)
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In Equation (2.103), ( ),Y n kp  is the system output vector after innovation modification.
According to the description of the MILS algorithm, the recursive process of 

parameter identification based on this algorithm is described as follows:
Step 1: Initializing the coefficient matrix and covariance matrix.
Step 2: Obtaining the current terminal voltage and operating current measurements.
Step 3: Construct an improved multi-innovation matrix and data matrix.
Step 4: Calculate the gain matrix, as shown in Equation (2.104).

 β β β( ) ( ) ( )= − + − 
−

( ) ( 1) , , ( 1) ,
1

K k P k n k I n k P k n kp n
T

p pp  (2.104)

In Equation (2.104), −( 1)P k  is the covariance matrix,  Inp  is the np-order identity 
matrix.

Step 5: Updating the covariance matrix, as shown in Equation (2.105).

 β ( )= − − −( ) ( 1) ( ) , ( 1)P k P k K k n k P kT
p  (2.105)

Step 6: Updating coefficient matrix, as shown in Equation (2.106).

 θ θ β θ( ) ( )= − + − −





ˆ( ) ˆ( 1) ( ) , , ˆ( 1)impk k K k Y n k n k kp
T

p  (2.106)

In Equation (2.106), ( )K k  is the gain matrix.
Step 7: Algorithm iteration cycle until the end.

2.6.6  extenDeD kaLman fiLter anD verifiCation

The extended Kalman filtering (EKF) algorithm is an improvement of the ordinary 
Kalman filtering (KF) algorithm. The EKF method is an online linearization pro-
cessing technique, which means linearizing the estimated parameters and then per-
forming a linear KF [163,164]. When the state equation or measurement equation is 
nonlinear, EKF is usually used. EKF makes a first-order linearization truncation of 
the Taylor expansion of nonlinear functions, ignoring the other higher-order terms, 
to transform the nonlinear problem into linearity, and the Kalman linear filtering 
algorithm can be applied to the nonlinear system. The value of the next time point is 
estimated through the previous time point, continuously updating the state variables 
with the observed values of the input and output of the system to realize the optimal 
estimation [165,166].

When using the EKF method, the process noise and the observation noise are 
required to be white noise with an approximately Gaussian distribution, which is also 
a limitation of all KF algorithms. Only under this noise condition can the process 
noise and observation noise be easily coordinated, but the variance can be controlled. 
In the estimation process, the Taylor expansion algorithm is used to process the non-
linear state-space equation. After removing the second-order and above high-order 
terms, a first-order linearized model remains. When the linearized model is obtained, 
the KF is further used for estimation, and the algorithm flow of the extended Kalman 
is shown in Figure 2.38.
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At the time point k, it is assumed that the covariance of the state estimation value 
of − 1k  and the estimation error at the previous time has been obtained. Now, the 
time point k is predicted in advance by the state value. In the state equation, the state 
value at time point k is a function of the state value at time point − 1k . Therefore, by 
combining the system state and the error covariance at the previous time point, the 
prior prediction value for the current time point can be obtained. The two values of 
the preceding and following time points written in the model are true values, and the 
true value cannot be obtained in the actual situation [167]. The posterior state estima-
tion is used at the previous time point, so it is also necessary to predict the next step 
in advance.

For the one-step advance prediction of the observation at time k, according to 
the observation function in the mathematical model. The observed true value is a 
function of the estimated true value, but in actual situations, the estimated true value 
cannot be obtained. In the absence of noise, linearization, and errors, the value is cal-
culated and processed through the mathematical model and directly with the physi-
cal method. In the absence of measurement noise, the measured true value is equal 
because of the linearization error of the mathematical model plus the prior estima-
tion. There is a certain error between the true values, and there is a certain error 
between all the measured values obtained through the mathematical model and the 
actual measured values.

KF is an algorithm that recursively estimates the current state of the system 
according to the input and output data of the system by establishing a linear state-
space equation. Because the KF algorithm is completely estimated in the time 
domain, and there is no mutual conversion between the time domain and the fre-
quency domain, the amount of calculation is small. The expression and observa-
tion of the discrete nonlinear system space are obtained, as shown in Equation 
(2.107).
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FIGURE 2.38 The flowchart of the EKF algorithm.
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The first part of Equation (2.107) is the state, and the second part is the observation. 
k is the discrete-time, +1Xk  is the n-dimensional state vector, Zk  is the m-dimensional 
observation vector, and wk and vk are independent Gaussian white noises. To apply 
the KF, the nonlinear functions (*)f  and (*)h  are expanded around X̂k by the first-
order Taylor expansion, and the expansion result is shown in Equation (2.108). 
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Furthermore, Equation (2.108) can be linearized, as shown in Equation (2.109).
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For Equation (2.109), the values of Ak , Bk, Ck , and Dk  are calculated, as shown in 
Equation (2.110).
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Applying the basic KF algorithm to the linearized model Equation (2.110), the recur-
rence process of the EKF algorithm is shown in Equation (2.111).
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In Equation (2.111), P  is the mean square error, K  is the Kalman gain, and I is an 
×n m unit matrix. Q and R are the variances of process noise w and measurement 
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noise v, respectively, and generally do not change with the system. The initial fil-
ter value and the filter variance are [ ] [ ]= =(0) (0) , (0) var (0)X E X P X . The filtering 
steps in the k + 1 cycle are described as follows: first estimate the current state and 
the mean square error from the state X̂k and the mean square error P̂k at time point k 
to obtain the prior state +

ˆ
1Xk  and prior mean square error +

−ˆ
1Pk  at the time point + 1k ,  

and then calculate the Kalman gain +1Kk  at the current time point according to the 
observed value at the time point + 1k . Finally, using +1Kk  to correct the prior state to 
get the current state +

ˆ
1Xk , the prior mean square error is corrected to get the current 

mean square error +
ˆ

1Pk .
When the EKF algorithm is applied to the model parameter identification, assum-

ing that the parameter to be identified is θ , and its value can be obtained from 

θ =  1 1R R C
T
. The state observation for θ  can be obtained, as shown in 

Equation (2.112).
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In Equation (2.112), θwk  is the process noise, θvk  is the observation noise, ( )−θ θ0, w N Qk ,  

( )−θ θ0,v N Rk , and θk is the state variable. Generally, the method is combined with 

the SOC estimation process. According to Equation (2.112), θCk  can be obtained, as 
shown in Equation (2.113).
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The process steps of using EKF to identify model parameters are described as 
follows:

 1. Initialization θ θ θ θ,  ,  , 0 0 0Q R P
 2. Time update, as shown in Equation (2.114).
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 3. Measurement update, as shown in Equation (2.115).
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Through Equations (2.114) and (2.115), the time update and measurement update are 
continuously performed, and the real-time model parameters can be identified.

The online parameter identification experiment is verified by the FFRLS algo-
rithm. The identified battery model is shown in Figure 2.36, wherein the forgetting 
factor is 0.998. The identification results are shown in Figure 2.39.

In the initial stage of identification, due to the large difference between the given 
initial parameter value and the actual parameter value, the identified parameters fluctu-
ate greatly. With the increase of time, the model parameters converge to a stable value.

2.6.7  CompariSon of thevenin anD SeConD-orDer rC moDeLing

By comparing the Thevenin equivalent model and the second-order RC model, it 
can be observed that the second-order model is improved from the Thevenin model 
by adding an RC parallel circuit to the Thevenin model to characterize the phase of 
slow voltage change during the chemical reaction inside the batteries. Simple models 
are easy to calculate, but cannot accurately describe the operating characteristics of 
the batteries. Complex models can better characterize the charge–discharge char-
acteristics of the battery, but the computational effort is greatly increased, reducing 
the adaptability and generalization of the model. The circuit dynamic model of the 
second-order differential network is shown in Figure 2.40.

In Figure 2.40, the state-space equation can be obtained from the second-order 
model, and the results of the model parameter identification are obtained, as shown 
in Table 2.8.

The parameter fitting polynomials corresponding to the figure are shown in Table 2.9.

FIGURE 2.40 Second-order equivalent circuit diagram.

FIGURE 2.39 Online parameter identification results. (a) Resistance identification results. 
(b) Capacitance identification results.
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TABLE 2.8
Parameter Identification Result

SOC a b c d f

1 0.004982 0.009623 0.8434 0.06552 4.178

0.9 0.007184 0.010750 0.5288 0.04081 4.057

0.8 0.006924 0.011640 0.5880 0.04569 3.948

0.7 0.006316 0.011830 0.7282 0.05564 3.846

0.6 0.005284 0.010710 0.7922 0.05461 3.735

0.5 0.003687 0.008972 0.7725 0.06215 3.657

0.4 0.003432 0.008784 0.8107 0.06008 3.617

0.3 0.003838 0.008912 0.8788 0.05942 3.586

0.2 0.004532 0.009571 0.7056 0.04896 3.530

0.1 0.006485 0.011260 0.8145 0.05779 3.451

SOC R0(Ω) R1(Ω) C1(F) R2(Ω) C2(F)

1 0.001835 0.00011472 10335.40523 0.000221588 68877.98832

0.9 0.001856 0.000165425 11431.60103 0.000247539 98989.64572

0.8 0.001867 0.000159438 10666.70891 0.000268033 81656.48675

0.7 0.001853 0.000145438 9442.174733 0.000272408 65977.0606

0.6 0.002031 0.000121674 10374.50017 0.000246618 74251.14952

0.5 0.002026 8.49001E-05 15247.30905 0.000206597 77881.52217

0.4 0.002041 7.90283E-05 15608.36372 0.000202268 82289.15029

0.3 0.002038 8.83772E-05 12875.66920 0.000205216 82008.14788

0.2 0.002070 0.000104358 13580.51863 0.000220390 92675.74877

0.1 0.002114 0.000149329 8221.74040 0.000259283 66738.08550

TABLE 2.9
Parameter Fitting Result

0R : y = 0.0024 − 0.00439 * u^1 + 0.02011 * u^2 − 0.04059 * u^3 + 0.03569 * u^4 − 0.01137 * u^5

1R : y =2.07881E-4 − 6.7124E-4 * u^1 + 7.67998E-4 * u^2 + 3.66447E-4 * u^3 − 0.0000379487 * 
u^4 − 5.1781E-4 * u^5

1C : y = 8399.02507 − 38777.14471 * u^1 + 550627.44458 * u^2 − 1.66094E6 * u^3 + 1.87552E6 * 
u^4 − 724449.44933 * u^5

2R : y =2.53056E-4 + 4.51845E-4 * u^1 − 0.00544 * u^2 + 0.01561 * u^3 − 0.01666 * u^4 + 0.006 * 
u^5

2C : y = 49855.0442 + 135771.15179 * u^1 + 984260.32619 * u^2 − 5.31421E6 * u^3 + 7.76762E6 * 
u^4 − 3.55285E6 * u^5

OCU : y = 3.2462 + 3.0115 * u^1 − 11.16337 * u^2 + 20.71096 * u^3 − 16.53234 * u^4 + 4.91026 * u^5

OC1U : y = 3.42621 − 0.54017 * u^1 + 13.07197 * u^2 − 55.87842 * u^3 + 105.54386 * u^4 − 90.28558 
* u^5 + 28.84722 * u^6



98 Multidimensional Lithium-Ion Battery Status Monitoring

According to the structure diagram of the second-order equivalent circuit model, 
its improved simulation system model is built in Simulink software for the parameter 
verification, as shown in Figure 2.41.

To better compare the Thevenin model with the second-order model, the outputs 
of both model circuits are placed in the same simulation, and the two model volt-
age outputs are displayed inside the same oscilloscope. The second-order model is 
more reasonable, and the parameter identification accuracy is higher compared with 
the Thevenin model at 20°C. The second-order circuit model and the parameter 
identification method and identification results under this model can provide a theo-
retical basis for the accurate estimation of the internal state variables of lithium-ion 
batteries.

2.7  CONCLUSION

This chapter mainly introduces four equivalent circuit models and parameter iden-
tification methods, and briefly introduces three commonly used battery operating 
conditions. The Rint model is a relatively simple model, including the ideal bat-
tery voltage source OCU  and the battery’s internal resistance 0R . Since the model 
does not consider the polarization characteristics of the battery, the accuracy of the 
model is low, which is rarely seen in practical applications. Compared with the Rint 
model, the Thevenin model is improved by the addition of an RC circuit. Due to 
the polarization characteristics of the battery, the RC circuit can reflect the gradual 
changes in the battery voltage during and after the charge–discharge maintenance. 
The Thevenin equivalent circuit model is not only simple in structure, but also able to 
meet the simulation requirements, so the battery Thevenin equivalent circuit model is 
often used in practical applications. The PNGV equivalent circuit model includes an 
open-circuit voltage source OCU , polarization resistor Rp, polarization capacitor Cp,  
an ohmic resistance 0R , and a capacitance Cb. The PNGV model adds the consider-
ation of the impact of the load current on the battery OCV based on the Thevenin 
model. Since this circuit model covers the characteristics of battery polarization 

FIGURE 2.41 Second-order equivalent circuit diagram.
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and ohmic resistances, the PNGV equivalent circuit model is more accurate. The 
second-order equivalent model introduces an RC series network and a second-order 
RC parallel network. Compared with the Thevenin model and the PNGV model, 
the accuracy of the model has been improved, which can simulate the ohmic polar-
ization, electrochemical polarization, concentration polarization, and self-discharge 
effects. At the same time, offline parameter identification and online parameter iden-
tification are introduced to provide a basis for follow-up work. 
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Introduction: For a practical lithium-ion battery pack, safety and stability are the 
most important. Therefore, the battery management system (BMS) is essential to 
monitor the operating status of the lithium-ion battery and ensure the safe and suit-
able operation of the lithium-ion batteries [168,169]. The BMS is a product integrat-
ing multiple functions to realize the management of lithium-ion batteries. In addition 
to monitoring basic parameters such as voltage, current, and temperature, the BMS 
also uses various strategies to estimate and predict performance parameters such as 
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battery SOC and state of health (SOH). The SOC estimation has always been a hot 
and difficult issue in this research field [170]. Accurate SOC estimation is a direct 
representation of the current endurance of the battery, and it is also the cornerstone 
of estimating the SOH of the batteries.

3.1  OVERVIEW OF SOC ESTIMATION

3.1.1  Definition of SoC

In the design of BMS, there are also several research hotspots, such as estimating the 
SOC and SOH values of lithium-ion batteries, solving the problem of inconsistent 
parameters, balancing technology, and performing fault diagnoses on the lithium-ion 
batteries [171,172]. Since a mature BMS requires not only comprehensive functions but 
also should have high reliability, it is very difficult to design a perfect lithium-ion BMS.

Although the lithium-ion battery state estimation algorithm is a basic function 
of the BMS, it has some technical difficulties in its design process. The accuracy of 
the lithium-ion battery state estimation directly determines whether the lithium-ion 
BMS can work perfectly, and it is also the most important line of defense to ensure 
the safety of users. Therefore, it is of great significance to study the state estimation 
algorithm of lithium-ion batteries. The SOC value of a battery pack is data represent-
ing the power of lithium-ion batteries. The data is greater than 0 and less than 1, so it 
can usually be expressed as a percentage. Its definition is expressed in Equation (3.1).

 =SOC
Q

Q
r

n

 (3.1)

In Equation (3.1), Qr is the amount of charge stored in the battery, and Qn is the rated 
capacity of the batteries. Both of these data are usually in units of Ah, but SOC is a 
unitless quantity, just a ratio. The battery SOC reflects the current range of the battery 
to a certain extent. It plays an important role in improving battery efficiency, slow-
ing down battery aging, and preventing overcharge and overdischarge. The battery 
SOC cannot be directly measured and must be calculated by estimation methods. At 
present, many researchers have made great efforts to find real-time, accurate, and 
reliable SOC estimation methods. A large number of research results have emerged. 
The common SOC estimation methods include ampere–hour integration, open-cir-
cuit voltage (OCV), and model-based methods. The estimation method is based on 
impedance, static battery characteristics, fuzzy logic, machine learning, and special 
measurement methods. Taking into account that the lithium-ion battery is affected by 
other factors during the charge–discharge process, such as the ambient temperature, 
the size of the experimental current, and the number of cycles, Equation (3.1) cannot 
accurately estimate the SOC of the battery. Therefore, based on the above, a more 
accurate calculation equation is proposed as shown in Equation (3.2).
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In Equation (3.2), Qi is the number of batteries that have been discharged at the time 
point i, and γ  is the battery efficiency parameter, which can be obtained from experi-
mental data. Estimating the remaining battery power has always been the focus and 
difficulty of BMS. The need for the high-precision remaining power estimation of the 
lithium-ion battery has always been a prerequisite for prolonging the service life of 
the lithium-ion battery and exerting discharge efficiency. For example, temperature 
and the SOC value at the previous time point affect the estimation of the remaining 
battery power. In addition, polarization effects and battery life also affect the estima-
tion of the remaining battery power, which brings great nonlinear problems to the 
battery model.

3.1.2  main affeCting faCtor anaLySiS

In electric vehicles, the battery pack exhibits a high degree of nonlinearity, and the 
SOC is affected by many factors such as discharge rate, battery temperature, self-
discharge rate, and cycle times, which brings great difficulties to the accurate SOC 
estimation [173,174].

 1. Discharge rate
Under the condition that other influencing factors remain unchanged, the 
discharge capacity of the battery decrease as the discharge rate increases. 
This is because the active material inside the battery has a limited depth 
of action with the thickness of the electrode. When a large current is dis-
charged, the greater the discharge rate, the shallower the depth of action, 
and the lower the utilization rate, so the battery capacity is smaller, and vice 
versa, the greater the capacity.

 2. Battery temperature
The battery power and active material utilization rate increase with the 
rise of battery temperature, which was mainly caused by the change in 
temperature performance of the electrolyte. When the temperature of the 
battery rises, the viscosity of the electrolyte decreases and the activity 
increases, thereby increasing the ion diffusion movement ability, ultimately 
improving the utilization rate of active materials, and increasing the actual 
available power of the battery. Conversely, when the battery temperature 
drops, the active material utilization rate decreases and the actual avail-
able power decreases. Therefore, the actual available power of the battery 
is directly proportional to the battery temperature. In practical applications, 
the charge–discharge working temperature range of lithium iron phosphate 
polymer battery is 0°C–45°C.

 3. Number of cycles
After a period of use, the standard total capacity of lithium-ion batteries 
changes to a certain extent. At first, the power increases, and it remains the 
same for a period, and then the power gradually decreases. For lithium iron 
phosphate batteries, the cycle life of the battery is generally expressed by 
the number of charge–discharge times when the total discharge capacity 
drops to 80% of the nominal capacity.
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 4. Self-discharge rate
Self-discharge, also known as charge retention capacity, refers to the storage 
capacity and retention capacity of the battery in an open-circuit state under 
specific environmental conditions. In the case of battery self-discharge, the 
SOC value decreases with increasing storage time. In general, the self-dis-
charge rate can be expressed as the percentage of capacity reduction per unit 
of time, and the expression is shown in Equation (3.3).

 ( ) ( )= − * *100%sdrI C C C Ta b a  (3.3)

In Equation (3.3), sdrI  is the self-discharge rate, Ca is the battery power 
before storage, Cb is the battery power after storage, and T  is the battery 
storage time. The self-discharge rate of lithium-ion batteries is related to 
many factors such as the number of cycles, ambient temperature, and stor-
age time. It is generally calculated and derived by experimental methods.

3.1.3  traDitionaL eStimation methoDS

The discharge of power batteries in electric vehicles is a very complex electrochemi-
cal reaction process. Factors such as discharge rate, ambient temperature, battery 
internal resistance, and self-discharge rate affect the estimation and prediction of the 
battery SOC value. At the same time, these factors vary from each other. It changes 
as the number of cycles increases, which increases the difficulty of battery modeling 
and SOC estimation algorithm [175,176]. At present, the estimation methods of bat-
tery SOC mainly include discharge test method, OCV method, ampere–hour mea-
surement method, internal resistance measurement method, load voltage method, and 
neural network method. These methods are introduced and analyzed in detail below.

 1. Discharge test method
The discharge test method is an experimental method that uses a constant 
current to continuously discharge the battery until the battery terminal volt-
age reaches the discharge cutoff voltage. It is the most reliable SOC esti-
mation method and applies to all types of batteries. However, it also has 
several defects which greatly limit its application. First, it requires a lot of 
measurement time. The SOC value at each time point can only be calcu-
lated after the entire discharge test is over, and real-time SOC estimation 
cannot be achieved. Second, the battery must be forced to stop its previ-
ous work and switch to a constant current discharge state. Therefore, the 
discharge test method is not suitable for estimating the SOC estimation of 
power batteries with real-time estimation requirements, but it can be used 
for the maintenance of power batteries and the determination of battery 
model parameters.

 2. OCV method
The OCV method estimates SOC according to the approximately linear rela-
tionship between SOC and OCV. The actual operation process is described 
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as follows. First, the battery needs to rest for a long enough time to ensure 
the stability of its OCV and other parameters. Then, the OCV of the battery 
is measured to obtain the SOC value according to the known approximate 
linear function relationship. The advantage of the OCV method is its sim-
plicity and strong operability. However, the OCV can only be obtained after 
the battery is fully rested until the electrochemical reaction of the battery is 
stable, but it is impossible to track the SOC value in real time. In addition, 
although the functional relationship between SOC and OCV is relatively 
fixed in a short time, the relationship between SOC and OCV changes with 
the aging of the battery, which also affects the accuracy of SOC estimation. 
Therefore, the applicability of this method is poor.

 3. Ampere–hour integration method
The ampere–hour integration method estimates the SOC value by calculat-
ing the accumulated power of the battery during the charging or discharg-
ing process and compensating the estimated SOC value according to the 
temperature and the charge–discharge rate. It is currently the most com-
monly used and simplest SOC estimation method, and it has been success-
fully applied to the power estimation of electronic consumer products. If the 
initial SOC value is specified as SOC0, the SOC value of the present state 
can be calculated by Equation (3.4).

 SOC SOC
1

0
0∫ η= −

Q
dt

n
i

t

 (3.4)

In Equation (3.4), Qn is the nominal capacity. i represents the battery current, 
which is positive when discharging and negative when charging. η is the 
battery efficiency coefficient, including the temperature influence coefficient 
ηr and the charge–discharge rate coefficient ηi, where ηi can be obtained by 
the Peukert. Three issues need to be considered when this method is used for 
SOC estimation. The method itself cannot provide the initial battery value 
SOC0. Inaccurate current measurement increases the SOC estimation error, 
which becomes larger and larger after a longtime accumulation. The bat-
tery efficiency coefficient η must be considered when estimating SOC value, 
although the accuracy of current measurement can be solved by using high-
performance current sensors, which highly increases the cost of the system. 
At the same time, to solve the problem of battery efficiency coefficient η, it 
is necessary to establish empirical equations for temperature influence coef-
ficient ηr and charge–discharge rate coefficient ηi through a large amount of 
experimental data. If the SOC estimation accuracy requirement is not high, 
the ampere–hour measurement method can be applied to the calculation of 
the remaining battery power of electric vehicles.

 4. Internal resistance measurement method
The internal resistance measurement method refers to the method of mea-
suring the AC internal resistance by exciting the battery with different fre-
quencies of alternating current and calculating the SOC value using the 
battery static model of the remaining power and the AC internal resistance. 
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In the later stage of battery discharge, the internal resistance measurement 
method has high estimation accuracy and battery adaptability and is gen-
erally used in combination with the ampere–hour measurement method. 
However, the method only considers two aspects of discharge current and 
internal resistance but does not consider the influence of environmental tem-
perature, battery cycle times, the imbalance between battery cells, and other 
factors on the internal resistance of the batteries. In addition, the cause of 
battery internal resistance is very complicated, so the accuracy of the SOC 
estimation value obtained by the internal resistance measurement method 
is not high. In addition, there are great differences in AC impedance at dif-
ferent current frequencies, and electric vehicle power batteries do not work 
at a fixed AC frequency. Consequently, the internal resistance measurement 
method cannot meet the SOC estimation requirements of lithium-ion bat-
teries for electric vehicles.

 5. Neural network method
The neural network is an artificial intelligence technology that has been 
developed in recent years and uses simulating brain signal processing. A 
neural network is a complex nonlinear system formed by a large number 
of simple neurons connected extensively. It can automatically summarize 
the collected data and obtain the internal laws of the data onto it. It also has 
a nonlinear mapping capability and is suitable for noncausal relationships 
with more complex nonlinearities, accuracy identification, judgment, rea-
soning, and classification issues. The battery is a highly nonlinear system, 
and it is usually difficult to establish a reasonable and accurate mathemati-
cal model for its charge–discharge process. Therefore, given external incen-
tives, the neural network method can use the learning ability of the neural 
network and the parallel structure to simulate the nonlinear characteristics 
of the battery to estimate the SOC value.

SOC estimation often uses a typical three-layer neural network, in which 
the number of neurons in the input and output layers is determined by 
the actual system needs. Also, the number of neurons in the middle layer 
depends on the system complexity and analysis accuracy requirements. In 
the neural network method, the system input includes battery voltage, ambi-
ent temperature, charge–discharge current, battery internal resistance, and 
accumulated discharge power. Whether the input type and quantity are rea-
sonable or not, they directly affect the calculation cost and accuracy of the 
method model. The disadvantage of the neural network method is that a 
large amount of experimental data is needed to train the parameters, but 
the SOC estimation accuracy is greatly affected by the training data and the 
training method.

 6. Kalman filter
Lithium-ion batteries are a typical nonlinear system. With the development 
of Kalman filter (KF) technologies, improved KF strategies can be used in 
complex nonlinear systems. The nonlinear KF mainly includes extended 
KF and unscented Kalman filtering (UKF) algorithms. Among them, the 
extended Kalman filter (EKF) uses the partial differentiation method for 
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linearization. It uses the partial differentiation method to generate the 
Jacobian matrix in each iteration cycle of the algorithm, so the calculation 
is more complicated. The nonlinear state–space equation is linearized with 
the Jacobian matrix in the EKF algorithm. If the system is highly nonlinear, 
the conversion results may deviate greatly, which may lead to divergence 
of estimation results. The UKF uses an unscented transformation (UT) to 
approximate the probability density distribution of state variables of the sys-
tem. Compared with the EKF, this transformation has certain advantages. 
Data transformation is not only more accurate but also simple in calcula-
tion and easy to implement, which is more suitable for state estimation of 
nonlinear systems.

Compared with commonly used electronic consumer products, electric 
vehicles have higher requirements for power battery performance. Power 
battery packs are often under discharge conditions with large currents 
and severe current fluctuations. Also, the components of battery capacity 
affected by temperature are relatively increased. These problems put for-
ward stricter requirements for the SOC estimation algorithm.

 a. The SOC estimation result should have high accuracy. To improve the 
energy utilization rate of power batteries and provide accurate battery 
life information, the maximum estimation error of SOC should gener-
ally be controlled by 10%. During the later period of the charge–dis-
charge process, the estimated SOC value can converge to near the true 
value to ensure that the battery can be completely charge–discharge 
without overcharging or overdischarging.

 b. SOC must be estimated in real time. The vehicle control strategy of 
electric vehicles is always adjusted according to the current SOC value 
of the power battery pack. The SOC estimation must have online real-
time performance, which greatly increases the design requirements of 
the system data sampling unit and algorithm execution unit.

 c. The current accumulation error is reduced. The long-term cumulative 
error makes the SOC estimation error increase and reaches the maxi-
mum in the later stage of charge–discharge. Therefore, the ampere–
hour integration method cannot be used alone to estimate the SOC in 
the electric vehicle BMS.

Considering the above requirements, the improved methods based on the 
KF have great advantages in the SOC estimation. Compared with the neural 
network, the amount of calculation is smaller and the amount of prelimi-
nary data required is smaller. Compared with other algorithms, it has the 
ability of adaptive correction.

3.2  KALMAN FILTER AND MODIFICATIONS

Rudolf E. Kalman, a Hungarian mathematician, proposed and published the famous 
linear system for filtering and prediction in 1960. He gave a recursive form of the 
filtering algorithm, so later generations called it the KF algorithm. It was success-
fully applied to the navigation system for the Apollo Project by NASA in 1968–1972, 
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which required estimation of the trajectories of manned spacecraft traveling to the 
moon and back. In the following decades, with the continuous development of com-
puter technology, linear filtering technology has been widely used in navigation, mea-
surement and control, radar system, and other fields. These wide-range applications 
have in turn proved the effectiveness of the KF [177,178]. The KF is a model-based 
state estimation algorithm. Its essence is a state estimator that optimally estimates 
the state of the system based on the previous state and current observations. The KF 
is different from the traditional filter. On the contrary, it is more like a state observer, 
which is based on a discrete state–space model.

3.2.1  kaLman fiLter

The KF is an algorithm to optimize system state estimation, using linear system 
state equations and system input–output observation data. The optimal estimation 
can also be regarded as a filtering process because the observed data includes the 
influence of noise and interference in the system. Since the KF is a state observer, it 
is usually necessary to set the measured variable as the state variable of the system, 
to establish the state–space model [179,180]. The covariance of the process noise 
and the covariance of the observation noise are determined according to the actual 
situation. It should be pointed out that here, the process noise and the observation 
noise are generally considered to be Gaussian white noise with an expectation of 
their value equaling 0. If the expectation values of these two noises are not equal 
to 0, a series of conversions are to be required to make two kinds of noise expected 
to be 0 in the transformation model. The process noise is generally related to the 
accuracy of the model and the uncertainty of the process, while the observation 
noise is related to the noise of the sensor. Finally, the initial value of the state vari-
able of the KF is determined. The initial value generally selects the expectation of 
the state variable.

After completing the above steps, the process model is established, the algorithm 
is written, and the KF algorithm’s prototype is generated. However, to obtain a bet-
ter estimation effect, a lot of experiments are needed to adjust the parameters of the 
KF, especially the covariance matrix of process noise and observation noise. The 
KF algorithm is mainly divided into two steps: prediction and verification. The algo-
rithm steps are described, as shown in Figure 3.1.

Although the lithium-ion battery model is nonlinear, the KF algorithm is first 
introduced here with a linear model as an example. For a given linear system, the 
state variable ∈x Rn is defined, and the differential state equation for the system is 
established, as shown in Equation (3.5).

 = + +−1x Ax Bu wk k k k (3.5)

Using the sensor to measure the system, the measured value of the sensor can be 
defined as the observed variable of the system, so that the observation equation of the 
system can be listed, as shown in Equation (3.6).

 = + ∈,z Hx v z Rk k k k
m  (3.6)
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In Equation (3.6), wk is the process noise, and vk is the observation noise. They are 
independent of each other and form normally distributed white noise. These two 
noises meet certain statistical characteristics, as shown in Equation (3.7).

 
∼

∼







( ) (0, )

( ) (0, )

p w N Q

p v N Q
 (3.7)

The optimal estimated value calculated by the KF is obtained by fusion between the 
predicted value obtained by the model recursion and the measured value obtained by 
the sensor. First, the state value at time point k is recursively calculated from the state 
value at time point − 1k  according to the state equation, as shown in Equation (3.8).

 
= +

= +
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−
−

ˆ ˆ 1

1

x Ax Bu
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k k k

k k
T

 (3.8)

Equation (3.8) is called the time update, where −ˆ 1xk  is the previous posteriori estima-
tion, that is, the state estimated by the previous KF treatment. It is generally believed 
that the posterior estimation is the expectation of the system state at the time point of 

− 1k , as shown in Equation (3.9).

 ( ) =− −ˆ1 1E x xk k  (3.9)

FIGURE 3.1 Basic principles of the KF algorithm.
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In Equation (3.9), −1Pk  is the covariance of the previous posterior estimation noise, 
and the relationship with the posterior estimation is shown in Equation (3.10).

  ( )( )− −



 =− − − − −ˆ ˆ1 1 1 1 1E x x x x Pk k k k

T
k  (3.10)

In Equation (3.10), −ˆ 1xk  is the posterior estimate at the time point of − 1k , which is 
calculated after the last step of the filter measurement update. −1xk  is the state refer-
ence value at the time point of − 1k . According to the time update equation shown 
above, the state of the system and the covariance of the noise have been updated. 
Then, the Kalman gain is calculated that is based on the prior covariance estima-
tion of the sensor noise and corrected for the previous prediction. The second part is 
called measurement update, as shown in Equation (3.11).
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x x K z Hx

P I K H P

k k
T

k
T

k k k k k
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 (3.11)

In Equation (3.11), Kk  is the Kalman gain, and I is the identity matrix. The classical 
KF has many restrictions on its use, and it needs to meet the two conditions that the 
system is linear and that the noise is normally distributed. Although some experi-
ments verify that the KF algorithm is still effective when the noise is not strictly 
normal. However, it can be observed from the KF equation that this algorithm is only 
suitable for linear systems rather than for nonlinear systems. To extend the scope of 
application of the KF and enable it to be applied to nonlinear systems, some improved 
KF algorithms have been also proposed.

3.2.2  extenDeD kaLman fiLter

For linear dynamic systems, the classical KF is undoubtedly one of the best and 
most commonly used state estimation methods. However, the electric vehicle power 
battery pack itself is a nonlinear dynamic system. The battery SOC and the charge–
discharge rate, battery operating voltage, and ambient temperature are also in a non-
linear relationship. Therefore, the EKF method is proposed to estimate the battery 
pack SOC online [181]. The basic idea of EKF is to use Taylor series expansion to 
linearize the nonlinear system, and then use the KF framework to filter the signal, so 
it is a suboptimal filter. Compared with the classical KF, the EKF algorithm linear-
izes the power battery nonlinear system by applying the first-order Taylor expansion 
to the system state–space model. Then, the cyclic iterative process of the standard 
KF algorithm is used to make the algorithm optimal estimation of the state variables 
[182–184]. The state–space model of the system is shown in Equation (3.12).
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In Equation (3.12), ( ),f x uk k  and ( ),g x uk k  correspond to the nonlinear state transi-
tion function and the nonlinear measurement function, respectively. In addition to 
the different selected state–space models, the EKF algorithm and the standard KF 
algorithm are essentially similar to each other. Both are composed of initialization, 
predictive estimation, and optimal estimation. The EKF uses a nonlinear model to 
estimate the state variables [185]. To use the KF algorithm for optimal estimation, 
the Taylor series expansion of ( ),f x uk k  is carried out. The Taylor series expansion of 
the function ( )f x  at a is shown in Equation (3.13).

   = + ′ − + ′′ − + + − +
( )

( )
( )
0!

( )
1!

( )
( )

2!
( )

( )
!

( ) ( )2 �f x
f a f a

x a
f a

x a
f a

n
x a R x

n
n

n  (3.13)

In Equation (3.13), ( )R xn  is the remainder of the Taylor equation, which is the high–
order infinitesimal of −( )x a n, and ( )( )f an  is the n derivative of the function ( )f x . 
After the Taylor series expansion of the process function, only the first-order term of 
the expansion is retained, and the rest is omitted, the linearized approximate model 
of the battery model can be obtained. Assuming that ( , )f x u  and ( , )g x u  are first-order 
differentiable everywhere in the neighborhood of the expansion point, the linear 
approximate expressions of nonlinear equations ( , )f x u  and ( , )g x u  can be obtained, 
as shown in Equations (3.14) and (3.15).

 ≈ + ∂
∂ =
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( , )
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f x u f x u
f x u

x x x

 (3.14)

 ≈ + ∂
∂ =

( , ) ( , )
( , )

g x u g x u
g x u

x x x

 (3.15)

Substituting into Equations (3.14) and (3.15), linear state equation and observation 
equation can be obtained, as shown in Equations (3.16) and (3.17).

 [ ]( )= + ∂
∂
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 (3.16)

 [ ]( )= + ∂
∂

= +
=

,
( , )

y g x u
g x u

x
x x v

x x

 (3.17)

Equivalently transforming Equations (3.16) and (3.17), the mathematical relationship 
can be obtained, as shown in Equation (3.18).
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Then, the relationship can be expressed, as shown in Equation (3.19).
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The discretized Equation (3.19) can be obtained, as shown in Equation (3.20).
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In Equation (3.20), the coefficients can be calculated, as shown in Equation (3.21).
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 (3.21)

In Equation (3.21), T  is an infinitesimal quantity and I is the identity matrix. The 
calculation process of the EKF algorithm is described as follows.

 1. Initialization of the system state–space equation
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 2. Prior state estimation
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 3. Posterior state estimation
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The EKF algorithm approximates the nonlinear system to a linear system through 
Taylor series expansion, so that the KF algorithm can be used to estimate the non-
linear system state variables. But for some systems with complex expressions, the 
approximation method is not only computationally expensive but also large errors 
occur in the linearization process. The more accurate unscented KF algorithm is 
proposed. In this experiment, OCU  is substituted into the algorithm with a fitted poly-
nomial and the values of 0R , Rp and Cp are substituted into the algorithm in an aver-
age manner, the battery is discharged by the 1 C constant current in the experiment, 
and the EKF estimation of the lithium-ion battery SOC algorithm can be verified 
according to Figure 3.2.

In Figure 3.2, the red curve is the standard SOC estimation result, and the gray 
curve is the SOC estimation result of the EKF algorithm.

3.2.3  improveD extenDeD kaLman fiLter

While the EKF increases the ability of the algorithm to deal with nonlinear pro-
cesses, it also needs to be improved further for complex machine state monitoring 
problems in real-world applications [186]. The system noise in real-world battery 
packs, such as the constant divergence of the current and voltage sensors, is often 
non-Gaussian, particularly for large cubature battery packs. Furthermore, battery 
capacity loss, atmospheric temperature, and complex operating conditions are all 
closely linked to the characteristics, impacting the precision and robustness of the 
SOC calculation. As a result, the optimization treatment is used to boost the EKF 
algorithm to reduce the effects of the above variables [119].

Adaptive noise: signal noise can be divided into process noise and ambient noise 
with the KF. The ambient noise is caused by the error caused by the sensor and the 
environmental disturbance in the actual calculation process, and the process noise 
characterizes the accuracy of the model. Both noises have a significant effect on the 
efficiency of the filtering system, primarily affecting the convergence and accuracy 

FIGURE 3.2 Comparison of SOC output curves under HPPC condition.
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of the system. The scheme is known to be converted to a constant value at an infinite 
time point for a converged KF, as shown in Equation (3.25).

 = → ∞lim ,constP P kk  (3.25)

The Kalman gain, like the convergent covariance matrix, converges to a constant 
value according to the covariance matrix updating the EKF [187]. As a result, the 
KF degrades to a low-pass filter, with the Kalman gain calculated solely by machine 
noise, which affects precision. Process noise, on the other hand, affects the conver-
gence level of the system. Where there is a divergence, the presence of noise helps the 
device eventually converge to the true value, with the speed of convergence depend-
ing on the amplitude of the noise. In real-world operating conditions, it is common 
to anticipate more noise in the initial stages of filtering to improve the effect of cor-
recting initial value variance and filtering convergence speed. When the filtering is 
stabilized, the noise can be attenuated for improved accuracy. As a result, achieving 
adaptive machine noise is extremely important in practice. For discrete systems, the 
adaptive algorithm based on maximum posterior estimation can be defined, as shown 
in Equations (3.26) and (3.27).
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In Equations (3.26) and (3.27), ( )= − − +(1 ) 1 1d b bk
k ; b is a constant between 0 and 1;  

ε = −z C xk k k. The fading filter is a technique for improving the ability of a system 
to use observation calculation to filter out divergence phenomena. The covariance 
matrix may not be positive during the iterative process due to rounding error while 
computing with machines, causing the filtering scheme to oscillate or diverge. In 
addition, in the case the system model is severely mismatched, the system can only 
be corrected by observation. As a result, increasing the observation proportion, when 
updating the status, increases the reliability and robustness. For the arbitrary time 
point k in the time domain, traditional EKF algorithms conclude that the complete 
filtering time domain is N ; thus, the mathematical relationship can be obtained, as 
shown in Equation (3.28).

 = +− − − − −1 1 1 1 1P A P A Qk k
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k  (3.28)

Taking s as the fading factor, and multiplying both sides by − −( )s N k , the mathematical 
relationship can be obtained, as shown in Equation (3.29).
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The relationship between different parameters is described, as shown in Equation 
(3.30).

 =−
− −

−1
* ( )

1P s Pk k
N N k

k k
N  (3.30)

 =−
− − −

−1
* ( ( 1))

1P s Pk
N N k

k
N  (3.31)

Then, Equation (3.29) can be expressed, as shown in Equation (3.32).
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1 1
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1 1P A sP A Qk k
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k k
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k
T

k  (3.32)

To optimize the covariance matrix updating, Equation (3.32) may be substituted for 
Equation (3.28), and the covariance matrix has been expanded by s times as opposed 
to the initial equation, indicating that the calculation capacity has been improved. 
In Equation (3.32), the fading factor can be set to a value greater than 1. Also, it can 
adaptively be modified based on the degree of device model mismatch, but the error 
bars are visible.

Linear–nonlinear filter: as the EKF algorithm is increased by combining mul-
tiple solutions, the computation of algorithm cost rises, making quick estimation 
impossible. As a result, the linear–nonlinear ( −L N ) filter is used to solve problems 
caused by the complexity of the algorithm. The second-order ECM has the following 
characteristics.

 1. The state update process is linear, as shown in Equation (3.33).

 + = +( 1) ( ) ( )x k Ax k w k  (3.33)

 2. The observation process is nonlinear, as shown in Equation (3.34).

 ( )=( ) ( ), ( )y k f x k w k  (3.34)

In Equation (3.34), the observation method concentrates on the nonlinear propor-
tion. As a result, the state update section is assumed to be processed independently 
from the observation portion. When working with linear systems that need little 
estimation, the traditional KF has higher precision. However, while the EKF can 
respond to nonlinear systems when dealing with linear systems, the accuracy is close 
to that of the classical KF, and a lot of computational power is wasted [188]. As a 
result, the −L N  filter is used to solve the problem for the special linear–nonlinear 
method described earlier. For the status updating process, the classical KF method is 
used, and the EKF algorithm is used for the observation process, which essentially 
decreases the amount of computation needed by the algorithm without impacting 
estimation accuracy, as shown in Table 3.1.

In the improved EKF, several methods are introduced to deal with the problem of 
filtering noise and divergence. The –L N  filter approach is used to minimize the sum 
of estimation. The improved EKF algorithm adopted can be described.
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3.2.4  unSCenteD kaLman fiLter

The unscented Kalman filter (UKF) is an improved algorithm based on the combi-
nation of unscented transform and KF, which is combined with UT for linearization 
[189,190]. This algorithm mainly uses the idea of the KF; in the subsequent solving 
process, a sampling point is used to calculate the predicted and measured value. 
One-state point is converted into multiple-state points by using UT, it is passed to 
the following observation value according to the value of the certain weight, and 
then according to the error of the following observation value and the real value, per-
form forward feedback and continuous correction, and finally, the ideal state value is 

TABLE 3.1
Improved EKF Algorithm

Initialization:

X E X[ ]=ˆ
0 0

P E X X X X
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obtained. The basic principle of UT is to use sampling points to simulate nonlinear 
variables according to a certain probability distribution. By calculating the statistical 
value characteristics of nonlinear variables, multiple variable values conforming to 
statistical laws are obtained. It is the core and prerequisite part of the UKF algorithm 
[191,192].

As a nonlinear system estimation method, the UKF method abandons the process-
ing idea of approximate linearization of nonlinear functions, and the UT is used to 
process the data and expand the data length. The original data is reconstructed with 
weights and the mean and variance of the data are kept unchanged. The extended 
data is used to estimate the parameters of the nonlinear system. Due to this special 
data processing method, the prediction accuracy of the UKF method is higher than 
that of the EKF method in the strong nonlinear system [193].

A limited number of sampling points are selected according to a certain method 
by the statistical characteristics of the variables. The probability distribution of the 
sampling points is made to be close to the probability distribution characteristics of 
the known variables, thereby transforming a variable value with a certain statisti-
cal characteristic into multiple combined variable values with the same statistical 
characteristic. According to the mean and variance of the estimator, the basic data 
of the estimator is used to generate a corresponding number of reference points 
using an asymmetric sampling strategy, and these reference points have the same 
mean and variance as the estimator. This process is called stigmatization of the 
estimated quantity [194]. The following briefly introduces the principle of the sym-
metric UT. The nonlinear function is = ( )y f x , the dimension of the state variable 
x is n-dimensional, and the variance and the state mean are known to be P  and  x   
respectively; then it can be achieved through +2 1n  sigma points X  and the cor-
responding weights calculated by UT. The value ω  is used to approximate the 
posterior probability distribution of the output variable y. The main process of UT 
is described as follows.

 1. +2 1n  sigma points are sampled according to the estimated points, as shown 
in Equation (3.35).

 λ
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Among them, the ith column of the square root of the matrix can be repre-
sented, as shown in Equation (3.36).

 ( ) ( ) = ,P P P
T

 (3.36)
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 2. Calculating the weights of +2 1n  sigma points sampling, as shown in 
Equation (3.37).
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In Equation (3.37), ωm
i  is the mean weight of the ith sampling point, and ω c

i  
is the corresponding variance weight. The parameter α β− +1 2  in Equation 
(3.37) is a scaling factor used to reduce the total prediction error, where α 
affects the distribution of sigma point sampling. The parameter is used to 
merge the errors of higher-order terms.

 3. Calculating the statistics of output variables
After the above-mentioned transformation of the sigma point set, the coef-
ficient is weighted and the nonlinear transformation ( )=y f xi i  is used, the 
corresponding output point set {yi} can be obtained and the equation is 
calculated, as shown in Equations (3.38) and (3.39). 
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The steps of the UKF algorithm are obtained as follows.

 1. Setting the initial state, the initial value of the state variable 0X  and the 
covariance matrix 0P  can be initialized, as shown in Equation (3.40).
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 2. At time k, the UT sampled by the symmetrical distribution obtains 2n + 1 
sigma sampling points = +, 1 2 1…x i nk

i  from Equation (3.40) and calculates 
the weight of the corresponding mean value ω = +, 1 2 1…i nm

i  and the agree-
ment ω = +, 1 2 1…i nc

i  by variance weights shown in Equation (3.37).
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 3. At time point k, 2n + 1 sigma points sampling xk
i  are substituted into the 

state parameters. The predicted value ( )= = ++ +, , 1 2 11| 1 …X f X U i nk k
i

k
i

k  
of the system state is calculated. The predicted mean value is obtained by 
weighted summation, as shown in Equation (3.41).
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The state variance matrix can be calculated, as shown in Equation (3.42).
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 4. At the time point k, substituting the above-mentioned set of points 
= ++ , 1 2 11| …x i nk k

i  into the system observation, calculate the predicted 

value of the observation ( )= = ++ + +, , 1 2 11| 1| 1 …Z h X U i nk k
i

k k
i

k , and the 
weighted summation to obtain the mean value of the system observation 
can be calculated, as shown in Equation (3.43).
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The prediction variance matrix is shown in Equation (3.44).
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 5. The calculation of the system covariance matrix and Kalman gain is con-
ducted, as shown in Equations (3.45) and (3.46).
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 + = −( 1) 1K k P Pxz z  (3.46)

 6. The system state matrix and covariance matrix are updated according to 
Kalman gain, as shown in Equations (3.47) and (3.48).

 ( )= + + −+ + + +( 1)1 1 1 1|X X K k Z Zk k
i

k k k
i  (3.47)

 = − + ++ + + ( 1) ( 1)1| 1 1|P P K k P K kk k k k z
T  (3.48)

 7. At the time point = + 1k k , the procedure goes to the second step for loop 
operation.
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The UKF algorithm does not require Taylor series expansion of the nonlinear func-
tion but performs UT near the estimated point. The mean and covariance of the 
transformed sigma point set are equal to the original estimated point. It is sub-
jected to a nonlinear state as well as observation and estimation, and the posterior 
probability distribution of the system is approximated. The estimation accuracy of 
the UKF algorithm in a nonlinear system is higher than that of the EKF algorithm, 
which applies to any state model. It is not necessary to calculate the Jacobian 
matrix at every sampling point, and the calculation complexity is lower. In this 
experiment, OCU  is substituted into the algorithm with a fitted polynomial and the 
values of 0R , Rp, and Cp are substituted into the algorithm in an average manner, 
the battery is discharged by a 1 C constant current in the experiment, and the EKF 
estimation of the lithium-ion battery SOC algorithm can be verified according to 
Figure 3.3.

In Figure 3.3, the red curve is the standard SOC estimation result, and the gray 
curve is the SOC estimation result of the UKF algorithm. It can be seen that the esti-
mation result has higher accuracy and better robustness.

3.2.5  aDaptive kaLman fiLter

The KF and its derived algorithms, such as UKF and EKF, have a premise that 
the system process and observation noises are known and remain unchanged from 
beginning to end. The internal structure of the battery and the environmental condi-
tions may cause changes in noise, that is, the noise of the system is time varying, so 
the noise covariance of the system cannot be simply regarded as a constant. Sage–
Husa adaptive filtering realizes the estimation and prediction of system noise in itera-
tive operation through the addition of a noise estimator and avoiding the divergence 
of estimation results due to inaccurate noise [195,196]. The calculation process of 
the Sage–Husa adaptive filtering algorithm is described as follows. Initialization is 
conducted, as shown in Equation (3.49).

FIGURE 3.3 Comparison of SOC output curves under BBDST condition.
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In Equation (3.49), the iterated calculation is conducted for k = 1, 2, …

 1. Prediction stage
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 2. Update stage
Estimating the statistical characteristics of measurement noise, as shown in 
Equation (3.51).
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Updating the state quantity and error variance matrix, as shown in Equation 
(3.52).
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Estimating the statistical characteristics of the process noise, as shown in 
Equation (3.53).

 ( )( )= − + + −− − − −
ˆ 1 ˆ

1 1 1 1Q d Q K e e K P A P Ak k k k k k
T

k
T

k k k k
T  (3.53)

In Equation (3.53), ( )= − − +(1 ) 1 1d b bk
k , b is the forgetting factor gener-

ally taken as 0.9–1. The function of the method is to predict and correct the 
noise of the system online when iterative calculations are performed using 
experimental data, making the algorithm more adaptive and reliable. The 
method is relatively easy to be combined with other algorithms in practice, 
so it plays an important role in various fields.
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3.2.6  CuBature kaLman fiLter

The principle of the cubature Kalman filter (CKF) is similar to that of the UKF, 
and it is also a sampling filtering algorithm, which approximates the state value and 
state covariance of nonlinear systems by finding a set of cubature points. The CKF 
algorithm is first proposed by Canadian scholars Arasaratnam and Haykin in their 
master’s thesis, which is based on the third-order spherical radial cubature criterion 
and uses a set of cubature points to approximate the state value and state covariance 
of highly nonlinear systems [197]. It is a powerful tool to solve the state estimation 
of nonlinear systems. Using the third-order spherical radial criterion to extend and 
calculate the standard Gaussian weighted integral is shown in Equation (3.54).

 ∫ ∑ ( )=−
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i i
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n
 (3.54)

In Equation (3.54), m is the number of integration points, wi  is the weight of integra-
tion, and xi is the point set of integration points. Generally speaking, the number of 
cubature points is twice the dimension n of the state vector. The nonlinear system is 
described mathematically, as shown in Equation (3.55).
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For the nonlinear system as shown in Equation (3.55), the system state is estimated 
by using the CKF algorithm, and the specific step expression is obtained, as shown 
in Equation (3.56).
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 1. Initialization state quantity, error covariance, process noise, and measure-
ment noise.

 2. Calculating the cubature point, as shown in Equation (3.57).
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wherein, n is the dimension of state quantity, xi is the cubature point set, and 
its specific values are shown in Equation (3.58).
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 3. Propagation cubature point, as shown in Equation (3.59).

 ( )=+ ,1x f x uk k
i

k
i

k  (3.59)

 4. Calculating the predicted value of state quantity and error covariance, as 
shown in Equation (3.60).
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 5. Calculating the cubature point, as shown in Equation (3.61).
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 6. Propagation of the cubature point, as shown in Equation (3.62).
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 7. Calculating the measured predicted value, as shown in Equation (3.63).
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 8. Calculating the covariance and cross-covariance of measurement error, as 
shown in Equation (3.64).
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 9. Calculating Kalman gain, the state quantity is updated as well as the cor-
responding error covariance, as shown in Equation (3.65).
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Compared with the EKF algorithm and the UKF algorithm, the CKF algorithm has 
the advantages of good stability and accuracy in the state estimation process. Its 
advantages are described as follows.

 1. As deterministic sampling filtering algorithms, the CKF algorithm gener-
ates point sets according to a certain sampling strategy when dealing with 
nonlinear equations, then directly propagates each sampling point in the 
point set nonlinearly, and finally calculates the mean and covariance of 
the posterior probability density distribution of system state by weighted 
summation. There is no need to linearize the nonlinear equation, which 
eliminates the linearization error and does not need to calculate the Jacoby 
matrix in the iterative process of the filtering algorithm, so it is easier to use 
in practice.

 2. Based on the numerical integration theory, the CKF algorithm uses the 
third-order spherical radial cubature criterion to approximate Gaussian 
integration, which is a strict and complete theory. Therefore, from the 
perspective of the theoretical basis, the CKF algorithm is rigorous and 
stable.

 3. As deterministic sampling filtering algorithms, both UKF and CKF need to 
generate point sets through a certain sampling method in each iteration. The 
point set size of the UKF is +2 1n , while the cubature point set of the CKF 
algorithm is only 2n, that is, one sampling point is calculated less than that 
of UKF in each iteration, so theoretically, the CKF algorithm has higher 
execution efficiency and better real time.

 4. Stability analysis
The stability factor is introduced as the standard to judge the stability of 
the algorithm. The closer the stability factor is to 1, the better the stability 
of the algorithm. The definition equation of stability factor λ is shown in 
Equation (3.66).
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In Equation (3.66), wi represents the value. It can be observed from the 
equation that the stability factor is the ratio of the sum of the absolute values 
of weights to the sum of weights. Because = 1w  and the parameters of UKF 
need to be set to ensure + = 3n k , the reliability factor λ of UKF is shown 
in Equation (3.67).
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In Equation (3.67), it can be observed that when the dimension of system 
state quantity > 3n , the reliability factor of UKF increases with the increase 
of dimension, the reliability becomes worse and worse, and the filtering 
accuracy greatly decreases. However, the weight of each cubature point of 
the CKF algorithm is the same, which is 1/2n, so the reliability factor is 
always equal to 1, which is not restricted by the dimension of system state 
quantity, which has a high reliability and accuracy. The CKF is superior to 
EKF and UKF inapplicability, theoretical basis, time complexity, and reli-
ability, and is suitable for SOC estimation of lithium-ion batteries [198,199]. 
However, the CKF algorithm also has some drawbacks. For the standard 
CKF algorithm, the error covariance matrix needs to be decomposed by 
Cholesky when calculating the cubature points. After multiple filterings, 
the truncation error of the computer easily leads to the loss of positive defi-
nition and symmetry of the error covariance matrix, which makes the fil-
tering divergent. Because of this drawback, researchers put forward some 
improved algorithms based on CKF, such as square root cubature KF, strong 
tracking UKF, etc.

3.3  SOC ESTIMATION BASED ON THE 
SECOND-ORDER RC MODEL

3.3.1  SeConD-orDer rC moDeLing

The accuracy of the battery model has a great influence on whether the SOC can 
be accurately estimated. There are a wide variety of battery models, and currently 
commonly used models include the Rint model, Partnership for a New Generation 
of Vehicles (PNGV) model, and Thevenin model [200]. However, considering the 
polarization effect inside the battery, including electrochemical polarization and 
concentration polarization, a second-order RC equivalent model is adopted, as shown 
in Figure 3.4.

The RC circuit is formed by 1R  and 1C  and the figure represents the stage of rapid 
voltage change in the chemical reaction process within the batteries. The RC circuit 
consisting of 2R  and 2C  represents the phase in which the voltage changes slowly 
during a chemical reaction within the batteries. According to Kirchhoff’s circuit law 
and Figure 3.4, the circuit dynamic model of the second-order differential network is 
shown in Equation (3.68).

FIGURE 3.4 Second-order RC Equivalent model of lithium-ion battery.
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After discretization, its state-space equation can be shown in Equation (3.69).
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Combining the hybrid pulse power characterization (HPPC) test and parameter iden-
tification in simulation software, the mathematical relationship can be obtained for 
the iterative calculation.

3.3.2  parameter iDentifiCation

The HPPC experimental terminal voltage output waveform is obtained, as shown in 
Figure 3.5.

At the time points of discharge start and stop, the voltage of the lithium-ion battery 
changes suddenly, which is caused by 0R , so 0R  can be described in Equation (3.70).

 
( )( )= − + −

2
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1 2 4 3R
U U U U

I
 (3.70)

FIGURE 3.5 HPPC experimental voltage response curve.
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The terminal voltage changes from 2U  to 3U  are the discharge process of the polariza-
tion capacitor to the polarization resistance, and it is the zero-input response of the 
second-order RC circuit. Therefore, the calculation procedure of UL is described, as 
shown in Equation (3.71).

 = − −τ τ
− −

OC 1 2
1 2U U IR e IR eL

t t

 (3.71)

The mathematical relationship of Equation (3.71) can be simplified, as shown in 
Equation (3.72).

 = − −− −U f ae beL
ct dt  (3.72)

Through the parameter identification of Equation (3.72), the results are brought into 
the second-order RC model in Simulink to get the simulation results, which verify 
the correctness of the parameter identification. The results of the parameters are 
shown in Table 3.2.

The identified parameters are introduced into the Thevenin equivalent circuit 
model, as well as the same current as of the HPPC test to the model. By comparing 
the output voltage data of the model with the actual voltage data, the model is effec-
tive. The result is shown in Figure 3.6.

3.3.3  ekf-BaSeD CaLCuLation proCeDure

The form of the state equation and observation equation of KF is shown in Equation 
(3.73).
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TABLE 3.2
The Result of Parameter Identification

S UOC R0 R2 C2 R1 C1

1 4.1722 0.001696898 0.000966407 16776.27750 0.000076623 8557.997284

0.9 4.0336 0.001689400 0.001069370 16240.52975 0.000085195 8798.959277

0.8 3.9239 0.001693149 0.001278296 16914.40649 0.000105013 8015.703601

0.7 3.8228 0.001691768 0.001314432 16263.04342 0.000099957 9094.840909

0.6 3.7180 0.001696898 0.000967157 15370.27882 0.000081146 8044.018942

0.5 3.6445 0.001708144 0.001337775 25793.98922 0.000089643 13342.11066

0.4 3.6052 0.001725637 0.001040131 24519.70384 0.000070750 15112.04836

0.3 3.567 0.001754105 0.000805339 20105.45159 0.000062893 11505.09387

0.2 3.5029 0.001794363 0.000862444 15792.64231 0.000077997 7789.158458

0.1 3.4322 0.001907119 0.001406969 10231.00493 0.000178089 3217.855527
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To apply the KF, the nonlinear functions (*)f  and (*)h  are surrounded by first-order 
Taylor expansion, as shown in Equation (3.74).
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Defining Ak , Bk, Ck , and Dk , as shown in Equation (3.75).
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The updating process of the EKF is shown in Equation (3.76).
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FIGURE 3.6 Output comparison.
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The calculation results of the EKF algorithm are obtained and the error of SOC esti-
mation between experiment and estimation is shown in Figure 3.7.

3.4  EKF-BASED SOC ESTIMATION

3.4.1  parameter iDentifiCation

In the SOC estimation process, the accuracy and timeliness of the estimation results 
are affected by the quality of the equivalent model [201]. In the process of establish-
ing the equivalent circuit model, it is necessary to comprehensively consider the accu-
racy and complexity of the model [202]. According to the analysis and research of the 
common equivalent circuit models, the Thevenin model is adopted. It has moderate 
structural complexity and few identification parameters among all models. Besides, 
it takes into account the abrupt and gradual voltage characteristics of the lithium-ion 
battery under the excitation of the load current during the charge-discharge process, 
which can better reflect the dynamic characteristics of the lithium-ion battery and 
static characteristics, as shown in Figure 3.8.

According to the Thevenin model shown in Figure 3.8, the discharge direction of 
the lithium-ion battery is the positive direction, and the voltage across the polarized 
capacitor is U p. According to Kirchhoff’s voltage law, the voltage relationship can be 
obtained, as shown in Equation (3.77).

  = + +( ) ( ) ( ) ( )OC 0U t U t I t R U tL p  (3.77)

And then, according to Kirchhoff’s current law, the current relationship can be 
obtained, as shown in Equation (3.78).

 = +( )
( ) ( )OCI t

U t

R
C

dU t

dt
p

p
p  (3.78)

The OCV OCU  is a function of SOC, and the mathematical relationship can be 
obtained, as shown in Equation (3.79).

FIGURE 3.7 SOC estimation error curve.
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  =( ) (SOC( ))OCU t f t  (3.79)

Equations (3.78) and (3.79) characterize the circuit relationship of the model. In 
Equation (3.79), the SOC at the time point t is represented by SOC( )t . Equation (3.79) 
can also be rewritten as Equation (3.80).

 = −( )
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p p p

p  (3.80)

Equation (3.80) is solved to obtain Equation (3.81).
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Combining Equations (3.79)–(3.81), the calculation of load terminal voltage UL can 
be obtained, as shown in Equation (3.82).

 ( ) ( )= − + + −( ) ( ) ( ) ( ) (0)OC

1

U t U t I t R R I t R U eL o p p P
C Rp p  (3.82)

The HPPC test is an experiment to test the performance of lithium-ion batteries 
through pulse charge-discharge. The HPPC experiment is to perform a pulse charge-
discharge experiment on a lithium-ion battery and obtain the current voltage curve 
of the battery under the premise of fully considering the safety. According to the 
experimental data and curves, the parameters of the model are identified to obtain 
the corresponding relationship between them and the SOC value. Setting the exper-
imental temperature at 25°C as an example, the experimental steps of HPPC are 
described as follows:

 1. The lithium-ion battery is fully charged with constant current-constant volt-
age steps at a temperature of 25°C, which is shelved for 1 hour.

 2. A constant current of 5 C (60 A) is discharged for 10 seconds, and the bat-
tery is shelved for 40 seconds after the discharge. And then, the battery is 
charged with a constant current of 3.75 C (45 A) for 10 seconds until the 
charging is stopped.

FIGURE 3.8 Thevenin model.
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 3. The battery is discharged at a constant current rate of 1 C (12 A) for 6 min-
utes, that is, the discharge is stopped after 10% of the capacity is discharged, 
which is shelved for 40 minutes to record the parameters until SOC equals 
to 0.9.

 4. Repeating steps (2) and (3) in sequence, the capacity is reduced by 10% each 
time. And then, a group of charge-discharge pulse tests is carried out until 
the lithium-ion battery voltage is equal to 2.75 V, so the cycle is terminated 
and the experiment is stopped.

The current-voltage curve diagram of the HPPC experiment under the condition of 
25°C constant temperature is shown in Figure 3.9.

The current curve in the HPPC experiment is shown in Figure 3.9a, and the volt-
age curve is shown in Figure 3.9b. The HPPC experiment is used to test the dynamic 
characteristics of the batteries. The experiment includes 10 pulses of charge-dis-
charge treatment. After each pulse charge-discharge, the battery performs constant 
current discharge to reduce the capacity by 10% until the battery is discharged to 
the cutoff voltage, and the experiment is stopped. The parameter identification of 
the curve fitting method is an off-line parameter identification method. The model 
parameter results are obtained by curve-fitting experimental data. 0R , Rp, and Cp are 
the three parameters that need to be identified in the Thevenin model. Among these 
three parameters, 0R  is the easiest to identify. The pulse voltage and current curves 
are shown in Figure 3.10.

FIGURE 3.10 HPPC current–voltage curve when SOC = 0.1.

FIGURE 3.9 HPPC experiment current and voltage curve. (a) HPPC experiment current 
curve. (b) HPPC experiment voltage curve.
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As shown in Figure 3.10, the terminal voltage of the battery drops sharply at the 
time point the battery is discharged. This sudden voltage drop is due to the ohmic 
resistance that causes a voltage drop when the current flows through the lithium-ion 
battery at the time point of discharge [203,204]. Similarly, when the battery stops 
discharging, there is a sudden rise in the battery, and the voltage is also caused by the 
ohmic resistance. Therefore, the calculation method of ohmic resistance is shown in 
Equation (3.83).

 =
∆ + ∆

2
0

12 34
R

U U

I
 (3.83)

In Equation (3.84), ∆ 12U  is the voltage drop at the time point of battery discharge, 
and ∆ 34U  is the sudden rise of the battery at the time point of stopping discharge. The 
value of the ohmic resistance at each SOC point can be calculated accordingly. The 
ohm internal resistance values from SOC = 1–0.6 are shown in Table 3.3.

For the Rp and Cp, two parameters cannot be identified by simple equations, 
using the ~2 3t t  section, where the RC loop of the Thevenin model is in a zero-
state response. The expression of zero-state response can be obtained, as shown in 
Equation (3.84).

 = − − −






τ
−

( ) ( ) ( ) ( ) 1OC 0U t U t I t R vI t R eL p

t

 (3.84)

In Equation (3.84), UL is the terminal voltage of the lithium-ion battery, OCU  is its 
OCV, and I is the current value at the time point. The parameter identification results 
of polarization resistance and polarization capacitance are shown in Table 3.4.

Through the above steps, the parameter identification of the curve-fitting method 
is completed for the Thevenin model, and the results are obtained for three param-
eters of 0R , Rp, and Cp. The method is an off-line identification method, which can 
effectively utilize experimental data [205]. The acquisition of model parameters is 
the basis for the SOC estimation of lithium-ion batteries.

TABLE 3.3
Resistance in Ohms

SOC(%) R0(Ω) SOC(%) R0(Ω)

100 0.00848917 50 0.00744167 

90 0.00789250 40 0.00748667 

80 0.00766583 30 0.00757833 

70 0.00748500 20 0.00764083 

60 0.00737083 10 0.00867333 
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3.4.2  iterative CaLCuLation aLgorithm

The classic KF algorithm is often used to deal with linear random system problems, 
while the real systems are mostly nonlinear random systems [206]. The EKF algo-
rithm is proposed to solve such problems. In the algorithm, Taylor expansion is per-
formed on the nonlinear state equation and observation equation, ignoring the impact 
of higher-order terms on the system, and then performs calculations based on the 
classical KF algorithm. The state equation and observation equation of the nonlinear 
system are shown in Equation (3.85).
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In Equation (3.85), the input variable is defined as ∈u Rk
r, and uncorrelated noises are 

added to the two equations. Both ∈w Rk p and ∈v Rk q are Gaussian white noises, and 
statistical characteristics are described mathematically, as shown in Equation (3.86).
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In Equation (3.86), the process n noise covariance is represented by Qk . The observed 
noise covariance matrix is defined as Rk. The nonlinear state transition function is 
represented by ( )− −,1 1f x uk k . The nonlinear measurement function is defined as 

( )− −,1 1g x uk k . At each time point, the functions ( )− −,1 1f x uk k  and ( )− −,1 1g x uk k  are 
expanded by the Taylor series, ignoring the influence of higher-order terms on the 
function, and two linearization processes are completed, that is, the nonlinear func-
tions ( )− −,1 1f x uk k  and ( )− −,1 1g x uk k  expand Taylor series around the filter value and 
ignore the higher-order terms above the first order. The approximate linearization 
expressions of ( )− −,1 1f x uk k  and ( )− −,1 1g x uk k  are shown in Equation (3.87).

TABLE 3.4
Parameter Identification Results

SOC(%) Rp(Ω) Cp(F) SOC(%) Rp(Ω) Cp(F)

100 0.002442 1528.634 50 0.002373 2438.982

90 0.002281 2004.831 40 0.002405 2289.561

80 0.002413 2018.122 30 0.002629 2456.258

70 0.002492 1965.556 20 0.003385 2150.565

60 0.002483 1996.233 10 0.005877 694.0455
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According to Equations (3.86)–(3.88), the nonlinear system is transformed into a 
linear system, and the transformed linear system is only related to state variables, as 
shown in Equation (3.89).
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In Equation (3.89), note that φ( ) −, ˆf x u xk k k k is not a function of xk, and ( ) −ˆ , ˆg x u H xk k k k  
is not a function of xk. According to the linear system obtained by Equation (3.89), 
take it into the classical KF algorithm.

Defining φ ( )= ∂
∂ =

ˆ ,

ˆ

f x u

x
k

k k

k x xk k

, 
( )= ∂
∂ =

ˆ ,
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g x u

x
k

k k

k x xk k

, the following calculation 

procedure can be obtained as follows:

 1. Initial conditions of the filter, as shown in Equation (3.90).

 ( )= =, var( )0 0 0 0x E x P x  (3.90)

 2. State prior estimate, as shown in Equation (3.91).

 ( )=+ − −ˆ ˆ ,, 1 1 1x f x uk k k k  (3.91)

 3. Prior estimate of error covariance, as shown in Equation (3.92).

 φ φ= + Γ Γ+ + − + − − −, 1 , 1 1 , 1 , 1 1 , 1P P Qk k k k k k k
T

k k k k k
T  (3.92)
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 4. Gain matrix, as shown in Equation (3.93).

 = + + −
−

, 1 , 1
1

K P H H P H Rk k k k
T

k k k k
T

k  (3.93)

 5. State posterior estimate, as shown in Equation (3.94).

 ( )= + − − −ˆ ˆ ˆ ,, 1 1x x K z g x uk k k k k k k  (3.94)

 6. The posterior estimate of the error covariance, as shown in Equation (3.95).

 ( )= − −, 1P I K H Pk k k k k  (3.95)

The main idea of the EKF algorithm is to convert the nonlinear system into a linear 
system by Taylor series expansion first and then calculate the linear system according 
to the process of the classical KF algorithm. It is an improvement of the classical KF, 
which makes it possible to solve the nonlinear system that the classical KF algorithm 
cannot solve. The premise of using EKF to estimate SOC is to establish a highly 
accurate battery model. The parameters of the Thevenin model have been identified 
and the establishment of the model has been completed. The observation of the EKF 
algorithm is established according to the state space of the Thevenin model, and the 
design flowchart of SOC estimation based on EKF is shown in Figure 3.11.

In Figure 3.11, the SOC value of the lithium-ion battery and the error covariance 
matrix P  is initialized first, and then the terminal voltage UL of the lithium-ion bat-
tery is detected by the BMS. It is judged whether the value of UL reaches the cutoff 
condition, and the algorithm ends if it reaches the cutoff condition. If the cutoff 
condition is not reached, the parameter calculation is performed. The most important 
thing in the step is to calculate the three parameters 0R , Rp, and Cp. The third step 
is the prediction link, which predicts the three parameters of SOC, P , and UL. The 
fourth step is to iterate the state transition matrix according to the OCV–SOC rela-
tionship. The fifth step is to calculate the gain matrix and modify the SOC to obtain 
the final predicted value. At this step, a cycle is completed. According to the above 
steps, the SOC value at each time point can be iterated continuously.

3.4.3  experimentaL anaLySiS

To verify the accuracy and robustness of the SOC estimation result, the current and 
voltage data of the Beijing bus dynamic stress test (BBDST) operating conditions are 
used for testing. The current and voltage data of the working condition are input into 
the simulation system. And then, the parameter identification results are combined to 
estimate the SOC value. The verification result is obtained as shown in Figure 3.12.

In Figure 3.12, SOC_Ah is the SOC obtained by ampere–hour integration of the 
operating current, and the value is taken as the reference value of the experiment. 
The SOC_EKF in the figure is the SOC value estimated by the EKF algorithm. It 
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can be observed from the figure that the EKF algorithm can well follow the reference 
SOC estimation of the lithium-ion battery and has high accuracy. The error curve of 
using the EKF algorithm to estimate the SOC value is shown in Figure 3.13.

In Figure 3.13, it can be observed from the figure that in the early stage of the 
algorithm, there is a large error because the initial value of the lithium-ion battery 
SOC is not known, but as time accumulates, the algorithm continues to iterate to 

FIGURE 3.11 Flowchart design of SOC estimation based on EKF.

FIGURE 3.12 Real value and EKF-estimated value.
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the true value. The maximum error of the SOC estimation result based on the EKF 
algorithm is less than 2%.

3.4.4  thevenin moDeL-BaSeD eStimation

 1. Equivalent modeling and parameter identification
Thevenin model considers the self-discharge effect, so it has high accuracy 
[207]. It can overcome the error of the polarization effect. The steps are 
short and the principle is clear. It is very suitable for the transient analysis 
of power battery charge–discharge, so the Thevenin model is selected, as 
shown in Figure 3.14.

The method of parameter identification is to carry out the HPPC experi-
ment first and then analyze the results of the HPPC experiment. Starting 
from SOC = 1, the battery is discharged at a constant current every 6 min-
utes, and the battery is allowed to rest for 40 minutes. The voltage and 
current curves of the constant current discharge experiment are shown in 
Figure 3.15.

The parameter identification is carried out by the method of curve fitting. 
The selected curve segment is the zero-state response curve. The results of 
ohm internal resistance, polarization resistance, and polarization capaci-
tance are shown in Table 3.5.

After getting the mathematical description of the model parameters, it 
is necessary to verify the accuracy of the model parameters. The identified 
parameters are introduced into the Thevenin equivalent circuit model, the 
same current as the HPPC experimental test is input, and the output voltage 
response data of the model is compared with the actual voltage data, verify-
ing the model, and optimizing and improving the model according to the 
verification results. The results are shown in Figure 3.16.

It can be observed from Figure 3.16 that the output voltage of the model 
is in good agreement with the actual value, which shows the rationality 
of the Thevenin equivalent circuit model and the feasibility and reliability 

FIGURE 3.13 SOC estimation error.
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of the parameter identification method. It can be observed from the error 
curve that there is no divergence phenomenon in the whole process of the 
model, and the larger error occurs in the dynamic pulse test stage. The rea-
son is that the sudden change of battery input current leads to the concentra-
tion of chemical reactions in the battery, resulting from the rapid change of 
terminal voltage. At this time, the Thevenin model cannot perfectly show 
the response effect of the lithium-ion battery, but the error fluctuates in an 
acceptable and reasonable range. Even in the last stage of low SOC, when 

FIGURE 3.14 Thevenin equivalent circuit model.

FIGURE 3.15 Current and voltage curves of HPPC condition. (a) Current curve of HPPC 
condition. (b) Voltage curve of HPPC condition.

TABLE 3.5
Parameter Identification Results

SOC R0(Ω) Rp(Ω) Cp(F)

1 0.058452 0.0015460 2636.1597

0.9 0.056504 0.0016020 2456.2946

0.8 0.054826 0.0015150 2518.3717

0.7 0.053346 0.0014600 2540.3209

0.6 0.051950 0.0014960 2413.1009

0.5 0.050962 0.0017230 2051.8802

0.4 0.050454 0.0015040 2325.7672

0.3 0.050034 0.0015054 2302.3392

0.2 0.049195 0.0016572 2053.4227

0.1 0.047883 0.0022139 1490.1568
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the model cannot well reflect the current state of the battery, the maximum 
error is not more than 0.03458 V.

 2. Experimental analysis
To verify the accuracy and robustness of the SOC estimation results, the 
current and voltage data of the BBDST operating condition are used for 
testing. The current and voltage data of the working condition is input into 
the simulation system. And then, the parameter identification results are 
combined to estimate the SOC value. The verification result is obtained, as 
shown in Figure 3.17.

Figure 3.17 is used for EKF to estimate the SOC value, in which the 
black curve is the real SOC, and the red curve is the SOC curve of the EKF 
estimation. It can be observed from the figure that the EKF algorithm can 
well follow the true SOC of the lithium-ion battery and has high accuracy.

3.4.5  improveD pngv-BaSeD eStimation

 1. Equivalent modeling and parameter identification
To make the curve fitted by the model match the real voltage curve better, 
a group of RC circuits is added to the improved PNGV model, which can 

FIGURE 3.16 Comparison of terminal voltage output curves. (a) Output comparison. (b) 
Output error.

FIGURE 3.17 Comparison of SOC curves.
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achieve a better matching degree in the curve-fitting process [208,209]. The 
improved method of the PNGV model is shown in Figure 3.18.

The battery terminal voltage is shown in Equation (3.96).

 ∫= − 



 − − −( )OC 0 1 1 2 2U U C i t dt R I I R I RL b L p p p p  (3.96)

To more comprehensively express the external characteristics of the bat-
tery, we can continue to optimize based on the above typical battery model, 
such as the self-discharge factors, and hysteresis characteristics, expressed 
in the form of circuit, but this inevitably increases the complexity of the 
model and the difficulty of identification [210]. In the specific application of 
model selection and optimization, the typical model for parameter identifi-
cation can be used firstly, and then make targeted improvements according 
to the difference between the model and the actual. The sudden change of 
terminal voltage at the beginning and stop of battery discharge is caused by 
ohmic resistance, so the ohmic resistance can be calculated by Ohm’s law, 
as shown in Equation (3.97).

 
( )( )= − + −

2
0

1 2 4 3R
U U U U

I
 (3.97)

In Equation (3.96), Cb is the change of OCV caused by the accumulation 
of power supply current, and the calculation process is shown in Equation 
(3.98).

 
( )= −

−
2 1

1 5

C
t t I

U U
b  (3.98)

During the battery discharge, the polarization capacitors 1Cp  and 2Cp  are 
used in the SOC estimation process, and the voltage of the RC parallel cir-
cuit increases exponentially. When the battery is put into the static state 
from the discharge state, the capacitors 1Cp  and 2Cp  discharge to their paral-
lel resistors respectively, and the voltage decreases exponentially. The val-
ues of R and C  in the model are related to the SOC of the battery. The data 
obtained from the HPPC experiment are fitted by using the simulation soft-
ware, and then the values of 1Rp , 2Rp , 1Cp , and 2Cp  in the improved PNGV 
model can be obtained by the method of undetermined parameters. The 
specific method is described as follows:

FIGURE 3.18 Lithium-ion battery-improved PNGV equivalent model.
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Firstly, the battery terminal voltage at different SOC values at the same 
stage as the shelving stage after the first discharge is extracted from the 
HPPC experimental data. The change of terminal voltage in this stage is 
the discharge process of polarization capacitance to polarization resistance 
and is the zero-input response of the double RC loop. In this stage, IL is 0. 
Therefore, in this process, the output equation of battery terminal voltage is 
obtained as shown in Equation (3.99).

 = − −τ τ
− −

OC 1 2
1 2U U IR e IR eL P

t

P

t

 (3.99)

To simplify the parameter identification, Equation (3.99) is replaced by the 
coefficient, as shown in Equation (3.100).

 = − −− −U f ae beL
ct dt  (3.100)

In Equation (3.100),   f , a, b, c, and d  are taken as the undetermined param-
eters, and the experimental data are used, with the (3.100) single and double 
index curves fittings for the target equation.

3.5  UKF-BASED SOC ESTIMATION

3.5.1  equivaLent CirCuit moDeLing

To better reflect the dynamic and static characteristics of the battery, it is proposed to 
use multiple RC parallel circuits connected in series to imitate the polarization reduc-
tion process of lithium-ion batteries. Based on the Thevenin circuit model, multiple RC 
parallel circuits are connected in series to form a multistage Thevenin circuit model 
[211]. Relevant scholars identified the internal parameters of the Thevenin equivalent 
circuit model of different orders, combined with the experimental data to verify the 
accuracy of the battery model, and concluded that the second-order Thevenin circuit 
model can reflect the dynamic response changes between the two poles of the batter-
ies. During the process, the dynamic performance characteristics of the battery model 
have strong clarity. The structure diagram of the second-order Thevenin equivalent 
circuit model of the batteries can be designed, as shown in Figure 3.19.

FIGURE 3.19 Second-order Thevenin equivalent circuit model.
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In Figure 3.19, OCU  represents the OCV of the lithium-ion battery, UL represents 
the output terminal voltage of the battery, and 0R  represents the ohmic resistance. 
The RC loop can accurately describe the dynamic characteristics of the battery and 
characterize the polarization effect of the working process of the lithium-ion batter-
ies. The 1 1R Cp p  loop refers to the electrochemical polarization effect of the positive 
and negative poles inside the battery, and the 2 2R Cp p  loop reflects the concentration 
polarization of different materials in the battery under the electrolyte. According 
to Kirchhoff’s voltage law, the voltage is written for the improved second-order 
Thevenin model, as shown in Equation (3.101).
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In Equation (3.101), the discharge direction is taken as the reference direction (posi-
tive direction). The battery SOC can be obtained by the ampere-hour integration 
method, as shown in Equation (3.102).

 ∫η= −SOC SOC 0
0Q
I dtt t

N
t

t

t

 (3.102)

In Equation (3.101), η is the coulomb efficiency coefficient. QN  is the battery calibrated 
capacity. According to the definition of SOC and the structure of the  second-order 
Thevenin model, the state–space equation of the battery is established, as shown in 
Equation (3.103).
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In Equation (3.103), τ =1 1 1R Cp p , τ =2 2 2R Cp p , according to which the state vector, 
observation vector, input vector, and system noise are renamed. Therefore, the math-
ematical relationship can be obtained, as shown in Equation (3.104).
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In Equation (3.104), the parameters of the second-order Thevenin model are identi-
fied by HPPC experimental data shown in Figure 3.10. It can be observed from the 
experimental curve that the abrupt changes in voltage at the beginning and end of the 
discharge are all caused by the ohmic resistance 0R . The value of 0R  can be identified 
by the point-taking calculation method, as shown in Equation (3.105).

 
( )( )= − + −

2
0R

U U U U

I
A B D C  (3.105)

In Equation (3.105), the terminal voltage of the lithium-ion battery drops slowly 
from UB to UC, which is due to the battery polarization effect. The discharge current 
charges the polarized capacitor, and the double RC series circuit is in a zero-state 
response. The circuit is analyzed in the time domain, and select the fitting curve BC 
section to obtain the terminal voltage UL as a function of time point t, as shown in 
Equation (3.106).
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 (3.106)

In Equation (3.106), the OCV OCU  is the suitable voltage at the positive and negative 
ends of the battery when the battery is left for a long time. Experiments show that 
the voltage of the battery after 40 minutes is suitable, which can be considered equal 
to the OCV of the batteries. Therefore, UA can be used as the corresponding OCV 
at the SOC value, which corresponds to the OCV OCU  value at the SOC value at that 
temperature.

3.5.2  unSCenteD tranSformation

The UT is a solution to nonlinear problems and an important part of the UKF algo-
rithm. Its basic idea is to select a limited number of sampling points according to the 
statistical characteristics of state variables and a certain sampling method. These 
points need to meet the condition that their mean value and covariance are the same 
as the original state mean value and covariance, and then these points are substituted 
into the nonlinear function to obtain the corresponding nonlinear function value 
point set, and then obtain the mean and covariance of the transformed point set. 
Therefore, the key to the UT lies in the acquisition of sampling points and the deter-
mination of their corresponding weights. The commonly used sampling strategy is 
symmetric sampling. The dimension of the state variable x is n, P  is the mean and 
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covariance matrix respectively, and y is the observation variable. +2 1n  sampling 
points are obtained in the nonlinear system, as shown in Equation (3.107).
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In Equation (3.107), the corresponding weight is shown in Equation (3.108).
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In Equation (3.108), β ≥ 0, α≤ ≤0.2 1, and λ all are scaling parameters. The above 
parameters generally satisfy the following relationship: = −3k n, λ α= + −( )2 n k n.  
The sampling points are transferred nonlinearly, and the function relationship 
obtained is shown in Equation (3.109).

 ( )= =, 0 ~ 2y f x i ni i  (3.109)

In Equation (3.109), the mean value and covariance Py are calculated after y transfor-
mation, as shown in Equation (3.110).
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3.5.3  ukf aLgorithm anaLySiS

The processing object of UKF is a type of nonlinear system. To facilitate the process-
ing, the system is generally divided into two parts, namely the system state and the 
system observation part. To study the algorithm without losing generality, setting the 
nonlinear system to be processed is shown in Equation (3.111).
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In Equation (3.111), k is the time point, ∈x Rk
n is the state-space variable, and ∈z Rk

n 
is the observation space variable. Zero-mean Gaussian white noise wk and vk are 
state transition noise and observation noise, respectively, wk and vk are independent 
of each other, and the variances of wk and vk are Qk  and Rk, respectively. (*) f  is a 
nonlinear function representing the law of state transition and (*)h  is a nonlinear 
function representing the system state and observation. uk is the system input at the 
time point k. The UT is the core part of the UKF algorithm, which constructs sam-
pling points of the current state variable in a statistical sense and a limited number 
of sampling points as well as the corresponding weights. The mean and variance of 
these sampling points are equal to or only exist in the current state variable at the 
current time point. Acceptable limited tolerance, the collection of these sampling 
points is called the σ  point set. For the nonlinear system given by Equation (3.111), 
the UT is performed on it.

The +2 1n  sampling points of the state variable at the current time point are calcu-
lated by the method of distributed sampling, where n is the number of dimensions of 
the state-space x. The mean and variance of the point are set correspondingly equal 
to the state variable and state covariance at the current time point. The mean value of 
x for the sampling point is determined by Equation (3.112).
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In Equation (3.112), xi represents the ith sampling point, and ( )+( )n P
i
 represents 

the i-th column of the matrix +( )n P . Corresponding to each xi, when calculating 
the mean value, its weight is given by Equation (3.113).

 

ω λ
λ

ω λ
λ

α β

ω ω
λ

λ α γ

=
+

=
+

+ − + =

= =
+

= + −


















1 , 1, ,2

1
2( )

( )

0

0
2

2

…

n

n
i n

n

n n

m

c

i
m

i
c

 (3.113)



147Battery State of Charge Estimation

In Equation (3.113), ω i
m is the weight of the thi  sampling point in calculating the mean 

value, and ω i
c is the weight of the thi  sampling point in calculating the covariance. n is 

the number of dimensions of the state variable x. The factor λ is the distribution state 
of the sampling points around its mean value. α  controls the distance between the 
sampling points and the mean, which is generally a constant from α ( )∈ −10 ,16 . The 
mathematical relationship is required to meet γ + ≠ 0n . As ≠ 0n , it can be generally 
chosen for calculation with the pre-distribution factor. The system given by Equation 
(3.113) has been assumed to obey the Gaussian distribution, so it is the optimal value. 
The parameter γ  indicates the zoom ratio. The calculation process of UKF is to 
complete the specific and detailed implementation steps of core content from UT, 
before estimation-to-posterior estimation correction. The realization process can be 
subdivided into seven steps; the first step is the traceless transformation and the last 
step is the state update and covariance update.

 1. No trace conversion
The first step in the realization of the UKF algorithm is to perform a UT of 
the system state variables at the previous time point. For the system shown 
in Equation (3.111), using Equation (3.112) to calculate the sampling point of 
its state at the previous time point, Equation (3.113) is realized to calculate 
the weight corresponding to each sampling point in the untracked transfor-
mation process to complete the traceless conversion of the system.

 2. One-step prediction of sigma point
According to the sampling points of the state-space at the previous time 
obtained by the first step of the UT, the sampling point σ of the state-space 
at the next time is predicted, which is called the one-step prediction of the 
σ point. The one-step prediction of the point σ is given by Equation (3.113), 
which is given by Equation (3.114).

 ( )=+ ,, 1| , |x f x ui k k i k k k  (3.114)

 3. Prediction of state variable and covariance
The one-step prediction of σ point given by Equation (3.112) is multiplied 
by the corresponding weight given by Equation (3.113) to obtain the pre-
dicted value of x at the next time, as shown in Equation (3.114). Then, the 
covariance is calculated from the predicted value of x and the weight of 
the covariance. The calculation equation is given by Equations (3.115)  
and (3.116).
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 4. One-step prediction of observations
The KF algorithm not only needs to predict the state and covariance at + 1k  
from the state at the time point k but also needs to predict the state of the 
observation space at the time point + 1k . Equations (3.115) and (3.116) have 
predicted the state and covariance at the time point + 1k . In the UKF algo-
rithm, to predict the observation space at the time point + 1k , it is necessary 
to calculate a one-step prediction of the observation at the time point + 1k  
from the state at the time point k. The one-step prediction of the observation 
equation is shown in Equation (3.117).

 ( )=+ + ,, 1| , 1,z h x ui k k i k k k  (3.117)

 5. Prediction of system observation matrix and covariance matrix
Observations obtained by nonlinear transmission based on sampling points 
given by Equation (3.117) are averaged to obtain the predicted amount of 
the observation matrix of the system and then respectively calculate the 
variance of the observed vector at + 1k  given by the predicted value and 
the covariance between it and the state variable. Equation (3.118) gives the 
calculation method of the observation vector of the prediction system, and 
the variance of the observation vector is given by Equation (3.119). Finally, 
the covariance between the observation vector and the state vector is shown 
in Equation (3.120).
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 6. Kalman gain calculation
Equations (3.119) and (3.120) give the calculation method for estimating 
the state and observation at + 1k  from the information at time point k. The 
next step is to perform a posterior estimation based on the data at time 
point + 1k , that is, to modify the prior estimation to obtain a more accurate 
estimation. Before the correction process starts, calculating the Kalman 
gain is a necessary step. The Kalman gain calculation equation is shown in 
Equation (3.121).

 =+
−

1
1K P Pk x z z zk k k k  (3.121)
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 7. Calculating status update and covariance update
The previous 6 steps are prepared for the status update of step 7. The covari-
ance update is prepared for the estimation at the time point + 2k . The status 
update is shown in Equation (3.122). The covariance update is shown in 
Equation (3.123).

 [ ]= + −+ + + + + +ˆ ˆ ˆ1| 1 1| 1 1 1|x x K z zk k k k k k k k  (3.122)

 = −+ + + + +1| 1 1| 1 1P P K P Kk k k k k z z k
T

k k  (3.123)

In Equation (3.123), +1zk  is the observation value measured by the instru-
ment at the time point + 1k ; +ˆ  1|zk k  is the observation obtained from the state 
estimation at time point k; + +ˆ 1| 1xk k  is the posteriori state estimates at the time 
point + 1k , The determination + +ˆ 1| 1xk k  is the optimal state estimation at the 
time point + 1k .

Steps (1) to (7) give the realization process of the UKF algorithm to estimate the 
system state given by Equation (3.123). With the above method, the optimal estima-
tion based on the criterion of minimum variance can be obtained, and the estimation 
accuracy is better than that of the EKF algorithm processed by linearization.

3.5.4  unSCenteD kaLman fiLtering StepS

Aiming at the selected lithium-ion battery pack for electric vehicles, using the above-
mentioned design method from Equations (3.122) to (3.123), an SOC estimation 
procedure based on the UKF algorithm is designed. The process diagram of the 
estimation method is shown in Figure 3.20.

Figure 3.20 shows the SOC estimation process based on the UKF algorithm. This 
process is a typical UKF from Equations (3.122) to (3.123) derived from the algorith-
mic process. At the beginning of the estimation, the initial value SOC0 of the SOC 
is given by the dotted line in the figure. The principle of the UKF algorithm knows 
that the value is given arbitrarily. Whether it truly reflects the initial SOC value of 
the lithium-ion battery pack is not important [212]. Then, it enters the cyclic process 
of the UKF algorithm. First, the state value SOCk  at time point k is σ  converted to 
obtain the sampling point SOC ,i k that is at time point k, and then the sampling point 
is used to predict the SOC sampling point +SOC , 1|i k k at the time point k + 1.

According to +SOC , 1|i k k, the SOC value and its variance at the time point of k + 1 
can be predicted. Then, the estimated value and estimated variance are used to pre-
dict the observation vector and covariance matrix +SOC 1|k k  and +1Pk  at the time point 
k + 1. Then, the Kalman gain K  is calculated. The state vector and its variance are 
updated according to the difference between the estimated value of the observation 
vector and the true value. Finally, the true value +SOC 1k  of the state quantity at the 
time point k + 1 is obtained, and the value is used as the initial SOC value of the 
next estimation cycle to promote the work of the next estimation cycle [213]. From 
Figure 3.20, it can be observed that the SOC estimation process based on UKF forms 
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a closed-loop system by itself. Once the initial value of the SOC is given and the 
estimation process is entered, the system can continuously iteratively estimate to 
achieve a continuous and real-time SOC estimation of the lithium-ion battery pack 
for electric vehicles.

3.5.5  experimentaL verifiCation

 1. Model validation
Based on the previous research, through actual testing of various perfor-
mance parameters of the lithium-ion battery, a multinomial fitting equation 
for each parameter of the second-order model is obtained. The terminal 
voltage and current obtained from the experiment and the identified param-
eters are used as the input of the second-order Thevenin equivalent circuit 
model, and the simulated voltage output by the model is compared with the 
simulated experimental voltage to verify the accuracy of the parameters 
of the equivalent model. The second-order Thevenin model simulation is 
shown in Figure 3.21.

In Figure 3.21, the Ue  is the actual output terminal voltage of the model 
output, and Ur  is the terminal voltage of the selected lithium-ion batter-
ies. It can be observed that the model output terminal voltage is in good 
agreement with the actual terminal voltage, which verifies the second-order 
Thevenin reasonableness and accuracy of the equivalent circuit model and 
also shows that the selected parameter identification method has certain 
feasibility and reliability. The high accuracy of the equivalent model can be 
extracted from the error curve. The verification deviation is toggled within 
the effective accuracy range, and the maximum error is 3.237% which veri-
fies the feasible value of the model.

 2. Algorithm verification
To verify the applicability and stability of the algorithm, different working 
conditions are used to verify the estimation accuracy of the algorithm. The 
estimation results are shown in Figure 3.22.

FIGURE 3.20 SOC estimation process diagram based on UKF.
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In Figure 3.22, the simulation effect is obtained under BBDST working 
conditions. In the figure, S1 is the reference value of SOC, S2 is the SOC 
estimation curve using the UKF algorithm, and S3 is the SOC estimation 
curve using the ampere-hour integration method. Err1 is the SOC estima-
tion error under the UKF algorithm, and Err2 is the estimation error under 
the ampere-hour integration method. It can be observed from Figure 3.22a 
that under complex working conditions, the UKF algorithms can track the 
changes in the real value very well. During operation, the absolute value of 
the error is always less than 1%. From Figure 3.22b, it can be concluded that 
the UKF algorithms have strong self-correction capabilities, and the output 
waveform converges to the actual modulus curve within a finite sampling 
period, which verifies that the extension UKF algorithms are at the initial 
value. Under the wrong state, it can adjust adaptively, and the accuracy of 
SOC estimation does not decrease.

3.6  AEKF-BASED SOC ESTIMATION

3.6.1  equivaLent CirCuit moDeLing

 1. Second-order RC equivalent circuit model
At present, there are many types of lithium-ion battery equivalent circuit 
models. The second-order RC model is one of the commonly used ones, 

FIGURE 3.21 Model verification output curve. (a) Voltage comparison curve. (b) Estimation 
error.

FIGURE 3.22 BBDST working condition simulation. (a) SOC diagram for BBDST condi-
tions. (b) Error curve.
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which can well reflect the dynamic and static characteristics of the battery, 
with moderate calculations and fewer identification parameters [214,215]. 
Therefore, the second-order RC model is used as the battery equivalent cir-
cuit model, as shown in Figure 3.23.

In Figure 3.23, OCU  represents the OCV of the circuit; UL represents the 
terminal voltage. 0R  is the ohmic resistance and UR is the ohmic voltage, 
which characterizes the battery voltage drop effect at the time point the 
battery is discharged and the end of the discharge. iL is the battery charge-
discharge current, and the discharge direction is set to positive. The RC loop 
is composed of 1Rp  and 2Cp  characterizes the internal chemical reaction of 
the battery, the stage where the voltage changes rapidly during the process. 
According to Kirchhoff’s circuit law, the equivalent model circuit can be 
listed, as shown in Equation (3.124).

 = − − −OC 1 2U U U U UL R p p  (3.124)

The RC loop is composed of 2Rp  and 2Cp  represents the stage where the 
voltage changes slowly during the chemical reaction within the batteries, as 
shown in Equation (3.125).
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The equation for the SOC definition is obtained, as shown in Equation 
(3.126).
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FIGURE 3.23 Second-order RC equivalent circuit model.
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Combined with the SOC definition, select state–space variables, input vari-
ables, and output variables, as shown in Equation (3.127).
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The discrete state-space expression can be obtained, as shown in Equations 
(3.128) and (3.129).
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In Equations (3.128) and (3.129), ∆t is the sampling time interval, w is the 
state error, and v is the measurement error.

 2. HPPC experiment and parameter identification
The test platform is described as follows: (1) The experimental lithium-ion 
battery is a ternary lithium iron phosphate battery with a nominal capacity 
of 72 Ah and an actual calibrated capacity of 69.23 Ah. (2) The battery test 
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system (NEWAREBTS-4000) is used to test the charge-discharge of the 
tested lithium-ion batteries. The equipment can record the voltage, current, 
capacity, temperature, and other data during the experiment and the sam-
pling interval is 0.1 seconds. (3) A constant temperature (25°C) environ-
ment incubator is provided for the test batteries.

HPPC is performed on the battery as an identification experiment. The 
battery model parameters are identified by analyzing the working character-
istics of the battery during the experiment. The parameters to be identified 
are OCU , 0R , 1Rp , 1Cp , 2Rp , and 2Cp . The procedure for the HPPC experiment 
is described below. (1) Charge to maximum capacity with constant volt-
age and constant current and set it aside completely. (2) Discharge with 1 C 
(69.23 A) current pulse for 10 seconds; after discharge, the battery is shelved 
for 40 seconds. (3) Use 1 C current pulse to charge for 10 seconds and rest 
for 40 seconds after the end of the charge. (4) Discharge at a constant cur-
rent of 1 C for 6 minutes, so that the SOC value drops by 0.1, and rest for 
30 minutes after the discharge ends. (5) Cycle the test steps (2)–(4) until the 
SOC value drops to 0.1. The HPPC experiment current curve and voltage 
response curve are shown in Figure 3.24.

Single HPPC voltage and current change curve can be obtained, as 
shown in Figure 3.25.

FIGURE 3.24 HPPC voltage and current curve. (a) Current curve. (b) Voltage curve.

FIGURE 3.25 Single HPPC voltage and current change curve. (a) Single HPPC current 
change curve. (b) Single HPPC voltage change curve.
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The graph of the HPPC experimental voltage variation curve is shown, 
and the variation characteristics can be extracted to obtain the model 
parameters. Analyzing Figure 3.25, the following 4 stage characteristics 
can be obtained. (1) Discharge starts at 1t . The sudden drop of the volt-
age at the lithium-ion battery terminal from 1U  to 2U  is mainly due to the 
voltage change caused by the ohmic resistance of the lithium-ion batteries. 
(2) During the period from 2t  to 3t , the voltage of the lithium-ion battery 
terminal slowly drops from 2U  to U3, which is due to the existence of the 
battery polarization effect. The process of charging the polarization capaci-
tor by the discharge current is the zero-state response of the double RC 
series circuit. (3) During the period from 3t  to 4t , the voltage of the lithium-
ion battery terminal rises suddenly from 3U  to 4U , which is also due to the 
voltage change caused by the ohmic resistance of the lithium-ion batteries. 
(4) During the period from 4t  to 5t , the voltage of the lithium-ion battery 
terminal slowly rises from 4U  to 5U , which is the process of discharging the 
polarizing capacitor to the polarizing resistance, which is the zero-input 
response of the dual RC circuit.

The terminal voltage of a lithium-ion battery suddenly changes at the 
time point of discharging and at the time point of stopping, both of which 
are caused by the ohmic resistance. Therefore, the value of the ohmic resis-
tance can be calculated by Equation (3.130).
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During the period from 2t  to 3t , the voltage of the lithium-ion battery ter-
minal slowly drops from 2U  to 3U . The result is due to the existence of the 
battery polarization effect. The process of charging the polarized capacitor 
by the discharge current is the zero-state response of the double RC series 
circuit. The time-domain analysis is carried out to the circuit by choosing 
the data from 2t  to 3t . And then, a function relation of UL and time point t can 
be obtained, as shown in Equation (3.131).
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In Equation (3.131), curve fitting is conducted for the HPPC experimental 
data by using the fitting toolbox to fit Equation (3.131) as the target equation, 
and then the OCU , 1Rp , 1Cp , 2Rp , and 2Cp  parameters can be identified. The 
parameter identification results are shown in Table 3.6.

The SOC value is a variable x, and ( )f x  is a polynomial function fitted 
to the parameter and the SOC value. Taking into account the error and cor-
relation between the fitted curve and the discrete data, the fitting equation is 
obtained, as shown in Equation (3.132).

 ( ) = + + + + + + +0 1 2
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The identification results are shown in Table 3.7.
The parameter identification results are input into the battery simulation 

model, and the HPPC experimental voltage is compared with the model simu-
lation voltage to verify the accuracy of the model. Subsequently, the output 
voltage comparison and error curves are obtained, as shown in Figure 3.26.

TABLE 3.6
Equivalent Model Parameter Identification Result

SOC(1) UOC(V) R0(mΩ) Rp1(mΩ) Cp1(F) Rp2(mΩ) Cp2(F)

1 4.1838 1.3095 0.0410 25058 0.5043 32260

0.9 4.0581 1.3716 0.0541 19712 0.6114 30896

0.8 3.9434 1.3759 0.0432 20625 0.5859 25449

0.7 3.8380 1.3846 0.0586 19176 0.7824 28540

0.6 3.7354 1.3911 0.0615 19140 0.8830 29978

0.5 3.6527 1.4524 0.0299 27093 0.3942 34396

0.4 3.6162 1.4740 0.0402 29987 0.5798 43135

0.3 3.5904 1.5058 0.0488 29257 0.7104 43919

0.2 3.5408 1.5411 0.0389 15665 0.4792 29026

0.1 3.4641 1.6169 0.0992 3476 0.5655 18549

TABLE 3.7
Parameter Fitting Polynomial Coefficients

Para R0 Rp1 Rp2 Cp1 Cp2 UOC

a0 0.001006 0.001006 0.009941 1.567e+04 1.702e+05 3.626

a1 0.001583 −0.01929 −0.2116 −3.468e+05 −3.495e+06 −5.006

a2 −0.02599 0.1496 1.75 2.744e+06 2.888e+07 51.47

a3 0.1317 −0.5873 −7.111 −4.517e+06 −1.116e+08 −219.1

a4 −0.3275 1.272 15.69 −7.005e+06 2.318e+08 481

a5 0.4266 −1.538 −19.15 2.757e+07 −2.68e+08 −566.6

a6 −0.2782 0.9704 12.13 −2.784e+07 1.627e+08 341.9

a7 0.07154 −0.2488 −3.113 9.402e+06 −4.041e+07 −83.16

FIGURE 3.26 Model verification. (a) Voltage comparison curves. (b) Error curve.
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In Figure 3.26a, 1U  is the HPPC experimental voltage curve and 2U  is 
the model voltage simulation curve. Figure 3.26b is the error curve. It can 
be observed that the overall tracking of the model is relatively accurate, the 
maximum error is 1.5%, and the overall error remains between 1%, indicat-
ing that the selected second-order RC equivalent circuit model can more 
accurately reflect the operating characteristics of the lithium-ion batteries.

3.6.2  aekf aLgorithm anaLySiS

Combining the second-order equivalent circuit model and its state-space in 
Figure 3.27, the adaptive EKF algorithm (AEKF) based on the Sage-Husa algorithm 
is proposed, so that the AEKF algorithm can be obtained. The flowchart for estimat-
ing SOC is shown in Figure 3.27.

FIGURE 3.27 Flowchart of SOC estimation based on AEKF algorithm.
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The state and observation of the system are shown in Equation (3.133).
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In Equation (3.133), k is the discrete time, xk is the state of the system at time point 
k, and yk is the observation value of the corresponding state. A is the state transition 
matrix, B is the system control matrix, and C  is the observation matrix. Γ is the noise 
driving matrix. wk is the system noise and vk is the measurement noise, which respec-
tively obeys the following distribution, as shown in Equation (3.134).
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The specific steps of combining the Sage-Husa adaptive algorithm based on the KF 
are described as follows:

 1. Initialization, as shown in Equation (3.135).
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 2. Prediction stage, as shown in Equation (3.136).
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 3. Calculating the Kalman gain, as shown in Equation (3.137).

 ( )= ++ +
−ˆ

1/ 1/

1
K P C CP C Rk k k

T
k k

T
k  (3.137)

 4. Update stage, as shown in Equation (3.138).
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 5. Noise update stage, as shown in Equation (3.139).
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In Equation (3.139), the iterative equation of the forgetting factor dk  is 
described, as shown in Equation (3.140).

 ( )= − −− (1 ) 11d b bk
k  (3.140)

In Equation (3.140), b is the forgetting factor, < <0.95 1b . From the above 
process, the online real-time estimation of q̂k, r̂k, Q̂k , and R̂k can achieve real-
time adjustment of the system changing noise by the algorithm under com-
plex working conditions, so that the real-time noise can be more adapted to 
the state of the system, thereby realizing adaptive filtering and improving 
the SOC estimation accuracy.

3.6.3  experimentaL anaLySiS

 1. Constant current working condition verification
A 1 C constant current discharge experiment is performed on a full-capacity 
lithium-ion battery to verify the accuracy of the AEKF algorithm under 
simple conditions. The ampere-hour integration method, EKF, and AEKF 
algorithms are used to compare the tracking effect, the SOC initial value of 
the algorithm is set as 0.8, and the convergence effect of the algorithm under 
the unknown initial state value and the tracking effect in the discharge pro-
cess are verified. The comparison chart of the algorithm operation is shown 
in Figure 3.28.

FIGURE 3.28 Comparison chart of SOC estimation. (a) SOC Estimated graph. (b) Error 
comparison chart.
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In Figure 3.28a, SOC1 refers to the reference SOC value, SOC2 is the 
SOC value calculated using the ampere-hour integration method, SOC3 is 
the SOC value estimated using the EKF algorithm, and SOC4 is the SOC 
value estimated using the AEKF algorithm. In the case of an inaccurate 
initial value of SOC = 0.8, the ampere-hour integration method cannot track 
the real state of the system; EKF can track the real state of the system faster. 
The time required for the EKF algorithm to track the theoretical value is 
about 30 seconds, but the estimation accuracy is high enough. The track-
ing effect of the AEKF algorithm is almost the same as that of the EKF 
algorithm, and the later estimation accuracy of AEKF is higher than that of 
EKF. Figure 3.28b is the error curve, Err1 is the ampere-hour integration 
error curve, Err2 is the EKF error curve, and Err3 is the error curve of the 
AEKF algorithm. The overall error of Err1 exceeds 20% with a small error, 
the tracking speed of Err2 and Err3 is fast, and the overall tracking effect of 
Err3 is better, indicating that the AEKF algorithm has a better SOC estima-
tion effect than the EKF algorithm.

 2. DST working condition verification
To verify the estimation effect of the AEKF algorithm under complex work-
ing conditions, the DST algorithm is used to simulate the actual operating 
conditions, and the specific working steps are set as follows. (a) The experi-
mental lithium-ion battery is charged with constant current and constant 
voltage to full capacity. (b) The battery is shelved for 30 minutes. (c) The 
constant current discharge is conducted at 0.5 C rate for 4 minutes with 30 
seconds of shelved treatment after stopping the discharging treatment. (d) 
The constant current charge is investigated at a 0.5 C rate for 4 minutes, 
stop charging, and put it on hold for 30 seconds. (e) Steps of (c) and (d) are 
repeated until the battery discharge is over.

After obtaining the battery discharge data, the ampere-hour integration 
method, EKF, Sage-Husa AEKF, and improved Sage-Husa AEKF algo-
rithms are used to compare the tracking effect. The initial value of the algo-
rithm is set as SOC = 0.8 to verify the convergence effect and tracking effect 
during the discharge process. The running effect diagram of the algorithm 
is shown in Figure 3.29.

FIGURE 3.29 Comparison curves of SOC estimation under DST condition. (a) SOC-
estimated graph. (b) Error comparison curves.
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In Figure 3.29a, SOC1 refers to the SOC value, SOC2 is the SOC value 
calculated using the ampere–hour integration method, SOC3 is the SOC 
value calculated using the EKF algorithm, and SOC4 is the AEKF algo-
rithm. Under the condition of an inaccurate initial value of SOC = 0.8, the 
ampere–hour integration method cannot track the real state of the system. 
EKF can track the real state of the system faster. The time required for 
the EKF algorithm to track the theoretical value is about 30 seconds, but 
the estimation accuracy is not high enough. The convergence effect of the 
AEKF algorithm in the early stage is almost the same as that of the EKF 
algorithm, and the estimation accuracy of AEKF in the later stage is higher. 
Figure 3.29b is the error curve, Err1 is the ampere-hour integral error curve, 
Err2 is the EKF error curve, and Err3 is the error curve of the AEKF algo-
rithm. The overall error of Err1 exceeds 20%, the Err2 and Err3 tracking 
systems are fast, and the convergence speed is less than 50 seconds. Among 
them, the error of Err2 is small, the error of the entire tracking process is 
less than 2%, and the overall error is small; while the maximum error of 
Err3 is 3.5%, the overall tracking effect is fluctuating and the accuracy is 
low. It shows that AEKF has high accuracy and strong applicability in esti-
mating SOC under complicated working conditions.

3.7  SOC ESTIMATION BASED ON OTHER ALGORITHMS

3.7.1  partiCLe fiLtering

Particle filtering (PF) is also called the approximate Bayesian filtering algorithm. It 
is a probability density function based on Monte Carlo simulation. The algorithm 
implementation process is mainly based on the Bayesian filtering operation principle 
to weigh discrete random samples to complete the integral operation with the sample 
average. PF algorithm detailed derivation of the theory is described as follows: the 
iterative calculation process is obtained and the following steps are used for descrip-
tion [216,217].

 1. Particle filtering calculation
Initialization: the prior probability is used to generate N  initial SOC par-
ticles, parameter weight, as shown in Equation (3.141).
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The algorithm cycle process is described as follows:
Update: according to the system update, get the prior probability sam-

ple at the next time point and update the parameter weight, as shown in 
Equation (3.142).
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In Equation (3.142), = …1,2, ,i N .
Normalization of weights is conducted as well as the normalized weights, 

as shown in Equation (3.143).
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The least mean square estimation is conducted, as shown in Equation 
(3.144).
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Resampling: calculating the effective number of particles and determin-
ing the conditions, a new parameter set { = …1,2, ,i N } can be obtained, as 
shown in Equation (3.145).
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Prediction: the state parameter +SOC 1k
i  is used to predict unknown param-

eters. Judging the end condition of the program, if it is not over, time point 
= + 1k k , go to step (1). When the particle filter is used to estimate the bat-

tery SOC, the state-space model of the lithium-ion battery is established, 
and the estimation of process noise and observation noise is completed 
without affecting the system. During the estimation simulation process, the 
state–space model of the lithium-ion battery is obtained from the battery 
process and observation model. When setting the model boundary bars, the 
observed variable is equal to the lithium-ion battery load voltage, and the 
state variable is the SOC estimation of the lithium-ion battery, as shown in 
Equation (3.146).
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In Equation (3.146), wk is the process noise of the system, vk is the observa-
tion noise of the system, set − (0, )w N Qk , − (0, )v N Rk , ∆t is the sampling 
period of the system.

Initialization: = 0k . From the initial probability distribution ( )0p x , N 
SOC initial particles are randomly generated to form a new parameter set 
{ },0x i .
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Updating status: To find the right particles, all of the new particles gener-
ated in Step 1 are screened by the established equation of state, and then a 
new parameter can be set as +{ , }0x i .

Parameter weight calculation and normalization: After the new particle 
set is formed, the predicted value of the observation value can be obtained 
through the observation { }+

, 0y i , and then the error is calculated. The size 
of the error is the difference between the observed value added to the sys-
tem and the predicted value obtained by each equation, and the param-
eter weight wi  is obtained through the difference. The parameter weight is 
shown in Equation (3.147).
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The normalization is conducted, as shown in Equation (3.148).
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Resampling is mainly for the fact that the threshold between the effective 
samples and the set number of samples in the random samples obtained 
in the above steps should be small. In this case, the sampling method is to 
remove particles with lower weights and retain particles with higher weights, 
and recalculate the weights of the filtered particles. The new particle swarm 
estimation is conducted to obtain xk, as shown in Equation (3.149).

  ∑=
=

( ) ( )
1

x w i x ik k k

i

N

 (3.149)

Judging whether the program is over. If it is not over, steps (2)–(4) are 
repeated by = + 1k k  to realize the recursive estimation of the state quantity 
xk.

 2. Particle degradation
As for particle degradation, when the PF algorithm is completed, the 
extracted particles have a great influence on the accuracy of the calcula-
tion. The main influences are divided into two steps. First, the imbalance is 
caused by different parameter weights; some particles have low weights and 
some have high weights. Unbalanced weights reduce the calculation accu-
racy of the algorithm. Second, if the number of particles with small weights 
is large, a large amount of calculation time can be used for the calculation 
of particles with small weights during the calculation process, which greatly 
wastes calculation time and reduces the computational efficiency.

In the calculation process, the imbalance of the parameter weights wastes 
the calculation time of the algorithm. Also, in more serious cases, there may 
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be too many particles with smaller weights, undercomputing large particles, 
and omissions. This greatly reduces the computational accuracy of the algo-
rithm. In other words, for particles with smaller weights, the effectiveness 
is low, which not only increases the amount of calculation but also takes 
longer to compute, causing serious particle degradation. In practical appli-
cations, effective particles can be counted. If the value is low and cannot 
meet the calculation requirements, it can be controlled by some means to 
reduce the phenomenon of particle degradation.

 3. Resampling
Resampling is aimed at particle degradation caused by imbalance. 
Resampling of particles is carried out by polynomial methods. Resampling 
filters the particle swarms with unbalanced weights and eliminates particles 
with low weights and does not enter the next algorithm calculation. Through 
the above steps, a new particle swarm is formed. The particle swarm is 
mainly composed of high-weight particles, which can greatly reduce the 
particle degradation effect.

Although resampling can reduce the particle degradation effect and 
improve the calculation accuracy, it also increases the amount of calcula-
tion of the algorithm, and the calculation efficiency of the algorithm also 
decreases. Also, too many resampling times eliminate a large number of 
particles and greatly reduce the particle library. The particle library is 
depleted. Therefore, to ensure that the effective number of particles can-
not be depleted due to a large reduction due to resampling, the number of 
particles can be guaranteed by setting a threshold in the application. The 
resampling method is performed by polynomials, and the polynomial resa-
mpling has the advantages of simplicity and low complexity. Taking [0,1]U  
in the uniform distribution of [0,1] and satisfying ( )x ik , a new parameter set 
can be formed with the obtained particles, as shown in Equation (3.150).
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The particle polynomial is resampled by the above equation, and the weights 
of the particles are rechecked and screened to form a new particle library. In 
the parameter set obtained by the above screening, the weights are evenly 
distributed. The specific steps of resampling are designed for the basic PF 
algorithm.

 4. Prediction
First, new particles are extracted and used as a new parameter set. The part 
of the particles is obtained from the important density function of the sys-
tem: χ( )− = …−( ) | ( ) , 1,2, ,1x i p x i i Nk k k .

The weight of each particle ( )*w ik  is calculated, as shown in Equation 
(3.151).

 ( ), ( )0: 1q x i y p x ik k k kχ χ( )( ) = −  (3.151)
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The normalization processing is performed, as shown in Equation (3.152).
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The state estimation is conducted, as shown in Equation (3.153).
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The polynomial resampling is performed accordingly. To avoid the deple-
tion of the particle library, it is necessary to set a threshold value for the 
particle library to ensure the number of particles. The resampled number is 
counted and compared with the threshold value. If the number of particles is 
smaller than the threshold value, a new selection is performed. In this way, 
the reselected particles form a new collection of particles. Resampling uses 
a PF algorithm, and additional random variance is added after sampling. 
Due to this reason, it is necessary to estimate the system such as the poste-
rior of the system. Aiming at the depletion phenomenon of the parameter set 
because of pre-sampling, the parameter α is added to the resampling design 
of the seat to suppress the possible depletion phenomenon of the parameter 
set. The parameter needs to satisfy Equation (3.154).
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In Equation (3.154), the parameter α has a very important meaning in the 
genetic algorithm (GA). Its function is to control it according to the weight of 
the importance in the PF algorithm, which can reduce the depletion phenom-
enon in the sample. The algorithm used to estimate the battery SOC is the PF 
algorithm. For the two types of noise in the system, one is process noise and 
the other is observation noise, the algorithm does not put forward any require-
ments. First, create the battery state model and then use the software to write 
a program to estimate and predict the SOC estimation of the lithium-ion bat-
teries. The specific algorithm international flowchart is shown in Figure 3.30.

According to the PF algorithm flowchart, the code implementation of the topic using 
PF for SOC estimation is shown below.

 1. Initialization
In the process of system initialization, memory space needs to be allocated 
to variables. At that time, the memory space provided inside the program 
is randomly allocated. In the algorithm design, assign initial values to the 
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variables of the system firstly and store arrays, such as particle filter estima-
tion state, collection, and weights, to avoid serious deviations in the estima-
tion result because the value of the initial variable itself in the memory has 
not been cleared.

 2. Cycle start
The programming language is similar to the C language style, and the 
expression of loop statements can also be used for and while. When using 
PF to estimate SOC, use it for the program statement. The purpose of the 
cyclic test is to correspond to an SOC value at each time point and con-
tinuously approximate the measured SOC value through the PF resampling 
process.

%System initial value
M=100;
X0=[1;0];
%Filter initialization
Xpf=zeros (2, N);

FIGURE 3.30 Particle filter flowchart.
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Xpf (:, 1)=X0;
% Parameter set initialization
Xm=zeros (2, M, N);
X1=[1;0];
% Weight initialization
W=zeros (N, M);

 3. Importance sampling → calculation weight → normalized weight
For each pin in the parameter set, the importance weight needs to be cal-
culated. The weight of each pin is constantly updated and iterative during 
the running of the algorithm program, which is related to the weight at the 
previous time point. In the core part of the PF algorithm—the resampling 
process, it is obtained according to the weight, which can make the particles 
appear more in the selected segment and improve the efficiency of the use 
of the particles.

for i=1:M
 Zm (1, i, k)=feval ('hfun', Xm (:, i, k));
 W (k, i)=exp (- (Z (1, k)-Zm (1, i, k))^2/2/R)/ (2*R*pi)^0.5+1e-99;
 end
 W (k, :) = W (k, :)./sum (W (k, :));

 4. Resampling
for i = 1:M
u = rand;
qtempsum = 0;
for j = 1: M
qtempsum = qtempsum + W (k, j);
if qtempsum >= u
Xm (:, i, k) = Xm (:, j, k);

Selecting a sampling strategy and resampling the parameter set accord-
ing to the size of the weight, the weight and parameter sets have a one-to-
one correspondence. In the strategy, particles with larger weights are more 
likely to be copied, while particles with relatively low weights are gradu-
ally eliminated during the continuous resampling process. The process can 
effectively solve the problems in the Monte Carlo method with a lack of 
particles.

 5. Output
Finally, the experimental results and filtering results are displayed in the 
form of graphs, and the estimation error is obtained.

 6. End of loop
Through the previous learning, the parameter values required by the experi-
ment can be obtained, and then these parameters can be simulated by the 
process recurrence and the observation noise to truly simulate the current 
change and then perform SOC prediction and estimation. Through the 
above simulation image analysis, it is concluded that the PF algorithm has a 
good filtering effect on tracking the SOC estimation of the lithium-ion bat-
teries. Through calculation, the error can be stabilized within 6%, as shown 
in Figure 3.31.
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The core part of PF particles is resampled. Through continuous selection 
and training of particles, the tracking error of PF is suitable within 5%, and 
the algorithm has reliable adaptability. This section analyzes in detail the 
basic principles and specific recurrence process of the PF algorithm. To ver-
ify the effectiveness of the PF algorithm proposed in the chapter to estimate 
the SOC value of lithium-ion batteries, a simulation estimation experiment 
was carried out on the battery SOC under constant current conditions. The 
simulation results show that the accuracy of the lithium-ion battery SOC 
estimated based on the PF algorithm can reach 95%, with high accuracy, 
fast convergence, and good stability.

3.7.2  extenDeD partiCLe fiLtering

The EKF algorithm is a local linearization method realized by the first-order Taylor 
expansion, which makes the system a Gaussian distribution model according to the 
nonlinear system state and observation equation. At each time point, the functions 

( ),f x uk k  and ( ),h x uk k  are expanded by the Taylor series and the influence of higher-
order terms on the function is ignored, and two linearization processes are completed 
to obtain Equations (3.155) and (3.156).
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FIGURE 3.31 PF tracking error.
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According to Equations (3.155) and (3.156), the nonlinear system is transformed into 
a linear system, and the transformed linear system is only related to state variables, 
as shown in Equation (3.157).
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In Equation (3.157), it is noted that functions ( ) −ˆ , ˆf x u F xk k k k  and ( ) −ˆ , ˆh x u H xk k k k 
are not the xk functions. The linear system is brought into the classical KF algorithm. 
In the sampling stage, sampling is achieved through the mean and variance of each 
particle obtained by the EKF algorithm. The resampling method is carried out by 
polynomial, which has simplicity and low complexity advantages, taking a particle 

~ [0,1]u U  from the [0,1] uniform distribution and making the obtained particles into 
a new particle set, as shown in Equation (3.158).
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The particle polynomial is resampled by Equation (3.158), and the particle weights 
are rechecked and screened to form a new particle library. The weights in these 
particle sets screened by Equation (3.158) are evenly distributed. The process at this 
stage is described as follows:

 1. Initialization
Firstly, new particles are extracted and used as a new particle set. This part 
of particles makes it possible to obtain the important density function of the 
system, as shown in Equation (3.159).

 …( ) ~ ( ) ( 1,2, , )1x i p x x i i Nk k k{ } =−  (3.159)

The initial conditions of the filter equation state 0X  and the covariance 0P , as 
shown in Equations (3.160) and (3.161).

 ( )=0 0X E X  (3.160)

 ( )( )= − −



0 0 0 0 0P E X X X X

T
 (3.161)

 2. Update
Updating the particle set and using the EKF algorithm to update the mean 
and variance of each independent particle in the sample. The calculation 
process is described as follows:

 i. State prior estimation, as shown in Equation (3.162).
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 ii. A prior estimate of the error covariance, as shown in Equation (3.163).
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 iii. Kalman gain matrix, as shown in Equation (3.164).
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 iv. State posterior estimation, as shown in Equation (3.165).
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 v. The posterior estimate of the error covariance, as shown in Equation 
(3.166).
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To get the sample mean Xk
i  and covariance Pk

i. Where Fk
i is the Jacobian 

matrix of the model state transition equation, Hk
i  is the observation matrix, 

and Kk  is the Kalman gain. Use the particle set updated by the algorithm to 
update the state of the ith particle, as shown in Equations (3.167)–(3.169).
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Therefore, according to Equations (3.167)–(3.169), each particle’s weight wk
i  

is calculated, as shown in Equations (3.170) and (3.171).
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 3. Normalized weight, as shown in Equation (3.172).
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 4. State estimation, as shown in Equation (3.173).
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3.7.3  unSCenteD partiCLe fiLter

The UKF algorithm is utilized to improve the PF algorithm with the UT algorithm 
[218,219]. Compared with the first-order Taylor expansion of the EKF algorithm, this 
method can theoretically calculate the posterior variance accuracy to the third order 
and has higher accuracy. It is also an effective means to calculate mean and covari-
ance. Based on the PF algorithm estimation framework, the core calculation of the 
UPF algorithm is described as follows:

 a. Initialization
Extract particles from the prior distribution P X( )0  as the new particle set 
initial state. These particles are obtained from the important density func-
tion, as shown in Equations (3.174)–(3.177).
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 b. Importance sampling stage
 i. Unscented transform.
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  The n +2 1 sampling points of the state variable at the current time 
point are calculated by distributed sampling method, where n is the 
state-space X dimension. For the nonlinear system, the UT process is 
performed on it. The mean and variance of the sigma point are set cor-
respondingly equal to the state variable at the current time point [220]. 
The mean value of X is supposed to be X and then the sampling point is 
determined, as shown in Equation (3.178).
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  In Equation (3.178), Xi represents the ith sampling point, and n Pa iλ( )+  
represents the ith column of the matrix n Pa λ( )+ . Corresponding to 
each Xi, its weight is given when calculating the mean coefficient, as 
shown in Equation (3.179).
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  In Equation (3.179), i
mω  is the weight of the ith sampling point in cal-

culating the mean value, and i
cω  is the weight of the ith sampling point 

in calculating the covariance. The n is the dimension degree of state 
variable x. The α  factor is the distribution state of the sampling points 
around the mean. The α controls the distance between the sampling 
points and the mean. The α  generally takes a constant of α  ∈ (10–6, 1). 
γ  is required to satisfy nγ + ≠ 0. Because n ≠ 0, so γ = 0 can generally 
be selected. β is a prior distribution factor. Since it has been assumed 
that the system obeys Gaussian distribution, β = 2 is optimal. The λ 
parameter represents the zoom ratio.

 ii. Sigma point set update.
  Sigma point set update is the process of using the state-space sampling 

points obtained by the UT at the previous time point to predict the 
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sampling points at the current time point. It is also the sigma further 
prediction and Xk k

i a
−| 1

,  is given, as shown in Equation (3.180).
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 iii. State variable X and covariance P  prediction.
  Multiply the sigma point predicted values by the corresponding weight 

in (3.180) to obtain the x predicted value at the next time point. Then, the 
covariance is calculated from the x predicted value and the covariance 
weight, and the calculation equation is given, as shown in Equations 
(3.181) and (3.182).
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 iv. Observation of further prediction.
  In the UKF algorithm, to predict the observation space at time point 

k + 1, the observation predicted value at time point k + 1 needs to be 

calculated from the state at time point k, as shown in Equation (3.183).

 Z h X Xk k
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i x

k
i n( )=− − −,| 1 | 1
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1

,  (3.183)

 v. System observation matrix and covariance matrix prediction.
  Observations obtained by nonlinear transfer based on sampling points 

given by (3.139) are averaged to obtain the predicted amount of the sys-
tem observation matrix. Then calculate the variance of the observed 
measurement at k + 1 given by the predicted value and the covariance 
between it and the state variable. The calculation method is provided for 
the prediction system observations, as shown in Equation (3.184).
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  The variance of the observations is given by Equation (3.185). 
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  Finally, the covariance between the observed quantity and the state 
quantity is determined, as shown in Equation (3.186).
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 vi. Status and covariance update.

  The calculation method is obtained to estimate the state and observation 

at k + 1 from the information at time point k. Then, a posterior estima-

tion is performed by using the data at k + 1, that is, to modify the prior 
estimation to get a more accurate estimation value. Before the correc-
tion process starts, calculating the Kalman gain is a necessary step, as 
shown in Equation (3.187).

 K P PX Z Zk k k
= ,  (3.187)

  The previous five steps are prepared for the status update in step vi. The 
covariance update is to prepare for the estimation at time point k + 2. 
The status update is shown in Equation (3.188). The covariance update 
is shown in Equation (3.189).

 X X K Z Zk
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k k k
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  In Equation (3.189), Zk  is the observation measured by the instrument 
at k + 1. Zk k

i
−| 1 is the observation obtained from the state estimation at 

the time point k. Xk
i  is the posterior state estimate at k + 1, and Xk

i  is the 
optimal state estimation at the current time. Using the UKF algorithm 
to estimate the SOC of the lithium battery can obtain the optimal esti-
mation based on the minimum variance criterion, and the estimation 
accuracy is better than that of the EKF algorithm. The subsequent steps 
are consistent with the EPF algorithm flow.

3.7.4  BaCkpropagation neuraL netWork

The backpropagation (BP) neural network is a multilayer network that generalizes 
the W-H learning rules and performs weight training on nonlinear differentiable 
functions [221,222]. The BP neural network includes an input layer, a hidden layer, 
and an output layer. The hidden layer can be one or multiple layers. BP network is 
mainly used for function approximation, pattern recognition, classification, and data 
compression. The simplest BP neural network structure is a three-layer structure, as 
shown in Figure 3.32.
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In Figure 3.32, X represents the input layer, Y  represents the hidden layer, O rep-
resents the output layer, W  is the weight from the input layer to the hidden layer, and 
V  is the weight from the hidden layer to the output layer. The BP neural network con-
sists of two parts—that is the forward transmission of information and the backward 
propagation of errors.

 1. The output of the ith neuron in the hidden layer is obtained, as shown in 
Equation (3.190).

 h f w p bi ij j i
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∑= +












=

1 1 1
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 (3.190)

In Equation (3.190), h represents the value of the hidden layer. f1 repre-
sents the activation function of the hidden layer. The activation function 
of the BP network must be differentiable everywhere, generally using the 
S-type logarithmic or tangent activation function and linear function. w1 is 
the weight between the input and output layers, and p is the input of b1 is 
the deviation of the hidden layer neuron. r is the number of input neurons. 
The output of the kth neuron in the output layer is obtained, as shown in  
Equation (3.191).
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 2. The output of the kth neuron in the output layer
o represents the value of the output layer, f 2 is the activation function of 
the output layer, w2 is the weight between the hidden layer and the output 
layer, b2 is the deviation of the output layer neurons, and m is the number of 
neurons in the hidden layer.

FIGURE 3.32 Three-layer BP neural network structure.
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 3. The error function is defined, as shown in Equation (3.192).
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In Equation (3.192), E  is the error function, t is the expected value, and n is 
the number of neurons in the output layer.

The gradient descent method is used to find the weight change and the BP of the 
error.

 1. The weight change of the output layer

The weights can be obtained from the ith input to the kth output, as shown 
in Equation (3.193).
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In Equation (3.193), the parameters are calculated, as shown in Equation 
(3.194).
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The same can be obtained, as shown in Equation (3.195).
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 2. Hidden layer weight change can be obtained, as shown in Equation (3.196).

 w
E

w

E

o

o

h

h

w
pij

ij k

k

i

i

ij
ij jη η η δ∆ = − ∂

∂
= − ∂

∂
⋅ ∂

∂
⋅ ∂

∂
= ⋅ ⋅1

1 1
 (3.196)

In Equation (3.196), the mathematical relationship can be obtained, as 
shown in (3.197).
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The same can be obtained, as shown in Equation (3.198).

 b i ijηδ∆ =1  (3.198)

The method of BP neural network training is to use the error between the 
actual output of the network and the expected output to carry out BP, thereby 
training the weights and reducing the sum of squares of the error as much 
as possible. Each time the weight and deviation changes are proportional to 
the influence of the network error. The parameters are transmitted to each 
layer in the way of BP. Before training the neural network, the content of the 
neural network parameters needs to be determined, including the number of 
the network layers. Generally, the three-layer neural network can approxi-
mate any nonlinear function. The number of neurons can be adjusted. The 
number of neurons in the input layer is the number of input vectors, and the 
same is true for the output layer. If there is only one hidden layer, it can be 
adjusted according to Equation (3.199).

 m n k i= + +  (3.199)

In Equation (3.199), n is the number of input neurons, k is the number of 
output neurons, and m is the number of hidden layer neurons.

 3. The activation function of each layer. Generally, the activation function of 
the hidden layer selects the S-type activation function. The S-type func-
tion can convert any input function signal into the interval of [−1, 1], so the 
S-type activation function can handle and approximate the nonlinear func-
tion. The output layer generally uses a linear activation function, which can 
make the network output any value. However, if the output layer requires a 
0–1 output type, the activation function needs to be changed to a threshold 
type.

 4. Expected error.
 5. The maximum number of training sessions.
 6. Learning rate. The learning rate is generally between [0.01, 0.7].
 7. Training function.

The limitations and shortcomings of ordinary BP neural networks: long training 
time, inability to train, falling into local optimal, overfitting, and no generalization 
ability. In response to these shortcomings, some improved BP neural networks are 
proposed.

 1. Additional time point
The basic principle is shown in Equation (3.200).
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The principle of the whole function can be directly called the trading 
function.

 2. Adaptive learning rate.
The basic principle is shown in Equation (3.201).
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In Equation (3.201), the principle of the whole function can directly call the 
trading function.

 3. Elastic BP algorithm.
Based on the above, the conjugate gradient method, Broyden–Fletcher–
Goldfarb–Shanno quasi-Newton method, secant quasi-Newton method, 
and Levenberg-Marquardt method were derived. These function training 
methods can greatly reduce the training time and the number of iterations 
and can avoid local optima to a certain extent. BP nerve is used to estimate 
the SOC value, and the input vector can contain easily obtained external 
measurement values, such as current, voltage, temperature, etc. The output 
vector is the SOC value. In the measured dataset, one part is used as the 
training set and the other part is used as the test set.

Also, BP neural network can be combined with EKF to estimate SOC 
together and use BP neural network to make up for some of the shortcom-
ings of EKF [223,224]. EKF uses the first-order Taylor expansion, and the 
nonlinear system is transformed into a linear system. The higher-order 
terms are ignored, which causes certain errors. Especially for highly non-
linear batteries, the resulting error is greater, and the error of using the 
adaptive extended Kalman alone to estimate the SOC is greater. Therefore, 
it is proposed to use BP neural network to optimize and compensate for 
the error generated by EKF. The neural network toolbox is used to build 
a four-input one-output three-layer BP neural network. The hidden layer 
selects ten neurons, the expected value is set to 10-3, the maximum number 
of iterations is 4000, and the L-M method is used for training. The input 
vector of the experiment is the estimated value S k k −( | 1) and polarization 
voltage U k k −( | 1) of the initial battery SOC at the time point k by adap-
tively extending KF. The Kalman gain KSOC of SOC and the polarization 
capacitance is the gain Kc. The output vector is the difference between the 
improved EKF and the theoretical SOC value. The overall flowchart of SOC 
estimation is shown in Figure 3.33.

The specific experimental steps of HPPC are described as follows. First, 
the battery is charged at constant current (69.27 A) and constant voltage 
(4.20 V), and then the battery is laid aside for 40 minutes after charging. 
Constant discharge at 69.27 A should be conducted for 10 seconds, and the 
battery shelved for 40 seconds after the discharging treatment is stopped. 
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The battery is charged with a constant current for 10 seconds with a current 
of 69.27 A. And then, the battery is shelved for 5 minutes after stopping 
charging. And then, the constant discharge is carried out with the current 
of 69.27 A for 6 minutes and then rested for 40 minutes. Three steps are 
repeated until the end of the battery discharge. According to the battery 
model carried in the front, the HPPC experiment is carried out on the bat-
tery, and the simulation experiment is built by programming in simulation 
software. The simulation results are shown in Figure 3.34.

In Figure 3.34a, S1 is the estimated SOC value of the improved EKF 
based on BP, S2 is the estimated SOC value of the improved EKF, S3 is the 
estimated SOC value of the EKF, and S4 is the theoretical value of the SOC 
value. In Figure 3.34b, E1 is the error curve of the improved EKF based on 
BP, and E2 is the error curve of the improved EKF. E3 is the error curve of 
EKF. Data can be obtained by sorting out the data in Figure 3.34. The esti-
mation results of different algorithms are shown in Table 3.8.

FIGURE 3.33 Overall flowchart of SOC estimation.

FIGURE 3.34 HPPC test results. (a) SOC estimation of each algorithm. (b) The error of 
each algorithm.
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According to Table 3.8, the maximum error of the improved EKF based 
on BP is 1.642%, which is 6.07% less than that of EKF. The average error 
is 0.4499%, which is 0.5891% less than that of EKF. The root-mean-square 
error is 0.6353%, which is 0.9008% less than EKF. From the error diagram 
in Figure 3.34b and Table 3.8, it can be observed that the maximum error, 
average error, and root-mean-square error of the improved EKF based on 
BP are smaller than that of the EKF algorithm, and the error is more stable, 
and the error range is within 2%.

The specific experimental steps of DST are described as follows. First, 
the battery is charged at a constant current (69.27 A) and constant pressure 
(4.20 V). After charging, the battery is put on hold for 40 minutes to stabilize 
the chemical reaction inside the batteries. Then, the battery is discharged 
at 34.35 A for 4 minutes, and then the battery is left resting for 40 seconds 
after the discharge is stopped. The battery is charged with a constant current 
of 34.35 A for 2 minutes, then rest the battery for 40 seconds after stopping 
charging. Constant discharge is carried out at 69.27 A current for 4 minutes 
and then stayed for 40 seconds. Three steps are repeated until the battery is 
discharged. Under DST conditions, the SOC estimation results of different 
algorithms are shown in Figure 3.35.

In Figure 3.35a, S1 is the estimated SOC value of the improved EKF 
based on BP; S2 is the estimated SOC value of the improved EKF; S3 is the 
estimated SOC value of the EKF; and S4 is the theoretical SOC value. In 
Figure 3.35b, E1 is the error curve of the improved EKF based on BP; E2 
is the error curve of the improved EKF; and E3 is the error curve of EKF. 
According to the results, the indicators of different algorithms are shown in 
Table 3.9.

As shown in Table 3.9, the maximum error of the improved EKF based 
on BP is 1.433%, and it is 4.877% less than that of EKF. The average error 
is 0.7073%, which is 1.8917% less than that of EKF. The root-mean-square 
error is 0.8387%, which is 2.1661% less than that of EKF. According to the 
error diagram in Figure 3.35b and Table 3.9, the error of the improved EKF 
algorithm based on BP is smaller than that of the EKF algorithm in all 
aspects, and the maximum error is within the range of 2%. It is more accu-
rate than the EKF algorithm, which can better track the theoretical value of 
SOC and is more suitable for the estimation of SOC value.

The BP neural network is used to perform error compensation on the 
improved EKF. The compensation equation is r = +SOC SOC ErrEKF BP, 

TABLE 3.8
HPPC Experimental Data Analysis

Algorithms Maximum Error Average Error Root Mean Square Error

EKF 7.712% 1.036% 1.5361%

Improved EKF 3.074% 1.01% 1.2877%

Improved EKF-BP 1.642% 0.4499% 0.6353%
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which can further improve the accuracy of SOC and reduce the require-
ments for model accuracy. In addition, BP neural network can also be com-
bined with a GA. The optimization of the GA is used to find the optimal 
initial weight of the BP neural network. The basic principle is to treat each 
weight and threshold as an individual and use the test error norm of the BP 
neural network as the output of the objective function. Consequently, the 
best individual through selection, crossover, and mutation can be obtained. 
After the GA, other optimization methods can also be used to optimize BP 
neural network, such as the ant colony algorithm, particle swarm algorithm, 
etc.

 4. Additional time point method
To overcome the situation that the network falls into local minima, the addi-
tional time point is used to slide through these minima. When using the 
additional time point method, the correction of its weight takes into account 
not only the effect of the error on the gradient but also the effect of the error 
trend. The weight and threshold adjustment equations with additional time 
point factors are shown in Equation (3.202).

 w k w kij i i ijηδ ρ∆ + = − + ∆( 1) (1 mc) mc ( ) (3.202)

In Equation (3.128), k is the training time of the BP neural network, mc 
is the regulating time point factor, and mc is generally valued at about 
0.95. Additional time point method is based on the BP method; in each 

FIGURE 3.35 DST test results. (a) SOC estimation of each algorithm. (b) The error of each 
algorithm.

TABLE 3.9
DST Experimental Data Analysis

Algorithms Maximum Error Average Error Root Mean Square Error

EKF 6.31% 2.599% 3.0048%

Improved EKF 2.53% 1.715% 1.8654%

Improved BP-EKF 1.433% 0.7073% 0.8387%
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weight change, add a value proportional to the previous weight change, and 
according to the BP method, generate a new weight change. At that time, 
the new weight changes are generated by the steepest descent method. The 
new weight change is the last. In this way, the adjustment of the weight is 
changed toward the average direction at the bottom of the error surface. 
When the weight approaches the flat region at the bottom of the error sur-
face, the appearance of 0 and AB = 0 can make the training jump out of the 
local minimum value of the error surface and effectively solve the situation 
that the training process stops because the weight error changes are very 
small, as shown in Equation (3.203).

 w k w kij ij∆ + = ∆( 1) mc ( ) (3.203)

 5. Combined with a genetic algorithm
The error of the BP algorithm is reduced, and it is carried out in the direc-
tion of the anti-gradient. Therefore, it is easy to fall into the predicament of 
local minimum points. Once the number of training samples is large, the 
input–output relationship is complex, and the convergence speed of the net-
work becomes slow. It is shown that the initial value of the network struc-
ture is very high. The unreasonable initial value causes the convergence 
swing of the BP algorithm or even non-convergence.

The initial value of the BP neural network structure is optimized by GA 
in random point concentration, and then the BP neural network is used for 
self-learning. GA is different from other optimization algorithms in that 
it introduces the mechanism of “natural selection” into the optimization 
process and has few restrictions on the optimization problem. It requires 
neither continuity nor differentiability for the constraint and objective func-
tion. Therefore, its search process always covers the whole search space, 
and the global optimal solution can be obtained.

In this research, according to the characteristics of the GA solution space 
throughout the whole search space, the optimal solution within the optimal 
solution fixed range is inherited from the random solution set to form the 
initial value of the A-N structure, and then the A-N structure is quickly 
searched by the negative gradient direction to reach the global minimum. In 
this way, both the global minimum point and the speed of convergence can 
be guaranteed. GA optimizes the weight of the neural network repeatedly 
until the mean value no longer increases in a meaningful way. At this time, 
the parameter combination obtained by decoding is sufficiently close to the 
optimal parameter combination. On this basis, the BP algorithm is used to 
fine-adjust them, which has good generality.

3.7.5  DuaL-extenDeD kaLman fiLter

As an open-loop estimation method, the ampere–hour integration method can better 
track the change of battery SOC in a short time, but without the correction feed-
back function, as time goes by, the SOC estimation error becomes larger and larger. 
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The EKF algorithm can reduce the system error and measurement error to a certain 
extent [225–227]. The SOC can be estimated more accurately through the battery 
voltage correction, but its accuracy is greatly affected by the accuracy of the battery 
model. To solve the above-mentioned problems, a layer of KF filter is reconstructed 
to form the DEKF algorithm based on these two algorithms, and Kalman fusion is 
performed on the estimation results of the two algorithms to obtain a more suitable 
and accurate estimation value.

The idea of the DEKF algorithm is to filter out system output noise and model 
internal noise by constructing a double-layer KF. First, the EKF algorithm is used 
to estimate the SOC, and then EKF_SOC is used as the input of the s-level KF algo-
rithm to correct the Ah_SOC calculated by the ampere–hour integral method. In 
the process of double-layer KF, the error of the ampere–hour integration method is 
easily affected by current measurement accuracy, battery capacity, and other factors. 
The parameter is taken as the internal noise of the model, and the error caused by the 
EKF algorithm is taken as the output noise of the system. The schematic diagram of 
the algorithm is shown in Figure 3.36.

When performing a double-layer KF for fusion, the established linear system state 
and observation are shown in Equation (3.204).
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The second-layer filter takes the SOC estimated by the first-layer filter as the input 
state quantity, which uses the ampere–hour integration method as the output. The 
battery state and output are defined, and the initial covariance matrix is established. 
After obtaining the covariance matrix and predicted value of the state variable at 
the current time point, the Kalman gain is obtained, and then the state variable and 
covariance are updated based on the DEKF estimation to obtain the new SOC value. 
The complete process of the DEKF algorithm is shown in Figure 3.37.

In Figure 3.37, A = 1, B = 1, x k( ) represents the SOC state value at time point 
k Y k,  ( ) represents the system observation value at time point k, I k( ) represents the 
system input current at the current time, W k( ) represents the internal noise of the 
model, and V k( ) represents the output noise of the system. EKF_SOC(k) represents 
the estimated SOC value obtained by the EKF algorithm.

FIGURE 3.36 DEKF algorithm schematic diagram.
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To verify the feasibility of the DEKF algorithm, the lithium-ion battery SOC esti-
mation model is established. SOC estimation based on DEKF is carried out under 
different working conditions such as constant current discharge and HPPC, and the 
ampere–hour integration method under HPPC working conditions. The estimation 
accuracy of EKF and DEKF are compared to verify the superiority of the proposed 
algorithm. In the experiment, R0, R1, R2, C1, and C2 are substituted into the algorithm 
in the form of average values, and the test battery model is a ternary 50 Ah lithium-
ion battery. The 2 C constant current discharge experiment is used to verify the effec-
tiveness of the EKF algorithm in battery SOC estimation. The simulation effect is 
shown in Figure 3.38a, and the error is shown in Figure 3.38b.

FIGURE 3.37 The whole process of DEKF-based SOC estimation.

FIGURE 3.38 SOC estimation result based on DEKF. (a) Comparison of SOC estimation 
results. (b) SOC estimation error.



185Battery State of Charge Estimation

In Figure 3.38a, the SOC1 is the actual SOC curve, and SOC2 is the DEKF-
estimated SOC curve. The experimental results in Figure 3.38b show that the maxi-
mum estimation error of SOC during 2 C constant current discharge is 0.036, which 
is less than 3.6%, and it is within the allowable error range. It can be observed from 
the figure that as the number of filtering increases, the predicted value curve gradu-
ally approaches the true value curve and fluctuates near the true value curve. The 
error value also gradually decreases from the initial larger error and finally fluctuates 
around 0, showing a trend of convergence.

After deriving and analyzing the principles and steps of the algorithm, the DEKF 
algorithm is used to estimate the battery SOC, and the results are compared and 
analyzed with the ampere–hour integral method and the EKF algorithm. The param-
eter design of the first-level EKF algorithm remains unchanged. In the s-level KF 

algorithm, the internal noise R to the model is 0.001, and the system output noise Q is 
obtained by the posterior estimated covariance of the EKF algorithm. The simulation 
results under HPPC working conditions are shown in Figure 3.39.

According to Figure 3.39a, SOC1 is the SOC curve estimated by DEKF, and 
SOC2 is the actual SOC curve. The experimental results in Figure 3.39b show that 
under HPPC conditions, the maximum estimation error of SOC is 0.0039, which is 
less than 0.39%. The ampere integral method is a simple and widely used SOC esti-
mation method. By integrating the current flowing through the battery within a cer-
tain working period, the charge–discharge capacity of the battery can be obtained. 
The simulation results of HPPC operating conditions based on Ah points are shown 
in Figure 3.40.

In Figure 3.40a, the SOC1 is the actual SOC curve, and SOC2 is the ampere–hour 
integral estimated SOC curve. The experimental results in Figure 3.40b show that 
under HPPC conditions, the maximum estimation error of SOC is 0.0382, which is 
less than 3.82%, and it is within the allowable error range. It can be observed from 
the above figure that the estimation error of the ampere–hour integration method 
continues to increase during the entire discharge process. This is closely related to 
factors such as current detection accuracy, fluctuations, battery capacity, and tem-
perature. Under HPPC working conditions, the SOC estimation results based on the 
EKF algorithm are shown in Figure 3.41.

FIGURE 3.39 SOC estimation results based on DEKF under HPPC conditions. (a) 
Comparison of SOC estimation results. (b) SOC estimation error.
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In Figure 3.41a, SOC1 is the SOC value estimated by the EKF algorithm, and 
SOC2 is the actual SOC value. Figure 3.41b shows that the maximum estimation 
error of SOC is 0.0063 under the HPPC condition, which is less than 0.63%. It is 
worth noting that when the battery is at the end of discharge, the SOC estimation 
error fluctuates greatly, which is mainly caused by the nonlinearity of the battery 
itself. The comparison of the experimental results of the ampere–hour integration 
method, EKF, and DEKF algorithm to estimate SOC under HPPC conditions is 
shown in Table 3.10.

Through the above comparison, although the ampere–hour integration method 
is simple and easy to implement, the initial value cannot be obtained, the accuracy 
requirements are strict, and the lack of feedback correction links leads to a large 
accumulation of errors. The EKF algorithm has good robustness, but the DEKF esti-
mation accuracy is high; it is not easily disturbed by the accuracy of the battery 
model with strong stability and convergence.

FIGURE 3.40 SOC estimation under HPPC working conditions. (a) Comparison of SOC 
estimation results. (b) SOC estimation error.

FIGURE 3.41 SOC estimation results based on EKF under HPPC conditions. (a) Comparison 
of SOC estimation results. (b) SOC estimation error.

TABLE 3.10
Comparison of Experimental Results of Different Algorithms 

Estimation Method Ampere–Hour Integration EKF Algorithm DEKF Algorithm

Maximum error 3.82% 0.63% 0.39%
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3.7.6  Strong traCking-aDaptive extenDeD kaLman fiLter

The core idea of the strong tracking-adaptive extended Kalman filtering (ST-AEKF) 
algorithm is that for nonlinear Gaussian systems, based on the EKF, it combines a 
strong tracking filter and an adaptive filter. To make the system have the ability to 
track sudden changes, a fading factor is introduced into the error covariance matrix 
of EKF to strengthen the proportion of current observation data. For achieving the 
strong tracking characteristics of the filter, a couple of conditions need to be met dur-
ing recursion, as shown in Equation (3.205).
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If the noise characteristic is always assumed to be Gaussian white noise, the actual 
estimated error value of the system state is different from the theoretically calculated 
error value. Therefore, the introduction of the adaptive filter can continuously esti-
mate and correct the statistical characteristics of noise through measurement data to 
reduce estimation errors. The error covariance matrix after optimization is shown in 
Equation (3.206).

 P A P A Qk k k k k
T

k
Tλ= + Γ Γ+

−
+ +

ˆ ˆ
1 1 1  (3.206)

In Equation (3.206), kλ +1 represents the fading factor and Γ is the noise drive matrix. 
When using the orthogonal principle of Equation (3.124) to calculate the fading fac-
tor, the gradient method is required. This method uses nonlinear programming to 
solve the optimal attenuation factor, and the calculation amount is too large to realize 
online calculation. Therefore, this research adopts the calculation method of subop-
timal fading factor, as shown in Equation (3.207).
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In Equation (3.207), Nk and Mk  can be expressed in Equation (3.208).
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In Equation (3.208), Vk is the residual covariance matrix, ρ is the forgetting factor 
with ρ< ≤0 1, and β is the weakening factor with β ≥ 1. In this research, the adap-
tive filter is a statistically large posterior suboptimal unbiased estimator of noise 
based on measured values. The recursive process of input process noise Q and obser-
vation noise R is shown in Equation (3.209).
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The adaptive filter can estimate Q and R online in real time and achieve the goal of 
continuous correction of the SOC estimation value, thereby realizing the adaptive 
correction function to achieve the effect of improving the accuracy of the SOC esti-
mation. Therefore, the recursive process of the second improved KF combined with 
a strong tracking filter and an adaptive filter is shown in Equation (3.210).
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 (3.210)

In Equation (3.210), the fading factor kλ +1 is introduced into the EKF algorithm 
to enhance the tracking ability of sudden changes. Meanwhile, the adaptive filter 
which can statisticize the characteristics of time-varying noise is used to adjust the 
noise parameters of the system for continuously estimating and modifying the sta-
tistical characteristics of noise through the measurement data to reduce the error of 
estimation.

3.7.7  CuBature kaLman fiLter

The core idea of the cubature Kalman filtering (CKF) algorithm is that for nonlinear 
Gaussian systems, the posterior mean and covariance of the state are approximated 
by the third-order spherical radial cubature criterion to ensure that the third-order 
polynomial is theoretically approximate to the posterior mean and variance of the 
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nonlinear Gaussian state [228–231]. The state and observation values of the system 
are shown in Equation (3.211).
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In Equation (3.211), wk is the process noise and vk is the measurement noise. Then, 
the SOC estimation based on the CKF algorithm can be divided into three steps:

Step 1: initialization, as shown in Equation (3.212).
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Step 2: time update
Calculating the cubature point, as shown in Equation (3.213).
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In Equation (3.213), the calculation equation of ξ is shown in Equation (3.214).
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Spread cubature point, as shown in Equation (3.215).
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The predicted value of the state variable and the predicted value of the estimated 
error covariance can be calculated, as shown in Equation (3.216).
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Step 3: measurement update
Calculating the cubature point, as shown in Equation (3.217).
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Spreading the cubature point, as shown in Equation (3.218).
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Calculating and measuring the predicted value, as shown in Equation (3.219).

  z
n

Zk k i k

i

n

∑=+ +

=

ˆ
1

2
| 1 , 1

1

2

 (3.219)

Calculating the innovation covariance matrix and cross-covariance matrix, as shown 
in Equation (3.220).
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Calculating the Kalman gain, state quantity, as well as the error covariance correc-
tion, as shown in Equation (3.221).
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Taking a ternary lithium-ion battery with a rated capacity of 70 Ah as the research 
object, using a second-order RC equivalent model. The type parameters are identi-
fied by the offline method and verified under different working conditions. The SOC 
estimation result under HPPC working conditions is shown in Figure 3.42.

In Figure 3.42a, S1 is the reference SOC value; S2 and S3 represent the SOC 
values based on the EKF and CKF algorithms, respectively; and Err1 and Err2 rep-
resent the SOC estimation error values of the EKF algorithm and the CKF algorithm, 
respectively. In Figure 3.42b, the maximum of Err1 and Err2 are 0.0847 and 0.0650, 
respectively. As can be observed from the experimental results, the error of the esti-
mation result of the CKF algorithm is smaller and the tracking performance is better. 
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To further verify the superiority of CKF algorithm SOC estimation, the BBDST 
working condition is used for verification, and the result is shown in Figure 3.43.

In Figure 3.43, S1 is the reference SOC value, S2 and S3 represent the SOC values 
based on CKF and EKF respectively, and Err1 and Err2 represent the SOC esti-
mation error values of the CKF algorithm and the EKF algorithm, respectively. In 
Figure 3.43b, when the SOC estimation error becomes larger, the discharge ends, 
which is the result of the violent chemical reaction inside the batteries. Except for 
the end of discharge, the CKF algorithm SOC estimation has a good overall effect.

3.7.8  Square root CuBature kaLman fiLter

When the CKF algorithm is used for lithium-ion battery SOC estimation, the state 
quantity error covariance matrix needs to meet two conditions, which are symmetry 
and positive definiteness. However, in each iteration process, due to the square root 
operation of the matrix, matrix inversion calculation, matrix squaring operation to 
amplify the rounding error, and the subtraction operation of the two matrices when 
updating the error covariance matrix, both the symmetry and the positive definite-
ness of the covariance cannot be guaranteed, which can eventually lead to divergence 
or instability of the system.

FIGURE 3.43 SOC estimation results of BBDST working conditions. (a) Comparison of 
SOC estimation. (b) SOC estimation errors.

FIGURE 3.42 SOC estimation results in HPPC working conditions. (a) Comparison of esti-
mation results. (b) SOC estimation errors.
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To solve the above problems, a square-root filter is introduced into the CKF algo-
rithm to form the square-root CKF algorithm (SR-CKF). The SR-CKF algorithm 
directly calculates the square-root factor of the predicted value of the state error 
covariance and the estimated value of the state error covariance, which can avoid 
the step of finding the square root of the matrix. Compared with the CKF algorithm, 
the SR-CKF algorithm has two advantages: the first is that the recursive update is 
directly performed in the form of the square root of the covariance matrix in the fil-
tering process, which reduces the computational complexity and obtains higher effi-
ciency, and the second is that it can guarantee the nonnegative qualitative nature of 
the covariance matrix, effectively avoid the divergence of the filter, and improve the 
convergence speed and numerical stability of the filter [232]. Setting the state-space 
expression of the nonlinear discrete system, as shown in Equation (3.222).
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In Equation (3.222), xk and yk are the state vector and measurement vector of the sys-
tem, f x( ) and h x( ) are known functions, wk and vk are process noise and observation 
noise, respectively, and both of the two are Gaussian white noise, that is, the mean 
value is 0 and is not correlated with each other. The SOC estimation process based 
on SR-CKF is described as follows:

Step 1. Initialization of state estimation

Defining the initial state variable X̂0|0 and the initial value P0|0  of the error covari-
ance matrix and performing Cholesky decomposition on the error covariance matrix, 
the result is shown in Equation (3.223).
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Step 2. Time update

 1. Calculation of the 2n cubature points at the current time point, as shown in 
Equation (3.224).

 X S Xi k k k k i k kξ= +− − − − − −, 1| 1 1| 1 1| 1 (3.224)

 2. The propagation of the cubature point, that is, the predicted value of the 
cubature point is calculated by the nonlinear state transfer function, as 
shown in Equation (3.225).

 X f X ui k k i k k k( )=− − − −,, | 1
*

, 1| 1 1  (3.225)
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 3. Prediction of the state variables through the predicted value of the cubature 
point, as shown in Equation (3.226).
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 4. Estimating the square-root factor of the prediction error covariance matrix 
through the obtained cubature point prediction value and the state variable 
prediction result, as shown in Equation (3.227).
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Step 3. Measurement update
The state prediction value at time point k is obtained through the time update, and 

then, the optimal state estimation value can be obtained through the update of the 
measurement value at this time point.

 1. Calculation of the n2  cubature points of the updated state, as shown in 
Equation (3.228).

 X S Xk k k k i k kξ= +− − −
ˆ

| 1 | 1 | 1 (3.228)

 2. Spreading of cubature point, as shown in Equation (3.229).

 Z h Xk k k k( )=− −| 1 | 1  (3.229)

 3. Estimation of the predicted measurement value, as shown in Equation 
(3.230).
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 4. Calculation of the square-root factor of the innovation covariance 
matrix, as shown in Equation (3.231).

 S qr Szz k k k k R kη[ ]=− − ,, | 1 | 1 ,  (3.231)

In Equation (3.231), SR k,  is equal to sqrt (Rk−1), and the calculation equation 
of k kη −| 1 is shown in Equation (3.232).

 
n

Z Z Z Z Z Zk k k k k k n k n kη = − − − − − − − − − −�
1

2
ˆ , ˆ , , ˆ

| 1 1| 1 1| 1 2| 1 2| 1 2 | 1 2 | 1  (3.232)



194 Multidimensional Lithium-Ion Battery Status Monitoring

 5. Calculation of the square-root factor of the cross-covariance matrix, as 
shown in Equation (3.233).

 P xxz k k k k k k
Tη=− − −, | 1 | 1 | 1 (3.233)

In Equation (3.233), the calculation equation of xk k−| 1 is shown in Equation 
(3.234).
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 6. Kalman gain update, as shown in (3.235).

 K P S Sk xz k k zz k k
T

zz k k( )= − − −, | 1 , | 1 , | 1  (3.235)

 7. Calculation of state variable, as shown in (3.236).

 K K K Z Zk k k k k k k k( )= + −− −
ˆ ˆ ˆ

| | 1 | 1  (3.236)

 8. Update of the square-root factor of the state estimation error covariance 
matrix, as shown in (3.237).

 S qr K K Sk k k k k k k k R kχ η( )= −− − ,| | 1 | 1 ,  (3.237)

In Equation (3.237), SR k,  is the square-root factor of the observed noise variance 
matrix. So far, the state filtering at time point k is completed, set the time point 
k k= + 1 and return to step 2 to realize the state estimation at the next time. The 
second-RC model is used to perform the circuit equivalent of the lithium-ion battery, 
and the recursive least square (RLS) method is used to identify the model param-
eters. The SOC estimation flowchart based on SR-CKF is shown in Figure 3.44.

In Figure 3.44, the function of UOC concerning SOC is obtained by polynomial fit-
ting of HPPC experimental data. To verify the feasibility of the SR-CKF algorithm, 
a ternary lithium-ion battery with a rated capacity of 70 Ah is used as the research 
object, and a lithium-ion battery SOC estimation model is established. The SOC esti-
mation based on SR-CKF and RLS algorithm is carried out under different working 
conditions such as HPPC and BBDST, and the superiority of the proposed algorithm 
is verified by analyzing the SOC estimation results. Setting the measurement noise 
variance R = 0.02, the process noise variance Q e e e( )= − − −diag  1 ,1 ,16 6 6 , and the ini-
tial value of the reference SOC is 1, the initial value of the experimental SOC is set 
to 0.8 to verify the convergence effect of the algorithm. The SOC estimation results 
under HPPC condition are shown in Figure 3.45.

In Figure 3.45a, S1 is the SOC reference value, S2 is the SOC estimation result of 
the CKF algorithm, and S3 is the SOC estimation value of SR-CKF. In Figure 3.45b, 
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Err1 represents the SOC estimation error of the CKF algorithm, and Err2 is the SOC 
estimation error of the SR-CKF algorithm. From Figure 3.45a, it can be observed that 
the convergence effects of the two algorithms are not much different. When the sys-
tem changes suddenly, the estimation result of the SR-CKF algorithm is more stable. 
It also can be observed from Figure 3.45b that the absolute maximum error of Err1 
is 0.0612, and the absolute maximum error of Err2 is 0.0499, the overall fluctuation 
range of the SR-CKF algorithm is smaller. The results prove the superiority of the 
SR-CKF algorithm in SOC estimation.

Lithium-ion batteries have a wide range of applications and the working environ-
ment is always complex and changeable. To further verify the effect of the SR-CKF 
algorithm for lithium-ion battery SOC estimation under complex working conditions, 

FIGURE 3.44 The SOC estimation flowchart based on the SR-CKF algorithm.

FIGURE 3.45 SOC estimation results of BBDST working condition. (a) Comparison of 
SOC estimation. (b) SOC estimation errors.
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the BBDST working condition is used for experimental verification. BBDST working 
conditions include starting, coasting, acceleration, and rapid acceleration of electric 
vehicles, which is more complicated than the HPPC working conditions. It can better 
simulate the actual working conditions of lithium-ion batteries. The relevant param-
eter settings are consistent with the verification of the HPPC operating condition, 
and the SOC estimation results under the BBDST operating condition are shown in 
Figure 3.46.

In Figure 3.46a, S1 is the SOC reference value, S2 is the SOC estimation result 
of the CKF algorithm, and S3 is the SOC estimation value of SR-CKF. In Figure 
3.46b, Err1 represents the SOC estimation error of the CKF algorithm, and Err2 is 
the SOC estimation error of the SR-CKF algorithm. It can be observed from Figure 
3.46a that the convergence effect of the SR-CKF algorithm for SOC estimation under 
the BBDST condition is slightly better than that of the CKF algorithm, but the con-
vergence effect of the two algorithms is not much different. It can be observed from 
Figure 3.46b that, except for the end of discharge, the overall SOC estimation error 
of the SR-CKF algorithm is slightly smaller than that of the CKF algorithm, but the 
effect is not obvious. The maximum absolute value of the SOC estimation error of 
the CKF algorithm and SR-CKF algorithm is 0.0231 and 0.0255 respectively, which 
means that some parts of the SR-CKF algorithm have worse SOC estimation results 
than CKF.

Synthesizing the SOC estimation results of the two working conditions, the intro-
duction of the square-root algorithm can only guarantee the nonnegative definiteness 
of the covariance matrix, increase the calculation speed of the algorithm, and ensure 
the stability of the algorithm, but it cannot significantly improve the accuracy and 
convergence speed of the estimation results.

3.7.9  aDaptive h∞ fiLter

The KF algorithm is an effective method to solve the state estimation problem of the 
lithium-ion battery system, but its premise is that the system model is accurate and 
the external input statistical characteristics are known, which is inconsistent with the 
actual situation. In addition, the traditional KF algorithm needs to set the initial noise 
information in advance, and the mismatch of the initial noise will cause the estima-
tion result to diverge [233]. Also, the complexity of the lithium-ion battery condition 

FIGURE 3.46 SOC estimation results of BBDST working condition. (a) Estimation results. 
(b) Error comparison.
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weakens the estimation performance of the traditional EKF algorithm. Therefore, 
an adaptive H-infinity filtering algorithm based on a noise information covariance 
matching algorithm is proposed and applied to the adaptive estimation of the system 
to accurately estimate the SOC value. For the lithium-ion battery system, its state 
equation and observation equation are shown in Equation (3.238).
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In Equation (3.238), Z k( ) is the SOC value at time point k, T  is the sampling period, 
w and v are the system noise and observation noise, respectively. The general form 
corresponding to the above equation is shown in Equation (3.239).
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For the above state–space model of the battery, the matrices of A, B, C , and D are the 
system parameter matrices, which are determined by the system structure. To realize 
the adaptive updating of the process noise and measurement noise, the correspond-
ing symmetric positive definite matrices Q and R are designed by referring to the 
principle of adaptive EKF algorithm, which represents the covariance of the system 
state noise and the observation noise respectively; x represents the state variable, and 
matrix P  is no longer the covariance of state estimation error, but a special matrix in 

H-infinity filtering algorithm; ∑ 0 | 0 is the error covariance matrix of the state esti-

mation; the symmetric positive definite matrix S  is a weight matrix designed based 
on a specific problem, which is used to give different weights to each component of 
the state quantity; λ represents the performance boundary of the H-infinity filter, M  
is the window function of the noise adaptive update process, and N  is the window 
size, which is used to determine the length of the adaptive update period, and the 
estimation flowchart of adaptive H-infinity filter is shown in Figure 3.47.

In Figure 3.47, SOC estimation based on an adaptive H-infinity filtering algorithm 
mainly includes the following steps: first, the model parameters and matrix, includ-

ing x  0|0, P0|0 , ∑ 0|0
, Q0, S , and λ are initialized, then a prior estimation of the state 

variable x and update of the matrix P  and ∑ 0|0
 is performed. According to the real-

time measured terminal voltage yk, the residual and filter gain matrix K  is calculated, 
and the gain matrix is then used to modify the prior estimation of the state variable 

and update the matrix P  and ∑ 0|0
. Finally, the covariance matching algorithm in 
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Figure 3.47 is used to adaptively update the noise covariance matrix Q and R of the 
battery system.

3.7.10  narx-ekf netWork

The essence of the KF is a series of mathematical calculation equations to realize 
functions such as prediction and correction. The optimal estimation algorithm and 
EKF are KF-based methods. Since the NARXNN lacks stability in the SOC estima-
tion of the charge–discharge process under complex conditions, this study uses the 
EKF to improve the NARXNN model to optimize the estimation performance of the 
network model [234–236]. The NARX-EKF model is shown in Figure 3.48.

In Figure 3.48, the KF estimation method usually uses the equivalent circuit model 
to establish the observation equation. The ampere–hour integration process gives the 
discrete state-space equation of the system. In this study, the NARXNN model is 
equivalent to the observation equation. The SOC value estimated by the NARXNN 
is input into the EKF module for filtering, thereby eliminating noise and random 
errors and further optimizing the SOC estimation. Equations (3.240) and (3.241) are 
the state equation and measurement equation of the EKF algorithm, respectively.
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In Equations (3.240) and (3.241), ik  is the current value at the time point k, kSOC  is 
the estimated value of the SOC state time point k, η  is the charge–discharge effi-
ciency, QN  is the rated battery capacity, wk and vk are process noise and measurement 
noise, and Ek  is the estimated value of the NARXNN at time point k. The Jacobian 

FIGURE 3.47 AHF flowchart.
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matrix is obtained by the Taylor series expansion to linearize the state–space equa-
tion. A more accurate result can be obtained in a nonlinear dynamic system than 
the classical KF, thereby reducing the cumulative error of the OCV. The KF method 
after the extended application is called the EKF. x0|0 is the initial value of the state 
quantity, p0|0 is the initial value of the state error covariance, x k k −( | 1) is the one-
step prediction value of the state, ik−1 is the input of the system at k − 1 which is the 
current at k in the SOC estimation, and Ak−1 and Bk−1 are the state transition matrix 
at k − 1. P k k −( | 1) and Pk−

ˆ
1 are the predicted value and estimated value of the state 

error covariance matrix, respectively. Kk  and Ck  are the Kalman gain value and state 
conversion matrix at the time point k. Q and R are the variance values of process 
noise and observation noise, respectively. The noise value is difficult to determine 
and therefore, usually, it is enough to keep debugging to achieve the best algorithm. 
The value of R and Q in this study is 0.1 and 0.001, respectively. U kL ( ) is the system 
observation value at time point k, that is, the SOC value output by NARX.

Through open-loop network training and closed-loop network testing, the 
improved algorithm has the characteristics of high accuracy and low delay, but this 
method is suitable for uncomplicated cycle conditions. To further verify the applica-
bility of NARXNN, the closed-loop NARXNN is used for training and testing. On 

FIGURE 3.48 NARX-EKF network structure.
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this basis, the complexity of the working conditions is increased. The dynamic work-
ing condition dataset is shown in Figure 3.49.

Considering that the battery is running under dynamic working conditions in the 
actual application environment, to verify the effect and accuracy of the NARXNN 
algorithm following complex working conditions, the DST working condition data is 
used as the training set, and the BBDST working condition data is used as the test set. 
In Figure 3.49, (a) is the voltage under DST working conditions, and (b) is the current 
under DST working conditions, both of which are the input variables of the training 
set. The current and voltage curves for DST conditions are shown in Figure 3.50.

In Figure 3.50, (a) and (b) are BBDST operational condition data used as input 
variables of the test set. The algorithm simulation is shown in Figures 3.51–3.53.

FIGURE 3.49 DST working condition dataset. (a) DST voltage curve. (b) DST current curve.

FIGURE 3.50 BBDST working condition dataset. (a) BBDST voltage curve. (b) BBDST 
current curve.

FIGURE 3.51 The SOC estimation result without EKF optimization. (a) SOC estimation 
without EKF optimization. (b) Estimated error without EKF optimization.
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In Figure 3.51a and b, other neural networks except NARXNN have a consider-
able divergence during the estimation process. The NARXNN can follow the refer-
ence value steadily. The error is always less than 4%, which is much lower than other 
neural networks. Due to the rapid dynamic changes of the working conditions, the 
maximum value of the algorithm error often occurs when the voltage suddenly rises 
or falls, and the extreme change of data causes the network structure to be unstable. 
To suppress the noise caused by the data mutation, the EKF algorithm is added to 
reduce the tip error, as shown in Figure 3.52.

Figure 3.52 shows the various algorithms optimized by EKF have significantly 
reduced the tip error, and the maximum error has been reduced by about 50%. It 
proves that the proposed algorithm is feasible, as shown in Figure 3.53.

Figure 3.53 shows the comparison of the evaluation indicators of the estimation 
results of different algorithms. It can be observed more intuitively from Figure 3.53a 
and b that the RMSE and MAE of NARXNN are only 20% of other neural networks, 
proving the superiority of the NARXNN. After EKF optimization, the error of each 
neural network is significantly reduced, which dramatically improves the estimation 
accuracy of the algorithm. This shows that EKF can effectively maintain the stabil-
ity of the network and improve the estimation accuracy of the network. In terms of 
calculation cost, as the amount of data and the complexity of working conditions 
increase, to obtain the best estimation effect, the training time of each neural net-
work has to be increased relative to simple working conditions. NARXNN, FNN, 
and BPNN take about 90 seconds to optimize, but Elman NN takes more time.

FIGURE 3.52 The SOC estimation result with EKF optimization. (a) SOC estimation opti-
mized by EKF. (b) Estimated error optimized by EKF.

FIGURE 3.53 Evaluation indicators. (a) RMSE. (b) MAE.
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3.8  SOC ESTIMATION BASED ON GA-BP ALGORITHM

The GA-BP neural network uses a GA to optimize the initial weights and thresholds 
of the BP neural network so that the optimized neural network can better predict 
the function output [237,238]. The flowchart of the GA-BP algorithm is shown in 
Figure 3.54.

The optimization process can be divided into three parts:

 1. The network structure is determined according to the functional 
requirements.

 2. The parameter values of the BP neural network structure are optimized by 
a GA. All initial weights and thresholds in the network are genetically oper-
ated to obtain the initial optimal weights and thresholds.

FIGURE 3.54 The flowchart of the GA-BP algorithm.
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 3. Maintain the topological structure of the BP neural network, assign the ini-
tial optimal weight and threshold to the network, and then use the BP neural 
network for training, testing, and verification.

3.8.1  BaCkpropagation neuraL netWork

The BP neural network is a multilayer network that generalizes the W-H learning 
rules and performs weight training on nonlinear differentiable functions [239,240]. 
BP network is mainly used for function approximation, pattern recognition, clas-
sification, and data compression. The flowchart of the BP algorithm is shown in 
Figure 3.55.

3.8.2  genetiC aLgorithm

The GA is a parallel stochastic search optimization method that simulates natu-
ral genetic mechanisms and biological evolution [241]. The elements of BP neural 
network optimization by the GA include population initialization, fitness function, 
selection operation, crossover operation, and mutation operation [242].

FIGURE 3.55 The flowchart of the BP algorithm.
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 1. Population initialization
The individual coding method is real number coding, and each individual is 
a real number string, which is composed of four parts: the connection weight 
between the input layer and hidden layer, the threshold value of the hidden 
layer, the connection weight between the hidden layer and output layer, and 
the threshold value of output layer. The individual contains all the weights 
and thresholds of the neural network. If the network structure is known, a 
neural network with its structure, weights, and thresholds can be constituted.

 2. Fitness function
According to the initial weights and thresholds of the BP neural network 
obtained by individuals, the BP neural network is trained with training data 
to predict the system output. The absolute error value between the predicted 
output and the expected output is taken as the individual fitness value F . 
The calculation equation of F  is shown in Equation (3.242).

 F k y oi i
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 (3.242)

In Equation (3.242), n is the number of output nodes, yi is the expected out-
put of the ith node of the BP neural network, oi  is the predicted output of the 
ith node, and k is a coefficient.

 3. Selection operation
The selection operation of GA includes roulette, tournament, etc. When the 
roulette method is used to calculate the selection probability pi  of each indi-
vidual i, the calculation equation is shown in Equation (3.243).
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In Equation (3.243), Fi represents the fitness value of individual i. Since the 
smaller, the fitness value, the better, the inverse of the fitness value is calcu-
lated before individual selection. N  represents the number of individuals in 
the population, and k is a coefficient.

 4. Crossover operation
The crossing operation of the kth gene ak and the lth gene al at the j position 
is realized using Equation (3.244).
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In Equation (3.244), b represents a random number in [0,1].
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 5. Mutation operation

The jth gene of the i-th individual factor is selected for mutation operation, 
as shown in Equation (3.245).
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In Equation (3.245), amax and amin represent the upper and lower bounds of 
aij, r represents the random number, g represents the current iteration, and 
Gmax represents the maximum number of evolutions.

3.8.3  experimentaL anaLySiS

To verify whether the accuracy of the BP neural network optimized by GA is better 
than that of the BP neural network in SOC prediction, simulation experiments are 
carried out. The simulation effect is shown in Figure 3.56a, and the error is shown 
in Figure 3.56b.

It can be observed that the GA–BP network output is closer to the expected output 
than the BP network, and it shows better fitting. The comparison of the experimental 
results of the BP and GA–BP algorithm to estimate SOC under DST conditions is 
shown in Table 3.11.

FIGURE 3.56 SOC estimation result based on BP and GA-BP neural network. (a) 
Comparison of SOC estimation results. (b) SOC estimation error.

TABLE 3.11
Comparison of Experimental Results of Different Algorithms

SOC Estimation Method BP GA-BP

Maximum error 5.2843% 3.1125%

Average error 1.3824% 1.0811%
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The calculation results show that the BP neural network optimized by GA is more 
accurate than the BP neural network in estimating the SOC value of lithium-ion 
batteries.

3.9  ONLINE ESTIMATION ALGORITHM

Aiming at the complexity and working characteristics of the internal characteristics 
of the lithium-ion battery, an improved PNGV lithium-ion battery equivalent model 
is proposed, and the model parameters are identified by the RLS algorithm with the 
forgetting factor. Based on parameter identification, the SOC is estimated by the 
EKF algorithm.

3.9.1  improveD pngv equivaLent CirCuit moDeLing

Based on the PNGV model of the lithium-ion battery, the RC circuit is connected 
in series to describe the surface effect resistance and surface effect capacitance of 
the lithium-ion battery, to improve the accuracy of the physical model, as shown in 
Figure 3.57.

In Figure 3.54, Cb is the change in the OCV due to the cumulative effect of the 
current. UOC is the OCV. UL is the terminal voltage. R1 is the ohmic resistance. UR1 is 
the ohmic voltage, which is the effect of battery voltage drop at the time point of bat-
tery discharge and termination of discharge. The first RC parallel circuit is composed 
of a polarization resistor Rp1 and polarization capacitor Cp1, which is used to char-
acterize the polarization effect of the lithium-ion battery, and U p1 is the polarization 
voltage. The second RC parallel circuit is composed of a surface polarization resistor 
Rp2 and surface polarization capacitor Cp2, which is used to characterize the surface 
effect of the lithium-ion battery, and U p2 is the surface effect voltage. According to 
Kirchhoff’s law, the improved PNGV equivalent circuit model is analyzed, and the 

FIGURE 3.57 Improved PNGV equivalent circuit model.
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voltage and current expressions of the equivalent circuit can be obtained, as shown 
in Equation (3.246).
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3.9.2  onLine iDentifiCation of forgetting faCtor rLS aLgorithm

Due to the phenomenon of “filtering saturation” in the RLS method, the values of 
gain K  and P  become smaller and smaller as the number of iterations of the algo-
rithm data increases. As a result, the ability of the algorithm to correct the data is 
gradually weakened, and the degree of data saturation is increasing, which eventu-
ally leads to the increasing error of parameter identification [243]. Therefore, it is 
considered to add a forgetting factor based on least square identification, to improve 
the online estimation ability of the RLS algorithm. The function of the forgetting 
factor is to give less weight to the long-running data in the identification process, 
while the latest observation data occupies more weight [244]. The least square data 
fitting is to select a function fitting from a given function type according to a given 
dataset to minimize the sum of squares of residuals, as shown in Equation (3.247).
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According to the PNGV model of the lithium-ion battery, the complex frequency 
domain equation can be obtained and the discrete transfer function can be obtained, 
as shown in Equation (3.248).
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In Equation (3.248), c1, c2, c3, c4, and c5 are the corresponding constant coefficients, so 
we can know that the system studied is a single-input/single-output system. Equation 
(3.248) is transformed into a difference equation, as shown in Equation (3.249).
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In Equation (3.249), I k( ) is the system input and y k +( 1) is the system output. The 
relationship between lithium-ion battery parameters and the coefficient can be 
deduced, as shown in Equation (3.250).
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Input variables and parameter variable expressions are represented by matrices, as 
shown in Equation (3.251).
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The matrix expression of the system output can be obtained, as shown in Equation 
(3.252).

 y k k e kφ θ= +Τ( ) ( ) ( ) (3.252)

The genetic factor λ λ< < (0 1) is introduced to weaken the influence of old data and 
enhance the feedback effect of new data. The forgetting factor least square recursive 
equation is obtained, as shown in Equation (3.253).
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3.9.3  onLine parameter iDentifiCation effeCt

The parameters of the lithium-ion battery PNGV model are identified with the for-
getting factor recursive least square method. The identification results are shown in 
Figure 3.58.
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3.9.4  onLine iDentifiCation anD eStimation reSuLtS

The results of online identification and estimation of SOC are obtained. The initial 
SOC value of simulation is set as 1.0, and the SOC calculated by the ampere–hour 
integration method is also taken as the standard value. The error is the difference 
between the ampere–hour integration method and the improved fixed-lag smoothing 
(FLS)-EKF. It can be observed from the figure that the error of SOC estimation by 
online parameter identification combined with the improved FLS-EKF is less than 
±5%, and the maximum estimation error is −4.32%, as shown in Figure 3.59.

3.10  CONCLUSION

This chapter mainly introduces the definition of SOC and existing estimation meth-
ods, as well as various algorithms for SOC estimation. The research on lithium-ion 
batteries mainly starts with the prediction of SOC value. The SOC estimation of a 
lithium-ion battery is defined as the ratio of the remaining capacity of the battery to 
the nominal capacity of the battery, which is the remaining battery capacity and rep-
resents the percentage of the current remaining capacity. Estimating the SOC estima-
tion of the lithium-ion battery accurately can make the lithium-ion battery pack safer 
when it is used, and it can also improve the performance of the batteries. However, 

FIGURE 3.58 PNGV model fitting result. (a) Online identification resistance. (b) Online 
identification capacitance.

FIGURE 3.59 Online estimation effect based on improved FLS-EKF algorithm. (a) The 
online SOC estimation results. (b) Online SOC estimation error.
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the SOC interferes with various factors during the working process of the battery, 
which brings difficulties to the estimation of the SOC value. The main factors affect-
ing the SOC are temperature, charge–discharge rate, self-discharge rate, and battery 
aging. These factors affect the accuracy of SOC estimation by using different equiva-
lent circuit models and algorithms and could lead to different effects on the SOC esti-
mation of batteries. Generally speaking, the more complex the equivalent model, the 
more accurate it is, the more complex its calculation is, and the higher its operating 
cost. Also, algorithms depend on their operating environment, and the adaptation of 
different batteries is different, so it is very important to select the appropriate models 
and algorithms for the lithium-ion battery.
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Introduction: At present, due to the strong nonlinearity of lithium-ion batteries, 
the relevant research methods for the state of health (SOH) estimation are mainly 
divided into two types, mathematical model-driven, and data-driven. Compared with 
the data-driven methods, the mathematical model-driven model is matured relatively. 
By establishing an equivalent circuit model (ECM) to simplify the complex inter-
nal reactions of lithium-ion batteries, intelligent algorithms are combined to realize 
the estimation of health indicators (HIs). The established equivalent models mainly 
include electrochemical mechanism models, ECMs, and empirical models. In the 
application process, it is necessary to consider the internal factors such as electrolyte 
concentration, state of charge (SOC), and external factors such as temperature and 
SOH [245].

4.1  OVERVIEW OF BATTERY HEALTH INDICATOR

From a long-term perspective, SOH management improves the life cycle by evaluat-
ing the impact on battery aging by using the HIs, which reflects the capacity degrada-
tion of batteries. In recent studies, the estimation method of battery capacity uses the 
correlation between characterization parameters and aging [225]. It is a necessary 
issue to choose an appropriate HIs estimation method to reflect the degenerate non-
linear model. For most types of batteries, the ohmic internal resistance and polariza-
tion internal resistance of the ECM can be used as relatively suitable HIs [246].

Data-driven methods of SOH estimation are making progress. Several neural net-
work algorithms are continually discovered, which are represented by the backprop-
agation (BP) neural network algorithms. The process involves the combination of the 
BP neural network with the simulated annealing algorithm [247]. The health factors 
of the battery are input into the BP neural network, and the simulated annealing 
algorithm is taken advantage of to optimize the weights of the BP neural network to 
obtain the optimal solution to the prediction model. The parameters of voltage, cur-
rent, temperature, and other external battery characteristics are selected as the input 
variables. Then, particle swarm optimization (PSO) is introduced in the construction 
of the BP network to optimize the network weights, which enhances the global opti-
mization ability of the network. Comparatively, the accuracy of SOH estimation for 
lithium-ion batteries has highly improved by using the data-driven method.

Although significant progress has been made in the lithium-ion battery state esti-
mation at this stage, the diversity and various complex operating conditions make 
it difficult to achieve a high-precision simulation of the real operating conditions of 
lithium-ion batteries [248–250]. Also, there is a lack of a unified measurement stan-
dard for the SOH estimation of lithium-ion batteries. Therefore, the related research 
and application are still in their initial stage.

The research status of SOH estimation is introduced for lithium-ion batteries as 
well as some classical estimation algorithms. Based on several related studies and 
the improvement of the particle filtering algorithm, a new theoretical system using 
experimental data from the capacity attenuation of lithium-ion batteries and the cycle 
verification theory system has been proposed, which realizes the adaptive optimiza-
tion of the SOH estimation [251–253]. The innovation of this method is to gradually 
improve the accuracy of SOH estimation in terms of self-adaptation conditions and 
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comprehensively analyze the convergence and accuracy of the algorithm for multiple 
working conditions. The loop structure combines the experiment and algorithm into 
an automatic optimization system with good adaptability in various complex operat-
ing conditions. Also, it has the advantages of a simple measurement method and fast 
parameter identification.

Based on the improvement of the Kalman filtering (KF) algorithm, a new dual 
adaptive Kalman filtering (DAKF) algorithm is proposed for the co-estimation of 
SOC and SOH [254,255]. The innovation of this method is to adaptively co-estimate 
the SOC and SOH by comprehensively analyzing the convergence and accuracy of 
the algorithm under three working conditions. In the algorithm, both sides are mutu-
ally revised and have good applicability to several complex working conditions. This 
method has the advantages of a simple measurement technique and fast parameter 
identification. Based on the DAKF algorithm, the SOH value of the battery can be 
predicted for some time in the future [256]. In general, statistical methods for pre-
dicting battery status rely on historical data measured through experiments. The 
DAKF algorithm can make up for the lack of data in practical applications. A com-
prehensive model that combines DAKF and autoregressive models is used to predict 
SOH through statistical models when the amount of measured data is insufficient.

4.2  MODEL-BASED SOH ESTIMATION

The SOH estimation method based on mathematical modeling relies on a battery 
equivalent model combined with an adaptive intelligent algorithm to perform real-
time filtering calculations on battery HIs such as internal resistance and polariza-
tion internal resistance [257,258]. Then, the real-time estimation of SOH is realized 
through the mapping relationship between HIs and battery SOH. This method 
resolves the shortcoming that the direct measurement method can only estimate 
the health status off-line, which is suitable for practical engineering applications. 
However, its shortcoming is that it relies heavily on the battery model. Also, the char-
acteristic parameters of the SOH estimation, such as internal resistance, are affected 
by compound factors such as SOC, which increases the difficulty of estimating the 
SOH value. An accurate and real-time SOH estimation method should meet the 
requirements of high precision and low computational cost.

4.2.1  thevenin equivaLent moDeLing

The Thevenin equivalent model is widely used because it can fully characterize the 
internal characteristics of lithium-ion batteries, and the complexity of the model is 
not high. The schematic diagram of the Thevenin model is shown in Figure 4.1.

In Figure 4.1, OCU  is the open-circuit voltage, 0R  is the ohmic resistance, 1R  is the 
polarization resistance, and 1C  is the polarization capacitance. The parallel circuit 
of 1R  and 1C  describes the battery polarization process. As the battery ages, a series 
of changes occur inside the battery, which is characterized by changes in internal 
parameters such as capacity and ohmic resistance. Some scholars define SOH from 
the perspective of ohmic resistance by studying the change of internal resistance dur-
ing the aging process, as shown in Equation (4.1).
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In Equation (4.1), EOLR  is the internal resistance at the end of the battery life, BOLR  
is the resistance of the new battery, and R is the internal resistance of the battery in 
the application processes. The battery characteristics are considered by the Thevenin 
model, and the iterative estimation algorithm is used to estimate the characteristic 
quantities that can reflect the battery SOH in real-time by the online approach. At 
present, the commonly used intelligent algorithms include the KF, particle filter (PF), 
and the improved algorithms derived from these two algorithms.

4.2.2  kaLman fiLter anD itS extenSion

The KF method is a filtering theory created by the state-space theory in the time 
domain. It is an algorithm that uses the system state-space and input-output observa-
tion data to optimally estimate the state of the system [259,260]. The main idea of 
KF is to use the minimum mean square error criterion to dynamically estimate the 
target of linear Gaussian conditions and use the observable output error of the sys-
tem to correct the unobservable state error. Thus, the noise interference in the data 
is reduced, and the estimation accuracy of the system is improved. The state and 
observation equations of the linear system are designed, as shown in Equation (4.2).
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In Equation (4.2), xk is the state variable, uk is the system input, yk is the observation 
variable, wk and vk are the state and observation error, respectively. Each iteration 
of the KF algorithm is divided into two stages: prediction and measurement. In the 
prediction stage, a time-based prediction update is performed on the state variables 
based on the system state, which provides a prior estimation value for the posterior 
estimation at that time. In the measurement phase, the predicted value is corrected by 
the system observation value, and the deviation is corrected to update the estimated 
value. Equation (4.2) is then discretized as shown in Equation (4.3).

FIGURE 4.1 Thevenin model.
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In Equation (4.3), xk and 1xk+  are the state variable values of the system at the time points 
k and k + 1, respectively. uk is the input variable of the system, and yk is the expression 
of the observed value of the system at the time point k. Ak  is the state  transition matrix, 
which predicts the system variables, Bk is the system control input matrix, and Ck  is the 
systematic observation matrix, driving and predicting the system observations. w is the 
system process noise, and v is the measurement noise with covariance matrices of Q 
and R, respectively. Both of w and v are zero-mean Gaussian white noise.

Since the traditional KF algorithm can only be applied to linear systems, improved 
algorithms, such as EKF and unscented Kalman filter, are generally utilized to esti-
mate the battery health characteristic parameters [18]. Then, the battery SOH is esti-
mated in real time by the relationship between the health parameters and the battery 
SOH values. Using the functional relationship between the ohmic resistance  and 
the battery SOH, the recursive update of the battery ohmic resistance can realize 
the real-time state updating. By the Thevenin equivalent model established for the 
 battery, the internal ohmic resistance is selected as the state quantity to establish the 
state-space equation, as shown in Equation (4.4).
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In Equation (4.4), Rk is the internal ohmic resistance of the battery at the time point k, 
1wk−  is the system process noise at the previous time point 1k −  and Uk is the terminal 

voltages of the battery at the time point k, and (SOC)OCU  is the fitting function rela-
tionship between the battery open-circuit voltage OCU  and the battery SOC, which is 
generally a nonlinear empirical or high-order polynomial. ik  is the expression of the 
current flowing through the internal resistance 0R . 1,U k is the polarization voltage in 
the Thevenin model at the time point k to obtain Equation (4.5):
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 (4.5)

In Equation (4.5), 1R  and 1C  are the polarization resistance and capacitance in the 
Thevenin model, respectively. Based on the iterative steps of the KF algorithm, the 
battery ohmic resistance is filtered and estimated. The specific steps are described 
as follows:

 1. Initializing state vector 0R  and error covariance 0P  as shown in Equation (4.6).
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The initial value of the state and the error covariance matrix needs to be 
adjusted that is based on actual values. The initial value of the error covari-
ance indicates the confidence bounds in the initial value of the state. The 
initialization step affects the filtering time and the error of the iterative 
process.

 2. Time update of state variables and error covariance
In the recursive time update process of the ohmic resistance, it can be 
known from the established state-space equation that 1Ak−  = 1 can obtain 
the value of the ohmic internal resistance 0R  and the error covariance as 
shown in Equation (4.7):
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 3. Kalman gain updating
From the state-space equation, the state transition matrix C ik k= −  is 
obtained, and the Kalman gain Kk  is updated as shown in Equation (4.8):

 � � 1
K P C C P C Rk k k

T
k k k

T
k( ) ( )= + 

−
 (4.8)

In Equation (4.8), Rk is the variance matrix of the observation noise vk. The 
Kalman gain is the core of the EKF algorithm, and the precise calculation 
directly determines the reliability and accuracy of the state estimation.

 4. Measurement update
By the observation expression of the state-space equation, the state esti-
mated value after the time update is corrected, as shown in Equation (4.9):
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In Equation (4.9), the state variable test update is an accurate estimation 
of the state vector at the time point k, which is performed by selecting 
an accurate Kalman gain value. By the output Uk, the optimal estimation 
value of the state vector is obtained. The main idea of the EKF algorithm 
is to convert the nonlinear system into a linear system first [261]. Then, 
the linear system is calculated according to the process of the classical KF 
algorithm. The EKF algorithm is an improvement of the classical KF algo-
rithm, which makes it possible to solve the nonlinear system problem that 
the classical KF algorithm cannot solve. In this algorithm, after a series of 
multi- iterations, the estimated value of the internal resistance of the battery 
is finally obtained.
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4.2.3  extenDeD partiCLe fiLter

The PF calculation method is a Bayesian estimation algorithm based on recursion. 
The Monte Carlo method is taken advantage of to extract random particles from the 
posterior probability and assign a weight to each particle. It can be utilized in any 
form of the state-space model [262]. The calculation principle of the PF algorithm is 
divided into the following five steps.

Step 1. Initial state: A large number of particles are taken advantage of to simu-
late ( )x t , and the particles are evenly distributed in the space.

Step 2. Prediction stage: Each particle is predicted by the state transition 
equation.

Step 3. Correction stage: The predicted particles are evaluated; the closer the 
particles are to the real state, the greater the weight coefficient.

Step 4. Resampling: The particles are screened according to their weight. In 
the process, both large and small numbers of particles with large and small 
weight coefficients are, respectively, retained.

Step 5. Filtering: The resampled particles are brought into the state transition 
equation to obtain the new prediction mentioned in Step 2.

The state-space model of the PF system is established, as shown in Equation (4.10).
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In Equation (4.10), these two equations are called the state transition model and 
observation equation, respectively. xt is the state of the system; Zt is the output of 
the system; vt  and nt are the system noise and observation noise, respectively; ft 
and ht  are the nonlinear functions. Assuming that the state vector xt follows a first-
order Markov process, the prior probability equation of xt can be derived from the 
Chapman–Kolmogorov equation as shown in Equation (4.11).
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Then, the posterior probability of xt is updated by zt in Equation (4.12):

 

| | |

|
| |

|

0~ 1 0~ 1

0~

0~ 1

0~ 1

p z z p x z p z x dx

p x z
p x z p z x dx

p z z

t t t t t t t

t t

t t t t t

t t

∫
∫

( ) ( ) ( )

( )
( ) ( )

( )

=

=














− −

−

−

 (4.12)

Recursive Bayesian filtering consists of Equations (4.11) and (4.12), and it has high 
adaptability in many cases. However, obtaining posterior probability 0~p z zt t( ) by 
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the analytical solution is a hard thing in most situations. Compared with the analytic 
solution, the PF algorithm based on the Monte Carlo algorithm is more suitable. 
The core idea of PF is to approximate the posterior probability density by a set of 
weighted particles. The prior distribution probability of the known particles is sup-
posed to be | 0~ 1p x zt t( )−  and N  samples are drawn from the system. The posterior 
distribution is approximate, as shown in Equation (4.13):
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In Equation (4.13), for 0~ 0~x xt t
iδ ( )− , the functional relationship is shown in 

Equation (4.14):
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The importance of distribution |0~ 0~ 1q x zt t( )−  and the importance weighting factor t
iω  

for each sample are shown in Equation (4.15), respectively.
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In Equation (4.15), the symbol ∝ indicates to be proportional. Next, it is necessary to 
get the normalized importance of weight � t

iω . The method is shown in Equation (4.16):
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After getting the normalized importance weight � t
iω , the state x̂t can be estimated, as 

shown in Equation (4.17).
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The state prediction process of the PF algorithm is an iterative process of repeated 
prediction and update. The prediction flowchart and the schematic diagrams of algo-
rithm implementation are shown in Figures 4.2 and 4.3, respectively.

In Figures 4.2 and 4.3, xk
i  is the state of the thk  sample of the system at time point 

k. Unlike the KF algorithm, which has to constrain a Gaussian linear function, the 
PF algorithm uses the Monte Carlo sampling mechanism that can be used for any 
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dynamic model with any form of noise. The PF-based SOH prediction is similar to 
the KF algorithm, which establishes a state-space based on the established ECM to 
iteratively estimate the internal resistance of the batteries. Then, the battery SOH can 
be obtained according to the corresponding relationship between internal resistance 
and SOH. The specific iterative steps are described as follows:

FIGURE 4.2 Flowchart of PF state estimation.

FIGURE 4.3 Schematic diagrams of the PF algorithm.
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 1. Setting the initialization parameters, the initial value  k  = 0, the number of 
iterations  N  = 1000, and the number of samples M  = 100.

 2. Generating sampled particles from the prior probability density, and all 
 particles have equal weights.

 3. Iteratively calculate the value according to the battery ohmic resistance 
state.

 4. Calculating the weight of each P  at the time point and performing normal-
ization processing.

 5. Determining whether the number of particles is greater than the set effec-
tive number of particles, if not resample is performed, and weights are 
redistributed.

 6. The posterior probability calculation equation is taken advantage of output-
ting the estimated state value.

Steps (3)–(6) should be repeated until the number of iterations is N = 1000. The PF 
method uses the Monte Carlo sampling algorithm to approximate the probability 
density by assigning different weights to the sampled particles. It avoids the linear-
ization of the KF algorithm and the simplified assumption of Gaussian noise. It pro-
vides a suitable prediction method by effectively calculating the uncertainty related 
to the estimated variable, which can achieve higher prediction accuracy.

4.2.4  DuaL aDaptive kaLman fiLter

The DAKF algorithm based on multi-resolution is used to analyze the nonstation-
ary voltage signal during the battery charge–discharge processes. It simultaneously 
extracts the characteristics of the battery in the time and frequency domains [263]. 
By analyzing the voltage curve of the low-frequency part of the battery with different 
aging degrees, it is observed that the greater the aging degree is, the lower the voltage 
curve of the low-frequency part is relative to the new battery. The DAKF algorithm 
is a novel method for the SOH estimation, which is easy to be understood, relatively 
simple to use, and has a small amount of calculation time [108]. It avoids the estima-
tion error caused by many unknown parameters in the actual BMS due to general 
electrochemical and ECM error.

The second-order RC ECM includes an ohmic resistor and two parallel-connected 
resistor–capacitor networks. These components take into account the internal hyster-
esis effect and the polarization phenomenon of the chemical reaction by comprehen-
sively describing the dynamic and static characteristics of the lithium-ion batteries 
in the charge–discharge process. The structure of the second-order RC ECM is rela-
tively simple, as shown in Figure 4.4.

In Figure 4.4, OCU  is the open-circuit voltage of the battery, and 0R  is the ohmic 
resistance. 1R  and 2R  are the electrochemical and concentration polarization resis-
tances, respectively. 1C  and 2C  are the electrochemical and concentration polarized 
capacitors, respectively. The current I passing through the entire circuit is used as the 
system input. When charge–discharge, the battery terminal voltage is the observed 
value UL. According to Kirchhoff’s law, the state-space for discretization is shown 
in Equation (4.18):
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In Equation (4.18), 1, 1U k+  and 2, 1U k+  are the terminal voltages of the two RC circuits, 
1Sk+  is the estimated SOC value of the lithium-ion battery. T  is the sampling time, η  is 

the Coulomb efficiency, C  is the available battery capacity, Uk is the terminal voltage, 
and Ek  is the power supply voltage. The equation for calculating the SOC and internal 
resistance of the battery is directly derived from the above equation.

 1. Research on the state of charge and state of health
The SOC estimation of a lithium-ion battery refers to the ratio of the remain-
ing capacity to the rated capacity under certain conditions, and it ranges 
from 0% to 100%. The SOC cannot be measured directly, which is only 
estimated through other internal parameters of the batteries. According to 
the definition of SOC, its expression is shown in Equation (4.19):

 SOC *100%
0

Q

Q
t

t=  (4.19)

In Equation (4.19), Qt  is the remaining battery capacity at time point t, and 
0Q  is the rated capacity. Qt  is obtained by discharging, and the battery is 

fully charged and discharged to the cut-off voltage under various working 
conditions. Therefore, in theory, the SOC is only obtained by discharging 
electricity. However, the type of method only calculates the SOC under off-
line conditions and cannot estimate it in real time. The discharge capacity 

FIGURE 4.4 Second-order RC equivalent circuit model.
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is expressed as the integral of current over time. As long as the sampling 
period is short enough, it is considered that the current does not change to 
realize the real-time estimation of SOC. Therefore, the SOC can be esti-
mated in real-time according to Equation (4.20):

 SOC SOC
( )

0
0

0

I t dt

Q
t t

t

t

∫ η
= −  (4.20)

In Equation (4.20), η  is the Coulomb efficiency, which is directly used as 
1η =  and SOC 0t  is the SOC of the battery at the time point 0t . The filtering 

algorithm discretizes the equation and divides it into adequate intervals. 
Then, the iterative nature of SOC is used to estimate the changing law in the 
whole process. The SOH of the power battery is usually analyzed from the 
perspective of an increase in internal resistance. If the internal resistance 
increases to a threshold level, the power becomes limited, and the battery 
reaches the end of life (EOL) state at the time. Therefore, the definition of 
battery SOH in terms of resistance is shown in Equation (4.21).

  SOH *100%EOL

EOL BOL

R R

R R
= −

−
 (4.21)

In Equation (4.21), EOLR  is the internal resistance when the battery reaches 
the EOL state, which is 10 times that of the new battery for lithium-ion 
batteries. R is the internal ohmic resistance of the battery at the current 
time point, and BOLR  is the internal resistance of the new batteries. When 
the SOH drops to 80%, the battery reaches the EOL state and needs to be 
replaced or scrapped.

 2. Research on dual adaptive Kalman filter
The classical KF algorithm is only suitable for linear systems, and a lin-
earization step needs to be added to obtain the EKF algorithm. It is neces-
sary to improve the traditional EKF algorithm by adding an adaptive factor 
to estimate the statistical characteristics of the system to realize the joint 
estimation of internal resistance and SOC more accurately. First, the state-
space expression of the system is obtained as shown in Equation (4.22):
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In Equation (4.22), wk is the process noise, and vk is the observation noise. 
Because the variation of the internal resistance is very low, a small amount 
of noise mk  is used to express its change. dk  is the forgetting factor, and r 
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is the mean value of vk. (SOC)OCU  is the functional relationship of open-
circuit voltage concerning SOC value, and 1,U k and 2,U k are the polarization 
voltages. The matrices of Ak , Bk, Ck , and Dk  are all determined by the model 
state-space expression, as shown in Equation (4.23).
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In Equation (4.23), Rk is the internal resistance at time point k. The estima-
tion process of the DAKF algorithm mainly includes five parts: initializa-
tion, time update, Kalman gain calculation, filter update, and noise update. 
The flowchart of the DAKF algorithm is shown in Figure 4.5.

 1. Initialization: The initial values are set for the variables and error cova-
riance matrix at time point 0k = . The first element of the state vector xk 
is SOC, and the remaining elements are zeros. The initial value of the 
internal resistance is identified by the parameter. 
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Taking �0x  and 0x  as the initial value of the state vector filter, ˆ
0R  and 0R  

as the initial value of the internal resistance filter, the initialization is 
realized as shown in Equation (4.24):
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 2. Time update: �xk is the time update value of the state vector, 1xk−  is the 
last filter update value, q is the mean value of wk, F  is the noise driving 
matrix, Pw is the wk covariance, and Pr  is the error covariance. ,Px k

�  is the 
time updating of the state vector error covariance, and , 1Px k−  is the last 
filter update value. Let �Rk be the internal resistance time update value, 
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1Rk−  be the last filter update value, ,Pr k
�  be the internal resistance error 

covariance time update value, and , 1Pr k−  be the last filter update value as 
shown in Equation (4.26):
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FIGURE 4.5 The flowchart of the DAKF algorithm.
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 3. Kalman gain calculation: Kalman gain is used to update variables and 
error covariance. Taking ,Kx k  as the state vector Kalman gain, ,Kr k as 
the internal resistance Kalman gain, the expression is shown in Equation 
(4.27):
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 4. Measurement update: Using the Kalman gain obtained in the previous 
step, and the time updated value of the variable and the covariance, Uk 
is the terminal voltage experimentally measured, and Yk  is the residual. 
The Kalman gain is used to filter and update the state variables and 
error covariance to obtain the measurement update value at time point 
k as shown in Equation (4.28):
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 5. Noise update: The AKF algorithm adds an adaptive step based on the 
EKF algorithm and updates the noise to make it more in line with 
the changing situation of the interference under actual conditions. 
The   estimated mean noise and covariance values are updated by the 
state vector, and the noise covariance is estimated by the internal resis-
tance as shown in Equation (4.29):
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The accuracy of the algorithm depends on two factors. The first part 
is the initial value of the internal resistance and the noise variance. 
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The initial value of the internal resistance is the internal resistance of 
the new battery, but the noise variance is adjusted in real time. The 
second part is the current and voltage of the imported algorithm. If the 
data are noisy, the algorithm convergence performance may be limited.

 3. Experiments and results
 a. Parameter identification

Based on the second-order RC model, the off-line method is used 
for parameter identification, and the parametric results are shown in 
Table 4.1.

From Table 4.1, the data are selected from 30% to 80% SOC. Because 
the battery has a high power at high SOC, the internal resistance is low. 
When the battery is about to be fully discharged, the internal resistance 
rises rapidly, and the estimation result of SOH is low, which is inconsis-
tent with the actual health status. Also, the open-circuit voltage is pro-
portional to the SOC value. The curve-fitting method is used to obtain 
a sixth-order linear fit between the OCV and SOC parameters, and the 
same operation is performed on the remaining parameters.

 b. State estimation under HPPC operating conditions
Using the DAKF algorithm, the experimental current and voltage 
obtained by the HPPC test are introduced to obtain the change pro-
cess of the battery SOC and internal resistance. The DAKF algorithm 
estimates the SOH value of the battery with the forgetting factor least 
square method. The obtained result is used as a reference, and the SOC 
estimation results of the lithium-ion battery are shown in Figure 4.6.

In Figure 4.6a, SOC1 is the change process of the SOC obtained 
by the ampere–hour integration method, and SOC2 and SOC3 are the 
results of SOC obtained by EKF and DAKF algorithms, respectively. 
In Figure 4.6b, Err1 and Err2 are, respectively, the errors between 
SOC2and SOC3 compared with SOC1. It can be seen that the error of 
DAKF is more stable, and the mean value is smaller than that of EKF, 
and the maximum error is reduced by 2.163%. The SOH estimation 
results under HPPC working conditions are shown in Figure 4.7.

In Figure 4.7a, R1 is the battery internal resistance change process, 
R2 is the internal resistance of the forgetting factor least square method 

TABLE 4.1
Parameter Identification Result of Second-Order RC Equivalent Circuit Model

SOC UOC(V) R0(Ω) R2(Ω) C2(F) R1(Ω) C1(F)

0.8 3.9368 0.00215142 0.00093170 29108.1340 0.00032683 1240.7267

0.7 3.8323 0.00210102 0.00113284 28547.7525 0.00032246 1263.1096

0.6 3.7252 0.00204085 0.00085208 30102.8295 0.00031913 1285.6905

0.5 3.6527 0.00200420 0.00074835 40529.3208 0.00031561 1275.3141

0.4 3.6185 0.00198594 0.00028976 1465.0150 0.00066627 40299.0720

0.3 3.5907 0.00197412 0.00080352 39849.8270 0.00029968 1418.5330
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as a result, the maximum deviation is 0.00165 Ω. In Figure 4.7b, SOH1 
and SOH2 are estimation results of the SOH by the DAKF algorithm 
and the forgetting factor least square method, respective. It can be seen 
that SOH1 fluctuates roughly around SOH2, with a maximum deviation 
of 6.288%, and the overall SOH changes little.

 c. Changes in SOC and SOH estimation under BBDST condition
Under the BBDST condition, the battery imitates the working state of 
the bus, and the working condition is divided into morning peak, eve-
ning peak, and suitable period. The battery is charged and discharged 
with constant power. The test finally discharges the battery to a cut-
off voltage of 2.75 V. The estimated SOC of the battery is shown in 
Figure 4.8.

In Figure 4.8, the SOC estimation results of DAKF have better con-
vergence. Compared with the estimation results of EKF, the error is 
lower. The maximum error is 1.30%, which is less than 4.88% of the 
former and a reduction of 3.58%. The SOH estimation results under 
BBDST working conditions are shown in Figure 4.9.

In Figure 4.9, the SOH1 and SOH2 are estimation results of the 
state of heaith by DAKF algorithm and theforgetting factor least square 
method respective the internal resistance estimation result fluctuates 

FIGURE 4.6 State of charge estimation under HPPC condition. (a) SOC estimation. (b) SOC 
estimation error.

FIGURE 4.7 State of health estimation under HPPC condition. (a) Internal resistance 
change process. (b) SOH estimation.
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around the results of the forgetting factor least square method. The 
internal resistance rises rapidly closer to the cut-off voltage. The reason 
is that the internal polarization reaction rapidly increases when the bat-
tery is about to be fully discharged. The SOH estimation results show 
that the DAKF algorithm has good convergence. Comparatively, the 
results of the forgetting factor least square method have a divergence of 
less than 3%, which have a better evaluation effect on the battery SOH 
estimation.

 d. Estimation of battery SOC and SOH under DST working condition
The dynamic stress test (DST), that is, the cyclic constant current 
charge–discharge test, was performed on the ternary lithium-ion bat-
tery. The battery is discharged to a cut-off voltage of 2.75 V. The voltage 
and current data of the battery obtained from the test are imported into 
the DAKF algorithm. The SOC and internal resistance change of the 
battery are obtained under the working condition; the SOC estimation 
result is shown in Figure 4.10.

In Figure 4.10, it can be observed that the proposed DAKF has a bet-
ter effect in estimating SOC than the EKF. When the battery is about 
to be fully discharged, the error of the EKF estimation of SOC sud-
denly increases, but the DAKF algorithm does not, indicating that the 

FIGURE 4.8 Changes in SOC under BBDST working conditions. (a) SOC estimation. 
(b) SOC estimation error.

FIGURE 4.9 Changes in SOH under BBDST working conditions. (a) Internal resistance 
change process. (b) Changes in SOH under BBDST working conditions.
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algorithm has high convergence. Under DST conditions, the error of the 
SOC estimation result is less than 1.00%, and the error is reduced by 
5.997% compared with the 6.527% of EKF. The SOC estimation result 
is shown in Figure 4.11.

In Figure 4.11, the SOH1 and SOH2 are estimation results of the 
SOH by the DAKF algorithm and the forgetting factor least square 
method respective. The internal resistance estimation result is slightly 
higher than the forgetting factor least square method result. Meanwhile, 
the SOH estimation result is slightly lower, and the divergence is less 
than 6%.

4.3  DATA-DRIVEN SOH ESTIMATION

The entire vehicle battery system uses multiple lithium-ion batteries in series and 
parallel to form a battery pack to meet the power output and ensure the high-power 
output of the power supply system [264]. However, it leads to more complex struc-
tures and brings hidden dangers to the safety of new energy vehicles. During the 
actual application, the aging of the lithium-ion batteries is observed by the declina-
tion in the remaining capacity and the increase of the internal resistance leading to 
the continuous degradation of the SOH. The aging battery brings potential safety 

FIGURE 4.10 Estimation of SOC under DST conditions. (a) SOC estimation. (b) SOC esti-
mation error.

FIGURE 4.11 Estimation of SOH under DST conditions. (a) Internal resistance change pro-
cess. (b) SOH estimation.
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hazards to the operation of electric vehicles. Hence, it is necessary to know the SOH 
of the battery in real-time applications [262,265,266]. Also, the lithium-ion battery is 
a complex electrochemical system with many factors affecting the remaining capac-
ity and has a high degree of nonlinearity, which makes the SOH extremely difficult 
to be predicted.

The battery state prediction methods mainly include physical degradation models 
and data-driven methods. Advanced degradation models for lithium-ion batteries are 
highly accurate and adaptable, but they are too complex and have high calculation 
costs, while simple degradation models have low accuracy and poor adaptability in 
predicting battery status. Compared with the physical degradation model method, 
the data-driven method does not require the establishment of a complicated battery 
model. The internal information of the battery can be fully displayed through the 
collected sample data so that the performance of the battery can be predicted through 
the collected sample data. In the context of current big data, data-driven methods 
have good use value in the field of battery health monitoring. The health status infor-
mation of the lithium-ion battery can be obtained through the analysis of the experi-
mental data, and the battery status can be monitored, which can effectively improve 
the safety of new energy vehicles and eliminate user “mileage anxiety”.

4.3.1  Support veCtor maChine

A support vector machine (SVM) is a concrete realization of the dimensional theory 
of statistical learning theory and the principle of structural risk minimization [267]. 
The SVM method uses a small number of support vectors to represent the entire 
sample set and seeks the optimal balance between the complexity of the model and 
the learning ability to obtain the best promotion ability. The SVM algorithm is good 
at dealing with the linear inseparability of sample data, which is mainly realized by 
penalty and kernel function technology. At present, the SVM algorithm has applica-
tions in pattern recognition, regression estimation, probability density function esti-
mation, and so on [268–270]. There are n training sample data (xi, zi), where xi is the 
thi  input sample and zi is the corresponding output value. The functional expression 
considering linear regression is shown in Equation (4.30):

 ( ) ( ) , ,f x x b R b Rnω ω= + ∈ ∈  (4.30)

In the numerical calculation, a margin of error is allowed between ( )f x  and the true 
value z, and a suitable loss function needs to be introduced as shown in Equation (4.31):

 *f x zi i ξ ε( )− ≤ +  (4.31)

In the numerical calculation, a margin of error is allowed between ( )f x  and the true 
value z, and a suitable loss function needs to be introduced, as shown in Equations 
(4.32)–(4.35):
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 x b zT
i i iω φ ε ξ( )+ − ≤ +  (4.33)

 *z x bi
T

i iω φ ε ξ( )− − ≤ +  (4.34)

 …, 0, 1, ,* i li iξ ξ ≥ =  (4.35)

In Equations (4.32)–(4.35), Tω ω  determines the confidence range; iξ  and *
iξ  are slack 

variables. The constant C  is the penalty factor, which reflects the tolerance of the 
model to errors in the learning process. Since the optimization problem is a convex 
quadratic optimization problem, the Lagrange function is introduced, as shown in 
Equations (4.36) and (4.37):
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 0*eT α α( )− =  (4.37)

The final regression function is shown in Equation (4.38):

 ( ) ,*f x K x x bi i iα α( ) ( )= − + +  (4.38)

The analysis shows that the health state estimation model of the lithium-ion battery is 
a multivariate nonlinear model related to monitoring parameters, which is described 
by the mathematical model shown in Equation (4.39):

 , , ,SOCC f i Tυ( )=  (4.39)

In Equation (4.39), i is the discharge current of the battery, and υ is the terminal 
voltage of the battery. T  is the battery temperature, SOC is the electrical state of the 
battery, and C  is the battery capacity in the present SOH situation. For nonlinear 
regression models, the basic idea of the support vector regression machine is to use 
the inner product function to map the training data to a high-dimensional space and 
use the function to perform linear regression in the high-dimensional space. Then, 
return to the original space to obtain the original input space. The inner product 
function is called the kernel function. In the training process of the model, the kernel 
function is the key factor that determines the performance of the SVM algorithm. 
The Gaussian radial basis kernel function is selected, and its expression is shown in 
Equation (4.40):

 , exp , 02K x x x xi iγ γ( )( ) = − − >  (4.40)

The SVM-based SOH estimation is mainly divided into two parts: support  vector 
regression machine model training and lithium-ion battery SOH estimation. 
(1) Support vector regression machine model training: conduct aging tests on bat-
teries under dynamic working conditions, monitor and record operating parameters, 
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and extract health factors. At regular intervals, the battery capacity is calibrated and 
used as the output. Voltage, current, temperature, and SOC are used as input factors. 
And then, a regression model is established. (2) Lithium-ion battery SOH estimation: 
extract HIs based on battery operating data and input them into the SVM model 
to estimate the current lithium-ion battery capacity. The SOH value is obtained by 
the SOH definition expression. The flowchart of the SVM-based SOH estimation is 
shown in Figure 4.12.

The SVM method of estimating the SOH value requires a large amount of life 
decline data to establish a regression model [271]. When selecting data, it is neces-
sary to ensure the comprehensiveness of the data and try to include battery life data 
under various environmental conditions. For data with large individual errors, the 
reasons should be analyzed to eliminate individual interference data.

4.3.2  Deep ConvoLutionaL netWork

The convolutional neural network (CNN) is a feedforward neural network (FNN), 
which not only includes a convolutional calculation function but also has a certain 
depth structure. It is often used in computer vision, natural language processing, and 
other fields. Similar to BP neural network, CNN has an input layer, hidden layer, 
and output layer. But each layer is different from the BP neural network. Compared 
with the BP neural network, the hidden layer of CNN is no longer a single neuron 
combination. It does not contain a convolutional layer with a weighted convolution 
kernel but also a pooling layer for filtering. There is a tiled layer that plays a role in 
connection called a fully connected layer [272,273].

 1. Convolutional layer: The convolutional layer uses the internal convolution 
kernel to extract features from the input samples. It has three important 
parameters, namely the size, the step size, and the padding. These param-
eters determine the size of the output feature map of the convolution layer. 
In the convolutional layer, the activation function is used to express the 
complex features of the input. The CNN algorithm is used in the remaining 

FIGURE 4.12 SVM-based SOH estimation flowchart.
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useful life (RUL) function. Generally, the activation function operation is 
performed after the convolution kernel but is not fixed. There are many 
types of activation functions, but their application can be changed.

 2. Pooling layer: After the input samples are passed through the convolutional 
layer, the feature map is obtained. Then, the pooling layer is used to perform 
feature selection and information filtering on the feature map. The pooling 
layer also includes pooling size, step size, and fill in the control parameter 
index. The difference is that the pooling layer only adjusts these parameters 
to extract the maximum or average value in the feature map. The pooling 
layer can also reduce the number of nodes in the fully connected layer and 
prevent overfitting.

 3. Full connect layer: The fully connected layer is similar to the hidden layer 
in the BP neural network. Therefore, its structure and corresponding work-
ing principle are the same as the hidden layer in BP neural network. Its 
function is to perform a series of nonlinear combinations on the features 
extracted after the input sample is convolutional to obtain the corresponding 
output.

The difference between the CNN and BP neural network is that the hidden layer of 
the CNN is not only fully connected but also a network layer for extracting features. 
The hidden layer is interactively connected between the convolutional layer and the 
pooling layer. Before trying the method, it is assumed that the ability to automati-
cally extract features would be more beneficial than discovering feature parameters 
by analyzing the data in advance.

4.3.3  maChine Learning

Machine learning (ML) is a data analysis method that automates the construction of 
analysis models. The ML system learns from data and makes decisions or predictions 
with minimal human intervention. The basic workflow required for ML applications 
for online SOH estimation is divided into four steps. The first step is data collection 
[274]. The measurable battery parameters, such as temperature, current, and voltage 
data, are recorded by the BMS during operation and used as input for the training 
model. However, not all data are related to battery aging. The second step is to extract 
characteristic values that represent the aging process. The third step is to train an ML 
model to describe the relationship between the battery SOH and the extracted feature 
values. After training the model, the last step is to implement it in BMS and apply it 
online. Among them, feature value extraction is a key step, which seriously affects 
the performance of SOH estimation [275,276]. A reasonable eigenvalue extraction 
makes the input data more meaningful and accurate, which also makes the prediction 
more targeted and accurate.

From the perspective of extracting feature values, ML-based SOH estimation 
methods are divided into three categories. The first type is model fitting eigenvalues. 
Thus, eigenvalues are calculated through basic electrical models and online param-
eter/state estimation algorithms. This type of eigenvalues cannot be directly accessed 
from BMS sensors, so they are not suitable for real-time applications. The second 
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type is the indirect characteristic value, which usually extracts the values from the 
differential charging curve at a constant current rate. The change of characteristic 
value is closely related to the aging process. Due to the limited computing power of 
the BMS, it is difficult to obtain many external features in operation. Therefore, ML 
models with variables that can be measured online are more suitable for implementa-
tion in more complex devices such as electric vehicles (EVs).

For the third type, direct feature value is obtained by directly accessing the BMS 
sensor without using models and differential curves for processing data, such as ter-
minal voltage, current, and temperature, to reduce the computation and shorten the 
SOH estimation time. After collecting and properly representing the dataset, select-
ing the appropriate ML model is necessary. The ML models are divided into super-
vised and unsupervised learning models. For the supervised learning model, the 
training data consist of a collection of inputs and their corresponding output values. 
The goal of the algorithm is to learn a mapping from input to output with acceptable 
fidelity. The form of the output value can be in a discrete set to classify a battery as 
faulty or nonfaulty or in a continuous set of capacitance or resistance values. When 
the output is classified, the problem is called classification. But when it is a real value, 
it is called regression. All battery health estimation and prediction problems fall into 
the regression category because they generate SOH or service life values.

Contrary to a supervised learning model, an unsupervised learning model deter-
mines the variables or feature values to train the model and make predictions. The 
values are imported into a given input to find the trend or clustering of the data with-
out other inputs. So far, a supervised model is the most mature and powerful method. 
Most research on machine learning methods for battery health diagnosis and predic-
tion uses supervised learning models. Therefore, the ML method described here is 
centered on supervised learning models. Several supervised ML techniques have 
been used for battery SOH estimation, including SVM, artificial neural networks, 
correlation vector machine, Gaussian process regression (GPR), and random forest 
regression.

Although the ML method is used for SOH estimation and RUL prediction, there 
are differences between the two applications in terms of input and output characteris-
tics. In the SOH estimation, the input feature values for estimation are extracted from 
the BMS, and the output is the capacity estimation at a given time point. However, 
the ML method used for RUL prediction usually requires estimated or measured 
SOH information, which means the capacity value is used as an input to predict the 
remaining lifetime or period. The supervised ML model can be a probabilistic model 
or a non-probabilistic model. For the non-probabilistic, the result is determined by 
the known relationship between the state and the event, without the need to model 
the potential probability distribution, including artificial neural networks, SVM, etc.
[277,278] However, the important aspect of RUL diagnosis is not only to predict the 
RUL value but also to propose the uncertainty level of the prediction. Therefore, 
GPR, RVM, and other probabilistic models derived from the Bayesian framework 
have attracted more attention due to the level of uncertainty. In addition, GPR is a 
machine learning method based on kernel function, which can be combined with 
shell-based prior knowledge of the Yees framework used to realize the prediction. 
The relevant uncertainty is described by providing the confidence interval of the 
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predicted value. For accurate SOH and RUL estimation, in addition to choosing a 
better modeling method, it is also very important to select the health factors that can 
characterize the degree of battery aging.

4.3.4  fuSion moDeLing

With the introduction of battery health assessment methods, the battery model and 
data-driven SOH assessment methods have advantages and disadvantages in terms 
of accuracy and feasibility. Therefore, the latest research hotspot is the strategy of 
estimating the SOH by combining the fusion model with any of these two methods. 
The main idea of the fusion method is to combine, correlate, and merge multiple 
types of data, models, or algorithms to take full advantage of data information to 
achieve a more accurate and reliable SOH collaborative estimation of lithium-ion 
batteries. The co-estimation methods make up for the shortcomings of low estima-
tion accuracy, poor reliability, or misjudgment of a single method and have attracted 
more research attention [279].

There are two practical methods in fusion modeling. One is to fuse different data-
driven algorithms, which combine PSO and SVM algorithms. The PSO algorithm 
improves the speed of parameter optimization to enhance the SVM algorithm and 
realize accurate SOH prediction. With the same idea, multiple data-driven methods 
can be weighted and merged. Combining the data-driven algorithm with the bat-
tery model-based method to optimize the error detection of the battery model, the 
error of the observed state through the data-driven method improves the accuracy 
of SOH estimation. Using PSO and SVM algorithms to model historical data, pre-
dict future measurement data, and establish battery capacity decline and model. The 
PSO algorithm estimates the battery health status to update the forecast data in real-
time applications [280–282]. Also, through a large number of off-line tests, the gray 
neural network algorithm is used to train the off-line parameters to obtain the bat-
tery aging model. Then, the battery equivalent model is established, and the internal 
impedance parameters are obtained. The gray neural network algorithm identifies 
the online parameters to obtain the battery SOH value.

Combining the voltage and current data with the ECM in the real-time operation, 
it is observed that the ohmic resistance and capacitance of the model change monoto-
nously with the attenuation of battery performance to realize the SOH estimation of 
the lithium-ion batteries. SVM is used to predict the future residual of lithium-ion 
batteries [283,284]. Then, the future residual combined with the unscented Kalman 
filter recursively estimates the remaining life and available capacity of the battery 
to ensure the reliability and accuracy of the estimation method. Also, combining PF 
and SVM to estimate the capacity and impedance of lithium-ion batteries can obtain 
high-precision SOH diagnostic results.

Meanwhile, to solve this problem, a dual extended Kalman filter is proposed to 
estimate the battery state. The variation law of model parameters with the prema-
ture aging of the battery is studied. A method for online identification of model 
parameters based on an autoregressive external source model based on an accurate 
parameter model is proposed. The regression external source model provides accu-
rate battery open-circuit voltage information, realizes the collaborative estimation 
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of battery state, and improves the accuracy of state estimation. The fusion method 
gradually combines different state estimation methods to take respective application 
advantages to achieve a coordinated SOH estimation of lithium-ion batteries for dif-
ferent actual needs. The realization process of the fusion method is simple and fast, 
showing a good application prospect.

4.3.5  iC-BaSeD Soh eStimation

Aside from the classical methods mentioned above, other methods used to estimate 
the SOH of the battery are the gray correlation analysis method and wavelet trans-
form method. The gray correlation analysis is also combined with other methods to 
estimate the SOH value of the batteries [285]. Considering the six main factors that 
affect SOH, experts score them and determine weights and then use the gray correla-
tion analysis to optimize the parameters that affect these factors. Due to the influence 
of many factors on SOH, the method is more reasonable and accurate in estimating 
SOH than the traditional method that only considers a specific factor.

 1. Battery incremental capacity curve
The incremental capacity analysis is an important method to examine 
the degradation mechanism of batteries, which is centered on the battery 
incremental capacity curve (IC curve) [286]. The research takes a ternary 
lithium-ion battery with 25 Ah produced by a domestic manufacturer as the 
experimental object. The battery terminal voltage versus charging capac-
ity voltage curve is shown in Figure 4.10a. It is observed that the voltage 
rises rapidly in the initial and final stages of the battery charging period, 
but in the middle of the charging curve, the voltage rises gradually. The 
part of the curve where the voltage rises gradually has the highest charged 
capacity. The battery incremental capacity analysis method is to process the 
original charging data to obtain the /dQ dV  data (charging capacity derived 
from the battery terminal voltage), then the −/dQ dV V  curve (IC curve) is 
obtained.

The advantage is that the voltage curve rises gradually, and the rela-
tively flat area of the battery internal reaction is transformed into a /dQ dV  
peak, which is easily observed and can only be analyzed on the incremental 
capacity curve, making it difficult to be identified on the voltage curve. A 
slight change is reflected in the IC curve. Taking a ternary lithium-ion bat-
tery as an example, during the entire charging process, the reaction of the 
positive electrode is mainly nickel ions (Ni+) transforming from divalent 
ions (Ni2+) to trivalent ions (Ni3+). These two reactions are converted into 
tetravalent ions (Ni4+), while the negative electrode reaction is the four-
phase transitions between the five states (C6, C72, C36, C18, and C12) of 
graphite (carbon). The current V Q−  and /dQ dV V−  curves of the ternary 
lithium-ion battery can be obtained accordingly.

The analysis of the characteristics of the variation curve of different aging 
degrees during the battery cycle aging process, including the height and 
both sides of the IC peak, are studied. The area under the peak is analyzed 
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to determine the mode and mechanism of battery aging and degradation, 
which affects the diagnosis of the health status of the battery.

 2. Characteristic parameters and change characteristics of battery health status
 a. Characteristic parameters in the incremental capacity curve

The battery capacity model is used to estimate the actual battery 
capacity. The first step is to select and screen the independent variables 
of the model. The incremental capacity curve of a lithium-ion battery 
is composed of several IC peaks [287]. In the incremental capacity 
curve, the characteristic parameters that are easily extracted include 
the position of each peak with the corresponding voltage value, the 
height of each peak, the area of the peak, and the slope on both sides 
of each peak. The schematic diagram of each parameter in the ternary 
lithium-ion battery incremental capacity curve is shown in Figure 4.11. 
The preliminary selected characteristic parameters are used, including 
the height of peak I, the area under peak I, the left and right slopes 
of peak I, the position of peak I, and the height of peak II. There are 
eleven parameters including the area of the peaks, in which the left and 
right slopes of peak II, the position of peak II, and the area of peak III, 
as shown in Figure 4.13.

In Figure 4.13, all the initial parameters extracted are used for model 
training, which is too redundant, and the task of data preprocessing is 
large. There is a strong linear relationship between multiple indepen-
dent variables, but multicollinearity problems occur in the regression 
process, so the characteristic parameters need to be simplified. First, 
from the aspect of data source acquisition in practical applications in 

FIGURE 4.13 Schematic diagram of characteristic parameters.
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energy storage battery packs of EVs, there are usually inconsistencies in 
single cells due to capacity, internal resistance, and SOC value.

Due to the inconsistency of the SOC estimation of each cell in the 
battery pack, most batteries are not fully charged. If the parameters 
related to the highest or lowest point of the SOC, such as the area cov-
ered by peaks I and III, are included in the independent variables, the 
single cells in the module may not be fully charged. If the parameter 
data cannot be obtained due to the large-scale operation, the area cov-
ered by peak I, peak III, and the slope on the left side of peak I, which 
depend on the full SOC operation of the battery, are excluded from the 
characteristic slope. Furthermore, it can be observed from the curves 
that the shift between peak I and peak II positions is almost the same 
due to the increase in internal resistance and polarization with aging. 
According to a mathematical relationship, the slopes to the right of peak 
I and the left of peak II are determined by the height of the two peaks 
and the minimum point between the two peaks.

If the heights of the two peaks are selected as the two characteristic 
parameters, the slope on the right side of peak I and the left side of 
peak II depend on the minimum value between the two peaks and both 
sides. The two have a negative correlation, so one of the two is selected 
because the main peak of the variation curve for peak II can better 
reflect the thermal characteristics of the batteries. The slope of peak 
II reflects the speed at which the battery enters the transition phase. 
Therefore, the SOC on the left side of peak II is selected with the same 
expression. Therefore, the position of peak I can be eliminated, and that 
of peak II is retained. In summary, the five characteristic parameters 
include the area of peaks I and III and the slopes on both sides of peak 
I, but the position of peak I can be excluded. The remaining six char-
acteristic parameters are the height of peaks I and peak II, the area of 
peak II, the position of peak II, and the left and right slopes of peak II.

 b. Recognition of battery aging and decay patterns
The aging of ternary lithium-ion batteries is generally divided into the 
decline of thermal characteristics and the decline of dynamic character-
istics. Different aging modes reflect different changes in the incremen-
tal capacity curve. Thermal loss is usually studied by using the variation 
curve drawn by charge–discharge data of a small current, such as 0.05 C. 
Battery thermal loss can be divided into the loss of lithium ions and 
the loss of positive and negative active materials: The loss of lithium 
ions usually leads to a decrease in the area of the peak III. However, 
the loss of negative electrode material usually leads to the reduction of 
areas of peak I and peak II. Kinetic loss is usually studied by using the 
curves drawn from high current charge–discharge data, such as 1 C. 
The aging of battery dynamic characteristics is mainly reflected in the 
increase in the impedance of lithium-ion batteries, which is reflected 
in the overall deviation of the curve on the incremental capacity curve. 
For the incremental capacity curve during charging, if the impedance 
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increases, the curve moves to the right, which is used as the high volt-
age direction. The experimental program is a 1 C constant current and 
constant voltage charge-discharge cycle. The battery has undergone a 
total of 600 charge–discharge cycles, and its capacity has declined by 
approximately 1.34 Ah for 5.28%.

The variation curve cannot observe peak III. It is because the 
charge–discharge current is relatively large, and the variation cannot 
be reflected in the phase change process. From 0 to 600 cycles, in terms 
of thermal characteristics, according to the low current variation curve 
analysis method, due to the significant decrease in the height and area of 
the peak II, the loss of the negative electrode active material is obvious, 
but the loss of lithium ions cannot be reflected by peak III. Therefore, 
the loss of lithium ions cannot be determined. For the dynamic charac-
teristics, all the curves shift significantly to the right, indicating that the 
battery is aging, and the internal resistance is increasing.

 c. Parameter correlation analysis
As the number of battery cycles increases, the battery aging and decay 
intensifies, and the parameters in the variation curve in Figure 4.12 also 
change. However, the pattern of change for each parameter is different. 
Some parameters change greatly, and the law is obvious, such as volt-
age and current, while some parameters remain unchanged or irregu-
lar, including internal resistance and SOH. Therefore, it is necessary to 
screen out the parameters closely related to battery aging and degrada-
tion from others. The most direct feature reflecting the degree of aging 
and degradation is the decrease in the maximum usable capacity of the 
batteries. Therefore, it can be concluded whether the parameters are 
closely related to the aging and degradation of the batteries by explor-
ing the correlation between the parameters and the maximum usable 
capacity.

Further quantitative analysis of each parameter and the maximum 
usable capacity, as well as the correlation between each parameter, are 
performed to determine whether there is multicollinearity between the 
characteristic parameters. The Pearson correlation coefficient is often 
used as an indicator to measure the correlation between the two param-
eters. The calculation expression of the Pearson correlation coefficient 
is shown in Equation (4.41):

 COV( , )
,

X Y
x y

X Y

ρ
σ σ

=  (4.41)

In Equation (4.41), X and Y  are two variables, COV( , )X Y  is the covari-
ance of the variables X and Y , and Xσ  and Yσ  are the standard devia-
tions of the variables X and Y , respectively. The value of the Pearson 
correlation coefficient is between −1 and 1. If it is greater than 0, the 
two variables are positively correlated. If less than 0, the two variables 
are negatively correlated. If the correlation coefficient is 0, these two 
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variables are irrelevant. The greater the absolute value of the Pearson 
correlation coefficient between two variables, the higher the accuracy 
of predicting another variable by the other. It is because the higher the 
correlation coefficient, the more the variations between the variables. 
The Pearson correlation coefficients of the seven variables are extracted 
from the variation curves and the maximum usable  capacity of the ter-
nary lithium-ion battery. The results are shown in Table 4.2.

Table 4.2 shows that there is a strong correlation between multiple 
variables and the maximum usable capacity of the batteries. Also, the 
correlation between the characteristic parameters is analyzed with the 
correlation for the other six selected variables. The Pearson correlation 
coefficients between the variables are shown in Table 4.3.

Table 4.3 shows that there is a strong correlation between multiple 
variables. For example, the correlation coefficient between the height of 
peak I and peak II is 0.944, and the correlation between the right slope 
and the height of peak II is –0.914, indicating that the two correlations 

TABLE 4.2
Correlation Coefficient of Parameters and Maximum Useable Capacity

Parameter Height of Peak I Height of Peak II Area of Peak II 

Correlation coefficient 0.9483 0.9842 0.2033

Parameter Position of Peak II Left slope of Peak II Right slope of Peak II

Correlation coefficient –0.9380 0.9497 –0.9013

TABLE 4.3
Pearson Correlation Coefficient for the 6 Characteristic Parameters 

Parameters Height of Peak I Height of Peak II Area of Peak II 

Height of peak I 1.000 0.944 0.096

Height of peak II 0.944 1.000 0.181

Area of peak II 0.096 0.181 1.000

Position of peak II –0.905 –0.927 –0.173

Left slope of peak II 0.918 0.967 0.103

Right slope of peak II –0.883 –0.914 0.179

Parameters Position of Peak II Left Slope of Peak II Right Slope of Peak II

Height of peak I –0.905 0.918 –0.883

Height of peak II –0.927 0.967 –0.914

Area of peak II –0.173 0.103 0.179

Position of peak II 1.000 –0.927 0.833

Left slope of peak II –0.927 1.000 –0.869

Right slope of peak II 0.833 –0.869 1.000
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between these parameters are high. In linear regression, the parameters 
with higher correlation as the independent variables have the problem of 
multicollinearity. Multicollinearity means that due to the high correla-
tion between the explanatory variables in the linear regression model, 
the model estimation is distorted or difficult to estimate accurately. The 
challenge is that it increases the number of unnecessary calculations 
and makes the regression unsuitable.

The coefficients of the variables are too sensitive to the sample extrac-
tion. Also, the signs of some regression coefficients are opposite to the 
actual meaning, and it is difficult to distinguish the individual influence 
of each explanatory variable on the dependent variable. Therefore, the 
significance of some independent variables is hidden in the regression, 
which fails the coefficients in the significance test. The variance infla-
tion factor of VIF can quantitatively characterize the severity of mul-
ticollinearity, and the calculation formula is determined, as shown in 
Equation (4.42).

 VIF
1

1 2R
=

−
 (4.42)

In Equation (4.42), 2R  is the multiple determination coefficient of 
regression on other independent variables when taken as the dependent 
variables. The empirical judgment method shows that there is no multi-
collinearity when 0 < VIF < 10. Also, for 10 ≤ VIF < 100, there is strong 
multicollinearity, but for VIF ≥ 100, there is severe multicollinearity. 
The VIF value of each characteristic parameter is calculated, as shown 
in Table 4.4.

The experimental results show that the VIF of multiple characteristic 
parameters is greater than 100, and the maximum value is 375. Therefore, 
there is serious collinearity between variables, which cannot be directly 
estimated by simple multiple linear regression. A regression method is 
used to solve multicollinearity-principal component regression (PCR) 
to establish a ternary lithium-ion battery capacity estimation model.  

TABLE 4.4
The Variance Inflation Factor Value of the 
Characteristic Parameter

Parameter Variance Inflation Factor

Height of peak I 32.586

Height of peak II 374.339

Area of peak II 21.129

Position of peak II 130.195

Left slope of peak II 173.787

Right slope of peak II 207.902
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The regression estimation results are compared with the most com-
monly used multiple linear regression results to prove the superiority of 
the proposed model.

 1. Capacity estimation based on PCR
 a. The principle of the PCR

The PCR is a typical regression method to solve multicol-
linearity problems, including the principal component analysis 
(PCA) and regression analysis. The PCA is a typical dimen-
sionality reduction statistical method. Its basic principle is to 
recombine the original multiple correlated variables 1x , 2x , …, 
and xp to generate a few uncorrelated variables 1F ,   2F , …, and 
FN, causing them to reflect the original variable information as 
much as possible. Among them, the converted 1F , 2F , …, and 
FN are called principal components, which are called the first 
principal component, and they are the main ingredient. It is 
geometrically expressed as transforming the original nonor-
thogonal coordinate system into a new orthogonal coordinate 
system, making it point to the N  orthogonal directions where 
the sample points are most dispersed. The regression part of 
principal component regression is ordinary least square regres-
sion. Its independent variables are N  principal components 
obtained after PCA, and the dependent variables are standard-
ized cause variables. Since the principal components obtained 
after PCA are orthogonal, there is no problem with multicol-
linearity. The main steps of principal component regression are 
shown in Figure 4.13, and the data standardization method in 
Step a is shown in Equation (4.43):

 Z
x u

x σ
= −

 (4.43)

In Equation (4.43), x is the original variable, u is the mean 
value of the variable data, and σ  is the standard deviation of 
the variable data. The principal component regression steps are 
shown in Figure 4.14

 b. Realization of capacity estimation model based on principal 
component regression
Specific to the experimental data, the PCA method is per-
formed on six parameters. The Kaiser–Meyer–Olkin value 
is a parameter that characterizes whether the data are suit-
able for PCA between 0 and 1. The closer its value is to 1, 
the stronger the correlation between variables and the more 
suitable the data for PCA. The Kaiser–Meyer–Olkin value of 
the characteristic parameter data of the ternary lithium-ion 
battery variation curve is 0.716, indicating that PCA is more 
suitable for dimensionality reduction processing of the data. 
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The dimensionality reduction results show that the variance of 
the two principal components is greater than 1. Also, the cumu-
lative variance percentage of the two principal components is 
95.025%, indicating that the two principal components contain 
95.025% of the information of the original six variables, so the 
two principal components can be identified. The dimensional-
ity reduction results of the PCA are named 1ZF  and 2ZF , and 
their expressions are obtained as shown in Equation (4.44):

0.488 0.459 0.047 0.443 0.451 0.431

0.001 0.071 0.953 0.086 0.0126 0.282

1 1 2 3 4 5 6

2 1 2 3 4 5 6

Z Z Z Z Z Z Z

Z Z Z Z Z Z Z

F x x x x x x

F x x x x x x

= + + − + −

= − + + − + −






 (4.44)

Equation (4.44) is the data standardization method, 1Zx  to 

6Zx  are the standardized data of parameters, respectively. 
According to Equations (4.43) and (4.44), the data of principal 
component variables 1ZF  and 2ZF  are calculated. Taking 1ZF  and 

2ZF  as independent variables and the standardized capacity ZQ 
as the dependent variable, the regression model is established 
using the least square method and the relationship between 

FIGURE 4.14 Principal component regression steps.
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1ZF  and 2ZF . The expression for the capacity ZQ is obtained as 
shown in Equation (4.45):

 0.449 0.1071 2Z Z ZQ F F= +  (4.45)

Substituting Equation (4.44) into (4.45), the relationship 
between the standardized capacity and the standardized inde-
pendent variables to obtain Equation (4.46):

 0.201 0.214 0.123 0.208 0.204 0.1631 2 3 4 5 6Z Z Z Z Z Z ZQ x x x x x x= + + − + −  (4.46)

Reversing all the variables in Equation (4.45) to nonstandard-
ized original variables according to Equation (4.46), the final 
capacity estimation model equation can be obtained as shown 
in Equation (4.47):

 0.0503 0.0128 0.131 8.847 0.001 51.7651 2 3 4 5Q x x x x x= + + − + +  (4.47)

In Equation (4.47), 1x  to 5x  are height of peak I, height of peak 
II, area of peak II, the position of peak II, and left and right 
slopes of peak II in the ternary lithium-ion battery incremental 
capacity curve, respectively. The original data are used to test 
the accuracy of the regression model, and error results show 
that most of the cycle errors are controlled within 0.2 Ah (1%). 
Taking into account the measurement error and the outliers 
that may occur during the measurement process, the model 
error is less than 2%, indicating the accuracy of the capacity 
estimation is high. Also, the sign of the coefficient for each 
parameter is consistent with the correlation between the capac-
ity and each characteristic parameter in Table 4.2, which shows 
that the results are well interpretable and there is no multicol-
linearity problem.

By the definition of SOH based on battery capacity, the 
ratio of the actual capacity estimated by the model to the 
rated capacity when it leaves the factory is the SOH. A ter-
nary lithium-ion battery is selected to test the above modeling 
process to verify the applicability of the method using dif-
ferent batteries. The initial capacity of the battery is 36 Ah, 
and the capacity decline shows 3.026 Ah (8.55%) after 490 
cycles. Using the principal component regression to estab-
lish a capacity estimation model, the equation is obtained as 
shown in Equation (4.48):

 

= + + − +

− +

0.01072 0.05891 0.38991 46.4756 0.00019

0.06694 187.7522

1 2 3 4 5

6

Q x x x x x

x  (4.48)
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The sign of the model expression coefficients is reasonable, 
and the capacity estimation result is obtained. The residual 
error values of all cycles are less than 0.2 Ah (2%), which veri-
fies the accuracy and applicability of the model.

 2. Comparison of capacity estimation model based on principal com-
ponent regression and multiple linear regression
The most commonly used multiple linear regression method is used 
to perform regression analysis on the data. The results are com-
pared with that of the above-mentioned SOH estimation model 
based on the principal component regression. Using the original six 
characteristic parameters as the independent variables of the mul-
tiple linear regression model and the actual capacity as the model-
dependent variable, train the multiple linear regression model to 
obtain the regression model expression as shown in Equation (4.49):

 0.063 0.045 0.43 3.657 0.003 0.007 30.1091 2 3 4 5 6Q x x x x x x= − + − + − +  (4.49)

In Equation (4.49), –1 6x x  are the height of peak I, the height of 
peak II, the area of peak II, the position of peak II, and the left 
and right slopes of peak II, respectively. The results of the principal 
component regression are compared with the multiple linear regres-
sion model. The residual errors for the two methods are the same, 
less than 0.20 Ah (2%). For interpretability, the result expression 
of multiple linear regression is unreasonable. The coefficient of 2x  
representing the height of peak II is negative. From Table 4.4, the 
capacity and height of peak II are positively correlated. So, the sign 
of the coefficients of these two characteristic parameters is unrea-
sonable, indicating that multiple linear regression does not solve the 
multicollinearity problem. The method causes model distortion and 
cannot explain the physical meaning of the battery. Conversely, the 
result expression of the principal component regression is interpre-
table, and the sign of each parameter corresponds to the correlation, 
so the collinearity problem is solved with high accuracy.

For the SOH estimation of lithium-ion batteries, there are mainly 
two methods: mathematical-driven and data-driven models. The 
research is introduced for state estimation of lithium-ion batteries 
using classical algorithms and proposes a DAKF algorithm to adap-
tively co-estimate SOC and SOH. In the lithium-ion battery SOH 
estimation based on mathematical modeling, the nonlinear system 
is transformed into a linear system by the EKF algorithm. Then, the 
nonlinear system is calculated according to the process of the clas-
sical KF algorithm.

The PF algorithm avoids the linearization of the KF algorithm 
and the simplified assumption of Gaussian noise to achieve high pre-
diction accuracy by effectively calculating the uncertainty related to 
the estimation variables. In the data-driven SOH estimation model, 
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the SVM method needs a large amount of life decay data to estab-
lish a regression model [288,289]. The fusion modeling method uses 
dual extended Kalman filter based on accurate model parameters to 
regress the external model and provide the battery open-circuit volt-
age information to realize the collaborative estimation of battery 
state, which has a high application prospect. The DAKF algorithm 
is better than the EKF algorithm in SOC estimation, but the SOH 
estimation result is slightly lower than the forgetting factor least 
square method, and the error is less than 6%.

4.4  CONCLUSION

This chapter mainly introduces the definition of SOH estimation of batteries and 
existing estimation methods, as well as several algorithms for co-estimation of SOC 
and SOH. Generally, for pure EVs, only capacity decay needs to be considered. The 
SOH of lithium-ion batteries is expressed as the ratio of the current maximum practi-
cal capacity to the initial capacity. Mathematical model-driven is a relatively mature 
mathematical method, which mainly establishes the equivalent model, simplifies 
the complicated internal reaction, and realizes the estimation of HIs combined with 
other intelligent algorithms. The established models mainly include the electrochem-
ical mechanism model, an ECM, together with the empirical model. The KF and PF 
algorithms are introduced to estimate the battery SOH. The SOH estimation model 
based on mathematical modeling relies on a battery equivalent model combined with 
an adaptive intelligent algorithm to perform real-time filtering. It helps to calculate 
battery HIs, such as battery internal resistance and polarization internal resistance, 
and time SOH through the mapping relationship between HIs and battery SOH esti-
mation. This method solves the shortcoming that the direct measurement method 
uses to estimate the SOH off-line and is suitable for practical engineering applica-
tions. The disadvantage is that this relies heavily on the battery model. The internal 
resistance and other SOH parameters are affected by compound factors such as SOC 
and internal resistance, making it difficult to be estimated. An accurate and real-time 
SOH estimation model depends on meeting high accuracy and low model require-
ments in computing by SVM, DCN, ML, and other new algorithms.
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lithium-ion batteries [290,291]. Although these two state indicators are essential to 
reflect the remaining power and life of the battery, they all lack the expression of 
instantaneous response to the change of internal load in the study of the continuous 
state of the battery. Therefore, it is necessary to carry out the SOP estimation of 
lithium-ion batteries.

5.1  OVERVIEW OF SOP ESTIMATION

In an in-depth study, SOP is used to describe the peak charge–discharge power of the 
battery in the current state. The peak power of the battery is estimated to evaluate 
the charge–discharge limit capability of the batteries. The SOP guides the lithium-
ion battery pack to optimally match the power requirement of the equipment, which 
provides an effective safety guarantee and power output for the equipment and bat-
tery pack within a safe working range. Also, it helps to maximize the braking energy 
recovery function of the motor in the electric vehicle (EV) or hybrid electric vehicle 
(HEV). The estimation of the peak power can avoid the overcharge and overdis-
charge of the battery in advance, which has important theoretical and practical value 
for prolonging the service life of the batteries. Therefore, the accuracy of the SOP 
estimation for lithium-ion batteries has great significance to electric vehicles [292].

At present, there are several studies on the battery SOC and SOH estimation, 
and further research on the SOP estimation is needed. The SOP estimation of bat-
teries has received more attention from manufacturers. Some manufacturers have 
already written about the SOP estimation in technical documents and even some on 
a commercial basis. However, most of the BMSs of batteries do not involve the SOP 
estimation. The SOP estimation of the lithium-ion battery provides a reference for 
the power distribution strategy in electric vehicle systems. As an important reference 
index of energy output, it can meet the acceleration and climbing performance of 
the vehicle by providing the needed maximum energy [293,294]. Also, it provides a 
reference for braking energy recovery so that the energy of electric vehicles is fully 
utilized. Accurate SOP estimation effectively prevents the occurrence of battery pack 
overcharge and overdischarge, as well as preventing accidents and prolonging bat-
tery cycle life. Accurate acquisition of peak power is indispensable for the overall 
performance and comfort in the usage of the vehicle. In the energy storage device, 
the power state of the battery is switched based on the SOP value of the battery to 
make the energy fully utilized.

The test methods of battery peak power mainly include the United States 
Advanced Battery Consortium LLC (USABC) test method in the United States, the 
hybrid pulse power characterization (HPPC) test method proposed by the Freedom 
CAR project, the power density test method, and the power test method proposed by 
the Chinese Ministry of Science and Technology in the battery test specification. The 
core of the USABC test method is the peak power test of the battery. The battery is 
discharged to a different depth of discharge (DOD), and then, the battery is continu-
ously discharged for ts to reach the battery discharge cutoff voltage Umin. In the HPPC 
test, when the battery is continuously discharged at a constant current for tss, the rear 
voltage drops to the battery discharge cutoff voltage Umin, and the constant current 
value is the peak current of the battery in that state.
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The objects tested by the Japan electric vehicle association standard (JEVS) power 
density test method are mainly lithium-ion batteries and nickel-metal hydride bat-
teries. This method tests the peak power at different power levels from 0% to 100%. 
The batteries are charged alternately at different rates. After discharging, the volt-
age–current fitting curve is used to get the highest charging voltage and the lowest 
discharging voltage of the battery at different DODs, and then, the peak power of 
the battery is obtained by substituting the corresponding calculation equation. Based 
on sufficient experiments, the power test method has been formulated as appropri-
ate. The peak power of the battery refers to the product of the voltage value and the 
current value collected by the BMS every 0.1 seconds. The cumulative value of the 
battery peak power is divided by the discharge time to calculate the average power of 
the battery at 1, 3, 5, and 10 seconds. According to the various working conditions of 
the battery, different continuous discharge times are defined, respectively. For hybrid 
vehicles, high-current continuous discharge is required for 10 seconds for pure elec-
tric vehicles, and it is required for continuous discharge for 30 seconds. For hybrid 
passenger vehicles, it is continuous discharge for 60 seconds.

At present, the research on the battery power state focuses on the impact of a 
single factor on the peak power of the battery and the maximum power during the 
entire battery usable period. Finally, it can be concluded that temperature has the 
highest impact on the estimation of SOP. Some literature proposes multidimensional 
dynamic control algorithms to predict the battery voltage to calculate the available 
battery power. Some researchers believe that the estimated variables, such as SOP 
and aging, are not accurate. So they directly use the parameters of the model to esti-
mate the online peak power of the batteries. Later studies proposed an electrochemi-
cal model considering the effect of temperature on internal resistance and capacity. 
The extended Kalman filter (EKF) algorithm is used to estimate the power state of 
the lithium-ion battery. Finally, the maximum peak power of the charged state and 
the minimum discharge state is obtained through multi-parameter constraints.

5.2  INTERPOLATION-BASED SOP ESTIMATION

The interpolation method is one of the most basic methods for estimating the SOP 
of lithium-ion batteries. The method utilizes the known static functional relation-
ship between battery power capability and parameter status [295,296]. The method 
obtains SOP values under different conditions through experiments, constructs 
an interpolation table for query through different SOP values, and calculates the 
required data by querying the corresponding SOP values available in the interpola-
tion table. Generally, the battery-related parameters and conditions such as SOC, 
SOH, and temperature are used for testing. Through the HPPC experiment under 
different temperatures, SOC, SOH, and electrochemical impedance spectroscopy 
test conditions, the SOP of the battery in different states is obtained to construct an 
interpolation table to realize its estimation.

The advantage of interpolation is that it is simple and does not need complex mod-
els and algorithms. However, this method requires a large amount of experimental 
data for training. Also, the interpolation method is the data obtained under static 
conditions, which is not suitable for SOP estimation under dynamic conditions.
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5.3  MODEL-BASED SOP ESTIMATION

5.3.1  Linear moDeLing

A linear modeling method is an approach to estimating SOP using a linear model 
as an equivalent circuit model. The linear model is simple, and it contains only one 
resistor. It can only reflect the internal resistance characteristics but cannot effec-
tively characterize the polarization effect of the battery [297]. The linear model of 
the lithium-ion battery is shown in Figure 5.1.

In the figure, R0 is used to characterize the internal resistance, UOC is used to char-
acterize the open circuit voltage (OCV), and RL is the load of the lithium-ion battery.

The partnership for new generation of vehicles (PNGV) compound pulse method 
uses the charge–discharge cutoff voltage in the battery design as a limiting condition 
to calculate the peak value of charge–discharge when estimating SOP. With the cur-
rent model, the peak current and SOP of the battery can be obtained. The calculation 
equation of SOP is shown in Equation (5.1).

 = −
SOP *lim

OC lim

0

U
U U

R
 (5.1)

In Equation (5.1), Ulim is the limit voltage of the lithium-ion battery. When estimating 
the SOP during charging, it is the maximum cutoff voltage, and during discharge, it 
is the minimum cutoff voltage.

5.3.2  rC Loop moDeLing

Since the linear equivalent circuit model cannot characterize the dynamic charac-
teristics of the lithium-ion battery, later research improves it by adding an resis-
tor-capacitor (RC) loop. The RC loop can effectively characterize the polarization 
effect of the lithium-ion battery. The Thevenin model is also called the first-order RC 
model [298,299]. The Thevenin model is one of the most commonly used equivalent 
circuit models in battery engineering applications. It has the advantages of simple 
modeling, few model parameters, higher accuracy, and convenient model parameter 
identification. It is commonly used for battery power state prediction, fault diagnosis, 
etc. The added RC loop circuit connected parallel to the linear model character-
izes the polarization reaction inside the battery, which can effectively describe the 
dynamic and static operating characteristics.

FIGURE 5.1 The linear model.



251Battery State of Power Estimation

In this model, R0 is used to describe the ohmic characteristics of the battery. Rp 
and Cp are the polarization resistance and capacitance, respectively, which are used 
to describe the polarization effect of the battery. UOC is an ideal voltage source, which 
is used to characterize the open-circuit voltage of lithium-ion batteries. Since there is 
a relationship between the open-circuit voltage and SOC, it is usually used to char-
acterize the open-circuit voltage UOC. The electrical behavior of the Thevenin model 
is shown in Equation (5.2).
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In Equation (5.2), U p is used to represent the terminal voltage of the RC parallel cir-
cuit in the model, and IL is the load current. The relationship between UOC and SOC 
is usually obtained through experiments to estimate the OCV in real time based on 
the SOC variation. Therefore, the model has only three parameters to be identified, 
which is one of the reasons why the model is widely used.

During the time of battery operation, the terminal voltage needs to be limited, 
including the battery charge and discharge cutoff voltages, which can be expressed 
as Umax and Umin, respectively. Ulim is taken as Umax when charging, and Ulim is taken as 
Umin when discharging. When the terminal voltage is low, the peak discharge power 
is carefully adjusted to avoid exceeding the lower voltage limit. Under voltage con-
straints, a detailed calculation method of peak current is given. When estimating the 
continuous peak current of the battery and the terminal voltage reaches the cutoff 
voltage, it can be expressed as shown in Equation (5.3).

 U k N U k N U k N I k RL P k N+ = + + + + +( ) (SOC( )) ( ) ( )OC 0 (5.3)

In Equation (5.3), during the time of discharge, U k NL +( ) is Umin, which is the dis-
charge cutoff voltage of the lithium-ion battery. Ik N+  is the peak discharge current of 
the lithium-ion battery. During charging, U k NL +( ) is Umax, which is the charging 
cutoff voltage of a lithium-ion battery. The open-circuit voltage is a variable coupled 
with the SOC, so decoupling is required to accurately estimate the peak current. 
The most commonly used method for decoupling SOC and open-circuit voltage is 
the Taylor series expansion. According to the first-order Taylor series expansion, the 
state-space expression of the open-circuit voltage UOC is shown in Equation (5.4).
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In Equation (5.4), Q0 is the capacity of the lithium-ion battery, δ  is the high-order 
residual term obtained by the Taylor series expansion, and T  is the sampling time of 
the voltage and current of the BMS. Ignoring the high-order terms, the final OCV 
calculation equation is obtained, as shown in Equation (5.5).

    U k Q U k Q
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SOC
OC 0 OC 0

0

OC

SOC SOC( 1)

 (5.5)

In Equation (5.5), U k Q( )+SOC( 1),OC 0  is the OCV after decoupling. According to 
the state-space expression and observation of the Thevenin model, the lithium-ion 
battery system can be obtained, as shown in Equation (5.6).
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In Equation (5.6), X is the state matrix, X k U kp=  SOC( ); ( ) . A and B are the state 

transition and control matrices of the lithium-ion battery system, A e T=  
τ−1 0; 0 / ,  
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; 10 . The peak current calculation equation of the lithium-

ion battery of the Thevenin model can be obtained, as shown in Equation (5.7).
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According to the obtained peak current and cutoff voltage, the SOP of continuous L 
sampling points can be obtained, and the SOP calculation is shown in Equation (5.8).
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As an improvement of the Thevenin model, the second-order Thevenin model uses 
two parallel RC loops to characterize the electrochemical and concentration polar-
izations of the lithium-ion battery, which is shown in Figure 5.2.
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In Figure 5.2, Rp1 and Cp1 are used to characterize the electrochemical polariza-
tion of the lithium-ion battery. Rp2 and Cp2 are used to characterize the concentration 
polarization of the lithium-ion battery. When the model is used to estimate the SOP 
value, an estimation method is formed similar to the Thevenin model that can real-
ize SOP estimation based on the second-order Thevenin model. The following is a 
validation analysis of the first-order model. The continuous response of the lithium-
ion battery changes the state of the battery, thus changing the estimation accuracy. 
In this research, discharge conditions with different durations were constructed, as 
shown in Figure 5.3.

By experimenting with the discharge state of lithium-ion batteries under dif-
ferent continuous excitation, a comparative analysis under different conditions 
is constructed. A lithium-ion battery with a capacity of 74.28 Ah is used, and the 
experiment is carried out in temperature test equipment at 25°C. Figure 5.3a shows 
the HPPC flowchart to describe the different discharge conditions of the battery; 
Figure 5.3b shows the Beijing bus dynamic stress test (BBDST) flowchart, used to 
describe the power output conditions of the vehicle in different states. The BBDST 
operating currents for different continuous peak discharges are shown in Figure 5.4.

Figure 5.4a–c shows the current state of the BBDST under different continuous 
peak discharges. PT is the power discharge time, which changes the continuous exci-
tation duration; VM_ IM is the current and voltage cutoff judgment.

FIGURE 5.2 Second-order Thevenin model.

FIGURE 5.3 The experimental data test flow of the research object. (a) HPPC test condition 
flowchart. (b) BBDST test condition flowchart.
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When testing a lithium-ion battery under a constant BBDST working condition, 
as the voltage decreases, the battery cannot maintain power output, which causes 
the working current of the battery to fluctuate highly. When the battery can provide 
sufficient voltage, it can capture the above-mentioned current change characteristics. 
However, when the battery is in trickle charge or discharge, the voltage change is not 
significant for a short time. But a single factor is difficult to track and correct, which 
causes system estimation errors. The SOP of a lithium-ion battery is mainly related 
to the battery voltage, current, and internal state parameters. The objective of this 
study is to analyze the discharge-based experiment. The length of the continuous dis-
charge time causes a large variation in the voltage; that is, the state of the lithium-ion 
battery under the excitation of different durations changes highly. The relationship is 
analyzed by constructing HPPC experiments with three excitation duration of 10, 30, 
and 60 seconds, as shown in Figure 5.5.

Figure 5.5 shows the P-SOC fitting curve under different excitation duration. The 
P-SOC polynomial expression is shown in Equation (5.9).

P e e e

e e

P e e e

e e

P e e e

e e

k k k

k k k

k k k

k k k

k k k

k k k

= + × − + × +

+ × − + × + + ×

= + × − + × +

+ × − + × + + ×

= + × − + × +

+ × − + × + + ×



















10 seconds_ 3.098 4 SOC 9.741 4 SOC 1.17

5 SOC 6.515 4 SOC 1.727 4 SOC

30 seconds_ 2.36 4 SOC 7.091 4 SOC 8.581

4 SOC 5.036 4 SOC 1.447 4 SOC

60 seconds_ 3.618 3 SOC 1.678 4 SOC 3.242

4 SOC 2.77 4 SOC 1.07 4 SOC

5 4

3 2

5 4

3 2

5 4

3 2

 (5.9)

The power variation under the HPPC test is assumed to be like the voltage variation 
trend. The estimation error of SOP mainly comes from internal parameters and char-
acteristics of working conditions. The operating characteristics of EVs and HEVs 
have significant changes under different working conditions. By analyzing the online 
identification of the same battery under the excitation of different continuous peak 
discharges, a battery peak state estimation system under the compound model is 
constructed. Taking into account the influence of various factors, the SOP estimation 
and error curves of the lithium-ion battery, as shown in Figure 5.6.

FIGURE 5.4 The experimental condition curves. (a) Peak discharge current curve for  
10 seconds. (b) Peak discharge current curve for 30 seconds. (c) Peak discharge current curve 
for 60 seconds.
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As shown in Figure 5.6, _P US  is the power estimation under the composite model 
of the lithium-ion battery, and the peak current is introduced to the limit; P U_  is 
the estimated state of the lithium-ion battery under the voltage limit; P_Act is the 
reference state obtained through the HPPC test; _ errP U  is the power error under the 
voltage limit; _ errP US  is the power error under the composite model. In Figure 5.6a 
and b, the composite model can provide front-end power optimization with an overall 
error of less than 100 W when discharging at a sustained peak for a short time, as 
shown in Figure 5.7.

Figure 5.7a and b is the SOP estimation result at 30 seconds peak discharge, the 
legend of it is the same as Figure 5.6. The composite mode performance is sufficient 
to provide better back-end optimization capability, and the overall error remains 
within 130 W after the estimation model is stable, as shown in Figure 5.8.

Figure 5.8a and b is the SOP estimation result at 60 seconds peak discharge. As 
shown in the figures, with the increase in discharge time, the peak power in the lat-
ter half fluctuates highly. The composite mode performance is sufficient to provide 
better back-end optimization capability, and the overall error remains within 250 W.

The influence of different excitation duration under complex conditions increases 
along with the time extension. Analyzing the estimation error between each impact 

FIGURE 5.5 Power curve under different discharge continuous excitation.

FIGURE 5.6 SOP estimation result at 10 seconds peak discharge. (a) SOP estimation curve 
based on fusion model at 10 seconds peak discharge. (b) SOP error curve at 10 seconds peak 
discharge.
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factor helps to analyze the inherent problems of the algorithm. The evaluation of the 
algorithm’s overall identification parameters is shown in Table 5.1.

From Table 5.1, it can be observed that the estimation errors of voltage and peak 
power show a slow upward trend with the excitation time. The fusion algorithm has a 
strong tracking effect on short-term excitation, but the long-term excitation receives 
more interference. Effective estimation of balanced time pulses can provide a higher 
power state tracking effect.

5.3.3  SoC Limit eStimation

SOC is a state parameter used to characterize the remaining capacity, which is closely 
related to the current of the lithium-ion batteries. Therefore, it can be used for peak 
current estimation when performing SOP estimation. The SOC calculation equation 
is shown in Equation (5.10).
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FIGURE 5.7 SOP estimation result at 30 seconds peak discharge. (a) SOP estimation curve 
based on fusion model at 30 seconds peak discharge. (b) SOP error curve at 30 seconds peak 
discharge.

FIGURE 5.8 SOP estimation result at 60 seconds peak discharge. (a) SOP estimation curve 
based on fusion model at 60 seconds peak discharge. (b) SOP error curve at 60 seconds peak 
discharge.
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The current calculation equation based on the SOC can be obtained, as shown in 
Equation (5.11).

  I k Q
k k

Tη
= ⋅ + −

( )
SOC( 1) SOC( )

0  (5.11)

The SOC estimation needs to be controlled within an appropriate range to ensure the 
safe and suitable operation of the electric vehicle battery pack. The SOC at any time 
point k should satisfy < <SOC SOC SOCmin max. The maximum charge–discharge 
current in N  sampling intervals can be calculated, as shown in Equation (5.12).
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In Equation (5.12), Imax
dis,SOC is used to characterize the maximum discharge current, 

and Imin
chg,SOC is used to characterize the maximum charge current estimated based on 

SOC value. The calculation equation of SOP is shown in Equation (5.13).
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5.3.4  temperature Limit eStimation

The temperature of the battery affects the internal electrochemical reaction inside 
it. The heat generated by the battery during the charge–discharge process causes the 
temperature to rise, which damages the elements of the electrolytes inside the battery 

TABLE 5.1
Full State Performance Estimation

Time (seconds) Performance

Error Observation

U SOC P_U P_US

10 Mean absolute error (MAE) 0.002 0.0092 65.4179 49.0931

Mean squared error (MSE) 1.75e−05 9.27e−05 7.05e+03 3.03e+03

Root mean square error (RMSE) 0.0042 0.0096 83.9513 55.0342

30 MAE 0.0025 0.0082 65.3559 60.8035

MSE 2.07e−05 7.97e−05 6.05e+03 5.89e+03

RMSE 0.0045 0.0089 77.7608 76.9086

60 MAE 0.0032 0.0075 133.2087 128.8349

MSE 3.02e−05 7.29e−05 2.56e+04 2.51e+04

RMSE 0.0055 0.0085 159.8933 158.4401
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and shortens its life span. Therefore, when estimating the SOP of a lithium-ion bat-
tery, the temperature limits need to be considered [300]. When the battery operating 
temperature is close to the limit, the power should be controlled. The temperature-
based SOP estimation method uses the battery thermal characteristic and the energy 
balance to obtain the energy balance of the battery for the time interval t∆ , as shown 
in Equation (5.14).

 I R T
dU

dT
I hS T T C m

T T

L T
p

k L k( )+ + − − −
∆

=+ 02
avg,bat amb avg,bat  (5.14)

In Equation (5.14), R is the total internal resistance of the battery. Tavg,bat  and Tamb are 
the average temperature and ambient temperature of the battery, respectively, and 
Cp is the specific heat capacity of the battery. h is the heat transfer coefficient, m is 
the mass of the lithium-ion battery, and S is the heat transfer surface area. During 
the charge–discharge process, the maximum temperature threshold of the battery 
is set, and then, the peak current value under the temperature limit is obtained. 
Then, the peak power of charge–discharge can be calculated based on the terminal 
voltage. Therefore, based on the energy balance, the peak current is obtained to 
estimate the SOP of the battery. The method is usually combined with other SOP 
estimation methods. Also, the temperature causes changes in the parameters of the 
lithium-ion battery model. Therefore, most researchers consider the temperature 
factor in the equivalent circuit model of the battery, thereby reducing the SOP esti-
mation error. In addition to considering the SOC and temperature limits, the voltage 
limit can also be used as a factor when calculating the SOP of lithium-ion batteries 
if necessary.

5.4  DATA-DRIVEN NON-PARAMETRIC MODELING

The non-parametric model for the SOP estimation method shifts the focus on the 
internal mechanism of the battery of the data itself. The method regards the bat-
tery as a black box and usually adopts data-driven algorithms as a support, using 
machine learning methods to estimate the battery state [301]. Each parameter is used 
as the input of the model, and the output is the SOP to be estimated. Through a large 
amount of testing data and training model, the SOP is estimated.

5.4.1  Bp neuraL netWork

The backpropagation (BP) neural network is composed of an input layer, an output 
layer, and a hidden layer. It has the network model characteristics of signal forward 
transmission and error BP, and it is a feedforward multi-layer perceptron [302]. The 
input layer is the basic parameters of the battery, such as voltage, temperature, and 
SOC values. The output layer is the estimated SOP of the battery. In the signal trans-
mission process, if the actual value of the output layer is different from the expected 
value, it goes to the BP stage. Then, it adjusts the threshold and weight of the network 
according to the prediction error so that the output layer of the BP neural network 
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constantly approaches the expected value. The structure of the BP neural network is 
shown in Figure 5.9.

According to theoretical research, in the two sets of nonlinearly related input and 
output data, if other conditions are selected reasonably, a three-layer BP neural net-
work can meet the design accuracy requirements [303]. Also, the choice of input 
and output parameters directly affects the number of nodes in the input layer and 
output layer of the neural network and the type of transformation function. Selecting 
reasonable input parameters can obtain good network performance and improve the 
training speed and accuracy of the network. The choice of input parameter basic 
principle generally followed is to select parameters that have a large impact on the 
network output and are easy to measure. Consequently, there is no correlation or 
low correlation between input variables. The flowchart of battery SOP estimation is 
shown in Figure 5.10.

BP neural network selects the appropriate number of the input layer, hidden layer, 
and output layer according to the modeling requirements. It uses the hidden layer to 
connect the input and output layers and establishes the node weight between layers 
[304]. Then, the normalized training samples are sent to the output layer to train the 
network. Finally, the network weights are adjusted until the error reaches the accep-
tance range.

FIGURE 5.9 BP neural network structure.
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5.4.2  aDaptive neuro-fuzzy inferenCe moDeLing

The adaptive neuro-fuzzy inference system (ANFIS) directly utilizes the optimiza-
tion function of the neural network to control the parameters of the fuzzy controller 
and improve the function of the fuzzy control system. The neural network learning 
mechanism is introduced into the fuzzy system, which does not only learn the train-
ing data but automatically generates and modifies the membership functions of input 
and output variables [305]. Also, it summarizes the optimal fuzzy rules to form an 
adaptive neuro-fuzzy controller. The ANFIS structure is shown in Figure 5.11.

The ANFIS SOP estimation is mainly divided into three steps: data acquisition, 
model training, and simulation verification. First, the experimental method is deter-
mined to obtain the peak power and ohmic resistance at different temperatures and 

FIGURE 5.10 The flowchart of battery SOP estimation.

FIGURE 5.11 Typical ANFIS structure diagram.
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SOC conditions. Then, the fuzzy interval of variables can be divided by the grid 
generation method and subtractive clustering method [306]. After that, a single BP 
neural network or comprehensive training method is used for the training model, 
which reduces the number of iterations and increases the accuracy. Finally, simula-
tion verification is carried out. This method has a strong adaptive ability and reduces 
the complexity for the premise of ensuring accuracy.

5.4.3  Support veCtor maChine

Support vector machine (SVM) is a method based on the Vapnik–Chervonenkis 
dimensional theory of statistical learning theory and the principle of structural risk 
minimization. It has important advantages in solving small samples, and nonlinear 
and high-dimensional pattern recognition, which can be extended and applied to 
other machine learning problems such as function fitting with high robustness [307]. 
As a supervised learning model in machine learning, SVM can analyze data, recog-
nize patterns, and be used for classification and regression analysis. The experimen-
tal procedure of SVM to estimate SOP consists of three steps: First train and learn 
the data with the SVM, construct a regression estimation function through a suitable 
kernel function, and then substitute the data into the calculation procedure to obtain 
the corresponding SOP predicted value. Finally, compare the experimental and pre-
dicted values to perform a comparison match.

The data-driven non-parametric estimation method has wide applicability and can 
estimate the SOP of any battery [308]. The more the input parameters and the larger 
the amount of data, the more accurate the SOP estimation. However, the method 
requires a large amount of experimental data. The estimation accuracy is strongly 
dependent on the training data and the training method, which requires high hard-
ware and takes a long time. The comparison of the advantages and disadvantages of 
the data-driven estimation methods is shown in Table 5.2.

5.5  OTHER ESTIMATION METHODS

In recent years, new SOP estimation methods have also been proposed, such as the 
SOP estimation method based on MSP430, which is a new method that combines 

TABLE 5.2
Advantages and Disadvantages of SOP Data-Driven Estimation Methods

Estimation 
Method Advantage Disadvantage

Data-driven 
estimation 
approach

BP neural 
network

It has a self-learning ability 
without an accurate battery 
model.

It is easy to produce the phenomenon 
of local optimum, and the amount 
of calculation is very large

ANFIS 
method

The local optimal problem is 
overcome and high accuracy.

It requires a lot of experiments and 
complicated calculations

SVM method It has good robustness.
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parametric and non-parametric models for the online SOP estimation. Most of these 
new methods are used in the theoretical or experimental simulation stage, and it 
takes a long time to develop before putting into practical application. The improve-
ment of the accuracy in the battery SOP estimation requires not only mature algo-
rithms and battery models with large data sets and integration of various methods.

Interpolation is one of the most basic methods for estimating the SOP of lithium-
ion batteries, which utilizes the known static relationship between battery power 
capability, parameters, and status [309–311]. This method mainly obtains SOP values 
under different conditions through experiments, constructs an interpolation table for 
query through the different SOP values, and calculates the required data by querying 
the corresponding SOP values in the interpolation table. The advantage of construct-
ing the interpolation table to realize the battery’s SOP estimation is that it is simple 
and does not require complex models and algorithms.

However, this type of method requires a large amount of experimental data as 
support and takes up a lot of memory. Also, these data are obtained by the inter-
polation method under static conditions, which is not suitable for SOP estimation 
under dynamic conditions. SOP estimation based on parameter modeling mainly 
uses linear, RC loop, SOC estimation limit, and temperature estimation limit model-
ing. Data-driven non-parametric modeling is implemented using BP neural network, 
SVM, ANFIS modeling, and other new estimation algorithms.

5.6  CONCLUSION

This chapter mainly introduces the battery SOP estimation, the new and existing 
methods, and several algorithms. As the SOP describes the transient response to the 
external load changes, it is necessary to carry out the SOP estimation of lithium-ion 
batteries. There are two methods to estimate battery SOP: One is based on interpola-
tion, and the other on parameter modeling. Interpolation has the advantages of sim-
plicity and no complex algorithm. It requires a lot of memory and is not suitable for 
SOP estimation under dynamic conditions. For different models, the difficulty and 
accuracy of parameter estimation are different. In addition, the model changes along 
with the parameter variation, so the temperature in the battery equivalent circuit 
model should be considered when using this method. In the non-parametric model 
SOP estimation method, the data-driven method shifts the focus from the internal 
mechanism of the battery to the data itself. Each parameter is used as the input of the 
model, and the output is SOP, which is estimated through a large amount of testing 
data and training model. The battery state estimation is an important link in the BMS 
of the power battery pack. The SOP of lithium-ion batteries is estimated to describe 
the peak charge–discharge power in the current state. The charge–discharge limit 
capacity is evaluated by estimating the peak power of the batteries, which has great 
significance to electric vehicles.
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Introduction: The state of energy (SOE) is a parameter required by the lithium-
ion battery management system (BMS), which can reflect the remaining energy 
of the battery. It is an important index for predicting the remaining mileage of 
electric vehicles. Common prediction methods include power integration method, 
open-circuit voltage method, model-based method, and data-driven method.  
The remaining useful life (RUL) is generally defined as the number of charge– 
discharge cycles remaining until the failure threshold. The RUL prediction method 
is designed to use historical and current performance data to predict future condi-
tions and provide warnings before battery failures occur. Reliable and accurate 
RUL prediction is of great significance to ensure the stability and safety of battery-
powered systems.
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6.1  OVERVIEW OF SOE ESTIMATION

6.1.1  Soe Definition

SOE is an important parameter required by the lithium-ion BMS, which can reflect 
the size of the remaining battery energy [312]. The SOE value can be calculated with 
the following formula obtained by dividing the remaining electric energy by the 
total electric energy. It is generally considered that when the battery is charged to 
the cutoff voltage, the SOE value is 100%, and when the battery is discharged to the 
cutoff voltage, the SOE value is zero. The calculation equation of SOE is defined for 
lithium-ion batteries, as shown in Equation (6.1).

 = = −W W

W
n d

n

SOE
surplus power

total power
*100% (6.1)

In Equation (6.1), Wn is the total electric energy of the battery; Wd is the accumulated 
electric energy of the batteries.

6.1.2  traDitionaL Soe eStimation methoD

Traditional SOE estimation methods are divided into static initial estimation meth-
ods and dynamic cycle estimation methods.

 1. Static initial estimation process: The system collects the open-circuit 
voltage information of the battery and corrects the relationship curve 
between open circuit voltage (OCV) and SOE during the battery resting 
time and the state before resting. Then, the corresponding battery SOE 
value is calculated according to the current OCV value of the battery. 
Finally, after the battery is shelved, the estimated SOE values in different 
periods are averaged to obtain the current static SOE value correspond-
ing to the battery. It can be used as the initial value of the dynamic loop 
SOE estimation.

 2. Dynamic cycle estimation process: After entering the cycle estimation 
 process, the system corrects the total rated energy of the battery in the 
 current state according to the ambient temperature and the health state (cycle 
use times) of the battery; at the same time, it passes the SOE-EMF curve 
model and the initial SOE value (or the last recorded SOE value) is used to 
calculate the electromotive force (EMF) of the current state of the battery. 
Then, according to the principle of energy conservation, through the EMF 
and current at the time, the amount of change in the battery energy at the 
specific time point can be calculated. Finally, the self-discharge energy loss 
of the battery is corrected according to the time interval between the two 
dynamic estimations. In this way, the SOE value at the previous time point 
t can be used to calculate the SOE value at the time point +t 1. Based on the 
continuous loop calculation, the state parameters are updated in real time to 
obtain the accurate SOE value of the battery.
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6.1.3  Soe integraL CaLCuLation expreSSion

The battery outputs electrical energy during the discharge process, while heat energy 
is generated inside the battery and dissipated to the outside. These two parts of  
energy are stored inside the battery in the form of chemical energy. The amount 
of chemical energy is related to the structure and activity of the internal materials  
of the battery [313]. SOE reflects the state of remaining capacity inside the battery, 
so electrical and thermal energy should be considered in the calculation process, as 
shown in Equation (6.2).

  ∫ ( )= ⋅W U i dtd b

t

0
 (6.2)

In Equation (6.2), the electric energy output is considered without the heat loss, and 
the result cannot reflect the amount of remaining energy inside the battery. According 
to the working principle of the battery, when the battery is charged, the external 
 electric energy is converted into chemical energy, and the heat energy is radiated out-
ward at the same time [314]. During the discharging process, the internal chemical 
energy is converted into electrical energy, and heat energy is dissipated outward at 
the same time point. The released thermal energy includes two parts: the heat of the 
chemical reaction and the Joule heat generated by electrical resistance. The calcula-
tion of thermal energy is shown in Equation (6.3).

 ∫ ( )= ⋅ + + ⋅ ⋅



W i R R

Q

F
i dtr p

t

10002
0

0
 (6.3)

In Equation (6.3), i is the discharge current, in which the discharge direction is posi-
tive and the charging direction is negative; Q is the thermal coefficient of reaction; F  
is Faraday constant; R0 is the ohmic resistance; Rp is the polarization internal resis-
tance. The total energy released is shown in Equation (6.4).

 = +W W Wd r (6.4)

To accurately reflect the state of remaining energy in the battery, the SOE definition 
is modified based on the law of conservation of energy, as shown in Equation (6.5).
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In Equation (6.5), (t)Wd  is the electric energy released by the battery; (t)Wr  is the heat 
energy lost; W  is the total internal energy of the battery, which represents the maxi-
mum storable energy of the battery in the current state. Whether the accuracy of 
the W  value is accurate or not has a great influence on the calculation accuracy of 
the SOE. By analyzing the working characteristics of the battery, the ambient tem-
perature, discharge rate, cycle life, and self-discharge have an impact on the total 
internal energy W  of the battery. To make the SOE calculation result more accurate, 
it is necessary to determine the relationship between the influencing factors and W .  
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The monthly self-discharge rate of lithium-ion batteries is low (the value <10%), and 
many factors affect the self-discharge process. In the SOE calculation process, the 
influence of self-discharge on the estimation accuracy is usually ignored, and the 
impact on environmental temperature, charge–discharge current, and battery health 
status is mainly analyzed. The influence of the total energy inside the battery and the 
SOE calculation is corrected.

According to relevant information, the best ambient temperature for lithium-ion 
batteries is 30°C. Therefore, the total discharge energy at 30°C is used as a bench-
mark to analyze the impact of other ambient temperatures on the total discharge 
energy. The temperature influencing coefficient Tη  is used to describe the influence 
of temperature on the discharge energy, and the calculation equation is shown in 
Equation (6.6). 

  *100%ttv

tt30

E

E
Tη =  (6.6)

In Equation (6.6), ttvE  is the total discharge energy at different temperatures, and 
tt30E  is the total discharge energy at 30°C. The energy that the battery can discharge 

under different discharge currents is very different. The total energy W  that the 
battery can discharge under different working conditions is different, which brings 
errors to the SOE estimation. Therefore, the influence of the discharge current on 
the value needs to be considered in the SOE estimation. Based on the discharge rate 
of C/3, the influence of different discharge currents on the total discharge energy is 
analyzed, and the current influence coefficient is used to describe the influence of 
the discharge current rate on the discharge energy. The formula for this calculation 
is shown in Equation (6.7).

  *100%tcv

tc /3

E

E
Iη =  (6.7)

In Equation (6.7), tcvE  is the total discharge energy in the first stage of different 
rates, and tc /3E  is the total discharge energy at the discharge rate of C/3. Through the 
analysis of the battery cycle characteristics, it can be observed that the maximum 
dischargeable energy of the battery decreases as the number of cycles increases.  
The adaptive voltage curve fitting method is used to obtain the health status of the 
battery, and then, the current maximum discharge capacity and energy are calcu-
lated. The corrected expression is shown in Equation (6.8).
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The influence of ambient temperature, discharge rate, and battery health status on the 
total dischargeable energy We is comprehensively analyzed, and the SOE calculation 
expression is corrected.
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6.2  UKF-BASED SOE ESTIMATION

Based on the SOE calculation expression and the battery terminal voltage expres-
sion established by the simplified electrochemical combination model, the unscented 
Kalman filtering (UKF) principle is used to realize the SOE estimation, including 
the establishment of the discrete state-space equation of the system, determining the 
initial SOE value, and carrying out iterative estimation of SOE.

6.2.1  Soe eStimation moDeL StruCture eStaBLiShment

In the UKF algorithm, the estimation model is established based on the state-space 
expression of the system. In the battery SOE estimation model, SOE is a real-time 
estimator that can be used as a state variable for real-time observation [315]. The 
SOE calculation method is given in Equation (6.8) [316]. The terminal voltage of the 
battery is a known quantity, which is used as an observed variable to correct the SOE 
estimation result. Two parameters are combined to obtain the state-space model of 
the system, and the discretized expression is shown in Equation (6.9).
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In Equation (6.9), SOE 1k +  is the SOE value at time point 1k + ; SOEk is the energy 
state value at time point k; Uk is the terminal voltage at time point k; ik  is the dis-
charge current; 0 _R k  is the ohmic resistance at time point k; the polarization internal 
resistance _Rp k is obtained at the time point k accordingly; Q is the reaction heat 
coefficient; F  is the Faraday constant; Iη  is the current influence coefficient; Tη  is 
the temperature influence coefficient; OCV _ 1U k +  is the open-circuit voltage at the 
time point 1k + .

6.2.2  Soe eStimation proCeDure DeSign

Before the battery starts to work, the initial SOE determination method is obtained 
by judging the static time of the battery. After the initial SOE is given, the BMS 
is used to collect the voltage, current, and temperature data of each cell in the  
battery pack in real time to estimate the SOE value at the current time point [317,318].  
The estimation of SOE value includes two processes, SOE prediction and SOE  
correction. The estimation process is described as follows:

 1. SOE prediction
The SOE value as well as covariance at time point 1k −  and the sigma point 
near the state at that time can be obtained using unscented transformation 
(UT), as shown in Equation (6.10).
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The sigma point at time point 1k −  is propagated backward nonlinearly 
using the state to obtain the sigma point set of the state variable at time 
point k, as shown in Equation (6.11).
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For the sigma point set of the state variable at the time point k, the  
predicted value of the state variable at time point k can be obtained through 
the weighted average of the UT change, so the SOE predicted value SOEk 
at the time point k and the covariance Pk of SOE at the time point k are 
obtained, as shown in Equation (6.12).
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The sigma point of the state variable at time point k is propagated backward 
nonlinearly using the observation to obtain the sigma point set of the output 
variable at time point k, as shown in Equation (6.13).

  SOE SOE SOE 1 SOE0 1 2 3 4U k k k k Ln k Ln R ik k k k k k k( ) ( )[ ] [ ] [ ] [ ] [ ]= − − ⋅ + ⋅ + ⋅ − − ⋅
 (6.13)

For the output sigma point set at time point k, the predicted value of the 
battery terminal voltage Uk of the output variable at time point k can be 
obtained through the weighted average of the UT change, and the covari-
ance Pyy of the battery terminal voltage at time point k is obtained, as shown 
in Equation (6.14).
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 2. SOE correction
The covariance matrix Pxy between the state variable and the output vari-
able at time point k is calculated, and the calculation equation is shown in 
Equation (6.15).
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The updated Kalman gain Ke is calculated, and the calculation equation is 
shown in Equation (6.16).

 1K P Pe xy yy= ⋅ −  (6.16)

The filter value after the status update is obtained, so the SOE correction 
value SOEk at time point k is obtained, and the calculation equation is 
shown in Equation (6.17).
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The updated covariance Pk of the state variable at time point k is obtained, 
and the calculation equation is shown in Equation (6.18).

 P P K P Kk k e yy e
T( )= − ⋅ ⋅  (6.18)

During the battery working process, the information collected includes 
terminal voltage, current, and temperature, which are taken as the input 
variables of the estimation model, and the SOE is set as the state variable 
to obtain the SOE estimation value of the battery in real time. The SOE 
 estimation process based on the UKF algorithm is shown in Figure 6.1.

FIGURE 6.1 Flowchart of SOE estimation based on UKF algorithm.
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6.2.3  aukf-BaSeD Soe eStimation

The control model established by the UKF algorithm requires prior knowledge of the 
mathematical model and noise statistics. However, in the actual system, due to the 
unknown battery model and noise statistics, the statistical characteristics of noise are 
usually set to use inaccurate noise in the filter calculation process, which leads to an 
increase in the error of the state variable estimation value and even causes the filter-
ing to diverge. The Sage–Husa adaptive algorithm is introduced into the UKF algo-
rithm to predict and correct the noise in real time, thereby improving the accuracy of 
SOE estimation [319]. The adaptive unscented Kalman filtering (AUKF) algorithm 
estimates the process noise and the measurement noise through a maximal posterior 
estimator, obtaining a suboptimal unbiased estimate of the noise. The estimation 
principle is described as follows [320]:

 1. The unscented transformation is used to obtain the SOE value and cova-
riance at the time point 1k − , and the calculation equation is shown in 
Equation (6.19).
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 2. Given the calculation weighting coefficient dk , the calculation equation is 
further computed, as shown in Equation (6.20).
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In Equation (6.20), b is the forgetting factor, with 0 1b< < , dk are calculated 
and the general value range is 0.95-0.99.

 3. The process noise wk and the process noise covariance Qk  are calculated, 
and the calculation equation is shown in Equation (6.21).
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In Equation (6.21), kα  is the innovation coefficient.
 4. The measurement noise vk and the measurement noise covariance Rk are 

calculated, and the calculation equation is shown in Equation (6.22).
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From the above analysis, it can be seen that, depending on the new information 
formed by the difference between the battery terminal voltage and the battery model 
output terminal voltage, the Sage–Husa adaptive filtering theory can estimate pro-
cess noise and measurement noise and realize online adjustment.

6.2.4  initiaL State Determination

By analyzing the factors that affect the SOE estimation accuracy in the UKF algo-
rithm, it can be known that the accuracy of the initial state of the estimation model 
has an impact on the SOE tracking time and accuracy. Therefore, accurately obtain-
ing the initial SOE value helps to improve the accuracy of SOE estimation [321].  
The analysis shows that the open-circuit voltage of the battery is suitable for different 
SOE conditions, as shown in Figure 6.2.

Thus, the current SOE can be obtained through the open-circuit voltage; that is, 
the SOE value of the initial state can be corrected by the open-circuit voltage method. 
However, under different SOEs  conditions, the time required for the battery to charge 
the working state to a suitable state is unequal. The resting time required for the bat-
tery to recover to a suitable state at different SOEs  is obtained through experiments, 
as shown in Figure 6.3.

When using the UKF algorithm to estimate the SOE value, firstly, the SOE value 
is obtained at the end of the last discharge, which is used as the current initial state 
SOE0. Then, the rest time T  of the battery pack is obtained and compared with the 
rest time in the current state to determine whether the initial state SOE0 can be cor-
rected by the open-circuit voltage method. The initial state determination method is 
shown in Figure 6.4.

6.2.5  Dekf-BaSeD Soe eStimation

In the above estimation methods, experiments are needed to calculate the relation-
ship between SOE and open-circuit voltage. When estimating the state of a lithium-
ion battery, it is often necessary to obtain the relationship between the state of charge 
(SOC) and open-circuit voltage. Therefore, the cooperative estimation method of 

FIGURE 6.2 SOE and OCV diagram.
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SOC and SOE based on a dual extended Kalman filter (DEKF) is adopted to realize 
the SOE estimation [322]. The DEKF is a method of predicting the system state by 
merging the previous state and measurement value. In the case of using the extended 
Kalman filter (EKF) method, a simpler mechanism and lower computational burden 

FIGURE 6.3 SOE resting time chart.

FIGURE 6.4 Initial SOE determination method diagram.
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can be its advantages. Differently from a fast-varying SOC characteristic, the battery 
capacity has a relatively slow-varying characteristic. Due to the difference in the 
characteristics, a single EKF method hardly assures the stability and accuracy of the 
result. Therefore, the DEKF method is proposed to simultaneously identify the SOC 
and capacity of the battery and improve the stability of an observer at the same time. 
The EKF observer can run in parallel with estimating the SOC and the SOE at the 
same time point. For SOC and SOE co-estimation based on the DEKF algorithm, the 
first part is SOC estimation. The steps are shown as follows:

 1. State prediction and error covariance matrix estimation
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In Equation (6.23), the state transition matrix Ax , control matrix Bx, feed-
back matrix Cx , and measurement matrix Dx  are obtained by the Taylor 
expansion of the lithium-ion battery system.

 2. Kalman gain calculation and system residual error prediction
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 3. State correction and error covariance matrix update
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In Equations (6.23), (6.24), and (6.25), P  is the error covariance, Qx is the process 
noise error covariance, Kx  is Kalman gain, Rx is measurement noise error covariance, 
and ζ  is system residual error. For the SOE estimation, the prediction equation is 
obtained, as shown in Equation (6.26).
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In Equation (6.26), ( ) SOE( )k kφ = , 1A =φ , ( )B y k T E BTη=φ φ . According to the sys-
tem, residual error in Equation (6.24), the gain, the SOE value, and the error covariance 
matrix can be updated. Then, the SOE can be estimated, as shown in Equation (6.27).
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6.2.6  Comparative Soe eStimation reSuLtS

To verify the estimation effect of SOE, the Beijing bus dynamic stress test (BBDST) 
and dynamic stress test (DST) conditions are analyzed. The SOE estimation results 
are shown in Figure 6.5.

In Figure 6.5, the SOE1 and SOE2 are the actual SOE and the SOE estimated by 
the DEKF algorithm, respectively. Err is the estimated error using the DEKF algo-
rithm. For the BBDST, the maximum error of the DEKF algorithm is –3.61%. It can 
be seen from the error that the DEKF algorithm can estimate the SOE value accu-
rately. The SOE estimation results under DST conditions are shown in Figure 6.6.

In Figure 6.6, the SOE1 and SOE2 are the actual SOE, and the SOE is estimated 
by the DEKF algorithm, respectively. Err is the estimated error using the DEKF 
algorithm. For the DST conditions, the maximum error of the DEKF algorithm is 
−2.54%. The definition of the energy state of lithium-ion batteries, the existing esti-
mation methods, and various algorithms for SOE estimation are introduced. The 
SOE is a parameter required by the lithium-ion BMS, which can reflect the remain-
ing energy of the battery. Traditional SOE estimation methods are divided into static 
initial estimation methods and dynamic period estimation methods.

Based on the SOE calculation expression and the battery terminal voltage expres-
sion established by the simplified electrochemical combination model, the UKF filter-
ing principle is used to realize the SOE estimation, including the establishment of the 

FIGURE 6.5 SOE estimation results under BBDST working conditions. (a) SOE estimation 
results under BBDST. (b) SOE estimation errors under BBDST.

FIGURE 6.6 SOE estimation results under DST working conditions. (a) SOE estimation 
results under DST. (b) SOE estimation error under DST.
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discrete state-space equation of the system, the determination of the initial SOE value, 
and the iterative SOE estimation. The control model established by the UKF algorithm 
needs to know the prior knowledge of the mathematical model and noise statistics, but 
in the actual system, because the battery model and noise statistics are unknown, the 
noise statistic characteristics are usually set, and the noise statistics are inaccurate. It is 
used in the filtering calculation process. It causes the error of the state variable estima-
tion value to increase and even leads to the divergence of the filtering. The Sage–Husa 
adaptive algorithm is introduced into the UKF algorithm to predict and correct the 
noise in real time, thereby improving the accuracy of SOE estimation. The AUKF algo-
rithm estimates the process noise and measurement noise through a maximal posterior 
estimator and obtains a suboptimal unbiased estimate of the noise.

6.3  OVERVIEW OF BATTERY CYCLE LIFE

6.3.1  Definition of BaSiC ConCeptS

The lithium-ion battery is a dynamic and time-varying electrochemical system with 
nonlinear behavior and complex internal mechanisms [323–325]. As the number 
of charge–discharge cycles increases, the performance and lifetime of lithium-ion  
batteries also gradually decrease. They are divided into two main degradation modes.

 1. Loss of lithium inventory (LLI), which is caused by side reactions that con-
sume lithium ions, such as the growth of solid electrolyte interphase (SEI) 
and lithium plating [326,327].

 2. Loss of active material (LAM) in the electrode leads to the loss of storage 
capacity, such as the peeling of graphite and the loss of positive and nega-
tive active materials. The decrease in LAM is usually caused by a variety 
of factors, one of which is the deterioration of the electrode structure due to 
the change in the cubature of the active material during the cycle. These can 
cause mechanical stress, break particles, and reduce the density of lithium-
ion batteries. LLI often occurs simultaneously with LAM [328].

Other factors include chemical decomposition and dissolution reactions of transition 
metals into the electrolyte and changes in the performance of the SEI membrane. 
The increase in battery resistance is caused by the formation of parasitic phases on 
the electrode surface and the loss of electrical contact inside the porous electrode. 
More specifically, the LAM is mainly caused by graphite peeling, binder decom-
position, electrical contact loss caused by the corrosion of the current collector, and 
electrode breakage.

It is worth mentioning that these degradation mechanisms are highly related to 
materials. For instance, the working voltage of graphite anodes is lower than the 
electrochemical window of ordinary electrolytes, which can lead to the formation of 
SEI films. However, since the potential of lithium titanium oxide (LTO) is located 
within the electrochemical window of the electrolyte, no SEI film is formed in the 
LTO anode [329,330]. Another instance is that the cubature change of the lithium 
iron phosphate (LFP) cathode is smaller than that of the lithium manganese oxide 
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cathode, so its structure is less deformed. In addition to the difference in materials, 
the degradation mechanism is also very different under different working condi-
tions and different battery designs. For example, lithium plating is most likely to 
occur during rapid or low-temperature charging but rarely occurs during discharge 
[331,332]. In battery design, a cathode with a small area results in less stress and 
cracking of the small particles. However, a cathode with a large specific surface area 
results in a higher solubility of the cathode material.

The aging stress factor is an expression to describe the conditions that increase the 
rate of aging. In large battery systems, the BMS is usually responsible for controlling 
operating conditions to extend service life and ensure safe operation. The  overcharge/
overdischarge protection is achieved through voltage regulation of the BMS. When 
a battery in its pack reaches a fully charged or discharged state, the charge and dis-
charge process should stop. The thermal management system can effectively heat/
cool the battery to ensure that its temperature is within the minimum degradation 
range. The development of an optimal charging protocol to balance the relationship 
between battery capacity decay and charging time is necessary. Also, understanding 
the influence of aging factors is crucial for the development of reliable health diag-
noses and prognoses. The data-driven method is mainly based on the quantity and 
quality of the aging test data, but the experimental conditions cannot cover all pos-
sible working conditions. For some application conditions, certain stress factors play 
a leading role. In actual working conditions, the quantitative relationship between 
stress factors and the aging process must be focused on the most influential factors, 
which should be considered when designing the experimental test plan.

To ensure the safety, reliability, and prolonged life span of a battery-powered sys-
tem, the battery must be replaced when the capacity drops to 80% of the initial 
capacity. As an essential energy storage system in electrified transportation systems 
and smart grids, its failure can cause these battery-powered systems to fail. Certain 
serious battery failures such as thermal runaway can cause a strong release of energy, 
leading to fire or explosion. However, due to the uncertainty of the environment 
and load conditions, it is difficult to predict the degradation rate of the batteries. 
Due to the complexity of the battery degradation process, predicting the RUL has 
become a very challenging task. So, it is essential to ensure the reliable operation of 
the BMS, timely maintenance, and battery life applications. The internal variables 
directly related to the aging state of the battery are difficult to measure with sensors. 
Therefore, it is important to study degradation behavior and construct degradation 
models to estimate the RUL and state of health (SOH). The RUL is generally defined 
as the number of charge–discharge cycles remaining until the failure threshold. The 
RUL prediction is designed to use historical and current performance data to predict 
future conditions and provide warnings before battery failures occur. Reliable and 
accurate RUL prediction is of great significance to ensure the stability and safety of 
battery-powered systems.

The RUL prediction has attracted more attention in recent years. Some stud-
ies reviewed existing RUL prediction methods and classified them according to 
the models and algorithms used. According to the existing literature, RUL predic-
tion methods include model-based, data-driven, and hybrid methods. The model-
based approach aims to establish a mathematical model to describe the degradation 



278 Multidimensional Lithium-Ion Battery Status Monitoring

trajectory based on battery dynamics. The model is usually a set of algebraic and 
differential or empirical equations. An important feature of this method is that the 
prediction models are designed for specific systems. The prediction models on bat-
teries and bearings are different. However, how to balance the relationship between 
model complexity and prediction accuracy is challenging.

The data-driven method attempts to extract the hidden correlation from a large 
amount of data onto statistical theory or machine learning (ML) technology to 
deduce the prediction model from the measured data, rather than establishing a spe-
cific physics-based model. Also, there is no battery mathematical model for RUL 
prediction. Different from the model-based method, the data-driven method is more 
suitable for various applications. The same data-driven algorithm can be applied to 
both bearings and batteries by only recalibrating the parameters. The data-driven 
approach does not require analysis of system mechanisms, which is feasible and 
practical when large amounts of data are available. In recent years, hybrid methods 
that combine model-based and data-driven methods have also been proposed to com-
bine the advantages of different methods.

The highly improved computing power of the central processing unit and the 
latest software development provide an opportunity to incorporate complex data-
driven methods into battery RUL predictions. A hybrid method with online update 
and error correction functions has also been developed. Accurate SOH estimation 
is very important because it provides useful information for RUL degradation. In 
lithium-ion batteries, the conversion between electrical energy and chemical energy 
is achieved through repeated insertion and extraction of lithium ions. Side chemical 
reactions cause irreversible loss of electrolyte, active electrode material, and lithium 
stock. Therefore, the capacity decreases with the cycle period. The RUL predicts 
the needed information for the health indicator (HI), which can reflect the ability 
of the battery to provide specified performance compared with a new battery and 
quantify the aging state of the battery. Multiple attributes can be used as HI. The HI 
has multiple attributes. In existing research, capacity or battery internal resistance is 
usually used as HI. By predicting the future trends of these two HIs, the time inter-
val between the current state and the predefined fault threshold can be regarded as 
the RUL. For example, when the battery capacity drops to 80% of the initial value 
or the internal resistance becomes 1.3 times the initial value, the battery reaches the 
retirement standard.. Since these HIs directly reflect the physical degradation of the 
battery, they are also called direct HIs (DHIs).

The battery health monitor has two main challenges: (1) Online measurement of 
battery capacity requires a complete charge–discharge process, which is difficult to 
achieve in many applications. (2) The predictability of DHI is very low, therefore, 
many relative HIs (RHIs) have been proposed. The first type of RHI extracted from 
the battery voltage, current, and temperature data can be easily obtained online, such 
as the average voltage drop and the time interval of the equal discharge voltage dif-
ference sequence. Comprehensive analysis of available data has better predictability 
than DHI, such as summary statistics of discharge voltage curve changes, such as 
minimum, mean, and variance, which is combined with the sample entropy of the 
measured voltage series. After extracting the RHI from the original battery measure-
ment, a degraded modeling process is required. Degradation modeling has two main 
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purposes: (a) assessing the correlation between RHI and DHI (usually battery capac-
ity) and verifying the validity of the proposed RHI and (b) establishing the relation-
ship between RHI and DHI. Therefore, after the aging modeling, the battery RUL 
can be effectively predicted based on the future RHI trajectory.

In recent years, significant progress has been made in the development of RUL 
forecasts. As mentioned earlier, RUL prediction methods are generally divided into 
model-based, data-driven, and hybrid methods. However, the classification standards 
and naming rules differ slightly. For example, in some literature, filtering methods 
are grouped as data-driven methods [333]. Meanwhile, some researchers classify 
filtering methods as model-based methods. In addition, there is no comprehensive 
assessment of the prognosis of battery RUL, including the latest research progress.

Lithium-ion batteries undergo sudden, instantaneous, and accidental capacity 
regeneration during the aging process. This phenomenon is related to the elec-
trochemical performance of the battery and is affected by temperature and load 
conditions. Since the degradation trend is affected by the capacity regeneration, 
the capacity regeneration affects the performance predicted by RUL. Therefore, 
the original capacity data are usually regarded as a mixed signal, and the useful 
information is extracted by decomposing the original signal at different scales. For 
example, the empirical mode decomposition and wavelet decomposition are used 
to divide the original signal into different parts, including global degradation and 
local regeneration. Then, data-driven methods, including autoregressive integrated 
moving average (ARIMA) and Gaussian process regression (GPR), are used to 
obtain the battery RUL. Although the above data processing methods are mainly 
used in combination with the data-driven RUL algorithm, they are also used to 
detect and separate different degradation modes in the original data of the model-
based RUL algorithm.

By separating the degradation mode, it can be applied to different mechanical 
models, and the predicted value of each model can be aggregated to obtain the RUL 
value, thereby reducing the difficulty of constructing the mechanical model. The 
combination of data-driven methods for data processing and model-based RUL pre-
diction methods is a hybrid method. In addition, the acquired battery capacity data 
usually contain various types of noise and measurement errors. Using such raw data 
to build capacity attenuation models or training data-driven models may reduce the 
accuracy of predictions and even increase the errors. Therefore, the original data 
must be preprocessed to eliminate the noise.

Some studies have proposed an improved or discrete gray-scale model to smoothen 
the original data and reduce the relative randomness. Other research attempts to 
eliminate the noise in the original data. For instance, using wavelet denoising and 
variational mode decomposition to process data effectively eliminates the nonlinear 
and non-stationary noise. Next, the processed data can be used as input for model-
based battery RUL prediction. In some studies, a relevance vector machine (RVM) 
is used to obtain the correlation vectors, i.e., data with less noise and measurement 
errors from the original historical capacity data. These representative vectors contain 
the battery capacity and the corresponding number of cycles and are calculated as 
parameters of the empirical capacity degradation model through nonlinear fitting 
calculations.
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The degree of understanding and mathematical explanation of the battery aging 
process and its causes determines the feasibility of health assessment and predic-
tion methods. Many studies have focused on identifying the basic cause and effect 
of performance loss. Here is a summary of the most common aging mechanisms in 
batteries and an outline of the main stress factors.

6.3.2  faCtorS affeCting Battery Life

Even when the battery is not being used, it deteriorates, which is called the calendar 
aging of the battery. Conversely, cyclic aging refers to the aging caused by continu-
ous charge–discharge cycles of the battery. To better design and implement SOH 
estimation and RUL prediction, it is important to understand the characteristics and 
influencing factors [334–336]. High storage SOC and high temperature are the main 
driving factors for calendar aging. A high SOC means a low lithium-ion content in 
the active material of the positive electrode (cathode). It increases the tendency of 
the electrode to chemically decompose the electrolyte composition. Then, the same 
chemical driving force generates a higher battery voltage under a higher SOC, pro-
viding a higher driving force for lithium ions to reenter the electrode.

Regardless of the operating condition, calendar aging inevitably occurs through-
out the battery life and is affected by all the factors in the calendar aging cycle. Also, 
the latter is affected by other factors, such as overcharge/overdischarge, current rate, 
and cycle depth. These factors are nonlinearly related, which makes the aging pro-
cess quite complicated. The main reasons for the calendar aging of the battery are 
described as follows:

 1. High temperature: Accelerate side reactions, including (i) the growth rate 
of the SEI film on the anode increases, leading to faster LLI and increas-
ing battery resistance; (ii) metal dissolution on the cathode; and (iii) elec-
trolyte decomposition, (ii) and (iii) leading to LAM and LLI. Extremely 
high temperatures may cause a thermal runaway situation, which is the 
most serious threat.

 2. Low temperature: Slow down the transmission of lithium ions in the two 
electrodes and electrolyte. Where the electrolyte meets the graphite elec-
trode, trying to charge quickly at low-temperature conditions may cause 
lithium-ion crowding. This may result in the graphite (partial) lithium coat-
ing that comes with the LLI. Continuous and uneven lithium plating even-
tually leads to the growth of lithium dendrites, which may penetrate the 
separator and short-circuit conditions of the batteries.

 3. Overcharge/overdischarge: When the battery is overcharged, the cathode is 
empty and has no active lithium available. Meanwhile, the anode is filled 
with lithium and has no ‘room’ for lithium. When the lithium is excessively 
removed, the cathode material undergoes irreversible structural changes, 
followed by the dissolution of transition metal ions, such as Mn2+, and the 
decomposition of active materials. During the overcharging process, it 
causes the decomposition of the electrolyte and a significant increase in the 
total internal resistance. Due to Joule heat and the heat generated by a series 
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of side reactions on the two electrodes, a large amount of heat is gener-
ated when the battery is overcharged. During the overdischarge process, the 
anode potential increases abnormally, which causes the copper Cu current 
collector anode to dissolve and form Cu2+ ions. After charging, the reverse 
reaction forms copper dendrites, which may cause internal short circuits.

 4. High current: Excessive charge–discharge currents cause local overcharge 
and overdischarge, resulting in the same degradation reaction as general 
overcharge and overdischarge. High currents produce more heat waste, 
which may increase the battery temperature and consequently increase the 
speed of the aging process. Lithium-ion batteries using organic electrolytes, 
compared with water-based batteries, have a relatively low heat capacity, 
making them particularly prone to quick heat up when current flows. For 
graphite anodes, due to the limited ability of graphite to accept lithium ions 
at a high rate, rapid charging also forms a metallic Li coating, leading to LLI.

 5. Mechanical stress: The battery is subjected to stress from different sources, 
such as manufacturing (externally applied stack pressure), expansion of 
electrode materials during operation, mechanical restraint of gas escape 
from the battery, and external loads during service. The highest stress tends 
to be generally generated in the electrode particles near the separator, and 
when the stress exceeds a certain limit, the electrode material cracks, result-
ing in a significant decrease in battery performance.

6.4  EXPERIMENT-BASED BATTERY LIFE ESTIMATION

Lithium-ion batteries are widely used in consumer electronics, electric vehicles, 
aerospace systems, and other fields. However, the inevitable problem is that due to 
the long-term use of the battery, its performance continues to decline in the process 
until it cannot meet the normal use requirement and is discarded. Therefore, the SOH 
of the battery must be estimated. The standard definition of battery SOH is the ratio 
of the capacity of a power battery discharged from a fully charged state to a cutoff 
voltage at a constant rate and its corresponding nominal capacity under standard 
conditions. This ratio is a manifestation of the current performance of the battery. 
In addition, the degradation of the battery performance cannot be directly measured 
[337]. It is often estimated through various methods to decide whether to replace the 
battery and prevent avoidable accidents. This chapter uses different methods to per-
form SOH experimental analysis on ternary lithium-ion batteries.

6.4.1  CapaCity methoD

The capacity method is also called the complete discharge method. The capac-
ity measurement is mainly to conduct a complete charge–discharge experiment 
through the capacity test equipment. It is to obtain the battery capacity according to 
the charge end voltage and discharge cutoff voltage indicated by the manufacturer. 
Although the manufacturer gives the rated capacity with the extension of service 
time, the aging effect occurs, and the maximum available capacity of the battery  
gradually decreases. The change in capacity can characterize the health of the 
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batteries [338,339]. The following precautions should be noted when measuring the 
capacity of lithium-ion batteries:

 1. The discharge termination voltage is an important parameter related to the 
service life of lithium-ion batteries. The current nominal voltage of a single 
lithium-ion battery is generally designed to be 3.7 V, and the cutoff voltage 
is 2.75 V. Two situations that influence the manufacturer to increase the 
upper limit of the cutoff voltage to 3.0 V are described as follows: (1) The 
electrochemical properties are determined by the material of the lithium-
ion battery, which is often from the perspective of safer use of batteries. 
(2) The cutoff voltage is designed to be as low as 2.5 V or 2.4 V, but not 
less than 2.4 V. Thus, when the voltage reaches the cutoff voltage, although 
there is remaining power, the discharge cannot continue. Otherwise, the 
battery is damaged.

 2. The voltage at which the battery is fully charged is called the termination 
or terminal voltage. According to the battery manufacturer’s standard, the 
terminal voltage is about 1.2 times the rated voltage.

 3. The lithium-ion battery should not be overcharged and overdischarged, both 
of which cause irreversible damage.

This chapter takes a ternary lithium-ion battery as an example for capacity testing. 
The rated capacity is 70 Ah, the charge cutoff voltage is 4.2 V, and the discharge 
cutoff voltage is 2.75 V. An activation experiment is required before the capacity test 
to make the experimental results close to the real value.

 1. The battery is charged at a constant current of 0.05 C (3.5 A) to the cell 
charging cutoff voltage of 4.2 V and rests for 15 minutes.

 2. The battery is discharged at a constant current of 0.05 C to the cell discharge 
cutoff voltage of 2.75 V, which is shelved for 15 minutes, and the discharge 
capacity is recorded.

 3. Steps (1) and (2) tests are repeated until the difference between the  discharge 
capacities is less than ±1%.

 4. The battery is charged with a 0.4 C constant current rate to the cell’s termi-
nal voltage of 4.2 V, transferred to constant voltage charging until the cur-
rent drops to 0.05 C, which is then left to rest for 40 minutes.

 5. The battery is discharged at a constant current of 0.4 C and rests for 40 min-
utes after reaching the cell discharge cutoff voltage of 2.75 V.

Steps (4) and (5) tests are repeated until the discharge capacities are less than ±1%, 
and the last discharge capacity is used as the actual battery capacity.

The SOH is defined from the perspective of battery capacity, as shown in Equation 
(6.28).

 SOH
C

C
M

N

=  (6.28)
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In Equation (6.28), CM is the measured capacity, and CN is the nominal capacity of the 
batteries. The voltage and capacity curves are shown in Figure 6.7.

In Figure 6.7, the actual capacity of the battery is 71.28 Ah.

6.4.2  CyCLe numBer methoD

The SOH expresses the current battery capacity as a percentage. For a new battery, 
the SOH value is 100%. As the battery is being used, the battery will age and the 
SOH will gradually decrease. According to IEEE Standard 1188–1996, when the 
capacity of the power battery drops to 80% of the rated capacity, that is, when the 
SOH is 80%, the battery should be replaced [340,341].

The theoretical life of a lithium-ion battery is about 800 cycles, which is moder-
ate among commercial rechargeable lithium-ion batteries. For LFP batteries, it is 
about 2000 cycles. At present, mainstream battery manufacturers promise more than 
500 cycles in battery cell specifications. After the cells are described and assembled 
into a battery pack, due to inconsistencies, the voltage and internal resistance do not 
remain the same, and its cycle life reduces by 400 cycles. The above definitions are 
the number of cycles when the battery is fully charged and discharged.

The number of cycles of the battery is not equal to the number of charge– 
discharge. The number of cycles of the battery means that the battery undergoes a 
complete charge–discharge cycle. When the number of cycles is increased by 1, the 
number of charge–discharge is increased by 1. Because lithium-ion batteries have 
no memory effect, there is a big difference in defining the two-state parameters. 
For instance, a lithium-ion battery is discharged to 40% on the first day, then fully 
charged, and discharged to 60% the following day, and fully charged. It is a complete 
charge–discharge, that is, a cycle. Generally, the number of test cycles for lithium-ion 
batteries is directly given by the manufacturer. If the battery is fully charged each 
time and then discharged to end of life (EOL), the cyclic SOH calculation method can 
be implemented as shown in Equation (6.29).

 SOH 1
Cyc
Cyc

i

N

= −  (6.29)

FIGURE 6.7 Constant current–constant voltage charge–discharge curve. (a) Voltage curve. 
(b) Capacity curve.
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In Equation (6.32), Cyci is the current number of cycles, and CycN  is the nomi-
nal number of cycles of the batteries. The nominal number of cycles from the 
manufacturer is the number of cycles when the full capacity of the lithium-ion 
battery decays to 80% of the rated capacity. The capacity attenuation definitions 
for different batteries and different manufacturers may vary. When the SOH in 
Equation (6.31) drops to 0, the lithium-ion battery becomes a scrap. When the 
actual working condition is not a complete charge–discharge cycle, the influence 
of different cycle conditions, cycle states, and other factors on the service life 
should be considered. Under this condition, it is not advisable to use Equation 
(6.32) for calculation. It needs to determine the battery life based on experience 
and standard parameters. Taking a 45Ah lithium-ion battery as an example, the 
cycle aging experiment is carried out. During the cycle of discharge, the capacity 
test is performed every 100 times, and the aging characteristic curve is obtained, 
as shown in Figure 6.8.

In Figure 6.8, the battery capacity decayed to 80% of the rated capacity after 
460 cycles of charge–discharge, and the battery has completely aged. The shorter 
the time for the battery to reach the charge–discharge cutoff voltage, the further its 
capacity decreases.

6.4.3  WeighteD ampere-hour methoD

From a new to an old battery, the total ampere-hours that can handle power during 
the entire process of charge–discharge should be a fixed value. When the accumu-
lated ampere-hour power reaches a certain level, it is considered that the battery has 
reached the end of its life, and this is the ampere-hour method [342–344]. According 
to the weighted ampere-hour method, when the battery discharges the same amount 
of power under different conditions, the damage to the battery life can be dangerous. 
Therefore, when the cumulative ampere-hour after the power discharge is multiplied 
by a weighted coefficient and reaches a certain value of 80%, the battery is consid-
ered to have reached the end of its service life, as shown in Equation (6.30).

FIGURE 6.8 The aging characteristic curve.
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In Equation (6.33), SOCi is the charge–discharge capacity of the battery during the 
thi  charge–discharge, SOC0 is the initial value of power, CN is the rated capacity of 
the battery, η  is the weight, and SOH is the total power that has been charged and 
discharged in the previous period, and the ratio of useable power to total power in 
the whole life cycle of the battery. The choice of η  requires a large number of experi-
mental results to be determined jointly by experience. The proposed method has high 
requirements on the accuracy of the power measurement with the initial value being 
accurate; otherwise, the error accumulates over time.

6.4.4  internaL reSiStanCe methoD

When current flows through the battery, the internal resistance reduces the working 
voltage of the batteries. Due to the internal resistance of the battery, the terminal 
voltage of the battery is lower than the EMF and open-circuit voltage when the bat-
tery is discharged. Conversely, the terminal voltage is higher than the EMF and the 
open-circuit voltage when charged [345]. The internal resistance of the battery is 
an essential parameter of the chemical power supply. It directly affects the work-
ing voltage, working current, output energy, and power of the battery. For a practi-
cal chemical power supply, the smaller the internal resistance, the better [346,347]. 
The internal resistance of a lithium-ion battery is different from ordinary resistance. 
The resistance is generally measured in milliampere, but the commonly used Ohm’s 
law cannot accurately measure the internal resistance. Before measuring its internal 
resistance, it is necessary to study the characteristics of the internal resistance in the 
estimation of the battery’s health and the internal resistance model [348].

The internal resistance is divided into ohmic resistance ( 0R ) and polarization 
internal resistance (Rp). The polarization internal resistance is divided into electro-
chemical and concentration polarization internal resistance. The internal resistance 
is one of the key parameters of power batteries indicating the SOC, SOH, and bat-
tery capacity. It reflects the difficulty of ion and electron transmission between posi-
tive and negative electrodes in the battery during the chemical reaction processes. 
Different types of power batteries have different internal resistances. Even batter-
ies of the same chemical composition have larger and stronger discharge capacity, 
while batteries with larger internal resistance have a relatively smaller and weaker 
discharge capacity.

The internal resistance of the battery is small and is often neglected under many 
working conditions. But power batteries are often in a state of high current and deep 
discharge, and the voltage drop caused by the internal resistance is large [349,350]. 
So, the impact of the internal resistance on the entire circuit cannot be ignored. 
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Regarding the composition of the internal resistance, three types of polarization of 
batteries are described as follows:

 1. Ohmic polarization
During the charge–discharge process, to overcome the ohmic resistance, 
the extra voltage must be applied to promote ion migration. The voltage is 
thermally converted to the environment, resulting in the ohmic polarization 
phenomenon. As the charging current increases sharply, ohmic polarization 
causes the battery temperature to rise during the charging process.

 2. Concentration polarization
When current flows through the battery, to maintain a normal reaction, the 
ideal situation is that the reactants on the electrode surface can be replen-
ished in time, and the products can deplete. The diffusion rate of the product 
and the reactant is far less than the rate of the chemical reaction, resulting in 
a change in the concentration of the electrolyte solution near the electrode 
plate. That is to say, from the electrode surface to the middle of the solution, 
the electrolyte concentration distribution is non-uniform. This phenomenon 
is called concentration polarization.

 3. Electrochemical polarization
This polarization is caused by the fact that the speed of the electrochemical 
reaction to the electrode lags behind the speed of the electron movement 
on the electrode. For instance, before discharging the negative electrode 
of the battery, its surface is negatively charged, but the nearby solution is 
positively charged, which ensures equilibrium. During the discharging pro-
cess, electrons are immediately released to the external circuit. The nega-
tive charges on the electrode surface decrease, and the oxidation reaction 
of metal dissolution progresses slowly [351]. The reduction of electrons on 
the electrode surface is supplemented in time, and the charged state of the 
electrode changes. The state of reduced negative surface charge promotes 
the electrons in the metal to leave the electrode, and the metal ions are trans-
ferred into the solution, accelerating the Li e Li− →− + reaction to achieve a 
new dynamic equilibrium. However, by comparison, before the discharge, 
the number of negative charges on the electrode surface decreases, and the 
corresponding electrode’s potential becomes positive. That is, the electro-
chemical polarization voltage becomes higher, which seriously hinders the 
normal charging current. Also, when the positive electrode of the battery is 
discharged, the number of positive charges on the surface of the electrode 
decreases, and the electrode potential becomes negative.

The internal resistance of the battery increases as the battery life decreases. When 
a single lithium-ion battery is charged and discharged, the pulse current method is 
used to achieve an internal resistance of 0–200 total intervals, as shown in Figure 6.9.

In Figure 6.9, the ohmic resistance of the battery gradually increases during the 
entire aging process of the battery, while the polarization internal resistance remains 
relatively constant during the entire process. It can be observed that the change 
in the internal resistance of the battery is mainly caused by the ohmic resistance.  
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Therefore, the ohmic resistance of the battery is mainly involved in the SOH estima-
tion. The principle of the DC internal resistance test is to apply a large amount of 
current to charge or discharge the battery for a short period.

When the internal composition of the battery is not fully polarized, the internal 
resistance of the battery is calculated proportional to the voltage changes and applied 
current before and after the application of current. Four parameters are selected to 
test the DC internal resistance: current with multiplying factor used, pulse time, 
SOC, and test environment temperature. The changes in these parameters have 
a high impact on the DC internal resistance. The DC internal resistance does not 
include only the ohmic resistance but also the partial polarization resistance of the 
battery pack. The polarization of the battery is highly affected by current and time. 
Currently, there are three commonly used DC internal resistance test methods, which 
are highlighted as follows:

 1. The hybrid pulse power characterization (HPPC) test method is in the 
‘Freedom CAR Battery Test Manual’ in the United States. The test duration 
is 10 seconds, the applied discharge current is 5 C or higher, and the charg-
ing current is 0.75 times the discharge current. The specific current selection 
is based on the characteristics of the batteries, such as dynamic, operation, 
physical, dimensional, and aging.

 2. The JEVSD7132003 (JEVS) test method from Japan is mainly for Ni/MH 
batteries but can also be applied to lithium-ion batteries: First, establish the 
current–voltage characteristic curve of the battery under 0%–100% SOC, 
and the used discharge rates are described as 1 C, 2 C, 5 C, and 10 C in suc-
cession. The DC internal resistance of the battery is calculated by alternat-
ing the charge or discharge under a specific SOC value. The charging or 
discharging time should be 10 seconds, respectively.

 3. The test method proposed in the ‘863’ major polarization new energy vehi-
cle special project ‘High-power Lithium-ion Power Battery Performance 
Test Specification for HEV’. The test duration is 5 seconds, and the charg-
ing test current rate is set to be 3 C and 9 C.

FIGURE 6.9 Variation trend of ohmic and polarization resistance with life attenuation.
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The two test methods of Japan electric vehicle association standards (JEVS) and 
HPPC have different characteristics. The JEVS adopts a 0–10 C series current, which 
can avoid the deviation of results caused by using a single currency. It assumes that 
the main component of the battery’s internal resistance is approximately constant 
ohmic impedance, so the discharge rate is relatively low with high reliability. When 
the battery is charged and discharged at a high rate, the rate control step of the entire 
battery reaction is changed from the charge transfer process control under a small 
rate to the mass transfer process control. The impedance composition of the battery 
does not include only the ohmic impedance but also the impedance formed by polar-
ization reaction, which varies with current and pulse time.

The HPPC method uses low and high current rates to test the output voltage and 
power of the battery. At the same time, the voltage response characteristics of the 
battery are considered under different charge–discharge current conditions. This 
method can obtain the battery output response and aging characteristics under the 
standard discharge current. But it lacks comprehensiveness, and the test results are 
incomplete and biased due to the different voltage responses of different batteries 
under a specified current [352]. For the ‘863’ test method, different charge and dis-
charge current conditions are used, which creates a wide variation between them. 
Any of these test methods can be used as a benchmark method to test and compare 
different battery systems. However, batteries differ from each other and the internal 
resistance changes along with the measured current and time. As the battery ages 
and its capacity decreases, the internal resistance of the battery gradually increases. 
The corresponding relationship between the internal resistance and the SOH is estab-
lished based on the actual situation. The SOH of the battery is predicted by the accu-
rate measurement and estimation of the internal resistance.

The internal resistance is mainly composed of ohmic resistance and polarized 
internal resistance. The ohmic resistance accounts for a larger proportion than polar-
ized internal resistance in the total internal resistance. The existence of internal 
resistance in the internal materials of the battery leads to the formation of ohmic 
resistance, which sums up the internal resistance of the battery pack. It is highly 
affected by temperature and increases with decreasing temperature. Polarization 
internal resistance is produced when the chemical substances in the battery par-
ticipate in a chemical reaction, and polarization reaction occurs during charge–dis-
charge. Compared with the ohmic resistance, the polarized internal resistance is less 
affected by temperature. Also, the internal resistance is one of the characterization 
parameters of the SOH. With the aggravation of battery aging, the battery’s internal 
resistance increases. According to the SOH equation defined by internal resistance, 
the battery SOH decreases along with the current increasing. The definition of SOH 
in terms of battery internal resistance is in Equation (6.31).

 SOH EOL

EOL NEW
0

R R

R R
R = −

−
 (6.31)

In Equation (6.34), EOLR  is the internal resistance at the end of the battery life, NEWR  is 
the resistance of the battery when it leaves the factory, and R is the internal resistance 
of the battery in the current state. This estimation method does not need to consider 
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the change in battery capacity. As long as the internal resistance of the battery can be 
obtained, the change of SOH is estimated accordingly. The internal resistance of the 
battery changes with the service life of the batteries.

6.4.5  aDaptive fiLtering methoD

As battery degradation continues, model parameters need to be updated to main-
tain prediction accuracy. The update is usually done through filtering algorithms. 
However, there are some problems related to the initialization and sampling pro-
cess in the filtering algorithm [353,354]. Initialization problems usually exist in 
the model parameter estimation methods, such as least squares, Kalman filter 
(KF), and particle filter (PF) algorithms [355,356]. Traditionally, the initial value 
is set based on experience or even random selection. However, inaccurate initial 
values slow down the convergence speed of the algorithm and may lead to diver-
gence. The Dempster–Shafer theory is used to initialize the parameters of the PF 
algorithm, thereby shortening the convergence time and improving the prediction 
accuracy of the early battery life.

The traditional PF uses resampling technology to avoid particle degradation by 
eliminating small particles and replicating large particles. However, they produce a 
large number of large-weight particles, and the number of small-weight particles is 
almost zero, which causes the sample to deteriorate. The support vector regression 
(SVR) algorithm is used in the resampling step to maintain the diversity of particles 
to avoid this problem [357,358]. The basic idea is to reconstruct the posterior distribu-
tion and obtain re-weighted particles based on SVR, where the training data are the 
particles and their corresponding weights. Another recent study is to use the Markov 
Chain Monte Carlo method to solve the particle degradation problem after the stan-
dard resampling process [359].

6.4.6  muLtiDimenSionaL extenDeD kaLman fiLter

A multidimensional EKF algorithm to reduce the computational complexity of 
BMS is proposed. It identifies slow time-varying system parameters on a macro-
scale and fast time-varying system states on a micro-scale, to provide more suit-
able system parameters and state estimation. The use of a multidimensional 
discrete-time state-space model makes the model more specific and without losing 
generality. It is assumed that the system has two-time scales, including macro-and 
micro-time scales. The system quantity on the macro-time scale changes slowly 
with time, but the system quantity on the micro-time scale changes quickly with 
time. The former is the model parameters, and the latter is the state of the system, 
respectively.

The DEKF method estimates the state and parameters on the same time scale. 
However, for a system that exhibits separation of time scales, it is natural and ideal 
to adjust slow time-varying parameters on the macro-time scale while maintaining 
the estimation of the fast time-varying state on the micro-time scale. The multi-scale 
framework reduces the computational workload and provides more suitable model 
parameter estimations [360]. Different from the dual extended Kalman estimation, 
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the derived multidimensional extended Kalman estimation allows the time scale of 
state and parameter estimation to be separated. It should be noted that the macro-
time scale refers to the time scale where the system state changes slowly, while 
the micro-time scale refers to the time scale where the system model parameters 
tend to change rapidly. For example, in a battery system, the SOC as a system state 
changes every second, which indicates that the micro-time scale is approximately 
one. Conversely, the cell capacity, which is a parameter of the system model, usually 
degrades by 1.0% or less within a month under normal usage, resulting in a macro-
time scale of one day.

6.4.7  muLtiDimenSionaL partiCLe fiLter

The PF method has become a popular algorithm to solve the optimal estimation 
problem of nonlinear and non-Gaussian state-space models. It is because the change 
of the battery parameters is slower than the SOC. The method based on dual PFs 
can estimate battery parameters online from a macro-scale, thereby reducing the 
calculation cost of the BMS. However, due to the rapid change of battery param-
eters, the state is estimated on a micro-scale. The idea of multidimensional particle 
filtering to improve the accuracy of the algorithm and the ability to converge to the 
initial state offset is proposed. The flowchart of the multidimensional PF is shown 
in Figure 6.10.

Taking into account that the characteristics of system parameter change slower 
than state during the estimation process improves the accuracy and robustness of 
SOC estimation. Therefore, a multidimensional PF is proposed to reduce the calcula-
tion amount of the control system.

FIGURE 6.10 Flowchart of multidimensional particle filter.
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6.5  DATA-DRIVEN FORECASTING

6.5.1  maChine Learning

ML methods estimate the RUL of a battery based on various measurement data, such 
as current, voltage, and temperature under various operating conditions. However, as 
the training data increase, the computational complexity also increases. In the early 
stage, the classification model is used to obtain a rough RUL value. When the battery is 
close to its EOL threshold, the regression model is used to estimate the accurate RUL 
value. By taking an additional classification step, the time-consuming regression model 
is activated only when the battery life is about to end. Therefore, the developed method 
highly reduces the calculation cost, thereby speeding up the calculation.

ML methods applied to battery state prediction include artificial neural network 
(ANN) [126,361], support vector machine (SVM), RVM [362,363], autoregressive 
(AR) model, and deep belief network (DBN) [364,365]. Also, these ML methods 
are integrated with other methods, which are used for more complex applications or 
to obtain more accurate results. The SVM as a method of ML has also been applied 
to battery state prediction. The SVM solves nonlinear problems by transforming 
the data onto a higher feature space into a linear problem. When SVM is applied to 
regression tasks, it is called SVR. The SVR is one of the popular regression methods 
because it describes the nonlinear correlation between input and output data, mak-
ing it suitable for predictions. As a sparse Bayesian method of kernel regression, the 
RVM performs regression in a probabilistic manner. The sparsity feature of the RVM 
regression model allows for the prediction of discoveries in an effective way.

The RVM has the same functional form as the SVM and can provide probabilistic 
classification. Based on the health characteristics generated from the charging curve 
(voltage, current, and temperature curves), the remaining capacity of the lithium-
ion battery is estimated using RVM. Gray rational analysis and principal compo-
nent analysis have been used to extract and optimize relevant health characteristics 
[336–368]. AR is a point estimation by establishing a certain relationship between 
input and output, and it is a probabilistic method. Also, other ML methods, such as 
dynamic Bayesian networks (DBNs), are used for battery state prediction [369,370]. 
Researchers regard SOC as a hidden state in DBN and use the terminal voltage of 
a lithium-ion battery as an observation value, which is very convenient in practical 
applications. However, the above methods cannot establish a potential probability 
model and cannot give an expression of uncertainty in the estimated value. But for 
RUL estimation, it is very important not only to predict the RUL value but also to 
give the degree of uncertainty of the prediction. Given this, GPR derived from the 
Bayesian framework has received widespread attention due to its non-parametric and 
uncertain expression characteristics [30,371,372].

It is reasonable to learn or adopt algorithms applied in other fields to perform the 
data-driven prognostic and health management [373]. The RUL prediction is carried 
out through the deep neural network (DNN). A DNN based on a noise-reducing 
autoencoder is applied to classify the signal of the monitor into several degradation 
stages. Then, the corresponding degradation stage, a regression model based on a 
shallow neural network, is proposed. Finally, the regression results from different 
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models are smoothed to obtain the RUL. The battery health prediction based on 
the ML method does not assume any mathematical model to describe the battery 
aging behavior and mainly depends on the quality of the historical test data set. Non-
probabilistic ML methods only provide the estimated regression points. However, 
ideally, due to various sources of uncertainties, such as measurement, state estima-
tion, model error, and uncertainty in future loads, capturing the conditional distribu-
tion of predicted uncertainty levels is a challenge.

Probabilistic methods predict data points and retain the confidence bounds. 
Therefore, the ML method of probability estimation is desirable because the uncer-
tainty of estimation benefits battery users. However, the development of probabilistic 
ML methods is still in its infant stage. Most of the existing ML models are based on 
the data obtained from the training set under the same conditions, which makes users 
question the robustness of these models in practical applications, and their operating 
conditions may be very different. Therefore, it is recommended to improve probabi-
listic techniques by training models under complex aging conditions. In addition, the 
performance of these technologies is highly sensitive to structure and parameters. 
Appropriate structure and parameter optimization strategies should also be explored 
to enhance its performance for future adaptive SOH or RUL predictions.

Finding a method that can accurately predict battery life in the early stages is 
essential for accelerating the development, manufacturing, and optimization of 
emerging battery technologies. Although great efforts are made in the development 
of data-driven diagnostic and prognostic technologies, there are still some major 
challenges in the area, which are described as follows:

 1. Identification of aging mechanism: Some pure data-driven methods, espe-
cially ML technology, cannot provide in-depth information about the battery 
aging mechanism. Therefore, it is desirable to find a method that combines 
the identification of aging mechanisms with online health assessment meth-
ods. Combining the ML method with the physical mechanism of degrada-
tion is indeed the right direction for future research. This technology can 
reveal the mechanism of battery degradation. Therefore, it is recommended 
at low current rates to discover the aging mechanism. This method is highly 
feasible because it can help find the most sensitive index of capacity loss and 
then use it in ML technology for SOH estimation or RUL prediction [374].

 2. Self-improvement model based on online data: The degradation behavior of 
lithium-ion batteries is sensitive to operating conditions. Under conditions 
different from the training data set, the aging characteristic is still difficult 
to be predicted. The deviation between the experimental conditions used 
to develop the model and the actual operating conditions limits the practi-
cal applicability of the data-driven approach. These factors are corrected 
in two ways through improved experimental testing and further algorithm 
development. When the size of the experimental data set increases, it covers 
the aging information under a wide range of operating conditions, and the 
prediction ability of this method increases accordingly. However, this leads 
to a larger experimental cost. On the other hand, improving the dynamic 
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update capability of data-driven methods developed off-line is worthy of 
further research because it paves the way for self-improving models.

 3. Health diagnosis and prognosis at the module and battery pack level: At 
present, most studies on battery health diagnosis and prognosis are con-
ducted at the battery level. However, these are usually connected in series 
and/or parallel in practical applications to construct battery packs for spe-
cific energy and power requirements. Understanding the aging process 
of battery packs requires knowledge beyond the battery level as well as 
other influencing factors, such as inconsistencies in battery characteristics, 
imbalances between batteries, and temperature gradients. All these prob-
lems complicate accurate aging estimation and prediction models of bat-
tery packs. It is foreseeable that advancements in artificial intelligence and 
deep learning algorithms introduce some solutions to these problems. DNN 
is particularly suitable for highly complex nonlinear fitting so that it can 
achieve higher accuracy. Several newly developed deep learning neural net-
works, such as convolutional neural networks and generative adversarial 
networks, have been successfully applied to speech recognition and image 
segmentation due to strong self-learning capabilities. However, no attempt 
has been made for battery systems, such as module or battery pack-based 
health diagnosis. For RUL prediction, it is also recommended to use ANN 
or similar self-learning methods.

6.5.2  Support veCtor regreSSion

In traditional regression models, the loss function is the error between ( )f x  and its 
actual value y. Conversely, the SVR jump error is less than ε. By constructing the 
Lagrangian loss function, the convexity solution of SVR is obtained. If the data have 
a nonlinear trend, a mapping function is used to transform the low-dimensional input 
space into a high-dimensional feature space [375]. Therefore, the nonlinear regres-
sion problem in the input space becomes linear in the feature space.

By considering the correlation between current, voltage, operating time, energy 
efficiency, and operating temperature, these factors are determined by dimensional-
ity reduction technology, which reduces the computational load while preserving all 
the physical characteristics of the batteries. Based on these factors, the RUL predic-
tion model is established by SVR [376]. Based on the actual situation, the dwell time 
and rainwater flow counting methods are used to construct training data. The train-
ing data are then used to train the SVR model for RUL prediction. By considering 
battery degradation at different temperatures, the PF algorithm is used to dynami-
cally update the parameters of the SVR model based on online data.

When a new measurement is taken, it is added to the training data to retrain 
the SVR model. However, the retraining of the SVR model is time-consuming. 
Therefore, a method to update the online SVR model with an incremental learn-
ing algorithm instead of retraining is proposed, which quickly completes the model 
update [377]. For instance, the equal charging time interval and discharging voltage 
difference are extracted as two RHIs and used to construct the training set of SVR. 
Then, a data-driven method combining feature vector selection and SVR is proposed. 



294 Multidimensional Lithium-Ion Battery Status Monitoring

In the feature vector selection method, a subset of the feature vector is selected to 
represent the original data set. This method eliminates redundant training data and 
narrows the search range of the SVR model.

SVM is a kernel-based non-parametric ML technology. Non-parametric models 
mean that the number of parameters increases with the amount of training data. It has 
the advantage of flexibility and can model arbitrarily complex systems while providing 
enough data. It performs classification by searching for a hyperplane that separates the 
category of interest with the highest margin. By transforming a nonlinear problem in a 
low-dimensional space into a linear problem in a high-dimensional feature space, the 
kernel function is usually used in SVM to help solve the nonlinear problem. Typically, 
the prediction is based on certain functions defined in the input space. Learning is 
the process of inferring the parameters of the function. Computational programs for 
SVM are particularly attractive due to their ability to process small training data sets 
[378]. However, when the size of the training data set increases, the number of support 
vectors increases. Decrement and increment strategies have been adopted to integrate 
relevant data samples of SVR training while ignoring irrelevant parts to improve the 
stability and robustness of SVR through large-scale training samples. However, the 
process also increases the computational cost.

6.5.3  ruL preDiCtion BaSeD on ShaLLoW Learning

 1. Remaining lifetime prediction method based on neural network
As a mathematical processing method that simulates the structure and func-
tion of the biological nervous system, the neural network has the ability of 
automatic learning and summarization. It mainly includes an input layer, 
a hidden layer, and an output layer, which often solves problems such as 
classification and regression. After years of research and exploration, it has 
shown a strong advantage in the field of remaining life prediction [379]. The 
neural network-based RUL prediction method uses the original measure-
ment data or the features extracted based on the original measurement data 
as the input [380,381]. It continuously adjusts the structure and parameters 
of the network through a certain training algorithm and uses the optimized 
network online prediction equipment. There is no need for any prior infor-
mation in the process of predicting the remaining life, and it is completely 
based on the prediction results obtained from the monitoring data. The 
current neural network-based methods mainly include multi-layer percep-
tron (MLP), radial basis function (RBF), and extreme learning machines 
(ELMs) [382].

 a. Prediction method of remaining life based on MLP neural network
MLP is a kind of feedforward neural network (FFNN) with a hidden 
layer, and the neuron models of the hidden and output layers are con-
sistent. Since MLP can approximate any form of nonlinear function, it 
has received extensive attention from scholars in the field of remaining 
useful life prediction. The MLP mostly uses the BP algorithm for train-
ing. It should be noted that the method of using the BP algorithm to 
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train MLP neural networks in academia is usually called the BP neural 
network-based method.

 b. Remaining life prediction method based on RBF neural network
The RBF neural network is a neural network structure proposed in the 
1980s. It is a three-layer feedforward network with a single hidden layer 
and approximates any continuous nonlinear function with arbitrary 
precision. The big difference between RBF neural network and MLP 
neural network in structure is that the independent variable of the exci-
tation function is the product of the distance and deviation between the 
input and weight vectors, rather than the weighted sum between these 
vectors. Because RBF neural network has excellent characteristics such 
as output independent of initial weight and short training time, it has 
been successfully applied in signal processing, system modeling, pro-
cess control, fault diagnosis, and lifetime prediction in recent years with 
extraordinary advantages [383].

By comparing remaining life prediction methods, on the one hand, 
the RBF neural network contains only one hidden layer, while the BP 
neural network contains multiple hidden layers. The number of hidden 
layers directly determines the fitting accuracy. Therefore, the determi-
nation of the number of BP neural network layers requires additional 
time or practical engineering experience [384]. On the other hand, 
the BP neural network is easy to fall into the local optimum, and the 
learning process converges too slowly. The RBF neural network-based 
remaining lifetime prediction method can overcome many problems. 
It can realize the dynamic determination of the network structure 
and the data center of the hidden layer and can adaptively predict the 
remaining life.

 c. Prediction method of remaining life based on ELMs
ELM is a new learning algorithm for a single hidden layer feedforward 
neural network (SLFN). The basic idea of the ELM training process 
randomly selects input weights and hidden layer deviation values. It 
manually selects the number of hidden layer neurons according to prac-
tical engineering experience and identifies the output weight by the least 
squares method to rapidly determine the network structure and param-
eters. Because the ELMs have the characteristics of fast learning speed 
and strong generalization ability, they have attracted widespread atten-
tion from scholars and engineers in the fields of engineering equipment 
fault diagnosis, life prediction, and reliability evaluation [385].

Some advantages of the remaining life prediction method based on 
ELMs are described as follows: (i) It achieves a fast RUL prediction 
by effectively reducing model training time. (ii) The activation func-
tion uses discontinuous functions. (iii) It avoids the sensitivity and easy 
selection of learning parameters in the gradient descent learning algo-
rithm. Although the method based on ELMs has many advantages, it 
also has certain shortcomings. Since the input weight and the hidden 
layer deviation value are randomly generated, the network training 
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effect of ELMs cannot be guaranteed, resulting in a high level of uncer-
tainty. At the same time, the number of hidden layer nodes needs to be 
selected based on experience and experimental methods, and it is diffi-
cult to guarantee the optimal model. In addition, since the output weight 
is calculated by the least squares method, the ELMs face the expansion 
of the problem of large outliers and the influence of noise.

 2. SVM-based remaining life prediction method
As a new ML method, the SVM is developed based on the dimension theory 
and the principle of structural risk minimization. The SVM was first pro-
posed by Cortes and Vapnik. It is mainly used to solve ML classification 
and regression problems, suitable for analyzing small samples and multidi-
mensional data [386]. Then, the SVM began to receive widespread attention 
from experts and scholars in the field of reliability engineering. The main 
idea of the research on the remaining life prediction method based on SVM 
is to use the condition monitoring data obtained in the actual project to train 
the model to determine the model parameters (insensitivity coefficient, pen-
alty factor, kernel function parameters, etc.). Based on the trained SVM 
model, the remaining useful life of the battery system is predicted.

Although the SVM effectively solves the remaining life problem of some 
engineering equipment, it also has many deficiencies. For example, (a) As 
the sample set increases, its linearity increases, which increases the overfit-
ting and calculation time. (b) It is difficult to get a probabilistic prediction; 
that is, it is impossible to evaluate the uncertainty of the remaining life pre-
diction. (c) The kernel function must satisfy the Mercer condition.

 3. Future research direction
 a. Research on the remaining life prediction of equipment under multiple 

failure modes.
Most of the existing research focuses on the remaining life prediction 
of equipment under a single failure mode, ignoring that the failure of 
engineering equipment is caused by the coupling effect of multiple fail-
ure modes. For example, mechanical or electronic equipment usually 
degenerates and falls under the influence of external factors. Under the 
impact of electrical stress, the equipment fails to achieve normal func-
tions in sudden occurrences. Therefore, in the remaining life prediction 
of equipment under multiple failure modes, the research is worthy of 
further study [387].

 b. Residual life prediction of multi-component equipment considering 
interaction. 

  At present, complex engineering equipment is usually composed of sev-
eral parts through a certain connection mode. The degradation process 
and failure mode among these parts often influence each other, which 
jointly determines the remaining lifetime of engineering equipment. 
For example, the inertial navigation system is mainly composed of mul-
tiple gyroscopes and accelerometers. The installation mode, connection 
form, and interaction mechanism of these parts affect the remaining life 
of the inertial navigation system. However, the remaining life prediction 
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method based on ML fails to effectively consider the interaction of these 
components. Therefore, the remaining lifetime prediction research of 
multi-component equipment considering the interaction is more practi-
cal and needs more attention.

 c. Research on intelligent feature extraction and residual life prediction
On the premise of accurately predicting the remaining life, extract the 
required massive monitoring data information. Both the traditional 
statistical data-driven and shallow ML methods need to rely on a 
large number of signal processing technology and expert knowledge. 
They manually extract characteristic information for dealing with 
complex engineering equipment’s massive monitoring data, but they 
are severely limited. Deep learning can overcome such problems to 
a certain extent. For example, both DBN and CNN have the ability 
of intelligent feature extraction and residual life prediction, but the 
researches on intelligent feature extraction and residual life prediction 
are still scarce and need more effort.

 4. Research on the combination of ML and traditional statistical data-driven 
methods
Represented neural networks and deep learning can extract the needed 
information contained in the monitoring data. It portrays the character 
information and nonlinear relation between the residual life. In the field of 
remaining lifetime prediction, it has a certain universality but cannot get 
the analytical probability distribution of residual life, and difficult to apply 
the arrangement of the repair strategy and develop. The traditional statisti-
cal data-driven methods represented by the Wiener and gamma process can 
estimate the parameters of the degradation model based on the degradation 
trajectory and derive the analytic probability distribution of the residual 
life, but the accuracy of the residual life prediction is highly affected by 
the degradation model selected. Therefore, it is necessary to consider how 
to integrate the advantages of the two methods in the subsequent research.

6.5.4  artifiCiaL neuraL netWorkS

The ANN method is inspired by biological neural networks such as the human brain. 
Generally, an ANN model consists of an input layer, one or more hidden layers, and 
an output layer, and its basic components are artificial neurons. The artificial neurons 
and processing units are arranged in the input, output, and hidden layers. The input 
layer obtains the preprocessed data and acts as a pipeline for the hidden layer. In the 
hidden layer, each neuron contains a mathematical model that is used to determine 
its output based on its input and can be represented by a weighted linear combination 
wrapped in an activation function. The higher the weight of a neuron, the more sensi-
tive it is to the particular input.

The prediction data are obtained from the model in the output layer. In the learn-
ing process, the model parameters are adjusted by considering the number of hidden 
layers, the number of neurons in each layer, the interconnection weight between neu-
rons, and the type of activation function [388]. For example, for a layer of a neural 
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network with n neurons, the activation of each of these neurons depends on the acti-
vation of the neurons in the previous layer. The output of the previous layer of neu-
rons is multiplied by the corresponding weight and then added. The sum is used as 
the input of the neurons in the current layer. A bias is added to the sum, and then, a 
nonlinear activation function is applied to generate an output for the neuron. After 
constructing the ANN, an algorithm is used to determine the weight of the intercon-
nection based on the training data.

ANN learning is a method of producing the desired output by reacting to a given 
input. Under the premise of fully understanding the relationship between input and 
output, the ANN is used to predict the output. The learning process aims to deter-
mine the weight and bias parameters between input and output, as well as the transfer 
function between two adjacent layers. The ANN has also been used in combination 
with other battery prediction methods. Other learning algorithms of ANN, such as 
ELMs, are also applied to battery prediction. ELM has the function of randomly 
selecting hidden units and analyzing and determining the output weight of a SLFN, 
which provides better generalization performance at a high learning speed. The 
ELM has been applied to single-step and multi-step forecasting. Compared with BP 
neural network, ELM has a faster learning speed and higher accuracy.

Multi-layer FNN trained by the BP learning algorithm is the widely used type of 
neural network [389]. The BP-FNN training process includes signal forward propa-
gation and error BP steps, which can adjust the forward propagation of the signal. 
Through an iterative process, the connection weights between neurons are updated 
to minimize the loss of function. The supervised training process continues until the 
error reaches an acceptable value. In an earlier study, the output layer of BP-FNN 
contained two neurons representing the discharge and charge capacities, while the 
input layer contained five neurons. The results show that the long-term performance 
is not encouraging. In different aging stages, the battery showed different charge–
discharge voltage curves. Therefore, importance sampling is used to select repre-
sentative voltage data from the voltage curve during charging, thereby improving 
calculation efficiency. Then, the selected voltage data are used by FNN for RUL 
prediction. In addition to BP-FNN, other ANN structures are also used for battery 
RUL prediction. The inputs to the neural network have been rearranged to include 
the latest online temperature, current, SOC, and historical capacity data.

However, the recurrent neural network (RNN) model can only perform short-
term capacity prediction. Therefore, it cannot achieve long-term RUL predictions. 
In a study, to improve the prediction accuracy, an adaptive RNN is developed that 
uses the recursive Levenberg–Marquardt method to adaptively update the weights. 
In another example, a long- and short-term memory neural network is used for bat-
tery RUL prediction. The elastic mean square BP technique designed for small 
batch training is used to train the model and used pressure drop technology to pre-
vent overfitting. In another study, the time interval of the equal discharge voltage 
difference sequence is extracted from the online monitoring data as RHI. Using the 
proposed RHI, the integrated learning strategy is combined with the monotonic 
echo state network to improve the prediction accuracy and stability. Recent studies 
quantify the uncertainty in RUL predictions by assuming that its value follows the 
Weibull distribution.
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FFNN and RNN have been successfully applied to battery RUL prediction. In 
FFNN, the input data only propagate in one direction. When FFNN is expanded to 
include feedback connections, it is called RNN. The RNN retains and updates previ-
ous information for a period, making it a promising tool for capturing correlations 
in battery capacity degradation data. The battery degradation process usually covers 
hundreds of cycles, and the capacity degradation information between these cycles is 
highly correlated. Therefore, it is meaningful to extract and consider these correla-
tions to make accurate RUL predictions. Because the RNN learns long-term depen-
dencies in data, it is an efficient type of NN that can capture and update information 
in degraded data. Based on the analysis of the terminal voltage of the charging curve 
under different cycles, the FFNN is used to simulate the relationship between the 
battery charging curve and the RUL under constant current. The total number of 
cycles when the battery reaches the EOL comes from experiments using FFNN to 
estimate the current number of cycles of the batteries. Then, the RUL is calculated by 
subtracting the current number of cycles from the total number of cycles.

A unique feature of ANN is that it can learn and train from experience and 
examples to adapt to changing conditions. Also, it can be automatically established 
through training without identifying model parameters and coefficients. However, it 
requires a large amount of input data for training and verification, and training meth-
ods and data seriously affect accuracy. For the large-scale application of RUL predic-
tion, the computational cost is still the bottleneck, and the structure of ANN plays 
an essential role in its performance. In addition, the recognition and optimization of 
ANN model topology are still open technical challenges. Usually, the structure is 
achieved through a time-consuming trial and error phase.

6.5.5  the autoregreSSive integrateD moving average moDeL

The ARIMA model is different from the neural network algorithm. It only needs 
a small amount of data to predict the RUL value and gives the confidence bounds 
of the prediction results. This research is based on the improved rainflow counting 
method and the optimized test ARIMA model to predict the lithium-ion battery SOH 
to identify as few model parameters as possible and improve the prediction accuracy 
and efficiency, as shown in Figure 6.11.

In Figure 6.11, the SOH prediction is divided into three parts. First, import the 
data. Second, the obtained SOH sequence was imported into the ARIMA model and 
processed with differential letter paper, sequence determination, and residual testing. 
Finally, the original and model data are integrated and predicted.

 1. Second-order stationarity test
Second-order stationarity requires that the input sample time series undergo 
curve fitting, and the current trend continues for some time in the future. 
The first-order and second-order time points of the second-order stationary 
time series do not change with time. Different operations are carried out to 
make SOC time series meet the requirements of second-order stability. The 
operation equation is shown in Equation (6.32).
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In Equation (6.32), ∆  is the difference operator, and p∆  is the p-step dif-
ference. The time series {Xt} obtained by the first difference of the time 
series is the first-order difference. If the difference is performed multiple 
times, the time series { n∆ } is the thn -order difference. Differential data can 
improve signal accuracy and remove common error interference.

Although the difference is simple and effective, if the trend is stable, the 
difference in the sequence causes excessive difference challenges, result-
ing in the loss of effective signals. If the difference order is too low, the 
data cannot meet the stationarity requirements and the prediction results 
are biased. Therefore, this research uses the combined test of augmented 
Dickey–Fuller (ADF) to determine the reasonable difference order. In the 
real situation, most time series have high-order autocorrelation, so the ADF 
method is used to investigate high-order autoregression in the model. The 
time-series data Yt are represented by the superposition of the weight of 
the historical data and the random disturbance. Its expression is shown in 
Equation (6.32).

FIGURE 6.11 SOH prediction process.
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In Equation (6.32), jα  is the AR coefficient, and tε  is the random disturbance 
term. Subtract 1Yt−  from both ends of the equal sign of the first sub-expres-
sion. Then, it is written as the second sub-expression after the differen-
tial transformation. The first sub-equation is a linear differential equation. 
When 0γ = , the corresponding characteristic equation has at least one unit 
root. At this time, the stationarity of the sequence {Yt} is in a critical state; 
that is, it is a non-stationary sequence. Therefore, it is necessary to con-
tinue to differentiate the sequence until 0γ <  of the new sequence, which 
is stable. Therefore, based on (6.33), the original hypothesis and alternative 
hypothesis of ADF are H0: 0γ =  and H1: 0γ < , respectively. The original 
hypothesis is that its sequence is non-stationary, and the alternative hypoth-
esis is that its sequence is stationary.

Although ADF has good adaptability in advanced inspections, it is a 
single-ended inspection, which inevitably leads to excessively high inspec-
tion order, resulting in an excessive difference in the series, which in turn 
leads to the loss of valid data. Therefore, this research introduces the 
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) test and uses KPSS and 
Augmented Dickey-Fuller test (ADF) to test the sequence together [390]. 
Only when two inspections pass at the same time can the difference order 
be determined. The KPSS test is used to eliminate the intercept and trend 
term from the sequence to be tested to construct the statistic learning model. 
The expression of the inspection process is shown in Equation (6.34).
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In Equation (6.34), xt is a vector sequence of exogenous variables, including 
the intercept term and the trend term of the tested sequence yt. The second 
sub-equation is used to estimate the residual sequence by introducing the 
least squares method to regress and judge whether the original sequence 
has a unit root by checking whether the residual has a unit root. The third 
sub-equation is the LM statistic, and 0f  is the residual error under the condi-
tion of zero frequency. The null hypothesis is 0H : 0γ = , and the alternative 
hypothesis is 1H : 0γ <  of the KPSS test. The assumptions of KPSS and 
ADF are opposite, the original hypothesis is that the sequence is stationary, 
and the alternative hypothesis is that the sequence is non-stationary. When 
the LM statistic is less than 3 critical values, the null hypothesis is rejected; 
that is, its sequence has a unit root.

 2. ARIMA model establishment
The AR model takes itself as the process of regression variables, which uses 
the linear combination of random variables at a certain time in the previ-
ous period to describe the linear regression process of random variables. 
Compared with other linear regressions, autoregression does not use x to 
predict y but uses x to predict x itself. The set time series {Xt} is shown in 
Equation (6.35).
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In Equation (6.38), {εt} is the white noise sequence; …, , ,0 1a a ap is 1p +  real 
number. This model is called the p-order AR model, which is recorded as 
the AR(p) model, and {Xt} suitable for this model is AR(p) sequence. The 
AR coefficient polynomial defined in AR(p) is the AR coefficient polyno-
mial of the AR(p) model, as shown in Equation (6.36).
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The first sub-equation in Equation (6.36) is the AR coefficient polynomial. 
L is the lag operator; at this time, the operator expression of the AR(p) 
model is expressed as tε . The rule is obtained by bringing in multiple dif-
ferent p values, and finally, the solution of AR(p) is shown in the third sub-
equation. jφ  is the sum of the coefficients of all items in the {Xt} sequence. 
The function of the moving average (MA) model is to add constraints to the 
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AR model, and a finite number of parameters b are proposed to limit the 
parameter and avoid the divergence of the AR model. The model of MA is 
shown in Equation (6.37).
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In Equation (6.37), 0c  is a constant, and { tε } is the white noise sequence.  
The absolute value of 1b  must be less than 1 to make the {Xt} sequence sta-
tionary; otherwise, the {bi} sequence diverges. Therefore, the combination 
of the AR model and the MA model becomes the ARMA model, as shown 
in the second sub-Equation (6.37). Combining the second-order smoothing 
process of the data with the ARMA model forms the ARIMA model. There 
are three main parameters in the ARIMA model: the difference order d , the 
order p of the AR model, and the order q of the MA model. From Equations 
(6.32) to (6.37), the value of d can be determined. The values of p and q 
are determined using the Akaike information criterion (AIC), as shown in 
Equation (6.38).
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In Equation (6.38), k is the number of parameters, and the number depends 
on p and q in Equation (6.38). When the accuracy is guaranteed, the smaller 
the value of k, the better. L is the maximum likelihood value of the model. 
Because the maximum likelihood requires high data cubature and is dif-
ficult to solve, the residual variance obtained by least squares estimation 
is often used as an approximate substitute in practice. The AIC conducts 
a comprehensive analysis of k and ln( )L . When the order of the model 
increases, ln( )L  usually decreases. When the number of observation data 
is given, the value of k increases as the order of the model increases. When 
the model order is gradually increased with the fitted data, the value of AIC 
shows a decreasing trend. At this time, the residual variance of the model 
decreases rapidly, and ln( )L  plays a decisive role. When the order rises to a 
certain point, the AIC value reaches a minimum. Subsequently, no matter 
how the model order increases, the residual variance is almost unchanged. 
At this time, the influence of ln( )L  is weakened, and k plays a decisive role. 
Given the highest order ( )M N  in advance, m0 and n0 are taken as the best 
order of the model.
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 3. Residual test
A residual test is also needed to ensure that the order of p and q in ARMA 
is appropriate. The residual is the residual signal after subtracting the signal 
fitted by the model from the original signal. If the residuals are randomly 
distributed and are white noise sequences, it means that all the effective sig-
nals have been extracted into the ARMA model. Therefore, the significance 
test of the model is the white noise test of the residual sequence. Its original 
hypothesis, alternative hypothesis, and Ljung–Box statistics are shown in 
Equation (6.39).
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In Equation (6.39), n is the number of samples, and ˆ2
kε  is the correlation 

coefficient of the k-order lag of the sample. This statistic obeys the 2χ  dis-
tribution with m degrees of freedom. Given the significance level α , the 
rejection domain is LB 1 ,

2X a m> − . If the null hypothesis is rejected, there is 
still relevant information in the residual sequence, and the fitting model is 
not significant. If the null hypothesis is not rejected, the fitted model is con-
sidered to be significantly effective.

6.6  CONCLUSION

This chapter introduces the related research content of battery SOE estimation. 
SOE is a parameter required by the lithium-ion BMS, which can reflect the resid-
ual energy of the batteries. When the battery is charged to the cutoff voltage, the 
SOE is 1, and when the battery is discharged to the cutoff voltage, the SOE is 
0. Traditional SOE estimation methods include static initial estimation methods 
and dynamic period estimation methods. The influence of environment tempera-
ture, discharge rate, and battery health status on the total discharge is analyzed 
comprehensively, and the calculation equation of SOE is modified. In the method 
of SOE estimation based on UKF, the principle of UKF filtering is used to realize 
SOE estimation, including establishing the discrete state-space equation of the 
system, determining the initial SOE value, and iteratively estimating the SOE. 
In the SOE estimation based on the AUKF algorithm, which is used to estimate 
the process noise and measurement noise, the suboptimal unbiased estimation of 
noise is obtained. These two methods can estimate the state energy of lithium-ion 
batteries well. The main factors affecting the battery life and the test methods are 
analyzed to predict the battery life. Due to the complexity of the battery degrada-
tion process, predicting the RUL of the battery has become a very challenging task.  
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It is essential to study degradation behavior and establish a degradation model 
to estimate SOH and RUL, which refers to the number of charge–discharge 
cycles remaining before reaching the failure threshold. The factors that affect 
battery life are extreme temperature variations (high and low), overcharge/
overdischarge, high current, and mechanical stress. The capacity, cycle num-
ber, weighted ampere-hour, and internal resistance methods are used to estimate 
the SOH of ternary lithium-ion batteries. The weighted ampere-hour method is 
highly dependent on the accuracy of power measurement and the initial value. 
When measuring the SOH of lithium-ion batteries, both the multidimensional 
EKF and multidimensional PF can effectively reduce the computational com-
plexity of the BMS. This also mainly introduces the estimation method of battery 
cycle life. The lithium-ion battery is a dynamic and time-varying electrochemi-
cal system with nonlinear behavior and complicated internal mechanisms.  
As the number of charge and discharge cycles increases, the performance and 
life of lithium-ion batteries gradually decline. The adaptive filtering method uses 
a multidimensional EKF and multidimensional PF to expand. Data-driven fore-
casting uses ML, SVR, SVM, etc., for the estimation.
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