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MULTIPARTICLE

INTERFEROMETRY AND THE
SUPERPOSITION PRINCIPLE

We're just beginning to understand the ramifications of the
superposition principle at the heart of quantum mechanics.
Multiparticle interference experiments can exhibit

wonderful new phenomena.

Daniel M. Greenberger, Michael A. Horne and Anfon Zeilinger

Discussing the particle analog of Thomas Young’s classic
double-slit experiment, Richard Feynman wrote in 1964
that it “has in it the heart of quantum mechanics. In
reality, it contains the only mystery.” That mystery is
the one-particle superposition principle. But Feynman's
discussion and statement have to be generalized. Super-
position may be the only true quantum mystery, but in
multiparticle systems the principle yields phenomena
that are much richer and more interesting than anything
that can be seen in one-particle systems.

The famous 1935 paper by Albert Einstein, Boris
Podolsky and Nathan Rosen pointed out some startling
features of two-particle quantum theory.? Erwin
Schrédinger emphasized that these features are due to
the existence of what he called “entangled states,” which
are two-particle states that cannot be factored into prod-
ucts of two single-particle states in any representation.
“Entanglement” is simply Schridinger’s name for super-
position in a multiparticle system. Schrodinger was so
taken with the significance of multiparticle superposition
that he said entanglement is “not one but rather the
characteristic trait of quantum mechanics.”

Until the mid-1980s, the quintessential example of
an entangled state was the singlet state of two spin-Y;
particles,

> =@1/N2)([+>1 =22 = |=>1[+>2)

or its photon analog. The subscripts 1 and 2 refer to the
two particles (distinguished, for example, by their flight
directions), and the plus and minus signs refer to spin
up or down with respect to any specified axis. This state
of two spatially separated particles was introduced into
the Einstein—Podolsky—Rosen discussion by David Bohm®
in 1951. It inspired a spate of experiments in the 1970s
and '80s.

Since the mid-1980s there has been a revolution in
the laboratory preparation of new types of two-particle
entanglements. Various experimental groups started do-
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ing interferometry with down-conversion photon pairs.
Down-conversion is a process in which one ultraviolet
photon converts into two photons inside a nonlinear
crystal.* This process allows one to construct “two-par-
ticle interferometers” that entangle the two photons in a
way that needn’t involve polarization at all. Many ex-
perimental groups independently came up with this idea,
but the first explicit proposal was made by two of us.®

Real experiments commenced when Carroll Alley and
Yan Hua Shih® at the University of Maryland first used
down-conversion to produce an entangled state and when
Ruba Ghosh and Leonard Mandel” at the University of
Rochester first produced two-particle fringes without us-
ing polarizers. Since these pioneering efforts, many in-
creasingly sophisticated experiments have been per-
formed, with important lessons for quantum theory.

In all of these two-particle experiments, the source
of the entanglement has been down-conversion. We will
discuss a small sampling of recent developments, with
particular emphasis on the fundamental ideas. Three-
particle interferometry is even richer, and we shall say
something about it. But it is mostly unexplored territory,
both experimentally and theoretically.

One of our motivations for writing this article was
to make the point that one doesn’t have to be a quantum
optics expert to understand or analyze such experiments.
They illustrate beautifully the general principles of quan-
tum mechanics, and they can be understood, both quali-
tatively and quantitatively, in those terms. Calculations
based on detailed nonlinear quantum optics Hamiltonians
do describe specific mechanisms. But they tend to ob-
scure the generality of the conclusions, which depend
primarily on the fact that if one cannot distinguish (even
in principle) between different paths from source to de-
tector, the amplitudes for these alternative paths will
add coherently.

Two-particle double-slit interferometry

Figure 1 is a sketch of an idealized two-particle interfer-
ence experiment that nonetheless exhibits some intrigu-
ing phenomena which have been verified experimentally.
Consider a particle () near the center that can decay into
two daughter particles. If the original particle is essen-
tially at rest, then the momenta of its two daughters will
be approximately equal and opposite. Now imagine that
there are screens on both sides of the center, each with
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Idealized two-particle
interferometer has two
detecting screens
(green) flanking two
collimating screens,
each with a pair of
holes, that bracket a
source (orange) of
decaying particles at
the center. The vertical
extension of the source
is . A particle )

=]

These holes
confine the escaping decay particles to either of a pair of
opposite directions. The decay particles can pass either
through holes A and A’ or through holes B and B’. We
can then write the state of the two-particle system as

two holes in it, as shown in the figure.

> = (1/¥2 )(|a >,
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where the letter in the state-vector bracket denotes the
escape direction defined by the corresponding holes. Beyond
the two perforated screens are two scintillation screens that
record the positions of particles landing on them.

Because each of the particles can reach its detecting
screen by way of two different paths, one might expect these
screens to show interference patterns. But they don't.
That's where the two-particle interferometer differs from a
single-particle interferometer based on Young’s classic dou-
ble-slit experiment. There is no interfence pattern at either
screen in these two-particle experiments because, for rea-
sons that will become clear, the vertical position of the
decaying particle is unknown to within some source size d
that is considerably larger than A/6, where # is the angle
subtended by the hole pairs at the source, and A is the
relevant wavelength—optical or de Broglie, as the case may
be. Thus the initial position uncertainty d washes out any
interference fringes.

In the single-particle case, by contrast, the geometry
is so determined, usually by lenses, that the source is
effectively a point. Its positional uncertainty is much
smaller than A/#, so that the waves arrive at the two
holes with a definite phase relation and therefore inter-
fere. The experimenter produces a diffraction pattern by
controlling the geometry of the emission process.

In the two-particle case, something like the opposite
of this process happens. With a large source, if one looks
at either particle separately, one sees no interference
pattern. But there is a fwo-particle interference pattern!
If one monitors the arrival positions P and P’ at the two
scintillation screens in coincidence, then one sees that
the two particles are much more likely to land where the
alternative paths PAQLA’P’ and PBOB'P’ differ in length
by an integral multiple of the wavelength and so inter-
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decays at height x
above the center line
into two particles
(trajectories in red) that
hit their respective
detecting screens at
heights y and z.

B Because one can't tell
whether the pair passes
through holes A and A’
or B and B, these
alternatives can
interfere. Figure 1

fere constructively. Note that one cannot catch such
two-particle interference patterns on film at either screen;
one has to record coincidences.

One may well ask how one particle could have any
knowledge of where the other can land, especially when
the source position is unknown and therefore the first
particle doesn't even know where it itself will land. The
answer is that by landing at a specific point, one particle
actually creates a sinusoidal amplitude of possible posi-
tions where the source 1s likely to have been—a sort of
“virtual crystal.” This crystal in turn creates the two-
particle diffraction pattern. Virtual slit systems can be
exploited in actual experiments.”

To see how this works here, let us for simplicity
consider only the vertical degree of freedom x for the
source position relative to the horizontal center line in
figure 1. And let us say that the decay particles are
photons. If y and z are the corresponding vertical dis-
tances above center of the landing points P and P,
respectively, then the quantum mechanical amplitude for
landing at P is

27
i ~ exp(ikL,) + exp(ikL;) ~ cos —x—(y +x)

where k is 277/ A and the L’s are the alternative path lengths
for the photon on the right side of the apparatus. Similarly
the amplitude for the other photon to land at P’ is

20

Y’ ~ cos —

(z +2x)

Then the total amplitude for the two photons to land at
heights of x and y, respectively, above center will be
df2
1 27t 27
P(y,2) ~ = | dx cos —x (¥ +x)cos —3—(z +x)
d
/2

If d is much larger than A/, this integral becomes
Yo cos (2m(z — y)/A), and one gets 100% visibility for “con-
ditional fringes” between the two photons on opposite sides.

At the other extreme, if d 1s much smaller than

A/, the integral gives cos (2wfly/A) x cos (2m0z/A).
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Particle 1

Particle 2

Beam splitters (half-silvered mirrors, represented by dashed blue lines) can be used in two-particle
interferometry with localized photon detectors (green) in place of the extended detecting screens of figure 1.
Particle () in the central source decays into two photons. Phase shifters (black rectangles) are inserted into
decay-photon beams a and b, shifting their phases by a and B, respectively. Before arriving at the detectors the
alternative-path beams are mixed by the beam splitters at S and S".  Figure 2

That's a product of independent diffraction patterns, so
we actually see single-particle fringes on each screen.
The condition d < A/# is just the requirement for seeing
fringes in a usual single-particle diffraction experiment.
So there is a sort of complementarity between one- and
two-particle fringes: The conditions for seeing one pre-
clude the possibility of seeing the other.

One can make the same argument in momentum
space. Momentum p is related to wavenumber by
k=p/h. If d > A/6, the uncertainty principle tells us
that the fractional transverse momentum spread 8k /% of
each emitted photon will be much less than 8. That’s
too little to illuminate both pinholes simultaneously, so
there can be no single-particle interference. On the other
hand, if the source is small, then 6k/k > 6 and the
particle can pass through either hole. The two paths can
then interfere, and one will see fringes at the individual
screens. But then one can no longer guarantee that if
one photon goes through pinhole A, the other will go
through A’. That destroys the two-particle entangled
state. Once again, the two conditions are mutually ex-
clusive.

The gedankenexperiment we have just described is
essentially what Ghosh and Mandel did in their pioneer-
ing down-conversion experiment.” Its main difference
from our description is that their originating ultraviolet
photon strikes the nonlinear crystal with a substantial
momentum, so that the two down-converted photons it
generates both emerge together from the back of the
crystal. Thus Ghosh and Mandel were able to catch both
photons on a single screen.

Beam splitters

Most subsequent down-conversion experiments have used
a different technique, replacing the scintillation screens
with beam splitters. Figure 2 is a schematic illustration
of such an interferometer. Beam splitters at S and S’
have replaced the two detector screens of figure 1. Small
detectors beyond the beam splitters monitor the counts
in the four photon beams labeled ¢, d, ¢’ and d". To
detect interference, one inserts a phase shifter of phase
« into beam a, and one of phase B into b".

We assume that each beam splitter transmits pre-
cisely half of each incident beam and reflects the other
half. (Without loss of generality we can take the trans-
mitted and reflected beams to be 90° out of phase.) Then

AUGUST 1993

the joint state beyond the beam splitters will be

i exp(—i 2 i 5
m%i“ [sin(A/2) e >, |¢’>5 + cos(A/2) [y |d" >y
\I

+08(A/2) |d>, |e" >0 — sin(A/2) |[d >y [d>,]

where A = & — 3 is the difference between the parameters
of the two phase shifters. To see two-particle interference
effects one must simultaneously monitor beam detectors
on the left and right sides of the apparatus (c and ¢’, for
example) for coincident counts while varying A. In any
single detector, by contrast, one sees no interference; the
counting rate is a constant independent of the variable
phase shifters. Each detector on its own is seen to record
at random half of all events. For example,

P(c)=P(cc) + Pled) = é sin? % + % cos? % = é
independent of A, where Plc,c’) is the joint probability of
simultaneous counts in ¢ and ¢’. One can also use this
setup to perform an Einstein—Podolsky—Rosen experi-
ment. We assign a value of +1 to a detection at either
detector ¢ or ¢/, and -1 to d or d’, and take the product
of the appropriate values for a pair of simultaneous
counts at left and right. Simultaneous counts in detectors
¢ and d’, for example, get a score of (+1) x (-1) =-1. One
can then take the expectation value over a long series of
counts to confirm the quantum mechanical prediction:

E(a,B8)=Plee’) - Ple,d’) - P(d,¢’) + P(d,d") = —cosA

This cosine form is identical to what one gets for Bohm's
version of the Einstein—Podolsky—Rosen experiment, with
its two spin-% particles in the singlet state.® The phase
shifters play the role of the spin polarizer angles in that
experiment. Variants of Bohm’s version have been per-
formed many times, generally using photon polarization
rather than the spin of massive particles. The first such
experiment was done by John Clauser and Stuart Freed-
man at Berkeley, and the most famous is the experiment
of Alain Aspect and his coworkers at Orsay, near Paris.!’
With the advent of the parametric down-converter, the
new version without polarization that we've been describ-
ing has also been done.

The fact that these experiments exhibit two-particle
correlations but not single-particle interference has some
important (if poorly understood) ramifications, of which



Temporal double-slit experiment proposed by James
Franson'® produces two-photon interference because one
doesn’t know when the pair was produced by
down-conversion of an incident ultraviolet photon in the
crystal (gray). The down-conversion photons (red
trajectories) arrive simultaneously at their respective
detectors (green), so one knows that both took paths of
equal length. But one doesn’t know whether both took the
long or the short alternative paths offered by the beam
splitters and mirrors in each arm of the apparatus. Figure 3

we shall mention two. One is that it is impossible to use
such a system to communicate faster than the speed of
light. If the value of a had any effect on the counting
statistics at ¢’ and d’, that would clearly violate special
relativity. Why quantum theory, a specifically nonrela-
tivistic theory, should conspire to be consistent with
relativity in this way is a deep mystery.

To illustrate the other particularly interesting fea-
ture of the experiment sketched in figure 2, consider
keeping a record of the results of repeated outcomes for
particle 1, the decay product that goes to the right. Such
a string of 1's and -1’s (depending on whether detector
¢ or d clicked) would be useless by itself, because the
numbers would be random. It is not until the lists for
the left and right decay particles are brought to the same
place for comparison, possibly weeks later, that the cor-
relations between them can be seen. So these correla-
tions, necessarily nonlocal in character, are worthless
until they are locally compared.

In England, John Rarity and Paul Tapster!! have
performed such an experiment by means of down-conver-
sion. The converted photons emerge from the crystal
with a broad range of colors and directions, but they can
be accurately selected by filters and other optical devices.
Rarity and Tapster employed a folded version of the
configuration in figure 2, with both photons coming out
on the same side of the crystal. Although several other
groups®’ have done tests of Bell's inequality with the new
techniques, the experiment of Rarity and Tapster was
the first one that did not rely at all on the polarization
of the photons. Their data reflect the transverse corre-
lation of the two photons beyond the beam splitters.

Interference of emission times

Ten years ago Mandel pointed out'® that one could get
two-photon fringes when two independent and spatially
separate single-atom sources produce coincident photon
counts in a pair of detectors. He traced this idea back to
the 1950s. Interference occurs because, as Mandel put it,
“one photon must have come from one source and one from
the other, but we cannot tell which came from which.”

An ingenious alternative was proposed by James Fran-
son at Johns Hopkins.'* He pointed out that two-particle
fringes can also arise because we don't know when the
particles were produced. Several groups!* have successfully
produced interference fringes using Franson's scheme, and
it is becoming an efficient way to produce such fringes. We
will describe a recent experiment by Raymond Chiao and
colleagues at Berkeley,” which is the first to produce
high-visibility fringes in this way.

Figure 3 illustrates the novel type of superposition
in Franson's proposal. A pair of down-conversion photons
register at detectors D and D, within a coincident-time
window (1 nsec in the newest experiment) that is small
compared with the travel-time difference (4 nsec) between
the short and long alternative routes in each arm of the
interferometer. Which route did each photon take? Be-

RIGHTS LI MN iy

-
-
IE—)\:\O“ ~
I
)
——
\
o,
‘ -
{
_— D,

cause the down-conversion photon pairs are produced
together and arrive together (within the coincidence win-
dow) at detectors D, and D,, they must both have taken
either the long way or the short way. But because we
can't know at what time the down-conversion took place,
we must use the quantum-state superposition

(1/N2)(|s> s> + 11 11>2)

where, for example, |s>, denotes the short route for
particle 1. Because we don’t know whether the photon
pair was produced at the earlier or later time consistent
with the coincidence observation, this device is in effect
a “temporal double slit.” It is easy to see how this kind
of arrangement could be generalized from a two-time slit
to a multitime grating.

By changing the length of one of the long paths and
thus altering the relative phase of the two terms, one
can produce sinusoidal oscillations (“fringes”) in the co-
incident count rates. But the singles rate in each sepa-
rate detector is constant.

Why is there no interference in the individual detectors,
even though each particle passes through a self-contained
interferometer? Well, one could completely remove the
half-silvered mirrors from one of these interferometers and
monitor the short route, thereby ascertaining whether the
particle in the other one took the short or long route. That
is, if the counts are nearly simultaneous, both must have
taken the short (straight) route, but if the photon in the
intact interferometer arrives 4 nsec late, it must have taken
the long route. Thus one can use one particle to obtain
path information about the other one, even though the latter
passes through an interferometer, and hence no single-
detector oscillations are possible. But when both interferome-
ters are intact and both particles have been detected within
a 1-nsec window, the opportunity to obtain path information
is lost forever. Then the two-particle oscillations appear!

This explanation stresses an aspect of the interpre-
tation of the wavefunction that is not often emphasized:
The wavefunction contains all information about the
system that is potentially available, not just the infor-
mation actually in hand. It is the mere possibility of
obtaining path information for the individual photon in
a particular experimental configuration that guarantees
that the amplitudes along those paths will not interfere.
It is what the experimenter can do, not what he bothers
to do, that is important. Changing the configuration to
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A Mind-Boggling Experiment

We present here a more detailed analysis of the experiment
of Zou and coworkers,'® illustrated in figure 4a, to show that
the phenomena involved are understandable by elementary
quantum mechanics; you don't need the full machinery of
quantum optics. (In our description, |a>, simply denotes
particle 1 in beam a. It does not represent the field of beam
a. The particle could just as well be an electron.”) We
want to encourage nonexperts to enter the game.

At A the first beam splitter, we have
|a>— (|b> +ilc>)AN2. AtB, |e> — (Tig> + iR|f>), where
T and R are the (real) transmission and reflection
amplitudes at the second beam splitter. (The reflected
and transmitted parts are 90° out of phase to conserve
probability.) At C, the third beam splitter,
lh> = (|1 > +ilm>)A2 and |d> = (|m> +i|l >)/N2. AtP
the phase shifter, |h>> — e |h>. At the down-conversion
crystals, |b> — n|d > |e>, and |c> — n|h>;|k>,, where 7,
on the order of 107, is the amplitude for down-conversion.
Finally, by perfectly lining up the beams we get |g> — |k>.

Combining all these terms gives

TS s R s
[a> - ﬁ(|b> +ilc>) - ﬁ (1d>) |e>; +ilh> [k>2)
- gl(T— e)|m> + i(T+e¥)|l >, [k>,

+i;R(fm> +ilI>) [F>,

By counting coincidences at detectors D, and D, one
measures the square of the amplitude of the |/ >, |k>,
term,

3(1 +T?+ 2T cosg)

That gives a fringe contrast v=2TA1 + T) for coinci-
dent counts at D, and D,. This contrast increases with
T, which is the amplitude ratio of the two contributions
to beam |k>. If instead of recording coincidences one
only monitors beam |/ > at D,, there are contributions
from the |/ >, |k>, and |l >; |f >, terms, yielding

%(! + T cose)

so that the contrast is reduced to v = T. Thus the degree of
coherence of beam 1 is controlled by beam 2, even though
beam 2 isn't even in the coherence path. The only purpose
the second beam serves is to make it impossible to tell in
which crystal the down-conversion occurred.

eliminate the path information can restore the interfer-
ence fringes.

Path distinguishability and coherence

To show some of the possibilities inherent in two-particle
superpositions, we will describe a truly mind-boggling
experiment by Mandel and his Rochester colleagues Xin
Yu Zou and Li Jun Wang.'® Their experiment, schemati-
cally illustrated in figure 4a, marvelously vindicates
Feynman's dictum that states interfere with each other
only when they cannot physically be distinguished in a
particular experimental setup.

Consider a single photon in beam a entering the
Zou-Wang-Mandel apparatus. After the beam splitter
A, this particle’s wavefunction illuminates both of the
down-conversion crystals X; and X,. But because there
is only one photon, it can down-convert at only one of
the two crystals, creating the entangled state
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(1/N2)(|d >y e >o + |k >y [k>5). If one recombines the
beams h and d at beam splitter C, will they interfere?
Normally they will not, because one could catch the com-
panion photon (in beam e or k) and thus know in which
crystal the down-conversion occurred. But Zou and com-
pany, following a suggestion of their colleague Zhe Yu Ou,
cleverly overlapped the beams e and % (the crystals being
transparent) to erase that potential information. Thus
the state |e > evolves into the state |k >, and the entangled
state now becomes (1/v2)(|/d >+ |k >)1 |k >, which is no
longer entangled. Consequently one can get ordinary sin-
gle-particle interference fringes at detector D, by varying
the phase ¢ at the phase shifter P.

It is important to note several things here. First, as
opposed to the two-particle fringes discussed earlier, in
this experiment the second photon does not actually need
to be detected. The fringes at the detector looking at
photon 1 are there in any case because the detection of
photon 2 in beam % cannot provide information about
where photon 1 was created. Second, if beam e is blocked,
the fringes at detector D, will disappear, because in that
case the detection of a photon in beam % would tell you
that it was created in crystal X,. Zou and his collabora-
tors demonstrated this by inserting a beam splitter at B
and showing that the visibility of the fringes in D, varied
with the transmission coefficient of the splitter.

The mind-boggling feature of this experiment is that
the beams e and k are not even in the two alternative
coherence paths that run from A to D,! The only role
they play in the experiment is that, by overlapping, they
prevent us from determining in which crystal the down-
conversion occurs.

One might be tempted to think that beam e contributes
to the amplitude leading to beam 4 through some nonlinear
coupling. That would make the effect seem less amazing.
Be that as it may, note that if we placed an additional
phase shifter y into beam e, the state created in erystal X,
would become e"|d >, e »,. The consequent phase shift in
beam d would produce a modulation of the form
cos(@ — y) at detector D,. So it is a mistake to think that
beam e is contributing to beam A in any direct way, in
which case one might have expected cos(¢ + y).

This experiment is a prime example of how one could
certainly interpret the same result in terms of some
nonlinear Hamiltonian mechanism that couples the two-
photon state to the vacuum. But one is then in danger
of missing the point that any such mechanism will
produce the effect, if and only if the beams are experi-
mentally indistinguishable.

The experiment also reinforces the point that it is
potential information, not actual information, that destroys
coherence. Furthermore we have to generalize Dirac’s fa-
mous dictum that a photon can only interfere with itself,
In this experiment the original photon in beam a is not
even present to interfere at D;. Its down-converted prog-
eny are doing the interfering. We prefer to think of the
down-converted pair as a single entity, a “two-photon.” It
is this two-photon, created at either X, or X,, that is
interfering with itself. More generally, it is the time-evolved
continuation of the photon state that is interfering with
itself. (See the hox at left.)

Figure 4b is a photograph of an interesting variant
of this exeriment very recently carried out by Thomas
Herzog and coworkers in Zeilinger's Innsbruck labora-
tory.'® They use only one crystal, but the continuation
of the original beam and its down-converted progeny are
reflected back through the crystal so that one can’t tell
whether the down-converted pair was created during the
the first pass of the incident photon or on its return.
Therefore these two possibilities interfere and one can, in



effect, enhance or sup-
press the atomic emission
process in the crystal by
small movements of mir-
rors that are several feet
away!

The quanfum eraser
Figure 5 shows an experi-
mental arrangement first
used by Alley and Shih,°
and recently exploited by
Paul Kwiat and coworkers
at Berkeley'” to demon-
strate Marlan Scully’s no-
tion of a “quantum eraser.”
Others have called it
“haunted” or “phantom”
measurement.”® To ap-
preciate the basic idea,
first suppose that only the
beam splitter is in the path
of the two beams emerging
from the down-converter
crystal. This arrangement
produces an interesting
and very basic two-particle
effect: Both particles must end up in the same detector.’”

The reason is simple. To get coincident counts at the
two detectors, either particle 1 (the photon that ultimately
lands in detector 1) takes route a and particle 2 takes route
b, or vice versa. In the former alternative, both photons
are reflected by the beam splitter, each reflection contrib-
uting a 90° phase shift to the overall amplitude. The latter
alternative, by contrast, involves no phase-shifting reflec-

tions. Thus the two alternative amplitudes are 180° out of

phase with each other, and they cancel.

So if both beams are, for example, horizontally po-
larized, they will remain so, and there will be no coinci-
dent counts in detectors 1 and 2. But if we now insert
a 90° polarization rotator into beam b, it will become
vertically polarized and the two amplitudes will no longer
interfere because one can tell which path a photon took
to its detector by measuring its polarization. Thus there
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Manipulating one photon can
alter the interference pattern
of another. The arrangement''
sketched in a can produce an
interference pattern al
detector D, when the phase
shifter Pis varied. An
entering ultraviolet photon a
is split at beam splitter A so
that both down-conversion
P crystals (X, and X,) are
illuminated. One of the
resulting pair of down-
conversion photons can reach
D, by way of beam path d or
h. If one could monitor
K heams e and k separately, one
would know in which crystal
the down-conversion
occurred, and there would be
no interference. But merging
beams e and k in this
configuration lets the
alternative paths of the other
photon interfere. A new variant
of this scheme, shown in b,
uses only one crystal (at the
center). The ambiguity here
is created by reflecting the
originating beam (blue, from
the top of the photo) and its
down-converted progeny (red
and green) back through the
crystal from mirrors (at the
bottom of the photo), so one
can’t know on which pass the
down-conversion
occurred. Figure 4

P m

will now be no superposition
of the two amplitudes, and
therefore coincidence counts
between the two detectors
will be observed.

But it is still possible to
“erase” this path information
and recover the interference
by placing a linear polarizer
in each beam, as shown in
the figure. If both polarizers
are either horizontal or ver-
tical there will be path infor-
But if they are oriented at 45° to the
can now lead to either
detector. The coherence is restored and there are, once
again, no coincident counts.

The idea here is that one can seem to destroy infor-
mation about a system without actually doing so. The
information remains subliminally present; it can be re-
captured. Or, as Chiao has put it, “Nothing has really
been erased here, only scrambled!” Helmut Rauch’s
Vienna group performed a conceptually identical experi-
ment in 1982 with a neutron interferometer, but that
involved only single-particle interference.'”

mation present.
horizontal, either route, a or b,

Generalization fo many states

Experiments with entangled particles have generally
been confined to two-state systems, either spin-'% parti-
cles or photons. One way to generate superpositions
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Polarizers can serve as quantum erasers.'” A single ultraviolet
photon entering a down-conversion crystal (gray) produces two
optical photons that mix at a beam splitter (dashed blue line) before
arriving at detectors D, and D,. If there are no polarizers (P) or
polarization rotator (R) in the beams, both photons must end up in
the same detector. Inserting a 90° rotator into beam b provides
information that renders the beams incoherent and thus produces
coincidence counts in the two detectors. Inserting the polarizers
oriented 45° to the horizontal after the beam splitter erases that

three-particle decay at the center.
(Alternatively one could start with a
three-particle down-conversion.) As-
sume for simplicity that the three de-
cay particles all have the same mass
and the same energy. Then they will,
of course, come off 120° apart in the
decay plane. A suitable placement of
screens with holes restricts them to
two possible states: labc> or |a’b’e”>,
The coherent superposition will be

Y= % (labe >+ |a’b’e” >)
V2

The beams «’, b* and ¢ pass through
the phase shifters with phase shifts a,
B and v, after which the appropriate
beams are recombined at beam split-
ters A, B and C. Beyond the beam
splitters are the three pairs of count-
ers, One records only triplets of si-
multaneous counts at G or G', H or H’
and K or K'. If one assigns a +1 (or
—-1) to a count in an unprimed (or
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information and recovers the coherence that prevents coincidence

counts. Figure 5

involving more than two states is to use systems of higher
spin. An easier alternative is to generalize the beam
splitter to provide more than two paths for each photon.
We call such systems “multiports.”®® The half-silvered
mirror that serves as a beam splitter is a four-port; it
has two input ports and two output ports. The output
beams in such devices are mathematically related to the
input beams by a unitary transformation.

A simple generalization of the beam splitter, shown
in figure 6, is the six-port, with three input beams and
three output beams. We call it a “tritter.” (An eight-
port would be called a “quitter.”) If the beam splitters
A, B and C in the figure are chosen to have reflectivities
1/72, 1/43, 1/2, respectively, and the phase shifters
«a, B and y are chosen appropriately, this device will
yield three equally intense output beams if any one of
the three input ports is illuminated. That’s a straight-
forward generalization of the symmetric beam splitter.
But by varying all these parameters one can induce a
range of unitary transformations. Multiports provide a
practical method for investigating such transformations
in an N-dimensional Hilbert space.

Three-patrticle interferometry

Figure 7 shows an idealized three-particle interferome-
ter.2! No such device has been been built, but a number
of models have been proposed.? This particular configu-
ration was inspired by David Mermin’s Reference Frame
column in PHYSICS TODAY, June 1990, page 9. Imagine a
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primed) counter, then the probability
that a triplet of counts will give the
product +1 (for example, GHK or
GH'K’) will be (1+sinA)/2, where
A=a+p+vy. The probability for a
product -1 (for example, G'H'K or G'HK) will be
(1 —sinA)/2. Then the expectation value over a large num-
ber of counts is simply sinA.

This result is remarkably similar to the case of the
two-particle interferometer, but the implications are en-
tirely different. In the three-particle case a perfect cor-
relation occurs when A =7/2 or 37 /2. Then if one knows
at which counter two of the particles have landed, one
can predict with certainty the counter at which the third
particle will land, without having disturbed it at all.
Hence there exists what Einstein, Podolsky and Rosen
called an “element of reality” associated with the path
from the beam splitter to the counter. Elements of reality
are those entities to which, from the Einstein—Podolsky-
Rosen point of view, the concept of an objective reality
most clearly applies. They are natural entities for dis-
cussions of local, realistic descriptions of quantum events.

In the two-particle interferometer, measurements in-
volving only perfect correlations are uninteresting, in the
sense that they cannot violate Bell's inequality. (This
famous inequality is a statement of the limits of corre-
lation allowable between separated events in any theory
that preserves local reality.) But from the Einstein-
Podolsky-Rosen viewpoint these perfect correlations are
essential for the introduction of elements of reality.

In the three-particle interferometer, however, if one
assumes the existence of these elements of reality, one
already runs into a contradiction even if the correlations
are perfect.?! If the particles are perfectly correlated in
the two-particle case, their spin directions are precisely
opposite. But perfect correlation in the three-particle
case yields a continuum of possibilities, a condition that
is impossible to satisfy within the classical restrictions.

A six-port, or ‘tritter,’ is made with three beam splitters. If
the reflectivities of the beam splitters A, B and C and the
phase angles «, B and y of the phase shifters (black) are
properly chosen, this configuration yields three output
beams of equal intensity when any one of the three input
ports is illuminated. Figure 6



Three-particle interferometer. A particle at the center
decays into three daughters of equal mass and momentum.
Collimation restricts the decay state to beams a, b and c or
&, b and . The primed beams pass through phase shifters
(black rectangles) with phase shifts e, 8 and v, respectively,
after which the alternative paths are mixed at beam splitters
A, B and C before arriving at three pairs of detectors
(green). Figure 7
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